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CRYSTALLINE COHOMOLOGY OF ALGEBRAIC 
STACKS AND HYODO-KATO COHOMOLOGY 

Martin C. Olsson 

Abstract. — In this text we study using stack-theoretic techniques the crystalline 
structure on the de Rham cohomology of a proper smooth scheme over a p-adic field 
and applications to p-adic Hodge theory. We develop a general theory of crystalline 
cohomology and de Rham-Witt complexes for algebraic stacks, and apply it to the 
construction and study of the (</?, TV, G)-structure on de Rham cohomology. Using 
the stack-theoretic point of view instead of log geometry, we develop the ingredients 
needed to prove the Cst-conjecture using the method of Fontaine, Messing, Hyodo, 
Kato, and Tsuji, except for the key computation of p-adic vanishing cycles. We also 
generalize the construction of the monodromy operator to schemes with more general 
types of reduction than semistable, and prove new results about tameness of the 
action of Galois on cohomology. 

Résumé (Cohomologie cristalline des champs algébriques et isomorphisme de Hyodo-
Kato) 

Dans ce texte, nous étudions, par des techniques « champêtres », la structure cris
talline sur la cohomologie de de Rham d'un schéma propre et lisse sur un corps 
p-adique et ses applications à la théorie de Hodge p-adique. Nous développons une 
théorie générale de la cohomologie cristalline et des complexes de de Rham-Witt as
sociés aux champs algébriques, et l'appliquons à la construction et à l'étude de la 

AT, G)-structure sur la cohomologie de de Rham. Nous plaçant du point de vue des 
champs plutôt que de la géométrie logarithmique, nous développons les ingrédients 
nécessaires à la démonstration de la conjecture C s t suivant la voie de Fontaine, Mes
sing, Hyodo, Kato et Tsuji (en laissant de côté le calcul-clé des cycles évanescents 
p-adiques). Nous généralisons aussi la construction des opérateurs de monodromie 
aux schémas au-delà du cas semi-stable, et obtenons de nouveaux résultats sur le 
caractère modéré de l'action galoisienne sur la cohomologie. 
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INTRODUCTION 

This text grew out of an attempt to understand the theory of log crystalline coho
mology and its application to the Gst conjecture of Fontaine and Jannsen using the 
stack-theoretic techniques introduced in [62]. 

Before explaining the contents of the paper let us briefly review the statements of 
these conjectures, now proven in different ways by Tsuji [73], Faltings [20, 21], and 
Niziol [53, 54]. 

Let K be a complete discrete valuation field of mixed characteristic (0,p) with ring 
of integers V and perfect residue field k. Let K c—> K be an algebraic closure of K, 
let Ko C K be the field of fractions of the ring of Witt-vectors of the residue field of 
V, and let KQT C K denote the maximal unramified extension of Ko in K. There is 
a canonical automorphism a : K$r —> KQR induced by the Frobenius on the residue 
fields. Let G denote the Galois group Gal(K/K). The group G acts by restriction 
also on KQV. 

Let X/K be a smooth proper scheme. Associated to X are the de Rham coho
mology groups H£R(X/K) and the p-adic etale cohomology groups H*(X, Qp), where 
X denotes the base change of X to K. The space H£R(X/K) comes equipped with 
the Hodge filtration Fil#, and the space H*(X,QP) has a continuous action of the 
absolute Galois group GK •= Gal(K/K). The conjectures of Fontaine concern the 
relationship between H%R(X/K) and H*(X,QP). 

One of the key ingredients in the CdR-conjecture relating these two cohomology 
theories is the construction of a so-called (</?, AT, G)-module structure on H£R(X/K) 
in the following sense. 

Definition 0.1.1. — A (<p, AT, G)-module is a collection of data (D, <p, N) as follows: 

(0.1.1.1) A finite-dimensional i^Qr-vector space D with a a-linear automorphism (p. 

(0.1.1.2) A ifor"nnear nilpotent endomorphism N of D such that Ncp = p<pN. 

(0 1 1 3) ^ continuous semilinear (with respect to the natural action of G on KQV) 
action of G on D such that for all g G G, <p o g = g o (p and N o g = g o N. 
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A filtered (</?, N, G)-module is a collection of data (£>, <p, TV, Fil), where (D, <p, N) is 
a ((p, iV, G)-module and in addition there is the following structure. 

(0 1 1 4 ) ^ decreasing, separated, and exhaustive filtration Fil on D-^ := D <g>K%R K 
stable under the diagonal action of G. 

The category of filtered (</?, TV, G)-modules is denoted MF-^^K(ip, N). 
If T is a finite dimensional K-vector space, then a (filtered) (</?, N,G)-module 

structure on T is a (filtered) (<p, JV, G)-module (D, </?, iV) together with isomorphisms 
: T C=L {D ®KGR K)G for each choice of uniformizer 7r in K such that if 7r' = un 

then 

(0.1.1.5) PTT = p7r,exp(log(w)iV), 

where log denotes the p-adic logarithm. 

It follows from the proof of the Cst-conjecture that the de Rham cohomology 
H^R(X/K) has a natural filtered (<p, N, G)-structure such that the filtration on 
H£R(XJK) is the Hodge filtration. More precisely, consider the ring Bst of Fontaine 
[23, §3]. Let Rep(G) denote the category of finite dimensional Qp-vector spaces with 
continuous action of the Galois group G. To any Galois representation V G Rep(G) 
one can associate a (<p, N, G)-module as follows. The ring Bst comes equipped with a 
semi-linear Frobenius endomorphism ip, an operator iV, and an action of G satisfying 
certain compatibilities. Furthermore, the choice of a uniformizer 7r G K defines an 
inclusion Bst ®Kq K BdR, where B^R is as in [23, §1]. In particular, Bst <g>K0 K 
inherits a filtration from B^K- For any finite extension K c L c K let GL C G 
denote the subgroup Gal(K/L). Since BftL — Lo (the ring of Witt vectors of the 
residue field of L), we can define a ifor-space 

(0.1.1.6) Dvst(V) := lim 
KCLCK 

(BST ®o„ V)GL. 

The operators ip and N on Bst induce a (ip, N, G)-module structure on Dpst(V), and 
the inclusion DPST(V) <g)K£R K C i?dR ®QP V obtained by passing to the limit from 
the inclusions Bst<S>L0 L C J?dR induces a filtration on Dpst(V) <g>K%R K. We therefore 
obtain a functor 

(0.1.1.7) Dpst : Rep(G) MFjt/K{<P,N). 

There is also a functor 

(0.1.1.8) MFjt/K{<P,N)MFjt/K{<P Rep(G) 

sending (D, <p, N) to the G-representation 
(0.1.1.9) 
VpSt(£>, <p, N) := {v G BST ®K;t D\NV = 0, <p(v) =v, and v 0 1 G Fii°(£> 0K«r i f ) } . 

For (D,(p,N) G MFx//K((p,N) one can also define (£> ( g ) ^ if)G. This is a filtered 

if-vector space. 
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For V e Rep(G), there is a natural map 

(0.1.1.10) a: Bst ®Kur Dpst(V) - MFjt/K{<P,N) 

The representation V is called potentially semistable if this map a is an isomorphism 
[24, 5.6.1]. By [24, 5.6.7] the functor DpSt is fully faithful when restricted to the 
subcategory Reppst(G) C Rep(G) of potentially semistable representations, and if 
MFjf^jip.N) C MFftiK(ip< N) denotes its essential image, then a quasi-inverse 

(0.1.1.11) MFjt/K{<P,N)MFjt/K{<P,N)%£ 

is provided by VVst> 
We also consider the subcategory Repst(G) C Reppst(G) consisting of representa

tions V for which the natural map 

(0.1.1.12) Bst ®K0 (Bst ®QP Vf • + Bst ®QP V 

is an isomorphism, buch representations are called semistable and the essential image 
of Repst(G) in MZadm(^, N) is precisely those (<p, AT, G)-modules (D, <p, N) for which 
the action of G on D is trivial (that is, the natural map KQV <£>K0 DG —> D is an 
isomorphism). Let Do denote the space DG. The operators <p and N induce operators, 
denoted by the same letters, on Do and the filtration descends to Do <8>x0 K-

We can now state the C8t-conjecture as follows: 

Theorem 0.1.2 ([73,20, 21,53]). — Let X/K be a smooth proper scheme of dimension 
d with semistable reduction, and let m be an integer. Then the Galois representation 
V = Hm(X,Qp) is semistable and for any choice of uniformizer in K there is an iso
morphism K®Kq Do ^ H^jl(X/K) compatible with the filtrations (where H^(X/K) 
is filtered by the Hodge filtration). 

Using de Jong's alterations theorem [37] one can deduce from this the following 
so-called Gpst-conjecture: 

Theorem 0.1.3 ([74]). — Let X/K be a smooth proper scheme and m an integer. Then 
the Galois representation V = HTn(X, Qp) is potentially semistable, and for any choice 
of uniformizer in K there is an isomorphism (K®K%R DVst{V))G — H^(X/K) com
patible with the filtrations. 

Since one can recover the Galois representation Hm(X,Qp) from Dp8t(V), it is 
of great interest to understand in more detail the (ip, N, G)-module Dpst(V). In 
the case of semistable reduction, the module Dpst(V) can be constructed using the 
theory of log geometry and log crystalline cohomology developed by Fontaine, Illusie, 
and Kato [40]. Unfortunately, the construction in general is based on an abstract 
"independence of model argument" and de Jong's alterations and so does not directly 
yield information about the Galois representation. 

The starting point for this work is the paper [62] which gives a dictionary be
tween logarithmic geometry and "ordinary" geometry of schemes over certain algebraic 
stacks. This suggests the possibility of giving a construction of the (<p, TV, G)-structure 
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10 INTRODUCTION 

using a theory of crystalline cohomology for algebraic stacks rather than logarithmic 
geometry. One of the principal aims of this text is to work out this idea and give 
such a new interpretation of the (<£>, N, G)-structure. Of course since there truly is 
a dictionary between the stack-theoretic approach to the (<p, iV, G)-structure and the 
approach using log geometry (as explained in Chapter 9), in most situations one can 
use either approach depending on one's taste. Nonetheless, we feel that the stack-
theoretic approach is more concrete in the sense that it essentially relies only on 
the classical theory of crystalline cohomology and descent theory, whereas the loga
rithmic approach requires the development of a new theory mimicking the classical 
situation in the logarithmic world. The stack-theoretic approach also helps "explain" 
why the logarithmic theory works out so smoothly, and of course the general theory 
of crystalline cohomology developed in this text is more general than the logarithmic 
theory. 

Aside from giving a new perspective on the (<p, AT, G)-structure in the semistable 
reduction case, this stack-theoretic approach also yields more information in some 
cases than the logarithmic theory. In particular, in the case when the scheme X 
has so-called "log smooth reduction" but not necessarily semistable reduction (or not 
"Cartier type" reduction in the logarithmic language), the stack-theoretic approach 
gives a direct construction of the (<p, N, G)-structure which does not involve the use of 
alterations in the sense of de Jong [37]. This construction yields new theorems about 
tameness of the Galois action on the module Dpst(V) (see the discussion of Chapter 7 
below). 

Before studying the (<p, N, G)-structure, however, we must first develop a theory 
of crystalline cohomology for algebraic stacks. This is done in Chapters 1-4. Because 
of the importance that stacks and their cohomology have played in recent years, we 
develop the theory in greater generality than strictly necessary for the applications to 
the conjecture of Fontaine and Jannsen. Aside from being more aesthetically pleasing, 
we are hopeful that this general theory will find applications in the future. 

In Chapter 1 we develop the basic definitions and results about the crystalline 
topos of a stack. We consider both the lisse-etale crystalline site defined for an Artin 
stack and the etale crystalline site defined for Deligne-Mumford stacks. Because of the 
non-functoriality of the lisse-etale topos of an algebraic stack (see for example [68]), 
there are a number of technical issues which are worked out in this chapter. 

In Chapter 2 we study the notion of crystal and differential calculus for algebraic 
stacks. Most of the results are developed for represent able morphisms from Deligne-
Mumford stacks to Artin stacks which is a somewhat restrictive setting. However, 
since computations using the relationship between crystalline and de Rham cohomol
ogy are usually performed locally on the source this is sufficient for most purposes. 

In Chapter 3 we turn to the main technical difficulty in trying to extend the crys
talline theory to algebraic stacks. The crystalline cohomology of stacks is in general 
a mixture of crystalline cohomology of schemes, Lie algebra cohomology, and group 
cohomology. It is therefore not surprising that one must impose some conditions in 
order to carry over some of the classical results to stacks. The main difficulty arises 
when considering the Frobenius morphism F : § —• § of an algebraic stack in char
acteristic p > 0. Not only is the Frobenius morphism F usually not represent able, 
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INTRODUCTION 11 

the cohomology sheaves RlF*0$ may be not be zero for i > 0. Thus the Probenius 
morphism of a stack behaves wildly when compared to the Probenius morphism of a 
scheme. This difficulty becomes especially problematic when trying to generalize the 
Cartier isomorphism to stacks. Nonetheless, with some assumptions which can easily 
be checked in practice (in particular for the stacks we consider in subsequent chapters), 
the Cartier isomorphism and its consequences (in particular Ogus' generalization of 
Mazur's theorem) can be generalized to the stack-theoretic context. 

In Chapter 4 we generalize the theory of the de Rham-Witt complex [34] to the 
stack-theoretic setting. The main case of interest is the situation of a smooth repre-
sentable morphism X —> S over a perfect field of characteristic p, with X a Deligne-
Mumford stack and 8 an Artin stack such that the cohomology of the Probenius mor
phism behaves as if S was a perfect scheme (we call such a stack a "perfect stack"). 
Because we wish to work locally in the lisse-etale topology on §, in order to develop a 
de Rham-Witt theory with an algebraic stack as a base we first study de Rham-Witt 
theory for schemes over a non-perfect base. 

There are at least two different descriptions of the classical de Rham-Witt pro-
complex W&X/S °f a smo°th morphism X —> S with S perfect. In the first approach, 
one defines W.Q^/s as ^ne initial object in a certain category of differential graded 
algebras with operators F and V. The second description is based on the comparison 
with crystalline cohomology which shows that one can also define the de Rham-Witt 
pro-complex by taking Wnftqx/S := or~n*Rqux/wn(S)*Ox/wn(S), where a : Wn(S) -> 
Wn(S) denotes the canonical lift of Probenius and Ux/s (X/Wn(S))cr[s —* Xet is the 
projection from the crystalline topos to the etale topos. 

When S is not perfect, one can try to generalize both approaches. A general
ization of the first one has been developed by Langer and Zink [47] and gives rise 
to a pro-differential graded algebra we denote by W^zilx^s. The second approach 
via crystalline cohomology gives a pro-differential graded algebra which we denote 
by A: 

,x/s- There is a canonical map W^nZ^x/s ~~* ̂ * , x / S ' but this map is usually 
not an isomorphism. 

Let A: be a perfect field of characteristic p > 0 and let W be the ring of Witt 
vectors of k. Let %/W be a flat algebraic stack with reduction So a perfect stack, 
and let X —> So be a locally separated smooth representable morphism of algebraic 
stacks with X a Deligne-Mumford stacks. The second approach to the de Rham-Witt 
complex via crystalline cohomology gives rise to a pro-differential graded algebra 
A*N Xy§ with operators F and V, and we define the de Rham-Witt complex of X/8 
by Wnfijyg := cr~N*A^ XyS. In Chapter 4 we prove that this enjoys many of the 
usual properties of the de Rham-Witt complex. In particular, there is a comparison 
theorem relating it to crystalline cohomology which gives rise to a slope spectral 
sequence which can be studied using the classical methods of [34]. On the other 
hand, we show in Chapter 4 that the de Rham-Witt complex Wnn^s can also be 
described using descent theory by choosing a smooth cover S —> S of S by a scheme and 
considering the Langer-Zink de Rham-Witt complex ^nZ^x . /50 • ' wnere denotes 
the 0-coskeletonof S —• S and Xm := X x § 5 . (cf. 4.6.7). This is important for technical 
reasons as it enables one to construct maps from Wn^x/s ^° °ther differential graded 
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12 INTRODUCTION 

algebras using the universal property of the Langer-Zink de Rham-Witt complex. In 
particular, this gives a key technical result (4.6.9) needed for the study of the C8t-
conjecture which also "explains" the key technical lemma of Hyodo-Kato [31, 4.8] in 
the logarithmic approach. 

In Chapters 5-7 we turn to the study of the Hyodo-Kato isomorphism. 
Let k denote a perfect field of characteristic p, W the ring of Witt vectors of k, and 

W(t) the p-adic completion of the divided power envelope of the surjection W[t] —> k 
sending t to 0. The ring W(t) has a canonical lift of Frobenius defined to by the 
canonical lift of Frobenius a to W and the map 11—• tp. 

In Chapter 5 we study some abstract semi-linear algebra over the ring W(t), as 
well as projective systems of Wn(t) := W(t) ® Z/pn+1-modules. Our interest in this 
semi-linear algebra arises as follows. Let X/W be a semistable proper scheme (more 
generally we consider also X defined over a ramified extension of W, but in this 
introduction we restrict for simplicity to the case when X is defined over W). Then 
we construct in Chapter 6 an algebraic stack §w(t) flat over W(t) and a smooth map 
Xo —>• Sw(t> ®w{t) k. The stack &w{t) ls obtained from a modification of the following 
construction. Let a i , . . . , ar be positive integers and consider the scheme 

(0.1.3.1) Svec(W(t)[Xu ..., Xr, V^/iX? ...X?*V- t)). 

There is an action of on this scheme for which ( m , . . . , ur) G acts by 

(0.1.3.2) st ®K0 (Bst ®QP Vfst ®K0 (Bst ®QP Vf 

The quotient 

(0.1.3.3) [Spec(W(t)[Xu ..., Xr, V^/iX? • • • X?V - t))/Grm] 

is then etale over §w(t)-

Remark 0.1.4. — In fact it is possible to prove the C8t-conjecture using only the 
stacks (0.1.3.3). However working with the stack §w(t) makes certain constructions 
more canonical so we choose to use §w(t) instead of (0.1.3.3). 

Let ps(W(t)) denote the category of projective systems M. of VF(£)-modules with 
Mn annihilated by pn+1 (so Mn is a Wn(t)-module), and let ps(W(t))Q denote the 
category whose objects are the same as the objects of ps(W(t)) but whose morphisms 
are given by 

(0.1.4.1) Homps(^(t))Q(M.,iV.) := Homps(^(t))(M., AT.) 0 Q. 

One of the key technical results (a variant of [31, 5.2]) used in the proof of the 
Cst-conjecture is then to show that there is a canonical isomorphism in the category 
ps(W(t))Q 
(0.1.4.2) 

{H*((X0/BWnUs,0Xo/SwJ ®w W(t)} ~ {H*((Xo/SWn(t)Us,0Xo/SwnW)} 

compatible with the Frobenius endomorphisms and the projections to the projective 

system {^r*((X0/§^n)cris,OXo/sH,n)}. 
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INTRODUCTION 13 

Following Hyodo and Kato's approach in [31, 41], we construct the isomor
phism (0.1.4.2) by studying the slope spectral sequence 

uXo/§Wn * 0Xo 
¨%£¨¨ =̂ (X0fet,ilPtiXo/8Wn<t>.OXo/8Wn<t>) ^((Xo/SW(t) )cris, 0Xo/Sw(t) )• 

The construction has two basic components. 

(1) In Chapter 5 we prove an "abstract Hyodo-Kato isomorphism" (see 5.3.33 for 
the precise statement) in a general setting of a spectral sequence in the category 
ps(W(t))q. This result is a corollary of our study of F-isocrystals over W(t), based 
on Ogus' notion of "twisted inverse limits" [59]. 

(2) In order to apply this abstract Hyodo-Kato isomorphism to the slope spectral 
sequence (0.1.4.3) we must show that the E\-terms 

(0.1.4.4) Hq (X0,et, RpuXo/§Wn * 0Xo/§ Wn (t> ) 

satisfy a certain finiteness condition (they are "free of finite type modulo torsion" in the 
sense of 5.1.14). This finiteness property depends on some subtle geometric properties 
of the stacks $w(t) and §w (and variants of these stacks), and the comparison of the 
de Rham-Witt complex ^n^x/Sw ^° ̂ e Langer-Zink de Rham-Witt complex proven 
in Chapter 4. 

In Chapter 6, we describe the algebraic stacks S#(a) which serve as the base 
stacks in the construction of the (ip, N, G)-structure on de Rham cohomology when 
the scheme X/K in the above has "log smooth reduction" in a suitable sense. We 
verify in particular the necessary finiteness conditions on the E\-terms (0.1.4.4) for 
the results of Chapter 5 to be applicable. The stacks Sij(a) are defined over Z[t], and 
for every integer e > 1 there is a canonical map 

(0.1.4.5) Ae : S#(a) — • Sjy(a) 

covering the map Z[t] —» Z[t] sending t to te. A case of particular interest is when e is 
equal to a prime p, in which case the map Ap defines a lifting of the relative Frobenius 
morphism of the reduction mod p of Sjj(a). The key technical result is the calculation 
6.3.18 computing Apn*0sH(a) in certain cases. This computation then yields 6.3.26 
which in turn enables us to apply the stack-theoretic version of Ogus generalization 
of Mazur's theorem 3.4.38 which is the heart of the Hyodo-Kato isomorphism. 

At the end of Chapter 6 and in Chapter 7 we then construct the Hyodo-Kato 
isomorphism and the (ip,N, G)-structure on de Rham cohomology, first in the case 
of semistable reduction (6.4 and 6.5) and then in Chapter 7 for schemes with more 
general kinds of reduction. This direct construction of the ((£, iV, G)-structure yields 
information not readily available from the approach using alterations. 

In Chapter 8 we then turn to the Cst-conjecture. In this chapter, we rework most 
of the paper [41] from the stack-theoretic point of view. The reader familiar with 
the approach using log geometry may wish to read this section with [41] nearby to 
compare the two approaches. We develop in detail using stacks instead of log geometry 
the aspects of Tsuji's proof of the Cst-conjecture (at least when the dimension d of 
X satisfies d < p — 1) which previously used the logarithmic theory. This includes 
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a crystalline description of the ring Pst, a crystalline description of (Bst 0 j)my\=u^ 
as well as the definition of syntomic complexes. For the convenience of the reader 
we also give an outline of the remaining aspects of the proof (essentially Tsuji's key 
computation of p-adic vanishing cycles). We hope that the reader not familiar with 
Tsuji's proof can read this chapter, understand the outline of the proof, and fill the 
remaining parts using Tsuji's paper [73]. 

Let V, K, Ko, G etc. be as in the beginning of the introduction, and let X/K 
be a smooth proper scheme. We say that X has log smooth reduction if there exist 
a flat proper integral scheme X/V with generic fiber X and a dense open set IX C X 
such that etale locally on X there exists a finitely generated integral monoid P, a map 
6 : N —> P such that the following hold: 

0.1.4 (i) The induced map Z —> Pgp is injective with cokernel p-torsion free (where 
P —> PSP denotes universal map from P to a group) 

0.1.4 (ii) There exists an etale V-morphism 

(0.1.4.6) X — • Spec{V ®Z[N] Z[P]), 

where Z[P] and Z[N] denote the monoid algebras, the map Z[N] —> Z[P] is 
the map induced by 8, and the map Z[N] —> V sends 1 G N to 7r. 

0.1.4 (hi) The inverse image under (0.1.4.6) of the open set 

0.1.4.7) Spec(V ®Z[N] Z[Pgp]) c Spec(V ®Z[N] Z[P]) 

is equal to IX. 

Remark 0,1.5. — As explained in 9.7, if in addition we can choose the monoid P to be 
saturated, then a result of Kato (see [42, 11.6] and [55, 2.6]) implies that the open set 
IX C X defines a natural log structure M% on X such that if My denotes the natural 
log structure on My then the morphism (X, M%) —> (Spec(F),My) is log smooth. 
In 9.7.3 we show that if (X,1X) is as above (with P not necessarily saturated), then 
the normalization X' of X with the inverse image U! C X' of IX also satisfies the above 
conditions. Hence a smooth proper scheme X/K has log smooth reduction if and 
only if there exists a log smooth proper morphism (X, M%) —> (Spec(V), My) whose 
underlying morphism of schemes on the generic fiber is equal to X —> Spec ( i f ) . 

Remark 0.1.6. — The open set IX f l X c X may be strictly smaller than X. For 
example, if IX C X is etale locally isomorphic to 

(0.1.6.1; Spec(K[x±,y±,z±]/(z = 7T 1xy)) C Spec(V[x,y,z]/(xy = TTZ)). 

Hence the above terminology is perhaps misleading since there may not exist a log 
smooth proper morphism (X, M%) —• (Spec(V), My) whose generic fiber has trivial 
log structure and is equal to X. We hope this does not cause confusion. 

The following is a p-adic analogue of results of Rapoport and Zink [70] and 
C. Nakayama [52, 0.1.1] for ^-adic cohomology. 

Theorem 0.1.7. — If X/K has log smooth reduction, then the action of G on D™ 
factors through a tame quotient. 
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Theorem 0.1.8. — Let X/K be as in 0.1.7, and assume X/K admits a log smooth 
model (X, 11) /V with X regular and such that the reduced closed fiber of % is a divisor 
with simple normal crossings (note in this case we can just take IX equal to X C X). 
Let a\,..., ar be the multiplicities of the components of the closed fiber. If N denotes 
the product of the integers ai/pUp^ai\ then the action of G on Dm factors through the 
Galois group of the Galois closure of the field extension K C K(TT1^N). 

Theorem 0.1.8 is proven in Chapter 7. As explained in 9.7, theorem 0.1.7 follows 
from 0.1.8. In certain non log smooth cases we are also able to apply our techniques 
to obtain control over the amount of wildness involved in the action of G on D171 
(see 7.2.14). 

In the final Chapter 9, we explain how the theory developed in this text relates 
to the logarithmic theory. We explain how the stack-theoretic approach enables one 
to recover the theory of log crystalline cohomology, the log Cartier isomorphism, and 
also explain the equivalence between the approach to the (</?, iV, G)-structure taken in 
this paper and the logarithmic approach. 

Acknowledgements. — It should be clear that our construction of the (<p, N, G)-
structure is based to a large extent on the ideas in [31, 41, 59, 73, 74]. In particular, 
Chapter 8 is essentially a translation into the stack-theoretic language of [41] and 
section 8.5 is essentially contained in [74, Appendix]. Our aim in the discussion on 
the Cst-conjecture is largely to provide a new point of view, though of course there 
are new results as well. 

The author is grateful to L. Illusie whose questions and comments have been very 
helpful and inspiring, A. Abbes who among other things provided very helpful feed
back on the preprint "Crystalline cohomology of schemes with tame reduction", as 
well as to two referees of this preprint whose helpful comments and suggestions en
couraged us to pursue the more ambitious project found in this text. The referee 
of the present monograph did a truly remarkable job making an extraordinary num
ber of corrections and helpful suggestions, both mathematical and stylistic. We also 
benefited from conversations with A. J. de Jong. Finally the author is grateful to 
A. Ogus for his support and encouragement. This paper grew out of the author's 
thesis written under professor Ogus, and it would not be in existence without his help 
and advice. 

At various times during this research the author has received financial support 
from the Clay mathematics Institute, the Mathematical Sciences Research Institute 
in Berkeley, the Institute for Advanced Study in Princeton, and an NSF post-doctoral 
research fellowship. 

0.2. Preliminaries and conventions 

0.2.1. — We generally follow the conventions about algebraic stacks used in [49] 
except we need more relaxed hypotheses on the diagonal than in [49, 4.1]. Precisely, 
an algebraic stack X over some scheme S will mean a stack over the category of 
5-schemes with the etale topology such that the following two conditions hold: 
CO 2 1 1) ^aSona^ A : X —> X X5 X is representable, of finite type, and locally 

' separated. 
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(Recall that a representable morphism of algebraic stacks / : Z —•> W is locally 
separated if the diagonal Z —> 2 X)v Z is a quasi-compact immersion.) This implies 
in particular that the diagonal A is quasi-compact and quasi-separated. 

(0.2.1.2) There exists a smooth surjection X —• X with X a scheme. 

We call an algebraic stack X for which there exists an etale surjection X —• X with 
X a scheme a Deligne-Mumford stack. 

A morphism of algebraic 5-stacks / : X —> y is called representable by Deligne-
Mumford stacks if for any scheme Y and smooth morphism Y —• y the fiber product 
X xy 7 is a Deligne-Mumford stack over Y. 

Lemma 0.2.2. — Let S be a scheme, X —• S an algebraic stack, and X —> X a mor
phism from a locally separated S-space X. Then the diagonal X —> X x% X is a 
quasi-compact immersion (i.e., the morphism X —• X is locally separated). 

Proof — Let P denote the fiber product (X x% X) XxXsx ^ and let a : X —> P 
be the section defined by the diagonal map. Since the map X —• X Xs X is locally 
separated, the space P is locally separated over X. To prove that the map X —• 
X x x X is a quasi-compact immersion, it suffices to show that a is a quasi-compact 
immersion since the map P -+ X x% X is & quasi-compact immersion being the base 
change of X C X Xs X. The result therefore follows from [46, 1.1.21] applied to the 
category of quasi-compact immersions. • 

0.2.3. — If S is an algebraic stack over some base scheme B, we define the 2-category 
of S-stacks to be the 2-category whose objects are pairs (X,x) , where X/B is an 
algebraic stack and x : X —> § is a morphism of algebraic stacks. A 1-morphism 
(3C , x ) ^ («3C, x) is a pair (/, /b) , where / : X' —> X is a morphism of stacks and 
fb : x' ~ x o f is an isomorphism of functors. A 2-isomorphism (f,fb) —> (g,gb) 
between two 1-morphisms (X',x') —• (X,x) is an isomorphism of functors t : f g 
such that the two isomorphisms 

(0.2.3.1) gb,x(i) o fb : x' > xog 

are equal. An S-algebraic space (resp. S-scheme) is an S-stack (X, x) with X an 
algebraic space (resp. scheme). Observe that the 2-subcategory consisting of §-
stacks (X, x) for which the morphism x : X —• § is representable is equivalent to a 
1-category. This is because if (/, fb) : (X7, x') —> (X, x) is a morphism of such S-stacks 
and L : / —> / is an isomorphism of / such that x(t) is the identity, then i is the 
identity since the functor x is faithful. Thus it makes sense to talk about the category 
of S-spaces or S-schemes. 

0.2.4. — When working with general Artin stacks we usually consider the lisse-etale 
topology as defined in [49, §12]. The reader should be aware that there are some 
problems with loc. cit. as the lisse-etale topology is not functorial as asserted there. 
However, in [68] the necessary aspects of the theory needed for this paper have been 
worked out. In particular, there is a good theory of quasi-coherent sheaves on Artin 
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stacks. For an Artin stack X we write Lis-Et(X) for the site whose underlying cate
gory is the category of smooth X-schemes, and whose topology is generated by etale 
surjective morphisms. We write Xiis.et for the associated topos. 

0.2.5. — We write A for the standard simplicial category whose objects are the or
dered sets [n] = {0, l , . . . , n } (n € N) and whose morphisms are order preserving 
maps. We write A+ for the full subcategory of A with the same objects but mor
phisms only the injective order preserving maps. For a category C, a simplicial (resp. 
strictly simplicial) object in C is a functor X. : Aop —• C (resp. X + : A+op -> C). For 
n G N we usually write Xn for X#([n]) (resp. X+([n])). A simplicial object X* in C 
induces a strictly simplicial object X + defined to be the composite 

(0.2.5.1) A+oP c AoP *• , c. 

0.2.6. — We sometimes consider simplicial and strictly simplicial topoi which are 
defined for example in [5, Vbis. 1.2.1]. 

In particular, for a simplicial (resp. strictly simplicial) algebraic space Xm 
(resp. X + ) , we denote by X9et (resp. X.et) the etale topos. Recall that a sheaf F# in 
X.et (resp. X^et) consists of a sheaf Fn in Xn,et for every n G N together with a map 
X9(6)~1Fn n> (resp. X^(S)~1Fn —>) for every morphism 6 : [n'\ —• [n] in A 
(resp. A+). Furthermore, these transition morphisms are require to be compatible 
with compositions in A (resp. A+). 

In particular there is a natural structure sheaf Ox. (resp. Ox+) defined by the 
structure sheaf on each Xn. A sheaf Fm of Ox.-modules (resp. Ox+-modules) is quasi-
coherent if each sheaf Fn is a quasi-coherent sheaf on Xn and for every morphism 
8 : [n] —> [nf] the induced map Xm(6)*Fn —> Fn/ (resp. X+(5)*Fn —• Fni) is an 
isomorphism. 

0.2.7. — Recall [34, 1.1.5] that for a scheme X over Fp, one can define for any integer 
n the Witt scheme Wn(X). The underlying topological space of Wn(X) is equal to 
that of X , and the structure sheaf associates to any open set U C X the ring of Witt 
vectors Wn(T(U, Ou))- This can be generalized to Deligne-Mumford stacks as follows. 

Let X be a Deligne-Mumford stack over some affine Fp-scheme Spec(A). Let Wn(X) 
be the fibered category over Spec(Wn(A)) which to any Wn(^4)-algebra R associates 
the groupoid of pairs (/, p), where / : Spec(i? <8>wn(A) A) —> X is a 1-morphism and 
P : f~lWn(0%et) —>• Ospec(R) is a rmg homomorphism such that the diagram 

(0.2.7.1) 

f*(y(p w+n)/Çn))^ f*(y(p w+n)/ 

M% 

Ŝpec(Ä) OsPec(R®Wn(A)A)' 

Here /_1 is the inverse image functor for the morphism of topoi Spec(R®\yn(A) A)et —> 
Xet and we have identified the etale topoi of Spec(i?) and Spec(i? <g>wn(A) A) using 
the invariant of the etale site under infinitesimal thickenings. 
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Proposition 0.2.8. — The stack Wn(X) is a Deligne-Mumford stack. The étale 
topos Wn(X)et is canonically equivalent to the ringed topos (Xet, Wn(Oxet)), where 
Wn(Oxet) is the sheaf which to any étale X-scheme U associates Wn(r(U,Ou))> 

Proof. — Consider first the case when the diagonal of X is representable by schemes. 
Let U —• X be an étale surjection with U a scheme. Set U' := Ux%U and let (Uf =4 

U) denote the resulting étale groupoid in schemes. Applying the functor Wn(—) to 
this groupoid we obtain a groupoid in Wn(A)-schemes (Wn(Uf) =3 Wn(U)). Since the 
functor Wn{—) takes étale morphisms to étale morphisms [34, 1.1.5.8], it follows that 
in fact {Wn(U') =3 Wn(U)) is an étale groupoid. We claim that the resulting Deligne-
Mumford stack is equal to Wn(X). Temporarily denote by Wn(X) the algebraic space 
defined by (Wn{Uf) =3 Wn(£/)). There is a natural map Wn{X) -+ Wn(X). It is 
clear that any morphism T —> X étale locally lifts to a map to Wn(U) and hence 
also Wn(X) since this is true over Spec(A). Thus it suffices to show that two maps 
/ , / ' : Spec(i?) —> Wn(X) are equal if the induced maps (/ , p) and ( / ' ,p ' ) to Wn(X) 
are isomorphic by an isomorphism ¿. This is an étale local assertion, and hence we 
may assume that / and / ' factor through maps / and / ' to Wn(U). We then need 
to show that the resulting map / x / ' : Spec(R) —• Wn(U) X\yn(A) Wn(U) factors 
through Wn{U'). Let g : Spec(R ®wn{A) A) —• Wn(U') be the map induced by the 
reduction of the isomorphism t. Since the map p ^ : Wn(Uf) —• Wn(U) (i = 1,2) is 
étale, there exists a unique lifting gi : Spec(it!) —»• Wn(U') of g such that prx o gi — f 
and pr2 o g2 = f. The assumption that p — p' implies that the two induced maps 

(0.2.8.1) 9i Q^WniU') — , R 

are equal and hence g\ = g2. Thus f x f factors through Wn{U'). This proves the 
case when X is a Deligne-Mumford stack with diagonal representable by schemes. In 
particular, it proves the result for algebraic spaces. 

But once we know that the result holds for algebraic spaces, we can repeat the 
above argument to get the result for an arbitrary Deligne-Mumford stack using a 
presentation in algebraic spaces {V =3 U) of X. • 
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CHAPTER 1 

DIVIDED POWER STRUCTURES ON STACKS AND 
THE CRYSTALLINE TOPOS 

1.1. PD-stacks 

Definition 1.1.1. — A PD-stack is a triple (S, / , 7), where § is an algebraic stack over 
Z/pnZ for some integer n and ( / ,7) is a quasi-coherent sheaf of ideals with divided 
power structure in the ringed topos (Sns-et, Oslia.et) (see [7, 1.1.9.1]) for the definition 
of a divided power ideal in a ringed topos). The pair ( / ,7) will be referred to as a 
quasi-coherent PD-ideal in Oglis_et. 

Let (8 ' , / ' ,7 ' ) and (8,1,7) be PD-stacks, and let / : 8' —• 8 be a morphism of 
stacks. We say that / is a PD-morphism if the image of / under 0slis_et —» /*^s;is 
is contained in / * / and if for every integer i > 0 the diagram 

(1.1.1.1) 

%£ %£% 

ML ML 

%£%£ £%¨P¨£¨% 

commutes. 

1.1.2. — Let (8, / , 7) be a PD-stack and let / : X —> 8 be a morphism of algebraic 
stacks. Recall [68, 6.5 (ii)] that even though the lisse-etale site of an algebraic stack 
is not functorial, it still makes sense to pullback a quasi-coherent sheaf T on 8 to a 
quasi-coherent sheaf /*T on X. If 

(1.1.2.1) 

U 
F V 

p Q 

X s 

is a commutative diagram with p and q smooth and U and V algebraic spaces, then 
the restriction (f*T)u OF Z*^7 to the étale site of U is equal to the pullback via the 
morphism of ringed topoi Uet,'—• Vet induced by / of Ty. In particular, / * / is a 
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quasi-coherent sheaf on X and we write / * J • 0% for the quasi-coherent sheaf of ideals 
which is the image of the map f*I —> C*xlis_et. 

We say that 7 extends to X if there exists a divided power structure 7' on / * / • Ox 
such that the morphism / induces a PD-morphism 

(1.1.2.2) st ®K0 (Bst ®QP Vfst ®K0 (Bst 

We will see in 1.1.10 below that such an extension is unique if it exists. 

Definition 1.1.3. — Let ( § ' , / ' , 7') and ( § , / , 7 ) be PD-stacks, and / : § ' - > § a mor
phism. We say that / is compatible with 7 and 7' if 7 extends to S' and if there exists 
a PD-structure S on / ' + / * / • such that 5\r = 7' and S\f*i.Q , is equal to 

hs_et Slis-et 
the given extension of 7. 
1.1.4. — In the setting of algebraic spaces, the above definitions are equivalent to the 
usual notions using the etale topology instead of the lisse-etale topology. Precisely, 
let S be an algebraic space and 

(1.1.4.1) S : Slis-et y Set 

the morphism of ringed topoi for which s* is the functor which restricts a sheaf in 
Sns-et to the etale site of S and s-1 is the functor which sends an etale sheaf F to the 
sheaf which to any smooth g : Z —> S associates T(Zet, g~1F). 

For any quasi-coherent sheaf of ideals / C Oset the pullback s*I is a quasi-coherent 
sheaf of ideals in OsliB.et • Furthermore, if 7 is a divided power structure on / , then for 
any smooth g : Z —• S the pullback g*I C Ozet has by [7, 1.2.7.4] a unique divided 
power structure r)z such that the map g defines a PD-morphism 

(1.1.4.2) ; Z , < 7 * / , 7 Z ) — + ( 5 , / , 7 ) . 

It follows that the divided power structure 7 on / induces a unique divided power 
structure s*7 on s*I such that for any smooth g : Z —> S the map g defines a 
PD-morphism 

(1.1-4.3) (Z,s*J|z.t,a'7|zJ — (5,7,7).-

Lemma 1.1.5. — Let S be an algebraic space. Then the map (1,7) 1—> (s*I, 5*7) de
fines a bisection between the set of quasi-coherent PD-ideals ( / ,7) in Oset, and the 
set of quasi-coherent PD-ideals J C OsUs.et • 

Proof. — By descent theory, the functor s* induces a bijection between the set of 
quasi-coherent ideals / C Oset and the set of quasi-coherent ideals J C Osli8_et. 
Thus it suffices to show that if / C Oset is a quasi-coherent ideal, then any divided 
power structure 7 on s*/ is equal to s*(7|set), where j\set denotes the divided power 
structure on i" obtained by restriction to Set- If g • Z —> S is any smooth morphism, 
then 7|zet and s*(7|set)|zet both define extensions of 7|set to the ideal g*I, and hence 
by [7, comment after 1.2.1] we have j\Zet = s*(j\set)\zet' n 
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Lemma 1.1.6. — Let (S",7',7') and (5 ,7 ,7) be algebraic spaces with PD-ideals V c 
Osf and I C Oset. Then a quasi-compact and quasi-separated morphism f : S' —> 
S induces a PD-morphism (5^ ,7 ' , 7') —> (5et ,7,7) 2/ and on/?/ i/ / induces a PD-
morphism in the sense of 1.1.1 between (5", s*If, 5*7') and (S,s*I,s*j). 

Proof. — Let /et denote the morphism of topoi Sfet —> 5et induced by / , and write 
/* for the pushforward of lisse-etale sheaves. Then by [68, proof of 6.20] for any 
quasi-coherent sheaf M on S'et we have s*(f*tM) = f*(s*M). It follows that the 
map I —> ffOsfet factors through ffl' if and only if s*I —> f*OsliB_et factors through 
/*(s*7'). It is also clear that if / induces a PD-morphism in the sense of 1.1.1, then 
/ defines a PD-morphism (S^, 7', 7') —> (5et ,7,7) since for any i > 0 the diagram 

(1.1.6.1) 

£% 

£%°+ 

%£% 

M££% 

/.HI) 

JL%¨P 

can be obtained from the diagram (1.1.1.1) by restricting to the etale topology of S. 
Conversely, to prove that if / defines a PD-morphism (S'et, I', 7') —» (S'et, 7,7) then 

the diagram (1.1.1.1) commutes for every i > 0, note first that we may work etale 
locally on S and Sf and hence may assume that S and S' are affine schemes. Write 
S = Spec(fi), S' = Spec(72'), M = T(5,7), and M ' = T(S\ V). For any smooth affine 
Spec(7?) —> Spec(fi) the evaluation of the diagram (1.1.1.1) on Spec(£?) is identified 
with the diagram 

(1.1.6.2) 

M®RB № ®RB 

7< 7*' 

J3 72' ®fl 5 . 

Here 7i(m 0 b) = 6*7* (ra <g> 1) and 72'(ra' (8) 6) = &*7*(m' ® 1). To prove that (1.1.6.2) 
commutes it therefore suffices to show that the diagram 

(1.1.6.3) 

M + M' 

7i 7,' 

fi fi' 
commutes which follows from the fact that (S'et, 7', 7') —> (5et, 7,7) is a PD-morphism. 

m 

1.7.7. — Let § be a quasi-compact algebraic stack and 7 C 0$liB_et a quasi-coherent 
sheaf of ideals. Let / : U —» S be a quasi-compact smooth surjection with U an affine 
scheme. Set P = U x§ U, and let g : P —> S be the projection. Since the diagonal 
of S is quasi-compact and quasi-separated by our conventions 0.2.1, the map g is also 
quasi-compact and quasi-separated. Furthermore, both of the projections pi : P —• U 
(i = 1,2) are smooth. Denote by I\uet (resp. 7|pet) the restriction of 7 to the étale site 
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of U (resp. P). Since / is quasi-coherent, for each i there is a natural isomorphism 
ai : P*I\uet ~* I\PET- If lu is a divided power structure on J|t/et, then since pi is 
flat (in fact smooth) we can by [7, 1.2.7.4] pullback the PD-structure to a divided 
power structure on p*I\uet- We write p*(7ry) for the divided power structure on 7|pet 
obtained from this pullback and the canonical isomorphism oi. 

Lemma 1.1.8. — Restriction defines a bisection between the set of divided power struc
tures on I in the topos §HS-et and the set of divided power structures on I\uet such 
that the PD-structuresp\(lu) andp^ilu) on I\pet are equal. 

Proof. — Let 7c/ be a divided power structure on I\uet as m the lemma, and let 7 P 
denote pK^u) — #2(7*7)- Write simply s for the morphisms of topoi £/iis-et —• Uet and 
flis-et —• ^et defined in 1.1.4. For any n > 0, there is a morphism of exact sequences 

(1.1.8.1) 

0 f*(y(pf*(y(p w+n)/Çn))^ ~f*s*(l\uj st ®K0 (Bst 

S*lU,n 

0 - " ôiis_et 
r 

f*°uliB.Bt 9*OpUs_et. 

The map 7c/,n therefore defines a map 7n : / —> OsiiS_et • ^ we restrict this diagram to 
U we obtain the diagram 

(1.1.8.2) 

0 I\uet 
P2 

P2,*I\pet P3,*I\(UxsUxsU)et 

st ®K P\lU,n 

0 
st ®K0 (B 
st ®QP Vf 

P2 st ®K0 (B P3,*0(Ux§Ux§U)et , 

where the right horizontal arrows are p\3 and P23. It follows that the restriction of jn 
to Uet is equal to 7rj?n. In particular, the maps 7n locally on S define a divided power 
structure, and hence also globally, and we can recover 71/ from 7n by restriction. This 
implies the lemma. •

Example 1.1.9. — The condition that p\{^fu) = ^2(7^) ls n°t vacuous. For example, 
let 5 be a scheme and G a finite group acting on S and let § be the stack quotient 
[S/G]. For any quasi-coherent sheaf of ideals 3 on 8 corresponding to a G-linearized 
quasi-coherent sheaf of ideals I on S and divided power structure 7 on / , the condition 
that pl(j) = #2(7) then means that for element g G G the divided power structure 
g*(*y) on g*I ~ I (isomorphism given by the G-linearization) is equal to 7. This 
can fail. For example, let k be an algebraically closed field of characteristic 2, S = 
Spec(A:[e]/e2) and let G = Hi for some odd prime I. Define the action of G on 5 by 
having £ G ¡11 act by e 1 — > (e. Define a divided power structure 7 on I = (e) by setting 
7i(e) = 6 if i = 2k for some k > 0 and zero otherwise. Using the fact that char (A;) = 2 
one sees that this defines a divided power structure on (e) (note that since for any 
a G k we must have ji(ae) = a*7z(e) this gives the formula for 7$ evaluated on any 
element of (e)). For any £ G ///, the pullback C*(l) is a divided power structure with 
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72(e) = C LT- Hence the divided power structure 7 does not descend to the stack 
[Spec(fc[e]/(e2))/№]. 

Lemma 1.1.10. — Let (S, 7 , 7 ) be a PD-stack, and X —> S a morphism of algebraic 
stacks. If 7 extends to X, then the extension 7 ' ¿5 unique. 

Proof. — Assume 7 ' and 7 ' are two extensions, and fix a commutative square as 
in ( 1 . 1 . 2 . 1 ) with p surjective. Then the restrictions of 7 ' and 7 ' to Uet define two 
extensions of 7 ^ to Uet which by [7, comment after 1.2.1] must be equal. It follows 
that 7 ' and 7 ' are equal when restricted to Uet. By 1 .1 .8 we conclude that 7 ' = 7 ' . • 

Lemma 1.1.11. — Let ( 8 , 7 , 7 ) be a PD-stack and f : X —• S a morphism of algebraic 
stacks. Fix a diagram as in (1.1.2.1) with p surjective. Then 7 extends to X if and 
only if the PD-ideal ( 7 , 7 ) ^ ^n the ringed topos (Vet, Oyet) extends to the ringed topos 
(Uet,Ouet) in the sense of [7, 1 .2 .1 ] . 

Proof. — The "only if" direction is immediate. For the "if" direction, let J C OxUs.et 
denote the ideal f*I• 0%Vls_et. By assumption the restriction J\uet nas a PD-structure 
7 ^ extending that on 7|yet. For i = 1 , 2 , we have a commutative diagram 

(1.1.11.1) 

UxxU VxsV 

PI £%£ 

U v, 

which shows that p*(7[/) is a PD-structure extending the PD-structure q*("i\v) on 
I\(VX§v)et' By 1 . 1 . 8 , the pullback #*(7JV) is equal to the restriction of 7 to (V x§ 
V)et. It follows that qt(j\v) = Q^ilW) and hence Pi(ju) = pîdu) DY [7, comment 
after 1 .2 .1] . By 1 .1 .8 the PD-structure 7 ^ therefore descends to a PD-structure 7 ' on 
J. 

It remains to see that for any integer i > 0 the diagram 

( 1 . 1 . 1 1 . 2 ) 

7 h J 

7< 

Ŝlis-et 

/ • ( 7 0 

st ®K0 
(Bst 

commutes. Let g : U —* 8 denote the composite U —> X —> 8. We then have a 
commutative diagram 

(1.1.11.3) 

¨£% £%¨£ £%£ fl.(%) 
LM £%¨££ 9*(LI\U) 

Ŝlis-etf*(y(p w+n)/Çn))̂  lis-etf*(y(p w+n)/Çn))̂  0*OClis-etl 

where the right hand square commutes and the maps j and fc are injective since 
U —> X is smooth and surjective. It follows that it suffices to verify the commutativity 
of ( 1 . 1 . 1 1 . 2 ) in the case when U = X. 
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This special case can be seen by observing that there is also a diagram 

(1.1.11.4) 

I 

%£%§ 

£%¨£ 

Q*V\v) -

q*(-n\v)\ 

2*OvUB.etf*(y(p w+n)/Çn))̂  

q*f*J = f*J 

f.t'i 

is-et ' 

where the left square commutes since 7* is a morphism of sheaves, and the right square 
commutes since 7^ is an extension of ^\y to U. • 

Corollary 1.1.12. — Let ( § , / , 7 ) be a PD-stack and f : X —• S a morphism which is 
flat (resp. a closed immersion defined by a sub-PD-ideal J C I). Then 7 extends to 
X. 

Proof. — Let V —• 8 be a smooth cover by a scheme V, and let U —> V x% 8 be a 
smooth surjection with U a scheme (resp. set U — V Xx 8). Then U —+ V is flat 
(resp. a closed immersion defined by a sub-PD-ideal in 7"| v^t), and hence the result 
follows from [7, 1.2.7.4] (resp. [7, 1.1.6.2]). • 

1.2. Divided power envelopes 

1.2.1. — Fix a PD-stack (8,7,7), and define 2-categories C and C as follows. 
The objects of C are closed immersions j : X ^ ^ of algebraic stacks over 8 

defined by a quasi-coherent sheaf of ideals such that 7 extends to X, together with 
an isomorphism of functors Gj : s% — sy o j , where s% X —> 8 and sy : y —• 8 are 
the structure morphisms. We usually omit Gj from the notation and write simply 
j : X <—> y for an object of C, but the isomorphism Gj is always assumed part of the 
data. 

For any two objects ji : X$ (i = 1, 2) of C the category 

(1.2.1.1) H O M C ( X I ^ y i , x 2 ^ y 2 ) 

is the category whose objects are two-commutative diagrams of S-morphisms 

(1.2.1.2) 

Xi £% Vi 

£% 

X2 
J2 

£%¨£% 

9 

In other words, an object of (1.2.1.1) consists of a pair of morphisms / : Xi —• X2 
and g : —•> ^2 , isomorphisms : sxi — sx2 0 / and ¿0 : ~ sy2 o and an 
isomorphism p : g o ~ j2 0 / of functors such that the diagram of isomorphisms 

(1.2.1.3) 

sx2°f 
M%£ 

SXi 
a32 £%¨£%¨£ 

a32 

st ®K0 (Bst ®QP Vfst ®K0 (Bst ®QP Vfst ®K0 (Bst ®Q 
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commutes. If (f,g,Lf,Lg,p) and ( / ' ,g ' , 07 / , oy,p') are two 1-morphisms in C, then a 
2-morphism in C is defined to be a pair (a,/?), where a : / —• / ' and /3 : g -+ gf are 
isomorphisms of functors such that 

(1.2.1.4) 

¨£¨£ sx2 
sx2 o / 

id 

Xi 
sx2 o/ 

a 

SX2 ° / , 

(1.2.1.5) 

sx2 o/ %¨£ sx2 o/ 

id 0 

£% sx2 o 
sx2 o/ 

and 

(1.2.1.6) 

J2 o / £ 
% 

#° ji 

oc sx2 o 

J 2 ° / 
£%¨£ 

0 o j i 

commute. 
The 2-category C is defined as follows. The objects of C are objects j : X y 

of C together with a divided power structure 5 on the ideal of X in y such that S is 
compatible with 7. We usually omit the PD-structure 5 from the notation and write 
j : X y also for objects of C . For two objects ji : X^ ^ ^ of C (i = 1,2), the 
category 

(1.2.1.7) H O M c / Ü i : 3 C i ^ y i , j 2 : a C 2 ^ y 2 ) 

is defined to be the full subcategory of (1.2.1.1) consisting of morphisms as above for 
which g is compatible with the divided power structures on and y2. 

There is a natural 2-functor F : C —> C which forgets the divided power structure. 

Remark 1.2.2. — If ji : X* ^ are two objects of C with sy. : ̂  —* § representable, 
then the category 

(1.2.2.1) H O M c ( X 1 ^ y 1 , j 2 : X 2 ^ y 2 ) 

is equivalent to a set. That is, the objects admit no automorphisms. This can be 
seen by observing that if (a,/?) is an automorphism of an object (f,g,if,Lg) then 
s%2(a) = id and sy2(/?) = id by (1.2.1.4) and (1.2.1.5). On the other hand, sx2 and 
sy2 are faithful functors by [49, 8.1.2] and hence (a,/?) = id. 

A similar remark applies to the 2-category C. 
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Theorem 1.2.3. — For any object j : X <—> y of C there is a canonically associated 
object JD : X <—• D%n{^) of C with a morphism F(X D%n{^)) —> (j : X ^ y) m 
C s^cft £fta£ for any other object j1 : Xf <—> y ' of C the induced functor 

(1.2.3.1) HOMc(X; — y',X DxM) — HOMc(F(X' ̂  y'),X — y) 

is an equivalence of categories. Moreover, if Z —> y i/ a /?at morphism of algebraic 
stacks, then the natural map £>xxyz,7(&) —• -Dx/yW Xy %> is an isomorphism. 

The proof of 1.2.3 will be in several steps 1.2.4-1.2.9. 

1.2.4. — Let us first consider the case when j : X «-* y is a closed immersion of 
algebraic spaces. Let P : S —> 8 be a smooth cover by a scheme, and let 5 . —> § be 
the O-coskeleton of P. Define j0 : X* <^-> Ym to be the base change to 5 . of j . Denote 
by 7# the quasi-coherent sheaf on iS#jet obtained by restricting the quasi-coherent sheaf 
I to 5.,et- The divided power structure on I defines a divided power structure 7* on 
J#. Let et|y# et denote the inverse image via the morphism of topoi Y#?et —• S^et 
of the structure sheaf on 5#?et so that there is a diagram of sheaves of algebras on Y#jet 

(1-2.4.1) OS.JY..« — Oy.,et - j.*Ox.,et. 

Furthermore, the restriction (/• ,7*) |y.et defines a divided power ideal in 0s.et|y.>et. 
Let Vx.,-y»(Ym) be the divided power envelope in the sense of [7, 1.2.3.1] of the mor
phism of algebras with ideals in the topos Yi,et-

(1.2.4.2) (OS.,JY.,„,I.) — (OY.,et,Kev(0Y.,et — j..Ox.,J). 

Since 7 extends to X by assumption, the divided powers 7* induces a divided power 
structure on the image of I. in j»*Ox#,ef By the universal property of Vxm,^(Ym) 
we therefore have a factorization 

(1.2.4.3) OS.,JY.,« —> CV..rt — VX.N.(Y.) — j.*OX.,ET, 

and the kernel of T>x9,y*(Y9) —• j«*Ox,,et is equipped with a divided power structure 
compatible with 7*. 

Lemma 1.2.5. — The sheaf T>x.,^(Ym) is a quasi-coherent sheaf on Y.,et-

Proof. — The sheaf ^x. ,7»(^) |yn>et *s tne divided power envelope Vxni^(Yn) of the 
closed immersion of 5n-spaces Xn ^ Yn. That Vxn,j" (Yn) is quasi-coherent therefore 
follows from [7, 1.2.7.1]. To see that for any morphism S : [n] —* [nf] in A the induced 
map 

(1.2.5.1) Oyn„et ®oYn,et 2>x.,7*Cr.)kiet — Z>X.,7-(n)|yn,tet 

is an isomorphism, note that as in [49, 12.8.1] it suffices to consider injective maps 
S : [n] —• [nf] in A. Therefore this also follows from [7, 1.2.7.1] since for an injective 
map S the map Ym (6) : Yn> —> Yn is smooth by construction of Y.. • 
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1.2.6. — It follows that Vxm,<y*(Y%) descends to a quasi-coherent sheaf £>x,7(y) of 
OyUs_et-algebras on y such that the surjection Oylis.et —• j*OxUs_et factors canonically 
through Dx,7(y). Moreover, the kernel of the map X>x,7(y) —• J*Oxlis_et nas by 1.1.8 
a PD-structure S induced by the PD-structure on Dx„7*(^t) , and by 1.1.11 this 
PD-structure 6 is compatible with 7. Define D%n(^) to be the relative spectrum 

(1.2.6.1) Specy(2>x>700). 

Then by construction we have an object 

(1.2.6.2) X ^ AxVyGO 

of C with a morphism 

x > JOx,700 

(1.2.6.3) i<i I 

x > y 

in C Furthermore, it follows from the construction and [7, 1.2.7.1] that the formation 
of D%n(ty) is compatible with flat base change y —* y, with y' an algebraic space. 

Here it should be noted that a priori the space Dx,7(y) depends on the choice of 
the smooth cover 5 —> S. That it does not will follow once we verify the universal 
property. 

This base change property enables us to define Dx,7(y) for an arbitrary object 
j : X ^ y of C. Choose a smooth cover q :Y y with Y an algebraic space, and let 
Y. be the O-coskeleton of q. Denote by j9 : X. Y. the closed immersion obtained by 
base change from j . Then for each [n] G A, the closed immersion jn : Xn <-^> Yn is an 
object of C and hence we can form Pxn)7(7n) (defined using some fixed cover S —* S), 
which is a quasi-coherent sheaf on Fn,et- For any injective morphism 5 : [ri\ —> [nf] 
the natural map Y(S)*T>xri,1(Yri) —> Vxn,,>y(Yn>) is an isomorphism since the map 
Y9(S) : Yn> —> Yn is smooth. By descent theory for quasi-coherent sheaves, the 
simplicial sheaf [n] 1—>• T>xn,-r(Yn) is obtained from a quasi-coherent sheaf of Oy-
algebras £>x,7(y) on y 

lis-et • 

As above the kernel of the map X>x,7(y) —• J*OxUs_et has by 1.1.8 a PD-structure 
6 induced by the PD-structure on [n] 1—• Vxn^(Yn), and by 1.1.11 this PD-structure 
5 is compatible with 7. We therefore obtain an object 

(1.2.6.4) X <—> L>x,7(y) := Specy (2>x,7(y)) 

of C with a morphism to (X c—• y) G C which is the identity on X. 

/.2.7. — For any object X ^ y of C we have now constructed an object X <—> Dx^OA) 
of C with a morphism F(X Z>x,7(y)) —• (X <̂-> y) in C. We now verify that the 
functor (1.2.3.1) is an equivalence of categories. This will also imply that D%n(ty) is 
independent of all the choices (up to canonical isomorphism). 
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For this we reduce to the case of algebraic spaces as follows. For a smooth morphism 
hu : U —> 8, let CJJ (resp. C'u) be the category C (resp. C) obtained using (U,I\u,j) 
instead of (§ , / ,7 ) . There are natural base change functors 

(1.2.7.1) hy- : C Cu, : C' ¨£% 

sending an object X y to (X x§ U) (y x§ U). The functor (1.2.3.1) then extends 
to a morphism of fibered categories over §iiS-et 

(U ' * EOMc>u (h^V - y'), W - I>xl7(y)))) 

(1.2.7.2) J 

(U HOMC[, ( ^ F ( X ' — y'), J£(X y))). 

On the other hand, for any smooth h : U ->§we have 

(1.2.7.3) / £ F ( X ' y') ~ F „ ( W - y')), 

and by the construction of D%n{^) we have 

(1.2.7.4) hMX w Z ? x , 7 ( y ) ) - ( X x 8 P w ^ x x . ^ O J *s [/)), 

where the divided power envelope is formed with respect to the cover S x§U —> U 
and the cover Y x§U }$ x§U (where S —• 8 and y —> y are the covers used in the 
construction above). Moreover, it follows from the definitions that both source and 
target of (1.2.7.2) are stacks (though of course not stacks in groupoids). Consequently 
to prove that (1.2.7.2), and hence also (1.2.3.1), is an equivalence it suffices to prove 
that (1.2.7.2) is locally an equivalence. We may therefore replace § by a smooth cover, 
and hence for the remainder <if the proof we assume that 8 is an algebraic space. 

Next observe that if X ^ y is a closed immersion of algebraic spaces over some 
smooth S-space U —> 8 such that 7 extends to X, then the divided power envelope of 
X in y is the same whether constructed with respect to the base (8, / , 7) or the base 
(U,I\u,'y\u)- Indeed by the construction this amounts to the following statement: 

Lemma 1.2.8. — Let T be a topos and A —> A! —• B be a diagram of algebras in T 
with A —• A! flat. Let (1,7) be a PD-ideal in A and J C B an ideal containing the 
image of I. Denote by (I'',7') the PD-ideal A! ®A I in A!. Then 

(1.2.8.1) £Ul7(B, J) = DA,tY(B, J). 

Proof. — This follows from [7, 1.2.3.2 (i)]. • 

1.2.9. — It follows that we may further assume that the cover S —» 8 is simply 
id : 8 —» 8. 

Observe that in the case when 8 is an algebraic space, the data of the isomorphisms 
if and ig in the definition of morphisms in C and C can be omitted in the definitions. 
Therefore, if f : X' y ' is an object of C , the category 

(1.2.9.1) HO}Ac(F(j' : r <-» n 3 : % ^ V) 

ASTÉRISQUE 316 



1.2. DIVIDED POWER ENVELOPES 29 

can be described as the category of triples (/, g, p), where / : X' —• X and g : y ' —> y 
are morphisms of S-stacks, and p : j o / —• # o j ' is an isomorphism of functors. 
Similarly the category 

(1.2.9.2) HOMcC?" : X' ^ y', j : X £X,7G0) 

is equivalent to the category of triples ( / ,# ,p) , where / : X' —>• X and # : y —> 
-^x,7(y) are morphisms of S-stacks with g compatible with the PD-structures, and 
P J ° / ~* 9 ° f is an isomorphism of functors. 

Since the functor Dx^QA) —> y is faithful being representable [49, 8.1.2], it follows 
immediately that (1.2.3.1) is faithful. 

To show that it is an equivalence of categories, fix a morphism (/, p) in (1.2.9.1), 
and define V to be the category of data ({f',gfiP')i c) consisting of a morphism 
(f',g',p') in (1.2.9.2) together with an isomorphism a : F(f',g',p') ~ ( / ,# ,p) 
in (1.2.9.1). To complete the proof of 1.2.3 it suffices to show that V is equivalent to 
the punctual category (the category with 1 object and 1 morphism). 

By the universal property of the relative spectrum of a quasi-coherent sheaf of 
algebras, the category V is equivalent to the set of augmentations A : f*T>x,>y()A) —> 
C3y/.s et of the quasi-coherent OyUs_et-algebra /*£>x,7(y) obtained by pullback such that 
the composite 

(1.2.9.3) fVx„Qi)---------w+n)/Çn))^ > JlOXL_et 

is the map induced by j o g, and such that the resulting morphism of stacks y' —* 
^x ,7 (y ) is compatible with the divided power structure. Since morphisms of sheaves 
may be constructed locally and the compatibility with divided power structures can 
also be checked locally by 1.1.11 we see that to prove that V is equivalent to the 
punctual category we may replace y by a smooth cover and hence may assume that 
y' is an affine scheme and that we are given a factorization of the map g : y —• y 
through the smooth cover Y —• y. Since Dx,7(y) Xy Y c± DxxyY,-y(Y) by construction, 
we see from this and 1.1.11 that we may further replace y by Y and hence may assume 
that y is an algebraic space. In this case it follows from the universal property of the 
divided power envelope [7, 1.2.3.1] that V is equivalent to the punctual category. 

This completes the proof of 1.2.3. • 

Let us also record the following corollary which follows from the proof of 1.2.3 and 
the corresponding result for schemes [7, 1.2.7.1]. 

Corollary 1.2.10. — With notation as in 1.2.3, if h : S' —> § is a smooth morphism of 
stacks, and we view S' as a PD-stack with ideal V \— h*I with divided structure 7' 
defined by 7 (1.1.12), then for any object X • y ofC there is a canonical isomorphism 

(1.2.10.1) (X xs § ' <—• £>x,700 xs §') ~ (X xs 8' DXx,s;yW xs §'))• 

1.2.11. — As in [7, proof of III.2.1.3], theorem 1.2.3 can be generalized as follows. 
Consider two PD-stacks (§i,/i?72) (i = 1,2), and let £ denote the category of closed 
immersions X ^ y defined by a quasi-coherent sheaf of ideals in Oylia.et over §1 x §2 
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for which both 71 and 72 extend to X. Let £ ' be the category of objects (X ^ y) E £ 
together with divided power structure on the ideal of X in y compatible with both 
71 and 72. There is a natural forgetful functor F : £' —> £. Then using the same 
arguments used to prove 1.2.3 and [7, proof of III.2.1.3] one obtains the following 
proposition: 

Proposition 1.2.12. — For any object j : X c-> y of £ there is a canonically associated 
object jo : X <-> £>:x)7l)72(y) witfi a rnorphism F(X ^ -Dx,7i,72 W ) —̂  (j : X — 
y) m £ such that for any other object j ' : X' <—• y o / £ ' induced functor 

(1.2.12.1) HOM^(X' y ' , X £>x,7l,7200) — HOM£(F(X' — y ' ) ,X — y) 

¿5 an equivalence of categories. 

1.3. The crystalline topos 

7.5./. — Let ( § , / , 7 ) be a PD-stack and / : X —• S a rnorphism of algebraic stacks 
such that 7 extends to X. We define the lisse-etale crystalline site o / X / S , denoted 
Cris(XiiS_et/(§,/,7)) (or just Cris(XiiS_et/§) if there is no chance of confusion), as 
follows. 

The objects of Cris(Xns_et/S) are triples (U,j : U T, 5), where U —» X is a 
smooth rnorphism with U a scheme, j is a closed immersion of S-schemes, and S is 
a divided power structure on the ideal of U in T compatible with 7 . We usually 
write just U <-^> T, or even just T, for an object of Cris(XiiS_et/S). A rnorphism 
(U'J' : U' T',8') -> (U,j : U ^ T,<J) is a pair ( / ,# ) , where / : U' -+ 17 is a 
rnorphism of X-schemes, and g : T" —• T is a rnorphism of S-schemes compatible with 
S and such that the diagram of S-schemes 

(1.3.1.1) 

U' 
3 £%¨% 

f 9 

u 3 T 

commutes. The topology on Cris(Xns_et/S) is the topology defined by the pre-topology 
for which the covering families are morphisms {([/*,T*,Si) —> (U,T,6)} for which the 
morphisms of schemes {Ti —> T} form an etale cover. 

The lisse-etale crystalline topos o /X /S , denoted (Xns_et/(S,/, 7))cris (or sometimes 
simply (XiiS_et/S)cris), is the topos associated to the site Cris(XiiS_et/S). The topos 
(XiiS_et/S)cris is ringed with structure sheaf given by 

(1.3.1.2) °xUs.et/s(U T) := T(TeU0Tet). 

1.3.2. — When X in the above is a Deligne-Mumford stack, we will also consider the 
full subcategory Cris(Xet/S) C Cris(XiiS.et/S) whose objects are the objects U T 
with U an étale X-scheme. The topology on Cris(Xns_et/S) induces a topology on 
Cris(Xet/S) and hence Cris(Xet/S) is a site which we refer to as the étale crystalline 
site of X/S. We write (Xet/S)Cris for the associated topos which we call the étale 
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crystalline topos o / X / S . The structure sheaf in (Xiis_et/§)cris induces by restriction 
a sheaf of rings in (Xet/S)cris* In what follows we view (Xet/S)criS as a ringed topos 
with this structure sheaf. 

1.3.3. — As in the classical case, a sheaf F G (XiiS_et/S)Cris is equivalent to the data 
of a sheaf FT on TET for each object ([/, T, <5) G Cris(XiiS.et/§) together with a mor
phism 9_1FT —> FT' for every morphism T' —• T in Cris(Xiis_et/S). Furthermore, 
these morphisms are required to be compatible with compositions of morphisms in 

Cris(Xiis_et/S). 
Similarly, a OxUs.et/s-module M can be described by a OTet-mod\ûe MT for ev

ery object T G Cris(Xns-et/§) together with transition morphisms ç*MT —• MT> in 
Cris(XiiS_et/S) compatible with compositions. 

Remark 1.3.4. — In the definition of the crystalline topos, we could also have used 
the bigger site consisting of PD-immersions U T with U and T algebraic spaces. 
Since any such closed immersion admits an étale cover by an object of Cris(XiiS_et/S) 
the resulting topoi are equivalent. We will therefore usually just work with schemes, 
but occasionally it is useful to note that a sheaf F G (XiiS_et/S)Cris can be evaluated 
on a PD-immersion U <—• T with U and T only algebraic spaces. 

1.4. Three basic lemmas and functoriality 

1.4.1. — Let / : (S/,// ,7/) —> ( § , / , 7 ) be a morphism of PD-stacks, and consider a 
2-commutative diagram of algebraic stacks 

(1.4.1.1) 

£% 9 X 

S' 
¨%£% 

s 

such that 7 (resp. 7') extends to X (resp. X ' ) . 

Definition 1.4.2. — Fix (U',T',6') G Cris(X{is.et/S') and (U,T,S) € Cris(Xiis.et/§). A 
g-PD morphism h : T' —» T is a 2-commutative diagram of S-stacks 

(1.4.2.1) 

T' -
HT 

T 

U' 
hjj u 

X' 9 %£% 

where hr is a PD-morphism. We denote the set of such g-PD morphisms T' —> T by 
Homff_PD(T',r). 
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Lemma 1.4.3. — For any object (Ur,T'\5') G Cris(X(is_et/S') there exist a covering 

(1.4.3.1) {Û',f',8') — • {U\T',5') 

and a g-PD morphism h! :T' —>T for some (/7, T, 6) G Cris(XiiS_et/S). 

Proof. — Let U —• X be a smooth surjection with U a scheme. Then the product 
U Xx I ' is a smooth algebraic stack which surjects onto X'. By the existence of 
quasi-sections for smooth morphisms [15, IV. 17.16.3], we can find an étale surjection 
V U' and a lifting V -+ U x x X' of the composite V -> U' X'. Let V' be the 
unique lift of V to an étale T'-scheme. Then replacing U' ^ T' by {V <^-> V') we see 
that we may assume that there exists a morphism U' —> U for some smooth X-scheme 
U. Replacing X by U and X' by U' we see that it suffices to consider the case when 
X and X' are schemes and U' = X'. Furthermore, we can without loss of generality 
replace U' and U by Zariski covers and hence may even assume that U' = Xf and X 
are affine schemes. 

Set X = Spec(£), X' = Spec(B'), and V = Spec(C/). Let C = C xB> B be the 
product in the category of rings and let T = Spec(C). We claim that T has a unique 
structure of an S-scheme making T' —> T and X T morphisms of S-schemes. Let 
x1 : X' —> S be the given map. For any map / : X' —> Y, let SX'(Y) denote the 
category of pairs (y, e) where y : Y —• S is a 1-morphism and e : f*y ~ xf is an 
isomorphism in Sx' • Then what is needed is that the natural functor 

(1.4.3.2) $X,{C' xB' B) —-> SX,(C) x SX/(B) 

is an equivalence of categories. This follows from the following lemma. The closed 
immersion X <̂-> T is given the structure of a PD-thickening as in [7, 111.2.1.2]. • 

Lemma 1.4.4. — Let C —> B' be a surjection of rings with nilpotent kernel, and 
B —> B' any morphism of rings. Then for any algebraic stack S and morphism 
x' : Spec(57) —> $, the natural functor 

(1.4.4.1) SX,(C; xB/ 5 ) —> &x>{C) x 8 ^ / ( 5 ) 

is an equivalence of categories. 

Proof. — For ease of notation, write X' — Spec(C" x#/ B), V = Spec(J5/), F; — 
Spec(C/), and X = Spec{B). 

If U —> X is an étale morphism, denote by U' —> X ' (resp. f/y —>• V, f/y —> V ' ) 
the étale morphism defined by the identification of the étale sites [28, 1.8.3] of X' and 
X (resp. defined by pullback of U, defined by pullback of U'). Let Zi (resp. Z2) 
denote the fibered category over the small étale site of X which to any U associates 
&x'\Uv(U') (resp. Sx>\Uv(U) x Sx'\Uv(Uy)). There is a natural functor F : Zi -> Z2 
whose value on X is (1.4.4.1). Since Zi and Z2 are both stacks over -X"et> ^ is SL̂l 
equivalence if and only if F is étale locally on X an equivalence, and hence to prove 
the lemma it suffices to show that F(X) : Zi(X) —• Z2{X) is fully faithful and that 
every object of Z2 is étale locally on X in the image of F. 
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Note first that the result is immediate in the case when 8 is a scheme since the 
diagram 

(1.4.4.2) 

V X 

V - X' 

is cocartesian in the category of schemes. 
In fact it is also cocartesian in the category of algebraic spaces. To see this, let T 

be an algebraic space, and let 

(1.4.4.3) Hom(X', T) >Hom(X, T) ><Hom(v,T) Hom(V',T) 

be the natural map. Fix an object {fi,h) of the target set of (1.4.4.3), and for 
any étale T-scheme U/T define X[j to be the unique lift of 1 X/1)T[/ to an étale 
X' scheme. Note that X[j is the scheme (\Xu\,Oxu xgu*oVu 9u*Ov{j), where Vu 
(resp. V(j) denotes V XT U (resp. V' XTU). Let F be the sheaf on TET which to any 
étale T-scheme U —> T associates the set of maps X'v —> U inducing the pair 

(1.4.4.4) (fhuj2,u)€Uom(XxTU1U) Xnom(VxTu,u) Hom(F/ xT U, U) 

obtained from (/15/2) by base change. To prove that (1.4.4.3) is bijective it suffices 
to show that F ~ { * } . Since F is a sheaf this can be verified etale locally on T, and 
hence follows from the case when T is a scheme. 

To see that F(X) is fully faithful, let (U, e*) (¿ = 1,2) denote two objects of Z\(X). 
To give an isomorphism (¿1, ei) —> (£2, €2) (resp. F(ti, e\) —> F(t2, e2)) in Z\ (resp. Z2) 
is equivalent to giving a morphism i (resp. two morphisms i\ and ¿2) 

(1.4.4.5) 
i:X' X' XtiXt2,SxS,A 8 

(resp. ¿1 : V Xf XtlXt2)gX8,A 8, i2:X • X' X*iXt2,SxS,A 8) 

over X' such that g*j*(i) = e^1 o e\ (resp. jy(i\) — e^1 o ei = ^*(i2)). The full 
faithfulness therefore follows from the case when 8 is an algebraic space. 

To see that every object O := ((tx,cx), {W'^v)) £ Z%(X) is etale locally in the 
image of F, let Y —• 8 be a smooth cover. After replacing X by an etale cover, we 
may by the existence of quasi-sections for smooth morphisms [15, IV. 17.16.3] assume 
that tx • X —> 8 factors through a map ix • X —• Y. Moreover, in this case, we have 
a 2-commutative diagram 

(1.4.4.6) 

V 
tx°g t 

Y 

3V 

V 
sx2 o/ 

8, 
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and since V is affine it follows that O is induced by a commutative diagram 

(1.4.4.7) 

V 
3v 

V 

9 tyl 

X tx Y. 

Hence by the case of an algebraic space the pair (tx,ty) is induced by a unique 
rnorphism X' —» Y and the image under F of the resulting object 0\ G Zi(X) is 
isomorphic to O. • 

The proof of 1.4.3 also yields the following: 

Corollary 1.4.5. — Assume in addition that X is a Deligne-Mumford stack. Then 
any object (U,T,ô) G Cris(XiiS_et/§) admits étale locally a rnorphism to an object of 
Cris(Xet/§). 

Lemma 1.4.6. — Let U —» X be a smooth rnorphism from a scheme U to X and 
let U <^-> T\ and U <^-> T2 be two PD-immersions over § defining two objects of 
Cris(XiiS_et/S). Suppose further that y —> S is a rnorphism of algebraic stacks, and 
that we are given a 2-commutative diagram of §-stacks 

(1.4.6.1) 

U %£% 

T2 
92 

%£% 

y. 

Then there exist a PD-immersion U ^ T over S, morphisms in Cris(XiiS-et/S) 

(1.4.6.2) sx2 o/sx2 o/ p 2 : T ^ T 2 % ¨ £ % 

and an isomorphism of functors e : qi o pi ~ q2 o p2 inducing the given one over U 
which is universal in the following sense: for any object (Uf,Tf,5') G Cris(X(is_et/S/) 
and g-PD morphisms h\ : T' —> T\ and h2 : T' —> T2 together with an isomorphism 
€; : qi o hi ~ q2 o h2 inducing the pullback of that on U to U', there exists a unique 
g-PD rnorphism h :T' —• T such that h*e = e'. 

Proof. — Set T equal to the divided power envelope Du^^i^i xyT2) with compat
ibility with 51 and 52 as defined in 1.2.12. • 

Corollary 1.4.7. — If X is a Deligne-Mumford stack then finite fiber products are rep-

resentable in Cris(Xet/§)-

Proof. — Consider a diagram 

(1.4.7.1) 

(tfi,Ti,*i) 

(U2,T2,62) 3,T3)(US3) 
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in Cris(Xet/S). Set U = Ui xUs U2, and let z : U ^ Tx xTz T2 be the induced 
closed immersion. Let U T be the divided power envelope Du,6i,82(Ti xTzT2) with 
compatibility with respect to S\ and 52. Then U ^ T represents the fiber product of 
the diagram (1.4.7.1). 

The representability of a general finite fiber product follows from this special case 
by induction. ' • 

Corollary 1.4.8. — Let ( £ / ' , T V ) be an object o/Cris(X(is_et/S') and let 

(1.4.8.1) hi : ([/',T',5') —> (Ui,Ti,Si) (i = l,2) 

be two g-PD-morphisms to objects of Cris(XiiS.et/§). Then there exist an object 
(U,T,5) e Cris(XiiS_et/S) and morphisms pi : (U,T,6) —• {U^T^Si) in Cris(Xiis.et/§) 
such that after replacing {U',Tf,S') by a covering there exists a g-PD-morphism 
h\T' -> T such that hi=pioh (i = l,2). 

Proof. — By replacing ([/ ' , T;, 5') by an etale covering, we may without loss of gener
ality assume that T' is an affine scheme. Consider U\XxU2 and let A : U' —» U\ x%U2 
be the morphism hi x h2. Since U' is quasi-compact, there exist an affine scheme U 
and an etale morphism U —> U\ x%U2 whose image contains the image of U'. After 
replacing U' by another etale cover we may therefore assume that we have a mor
phism hjj : Uf —> U such that pi o hjj = hi (i = 1,2), where pi : U —• Ui denotes 
the projections. Since U is affine and smooth over Ui and Ui Ti is defined by a 
nil-ideal, there exists a smooth lifting Ti of U to Ti. Since —> Ti is smooth the 
PD-structure on Ti extends to Ti so we have morphisms 

(1.4.8.2) 

U 

Pi 

Ui 

Ti 

Ti 

in Cris(Xiis_et/S). Let (U,T,S) G Cris(XiiS-et/S) be the object obtained from 1.4.6 
applied to the thickenings U ^ Ti and y = §. Since the Ti —> Tf are smooth, the 
existence of quasi-sections for smooth morphisms [15, IV. 17.16.3] implies that after 
replacing T' by an etale cover there exist liftings hi :Tl —> T$ of the maps hi :T' —> Ti. 
Prom 1.4.6 we therefore obtain a map h :T' ^T with the desired properties. • 

Corollary 1.4.9. — Assume X is a Deligne-Mumford stack. Then finite and nonempty 
products in Cris(Xet/§) are represent able. 

Proof — Let (E/i,Ti,(Si) and (U2,T2,S2) be two objects of Cris(Xet/§) and set U := 
U\ x%U2. The projections to U\ and U2 are etale, and hence for each ¿ = 1,2 there 
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exists a unique étale rnorphism Ti —• Ti such that the diagram 

(1.4.9.1) 

U Ti 

Ui T 

is cartesian. Replacing (Ui,Ti,5i) by U Ti with the PD-structure induced by that 
on we may assume that U\ = U2 = U. Applying 1.4.6 with y = § it follows that 
products of two objects are representable. The case of a general finite product follows 
from this by induction. • 

Example 1.4.10. — In general products are not representable in Cris(XiiS_et/S)- An 
explicit example can be constructed as follows. Let A: be an algebraically closed field of 
positive characteristic and G/k a smooth affine group scheme. Set U = U' = Spec(/c) 
with maps to BG given by the trivial torsor, T = Spec(A:[e]/e2) with the unique 
divided power structure 5 with Sn = 0 for n > 2, and T' = Spec (A:). Then we claim 
that the product of ([/, T, 6) and (U',T',5') (where 5' is the unique divided power 
structure on the zero ideal in k) is not representable. Since U XBGU' is canonically 
isomorphic to G, such a product would be a PD-immersion j : G <—> P sitting in a 
commutative diagram 

(1.4.10.1) 

G j P 

Spec(/c) T. 

Let G/T be the smooth lifting of G given by T xSpec(fc) G so that G G is a PD-
immersion. Since j : G P represents the product in Cris(jBGiiS.et/A:), we obtain a 
unique rnorphism p : G —> P over T restricting to j : G ^ P. On the other hand, 
for any automorphism a of G (as a scheme, not necessarily respecting the group 
structure) restricting to the identity on G the composite 

(1.4.10.2) G - G G p P 

must also equal p. It follows that the image of Op in = OQ[^\ must be contained in 
the elements invariant under the group of derivations OQ —> OQ- On the other hand, 
if G is positive dimension there exists a nontrivial derivation d of OG> Let / 6 OQ 
be an element with d(f) ^ 0. Since Op —• OQ is surjective, there exists an element 
s G Op mapping to / G OQ- Then p*(s) — f + g • e for some g G OQ- If o is the 
infinitesimal automorphism corresponding to d we have a*(f + ge) = f + (g + d(f)e). 
In particular a*(p*(s)) ^ p*(s) which is a contradiction. It follows that the product 
is not representable. 

Lemma 1.4.11. — Let X and X' be algebraic stacks with X Deligne-Mumford. Let Z 
be an algebraic stack with a rnorphism § —> Z, (U,T,5) G Cris(Xet/§) an object and 
qi,q2 ' T —• Y two morphisms of Z-schemes such that q\^u — q2,u- Then there exists 
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an object (£/, To,5) G Cris(Xet/S) together with a morphism p : To —» T inducing the 
identity on U, such that q\op = q2op with the following universal property: for any 
(£/', T', 6') G Cris(X(is_et/S') and g-PD-morphism h:T' -> T swcA *fta* qxoh = q2oh 
there exists a unique g-PD-morphism T' —» To filling in the diagram: 

(1.4.11.1) U1 

T1 T0 
i U 

1 

u 
- T 

qi 
Y 

Q2 

S' s z 

Proof. — Let TQ be the equalizer of the two maps of schemes qi : T —• Y and let 
q : TQ —> Y be the resulting morphism of schemes. Over TQ we have an automorphism 
a of q*(y) (where y G Z(Y) is the given 1-morphism) which reduces to the identity 
over U. Since Z is locally separated (i.e., the diagonal of Z is of finite type by 
assumption 0.2.1), the condition a = 1 is represent able by a locally closed subscheme 
of TQ, and since U TQ is a homeomorphism on the underlying spaces the condition 
a = 1 is in fact represented by a closed subscheme TQ of TQ. Let J C Or be the 
PD-ideal generated by the ideal defining TQ in T , and let U ^ TQ be the resulting 
PD-immersion. This has the required properties. • 

Corollary 1.4.12. — If X is a Deligne-Mumford stack and qi,q2 ' (C/i,Ti,^i) —• 
{U2,T2,S2) are two morphisms in Cris(Xet/§)? then the equalizer of qi and q2 is 
representable in Cris(Xet/S). 

Proof. — Let U C U\ denote the equalizer of the two X-maps qu,i ' U\ —* U2. 
This equalizer in the category of X-spaces can be constructed as follows. First let 
U' C U be the equalizer of the two morphisms of schemes U\ —• U2 and let qjj : 
U' —> U2 be the induced map. Let m : Ui —>> X be the two structure maps and 
u' : U' —> X the restriction of u\. The two isomorphisms ti : qu{(u2) —> lii restrict 
to two isomorphisms qu(u2) —> over E/7. Taking their difference we obtain an 
automorphism a of u'. The condition that a is equal to the identity is then represented 
by a locally closed subscheme of Uf since the diagonal of X is assume locally separated. 
The equalizer U of the two morphisms qu,i : U\ —> U2 in the category of X-schemes is 
this subscheme of U' representing the condition that a — id. 

The corollary now follows from 1.4.11 by taking T to be the divided power envelope 
of U in T\ with the maps to (t/2, T2,52) induced by the maps §r = Z = §, X = X', 
a n d y = T2. • 

Corollary 1.4.13. — If X is a Deligne-Mumford stack, then finite nonempty projective 
limits in Cris(Xet/§) are representable. 
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Proof. — As in [7, III.2.1.8] it suffices to show that finite nonempty products and 
equalizers are representable which follows from 1.4.9 and 1.4.12. • 

Using the same argument as in the classical case we now obtain the following: 

Theorem 1.4.14. — Assume X and X' in (1.4-1.1) are Deligne-Mumford stacks. Then 
there exists a unique morphism of topoi 

(1.4.14.1) £cris : (X^/S^cris — • pCet/S)cris 

with the property that for any T G Cris(Xet/§), 

(1.4.14.2) <7c*risCO(t/', T', 6') = Eomg-PD(T', T), 

where T denotes the sheaf associated to T. Moreover, gcris is naturally a morphism 
of ringed topoi. 

Proof. — This follows from the lemmas and the argument used in [7, 111.2.2]. • 

Remark 1.4.15. — More generally, if only X is a Deligne-Mumford stack then there is 
a morphism of topoi 

(1.4.15.1) g : (X;is_et/S')cris — (Xet/S)cris 

with pullback of representable objects defined by the formula (1.4.14.2). 

Proposition 1.4.16. — Consider a diagram of PD-stacks 

(1.4.16.1) (§",/",7")-------u-----(§',/',V) — ^ ( § J , 7 ) , 

and a 2-commutative diagram of algebraic stacks 

X ll 9 <yi 9 «y 

(1.4.16.2, | | I 

S-------u-----S' —^—> S, 

where X", X', and X are Deligne-Mumford stacks such that 7 (resp. 7', j") extends 
to X (resp. X', X"). Then there is a natural isomorphism of morphims of topoi 

(1.4.16.3) (g o g')cris ~ gcris o ^ris. 

Proof. — This follows from the argument used in the proof of [7, 111.2.2.6]. • 

1.4.17. — Just as the ordinary lisse-etale topos of an algebraic stack is not functorial 
[68], there does not in general exist a morphism of topoi between (X{is_et/S)criS and 
(XiiS_et/S). The method of [7, III.2.2] still yields adjoint functors (<?-1,#*), but the 
functor g~l need not commute with finite inverse limits. Explicitly, the pullback 
functor g~l can be described on stalks as follows. Let F G (XiiS_et/§)cris be a sheaf 
and (U',T',6') G Cris(X(is_et/S) an object. Choose a geometric point F -> V. Then 
the stalk {g~1F)T^il °f the restriction of g~lF to T^t can be computed as follows. Let 
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I be the category with objects pairs ( V , T, /i), where V —> T' is an etale neighborhood 
of F, T is an object of Cris(Xiis_et/S) and h : V —• T is a g-PD-morphism. Then the 
stalk {g~1F)Trj> is equal to 

(1.4.17.1) lim F(T). 
(V',T,h)€l 

The category 7 is nonempty by 1.4.3 and connected by 1.4.8. However, equalizers 
do not in general exist as the equalizer of two maps between smooth X-schemes need 
not be smooth. Therefore, the category I is not co-filtering and the limit lim .̂ is not 
an exact functor. As we will see in 2.1.3, however, when X —> S is representable the 
functor g~x still defines a reasonable pullback for crystals in (Xiis.et/S)cris-

Warning 1.4.18. — Consider a diagram as in (1.4.16.2) except assume only that X, 
X', and X" are Art in stacks. Then there are natural morphisms of functors 

(1.4.18.1) (gog%^g*ogi, g''1 o g'1 —. (g o g')-\ 

but we are unable to show that these maps are isomorphisms in general. Nonetheless, 
for any sheaf F G (XiiS_et/§)Cris there is a natural commutative diagram 

r((Xlis.et/§)cris,F) • r((X{is.et/§)cris,5-1F) 

(1.4.18.2) | | 

r((XJ(s.et/8)cris,(ffo5')-1F) < r((x;(s.et/8)cris,ff'-1o5-iF). 

Corollary 1.4.19. — Assume the morphism g in (1.4-1-1) is smooth. Then there is a 
unique morphism of topoi 

(1.4.19.1) #cris : Wis-et/̂ Ocris • (Xiis_et/S)cris 

with pullback of representable objects given by (1.4-14-2). 

Proof. — In this case, the functor g~x is just restriction which is exact. • 

1.4.20. — Let X —> S be a morphism of algebraic stacks such that 7 extends to X, 
and let X —• X be a smooth representable morphism of algebraic stacks (in what 
follows X will usually be an algebraic space but this is not necessary here). Define 
Xs to be the sheaf on (Xiis_et/S)Cris which to any object (U,T,S) associates the set 
of X-morphisms U —• X. If e denote the initial object of (XiiS.et/S)cris then the map 
Xs —> e is a covering. Furthermore, if X' —» X is a second smooth morphism then 
there is a natural isomorphism 

(1.4.20.1) Xs xe X's - (X x x X')s. 

Denote by (Xiis_et/S)cris|xa the localized topos of sheaves over Xs . If ([/, T, 5) G 
Cris(Xiis_et/§) is an object, then the associated sheaf T G (Xiis_et/§)Cris admits a 
canonical morphism to Xs induced by the map U —» X. We therefore obtain a map 

(1.4.20.2) (fi : (Xiis_et/S)cris|xs • №is-et/S)cris 
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by sending a sheaf F G (XiiS_et/S)cris|xs to the sheaf ip(F) which to any (U,T,8) G 
Cris (XiiS_et / § ) associates 

(1-4-20.3) Hom№is.et/S)cris|xs(f,n 

Warning 1.4.21. — The functor ip is not a morphism of topoi. Again it has a left 
adjoint which need not be exact. 

1.4.22. — By [5, III.5.4] the category (XiiS_et/S)cris|xs can also be described as the 
topos associated to the site Cris(Xns.et/S)|x whose objects are pairs (({7, T, <$), s), 
where (U, T, S) G Cris(Xiis_et/S) and s : U —• X is an X-morphism. There is a natural 
inclusion 

(1.4.22.1) Cris(Xiis.et/§) C Cris(Xiis_et/S)|x. 

The functor (1.4.20.2) is then identified with the functor which restricts a sheaf to 
Cris(Xiis_et/S). In particular, ip is an exact functor. The cohomology functors 

(1.4.22.2) {/¥i((Xlis.et/S)cris, ¥>(-))} 

define a cohomological 5-functor on the category of abelian sheaves in (XiiS_et/S)cris> 
and hence there is a unique J-functorial map 

(1.4.22.3) a : ̂ ((Xlis.et/S)cris|xS, -) —+ ^(№is.et/S)cris, <p(-)). 

Proposition 1.4.23. — The map (1.4-22.3) is an isomorphism of functors. 

Proof. — Consider first the case when X is an algebraic space. In this case we also 
have inclusions 

(1.4.23.1) Cris(Xet/S) C Cris(Xiis_et/S) C Cris(Xiis_et/S)|x 

which induce morphisms of ^-functors 
(1.4.23.2) 

#*((XiisVS)cris|xs,-) ^(№s.et/S)cris,^(-)) ^((Xet/S)cris,^(-)) , 

where <pf denotes the functor which restricts a sheaf on Cris(XiiS_et/§)|x to 
Cris(Xet/S). To prove that a is an isomorphism it suffices to show that the 
maps /3 and ¡3 o a are isomorphisms. Since finite nonempty projective limits in 
Cris(Xet/§) are representable by 1.4.13, the maps a and (3 o a are induced by 
morphisms of topoi 

(1.4.23.3) S : (Xiis_et/S)cris|xs • (̂ et/S)cris5 ^ : №is-et/§)cris • (^et/§)cris-

The functors s* and £* therefore take injective abelian sheaves to injective abelian 
sheaves, and are also exact. From this the case when X is an algebraic space follows. 

For the general case, let P : U - > I be a smooth surjection with U an algebraic 
space, and let U. be the 0-coskeleton of P. For any [n] G A, there is a natural 
isomorphism 

(1.4.23.4) ((Xiis-et/§)crisUs)|t/^ — №is-et/S)cris|t/£. 
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Let (XiiS-et/S)cris|t/#* (resp. (Xiis_et/S) crisis) denote the simplicial topos 

(1.4.23.5) [n] I • (3Ciis_et/S)cris|c/» (^Sp. [n] I • №is-et/§)cris|^). 

Let 
(1.4.23.6) 
TTl • (Xiis_et/§)cris|t/a • (Xiis-et/§)cris|xs? 2̂ • (^lis-et/§)cris|[/| > (^lis-et/§)cris 

be the projections. 

Lemma 1.4.24. — Let T be a topos and X —> e a covering of the initial object. Denote 
by Xm the O-coskeleton of X —> e and let T\x. be the simplicial topos [n] \-> T\xn-
Then for any abelian sheaf F G T the adjunction map F —> R-K*-K*F is an isomor
phism, where TT :T\xm —>T denotes the projection. 

Proof. — For each [n] G A the restriction functor F F x Xn from T —> T\xn takes 
injective abelian sheaves to injective abelian sheaves (see for example [5, V.2.2]). 
Therefore, if F is an injective sheaf then R7r*7r*F is isomorphic to the complex of 
sheaves 

(1.4.24.1) • • • 7rn.<F — • 7rn+i.<+1F 

By [5, V.4.5] it follows that i?7r*7r*F = 0 for i > 0, and since X —> e is a covering 
the sequence 

(1.4.24.2) F — • TTO^F — > TTI.TTJF 

is exact. • 

There is a diagram of ^-functors 

(1.4.24.3) 

#*((Xlis-et/S)crisUs, (-)) ^ ̂ *(№is-et/§)cris, ^(-)) 

3,T3) *2 

^*((Xlis_et/S)cris|c/|, (-)|(Xlis.et/S)cris|^) ^*(№s-et/S)cris|f/«, (-)|(Xlis.et/S)cris|^) 

which commutes since it commutes for i = 0 and i^*((XiiS_et/S)cris|xs, (—)) is univer
sal. Since 7rJ and 7r$ are isomorphisms by 1.4.24, to prove that a is an isomorphism 
it suffices to show that a is an isomorphism. Furthermore, consideration of the Leray 
spectral sequence [5, V.5.3] shows that to prove that a is an isomorphism it suffices 
to show that each of the maps 

(1.4.24.4) iT((Xlis.et/S)cris|^, ( - ) ) — Jff*((XIis.et/§)cris|t/,) (-)|№is.et/s)cri8|^) 

are isomorphisms. But by the representable case already considered both sides of this 
rnorphism are isomorphic to 

(1.4.24.5) ff*((£Ais-et/S)cris, (-)l(t/iis.et/S)cris)-
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Furthermore, with these identifications the map (1.4.24.4) becomes identified with 
the identity map since this is true for H° and the left hand side of (1.4.24.4) is 
universal. • 

Proposition 1.4.25. — Consider a diagram as in (l.^.l.l). Then for any abelian sheaf 
F G (X^g^/S^cris and i > 0 the sheaf Rlg*(F) is isomorphic to the sheaf associ
ated to the presheaf which to any (U,T,5) G Cris(XiiS_et/S) associates Hl(((X' x% 
^lis-et/SOcris^^X 'Xx^lis-et/SOcris)* 

Proof. — The functor which restricts a sheaf in (Xiis_et/§)cris to Tet is exact, and 
hence for any F G (X{is_et/S')criS and object (U,T,S) G Cris(XiiS_et/S) the restriction 
Rlg*(F)T is isomorphic to the sheaf associated to the presheaf which to an etale 
morphism V —> T associates the group Hl (RH.om(x'lis et/S')criS(#*̂ > F)), where V 
denotes the free abelian sheaf defined by the object (V xT U,V,5) G Cris(XiiS_et/§). 
There is a natural map of sheaves V —> Us which induces a map of sheaves g*V —> 
g*Us ~ X'u, where we write X^ for X' x%U. Since the forgetful functor (G —» i—> 
G is left adjoint to the restriction functor (X[[s_et/§f)CTis —> (̂ hs-et/̂ Ocrislxfj sending 
a sheaf F to F x X'fi it follows that 
(1.4.25.1) 

™ o m ( ^ s - e t / s O c r i S ( ^ * ^ ^ ) - ^Hom(x;is.et/sOcris|x. (^^^I(x; is .e t / s0cris |x . ) . 

Let 

(1.4.25.2) H^CXJis.et/SOcrisIx^ (p*^,F|(xîis_et/sOcrislx-) 

denote the internal Hom-sheaf. Then 

(1.4.25.3) fri(ÄHom(X(l8.et/80cri.lx{. .(^^.^kxj^/sOcri-lx;-)) 

is isomorphic to 

(1.4.25.4) ^(№is-et/SOcris|x-,ßHom (x;is_et/s')crisix-1 (^^.^kx^/SOcrlslxf-))' 

which by 1.4.23 is isomorphic to 

(1.4.25.5) ^((^,lis-et/SOcris^(i?Hom( 3,T3)(US33 '*^'Fl(3C;is.et/S')cris|x;J)) 

On the other hand V'(iQi^(x^rt/8')=ri.lx{j^*V''Fl(:x:ii«t/8')«tala:»^ is isomorPhic to 

i2Hom(X/ . /S,}cr.s((g*V),<p(F)), and hence (1.4.25.5) is isomorphic to 

(1.4.25.6) ff*(((X' xxf/)lis.et/8'), îrU^IcCX'Xï̂ lis-et/SOcris)-
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1.5. Comparison of (XiiS_et/8)Cris and ( X e t / S ) C r i s when X is Deligne-Mumford 

1.5.1. — Let (8,7,7) be a PD-stack, and let X —> 8 be a rnorphism of algebraic 
stacks such that 7 extends to X . Assume further that X is a Deligne-Mumford stack. 
By [5, IV.4.9.2] the fact that finite nonempty projective limits are representable in 
Cris (Xet /8) (1.4.13) implies that the inclusion 

(1.5.1.1) Cris(Xet/S) C Cris(Xlis_et/S) 

induces a rnorphism of ringed topoi 

(1.5.1.2) rx : (Xiis_et/S)cris • ( X e t / S ) c r i s -

The functor rx* simply restrict a sheaf to Cris (Xet /S) , and in particular is exact. 
The inverse image r^1 is given by the usual formula: For a sheaf F G (Xet / 8 ) cr i s the 
inverse image r^1 is the sheaf associated to the presheaf whose value on an object 
T G Cris(XiiS_et/8) is equal to 

(1.5.1.3) lim F(T ' ) , 
T->T' 

where the limit is taken over the category of morphisms Cris(XiiS_et/S) with T' G 
Cris (Xet /S) . Because finite nonempty projective limits in Cris (Xet /8) are repre
sentable this indexing category is filtering and hence the pullback functor r^1 is 
exact. 

Since the exact functor rx* has an exact left adjoint r^1 it follows that rx* takes 
injectives to injectives. 

Proposition 1.5.2. — Consider a diagram as in (1.^.1.1) with X and X7 Deligne-
Mumford stacks, and let gCTls : ( X ^ / S ^ c r i s —• (Xe t /S )Cr i s be the rnorphism of topoi 
defined in I.4.I4. Denote by #̂ ~se* : (̂ Hs-et/̂ Ocris —• (Xiis-et/8)Cris the pushforward 
functor of lisse-etale sheaves defined in 1.4-17. Then for any F G (X{is_et/S')Cris there 
is a natural isomorphism 

(1.5.2.1) Rr%*Rg lis-et cris* %¨£% — - /̂cris*kmlm^ù 

Proof. — Since rx . is exact, there is a natural isomorphism of functors 

(1.5.2.2) Rrx.Rg%£(-) * R(rx* om^ù$$ 

Similarly, since rx>* is exact and takes injectives to injectives, we have an isomorphism 
of functors 

(1.5.2.3) i?£cris*(rx'*(-)) ^ #(#cris* o r x O ( - ) . 

From this the result follows since by definition 

(1.5.2.4) rx* f*(y(p w+n)/Çn))^~ <?cris* o r r . • 
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1.5.3. — Fix a diagram (1.4.1.1) and a smooth cover P : X' —> %' with X' an 
algebraic space, and let Xf9 be the O-coskeleton of P. Denote by X'm+ the strictly 
simplicial space obtained from X'm. Since each morphism in X'+ is smooth we obtain 
by 1.4.19 a strictly simplicial topos (-̂ îs_et/̂ /)cris with an augmentation 

(1-5-3.1) 7T: (X:+S.et/S')cris — (X{is_et/S')criS. 

Proposition 1.5.4. — For any abelian sheaf F e (X{is_et/S')criS; the adjunction map 
F —> R7r*7r*F is an isomorphism. 

Proof — Fix an integer s > 0. By the same argument used in the proof of 1.4.25, 
the sheaf Rs7r*7r*F is isomorphic to the sheaf associated to the presheaf which to any 
object U T of Cris(X(is_et/S') associates the group 

(1.5.4.1) %¨££ Yf+ 
.̂ t/»,lis-et 

/T)criS) F\ 

where X'^ denotes X'+ x%f U. It follows that it suffices to consider the case when 
X' is a scheme and T = S'. Furthermore, by replacing X' by an etale cover we may 
assume that P : Xf —• X' admits a section a : X' —• X'. 

Lemma 1.5.5. — Let F be an injective abelian sheaf in (X{is_et/S/)criS and U —> Xf a 
smooth representable morphism of algebraic stacks. Then for any i > 0 the group 
^((^/is-et/SOcris,^) is Zero. 

Proof. — By 1.4.23 the group 

(1.5.5.1) H\(U{is_eJS')cris,F) 

is isomorphic to the group jHri((Xiis_et/S,)Cris|t/'*,ir), where (Xij^/S^crislt/'* is as 
in 1.4.20. On the other hand, as explained in [5, V.2.2] the restriction functor 

(1-5.5.2) (X{is_et/S')Cris — • (X{is_et/S')cris|£/'s 

takes injective abelian sheaves to injective abelian sheaves. • 

By considering an injective resolution of F, we see that in order to prove 1.5.4 it 
suffices to consider the case when F is an injective sheaf. In this case (1.5.4.1) is equal 
by 1.5.5 to the 5-th cohomology group of the complex L* 

(1.5.5.3) • r((x;jlis.et/T)cris, F) • • • • , 

where the map d : Ln —> Ln+1 is given by the formula 

n+l 

(1-5-5-4) E(-1)iPro...J-(n+i)-
2=0 

For every n let Kn : X'n_x —• X'n be the map 
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and let 

(1.5.5.6) <:r((x;lis.et/r)cris,F) 
3,T3)(US33,T3)(US33, 

be the map induced by pullback (note that as discussed in 1.4.17 even though nn 
does not induce a rnorphism of topoi this map is still denned). For i < n there is a 
commutative diagram 

(1.5.5.7) 

Xn-i ¨£% Xn 

Pr0...î...(n-1) Pr0...î...n 

Xn-2 
K>n — 1 3,T3)(US3 

and for i = n we have pr0 h o nn = id. From this and the commutativity of the 
diagram (1.4.18.2) it follows that for any section m £ Ln we have 

(1.5.5.8 m — (_l)n+l 
1 Kn+1 

n+1 

' i=0 
pr* , , ., v (m) 
^ 0...z...(n+l) v ' 

n 

i=0 
,Pr0...i...n«(m)) 

From this it follows that L* has no higher cohomology groups and that 

(1.5.5.9) F°(L-)^r((Xîis.et/§')cris,F). 

Corollary 1.5.6. — For any abelian sheaf F 6 (3Cjis_et/S )crjs, there is a natural iso
morphism in the derived category of abelian sheaves on (Xet/§)Cris 

(1.5.6.1) Rrx.Rgl»£(F) Rg..(rx,+ 01r*(F)), 

where g** is the pushforward functor for the rnorphism of topoi gm : (X^/S')^ —> 

(Xet/S)cris-

Proof — By 1.5.4 there is a natural isomorphism 

(1.5.6.2) Rrx+Rgl££(F) : 3,T3)(US33,T3)(US3 

where g,l~et denotes the direct image functor (X^i&met/Sf)cr[8 —> (Xiis_et/S)Cris- On the 
other hand from 1.5.2 it follows that 

(1.5.6.3) Rrx*Rgl:tET(K*F) ~ Rg.*(rx:+on*(F)). 

Corollary 1.5.7. — Let X —• S be a rnorphism of algebraic stacks such that 7 extends 
to X, and let X —> X be a smooth cover with O-coskeleton X.. Then for any abelian 
sheaf F £ (Xiis_et/S)cris; there is a natural spectral sequence 

1.5.7.1 Ef = #'((XSiet/S)cris,-F|(Xs,et/S)cris) i/S+t((Xlis_et/S)cris> F). 

Proof. — By 1.5.4, the right hand side of (1.5.7.1) is isomorphic to 

(1.5.7.2) Hs+t((X+hs_JS)clis,F\x,),ù^$ 

which by 1.5.2 is isomorphic to 

(1.5.7.3) Hs+t((X+JS)cris,F\x,).mù^$ù 

The corollary therefore follows from [68, 2.7]. 
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1.6. Projection to the lisse-etale topos 

1.6.1. — Let (§, / , 7) be a PD-stack and let X —> S be a morphism of algebraic stacks 
such that 7 extends to X. We define a morphism of topoi 

(1.6.1.1) u<Xus-et/S 1 №is-et/§)cris • Xiis_et 

as follows. The functor nXl.s et/§ sends a sheaf F G Xiis_et to the sheaf which to any 
(U,T,6) G Cris(XiiS_et/S) associates F(U). Observe that ^Xiis et/s c^ear̂ y commutes 
with finite projective limits. The functor ^Xiis.et/s* sends a sheaf G G (XiiS_et/S)Cris 
to the sheaf which to any smooth U —• § associates r((f/iiS_et/S)crisJ G). The functor 
wXiis et/s a^so nas a aclJomt ^XiiS.et/S! given by the formula 

(1-6.1.2) uXna_et/§,F(U) = F{U^U). 

If X is a Deligne-Mumford stack then there is also a projection 

(1.6.1.3) ^Xet/S : (^et/§)cris • %et 

defined analogously to uxlis_et/s- ^ follows from the definitions that the diagram of 
topoi 

(1.6.1.4) 

(Xiis-et/S) ens 
U*lis-«t./S 

-̂ lis-et 

¨%£ r 

(Xet/S)cris 
^xet/§^ 

Xet 

commutes, where r : Xiis_et —> Xet is the natural morphism of topoi. 

Proposition 1.6.2. — Let X —> S be a morphism of algebraic stacks such that 7 extends 
to X, and let U —> X be a smooth morphism with U an algebraic space. Then for any 
abelian sheaf F G (XiiS.et/S)cris the restriction of RuXliB_et/s*(F) to Uet is isomorphic 
to RuUet/$*(F\criS(uet/s))' 

Proof. — Since the restriction functor XiiS_et —» Uet is exact, RuXliB_et/$*(F)\uet 1S 
isomorphic to i?A(F), where A is the composite of the functor ^xlis_et/s* and the re
striction functor. On the other hand, the functor A can also be described as the com
posite of the restriction functor (XiiS-et/S)cris —> (£4t/S)cris with the functor uuet/§*. 
It follows that there is a canonical map 

(1.6.2.1) RA(F) RuU9t/s*(F\(Uet/8)cr.B) 

which we claim is an isomorphism. 
Let 5 > 0 be an integer. Then RSA(F) is equal to the sheaf associated to the 

presheaf on C/et which associates to any etale V —» U the group 

(1.6.2.2) HS (№is-et/§) W3 , F), 
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and Rsuuet/s*(F\(uet/8)CriS) 1S tne sneaf associated to the presheaf which to V —> U 
associates 

(1.6.2.3) ^S((^et/S)crisks,^|(C/et/S)cris)-

By the isomorphisms in (1.4.23.2) both of these groups are isomorphic to 

(1.6.2.4) #S((T4t/S)cris, ^l(VWS)cris)' 

and with these identifications the map RSA(F) —• RsuUet/§*(i?|(t/et/s)cris) becomes 
identified with the identity map (to see this last compatibility note that it follows 
from the definitions that it holds for s = 0 and hence holds in general since both 
arrows are maps of universal cohomological (^-functors). • 
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CHAPTER 2 

CRYSTALS AND DIFFERENTIAL CALCULUS ON 
STACKS 

2.1. Crystals 

Let (§, / , 7) be a PD-stack and X —• § a rnorphism of algebraic stacks such that 7 
extends to X. 

Definition 2.1.1. — A crystal of 0xlis_et/s-modules *s a sheaf E of Oxns_et/§-modules 
on Cris(Xiis_et/§) such that for any rnorphism u : Tl —• T in Cris(XiiS_et/§) the 
induced map (see 1.3.3) 

(2.1.1.1) u*ET —> ET> 

is an isomorphism. A crystal E is quasi-coherent if each ET is a quasi-coherent sheaf 
on Tet. 

If X is a Deligne-Mumford stack we also obtain a notion of (quasi-coherent) crystal 
in (Xet/S)cris by replacing the site Cris(XiiS_et/§) in the preceding definition by the 
site Cris(Xet/§). 

Proposition 2.1.2. — Consider a 2-commutative diagram 

(2.1.2.1) 

X' - 9 X 

¨%£ ¨M%¨£ 

as in (1.4.1.1.), with X' and X Deligne-Mumford stacks. If E is a (quasi-coherent) 
crystal in (Xet/S)cris then the pullback g*risE to (X^/S^cris is a* (quasi-coherent) crys
tal. 

Proof — This follows from the same argument used in [7, IV. 1.2.4]. • 

Concerning pullback for more general Artin stacks we have the following partial 
result. 
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Proposition 2.1.3. — Consider a 2-commutative diagram 

X' ^ ) *j£ 

(2.1.3.1) 

S' > § 

as in (1.4.1.1) and assume X —> § is representable and locally separated. Then for 
any crystal E on Cris(Xns_et/§) the pullback g*E on Cris(X{is_et/S') is a crystal. If 
E is quasi-coherent then the pullback is also quasi-coherent. 

Proof. — For an object T' G Cris(X(is_et/S'), let IT denote the category of #-PD-
morphisms h : T' —• T to objects T G Cris(Xns_et/S). By the definition of g* the 
sheaf g*E is isomorphic to the sheaf associated to the presheaf 

(2.1.3.2) R — r(T' , OT>) ®iimf*(y(p w+n)/Ç. r(T,oT) lim E(T). 
{h:T'^T)eIT 

On the other hand, by the universal property of lim and ®, for any 0^'(^O'mo(mle 
iV we have 

(2.1.3.3) 

Hom<9T,(7v) lim 

heiT 

E(T)) « 
Rrx 

9T(T) 0T*(R)9N) 

~ Horn lim ;̂ —>he/T OT(T) lim 

¨£%% 
£(T),iV) 

~ lim 

heiT' 
HomoT(T) ^ ( T ) , i V ) 

~ lim 

heiT' 
Homc>T,(T/) Rrx*Rgl:tET(K*F) 

— Hom(9T/(T/) lim 
heiT' 

E(T) ®Qt{t) CV(T')) ,JV). 

By Yoneda's lemma it follows that g*E is isomorphic to the sheaf associated to the 
presheaf which to any T' G Cris(X(is_et/S) associates the limit 

(2.1.3.4) lim 
{h:T'^T)elT' 

T(Tf,h*ET). 

We claim that for any fixed ho :T' —> T0 in IT' the induced map h^Ero —• (g*E)r is 
an isomorphism. 

To see this it suffices to check on stalks. Let P —• T' be a geometric point and let 
7T '* denote the category of pairs (V7, ft), where V is an etale neighborhood of P in 
T' and ft : V —> T is an object of 7y . Then we want to show that the natural map 

(2.1.3.5) (KETo)-tl lim 

Rrx*R 

(h*ET)ïf 
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is an isomorphism. To prove this, note first that it would be immediate if the category 
IT ft were filtering, for by definition of crystal all the transition morphisms in the 
limit on the right hand side of (2.1.3.5) are isomorphisms. Unfortunately, the category 
IT '* is not filtering. 

Let / ' denote the category whose objects are the same as those of IT ,£ but for 
which Hom-T',t' (ft, ft') is the empty set if there does not exist a rnorphism ft —• ft' in 

/ -/ —T't' 
IT '* and the unital set if Hom/T',t' (ft, ft') is nonempty. Then the category J ' is 
filtering. To prove the proposition it suffices to show that the functor 

(2.1.3.6) (heft) (h*Er)t> 

—T t 
factors through I ' . For then the right hand side (2.1.3.5) can be replaced by the 
limit 
(2.1.3.7) lim 

helT,'p 

(h*Er)t, 

which is a filtering limit. 
—T' V 

The statement that the functor (2.1.3.6) factors through I ' amounts to the 
statement that if ft : X" —• T and ft : T" —> T are two g-PD-morphisms, and if 
f,g : T —> T are two morphisms in Cris(Xiis.et/S) such that foh = goh = h, then 
the two maps 

(2.1.3.8) f*,g*:h*Er h*Ef 

are equal. For this note that since X —> § is representable and hence faithful [49, 
8.1.2], the map U x% U T x§ T is a monomorphism, where U —•> X denotes 
the subscheme of T defined by the PD-ideal. Since X —• S is locally separated by 
assumption and the diagram 

(2.1.3.9) 

UxxU Ux§U 

X A X x § X 

is cartesian, the map U —> U XxU —> T x§ T is an immersion. Set 

(2.1.3.10) D:=DUxxU„(Tx8T). 

By the universal property of D the map fxg:T-^Tx§T factors through D, and 
hence there is a commutative diagram of S-schemes 

(2.1.3.11) 

V 
h 

f 

h fxg 

T 
A 

D 
M%¨££ 

T. 
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The maps f*,g* : h*Er —• h*Ef are then identified with the pullbacks to X" of the 
two maps pr* : pi*ET —> ED (i = 1,2). But these two maps both pullback to the 
same map ET —• A*ED via the map A, and hence their pullbacks to T' are also 
equal. This completes the proof of 2.1.3. • 

The proof of the proposition in fact gives a way to calculate g*E: 

Corollary 2.1.4. — Let g : X' -> X be as in 2.1.3. Let (U',T',5f) G Cris(X(is_et/§) be 
an object and h : U —> X a factorization of the map U —• X' —• X through a smooth 
X-space X. Then g*E(U,T,5) is equal to the value of the pullback hlris(E\(Xet/s)cris) 
on(U,T,5)eCm(Uet/S). 

Proposition 2.1.5. — Let X —• § be a morphism of algebraic stacks such that 7 ex
tends to X, and assume that X is a Deligne-Mumford stack. Then restriction in
duces an equivalence of categories between the category of (quasi-coherent) crystals in 
(XiiS_et/S)cris and the category of (quasi-coherent) crystals in (Xet/§)Cris-

Proof. — Let r% : (Xiis-et/S)cris —• (Xet/§)cris be the morphism of topoi defined 
in 1.5.1. The proposition follows from the following lemma which shows that r% 
defines a quasi-inverse to r%* • • 

Lemma 2.1.6 

(i) If E is a (quasi-coherent) crystal in (Xet/§)cris then the pullback r%E is a (quasi-
coherent ) crystal on Cris(XiiS_et/§)-

(ii) If M is a crystal in (XiiS-et/S)cris then the natural map rJ-rx*M —• M is an 
isomorphism. 

Proof. — Let (U,T,5) G Cris(XiiS_et/§) be an object. By 1.4.5 there exists after 
replacing T by an etale cover a morphism h : (U, T, S) —> (V, Z, e) with (V, Z, e) G 
Cris(Xet/S). In this case the sheaf {r^E)r on Tet is equal to h^Ez, where hr ' Tet —» 
Zet denotes the morphism induced by h. Indeed the sheaf (r%E)T is equal to the 
sheaf associated to the presheaf on Et(T) which to any T' —»• T associates the limit 

(2.1.6.1) lim h*Ez{T'), 
{h:T'-+Z)eIT' 

where IT' denotes the category of morphisms h : (U XT T' T;) —> (V, Z, 5) in 
Cris(Xiis_et/§) with (V,Z,(J) G Cris(Xet/S). The category Ir is filtering by 1.4.13 
and since E is a crystal it follows that for any given ho : T' —• Z in IT the map from 
KQEZ to (r%E)T is an isomorphism. 

From this description it follows that if E is a (quasi-coherent) crystal then the 
pullback r%E is also a (quasi-coherent) crystal and (i) follows. 

To see (ii), note that by (i) the map r^r%*M —> M is a map of crystals which 
becomes an isomorphism when restricted to Cris(Xet/S). Since any object of the site 
Cris(XiiS_et/S) admits etale locally a morphism to an object of Cris(Xet/§) by 1.4.5 
this implies (ii). • 



2.1. CRYSTALS 53 

2.7.7. — It will also be useful to have a simplicial description of quasi-coherent crys
tals. Let X —• S be a morphism of algebraic stacks such that 7 extends to X. Fix 
a smooth cover P : S —> § with S an algebraic space, and let Q : X —» 5 x§ X 
be a smooth representable surjection with X a Deligne-Mumford stack. Denote by 
Sm (resp. X . ) the simplicial Deligne-Mumford stack which is the O-coskeleton of the 
morphism S —> § (resp. X —• X ) . We then have a commutative diagram 

X% • X 

(2.1.7.1) j 

S. • §. 

Let (X9iet/S*)Cria denote the simplicial topos [n] \-> {Xn,et/Sn)cr[s. 

Definition 2.1.8. — A (quasi-coherent) crystal Em in (X.^t/S0)cris is a sheaf of 
Ox. et/s.-m°dules such that for each n the sheaf En G (Xn,et/5'n)cris is a (quasi-
coherent) crystal, and such that for every morphism 5 : [n] —> [n'\ in A the induced 
map 

(2.1.8.1) 6*En —+ En, 

is an isomorphism of sheaves in (Xn/>et/£n')cris-

2.1.9. — If E is a crystal in (XiiS-et/S)cris then for any [n] G A the restriction of 
E to Cris(Xn?et/5n) is a crystal and hence we obtain by restriction a crystal Em 
in (X#?et/5#)cris. 

Proposition 2.1.10. — The functor E 1-» Em induces an equivalence between the cat
egory of quasi-coherent crystals in (XiiS_et/S)cris and the category of quasi-coherent 
crystals in (X#?et/S'.)cris. 

Proof. — We construct a quasi-inverse as follows. Consider first the case when 8 is 
an algebraic space and S — 2>. Let E% be a quasi-coherent crystal in (X.jet/S)cris and 
let (U, T, 5) G Cris(Xiis-et/S) be an object. We construct a sheaf ET on Tet as follows. 
After replacing T by an etale cover, there exists a lifting s : U —• X of the structure 
morphism s : U —• X. Define i^r to be the sheaf (s*.Eo)t on Tet. If 5 ' is a second 
lifting of s then there is a canonical isomorphism 1 : S*EQ ~ s'*Eo obtained by setting 
h : U —* Xi equal to s x s' and defining ^ to be the isomorphism 

(2.1.10.1) s*Eq ~ h*prlE0 -^-> h*Ex h*pr%E0 ~ S'*Eo, 

where the maps pr^ and pr£ are isomorphisms by the definition of a crystal in 
(X#5et/§)cris- Furthermore, if s" : U —> XQ is a third factorization and if 1! : sf*Eo —+ 
sf/*Eo and L" : s*Eo —» S"*EQ are the resulting isomorphisms, then L" = ^ o ¿. 
This follows by setting k : U —> X2 equal to the map 5 x s' x s" and noting that 
if a : p r ^ o —> p r ^ o denotes the isomorphism in (Xi)et/§)cris obtained from the 
isomorphisms 

pr*1 
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then t = fc*(prj2(tr)), t' = fc*(pr£3((7)), and i" = fc*(pr?3(a)). That i" = ¿/ o ¿ then 
follows from the fact that pr*3(cr) = pr^cr) o prj2(cr) since E. is a simplicial sheaf. 
It follows that ET is defined globally on Tet. Furthermore, by the construction if 
h : T' —• T is a morphism in Cris(Xiis.et/§) then there is a natural isomorphism 
JI*ET —• £ T ' of sheaves in Te't. In this way we obtain a functor from the category 
of quasi-coherent crystals in (X#?et/S)cris to the category of quasi-coherent crystals 

in (Xiis_et/S)cris-
To treat the general case, note first that if E9 is a quasi-coherent crystal in 

(Xm^t/S9)cr\Sj then E. defines a quasi-coherent crystal in (XnjiiS-et/S'n)cris for every 
[n] G A, where Xn := X x§ Sn. Indeed, let Xsn,m denote the base change 

(2.1.10.3) X. x s5n . 

Then Xsn^ is isomorphic to the 0-coskeleton of the natural smooth surjective mor
phism X x§ 5n —> Xn. Now the crystal EM defines by restriction a quasi-coherent 
crystal in (Xsn,%/Sn)cT\s which by the case already considered is obtained by re
striction from a quasi-coherent crystal EN in (Xsn>iiS_et/S'n)cris- It follows that E. is 
obtained by restriction from a collection of crystals {EN} equipped with compatible 
isomorphisms S*EN —> Eni for every morphism 6 : [n] —• [n'] in A. 

Let (U,T,6) G Cris(Xiis-et/S) be an object, and let Um ^ T9 be the closed immer
sion of simplicial stacks defined by base change to 5#. For each [n] G A, Un Tn 
is an object Cris(XJs-n5iiS_et/S'n) (this is not quite correct since U and T are only al
gebraic spaces but see 1.3.4), and hence we can evaluate EN on Un ^ Tn to obtain 
a quasi-coherent sheaf £T„ on Tn?et- The simplicial structure on {EN} gives the sheaf 
5T„ the structure of a simplicial sheaf on T#5et5 and since the pullback 5*EN —> Eni is 
an isomorphism for every morphism 6 : [n] —> [nf] the map S*£TN £TN, is also an 
isomorphism. By descent theory for quasi-coherent sheaves, the simplicial sheaf ST. 
is obtained from a quasi-coherent sheaf ET on Tet. 

It follows from the construction that for any morphism h : T' —• T in Oris (Xns_et/S) 
there is a natural isomorphism H*ET ET> in T^t. In this way we obtain a quasi-
coherent crystal {ET} in (Xns.et/S)cris from E*. It follows from the construction that 
EM i—> {ET} defines a quasi-inverse to the restriction functor E E9. • 

Corollary 2.1.11. — Let X —> S be a morphism of algebraic stacks such that 7 extends 
to X and X is a Deligne-Mumford stack. Then pullback defines an equivalence of cat
egories between the category of quasi-coherent crystals in (Xet/§)cris and the category 
of quasi-coherent crystals in (X9^t/Sm)CT[S, where Xm : = l x § St. 

Proof. — This follows from 2.1.5 and 2.1.10 taking Q : X —• X x§ S equal to the 
identity map X x § 5 — > X x § 5 . • 

2.2. Modules with connection and the de Rham complex 

2.2.1. — Let X —> § be a morphism of algebraic stacks which we assume to be rep
resentable and locally separated (this assumption is satisfied for example if X is a 
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locally separated algebraic space (0.2.2)). Then the diagonal map 

(2.2.1.1) A : X — • X x§ X 

is an immersion, and we define the sheaf of differentials ^x^s [49, p. 163] to be the 
conormal bundle of this immersion. In other words, let X C C*xxsx,iis-et be the 
ideal of X and set ^ x / § := A* J (note that though there is not a morphism of topoi 
Xns-et —• (X x§ X)iiS_et the pullback of a quasi-coherent sheaf A* J is still well-defined 
by [68, 6.5]). 

If X is a Deligne-Mumford stack we write ^Xet/§ ^or ^ e restriction of ^ x / § to 
Xet if we wish to make clear that we are working with the etale topology. When no 
confusion seems likely to arise we sometimes also write simply f i^g ^or ^xet/s* 

Let 

(2.2.1.2) 

X' 
9 

X 

%¨£% 
%£¨% 

8' S 

be a 2-commutative diagram of algebraic stacks with / ' and / representable. Then 
there is a natural commutative diagram 

(2.2.1.3) 

X' 9 X 

%¨£% A 

X' x§/ X' 
§%£ 

X x§ 8, 

and hence an induced morphism /*^x / s ^X'/S" 
If S —» 8 is a smooth morphism with S an algebraic space and Xs denotes the alge

braic space (since X —• 8 is representable) obtained by base change, then ^X/§ |xs et is 
naturally isomorphic to the usual sheaf of differentials ^Xset/set- From this and the 
corresponding fact for algebraic spaces it follows that for any representable morphism 
of algebraic stacks g : X' —> X the sequence 

(2.2.1.4) 9 ^x / s o1 o1 
lLX'/X 

0 

is exact. 

Lemma 2.2.2. — IfX-^Sis smooth, then 0X/§ is locally free. 

Proof. — It suffices to prove this after making a smooth base change S —• 8 with S 
an algebraic space. In this case the result follows from the corresponding result for 
schemes. • 

22.3. — When X is a Deligne-Mumford stack (we discuss the case of a general Artin 
stack in 2.2.19 below) there is a derivation d : Oxet - » ̂ xet/s mnctorial m % defined 
as follows. Let 5 —• 8 be a smooth surjection with S an algebraic space and set 
Sf := S x§ S. Let Xs and Xs* denote the spaces obtained by base change and 
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let g : Xs —» X and gf : Xs* —• X be the projections. By descent theory, for any 
quasi-coherent sheaf M on XET there is a natural exact sequence 

(2 .2 .3 .1) M -9*9* M 9'J*M. 

In particular, we have a commutative diagram 

(2.2.3.2) 

Rrx* Rrx*Rgl Rrx*R 

det det 

Ql 
^Xet/S "^*^XS,et/^e1 - Xs',et/S'et ' 

where the maps det are the derivations obtained from the theory for algebraic spaces. 
Prom the exactness of the horizontal rows it follows that there is a unique derivation 
d : Oxet —• &x t/§ such that the square 

(2.2.3.3) 

Oxet d Ql 
^Xet/S 

9*OXs,et 
det Q1 

^ S , e t / < - 5 e t 

commutes. 
This derivation d is independent of the choice of S —• §. For this note first that 

if T —> 8 is a second smooth cover and h : T —» 5 an S-morphism, then there is a 
commutative diagram 

(2.2.3.4) 

Oxet 9*ÖXS,et g'*OxT,et 

det det 

O1 
^Xet/S 

mpl 9^XS,et/Set l:tET(K*F) 

where : X T —> T denotes the projection. From this it follows that T and S define 
the same map d : Oxet —> ^ x e t / S ' If ^ ~^ S is an arbitrary second smooth cover, then 
by the preceding paragraph S and S x § T define the same derivation, as do T and 
T x§ S. It follows that the derivation d is independent of the choice of S. 

2.2.4. — If X —> § is smooth, then as noted in 2.2.2 above the sheaf £2x/§ is locally 

free. For i > 0 let f2x/§ denote A2f2Xy§. An argument similar to the one defining 

the derivation d above shows that there exist unique morphisms di : f2X/§ —* fi^tyg 

of abelian sheaves such that for any smooth morphism S —> 8 with S a scheme the 

diagram 

(2 .2 .4 .1) 

*lXs/S 
di 

^Xs/S 

9 ^ x / S 

di 
9 ^ x / S 

commutes, where di denotes the usual differentiation of forms. 
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For any i the composite 

(2.2.4.2) Rrx* di oi+1 
lLx/§ 

di+i %£%¨P% 

is zero since this can be verified after making a base change S —> S. We therefore 
obtain a complex f ^ / s on Xet called the de Rham complex of X/S. 

Remark 2.2.5. — The de Rham complex defined above is a special instance of the 
general construction given in [33, VIII. 1.2] of the de Rham complex of a "categorie 
formelle a PD" (note that [33, VIII.1.2.8] applies by 2.2.2). Since in our case all 
properties of the de Rham complex can be deduced by descent and we also need 
variants with coefficients, we do not appeal to loc. ext.. 

Note also that ^xet/s *s usua^y n°t locally generated by the image of d (see for 
example 2.2.8 below). This means that we cannot quote [7] directly in the proofs that 
follow since the axioms of a so-called de Rham category fail [7, 11.3.1.3]. 

2.2.6. — Let X —• § be a smooth morphism of algebraic stacks with X Deligne-
Mumford, and define Txet/s to be the dual of fl^^g. There is a natural Lie algebra 
structure 

(2-2.6.1) [-, •] : TXet/s x TXet/s —> TXet/s 

defined as follows. Let S —> 8 be a smooth surjection with S an algebraic space and 
set S' := S x§ S. Let X# and %sf denote the spaces obtained by base change and 
let g : X# —• X and g' : %sf —> X be the projections. Then we have a commutative 
diagram of sheaves 

T%et/§ © TXet/§ —• g*TXs/s © 9*TXs/s — • 9*Txs,/S' ® 9*Txs,/S' 
(2.2.6.2) j[v]t j[v]rt 

^Xet/s —* g*T%s/s —> g'*Txs,/sf, 

where [•, -]et denotes the Lie algebra structures obtained from the theory for algebraic 
spaces. Since the rows are exact we obtain a pairing [•, •] on Txet/§. As in 2.2.3 this 
pairing is independent of the choice of S —> §. 

Proposition 2.2.7. — For a local section £ G 7xet/§ let d^ be the composite 

(2.2.7.1) ^Xet 
d Ql %P LM¨%¨+P 

Then the induced map 

(2.2.7.2) %M%¨£¨£ ¨£%¨£%£¨¨£%%£ %M¨£%%£ 

is a map of sheaves of Lie algebras. 
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Proof. — Let S —> § be a smooth cover and let Xs = X x§ S. Then if 7r : X5 —• X 
denotes the projection, there an isomorphism 7r*Txet/s ^ T%s et/S which is compatible 
with the maps d. Hence for any £ G 7xet/s there is a commutative diagram 

(2.2.7.3) 

%£%¨% Rrx*R Rrx*R 

Rrx* 7r_1d€ Rrx*Rg 

Since the map 7r_1Txet/s —* T%s et/g is a morphism of Lie-algebras by construction of 
the Lie algebra structure on Txet/s and the vertical arrows are injective, the lemma 
follows from the corresponding result for Xs/S. • 

Example 2.2.8. — Let G be a smooth affine group scheme over a scheme B and let 
§ = BG, X = B. Let X = B —• S = BG be the morphism defined by the trivial torsor. 
Then X x § X ~ G and the diagonal map B G is the identity section. Therefore in 
this case f ^ / s *s isomorphic to Lie(G)* (the dual of the Lie algebra of G). In this case 
the differential d : OB —• Lie(G)* is the zero map. The sheaf T x / s is equal to Lie(G). 
We leave to the reader the verification that the pairing (2.2.6.1) agrees with the usual 
Lie algebra structure on Lie(G). Furthermore the maps ^ x / s ~* ̂ x / s occurrm& m 
the de Rham complex are equal to the maps 

(2.2.8.1) <U : A*Lie(G)* —-+ Ai+1Lie(G)* 

sending u G AzLie(G)* to the element of A2+1Lie(G)* characterized by the condition 
that for £1 , . . . , £¿+1 G Lie(G) we have 

(2.2.8.2) f*(y(p w+n)/Çn))^ 

Kk 

(-l)l+küj(\£i,b] Л • • •£, Л • • • Л Ь. Л • • • Л £<+,). 

This is the usual complex computing Lie algebra cohomology [38, 4.27]. 

Example 2.2.9. — A second example which hints at the connection with logarithmic 
geometry is the following. Let A: be a field and 8 = [A1 /Gm] , where A1 = Spec(fc[£]) 
is the affine line over k and Gm acts on A1 via the usual multiplicative action. Let 
X = A1 and X —• § the projection. In this case X x§ X is the scheme A1 x Gm 
and the diagonal map is the morphism id x e : A1 —> A1 x Gm, where e denotes the 
identity section. If we write Gm = Spec(fe[it±]), then it follows that ^x / s m this 
case is free of rank 1 over k[t] with basis (u — 1). Let us compute the differential 
d : k[t] —> k[t] • (u — 1). The two projections pi : A1 x Gm —> A1 (i = 1,2) are given 
by the projection to the first factor for i = 1 and the action for i = 2. Prom this one 
sees that the differential which sends / G k[t] to p^if) —Pi(f) modulo (u — l)2 sends 
t to t • (u — 1). It follows that the map 

(2.2.9.1) d : k[t] k[t] • (u - 1) 

sends t% to it1 • (u — 1). In more familiar notation, the basis (u — 1) should be viewed 
as dlog(t). 
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This connection with log geometry is discussed in detail in Chapter 9. Briefly, the 
stack [A1/©™] can be viewed as the stack associating to any scheme S the groupoid 
of pairs (£ , a ) , where £ is a line bundle on S and a : C —> Os is a morphism of 
Os-modules. As discussed in [40, Complement 1] such a pair (£, a) is equivalent to 
the data of a fine log structure M on S together with a morphism /3 : N —• M which 
étale locally on S lifts to a chart. With this interpretation of [A1/Gm], the quotient 
map A1 —> [A1 /Gm] is the morphism corresponding to the log structure defined by the 
origin in A1. As we discuss in Chapter 9, using the characterizing infinitesimal lifting 
property of differentials (in either "ordinary" geometry or logarithmic geometry) one 
can then deduce a canonical isomorphism between i l ^ and the logarithmic 
differentials. 

Definition 2.2.10. — Let X —> S be a smooth representable morphism of algebraic 
stacks with X Deligne-Mumford. A module with connection on Xet /§ is a quasi-
coherent sheaf of Oxet-mod\iles £ on Xet together with a morphism 

(2.2.10.1) V : £ —.5®oXetnirt/g 

such that for any local sections / G Oxet and e G £ we have 

(2.2.10.2) V ( / e ) = / V ( e ) + e <g> d(f). 

The pair (£, V) is integrable if the induced map 

(2.2.10.3) TXet/s — End(£) 

is a morphism of sheaves of Lie-algebras. If £ G 2xet/§ is a local section, we denote the 
induced endomorphism of £ by V¿. We denote by M C ( X e t / § ) (resp. MIC(Xet/B)) 
the category of quasi-coherent modules with connection (resp. integrable connection). 

Remark 2.2.11. — As in the classical case, a connection V on a quasi-coherent 0%et-
module £ defines for every i > 0 a map of abelian sheaves 

(2.2.11.1) Vi : £ (g>ox ÍJx/s —> £ ®ox ííx/s> e®Ui—> e®du) + V(e) 0 a;. 

The condition that {£, V) is integrable is then equivalent to the condition that the 
curvature V2 := Vi o V is zero. 

2.2.12. — We will also need a simplicial description of modules with integrable con
nection. Let X —> S be a smooth representable morphism of algebraic stacks with X 
a Deligne-Mumford stack. Fix a smooth cover £ —> S and let Sm be the 0-coskeleton. 
Denote by Xm the simplicial algebraic space X x § S0. 

Definition 2.2.13. — A module with connection (5, V) on Xm/S9 is a quasi-coherent 
sheaf of (9x.,et-modules £ on Xm,et together with a map 

(2.2.13.1) V : £ — f ® ^ / ^ 

such that for any local sections / e Ox.et and e € £ we have 

(2.2.13.2) V ( / e ) = e ® d / + / V ( e ) . 
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The pair (£, V) is integrable if the induced map 

(2.2.13.3) Tx./s. End(S) 

is a map of sheaves of Lie algebras. We denote by MC(Xm/Sm) (resp. MIC(Xm/S.)) 
the category of quasi-coherent modules with connection (resp. integrable connection). 

Lemma 2.2.14. — Let X/S be smooth and let X, —> 5 . be as above. Then there 
is a natural equivalence of categories between MC(Xet/S) (resp. MIC(Xet/§)J and 
MC(X./S.) (resp. MIC(X./S.)). 

Proof. — Let PX/$ denote the first infinitesimal neighborhood of X in X x§ X, and 
let 

(2.2.14.1) prl5pr2 : P¿yS :x 

denote the two projections. As in the classical case, a connection on a quasi-coherent 
sheaf £ is equivalent to an isomorphism of quasi-coherent sheaves pr^£ ~ p r ^ on 
Px/§ which reduces to the identity when pulled back to X via the diagonal. Now if 
U —> § is any smooth morphism then the base change of the following diagram of 
stacks to U 

(2.2.14.2) 

Xe P1 

S X 

is canonically isomorphic to the diagram 

(2.2.14.3) 

Rrx*Rg P1%¨£MPG 

U Xx§U 

Thus if ( £ , V ) is a module with connection on X/S, then the pullback to X x§ U 
has a canonical connection obtained by pulling back the isomorphism pr^£ ~ p r ^ t° 
P<Xx§u/u — Ux§ Px/§- Thus for any U —> S, there is a natural functor 

(2.2.14.4) p¡j : MC(X/S) MC(XxsU/U). 

Moreover, if g : U' —> U is a morphism of algebraic spaces, then the functor p\j, is 
simply the composite of p\j with the natural pullback functor M C ( ( X x§ U)et/U) —> 
MC((X xs U')et/U') [44, 1.1.4]. We thus obtain a functor 

(2.2.14.5) p* : MC(X/S) - MC(X./S.) 

by sending (£, V) to the module with connection on Xm/S. whose restriction to Xi 
is p*si (£, V) and whose transition maps are the natural ones. The fact that p* is an 
equivalence follows from [49, 13.5.4] applied to i^/S' 
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More concretely, for any U —• 8, the pullback of (£, V) to X x§ U is the sheaf 7r*£ 
(where TT :X x§U —• X is the projection) with connection the unique connection Vc/ 
such that for any local section £ G Tx/§ the diagram 

(2.2.14.6) 

7T*£ 
Rrx*R 

7T*£ 

Rrx*Rg £% 
¨¨%£%% 

commutes. Prom this it follows that the functor preserves the notion of "integrable 
connection". • 

We also note the following which follows from the same argument. 

Corollary 2.2.15. — Let X —» 8 be a smooth representable morphism of algebraic stacks 
with X Deligne-Mumford, and let S —• 8 be a smooth cover by an algebraic space. Then 
pullback defines an equivalence between the category MIC(Xet/§) and the category of 
pairs ((£, V),cr), where (£, V) G MIC(Xs,et/S) and 

(2.2.15.1) a :p r î (£ ,V) prS(£,V) 

On Ï5x§5 SïZC/i íftaí PrÍ3(0") = P r23W°Pr12W onXSx§Sx§s-

2.2.16. — Let X —> 8 be a smooth morphism of algebraic stacks with X a Deligne-
Mumford stack, and let (£, V) G MIC(Xet/S) be a module with integrable connection. 
Define the de Rham complex of (E1, V ) , denoted £ 0 í í^c^g, by defining 

(2.2.16.1) Rrx*Rgl:tET(K*F) £ 0) "̂̂ x y§ 

by the formula 

Vi(e®u;)(Éi A - - - A & + i ) = 

(2.2.16.2 

£% 

¨£%¨£ 
- l ) z + 1 Vfc (e • A - - - A 6 A - • - A 

+ 
Kk 

-l)k+le - A • • • A & A • • • A • • • A & A • • - & + i ) , 

where! A 6«V> / P XOT / O (A'TXet/s) and denotes the endomorphism of £ defined by V(£). 

Observe that if e G £ , / G 0%et, cu G ̂ xet/s then 

(2.2.16.3) £%% fe^uj) = /Vi(e®a;)4 ( - l ^ e O o ; A d / . 

Lemma 2.2.17. — / / X and 8 are schemes, then the above defined de Rham complex £® 

^Xet/s A9REES with the usual de Rham complex of a module with integrable connection 

[4471.0]. 
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Proof. — To prove this we may work locally on X and 8, and hence may assume that 
X is etale over Gg for some integer r. Let . . . , ^ denote the standard basis for 

^Xet/S' anĉ  ^ Xl dfi ' • * * ">Xr aab ^he corresponding dual basis for Txet/§. Then for 

any i and j we have [xi , Xj = 0. From this and the formula (2.2.16.2) it follows 

that Vs sends a local section e 0 ( A • • • A ) to 

(2.2.17.1) V(e ) / \ 
dxi-. 

£%¨£% 
A---A 

£%¨£% 
MP¨%£ 

which agrees with the formula in the usual de Rham complex. • 

2.2.18. — The preceding constructions are functorial in the following sense. Consider 
a 2-commutative diagram of algebraic stacks 

(2.2.18.1) 

£%£% 9 X 

s t 

%£§M / § 

with s and t smooth, representable, and locally separated, and X and X' Deligne-
Mumford stacks. Then there are natural functors 

(2.2.18.2) g* : MC(Xet/§) > MC(xys ' ) , g* : MIC(Xet/S) MICÇCJ8') 

defined as follows. Choose smooth covers S' —• S' and S -+ S with Sf and S schemes 
and a lifting / : S' —> S of / . Let S'm and S9 denote the 0-coskeletons of these maps, 
and write X. (resp. X'm) for X xg 5 . (resp. X7 x§/ S'9) so that we have a commutative 
diagram of simplicial algebraic spaces 

(2.2.18.3) 

%£% 9* x. 

s: s.. 

As in [44, 1.1] there are pullback functors 

(2.2.18.4) 

9l MC(X./S.) MC(X'JS9). gl : MIC{X./S.) v MIC{Xf9/Sf9). 

The functors (2.2.18.2) are defined to be the functors obtained from and the equiv
alences in 2.2.14. 

That this definition of g* does not depend on the choice of / : Sf —• S can be seen 
as follows. If : S'^ —> is a second choice of such data and if 

(2.2.18.5) 

¨MP% §M/ §M/ 

a.' a 

S' 
/ML/ 

s 
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is a commutative diagram over / , then the diagrams 
(2.2.18.6) 

MC(X./S.) a' MCixV/S?) MIC(X./S.) 
a* 

MIC(X?/S?)% 

9l 9. 9*. 9?' 

MC{X'JS'.) a' MC{X?/S?) MIC{X'JS',) 
a* MIC(X'V/S?) 

commute, where : X'^ —• denotes the morphism obtained from g by base 
change to S? and S?. This shows that : and / : S' -> S define the 
same functor when there exists a diagram (2.2.18.5). The general case follows from 
this by considering the products / x : S' x§/ S'^ —> 5 x§ . 

2.2.19. — The above results and definitions can be generalized to an arbitrary mor
phism of algebraic stacks X —• S such that 7 extends to X as follows. 

Let ct^/g denote the sheaf on XiiS.et which to any smooth U —» X with U a scheme 

associates T(U, ̂ ^et/§)- ^ne derivations d : Ouet —• ̂ c/et/§ induce a derivation d : 
Rrx*Rgl:tET(K*F) 

Remark 2.2.20. — The sheaf t^/s *s n°t quasi-coherent as it is not cartesian. Let 
Lx/s denote the cotangent complex defined in [49], and let T>O£X/S be the truncation. 
The complex T>QLX/§ in the derived category of 0Xiis_et~mocmies can be explicitly 
described as the complex whose restriction to the etale site of any smooth X-scheme 
U —> X is the complex f i ^ § ~* ^u/x (concentrated in degrees 0 and 1). It follows 
that there is a natural morphism u>x/s ~~* r>o^x/s m the derived category of 0Xiis_et~ 
modules. This map is not an isomorphism, however, since for example the complex 
T>OLX/S has cartesian cohomology sheaves. 

Definition 2.2.21. — A module with connection (£, V) on XiiS_et/§ is a quasi-coherent 
sheaf £ on Xiis_et together with a map V : £ —> £ 0 ^x /s sucn that for any local 
sections e G £ and / G Oxlis.et we have 

(2.2.21.1) V ( / e ) = /V ( e )+e<8># . 

The pair (5, V) is called integrable if for every smooth X-scheme the module with 
connection on t/"et/S obtained by restriction is integrable. We write MC(X\is.et/§) 
(resp. M/C(Xiis_et/S)) for the category of modules with connection (resp. integrable 
connection) on XiiS.et/§. 

2.2.22. — If X is a Deligne-Mumford stack there are natural functors 

(2.2.22.1) MC(Xiis_et/§) • MC(Xet/S), M/C(Xiis_et/§) • M/C(Xet/S) 

obtained by restricting the sheaf £ to Xet and nothing that ^x/sl^et — ^ x t/s-

Proposition 2.2.23. — The functors (2.2.22.1) are equivalences of categories. 
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Proof. — Let r : XiiS.et —* Xet be the natural morphism of topoi defined by the 
inclusion Et(X) C Lis-Et(X). By [68, 6.12], the pullback r* induces an equivalence 
of categories between the category of quasi-coherent sheaves on Xet and the category 
of quasi-coherent sheaves on XiiS_et. Let £ be a quasi-coherent sheaf in Xet- Then 
giving a connection V : r*£ —> r*£ ®o%lis et ^x /s *s equivalent to giving a map 
V* : r_1£ —• r~l£ ®r-i0x ^ (¿x/g such that for any local sections e G r-1£ and 
/ G r~xOxet we have 

(2.2.23.1) V*( /e ) = / V ( e ) + e ® df. 

Since r-1 is left adjoint to r*, to give such a map V is equivalent to giving a map 

(2.2.23.2) V : £ —> r ^ H ®r-iOXet "x/s) - ¿ ®oXmt ^ e t / s 

such that the Leibnitz rule (2.2.10.2) holds. This proves that the restriction functor 
MC(XiiS_et/S) —• MC(Xet/§) is an equivalence. 

To complete the proof of the proposition it suffices to show that if (r*£,V) G 
MC(Xiis_et/§) then V is integrable if and only if the restriction (£, V) G M C ( X e t / § ) 
is integrable. For this note that the preceding discussion shows that (r*£,V) is 
isomorphic to the module with integrable connection whose restriction to {7et for 
some smooth X-scheme f : U —> X is equal to #*(£, V ) . Since the pullback of an 
integrable connection is again integrable, it follows that V is integrable if and only if 
V is integrable. • 

2.3. Stratifications and differential operators 

Fix a PD-stack ( § , / , 7 ) . 

2.3.1. — Let X —> 8 be a representable locally separated morphism such that 7 ex
tends to X. Define i^x(l) (or Dx / s ( l ) if we want the reference to 8 to be clear) to be 
the PD-envelope of X in X x§ X. We denote by D^{1) the closed subspace defined by 
/[n+1]j where I is the PD-ideal defining X in £>x(l)- As in the classical theory, the 
two projections 

(2.3.1.1) prl5pr2 : X x§ X —> X 

induce projections pr̂  : £>x(l) —* X and pr̂  : D^(l) —> X (i = 1, 2). 

Lemma 2.3.2. — The stacks Dx{l) and Dx(l) are affine over X via either projection 
pr, 0 = 1,2;. 

Proof. — Since Dx(l) is a closed substack of £>x(l) it suffices to prove the result 
for Dx( l ) - Furthermore, since the formation of -Dx(l) commutes with smooth base 
change S —> 8 by 1.2.10, it suffices to consider the case when 5 is a scheme. In this 
case X is an algebraic space since the structure map X —> 8 is assumed representable. 
In this case the result is clear because T>x(l) is a quasi-coherent sheaf on X x§ X 
supported on the diagonal X C X x § X. • 
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Lemma 2.3.3. — Let X —• S be a smooth representable morphism of algebraic stacks. 
Then Dx(l) (resp. Dx(l) for n > 0) is flat (resp. finite and flat) over X via either 
projections. 

Proof. — This can also be verified after making a base change S —• §, and hence it 
suffices to consider the case when S and X are algebraic spaces. In this case the result 
follows from [7, 1.4.5.1]. • 

Lemma 2.3.4. — Let S —> 8 be a smooth morphism from a scheme and let n : Xs := 
X x § S —• X be the natural projection. Then there are natural isomorphisms 

(2.3.4.1) X5xx,pri D%(1): D$3/S(1)~D%(1) Xpr2,X %S 

and 

(2.3.4.2) Xs xx,pri D%(X) Rrx*Rg Dx(l) x 
pr2,X %S-

Proof. — For ¿ = 1,2 we have a commutative diagram of cartesian squares 

(2.3.4.3) 

X s As Xs X 5 Ï 5 Xs 

X 
A 

X x§ X MP%£ X. 

By the universal property of the PD-envelope this diagram induces maps 

(2.3.4.4) Xs xx,Pr, Dx/S(l) Rrx*Rgl %s xx,pri £>x/s(l) £>Xs/s(l). 

That these maps are isomorphisms follows from the fact that the formation of the 
PD-envelope commutes with smooth base change 1.2.3. • 

2.3.5. — By the universal property of the PD-envelope, the divided power envelope 
of 

(2.3.5.1) X c—> X x s X x § X ^ ( X x § X ) x x ( X x § X ) 

is canonically isomorphic to Dx{\) xpr25x,pri D%(\). Define 

(2.3.5.2) S : Dx(l) xpr2,x,pri Dx(l) DX(1) 

to be the map induced by pr13 : X x § X x § X — ^ X x § X . Note that when X and § are 
algebraic spaces, then this definition of 5 agrees with that in [7, 11.1.1.4]. 

If S —• § is a flat morphism of algebraic stacks and X5 := X x§ 5, then by 
construction the diagram 

(2.3.5.3) 

(Dx(l) xf*(y(p w+n)/Çn))^ £%¨£ ôxid Dx(l)xsS 

Dxs/SW Xprj.Xs.pri A>Cs/s(l. 
Ss Rrx*Rg 

commutes, where the vertical arrows are isomorphisms by 1.2.3 and 6s denotes the 
map obtained from taking 8 = S and X = Xs in the above construction of 5. 
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Lemma 2.3.6. — For all n and m, S induces a map 

(2 .3 .6 .1) ôm,n . D m Xpraiï>pri Dn{1) Dnx+m{l). 
Proof. — This can be verified after base change S —• § and hence follows from the 
classical theory [7, 1.1.1.5 (b)]. • 

Definition 2.3.7. — Let £ be quasi-coherent OxUs.et-module. A PD-stratification on £ 
is a compatible collection of isomorphisms on D^{1) 

(2 .3 .7 .1) en : pr^f ~ pr^£ 

for which eo = id and the diagram 

(2.3.7.2) 

£µ%¨£ 

Pr^m 

<5n'm*(en+m) 

q\£ 

Rrx*R 

Rrx*Rgl 

commutes for all m and n, where qi : D^{\) X p ^ ^ ^ D™(1) 3C for z = 1, 2 , 3 
denotes the map obtained from the i-th. projection l x § l x § l - > I . 

An HPD-stratification on £ is an isomorphism of sheaves on Dx(X) 

(2.3.7.3) c:prS£-prî£ 
which reduces to the identity on XijS.et, and for which the diagram of sheaves on 

DX(1)f*(y(p w+n)/Çn))^ 

(2.3.7.4) 

Rrx*R 

Pr23e 

Rrx 

Rrx*R 

ET(K*F) 

tET(K*F) 
commutes, where as above qi : D x ( l ) xpr2)x,pri Dx(l) —• X denotes the map induced 
by the projection X x § X x § X — > X onto the i-th factor. 

Proposition 2.3.8. — Let S —» § be a smooth cover, and denote by Xs the base change 
X x§ S. Then the category of modules with PD-stratification on XiiS_et/§ is equivalent 
to the category of pairs ((£, en), a), where (£,en) is a module with PD-stratification 
on Xs,et/S, and & : Prï(£?en) — Pr2(^5en) is an isomorphism of modules with PD-
stratification on Xsxss/S x§ S such that prj3(cr) = p r^cr ) o p r j ^ M onXsxssxss-

Similarly, the category of modules with HPD-stratification on Xns_et/§ is equivalent 
to the category of pairs ((£,e),cr); where (£,e) is a module with HPD-stratification on 
Xs,et/S and a : pr^(£,e) ~ pr2(£,e) is an isomorphism over Xsx§s which satisfies 
the cocycle condition on Xsx§SxBS' 
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Proof. — For any smooth V —• S there is by 1.2.3 a natural isomorphism 

(2.3.8.1; Dl{\) x§ V ~ 2?5(1) xXxsx (Xv x v Xv) ~ Z?£v/V(l). 

In particular the projection n : Rrx*Rgl:tET(K*F) is smooth and surjective, 

(2.3.8.2) Rrx*Rgl:tET(K*F)Rrx*Rgl:tET(K*F) 

and 

(2.3.8.3) Rrx*Rgl:tET(K*F)Rrx*Rgl:tET(K*F) DxsxsSxss/SxsSxssi1)' 

From this and descent theory for quasi-coherent sheaves it follows that if £ is a quasi-
coherent sheaf on Xet then to give an isomorphism en : prj£ ~ pr^f over D%(1) is 
equivalent to giving a compatible collection of isomorphisms over each D%s /sn(l) . 
It follows that to give a PD-stratification on £ is equivalent to giving a compatible 
collection of PD-stratifications on £\xSn over Sn. This implies the statement about 
PD-stratifications. The statement concerning HPD-stratifications follows by the same 
reasoning. • 

2.3.9. — Let 

(2.3.9.1) 

X' 9 X 

a 

£¨MP 
%£¨% 

s 

/3 

be a 2-commutative diagram of algebraic stacks with a and /3 representable and locally 
separated, X' and X Deligne-Mumford stacks, and / obtained from a morphism of PD-
stacks (S7, J7,77) —• (§, / , 7) such that 7' and 7 extend to X7 and X respectively. Then 
a PD-stratification {en} on a quasi-coherent 0xet-module £ can be pulled back to a 
PD-stratification {g*en} on g*£. Indeed the universal property of the PD-envelope 
induces a map 

(2.3.9.2) g : Dx'/S ' l1) A r / s ( l ) 

which induces maps gn : D^,^(l) —> D^^s(l) for all n. The stratification {g*en} is 
defined to be the one given by the isomorphisms 

(2.3.9.3) Rrx*Rgl:tET(K 9*(£n) 
g*WÎ£ * wîg*S. 

Similarly HPD-stratifications can be pulled back via g. 

2.3.10. — Using this definition of pullback, we can define a notion of module with 
PD-stratification and HPD-stratification for an arbitrary morphism of algebraic stacks 
X —> §. Let PD-Strat (resp. HPD-Strat) denote the fibered category over the 
lisse-etale site Lis-Et(X) which to any smooth X-morphism U —» X with U a locally 
separated scheme associates the category of modules with PD-stratification (resp. 
HPD-stratification) on C//8. 
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Definition 2.3.11. — The category of modules with PD-stratification (resp. HPD-
stratification) on X/S is the category of cartesian sections of the projection 

(2.3.11.1) PD-Strat — • Lis-Et(X) (resp. HPD-Strat — • Lis-Et (X)). 

2.3.12. — More concretely, a module with PD-stratification (resp. with HPD-
stratification) on X/S consists of a quasi-coherent sheaf £ on Xiis_et together with a 
PD-stratification (resp. HPD-stratification) on £\j relative to U/S for every smooth 
X-scheme U such that for a morphism p : V —• U in Lis-Et(X) the transition map 
p*£u —> £v is compatible with the PD-stratifications (resp. HPD-stratifications). 

We can also generalize the relationship between stratifications and differential op
erators. Consider the case when X —» S is represent able and X is a Deligne-Mumford 
stack. 

Definition 2.3.13. — Let £ and T be quasi-coherent 0xet~m°dules. A PD-differential 
operator £ —• T of order < n is an Oxet -linear map 

(2.3.13.1) pr?.pr2*£ — 

where pr™ denotes the i-th projection D^(l) —» X (i = 1,2). An HPD-differential 
operator £ —» T is an C?xet"lmear maP 

(2.3.13.2) pri.pr5f —> .F, 

where pr̂  : £>x(l) -> 3C are the projections. 

Remark 2.3.14. — As in the classical case, the stack D^(l) is canonically isomorphic 
to the first infinitesimal neighborhood of the diagonal A : X —> X x§ X since any 
square-zero ideal has a canonical divided power structure [8, 3.2 Example 4]. In 
particular, giving a PD-differential operator £ —> T of order < 1 is equivalent to 
giving a map V : £ —> T such that for any fixed local section eo G £ the induced map 

(2.3.14.1) O X e t _ j r , 0 _ > V ( ( / - e o ) 

is a derivation. 

2.3.15. — If IT :U —> X is a representable etale morphism of Deligne-Mumford stacks, 
and £ and T are quasi-coherent sheaves on Xet, then a PD-differential operator / : 
pr^pr^*^ —> F induces a PD-differential operator 7r*(/) : 7r*f —> 7r*̂ -" on C/et of order 
< n. To see this note first that since U x§ [/ —> U x § X i s etale the divided power 
envelope D^^s(l) is equal to the n-th order divided power envelope of the immersion 
U —* U x§ X. This follows from the universal property of the divided power envelope 
and the observation that for any commutative diagram 

(2.3.15.1) 

V a 
T 

u 

h 

U x§ X 
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where a is a PD-immersion, there exists a unique lifting of h to a morphism h :T —• 
U XgU such that the diagram 

(2.3.15.2) 

V 
a T 

u 
%£¨% 

UxsU 

h 

commutes. This is because the projection U x§U —> U x§ X is etale and the map a 
is a nil-immersion. On the other hand, the n-th order divided power envelope of U in 
£7 x § X is by 1.2.3 isomorphic to 

(2.3.15.3) U x x £>£(!) * xxxsx (U x§ X). . 

This implies that ^ p r ^ p ^ f is isomorphic to prg^pr^Tr*^ where we write p r^ 
for the i-th projection Z)gyg(l)' —> U (i = 1, 2). Applying 7r* to a map pr^pr^*^ —• ^* 
we therefore obtain a map 

(2.3.15.4) Rrx*Rgl:tE Rrx*R 

We can therefore define a sheaf 

(2.3.15.5) Rrx*Rgl:t 

by associating to every etale U —» X the group of differential operators £|jy T\u of 
order < n. If E is of finite presentation, the sheaf Diff %/§(£, J7) is a quasi-coherent 
sheaf of left Oxet-modules. 

2.3.16. — If S —> 8 is a smooth morphism, and if 7r : X5 —• X denotes the projection 
from the base change X5 := X x§ 5, then if £ is a quasi-coherent sheaf of finite 
presentation and T a quasi-coherent sheaf there is a natural isomorphism 

(2.3.16.1) Rrx*Rgl:tET(K*F) Diff%s/s(7r*£,7T*F). 

Indeed by 2.3.4 we have 

(2.3.16.2) Rrx*Rgl:tET(K*F)M%PL 

where pr™ : -DJs/sW —> X5 are the projections. Since £ is of finite presentation the 

sheaf 

(2.3.16.3) Rrx*Rgl:tET(K*F) 7r*WomOl0t(prî.prrf,^) 

is isomorphic to 

tET(K*F) >*pr^prr^,7r^) Hom0%s (pr£,pr£*7r*£, TT*^") 

= « s / S ( 7 r ^ , 7 T ^ ) . 
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2.3.17. — Composition of differential operators is denned using S. If / : p r ^ p r ^ f —> 
T and g : pr™ pr™*.?7 —• G are differential operators, then we define g o / to be 
(2.3.17.1) 

prï;+mpr£+m*£ 
<5m'n 

prïï(7Ti.7T5pr2*£) ; prïïprrprî.prr« 
MPL 

prJiprrCJ7) 

composed with g : prjjprj1*^) -> <?, where TTI : x 2?J(1) -> i ) J ( l ) and 
7T2 : £>x (1) x Dx(l) —» 2)^(1) are the projections. In particular, for any quasi-
coherent sheaf £ there is a natural ring structure on 

(2.3.17.2) 

n>0 
Diffx/§(£,£). 

2.3.18. — Assume X —> S is smooth. For n = 1, we have pr^pr^Oxet — ̂ xet ® 
^Xet/S' anc* nence tnere is a natural map TXet/§ —» DiffX/$(Oxet,Oxet)- Denote by 
£*xet (^Xet/s) the left (9xet-algebra which is the quotient of the associative algebra 
generated by Txet/§ by the relations 

(2.3.18.1) Él-É2 + të2,Él]=&-Él 

for 6 , 6 e Txet/S. 

Proposition2.3.19. — The map TXet/s -+ Diffx^s(Oxet,Oxet) induces a ring isomor
phism 

(2.3.19.1) </> : Oxet(TxGt/s) 
n>0 

Diffx/s(Oxet,OxJ. 

Proof. — Let S —> § be a smooth cover with S an algebraic space, and let 7r : Xs —• X 
be the projection from Xs := X x§ S. Then by functoriality of the sheaf Tx/§ we 
have 7r*Txet/s — TXs / s , and this isomorphism is compatible with the Lie-algebra 
structures.' Also we have n* Diffx/§(0Xet,OxJ ^ DiffXs/s(0Xs,et,Oxs,J- We 
conclude that it suffices to prove the proposition in the case when § and hence also X 
are algebraic spaces. Furthermore it suffices to prove the proposition after replacing 
§ and X by etale covers which reduces the proof to the case of schemes which is [7, 
1.4.5.3]. • 

Definition 2.3.20. — Let X —> § be a representable locally separated morphism of 
algebraic stacks with X a Deligne-Mumford stack. A V-module on Xet/§ is a quasi-
coherent sheaf £ of finite type on Xet together with a compatible collection of maps 

(2.3.20.1) Pn : Diffx/s(0Xet,0Xet Diffnx,s{£,£) 

which fit together to give a ring homomorphism 

(2.3.20.2) P' 
OO 

0 
Diffx/s(Oxet,OxJ • 

OO 

0 
Diffx/S(£,£). 
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Proposition 2.3.21. — Let X/S be as in 2.3.20 and assume in addition that X —* S is 
smooth. Let £ be a quasi-coherent sheaf on Xet- Then the structure of a V-module on 
£ is equivalent to the structure of a left 0%et(Txet/s)-module on £ compatible with the 
left Oxet -module structure, and this is in turn equivalent to the data of an integrable 
connection on £. 

Proof. - By 2.3.19 giving the maps pn is equivalent to giving a map 

(2.3.21.1) * • Txet/s f*(y(p w+n)/Çn))^ 

such that for any two local sections £1,̂ 2 € ^xet/s the operators ^(£1) and (̂£2) 
satisfy the relation 

(2.3.21.2) * ( £ l ) ° * ( Í 2 ) *(6)o*(íl) = *(Kl,&]). 

Let pr£ : £ —• pr^pr^f be the map obtained from the map prl3|epr̂ "1f —> pr^pr^f and 
the observation that since the projections Dx(l) —• X induce equivalences between 
the associated etale topoi there is a canonical isomorphism £ ~ pr^pr^"1^. For any 
£ £ Txet/$ denote by : £ —> £ the composite 

(2.3.21.3) £ Pr2 Prì*Pr2*£ 
PI(0 

£. 

Using the definition of composition of differential operators, it follows that the rela
tion (2.3.21.2) is equivalent to the condition that 

(2.3.21.4) VfroVfr-VfcoVfc=VKl¿a]. 

Note also that by the definition of d : Oxet —* ^xet/s ^ e maPs ^£ satisfy the relation 

(2.3.21.5) V€( / - e ) = í ( / ) - e + /V€(e). 

In other words, giving the maps pn is equivalent to giving an integrable connection V 
on £, and this is in turn equivalent to giving £ the structure of a left Oxet(Txet/s)-
module. • 

Theorem 2.3.22. — Let X —> S be a smooth, representable, and locally separated mor
phism of algebraic stacks with X a Deligne-Mumford stack. Then the following cate
gories are naturally equivalent. 

(i) The category of modules with PD-stratification on X/S. 

(ii) The category of V-modules on X/S. 

(iii) The category of modules with integrable connection on Xet/S. 

Proof. — Note that all three categories can be described as categories of quasi-
coherent sheaves on X with some additional structure. Thus it suffices to prove that if 
£ is a quasi-coherent sheaf on Xet then the set of PD-stratifications on £ is naturally 
in bijection between the set of P-module structures on £ and this is in turn in natural 
bijection between the set of integrable connections on £. The equivalence between 
(ii) and (iii) was established in 2.3.21. 
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For the equivalence between (i) and (ii), let (£ ,{en}) be a module with PD-
stratification, and define the maps pn as follows. Given a morphism 

(2.3.22.1) / : p r ? , p r r O x r t — O x „ , 

we obtain by tensoring with £ a map 

(2.3.22.2) p r ? . p r r £ - £ ®oXet p r ? . p r r 0Xet — £, 

and we define pn(f) : P*i*W2*£ —• £ to be the map obtained by composing this map 
with the isomorphism 

(2.3.22.3) pr^pr?*£ 
pr?,(6n) 

prî.pr5*f. 
The same argument as in the classical case [8, 4.8] show that this gives a well-defined 
functor (i) —• (ii). 

To see that this functor is an equivalence note that by 2.2.15 and 2.3.8 it suffices 
to verify that it becomes an equivalence after base change S —• S. This reduces the 
question to the case when S is a scheme and X is an algebraic space. Furthermore it 
suffices to show that this functor induces an equivalence after replacing X by an étale 
cover so we can also assume that X is a scheme. In this case the result is [8, 4.8]. • 

Finally we describe the notion of HPD-stratification in terms of modules with 
integrable connection. 

Lemma 2.3.23. — Let X —• S be a smooth morphism of algebraic stacks. Then the 
functor from the category of modules with HPD-stratification to the category of mod
ules with PD-stratification which sends an HPD-stratified module (£, e) to the module 
£ with the family of isomorphisms en given by the reductions of e is fully faithful. 

Proof. — By the definition of PD and HPD stratifications (2.3.11), it suffices to 
consider the case when X is an algebraic space. By 2.3.8 it suffices to verify the 
lemma after making a smooth base change S —* S. It therefore suffices to consider 
the case when S is a scheme and X is an algebraic space. Since the assertion is also 
étale local on X we may in fact also assume that X is a scheme. In this case by [7, 
II.4.2.12] the data of a PD-stratification on a quasi-coherent sheaf £ is equivalent to an 
integrable connection, and by [7, 4.3.11] the data of a HPD-stratification is equivalent 
to an integrable and quasi-nilpotent connection (see below for a review of the notion 
of a quasi-nilpotent connection). From this description the case of schemes, and hence 
also the general case, follows. • 

2.3.24. — Recall [8, 4.10] that if / : X —> S is a smooth morphism of schemes over 
Z/pm for some prime p and integer m > 1, and V : £ —> £<S)^xet/s 1S a quasi-coherent 
sheaf with integrable connection, then (£, V) is quasi-nilpotent if the following holds. 
Locally on X we can find an étale map X —> Ars for some r, which defines a basis { ¿ ^ - } 
for Txet/s- Then the condition is that for any open U C X and section s € T(U,£) 

there exist an open covering {Ua} ofU and integers {e¿,a} such that 

(2.3.24.1) (V_f_)e^(S|c /J=0. 

By [8, 4.12] this condition is independent of the choice of coordinate system. 
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Lemma 2.3.25. — Let S be an algebraic space over Z/pm for some m > 1, and con
sider a commutative diagram of algebraic spaces 

(2.3.25.1) 

X' 9 X 

rv 

S' 
f 

S, 

ß 

with f smooth and surjective, /3 smooth, and the map X' —> S' x s X induced by g 
smooth and surjective. Let (£, V) be a module with integrable connection on Xet/S. 
Then (£, V) is quasi-nilpotent if and only if #*(£, V) is quasi-nilpotent. 

Proof — Note first that for any smooth morphism V —> Z of algebraic spaces the 
differential d : Oyet ^vet/z *s a quasi-nilpotent integrable connection (here we use 
the assumption that pm • Ovet = 0). In particular, if V is quasi-compact and if there 
exist an étale morphism V —> Arz and / G r(V, Oyet) is a global section, then for each 
1 < i < r there exists an integer e¿ such that 

(2.3.25.2) 
d 

dxi 

e1 
(/) = o. 

Shrinking X we may assume that X is etale over A£ in which case X' is smooth 
over AgXsS' ~ Ars,. Shrinking X' we may further assume that the smooth morphism 
X' —> Ag, can be lifted to an etale morphism X' —> Arstr . Furthermore, we may 
assume that 5, S", Xy and hence also X' are all affine schemes. Let { x i , . . . , x r} be 
the coordinates on A£ and let {xi,..., xr, yi,..., yr'} be the coordinates on A^tr . 

The pullback of V to X' is characterized by the condition that the diagram 

(2.3.25.3) 

T (X,E) 

T(X,£ X O i 
Xet/S 

7 

Ï 

T (X, g*E) 

9^ 

T(X',g*£®n et/S' 

commutes, where j and f are injections since g is smooth and surjective. If x i , . . . , xr 
denote the coordinates on Ar then it follows that the diagram 

(2.3.25.4) 

T{X,£) j T(X',g*£) 

V7 
a/axi 9** a/axi 

T(X,£) 
j 

r(X',g*£) 

commutes. Prom this it follows that if g*{£, V) is quasi-nilpotent then so is (£, V) . 
Conversely, every section s' G T(X',g*£) is of the form / ' • s with f E T(Xf, Oxf) 

and s e T{X,£). Then 

(2.3.25.5) (V a )e s') = 
ae 

deVi 
(/') • s 
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and by the Leibnitz rule [44, 5.0.1] we have 

(2.3.25.6) < ^ № > = Е ( ; ) ( 0 < Л ^ Г ( 5 ) 

Consequently, if (£, V) is quasi-nilpotent the fact that d : Oxr —» í í ^ ' / s ' *s quasi-

nilpotent implies that g*(£, V) is also quasi-nilpotent. • 

Definition 2.3.26. — Let / : X —• S be a smooth morphism of algebraic stacks. A 
module with integrable connection (£, V) G MIC(X\iS.et/§>) is quasi-nilpotent if for 
some diagram 

(2.3.26.1) 

X 9 S 

P 

X 
%£MP 

Q 

S 

with P and Q smooth and surjective morphisms from algebraic spaces and g x P : 
X —> 5 x§ X smooth, the pullback P*(£, V)|xet € MIC(Xet/S) is quasi-nilpotent. 

Remark 2.3.27. — By 2.3.25 if ( £ , V ) G MJC(Xiis_et/S) is quasi-nilpotent then for 
every diagram (2.3.26.1) the pullback P*(£, V)|xet € MIC(Xet/S) is quasi-nilpotent. 
This lemma also implies that in the case when X and 8 are algebraic spaces then 
(£, V) G M/C(XiiS.et/§) is quasi-nilpotent if and only if the restriction (£, V)|xet € 
M/C(Xet /§) is quasi-nilpotent in the usual sense. 

Theorem 2.3.28. — Let X —> S be a smooth morphism of algebraic stacks with X 
Deligne-Mumford. Then the equivalence in 2.3.22 induces an equivalence of categories 
between the category of modules with HPD-stratification on Xet /S (viewed as a sub
category of the category of modules with PD-stratification using 2.3.23), and the full 
subcategory of MIC(Xet/S) consisting of modules with integrable and quasi-nilpotent 
connection. 

Proof. — Let S —• § be a smooth cover with S an algebraic space. By 2.3.8 a module 
with PD-stratification (£, {en}) on Xet/§ extends to an HPD-stratification if and only 
if the pullback to X x§ 5 / 5 admits an HPD-stratification. Similarly by 2.3.25 the 
module with integrable connection (£, V) G MIC(Xet/S) associated to (£, {en}) is 
quasi-nilpotent if and only if the pullback to X x§ 5 /5 is quasi-nilpotent. Prom this 
it follows that it suffices to consider X x§ 5 —• 5, and hence we may assume that S 
and X are algebraic spaces. By working etale locally on § and X one further reduces 
to the case of schemes. In this case the result follows from [7, 11.4.2.11]. • 

Example 2.3.29. — Let A: be a field and G/k a smooth group scheme of finite type. 
Let § = BG and X = Spec(fc) with the morphism X —> 8 defined by the trivial torsor. 
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We have a cartesian diagram 

(2.3.29.1) 

Spec(fc) 

BG 

G 

Spec(fc). 

As mentioned in 2.2.8 one can deduce from this that Tx/s is in this case isomorphic 
(as a Lie algebra) to Lie(G). In particular, a module with connection on X/S is 
equivalent to the data of a k-vector space V anjá a fc-linear map p : Lie(G) —• Aut(V). 
Under this correspondence integrable connections correspond to maps p which are 
Lie algebra morphisms. The notion of quasi-nilpotence is for a general group G 
more difficult to describe. One description is simply to say that there is a canonical 
isomorphism Lie(G) 0^ OQ — Tc/k obtained by pullback from the diagram (2.3.29.1). 
A representation p : Lie(G) —• Endfc(V) therefore defines a module with integrable 
connection on G, and the condition that p is quasi-nilpotent is then equivalent to 
the condition that the resulting module with integrable connection on G/k is quasi-
nilpotent (but see below for a better description in the case of G = Gm). 

The diagram (2.3.29.1) also shows that JDx(l) is in this case isomorphic to the 
divided power envelope of the identity section e : Spec(fc) G. Write GPD for 
this divided power envelope. The multiplication G x G —• G induces a morphism 
m : GPD x GPD —> GPD. It follows from the construction of the morphism S 
in (2.3.5.2) that in this special case the morphism S is just this map induced by 
the group structure. If p : GPD —» Spec(fc) is the structural morphism, then it follows 
that a HPD-stratification on a k-vector space V is given by an isomorphism 

(2.3.29.2) e : p*V —• p*V 

over GPD such that the isomorphism m*(e) : m*V —> m*V over GPD x GPD is 
equal to the isomorphism pr^(e) o pr^e). Similarly one can describe the notion of 
PD-stratification in terms of the n-th order divided power neighborhoods GPD of the 
identity in G. 

The ring of differential operators is given by 

(2.3.29.3) Diffx/ÁOxM lim Horn/- (ÖQPD , k) 

with ring structure 

(2.3.29.4) Homfc {OQPD , k) 0 Horn*; [OQPD , k) - > Horn/- (ÖQPD^ , k) 

induced by the comultiplication 

(2.3.29.5) oVfc=VKl¿ OQPD (g) OQPD .

Example 2.3.30. — In the case when G = Gm = Spec(fc[x±]) we can describe things 
even more concretely. The differentials have as a basis dlog(x) which is translation 
invariant. A module with integrable connection on Spec(fc) over BGm in this case 
amounts to a vector space V with an endomorphism N : V —> V. The corresponding 
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module with integrable connection on Gm obtained from the diagram (2.3.29.1) is 
V <S>k &[x±] with the unique connection V with 

(2.3.30.1) V(v ® 1) = (N(v) ® 1) • dlog(x). 

Prom this one sees that the condition that V is quasi-nilpotent is precisely equivalent 
to the condition that the endomorphism N is nilpotent. This example plays an im
portant role in the construction of the monodromy operator occurring in Fontaine's 
theory. 

Example 2.3.31. — For another example, we work again over a field k and consider 
X = A1 and 8 = [A1/Gm] with the projection map X —• 8 the quotient map. In this 
case the diagonal map X —> X x § X is the morphism 

(2.3.31.1) id x e : A1 — • A1 x Gm. 

If we write Gm = Spec(fc[t¿±]), then as mentioned in 2.2.9 if we let dlog(i) denote the 

element of íí^c/s defined by the u — 1 (an element in the ideal defining the diagonal) 

we have ^ / s — Mx] ' dlog(t) with d(t) = tdlog(t). 

The ring of PD-differential operators DiffX/$(OxetiOxet) is equal to the subring 
of the usual ring of differential operators k[x, d], where dx = 1 + xd, generated by x 
and xd, and the coordinate ring of Dx(l) is the PD-polynomial algebra k[x]((u — l)). 
The commutative diagram 

(2.3.31.2) 

A1 A1 

[AVGm] • Spec(fc) 

and functoriality of the divided power envelope furnishes a morphism D%/%(X) 
DAi/fc(l). This map of schemes is obtained from the map of coordinate rings 

(2.3.31.3) k[x){(x1-x2))—-fc[x]((u-l)>, {xi-x2)[n] ^xn(u-l)№. 

We conclude that the dual basis element of k[x, xd] corresponding to {u — l)^n' is equal 
in k[x,d] to xndn (since dn is the dual of (x\ — a?2)'n')- From this and the formula 

(2.3.31.4) xndn = 
n-l 

3=0 
(xd - j) 

it follows that an action of k[x, xd] on a k[x]-module E induces a stratification if and 
only if for every a £ E the sum 

(2.3.31.5) 

n 

/ n—1 

3=0 
(xd - j) (a) 

ASTÉRISQUE 316 



2.4. THE -̂CONSTRUCTION 77 

is a finite sum. In other words, if and only if for every a e E there exists an integer 
n > 1 such that 

(2.3.31.6) 
n-l 

Kj=0 
(xd - j) (a) = 0. 

This agrees with the notion of quasi-nilpotence in the logarithmic context [40, 6.2]. 
We discuss the relationship with logarithmic geometry in more detail in Chapter 9. 

2.4. The £-construction 

Let (8,7,7) be a PD-stack, and i : X <—• y be a closed immersion of S-stacks such 
that 7 extends to X and y —• 8 is smooth. 

Proposition 2.4.1. — The functor i* from abelian sheaves in (XiiS_et/S)Cris to abelian 
sheaves in (yiiS-et/S)cris i>s exact, and if E is a quasi-coherent crystal in (XiiS_et/S)Cris 
then i*E is a quasi-coherent crystal of OyUset/$-modules. 

Proof. — Let (U,T,5) G Cris(yiiS_et/S) be an object, and let T G (yiiS-et/S)Cris be the 
associated sheaf. Then for any sheaf F G (Xiis.et/S)Cris we have 

(2.4.1.1) i*F(U,T,6) = Hom(yiis.et/§)cris(f ,ÛF) Hom(Xlis.et/s)cris(z*f,F). 

On the other hand, for any (V,Z,e) £ Cris(XiiS-et/§) we have 

(2.4.1.2) i*f(V, Z, e) = Horn,,. PD((V,Z,e),(U,T,S)). 

Set Uo := X Xy U, and let D denote the divided power envelope DuQn,s(T) of UQ in 
T with compatibilities with respect to 7 and 8 as in 1.2.12. Then i*T is represented 
by UQ «—• D. It follows that for any sheaf F we have 

(2.4.1.3) i*F(U,T,6) = F(D) 

Since the divided power envelope D is a thickening of UQ and T is a thickening of 
C7, the etale site of D (resp. T) is equivalent to the etale site of UQ (resp. U). Since 
UQ ̂  U is a closed immersion it follows from this that the pushforward Det —» Tet is 
an exact functor. In particular, the functor i* is exact. 

To deduce that i*E is a crystal, suppose (U',T',5f) —> (U,T,S) is a morphism in 
Cris(yiiS-et/S), with U and U' affine schemes (this also implies that T and T' are affine 
schemes as well). Let D (resp. D') denote the divided power envelope of U Xy X in 
T (resp. U' Xy X in T') with compatibilities with 7 and 5 (resp. 5f) as above, and let 
t :T' —+ T denote the morphism in question. 

We need to show that the natural map 

(2.4.1.4) OT' 0t,oT ED — • ED> 
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is an isomorphism, where E& (resp. ED>) denotes the value of E on D (resp. D'). 
Since E is a crystal we have ED' — OD1 ®OD ED- TO prove the proposition it therefore 
suffices to show that the natural map 

(2.4.1.5) Ot> ®t,oT OD — • OD> 

is an isomorphism. Since the composite U —> y —> S is smooth and T is affine, there 
exists a retraction r : T —> U of the inclusion U C T. Let Z)x,7(y) be the divided 
power envelope of X in y, and observe that by 1.2.3 the base change D%^{^) Xy U 
is isomorphic to the divided power envelope Du0^(U) of UQ in U. We then have a 
commutative diagram 

(2.4.1.6) 

U0 - fcoVfc=VKl¿ 

T 
%£¨% 

17. 

From this and [7, 1.2.8.2] it follows that the induced map 

(2.4.1.7) DUon,6(T) —* (£>xf700 U)xuT~ DX„(V) xy,r T 

is an isomorphism, where r : T —> y is the composite of r with the given map U —» y. 
Observe that this isomorphism with £)x,7(y) xy T depends only on the map r and 
not on the lifting f. 

Applying the same discussion to ([ / ' , T;, 5') we see that the choice of any retraction 
r' : T' —>• y induces an isomorphism 

(2.4.1.8) £>rç,7,*'(T/) - ^x ,7(y) xy T'. 

In particular choosing an retraction r : T —• y and setting r7 equal to the composite 
r o t the map (2.4.1.5) is identified with the map of rings induced by the projection 

(2.4.1.9) DX„{V) xy,r/ T' ~ (£>x,7(y) xy,r T) xT Tx —+ Dx,7(y) x^,r T. 

This implies the proposition. • 

Remark 2.4.2. — We do not know if 2.4.1 holds for closed immersions X ^ y with 
y —> S not necessarily smooth. For Deligne-Mumford stacks, however, this more 
general result does hold. That is, let i : X ^ y be a closed immersion of S-stacks 
which are Deligne-Mumford such that-7 extends to X and y. Then iCTis*E is a crystal 

On Cris (y et/§). 
The proof proceeds as in the proof of 2.4.1 with {U'.T'.ô') and (U,T,S) in 

Cris(yet/§) except for the proof that (2.4.1.5) is an isomorphism. For this note that 
since U' and U are both étale over y, the map U' —> U is étale. By the invariance 
of the étale site under infinitesimal thickenings [15, IV. 18.1.2] there exists a unique 
étale lifting T —> T of U'. By 1.2.3 the base change T xT Du0,7,s(T) is isomorphic 
to the divided power envelope Djj>Qnj{T). Since the morphism T —> T is étale and 
Uf *—> T' is a nil-immersion there exists a unique factorization of t through T. This 
reduces the proof to the case of ([ / ' , T', Sf) -> ([/ ' , T, 5) which follows from [7,1.2.8.2]. 
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Corollary 2.4.3. — With notation as in 2.4-1, assume in addition that y —> S is rep
resentable. Then the natural maps 
(2.4.3.1) 

Dx,70J xs y) —* #x,7(y) xy,pri Z?yl7(l), £>x,7(y x§ y) — £>Xf7(y) x^,pr2 £>Vi7(l) 

are isomorphisms. 

Proof. — Since the formation of PD-envelopes commutes with flat base change of 
the base (1.2.3), it suffices to prove the corollary after making a smooth base change 
£ —* S. It therefore suffices to consider the case when X, y, and § are all algebraic 
spaces which follows from the classical theory [8, 6.3]. • 

2.4.4. — Let i : X y be as at the beginning of 2.4, and assume in addition that 
y —> § is representable. Let £>x,7(y) denote the quasi-coherent sheaf algebras on 
yiis-et defining the affine stack Dx,7(y) over y. The isomorphisms (2.4.3.1) induce an 
isomorphism 

(2.4.4.1) e : pr^Px,7(y) ^ pr^x ,7(y) 

of quasi-coherent sheaves on Dy(l). 

Lemma2.4.5. — The isomorphism e defines an HPD-stratification on T>%^(^). 

Proof — We have to show that the diagram (2.3.7.4) commutes and that e reduces 
to the identity on X. Using the fact that the formation of PD-envelopes commutes 
with flat base change, we reduce as in the proof of 2.4.3 to the case when X, y, and 
S are all algebraic spaces in which case the result follows from the classical theory [7, 
IV.1.3.5]. • 

2.4.6. — As in the classical theory this HPD-stratification e on £>x,7(y) enables us 
to describe the category of crystals in (Xiis_et/y)cris hi terms of £>x,7(y)-rnodules on 
yiis-et with HPD-stratification. 

For this let E denote a quasi-coherent crystal in (XiiS_et/S)Cris5 and let E^% ^ 
denote the quasi-coherent sheaf on £>x,7(y)iis-et obtained by evaluating E. Since 
£*x,7(y) is affine over y we also view this as a quasi-coherent sheaf on n̂s-et with a 
^x,7(y)-niodule structure. The sheaf EDX^{^) has a canonical HPD-stratification 
as an OyUs_et-module compatible with the HPD-stratification e on Dx,7(y)« Indeed 
the isomorphisms (2.4.3.1) show that pr*£x)x ^ on Dy(l) is canonically isomorphic 
to the quasi-coherent sheaf EDx ^(yxyy) obtained by evaluating E on £>x,7(y x§ y). 
These isomorphisms induce an isomorphism P^Dx>1(y) — Wi^DXn{^) compatible 
with the isomorphism e. That this defines a stratification on E^x ^ follows as in 
the proof of 2.4.5 from the classical theory. 

Theorem 2.4.7. — The preceding construction E h-> Ef)x induces an equivalence of 
categories between the category of quasi-coherent crystals in (XiiS.et/§)cris and the cat
egory of quasi-coherent sheaves of Vx^ty)-modules on n̂s-et with HPD-stratification 
compatible with the canonical HPD-stratification on X>x,7(y)-
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Proof. — The construction of the functor E EE>X ^ is functorial with respect to 
diagrams 

(2.4.7.1) 

Y y 

s - s 

with Y/S smooth. In particular, it suffices to consider the case when X is an al
gebraic space since quasi-coherent crystals and modules with HPD-stratification can 
be constructed locally in the smooth topology on y (2.3.10). Furthermore, by 2.3.8 
and 2.1.11 it suffices to prove the theorem after making a smooth base change S —> 8 
with S an algebraic space. This reduces the proof to the case when X, y, and 8 are 
all algebraic spaces which follows from [7, IV. 1.6.3]. • 

2.4.8. — For a quasi-coherent sheaf £ on ^Hs-et, let Cy(£) denote the sheaf pr^pr^f, 
where pr̂  : Dy(l) —• y denotes the projection. The sheaf Cy{£) has a canonical 
HPD-stratification defined as follows. For i = 1,2 there is a commutative diagram 
(2.4.8.1) 

Dyn{y x s y x s y ) 
pr12xpri3 • DV(1) x pri^>Pri Dy (1) pr2 froV pr2 y 

Prl Prl 

£%¨£% Prz 
y. 

Let qs : DynQ$ x§ y x§ y) —> y denote the map induced by the projection onto the 
third coordinate y x§ y x§ y —> y. Then the sheaf pr|£y (£) on Dy(l) is canonically 
isomorphic to the sheaf pr12*#3£, where pr12 : Dyn($ x§ y x§ y) —> Dy( l ) is the 
map induced by the projection onto the first two factors. This holds for i = 1,2 so 
in particular there is a canonical isomorphism e : pr^^i^) — PriA^(£)- As above, to 
verify that this defines an HPD-stratification it suffices to verify that this is true after 
making a smooth base change 5 —• 8, and hence this holds by the classical theory 
[8, 6.9]. 

We write Ly(£) for the crystal in (yiiS-et/8)Cris corresponding via 2.4.7 to the mod
ule with HPD-stratification Cy(£), and write i*Ly(£) for the crystal in the topos 
(XiiS_et/S)cris obtained by pulling back Ly(£) to X/S. 

2.4.9. — The cohomology of the crystal i*Ly(£) can be computed as follows. Let 
%iiS_et/s* be the composite of the functor v>xlia_et/$* with the functor i* from the 
category of sheaves on XiiS-et to sheaves on y iis-et - Observe that since i* is an exact 
functor, for any abelian sheaf F G (XiiS-et/8)Cris and s > 0 we have R8uxli8_et/$*(F) — 

^^Xns-et/S*^)-

Proposition 2.4.10. — Let TT : Dx,<yO$) —> y be the projection, and let £ be a quasi-
coherent sheaf of OyUs_et-modules. Then Rsuxlis_et/§*(i*Ly (£)) = 0 for s > 0 and 
% i , _ r t / s . ^ 7 T * 7 r * £ \ 

The proof is in several steps 2.4.11-2.4.15. 
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2.4.11. — Let y denote the sheaf on (Xiis_et/S)cris which associates to any (E/,T, <J) G 
Cris(Xiis_et/§) the set of sections of the map of algebraic spaces (since y —• § is 
representable) T x§ y —> T, and consider the localized topos (XiiS.et/§)cris|g-

Recall [5, III.5.4] that (XiiS_et/8)Cris|g is equivalent to the topos associated to the 
site Cris(XiiS_et/S)|tj whose objects are pairs (j:U^> T,r), where (j : U ^ T) G 
Cris(XiiS_et/§) and r : T —> y is a morphism over S such that r o j : U —• y is the 
given map U —• X —• y. 

As in the classical case, there is a morphism of topoi 

(2.4.11.1) jy : (Xiis_et/S)cris|ij • (Xiis_et/§)cris 

for which j - sends a sheaf F G (XiiS.et/S)cris to the sheaf (T,r) i-» F (T) . The 
pushforward sends a sheaf G G (XiiS_et/§)cris|ij to the sheaf which associates to 
(U,T,6) G Cris(XiiS-et/§) the value of G on the object of Cris(XiiS.et/S)|g given by 

(2.4.11.2) DUAe(T x s Z ? X f 7 ( y ) ) —> £>x,7(y), 

where e denotes the divided power structure on the ideal of X in D%n{^). 

Lemma 2.4.12. — Let £ be a quasi-coherent sheaf on yiiS-et> and let £$ be the sheaf in 
(XiiS-et/S)cris|ij which to any (T, r : T —• y) associates the global sections of the quasi-
coherent sheaf r*£ on Tet. Then there is a natural isomorphism i*Ly(£) ~ dyj^-

Proof. — By adjunction, to give an arrow i*Ly(£) —• 3yj£^ is equivalent to giving 
an arrow j~i*Ly(£) —• £K The sheaf j~i*Ly(£) associates to any (T, r : T —• y) the 
global sections of r*£y(£). Thus what is needed is a map r*Cy(£) —> r*£. In fact 
there is a canonical map Cy(£) -+ £ obtained from the diagonal map A : y —> Dy(l) 
which induces a map 

(2.4.12.1) froVfr-VfcoVfc=VKl¿ A* 
pruA*£ ~ £. 

This defines a map i*Ly(£) —• • 
To prove that this map is an isomorphism, one reduces as in the classical [8, 6.10] 

to showing that the natural map 

(2.4.12.2) DUn{T x § y) —> T x r , y , p r i JDx>7(y) 

is an isomorphism. Since the formation of divided power envelopes commutes with 
smooth base change S —> S (1.2.3), it suffices to verify that after making such a base 
change. In particular, we may assume that §, and hence also X and y, is an algebraic 
space. In this case the result follows from the classical theory [8, 6.10]. • 

Lemma 2.4.13. — Let £ be a quasi-coherent sheaf and s > 0 and integer. Then 
T xr,y,pri JDx>7(y) 
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Proof. — We show that for any object ((7, T, 5) G Cris(XiiS_et/§) and s > 0 the sheaf 

Rsjy*(£*)\nt is zero. 
By [5, V.5.1], to prove that Rsjy*(£^)\Tet is zero, it suffices to show that for any 

(U, T, S) with T affine, the group 

(2.4.13.1) ^s(((Xlis.et/8)cris|y)|.,f,^) 

is zero, where T denotes the sheaf represented by T. The sheaf j~T is represented by 
the divided power envelope DuN(T x§ y) with its natural projection pr2 to y, and 
hence (2.4.13.1) is isomorphic to 

(2.4.13.2) ifs((Xiis_et/S)cris|Dt7)7(Txsy)^ti)-

Let 

(2.4.13.3) ip : (Xiis.et/S)cris|Df/)7(Txs )̂ —* DUN(T xs y)et 

be the morphism of topoi for which <p* sends a sheaf in (XiiS_et/S)cris|Dc/ (Txsy) ^° 
restriction to £>c/)7(T x§ y)et, and for which (p~x sends a sheaf G G DJJ^(T x§ y)et 
to the sheaf which to any pair (T, r) consisting of an object T of Cris(Xiis_et/§) and 
a morphism r : T —» Du,<y(T x§ y) associates r(Tet, r_1G). Note that DuN(T x§ y)et 
has finite projective limits and <p_1 commutes with them so that this really defines a 
morphism of topoi. Note also that ip is naturally a morphism of ringed topoi. The 
sheaf £tt restricted to (XiiS_et/S)cris|£>c/,7(Txsy) 1S isomorphic to the sheaf <£>*pr2£, and 
the group (2.4.13.2) is isomorphic to the s-th cohomology group of 

(2.4.13.4) RT o R<p*((p*pr$£). 

Since the restriction functor is exact, we have 

(2.4.13.5) /ty.(<p*pr5£) ~ <p*{ip*pr*2£) ~ pr*£. 

Thus (2.4.13.2) is isomorphic to 

(2.4.13.6) H8(Du,7{T xs y),pr*f ) . 

Since U ^ Du,j(T x§ y) is a nil-immersion and U is an affine scheme, the space 
DjjN{T x§ y) is also an affine scheme. Since £ is quasi-coherent this implies that the 
group (2.4.13.6) is zero for s > 0. • 

2.4.14. — Let 
(2.4.14.1) 

ip : {abelian sheaves in (Xiis_et/§)Cris|g} — • {abelian sheaves in -Dx,7(y)iis-et} 

be the functor which sends an abelian sheaf F in (XiiS-et/S)cris|g to its restriction to 
^x,7(y)iis-et, and let TT : i>r,7(y) —• y denote the projection (note that because of the 
usual difficulty (1.4.17) with the lisse-étale topos ^ is not obtained from a morphism 
of topoi). Then there is a natural isomorphism of functors ^Xiis_et/s* — 7r* ° ^-
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Furthermore, since is obtained from a morphism of topoi it takes injective abelian 
sheaves to injective abelian sheaves. From 2.4.12 and 2.4.13 it therefore follows that 

(2.4.14.2) 
froVfr-VfcoVfc=VKl¿froVfr-VfcoVfc=VKlm^ù$¿ 

froVfr-VfcoVfc=VKl¿M%£Pmù 

Since 7r*iJ;(£$) ~ 7r*7r*£, the following lemma completes the proof of 2.4.10. • 

Lemma2.4.15. — For any s > 0, the group Rs(ir* o tj)){£^) ¿5 zero. 

Proof. — Let V —• y be a smooth morphism with V a scheme. The functor which 
sends a sheaf F e (Xiis-et/S)cris|ij to (7r* o ̂ ) ( F ) ( V ) is isomorphic to the functor 
F i • F(X xy JDX,7(V)), where X x^ V ^ V Xy Z>r,7(y) is viewed as an 
object of Cris(XiiS_et/S)|tj via the projection to y. It follows that Rs(n* o tp)(£$)(V) 
is isomorphic to the sheaf associated to the presheaf 

(2.4.15.1) V l • HS((X\is-et/S)CT[s\y,£^). 

Let 

(2.4.15.2) V'et : (Xlis-et/S)cris|v- * Vet 

be the morphism of topoi defined as in (2.4.13.3). Then the cohomology group 
in (2.4.15.1) is isomorphic to 

(2.4.15.3) Hs(VeURxpet*£t). 

Since êt* is exact this is just the cohomology of the sheaf ipet*£$ ^ 7r*7r*£|vet which 
in particular is quasi-coherent. It follows that if V is affine then these groups are zero 
which proves the lemma. • 

2.4.16. — More generally, if £ is a quasi-coherent sheaf in £>x,7(y)iis-et5 then the sheaf 
is a quasi-coherent crystal. Here & is the sheaf on (Xiis_et/§)|g which to any 

(T, r) associates f*£(T), where f : T —» Dx,7(y) denotes the map induced by r and 
the universal property of Z?x,7(y)- The above argument then shows the following: 

Corollary2.4.17. — There is a natural isomorphism TT*£ ~ Rûx/$*(i*Ly(£)). 

2.4.18. — Assume in addition that y is a Deligne-Mumford stack, and let £ be a 
quasi-coherent sheaf in £>x,7(y)et- Let z*risLy (£) denote the quasi-coherent crystal in 
(Xet/S)cris corresponding via 2.1.5 to i*Ly(£). Since X ^ Dx,7(y) is a nil-immersion, 
reduction defines an equivalence between the étale site of £>x,7(y) and the étale site 
of X. 

Corollary 2.4.19. — Assume y is a Deligne-Mumford stack. Then there is a natural 
isomorphism n*£ ~ RuXet/sJZrïsLy(£). 
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Proof. — Let iet : Xet —• Vet be the morphism of topoi induced by the closed immer
sion 2, and let res : yns-et —> ̂ et be the restriction functor. 

Since o iet* is the identity functor and zet* is exact, it suffices to exhibit an 
isomorphism iet*£ c± iet*Ruxet/g*ilrisLy(£) which in turn is equivalent to an isomor
phism 

(2.4.19.1) reso7r*£ — • R(ieU o uXet/s*KrisLy(£)-

For this note that iet* o uxet/s* — res o uxns.et/s* an(̂  the functor res is exact. Hence 

(2.4.19.2) R(ieu o uXet/s*)i*cliM£) - re8(fl«3CllMt/g.t'L,,(£)). 

The result therefore follows from 2.4.17. • 

2.4.20. — As in the classical theory, these propositions enable us to construct reso
lutions for quasi-coherent crystals in (XiiS-et/S)cris which are acyclic for the functor 

Recall that y —» S is assumed smooth and representable. Assume further that 

y —• § is locally separated and note that the quasi-coherent sheaf fijj/§ on Ĥs-et is a 

locally free sheaf of finite rank. Let ^y /§ be the i-th exterior power of fijj/g. 

Let E be a quasi-coherent crystal in (Xiis_et/S)cris> and let £ denote the quasi-
coherent sheaf with HPD-stratification on Ĥs-et associated to E by 2.4.7. 

Lemma 2.4.21. — Let SI be a quasi-coherent sheaf of OyUs_et-modules. Then there is a 
canonical isomorphism ¡3 : £ (g>Oy £y(^) —* £y(£ ®Oy ofn*Or)x (y)-modules with 
HPD-stratification. 

Proof. — By definition of the functor Cy{—), to define the arrow ¡3 it suffices to 
construct a map 

(2.4.21.1) £ <8>o„ pri.prjfi —+ p r ^ p r ^ ® fi). 

For this note that 

(2.4.21.2) £ ®o„ prupr*fi ~ (£ ®ov pri*(0Dx,7(y))) ®pri.(oDli7(v)) Pri*Pr2^-

Thus the desired arrow follow from observing that the stratification on £ gives an 
isomorphism 

(2.4.21.3) £ ®o„ pru(0Dx„w) ^ p r ^ p r ^ . 

That the resulting morphism ¡3 is an isomorphism and is compatible with the HPD-
stratifications can by 2.3.8 be verified after smooth base change S —> 8 in which case 
it follows from the classical theory [8, 6.15]. • 
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2.4.22. — For i > 0, the differential d : fiy/S —• ^y/s m<^uces a maP A*(^y/§) ~~̂  
£ y ( f i ^ g ) of modules with HPD-stratification. A more direct definition of this map 
in the case when y is Deligne-Mumford is given in 2.4.25 below. For general y the 
map can be constructed as follows. By 2.3.8 to construct such a map it suffices to 
construct it after making a smooth base change S —> § with S an algebraic space. In 
this case the map is constructed in [8, 6.13]. From loc. cit. it also follows that the 
composite 

(2.4.22.1) A*(fiy/s) froVfr- froVfr 

is zero, so we obtain a complex £y(^y / s ) in the category of Oy-modules with 
HPD-stratification. Furthermore, by [8, 6.12] there is a canonical quasi-isomorphism 
Oylis_et —• £ y ( f ^ / § ) in the category of complexes of sheaves of OyUs_et-modules with 
HPD-stratification. 

For a quasi-coherent crystal E with associated module with HPD stratification £, 
we can tensor the quasi-isomorphism Oylis_et —> Cy (fiy/§) w^h £ to obtain a morphism 
of complexes £ —» £ 0 £^(fiyyS) of modules with HPD stratification. Applying 
the equivalence (2.4.7) we obtain a morphism of complexes of crystals E —• E 0 
i*Ly(Q*/s). 

Proposition 2.4.23. — T/ie map E —• E1 0 z*Ly(fiy/S) ¿5 a resolution of E in the 

category of 0Xlis_et/s-modules in (Xiis_et/S)cris. 

Proof — Let (U,T,6) G Cris(XiiS-et/S) be an object, and let S —> S be a smooth sur-
jection with S an algebraic space. Let Xs and y^ the algebraic spaces obtained by base 
change, and let (Us,Ts,6) G Cris(Xs5iiS_et/S') be the object obtained from (U,T,S) 
by base change to S. Since the morphism h : Ts - » T is faithfully flat, to verify that 
the morphism of complexes —• ET 0 i*Z/y(f^§)T of sheaves of £>ret-modules is 
a quasi-isomorphism it suffices to verify that it becomes a quasi-isomorphism after 
pulling back to Ts- On the other hand, the pullback 1I*ET —• h*(Er 0 i*Ly ( ^ / S ) T ) 
is canonically isomorphic to the morphism of complexes obtained by applying the 
above construction replacing S by 5, y by y^, and X by Xs. It follows that to prove 
the proposition it suffices to consider the case when S, X, and y are all algebraic 
spaces. 

Assuming this, we can further replace U by an etale cover and hence may assume 
that U, and hence also T, is an affine scheme. In this case there exists a map r : T —> y 
such that the diagram 

(2.4.23.1) 

U T 

X 

r 

y 

commutes. From this it follows that the morphism ET —> ET 0 i*Ly(£ly/g)T is 

isomorphic to the morphism of complexes obtained by tensoring r*(0y —> £y(^y / s ) ) 

with ET- It follows from the construction of Cy(Qy^) and 2.3.3 that £y(fiyyS) is a 
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complex of flat Oy-modules, and hence to prove that ET —> ET 0 i*L^(Q^G)T is a 

quasi-isomorphism it suffices to show that Oy —• £ y ( Q ^ § ) is a quasi-isomorphism. 

This follows from [8, 6.12]. • 

Remark 2.4.24. — The construction of the resolution in 2.4.23 is functorial with re
spect to 2-commutative diagrams 

(2.4.24.1] 

X' ¨%£ £%¨£ 

9 9 

X i y 

of algebraic stacks over §, where i and %' are closed immersions and y ' —> S and 
y —> S are represent able, locally separated, and smooth. Precisely, there is a canonical 
morphism of complexes of crystals 

(2.4.24.2) ^(£7^£?®<*Ly,(n5/g)) ( ^ ^ ^ ® ^ ( ^ 7 S ) ) . 

Note here that since y —» 8 is representable, the map X —» 8 is also representable and 
hence pullback of quasi-coherent crystals is well-behaved (2.1.3). 

2.4.25. — If in the above the stack y is a Deligne-Mumford stack, then the differ
entials in the complex i*Ly(Q^^) can be described as in the classical case. An 
HPD-differential operator p : pr^pr j f —• T induces a map 

(2.4.25.1) froVfr- c=VKl¿ 

of Oyet-modules with HPD-stratification. Since A : y <—> Dy(l) is a nil-immersion, 
reduction defines an equivalence between the étale site of Dy(l) and the étale site of 
y. In particular, the coordinate ring T>y(l) of Dy(l) can be viewed as a sheaf on yet. 
The two-projections Dy(l) —> y give Vy(l) the structure of a Oyet-bi-algebra. The 
map Cy (p) is then the composite 

(2.4.25.2) froVfr- ô<g)id 
Vy(l)®Vy(l)®£ 

id<8>/9 
fc=VKl¿ 

In particular, if (£, V) denotes the module with integrable connection on yet corre
sponding to the crystal E by 2.3.28, and if £ 0 ^yet/§ denotes the de Rham-complex, 

then each map V¿ : £ 0 ^yet/s ~~* £ ® ̂ ytt% "*s" a differential operator of order 1 

(2.3.14). The differential E 0 2*Ly (íí^/s) —• 0 ¿ * L y ( í ) ^ ) is the map induced by 

this differential operator and the isomorphism in 2.4.21. 
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2.5. The cohomology of crystals 

2.5.1. — Let (S, / , 7) be a PD-stack and let X ^ y be a closed immersion of algebraic 
stacks over S such that 7 extends to X and y. Assume further that the morphism y —> 
§ is representable, locally separated, and smooth. Let Y —• y be a smooth surjection 
with Y an algebraic space, and let Y» denote the O-coskeleton. Write Y#+ for the 
associated strictly simplicial space. Let E be a quasi-coherent crystal in (XiiS-et/§)cris5 
and let £ denote the quasi-coherent sheaf of Oyli8_et-modules obtained by pushing 
forward to y the value E]jx ^ of E on the divided power envelope of X in y. By 2.4.6, 
the sheaf £ has a canonical HPD-stratification. Let £m denote the sheaf of (9V+ -

•r«,et 
modules obtained by pulling back £ to the strictly simplicial space Y+, and note that 
each £n has an HPD-stratification obtained by pullback (2.3.9) and that the transition 
morphisms for £m are compatible with these HPD-stratifications. By 2.3.21 these 
stratifications define an integrable connection V on i t (i.e., a compatible collection 
of connections V : £n —> £n <S)oY /<?)• Let £ . <g) ÍÍ* + denote the complex of 

sheaves on Y*et whose restriction to each Yn is the de Rham complex of £n. 

Theorem 2.5.2. — There is a natural isomorphism 

(2.5.2.1) RüXus_et/UE)\Y+ei ~£.® i l ^ / g . 

Proof. — Let (Xj"lis_et/S)cris denote the strictly simplicial topos 

(2.5.2.2) [n] ^ (Xn,iis_et/S)cris 

which is defined since for any inclusion [n] ^ [m] the morphism Xm —> Xn 
is smooth (1.4.19). Let res : yiiS-et —> Y*et be the restriction functor, r : 
( ,̂iis-et/S)cris —> (X+et/S)criS the morphism of strictly simplicial topoi induced by the 
restriction maps (XnjiiS_et/S)Cris —* (Xn)et/§)cris defined in 1.5.1, let im : X+ Y+ be 
the inclusion defined by z, and let 7r : (X^l[s_et/§)CT-ls —> (Xiis_et/S)Cris be the morphism 
of topoi defined as in 1.5.3. There is then a commutative diagram of functors 

(2.5.2.3) 

C í̂lis-et/S)cris 
%¨£T 
xr,y,pri JDx>7(y) cris 

£%¨¨£% 
¨£%¨£ 

-1 
(3Ciis_et/S)cris 

Ü*lis-et/S* 
l̂is-et 

res 

i.* 

J;et-

Since res is an exact functor, we have 

(2.5.2.4) res(fí%lis_et/s*(£)) ~ R(resoûXlis_et/s*)(E). 

The adjunction map E —» R-K*T:*E is an isomorphism by 1.5.4, and hence 

(2.5.2.5) fl(reso%liset/§*> (E) — R(ves o Uxu t/§*) oRirJn*E). 
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Since 7r* is obtained from a morphism of topoi it takes injective sheaves to injective 
sheaves. Therefore there is a canonical isomorphism 

(2.5.2.6) R(ves o %lis_et/s*) o RTT^E) ~ R(ies o %lis.et/S* o K*)(K*E). 

From this, the commutativity of (2.5.2.3), and the fact that r* and i#* are exact and 
take injectives to injectives, we obtain an isomorphism 

(2.5.2.7) res(i?uXlisW§.(£)) ~ i„Ruxt^Sw*E). 

Since the £y-construction is functorial (2.4.24), we can apply it to the complex 
£#0f}* + .„ on y#+et. By 2.4.23, this gives a resolution r*n*E —• z*risLy+ (£.0fi* + , ) 

of r*ir*E by sheaves in (X+et/S)cris- Note that the terms in i*risLy+(£. 0 ft* + ) 

are not crystals in the sense of 2.1.8 since the pullback maps arising from morphisms 
[nf] —> [n] in A are not isomorphisms. However, it is still true that 

(2.5.2.8) i . .^x+et/s .(icris^y+(f. ® ^+e t / s ) ) - ® fiy+^/g 

since this can be verified for each X n / § individually in which case it follows from 2.4.17 
and the discussion in 2.4.25. Combining this with the isomorphism (2.5.2.7) we obtain 
an isomorphism 
(2.5.2.9) 

res(RuXLIS_ET/S*(E)) - i^Rux+eJ^(ilrisLy+(£. 0 Oy+^g) ) - £ . ® ^+e t /§ - D 

Corollary 2.5.3. — W^/i notation as above, let rxlis_et/s (resp. Y) denote the global 
section functor on the category (XiiS_et/S)Cris (resp. Y*et). Then there is a natural 
isomorphism 

(2.5.3.1) i?rXlisWS(£) ~ RT(e. ® fi^/g). 

Proof. — Since E —• R7r*7r*E is an isomorphism (1.5.4), there is a natural isomor
phism 

(2-5.3.2) i?rXlis.et/s(£;) ~ RTKNSEJ§(TT*E). 

Since the functor r* is exact and takes injectives to injectives, there is also a natural 
isomorphism 

(2.5.3.3) RTX+NS_ET/S(^E) ~ i?rx+et/§(r*7r*£). 

Since i#* : Xm,et —> Y.?et is an exact functor, we therefore have 

(2.5.3.4) i?rXliaWS(£) ~ RT(i.*Rux+et/^(r*7r*E)), 

which by the isomorphism (2.5.2.8) is isomorphic to itT(£# 0 + ). • 
* m fit / ̂  
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Corollary 2.5.4. — Let i : X <—> }¿ be a closed immersion as in 2.5.1 with y and 
X Deligne-Mumford stacks, let E be a quasi-coherent crystal in (Xet/S)cris? and let 
(£, V) be the Oyet-module with integrable connection corresponding to E via 2.4-7. 
Then there is a natural isomorphism 

(2.5.4.1) RuXet/§*(E) ~ %-\e ® n;rt/g), 

where i~x denotes the inverse image functor for the morphism of topoi Xet —> yet. 

Proof — With notation as in 2.4.18, there is a resolution E —» i*risLy(£ 0 ^yet/$) 

by crystals, and by 2.4.19 

(2.5.4.2) RuXet/§*(i*CIM£ ® « L / s ) ) - ® ^ L / s ) - D

More generally we have the following: 

Proposition 2.5.5. — With notation as in 2.5.4, ¿e¿ E> denote the divided power enve
lope of X in y and let V be the coordinate ring of D viewed as a sheaf on Xet- Let 
F m ( £ 0 x > f i ^ § ) be the subcomplex of£<S>v^o/§ which in degree q is i^m~^£0£>iT^/g, 
where I C V is the ideal ofXinD:= Dx^Qé)- Then there is a natural isomorphism 
in the derived category of sheaves of abelian groups on Xet 

(2.5.5.1) RuXet/§*(lW§E) — Fm(S ®v STD/i), 

where Tx/s is the PD-ideal in (Xet/§Jcris which to any object U <—> T associates the 
ideal ofU inT. 

Proof — This follows from the same argument as in the classical case [8, 7.2] once 
we generalize the filtered Poincaré lemma [8, 6.14] to the stack-theoretic setting. 
Restricting the natural exact sequence 

(2.5.5.2) 0 —> IX/s 0X/s — *x/s*(<?x) — 0, 

where i : Xet —* (Xet/S)Cris is the morphism of topoi induced by the morphism of sites 
(U,T,S) i—> U, to (Xet/S)cris|tj, we obtain an exact sequence 

(2.5.5.3) 0 — j^lx/s — fyOx/s — fyix/UOx) — 0. 

The sheaf j ~ ix/s*(£*x) is equal in the notation of 2.4.12 to (i*Oxet)K and hence

by 2.4.13 has no higher cohomology and jyJ~ix/s*(Ox) - ¿x/s*(0x) . Define K := 

J*3^x/§ so that there is an exact sequence 

(2.5.5.4) o — /C —> i*Ly(Oy) — ix/UOx) —+ 0. 

From this and 2.4.12 it follows that /C has a natural divided power structure. 

Lemma2.5.6. — For any integer r, the map z*Ly(íí^§) —> ¿*Ly(íí^g) sends 

/CM¿*Ly(í25/g) to K^k'LyiQl+l). 
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Proof. — For any object T of Cris(Xet/§), to verify that K^i*Ly ( Í Í ^ § ) T maps to 

the submodule IC^r~1U*Ly ( ^ / § ) T it suffices to do so after making a smooth base 

change S —• § (note this uses again that the formation of divided power envelopes 

commutes with flat base change (1.2.3)). This reduces the proof to the case when S 

is a scheme in which case it follows from the classical theory [8, 6.17]). • 

Define Fm(E 0 i*Ly(Qy/S)) to be the subcomplex of E 0 i*Ly(Qy/S) which in 

degree q is K^m"^E 0 z*Lv(i^/g). 

Lemma 2.5.7. — The natural map T^j^E —> Frn(E 0 ¿*Ly(ííy/§)) is a quasi-
isomorphism. 

Proof — As in the proof of 2.4.23 it suffices to consider the case when X, y, and § are 
all algebraic spaces in which case it follows from the classical theory [8, 6.14.1]. • 

By 2.4.21 there is a natural isomorphism between Fm(E 0 i*Ly(f2^s)) and the 

complex Fm(¿*Z/y(£0ííy/§)) which in degree q is JC^m~q^i*Ly(£0f^§). Hence there 

is a natural quasi-isomorphism 

(2.5.7.1) 1^}%E — Fm(i*Ly(S ® ÍÍ;/8)). 

Applying the functor i¿xet/s* and using 2.4.17 we obtain the isomorphism (2.5.5.1). 

• 
2.5.8. — Let X —» S be a smooth, locally separated, and representable morphism of 
algebraic stacks with X a locally noetherian Deligne-Mumford stack. The equivalence 
of categories (2.4.7 and 2.3.28) between modules with integrable connection on Xet/§ 
and crystals defines an inclusion 

(2.5.8.1) M : M/C(Xet/§) C Mod((Xet/S)cris, 0Xet/8), 

and the composite 
(2.5.8.2) 

MJC(Xet/S) Mod((Xet/S)cris, Oxet/s) U3^4S* {abelian sheaves on Xet} 

is the functor (£, V) • £v . 

Proposition 2.5.9. — The category M/C(Xet/§) has enough injectives, and every ob
ject of MIC'(Xet/'§) can be embedded into an injective object of MIC(Xet/§) whose 
image under M is acyclic for i¿xet/s*-

Proof. — Let V denote the sheaf on Xet given by the divided power envelope of the 
diagonal X ^> X x § X. The functor sending a quasi-coherent sheaf T to V 0 T with 
connection induced by the connection on V (2.4.5) is left adjoint to the functor which 
sends a quasi-coherent module with integrable connection (í?, V) to the underlying 
quasi-coherent sheaf Q. This can be seen for example as follows. Let X denote the 
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sheaf in (Xet/S)cris which to any object ({/, T, S) associates the set of retractions T —• X 
over S. Then as in 2.4.11 there is a natural morphism of topoi 

(2.5.9.1) jx '• (Xet/S)cris|x > (^et/S)cris-

The crystal corresponding to V <g) T is then in the notation of 2.4.12 equal to jx*J^. 
If G is the crystal corresponding to (Q, V) we then have 

HomMic((S,V),Z>® J7) - Hom(x/s)cris(G,jx*P) 

^Hom(x/s)cri8|3;0xGfi^) 

froVfr-VfcoVf 
The functor .F i - » V 0 F is also exact since it has a left adjoint and hence is left 
exact (it is clearly right exact). Therefore for an injective quasi-coherent sheaf T the 
object V®T e MIC(Xet/S) is injective. Furthermore, for (<?, V) e MIC(Xet/S) the 
natural map G —> V <g> Q induced by the identity map Q —> Q is an inclusion. This 
proves that MIC(Xet/S) has enough injectives. 

That the modules with connection V ® T are acyclic for t¿xet/s* follows from 2.4.19. 
• 

Warning 2.5.10. — Note that by our conventions MIC(Xet/§) is the category of 
quasi-coherent sheaves T with integrable connection V : T —> T0 ^x/s* ^ *̂  *s 
nonseparated an injective object in MIC(Xet/S) need not be injective in the category 
of all 0xet-modules with connection. 

2.5.11. — Let g : S —• S be a quasi-compact and quasi-separated morphism of finite 
type with S an algebraic space, and let / : X —» S be a quasi-compact and quasi-
separated morphism of algebraic stacks of finite presentation such that 7 extends to 
X. The composite X —• § —> S induces a morphism of topoi h : Xiis.et —» £et induced 
by the functor 

(2.5.11.1) Et(5) — • Lis-Et(X), (V —» 5) 1—• (V X —• X). 

Let hX/s ' (Xiis-et/S)cris -> Set denote the composite h o uXlis_et/s. 

Proposition 2.5.12. — Let So C S be the closed substack defined by I, and assume that 
X —> S factors through a smooth morphism X —> So- Then for any quasi-coherent 
crystal E in (Xiis_et/S)cris and integer i, the sheaf Rlhx/s*(E) ls a quasi-coherent 
sheaf on Set whose formation is compatible with smooth base change Sf —• S. 

Proof. — Let X —• X be a smooth surjection with X an algebraic space, let Xm 

denote the O-coskeleton, (-̂ iiS_et/S)cris the resulting strictly simplicial topos, and 
n : (^,iis-et/§)cris -> (XiiS_et/S)cris the projection. By 1.5.4, the adjunction map 
E —> R7r*7r*E is an isomorphism, and hence Rlhx/s*{E) is isomorphic to the i-

derived functor of ftx/s* 0 applied to E. By [68, 2.7] there is consequently a 
spectral sequence 

(2.5.12.1) Ef = RthXs/s*(E\xs) R'+thx/s*(E), 
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where hx3/s : PG/8)Cris —• Set denote the morphism of topoi induced by hx/s and 
the projection Xs —> X. To prove that Rlhx/s*(E) is quasi-coherent it therefore 
suffices to show that each Rthxs/s*{E\xs) is quasi-coherent and compatible with 
smooth base change which reduces the proof to the case when X is an algebraic space. 

Repeating the above argument with an étale cover of X it furthermore suffices to 
consider the case when X is a quasi-compact and quasi-separated scheme. Repeating 
the argument a third time with an affine cover of X we are finally reduced to the case 
when X is an affine scheme. 

In this case there exists a smooth deformation y of X to 8. Indeed by [66, 1.4] the 
obstruction to finding such a deformation lies in the second cohomology group of a 
certain quasi-coherent sheaf which is zero since X is affine. Choose a smooth lifting 
h : y —> S of X and let (£, V) be the module integrable connection on y/S defined 
by E. Then 

(2.5.12.2) R'hx/sÁE) ^ E*h*(£ 0 i ^ / s ) 

which is quasi-coherent and commutes with smooth base change by [68, 6.20]. • 

Warning 2.5.13. — In general the sheaves Rlhx/s(E) may be non-zero for infinitely 
many integers i. This is true even if one restricts to 8 a scheme and X a Deligne-
Mumford stack. 

For example, let p be a prime, set 8 = S = Spec(Fp), let G be the group Z/(p) , and 
set X := BG. Let Spec(fc) —• X be the smooth surjection corresponding to the trivial 
torsor. Then 2.5.3 and 2.5.4 show that üf*((Xet/S)Cris, Oxet/$) is isomorphic to the 
cohomology of the normalized complex associated to the strictly simplicial module 

(2.5.13.1) [n] . — HomG.equivariant(Gfn+1, Fp), 

where ¥p is viewed as a trivial G-module. It follows that #*((Xet/S)Cris, Oxet/s) ls 
isomorphic to the group cohomology H*(G,FP) which is isomorphic to ¥p in every 
degree. 

2.5.14. — Recall [2, 2.3.1] that a Deligne-Mumford stack X is tame if for every geo
metric point x : Spec(fc) —» X the order of the group of automorphisms of x in X(k) 
is prime to the characteristic of k. 

Theorem 2.5.15. — With assumptions as in 2.5.12, assume in addition that X is a 
tame noetherian Deligne-Mumford stack. Then there exists an integer r such that 
Rlhx/s*(E) is zero for all i> r and any quasi-coherent crystal E on (Xet/S)Cris-

Proof — By [5, V.5.1] the sheaf Rlhx/s*{E) is the sheaf associated to the presheaf 
which to an étale morphism of schemes V —> S associates 

(2.5.15.1) ^((Xiis.et/S)crisU-isv, E), 

where h^sV denotes the pullback of the sheaf represented by V on 5et- This sheaf 

h^lgV is equal to the sheaf in (XiiS.et/8)Cris which to any ({/, T, S) G Cris(XiiS_et/S) 
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associates the set of maps T —» V over the map U —* S —• S. From this and 1.4.23 it 
follows that (2.5.15.1) is isomorphic to 

(2.5.15.2) 1T(((X xs V)iis-et/§ x5 V)CTiB,E). 

This reduces the proof to showing that if § and X are both quasi-compact then there 
exists an integer r such that 

(2.5.15.3) ^ ( ( X u s . e t / S ) ^ , E) = 0 

for all i > r. 
For this let 7T : X —• X be the coarse moduli space of X which exists by [49, 19.1], 

and let 

(2.5.15.4) p : (Xiis-et/S)cris — • -̂ et 

denote the composition of ^xlis_et/s with the natural morphism of topoi Xiis.et —» -Xet-

Lemma 2.5.16. — Let Y be a noetherian separated algebraic space of dimension d, and 
assume p is a prime such that peOyet = 0 for some e > 0. Let G be a sheaf of abelian 
groups on Y killed by some power of p. Then W(Yetj G) — 0 for i > d+1. 

Proof — Note first that the étale sites of Y and Y ®z (Z/(p)) are equivalent so it 
suffices to consider the case when p • Oy = 0. Furthermore, by filtering G by the 
images of multiplication by p and considering the associated long exact sequences we 
see that it suffices to consider the case when p • G = 0. 

In this case when y is a scheme the result follows from [5, X.5.1]. For the general 
case we proceed by noetherian induction. By [46, IV.3.1] there exists a dense open 
subspace j : U Y which is a scheme and a proper morphism from a projective 
scheme g :Y —> V which is an isomorphism over U. Let i : Z <—• Y be the complement. 
Then it suffices to show that the result holds for X if it holds for Z. For this consider 
the excision sequence 

(2.5.16.1) 0 —> jij*G —• G —• i*i*G —> 0. 

Consideration of the associated long exact sequence of cohomology groups shows that 
it suffices to prove the lemma for i*i*G and j\j*G. The result hold for z*z*G by 
induction so this reduces the proof to the case G = j\j*G. 

Since g is proper there are natural isomorphisms 

(2.5.16.2) j,j*G ~ Rji(j*G) ~ RgiR'MfG) ~ Rg„Rj\(j*G) ~ Rg^ifG)), 

where j : U ^ Y is the inclusion lifting j . In particular, there is a natural isomorphism 

(2.5.16.3) W{Y,l.fG) ~ W{Y,j\j*G). 

Since dim(y) = dim(F) the case when Y is a scheme applied to Y implies that these 
groups are zero for i > d + 1. •

Lemma2.5.17. — There exists an integer r such that Rlp*(E) = 0 for all i > r and 
quasi-coherent crystals E in (Xet/§)cris-
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Proof. — It follows from [5, V.5.1] that Rlp*(E) is isomorphic to the sheaf associated 
to the presheaf on Xet which to an étale X-scheme V associates 

(2.5.17.1) ^*((Xy,et/§)cris,^), 

where Xy := XxxV. We may therefore replace X by an affine étale cover and hence 
by [2, 2.2.3] can assume that X = [U/T] for some finite affine X-scheme U with action 
of a finite group T of order prime to p. Let U —> [U/T] be the natural projection, and 
let 7T : Um —> X be the O-coskeleton. For [n] € A there is a canonical isomorphism 

(2.5.17.2) 17n~ ]J U. 

pn+iIY 

By 1.5.4, the adjunction map E —• Rir*n*E is an isomorphism. It follows that 

(2.5.17.3) /T((Xet/S)cris,£) ^ if*((^.,et/S)criB,7r*£?). 

By [68, 2.7], there is a spectral sequence 

(2.5.17.4) froVfr-VfcoVfc=VKl¿ Hs^((U.iet/§)cris,^Eùpm). 

Via the isomorphism (2.5.17.2) the term Efl in this spectral sequence is identified 
with 

(2.5.17.5) Homr(rs+1,^(((7et/S)cris^|c/o)), 

where the T-action on jHrt((C7et/S)cris9 JB7|c/0) is induced by the T-action on U. More
over, the map d\ : Ef —• E^1^ is simply the alternating sum of the maps induced 
by the projections Sj : Ts+1 Vs given by 

(2.5.17.6) (7o , . - . , IS) 1—• (7o , . . . , 7 i , 7 j+ i , . . - , 7 s ) . 

From this description it follows that the ^-terms are given by the group cohomology 

(2.5.17.7) E? ~ ffa(r,^((t/et/SJcris,^^)). 

Since T has order prime to p by assumption, these groups are zero for s ^ 0 and hence 
J3|* = 0 for s > 0 and 

(2.5.17.8) Eg ~ #£(([/et/S)cris, E\uf. 

It follows that there is a natural isomorphism 

(2.5.17.9) F£((C/#,et/S)cris,7r*E) ~ ^((C/et/§)cris,^|t/)r. 

This reduces the proof to the case when U = X is an affine scheme. In this case there 
exists a smooth lifting Y/S of U and 
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Let r be the relative dimension of Y/S. Then £ 0 ^yet/§ = 0 for i > r and since each 

term £ 0 ^yet/§ 18 quasi-coherent and Y is affine 

(2.5.17.11) Hi(YeU£®niyet/s) = 0 

for i > 0. From the spectral sequence of a filtered complex 

(2.5.17.12) E? = H\YeU£® ^et/s) #s+t(Fet,£ ® 0 ^ / g ) 

it then follows that Hl(Yet, £ 0 £2yet/§) *s zero for £ > r -f 1. • 

We can now complete the proof of 2.5.15. Since the global section functor is 
isomorphic to the composite Txet ° p* and takes injectives to injectives since it has 
an exact left adjoint p-1, there is a spectral sequence 

(2.5.17.13) E? = H*{X^Rtp*{E)) tfs+'((Xet/S)cris,E). 

Combining 2.5.16 and 2.5.17, theorem 2.5.15 follows. • 

Remark 2.5.18. — The careful reader will note that even when X and S are algebraic 
spaces (2.5.15) does not follow from the arguments in [8, 7] as these proofs make 
essential use of the Zariski topology. 

2.6. Base change theorems 

2.6.1. — Let u : (B*\V',7') —• (J5,7,7) be a morphism of PD-algebraic spaces, and 
let S/B be an algebraic stack. Set S' := S XB B\ and assume 7 (resp. 7') extends to 
8 (resp. §;). Let BF0 C B' and £?o C B be closed subspaces defined by sub-PD-ideals 
such that the composite 

(2.6.1.1) B'z—*B'—*B 

factors through Z?o- Set So denote S xB BQ and let §0 denote S' xB> BF0. 

Theorem 2.6.2. — Let f : X —> So be a smooth quasi-compact morphism of algebraic 
stacks with X a tame noetherian Deligne-Mumford stack, and let E be a quasi-coherent 
crystal in (Xet/S)cris- Assume either that the map B' —> B is flat or that E is flat 
over B. Let f : X' —> S0 denote the base change X x§0 S0 —> S0 and let g : X' —> X 6e 
£fre projection. Then there is a natural isomorphism in the derived category of sheaves 
of Os'et -modules 

(2.6.2.1) Lu*Rhx/B*(E) ~ Rhx,/B>*(g*E). 

Remark2.6.3. — By 2.5.15 the complex Rhx/B*{E) is bounded so Lu* makes sense. 

The proof is in several steps 2.6.4-2.6.6. 

Lemma 2.6.4. — For a quasi-coherent crystal F in (Xet/S')criS, there is a natural iso
morphism 

(2.6.4.1) R(u* o hX>/B>*)(F) ^ Rhx/B*Rg*(F). 
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Proof. — There is a natural isomorphism of functors o hx'/B'* — hx/B* ° #* and 
hence a natural map 

(2.6.4.2) 0 : R(u* o hx,/B,*)(F) * R(hx/B* o <?*)(F) —> Rhx/B*Rg*(F) 

which we claim is an isomorphism. 
To prove this it suffices to show that the map of cohomology sheaves 

(2.6.4.3) 0 : IV(u* o hx,/B,*)(F) ~ R(hx/B* o <?*)(F) —> RihX/B*Rg*(F) 

is an isomorphism for every i. The sheaf o hX'/B'*){F) is by 1.6.2 the sheaf 
associated to the presheaf which to an etale morphism of algebraic spaces V —• B 
associates 

(2.6.4.4) WdX'^JS'vUsiF). 

Similarly, RlhXjB*Rg*(F) is isomorphic to the sheaf associated to the presheaf 

(2.6.4.5) (V —> B) I • ^((Xv.et/SvJcriB, ^ . ^ I tXv .ee /Sv)^ ) 

which by 1.4.25 is isomorphic to the sheaf associated to the presheaf 

(2.6.4.6) (V —> B) l • ^((Xv.et/Svjcris, i ^ ) , 

where gv : X'v —• Xy denotes the morphism induced by base change. 
To prove the lemma, it therefore suffices to show that the natural map 

(2.6.4.7) H*(CX'et/S')clis,F) — H*((Xet/S)clis,Rg*F) 

is a isomorphism. Let X —> X be an etale surjection with X an algebraic space, and 
let X . be the O-coskeleton. Denote by X', the base change of X, to X' so that there 
is a commutative square 

(2.6.4.8) 

X>+ 9* MP%¨£ 

X' g X. 

By 1.5.4 and 1.6.2, the natural maps 

(2.6.4.9) •ff*((Xet/S)cris> Rg*F) ~ H*((XÏJS)clis,Rg*(F)\x:Jùmpl 

(2.6.4.10) H*((X'JS')ctis,F)- >H*((X'+JS%is,F\x,+JMPLO 

are isomorphisms. Moreover, it follows from 1.4.25 that 

(2.6.4.11) fcoVfcl¿ Rgmcris*{F\x>+ ) , 

where gCTls : (X'^et/S)CIiS —> (X.iet/§)cris denotes the morphism of topoi induced by 
g,. The functor <7.cris* takes injective abelian sheaves to injective abelian sheaves 
since it has an exact left adjoint, and consequently the map 

(2.6.4.12) ^ ( P C e t / S O c r i s ^ l ^ J >H*((X+JS)cris,Rg*(F)\xtJK?LM 

is an isomorphism. 
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2.6.5. — To define a morphism 

(2.6.5.1) Lu*Rhx/B*(E) —• Rhx,/B,*(g*E) 

it suffices by adjunction to define a morphism 

(2.6.5.2) Rhx/B*(E) —+ Ru*RhXf/B,*(g*E). 

By 2.6.4 there is a natural isomorphism 

(2.6.5.3) Ru*Rhx,/B,*(g*E) ~ RhX/B*Rg*(g*E), 

and hence there is a natural map (2.6.5.2) obtained from the adjunction map E —> 
Rg*g*E. We define (2.6.5.1) to be the induced morphism. 

2.6.6. — To prove that (2.6.5.1) is an isomorphism, we can without loss of generality 
assume that B = Spec(^4) and B' — Spec(v4') are afhne schemes. 

Consider first the special case when X is an affine scheme. In this case there exists 
a smooth lift Y/S of X and using 2.5.4 and our assumptions, the arrow (2.6.5.1) is 
identified with the morphism obtained from the isomorphism 

(2.6.6.1) A' ®A (£ ® fi£/s) —> S ®ox fix'/s/-

Thus the result holds in this case. 
We deduce the general case from this special case as follows. Let X —• X be a 

smooth cover with X an algebraic space, let X. be the O-coskeleton, and let X'm —> X' 
be the base change to X7. Then by 1.5.4 the projections induce isomorphisms 
(2.6.6.2) 

Rhx/B*(E) ~ Rhx+/B^(E\X+), Rhx,/B,*(g*E) ~ Rhx,+/BM(E\xi)), 

where hx+^B and hx>+ jB, denote the augmentations 

(2.6.6.3; T xr,y,pr\ХЛ 0+/S)cris > Bet and T xr,y,priJDx>7(y) cris BU 

denned by the morphisms hXn/B ' PGi,et/S)cris -> Bet and hX'n/B' : (^n,et/S')cris -* 
B'et and g9 : X'm —» X9 denotes the projection. Let Bm (resp. Bf9) denote the constant 
simplicial scheme defined by B (resp. B'), let n : Bm —> B (resp. 7r' : B'm —> B') be 
the projection, and let u. : B'm —» Bm be the morphism induced by u. Let 

(2.6.6.4) hX+/B+ (^Íet/S)cris VfcoVf fcoVfc= cris B'+ 

be the morphisms of strictly simplicial topoi induced by the morphisms hxn/B and 
hx^/B'- The construction 2.6.5 then gives a morphism in the derived category of 
sheaves of 0R/+ -modules 

(2.6.6.5) LulRhx+/B+,(E\Txr,y,priJDx>7(y) Rhx'+/B'+*(9lE\x+ 

such that (2.6.5.1) is obtained by applying Rir^. It follows that it suffices to prove 
the theorem for each Xn. 
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This reduces the proof to the case when X is an algebraic space. Repeating the 
above argument with an étale cover of X by a scheme, we are further reduced to the 
case when X is a quasi-compact and quasi-separated scheme over B. Repeating the 
argument once again with a cover of X by affine opens reduces the problem to the 
case when X is quasi-affine scheme. In this case the intersection of two affines is again 
affine so repeating the argument one last time with a cover of X by affines we are 
reduced to the case when X is an affine scheme. This completes the proof of 2.6.2. • 

Corollary 2.6.7. — With notation as in 2.6.2, assume X —* B is proper, E is a coher
ent crystal flat over B, and that B is noetherian. Then for any integer i the sheaves 
Rlh>x/B*(E) are coherent sheaves on Bet. 

Proof. — Since B is noetherian and BQ C B is defined by a PD-ideal, the ideal J of 
Bo in B is a nilpotent ideal. Let Bn C B denote the subspace defined by Jn+1. 

Consider first the sheaves Rlhx/B0*(E). By 2.5.4, this sheaf is isomorphic to 
Rlh*(£(g>i]^et/go), where £ denotes the module with integrable connection associated 
to E. The spectral sequence of a filtered complex gives a spectral sequence 

(2.6.7.1) E? = R'KiC ® í^et/So) => Rs+tK{£ <g> i l ^ / g j , 

and hence in this case the result follows from the fact that the sheaves Rlh*{£ 0 

^Xet/So) are conerent by [68, 7.13]. 

By induction for the general case it suffices to show that if Rlhx/Bj*(E) is coherent 

for all j < n then Rthx/Bri(E) is also coherent. For this note that the exact sequence 

(2.6.7.2) 0 —> J71/Jn+1 —> 0Bn —-> OBN_! — • 0 

induces a distinguished triangle 
(2.6.7.3) 

Rhx/Bn*(E) 0 L Jn/Jn+1 —> Rhx/Bn*(E) — Rhx/Bn*(E) 0 L 0Bn., ^ . 

Since 

(2.6.7.4) RhX/Bn*{E) ®L Jn/Jn+1 * Rhx/Bn-AE) ®oBn_1 Jn/Jn+1 

and 

(2.6.7.5) Rhx/Bn*(E) ®L O B , . , ~ Rhx/Bn_^(E) 

by 2.6.2, consideration of the long exact sequence associated to (2.6.7.3) and induction 
implies that the cohomology sheaves of Rhx/BnÁE) are coherent. • 

Corollary 2.6.8. — With assumptions as in 2.6.7, the complex Rhx/B*(E) on Bet is 
perfect. 

Proof. — This follows from 2.6.7 and 2.5.15. • 
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2.7. P-adic theory 

2.7.1. — We extend the results of the previous sections to a p-adic theory just as in 
the classical case [8, Chapter 7]. 

Let (A, / , 7) be a PD-ring, and let P C / be a sub-PD-ideal such that A is P-
adically complete and separated. Assume that some prime p is contained in P. Denote 
by B = Spec(A), B = Spf(A), and Bn = Spec(A/Pn+1). Let TT : S -+ B be an 
algebraic stack to which 7 extends, and let §n denote S x# Bn. 

Since we do not know of a theory of formal algebraic stacks, we will consider the Sn 
just as a system of algebraic stacks indexed by n G N together with a closed immersion 
§n ^ § n + i for every n. We write 8 for this system. 

Remark2.7.2. — A more formal definition of S is the following. View N as a category 
in which Hom(n,ra) = 0 if m < n and Hom(n,ra) = { * } if m > n. Then S can be 
viewed as the fibered category over N whose objects are triples (n, T, a) where n G N, 
T is a scheme and a G Sn(T). A morphism (n, T, a) —> (m, T', ¡3) in S is a morphism 
n —• m in N giving j : Sn Sm (ie. , m > n), a morphism / : T —> T; of schemes 
and an isomorphism f*j*(3 ^ a in Sn(T). 

2.7.3. — For any morphism of algebraic stacks X —> §0 such that 7 extends to X, 
define Cris(Xiis_et/§) to be the site made up of two-commutative diagrams 

(2.7.3.1) 

U j T 

%£ 

X s, 
where j is a PD-immersion of schemes, h is a PD-morphism, U —* X is smooth, and 
PUOT = 0 for some n. The resulting topos (Xiis_et/§)cris is naturally a ringed topos 
whose structure sheaf we denote by O-. ,^. Let 

(2.7.3.2) X̂lis_et/S * ( /̂̂ )cris —• Xiis_et 

be the morphism of topoi with 

(2.7.3.3) uxfa(F)(U) = r((C//S)cris, F) 

as in [8, 7.27]. 

As usual, a sheaf F on Cris(X/§) is equivalent to a sheaf FT on Tet for each object 
T together with a map U~1FT —> FT> for each morphism u : T' —> T satisfying the 
standard compatibility conditions. 

2.7.4. — If X is a Deligne-Mumford stack let Cris (Xet/§) denote the site consisting of 
the full subcategory of Cris(XiiS_et/§) of objects with U —> T etale with the topology 
induced by that on Cris(XiiS_et/§). We write (Xet/§)Cris for the resulting topos. As 
in 1.5.1, there is a morphism of topoi 

(2.7.4.1) r% : (Xiis_et/S)cris • (^et/§)cris 
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with rx* exact. In particular, the cohomology of a sheaf in (XiiS_et/§)cris can be 
computed in either topos. 

Definition 2.7.5. — A sheaf F of 0Xyg-modules is a crystal if the map u*FT —> FT' 

is an isomorphism for each u : T' —> T'. The sheaf F is quasi-coherent if each FT is 
quasi-coherent. 

Proposition 2.7.6. — Let Q : U —• X be a smooth surjection with U a Deligne-Mumford 
stack, and let Um be the O-coskeleton of Q. Let (U^lia_et/S)cria denote the strictly 
simplicial topos 

(2.7.6.1) N (̂ n,lis-et/S)cris, 

and let 7T : (U^lis_et/§)CTis (Xiis-et/S)cris be the projection induced by Q. Then as 

in 1.5.4 for anV abelian sheaf F £ (XiiS_et/S)Cris the adjunction map 

(2.7.6.2) F — • R7T*7T*F 

is an isomorphism. 

Proof. — As in the proof of 1.5.4, for any integer i > 0 the sheaf i?z7r*(7r*F) is the 
sheaf associated to the presheaf which to an object (V T, S) £ Cris(XiiS_et/§) 
associates 

(2.7.6.3) H'diU. Xx y)lis-et/r)cris,7r*F). 

The result therefore follows from 1.5.4. 

This proposition combined with the following two results in the case when X 
is a Deligne-Mumford stack enables one to compute cohomology of crystals in 

(Xiis_et/S)cris-

Theorem 2.7.7. — Let X —• §0 be a smooth representable morphism of algebraic stacks 

with X a Deligne-Mumford stack. Let X <—> y be a closed immersion of Deligne-

Mumford stacks with ^ —> 8 smooth, and let D be the P-adic completion of the PD-

envelope DofXin^. If E is a quasi-coherent crystal on Cris(Xet/8), then there exist 

a D-module £ with integrable connection V compatible with the natural connection on 

D and a natural isomorphism 

(2.7.7.1) froVfr-VfcoVfc=VK 

where denotes the complex D ®oy ^ y / § -

Proof. — This follows from the same argument used in [8, 7.23]. 
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Remark2.7.8. — Let i : X Z be a second closed immersion of Deligne-Mumford 
stacks with Z smooth over S, and let g : Z —> y be an S-morphism such that g o i = j . 
Let ¿)£ denote the p-adic completion of the divided power envelope of X in Z and 
write also g : Dz —> D for the morphism induced by g. If £z denotes the module with 
integrable connection on Dz obtained from 2.7.7, then it follows from the construction 
of £ and £z in [8, 7.23] that there is an induced map 

(2.7.8.1) g~\£ ® ^ / § ) — e*®%z/t 
compatible with the isomorphisms with Ru% t/%*E (2.7.7.1) (in particular (2.7.8.1) is 

a quasi-isomorphism). 

Lemma 2.7.9. — Let X —> So be a smooth morphism of algebraic stacks with X a 
Deligne-Mumford stack. Then after replacing X by an étale cover there exists an 
immersion X y into a smooth §-stack y. 

Proof. — Let U —> S be a smooth surjection with U a scheme, and let Uo —> So be 
the pullback to So- By the existence of quasi-sections for smooth morphisms, there 
exists after replacing X by an étale cover a section s : X —» Uo over So- After further 
étale localization on X we may also assume that X is an affine scheme. In this case 
there exist an integer r and a closed immersion Xo c—• A[}0 over Uo- This defines an 
immersion X c—• Aj} over S. • 

Corollary 2.7.10. — Let X —• So be a smooth morphism with X a Deligne-Mumford 
stack, and let E be a locally free finitely generated crystal on Cris(Xet/S). Then 
Ru% t/$*E is a bounded complex of A-modules on Xet-

Proof. — The assertion is étale local on X so by 2.7.9 we may assume that there 
exists an embedding X ^ y for some smooth Deligne-Mumford stack over S. The 
result then follows from 2.7.7 since the right side of (2.7.7.1) is clearly a bounded 
complex. • 

Theorem 2.7.11. — With notation as in 2.7.7, let E be a locally free finitely generated 
crystal on Cris(Xet/S), and let En be the restriction to Cris(Xet/Sn). Then for every 
n, the natural map 

(2.7.11.1) A/Pn+1 ®\ RuXet/%>tE — RuXet/SnrEn 

is an isomorphism. 

Proof. — This is the same as in [8, 7.24]. • 

Corollary 2.7.12. — Assume P = (p) for some prime p. Then for any integer n there 
is a short exact sequence 

0 ^ #n((Xet/S)cris, E) 0 Z/p^1 ^ #n((Xet/Sn)cris, En) 

(2.7.12.1) 

Tor\(A/pn+l, Hn+1 ((Xet/S)cris, E)) > 0. 
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Proof. — Tensoring the short exact sequence 

(2.7.12.2) 0 A 
p+m 

A An - » 0 

with K := Rux t/%„E, we obtain a distinguished triangle 

(2.7.12.3) K 
p K K®hAn - K[l]. 

This triangle induces by the preceding lemma a long exact sequence 

(2.7.12.4) 

Hn((Xet/S)cris, E) 
,Tl+l 
V ^n((3Cet/S)cris7 E) 

iJn((Xet/§n)cris? En) - ffn+1((3Cet/S)cris,£?)-

Prom this the corollary follows. • 

Remark2.7.13. — In [8], the base ring A is assumed noetherian. For the results cited 
above, however, this assumption is unnecessary. 
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CHAPTER 3 

THE CARTIER ISOMORPHISM AND APPLICATIONS 

In this chapter we study the Cartier isomorphism in the stack theoretic context. 
Most of the results concern a smooth representable locally separated morphism X —> S 
of algebraic stacks in characteristic p > 0, with X a Deligne-Mumford stack. This 
is rather restrictive assumptions. However, since for most applications the Cartier 
isomorphism will be used for local calculations this will enable us to deduce results 
for more general morphisms of algebraic stacks by working locally in the lisse-etale 
topology on the source. In particular, we generalize Ogus' generalization of Mazur's 
theorem [58, 7.3.1] and some of its consequences to arbitrary smooth morphisms of 
algebraic stacks. 

3.1. Cartier descent 

Letp be a fixed prime number, and let S be an algebraic stack over an Fp-scheme T. 

Definition 3.1.1. — The Frobenius morphism F§ : § —> S over the absolute Frobenius 
morphism FT : T —• T of T is the morphism of fibered categories which sends an 
object x G S(X) over a T-scheme X to F^(x) and a morphism if : x —> x' in §(X) 
to Fx(<p) : Fxx ~* Fxx'-> where Fx denotes the absolute Frobenius morphism on the 
scheme X. 

3.1.2. — If x : X —• S is a morphism of algebraic stacks over Fp, we can form the 
diagram 

X 
F • r 7 T 

•X 

T 

8 
%¨£% 

•s, 

where 7r O F is the absolute Frobenius morphism on X, and the square is cartesian. 

Warning 3.1.3. — Even if X is a scheme, the stack X' need not be a Deligne-Mumford 
stack. 
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For example, let G/¥p be a smooth group scheme, X = Spec(Fp), and let X —> BG 
be the map corresponding to the trivial torsor. Then there is a natural isomorphism 
X' ~ BGF, where GF denotes the kernel of Frobenius on G. To see this, note that Xх 
is the stack which to any Fp-scheme T associates the groupoid of pairs (P, e), where P 
is a G-torsor on T and e : F£P ~ G is an isomorphism of torsors. Given such a pair 
(P, e), define Pa to be the GF-torsor of trivializations p : P ~ G for which F£(p) = e. 
The association P ь-> Pa defines a functor X7 —»PGF which is an equivalence. 

Lemma 3.1.4. — / / X —•> § is smooth, then the morphism F : X —> X' is flat and 
surjective. 

Proof. — Let h : X —> X be a smooth surjective morphism with X a scheme. There 
is then a commutative diagram 

(3.1.4.1) 

X F X' X 

»1 h' h 

X F X' X 

over F$ : S —> §, where /i and h! are smooth and surjective. By [15, IV.2.2.11 (ii)], to 
verify that F : X —> X' is flat and surjective it suffices to show that F o /i : X —• Xx is 
flat and surjective. Thus if F : X —> X ' is flat and surjective the result also holds for 
X. This reduces the proof to the case when X is an algebraic space. 

Let S —> 8 be a smooth surjection with S a scheme. To verify that F : X —> X7 is 
flat and surjective it suffices to show that the map 

(3.1.4.2) X x§ S —> Г xs S ~ (X x§ S) xs,Fs S 

obtained by base change is flat and surjective. This reduces the proof to the case 
when both § and X are algebraic spaces. 

Assuming this, note that by further replacing S and X by étale covers, we may 
assume that there exists an étale morphism X —> Ag for some integer r. There is then 
a cartesian diagram 

(3.1.4.3) 

X F 

a ь 

4 
F MP%£ 

with a and b étale. This further reduces the proof to the case when X — Ag. 
In this case the morphism is obtained by base change to § from the morphism 

AJp —• Aj£p raising the coordinates to the p-th power. This implies the lemma. • 

Example 3.1.5. — Consider the example in 3.1.3 with X = Spec(Fp), § = PG, and 
S —> S also the map Spec(Fp) —> BG defined by the trivial torsor. In this case the 
morphism (3.1.4.2) is equal to the absolute Frobenius morphism FQ : G —• G of G. 
Since G/Fp is smooth the morphism FG is finite and flat. Of course it is also clear 
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directly that the morphism Spec(Fp) —> BGF is finite and flat since GF is a finite flat 
group scheme over Fp. 

3.1.6. — For any smooth representable locally separated morphism of stacks X —> S 
with X a Deligne-Mumford stack, the sheaf Txet/§ on Xet has a natural structure of a 
sheaf of restricted p-Lie algebras, characterized by the property that for any smooth 
morphism 5 —> S with S a scheme, the map pr^"1Txet/s —• TxSet/s is a maP °f sheaves 
of restricted p-Lie algebras, where prx : Xs '= Xx$S —> X denotes the projection and 
Txs et/s is given a p-Lie algebra structure as in [44, 5.0]. This follows from the same 
reasoning used in the construction of the Lie-algebra structure in 2.2.6. We denote 
by 

(3.1.6.1) <9^<9(p) 

the map Txet/§ —•> Txet/$ defined by the p-Lie algebra structure. 

Definition 3.1.7. — The p-curvature of a module with integrable connection (£, V) on 
Xet/S is the map 

(3.1.7.1) 4>--TXet/ŝ ¿nd0 ^¿nd0xJ£) 

defined by 

(3.1.7.2) ^(0) = V g - V a ( p ) . 

Note that ip(d) is Oxet-linear, since this can be verified after base change S —• S in 
which case it follows from the classical theory [44, 5.0]. Similarly the morphism i¡> 
is p-linear in the sense that for any local section / G Oxet and d G Txet/s we have 
V( /3) = f*il>{d) [44, 5.2]. 

The following is a stack-theoretic generalization of Cartier's fundamental theo
rem [44, 5.1]: 

Theorem 3.1.8. — Let B be an ¥p-scheme and let x : X —> S be a smooth representable 
locally separated morphism of algebraic stacks over B, with X a Deligne-Mumford 
stack. 
(i) For any quasi-coherent sheaf £' on X' there exists a unique connection Vcan on 
F*£' which is characterized by the following property: for any smooth morphism 
S —» S with S an algebraic space, the pullback pr^ Vcan of Vcan to a connection on 
(F*£/)|(Xxs5) et kills the image of the natural map 

(3.1-8.1) F-^'kx'xtSU — CF*£')l(Xxss)et. 

Note that here the étale topos (Xf x § S)et is defined since X' —> § is representable. 
(ii) The functor £' \—• (F*£\ Vcan) induces an equivalence between the category of 
quasi-coherent sheaves on Xf and the category of quasi-coherent modules with inte
grable connection and p-curvature 0 on Xet/S. 
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Warning 3.1.9. — If (£, V) is a module with integrable connection and p-curvature 0, 
then we denote by £^ the corresponding quasi-coherent sheaf on X{is_et. As will be 
explained in section 3.3 below, there is a natural map F*Ker(V) —> £% but this map 
is in general not an isomorphism. 

Proof of 3.1.8. — Choose a smooth cover 5 —• S and let 5 . be the associated sim
plicial algebraic space, X# = X x§ 5. , X'# = X' x§ S*. The space X' x§ 5 . has the 
following description. For each i, we have 

(3.1.9.1) X[ ~ (X xs,Fs §) xs Si ~ (X xs Si) xSi,Fsi Si 

and the various maps X¿ —• X¿, giving the simplicial structure are just those defined 
by functoriality. 

Let MIC(X./S.) be as in 2.2.13, and let MIC^=Q{X./S.) C MIC(X./S.) be 
the full subcategory of modules with integrable connection (£#, V . ) such that each 
restriction V¿) has p-curvature 0. Since the pullback of a module with integrable 
connection and p-curvature 0 also has p-curvature 0 (this follows for example from 
[44, 5.1]), an object (£. , V . ) G MIC(X./S.) lies in MIC^=°(X./S.) if and only if 
for some IQ the restriction (^0,V¿0) to Xi0/Si0 has p-curvature 0. 

By the definition of the p-curvature of an object (£, V) G M/C(Xet/S), the equiv
alence (2.2.14) induces an equivalence between the category of objects (£, V) G 
MIC(Xet/§) with p-curvature 0 and the category MJC^=0(X#/S.)- On the other 
hand, by the usual Cartier isomorphism [44, 5.1] the category MIC^=0(X*/S9) is 
equivalent to the category of quasi-coherent sheaves on X'm et. Since X'm is the 0-
coskeleton of the smooth surjection XQ —> X', we also know by [68, 6.12] that the 
category of quasi-coherent sheaves on X^ et is equivalent to the category of quasi-
coherent sheaves on X'. From this and 2.2.14 we deduce that Vcan exists and that 
the resulting functor is an equivalence. • 

Notational Remark 3.1.10. — If (£, V) is any quasi-coherent sheaf with integrable con

nection on Xet/S, then we can form for each i > 0 a quasi-coherent sheaf Hl(£ 0 
ft>xet/§)o on X' as follows. Let S —» § be a smooth cover with S an algebraic space, 

and Sm and X# = X x§ Sm as above, then for each Si let W(£ 0 ^xet /s^'Xs et ^e n̂e 
quasi-coherent sheaf W{£ 0 ^Xi/sJ on ^5i,et- For eacn maP 5 : Si* Si there is a 

natural isomorphism 

(3.1.10.1) 6*^(6 ® nSL/sJo.x^ - ® ^xM/s)o,x'Sfl et, 

and hence we get a quasi-coherent sheaf W{£ 0 ^ x e t / s ^ on ^iis-et- This snea-f is 
characterized by the property that for any smooth morphism U —> S with (7 an 
algebraic space, the restriction of W2(£ 0 ^xe t / s ^ to x§ ^)et *s eQua-i to the 
pushforward of W{£|(xx§c/)et ® ̂ *xxsu)et/u)' *n particular, the sheaf Wz(f 012^^§)<> 
is independent of the particular choice of smooth cover S —> § in the above. This sheaf 
will play an important role in section 3.3 when we discuss the Cartier isomorphism. 
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Remark 3.1.11. — It follows from the construction of the sheaf H°(£ ® fi*)^ in 3.1.10 
that there is a natural morphism 

(3.1.11.1) H°(S <8> ft#)0 —+ F*S 

of quasi-coherent sheaves on X'. In fact from the corresponding result for schemes 
one deduces that the functor 

(3.1.11.2) M / C ( X / S ) — • Modqcoh(X'), (£, V) ' * <g> ^ x / s ) o 

is right adjoint to the functor 

(3.1.11.3) Modqcoh(X') —+ M / C ( X / S ) , E' i—> (F*£', Vcan). 

3.2. Frobenius acyclic stacks 

In order to generalize to stacks the classical results relying on the Cartier isomor
phism, it unfortunately seems necessary to make certain restrictions on the stacks 
considered. 

Let B be a locally noetherian Fp-scheme. 

Definition 3.2.1. — An algebraic stack 8 locally of finite type over B is Frobenius 
acyclic if for every integer i > 0 the sheaf jR2Fg*(9slis_et on §iiS-et is zero. 

Example 3.2.2. — For an example of a stack which is not Frobenius acyclic, consider 
the stack 8 := BGa over Fp. To compute fl2F§*(9§lis_et, let Spec(Fp) —> 8 be the 
morphism corresponding to the trivial torsor. There is then an isomorphism of stacks 

(3.2.2.1) Bap ~ Spec(fc) x§,F§ 8, 

where ap denotes the kernel of Frobenius on Gtt. Therefore the restriction of 

(3-2.2.2) #F8.0SllMt 

to Spec(Fp) is equal to the group cohomology iiP(ojp,Fp) which need not vanish. For 
example, for i = 1 we have a nonzero cohomology class provided by the extension E 
of the trivial representation Fp by itself corresponding to the 2-dimensional represen
tation p : ap —> GL2 sending / G ap to the matrix (J { ) . 

The main result of this section is the following result which often makes it easy to 
determine if a stack 8 is Frobenius acyclic. 

Theorem 3.2.3. — Let S/B be an algebraic stack locally of finite type. If for every 
geometric point x : Spec(^) —* 8 the stabilizer group scheme Aut(x) over Spec(k(x)) 
is a diagonalizable group scheme, then 8 is Frobenius acyclic. 

The proof is in several steps 3.2.4-3.2.19. 
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3.2.4. — In [1] a theory of Artin stacks with linearly reductive stabilizers is developed. 
Since this paper is not yet available, let us develop the parts that we need here. 

Let B be a locally noetherian scheme and X/B an Artin stack locally of finite type 
with finite diagonal. Let n : X —> X be the coarse moduli space of X (cf. [2, 2.2.1]). 
The space X is a separated algebraic space locally of finite type over B, and the 
morphism n is proper and quasi-finite. Moreover, for any algebraically closed field k 
the map X(k) —+ X(k) induces a bijection between the set of isomorphism classes of 
objects in X(fc) and X(k). 

Proposition 3.2.5. — Let k be an algebraically closed field, and x : Spec(/c) —> X a 
geometric point such that the automorphism group scheme Aut(x) is a diagonalizable 
group scheme. Write also x for the geometric point of X obtained by composing with 
the projection X —• X. 

(a) After possibly replacing X by an fppf neighborhood of x, there exist a finite X-
scheme V and a finite diagonalizable group scheme G/B acting on V over X 
such that X ~ [V/G]. 

(b) There exists an open neighborhood U C X containing the image of x such that 
for any morphism of algebraic spaces U' —> U the base change X X x Uf —> U' 
identifies U' with the coarse moduli space ofXxxU' (i.e., after replacing X 
by some neighborhood of x the formation of the coarse space commutes with 
arbitrary base change on X). 

Proof. — Note first that (b) follows from (a). Indeed if X' —• X is an fppf neigh
borhood of x such that the pullback X' X x X is isomorphic to [V/G] as in (a), then 
we claim that in (b) we can take U to be the (open) image of X'. For this let 
U' —> U be any morphism of algebraic spaces. Since the formation of the coarse 
moduli space commutes with flat base change on the coarse space [2, 2.2.2], to verify 
that U' is the coarse space oi X X x U' it suffices to do so after making the base 
change U1 Xu X' —» U'. This reduces the proof of (b) to showing that if X is an 
algebraic space and X = [V/G] is the stack quotient of a finite X-space V by the 
action of a finite diagonalizable group G, then for any morphism g : X' —• X the 
map X X x X' —> X' is the coarse moduli space. For this let A denote the coherent 
sheaf of algebras on X corresponding to V. Then the coarse space of X X x X' is 
obtained by taking the subsheaf of G invariants of g*A. Therefore we need to show 
that the formation of G-invariants of the coherent sheaf A commutes with arbitrary 
pullbacks. This follows from the fact that G is diagonalizable which implies that as an 
(9x-module we have a canonical decomposition A = (BX<EDAX, where the sum is taken 
over the characters of G. Moreover, this decomposition commutes with pullback. 

By a standard limit argument, we can find a scheme Bo of finite type over an 
excellent Dedekind ring and an algebraic stack Xo over BQ with finite diagonal such 
that X is obtained by making a base change B —> Bo. Let Xo —• Xo be the coarse 
space of Xo, and let xo —• Xo be the geometric point defined by x. If we prove (a) 
for the pair (Xo,#o)> then by (b) we get that after possibly shrinking on Xo we have 
X = Xo Xx0 X, where the map X —• Xo is the one obtained from the universal 
property of the coarse moduli space (the morphism X —• X is initial for morphisms 
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to algebraic spaces). It follows that to prove (a) for (X,x) it suffices to prove (a) for 
(Xo, x~o). We may therefore assume that B is of finite type over an excellent Dedekind 
ring (this is used in the proof of 3.2.6 below). 

Since the formation of the coarse moduli space commutes with etale base change on 
the coarse space, we can, by base changing to the spectrum of a strictly henselian local 
ring of a point of X, assume that X is the spectrum of a strictly henselian local ring 
A (and B remains unchanged). Let & be the residue field, and let X& denote the base 
change X Xspec(A) Spec(fc). Choose a finite field extension k —> k' such that X/e(fc/) is 
nonempty. Choose a lifting of k —• k' to a finite flat morphism A —> A' (which exists 
by [15, 0/// . 10.3], and let X' denote the base change to Spec {A'). Fix an element 
x G X(fc'), and let G denote the group scheme of automorphisms of x. After making 
a further finite extension of k' we can assume that G is diagonalizable. This enables 
us to view G as a group scheme over B which we do in what follows. Replacing A by 
A! we may therefore assume that we have an object x G Xfc(fc) whose automorphism 
group scheme G is diagonalizable. The choice of x G Xfc(fc) defines a morphism 
BG —> Xfc. For any morphism T —> X^ corresponding to an object t G Xfc(T), the 
fiber product T x%k BG is the quotient of Isom(x|r, t) by the action of G on the first 
factor (if g G G and a : X\T —> t is an isomorphism then g * a is the isomorphism 
crog). Since G acts transitively on the set of isomorphisms X\T t it follows that 
T Xxfc BG —> T is a proper monomorphism, and hence a closed immersion. This in 
turn implies that BG —> X& is a closed immersion. Since n : X —» X is the coarse 
moduli space, for any algebraically closed field Q the map X(Q) —> X(Q) identifies 
X(Q) with the set of isomorphism classes in X(fi). It follows that BG(fl) —» Xfc(f2) is 
also a bijection (since X is assumed strictly local). Since X& is noetherian it follows 
that BG —> Xfc is a closed immersion defined by a nilpotent ideal in 0%k. 

We then have a diagram 

Spec(fc) 

-I 
(3.2.5.1) BG • X 

I I 
Spec(A;) • Spec(A), 

where p is the tautological G-torsor over BG. 
To prove the proposition it suffices to show that we can find a G-torsor P —> X 

whose pullback to BG is the tautological torsor Spec (A:) —> BG. Let us explain why 
this suffices. If we have such a torsor then since P —» X and X —* Spec (A) are proper 
and quasi-finite the morphism P —+ Spec(A) is also proper and quasi-finite. Let 
I —> P denote the inertia stack of P. By definition the stack / is the stack whose fiber 
over a scheme T is the groupoid whose objects are pairs (p, a) , where p G P(T) and 
a is an automorphism of p in P(T). A morphism (p, a) —> (pr, a') is an isomorphism 
L : p —• p7 in P(T) such that ¿ o a = a' o ¿. Geometrically the inertia stack can be 
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described as the fiber product 

(3.2.5.2) 

P 

A 

P A 
P xSpec(A) -P» 

so in particular I since P has finite diagonal the stack I is representable and finite 
over P. By [49, 14.2.4] it follows that / is equal to the relative spectrum Specp(*4) 
for some coherent sheaf of (9p-algebras on P. We claim that the map Op —> Oi is 
in fact an isomorphism. The map is injective because it admits a retraction given by 
the section P —> I sending an object p G P(T) to the pair (p, id). To check that it is 
surjective it suffices by Nakayama's lemma to show that the map becomes surjective 
when pulled back to Spec(/c). But the base change P xSpec(^) Spec(fc) is a thickening 
of the scheme Spec (A:) and hence also a scheme. We conclude that the map / —> P 
is an isomorphism and hence the objects of P admit no nontrivial automorphisms. 
Therefore P is an algebraic space proper and quasi-finite over Spec(A). By [46, 
II.6.16] this implies that P is in fact a finite Spec(A)-scheme. Furthermore, since 
P —> X is a G-torsor the induced map [P/G] —> X is an isomorphism. 

Lemma 3.2.6. — To find a G-torsor P —• X whose pullback to BG X is the tauto
logical torsor, it suffices to find such a torsor over the completion Spec(.A) o/Spec(^4) 
along the closed point. 

Proof. — By "spreading out", we can find a finite type affine jB-scheme Spec(Ao), 
an algebraic stack XQ/AQ with finite diagonal, and a morphism Spec(A) —+ Spec(Ao) 
such that X ̂  Xo xSpec(^0) Spec (A). 

Let F be the functor on the category of v4o-algebras which to any A —> R associates 
the set of isomorphism classes of G-torsors on the stack 

(3.2.6.1) XR := X0 xSpec04o) Spec(#). 

The functor F is clearly limit preserving so the lemma follows from [3, 1.12]. • 

By 3.2.6 we may further assume that A is a complete local ring. Let Xn denote 
X xSpec(^) Spec(-A/m^+1). By the Grothendieck existence theorem for stacks [65, 1.4] 
to give the G-torsor P —> X it suffices to find a compatible system {Pn —> Xn} of 
G-torsors over the reductions. Proposition 3.2.5 therefore follows from consideration 
of the sequence of closed immersions defined by nilpotent ideals 

(3.2.6.2) BG c—> Xo c—>• Xi c—• • • • 

and the following two lemmas, where we denote BG by X_i . • 

Example 3.2.7. — In general the square in (3.2.5.1) is not cartesian. For example let 
X be the stack-theoretic quotient of A1 = Spec(fc[z]) by the multiplication action of 
\in for some n > 2. Then the coarse moduli space is isomorphic to A1 = Spec(fc[t]) 
with the map k[t] —> k[z] given by t H-» zn. The pullback of X to the point {t = 0} of 
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the coarse space is then isomorphic to the stack-theoretic quotient of Spec(k[z]/zn) 
by the multiplicative action of fin. The /xn-invariant ideal (z) C k[z]/zn defines a 
nilpotent ideal in the structure sheaf of [Spec(k[z]/zn)/p,n] defining a closed immersion 
Bfjin ^ [Spec{k[z}/zn)//jLn}. 

Lemma 3.2.8. — For any integer n > — 1 and quasi-coherent sheaf J7 on Xn we have 
Hi(Xn,Jr) = 0 for alli> 0. 

Proof. — Note that since the closed immersion j : X_i Xn is defined by a nilpotent 
ideal, any quasi-coherent sheaf T admits a finite filtration 

(3 .2 .8 .1) 0 = Tn C Fn-i C--CT0 = V 

whose associated graded module is isomorphic to j^J7 for some quasi-coherent sheaf T 
on BG. Prom this one deduces that it suffices to prove the lemma for the stack X_i = 
BG. But in this case the category of quasi-coherent sheaves on BG is equivalent 
to the category of linear ^-representations of G, and if F is the G-representation 
corresponding to T then 

(3.2.8.2) H*(BG,T) ~ # * ( G , F ) , 

where the right side is group cohomology. Since G is diagonalizable we have 
H*(G, F) = 0 for i > 0 by [14, 1.5.3.3] and the lemma follows. • 

Lemma 3.2.9. — Let j : )$o c—• ^ be a closed immersion of algebraic stacks over a base 
scheme B defined by a nilpotent ideal, let G be a diagonalizable group scheme over B, 
and let Po —• be a G-torsor. Assume that for any quasi-coherent sheaf J7 on yy we 
have Wty^T) = 0 for all i > 0. Then P0 lifts to a G-torsor P -> y. 

Proof. — Note first that if / C Oy is the ideal defining and if ^n C y is the substack 
defined by In then Hl(tyn, J7) = 0 for all i > 0 and all quasi-coherent sheaves T on 
yn. This follows from the same argument proving 3.2.8. Considering the successive 
immersions 

(3 .2 .9 .1) y0 C « i C .--y 

we reduce to the case when I2 = 0. By [66, 1.5], if XQ : —> BG is the morphism 
corresponding to Po, then the obstruction to lifting PQ to y is a class in 

(3.2.9.2) Ext1(Lx*LBG/B,I). 

We show that this group is zero. For this it suffices to show that the cotangent 
complex LBG/B is locally in the flat topology on BG isomorphic to a two-term com
plex of locally free sheaves of finite rank concentrated in degrees 0 and 1. For then 
LX*LBG/B is also locally in the flat topology on yo isomorphic to a two-term complex 
of locally free sheaves of finite rank concentrated in degrees 0 and 1, in which case 
JWom(Lx*LBG/Bi I) nes in ^qcoh°'(^o)- From this and our assumption on vanishing 
of cohomology it then follows that (3.2.9.2) is zero. 
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To see that LBG/B nas the desired form, it suffices to show that the pullback of 
LBG/B to B along the morphism f : B -+ BG defined by the trivial torsor is a two 
term complex of locally free sheaves of finite rank concentrated in degrees 0 and 1. 
From the distinguished triangle 

(3.2.9.3) Lf*LBG/B —• LB/B —• LB/BG —> LJ*LBG/B[^] 

arising from [68, 8.1 (ii)] applied to 

(3.2.9.4) B f BG M%¨¨ 

we see that Lf*LBG/B — ^>B/BG\~ 1]? and hence it suffices to show that LB/BG is 
isomorphic to a two term complex of locally free sheaves of finite rank concentrated 
in degrees —1 and 0. Consider the diagram 

(3.2.9.5) 

B - e G a B 

MP¨% %£¨% 

B - f 
-> BG, 

where e is the identity section. Since / is a flat morphism we have LCL*LB/BG — LG/B 
[68, 8.1 (ii)], and hence LB/BG — Le*LG/B- It therefore suffices to show that if G is a 
diagonalizable group scheme over B then LG/B is isomorphic to a two term complex 
of locally free sheaves of finite rank. Writing G as a product of group schemes of the 
form pn one reduces using the isomorphisms [68, 8.1.2] to the case when G = pn. 
Consider the embedding i : pn Gm. This is a regular embedding, so if t denotes 
the standard coordinate on Gm we find that L^n/B is represented by the complex 

(3.2.9.6) 0 „ „ • (tn - l ) / ( i " - l)2 —> 0MN • dlog(t), (tn - 1) — » ndlog(t). 

This completes the proof of 3.2.9. • 

Remark 3.2.10. — In fact it is true that étale locally on the coarse space X the stack 
X is isomorphic to [V/G] for a diagonalizable group scheme G and a finite X-scheme 
V —• X with action of G. This is shown in [1]. 

Corollary 3.2.11. — Let X/B be as in 3.2.5, and assume in addition that for any 
algebraically closed field k and morphism x : Spec(fc) —• X the automorphism group 
scheme Aut(x) is diagonalizable (Aut(x) is automatically finite since X has finite 
diagonal). Let n : X —» X be the coarse moduli space. Then for any quasi-coherent 
sheaf J7 on X we have LVK^T — 0 for i > 0. 

Proof. — We may work locally in the fppf topology on X and by 3.2.5 may therefore 
assume that X = [V/G] for some finite X-scheme V and diagonalizable group G. We 
can even assume that X = Spec (A) is affine and that V = Spec(i?) for some finite 
A-algebra R with action of G. A quasi-coherent sheaf on X is then given by an R-
module F with action of G covering the action on R, and there is an isomorphism of 
cohomology groups 

(3.2.11.1) H*(X,f)~H*(G, F). 
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Indeed if / : X ~ [V/G\ —> BG denotes the morphism defined by the presentation of 
X as a quotient stack, then / is affine (since V is affine), so we have 

(3.2.11.2) iT(X,JF) ~ JT(£G,/*JF), 

for any quasi-coherent sheaf T on X. Since X is affine the right side of (3.2.11.2) 
is canonically isomorphic to H*(G, F) , where F denotes the G-representation corre
sponding to T. 

Again by [14, 1.5.3.3] we have Hl(G,F) = 0 for i > 0 since G is diagonalizable, 
and the corollary follows. • 

3.2.12. — Turning now to the proof of 3.2.3, we can without loss of generality assume 
that S is quasi-compact. Let U —> S be a smooth surjection with U an affine scheme. 
Let W denote the base change S xp8,$ U. In light of 3.2.11 it suffices to show the 
following assertions: 

(a) W has finite diagonal, 

(b) the stabilizer group schemes of W are diagonalizable, 

(c) the morphism p : U! —» U is proper and quasi-finite (By definition p is quasi-finite 
if for any algebraically closed field k and u : Spec(fc) —» U the set of isomorphism 
classes of valued points of the fiber product U'u = W Xu,u Spec(fc) is finite). 

Indeed if these assertions hold, let n : K7 —> Vi be the coarse moduli space of K7 and 

let q : U —> U be the projection so that we have a factorization of p 

(3.2.12.1) U/ u' —1—> U 

with 7] proper and surjective. Since p is also proper this implies that q is proper [67, 
2.7], and since p is quasi-finite and 77 is surjective the morphism q is also quasi-finite. 
Therefore q is finite. Using this and 3.2.11 we have for any quasi-coherent sheaf T on 
W and i > 0 

(3.2.12.2) i?P. (V) ^ ify.(Ty.V) = 0. 

To see that VJ has these properties, note first that the Frobenius morphism Fu 
on U induces a map Fjj/g : U —» IX'. The following 3.2.13-3.2.18 hold without any 
assumptions on § (other than the assumptions in 0.2.1). 

Lemma 3.2.13. — The morphism Fu/§ is finite, flat, and surjective. 

Proof. — This follows from the proof of 3.1.4 in the case when X is a scheme. 
We recall the argument. Let S —> S be a smooth morphism with S a scheme. Then 

it suffices to show that the base change of Fu/% to S is finite and flat. That is, the 
map 

(3.2.13.1) U xs S —•* It' xs S ~ (U xs S) xs,Fs S 

induced by Fu x id is finite and flat. This reduces the proof to the case when 5 is a 
scheme. Proceeding as in the proof of 3.1.4 one further reduces to the case when U 
is affine space over S = Spec(Fp) in which case the result is immediate. • 
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Corollary 3.2.14. — The morphism W —> U is surjective with geometrically connected 
fibers. 

Proof. — Since U —• W is surjective this follows from the observation that the Frobe-
nius Fu : U —> U is surjective with geometrically connected fibers. • 

Lemma 3.2.15. — The product U XFU/§,W,Fu/§ U is finite over U xFu,u,Fu U. 

Proof. — The space U XFU,U,Fv U represents the functor which to any scheme T 
associates the set of pairs of morphisms fc :T —• U such that 

(3.2.15.1) Fu°fi= Fvof2. 

Note that since fco FT = Fu o fc (i = 1,2), the equality 3.2.15.1 is equivalent to 

(3.2.15.2) fi o FT = /2 oFT. 

The space U xFV/§,it',Fu/§ U represents the functor which to any scheme T asso
ciates the set of triples (/i,/2,cr), where / i , /2 : T —> U are morphisms defining a 
point oiU xFV,u,Fu U and a : f^u —> f%u is an isomorphism in S(T) such that 

(3.2.15.3) FJ.{v) : FÎFTU —> FÎFTU 

is equal to the morphism obtained from the identification F^fi = F^fZ- Here u G 
S(U) denotes the object defining the morphism 

Let T —• U XFU,U,FU U be a morphism from a locally noetherian algebraic space T 
corresponding to morphisms / i , /2 : T —> U, and let / —> T denote the T-space 

(3.2.15.4) I := Isom(f*tA, FOU). 

Note that / XT,Ft T is canonically isomorphic to 

(3.2.15.5) IsomfFjS FLU. F$ KU) 

In particular, since F£fi — F£fZ there is a canonical section p : T I XT,Ft T. 
Furthermore, the relative Probenius morphism FIfT : i" —• / xT?jpT T is identified 
with the morphism sending an isomorphism o~ : g* f£u g* f%u over some T-scheme 
# : —• T to the isomorphism 

(3.2.15.6) g*F£ftu ~ w 
%£¨%£ 

W / 2 " - S'^rtf" • 

Prom this it follows that the fiber product of the diagram 

(3.2.15.7) 

T 

U1J2) 

U XFU/S,U\Fu/§ U U XFu,U,Fu U 
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is isomorphic to the fiber product of the diagram 

T 

(3.2.15.8) [o 

I — ^ / XT,FT T. 

Now since i* is a locally noetherian algebraic space of finite type over T (since T was 
assumed locally noetherian), the morphism Fj/T is finite, and hence the fiber product 
of the diagram (3.2.15.7) is finite over T. • 

Corollary 3.2.16. — The diagonal of W over U is finite. 

Proof. — To verify that the diagonal A : Uf —> W x v W is finite it suffices to prove 
it after making the flat base change U XFU,U,FU U —• VJ xu VJ. Since the diagram 

U xU' U • U XFU,U,FU U 

(3.2.16.1) | 

W — U ' x u W 

is cartesian, the corollary follows from 3.2.15. • 

Corollary 3.2.17. — The morphism VJ —> U is proper, surjective, and quasi-finite. In 
particular by [49, 7.13] the sheaves BJ-K+OW are quasi-coherent on Uet and coherent 
if U is locally noetherian. 

Proof — Since the diagonal of VJ over U is proper, the morphism VJ —> U is sepa
rated. 

Since the morphism i^ /s • U —> V is surjective, and Fu : U —> U is quasi-finite, 
the morphism VJ —* U is also quasi-finite. The statement that VJ —> is proper 
and surjective follows from the fact that Fu/s : J7 —> U' is surjective, the fact that 
Fu U U is proper and surjective, and [67, 2.7]. • 

Corollary 3.2.18. — The morphism F§ : S —• § ¿5 proper. In particular by [49, 7.13] 
/or any coherent sheaf J7 on § t/ie sheaves R"K*T are quasi-coherent on S and coherent 
ifS is locally noetherian. 

Proof. — This can be verified after making the smooth base change U —• § and so 
follows from 3.2.17. • 

3.2.19. — To prove 3.2.3 it remains to see that for any field valued point Spec(Q) —• 
B, with Q algebraically closed, and z G U'(fi) the stabilizer group scheme of z is 
diagonalizable. 

Let u G §(C/) be the object defining the morphism U —> §. The point z G W(Vt) is 
then given by a morphism x : Spec(fi) —> U, an object t; G S(fi) and an isomorphism 
6 : ~ F*v in 8(0) , where F : Spec(17) —> Spec(fi) is the Frobenius morphism. 
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From this it follows that the automorphism group scheme of z is equal to the kernel 
of the morphism of diagonalizable group schemes 

(3.2.19.1) Autfa)—>Aut(x*i6), a i—>LoF*(a)oi 1. 

By [14, VIII.3.4 (a)] this kernel is also diagonalizable. This completes the proof 
of 3.2.3. 

3.3. The Cartier isomorphism 

3.3.1. — Consider once again the diagram (3.1.2), where X —• § is a smooth locally 
separated morphism of algebraic stacks with X a Deligne-Mumford stack. 

By 3.2.18, the sheaf Fs*(OsUs_et) *s a quasi-coherent sheaf of (9slis_et-algebras on 
Slis-et (and coherent in the locally noetherian case). We write 8 for the relative 
spectrum Specg(F§*((9§lis.et)) [49, 14.2.4] and call the resulting factorization 

(3.3.1.1) S —> S —> S 

the Stein factorization of F§ : 8 —• S. Note that when § is an algebraic space the first 
map S —• 8 is an isomorphism. 

Denote by X7 the base change § x§ X. Since the formation of pushforwards com
mutes with flat base change (this follows for example from the proof of [68, 7.8] 
and the corresponding result for schemes), the stack Xf can also be described as the 
relative spectrum Specx(7r*(9xlis_et) over ^- We write 

(3.3.1.2) p.x' —• x!

for the natural projection. Note that if X is a scheme then X' is also a scheme. 

Proposition 3.3.2. — If X is a locally noetherian scheme, then the projection P is a 
coarse moduli space for Xf. In particular, it is universal for maps from X' to schemes. 

Proof. — Note first of all that by 3.2.16 the diagonal of X' is finite (taking U —• 8 
to be X —• 8) and hence the stack X' has a coarse moduli space 7 : X' —• Y (see for 
example [67, 2.6] for a summary of the basic properties of coarse moduli spaces). The 
map 7 is proper, surjective, quasi-finite, and the map Oy —» 7*(9x' is an isomorphism. 
The universal property of the coarse moduli space defines a unique factorization 

(3.3.2.1) X' —YT xr,y,priJDx>7(y)X 

of the morphism TT : X' —> X. Since TT is proper and surjective by 3.2.17 and 7 is 
proper and surjective, the morphism /3 is also proper and surjective [67, 2.7]. Since 
7r is quasi-finite the morphism /3 is also quasi-finite hence finite. In particular /3 is an 
affine morphism. The fact that Oy —• 7*Ox/ is an isomorphism then implies that /3 
identifies Y with the relative spectrum Specx(7r*0x') which by definition is X . • 
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Example 3.3.3. — To illustrate 3.3.2 consider the following example which will be 
discussed in greater detail and generality in section 9.3. Consider an integral and 
finitely generated monoid P, and let P —» Pgp be the universal map to a group. Let 
k — Fp, set X = Spec(fc[P]) (where k[P] denotes the monoid algebra on P) , and let 
G denote the diagonalizable group scheme G := Spec(/c[Pgp]). Then G acts naturally 
on X. Indeed X represents the functor on fc-algebras 

(3.3.3.1) R > Hommonoids(P, P) , 

where R is viewed as a multiplicative monoid. An R-valued point u G G(R), which we 
view as a homomorphism u : Pgp —> P*, then acts on X(P) by sending a morphism 
of monoids h : P —> R to the morphism m i—> u(m) • h(m). Let § denote the stack-
theoretic quotient [X/G] and consider the quotient map X —> 8. The stack 7r : X' —> X 
is then the stack associating to any affine X-scheme Spec(P) —• X corresponding 
to a morphism of monoids h : P —> R the groupoid whose objects are morphisms 
h : P —> R such that the composite 

(3.3.3.2) p XP ) p h ) R 

is the morphism h and for which a morphism h —> h' is an element w G G(P) such 
that the composite 

(3.3.3.3) pgp Xp > pgp u ) p* 

is the identity and for which h! = u*h. In other words, let H denote the cokernel 
of the map xp : Pgp -+ Pgp so that we have D(H) C G (where £>(#) denotes the 
diagonalizable group corresponding to H). The group scheme D{H) then acts on 
Spec(A:[P]) by restricting the G-action and 7r : X' —> X is the morphism 

(3.3.3.4) [Spec(fc[P])/£(#)] —-+ Spec(A:[P]) 

induced by the map xp : P —> P. The scheme X' is equal to the spectrum of the ring 
of D(P")-invariants in k[P]. Let P c P denote the submonoid of elements m G P 
such that the image of m in Pgp is in the image of xp : Pgp —• Pgp. Then it follows 
that X' - Spec(/c[P/]). 

Proposition 3.3.4. — Let X —> § be as in 3.3.1 and assume X is locally noetherian. 

Then the projection X —» X is radicial and surjective. 

Proof. — The assertion is etale local on X so it suffices to consider the case when X 

is a scheme. This implies that X is also a scheme. The factorization 

(3.3.4.1) X x! X 

of the Frobenius morphism of X (which is a radicial morphism) combined with the 

fact that X —> X is surjective (since X —> X' and X' —» X are both surjective) implies 

that for any algebraically closed field the map X (fi) —> X(Q) is a bijection. The 

result then follows from [15, 1.3.5.5]. • 
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Corollary 3.3.5. — With assumptions as in 3.3.4 pullback along the projection x! —• X 
induces an equivalence between the category of algebraic spaces étale over X and the 
category of algebraic spaces étale over X . 

Proof. — It suffices to prove the assertion after replacing X by an étale cover so we 
may assume that X, and hence also X , is a scheme. In this case, any algebraic space 
étale over X (resp. X ) is also a scheme by [46, 11.6.16]. The result therefore follows 
from [28, IX.4.10]. • 

Proposition 3.3.6. — Let X —> S be as in 3.3.1 with § locally noetherian, and let £ be 
a flat quasi-coherent sheaf on X . If § is Frobenius acyclic, then the adjunction map 
£ —> RP*P*£ is an isomorphism. 

Proof. — If U —» X is an étale morphism, TTU '• W —• U denotes S Xp§,§ U with the 
projection to U, and Pu : W —> U is the morphism to IX := Spec^(iru*Ou') then 
there is a commutative diagram 

(3.3.6.1) 

w 
Pu %¨£% и 

V 
р %£¨%%£ M¨%£ 

where all the diagrams are cartesian. It follows that to prove the proposition it suffices 
to prove the proposition for an étale cover of X. In particular we may assume that X 
is an affine scheme. This implies that X is also an affine scheme. By [16, A.6.6], we 
can write £ as a filtering direct limit of coherent flat sheaves of Oy>-modules. Thus 

it suffices to consider the case when £ is also coherent. Furthermore, since X —• X is 
radicial by 3.3.4 and hence induces an isomorphism on underlying topological spaces 
|X I —•» |X|, we can after shrinking on X some more assume that £ is a free sheaf. 
This reduces the problem to showing that the direct image on X of the morphism 
Oyi —• RP*Ox' is an isomorphism. But this map is equal to the restriction of the 
morphism 0§ —• RFs*(0$) to Xet- Thus the result follows from the definition of a 
Frobenius acyclic stack. • 

Proposition 3.3.7. — Let X —> S be a smooth, locally separated, and representable 
morphism of algebraic stacks with X a locally noetherian Deligne-Mumford stack. Let 
(£, V) be a quasi-coherent sheaf with integrable connection on Xet/§. Then the map 
H°(£ <S> fî̂ c t/s)o ~* (3.1.11.1) induces an isomorphism 

(3.3.7.1) P*H°{£ ® i ^ e t / s b — {PF)*SV, 

where £v denotes the kernel (in the category of abelian sheaves on Xet) of the mor
phism V : £ —» £ <8) ^x/s* ^n particular (PF)*£V is a quasi-coherent sheaf. 
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Proof. — To prove that this map is an isomorphism, it suffices to show that for any 
étale morphism U —» X the map induces an isomorphism of between sections over 
U . By 3.3.5 any such étale morphism is obtained by base change from an étale 
morphism U —> X. Since étale morphisms U —> X with U affine form a base for the 
étale topology, it therefore suffices to show that whenever X is an affine scheme the 
map H°(£ <8) ^xet/§)o F*£ induces an isomorphism on global sections 

(3.3.7.2) H°(X,£V) = H0(X[[s_et,H°(£ ®«5;rt/g)o). 

Let S —» § be a smooth cover and let Si = S x § S. Let Xs (resp. "Xsi, ̂ s , 
denote X x § S (resp. I x § Si, X' x § S, X' Xs Si). Then there is a commutative 
diagram 

(3.3.7.3) 

0 H°(X'Si,n°(£ ®nirt/8)o) #0(XSl)£) H°(XSl,£®Q.\ ,(̂ S1)et/'S'l̂  

0 i/0(X^,W0(^®^Xet/s)0)- tf°(x5,£) >H°{Xs,e®n\XgU/s) 

0 ^ ° ( X , f v ) -H°(X,£)- froVfr-Vfc%PM 

0 0 0 

where the rows and the second two columns are exact. It follows that the first 
column is also exact which implies the proposition. • 

3.3.8. — Let X —• S be a smooth, locally separated, and representable morphism with 
X a locally noetherian Deligne-Mumford stack. Let 

(3.3.8.1) G : M/C(Xet/S) — Modqcoh(X') 

be the functor sending (£, V) to 7i°(£ 0 ^x/s^O' Note that G is a left exact functor. 

Lemma 3.3.9. — The functor G takes injective objects in MIC(Xet/§) to injective 
objects in ModqCoh(X/). 

Proof — By 3.1.11 the functor G has a left adjoint which is exact since F : X —* X' 
is flat. • 

3.3.10. — Unfortunately we are interested in cohomology in the category of all 0%>-
modules in the topos X{is_et and not cohomology in the smaller category Modqcoh(X/). 
We therefore need to show that computing cohomology in either category yields the 
same answer. 

Let P?coh : Modqcoh(X/) —> Modqcoh(X ) be the pushforward of quasi-coherent 

sheaves, let D+(XJis_et) (resp. D+(Xet)) denote the derived category of bounded 
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below complexes of Ox'-modules (resp. C^'-modules) in X[is_et (resp. Xet), and 
let (j)' : D+(Modqcoh(X/)) —• D+(Xr) be the functor induced by the exact inclu
sion from Modqcoh(X/) to all sheaves of Ox1 -modules. We also have a functor <// : 
Z}+(Modqcoh(X )) —> Z}+(Xet). We then have derived functors 

(3.3.10.1) RP?coh ' £>+(Modqcoh(X')) — D+(Modqcoh(Xlt)) 

and 

(3.3.10.2) PP* : Z>+(X') — • D+(%t). 

Since the two functors 

(3.3.10.3) <jf o P̂ coh, P. o 0' : Modqcoh(X') — • ((^-modules in X^) 

are canonically isomorphic there is an induced morphism of derived functors 

(3.3.10.4) ft o ppqcoh(_)T xr,y,pri JDxo (//(-). 

Proposition 3.3.11. — TTie morphism (3.3.10.4) is an isomorphism of functors. 

Proof. — Since the relative Frobenius morphism F : X —• X' is finite and faithfully 
flat and quasi-coherent sheaf on X' embeds into a quasi-coherent sheaf of the form 
F*g for g G Modqcoh(X) (for T G Modqcoh(X/) consider T -+ F*F*F). From this one 
deduces that it suffices to show that the morphism (3.3.10.4) is an isomorphism when 
evaluated on quasi-coherent sheaves F*Q for Q G Modqcoh(X). 

Since F is affine and flat the functor F*coh : Modqcoh(X) —• Modqcoh(X/) is exact 
with an exact left adjoint. It follows that 

(3.3.11.1) RP?coh{F?cohG) ~ R(PF)foh(G). 

Since PF is affine the functor (PF)T°h is exact so we find that 

(3.3.11.2) RP?coh(F?cohg) ~ (PF)*g. 

To prove the proposition it therefore suffices to show that for every g G Modqcoh(X) 
and i > 0 we have 

(3.3.11.3) R ' P ^ ' i F ^ g ) ) T xr,y,pri = 0. 

Let U' —> X' be a smooth surjection with U' a scheme and let U'm —> X' denote the 
0-coskeleton. Let a : U. —> X denote the pullback of U'm by the morphism F : X —» Xf. 
If 7r : X^^i^, —• X(is_et denotes the resulting simplicial localized topos there is then 
a commutative diagram of topoi 

(3.3.11.4) 

l̂is-etlJy; 
%£¨% M¨£%¨M 

%£¨%£ Pu: 

î̂is-e 
P %MP%£ 
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Note that because of the usual problems with the lisse-étale topology [68] it does not 
make sense to speak about the simplicial topos U'mlis_et. Nonetheless, the localized 
topos 3CiiS_etjc// makes sense and is given by 

(3.3.11.5) N^x(is.et|t/;, 

where X(is_et\Uf denotes the category of sheaves in X(is_et over the sheaf represented 

by U'n. 
We then compute 

RP44>'(F?cohg)) ~ RP*(RTrtn*<p'(F?cohÇ)) 

(3.3.11.6) ~ RPu,*RÇ*TT*<l>'(F?cohÇ) 

~ RPui*t*ir*<t>'(FrhG), 

where in the third isomorphism we use the fact that £* is an exact functor. Let Gum 

denote the pullback of G to U9et, and let F : C/.,et —• U'met be the morphism induced 

by the projection. Then £*ir*(/)'(F?cohG) is simply the sheaf F*Gu.-

Lemma 3.3.12. — Let Z be a quasi-compact and quasi-separated Deligne-Mumford 
stack, and let f : Y —• Z be an affine morphism of algebraic stacks. Then for any 
quasi-coherent sheaf G on Y we have Rlf*G — 0 for all i > 0 (where /* denotes the 
pushforward functor for the morphism of topoi Yet —» Zet). 

Proof. — It suffices to show that for any étale morphism V —> Z with V an affine 
scheme the cohomology groups H%(Y Xz V,G) are zero for i > 0. This reduces the 
proof to showing that if Y is an affine scheme and G is a quasi-coherent sheaf on Y then 
Hl(Yet, G) is zero for i > 0. Let 7r : Yet —> Izar be the projection morphism from the 
étale topos to the Zariski topos. Then since G is quasi-coherent the map 7r*7r*C/ —• G is 
an isomorphism and RJ-K+G = 0 for i > 0. It follows that iP(Fet, G) ^ #*(>zar, G\YZAR) 
and the latter cohomology group vanishes for i > 0. • 

The lemma implies that the natural map Fu^Gu —• RFu.*Gu is an isomorphism 
since to verify this it suffices to show that for every natural number n the map 

(3.3.12.1) Fun*Gu\un —y RFun*Gu\uni 

where Fun denotes the morphism of topoi Un^et —> U'net. Therefore 

(3.3.12.2) RPu'A^^'^T^G) - RPu>.*RFu.*Gu ^ R{Pu>.FuMGu). 

On the other hand Pjji% Fjjm is also equal to the composite 

(3-3.12.3) U.,et — 2 — Xet %Et. 

It follows that 

(3.3.12.4) R{Pu;FvMGu) R(PF)*Rata*Ç ~ R(PF)*G, 
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where we use the fact that Q —• Ra*cr*G is an isomorphism by cohomological descent 
[49, 13.5.5] (see also [68, 6.14]). Combining (3.3.11.6), (3.3.12.2), and (3.3.12.4) we 
obtain an isomorphism 

(3.3.12.5) RP*{(t>'{F?cohQ)) ~ R(PF)*G. 

Since PF : X - » X' is affine (in fact finite) another application of 3.3.12 shows that 
Ri(PF)^Q = 0 for i > 0 and therefore we obtain the desired vanishing (3.3.11.3). 
This completes the proof of 3.3.11. • 

3.3.13. — Let 

(3.3.13.1) ^ : MIC(X/S) — • (<%/-modules in Xet) 

be the functor sending (£, V) to the quasi-coherent sheaf (PF)*£V. The functor \I> 
factors as 

(3.3.13.2) M / C ( X / S ) — M o d qcoh(X/) — ( < % > - m o d u l e s i n X e t ) . 

Prom the spectral sequence of a composite of functors and using 3.3.11 we obtain for 
every (£, V) a spectral sequence 

(3.3.13.3) E\q =RqP*(RpG(£,V)) => Rp+qV(E,V). 

By 2.5.4 and 2.5.9, for any object (£, V) G MIC(X/S) there is a natural isomorphism 

(3.3.13.4) T xr,y,priv) ~ n\e ® ííirt/g). 

We can therefore rewrite (3.3.13.3) as 

(3.3.13.5) Epq = RqP*(RpG(£,V)) (PF)*Hp+q(£ 0 fijyg). 

3.3.14. — Let £ ' be a quasi-coherent sheaf on x!et, £' := P*£, and let (£, V) be the 
module with integrable connection on Xet/S associated by 3.1.8 to £'. Let 5 —> § be a 
smooth surjection with 5 an algebraic space, and let Sm be the O-coskeleton. Denote 
X x§ S. by X. and X' x§ 5# by J\T¿. Then there is a commutative diagram 

(3.3.14.1) 

M/C(Xet/§) %¨£% MIC{X./S.) 

G G. 

Modqcoh(X') 
%MP% 

ModqCOh(^i), 

where a and (3 are the functors induced by pullback and G9 sends (£» ,V) to £ ^ . 
By 2.2.14, the functor a is an equivalence of categories, and /3 is an equivalence 
by descent theory for quasi-coherent sheaves. The sheaf (3RPG(£,V) is isomorphic 
to the sheaf Hp(£. ® ^ x . / s . ) wriich by the usual Cartier isomorphism is isomor
phic to £f\x'm 0 Fr°m this and descent theory we obtain an isomorphism 
RPG{£,V) ~ P*£f <g)e>x, ^x' /s* K 5 ' § is a second smooth surjection, and 
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/ : Sf —> S is a morphism over 8, then it follows from the construction that the 
isomorphism obtained using S' agrees with the isomorphism obtained using S. Since 
the category of smooth surjections S —> 8 is connected, it follows that the isomorphism 
ñpG(£, V) ~ P*£' <S>ox, ^x ' / s *s independent of the choice of S. In summary: 

Corollary 3.3.15. — For any p > 0 there is a natural isomorphism RPG(£, V) ~ 

P*£'®ox, Í2£,/S. 

3.3.16. — Combining 3.3.15, (3.3.13.5), and the projection formula 

(3.3.16.1) RqP*{£' ®ox, Í2$v/g) ^ RqP*{£') ®oKt í í ^ / f 

we obtain a spectral sequence 

(3.3.16.2) E™ = K>P.(S') ®0_,t Í2|7_ ( P F ) . ^ ' ^ ® n£/g), 

which we call the Cartier spectral sequence (recall that § —* S —• 8 is the Stein 

factorization of F$ : 8 —• § and that X ~ I x § § ) . 

Corollary 3.3.17 (The Cartier isomorphism). — Mi/i notation as in 3.3.14, if 8 
is Frobenius acyclic and £ is a flat quasi-coherent sheaf on X , then (3.3.16.2) 
degenerates and yields an isomorphism 

(3.3.17.1) (PF\HP{£ ® ilJL/g) — £* <S> np%jr 

Proof — This follows from 3.3.6 which shows that = 0 for q > 0. • 

Remark 3.3.18. — In the case when 8 and X are schemes, we recover the usual Cartier 
isomorphism. Indeed in this case X' = X , £ ' = £ , and in 3.3.14 we can take the 
constant hypercovers obtained by choosing S = 8. For a quasi-coherent sheaf £ ' on 
X' with associated module with integrable connection (£, V ) , the isomorphism 

(3.3.18.1) froVfr-V -F.Wp(£<g>il!l./s) 

provided by 3.3.17 has the property that its pullback to the constant simplicial topos 
X'# is equal in each degree to the classical Cartier isomorphism. Therefore 3.3.17 
coincides with the classical Cartier isomorphism in the schematic situation. 

3.3.19. — One of the main applications of 3.3.17 that we will use later is the following. 
Let 8' denote the stack 8 T so that F§ factors as 

(3.3.19.1) S 
MP% %¨£% s. 

Assumption 3.3.20. — Assume that the induced map in Dqcoh(S[is_et) 

(3.3.20.1) M§M/ RFS/T*OS 

is an isomorphism. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



124 CHAPTER 3. THE CARTIER ISOMORPHISM AND APPLICATIONS 

Note that since the morphism S' —> § is affine this assumption implies in particular 
that 8 is Frobenius acyclic. 

Let X —* § be a smooth locally separated morphism of algebraic stacks with X a 
Deligne-Mumford stack. Since the formation of cohomology commutes with smooth 
base change on the target, the assumption 3.3.20 implies that in the notation of 3.3.17 
we have 8 = S' and that 

(3.3.20.2) x' = X x§ 8' = X XT?FT T. 

We will often write X(p) for the stack X XT,Ft T. Rewriting 3.3.17 in this situation 
we obtain the following: 

Corollary 3.3.21. — Let £^ be a flat quasi-coherent sheaf on X^p\ and let (£, V) be 
the induced module with integrable connection on X/S. Then for every q > 0 there is 
a canonical isomorphism 

(3.3.21.1) Cr1 : £W ® í4,p)/§, — Fx/T*Hq(S ® il£/g), 

where F%/T X —> X^ is the relative Frobenius morphism. 

3.4. Ogus' generalization of Mazur's theorem 

3.4.1. — Let A be a p-adically complete and separated ring flat over Zp, and let 

M — Spec (A), M = Spf(A). Let S/M be a flat algebraic stack, and denote by Sn, 

Mn, An etc., the reductions modulo pn+1. Let 8 ^ := So XM0,FMO and assume 

given a flat lifting Ŝ 1) of SQ1̂  to M together with a quasi-compact and quasi-separated 

lifting 

(3.4.1.1) Fs/M : S — S*1* 

of the relative Frobenius morphism F§0/Mo : So —> S ^ . Also assume that So is 
Frobenius acyclic. 

Example 3.4.2. — An important example that we will generalize in subsequent chap
ters is the following. Let A = Zp and let S be the stack-theoretic quotient of 
Spec(Zp[x, y]/{xy — p)) by the action of Gm in which a scheme-valued section u e Gm 
acts by multiplication by u on x and multiplication by u~l on y. In this case the 
stack SQ1̂  is isomorphic to the stack quotient 

(3.4.2.1) S ^ ~ [Spec(Fp[x, y]/(xy))/Gm], 

where the action of Gm is as above. The relative Frobenius morphism F§0/Mo : So —> 

SQ1̂  is given by the morphism of stacks over Fp given by the maps 

(3.4.2.2) Fp[x, y]/{xy) — Fp[x, y]/{xy), x>—+xp,y^ yp, 

(3.4.2.3) Gm—>Gm, ui—>up. 
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We claim that in this situation if we take S^) = § then there does not exist a 
morphism F : Si —> S ^ lifting F§0/M0- Suppose to the contrary that such a lifting 

(3.4.2.4 F : [Spec{Z/p2[x,y}/(xy -p))/Gm[ > [Spec{Z/p2[x,y]/(xy -p))/Gm] 

exists. Let P —> [Spec(Z/p2[x, y]/(xy — p))/Gm] be the Gm-torsor 

(3.4.2.5) Spec{Z/p2[x,y]/(xy-p)) [Spec(Z/p2[z,y]/(xy - p))/Gm] • 

and let P' denote F*P. Then P and P' are two Gm-torsors over 

(3.4.2.6) [Spec(Z/p2[x,y]/(xy - p))/Gm; 

whose reductions modulo p are isomorphic. Using the exponential sequence 

(3.4.2.7) 0 LMOM JUHK¨% %¨£% M%£M%M 0 

one sees that such deformations are classified by the group 

(3.4.2.8) ^ ( S o . O s o ) . 

On the other hand, using the fact that Gm is a reductive group one sees the 

(3.4.2.9) froVf ~ H1 (Spec(Fp[x, y]/(xy)), OYp[Xiy]/(xv) %£¨¨ 
£ 

= 0. 

It follows that P and P' are isomorphic Gm-torsors and therefore F lifts to a morphisir. 

(3.4.2.10) f:Z/(p2)[x,y]/(xy-p)- %/{p2)[x,y}/(xy ~P) 

whose reduction modulo p is the map (3.4.2.2). It follows that f(x) = xp + phi and 
f(y) = yP + ph2 for some hi, h2 G Z/(p2)[x,y]/(xy — p). On the other hand, since / 
is a ring homomorphism we have 

(3.4.2.11; P = f(x)f(y) = (xp+phi)(yp+ph2)=pp+p(hiyp + h2xp) +p2hih2 

which is impossible. 
Nonetheless, if we define Ŝ 1) to be the stack quotient 

(3.4.2.12) S ^ := [Spec(Zp[x,y]/(xy-pp))/Gm} 

then we can lift the relative Frobenius map So —• SQ to a morphism S —> Ŝ 1) by the 
formulas 

(3.4.2.13) Zp[x,y]/(xy-pp) >Zp[x,y]/{xy -p), x\—> xp,y 1—> yp, 

(3.4.2.14 Gm —> Gm, U 1—• up. 
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3.4.3. — Let X —» So be a smooth locally separated morphism of algebraic stacks 
with X a Deligne-Mumford stack. Define S, X , and X' as in 3.3.1. Denote by Fx/Mo 
the composite 

(3.4.3.1) X 
Fx/st 

X' M%£M% 
X X M O , F M 0 MO-

For each n > 0 let Sn denote the relative spectrum Spec§(i)(F§n/Mn*0$n), where 

F§n/Mn : §n —* §n ^ denotes the map obtained from F§/M by reduction. 

Lemma 3.4.4. — Let n be a nonnegative integer, and let j : c(l) bn-l 
c(l) on be the 

inclusion. Then the natural map 

(3.4.4.1) f(Fsn/Mn*0$nUs_et) •^Sn-l/Mn-i + ̂ Sn-ijis-et 

is an isomorphism 

Proof. — Because S is flat over Zp there is a natural exact sequence of quasi-coherent 
sheaves on Sn iis_et 

(3.4.4.2) 0 Os0 
M/%£ %£%%£ ¨LM¨%£ 0. 

For any quasi-coherent sheaf T on §n_x we have — T. Hence it suffices to 
show that the natural map 

(3.4.4.3) Coker(xp" : FSri/M^öSo - F8n/Mn*0Sn) froVfr-Vf 

is an isomorphism. Thus the lemma follows from the fact that R1F§0/M0*O§0 — 0 by 
the definition of Frobenius acyclic stack (3.2.1). • 

Corollary 3.4.5. — For every n > 0 the sheaf F§n/Mn*Osn is a locally finite presented 

quasi-coherent sheaf on §n\is-et' 

Proof. — By 3.4.4 it suffices to consider the case when n = 0 which follows 
from 3.2.13. • 

3.4.6. — The lemma enables us to define a coherent crystal 0§(i) jM in (X[j2et/S )̂cris 

as follows (here S^) denotes the projective system {Sn ^} as in 2.7.1; see also 2.7.5 for 
the notion of crystal in this context). For any object 

(3.4.6.1) 

U T 

M/%£¨% M%£%£ 

of Cris(X[I2et/S^1^), the ideal of U in T is killed by pn for some n by assumption, 

and hence the map r factors through a map rn : T —> Sn^ for some n. We can then 
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consider the quasi-coherent sheaf r*FSn/Mn*0sn lis_et on Tet. If rm : T —• § ^ is a 
second factorization of r then 3.4.4 yields an isomorphism 

(3.4.6.2) rn-^§n/MTl*^STl)iis.et — rm^Sm/Mm*^§m,lis-et 

and these isomorphisms satisfy the usual transitivity condition for three choices of 
factorization. It follows that we can define a crystal 

(3.4.6.3) fcoVfc=VKl¿ 

on (X||2et/S^)cris by associating to (U T) the global sections over T of 

(3.4.6.4) nTxr,y,priJDx>7(y)lis-et 

for any choice of factorization rn. 

Remark 3.4.7. — Because we don't have a good notion of formal algebraic stack, we 
have adopted the above rather clumsy definition of G§(i)/M. In the case when S = S 

is a scheme we can give a better definition. Let denote the formal completion 

of along p. The compatible system of sheaves FsN/Mn*@sn over the reductions 

define a sheaf E of 0g(1) modules on the formal scheme The crystal 0§(i) JM *S 

then simply the pullback of the sheaf E under the natural morphism of ringed topoi 

(3.4.7.1) (^et/*(1)) 
:ris 

PM¨%£ 

Remark 3.4.8. — Let A# be a second p-adically complete and separated flat Zp-

algebra and f : A —> a morphism of rings. Let M# (resp. M # , etc.) denote 

Spec(A#) (resp. Spf(^4#), etc.), and write also / : M# —• M for the morphism 

induced by the morphism of rings / . Let S # / M # be a flat algebraic stack, and 

S#W/M# a flat lifting of §f(1) := §f xM# M* together with a lifting of the 

relative Frobenius morphism 

(3.4.8.1) froVfr-Vf ¨%£%¨£%P 

Suppose given a commutative diagram over / 

(3.4.8.2) 

X* h X 

a* ¨§% 

MP%£M 9 %MP 

FS#/M# FS/M 

s#(D 9W ¨PM%M£ 

where a (resp. a#) is a smooth locally separated morphism of algebraic stacks which 

factors through So (resp. Sjf), and X# and X are Deligne-Mumford stacks. 
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Then there is an induced morphism of crystals in (X^^ /S^^cr i s 

(3.4.8.3) froVfr- froVfr-V 

defined as follows. For any object (U# T# ) € Cris ^ ^ ^ / S ^ 1 ^ ) which admits a 
morphism 

(3.4.8.4) 

U* 
z 

u 

M§%M§ %¨£% 
T 

to an object of Cris ^ / S ^ ) 
over the diagram 

(3.4.8.5) 

x#w h LOM% 

LOKM %¨£% %£%P 

the sheaf h*Q§(i)/MIT# on êt is equal to z^Og(i)/M\T- Choose an integer n such that 
we have a commutative diagram 

(3.4.8.6) 

%£PM ZT T 

r* r 

On (1) MP%£ c(l) 

FS#/M# FS/M 

n %£MP 

Then the map 

(3.4.8.7) ^*0S(!)/MIT# — • @S#(1)/M#IT# 

is defined to be the map 

(3.4.8.8) ZTr*Fs/M*0$r r#*g{1)*Fs/M*0$n froVfr-VfMPLO 

This defines the morphism (3.4.8.3) locally. We leave to the reader the task of verifying 
that the above constructed morphism is independent of the choices and therefore 
defined globally. 

Remark 3.4.9. — From the commutative square 

(3.4.9.1) 

X 
FX/M0 M%£M 

%£% FS/M M%£M 

ASTÉRISQUE 316 



3.4. OGUS' GENERALIZATION OF MAZUR'S THEOREM 129 

we obtain a morphism of topoi 

(3.4.9.2) FX/M0 • (Xet/S) cris • (X^>/S«)cris 

such that the diagram 

(3.4.9.3) 

(Xet/S) ens 
FX/M0 

(X«/§(1))cris 

%£¨%£ MP%£M 

%£PM FX/M0 T(l) 
êt 

commutes. We define a morphism of crystals in (Xet/S)Cris 

(3.4.9.4) FX/M0&SM/M y °xetß 

as follows. For an object ([/<—> T) € Cris (Xet/§) which admits an F§/M-morphism 

(3.4.9.5) s : (U T) — • (ET <-> T) 

to an object (U1 <-* T1) e Cris ^ v S W ) , the restriction of FX/M0@^/M to Tet is 
equal to the pullback 

(3.4.9.6) ST(FS/M*Osn)\Tlt 

where n is an integer such that T —• S and T' —> Ŝ 1) factor through §n and Sn̂  
respectively. From the commutative diagram 

(3.4.9.7) 

T ST 
V 

s FS/M § d ) 

one obtains a morphism -Fs/M.Cs„lTe't $T*OT which defines a morphism 

(3.4.9.8) froVfr-Vfco S^ST*OT 
adjunction 

Or-

This defines the morphism (3.4.9.4) locally. To define the map (3.4.9.4) globally it 
remains to show that the above locally constructed map is independent of the choices 
so that we can glue them to get a global map. This we leave to the reader. 

By adjunction the map (3.4.9.4) induces a morphism 0§(i) /M ~* FX/M0*OXV T/§ 

which by the commutativity of (3.4.9.3) defines a morphism 
(3.4.9.9) 

Hux(1) ßw*®S{1)/M - > ^xa)/s(i)*^x/M0*öXet/g • FXo/M0*Ruxß*°Xetß 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



130 CHAPTER 3. THE CARTIER ISOMORPHISM AND APPLICATIONS 

3.4.10. — Let T be a topos. As in [8, 8.20], for a complex C* of sheaves of Л-modules 
in T write r]C* for the subcomplex of C* which in degree i > 0 is 

(3.4.10.1) { / e plCl\df e pi+1Ci+1}, 

and in degrees i < 0 is equal to C \ If C* —> D* is a map of complexes with each 
Сг and JD2 p-torsion free, then by [8, 8.19] the induced map r/C* —• rjD* is a quasi-
isomorphism. Since A is assumed flat over Zp, we can therefore define a functor 

(3.4.10.2) hrj : DT(A) —> D^(A) 

by sending a complex C# to rjP* for any flat resolution P* —> C* of C*. More generally 
Lr/C* is equal to r)P* where Pe is any complex of Л-modules quasi-isomorphic to G* 
and with each Рг p-torsion free. Note also that there is a canonical map 

(3.4.10.3) Lr? —> id 

induced by the inclusion r)P* С P*. 

Theorem 3.4.11. — Let ( S , F § / M : § &e as in 3.4-1, and let X —• So be a 
smooth representable morphism of algebraic stacks. Then the composite morphism 
obtained from (3.1.9.9) 

(3.4.11.1) ^х^>/§(1)*(®з(1)/м) Fx/Mo * Ruxet /s* (°xet /s ) 

factors as an isomorphism 

(3.4.11.2) Лгхх£>/8<1).(в$(1)/м) FX/Mo * ^ ^ X e t / S * (0Xet /8 ) 

composed with the map 

(3.4.11.3) Fx/Mo^r]RuXet/^{0%et/%) * FX/M0*^xet/s*(OXET/§) 

induced by (3.4.10.3). 

The proof is in several steps 3.4.12-3.4.27. 

3.4.12. — Consider first the case when there exists a commutative diagram of stacks 

(3.4.12.1) 

X г MP% s S 

Fx/мо Fy/м FS/M 

%£M i' %£MP MPL %£OM 

where s and sf are smooth, and i and i' are closed immersions, and Fy/M Txr,y,pri 

is a lifting of the relative Frobenius morphism of ^o/Mh and y and are Deligne-
Mumford stacks. 
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Let denote the p-adic completion of the divided power envelope of X̂ 1) in ^ \ 
and let be its coordinate ring viewed as a sheaf on The crystal 0§(i)/M M 
(XgJVŝ )cris then corresponds to a P^-module £ with integrable connection 

(3.4.12.2) V:£ £®o (i: ^y(l)/g(l) 

compatible with the canonical connection on UKX). Ihis module with integrable con
nection (£, V) can be described as follows. 

For each n, let denote the base change of to := Spec§(i) (irsN/Mn*Osn)5 

and let 7T : —> denote the projection. Then the module with integrable 
connection (fn,V) obtained from (£, V) by reduction modulo pn+1 is equal to the 
pullback to of 7r*C\j(i) with connection 

(3.4.12.3) 7г*(а) : 7г*Отг(1) froVfr-Vf ¨£%PLMO froVfr-Vf¿ 

The right hand side of (3.4.11.2) can be described as follows. Let D be the p-adic 

completion of the divided power envelope of X in y, and let V be the coordinate 

ring of D viewed as a sheaf on yet- Let ^pet/§ denote the complex V ®Oyet ^yET/M 
with differential induced by the canonical connection on V. Let N* C №pet/§ be the 
subcomplex with Nl equal to the sheaf of sections of the form pLLJ G ^pet/§ with 
Txr,y,priJDx>7(y)l 

Lemma 3.4.13. — The sheaf of rings V is p-torsion free. 

Proof. — Since the formation of divided power envelopes is compatible with flat base 
change on §, we can by base changing to a smooth cover S —> § by a scheme assume 
that § is a scheme. Furthermore, for a cartesian diagram 

(3.4.13.1) 

Xi MOLMP 

p 

x MOLP 

with p étale, the induced morphism of divided power envelopes D\ —•> D is flat (in 
fact the construction of the divided power envelope D in the proof of 1.2.3 is an étale 
local construction on y). It follows that the assertion of the lemma is étale local on 
y, and hence we may also assume that X and ^ are schemes. In this case the result 
follows from [8, 3.32]. • 

Corollary 3.4.14. — The complex N* represents hr]Rux t^(Ox t/g). 

Proof. — This follows from 3.4.13 and [8, 8.19]. 

Lemma 3.4.15. — The natural map froVfr-Vf £%¨P£%%¨£ factors through 

froVfr-VfcoV 
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Proof. — Since V is p-torsion free, it suffices to show that if UJ £ £ ® 
is a local section, then the image of UJ (resp. duo) in F^I_1/Mi-1*^x>et<^z/pi/si i 
(resp. -^yi/Mi*^p"Jg)z/(pi+1)/s-) 1S zero- Furthermore, this can be verified after mak
ing a smooth base change 5 —> S, and hence it suffices to consider the case when 8 is 
a scheme. In this case the result follows from [8, 8.21]. • 

Proposition3.4.16. — The induced map £ 0 Q*(1),§(1) —» Fy/M*N* is a quasi-
isomorphism. 

The proof of this proposition occupies 3.4.17-3.4.24. 

3.4.17. — Let W —> У 1̂) be an etale morphism with W an affine scheme, and let 
V —* У denote W Xum т?..,.. У so that there is a cartesian diagram 

(3.4.17.1) 

V > w 

У 
££%¨£%¨MP 

у*1'. 

Since VQ —> Уо is étale, the diagram 

(3.4.17.2) 

froVfr-VfcoVf 

Ус 
%£¨%%£ M£%P 

is cartesian. It follows that both Wo and VQ ^ are étale y ̂ -schemes whose pullbacks 

along the relative Frobenius morphism FyQ/M0 • yo —> y ^ come with isomorphism to 

VQ- Since the map Fy0/Mo is radicial and surjective the pullback functor 

(3.4.17.3) FSo/M0 : (étale yo1}-SPaces ) > (étale Уо-spaces) 

is fully faithful (this follows from the same argument used in [28, IX.4.10] in the 
setting of schemes). Consequently, there is a unique isomorphism Wo ^ VQ1^ whose 
pullback to yo induces the identity morphism Vo —> Vo. Write V^ for W viewed as 
a lifting of VQ ^ using this isomorphism, and let FV/M : V —» V ^ 1 ) be the projection 
so that there is a commutative diagram 

(3.4.17.4) 

V 
FV/M M%P£ 

4-
У 

Fy/м y w 
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Let U denote X Xy V. Using a similar argument to the above, one sees that is 
canonically isomorphic to X^ Xy(i) V^1). We then obtain a commutative diagram 

U > V > S 

(3.4.17.5) 
froVfr-VfcoVfc=VKl¿ FS/M 

£/(D > > §(!) 

mapping to (3.4.12.1), and with U, V, and affine schemes. To prove the proposi
tion it suffices to prove the proposition for (3.4.17.5), and hence we may assume that 
both y, X, and are affine. 

After replacing S by an étale covering we may also assume that there exists a 
smooth lifting y of X to S. We reduce to the case when y = y as follows. Choose a 
lift 

( 3 . 4 . 1 7 . 6 ) F s / M : g _ g ( D

of the relative Probenius of X, and let Z denote y x§ y with lifting of the relative 

Probenius 

(3.4.17.7) FZ/M : Z — ~ y ( 1 ) x s ( 1 ) ^ 

given by Fy/M x ^y/M* (resp. TVg, denote the complex obtained from 

the above construction using y (resp. y, 2.). Let £y (resp. £g, denote the module 

with integrable connection defined by ©§(i)¡M o n êt (resp. y et, &et)- Then there are 
commutative diagrams 

(3.4.17.8) 

p r l s | t £ z ® í í * ( 1 ) / s ' pri.JFz/M.^z 

£y <8) í í * ( 1 ) ^ s ( 1 ) 

%¨££% 

and 

(3.4.17.9) 

pr 2 . fz®íí5;( i) / s 

froVfr-Vfc 
¨oVfc=VKl¿ 

f y 0 f i5(i)/S(i) "9-

The same argument used in the proof of 2.3.2, shows that the p-adic completion of 

the divided power envelope of X in Z is affine. From this and 2.7.8 it follows that 

the vertical arrows in (3.4.17.8) and (3.4.17.9) are quasi-isomorphisms, and that in 

order to prove that S% ® ^* (i)/§ ~~>* FZ/M*NZ is a quasi-isomorphism it suffices to 

show that the bottom horizontal arrow in either of the above two diagrams is a quasi-

isomorphism. It therefore suffices to consider the case when y = y. 
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3.4.18. — Assuming that the reduction modulo p of y is X, we reduce the proof to 
the classical version as follows. Since the assertion is etale local on y we may also 
assume that y is an affine scheme. 

Let S —• S be a smooth surjection with S an affine scheme, and let 5 . denote the 
O-coskeleton. Choose a morphism FS/M S —• S := §x§(i) 5^) such that the diagram 

(3.4.18.1) 

FS/M 
S S 

S Fs/M) S 

commutes. Let X'M (resp. XM) denote the simplicial algebraic space obtained from 

X' —» So (resp. X —> So) by base change to So,», and let Fx%/s0,. : XM —> X'9 be the 

relative Frobenius morphism. Let X denote the relative spectrum SpecX(i) (P*0x') 

as in 3.3.1, and let A' : X'9 t —• Xet be the natural morphism of topoi. Write 

Fx/s0 : X —• X' for the composite P o Fx/s0-

For an integer i > 0, let ^x/s0 (resP- ^x./s.) denote the kernel of the map 

d : QL /O —> f ^ 1 , - (resp. d : Cllv /Q —> fT^1 /c ), and let BX-,-

(resp. P^#/5o J be the image of fi*^ (resp. fi£at/So>#). 

Lemma 3.4.19. — The natural maps 

(3.4.19.1) FX/S0*ZX/S0 froVfr-Vf 
F X/So*BX/S0 fcoVfc=V 

are isomorphisms. 

Proof. — The proof is by induction oni. If i = 0, the statement for the Bl is trivial. 
For the Z0,s, note that by the Cartier isomorphism there is a canonical isomorphism 
Z^y§o ~ and ^ x . / S o . = With these identifications the map in question 
becomes the canonical map 

(3.4.19.2) 0 ^ t - * R K O x , ^ R P * O x . T x r , y , p r i 

which is an isomorphism by the definition of a Frobenius acyclic stack. 
Next we assume the result holds for i and prove it for i + 1. To obtain the result 

for the P2+1, observe that there are exact sequences 

(3.4.19.3) 0 Zi 
X/SQ 

%£¨%PM nX/S0 0 

(3.4.19.4) 0 Xm/Soj9 * ^X./So,. 
02+1 > 0, 

and hence the result for the P2+1 follows from the result for the Z%. To get the result 
for the Zt+1, note that the Cartier isomorphism (3.3.17) yields exact sequences 

(3.4.19.5) 0 - froVfr-VKl¿ ^X/So froVfrKl¿MP%P -> 0 

(3.4.19.6) 0 - • P*+1 
Xm/So,9 

X%/So,M UX'JS0t. 
• 0. 
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Consideration of the distinguished triangles arising from these exact sequences to
gether with the definition of a Probenius acyclic morphism then yields the result 
for Z*+1. • 

3.4.20. — Let y denote the formal algebraic space [46, V.2.1] obtained by completing 
y along (p) C Oy, and let Y9 denote the p-adic completion of the simplicial algebraic 
space Ym := y x§ Sm. Note that the underlying topos of y (resp. Y.) is canonically 
identified with the topos Xet (resp. X9iet). 

Lemma 3.4.21. — Let T be a coherent sheaf on y, and let be the pullback to Y%. 
Then the natural map 

(3.4.21.1) Fx/§0*f -^RK(Fx. /So9*T.)PMOL 

is an isomorphism. 

Proof. — Consideration of the commutative diagram of topoi 

(3.4.21.2) 

%£¨%£ KO%M% 
^•,et 

A A' 

Xet 
Fx/s0 

x! 

implies that it suffices to show that 

(3.4.21.3) froVfr-VfcoVfc=VKl¿ 
froVfr-Vffc=VKl¿ 

and that the natural map 

(3.4.21.4) 
froVfr-Vf 
coVfc=VKl¿ 

is a quasi-isomorphism. 
To prove that the maps in (3.4.21.3) are quasi-isomorphisms, define topoi N x X9jet 

and N x X'met as in [8, proof of 7.20]. Recall that the topos N x X.,et (resp. N x Xfmet) 
is the topos associated to a site made of pairs (n, £/), where n G N and U G Et(X.) 
(resp. U G Et(Xf9)). A sheaf on N x Xm^et is simply a projective system of sheaves on 
X#5et> and similarly sheaves on N x X'9et are projective systems of sheaves on Xfm et. 
There is a natural commutative diagram of topoi 

(3.4.21.5) 

N x X.tet 
%£¨%£ 

MOLPM% 

3* MP% 

¨MP% Fx/s ¨£% 

where j#* and j ' ^ send a projective system of sheaves T% to Y\mTm. Let {^n,»} be the 
sheaf on N x X#)et whose value on (n, ([r], U)) is the value of the pullback of T to the 
unique lifting of U to an étale yr x§ Sn-scheme. Then T. ~ jl{^n,m}, and by the ar
gument of [8, 7.20] fTj .*{^n,.} - 0 for i > 0. Similarly, R^UFNXX./S.A^U,.}) = 0 
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for i > 0. Now to verify that Pzi?Nxx,/5.*{^rn,«} = 0 for i > 0, it suffices to show 
that each of the Tn^ are acyclic for Fx./sm* which is clear since Xn?et —> Xfnet is an 
equivalence of topoi. Thus we find that the map 

(3.4.21.6) Fx./s.*F. — RFx./s.*F. 

is a quasi-isomorphism, and the same argument gives that Fx/So*^7 — ̂ ^x/So*^7-
To show that the map (3.4.21.4) is a quasi-isomorphism, we proceed as follows. 

Consider the commutative diagram 

(3.4.21.7) 

N x X.tet 3* X0iet 

NxA A 

N X Xei 3 
Xet? 

Define {Fn} to be the sheaf on N x Xet whose value on (n,U) is equal to the value 
on the unique lifting of U to Yn of the pullback of f to 7n. Then T — 3*{Fn} 
and T. = j.Hcj^n,*}- Moreover, as above {Fn} is acyclic for j * . Thus to show 
that (3.4.21.4) is an isomorphism, it is enough to show that 

(3.4.21.8) {Tn} ~ R{N x A).{ .Fn, .} . 

For this it suffices to show that for each n the natural map Tn —> Rk*Tn,. is an 
isomorphism, which follows from [49, 13.5.5]. • 

—, 

3.4.22. — Define a formal algebraic space y as follows. The underlying topos is Xet, 

and the structure sheaf is the sheaf which to any étale scheme U —• X associates 

(3.4.22.1) lunT{Un,0Un), 
n 

where Un denotes the unique lifting of U to an étale scheme over 

(3.4.22.2) K := Specyu)(FWMn.0y J . 

It follows from 3.4.4 that this sheaf of rings defines a p-adic formal space y and that 

there is a canonical essentially affine morphism of p-adic formal spaces P : y —> yd) . 

There is also a natural projection Y'm —> y . 

Lemma 3.4.23. — Let Q be a locally free coherent sheaf on y , and let Qm be the pullback 

of G to Y.'. Then the natural map G —> R^Gm is an isomorphism. 

Proof. — Consider the commutative diagram of topoi 

(3.4.23.1) 

froVl¿ ii Vl¿ 

NxA7 A' 

N x X l t 
i x' 
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and let {Gn} be the sheaf on N x x'et which to any (n, £/) associates the value of the 
pullback of G to xèn on the unique lifting of U to an étale yn-scheme, {Gn} the sheaf 
on N x X'm et whose value on (n, ([r], U)) is the value of the pullback of G to the unique 
lifting of U to an étale y/r x§ Sn-scheme. Then as above, to prove (ii) it suffices to 
show that the natural map {Gn} —> R(N x h.')*{Gn^} is an isomorphism, and for this 
it suffices to show that each of the maps Gn —• R&*Gn,* is an isomorphism. Now the 
case n — 0 follows from the definition of a Frobenius-acyclic morphism (3.2.1), and 
the case of general n follows from this by induction using the exact sequences 

(3.4.23.2) o > g1____ghty____gn -•Tx¨%MP > o. • 

3.4.24. — Let Q,^ _ denote the complex whose i-th term is lim .- and whose 

differential is induced by differentiation. Then by construction of 9§(i) jM there is a 
canonical isomorphism 

(3.4.24.1) f ® f i ; ( 1 ) / g ( 1 ) ~ P . f i | / r 

Let M9 C Fx9/sm*ftl> /3 be the maximal sub-complex with Mk contained in 

PkFx./s.*№y9/s9 for everY k- % I9' !-5]5 the natural map tt\>,/§m -> F*./s.*n*>/§. 
induces a quasi-isomorphism Q*>/ ~ ~ MV We then have a commutative diagram 

fîî _ • TV* 
y/s 

(3.4.24.2) " |& 

• R A i ^ / g . > RKM\ 

where the map a is a quasi-isomorphism by 3.4.23. Thus to complete the proof 
of 3.4.16 it suffices to prove that the natural map b : N* —• RA'+M* is a quasi-
isomorphism. This follows from 3.4.19, the definition of a Frobenius acyclic stack, 
and the exact sequences 

(3.4.24.3) 0 • • p«îîi/gTxr,y,priJDx>7(y)lB*+/8o • 0 

(3.4.24.4) 0 • M* • P^Y'/S'Txr,y,priJDx>7(y)lBx'/st ' °' 

where 7r and TT* are defined by sending plw to the image under d of the reduction of uo. 
This completes the proof of 3.4.16 and hence also 3.4.11 in the lifted situation. • 

3.4.25. — It remains to deduce 3.4.11 in general from the result in the lifted situation. 
This is done as in the classical case [8, proof of 8.20] using cohomological descent. 

Since X is a Deligne-Mumford stack, there exist an étale cover U —> X and embed
ding U oîU into a smooth S-scheme IX. Furthermore, we may assume that U is 
an affine scheme, in which case there also exists a lifting FU/M : IX —> IX̂ 1̂  over F§/M-
Let Um be the 0-coskeleton of U —> X, and let 1X# be the 0-coskeleton of IX —> §. Then 
there is a canonical closed immersion U% 1X# of simplicial algebraic spaces. 

Let 7T : U. —• X and IT^ : be the projections. 
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Lemma 3.4.26. — The natural maps 

(3.4.26.1) Rux<£/s*(0s(1)/m) —> ^7r*1)^%(i)/§(i)*(0s(1)/M) 

and 

(3.4.26.2) LT?««Xrt/8.(0Xat/s) — • ^ * L ^ % . e t / § * ( ° i w § ) 

are isomorphisms. 

Proof. — That (3.4.26.1) and the natural map 

(3.4.26.3) # % e t / § . ( 0 W § ) — ^ ^ w s . ^ t W l ) 

are isomorphisms follows from 1.4.24. In addition, by [8, 8.19] for any p-torsion free 
complex A9 the complex Lr/A* is represented by the subcomplex of A* which in degree 
i is equal to {a e plAl\da £ Prom this it follows that (3.4.26.2) is also an 
isomorphism. • 

3.4.27. — To construct the desired isomorphism in 3.4.11, it therefore suffices to 
construct an isomorphism 

(3.4.27.1) ^(e)/g(D.(©8(D/M) — • Fu.lM^r]RuU9et/%{0U9et/l). 

Let Vm (resp. V^) denote the coordinate ring of the divided power envelope of Um in 

It. (resp. U.1^ in U.1^), and let £ denote the P.^-module with integrable connection 

on U^H corresponding to 0§(iwM. Let TV* c Q9 - denote the subcomplex defined 

in 3.4.12. By 3.4.14 the complex N9 represents hrjRu^^^Ojj^^), and by 3.4.16 

the natural map 

(3.4.27.2) £ ® n^(i)/g(1) — FU./M^U./S 

induces a quasi-isomorphism £ <g> ^(i)^s(i) ~* Fum/M*N9. Since 

(3.4.27.3) £ ® fi^/sd) ~ Ruuill/s(vSe^/M) 

this defines the arrow in 3.4.11 for general X. 
Finally if U' —> X is a second choice of covering with lifting U' <—• II', then con

sideration of the product U x%U' ^ U x§Uf shows that the isomorphism in 3.4.11 
defined by U <-> IX and U' ^ W are the same. This completes the proof of 3.4.11. • 

3.4.28. — The complex Rux(i)/$(i)*(Q$d) /M) can be described in terms of the 
stack X . 

Assume that for every integer n the natural map 

(3.4.28.1) 3nFs/M*Osus-et —> FSn/Mn*0$nMs_et 

is an isomorphism. 
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Remark 3.4.29. — The assumption that (3.4.28.1) is an isomorphism is not essential 
(see 3.4.36 below), but it holds in every example we consider. In particular, if the 
morphism F$/M : § —> S^1) is proper then it holds (note that we know by 3.2.17 that 

the morphism F§0/MQ ' §o —• *s ProPer)- To see this, consider the short exact 
sequence (using the flatness of S / M ) 

(3.4.29.1) 0 Vl¿ Vl¿ Vl¿ jn*Osn ± n 

Taking cohomology we obtain an exact sequence 

(3.4.29.2) 0 - F§/M*Os ^ Fg/M*Os — jn*FSn/Mn+0Sn —> i^Fg /M .Og . 

Since Fg/M is proper and P1P§N/Mn*C,sN/MN — 0 f°r all n since §o is Frobenius 
acyclic, it follows from the stack-version of the theorem on formal functions [68, 11.1] 
that P 1 F § / M * O S = 0 over some open substack of S^1) containing 8 ^ . In particular 
the boundary map 

(3.4.29.3) *FSn/Mn+0Sn —> i^Fg/M.O 

in (3.4.29.2) is zero which gives an isomorphism 

(3.4.29.4) jn*jnFs/M*Os = Co\m(Fs/M*08x£Fs/M*08) ~ jn*FSn/Mn*0Sn. 

Applying jn it follows that (3.4.28.1) is an isomorphism. 

3.4.30. — Define S to be the relative spectrum Spec§(i) (F§/M*0§liB_et). Then there is 
a natural commutative diagram 

(3.4.30.1) 

X' 
(3 

X*1) 

S 
M%¨MMP 

and hence also a morphism of topoi 

(3.4.30.2) P : (^et/S)cris *FSn/Mn+0S.O 

Lemma3.4.31. — For any object (¡7, T, <5) G CTIS(X^/S^), the divided power struc
ture 6 extends to the ideal ofU := U x§(i> 8 inT :=T x$(i) 8. 

Proof. — The assertion is etale local on U so we may assume there exist a smooth 
lifting U -+ 8^) of U_ to Sd) and a retraction r : T -> U. By_[7, 1.2.8.2], the divided 
power envelope of U in T is equal to the base change to T of the divided power 
envelope of U in U :=U x§(i) 8. It follows that is suffices to consider the case when 
T = U which is immediate since 8 is flat over Zp. • 

Lemma 3.4.32. — There is a natural isomorphism © § ( I ) / M *FSn/Mn+ 
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Proof. — For any object T G Cris(XetVs^)> the- preceding lemma shows that the 
inverse image sheaf (3~l(T) is represented by U T. Since T —*• T is affine this 
implies that Rl/3*0—, .9. = 0 for i > 0 and that i?°/3*CV is equal to the sheaf which 

to any T associates the pullback of -Fs/M*(Osli8_et) which by definition is G§(i)/M. • 

3.4.33. — Let 

(3.4.33.1) a : №is-et/̂ )cris • (Xet/S)cris 

be the natural morphism of topoi defined as in 1.4.15. 

Lemma 3.4.34. — The adjunction map O-, ^ • ita* CL-, a 
l̂is-et/0 

induces an isomor

phism 

(3.4.34.1) *FSn/Mn+.O ^p*^x;is .et /s*°x; is .et /s lx: t -

Proof — The assertion is étale local on x', and hence we may assume that there 
exists a lifting y of X to a p-adically complete formal scheme y formally smooth 
over S. Let S —• S be a smooth cover by a locally separated scheme, set 

(3.4.34.2) X':=X'xgS, y ' i ^ y ' x g S , 

and let X'% (resp. Y#') be the O-coskeleton of the morphism X' —* X' (resp. the 
simplicial formal algebraic space sending [n] G A to lim^(Y^ x§n • • • x§n Y^)). 

For any [n] G A, let Sm[n] denote the sheaf on Cris(X{is_et/§) which to any object 
(17, T, 5) associates the set of liftings T —> Sm[n] (where we write 5#[n] instead of the 
more customary Sn so as not to get confused with reduction modulo pn+1) of the mor
phism T —> §, and let (Xjis_et/S)Cris|s#[n] denote the associated topos. The formation 
of this localized topos is functorial so we obtain a simplicial topos (X{is_et/S)cris|^ by 

(3.4.34.3) [n] I > (Xiis_et/S)cris|s#[n]-

For any [n] G A, there is a natural inclusion Cris(X'net/S9[n]) C (X(is_et/S)Crisls#[n] 
which induces a moronism of toooi 

(3.4.34.4) №is-et/§) 
cris I o rnj 

* (x;iet/5.[n])cris 

and also a morphism of simplicial topoi 

(3.4.34.5) b- №is-et/")cris|S> > (-X.,et/'S.)cris-

There is a commutative diagram of topoi 

(3.4.34.6) 

ens cr 
b 

(X'.,et/S.) ens 
n*:,et/*« MP%¨L 

a 

(*̂ iis-et/̂ )cris 
a. 

(^et/S)cris 
u / — 
Set/*. MP%£ 
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Since S covers the initial object of the topos (X(is_et/S)cris, the adjunction map 
0~, / Q — > Ra*0,v> / Q \ i is an isomorphism (1.4.24). Thus to prove the lemma 

Xlis-et/b (Xlis-et/6)cris|s# v J 
it suffices to show that the natural map 
(3.4.34.7) 

x'et/s* x'et/& ^.ÄWXi>et/§..ia*°(X{I..et/8)criB|s# 

is an isomorphism. Since 6* is exact and has an exact left adjoint, the functor 6* takes 
injectives to injectives and 

(3.4.34.8) *FSn/Mn+0Sn —> i^Fg/M.O*FSn/Mn+0Sn 

By 2.5.2, the map (3.4.34.1) is therefore identified with the natural map 

(3.4.34.9) KMLOPM £%¨%%¨£ 

To prove that this map is an isomorphism, it suffices to show that for any integer i 
the natural map 

(3.4.34.10) QL, _ *FSn/Mn 

is an isomorphism. Since is equal to the pullback of ^y-'^g and this second 

sheaf is locally free, to prove that (3.4.34.10) is an isomorphism it suffices to show 

that the natural map 

(3.4.34.11) MPL%¨£ Rc*öY; 

is an isomorphism. This follows from 3.4.23. 

We can now restate 3.4.11 as follows. 

Theorem 3.4.35. — Fix data F§/M : S —> Ŝ 1) as in 3.4-1, and let X —• So be a smooth 
representable morphism of algebraic stacks with X a Deligne-Mumford stack. Assume 
further that the assumption in 3.4-28 holds. Let P : X{is_et —> Xet be the natural 
morphism of topoi, and let Fx/$0 ' X —» X denote the natural map. Then there are 
natural isomorphisms 
(3.4.35.1) 

Fx/§0*Lr/^Xet/g(OXet/s) ~RP*Ru%l / s Ä ( /§ , % (O , %). 

Proof — This follows from 3.4.11, 3.4.32, and 3.4.34. 

Remark 3.4.36. — The assumption that the map (3.4.28.1) is an isomorphism can be 

avoided as follows. Define a site Cris(X//S) as follows. For any integer n > 0 there is 
a natural inclusion 

(3.4.36.1) Cris(X'/Sn) C Cris(X'/Sn+i), 

and we define 

(3.4.36.2) Cris(xVÌ) lim( 
77. 

>is(X'/Sn), 
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where the direct limit on the right is taken with respect to the inclusions (3.4.36.1). A 
collection of morphisms {(Ui, 5{) —> ({/, T, <5)} is defined to be a covering if the map 

\jTi —• T is etale and surjective. With this definition of (X//S)criS the isomorphism 
©§(i)IM — R(3*0—, 9. still holds with no assumptions on §. 

' X /8 
However, since we do not need these more general results in what follows we make 

the simplifying assumption that the map (3.4.28.1) is an isomorphism. 
3.4.37. — As in [58, 7.3.1], theorem 3.4.11 can be generalized as follows. 

Recall that if (K, P) is a filtered complex of objects in some abelian category *4, 
then the decalage of P, denoted Dec P, is the filtration on K given by 

(3.4.37.1) (Dec P)qKl = d~l(Pi+q+lKi+l) n Pi+qK\ 

where d denotes the differential Kl —• Kl+l. As discussed in [58, p. 133], this 
operation passes to the filtered derived category. 

Let §o be as in 3.4.28, X —» So a smooth representable morphism of algebraic stacks 
with X a Deligne-Mumford stack, and let E be a locally free crystal on X /S. Denote 
by Fx/So : X —> X the natural morphism. 

Theorem 3.4.38. — There is a natural isomorphism in the filtered derived category 

(3.4.38.1) FX/S0*(Ruxet/S*{ (Fx /§£) ,Dec P ) c *FSn/Mn+0Sn 

where P denotes the filtration (i.e., structure of an object in the filtered derived cat
egory) on Ru% ^g^(FX/gE) (resp. Ru^, ^(E)) obtained by taking cohomology of 

F%/%E (resp. E) viewed as an object in the filtered derived category using the filtration 
given by the images of multiplication by p%. 

Proof. — The proof is essentially the same as the proof of 3.4.11. The structure sheaf 
should be replaced by the crystal E and the following modifications should be made 
to the proof: 

> In the proof of 3.4.15, the reference to [8, 8.21] must be replaced by [58, 7.3.6]. 
> The reference in 3.4.24 to [9, 1.5] should be replaced by [58, 7.3.6]. • 

Remark 3.4.39. If in 3.4.38 we take E = 0_,/t, then 

(3.4.39.1) Fx/So*(Dec P)°RuXET/^(F*X/%E) = FXIMQMR*X«/*№X«/%) 

and 

(3.4.39.2) P*RUX'/ÎSEÏ = RUX^/S^)A@^/M)' 

Therefore we recover 3.4.11 from 3.4.38. 
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Corollary 3.4.40. — With notation as in 3.4-38, let d be the relative dimension of X 
over So. Then there exists a map 

(3.4.40.1) V : Fx/So.Rux^(Tx/iE) — Rt^^E 

such that if 

(3.4.40.2) ф : Ru^/tE — • Fx/§0*Ru%et/^(Fxr§E) 

denotes the natural map, then the composites фоУ and V оф are multiplication bypd. 

Proof — This follows from the same argument used in [9, 1.6]. • 

Corollary 3.4.40 can be generalized as follows. Let X —> So be as in 3.4.28. 

Definition 3.4.41. — An F-span of width b on X/S is a triple (E, E', Ф), where E is a 
crystal (Xet/S)cris, E' is a crystal in (Xet/S)cris, and Ф : FX/SEf —> E is a morphism of 
crystals such that there exists a morphism V : E —> F%/SEf such that the composites 
Ф о V and V оФ are multiplication by pb. 

Corollary 3.4.42. — / / (Е,Е',Ф) is an F-span of width b and if d is the relative di
mension of X over So, then there exists a map 

(3.4.42.1) V : Fx/§0*Ru%et/^(E) — Ru^,/%E' 

such that if 

(3.4.42.2) ф : Ru^,/%E' —> Fx/&0*Rux^{E) 

denotes the map induced by Ф, then the composites фоУ and V оф are multiplication 
by pd+b. 

Proof. — This follows from the same reasoning used in [58, 7.3.7]. • 

3.4.43. — Finally we record a consequence of 3.4.38 which will be used in Chapter 7. 
Let M be the spectrum of a complete discrete valuation ring R of mixed characteristic 
(0,p). For a filtered complex (K,F) of i?-modules and n an integer, let (K, Decn F) 
denote the filtered complex obtained by applying the functor Dec iteratively n times 
to (K,F). 

Let S/M be a flat algebraic stack, and assume given for each integer г G [0,n] 
a flat lifting §W of S0xMn pi , M0 with Ŝ 0) = S, and maps Fs(i) /M : S^"1) -> §W 
lifting the relative Frobenius map. Assume that the reduction moduli p of each is 
Frobenius acyclic, and that the maps F§(») /M satisfy the assumption in 3.4.28 for each 

i. For each 0 < j < i < n, let A ^ : —> §W denote the map F§(»)/М о F§(t-i)/м ° 
• ••о F§(j+i)/M. Let X —> So be a smooth, locally separated, and representable 
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morphism of algebraic stacks with X a Deligne-Mumford stack, and set X := 

X x§0 Spec(FgQittO$0) with induced map Ax : X —• X . Assume also that the 

formation of A^}(0§u)) is compatible with arbitrary base change M' —> M. Let 

Sj := Spec(A^'Cgo)). Then there is a commutative diagram 

(3.4.43.1) 

§ 
%P££M% 

b0 •r0 

£%¨£% MP%£MP Y 

MP%£ %£P% 

X Y 
§n-l -

Y 

ôn-l 

S<n\ 

where the maps 

(3.4.43.2) F(S0)(0/M r 1 
MO 
LP 

are induced by the maps . For 0 < j < n let X ^ denote the fiber product of the 
diagram 

(3.4.43.3) 

X 

§u xMM0 
r 

S xMM0, 

where r is the composite 

(3.4.43.4) *FSn/Mn+0S > x M M 0 - S x M o ^ o M o 
projection 

§ xM M0. 

Equivalently, if X ^ denotes X x Mo fj Mo then X ^ ' is equal to the fiber product 

(3.4.43.5) Xa)=SJ0xS(,> X « . 

ASTÉRISQUE 316 



3.4. OGUS' GENERALIZATION OF MAZUR'S THEOREM 145 

Observe also that for 0 < j < i < n the stack 8J+1 is a flat lifting of (Sj xM M0)(1), 
and that for i = 0 , . . . , n — 1 there is a commutative diagram 

(3.4.43.6) 

%PM¨£% 

x(i)- MPLP% 

%£MP% 

%£M¨% MOLP 

where we make the convention that 80 = 8. 
For 0 < i < n, we can then apply 3.4.38 to the morphism of stacks 

(3.4.43.7) 
%£¨%£ ¨MP%£ 

with the lifting of the relative Probenius (3.4.43.2). 

Let E be a locally free crystal (Xet /S0)cris> and for i = 0 , . . . , n — 1 let E\^) 
—(i) —i 

denote the crystal in (Xet /§0)cris obtained from E by pullback using the commutative 
diagram 

(3.4.43.8) 

x(i) XW 

8*0 
Q71 

If 

(3.4.43.9) *FSn/Mn+0Sn — 

denotes the morphism induced by Frobenius, we get from 3.4.38 an isomorphism in 
the filtered derived category 

(3.4.43.10) Pi : *FSn/Mn+0Sn —> i^Fg/M.O R u ^ 1 ) i T E \ ^ ^ P ) . m o l 

For any 1 < r < n — i we then get an isomorphism 

(3.4.43.11) T 
Pi •• •Txr,y,priJDx>7(y)lXE'/SN* Txr,y,priJDx>7(y)l *FSn/Mn+0Sn/M.O 
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from the composite 

(3.4.43.12) 

(FÌ'rRu_(iì ^Eyti,T>ecrP) 

/LM%%¨£ 

(Ft+1'r-1Ru <i+1, r+1^|^<i+1),Decr_1P) 

Pi+l 

Pi+r-1 

*FSn/Mn+0Sn —>LOMP 

where 

(3.4.43.13) pi,r = pi+r-l 0 pi+r-2 Q...oFi . X(0 X('+r). 

By the construction, these isomorphisms p\ are compatible in the sense that given 
two integers r, I > 1 such that r + 1 <n — i the composite morphism 

(3.4.43.14) 

(Fy+lRu-(i)/i^Ey^Dec r+lP) 

MPLP 

(Ft'lRu (i+r) ? + r B | ^ + r , , Dec tP) 

Pi + r 

(Rux(i+r+l)/f+r+l *jK'x(i+r+0 ' p ) 

is equal to p1^1. 
Taking i = 0 and r = n we obtain the following corollary: 

Corollary 3.4.44. — Let S/M 6e as m 3.4-28, and assume given for each integer i G 

[0,n] a /?a£ Zi#m# 8 ^ o/S0xMo ,Mo w^/i § ^ = S, and maps F§(o/M : §^-1^ —* 

§W lifting the relative Frobenius map. For each 0 < j < i < n, let : —> SW 

denote the map FS(o/M ° ^s(^-i)/M ° ''' ° Fsu+i)/M- Let X —• So 6e a smooth, locally 
separated, and representable morphism of algebraic stacks with X a Deligne-Mumforo 

stack, and set X ^ := X x§0 Spec(FgloHe(9§0) induced map Ax : X —• X^n\ 

Assume also that the formation of A^}(Ogu)) is compatible with arbitrary base change 

M' —> M. Then if E is a locally free crystal on X ^ / S p e c ( A o ^ 0 § ) there is a naturae 
isomorphism in the filtered derived category 

(3.4.44.1) Ax*(Rux 7^Ax£,Decn P) (Ru_(. E, P) 
V X(n)/Spec(A0^Os)* ' 
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Corollary 3.4.45. — Let the notation and hypotheses be as in 3.4-44> and let d be the 
relative dimension of X over So. Then there exists a map 

(3.4.45.1) *FSn/Mn+0Sn —> i^Fg/M.O Ru / \ —r~r E. 
X^VspecCA^Og). 

such that if 

(3.4.45.2) 
X^/SpecCA^Os)* E —• Ax*RuXet/%XxE 

is the natural map then ip o V and V o %j) are both equal to multiplication by pnd. 

Proof. — As in 3.4.40 this follows from the same argument used in [9, 1.6]. C 
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CHAPTER 4 

DE RHAM-WITT THEORY 

Throughout this chapter, unless otherwise noted we work with the etale crystalline 
topos, and hence often omit from the notation the reference to the etale topology. 

4.1. The algebra A^X/T 

Let p denote a fixed prime number. The construction that follows is a generalization 
of those sketched in [36, III (1.5] (suggested by Katz), and made in the log context 
in [31]. 

4.1.1. — Let S be an algebraic space over Fp, and let S ^ T be a closed immersion 
defined by a divided power ideal into a p-adically complete formal algebraic space 
T/Zp. We assume that multiplication by p is injective on Or and denote by (X, 7) C 
OT the divided power ideal defining S in T. Assume further that there exists a lifting 
a : T —> T of Frobenius to T, and fix one such lifting a. For n > 0 denote by Tn the 
reduction of T modulo pn+1. 

4.1.2. — Let X —> S be a smooth morphism of algebraic spaces. For each n > 1 and 
q > 0, define 

(4.1.2.1) Aq — Txr,y,priJDx>7(y)lTxr,y 

We define operators 

(4.1.2.2) à - Aq 
u ' ̂ n,X/T 

Aq+1 
^n,X/T> 

(4.1.2.3) F - Aq 
1 ' ^n+l,X/T 

• Aq 
^n,X/T' 

(4.1.2.4) + Aq 
^n+l,X/T 

as follows. 
The map F is simply the natural restriction map. The maps d and V are defined 

locally as follows. First assume that we can embed X in a formally smooth T-space 
Y/T, and let D be the divided power envelope of X inY. Observe that D is flat over 
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Zp by [8, 3.32]. Write Yn and Dn for the reductions modulo pn+1. Then there is a 
canonical isomorphism 

(4.1.2.5) *FSn/Mn+0Sn —> i^Fg/M.O 

and d is defined to be the connecting homomorphism coming from the exact sequence 
(4.1.2.6) 

0 Dn-i /Tn_i 
%PM ft9 

D2n-l/T2n-l 
"D„-i/T„_i > 0, 

where we write Q*Dn/Tn for Oon ®oYn ^yn/Tn- ^he maP ^ *s defined to be the map 
induced by xp : /rr —> fit> 7̂  . 

If X C F ' is a second embedding of X into a smooth T-space, and if / : Y' —> Y" is a 
morphism compatible with the inclusions of X , then it follows from the construction 
that the maps d and V obtained from Y and Y' are equal. That d and V are 
independent of the lifting Y then follows from observing that for any two embeddings 
X C Y\ and X C Y2 we can form X C Y\XTY<I which maps to both Y\ and Y2. 
Consequently the maps d and V are independent of the choices and defined globally. 

Lemma 4.1.3. — The operators d, F, V satisfy the following equations 

(4.1.3.1) d2 = 0, FV — VF = p, dF = pFd, Vd = pdV, FdV = d. 

Furthermore, if UJ G A*N_X X/T an^ W ^ ̂ * X / T ^EN ^(A;) ' ̂  ~Txr,y,priJDx>7(y)l 

Proof — All but the formula d2 = 0 follow immediately from the definitions. To see 
this formula, we may work locally and may assume that we have a smooth lifting Y/T 
of X, and furthermore that we have units yi G Oy such that the forms { d l o g ^ ) } form 
a basis for QY^T. Now suppose cu = £V / idlog(^) is a closed r-form, where i denotes a 
multi-index ( ¿ 1 , . . . , ir), d log ̂ ) = d log ̂ j A - • -Ad log ̂ J , and /* G Oyn_x. We show 
that GP([W]) = 0. Let fi G OyZn_x denote liftings of the From the commutative 
diagram 
(4.1.3.2^ 

0 0* 
^n-l/în-l 

£¨%£% 
^2n-l/Î2n-l ^yn-i/T„-i 0 

¨/LM/ LMPL ¨%£% 

0 ^yn_!/Tn_i 
xP2n 

^3n-l/Î3n_i V2n-l/Î2n-l 0, 

we see that the class cP([w]) is equal to the image of the class of Y^i^fi A dlog(yj) 
under the boundary map 

(4.1.3.3) W r + 1 ( ^ _ 1 / r 2 „ _ 1 ) ' 
*FSn/Mn+0S.O 

Since J2IDFI A dlog(y^) £ ^ Y ^ - I / ^ - I ^ s to a c^ose(̂  l-form m ^y^n-i/^-i> ^ 
follows that the image under (4.1.3.3) is zero. • 
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Notational Remark 4.1.4. — We will also sometimes consider the situation of a closed 
immersion S c—• T of algebraic spaces defined by a divided power ideal with T flat 
over Zp. If T denotes the p-adic completion of T, and if we are given a lifting of 
Frobenius a : T —> T, then the data (5 <-+ T, a) satisfies the conditions of 4.1.1. If 
X —• S is a smooth morphism of algebraic spaces we will often write A*n xjT instead 
of A* v , ~ if no confusion seems likely to arise. 

n,X/T 
4.1.5. — Denote the by X^pU^ the pullback of X via the n-th power of Frobenius 
Fg : S —• S. By [8, theorem 8.20] there is a natural quasi-isomorphism 

(4.1.5.1) RuX{P) /T*®X(P) IT —>^VRUX/T*OX/T 

where the notation on the right hand side is as in 3.4.11 (note that though [8, Chap
ter 8] is written only for schemes, the same argument gives the result for algebraic 
spaces). In terms of a smooth lifting Y/T of X , hr]RuX/T*Ox/T is the subcomplex 
of ily/T whose 2-th component is 

(4.1.5.2) *FSn/Mn+0Sn —> i^Fg/M.O%£¨% 

Since each VtlYiT is locally free, we obtain: 

Corollary 4.1.6. — If Y/T is a smooth lifting of X, then 

(4.1.6.1) OT^ LVRUX/T*OX/T ~ ££, 0Ot Or/(pn). 

Lemma 4.1.7. — For ra > 0, define a subcomplex Em C ŷm_1/Tm_1 ^2/ 

(4.1.7.1) Éq - { ^ e ^ m _ i / T m _ J *FSn/Mn+0SnM.O 

T/ien if m > n + q, the module 

(4.1.7.2Ï F9 : = F9 / p 7 1 ^ 

is independent of the choice of m, and by varying q we obtain a complex 2£* with 
differential induced by the differential on E^. Moreover, the isomorphism (4-1-6.1) 
composed with the projection 

(4.1.7.3) %o®oT 0T/(pn)-*E*n 

is an isomorphism 

(4.1.7.4) E*n ~ 0Tn^ ®hoT Lr]Rux/T*Ox/T. 

Proof. — We first show that Eq is independent of the choice of m. If w! > m, then 
there is a natural map 

(4.1.7.5) Em' * Em-
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If UJ G Eq , then by definition of Eq we can write UJ — pquj' for some UJ' G Qlr /rr 

with duj' congruent to 0 modulo p. It follows that if UJ' G flY ,T is a lifting 
m' — 1 / m' — 1 

of UJ' then p9o/ G i ^ , is a lifting of UJ. Hence the map (4.1.7.5) is surjective. 
On the other hand, if UJ G QfL ,T is a section such that pquj defines an 

m' — 1 / m' — 1 
element of E^, which maps to zero in Eqn/pnEqn1 then there exist elements 6, c G 
fi^ 5 with congruent to zero modulo such that 

-*-m' — 1 / 1m' — 1 (4.1.7.6) pPù)=pmb + pn(pqc). 

Since m > n + q, pqw = pn+i{pm-n-ib + c) and d(pm~n~gb + c) is congruent to zero 
modulo p. Hence pqw € pnE^n,. This proves that E% is independent of the choice 
of m. 

To prove the last statement in the proposition, note first that since Çîy/T is locally 
free, there is a natural isomorphism 

(4.1.7.7) *FSn/Mn+0Sn —> i^Fg/M.O*FSn/Mn+0Sn 

There is a natural map 

(4.1.7.8) *FSn/Mn+0Sn —> i^Fg/ 

which we claim is a quasi-isomorphism. Suppose UJ G E% maps to zero in E^1 
and let pqr\ G fiyyT be a representative for UJ. Then d(pqrj) G pn{pq+1^Y+/r)^ an(^ 
hence (4.1.7.8) induces a surjection on cohomology. 

Conversely, suppose 

(4.1.7.9) pqj) G K e r ( £ ^ ®oT 0T/(pn) > E^1 ®oT 0T/(pn)) 

represents a class in the kernel of 

(4.1.7.10) H"(É^ ®oT 0T/(pn)) 
LOM¨£%P 

Then we can write 

(4.1.7.11) pqri = pn(pQ71') + pmX + dipo-h) 

where drf G p9+1fi^y^, de = 0 (mod p), and m > q + n. Prom this it follows that 

(4.1.7.8) is injective. • 

Corollary 4.1.8. — The composition of (4-1.7.4) and the isomorphism 

(4.1.8.1) ÖTn-i <S>e>T RUX(P)/T*&X(P)/T - V*FSn/Mn+0SnLMP% 

obtained from (4.1-5.1) is an isomorphism 

(4.1.8.2) En — ß%(p)/Tn_!*°x(p)/Tn_i-
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4.1.9. — The lemma allows us to define a map 

(4.1.9.1) TT • Aq Aq 
^n,X(p)/T 

as follows. Locally we can choose a smooth lifting Y/T. For a closed form u G ^Yn/Tn. 
pquo defines a class in 

(4.1.9.2) K e r ( ^ + g + 1 - ^ ^ + 1 ) , 

and hence an element in Hq(E!^) ~ RquX(P)/Tri_1*0X(P) /Tn_1. ^ u is eQual to 

for some a/ G ^y~*Tri, then defines an element of i ^ + g + i mapping to pqu, and 

hence for any closed form LJ G Sly ,t the class 

(4.1.9.3) *FSn/Mn+0Sn —> i^Fg/M.O*FSn/ 

depends only on the image of u in W9(fJy^Tyi), where the isomorphism Hq(E!^) ~ 

RquX(p)/Tn-!*Ox(p)/Tn_i is obtained from (4.1.8.2). The map 7rn is the induced map 

(4.1.9.4) *FSn/Mn+0Sn —> i^Fg ̂ 9^x(p)/Tn_i.°x(p)/Tn_i - ^n,x(p)/T-

Considerations as in 4.1.2 show that this map is independent of the choice of Y and 
hence 7rn is defined globally. 

4.1.10. — As in [34, 0.2.2] define a chain of submodules 
(4.1.10.1) 

0 C BiQlX/S c • • • C BnQx/s C • • • C Zn+iQ,x/S C • • • C Z\ÇÛXjS c ^x/s 

by the formulas 

(4.1.10.2) *FSn/Mn+0Sn —> i^Fg/M.O 
(4.1.10.3) S x f i j , ^ = Im(d : fi£/5 - f2J,/5), Z i î î^ /5 = Ker(d : fi^/5 ̂ ¨%¨MPM% 

(4.1.10.4; 
+0Sn —> i^Fg/ Cx/s +0Sn —> i^Fg/ 

+0Sn —> i^Fg/ 
MPLOP 

^n+l^x/s/^^X/S^ 

where Cx^5 denotes the map induced by the inverse Cartier isomorphism. 

Remark 4.1.11. — It follows from the definitions that for every n there are natural 
maps 

(4.1.11.1) Cn : Bn+iÇlqxiS • Biiìqx(pn^s, +0Sn —> i^F BiQqx(pn}/S, 

whose kernels are equal to Bnilx^s and Zn+iQ,X/S respectively. 
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Theorem 4.1.12 ([31, 4.4]). — The map 7rn : Aqn+1 X/T —• Aqn X{P)jT is surjective with 

kernel the image of(Vn,dVn) : A^X/T^^VX/T ~~* ^n+i X/T* = ^ (so ̂ e ^eal 
of S inT is pOr) then the composite map 

(4.1.12.1) Sn • ftqX(p)is ® ^ X ( P ) / £ 
n-1 

^1,X/T ® ^1,X/T 
(Vn,dVn) 

^n+l,X/T 

induces an isomorphism 

(4.1.12.2) +0Sn —> i^Fg/+0Sn —> i^Fg/ 

where Rqn X(P)/s is defined by the exact sequence 

(4.1.12.3) 

0 * Rn,X(p)/S ' B«+lfiX(p)/5 
7 O^-1 (Cn,dCn) 

SlfiX(pn+1)/5 0. 

The proof is in steps 4.1.13-4.1.25. 

4.1.13. — All the assertions are etale local on X , and hence we may assume that we 
have a smooth lift Y/T of X. Furthermore, by replacing S by To and X by Yo we 
may assume that S = T0. Define E^ , E ^ , and as in 4.1.5 and 4.1.7, so that the 
map 7rn can be described as in 4.1.9. 

4.1.14. — If u G En+q+2 defines (via (4.1.8.2)) a class [a;] G ^ X ( j > ) / T ' TNEN WE CAN 

write 

(4.1.14.1) u>=p*r,, pqdnepnËqnX\+2 

for some r? G fi?r /7, . Hence pqdrj = pn(pq+1X) for some A G f22^ /T , 
' Yn+q+l/ln+q+1 7 + 

and so dry is zero modulo pn+1. Therefore if [ry] G A^X/T denotes the class defined 

by the image of 77 in &>Yn_1/Tn_1 tnen ^(M) = M, and so 7rn is surjective. 

4.1.15. — If 7rn(a;) = 0, then there exist b G ftV1 /T , and c G O ^ ± /T , such 

that dò G p i l i lrr , dee vQ??1 ,„ , and 
^ Yn + q/ J-n + q1 M *n + q/ J-n + q (4.1.15.1) pquj = d(pq-1b)+pn(pqc). 

It follows that if b and c denote the reductions of b and c modulo p, then 

f4.L15.2i [u]=dVn(b) + Vn(c). 

Hence the kernel of 7rn is contained in Im(sn). 

4.1.16. — To see that Im(sn) C Ker(7rn), we can without loss of generality assume 
that X is etale over Qrm s for some integer r. Let d log(x i ) , . . . , dlog(xr) be the stan
dard basis for £lx/S induced by the choice of a map to G ^ 5 . Then it follows from 
the definitions, that for any / G 0X(P) with image h G Ox and integers i i , . . . , iq we 
have 

(4.1.16.1) VC-HlfdlogixiJ A A dlog(xio)]) = ^ M l o g ^ J A - . . A dlog(x, )] 
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in Hq(Qyn/Tn) = Aqn+1 X/T, where h G Oyn_1 and G Oyn_1 are liftings of ft and the 
Note that the right side of (4.1.16.1) is independent of the choices of the liftings. 

Then 

(4.1.16.2) 7rn([pnftdlog(5ii) A ' • • AdlogfoJ] ) = [pn/dlog(^i) A • • • Adlog(«*J] = 0, 

where / G Oyn_x ®oT,o- ®T is a lifting of / . 
To see that the image of dVnC~1(—) is also in the kernel of 7rn, let h G Oy be a 

lifting of h. Since /1 is in the image of the relative Frobenius we have dh = 0 (mod p). 
Hue f2yyT is a section such that dh = pu>, then 

(4.1.16.3) dVnC-1{[fd log {xil) A A d log (x<J]) = [u; A d log foj A • • • A d log ( ^ ) ] . 

Indeed as in (4.1.16.1) we have 

(4.1.16.4) VnC~1([fd\og(xil) A . . . A d log foj]) = [ p ^ d l o g ^ ) A • • • A d log foj] 

so dVnC~1([fd log (xi1) A A d log (x^)]) is equal to the image in A^^ X/T of the 
class 

(4.1.16.5) [^hd log foj A • • • A d log fo,)] € W«(fiJ-n/rJ = ^ + i , x / r 

under the boundary map 

(4-1.16.6) W < W „ / T J — W,+1(fik/rB) 

arising from the exact sequence of complexes 

(4.1.16.7) 0 • fi» /T fii. /T • fit /T • 0. 

Therefore dVnC~1 ([fd\og(xi1) A • • • A dlog(x^)]) is equal to the class of any closed 
form r G ttV~)rr for which pn+1r is equal to da for some lifting a G f}?, /T, 

Yn/Tn „ Y2n + l/ T2n + 1 
of pn/idlog(^i) A A dlog(x^). Taking a = pnhdlog(xi1) A • • • A dlog(^q) and r = 
UJ A dlog(x^) A ••• A dlog(x^) we obtain (4.1.16.3). 

Since 
(4.1.16.8) pqJtluo A dlog(x^) A ••• A dlog(xiq) = d(pqh A d l o g ^ J A • • • A dlog(xiq)), 

it follows that 7Tn(dVn(C-1([fd\og(xil) A ••• A dlog(x^)]))) = 0. Thus Im(sn) C 
Ker(?rn). 

4.1.17. — In order to prove that Rqn X(P)/S is equal to Ker(sn), we proceed by induc
tion on n. The case n = 0 follows from the Cartier isomorphism. Thus we assume the 
result holds for n — 1 and prove it for n. The key ingredient is the following lemma 
of Illusie. 
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Lemma 4.1.18 ([34, 0.2.2.8]). — For any integer r, identify ^x(pr)/s w^ ®s ®Fs^°s 
nq 
LLX/S' 

(i) The sheaf Bn+iVLqx{p)js is generated locally by elements of the form 

(4.1.18.1) A ® gf-1 • • • gf-1dg1 A • • • A dgq, 

where A G 0 s , gi G O x , and 0 < r < n. 

(ii) The sheaf ZrSlqx{p)jS is generated locally by elements of BnQqx(p)^s and elements 

of the form 

(4.1.18.2) A ® f^gf'1 • • • gvq~xdgx A . . . A d<^, 

w/iere A G Os and gi, f G Ox-

Lemma 4.1.19 

(i) For any local section (4-1-18.1) of Bn+iQqx(p)/S we have 

(4.1.19.1) Cn(X ® gf-1 • • • g(-ld9l A • • • A da,) G fi^(p»+i)/s 

zs zero unless r = n in which case it is equal to A <8) d#i A • • • A dgq. 

(ii) For any local section (4-1-18.2) of ZnQqx{p)^s we have 

(4.1.19.2) 
dCn(A ® f^gf'1 • -g{-Xdgx A • • • A d ^ ) = A ® df A d9l A • • • A dgq G fi£p»+i)/5. 

Proo/. — For (i), note that by definition of the Cartier operator C, we have with our 

identifications Os <8>F£,e>s ^X/S — ^x(pr)/s 

C(\®g(-1---g(-1dg1A---Adgq) ix^gf'1'1 
V 

••gf'-'dg! A-
0 

• A dgq r > 1 
r = 0. 

Prom this and induction (i) follows. 

For (ii), note that 
4.1.19.3) 

C{\®fp"g{ -1---gf-1dg1A---Adgq) = \®Fn-1gC1-1--gf-1-1d9iA...ATxr,y,p 

By induction this gives 

(4.1.19.4) Cn(\®fpngf-1--gf-1dg1A-. • A dgq) = A <g> /d#i A • • • A dgq 

which implies (ii). 
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Corollary 4.1.20. — For any local section UJ G BnClqxip)^s, we have VnC = 0. 

Proof. — By the lemma it suffices to consider UJ = g\ 1 • • - gff 1dgi A • • • A dgq with 
r < n. Then 

VnC-\uj) = ^r+1-1-.-fl5r+1-1dfliA..-AdflJ 

+0Sn —> i^Fg/+0Sn —> i^Fg/ 

= ^ - ^ ^ ( ^ r ^ r 1 " 1 • • • ^ r i _ 1 ^ 2 A • • • A « 
- 0 . • 

Corollary 4.1.21. — For any local section UJ G Zn+1nq~(l)/s, the class dV^C'1^)) 

is zero. 

Proof. — By the lemma and 4.1.20 it suffices to consider the case when 

(4.1.21.1) 
n + l „n +1 -I „n +1 1 

u = P 9\ -1 " X - i -1<foi A - " A d s , _ i . 

In this case 

+0Sn —> i^Fg/ d ^ C ^ V ^ - 1 • •Txr,y,priJDx>7(y)lA • • • A d ^ ] ) 

= d[p»/*"+atfn+^Txr,y,pr iJDx>7(y) lTxr,y,pr iJDx 

= [ p ^ 1 / ^ 2 - 1 . ^ - 1 • • • nf.V-'df A dai A . . . A daa-xl 

= 0. • 

Corollary 4.1.22. — Tfte sheaf Rqn x{p)/s is generated locally by sections of the form 

(0, b) with b G Zn+iQqx(l)/s, (a, 0) with a G BnQqxip),s, and elements of the form 

(4.1.22.1) \®gf-1-'-gf-1dg1A---Adgq,-\®gfgf-1--.gf-1dg2. 

Proof. — Let 
(4.1.22.2) 

c = (Cl,c2) G Kei(Bn+1œx{p)/s e znnqx(lh 
(c"vcn; 

-Bifi^(pn+1)/5 ) ~~ Rn,X(p)/S 

be a local section. Writing Cn(ci) = —dCn(c2) as a sum of terms of the form 

(4.1.22.3) A 0 dgi A • • • A dgqi 

we see that by subtracting elements of the form (4.1.22.1) from c we can assume that 
Cn(ci) — 0 and dCn(c2) = 0. In this case by 4.1.11 we have c\ G BnQq(oWc and 

C2 £ Zn^iQqxil^s. 
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4.1.23. — We continue the proof of 4.1.12. That RqnX(p)/s c Ker(sn) now follows 

from the above three corollaries and the computation 

Sn(gï "'9PQ 1dgi • • • dgq, -g\ g\ • • • g\ xdg2 • • • dgq) 

= V^r1-1 • - • gf^dg, • • • dgq] - dV"[gf+1gf+1-i. • • gf+^dg* • • • dgq] 

= Ip^r1'1 • • • gf^dm • • • dgq) - Ip-gf^gr1-1 • • • gf^'1dg1dg2 • • • dgq] 

= 0. 

4.1.24. — To prove that R^ X(p)/s *s ^ e whole kernel, suppose (a, b) G Ker(sn). From 

the commutative diagram 

(4.1.24.1) 

Aq ffi Aq~x ^1,X/T w ^l,X/T 
+0Sn Aq 

^n+l,X/T 
pr2 

^1,X/T 
dV71'1 

F 

Aq 
^n,X/T 

we deduce that 

(4.1.24.2) dV^iC-Hb)) = F(sn(a,b)) = 0 

which by induction on n implies that (0,6) G x(p)/s* Therefore 

(4.1.24.3) 6 £ Ker^C"-1 : Zn_iî%(p)/g - B i ^ ( p „ ) / S ) , 

which implies that b G Znf^(p)/5. 

Since the map Cn : jBn+iX2^(p)^5 —> i?iS2-^(pn+1)^5 is surjective, we can, after 

subtracting an element of Rq x(p) /s from (a, 6), assume that b = 0. 
The commutative diagram 

(4.1.24.4) 

0 
%£¨P¨%¨%££% %£%¨% 

^Yn/Tn lLX/S 0 

id I .. „n — 1 
xpn_1 

0 * 0Yn_i/Tn_ 
%PM¨%% 

Vbn-i/Tbn-i ^y„-i/T„_i + 0 

shows that the cohomology sequence of the upper row can be written as 

(4.1.24.5) Hq-\Wx/s 
dV71'1 +0Sn —> i^F V +0Sn —> i 

Hence if Vn(C~1(a)) = 0, there exists c G ̂ (p)/5 such that 

(4.1.24.6) Vn~1(C~1(a)) = dV71'1^-1^)). 
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Therefore 

(4.1.24.7) 0 = FVn-l{C~\a)) = FdV71-1^-1^)) = dV71-2^-1^)), 

and by induction 

[4.1.24.8) c G Ker(Zn_2^-p1)/, 
dcn-2 +0Sn > i^ - Zn-iQ,qx(l)/s.

By the following lemma, after subtracting an element of BnQqx(pys from a we may 

assume that Vn~l (C_1 (a)) = 0. Induction therefore completes the proof of 4.1.12. • 

Lemma 4.1.25. — The image of Zn-iSlq~£)/s in AqnX/T under dVn~1(C~1(-)) is 

equal to the image of Bnflqx(p)^ under Vn~1C~1(—). 

Proof. — Since dV^iC-^Bn^n^^))Txr,y,p= 0, it suffices by 4.1.21 to consider the 

image of an element u) of the form 

(4.1.25.1) u = fpn '"gf 1 1'-'9q-i ldg\ A • • • A dgq-\ 

We have 

rfyn-i(c-i(w)) = d p - y ^ ' - i . ..gfj-^dg, A • • • A dp,_i] 

+0Sn —> i^Fg/+0Sn —> i^Fg/MPLO 

Now observe that 

(4.1.25.2) dlp^f^gf'1 • • • gf-^dg! A . . . A £feg-i] 

is equal to 

(4.1.25.3) bn-i/P"-i5p"-i.. . ^ i ^ A dgi A • • • A dfl,-!] 

Indeed it suffices to prove this equality etale locally on X , so we may assume we have 

a smooth lifting Y/T of X and liftings f,gi G Oy of / and the g{. By definition 

dlp^f^gf'1 • • • gqli1dg1 A . . . A dgq-x] G W ^ H ^ ^ / T ^ ) is equal to the class 

of a closed form u) G fi^1-1 ^ such that vnu G 1 is equal to 
in-l/in-l ^ *2n-l/i2n-l ^ 

(4.1.25.4) lp^f^gf'1 • • • gf-^dg! A ... A £feg-i] 

which equals 

(4.1.25.5) pn(pn-i^-- i^-- i . ..~gf_-^dfAdg1 A • • • A dâ,-i). 

Prom this description it follows that we can take a; = pn 1 fpn xg\ 1 • • • 1d/ A 
dgi A . . . A dpQ_i giving the equality of (4.1.25.2) and (4.1.25.3). 
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Therefore 

dVn-i{c-i{u))) = i p n - i ^ - y - i . ..gf_-idf A dg\ A • • • A d5,_i] 

lp^f^gf'1 • • • gf-^dg! A ... A £feg-i]lp^f^gf'1 • • • gf-^dg! A 

4.1.26. — Next we gather together some results about the behavior of AQN XjT under 

base change Tf —> T. Fix a smooth lifting Y/T of X , and set Yn := Y xT Tn. Define 

Zv to be the kernel of d : Vtq /rr —> , and let IS??1 be the image. We denote 
1n In/In In/In' in 

by y and Y£ the spaces obtained by base change to T'. 
Proposition 4.1.27 ([34, 0.2.2.8] in the case n — 0). — The natural maps 

(4.1.27.1) ZY 0Ot OT> ZQY, 

(4.1.27.2) Bl ®oT OT> —>Bl, 
*n J n -1 n J N 

are isomorphisms. 

Proof. — Replacing X by Yb we may assume that S = T0. We first prove the result for 
ZYn by induction on n. The case of n = 0 follows from [34, 0.2.8.8]. Thus assume true 
for n — 1. Let xp : 2,yn_1 —> ZYn be the natural inclusion, and let Qn be the cokernel. 
To prove that the formation of ZY is compatible with base change, it suffices to show 
that the formation of Qn commutes with base change. Let i : QnZx be the map 
sending u G ZYn to its reduction. The map ¿ is injective and its image contains Bqx. 
Define Qn to be the quotient sheaf t(Qn)/Bx. Then there is a natural isomorphism 

(4.1.27.3) On^Ker(dV^-1C-1:f i^(p) /To A^X/T) — ZN^X(p)/T0' 

Indeed, as in (4.1.24.5) this kernel is by construction of d and V equal to the kernel 
of the coboundary map 

(4.1.27.4) Qq c-1 , KLOPLOM ^f^gf'1 • • • gf-^dg! A 

arising from the exact sequence 

(4.1.27.5) 0 -* O* 
7 U "v" IT1 

LMPL 
lLYn/Tn LLX/S • 0. 

Thus we have an exact sequence 

(4.1.27.6) 0 • Bq Qn 
%£¨%£ 

->o, 

and hence by [34, 0.2.8.8] the formation of Qn commutes with base change. Thii 
proves the result for ZY . 
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To get the result for By , note that there is a commutative diagram 
(4.1.27.7) 

^f^gf'1 • • • gf-^ f*Osf and £1%X/S ~^ 9*^x f*Osf and £1%Xx -0 

a 0 %££% 

o • Zyr n/ n ~BYV -0 

where a and /? are isomorphisms. 

Corollary 4.1.28. — The formation of A*n x/T is compatible with base change T' —> T. 

4.1.29. — We conclude this section by making some observations about the sheaves 
BnQlX/S and Znttx/S which will be used in what follows. 

Assume that S is reduced and let / : Sf —> 5 be a surjective finite morphism (for 
example S' = S and / a power of the Frobenius map). Denote by X'/S' the base 
change X x 5 S' and let g : X' —• X be the projection. 

Lemma 4.1.30. — The maps Os —> f*Osf and £1%X/S ~^ 9*^x'/S' are ^nJec^ve-

Proof. — Since #*^x ' /s ' ~ ^x/s ®°s f*®s' and &>X/S is over ®s it suffices to 
prove the injectivity of the map Os —» f*Os'. 

For the injectivity of Os —> f*Os> we may work etale locally on S and hence may 
assume that S is a scheme. Let s E Os be a nonzero local section which is in the 
kernel. Since S is reduced, there exists a point p e S such that the image of s in k(p) 
is non-zero. Replacing S by Spec(fc(p)) and Sf by S" X5 Spec(fc(p)) we see that it 
suffices to consider the case when S is a field which is immediate. • 

Proposition 4.1.31. — As subsheaves of f*Qx, /9, we /im;e 

(4.1.31.1) i ^ Q ^ / s — f*(BnÇl%x,jS,) n ^- i^x/s — f*{%rSV'x'/s') n ^ x / s -

Proof. — By induction on n. 
The case n = 0 is trivial from the definitions. 
For the case n — 1 note that we have a commutative square 

(4.1.31.2) 

lLX/S 
d 

*LX/S 

f*ttx,/s> 
d £%¨£%NHVB 

where the vertical arrows are injections. This implies the result for Zi£lx/S. 
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For Bi$ilX/S, consider the commutative diagram 

(4.1.31.3) 

0 B^x/s z^x/s 
c-1 f*Osf and £1% • 0 

£%¨£ M¨MP 33 

0 ¨M%P%££ * f*Z\Çl%x,jS, 
c-1 LOM£¨£% 0. 

From this diagram and the result for Z\ we see that 

(4.1.31.4) f*Osf and £1%X/S ~^ 9*^xf*Osf and £1%X/S ~^ 9*^xf*Osf and 

For the inductive step we assume the result for n — 1 and prove it for n. Consider 
the commutative diagram 
(4.1.31.5) 

0 f*Osf £1% Zjn*LX/S 
c-1 

Zn-lfì-x(P)/s 0 

0 - f*B&%x,/s, f*ZnÇllX, I g, 
c-1 f*O £1%X/S ~^ 9*^x 0. 

Given A G /*(Znn^//r5,) fl ft^/S' tne ima£e ^ in f*^-1^^/sf is in (using the 

induction hypothesis) 

(4.1.31.6) X(p)/5 ~~ ^n-l^x(p)/5* ^X(p)/5 ~~ ^n-l^x(p)/5* 

Thus we can lift A to an element A7 G Z n f i ^ s . Replacing A by A —A' we may therefore 

assume that A G f*BiQx//S, H f i ^ ^ which is by the n = 1 case. This proves 

that Z n f i ^ 5 — fIA{ZTi^V'x,yg/) n 
A similar argument using the commutative diagram 

(4.1.31.7) 

0 X(p)/5 ~~ 
%¨£%PLIOJY 

£ 
¨£%% •Sn-l̂ x(p)/5 > 0 

0 > /*-^l^X//5f/ * f*BnÇlx,^g, 
c-1 /•-Sn-l^(p) ^ 0 

implies that Bnf2^5 = f*(BnCìx,/S,) fi fî^/s* 

Corollary 4.1.32. — Le£ R^x/s and BnX'/sf ^e as ^n 4-l'l%- Then in f*Qqx,/S, 0 

/ • ^ X ' / s we /lave 

(4.1.32.1) Rn,X/S - (f*Rn,X'/S') N ® ^ X ' / S ' ) ' 
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Proof. — The commutative diagram 

(4.1.32.2) 

0 0 

Rn,X/S ,X'/S' 

Bn-^i^x/s ® ^n^'<X/S 

X(p)/5 ~~ ^n-l^x(p)/5*M/.OP 

(Cn,dCn (Cn,dCn) 

BiSiqxipn)/S f*Blfìx£n)/s> 

0 0 

implies that 

(4.1.32.3) Rn,X/S — (f*Rn,X'/S') n (Bri^qX/s ® Zn^x/s)' 

Since 

(4.1.32.4) BnÇlqXiç, 0 ZnÇiqxi^ — (f*BnÇlqx,Jç,, (B f*ZnÇlqx,^/) n iS^x/s ® ^x/s^ 

by 4.1.31 the result follows. 

4.2. Comparison with the Langer-Zink de Rham-Witt complex I 

4.2.1. — Let S be an algebraic space over Fp, and let X —> S be a smooth morphism of 
algebraic spaces. Assume given a closed immersion S ^ T into a p-adically complete 
formal flat Zp-space defined by a divided power ideal in OT and a lifting FT : T —> T 
of Frobenius. Denote by TN the reduction of T modulo pn+1. 

In [47], Langer and Zink introduced the de Rham-Witt complex of X/S general
izing the de Rham-Witt complex of Illusie [34] (in fact in [47] the de Rham-Witt 
complex is defined for more general X —• S but we will only consider the above situa
tion). In what follows we will denote the Langer-Zink de Rham-Witt complex of X/S 
by W^ZQX,S. This is a projective system of differential graded algebras 

(4.2.1.1) 
M§¨%¨£% 

%£¨%£¨%§%¨¨£ 7 T N M/OPML PMP 

which comes equipped with operators 

(4.2.1.2) F'-WÏZWX/S > W^X/S1 X(p)/5 ~~ ^n-l^x £%¨££%¨££% 

satisfying FV —p and FdV = d and V(u • F(rj)) = (V(UJ)) • rj for rj G W^Sl^g and 

a; G Z ^ x / 5 (this implies in particular that VF — p). 
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4.2.2. — By the construction of W„ Z^x/s reviewed below in 4.2.4-4.2.6 (see also [47, 
Introduction]) for a description in terms of a universal property), there is a natural 
isomorphism Wn(Ox) — ̂ nZ^x/s* There is also a map 

(4.2.2.1) Pu : Wn{Ox) —. Л^х/Т 

denned as follows. First we define the map locally when we fix an embedding X Y 
with Y/Tn-\ smooth. Let D denote the divided power envelope of X in Y. The map 
pn is defined by 

(4.2.2.2) pn(ao,. . . , ûn-i) : = 
n-1 

i=0 

Pi a-pn-i EH0 (OD/Tn-1) л° , 

where di is any lifting of ai to OD- This map is well-defined because the kernel of 
OD —* Ox has divided powers and hence for any h G Ker(OD —* O x ) we have 

(4.2.2.3) {ài + h) n— i 
p 

n-i 

j=0 

pn-i 

j 
j!h(j)a n-1 -j 

a*pn-1 (modpn-¿). 

That pn is a ring homomorphism follows from the definition of the ring structure on 
Wn{Ox) [71, Chapter II §6]. 

If Yf/Tn-i is a second lifting of X to Tn_i we can form Y" := Y Xs Y' to obtain 
a commutative diagram 

(4.2.2.4) 

D < D" Df 

Y Y" 
MP°%£ 

where D' (resp. I?'7) denotes the divided power envelope of X in Y' (resp. Y"). If 
Pn,Y (resp. pn,Y'5 pn,Y") denote the map (4.2.2.2) then it follows from the definition 
that the diagram 

(4.2.2.5) 

Wn(Ox) 
Pn,Y X(p)/5 ~~ -

l^* 

id 

Wn{Ox 
Pn,Y" 

W°(^D"/Tn_i) 

id 

Wn{Ox 
Pn,Y' 

w0№'/rn-i) 

commutes. It follows that pn is independent of the choice of Y/Tn-i and hence 
is defined globally. Observe also that if follows from the construction of pn 
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that the diagrams 

(4.2.2.6) 

Wn(Ox) 
Pn Aon,X/T 

F F 

Wn-!{Ox) Pn-1 Aon-1,X/T 

and 

(4.2.2.7) 

Wn{Ox) 
Pn 

^n,X/T 
i 

V 

Wn+1(Ox\ Pn + l A0Txr,y,priJ 

commute. 

The main result of this section is the following: 

Theorem 4.2.3. — There is a unique morphism pn : W^zfl^y5 —• An^X/T °f differen
tial graded algebras which in degree 0 is equal to the above defined map pn. This map 
is compatible with the operators F and V. If S is reduced then the map is infective. 

The proof will be in several steps 4.2.4-4.2.14. 
First we recall the definition of W^ZQ*X/S in [47]. 

4.2.4. — Let A be a ring and B an .A-algebra with a divided power ideal b C B. If 
M is a £?-module, a pd-derivation d : B —• M over A is an A-linear B-derivation such 
that 

(4.2.4.1) 0 ( 7 » ( & ) ) = 7 « - i ( W ) 

for every n > 1 and b 6 b. Here 7n : b —> b denotes the divided power structure. 
There is a universal pd-derivation d : B —> &lBjA [47, 1.1]. The J3-module &B/A is 

the quotient of the module ftB/A by the sub-B-module generated by elements of the 

form 

(4.2.4.2) d(7n(6))-7n-i(ft)d6. 

Defining &LB/A := K^B/A we obtain a differential graded algebra (l*B/A with 
differential determined by the formula 

(4.2.4.3) d(urj) = (duj)ri + ( - 1 ) ^ , 

for uj e folB/A and rj e &lB/A- The differential graded algebra &*B/A has the following 
universal property: If A* is a differential graded ^4-algebra with a ring homomorphism 
p : B —» A0 such that the composite with the differential B —> A0 —• A1 is a pd-
derivation, then there exists a unique map of differential graded algebras &mBjA —> A* 
extending p. 
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4.2.5. — Let R -+ S be a map of Fp-algebras and let WN(R) and WN(S) be the Witt-

vectors of R and 5 respectively. Recall that there are operators F and V on these rings 

of Witt-vectors and that the ideal V(WN-\(S)) C WN{S) has a natural divided power 

structure [34, 0.1.4]. Denote by ^wn(S)/wn(R) tne ^e Rham-complex obtained from 

the construction of the preceding paragraph. The de Rham-Witt complex W^zQg^R 

is a quotient of &wn(s)/wn(R) wni°n can be described inductively as follows. 

For n = 1 we take simply W£ZÇTS/R := CTS/R = fcWl(s)/WliRy 

The complex ̂ n f i ^ s / / ? is constructed from W^ZQ*S^R as follows. First define the 

ideal / C ^wn+1(s)/wn+1(R) as f°uows- Consider all relations 

M 

(4.2.5.1) 5 ^ f ( 0 ^ i ° - - - ^ i ° =0 

in W^zfiz5/H, where i and M are integers > 1 and ^l\rf^ G Wn(5). Then J is the 

smallest ideal of &wn+1(s)/wn+1(R) w^n d(J) C / containing the elements 

(4.2.5.2) E ^ 0 ) ^ 0 ) - ^ 0 ) -

Let fin+1 denote the quotient of ^B(5 )^n(f l ) by I. By the definition of / there is a 
map of abelian groups 

(4.2.5.3) V : WniTs/R — Ù's/R, ^dVl • • • dVi ^ - W ^ f a i ) • • • d V % ) . 

The algebra ^n-Ji^s/n *s then obtained as the quotient of f2n+1 by the smallest ideal 

J C fi*+i with d( J) C J containing all elements 

(4.2.5.4) V(UJ • F(r])) - V(UJ) • 77, 

where UJ G W£zfiJ/jR and 77 G 

4.2.6. — Let / : X —> 5 be a morphism of algebraic spaces over Fp. We define the 

complex W^zilX/s as f°uows- First consider the case when S = Spee(iï) is affine. 

Then we define W^zClx^s ky associating to any affine étale X-scheme Spec(T) —• X 

the complex W^zÇl^^R. By [47, 1.7] this is a sheaf. If Spec(iî) —• Spec(jR') is an étale 

morphism then by [47, 1.11] there is a natural isomorphism W^zVt^^R ~ W^ZQ^^R/. 

It follows that for general S we can construct W^ZQX^S working étale locally on S 

and hence we obtain the complex W^ZQX^S in general. 

In what follows we will also need to consider the completed de Rham-Witt complex 
WLZnmx/s which by definition is limn W%Z№X/S. 

For a sheaf M. of Wn((9x)-niodules on Xet, we define a WN(S)-linear pd-derivation 
d : Wn(Ox) —* M to be a Wn(5)-linear derivation such that for every étale U —• X 
the derivation 

(4.2.6.1) T(U, Wn(U)) — • X ( C / ) 
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is a pd-derivation. There is a universal pd-derivation d : Wn(Ox) —* ^v^n(x)/vMS) 

obtained by sheafifying the universal pd-derivation constructed in 4.2.4. Denoting 

by ^wn(x)/wn(S) the associated de Rham complex, we obtain a unique surjection 

&wn(x)/wn(S) ~* WnZ&>x/s °f differential graded Wn((9x)-algebras. 

Lemma 4.2.7. — With notation as in 4-2.6 and X —> S smooth, the composite 

(4 .2 .7 .1) d : Wn{Ox) < X / T — ^ ^ U / T 

¿5 a Wn{Os)-linear pd-derivation. Therefore the map pn extends to a unique map of 

differential graded algebras \n : ft\yn(x)/wN(S) ~* ^* X/T-

Proof. — The assertion is etale local on X so we may assume that we have a smooth 
lifting Y/T so that we can identify An xjT with /HM(^YN_1/TRI_1)' By [47, bottom of 
p. 240] to prove that d is a pd-derivation it suffices to show that 

(4 .2 .7 .2 ) p " - 2 d ( v ( e ) ) = P ^ w ^ - 1 ) ) W O ) 

for any £ G Wn-i(Ox)- By the commutativity of (4.2.2.7) this is equivalent to the 
equality 

(4 .2 .7 .3 ) ^-2d(V(pn-1m)=Pp-2V(Pn-AOp-1)d(V(pn-1(0))-

For this consider first the case when p = 2. In this case (4.2.7.3) is equivalent to 
the equality 

(4 .2 .7 .4 ) diVipn^)2)) = y ( P n - i ( 0 ) W P n - i ( 0 ) ) -

Let / G 0yn_2 be pn-i(£)> and *et f ^ ®Y be a lifting of / . Let UJ G ^yri_1/Tn_1 

be a form with pnuj G ^Y2N_1/T2n-i e(lua^ to d(pf). Then V(pn-i(£))d(Vpn-i(£)) G 

'H1(Qy _1/yn_1) is represented by the form 

(4 .2 .7 .5 ) P / ^ ^ . / T , . , 

On the other hand, dV(pn-i(^)2) is represented by any closed form a G ^yn_1/Tn_1 

for which pna G r̂2n_1/T2Tl-i *s e(luai to d(pf2) = p2 fdf (since p = 2). The equal

ity (4.2.7.4) then follows from noting that 

(4 .2 .7 .6 ) pn(pfu) = pfd(pf) = p2fdf 

in fth ,rp so we can take a = pfuj. 

For the case p > 3, note that by 4.1.3 we have pdV = Vd and so 

^ -2y(Pn_1(^ r1 )d (F(Pn_1(0 ) )=pp-3 (^ (p„ - i (Op-1 ) )^ ( r f (Pn- i (0 ) ) 

(4.2.7.7) 
= ^ - V ( / 0 „ _ 1 ( O p - 1 d ( p „ _ i ( 0 ) ) 

^ - V K p ^ O T ) 

= jf-2d(V(Pn^m)-
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To see that d is W^C^-linear let ( ao , . . . , an-i) £ Wn(Qs) be a local section, and 
choose a smooth lifting Y/S of X. Then d(pn(ao,.. . , an_i)) is equal to the class of 

(4.2.7.8) 
n-l 

¿=0 

^ a j da*, 

where a* is a lifting of to Oy. Since O T —* is surjective we can choose di G O T 
and hence da* = 0, and the class is zero. • 

Lemma 4.2.8. — The map \n : ̂ *yn(x)/wn(S) "~* ̂ * X/T fac^ors through W^ZQX^S. 

Proof. — The proof is by induction on n. The case n = 1 is clear. So we prove the 
result for n assuming it holds for n — 1. First we show that the map factors through 
ft* (defined as in 4.2.5). For this it suffices to show that if i and M are integers > 1 
and and rjk are elements of Wn-\(Ox) such that 

(4.2.8.1) 
M 

¿=1 

X(p)/5 ~~ ^n-l^x(p)/5* 

in W^x/S, then 

LOMP 

fc 

X(p)/5 ~~ ^n-l^x(p)/5M%PL* 

(4.2.8.2) 

£%¨££ 
p*-i(£(l)))dnTxr,y,priJDx>7(y)l^Txr,y,priJDx>7(y)l 

is zero in .A*jX/T. By 4.1.3 for any £ and rj we have V(f) • dV(rj) = V(£ • FdV(ry)) = 
V(f • ¿77) and so 
(4.2.8.3) 

^ ( / a n - i ^ 0 ) ) ^ ^ - ! ^ 0 ) ) • • •^(Pn_1(r/f))) - V À ^ x ^ d r ^ • --dfii0). 

Therefore (4.2.8.2) is equal to 

(4.2.8.4) V An-i I 

• M 

/=1 

X(p)/5 ~~ ^n-l^x(p 

By induction this is zero and hence An factors through ft*. To prove that An factors 

through WnZft>x/S it suffices by the definition of the ideal J C ft* in 4.2.5 that for 

any elements UJ G An_ix/r and V £ An,x/T we bave V(u • -F(r/)) = V(u;) • 77. This is 

shown in 4.1.3. • 

4.2.9. — The commutativity of the diagrams (4.2.2.6) and (4.2.2.7) and the universal 

property of &wn(x)iwn(S) imPbes that the diagrams 

(4.2.9.1) 

W^x,s 
Pn 

^n,X/T 

F F 

£%¨£%%¨£ 
%¨% 

pn-1 
^n-l,X/T 
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and 

(4.2.9.2) 

W^x/s 
Pn 

^n,X/T 

V V 

W»L£i«x/s 
Pn+l A9 

^n+liX/T 

commute. This therefore completes the proof of 4.2.3 except for the injectivity of pn 
when 5 is reduced. 

To prove that pn is injective when S is reduced we first make some reductions. 

Lemma 4.2.10'. — If S is reduced, then W(S) is flat overZp. 

Proof — For any local section (ao> 0i> • • •) £ W(Os) we have 

(4.2.10.1) p . (a0 ,a i , . . . ) = (0 ,ag ,a? , . . . ) , 

which is nonzero if (aU5 a i , . . . ) is nonzero and 5 is reduced. 

4.2.11. — This lemma enables us to reduce to the case when T = W(S). For as 
explained in [34, 0.1.3] there exists a canonical map W(S) —» T compatible with the 
liftings of Frobenius and the inclusions of 5. It follows that the map W^ziix^s —> 

A*n x/w(s) favors through the map W^z(lx^s ^ * x/Tm ^or ̂ e res^ °^ ̂ e Pro°f 
we will therefore assume that T = W(S). 

We can further reduce to the case when X = Ars for some integer r as follows. 
For this reduction note first that to prove that pn is injective we may replace S and 
X by étale covers. Therefore we may assume that S is affine, say S — Spec(i^). 
Furthermore, we may assume that X is étale over for some integer r. To show 
that it suffices to consider X = A£, it therefore suffices to show that if X' —> X is an 
étale morphism of smooth affine i?-schemes, and if the result holds for X then it also 
holds for X'. 

Choose a smooth lifting Y of X to W(R) and a lift of Frobenius Fy : Y —> 
Y compatible with the canonical lift of Frobenius on W(R). Let Y' —» Y be the 
unique lifting of X1 to an étale F-scheme and let Fy : Yf —• Y' be the unique 
lifting of Frobenius on Y' to a morphism over Fy. Let m > n be an integer so 
that pmWn(R) = 0 (for example take m = n). By [47, Remark 1.8] we have an 
isomorphism of differential graded algebras 

(4.2.11.1) WWn(X') ®Wto+»(*),*"» w™arx/R ~ w^Xf/R. 

Here WnZQx/R is viewed as a Wm+n(X)-linear algebra via the map Fm : 

Wm+n(X) -+ Wn(X) and the observation that dFm(£) = pmFmd{£) = 0 
by [47, 1.19]. On the other hand, the lifts Fy and Fy of Frobenius define 
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by [34, bottom of p. 508] a canonical commutative diagram 

(4.2.11.2) 

Oy Wn(X') 

MP¨M s Wn(X). 

Since both Y' x y Wn(X) and Wn(X') are étale liftings of X' to Wn(X) [47, A.U], 
we conclude that the map 

(4.2.11.3) Oy ®oY Wn{X) — Wn(X') 

induced by (4.2.11.2) is an isomorphism. Combining this with (4.2.11.1) we obtain 

(4.2.11.4) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/5*MOL 

On the other hand, the diagram 

(4.2.11.5) 

Y' 
TTim-\-n 

Y 

Y 
p,m+n 

Y 

is cartesian since Y' —• Y is étale. Therefore 

(4.2.11.6) An,X>/T - °Y^+N ®OY m+n AN,X/T-

1 m + n >rY 
To complete the reduction to X = ArR, it now suffices to prove that the iso
morphisms (4.2.11.5) and (4.2.11.4) are compatible. By the universal property of 

(X')/w (S) ^ suntices to show that the diagram 

(4.2.11.7) 

0YM + n 
s Wn+m{X) 

rpm + n 
Y MP£¨¨ 

A0 
^n,X/W(S) 

Pn WJX) 

commutes. If h € Oym+n then 0(h) is a vector (ao , . . . ,an+m_i) where 

(4.2.11.8) ££¨%M¨% 
n-l 

2=0 

• n~n — i (mod pn) 

for any liftings hi £ Oy of the a;. Thus we find that 

(4.2.11.9) pn o Fm o 0(h) = 

n-l 

2=0 

¨M¨%£%¨% n-l 

2=0 

X(p)/5 ~~ ^n-l^xLMOP² 

This completes the reduction to X = ArR. 
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4.2.12. — For the case X = ARR, let BR be the Cartier-Raynaud ring defined in [47, 
2.7]. The ring BR is constructed as follows. First let B^ be the ring whose elements 
are finite formal sums 

(4.2.12.1) £ V'Z. + £ r,sFs + £ dV% + £ v'sF sd, 
s>0 s>0 s>0 s>0 

where £s, £'s, rjs, rfs G W(R). The addition in B^ *s componentwise and the ring 
structure is determined by the following rules 

^ o . o ^ FV = p = V°p, VtF = V{Ç), FÇ = F{Ç)F, t \ = VF{Ç), 
(4 2 12 2) 

d£ = £d, d2 = 0, FdF = d, Fd = dVp, dF = pFd. 

For any integer n > 0 consider the right ideal B^(n) = VNB°R + dFnB^. 
By [47, 2.20] the right ideal B°R(n) consists of elements (4.2.12.1) for which 

€ Fn-S(W(,R)) for n > 5 and ns,r)'s G Fn(W(i?)) for 5 > 0. Denote the 
quotient B°R/B°R(n) by B{R \ and let B# = Urn B ^ ° . The module BR inherits a ring 

structure for B^ by [47, 2.21]. Observe also that as a set B ^ is isomorphic to the 
set of formal sums 

(4.2.12.3; 
n-l 

s=0 

LMPLO 
s>0 

]v.F'-\ 
n-l 

s=0 

¨%£M%P¨¨ 

s>0 

v'sFsd, 

with ŝ,̂ 5 G Wn_s(i?) and r)s,rfs G Wn(iî). The abelian group structure on B ^ is 
given by componentwise addition. 

The operators F and V on VFLZf^r jR gives VFLZft̂ r yH the structure of a left 

B^-module. By [47, 2.25] the natural map WLZiî^ /Fp -> WnZ^lrs/s induces an 

isomorphism 

(4.2.12.4) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x 

On the other hand by 4.1.28, we have 

(4.2.12.5) <AN,ARS/T - Wn(R) ®wN(FP) ^-N,A-p/w(FP)-

Define a map 0 : B ^ —• Wn(R) ®wn(Fp) by sending an expression (4.2.12.3) 
to 

(4.2.12.6) 
n-l 

s=0 

%£%%£¨%£¨M 

s>0 

MP%££ 
%£ 

n-l 

s=0 

¨%MP%£MLO 
s>0 

<pn{r/a)®F'd, 

where £s and are liftings of £s and £'s to Wn(R) and ^ : Wn(iJ) -> Wn(i?) denotes 
the canonical lift of Frobenius. That this map is well-defined can be seen as follows. 
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If £s,i and £Sj2 are two liftings of £s to Wn(R), then their difference — £s?2 is of 
the form Vn~s(h) for some h G Ws(iJ). Write /1 = (ao , . . . , as-i) and observe that 

(4.2.12.7) ^ ( ^ - s ( a 0 , . . . , a s _ ! ) ) : 
n-l 

i=n—s 
M%¨M ai-(n-s). 

where for b G R we write [6] G Wn(i?) for its Teichmuller lifting. It follows that 

<pn(Vn-a(h)) is a multiple of pn~s. Since Vs G is killed by pn~s this implies that 

n̂(£s) ® Vs is independent of the choice of the lifting £s. A similar argument shows 

that ipn(£'s) ® dVs is independent of the choice of lifting and hence the map 0 is 

well-defined. 

Lemma 4.2.13. — The diagram 

(4.2.13.1) 

WLZQ* 
(4.2.12.4) X(p)/5 ~~ ^n-l^x(p)/5*£%M 

Pn 

A* 

e<g>i 

(WN(R) ®WN(¥P) D<£>) 0 ^ WLZÎÎ̂ P /Fp 

(4.2.12.5) 

Wn(B) ®Wn(Fp) • ^ / W f F p ) 
MP%¨£ -Wn(i2)®^(Fp)^„LZ^p/Fp 

commutes. 

Proof. — The composite pn o (4.2.12.4) sends an element 

(4.2.13.2) 

s>0 

§M%£% 

M%P¨M 

%£M¨% 

s>0 

MLOM¨£% 

s>0 

%£¨%%£ X(p)/5 ~~ ^n-l^x(p)/5* 

to the element 

(4.2.13.3) 

n-l 

s=0 

X(p)/5 ~~ ^n-l^x(p)/5* 

s>0 

<pn{ris)Fs{pn{w)) 

n-l 

s=0 

X(p)/5 ~~ ^n-l^x(p)/5* 

5>0 
wn(V's)F°d(pn(w)), 

where we abusively write u for the image of u in W^CI^T JR. Thus to prove the 

lemma it suffices to show the equalities 
(4.2.13.4) 

X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/5*X(p)/ ^n 

m Ar / W W w^ich follow from the definition of V and d. 
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4.2.14. — By [47, 2.24] there exists a collection {e2}ze/ of elements ez G WLZ^Xf /FP 

such that every element of B ^ ®3Fp WLZ£7^r can be written uniquely as 

(4.2.14.1) 
%¨°£% 

iei 

LOMP¨M 

where £ G Wn(-R) and 0$ G B# and almost all 0; are zero. The map 0(g) 1 sends such 
an element to 

(4.2.14.2) vn(0 ® 1 + 
iei 

X(p)/5 ~~ ^n-l^ 

Since R is reduced, the Frobenius map ip : Wn(R) —» Wn(R) is injective. From the 
definition of 6 if follows that 0 is also injective, and hence the map 0 0 1 is injective 
as well. 

To complete the proof of 4.2.3, it is therefore sufficient to show that the map 

Pn ' Z^AJ /FP ~^ ^n AR /w(¥p) *s an isomorphism. But in this case the map pn is 

the map obtained from the higher Cartier isomorphism defined in [36, III. 1.5] and in 

particular pn is an isomorphism. This completes the proof of 4.2.3. • 

In what follows we will also need the following analogue of 4.1.12 for the Langer-
Zink de Rham-Witt complex. 

Theorem 4.2.15. — Let S/¥p be an algebraic space and let X —• S be a smooth mor
phism of algebraic spaces. Assume that etale locally on S there exist a flat lifting 
T/Zp of S and a lifting FT : T —> T of Frobenius. Then for any q>0 and n > 1, the 
sequence 

(4.2.15.1) 
0 ~> Rn,X/S 

X(p)/5 ~~ ^n-l^x(p)/5* 

(Vn,dVn) 
X(p)/5 ~ £%¨£ 

Wn 11X/S • 0 

is exact, where as in 4.1.12 the sheaf R^ XjS is defined by the exact sequence 

(4.2.15.2) 0 ' Un,X/S 
X(p)/5 ~~ ^n-l^x(p)/5* {Cn,dCn) 

BiÇ}qxipn)/S • 0, 

and the inclusion Rqn x^s C W i L Z ^ x / s ® ^ i L Z ^ x / s ^s ^he comPos^e of the inclusion 

Rn x/s ^~ ̂ x/s ® ̂ x/s and the isomorphism 

(4.2.15.3) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/ 

provided by the construction in 4-2.5. 

The proof of 4.2.15 occupies the remainder of the section. 
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Remark 4.2.16. — Note that the operator 

(4.2.16.1) Bn+\ÇlqXjS 0 ZJS^X/S 
(Cn,dCn) 

Biüqx(pn)^s 

is 0s-linear, so Rqn^x/S is an CVsubmodule of W];zSlqx/s 0 W^ft^^. 

Remark 4.2.17. — In the case when S is perfect 4.2.15 can be deduced from the classi
cal theory of de Rham-Witt complexes [34] and the comparison between the Langer-
Zink de Rham-Witt complex and the classical de Rham-Witt complex. To see this, 
note that by [34, 1.3.10 (b)], the maps dVn and Vn induce isomorphisms 

(4.2.17.1) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~ X(p)/5 ~~ ^n-l^x(p)/5* 

and 

(4.2.17.2) Vn : Bn+iQ9x/s/BnSlqX/S v ^ . n d v ^ - ^ . 

The resulting isomorphism 

(4.2.17.3) p : ZnÇLqx}s/Zn+iÇlqx}s Bn+1 o,qx I s I Bn nqx » s 

is by loc. cit. equal to the isomorphism [34, 0.2.2.6.2]. Unwinding the definitions one 
finds that this isomorphism p can also be described as the isomorphism induced by 
the isomorphisms 

(4.2.17.4) Cn : Bn+iQqxIs JBnÇlqxIs Biftqx(pn)^s 

and 

(4.2.17.5) d(JN \ ZnQqx/S/Zn+iÇ}qX/S X(p)/5 ~~ ^n-l^ 

Therefore Rqn XjS is equal to the kernel of the map 

(4.2.17.6) (Vn,dVn) : Wlzftqx/S 0 W^Q^l 
(Vn,dVn) %£¨%££PM£ 

The exactness of the remaining part of (4.2.15.1) follows from [34, 1.3.2]. 

4.2.18. — The assertion of the theorem is etale local on both S and X. Hence we 
may assume that we have a lifting (T, FT) defined globally. 

Lemma 4.2.19. — The kernel of 7rn is equal to the image of (Vn,dVn). 

Proof. — The assertion is local on S and X and hence we may assume that S is 
affine, say S = Spec(R). By [47, 2.25] we have for any integer n an isomorphism 

(4.2.19.1) X(p)/5 ~~ ^n-l^x(p)/5* w ^ w x / R . % ¨ £ 

Since the kernel of WR+1) 3{R} is equal to the image of VnBR + dVn3R it fol

lows that the kernel of W^Sl^g -> W^ZQX/S is equal to the image of (Vn3R + 
dVnBR)®DR WLZQ'X/S. • 

ASTÉRISQUE 316 



4.2. COMPARISON WITH THE LANGER-ZINK DE RHAM-WITT COMPLEX I 175 

4.2.20. — To complete the proof of 4.2.15, it remains only to see that the kernel 
of (Vn,dVn)isRlx/s. 

We already know this in the case when S is perfect by the classical theory (4.2.17). 
We reduce the proof of 4.2.15 for general S to the case when S is perfect (in fact 
S = Spec(Fp) and X = AJp). 

Let X' —> X be an etale morphism over S. By [47, Remark 1.8] for any m > n 
the map 

(4.2.20.1) •Wn+m(X') ®Wn+rn(x),Fm W^x/S WnZWx,/s 

is an isomorphism. 
Consider the sequence 

(4.2.20.2) 

X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/5* 
(Vn,dVn) 

X(p)/5 ~~ ^n %¨£% WLZQq 0. 

We will view this as a sequence of W2n+2(-X")-rnodules, where W2n+2(X) acts on 

WiZQ<x/s © wiZn9x/s throuSh the projection F2n+1 : W2n+2(X) -* Wi(-Y), and 

on 
WnZl^qX/S througn the map Fn+1 : W2n+2(X) —> Wn+i(X). Note that with 

this definition of the action, the sequence (4.2.20.2) is a sequence of W2n+2(X)-
modules. Indeed for / e W2n+2(X) and UJ e W};zSlqx/s (resp. UJ e W^Q^) 
we have by (4.2.12.2) 

(4.2.20.3) yn(F2n+l(f) . x = pn+lffiyn 

and 

dVn{F2n^(f) • UJ) = d(Fn+\f) • Vnuj) 

= (dFn+1(f)) • Vnuj + Fn+1(/) • dVnuj 

= Fn+1(/) • dFncj (since dFn+1(f) = pn+1Fn+1df = 0). 

If M is an Ox-module, then there is a canonical isomorphism 

(4.2.20.4) W2n+2(X') ®W2n+2(X),F^+i M ~ Ox> ®Ox,F2n+i M. 

Indeed if TT : W2n+2(X) —> Ox denotes the canonical projection, then the two maps 

(4.2.20.5) F2"+1 o TT, F2n+1 : W2n+2{X) —* Ox 

are equal, so (4.2.20.4) can also be written as 

(4.2.20.6) (W2n+2{X') ®w2n+2(X),* Ox) ®0X,F%>+1 M-

Since the canonical projection W2n+2(X') —> Ox> induces an isomorphism (by [34, 
0.1.5.81) 

(4.2.20.7) (W2n+2(X') ®w2n+2(x),* Ox) —» Ox>, 

this gives the isomorphism (4.2.20.4). 
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Applying the functor 

(4.2.20.8) W2n+2{X') ®W2n+2(x) (-) 

to (4.2.20.2), and using the isomorphism (4.2.20.1) we conclude that if (4.2.20.2) is 
exact then so is the sequence 

0 Ox> ®OX,F%^ Rlx/s W™tlx,/S © Wt^x'/s 

(4.2.20.9) iV">dV 

wLZ o<? ^ ^ WLZnq ^ n 
vvn+lltX'/S ^ VVn *LX'/S ^ 0. 

'/S ^ rrn *LX'/S 

The following lemma then implies that if 4.2.15 holds for X/S then it also holds 
for X'/S. 

Lemma 4.2.21. — The induced map 

(4.2.21.1) Ox> ®OX,FX^ K,x/s — K,x'/s 

is an isomorphism. 

Proof. — Recall that the Cartier operator 

(4.2.21.2) Cx/S : Bn+1QX/S —. BnQqx(p)/s 

is Frobenius semilinear in the sense that for a section / G Ox we have 

(4.2.21.3) Cx/s(F(f)uj) = fCx/s(u). 

The sequence 
(4.2.21.4) 

0 > Rn,x/s * Bn+iQ>x/s © Zriftx/s------kl------------* BiftqX(pTl)/s * 0 

becomes a sequence of Ox-modules, where Ox acts on Rqn x^s and Bn+iQx/S 0 

ZnClqx^s through the Frobenius map F2n+1 : Ox —> Ox and on Biilx(pn)^s through 

the map Fn+1 : Ox Ox. As in [34, 0.2.2.7] the maps 

(4.2.21.5) Ox> 0ox,F2n+i (Bn+1Qqx/s 0 Z n f i £ ^ ) — • Bn+ifi^//5 0 Z n f i £ } s , 

and 

(4.2.21.6) Ox ' ^ox,Fn+i Sifi^(p»)/5 — • Bifi^/(pn)/5 

are isomorphisms. Applying Ox' 0ox (—) to tne sequence (4.2.21.4) it follows that 
the map 

(4.2.21.7) Ox- ®0x,F2»+i Rlx/S — <X7S 

is an isomorphism. • 
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4.2.22. — Since etale locally on X and 5, the space X is etale over ARS for some 
integer r, it suffices to prove 4.2.15 for X = ARS. So we assume X = ARS for the 
remainder of this section. Let Xo denote A J . By the case when S is perfect we know 
that 4.2.15 holds for X0/¥p. 

Lemma 4.2.23. — The map 

(4.2.23.1) 0S ®FP K,Xo/Fp -> Rqn,X/S 

induced by the Os-structure on Rqn x^s (4-2.16) is an isomorphism. 

Proof. — Consider the commutative diagram with exact columns 

(4.2.23.2) 

0 0 

0 S ® F P K,X0/FP 
a 

Un,X/S 

Os ®Fp ( B n + i n ^ e Z n O ^ ) 
b X(p)/5 ~~ ^n-l^x(p)/5* 

(Cn,dCn) 

Os ®FP B^Xo/¥p c 

Cn,dCn) 

D O9klmop 

0 o, 

where the horizontal arrows are induced by the 05-module structure of the right 
column. By [34, 0.2.2.8] the maps labelled b and c are isomorphisms, and therefore 
the map a is also an isomorphism. • 

To prove that x^s is equal to the kernel of (Vn, dVn), we need to again study 

the Cartier-Raynaud ring B)R of an Fp-algebra R (4.2.12). Recall that as a set D^+1^ 
is isomorphic to the set of finite formal sums 

(4.2.23.3) 
n 

s=0 

LMPL 

s>0 

,VsFs 
n 

s=0 
:<iv°£+ 

s>0 

v'sFsd, 

with £s,£s G Wn+i_s(i?) and r)s,r)'s G Wn+i(i2). In particular an element x G WR 
can be written uniquely as 

(4.2.23.4) x = £o + 

s>0 

r)sFs + d& -f 

s>0 

WsFsd. 

To ease the notation, for any element / G R let ys f denote Vs(/) G WS(R). 
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Lemma 4.2.24. — In terms of the description (4-2.23.3) ofW£ } we have 

n 

(4.2.24.1) Vn{x) = Vnto + Y,Vn~SVSrlS + Y,V"vsFs-n + dvnr1'n + J2V,lri'sFs-nd 
s=l s>n s>n 

and 

n 
(4.2.24.2) dVn(x) = dVn£o + ^dV71'^8 ns. 

s=l 

Proof. — Computing 

(4.2.24.3) Vn(x) = VnÇo + Y vnVsFs + Vnd^ + ]T VnnfsFsd. 

s>0 s>0 

For 1 < 5 < n 

Vnr]'sFsd = Vn-sV3r)'sd (VÇF = VÇ) 

= Vn-sdv3n's (d£ = td) 

= dVn-spn-sysrifs (Vd = dVp). 

For s < n this last expression is 0 because in the description (4.2.23.3) of D^+1^ the 
coefficient of dVn~s is in Ws+i(R), and pn~sV rf8 = 0 in this ring. If 5 = n we get 
the term dv rjfn. 

Also the relation Vd = dVp shows that 

(4.2.24.4) Vnd& = dVnpn^ 

which is zero since the coefficient of dVn in (4.2.23.3) is in Wi(R). 
It follows that 

Vn(x) = Vnio + vnVsFs + dynrfn + VVsd 
s>0 s>n 

= Vnto + J2 V » - ^ + £ v"VsFs-n + dvnn'n + £ vriv'sF°-nd, 

s=l s>n s>n 

where we use the relation V£F = v£. This proves (4.2.24.1). 
Formula (4.2.24.2) follows by applying d to (4.2.24.1), and noting that dF = Fdp 

so that 

]T dynrjsFs-n = Y ynr)sdFs-n (since d£ = £d) 

s>n s>n 

= J2pS~nV"^sFS~nd 
s>n 

= 0, 
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and 

s>n 

1dv"ri'sFs-nd = 
s>n 

' ynr]'sdFs-nd (since dÇ = £d) 

s>n 

ynr]fsp8-nFs-ndd 

= 0 (since df = 0). 

Corollary 4.2.25'. — In terms of the description (4-2.23.4) of elements of WR , we 
have 

(4.2.25.1) Ker(Fn : d£> -+ b£+1)) M%¨M 
n-l 

s=l 

£¨P¨%M 

and 

(4.2.25.2) Ker X(p)/5 ~~ ^n-l^x(p)/5* 

v s>n 

t]sFs+d4'0 + 
s>0 

ysFsd 

Moreover, i / L c © denotes the left R-submodule of elements 

(4.2.25.3) (riFnd, —T]Fn) 

then the map 

L © Kei(Vn : - D^n+1)) © Ker(dV" : d £ } - b£+1)) 

(4.2.25.4) 

Ker((Vn,dVn) : ©DJJ' D£+1)) 

¿5 an isomorphism. 

Proof. — The equalities (4.2.25.1 and (4.2.25.2) follow immediately from 4.2.24. 
To see that (4.2.25.4) is an isomorphism, note that by (4.2.24.1) and (4.2.24.2) any 

element of D^+1^ in the intersection of the images of Vn and dVn is of the form dynr] 
for some rj G R. Thus any element (a,/?) G 0 D^1} in the kernel of (Vn,dVn) 
is after subtracting an element of L equal to a sum (a, 0) + (0, /3) of elements in the 
kernel. This proves the surjectivity of (4.2.25.4). The injectivity follows from the 
explicit descriptions (4.2.25.1) and (4.2.25.2) in terms of the basis (4.2.23.3). • 

4.2.26. — Let ICR denote the kernel of the map 

(4.2.26.1) [Vn,dVn) X(p)/5 ~~ ^n „(n+D 

so that there is an exact sequence of right DFp-modules 

(4.2.26.2) 0 £%¨£ X(p)/5 ~~ ^n- (V",dVn) D(n+1) PM¨%P o. 

By the above computations ICR is a left i?-submodule of © D ^ . 
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Corollary 4227. — The map 

(4.2.27.1) R ®wp ICFP — • ICR 

induced by the R-module structure on KR is an isomorphism. 

Proof. — Immediate from the descriptions (4.2.25.1) and (4.2.25.2) of the kernels. 

4228. — By [47, 2.23], for any integer n the map of left B^°-modules 

(4.2.28.1) ®b*p W(¥p) > Wn(R) 

induced by the map W(¥p) —>• Wn{R) is an isomorphism. In particular applying the 
functor 

(4.2.28.2) { - ) ®D,p W(¥p) 

to the exact sequence (4.2.26.2) gives a sequence 

(4.2.28.3) ICR ®Dp„ W(¥P) R® R 
(Vn,0) 

Wn+1(R) WJR) - 0. 

Lemma 4.2.29'. — The sequence (4-2.28.3) is exact. 

Proof. — The only nontrivial point is that ICR ®DF W(FP) surjects onto the kernel 

(4.2.29.1) (0, R) = Ker((yn, 0) : R © R Wn+1(R)). 

This follows from noting that the map 

(4.2.29.2) ICR ®D¥P W(WP) R 

sends nFn+1 <g> 1 e Ker(dVn : DjJ} - » D£+1)) <g>DFp W(FP) to 7?. • 

4.2.30. — Let 7 be a set, and let M denote the free left Dpp-module generated by I 

(4.2.30.1) M := ©ie/B>Fp • et. 

Set 

(4.2.30.2) M<"» := ®ieIB^ • eu 

and let M denote the projective limit 

(4.2.30.3) M = HmM(n). 
n 

An element of M is given by a formal sum X^e/a* ' e*' suc^ ^or everY ^ > 1 
almost all ai are contained in V™BFP + dVnTb^p. 

Define a map 

(4.2.30.4) p : B ^ ° M — • e ^ / B ^ = B ^ } ®pFp M 
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by 

(4.2.30.5) S 0 ( ]T a ^ ) i—• ]T 5 • a.. 

Note that this is well-defined, because by [47, 2.21] for any 6 G there exists a 
positive integer c such that 5 is annihilated by VCJ}R + dVcB#. There is also a map 

(4.2.30.6) A : o£° (g)pFp M — • o£° 0©^ M 

induced by the map M —± M. 

Lemma 4.2.31 

(a) For every integer n > 1 the map 

(4.2.31.1) M/(VnM + dVnM) —> M(n) 

induced by the projection M —> is an isomorphism. 

(b) The maps p and A are inverse isomorphisms. 

Proof. — For (a), define 

(4.2.31.2) Kr := Ker(Fn + dVn : M(r) 0 M(r) -> M(r+n)), 

so we have an exact sequence of projective systems 
(4.2.31.3) 

o • K. • M<-> 0 M(•) yn+dyn) M('+n) • M W • 0, 

where M^n^ is viewed as a constant projective system. 
For every r > 1, the map ifr+i —• iiTr is surjective. To see this let (a, /3) G be 

an element, and choose any lifting (d,/3) G M<r+1) 0 M<r+1). Then Vnd + dV™^ is 
in the kernel of M<r+n+1) -> M<r+n) and hence there exist 7, J G M^1) such that 

(4.2.31.4) Vna + d V ^ = Fn+r7 + dVn+r<J. 

The element (d — Fr7, /? — Vr£) is then an element in Kr+i mapping to (a, ¡3) in ifr. 
It follows that (4.2.31.3) is an exact sequence of projective systems which satisfy 

the Mittag-LefHer condition, and therefore applying lim to (4.2.31.3) we obtain an 
exact sequence 
(4.2.31.5) 

0 • HmrXr • M 0 M yn+dyn) M • Af(n> > 0. 

This implies (a). 

For (b), note that since po\ is an isomorphism it suffices to show that A is surjective. 

Consider a tensor S 0 ra G 0©fe M, and let c be an integer such that 

(4.2.31.6) 5 • (VCBR + dVcBR) = 0. 
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By (a), we can write m = m + Vca + dV°/3, where m € M and a, ¡3 G M. Then 

ô <g> m = X(ô ® m) + ô ® Vca + 5® dVc(3 

= A(<5 ® m) + ( 5 V C ) ® a + (SdVc) ® / 3 

= A(£®m) (by (4.2.31.6)). 

4.2.32. — Now returning to the situation of 4.2.22, assume further that 5 is affine 

and write S = Spec(iî). By [47, 2.25], for any integer n the map of left B^-modules 

(4.2.32.1) %¨£%¨£%¨£% X(p)/5 ~~ ^n-l X(p)/5 ^n-l^x 

induced by the map WLZQXQ/¥ —» QX/R ŝ an isomorphism. Applying 

(4.2.32.2) ( - ) ®E>Fp ^ L Z " X 0 / F P 

to the sequence (4.2.26.2) we obtain a sequence 
(4.2.32.3) 

KR ®D,P wLZn*Xo/¥p — w£zwx/s e ^ L Z ^ / 5 wn+1wx/s wnnmx/s — o. 

Corollary 4.2.33. — T/ie sequence (4-2.32.3) is exact. 

Proof. — By [47, equation 2.54] the DFp-module ^ L Z ^ X 0 / F *s isomorphic to a direct 
sum 

(4.2.33.1) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/ 

where M is as in 4.2.30 for some set J. Using 4.2.31 (b), it follows that (4.2.32.3) 
decomposes as a direct sum of sequences of the form (4.2.26.2), and one copy of the 
sequence (4.2.28.3). The result therefore follows from 4.2.29. • 

4.2.34. — Prom this and 4.2.15 in the case when S is perfect it follows that if 

(4.2.34.1) r := Ker((V»,dV™) : W™ti'x/S 0 W™Srx/s - W^X/S) 

then there is a commutative diagram 

(4.2.34.2) 

X(p)/5 ~~ ^n-l^x(p)/5KLOL* X(p)/5 ~~ ^n-l^x(p)/5* 

u e 

X(p)/5 ~~ ^n-l^x(p)/5* E 

X(p)/5 ~~ ^n-l^x(p)/5* LOM 
iïx/R 0 fì>x/R> 

where e and u are surjections. It follows that the image of 0gi? ®FP Rqn Xo/F in 

^X/R © ̂ x/R LS e(lual t° T. On the other hand this image is also equal to 0g-R^ XjS 

by 4.2.23 so this completes the proof of 4.2.15. • 
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4.3. The algebra *4n,x/s over an algebraic stack 

In this section we generalize the results of 4.1 to a theory over algebraic stacks. 

4.3.1. — Let T —> Spec(Zp) be a flat morphism of algebraic spaces, and let T denote 
the p-adic completion of T. Let T be an algebraic space over Fp, and let T <-> T be a 
closed immersion defined by a divided power ideal (X, 7) C OT- Assume further that 
there exists a lifting a : T —> T of Frobenius to T, and fix one such lifting a. For 
n > 0 denote by Tn the reduction of T modulo pn+1. 

Let S/T be a flat algebraic stack together with a lifting F§ : 8 —• 8 of Frobenius 
to § compatible with the lifting a : T —> T, and let be the base change to T. 

For any integer n > 0, let S(n) denote the base change § xT,an T. For any integer 
n > 0 we then have a factorization of Fg : 8 —> S 

(4.3.1.1) § F«V > §(n) *n , 

where 7rn : S(n) = 8 X T , ^ T —• § is the projection. We therefore obtain a morphism 

(4.3.1.2) 08<»> — RFg/T*Os. 

More generally for any morphism of algebraic stacks W —> § we obtain by base change 
a diagram 

(4.3.1.3) W(n) Pn w(n) MP%£ 

where W<n> denotes S xF»,s and W<n) denotes W xTjCr» T. 

Assumption 4.3.2. — Assume that for every n > 0 and morphism of algebraic stacks 
W —> 8 £/ie map 

(4.3.2.1) MOL%£ X(p)/5 ~~ ^n-

zs an isomorphism. 

Remark 4.3.3. — Since the morphism Ŝ n̂  —• § is affine, this assumption implies in 
particular that for any i,n > 0 the sheaf RlF^O$ on Sns_et is zero, and the same 
holds for §0 and 8^. In particular the stacks 80 and 8^ are Frobenius acyclic (3.2.1). 

4.3.4. — Let / : X —» be a smooth representable morphism of algebraic stacks 
with X a Deligne-Mumford stack. For every n > 1 and q > 0, define 

(4.3.4.1) l^x(p)/5* 
^Xet/Sn-l* Ox et/Sn-1 * 

For n < 0, we define .4^ - /Q to be zero. The sheaves Aq ~ /Q are sheaves of (9r J r f -
— ' n,Xet/c) 7l,X/c> -*n,et l̂ et 

modules on Xet-
For any integer n > 0 set 

(4.3.4.2) x ( p n ) := §(n) x § r 

The Frobenius morphism on X induces a canonical map FX/§ : X —> X^pn\ 
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4.3.5. — If X ^ y is a closed immersion over 8 with y —> § smooth, then by 2.5.4 
there are canonical isomorphisms 

(4.3.5.1) X(p)/5 ~~ ^n-l^x(p)/5*%¨£% 

where D denotes the divided power envelope of X in y. 
We can also generalize 4.1.7. Assume y/8 is a smooth lifting of X, and note 

that 3.4.35 yields in the present situation (since we are under the assumptions of 4.3.1) 
a canonical isomorphism 

(4.3.5.2) X(p)/5 ~~ ^n-l^x(p)/5*¨%¨£% LriRux/s*Ox/s. 

For m > 0, define a subcomplex E'^ C fîy/§ by 

(4.3.5.3) 
NHJNU X(p)/5 ~~ ^n-l^x(p)/5*%£¨%

Then by definition of hr]Rux/s*Ox/s the isomorphism (4.3.5.2) gives an isomorphism 

(4.3.5.4) Ko R^x(p)/S(p)*^X(p)/s(p) • 

We then have the following generalization of 4.3.6: 

Lemma 4.3.6. — For m>0, define a subcomplex C ^ym_1/sm_i by 

(4.3.6.1) Eq := ^ ^m-l/Om-1 1 dw € p«+1fi?i+1 „

T/ien if m > n + q, the module 

(4.3.6.2) Eq •= Ëq lvnËq 

is independent of the choice of m, and by varying q we obtain a complex E^ with 
differential induced by the differential on E'm. Moreover, the isomorphism (4-3.5.4) 
composed with the projection 

(4.3.6.3) Elo ®oT 0T/(pn) K 

is an isomorphism 

(4.3.6.4) E*N ~ 0Tri_x ®OT LVRUX/T*OX/T. 

Proof. — This follows from the same argument proving 4.1.7. •

4.3.7. — Just as in 4.1.2 and 4.1.9, this local description enables us to define operators 

(4.3.7.1) 

^ : ̂ n,X/S Aq+l 
^njX/S' 

F 1 ^n+l,X/S Aq V : -4n,x/s Aq 

Ai+l,X/S 
and using 3.4.35 

(4.3.7.2) X(p)/5 ~~ ^n-l^x(p)/5 AqTxr,y,priJ 

By the same reasoning used in 4.1.3, all the formulas (4.1.3.1) hold, except possibly 
d2 = 0 which will become apparent in 4.3.19 below. 
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4.3.8. — For any q>0 let 

(4.3.8.1) 
MP%¨M nq 

«y(p) /c 

X(p)/5 ~~ ^n-l^ 

be the Cartier isomorphism (3.3.21). Define BnQ!y.^i%_ and ZnQ^t^_ inductively 

as follows: 

(4.3.8.2) X(p)/5 ~~ ^n-l^x(p)/5*X(p)/5 ~~ ^n-l^x(p)/5* 

(4.3.8.3) 5L Œ'Y- / Q 

Xet/öjT 

X(p)/5 ~~ ^n-l^x(p)/5* 

(4.3.8.4) X(p)/5 ~~ ^n-
Ker(d:f i ' j / s - ^ f i r "1 /« ! ) 

(4.3.8.5) 

X(p)/5 ~~ ^n MMP£ 
" bn+1^fxet/st GYVNKL%£ 

£¨M%%M%£ 
c_1 

§%% 
¨£¨PH% 

£¨£M%¨£P%% 

We also define Rq (p) by the sequence (where by convention C° is the identity map) 
n,Xet 

(4.3.8.6) 
0 <Y(P] Bn+iüq{p) I B ZnQq À 

(Cn,dCn) 
jBl̂ ir+1)/ŝ +1) £¨% 

and if J = p ö x let sn be the map 

(4.3.8.7) Sn : fix<?>/% P¨£LM£ c-1 Aq 

^i,x/§ 
¨%M%£ (Vn,dVn) 

AqTxr,kol 

4.3.9. — Let 5 —• S be a smooth surjection with 5 an algebraic space, and let S 
denote the p-adic completion of S. Assume given a lifting of Frobenius Fs : S —> S 
such that for every integer n > 0 the diagram 

(4.3.9.1) 

Sri 
FS MPL 

M¨£ % £ 

commutes. Denote by S* the 0-coskeleton of 5 —> § and let S# denote the simplicial 
formal scheme obtained by taking the p-adic completion of each Sn. The lifting of 
Frobenius Fs : S —> S defines a morphism of simplicial formal schemes 

(4.3.9.2) Fs. '-S.—+S. 

Denote by 5 . the simplicial algebraic space Sm x ^ T , and let X. denote X x§ Sm. 
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Remark 4.3.10. — The pair (£, Fs) can be constructed as follows. Choose any smooth 
surjection c : S —> 8 with S an affine scheme. The lifting of Frobenius Fs : S —> S 
is then determined by the liftings of Frobenius Fsn : Sn —* Sn for each n. These 
liftings can be constructed inductively. If Fsn_1 : Sn-\ —> Sn-i has been constructed, 
consider the diagram 

(4.3.10.1) 

Sn-l 
¨£ 

Sn-lC c ¨¨% 

c 

*5n M 
%¨£ 

-8 . 

By [66, 1.5], the obstruction to filling in the diagram with the dotted arrow is a class 
in 

(4.3.10.2) Hl(so,Fsoc*tosn/sn) 

which is zero since So is affine. Thus the pair (S,Fs) exists. 

4.3.11. — For any integer r > 0, there is a canonical map X* := Xm Xg FZ 5# —> 

X x§_?irr-_ Ŝ r which identifies X. x$ Fz 5 . with the 0-coskeleton of the smooth 

surjection (X x § _ S) XgF:L S —> X x § _ jrr_ 8^. In particular there is a canonical 

morphism 

(4.3.11.1) LKX(p)/5 ~~ ^n-l^x(p) 

Note that Txr,y,pri is no£ equal to the 0-coskeleton of some covering U —> X^p ). The 

simplicial space X, ' is equal to the fiber product of the diagram 

(4.3.11.2) 

X(p)/5 ~~ ^n-

pr2 

S 5. , 

so XIP ^ is a hypercover of the stack X x§?Fn 8, and G is obtained by composing the 

projection XIP ^ —> X x § Fs 8 with the projection 

(4.3.11.3) X x8jFn S —+ X(pr) = X xT,an T. 

In what follows we view X . ' as a simplicial algebraic space over S. via the 

projection pr2 : XIP ) -> S#. Define BnÇiq ( r) - (resp. Znfî* (pr) _ ) to be the sheaf 

on X^PJ whose restriction to each X\P ^ is equal to BnÇlq ,pr) _ (resp. ZnQq ,pr) _ ) 

defined in 4.1.10. The map G induces by adjunction canonical maps 

(4.3.11.4) X(p)/5 ~~ ^n-l RG*(BnÇlqx^r) -) 

(4.3.11.5) ZnÇlx(pr)/s^ RG*{ZnÇLqx{pr) - ) 
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Proposition 4.3.12. — The maps (4.3.11.4) and (4-3.11.5) are isomorphisms. 

Proof. — Note first that the assertion is étale local on X, and hence we may assume 
that X is a scheme. Since the relative Frobenius morphism F%/B : X —» X^1) is 
radicial, proper and surjective, this implies by [5, VIII. 1.1] that FX/B induces an 
isomorphism of topoi Xet —* - Proceeding inductively it follows from this that 
the relative Frobenius morphism induces an isomorphism of topoi Xet — X ^ for all 
r > 0. In the following calculations we can therefore without loss of generality view 
all sheaves as sheaves on Xet (this eases the notation). 

Lemma 4.3.13. — The Cartier isomorphism (3.3.21) induces for every r > 0 an iso
morphism 

(4.3.13.1) C-1 : ̂ + 1 ) / § r , - Z ^ ^ / B ^ ^ . 

Proof. — Note first that by our assumptions on §, the relative Frobenius morphism 
F&r)/B : S(r) - » S(r) xBi<rB ~ S<r+1) is obtained from F§/B : S -* § xB,a B by the 
base change ar : B —> B. In particular, the natural map 0§(r) —» RF§(r)/#*(0s(r)) 1S 
an isomorphism, and this remains true after arbitrary base change W ^> B, so 3.3.21 
applies. Moreover, if in loc. cit. we take X —> 8 to be the present X ^ —• §̂ r̂  then 
the stack denoted X in loc. cit. is equal to X^pV+1\ The lemma therefore follows 
from loc. cit.. • 

The proof of 4.3.12 now proceeds by induction on n. 
For the case n = 0 note that both sides of (4.3.11.4) are 0, and (4.3.11.5) is identified 

with the map 

(4.3.13.2) fiV,/s<r) — flG.(G*îl« , (r)) ^ BG.{Ox*n)®ÇpTxr ,y ,pr i 

where the second isomorphism follows from the projection formula and the fact that 
Qq ( r) (r) is locally free since X —» S™ is smooth. Let 

êt / 

(4.3.13.3) Pr : X^ := X xs,rç § X xr,ffr T = X^ 

denote the projection so that G factors as 

(4.3.13.4) x(pr) à ? (̂pr} pr ) x(pr^ 

Since G is a hypercover, we find that 

(4.3.13.5) RG*Ox(Pr} ~ RPr*RG*OxiPn ~ RP^O^. 

Since 0X(Pr) —> i?Pr*(Ox(pr)) *s an isomorphism by our assumptions on § (4.3.2), we 
conclude that (4.3.13.2) is an isomorphism proving the case n = 0. 

The case n — 1 is proven by induction on q by showing that if the result holds 
for the Biffl's and Z i f i ^ ' s , then the result also holds for the Bifi*+1,s and Zxnq's. 
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Once this inductive step is shown the proof of the case n = 1 follows by noting that 
the statement for the #ifi0,s is trivial. 

So assume the result holds for the BiQqjs and Zif^_1's. To get the result for the 
ZiS^'s, observe that the short exact sequences 

(4.3.13.6) 

0 uXo/§Wn * 0Xo/§ Wn ZlQx(pn/s^ 
c nq 

ux(pr+1)/s£+1) 
0 

(4.3.13.7) 

0 B-i £lq ,„r\ — ZiW (vn -1 xip Vs. 
c ftqTxr,y,priJDx 0. 

give rise to a morphism of distinguished triangles 
(4.3.13.8) 

Binx(rn/8g> ZlÇlx^)/^ 
c Dq 

x(pr+1)/s^+1) 

+1 

a £ 7 

RG*BiQQ ,pr) - uXo/§Wn * 0Xo/§ Wn * RG*nqxL^/s. ' 
+i 

The map a is an isomorphism by the induction hypothesis, and the map 7 is an 
isomorphism by the same argument used to prove the case n = 0. It follows that the 
map /3 is also an isomorphism. 

Similarly, if the result holds for the Zi^9's and BiQq's then the result holds for 
the BiQq+1,s by considering the morphism of distinguished triangles obtained from 
the short exact sequences 

(4.3.13.9) 0- 1 x(pr>/s£> 
nq 

X(pr)/S<£) Binxipn/s^ •0 

(4.3.13.10) 0 Z\Çlq (Ttr\,— 
xip Vs, ' ^xr'/s. 

uXo/§Wn * • 0 

This completes the proof for n = 1. 
The result for general n follows from the case n = 1 by induction and consideration 

of the morphisms of distinguished triangles obtained from the short exact sequences 

(4.3.13.11) 

0 Sinx(pr>/8£> Bn+inx<pr>/8£> 
c Ft Qq 

X(pr+1)/8^+1) 
0, 

(4.3.13.12) 

0 BlîîX(pr)/8^) Zn+inx(pr)/s^ 
c 

Znfix(pr+1)/s^+1 0, 

(4.3.13.13) 

0 - uXo/§Wn * 0Xo/§ Wn uXo/§Wn * 0Xo/§ Wn C uXo/§Wn * 0Xo/§ Wn 0, 

(4.3.13.14) 

0 Blfixi'r>/5. uXo/§Wn * 0Xo/§ Wn c 
Znnxipr+1)/s. 0. 
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4.3.14. — By functoriality of crystalline cohomology there is also a natural map for 
every r > 0 

(4.3.14.1) Aqresp.dflq , resp. d : flq ,resp. d : flq , 

Theorem 4.3.15'. — The morphism (4.3.14-1) is an isomorphism. 

4.3.16. — It suffices to prove 4.3.15 in the local situation when X is a scheme and 
there exists a smooth lifting y/S of X with a lift of Frobenius Fy : y —• y compatible 
with F$. Replacing X by y <g>%Z/(p) and T by T ® z ^ / ( p ) we may furthermore assume 
that the ideal of T in T is equal to pOT so T = T0. 

In this case it is convenient to prove 4.3.15 in conjunction with several other 
statements which we summarize in the following proposition. Let y( p r ) denote the 
fiber product y XT,F^ T, and let Y*p ^ denote the base change to Sm. Define Zy{Pn 
(resp. Zq

 ( p r ) ) to be the kernel of n _ 1 

•̂n -1, • 
(4.3.16.1) 

àQqresp.d : flq , nq 

Vn-l/bn-l 

(resp. d : flq , 
V ( p r ) /<? , 

+resp. d : flq ,resp.), 

and let ^ f ] 9 ^ ) (resp. Bq

 ( p r ) ) be the image. Note that by definition there is an 
^n-l ^n-l,» 

isomorphism 

(4.3.16.2) Aq 

n,Yi*">/S. 

resp. d : flq , 

Proposition 4.3.17. — For every r > 0, the natural maps 

(4.3.17.1) Aq resp. d : flq ,resp. d : fl 

(4.3.17.2) resp. d : 
flq , 

RG*(Zq,pr) ) , 
Jn-l,i 

(4.3.17.3) Bq 

3n-l 
resp. d : flq ,resp. d : 

are isomorphisms. Moreover, the sequence 
(4.3.17.4) 

u Vi,i(p) resp. d : flq , x^/s^resp. d : flq ,x(p)/ŝ resp. d : flq ,n,x/s0 ao/sw u 

¿5 exact, where R^_i x(p) ^s defined in (4-3.8.6) and s n-i is defined in (4-3.8.7). 

Proof. — The proof is by induction on n. 
The equalities (4.3.17.1)-(4.3.17.3) in the case of n = 1 follow from 4.3.12. The 

exactness of (4.3.17.4) in the case of n = 1 follows from the Cartier isomorphism 
(3.3.21). 

For the induction step we assume that the result is true for n and prove it for n + 1 . 
Define 

(4.3.17.5) K,xiPn ^ K e r ( ^ r ) ^ 5 j ( p r ) ) 

(4.3.17.6) Aqresp. d Kev(Bq

 p r ) - ^ B q

( p r ) ) . 
In-l,m 
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To prove that (4.3.17.3) is a quasi-isomorphism for Bq(pr), it suffices by induction to 

show that the map 

(4.3.17.7) uXo/§Wn * 0 RG*K,x¡*r)' 

is a quasi-isomorphism for all r. 
Consider the exact sequence 

(4.3.17.8) 0 Qq 
x(pr)/s^r) 

¨%£ 
QquXo/§Wn * 0Xo/§ Wn QquXo/§Wn * 0Xo/§ Wn 0. 

If a G x(p) is a local section, we can write OJ = pnuj for a unique section UJ G 

Qx(pr)y§(r). Moreover, since a is a boundary we have 

[4.3.17.9) 0 = da = pnduj. 

Therefore a; is a closed form. Note, however, that UJ itself need not be a boundary, 
but there is a short exact sequence 

(4.3.17.10) 

0 Bq 
£% \q n,X(pr) " [UJ G Z£(pr) VnutBq) 

o n 
'Bq - 0 . 

Similarly there is a short exact sequence 

(4.3.17.11) 

0- Bq ¨MOM uXo/§Wn * 0 0Xo/§ Wn * 0Xo/§ Wn x<»r> •0. 

The group 

(4.3.17.12) uXo/§Wn * 0Xo/§ WnMP lBquXo/§ 

can also be described as follows. By definition of Vn the map 

(4.3.17.13) uXo/§Wn * 0Xo/§ WnuXo/§Wn * 0Xo/§ WnuXo/§Wn * 0Xo/§ WnM%¨£¨%% 

sends the class of a closed form UJ G ZLpr) to the class of pnu; G Z9(pr} (r). Therefore 

the kernel of Vn is isomorphic to (4.3.17.12). Via the Cartier isomorphism 

(4.3.17.14) ° • *£x<pr+1>/s<r+1) •*^(íí^(pr)/g(r)) 

the sheaf (4.3.17.12) is identified with the kernel of the map 

(4.3.17.15) uXo/§Wn * 0Xo/§ Wn Qq 
x(pr+1)/s<r+1) 

AQuXo/§Wn * 0Xo 

Similarly, the sheaf 

(4.3.17.16) { c ^ G Z ^ I p ^ G ^ } / ^ 
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is canonically isomorphic to the kernel of the map 

(4.3.17.17) %P¨£%%¨£ 
fiV+1)/So, 

fiV+1)/So, 
fiV+1)/So, /o(r+l) 

fiV+1)/So,fiV+1)/So, 

Also, by 4.1.12 the kernel of sn|n" 
fiV+1)/So, 

îBnfiV+1)/So,." 

Lemma 4.3.18. — Tfte kernel Ker(sn)|Q 
x(pr+1)/8<r+1> 

l) ¿5 equal to Bn«?I(pP+i)/g(r+i)-

Proo/. — If CJ £ Ker(sn) is an element in the kernel, then Vn XC defines a class 
in Aq (pr} ~ which is locally in the topos X.?et in the image of BnQq +1 (recall 

that this simply means that for every ô G N the restriction of the class to Aq^ Xs^s 

is locally on Xs in the image of Bn^q r+1 ) . By 4.1.12 the set of sections of 
Xsp /So,s 

BnQq +1) whose image in Aq (pr+1) ^ is equal to the class of Vn~lC~1(uj) is 
X9P /<So,« /Sm 

a torsor under Bn-iilq (pr+1) . By 4.3.12 we have 

(4.3.18.1) i^G* (Bn-i^qx(Pr+i)/s^ = 0 

and 

(4.3.18.2) B Qqresp. d :flq , ^ R°G*(Bnnq +1 ) 
A# /̂ o,» 

is an isomorphism. It follows that etale locally on X there exists a section UJ' G 

£ n ^ ( p r + i ) / s ( r + i ) such that 

(4.3.18.3) yn-1C~1(uj/) = V^C-^UJ). 

The difference UJ' — UJ is then in the kernel of sn-iln9 which by inductioi 
x(pr+1)/s£r+1> 

is Bn - i f i^1) /g<r+1) . It follows that Ker(5n)|^(pr+i)/^r+i) C B ^ ^ ^ . 

A similar argument shows that if a> € BnCt^pT+1) §(r+i)> then there exists an ele 
ment a € ^Jr+i^giy+i) such that 

(4.3.18.4) 
-1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^U 

But then 

(4.3.18.5) Vn(C-1(u)) = VdV^iC-^a)) = dPVn(C-1(a)) = 0, 

and so Ker(S„)|n,(pr+i)^+i) = M ^ + 1 ) / § r i ) . 
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The exact sequences 

(4.3.18.6) 0 Bq xpn ) = V^UJ). B Qq 
nnUx(pr+1)/s0r+1) 

E 
and aiiu 
(4.3.18.7) 

0 BqÇîxl*r>/S0t. 
%¨%£ \qresp. d : flq , 

BnÇ}Xr+1'/SQ,. 0 

induces a morphism of distinguished triangles 
(4.3.18.8) 

Bq 
-1C~1(uj Aq 

n,X(Pr) 
^n^x(pr+1)/§(.+ i) 

+1 

M (3 7 

RG*BqQv(Pr) . ¨%§ -1C~1(uj/) = RG*Bnnqxipr+1)/s^ +i 

Since the maps a and 7 are isomorphisms by 4.3.12 it follows that the map (3 is 
also an isomorphism. 

From this, induction, and a similar argument using the exact sequences 

(4.3.18.9) 0 Aq Bq 
y(pr) 
o n 

• Bq • 0 

(4.3.18.10) 0 Aq Bq 
1 n,m 

Bq 
In-l,m 

0 

it follows that the map 

(4.3.18.11) 
%£%£% 
%¨£%resp. d : flq ,resp. d : flq , 1 n,» 

in (4.3.17.3) is an isomorphism. 
There is also a natural exact sequence 

(4.3.18.12) 

0 zx(pr V 7q 
On 

zl(pr) 
3n-l 

t 
n,X(Pr 

%MPLO 0, 

where £ is the map which sends a form oj € ZQ (pr) to the class of a form 77 G Z%(pr) 

such that pnr/ = duj, where a; G tiq ( r) (r) is a lifting of uj. 

Now we showed above that there is a natural isomorphism 

(4.3.18.13) n,3c(pr)/jDx(pr) ~ n x(pr+1)/s0r+1)' 

The same argument shows that there is an exact sequence 
(4.3.18.14) 

0 7q %£¨%£ -1C~1(uj/) 
Zyv(pr) 

zn-l,« 

%£% 
BnnSr+1)/So.. 0. 
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By comparing the sequences (4.3.18.12) and (4.3.18.14), we deduce that equa
tion (4.3.17.2) holds for n + 1. 

Combining (4.3.17.2) and (4.3.17.3) we deduce (4.3.17.1) for n+1. Finally (4.3.17.4) 
follows from applying RG* to the exact sequence 
(4.3.18.15) 

0 - -1C~1(uj/ -»• Qq , , 
XÌp)/So,. XP/So,. 

%£%£ Aq 
n + l , X . / S . 

7Tn v Aq -
n,XÌp)/S. 

->0. 

obtained from 4.1.12. 

Corollary 4.3.19. — With assumptions as in 4.3.12, the map d2 Aq • Aq+2 

Ai,X/S is zero. 

Proof. — The map in question is obtained by applying G* to the map 

(4.3.19.1) d2Aqresp. d : f >Aq+2 ~ 
n,X./S. 

which is zero by 4.1.3. 

Corollary 4.3.20. — Let GQ : XQ —> X be the projection. Then the natural map 

(4.3.20.1) Aq 
^n,X/S G°*^n,X0/5o 

¿5 injective. 

Proof — Let Gi : X\ —> X denote the projection. Recall (see for example [13, 5.2.2]) 
that JRG* is the derived functor of the functor G* sending an abelian sheaf FM in the 
topos X#?et to 

(4.3.20.2) Ker(d : G0*F0 Gi*Fi), 

where d denotes the map obtained by taking the difference of the two maps Go*Fo —• 
Gi*Fi defined by the simplicial structure on FM and the two inclusions [0] ^ [1]. It 
follows that there is a natural inclusion 

(4.3.20.3) i?°G*(F#) c—• GQ*FQ. 

The corollary then follows by noting that the map (4.3.20.1) factors as 

(4.3.20.4) Aq %£¨%% 
R°G<x.rs.C 

Go*Aq ~ , 
n,A0/oo 

where the first map is an isomorphism by 4.3.15 and the second map is an inclusion 
by the above discussion. • 
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4.4. De Rham-Witt theory for algebraic stacks 

Definition 4.4.1. — An algebraic stack y over ¥p is perfect if the natural map Oy —» 
RFy*Oy is an isomorphism, where Fy : y —• y is the Frobenius morphism. 

Remark 4.4.2. — A perfect stack y is Frobenius acyclic in the sense of 3.2.1. Also, 
for any integer n > 0 the map 

(4.4.2.1) Oy — RF^Oy 

is an isomorphism. This follows by induction on n (the case n = 1 being by assump
tion) : If the result holds for n — 1 then one gets that the map 

(4.4.2.2) Oy —. RF^Oy = RF^RFy.Oy = RF^Oy 

is also an isomorphism. 
Note also that in the context of 4.3.1, if T ^ T is the inclusion Spec(fc) 

Spec(W), where A: is a perfect ring and W is its ring of Witt vectors with its canonical 
lifting of Frobenius, and S/W is a flat algebraic stack satisfying the conditions in 4.3.1, 
then the reduction So := § Xspec(iv) Spec(fc) is a perfect stack. 

Example 4.4.3. — If y is a scheme, then y is perfect if and only if the Frobenius 
morphism Fy : y —> y is an isomorphism since the map on underlying topological 
spaces of Fy is an isomorphism. If y is a perfect stack, however, the Frobenius 
morphism is not necessarily ah isomorphism. 

For example, let G/¥p be a finite type smooth group scheme and X/¥p a scheme 
of finite type on which G acts. Let y := [X/G] be the stack-theoretic quotient, and 
let t : X —• y be the projection. In this case the Frobenius morphism on y is induced 
by the Frobenius morphisms Fx and FQ on X and G respectively. 

Let IP denote the fiber product of the diagram 

X 

(4.4.3.1) 11 

-1C~1(uj/) = V^C-^UJ). 

The stack 7 associates to any Fp-scheme T the groupoid of triples 

(4.4.3.2) (W —>T,h:W — > X , L : G T —> F£W), 

where W —> T is a G-torsor, h is a G-equi variant map, and t is an isomorphism of 
G-torsors (i.e., a trivialization of FjW). The first projection tr : CP —> y sends such a 
triple to (W, h), and the second projection to X sends (W, /1, ^) to the composite 

(4.4.3.3) T -----y-- Gt-yu-- F*w yhu W y-t X , 

where TTW/T is the projection FjW = T xFT,T W —> W and e is the identity section. 
It follows that the fiber product !P x t ' ^ t I associates to any scheme T the set of 
isomorphism classes of quadruples (W, /i, L, cr), where (W, /i, t) is as above and a is a 
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trivialization of W. Equivalently ? Xt'^j X classifies pairs (/, w), where / G X(T) is 
the image of e under the map 

(4.4.3.4) GT W — ^ XT, 

and u G G(T) is the image of e under the isomorphisms 

(4 .4 .3 .5 ) Gt _ ^ F. W S F}GT * GT, 

where the last isomorphism is the canonical isomorphism following from the assump
tion that G is defined over Fp. The action of a scheme-theoretic point v G G on 
y Xt^yj X induced by the action on the second factor is given by sending such a 
pair (/, u) to the pair (vf,FG(v)u). Therefore 7 is isomorphic to the stack-theoretic 
quotient of X x G by the action of G given by the usual action on the first factor and 
the action defined by Fq on the second factor. 

Let j U C G be the kernel of Frobenius on G. Since the homomorphism F g : G —> G 
is surjective (since G/¥p is smooth), it follows that the inclusion 

(4.4.3.6) I ^ I x G , ( / ,e) 

induces an isomorphism 

(4 .4 .3 .7) 9 ~ [X/FI], 

where ¡1 acts on X through the embedding ¡1 C G and the action of G on X. With 
these identifications, the second projection 

(4.4.3.8) q : [X/p] —• X 

is the map induced by the Frobenius map on X. The assertion that y is perfect is 
then equivalent to the assertion that the natural map 

(4.4.3.9) Ox — - Bq*0[x/A 

is an isomorphism. To verify this, one in turn can work locally on X. If X is affine, 
then jR2<?*0[x//i] ls equal to the group cohomology 

(4.4.3.10) WfaTiXM). 

Thus y is perfect if and only if these cohomology groups vanish for i > 0 and if the 
Frobenius morphism IYX, Ox) —» O Y ) induces a biiection onto the /x-invariants 

-1C~1(uj/) = V^C-^UJ). 

Jbor a simple example 01 this, take G = (brm, and A = A with the standard action. 
In this case ¡1 = jip which is linearly reductive so the groups 4.4.3.10 are zero for i > 0. 
Also the subring of //^-invariants in T(X, Ox) = Fp[x] is the subalgebra generated by 
xp which is equal to the image of the injective Frobenius morphism 

(4.4.3.11) Fp[x]—>Fp[x], x\—>xp. 

Therefore the stack-theoretic quotient [A1/Gm] is perfect. 
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Example 4.4.4. — More generally if P is a fine saturated p-torsion free monoid with 
associated affine toric variety X = Spec(Fp[P]) and torus T = Spec(Fp[Pgp]), then 
the stack quotient [X/T] is a perfect stack. Indeed in this case the kernel of Frobenius 
on T is equal to the diagonalizable group D corresponding to the cokernel of the map 
xp : Pgp —• Pgp. This implies the vanishing of the groups 4.4.3.10 for i > 0. Also 
the image of Frobenius on the algebra ¥p [P] is equal to the subalgebra generated by 
elements m G P for which the image of m in Pgp is in the image of xp : Pgp —> Pgp. 
Since P is saturated such an element m is necessarily in the image of xp : P —> P. 
Therefore [X/T] is perfect. 

4.4.5. — Let Ao be a perfect ring, and A := VF(Ao) the ring of Witt vectors of AQ. 
Let S/̂ 4 be a flat algebraic stack, and let So denote its reduction to AQ. Assume 
there exists a lifting of Frobenius F§ : S —• S compatible with the canonical lifting of 
Frobenius cr to v4, and fix one such lifting F§. Assume that the conditions in 4.3.1 
are satisfied with T T equal to Spec(Ao) c—> Spec (A) (this implies in particular 
that So is perfect as noted in 4.4.2). As usual, for a stack y —> S we denote by yn 
the reduction of y modulo pn+1. Since S is flat over A the ideal (p) has a canonical 
divided power structure [8, 3.3]. In what follows we view S as a PD-stack using this 
divided power ideal. 

Lemma 4.4.6. — Let X —> So be a smooth (not necessarily representable) morphism 
of algebraic stacks. Then for any integer r > 0 the natural map 

(4-4.6.1) OxllMt — Rpvu(OiXx §oWet) 

is an isomorphism. 

Proof. — By induction on r it suffices to consider the case when r = 1. For any 
i > 0 the sheaf P2prlHe(0(XXs Fr §0)lis.et) is by [68, 6.20] equal to the restriction of 

0' s0 ls"e 
RlFs0*Os0 lis_et to XiiS_et. The result therefore follows from the definition of a perfect 
stack. • 
4.4.7. — Let X —> So be a smooth representable morphism of algebraic stacks, with 
X a Deligne-Mumford stack. We apply the construction of 4.3.4 with T T the 
inclusion Spec(v4o) ^ Spec (A), a :T —> T the canonical lifting of Frobenius, and F§ 
the lifting of Frobenius fixed in 4.4.5. Since a : T —> T is an isomorphism (because 
AQ is perfect), the projections 

(4.4.7.1) X(pr) := X xTi(Tr T — • X 

and 

(4.4.7.2) S(r) := S xT^ T —> S 

are isomorphisms. In particular, we can view the maps nn in (4.3.7.2) as cr-1-linear 
maps denoted by the same letter 

(4.4.7.3) 7rn : ^+1?X/s — • ^n,x/s-

We refer to these maps 7rn as the canonical projections. 
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Definition 4.4.8. — Let X —• So be a smooth representable morphism of algebraic 
stacks with X Deligne-Mumford. The de Rham-Witt complex of level n, denoted 
W^Xet/S' is tne differential graded Wn(A0)-algebras cr~n*A^X/§. The de Rham-
Witt pro-complex, denoted W.f2X/§, *s tne ProJective systems of differential graded 
A-algebras 
(4.4.8.1) 

> Wn+lfiXet/S > Wn^Xet/S n 1 > Wn-l^Xet/S y 

The de Rham- Witt complex, denote l f Q ^ § is the complex of differential graded A-
algebras lim^ WnQX/$. 

Remark 4.4.9. — The groups Aqn x^§ as well as the operators d, V, and F do not 
depend on the choice of F§. The definition of the map 7rn, however, depends on the 
choice of the lifting of Frobenius F§. In what follows this lifting of Frobenius will 
always be fixed and so we suppress it from the notation. 

4.4.10. — The operators F and V on A*n X/S induce operators 

(4.4.10.1) F : Wn+1nXet/§ —> WnQXet/§, V : WnSTXwt/s — Wn+1ilXmt/s 

satisfying relations as in 4.1.3. 

Proposition 4.4.11 ([34,1.3.4 and 1.3.17] in the case of schemes) 
Ifm > n, then xpn : Wml]^§ —> WmSlx^g factors through the canonical projection 

Wmr̂ x̂ § —> Wm-nQH^i^. The induced map 

(4.4.11.1) V*" : Wm-nQqx/s — Wmtlqx/S 

is injective and the natural map 

(4.4.11.2) WmWx/8/upnnWm-nn*X/s —> Wnn*x/§ 

induced by the canonical projection is a quasi-isomorphism. 

Proof. — We may work etale locally on X (recall that X is assumed to be Deligne-
Mumford) and so may assume that X is an affine scheme. In this case we can choose a 
p-adically complete formal scheme y / T and a compatible collection of maps yn —• §n 
(where yn denotes the reduction modulo pn+l of y) such that each yn —> Sn is a 
smooth lifting of X —> So-

First we consider the case n = 1. If uo G Zym_1 defines a class [u] in the kernel 

of multiplication by p, then there exists an element A G fiy-1 1/§ ± such that puj = 
dA. Then pqco = d(p9_1A), and hence p9-1A defines an element in E^+ (denned 
as in 4.3.6). The induced class in E^1 then maps to the class TT([OU]) under the 
differential, and hence TT([UJ]) = 0. Therefore Ker(xp) c Ker(7r). 
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On the other hand, if UJ G Zym_x represents a class in J^m^x/s wnic^ ls killed by 
7r, then there exist elements UJ' and 77 such that 

(4.4.11.3) pquj=pm-1(pquj')+pq-1dr] 

in ^m+q_1/sm+ql- Therefore pu; = drj in i/sm_i anc* nence Ker(7r) C Ker(xp). 

This shows that xp factors through an inclusion Wm_iQ^g Wmfl^g, and 

hence by induction we find that xpn factors through an inclusion Wm_nf2^g 
resp. d : flq , 
To prove that (4.4.11.2) is a quasi-isomorphism, we begin with the case n = 

m — 1. Suppose a £ Wm_ifi^g is a class annihilated by d defining an element 

in K9(Wm_i^5cyg), and let a be a lifting of the class to Wmfl^s (this is possible 

since the canonical projection is surjective by 4.3.17). Then da is in the kernel of 

the canonical projection WmJ2^g —> Wm_ift^g, and therefore by 4.3.17 there exist 

b e x̂~/s0 an<̂  c ̂  ^x/s0 suc^ 

(4.4.11.4) da = F ™ " 1 ^ - 1 ^ ) ) +^Vrm-1(C-1(c)), 

and hence after changing the lifting a by Vm X{C 1(c)) we find a lifting a such that 

4.4.11.5) -1C~1(uj/) = V^C-^UJ). 

Therefore the map 

(4.4.11.6) -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^UJ). W«(Wm_1fi5;/8) 

is surjective. 

On the other hand, suppose a € Wmfi^s defines the zero class in >£9(Wm_if2£/g). 

Then there exists an element b G B ^ U ^ g such that a = db + a' where a' is in the 

kernel of the canonical projection. But then 

(4.4.11.7) a' = r - ^ C - ^ e ) ) +dym-1(C~1(c)) 

for some e and c. Therefore, a defines the zero class in 

(4.4.11.8) W W ^ W y ^ ' ^ x / s ) -

This proves that (4.4.11.2) is a quasi-isomorphism in the case when n = m — 1. 
Now to prove that (4.4.11.2) is a quasi-isomorphism in general proceed by induction 

on m. Thus assume true that (4.4.11.2) is a quasi-isomorphism for m < mo. Then 
to prove the result for mo, we proceed by descending induction on n. The case OJ 
n = mo — 1 was done above. Thus assume true for n + 1 and that n < mo — 1. In 
that case, there is a quasi-isomorphism 

(4.4.11.9^ -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^UJ).%¨£% 

which identifies the map (4.4.11.2) with the map 

(4.4.11.10) -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^UJ). 

which is a quasi-isomorphism since n + 1 < mo-
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Corollary 4.4.12. — The sheaf lim^ WnQy/s is p-torsion free. 

Proof. — For every integer r, the map 7rr : lim^ Wnf i^§ —» lim^ W n ^ s ob
tained from the morphism of projective systems induced by the canonical projections 
Wnfiijyg —» Wn-r^x/s *s an isomorphism- On the other hand, 4.4.11 implies that a 
p-torsion element in lim^ Wnn^§ is killed by 7rr for some r. • 

Proposition 4.4.13. — For every n>l and integer i, the canonical projection induces 
an exact sequence 
(4.4.13.1) 

0 —> VWn^Q^/pWnQ i-1X/S d Wnnb,s/VWn-1niJC,s — "x/s0 — °-

Proof. — All but the injectivity of d follows from the surjectivity of the canonical 
projection, and the exact sequence (4.3.17.4). 

For the injectivity of d, we may as in the proof of 4.4.11 work etale locally on 
X and hence may assume there exist a p-adically complete formal scheme y / T and 
a compatible collection of maps yn —» 8n such that each yn —> §n is a smooth 
lifting of X —• §o- Define Zyn and Byn as in 4.3.16. Let LJ G ̂ y~*2 be a closed form 
representing a class [LJ] G W n _ i f ^ g such that dV[cj] G FWn_iQXy§. After shrinking 
X some more, we may assume that the form LJ lifts to a class LJ G fij.-1 /q • That 
dV[cj] G FWn_i^Xyg then means that there exist forms A G ̂ yn_2 and 7 G 
such that 

(4.4.13.2) dpu = pn+1A + pnd7. 

Replacing a) by a; —pn~1^ we may assume that 7 = 0. From this it follows that du = 0 
(mod pn), and hence a; lifts to a closed form in Z^n1_i. It follows that [LJ] = i^o;] for 
some class [LJ] G W^f i^g . Since = p this implies the injectivity of d. • 

Corollary 4.4.14. — For every n > 1 and a// integers i, the canonical projection in
duces a quasi-isomorphism 
(4.4.14.1) 

0 WnQ°x/§/p W n f l ^ / p — Wnil^jVWn^tl^ — 0 

0 — 0 x — fi^/g —> «5c/s — 0 . 

Proof. — This follows from 4.4.13 and the same argument used in [34, 1.3.20]. • 
4.4.15. — By construction, the de Rham-Witt complex is functorial with respect to 
So-morphisms X' —• X between Deligne-Mumford stacks with representable, locally 
separated, and smooth structure morphisms to §0. This enables us to define the 
de Rham-Witt complex for more general algebraic stacks (recall that by 0.2.2 any 
morphism from a locally separated T-scheme to § is locally separated). 
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Definition 4.4.16. — Let S/A be as in 4.4.5, and let X —> So be a smooth morphism 
of algebraic stacks (not necessarily representable and X not necessarily a Deligne-
Mumford stack). Define the de Rham-Witt pro-complex o /X /S , denoted W.fiJc^ et^§, 
to be the pro-complex of sheaves in Xiis_et whose restriction to the etale site of any 
smooth affine X-scheme U is the de Rham-Witt pro-complex W#f2^§. The de Rham-
Witt complex o / X / S is the complex of sheaves lim W#QXi.g ̂ g on Xiis_et, and the de 
Rham-Witt complex of level n o / X / S is the complex WnfiXiig 

If X is a Deligne-Mumford stack we write WmQ^^ (resp. WTiJyg, ^™^x / s ) ^or 

the restriction of W.tt*Xus_et/s (resp. WSTx^/%, WnSlxu^/&) to X<*' 

Next we generalize the comparison with crystalline cohomology [34, 11.1.4]. 

Theorem 4.4.17. — Let X —• S be a smooth morphism of algebraic stacks with X a 
Deligne-Mumford stack. Then there is a canonical isomorphism 

(4.4.17.1) -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^UJ). 

Proof. — We consider first the local situation when X is an algebraic space and there 
exists a closed immersion X y of X into a smooth S-space y. We further assume 
that there exists a lifting Fy : y —• y of Frobenius compatible with the lifting F§. 

Choose a smooth surjection S —• S and a lifting of Frobenius Fs : 5 —> S to the 
p-adic completion S of 5 such that for every integer n the diagram 

(4.4.17.2) 

£% ¨% 
Sn 

¨PM ¨£% MP 

commutes (as explained in 4.3.10 such a pair (S,Fs) exists). Denote by S9 the 0-
coskeleton of S —• S, and let X . (resp. Y.) denote X x§ 5 . (resp. y Xg 5#). Also let 
5# denote the p-adic completion of the simplicial space 5. . Let D denote the divided 
power envelope of X in y, V the sheaf on Xet obtained from the coordinate ring on 
D, and let Vm be the sheaf on X0iet whose restriction to X^t is the coordinate ring 
of the divided power envelope of Xi in Yi. To define the map In it then suffices to 
define a morphism 

(4.4.17.3) V®0^n_1 "5n-l/Sn-l 
V^C-^UJ). 

By descent theory for quasi-coherent sheaves and 4.3.15 there are canonical isomor
phisms 

;4.4.17.4) -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = 'V®°*n-x n5„-i/8„-i' 

(4.4.17.5) -1C~1(uj/) = V^C-^UJ). %£¨%£+%+° 

ASTÉRISQUE 316 



4.4. DE RHAM-WITT THEORY FOR ALGEBRAIC STACKS 201 

where 7r : X#?et —• Xet is the projection. To define the arrow (4.4.17.3) it therefore 
suffices to define a morphism of differential graded algebras 

(4.4.17.6) 0 : V. <S>oY tty /s 
' rn — l,m 1 n — 1/*->n — !,• 

A* 
n,X./S.' 

Furthermore, since V. (g>e>v /<? is generated as a differential graded 

algebra in degree 1, to define the map of algebras <j> it suffices to define a ring homo-

morphism 

(4.4.17.7) T:V. 4° 
n,X./S.' 

and a r-linear map 

(4.4.17.8) -1C~1(uj/) = V^C-^UJ).%¨£% A1 
n,X./S. 

such that the diagram 

(4.4.17.9) 

V. 

T 

AQ 
n,X./S. 

d 

d 

rn — 1, • Jffi-l/"n-l,t 

e 

A1 
n,X./S. 

commutes. 
The map r is constructed as follows. The sheaf Wn(Oxm) has a canonical divided 

power structure [34, 0.1.4]. Now the lifting of Frobenius Fy defines by [34, 0.1.3.20] a 
map Oy9 —• Wn(Oy0J which when composed with the canonical map Wn(Oy0 9) —> 
Wn(Ox.) gives a map Oym —> Wn(Ox.)> Therefore by the universal property of V9 
there is a canonical map 

(4.4.17.10) MP¨%£ >Wn(Ox.)-

The map r is defined to be the composite of this map with the map 

(4.4.17.11) Wn{Ox.) -
-1C~1(uj/) = V^C-^UJ).MPML 

which sends 

(4.4.17.12) (ao , . . . , an-i) 

n-l 

2=0 

„n — i 
P*5? , 

for some liftings ai G T>. of the a*. As in 4.2.2, it follows from the binomial theorem 
that this map is well-defined, and from the definition of Witt vectors that it is a ring 
homomorphism. To define e, it is enough to exhibit a r-derivation 

(4.4.17.13) -1C~1(uj/) = V^C-^UJ).-1C~1(uj/) = V^C-^ 
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We define de to be the map induced by the composite of the map (4.4.17.10) and the 
map 

(4.4.17.14) Wn(Ox.) A1resp. d : flq , (ao, •. • ,an-i) 
n-l 

L 2=0 
à\ dài 

where as before € Vm denotes a lifting of a*. The verification that de is well-defined 
and is a r-derivation is left to the reader. 

This defines the map In in the local setting. To obtain the morphism In in general 
one proceeds using cohomological descent as in [34, proof of 11.1.4]. 

It remains only to show that the map In is an isomorphism. For this note that it 
follows from the construction that the diagram 

(4.4.17.15) 

% / § n _ i . O x / s n _ i In x/8n_n_2*O2 

r 7Tn-l 

^x /8x /8n_n_2*O2 
In-\ 

Wn_iftx/g 

commutes, where r denotes the reduction map. Combining this with 4.4.11 it follows 
that to prove that In is an isomorphism it suffices to consider the case n = 1 in which 
case I\ is the Cartier isomorphism (3.3.21). • 

Let us also note the following corollary which will be used in what follows: 

Corollary 4.4.18. — There is a canonical map p : Wn(0%) —• WnQx^s. For every 
integer i > 0 the Wn(Ox)-module Wnfix/s ^s °f finite type. 

Proof. — The map p is the map obtained from (4.4.17.11). That WnQlX/$ is of finite 
type is shown by induction on n. 

For n = 1 the module WiQX/§ is isomorphic as a 0% ~ Wi((9x)-rnodule to ^x/s* 
Thus in the case n = 1 the result is immediate. 

To prove the result for n + 1 assuming the result for n, note that the kernel of 
the canonical projection 7rn : Wn+iO^§ —> WnQlX/S is by 4.3.17 a finite type Ox-
module. • 

4.4.19. — Let ip : W^x /g ~~* ̂ ^ x / s ^e tne endomorphism which in degree i is equal 
to plF. Since dF = pFd the map <p is a morphism of complexes. It follows from 
the proof of 4.4.17 that the map y> induces via In the Frobenius endomorphism of 
^Xet/Sn-l^Xet/Sn-l' 

4.5. The slope spectral sequence and finiteness results 

In this section we use the arguments of [34, II.2] to study the finiteness properties 
of the de Rham-Witt complex. 

4.5.1. — Let A: be a perfect field of characteristic p > 0, W the ring of Witt vectors of 
fc, and let S/W be an algebraic stack with a lift of Frobenius Fg : § —+ § compatible 
with the canonical lift a of Frobenius to W. Assume § satisfies the assumptions in 4.3.1 
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(by 4.4.2 this implies that So is perfect). Let X —* So be a smooth locally separated 
morphism of algebraic stacks with X a tame Deligne-Mumford stack (see 2.5.14 for 
the definition of a tame stack). Assume further that X is proper over k. Denote by T 
the global section functor on Xet-

Proposition 4.5.2 (Generalization of [34, II.2.1]). — Let i,j eZ be integers. 

(i) For every n the W-module iiP(Xet, Wn^x/s) ^s °ffin^e length and the canonical 
maps 

(4.5.2.1) i ? r ( W x / § ) - * i ? l m # r ( M ^ x / § ) , 

(4.5.2.2) iP'(Xet,Wx/§ , h m ^ ' ( X e t , W n ^ x / 8 ) 
n 

are isomorphisms. 

(ii) Let r > 0 be an integer. For every n the W-modules 

(4.5.2.3) 
W(Xet, Wn+rQx/s/VrWniix/s), Hi(Xet,WnÇlX/$/prWnilx/8), 

and W(Xet,Wnnx/$/FrWn+rnx/§) 

are of finite length and the canonical maps 

(4.5.2.4) W(XeUWilx/§/VrWnx/s) !imiF(Xet, Wn+rnx/§/VrWnnx/§), 

(4.5.2.5) w(xet,wnx/§/Prwnx/§) + limJF(Xet, WnQx/s/prWnQx/§), 

(4.5.2.6) Hi(Xet,Wïlx/§/FrWÇix/s) limW(Xet, Wnnx/s/FrWn+rSlx/s) 

are isomorphisms. 

Proof. — For (i), observe that by 4.3.17 the canonical projection 

(4.5.2.7) : Wn+ittX/S wnnx/s 

is surjective for every n. It follows that 

(4.5.2.8) wnx/s RlimWnnx/§, 

and hence 

(4.5.2.9) RT(Wnx/§) RrRlùnWntìx/8 RlunRrWnnx/§. 

This shows that (4.5.2.1) is an isomorphism. 
The statement that Hj(Xet, WnQlX/S) is of finite length follows from 4.4.18 and 

the following lemma: 

Lemma 4.5.3. — Let J7 be a sheaf of Wn(0%)-modules on Xet of finite type. Then 
W(Xet^J7) is of finite length over Wn. 
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Proof. — Let Wn(X) be the stack defined in 0.2.7. Then the closed immersion X C 
Wn(X) is defined by a nilpotent ideal and hence Wn(X) is proper and tame over Wn 
since to verify both these conditions it suffices to verify that X is proper and tame 
over Spec(Wn) which is clear since X is proper and tame over Spec(fc). From this 
and [68, 7.13] the result follows. • 

This implies in particular that the projective systems H^(Xet, WnttX/S) satisfy the 
Mittag-Leffler condition so Rq lim^ fP(Xet, Wnftx^) = 0 for q > 0. This combined 
with the isomorphism (4.5.2.1) implies that (4.5.2.2) is an isomorphism. 

The statements in (ii) follows from a similar argument. It follows from 4.4.18 
that Wn^rnic/§/VrWnnic/s (resp. WnQ^^/prWnQ^/2), Wnnix./s/FrWn+rn}x:/s) is 
of finite type over Wn+r(0%) (resp. Wn(Ox))- From this and 4.5.3 it follows that 
the groups 

(4.5.3.1) 
W{XEU W n + r ^ x / 8 / ^ W n ^ x / s ) , x/8n_n_2*O2x/8n_n_2*O2x/8n_n_2%¨£ 

and ^ ' ( X e t , ^ n ^ x / § / F r W n + r ^ x / s ) 

are of finite type. From this and the same argument used in (i) the isomor
phisms (4.5.2.4), (4.5.2.5), and (4.5.2.6) follow. • 

Definition 4.5.4. — The standard topology on iJJ(Xet, W ^ c / s ) *s tne topology defined 
by the canonical filtration 

(4.5.4.1 F i r ^ ( X e t , ^ x / s ) K e r ( ^ ( X e t , ^ X / § ) W{XeUWn^/2>)), 

By 4.5.2 (i), the standard topology is separated and complete. It is useful to also 
consider other topologies. If M is an abelian group and r : M —» M is an endomor-
phism, define the r-adic topology on M to be the topology defined by the filtration 
rn(M) C M (n > 0). 

Corollary 4.5.5. — For every r > 0, the endomorphisms Vr, pr, and Fr of 
if-7 (Xet, W ^ x / s ) have closed image. 

Proof. — This follows from 4.5.2 (ii), which shows that the images of Fr, pr, and Fr 
are equal to the inverse limit of the kernels of the morphisms of projective systems 

(4.5.5.1) HJ(Xet, Wn+rQX/§) ff*(Xet, Wn+r^x/s/VrWnQ^l%), 

(4.5.5.2) H\Xet,WnWx/%)- •W{XeUWnWx/JprWnWx/2>), 

(4.5.5.3) №'(Xet,Wn^x /8)- W(XeU WnWx/JFrWn+rWxls) 

Corollary 4.5.6. — The group Hj(Xet,WQX/§) is separated and complete for the p-
adic topology (resp. V-adic topology). 

Proof. — This follows from the argument used in the proof of [34, 11.2.5]. • 
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4.5.7. — We can also consider the naive truncation VFf^g which is the quotient of 
Wfi^/s wnich in degrees j < i is equal to WQ3X/§ and is 0 for j > i. The formula 
Vd = pdV implies that if Vi : Wft^g —» W^x /S *s tne °Perator which is equal to 
p%-jy in degree j < i then Vi is a morphism of complexes. 

Proposition 4.5.8 (Generalization of [34, II.2.10]). — Leti,j G Z be integers. 

(ii) The W-module H3 (Xet, WQ^§/ViWfl^§) is of finite length. 

(ii) The group H3 (Xet, W ^ x / s ) ^s sePara^ed and complete for the p-adic topology 
(resp. Vi-adic topology). 

Proof. — This follows from the same argument used in [34, proof of II.2.10] combined 
with 4.4.14. • 

4.5.9. — Let WCT[[V]1 denote the ring of non-commutative formal power series in one 
variable V with relation aV — Vaa for a G W. We view WCT[[VJ as a topological 
ring with the F-adic topology. The endomorphism Vi gives by 4.5.8 (ii) the mod
ule H3 (Xet, W ^ x / s ) ^ne structure °f a Wa [V]-module complete with respect to the 
F-adic topology. 

Corollary 4.5.10. — The module H3(Xet, W ^ f / s ) is of finite type over Wa[[V]] and 
the quotient H3 (Xet, Wft^s)/ViH3(Xet, WQ^S) is of finite length overW. 

Proof — Since H3(Xet, W ^ x / s ) ŝ complete with respect to the F-adic topology, it 
suffices to prove the second statement. For this note that there is a natural inclusion 

(4.5.10.1) Hj(XeUWnf/$)/ViHi(XeUWnf/$) C H3(Xet, W fig s / ^ f i g §) 

so in particular by 4.5.8 (ii), the module H3 (Xet, Wfl^$)/ViH3(Xet, W ^ x / s ) *s °^ 
finite length over W. • 

Corollary 4.5.11. — For all i,j G Z , the module H3(Xet, Wfl^g) is isomorphic to a 
direct sum of a finitely generated free W-module and a torsion module killed by some 
power of p. 

Proof. — Let up : Wfl^iyg —> WQX^ denote the endomorphism described in 4.4.19. 
This endomorphism induces by restriction an endomorphism, which we denote by 
the same letter up, of W f i ^ g . Since FV = VF = p we have upVi = Viup — pl+l. 

This implies that the Vi-torsion in H3 (Xet,WQ^^) is contained in the p-torsion 
submodule. From this and [10, III.2.4] it follows that the quotient of H3 (Xet, W f i ^ g ) 
by its p-torsion subgroup is a finitely generated free W-module. On the other hand, the 
module H3(Xet, WT2^S) is a W^yj-module of finite type, and hence in particular its 
p-torsion subgroup (which is a sub-WcrjFj-module) is killed by some power of p. • 
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Theorem 4.5.12. — For every i,j G Z, the torsion submodule Tu C Hj (Xet,WQx^) 
is killed by a power of p, and the quotient iiP(Xet, WCllx^)/Tli is a free W-module 
of finite type. 

Proof. — For all integers i > 0 there is a short exact sequence 

(4.5.12.1) 0 — • WnJc/gH] —-> WSlf/g —> Wttf'1 —> 0. 

The theorem then follows from considerations of the associated long exact sequence 
and 4.5.11. • 

Definition 4.5.13. — The slope spectral sequence is the spectral sequence 

(4.5.13.1) E[j = iP'(Xet, WSlx/$) = • tf^((Xet/§)cris, 0Xet/§) 

obtained from the spectral sequence of a filtered complex and the isomorphism In 
(4.4.17). 

4.5.14. — Let VFH^g c W ^ x / s ^e ^ne subcomplex which is zero in degrees less 
than i and in degree j > i is equal to Wfi^yg. Then the subcomplex W f i ^ g is 
stable under the Frobenius endomorphism <p defined in 4.4.19, and hence <p induces an 
endomorphism of the slope spectral sequence inducing the Frobenius endomorphism 
on crystalline cohomology on the abutment. 

Theorem 4.5.15. — The spectral sequence 

(4.5.15.1) E{j = Hj(XeU Wnic/§) <8>Q => ir+J'((Xet/S)cris,0Xet/g) O Q 

induced by the slope spectral sequence degenerates at E\. 

Proof. — This follows from the same argument used to prove [34, 11.3.2]. • 

4.5.16. — Following a suggestion of the referee, the above finiteness results (and more) 
can also be deduced from Ekedahls' approach to coherence of the cohomology of 
the de Rham-Witt complex [17, 18] (see also the excellent survey [35] and in the 
logarithmic context [51]). Following the notation in [35], let R denote the Cartier-
Raynaud ring of k (denoted D° m 4.2.12). We view R as a graded ring with F and V 
of degree 0 and d of degree 1. Let Rn denote the quotient R/VnR + dVnR, which is 
a graded(Wn[d], i?)-bimodule, where Wn[d] denotes the graded Wn-algebra with d in 
degree 1 and d2 — 0. The Rn form a projective system of (W[d], jR)-bimodules, which 
we denote by Rm. As in [35] we will only consider graded i?-modules, and refer to 
these simply as .R-modules. Let D(R) denote the derived category of .R-modules, and 
recall [35, 2.4.6] that there is a triangulated subcategory Dhc(R) C D(R) consisting 
of bounded complexes of ii-modules whose cohomology modules are coherent in the 
sense [35, 2.2.2]. 

If T is a topos we can also talk about sheaves of .R-modules in T and get a derived 
category D(T, R). The global section functor derives to give a functor 

(4.5.16.1) RT : D(T, R) D(R). 
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In [35, 2.4.7] a very useful criterion for verifying that an object M £ D(R) ^ES 
in DBC{R) is given. We review this criterion. Define an RM-module to be a projective 
system of graded Wn[d]-modules 

(4.5.16.2) M . = (Mi « <— Mn<— Mn+i < ) 

together with respectively a and cr-1-linear maps 

(4.5.16.3) F : Mn+i — • Mn, V : MN —> MN+1 

satisfying 

(4.5.16.4) FV = VF = p, FdV = d. 

The category of JR#-modules is an abelian category, and we write D(R*) for its derived 
category. 

If M is an jR-module, the projective system MN = Ru0RM has a natural structure 
of an it!#-module. This functor can be derived to a functor 

(4.5.16.5) R.®R-: D(R) —> D(R.). 

If M# is an iZ#-module, then the inverse limit l imM. is naturally an i?-module. 
This functor lim can be derived and gives a functor 

(4.5.16.6) R\im : D(R.) —+ D(R). 

There is a natural morphism of functors 

(4.5.16.7) id —> Rlim(R. 0 ^ - ) . 

An object M e D(R) is called complete if the natural map 

(4.5.16.8) M —• R\im(R. 0 ^ M) 

is an isomorphism. 

The notion of an Rm-module extends immediately to a notion of an Rm-module in 
a topos T, and one obtains a derived category D(T, R0) and functors 

(4.5.16.9) iJlim : D{T,R.) —> D(T,R) 

and 

(4.5.16.10) R.®\-: D(T, R) —• D(T, R.). 

The forgetful functor from i?#-modules to Wn [d]-modules sending M# to Mn can 
also be derived to give a functor 

(4.5.16.11) en : D(R.) — • D(Wn[d\). 

The composite functor 

(4.5.16.12) D(R) 

%P%LM 
D{R.) 

KI 
D(Wn[d\) 
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is denoted 

(4.5.16.13) Rn®R-'- D(R) — • D(Wn[d}). 

The underlying VF-modules of a complex of i?-modules M naturally form a bicom-
plex [35, 2.1]. Let sM denote the associated total complex. The functor M i—• sM 
extends to the derived category 

(4.5.16.14) a : D(R) — • D(W). 

Similarly, there is a total complex functor 

(4.5.16.15) s : D(Wn[d\) — D(Wn). 

As explained in [35, equation 2.3.6] the diagram 

D+(R) - ^ f c D+(Wn[d\) 

(4.5.16.16) 

D+(W) w^w-) D+(Tyn) 

commutes, where Wn ®{y — denotes the usual derived functor of Wn <S>w — (which 
extends to the unbounded derived category since Wn has finite tor dimension as a 
VF-module). 

We can now state the key criterion for verifying that an object M G D(R) is in 
Dbc(R): 

Proposition 4.5.17 ([35, 2.4.7]). — Let M G Db(R). The following are equivalent: 
(i) M G Dbc(R); 

(ii) M is complete and Rn®\M G Dl(Wn[d}) for every n > 1, where Dbc(Wn[d]) 
denotes the subcategory of Db(Wn[d]) consisting of objects N such that Hl(N) 
is finitely generated over Wn for all i; 

(iii) M is complete and Ri<g>\M G Db(k[d\). 

4.5.18. — We now return to the situation in 4.5.1. 
The operators F, V, and d give the procomplex W.fi^c/s ^ne structure of an object 

in D(Xet, R9), and hence RT(W9QIX^) has the structure of an object of D(Rm). 
Similarly the complex VF0Xy§ has the structure of an object of D(Xet, R), and hence 
RT(WQ^/§) is an object of D(R). 

Theorem 4.5.19. — The object RT(Wn^/s) G D(R) lies in Db(R). 

Proof. — By 4.5.2 (i), the natural map 

(4.5.19.1) Rr(Wnx/s) —> KmRT(W.nx/§) 

is an isomorphism, since this can be verified after applying the total complex functor 
s : D(R) -> D(W). Since each RT(WnQmx/s) is in Db{Wn[d}) by 4.5.2 (i) and the 
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4.6. Comparison with the Langer-Zink de Rham-Witt complex II 

We continue with the notation of 4.4.5. Let X —> So be a smooth locally separated 
morphism of algebraic stacks with X a Deligne-Mumford stack. 

4.6.1. — The de Rham-Witt complex WnQXe^s can also be described in terms of the 
Langer-Zink de Rham-Witt complex as follows. Let S —> S be a smooth cover with 
S an algebraic space, and let Sm be the 0-coskeleton. Denote by X9 the simplicial 
algebraic space X x§ 5., and let 7r : X9^et —• Xet be the projection. Denote by 
WnZQXm/S9 the differential graded algebra in X9,et whose restriction to X^et is the 
Langer-Zink de Rham Witt complex W^zQXi^Si. Let Rqn x9/s. ^e as m 4.2.15. 

Proposition 4.6.2. — For any integer r > 0, the natural map 

(4-6.2.1) ^n,X/S — ^n,X(Pr)/S(^) * ^7T*^n,xipr)/S. 

is an isomorphism. 

Proof. — Consideration of the exact sequences 

(4.6.2.2) 

0 - V v s . — B^Qxr>,s. 0 Z»nxr>/s. - BKr^/S. - ° 
(4.6.2.3) 

0 —> Rqn,xet —> ^+i^xet/So 0 Z n f i W S o — ' Binx<Jn)/s£° —' ° 

shows that it suffices to prove that the natural maps 

(4.6.2.4) Bn+1wXet/So © zna£/So — i ? 7 r . ( s „ + 1 ^ r ) / s > © zn^lr)/s) 

and 

(4.6.2.5) Bi"x<^/s<"> ^ ij7r'iJiftV+'->/, 

are isomorphisms. This follows from 4.3.12. • 
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diagram (4.5.16.16) commutes, it follows (see for example [8, Appendix B, Prop. 
B.5]) that the natural map 

(4.5.19.2) Rn ®\ RT(WWx/§) KT(WnWx/s) 

is an isomorphism. This implies that RT(WQX/S) is complete, and also shows that 

Ri RT(WQX/g) is isomorphic to the Hodge cohomology iJ*(Xet, ^x/s0)- Since X 

is proper this verifies 4.5.17 (hi). • 

Remark 4.5.20. — Theorem 4.5.12 follows from 4.5.19 by [35, 2.5 (bl)], as does 4.5.15 
by [35, 2.5.4]. 
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4.6.3. — Define Kqresp. d : and QXr>/5 by

(4.6.3.1) KQ 

n,xipr) 
QXr>/5 

0QXr>/5o,.) 
Xr>/5¨¨ 

(4.6.3.2) KQ ^x(pr)/s<r) ( x(*>r)/s<r) Xr>/5¨%£ 

Corollary 4.6.4. — For any r, n £ Z7 tte natural map KQN %{PR) —> RTT*K^ (̂pr) ¿5 an 

isomorphism. 

Proof. — This follows from 4.6.2 and descent theory. •

Corollary 4.6.5. — For any integers n, s, and i > 0 the groups RГ^*W^LQ,SX^|S^ are 
zero. 

Proof. — This follows from the same argument used in the proof of the preceding 
corollary using the exact sequence 

(4.6.5.1) 0- n,A, Xr>/5Xr>/5 W^qx./s. • 0

provided by 4.2.15. 

4.6.6. — By 4.2.3 (taking T = 5 ) , there is a canonical map of differential graded 
algebras 

(4.6.6.1) Xr>/5Xr ^n,X./S. 

which induces a map 

(4.6.6.2) Xr>/5Xr>/5 Xr>/5Xr> 4.3.15 A9

By the construction this map is crn-linear, and hence induces a VF-linear map 

(4.6.6.3) V : «.W™tTx./s. — WnSlx/s 

of differential graded algebras compatible with the operators F and V as well as the 
canonical projections. 

Theorem 4.6.7. — The morphism ij) is an isomorphism. 

Proof. — The proof is by induction on n. For n = 1, the map is identified via the 
Cartier isomorphism with the map &>x/s0 "~* 7r*^x./50 • wn^cn *s an isomorphism by 
descent theory for quasi-coherent sheaves. 

Next we prove the result for n + 1 assuming the result for n. By 4.6.4 the exact 
sequence obtained from 4.2.15 

(4.6.7.1) 0 - > Ĵ U.,*. W^Xt/St _> W™SlXf/Sf — 0 

induces an exact sequence 

(4.6.7.2) 0 — *.K*n,x./s. ~ > **WnliWx.is. — *<WnZWx.,s. — °-
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Using 4.3.17, we therefore obtain a morphism of exact sequences 
(4.6.7.3) 

0 Xr>/5 Xr>/5Xr>/5 Xr>/5Xr>/5 • 0 

a b c 

0 KQresp. d : f Xr>/5Xr>/5 Xr>/5Xr>/5 0. 

Since the map c is an isomorphism by induction and the map a is an isomorphism 
by 4.6.4 (and the fact that X^ ~ X since So is perfect), it follows that the map c is 
also an isomorphism. • 

4.6.8. — This description of W^n^x/s m terms °f the Langer-Zink de Rham-Witt 
complex has the following important consequence which will be used later in 6.4. 

Let T/W be a flat scheme with a lifting of Frobenius FT : T —• T compatible 
with the canonical lift a of Frobenius to W, and let j : Spec(W) ^ T be a closed 
immersion defined by a divided power ideal. Let ST be a flat algebraic stack over T 
such that the reduction S := ST XTJ Spec(W) satisfies the assumptions of 4.4.5. 

Let X —> So be a smooth morphism of algebraic stacks with X a Deligne-Mumford 
stack, and let ST —> ST be a smooth surjection with S an algebraic space. Define 
5T,« to be the 0-coskeleton of ST —> ST , let S9 denote S Xj?§T 5T,«, and let X9 denote 
X x§ S.. 

By 4.2.3 for every n > 1 there is a canonical crn-linear map 

(4.6.8.1) Xr>/5Xr>/5 ' ̂ n,X./ST,. 

which induces a map 

(4.6.8.2) Xr>/5Xr>/5 
> ^ ^ X . / S T , . ' 

Define 

(4.6.8.3) 1 '• *4*,x/s 4*,x/sT 

to be the unique morphism making the following diagram commute 

(4.6.8.4) 

Xr>/5Xr>/5 (4.6.8.2) 
7r**4n,X./STl. 

MP%¨£ 4.3.15 

*4*,x/s 
OM 

^*,x/sT-

Here ip is as in 4.6.7. The map t is compatible with the operators F, V, and the 
canonical projections giving a section of the map An x/sT ~~An X/§ induced by j . 

Theorem 4.6.9. — The map i induces an isomorphism 

(4.6.9.1) Xr>/5Xr>/5Xr>/5Xr 
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Proof. — The assertion is etale local on X, and hence we may assume that there 
exists a smooth lifting y/To of X. 

Let J C OT be the ideal defining Spec(W) in T, and let Jo C OTQ be the reduction. 
Since Jo has divided powers, for any element m E Jo we have mp = p-m^p\ and hence 
the Frobenius map 

(4.6.9.2) p)/s£> ~ ^X(P)/S(D ®k 0To. 

factors through Spec(fc) C To. This implies in particular that there is a canonical 
isomorphism 

(4.6.9.3) ^y(p)/s£> ~ ^X(P)/S(D ®k 0To. 

It follows from the construction that this is the map induced by i for n = 1. Further
more, this shows that i also induces canonical isomorphisms 

(4.6.9.4) B Qqresp. d : flq , BnQ,Xir)/sP ®k 0To, Znnî(p>/8# ' 
p)/s£> ~ ^X(P p)/s£> ~ 

From the definition (4.3.8.6) this in turn implies that ¿ induces a canonical isomor
phism 

(4.6.9.5) 
p)/s£> ~ ^X(P p)/s£> ~ ^X(P)/S 

By induction on n it therefore suffices to show that the theorem holds for n + 1 if it 
holds for n. This follows from the fact that OT is fiat over W, by consideration of 
the morphism of exact sequences 

(4.6.9.6) 

0 0 

p)/s£> ~ ^X(P)/S(D ®k 0To. %P%£J?3 

p)/s£> ~ ^X(P)/S(D ®k 0To.p)/s£> p)/s£> ~ ^X(P)/S(D ®k 0To. 

p)/s£> ~ ^X(P)/S(D ®k 0To. 
-^n+l .X/Sr 

p)/s£> ~ ^X(P)/S(D ®k 0To. Aq 
n,X(P>/s£> 

0 0. 

obtained from 4.1.12. 
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Remark 4.6.10. — In the logarithmic context the map (4.6.8.3) has been constructed 
by Hyodo and Kato directly using an explicit description of the logarithmic de Rham-
Witt complex [31, 4.8]. We prove the equivalence of the two constructions in 9.4. In 
our general setup, however, we have not been able to give a direct definition. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 





CHAPTER 5 

THE ABSTRACT HYODO-KATO ISOMORPHISM 

5.1. Projective systems 

Definition 5.1.1. — An abelian group M has bounded p-torsion if there exists an in
teger r such that the p-torsion subgroup of M is annihilated by pr. 

5.1.2. — Let p be a prime and R a p-torsion free and p-adically complete and sep
arated ring. As usual we write Rn for R/pn+lR, and Mod(jR) for the category of 
ii-modules. 

Let ps(R) denote the category of projective systems L. = {Ln} of ^-modules such 
that pn+1Ln — 0 (and hence Ln can be viewed as a i?n-module). The category ps(R) 
is abelian. If / : L. —» L[ is a morphism in ps(R) given by a compatible collection of 
maps fn : Ln —> L ' , then Ker(f) (resp. Coker(/")) is equal to the projective system 
{Ker(/n)} (resp. {Coker( /n)» . 

Remark 5.1.3. — Note that R is not necessarily noetherian. 

5.1.4. — Denote by ps(R)q (resp. Mod(i2)Q) the category whose objects are the 
same as those of ps(R) (resp. Mod(,R)) and whose morphisms are given by 

(5.1.4.1) 
Romps{R)q(M, N) := Homps(iî)(M, N) ®z Q 

(resp. HomMod(i?)Q(M, N) := HomMod(i2)(Af, N) ®z Q). 

The category ps(i?)<Q (resp. Mod(ii)Q) can also be viewed as the quotient category 
ps(R)/7 (resp. Mod(i?)/T), where 7 denotes the full subcategory of objects annihi
lated by some non-zero integer n £ Z. This follows from the definition of the quotient 
of a category by a Serre subcategory [26, Chapitre III, §1]. In particular, by loc. cit., 
Chapitre III, Proposition 1, the categories ps(i?)<Q and Mod(i?)Q are abelian and the 
canonical functors 

(5.1.4.2) MR) > P S ( # ) Q , Mod(iï) Mod(R)q 

are exact. 
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Remark 5.1.5. — In the language of quotient categories, for any u G Homps(jR) (M, N) 
and n > 0 the element 

(5.1.5.1) u®p~n G Homps(H)Q(M,iV) 

can be described as follows. Let M[pn] c M and N\pn] C N be the kernels of multi
plication by pn on M and iV respectively. Let M' C M be the image of multiplication 
by pn on M, and let Nf denote N/N\pn]. The composite morphism 

(5.1.5.2) M " } ^ projection ^ , 

then factors through a morphism u : M' ~ M/M[pn] —> N'. In the notation of [26, 
Chapitre III, §1]) the map u ® p~n in the quotient category is represented by the 
diagram 

(5.1.5.3) 

M* M 

u 

N'. 
Definition 5.1.6. — A morphism / : M —•> N in Mod(i^) is an isomorphism mod 7 if 
the induced map in Mod(i?)Q is an isomorphism. An object M G Mod(i^) is free of 
finite type mod 7 if there exists a map / : M —> M' which is an isomorphism mod 7 
with M' a free i?-module of finite rank. 

Remark 5.1.7. — Observe that an R-module M which is free of finite type mod 7 has 
bounded p-torsion. 

Lemma 5.1.8. — If R is a Cohen ring in the sense of [15, 0.19.8.4], then an object 
M G Mod(i^) is free of finite type mod 7 if and only if M has bounded p-torsion and 
the quotient M of M by its p-torsion is of finite type (recall that R is a Cohen ring if 
R is noetherian, local, p-adically complete, flat over 7LP, and R/pR is a field). 

Proof. — For the only if direction, note that if M is free of finite type mod 7 and 
/ : M —> M' is an isomorphism mod 7 with M' free of finite type, then / descends 
to a map / : M —> M' which becomes an isomorphism after inverting p. Therefore / 
is an injection and since R is noetherian it follows that M is of finite type over R. 

Conversely, if the quotient M is of finite type over R then M is a free i?-module of 
finite rank since the maximal ideal of R is generated by p (which implies that M is 
flat over the local ring R), and if M also has bounded p-torsion then the projection 
M —> M is an isomorphism mod T. • 

Remark 5.1.9. — Tensoring with Q we obtain functor Mod(ii) -+ Mod(U(g>Q) which 
induces a functor 

(5.1.9.1) Mod(R)Q —> Mod(R 0 Q). 

If R is a Cohen ring then i ? 0 Q is a field, and it follows from 5.1.8 that in this case the 
functor (5.1.9.1) induces an equivalence of categories between the full subcategory of 
Mod(i2)Q consisting of objects which are free of finite type mod 7 and the category 
of finite dimensional R <g> Q-vector spaces. 
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Lemma 5.1.10. — A morphism f : M -+ N in Mod(R) is an isomorphism mod 7 if 
and only if there exists an integer r such that pr annihilates Ker(/) and Coker(/). 

Proof. — This follows from [26, Chapitre III Lemma 4]. • 

Remark 5.1.11. — The property of a module M being free of finite type mod 7 de
pends only on the image of M in Mod(i?)Q. In what follows we will therefore also 
sometimes speak of an object M £ Mod(i2)Q being free of finite type mod T . 

Lemma 5.1.12. — An R-module M is free of finite type mod 7 if and only if there 
exists a morphism g : M' —* M with M' free of finite type such that Ker(#) and 
Coker(g) are annihilated by some power of p. 

Proof. — Let M be a module which is free of finite type mod T, and let / : M —• M' 
be a morphism to a free of finite type module M'. If pTl annihilates Ker(/) and p7"2 
annihilates Coker(/), then there exists a map g : M' —• M such that the composite 
/ o g is equal to multiplication by pri+r2. Indeed for any m! £ M' there exists an 
element m £ M such that f(m) = pr2m''. This element m is not unique, but if ra is a 
second lifting then pri (m — fh) = 0 and hence there is a well-defined map g : M' —• M 
sending m' to pTlm. This prove the "only if" direction. 

Conversely, if M is an i?-module and there exists a morphism g : M' —• M as in 
the lemma, then by the same argument if pTl annihilates Kev(g) and pT2 annihilates 
Coker(g) then there exists a map / : M —» Mf such that g o / is multiplication by 
pri+r2 If m £ M is in Ker(/) , then prim is equal to g(mf) for some m' £ M' with 
pri+r2m/ = fg(m') = pTlf(m) = 0. It follows that p2ri+r* annihilates Ker(/) . Also, 
this shows that the cokernel of / is a quotient of M//pri+r2M/ and hence is also 
annihilated by some power of p. • 

Lemma 5.1.13. — Let 0 —> M' —> M —• M" —> 0 be an exact sequence of R-modules. 
If M' and M" are free of finite type mod 7 then M is free of finite type mod 7. 

Proof. — Replacing the sequence first by the pushout via a map M' —• M' with M' 
free, and then by the pullback via a map M" —• M" with M" free, we may assume 
that M' and M" are free modules of finite rank. In this case the statement that M 
is free of finite type mod 7 is immediate since the exact sequence is split. • 

Definition 5.1.14. — A projective system L. £ ps(R) is free of finite type mod 7 if 
L := limLn is free of finite type mod 7 and the canonical map 

(5.1.14.1) cL : {L/pnL} —• {Ln} 

induces an isomorphism in ps(R)q. We write psfft(i?) C ps(R) for the full subcategory 
of objects which are free of finite type mod T. 

5J.15. — Note that the condition that a system L. £ ps(i?) is free of finite type mod 
7 depends only on the image of L. in ps(iZ)Q. We therefore extend the notion to 
PS( ,R)Q , and write psfft {R)q C ps(it!)Q for the full subcategory of objects that are free 
of finite type mod 7. 
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Lemma 5.1.16. — Let L. G ps(R) be a projective system free of finite type mod 7. 
Then R1 lim{Ln} is annihilated by some power of p. 

Proof. — Let In C Ln be the image of L, and let Qn denote Ln/In. Since CL induces 
an isomorphism in ps(R)q, there exists an integer r such that pr annihilates all Qn. 
On the other hand, since the system {/n} satisfies the Mittag-Leffler condition, we 
have R1\imln = 0. Consideration of the long exact sequence of derived functors 
arising from 

(5.1.16.1) 0 {In} [Ln} [Qn] • o 

then shows that 

¡.1.16.2) R1 lim Ln ~ R1 lim Qn, 

and hence R1 limLn is also annihilated by pr. 

Corollary 5.1.17. — Let 

(5.1.17.1) 0 — > A . — > B . —> C. —> 0 

be an exact sequence in ps(iZ). If A. and C. are free of finite type mod 7 then so is B.. 

Proof. — Set A = limAn, B = limi?n, and C = limCn. Let r\ (resp. r2) be an 
integer such that the cokernel of A —• An (resp. C —> Cn) is annihilated by pri (resp. 
pV2) for all n, and let k\ (resp. ¿2) be an integer such that pkl (resp. pk2) annihilates 
Ker(A/pnA ^ An) (resp. Ker(C/pnC -> Cn)). 

Consider the commutative diagram 

(5.1.17.2) 

0 A B C R1 lim An 

Ot £% 7 

0 An Bn ¨£¨MP¨P 0 

and let / be an integer so that pl annihilates R1 lim An. If b G Bn is a section 
with image c G Cn, then pr2c lifts to an element in C, and hence pl+T2c lifts to an 
element 6 in B. The difference (3(b) - pl+r2b lies in An. Hence pri(/?(&) - pl+r2b) 
lifts to an element of A. It follows that pTl+r2+lb lifts to an element of B, and hence 
Coker(£ -> Bn) is annihilated by pri+r2+^ 

Conversely, suppose b e B maps to zero in Bn. Then the image c G C of 6 maps 
to zero in Cn so pfc2c = pncf for some c7. Since plc' lifts to 2?, it follows that there 
exists an element bf G B such that pk2+lb — pnb' is in A, and maps to zero in An. 
This implies that there exists an element a' G A such that pkl (pk2+lb — pnb') = pno!. 
Consequently 

(5.1.17.3) pk1+k2+lf) • pn(a'+pklb') 

so Ker(B/pnB -> Bn) is annihilated by p*i 
This shows that induces an isomorphism in ps(i?)Q. Furthermore, the top row 

of the above commutative diagram and 5.1.13 shows that B is free of finite type 
mod 7 . • 
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5.1.18. — Let 

(5.1.18.1) lim : ps(ii) — • Mod(R) 

be the functor sending L. to HmZ/n. The functor lim has a left adjoint r : Mod(i?).—• 
ps(i?) sending M to {M/pnM}. These functors induce adjoint functors which we 
denote by the same letters 

(5.1.18.2) lim : ps(R)q —> Mod(i?)Q, r : Mod(R)q — • ps(i?)Q. 

Proposition 5.1.19. — The functor lim restricted to ps^t{R)q is fully faithful, and in

duces an equivalence of categories between the category psfft (R)q and the category of 

objects in Mod(,R)Q which are free of finite type mod 7. 

Proof. — It follows from the definition 5.1.14 that for any two objects L.,Z/ G psfft(i?) 
there are isomorphisms 
(5.1.19.1) 
Homps(*)Q(L., L[) ~ Homps(R)({L/pnL}, {L'/pnL'}) 0 Q ~ HomMod(i*)(£, L') ® Q, 

where L := limLn and V := lim 14. This proves the full faithfulness. That the 
essential image image consists of modules free of finite type mod 7 follows from the 
definition of free of finite type mod 7. Finally if M is an i?-module free of finite type 
mod 7, then we claim that the map M —> lim M/pnM is an isomorphism mod 7. To 
see this choose (using 5.1.12) a map s : M' —> M whose kernel and cokernel are in 
7 with M' a free i2-module of finite type. Then for some k > 0 there exists a map 
t: M —> M' such that the composites sot and tos are both equal to multiplication by 
pk. Passing first to the reductions and then to the projective limits we obtain maps 

(5.1.19.2) s : lim M'/pnM' \imM/pnM 

and 

(5.1.19.3) t : \\mM/pnM >limM//pnM/ 

such that the composites sot and to s are both equal to multiplication by pk. This 
implies that s is an isomorphism mod 7, and from the commutative diagram 

(5.1.19.4) 

M' s M 

a b 

lim M'/pnM' s lim M/pnM 

we deduce that the map labelled b is also an isomorphism mod T, since s is ar 
isomorphism mod T by assumption, a is an isomorphism since M' is free of finite typ( 
and R is p-adically complete, and s is an isomorphism mod 7 by the above. C 
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Example 5.1.20. — An important example of projective systems free of finite type 
mod 7 arises as follows. Let A: be a perfect field of characteristic p > 0 and let W 
denote the Witt vectors of k. If C* G D(W) is a perfect complex of VF-modules, then 
the system 

(5.1.20.1) L* := {H*(C* ®^ [W/pn))} 

is a projective system free of finite type mod 7. 
This can be seen as follows. Let L* denote the graded group H*(C9). For any 

integer n, there is an exact sequence 

(5.1.20.2) 0 > W pn > W > W/pn > 0 

which gives a distinguished triangle 

(5.1.20.3) c* — C * > C'®hW/pn > C#[l]. 

Looking at the associated long exact sequence of cohomology we obtain short exact 
sequences for all m 

(5.1.20.4) 0 —>Lm® W/pn —> L™ — • Tor^iW/p71, Lm+1) —> 0. 

Since C* is perfect, the group Lm+1 is finitely generated and in particular has 
bounded p-torsion. It follows that there exists an integer r such that pr annihilates 
Torly (W/pn, Lm+1) for all n. Consequently the map 

(5.1.20.5) s : {Zm/pnLm} —•> Lm 

induces an isomorphism in P S ( W ) Q . This implies that there exists a map t : L™ —> 
{Lm/pnLm} such that sot and t o s are both equal to multiplication by pk for some 
k>l. Therefore the map 

(5.1.20.6) lim Lm/pnLm —resp. d : f• 

is an isomorphism mod T. Since Lm is of finite type over W (and hence free of finite 
type mod T ), we also have 

(5.1.20.7) Lm ~ KmLm/pnLm,resp. d 

and therefore Lm is isomorphic to lim Ln mod T. In particular, lim Ln is free of finite 
type mod 7. 

Remark 5.1.21. — The argument given in 5.1.20 is fairly standard, as similar rea
sonings are often used in the development of the theory of Q^-coefficients in etale 
cohomology. In this theory, however, one usually works over a noetherian ring. The 
main challenge of this chapter is to study what happens over a non-noetherian ring 
(in particular the ring W(t) considered in the next section) as these arise naturally in 
the crystalline theory. 
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Example 5.1.22. — Let k be a perfect field of characteristic p, and let W be its ring of 
Witt vectors. Then by [34, II.2.13] for a smooth proper fc-scheme X the VF-modules 
Hi{X, W£lx) are free of finite type mod T, though often the torsion subgroups of 
these modules are infinite. This example (and the stack-theoretic generalizations 
considered in section 4.5) plays a key role in what follows. 

5.2. Ogus' twisted inverse limit construction 

5.2.1. — Let M. = {Mn} be an inverse system of abelian groups and let m G N be a 
natural number. Define limm M. to be the subgroup of nn Mn consisting of elements 
(yn) with 7rn(2/n+i) = pmyn for all n, where 7rn : Mn+i —> Mn denotes the projection 
map. 

5.2.2. — The case of interest in this work is the following. Let R be a p-adically 
complete and separated ring, and let vn be a sequence of natural numbers such that 
\yn — nm} is eventually increasing and limn(z/n — nm) = oo. 

Define a functor 

(5.2.2.1) îî„ : Mod(Ä) — • Mod(R) 

as follows. Choose no G N such that z/n+i — (n + l )m > vn — nm for all n > n$. 
This implies that z/n+i > vn for all n > no, and therefore we get a projective system 
{M/p^nM}n>no with transition maps the natural projections 

(5.2.2.2) M/pVn+1M M/p^M. 

Define fi„ by sending M G Mod(i2) to 

(5.2.2.3) Umm{M/^.M}n>no. 

Note that this is independent of the choice of no-
Denote by £ : M —> r^^(M) the canonical map induced by the maps xpnm : 

M/p^M -> M/p^M. 

Lemma 5.2.3. — Let M be a p-adically complete and separated R-module. If M has 
bounded p-torsion, then so does £lu(M). 

Proof. — Let r be an integer such that the torsion subgroup of M is annihilated 
by pr. 

Let r be a natural number such that i/n+i — vn > m for all n > r, and let (yn) G 
£LV(M) be an element annihilated by ps for some s. We claim that if s > sup{r, r-f ra} 
then (yn) is also annihilated by ps~l. 

For each n choose a lifting yn e M oi yn. Then psi/n = pVny'n for some y'n £ M. 
Since the torsion subgroup of M is annihilated by pr', this implies that if z/n > 5, then 
Pr2/n = PVn~s+ry'n' On tne other hand, we have 

(5.2.3.1) PUn+1~s+ry'n+i = PrVn+i = Pr+m£n - p^-a+r+mö; (mod p ^ ) . 
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It follows that if s > r + m and vn+i —vn>m (and still vn > s), then y'n = p\n +t, 
where An G M and t G M is p-torsion. Prom this it follows that if s > r + ra, 
i/n+i — z/n > m, and vn > s then 

(5.2.3.2) P{s~l)-rpryn = p(a-1)-rpUn-a+rp\n = PVnK = 0 (mod p"») . 

Therefore, ?/n is annihilated by ps_1 whenever vn > s. Since ?/n is trivially annihilated 
by ps_1 when vn < s this implies the lemma. • 

Proposition 5.2.4 ([59, Lemma 18]). — Let M be a p-adically complete and separated 
R-module with bounded p-torsion. Then £ : M —» f2„(M) an isomorphism mod 7. 

Proof. — As above let r be an integer such that the torsion subgroup of M is anni
hilated by pr. 

If x G M is in the kernel of £, then pnmx = 0 (mod pUnM) for all n. Let 
denote an element such that pnmx = pVnx'n. Let no denote an integer such that 
vn > nm for all n > no- If n > no then the element x — pVn~nrnx'n is annihilated by 
pnm an(j nence aiso killed by pr. It follows that prx = pVn~nrn+rx'n. In particular, 
prx G flnpI/n_rim+rM and vn — nm + r tends to infinity by assumption. Since M 
is p-adically separated and complete it follows that prx = 0, so the kernel of £ is 
annihilated by pr. 

To see that the cokernel of £ has bounded p-torsion, let (yn) G Vtu{M) be an 
element, and choose for each n a lifting yn G M of yn. Let no be an integer such that 
vn > nm + m for all n > no-

Lemma 5.2.5. — For all n > n0, yn G p(n-no)mM. 

Proof. — The proof is by induction on n, the case n = no being trivial. So we prove 
the result for n + 1 assuming it holds for n. Since 7r(2/n+i) = prnyn, we can write 
2/n+i = pmyn +P^nAn for some An G M . By induction, there exists z G M such that 
yn = p(n_n°)m2:, and hence 

(5.2.5.1) yn+1 = p ^ 1 - " ) " 1 : + p*" An. 

Since n > no we have vn > nm + m, and so 

(5.2.5.2) yn+i = / " + ' ) - « » ) r a ( z + p"»+"»'»-'im-mA). • 

For each n > no choose an element xn € M such that yn = p^n~n°^mxn. Then 

(5.2.5.3) p(n+1-no)mxn+1 = p(n+1-n°>mx„ (modp"»). 

Equivalently there exists A 6 M such that 

(5.2.5.4) p<n+1-n°)mxn+1 = p(n+1-"°)mxn + p"«A. 

Since vn > nm + m by assumption, this implies that 

(5.2.5.5) xn+1 =XN+ p^-(n+l-n0)mA + tf 
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where t G M is a torsion element. Therefore 

(5.2.5.6) tfxn+1 = PRXN + p"»+r-(n+l-n0)mA! 

In particular, since limi/n — nm = oo the elements {prxn} define a Cauchy sequence 
in M. Let x G M be the limit. 

We claim that £(x) — pn°m+r(yn) £ £lv(M) is a torsion element. For this note that 
by construction for n > no we have 

(5.2.5.7) x = prxn (mod p*n+r-(n+i-no)m^ 

and hence 

(5.2.5.8) pnmx = pnrn+rxn = pnorn+ryn (mod p ^ ) 

It follows that if (zn) G fi„(M) denotes - pn°m+r(2/n), then zn = 0 for n > 
no- In particular, p^o annihilates (zn). Consequently, Coker(£) is annihilated by pnom+vno +r. 

Remark 5.2.6. — If 5n is a second sequence of natural numbers such that {6n — nm} is 
eventually increasing and such that limn(£n — nm) = oo, then the sequence {6n + vn} 
is also such a sequence. Furthermore, if 5n > vn for all n, then for any p-adically 
complete and separated i^-module M with bounded p-torsion the natural maps 

(5.2.6.1) M/p6nM —> M/p"nM 

induce an isomorphism mod 7 

(5.2.6.2) n6(M) —>Slu(M) 

by 5.2.4. 

5.3. The main results on F-crystals over W(t) 

5.3.1. — Let A; be a perfect field, W the ring of Witt vectors of k, and let a denote 
the canonical lift of Frobenius to W. Let W(t) denote the p-adic completion of 
the divided power envelope of the closed immersion corresponding to the surjection 
W[t) —• k sending t to 0. Denote by F : W(t) —» W(t) the lifting of Frobenius induced 
by a on W and 11—> tp. Denote by 3 C W(t) the divided power ideal generated by £, 
so that W(t)/3 ~ W, and by C 3 the ideal generated by elements for h G 3 
and r' > r. 

The ring W(t) can be described explicitly as the subring of i^pj, where K denotes 
the field of fractions of W, consisting of power series X^>o a^A'> where en eW and 
the sequence {a^} tends to 0 with respect to the p-adic norm. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



224 CHAPTER 5. THE ABSTRACT HYODO-KATO ISOMORPHISM 

Definition 5.3.2. — Let R be a p-adically complete and separated ring with a lifting 
F : R —> R of Frobenius. An F-structure on an object M G Mod(i?)Q is a morphism 
cp : F*M —> M. Denote by F-Mod{R)q the category of pairs (M,<p), where M G 
Mod(#)Q and <p is an F-structure on M. Denote by F-Mod//t(.R)Q C F-Mod(R)q 
the full subcategory of pairs (M, </?), where M is free of finite type mod T and ip : 
F*M —> M is an isomorphism. 

Remark 5.3.3. — The category F-Mod(R)q is abelian. The kernel (resp. cokernel) 
of a morphism / : (M, </?M) —• (N,<PN) is given by the kernel (resp. cokernel) of 
the underlying morphism M —> N with the induced F-structure. If in addition 
F : R -> R is flat and R is noetherian, then F-Modfft(R)q C F-Mod(R)q is an 
abelian subcategory. In general, however, there is no reason to expect the subcategory 
F-Mod^(i2)Q to be abelian (note that W(t) is not noetherian and the lifting of 
Frobenius W(t) —• W(t) is not flat as the Frobenius morphism k(t) —• k(t) is not 
flat). However, we will show that F-Mod^(W(t))q is abelian in 5.3.16 below. 

The following is the main result of this section: 

Theorem 5.3.4. — The functor 

(5.3.4.1) P : F-Modm(W)q F-Mod(W(t))q, (TV, <p) .—• (N ®w W(t), (p) 

is fully faithful with essential image F-Mod^f (W(t))q. In particular, by 5.1.13 the 
essential image of P is closed under extensions. 

The proof is in several steps 5.3.5-5.3.15. 

5.3.5. — For M G №od(W(t)) let M G Mod(W) denote M/3M. The composite 

(5.3.5.1) Mod(W(t)) M~M> Mod(W) > Mod(W)q 

factors uniquely through a functor 

(5.3.5.2) Mod{W(t))q —+ Mod(W)q 

which we again denote by M i—• M. 
For M G Mod(W(t)) there is a canonical isomorphism F*M ~ o~*M. It follows 

that M H M induces a functor 

(5.3.5.3) Q : F-Mod(W{t))q — • F-Mod(W%, (M, (pM) .—• (M, № ) . 

The composite functor 

(5.3.5.4) F-Mod(W)Q — F - M o d ( W ( t » Q — ^ F-Mod(W)Q 

is canonically isomorphic to the identity functor. In particular P is faithful. 
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5.3.6. — To see that P is fully faithful, let (M, <^M), (N, <pn) be two objects of 
F-Modfft(W)Q, and let / : P(M,<pM) P(N,<pN) be a map in F-Mod(W (t))q. 
Denote by / : (M, </?M) —• (N,(PN) the map obtained by applying Q. We need to 
show that / = P(f). 

For this note that after replacing M and N by the quotients by their p-torsion 
subgroups we may assume that M and N are finitely generated free W-modules. In 
addition, after replacing y?M by pd(fM and ip^ by pd(fN for some d > 1, we may 
assume that (pM and ipw are represented by maps, which we denote by the same 
letters, in Mod(VF). Finally note that after replacing / by psf for some s we may 
also assume that / is represented by a map in Mod(W). To prove that / = P ( / ) , it 
suffices to show that the two maps 

(5.3.6.1) / , P ( / ) : ( M ® W W ( * > ) ® Q - (N <8)wW(t))®Q 

are equal, and for this it suffices to show that for every r they are equal modulo 
the ideal • (W(t) 0 Q). Let ip : M M be a map such that y>M o ip = pd and 
^ ° (pM = pd for some d. Then for m G M we have 
(5.3.6.2) 
p)/s£> ~ ^X(P)/S(D ® 1 

par 
^ W ( " 0 ) ) = 1 

%£¨% P№(/)(V>r("0)) = P ( / ) ( m ) ( m o d ^ ( a ) ) . 

Since ^ ( J ) C JM this proves that / = P(f) (mod jM) and hence also that / = P(f). 

5.3.7. — Note that the essential image of P is clearly contained in F-Mod^(W(t))q. 
To prove that P is essentially surjective onto F-Mod^*(W(£))Q, we need to show 
that any object (M, </?M) £ F-Mod^1 (W(t))q is in the essential image. Since M is 
free of finite type mod T, we can without loss of generality assume that M is actually 
a free W{t)-module of finite type and that (fM is given by a map <PM • F*M —» M in 
№od(W(t)). Denote by ( M , ^ ) <E F-Mod//t(W)Q the image of (M,<pM) under Q. 
We construct a section s : M —> M in Mod(VF)Q compatible with <^M and such 
that the induced map 

(5.3.7.1) p)/s£> ~ ^X(P)/ • (M, Lp M) 

is an isomorphism mod T. 

5.3.8. — Let H denote HomVF(t)(M0 M ) . The W(t)-module H is free of finite 
rank. There is a natural isomorphism 

(5.3.8.1) if H : {F* H) 0 Q ~ Hornet) ® W(t),F*M) 0 Q F 0 Q 

defined as follows. Let ip : M —> F*M be a map such that tpM0^ = pd and ̂ cxpM = pd 
for some d, and let ^ : M —• cr*M denote the map obtained by reduction. Then (pn 
is defined by sending / : cr*M 0 W(£) —• F*M to l/pd times the composite 

(5.3.8.2) M 0 W(t) 4> 
<j*M 0 W(t> 

M%P 
F*M 

%£%¨% 
M 
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If ipf : M —> F*M is a second map such that (fM = pd' and ipf o <pM = fo 
some d', then pd if; = pdipf, and hence is independent of the choice of tp. 

To give a map s : M®W{t) —• M in Mod(W(t))Q compatible with and <^M i 
then equivalent to giving an element he H ®Q invariant under the endomorphism 

(5.3.8.3) A H : H 0 Q can F * # 0 0 M%P%£ # 0 Q , 

where can denotes the canonical map H —> F*H = H <S>w(t),F W(t) sending h G H 
to resp. d : flq  

5.3.9. — Fix a map ij) : M —> F*M such that V?M ° tp = pm and ^ o (fM = pm for 
some ra, and let ^ : M —> cr*M be the reduction. Define a sequence vn as in 5.2.2 by 
vn := ordp(pn!) = (pn - l)/(p-1), and for M G Mod(Wr(t)) define 0 , ( M ) as in 5.2.2. 

For H as above, the elements of can be described as a collection of maps 

(5.3.9.1) h n : { M ® W ( t ) ) ® z Z / ( p ^ r e s p . d : fl q ,) M 0 Z Z / ( p ^ ) 

such that 7rn(/in+i) = pmhn, where 7rn denotes the reduction map 

Lemma 5.3.10. — For any integer n > 1, £/iere z«s a canonical isomorphism Fn*M 0 
Z/(pn!) ~ (an*M) 0 ^ (W(*)/(pn!)). 

Proof. — For every integer n, we have tpn = pn\t^pn^ and hence the map 

(5.3.10.1) Fn : Spec(W(t)/(pn\)) Spec(W(t)/(pn\)) 

factors through a map p : Spec(W(t)/(pn\)) —> Spec(W/(pn\)) over 

(5.3.10.2) an : Spec(W7(pn!)) Spec(W7(pn!)). 

It follows that 

(5.3.10.3) Fn*M <g> Z/(pn!) ~ p^M ® (Z/pn!) : (a"*M) ® w (W<t>/(pn!)). 

5.3.11. — Define hn to be the composite 

(M®W(t))®z z / (p"») %PM£ 
(<r"*M) 0 ^ (W(t)/(pn!)) 

(5.3.11.1) 
- Fn*M 0 Z/(pn!) ^ M ® Z/(pn!). 

Here we are abusing notation and writing i\)n for the composite 
(5.3.11.2) 

M 0 Wit) 
M%PL 

a*M®W(t) 
%£MPLO %£MP%Ö 

an*M0 W(t), 

and similarly for ̂ . The equalities (fM ° i> = Pm and ip o <pM = pm imply that hn+i 
reduces to prnhn modulo pn\. We thus obtain an element h G Q,V(H). Since the map 
£ : JT —> Q„(H) is an isomorphism in Mod(W(t))Q by 5.2.4, we obtain a morphism 

(5.3.11.3) / G Hom^(t) (M 0 W(t), M ) 0 Q 

with £ ( / ) = /i. To complete the proof of 5.3.4, we show that / is an isomorphism 
compatible with (fM and (fj^- and that / reduces modulo 3 to the identity. 
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5.3.12. — To see that the diagram 

(5.3.12.1) 

(M®W(t))®Q 
f 

M ® <Q> 

MOML PMP%£ 

(M®W(t))®Q 
f 

M ®Q 

commutes, where (p-^ and lpm denote the semi-linear maps obtained from cpjj and 
(fM, let w be an integer such that pwf is obtained from a map g in Mod(W(t)). To 
show that the diagram (5.3.12.1) commutes, it suffices to show that 

(5.3.12.2) 90(Pw = (PM°g-

Since lim (un — nm) = oo, it suffices to show that 

(5.3.12.3) pnmgo$ü = $Mop™g (mod pn\). 

Since £ ( / ) = ft G fLv(H), the reduction of pnmg modulo pn\ is equal to the map pwhn. 
Therefore, to prove that (5.3.12.1) commutes it suffices to show that the diagram 

(5.3.12.4) 

( M <8> W(t))®Z/pn\ 
hn M®Z/pnresp. 

LM%PM %£%P 

(M®W(t))®Z/pn\ hn M®Z/pnresp. 

commutes. Consider the diagram 
(5.3.12.5) 

a*{M®W{t))®Z/pn\ id a*(M ®W{t))®Z/pn\ %£%P% (M®W(t))®Z/pn\ 

p)/s£> ~ ^X(P)/S %£%PPLM 4>n 

an*{M®W(t))®Z/pn\ crn*{4>) an+1*{M ®W(t))®Z/pn\ an*(M®W(t))®Z/pn\ 

Fn*M®Z/pn\ 1> Fn+1*M ®Z/pn\ Fn*(M)(g)Z/pn! 

p)/s£> ~ ^X(P)/ 

F*M<g)Z/pn! id 

p)/s£> ~ ^X( 

F*M®Z/pn\ ¨£%¨£M%P 

£% 

M®Z/pn\. 

Since <pm oip = p171 and ip o (pM = pm, the left three small squares commute and 
the large outside square commutes. It follows that the right rectangle also commutes. 
From this and the definition of ftn it follows that (5.3.12.4) commutes. 
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5.3.13. — Similarly, to prove that the reduction of / modulo J is equal to the identity, 
it suffices to show that the reduction of g is multiplication by pw (where g and w are as 
in 5.3.12). For this it suffices to show that g reduces to multiplication by pw modulo 
pn\/pnrn for all n sufficiently large, and for this in turn it suffices to show that hn 
reduces to multiplication by pnm modulo 3. This follows from the definition of hn and 
the relation ip^- ° $ = Pm-

5.3.14. — Finally to see that / is an isomorphism, we define an inverse as follows. 
Define 

(5.3.14.1) H' := Homw(t> (M, M 0 W(t)) 

Let h! G Qu(Hf) be the element corresponding to the maps h'n:M<& Z/pn\ —» 
(M 0 W(t)) 0 Z/pn! defined to be the composite 

M0Z/(pn!) 
£%¨MP% 

Fn*M0Z/ (pn! ) 
(5.3.14.2) 

- (an*M) ®w (W(t)/(pn\)) 
%PM 

(M®W(t))®z Z/(pUn). 

Since H' is a free W(£)-module of finite rank, the map £ : H' 0 Q —> £l„(Hf) 0 Q is 
an isomorphism (5.2.4), and we let / ' denote £-1(/0 G iJ' 0 Q. We claim that / ' is 
an inverse to / . 

5.3.15. — To see that fop = id and fof = id, note first that \\m(vn—2nm) = oo and 
the sequence vn — 2nm is also eventually increasing. For a module N G Mod(W(t)) 
define QU(N) to be lim2m N/pUnN. It follows from the definitions that if 

(5.3.15.1) c:HxH' E n d ( M 0 W(t)), d.H'xH -> End(M) 

are the maps defined by composition, then the diagrams 
(5.3.15.2) 

H x H' c End(M®W(t)) H' xH 
d 

End(M) 

%M¨£% £¨¨% UK GG 

n„(H) x nu(H') 
NG nu(End(M®W{t))) ftu(Hf) x nu(H) 

n„(d) 
Qu(End(M)) 

commute, where Qu(c) (resp. f^(d)) is the map sending ((kn,ln)) to (ln o fcn). It 
follows that to prove that / ' is an inverse to / it suffices to show that for all n we 
have hnoh'n = p2nm and hfnohn = p2nrn which follows from the relations (pM°ip — pnm 
and ip o (fM = pnrn. This completes the proof of 5.3.4. • 

Corollary 5.3.16. — The subcategory F-Modfft (W (t))Q c F-Mod(W(t))Q is an 
abelian subcategory. 

Proof — That F-Modfft(W(t)) is an abelian category follows from the observation 

in 5.3.3 that F-Modfft(W) is abelian. 
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To see the exactness of the inclusion functor 

(5.3.16.1) F-Modfft(W{t))q C F-Mod(W(t))Q, 

it suffices to show that the forgetful functor F-Modfft(W(t))q -> Mod(W{t))q sending 
(M, (PM) to M is exact (since the forgetful functor F-Mod(W(t))q —• Mod(W(t))q is 
exact and faithful). 

To see the exactness of the forgetful functor to Mod(W(t))q, note that there is a 
commutative diagram 

(5.3.16.2) 

F-Mod(W(t))q 
forget 

Mod(W(t))Q 

5.3.4 ®W(t) 

F-Modfft(W)q 
forget 

Mod(W)q. 

Since the forgetful functor 

(5.3.16.3) F-Modfft(W)Q Mod{W)q 

is exact, and the functor 

(5.3.16.4) ®W(t) : Mod{W)q Mod(W(t))q 

is exact since W(t) is flat over W, it follows that the forgetful functor 

(5.3.16.5) F-Modfft(W{t))q Mod{W{t))q 

is also exact. 

Remark 5.3.17. — Theorem 5.3.4 is equivalent to the following two assertions: 
(i) For any object (M,(pM) G F-Modfft(W(t))q with reduction ( M , < ^ ) G 

F-Modff*(W)q (notation as in 5.3.5), and any morphism 

(5.3.17.1) f:(N,tpN) p)/s£> ~ ^X(P)/S 

in F-Mod^(W)Q, there exists a unique morphism 

(5.3.17.2) f:N—> M 

in Mod(W)q (where M is viewed as an object of Mod(W) by forgetting the W(t)-
structure) such that the diagram 

(5.3.17.3) 

a*N -
°*(f) 

a*M 

OL 

£%¨£% F*M 
£%£ 

N 
f 

•M 
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commutes, where 

(5.3.17.4) a : M ®Wffl. W —• M ®W(t),F W(t) 

is the canonical map. 
(ii) For / the identity morphism (M, <pjj) —» (M, ipjj) the morphism 

(5.3.17.5) M ®w W(t) —• M 

in Mod(W(t))Q obtained from the section i d ^ : M —• M by extending scalars is an 
isomorphism. 

The equivalence of these two conditions with 5.3.4 can be seen as follows. If 
(N,(pN) G F-Modfft(W)q, then (N®W(t)) = N so clearly there exists a section 
as in (ii). Conversely (ii) implies that any object of F-Mod^* (W (t))q is in the essen
tial image of F-Modfft(W)Q. 

To obtain the full faithfulness from the above conditions, note that if (TV, (p^) and 
(Nf,(fNf) are objects of F-Mod^1 (W)q, then a morphism 

(5.3.17.6) g:(N®w W(t),<pN) —• (M ®w W(t),<pM) 

in F-Modfft (W (t))q, with reduction g in F-Mod^(W)Q, is determined by the induced 
morphism 

(5.3.17.7) g':N —• M <S>w W(t) 

in Mod(W)q, and by (i) this morphism is equal to the composition of g with the 
section 

(5.3.17.8) M—> M®M W{t), mi—>ra<g)l. 

It follows that g is equal to the map 

(5.3.17.9) g (8) 1 : (N ®w W(t),<pN) —> (M ®w W(t),<pM). 

Conversely, the full faithfulness of P in 5.3.4 clearly implies (i). 

5.3.18. — Define lsoc(W(t))q to be the category of pairs (M, V ) , where M G 
Mod(W(t))q is free of finite type mod T, and V : M —• M is a map in Mod(W)q 
(where M is viewed as an object of Mod(W)q by forgetting the VF(t)-structure) such 
that for any integer i > 0 the formula in HomMod(vr)Q(M, M) 

(5.3.18.1) Vo£[i] =it№ +t[i]V 

holds. We call such a map V : M - > M a connection on M . Note that for such a pair 
(M, V ) , the map V^s^ := psV no longer satisfies (5.3.18.1), but rather the equation 

(5.3.18.2) V(s) o *M = psit№ + *wvw. 

It follows that any object of Isoc(W(t))q can be represented by a free ^(t)-module M 
of finite type with a map V(s) : M —• M in Mod(VF) satisfying (5.3.18.2) (note that 
since M is free and W(t) is p-torsion free, the equality (5.3.18.2) holds in Mod(W)q 
if and only if it holds in Mod(W)). 
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Lemma 5.3.19. — For any (M, V) G Isoc(W (t))q, there exists a unique connection 
F*V : F*M -> F*M such that the diagram in Mod(W)q 

(5.3.19.1) 

<7*M 
¨MIOLM M% 

r LML 

F*M MM F*M 

commutes, where r : a* M —• F* M denotes the map 

(5.3.19.2) p)/s£> ~ ^X(P)/S • W(t) ®F,w(t) ^ a (g ra a (g) m. 

Proof. — We can without loss of generality assume that M is a free W(t)-module of 
finite type. Then for 5 sufficiently big, there exists a map 

(5.3.19.3) V(s) : M —> M 

in Mod(W(t)) inducing V(s) in Mod(W(t))q, and satisfying the equations (5.3.18.2) 
in Mod(W). Let e i , . . . , er G M be a basis, and write 

(5.3.19.4) V(,)(ci) = 
r 

p)/s£> ~ ^X 
e W(t). 

Then define 

(5.3.19.5) _F*V(s) : F*M ~ ®ri=1W(t) • F*(a) p)/s£> ~ ^X(P)/S(D ®k 0To.M¨%£ 

to be the VT-linear map sending № • F*(a) to 

(5.3.19.6) p)/s£> ~ ^X(P)/S(D ®k 0To. 
r 

i=l 

]pF*(aij) • F*(ej). 

One verifies immediately that (5.3.18.2) holds, and we define F*V to be the map 
F*V^ <gip~s in Mod(W)q. The diagram (5.3.19.1) commutes since the diagram in 
Mod(W) 

(5.3.19.7) 

MOPL %£%¨£ 
a* M 

£MP £¨£Ö 

F*M 
MOPL 

F*M 

commutes by construction. 
The uniqueness of F*V follows from the observation that if /3 : W(t) ®w o~*M —> 

F*M is the map obtained from r by extension of scalars to W(t), and if 
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D : W(t) -» W(t) is the W-linear map sending № to j№\ then the equality (5.3.18.1) 
forces the diagram 

(5.3.19.8) 

W(t) ®w a*M D<g)l+l®p<7* V W(t) ®w cr*M 

ß\ ß 

F*M MP%¨£ F*M 

to commute, and the map ß is an epimorphism in Mod(W(t))q. 

5.3.20. — Define the pullback functor 

(5.3.20.1) F* : lsoc(W(t))Q lsoc(W(t))q 

by sending (M, V) to (F*M,F*V) . 
Define F-lsoc(W(t)) to be the category of triples (M, <^M,V), where (M, V) G 

Isoc(W(t))Q and <̂ M : ( F * M , F * V ) - » (M, V ) is an isomorphism in ISOC(W(£))Q. 

Also define F-Isoc(VF) to be the category of triples (A/", ip^, V ) , where (N,IPN) G 
F-Mod-^(W)Q and V : AT —> A" is a morphism in Mod(W)Q such that the diagram 

(5.3.20.2) 

o~*N M¨£ N 

pa*(V) V 

o~*N %£MP N 

commutes. 

Remark 5.3.21. — Following [24, 4.2.1], define Mod(<£>, A/") to be the category of triples 
(M, ifM ? AT), where M is a finite dimensional AT-vector space (where K is the field of 
fractions of W ) , <£M : M —* M is semi-linear isomorphism, and N : M —> M is a 
linear map such that the diagram 

(5.3.21.1) 

M £% M 

¨LI 

M 
¨%H 

£%IO 

• M 

commutes in the category of if-vector spaces. Prom 5.1.9 it follows that the functor 

(5.3.21.2) F-Isoc(W) Mod(^,A0, (JV,№,V) • (N ® Q, <pN ® Q, V ® Q) 

is an equivalence of categories. 

5.3.22. — Reduction defines a functor 

(5.3.22.1) F-lsoc(W(t)) F-koc(W). 

There is also a functor 

(5.3.22.2) F-Isoc(W) F-Isoc(W<*» 
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which sends (JV, <̂ JV, V) to N ® W(t) with Frobenius induced by (fN and connection 
defined by 

(5.3.22.3) V(t[i] ® n) := <8> rc + 0 V(n). 

Remark 5.3.23. — If M is a VF(£)-module and 

(5.3.23.1) V : M — • M • dlog(t) 

is a logarithmic connection with corresponding endomorphism V* : M —» M, then 
the map 

(5.3.23.2) M/J —> M/3 

induced by V* is the residue of the connection V. 

Theorem 5.3.24. — The reduction functor (5.3.22.1) is an equivalence of categories 
with quasi-inverse given by (5.3.22.2). 

Proof. — By 5.3.4 it suffices to show that if (N,(PN) G F-lsoc(W) is an object with 
N a free W-module of finite type and 

(5.3.24.1) V, V : TV ® W(t) — • TV ® W(t) 

are two maps in Mod(W)q giving (N® W{t), <pN®W(t}) the structure of an object in 
F-Isoc(W(t)) such that V = V (mod J), then V = V . After replacing (pN by pk<fN 
for some k, we may also assume that (fx is given by a map cr*Af —• N in Mod(W). 

Choose s sufficiently big so that the maps and V ' ^ can be represented by 
maps V^s) and V ' ^ respectively in Mod(VF) satisfying (5.3.18.2), compatible with 
(fN, and with the same reductions modulo 3. Let I/J : N —> F*N be a map such that 
^ oip = pd and ^ o = pd for some integer d. Then for any r > 0 and n G iV we 
have 

(5.3.24.2) /rV(s)(™) - P>^v(V(s)(V>>))), 

and similarly for V ' ^ . It follows that the two maps 

(5.3.24.3) V(s), V'(s) : (N <g> W(t) <g> Q) — > ( N ® W ( t ) ® Q) 

agree modulo <prN{3). Since (prN(3) C 3^ and N ® W(£) is p-torsion free, it follows 

that V(s) = V'(s) and hence V = V7. • 

Remark 5.3.25. — The category F-Isoc(W(t)) is closely related to log F-isocrystals on 
k/W (the reader not familiar with the logarithmic language can omit this remark). 
Let Mfc be the log structure on Spec(fc) given by the map N —> k sending 1 to 0, 
and consider the log crystalline topos ((Spec(fc), Mk)/W)crys defined in [40, 5.2]. Let 
MW(tj denote the log structure on Spec(W(t)) induced by the map N —• W(t) sending 
1 to t, and let 

(5.3.25.1) i : (Spec(fc),MH) (Spec(W(t»,Mw{t)) 
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be the natural exact closed immersion. Let ^k/w denote the category of pairs (E, (£#), 
where E is a locally free finite rank crystal in ((Spec(/c), Mk)/W)crys and (ps : F*E —> 
E is a morphism of crystals for which there exist a map ip : E —> F*E and an integer 
r such that the two composites ^E ° and o cpE are both equal to multiplication 
by pr (<PE is a p-isogeny). The category ^k/w 18 a ^-linear category so we can form 
the quotient category ffk/w ® Q which we refer to as the category of log F-isocrystals 
on k/W. By [40, 6.2] the category ffk/w 1S equivalent to a full subcategory of the 
category of triples (£, </?£, V) where: 

(i) £ is a locally free W(t)-module of finite rank; 

(ii) Lps : F*£ —• £ is a VF(£)-linear map which is an isomorphism in Mod(W(t))q; 

(iii) V is a VT-linear map £ £ (we fix the basis dlog(t) for the module of differen
tials) such that for all i > 1 and e G £ we have 

(5 .3 .25.2) V(*N • e) = i*W • e + *W • V(e) 

and the diagram in Mod(W(t)) 

(5 .3 .25.3) 

F*£ ¨£P £ 

¨%PM V 

F*£ ¨%MP £ 
commutes. 

In particular, there is a natural functor 

(5 .3 .25.4) p)/s£> ~ ^X(P)/S(D ®k 0To. y F-lBoe(W(t)) (E,<PE)resp. d : flq , V), 

which by the above description of ffk/w is fully faithful. 
Theorem 5 .3 .24 implies that the functor A induces an equivalence between 

F-Isoc(W(t}) and the category obtained from &k/w ® Q by formally inverting the 
Tate object in <&k/w (the F-crystal (Ok/w, xp : F*Ok/w = Ok/w -> Ok/w))- To 
verify this, it suffices by 5 .3 .24 to show that for any object (TV, </?AT, VA;) € F-lsoc(W) 
with image (M, <^M, V M ) in F-1soc(W(t)), the object (M, <£>M, V M ) is in the essential 
image of A, after possibly replacing <px by Pk(fN for some integer k. As noted for 
example in [24, 4.2.2] and recalled in 6.5.9 below, the relation \7N¥>N = P^PN^N 
implies that VA/ is nilpotent. This in turn implies that there exist a free W-module 
L and a nilpotent operator V L on L inducing the pair (JV, VA / ) after tensoring with 
Q . After replacing LpN by pkipN for suitable we may also assume that <pw extends 
to a semi-linear p-isogeny <pL : L —• L. Now set £ — W(t) <8>w L, tps : F*£ —• £ the 
map induced by ipL, and V : £ —• £ the map defined by 

(5 .3 .25.5) V(*W ® = it® ® £ + t[il®VLW 

Then for any section a G £ and integer v > \ there exist natural numbers {mi}^=1 
and {ni}k=1 such that 

(5 .3 .25.6) 

k 

%£PMPOOL 

p)/s£> ~ ^X( (a) = 0 (mod pu). 
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Indeed to verify this it suffices by additivity to consider a = № (g> £ where we have 

(5.3.25.7) ( V - i)n(a) = № <g> VnL{t) 

which is zero for n sufficiently big since V L is nilpotent. Prom this and [40, 6.2] it 
follows that (S, (f£,Vs) defines an object of ^k/w mapping to (M, ipM, V M ) . 

It is convenient to restate 5.3.4 using projective systems and the equivalence 5.1.19. 

Lemma 5.3.26. — Let M. G ps(W(t)) be a projective system with M = limMn, and 

let M. G ps(VF) be the projective system {Mn/3Mn}. If M. is free of finite type mod 

7, then M. is free of finite type mod 7 and the natural map 

(5 .3 .26.1) {M/{pn, J)M} —• {Mn} 

induces an isomorphism in ps(W)q. 

Proof — Let / : M —• M' be a map with M' a free W(t)-module of finite rank and 
Ker(/) and Coker(/) annihilated by some power of p. Since the map 

(5.3.26.2) h : {Mn} {M'/pnMf} 

becomes an isomorphism in ps(W(t))<Q, there exists a map g : {M1 /pnM'} —> {Mn} 
in ps(W(t)) such that h o g = pd and g o h = pd for some integer d. In particular, the 
maps 

(5.3.26.3) {M/(pn, 3)M} —> {M;/(pn, a ) M { M N } — ^ { M V ^ M 7 } 

induce isomorphisms in PS(VF)Q . It follows that it suffices to consider the case when 
M. = {Mf/pnM'} with M' a free module in which case the result is immediate. 

• 

The lifting of Frobenius F : W(t) —> W(t) induces a pullback functor ps(W(t)) —> 
ps(W{t)) which we denote by F*. Similarly there is also a functor cr* : ps(W) —> 
ps(W). 

Definition 5.3.27. — An F-structure on an object M. G ps(W(t))q is a morphism 
(p : F*M. -> M. in P S ( W ( Í ) ) Q . Denote by F-ps(W(i))Q the category of pairs (M., </?), 
where M G P S ( W ( Í ) ) Q and (/? is an F-structure on M.. Denote by F-ps^(VF(í))Q c 
F-ps(W(t))q the full subcategory of pairs (M., </?), where M is free of finite type mod 
7 and (p : F*M. —> M. is an isomorphism. 

Similarly define F-ps(W)q to be the category of pairs (N.,cp), where N. G P S ( W ) Q 
and : G*N. —> AT. is a morphism in P S ( W ) Q . Denote by F - P S ^ ( W ) Q C F -PS(VF)Q 

the full subcategory of pairs (N.,tp), where N. is free of finite type mod T, and 
<¿? : cr*A .̂ —> A/", is an isomorphism. 
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5.3.28, — By 5.3.26, if (M.,<p.) G_ F-ps^ {W (t))q, then the reduction M. := 
{Mn/JMn} with the map ip^ : cr*M. - » M. is an object of F-psfft (W)q. Further
more, there is a natural commutative diagram 

(5.3.28.1) 

F-ps#*(W<t»Q 
lim 

F-Modfft(W(t))Q 

(M.,fM.)^(M.,<pw) ( M , ( ) m ) H ( M , № ) 

F-pSfft(W)q 
lim 

F-Modfft(W)q. 

From 5.3.4 it follows that the reduction functor 

(5.3.28.2) F-psfft(W(t))Q >F-psfft{W)q 

is an equivalence of categories. 

Corollary 5.3.29. — Let (M. ,<^M) and (N.^N) be objects of F-ps^(W(t))qy and let 
f : (M.,IPM) —> (N.,IPN) be a morphism in F-ps^(W(t))q. Then the kernel and 
cokernels of the underlying morphism of projective systems M. —> N. are free of finite 
type mod 1, and (pM and give them the structure of objects F-ps^T(W(t))q. 

Proof. — Set M — limM. and N = lim TV. and write also <PM and ipw for the F-
structures on M and N obtained by passage to the limit. By the definition of "free of 
finite type mod T ", it suffices to consider the case when M and N are free modules of 
finite rank and M. — {M/pnM} and N. = {N/pnN}. Furthermore, by 5.3.4 we may 
assume that (M,(pM) = (M,(p^) ® W(t) and (N,<pN) = (TV,(p^) <g> W(t) for some 
(M,(PM), (N,(px) e F-ModFFT(W) and that / is induced by a map f : M -> N. Let 
I C N denote the image of / , K the kernel, and Q the cokernel. Since / is p-torsion 
free, for every n > 0 there are exact sequences 

(5.3.29.1) 0 K/PN M/pn I/pn •o, 

and 

(5.3.29.2) 0 Tori(Z/pn,Q)- ï/pn >N/pn -Q/PN o. 

Since Q is a finitely generated W-module and consequently has bounded p-torsion, it 
follows that {I/pn} ~ Ker({iV/p"} {Q/pn}) in ps(W)Q. Hence 

(5.3.29.3) Ker(/) ~ {K/pn} ® W(t), Coker(/) ~ {Q/pn} ® W(t) 

in ps(W(t»o-

5.3.30. — We now explain a technical result which will be used in what follows. 
Let M* be an N-graded object in ps(W(t)), and let ifiM. • M* —*• M* be a semi-

linear (with respect to F : W(t) —> W(t)) endomorphism of M* preserving the grad
ing. Assume 

(5.3.30.1) EP1 = APQ MP+Q 
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is a first quadrant spectral sequence in ps(W(t)), and y?v : E'{ —> E'{ is a semi-
linear endomorphism of the spectral sequence compatible with cpM. on the abutment. 
Assume further that (Apq,Lppq) defines an object of F-psfft (W (t)) for all p,qeZ. 

Proposition 5.3.31. — With the above notation and assumptions, the projective system 
M. as well as each term EPq in the spectral sequence is free of finite type mod T. 
Moreover, the map ipM gives the image of M. in ps(W(t))q the structure of an object 
of F-psff*(W(t))q and the spectral sequence (5.3.30.1) with its endomorphism tp" gives 
rise to a spectral sequence in F-ps^ (W (t))q 

(5.3.31.1) Epq = (Apq^pq) ( M ^ , ^ M ) . 

Proof. — It follows from 5.3.29 that each term EPq is free of finite type mod T and 
that (p" gives EPq the structure of an object of F-ps-^(W(t})q. Prom this it follows 
that M. admits a (pM stable exhaustive and finite filtration Fil such that each grjpn(M.) 
with its endomorphism induced by <pm is an object of F-ps^ (W (t))q. From this 
and 5.1.17 it follows that M. is also free of finite type mod T and that the map y>M 
induces an isomorphism in ps (W(t))q. • 

5.3.32. — With notation and assumptions as in 5.3.30, let ( i V * , ^ ) be a graded 
object of F-psfft(W)q and let p : (M.,(pj^) —> (N.,v>n) be a morphism in F-ps(W)q. 
Assume further given a first quadrant spectral sequence 

(5.3.32.1) &« = {BP,(N.,<pN) 
in F-ps(W)q and a morphism of spectral sequences of projective systems of W-
modules 

(5.3.32.2) (Epq = Apq => Mp+q) 7" (Epq = Bpq = > N.) 

compatible with the Frobenius endomorphisms and p . 

Corollary 5.3.33 (The abstract Hyodo-Kato isomorphism). — Assume that for each 
p,q G Z, the map ~APq —> Bpq induced by 7" is an isomorphism. Then the map 
p : M. —• TV. admits a unique section s in ps(W)q compatible with <pm and (p^, and 
the induced morphism 

(5.3.33.1) (TV. ® W(t), <pn®F)—^ (M.,<pM) 

is an isomorphism in F-psm(W(t))q. 

Proof. — Let 

(5.3.33.2) Q : F-psfft(W(t))q —+ F-psfft(W)q 

be the reduction functor, which is exact (in fact an equivalence of categories). 
Let EPqM (resp. EPqN) denote the spectral sequence for M. (resp. N.). Then 

by 5.3.31, for every p, g, and r the projection 

(5.3.33.3) Epq - £M%P%%M% 
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identifies EPqN with Q(EPqM). Let F U M (resp. Filjv) denote the filtration on M. 
(resp. TV.) defined by EpqM (resp. EPqN). By assumption p : M. —> N. is compatible 
with the filtrations, and the map 

(5.3.33.4) P'Q{M.) — > N 

defined by p induces an isomorphism on the associated graded objects. It follows 
that p is also an isomorphism. The corollary therefore follows from the remarks 
in 5.3.17. • 
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CHAPTER 6 

THE (<£>, N, G)-STRUCTURE ON DE RHAM 
COHOMOLOGY 

6.1. The stack Sjj(a) 

6.1.1. — Fix an integer r > 1 and a collection a = ( a i , . . . , ar) of positive natural 
numbers. Define 

(6.1.1.1) U(a) := Spec(Z[t][Xi,... , Xri V^/iX? • • • X^V = *)), 

where Z[t] is the polynomial ring in one variable. In what follows the collection a will 
usually be fixed, and we write just U for U(a) if no confusion seems likely to arise. 

The scheme U represents the sheaf on the category of Z[t]-schemes 
(6.1.1.2) 

T\—> {(xu...,xr,v)\xi G T{T,OT),V G r(T,C?r), such that x"1 --'X?rv = t}. 

Let H C Sr be a subgroup of the symmetric group on r letters contained in the 
subgroup of elements a G Sr for which aa^) — ai for all i, and let G be the semi-
direct product GĴ  xi H with product structure given by 

(6.1.1.3) (ui,..., ur, h) • (u[,..., u'r, ti) = ( ( ^ / ( i ) ^ ) * , h o h'). 

An element (u, h) G G acts on 17 by 

(6.1.1.4) (x,v) p)/s£> ~ ^X(P)/S(D ®k 0To.p)/s£> ~ ^X(P)/S( 

2 
£%¨P 1? 

Let [U/G] denote the stack-theoretic quotient, and let R = U X[u/G] U, so that we 
have a groupoid in algebraic spaces [49, 2.4.3] 

(6.1.1.5) s,b : R —> [/, m : Rxu R —> R. 

In what follows, we shall denote this and other groupoids simply by R =$ U. The 
scheme R represents the functor which to a Z[t]-scheme T associates the set of triples 

(6.1.1.6) {(x,v),{x',v'),{u,h)}, 
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where (x,v) and (x',v') are objects of U(T) and (u, h) € G(T) such that 

(6.1.1.7) X'h(i. 
£¨%MLLM 

i 

M£¨M? pmùlm 

6.1.2. — Define an equivalence relation r on R by 

(6.1.2.1) ((*, v), (*', i / ) , (u, ft)) - ((y, w), (yf, w'), {u\ ft')) 

if 

6.1.2 (i) (z, v) = (2/, w), and (x',v*) = (y', it/); 

6.1.2 (ii) h(i) = h'{i) for all i with a* £ O^; 

6.1.2 (hi) = u[ for all z with Xi £ O^. 

It is immediate that T is an equivalence relation, and it is shown in [63, 2.3] that T is 
an étale equivalence relation. Therefore the quotient R := [R/T] exists as an algebraic 
space, and is smooth over U via either projection. Furthermore, as explained in loc. 
cit. the groupoid structure on R descends to a groupoid structure Rz^U. We write 

(6.1.2.2) SH(a) 

for the resulting algebraic stack (or just S if the reference to H and a is clear). 
Note that the groupoid R =3 U is defined over Z[t], and therefore there is a natural 
morphism / : Sjf(a) —» Spec(Z[t]). 

Lemma 6.1.3. — The structure morphism f : S#(a) —> Spec(Z[£]) ¿5 

Proof. — Since the projection U —> S#(a) is smooth and surjective, it suffices to 
show that U is flat over Z[t] which is immediate. • 

Lemma 6.1.4. — The projection 7r : [U/G] —> SJJ(OJ) zs representable by Deligne-
Mumford stacks 0.2.1 and étale. 

Proof. — By [49, 8.1], it suffices to show that n is formally étale in the sense of [62, 
4.5]. Consider a commutative diagram 

(6.1.4.1) 

Spec(Ao) 
¿0 

[U/G] 

3 7T 

Spec(A) i 
SH(Û;), 

where j * : A —+ AQ is a surjective map of rings with nilpotent kernel. We can without 
loss of generality assume that ¿0 and i factor through morphisms io and i to U. Then 
any lifting r of i to [U/G] also lifts to U, and hence 7R is formally smooth in the sense 
of [49, 4.15 (ii)]. To show that TT is formally etale, it therefore suffices to show that 
given a point a G R(A) and a lifting ao G R(Ao) of the reduction of a to Ao, there 
exists a unique lifting a of a to R(A) inducing CR0. This follows from the fact that 
R —• R is etale and hence also formally etale. • 
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Definition 6.1.5. — If x = ( # i , . . . , xr) are elements of T(T, OT) for some scheme T, 
define the essential set of x, denoted E(x), to be 

(6.1.5.1) E(x) : = {i\xitr(T,Ol)}. 

Note that if g : T' —» T is a morphism of schemes and if := (g*£i , . . . ,g*xr), 
then there is a natural inclusion E(g*x) £"(x). 

Lemma 6.1.6. — Le£ (x,v),(xf ,vf) G Î7(T) 6e T-valued points, for some scheme T. 
Then the sheaf 

(6.1.6.1) komSH{a)((x,v),{x',v')) 

is naturally isomorphic to the sheaf associated to the presheaf F((x,v), (xf,v')) over 
T which to any g :T' —> T associates the set of pairs ((ui)ieE(g*x)ih) where 

(i) h : E(g*x) —> E(g*xf) is a bisection which is the restriction of an element of H. 

(ii) (ui)ieE(g*x) is a set of element of T(T',Ot,) such that x'h^ = U{X{ for all 

ieE(g*x). 

p)/s£> ~ ^X(P)/S(D ®k 0To. (HieE(g*x) Ui ^ resp. d : flq ,resp. d : 

Proof — There is a natural map of presheaves 

(6.1.6.2) p)/s£> ~ ^X(P)/S(D ®k 0To.M F{{x,v),{xf,v')) 

sending (u,h) G G(a) to {{ui)ieE{x)-, ^\E{X))- Moreover, it follows from the definition 
of the equivalence relation V that two isomorphisms map to the same element if and 
only if they are equivalent. Thus we obtain an injection of presheaves 

(6.1.6.3) Isom[c//G]((ar,t;),(a;/,i;/))/r F((x,v),(x',v')). 

To see that (6.1.6.2) is surjective, suppose ((ui)ieE^, h) G F((x, v), (xf, v')) is a 
section. We construct an element (ui,h) inducing {(ui)ieE(x),h>) by defining h to be 
any element of H which agrees with h on E(x), and letting Ui = ui if i G E(x) and 
Ui = x'7,..x~x otherwise. • 

h{i) 1 
6.1.7. — Note that the composition law of morphisms exists already at the level of 
the presheaves F((x,v), {x',v')). More precisely, suppose given 

(6.1.7.1) {x,v),tf,v'),(xry)eU(T) 

for some scheme T. Then there is a natural map 

(6.1.7.2) F((x,v),(x',v'))xF((x',v'),(x",v"))((u'h{i)Ui,ti 
p)/s£> ~ ^X(P)/S(D ®k 

obtained by 

(6.1.7.3) (u, h) x {vth') ((u'h{i)Ui,ti oh)). 

This map induces the composition law of morphisms in S#(a) . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



242 CHAPTER 6. THE (<p, N, G)-STRUCTURE ON DE RHAM COHOMOLOGY 

Corollary 6.1.8. — The stack S#(OJ) is naturally equivalent to the stack associated to 
the prestack S#(oO whose objects over a scheme T are elements ofU(T) and whose 
Isom-functors are given by the sheaves associated to the presheaves F((x, v), (#', vf)) 
defined above. 

6.1.9. — The stack S# (a) over A1 = Spec(Z[t]) descends in a natural way to a stack 
S#(OJ) over [ A 1 / G M ] , where GM acts on A1 by multiplication. For this note that there 
is a natural action of GM on [/compatible with the action on Z[t] for which a section 
A G G M ( T ) over some scheme T acts on T x% U by Xi i—• Xi and V i—• XV. For an 
element (x, v) G U(T) we write (x, Xv) G U(T) for the T-valued point obtained by 
applying A. For two points (x',vf), (x,v) G U(T) and a section A G G M ( T ) there is a 
natural map 

(6.1.9.1) F((x,v),(x',v')) F((x,Xv),(x',Xv')) 

obtained by sending ((ui)ieE(x),h) to ((wj)ie£(x)> h). For a third section (x",v") G 
U(T) the composition law (6.1.7.2) extends to a map 
(6.1.9.2) 

(F((x.v).(x'.v')) x G„) (F((x',v'),(x",v"))xGm) >F((x,v),(x",v"))xGm 

obtained by sending 

(6.1.9.3) ((u,h),\)x((u',h'),\') • ((u'h(i)Ui,h' oh),X- A'). 

Define S# (a) to be the prestack over Z which to any scheme T associates the 
groupoid whose objects are U(T) and for which a morphism (x, v) —» (x',v') is an 
element of 

(6.1.9.4) ( % » ) , ( î ' , » ' ) ) x G m ) ( r ) . 

Composition of morphisms is defined using the map (6.1.9.2). We define S#(a) to be 
the stack associated to the prestack 8^(a). The map U —» A1 induces a map from 
S^(OJ) to the prestack [A1/GM]PS whose objects are point z G A 1 ( T ) and for which 
a morphism z —> z' is an element A G G M ( T ) such that z' = Xz. Passing to the 
associated stacks we obtain a map §H(OL) —• [ A 1 / G M ] . There is also a natural map 
$H (A) ~* $H (a) m<iuced by the identity map U —> U and the maps 

(6.1.9.5) id x e : F((x\ v), v')) >F{(x,v),(x',v')) xGm. 

Lemma 6.1.10. — The stack S#(a) is algebraic, and the diagram 

(6.1.10.1) 

S/f(a) S H (a) 

A1 [AVGm] 

is cartesian. 
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Proof. — That the diagram (6.1.10.1) is cartesian follows from the definitions. 
To see that S#(a) is algebraic, note first that for any two sections (x, v), {x',v') € 

U(T), the sheaf 

(6.1.10.2) p)/s£> ~ ^X(P)/S ((x,v)Jx',v')) 

is a Gm-torsor over lsom§u^((x,v), (xf,v')). Since Isom§H(a)((x, v)y (x',v')) is rep-
resentable by an algebraic space it follows that Isomg^^ffx, v), (x',v')) is also rep
resent able by an algebraic space. From this it follows that for any two objects 
01,02 ^ S#(OJ)(T) the sheaf Isom^ ^ (oi, o?) is representable by an algebraic space. 
For by construction of the stack associated to a prestack the objects o\ and 02 are 
etale locally obtained from sections (x, v), (x', v') G U(T). It follows that etale locally 
on T the sheaf I som^ (a)(°i * o?) is representable by an algebraic space, and since 
representability by an algebraic space over T is an etale local condition a sheaf it 
follows that IsomgH^ (01,02) is representable globally. To conclude the proof note 
that since (6 .1.10.1) is cartesian the composite map U —• S# (a) —» S#(a) is smooth 
and surjective. • 

6.1.11. — For a scheme T, the category [A1/Gm](T) is equivalent to the category of 
pairs (£, p), where £ is a line bundle on T and p : C —• OT is a map of line bundles. To 
see this note that A1 can be viewed as representing the functor which to any scheme 
T associates the set of triples (£, e,p), where £ is a line bundle on T, e : OT £> 
is an isomorphism of line bundles, and p : C —• OT is a morphism of line bundles. 
The action of Gm on A1 translates into the action on this functor for which a section 
u G Gm(T) sends (£, e, p) to (£, u • e,p). From this it follows that [A1/Gm]ps is the 
prestack which to any T associates the groupoid of pairs (£,p) , where £ is a trivial 
line bundle on T and p : C —• O T is a morphism of line bundles on T. 

In what follows, for a line bundle C with a morphism p : C —> OT we write 
$H(OL)(C,P) (or just if the reference to H and a is clear) for the fiber product of 
the diagram 

(6 .1 .11.1) 

)/S(D ®k 0To. 

T 
¨PMLML 

[A1/Gm]. 

For a ring i? and an element / G ii, we also sometimes write S#(G;)#,(/) or §H{OL)RJ 

for the pullback of §H{®) via the map Spec(i?) —• [A1/Gm] induced by the morphism 
of line bundles xf : OR —• (9R. 

6.1.12. — The stack SH(&) can also be described as follows. 
Denote by T# the stack over Z associated to the prestack T# defined as follows. 

The objects of 7^ over some scheme T are collections ( x i , . . . , x r ) of elements in 
T(T, OT), and a morphism ( x i , . . . , xr) —> ( x i , . . . , xj.) is a bijection h : E(x) —> £7(x') 
which is the restriction of an element of H and a collection of units {ui}ieE^ such 
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that x'hfj) — UiXi for each i G E(x). Then just as in [63] the stack T# associated to 

the prestack 7^ is algebraic, and there is a natural etale surjection 

(6 .1 .12.1) [Spec(Z[X! , . . . ,Xr ] ) /G^] %¨P£MLL 

There is a natural map 

(6 .1 .12.2) q : S H (a) >7H, 

defined on the level of prestack by sending ( # i , . . . , xr, v) to ( # i , . . . , xr). 

Proposition 6.1.13. — The map q is an isomorphism. 

Proof. — First note that there is a natural map e : T# —> [A1/Gm]. To define such a 
map it suffices to define a map eps : T^s —• [A1/Gm]ps, where [A1/Gm]ps denotes the 
prestack which to any scheme T associates the groupoid with objects elements t G OT 
and morphisms t —• t' an object u G O^ such that t' = ut. The map eps is defined 
by associating to (xi,...,xr) G 7^(T) the element x^1 • • • x^r G AX(T), and to a 

morphism (h,{ui}ieE{x)) the element (UitE(x) ^ K I L ^ * ' ) ^ X I L e ^ * ) UT)-
It follows from the definition of the map q that it extends to a morphism over 

[A1/Gm]. Thus to verify that it is an isomorphism, it suffices to show that it be
comes an isomorphism after base change to A1. On the other hand, the fiber product 

x [Ai /cm] is the stack associated to the prestack over A1 which to any scheme 
/ : T A1 associates the groupoid of pairs ( ( x i , . . . , xr) G T ^ ( T ) , v G Gm(T)) such 
that 

(6 .1 .13.1) P¨KHYJ = vx?1 • • xar 

and morphisms as in 6.1.6. In other words, 7H X[AVGm] A1 — ^i^(a), and the map 
S#(QJ) —* §H (ot) obtained from q by base change is the identity. • 

Remark 6.1.14. — Even though the stacks S#(a) and 7H are isomorphic, we use both 
notations in what follows. Usually we write S#(OJ) when we wish to view this stack 
as a stack over [A1/Gm], and 7H when we view this stack as a stack over Z with the 
modular interpretation given in 6.1.12. 

6.1.15. — For the remainder of this section assume that m is an integer that divides 
each ai. Then there is a canonical //m-torsor 

(6 .1 .15.1) S#(a)[ra] • S# (a). 

To define this torsor it suffices to specify the following data: 

1. For every object (x,v) = (x±,..., xr, v) G S#(OJ) over some scheme T a /xm-
torsor 

(6 .1 .15.2) %£µ%M T. 
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2. Fix a morphism of schemes g : T' —> T, objects G S#(a)(T) , (x',vf) G 
S^(OJ)(T ' ) , and collection ((ui)ieg*x,h) as in 6.1.6 defining an isomorphism 
g*(x,v) —> in S^(T ' ) . Then we need an isomorphism 

(6.1.15.3) ¨£%¨%P%M% y P{x' ,v') ' 

Furthermore these isomorphisms have to satisfy the usual cocycle compatibility 
with compositions. 

For this define P(x,v) ~* T to be the /im-torsor which to any h : T —> T associates 
the set {w G r(T',0Tf)\wm = h*v}. Given data as in (2) we define the isomor
phism (6 .1.15.3) to be the map which to any h :T" T' associates the map 

(6.1.15.4) {w G r(T", öT/,)\wm = h*g*v} {weT(T",Ofr,)\wm = h*v'} 

sending 

(6.1.15.5) w I 
i£E(x') 

¨M%PO N " 1 

i£E(g*x) 

£M£¨P 

ieE(g*x) 

¨£M% Jw, 

where Pi is defined to be ai/m. This map is well-defined by 6.1.6 (hi). We leave to 
the reader the verification of the cocycle condition. 

6.1.16. Let 7T : [U/G] 2>H{ct) be as in 6.1.4. The pullback 

(6.1.16.1) [U/G] S H (a) S i j (a )M - [U/G] 

can be described as follows. 
Let G' C G denote the kernel of the homomorphism 

(6.1.16.2) G = GrrnxH—^Gm, (u, h) I 
% 

P¨LMOLM 

let Q1 C G denote the kernel of the homomorphism 

(6 .1 .16.3) G = GrmxH Gm, (u, h) 

i 

¨£MM% 

and let Z GU be the closed subscheme 

(6.1.16.4) 

Spec(Z[t}[X1,...,Xr] '(X?1 =*)) 

v=i 

Spec(Z[t][Jfi, ...,Xr, V^/iX?1 • • • X^V = t)). 

The action of G' on U restrict to an action on Z, and so we obtain a diagram 

(6 .1 .16.5) IM a 
' [Z/G'] -

b 
[U/G]. 
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Lemma 6.1.17 
(i) The map b is an isomorphism. 

(ii) The stack [Z/Q] over [U/G] is isomorphic to [U/G] x§H(a) S//(a)[m]. 
(iii) The map Z —> S# (a:)[ra] is smooth. 

Proof. — For (i) let [Z/G']ps (resp. [U/G]ps) be the prestack which to any Z[t]-
scheme T associates the groupoid with objects Z(T) (resp. U(T)) and for which a 
morphism v —> v' (resp. u —> u') between elements of Z(T) (resp. U(T)) is an element 
g' G G'(T) (resp. g G G{T)) such that v = g'v' (resp. u = gu'). Then [Z/Gf] (resp. 
[U/G]) is the stack associated to the prestack [Z/Gf]ps (resp. [U/G]ps) and the map 
b is induced by the natural morphism 

(6.1.17.1) b : [Z/G']ps —+ [U/G]ps. 

It therefore suffices to show that b is fully faithful and that every object of [U/G]ps is 
fppf locally in the image of b. 

The full faithfulness is immediate from the definitions of G' and the action of G 
on U. To see that every object is locally in the image, let T be a Z[t]-scheme and 
(#1, . . . , xr, v) G U(T). After possibly replacing T be an fppf cover, we may assume 
there exists an element u G OT with uai — v. The element ((u, 1,..., 1), id) G 
GĴ  xi H = G then defines an isomorphism 

(6.1.17.2) (ux±,... ,xr, 1) —y ( # i , . . . ,xr,v) 

in [U/G]ps. This completes the proof of (i). 
For (ii) let P [Z/G'] denote the ^m-torsor [Z/G'] XSH(OK) §H(a)[m]. The stack 

P is the stack associated to the prestack Pps which to any scheme T associates the 
groupoid with objects the set 

(6.1.17.3) {(x, w)\x G Z (T) , w G T(T, OT) such that uT = 1}, 

and for which a morphism 

(6.1.17.4) (x,w) —> (x\wf) 

is an element g = (ixi,... ,ur,h) G G'(T) such that gx' = x and = Yii^h^^-
There is a map of prestacks 

(6.1.17.5) p : [Z/G]ps —+ Pps 

sending x G Z(T) to the element (x, 1) G Pps. Note that by the definition of Q 
this is compatible with morphisms, and extends to a fully faithful functor. Also, for 
every object (x,w) G Pps(T) over some scheme T there exists an fppf-covering of T 
such that (#, w) is isomorphic to an object in the essential image of p. Indeed after 
replacing T by an fppf-cover we may assume that there exists an element g G G' 
mapping to w under (6.1.16.3). Then (gx, 1) is isomorphic to (x,w) in Pps(T). It 
follows that p induces an isomorphism [Z/Q] ~ P. 

Finally for (iii), note that Q is a smooth group scheme over Z and therefore the map 
Z —• [Z/Q] is smooth. Since [Z/Q] —• §/f(a)[m] is etale the morphism Z —• S# (a)[ra] 
is also smooth. • 
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6.2. Maps to S H (a) 

6.2.1. — Let V be a complete discrete valuation ring with uniformizer TT and mixed 
characteristic (0,p), and let X/V be a flat regular scheme with smooth generic fiber 
for which the reduced closed fiber Xo,red C X is a divisor with normal crossings. Fix 
a sequence of natural numbers {QJI, . . . , ar} of the form { a i , . . . , ai, a2, . . . , «2, • • • } 
with the a '̂s distinct and each ai occurring r% times, such that for any geomet
ric point x —• X mapping to the closed fiber one can in an étale neighborhood 
of x in X write the set of branches Di of the closed fiber at the image of x as 
{Di,..., D8l,D8l+i,..., DSl+S21 • • • } with Di,...,branches of multiplicity ax, 

..., D3l+S2 branches of multiplicity a,2 etc., and Si < Ti for all i. Let H be the 
group of elements a G SR for which Û^^J = for all i. Let SV,TT denote the stack 

(a)(7r)cv obtained by base change from S#(a) from the map SpecfV) —> [A1/Gm] 
defined by the invertible sheaf (7r) with the inclusion into Oy (6.1.11). Then there is 
a canonical map X —• §v> defined as follows. 

First note that the choice of the generator n € (TT) identifies §̂ ,7r with the base 
change of S#(OJ) to Spec(V) via the map Z[t] —» V sending t to n. We write Uy 
and Ry for the base changes U xSpec(z[t]),ti-7r Spec(F) and U xSpec(z[t]),t̂ 7r Spec(F) 
respectively. 

Lemma 6.2.2 

(i) For any geometric point z —> X with image z e Xo in the closed fiber, there exist 
an étale neighborhood W of z and a W-valued point (x,v) = (# i , . . . , xr, v) G 
Uy(W) such that the following condition holds: the set of irreducible components 
Di of the closed fiber at the image of z in W is equal to the set of divisors 
{(xi)}ieE(x) (where the essential set E{x) of x is defined in 6.1.5). 

(ii) Let z —• X be a point geometric point with image in the closed fiber, and let 
(x, v) = (#i , . . . ,xr,v) and (xf, v') — (x[,...,x'r, v') be two W-valued points of 
Uy satisfying the condition in (i); for some étale neighborhood W of z. Let 

(6.2.2.1) px,px, :W —>S^s(a) 

be the two morphisms obtained by composing (x, v) and (x, v') with the projection 
Uy —> S^(OJ). Then there exists a unique isomorphism between p(x,v) and p(x'y) 
in§^(a)(W). 

Proof. — For (i), it suffices by a standard limit argument to find a point (x,v) G 
Uy(Ox,z) such that the set of branches Di of the closed fiber in Spec(Ox,z) is equal 
to the set of divisors {(xi)\xi ^ 0 \ ^}. 

With notation as in 6.2.1, let { D i , . . . , DSl, DSl+i,..., Z)5l+S2, • • • } be the set of 
branches of the closed fiber in Spec(Ox,z)- To prove the lemma it suffices to consider 
the case when Si = (set the remaining x^s equal to 1). Let Xi G Ox,z be an element 
defining Di. If rji G Di denotes the generic point, then the image of 7r in Ospec(ox *),»?» 
is equal to a unit times xf1. Therefore the two elements 7r, Yiiei XT ^ ®x,z differ by 
a unit at every codimension 1 point. Since Ox,z is regular it follows that the element 
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n/(Yli£i XT) °f the fraction field of Ox,z extends uniquely to a unit v G (9^ ^ with 

7r = t;riî i-
For (ii), let 

(6.2.2.2) h : E(x) — • E(x') 

be the map sending i to the unique integer j G [l,r] such that Di = (x'j). With h 

so defined, there exists for every i G E(x) a unique unit ui such that = UiXi 
since = (xi) = (xfh^). The formula 6.1.6 (iii) holds because X is integral and 

the two sides both become equal to Trdlie^x) u7ai) when multiplied by I~Le£;(:c) K?*• 

Moreover, if (г¿/, h') G F((x,v), (xf ,v')) is a second element, then the condition Di = 
(xh'(i)) ensures that (u, h) = (г¿/, ft'). This implies the existence and uniqueness. • 

6.2.3. — It follows from 6.2.2 that we obtain a globally defined map X —* Sy57r. 
If 7r' G (TT) is a second choice of uniformizer, then there is a canonical isomorphism 

between the resulting two maps p, p' : X —> S#(a). For this write nf — Uo - TT with 
«o G F*. If locally on X we write TT = v Yli x**1 as above, then the map p to S#(a) is 
induced by the map to U = Spec(Z[t][Xi, . . . , Xr, V±]/(X1 • • • XrV - t)) sending Xi 
to Xi, V to v, and t to TT. The map pf is induced by the map sending Xi to Xi, V to 
uoV, and t to TT' . It follows that the unit UQ defines an isomorphism in S#(ce) between 
the two maps X —> S# (a) compatible with the isomorphism in [A1/Gm] induced by 
^0- Moreover, by construction these locally defined isomorphisms glue to a globally 
defined isomorphism as desired. 

Remark 6.2.4. — The choice of the cxi is not serious. As explained in Chapter 9, one 
can glue the S(a)v,n in a natural way to a stack Sy?7r. Then the above shows that any 
scheme X/V as above admits a canonical map X —>• Syj7r. 

Remark 6.2.5. — Note that since the map X —> Sy^ is obtained by gluing together 
morphisms defined locally in the etale topology, we could also let X in the above be 
a Deligne-Mumford stack. 

The following explains when X —> §>y^ is smooth. 

Proposition 6.2.6. — Let Spec (A) —• UV,<K be a morphism induced by elements 
#i , . . . ,xr G A and v G A*. Then the induced map Spec(A) —• §v> is smooth if and 
only if for each h G H the map 

(6.2.6.1) V[XU ..., Xr, V±]/(X^ • • • X?V = TT) — A[U±,..., U?] 

sending Xi to xh-i^Uh-i^ and V to v(Yii U~AI) is smooth. 

Proof. — Let RA = Spec(A) x§ U and let RA = Spec(^4) Xg U. Then Spec(^) is 
smooth over §y57r if and only if RA is smooth over U. Now the natural map RA ~» RA 
is etale and surjective, and hence RA is smooth over U if and only if RA is smooth 
over U. But RA is naturally isomorphic to the disjoint union over h G H of the 
schemes described in the proposition. • 
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Corollary 6.2.7. — If A = V\Yi,..., Yr]/{Y^ • • • Yra- = TT), then the natural map 

(6.2.7.1) Spec(^) ¨£%MPO 

is smooth if one of the on = 1. 

Proof. — Without loss of generality assume that ai = 1. Denote by O the ring 

(6.2.7.2) V[XV ¨¨PLO¨PPL £¨M%¨£¨£ X^V = TT) 

The map (6.2.6.1) induces an isomorphism 

(6.2.7.3) A[U±,...,U?] iO[Ui,...,Ur]/(V +M%¨£%MM£ 

and since 

(6.2.7.4) 0[U1,...,Ur}/(V = £¨M£M£ ̈£M%%M£MM¨+ 

It follows that (6.2.6.1) is smooth. 

6.3. The map Ae 

6.3.1. — Throughout this section we work with a fixed S#(a) and write simply S for 
this stack. We also write S for the stack [U/G]. 

If R is a ring and / G R is an element, we write URJ etc., for the objects 
over R obtained by base change via the map Z[t] —> R sending t to / . If the reference 
to R is clear we sometimes also just write § / , Uf etc. For example, for each positive 
integer e, we write Ste (resp. £7^ etc.) for the fiber product § ®z[t],t>-+te %[t] (resp. 
UXm^teZ[t]). 

6.3.2. — Define 

(6.3.2.1) ¨%M%M££ ops 

to be the map over the map Z[t] —» Z[t], i-> te, which sends a pair (x,v) to the pair 
(xe, ve), where *xe denotes the set (x\,..., and whose map on morphisms is that 
induced by 
(6.3.2.2) s 

F((x,v),(x',v')) p)/s£> ~ ^X(P)/S(D ®k 0To. ((v>i)ieE(x),ti) p)/s£)/S(D ®k 0To. 

The map Aps induces a morphism of stacks Ae : St —» . Let ¡1 denote the diagonal
izable group scheme \xTe over Z. 

Proposition 6.3.3. — The fiber product Ute x§t65Ae §t is naturally isomorphic to the 
stack-theoretic quotient of 

(6.3.3.1) Ut = Spec(Z[t][Xu ,xr,y±]/(x1^- •X?*V-t)) 

by the action of a qiven by 

(6.3.3.2) (Cl 5 ' ' ' 5 Cr) ' Xi — QXi, %MM 
[CTai P£P 
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Proof. — Let denote the fiber product Uf x§te>Ae St and let 

(6.3.3.3) TT : U(e) Up 

be the projection. The map 

(6.3.3.4) K:Ut Ute, HLOIP %M 
% 

V Ve 

fits naturally into a 2-commutative diagram 

(6.3.3.5) 

Ut • 
M% 
¨M Ute 

St 
Ae Sf, 

and hence we obtain a map z : Ut —> with Ae equal to the composition TT o z. 
It follows from the definition of the action of fi on Ut that the corresponding map 
Ut —• U^ descends to a map 

(6.3.3.6) PTLIA POPJGCXV 

which we claim is an isomorphism. 
It is clear that (6.3.3.6) is fully faithful. To see that it is essentially surjective, 

let i : T —* be a map corresponding to a morphism g : T —> lit* and elements 
( x i , . . . , 4 , v') in T(T, (9T) for which 

(6.3.3.7) 
i 

tOt-i 
xi 

)v = t9 

together with ((u&h) G G(T) such that a#(<) = ^ £ * № ) , */e = (II* ̂ M ^ ) -
Every morphism to is etale locally obtained from such data. Now locally in the 
flat topology on T, we can find units Ui such that u\ = U{. Define a map 7 : T —> U by 
sending Xi to î~1:r/i(2) and ^ to J|u~aivf. Then t and Z07 are naturally isomorphic, 
and hence (6.3.3.6) is an isomorphism. • 

Corollary 6.3.4. — The map Ae is quasi-compact and quasi-separated. 

Proof. — This can be verified on the flat cover of §te • D 

Corollary 6.3.5. — The formation of RlAe*0$t is compatible with arbitrary base 
change Z[t] —• R, and these groups are zero for i > 0. 

Proof. — Again we can work locally in the flat topology on §te and hence may base 
change to Ute. 

Since /j, is a diagonalizable group scheme, it follows from [14, 1.5.3.3] that 

[6.3.5.1) ((u'h{i)Ui,ti((u'h{i)U 

for all i > 0 and all base changes Z[t] —» R (here TT is the projection 6.3.3.3). 
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From this we can also describe the algebra n*Ou(e)®mR explicitly. Indeed the 

isomorphism (where we abusively write also t for the image of t in R) 

(6.3.5.2) t/(e) <8>Z[t] R Spec(#[Xi, O¨£%M [X?--.X?"V = t))/vL] 
identifies the global sections of the quasi-coherent sheaf 7r*Ou(e)® r on J7te with the 
sub-.R-module of /^-invariants in 

(6.3.5.3) R[XU • • • ,Xr, V^/iX^ • • • X?*V = t). 

Since the action of /2 is given by the action on monomials, this submodule of invariants 
is isomorphic to the free module on the monomials X^1 • • • X%rVc with the property 
that the element 

(6.3.5.4) - aiC)ri=1 G (Z/(e))r 

is zero. Evidently formation of this submodule is compatible with arbitrary base 
change R —• R'. • 

6.3.6. — Let R be an Fp-algebra and / G R an element. Consider the stack SRJ and 
let X —• SRJ be a smooth morphism with X a scheme. Let F§R F : SRJ —» be 
the Frobenius morphism, and let X' denote the fiber product of the diagram 

(6.3.6.1) 

X 

MPO¨M% F*R,f £P¨P 
¨P 

Denote by 

(6.3.6.2) X' 
p 

X' X 

the factorization of the projection X' —• X defined in 3.3.1 (the Stein factorization 
of X' -+X). 

Corollary 6.3.7. — For any quasi-coherent sheaf £ on x' the natural map £ —• 
RP*P*£ is an isomorphism. In particular, SRJ is Frobenius acyclic in the sense 
of 3.2.1. 

Proof. — The Frobenius morphism on SRJ is simply the map AP. After replacing 
X by an etale cover, we can assume that the map X —• SRJ factors through an 
afhne morphism r : X —> URJ. In this case, 6.3.3 shows that X' is the quotient of 
an affine X-scheme by an action of a diagonalizable group scheme \x. The statement 
that R*P*P*£ = 0 for i > 0 then follows from [14, 1.5.3.3], as in the proof of 6.3.5. 
Moreover, to see that £ = P*P*£, it suffices to show that r*£ = PuRtf*PuR /r*^' an(^ 
hence it suffices to consider the case when X = URJ. 

Now as an OTJ' -module, the ring (6.3.5.3) is isomorphic to a direct sum ©a€^Ma, 
R,f 

where A denotes the group (Z/(e))r and MA is the free rank 1 submodule generated 
by monomials X^1 • • • X%rVc for which the class is equal to a. From this the result 
follows. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



252 CHAPTER 6. THE (<p, N, G)-STRUCTURE ON DE RHAM COHOMOLOGY 

6.3.8. — The map Ae extends naturally to a map on the stack 7u defined in 6.1.12. 
More precisely, let Ae?T : 7H —> 7H denote the map induced by the map on prestacks 
which sends ( # i , . . . , xr) to (x\,..., x%) and a morphism (ft, {ui}) to (ft, {г¿f}). Then 
there is a natural commutative diagram 

(6.3.8.1) 

Sjf (a)t 
Ae p)/sD ®k 0To. 

ÎTH ®Z Z[t] £PM%£ T/f ®zZ[t], 

where the vertical arrows are as in (6.1.12.2). 
Observe also that if W denotes the Witt ring of a perfect field of characteristic p > 0 

and if 7H,W denotes the base change of 7H to W, then there is a natural isomorphism 
7H,W — 7H,W ®W,O W, where a denotes the canonical lifting of Frobenius to W. This 
is simply because both sides are obtained by base change from 7H (which is defined 
over Z). Moreover, the induced map 

(6.3.8.2) 7H,W 
Ap 

7H,w - 7H,w ®W,a W 
Prl 

7H,W 

is a lifting of the Frobenius endomorphism of the reduction of 7H,W-

6.3.9. — We now make a calculation whose corollaries 6.3.19-6.3.26 below play an 
important role in the construction of the TV, G)-module structure on de Rham 
cohomology (specifically the corollaries of this calculation are used in 6.4.3(h), and 
the proofs of 7.1.6 and 7.1.9). 
From now until 6.3.27, assume that there are integers ai > > • • • > ar such that 
OL% — pai and assume e = pn for some n > a\. 

In the key technical result 6.3.18 below, we give an explicit description of the 
Oute-algebra, Ae*0§t(Ute) by generators and relations. 

In preparation for this result, note first by 6.3.3 we can view ke*0§t(Ute) as the 
global sections of the structure sheaf on the stack [Ut/fi]. Equivalently Ae*(9st(C/te) 
is the subalgebra of //-invariant elements of 

(6.3.9.1) Z[t][Xi,. 
¨£¨M%%M¨¨P £M§%¨¨P xfrv = t). 

As mentioned in the proof of 6.3.5, this subalgebra admits as a basis over Z[t] the 
monomials (YliXp^V1, where 

(6.3.9.2) mi =pail (mod pn). 

For integers e € (ar,ai] and 7 G (0,pe) with (7,2?) = 1, set 

(6.3.9.3) S(e) := {i\e > a*}, 

and 

(6.3.9.4) M(e,7) 
ieS(e) 

¨£MÖIOI/%¨% (P)/S(D ®k 0T. 
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where fa G (0,pe ai) is a representative for 7 modulo pe ai. Note that for every i we 
have by the definition of fa 

(6.3.9.5) pn-^-ai^i = pai • pn"e7 (mod pn) 

so M(e>7) is an element of Ae*Ost(Ute) c Out. Also let Z G Ae*0§t(Ute) denote the 

element defined by Vpn "r G Out. 

Lemma6.3.10. — As a Oute-subalgebra of Out, the algebra Ae*0$t(Ute) is generated 
by Z and the M(Cj7). 

Proof. — To prove the lemma it suffices to show that any monomial ([liX™i)Vl, 
with mi = pail (mod pn) for all i, is in the Oute-subalgebra generated by Z and 
the M(Cj7). For this we may without loss of generality assume that mi and I are all 
nonnegative and smaller than pn. In addition we can assume that at least one mi is 
strictly less than pai. Write I = pn~ej with (p, 7) = 1, so the condition on the ra^ can 
be written as ml = pn-e+°*^ (mod pn). 

We consider two cases. If e < ar, then pn-€+a* is divisible by pn for all i so in this 
case all the vrti are zero. Therefore, our monomial is of the form VpU arpar 67 and 
hence is in the subalgebra generated by Z. If e > ar, then S(e) is non-empty, but we 
still have vrti — 0 unless i G S(e). As for i G 5(e), let fa be the unique representative 
for 7 modulo pe~ai. Then we have 

(6.3.10.1) rrn = pn~e+aifa (mod pn), 

and since mi < pn we in fact have m« = pn~e+aifa. This also implies that e < a\. 
Indeed if e > ai, then 5(e) = { 1 , . . . , r } and hence each is non-zero and greater 
than or equal to pai contradicting our assumptions. Thus our monomial is equal to 
M(£|7). • 

Lemma 6.3.11. - As a Z[t]-module Ae*Ost(Ute) is free on generators 

(6.3.11.1) 

i 

¨P¨P p)/s£> ~ ^X(P 

i 

\Xmi) VLZa, 

i 

XrmVl 

where (Yli X^^V1 G Oute (acting on M(€j7) and Z through the Ojjte -module structure 
on Ae*Ost (Ute)), I G Z, and in the first case there exists ani G 5(e) such that mi = 0, 
and the second and third case at least one mi is equal to zero and a G (0,p°r). 

Proof. — Under the inclusion of Z[£]-modules Ae*0§t(JJte) C Out the genera
tors (6.3.11.1) map respectively to 

(6.3.11.2) A(€/y)(m,0 
i 

¨PMLPO% £¨£¨PO¨P 

i€S(e) 

— (e — a , ) a n — e 

(6.3.11.3) B(m, a) 

i 

xfmt) p)/s£> ~ ^X(P)/S( 
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and 

(6.3.11.4) C(m, I) 
i 

•^•pnmiypril 

Suppose given a linear relationship 
(6.3.11.5) 

k 

p)/s£> ~ ^X(P)/S(D ®k 0To. 
S 

AB(ffiw,ow)) 
t 

p)/s£> ~ ^X(P)/ = 0. 

By definition for every A(c>7)(m, Z) there exists some i such that the exponent of Xi in 
^4(e,7)(z?L 0 is n°t divisible by pn. Therefore by looking at the monomials with each 
exponent of Xi divisible by pn we see that (6.3.11.5) induces relations 

(6.3.11.6) ( AB(mW, a « ) ) + ( VJ 7 t C ( m « , i(t))) = 0 
a t 

and 

(6.3.11.7) £afcA(eti7fc)(mW J<fc>) = 0. 
k 

Furthermore, note that the exponent of V in B(m, d) is not divisible by pn so the 
relation (6.3.11.6) is in fact obtained from relations 

(6.3.11.8) ^ A£(m(a),a(a)) - 0 
s 

and 

(6.3.11.9) ^7tC(m(t) ,Z( t ) ) = 0. 
t 

For any two j4(Cj7)(ra, /) and A(e//y/)(m/, / ' ) the exponents of V in these monomials 
are distinct unless (e,7) = (e',7') and / = and in this case the exponents of Xi are 
distinct unless we have rrii = m'i for all i. It follows that in (6.3.11.7) we must have 
all ojfc = 0. 

Similarly for any two B(m1 a) and B(mf, a') the exponents of V are distinct unless 
a = o! and the exponents of Xi are distinct unless rrii = m\. It follows that we also 
have (}3 = 0 for all s. 

Finally for two monomials C(m,l) and C(m/,//) the exponents of V are distinct 
unless / = Z; and the exponents of Xi are distinct unless ra* = m\. It follows that 
syt = 0 for all t as well. 

We conclude that the elements (6.3.11.1) are linearly independent. 
That these elements generate Ae*0$t(Ute) as a Z[t]-submodule of Out follows 

from 6.3.10. • 
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6.3.12. — To completely characterize the Ojjte -algebra Ac*Ost(^te)j ^ remains to 
determine the multiplicative relations among the generators M(€)7) and Z. This is a 
rather complicated calculation, so we break it into several pieces. First let us introduce 
some notation. 

Let (e,7) and (e',7') be two pairs as in the definition of the M(e?7)'s (6.3.9), and 
assume e > e'. 

For j G S{e') define ej((e,7), (e',7')) G Z to be the unique integer such that 

(6.3.12.1) / 3 j + p e - ^ = ^ 6 j ( ( 6 , 7 ) , ( e / , 7 / ) ) + r, r G { 0 , . . . , p e - ^ - l } , 

where as before (3j (resp. (3j) denotes the unique representative in (0,pe aj) (resp. 
(0,pE,"A0) of 7 (modpE_A0 (resp. 7' (modpE'-°0) . Also define e((e, 7), (e', 7')) eZ 
by the equation 

(6.3.12.2) 7 + ^ - V = p e e ( ( ^ 7 ) , ( ^ 7 / ) ) + r, r G { 0 , . . . / - l } , 

and set 

(6.3.12.3) E((e,7),(e,,7/)) := 
¨¨M¨%¨%P 

W(6,7),(6',7'))> 
^ J . ye((e,7),(e,,7/)) G . 

Now assume further that pe flr does not divide 7 + pe 6 7'. Define e" G N by the 
equation 

(6.3.12.4) n - e" := ordp(pn"e7 + pn~e'i), 

which since e > ef can also be written as 

(6.3.12.5) ordp(pn~e(7 + pe-e'i)). 

Remark 6.3.13. — Note that if e ̂  e' then 7 + pe~e 7' is prime to p so e" = e. 

Since pe_ar does not divide 7 + pe~e 7' we find 

(6.3.13.1) n — e <n — e" < n — e + (e — ar) = n — ar 

which yields 

(6.3.13.2) e > e" > ar. 

In particular we have e" G (ar, ai]. Also define 7" G (0,pe ) to be the unique element 
prime to p such that 

(6.3.13.3) pn~e7 + pn-e'i = ^n-€,,7// (mod pn). 

We define 

(6.3.13.4) (C7)*(e,,7,):=(c",7")-

Note that the equation (6.3.13.3) characterizes (6,7) * (e'',7'). Also, by multiplying 
the equation (6.3.12.2) by pn_e we obtain 

(6.3.13.5) pne((e,<y),(e',<y')) + pn"eV = Pn~e7 + P ^ V • 
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Lemma 6.3.14. — Let (e,j) and (e',7') be two pairs as in 6.3.9, and assume e > e'. 

(i) If pe~ar does not divide 7 + pe~e 7' then 

(6.3.14.1) M(e/y) • M(€/j70 = £7((c,7), (e,,7/)) • M(e„MeW). 

(ii) If pe~ar divides 7 -hpe_e 7' £ften 

(6.3.14.2) M(£i7) • M(€,,70 = E((e,7), (e ' .V)) • Z'«e">'<e'"'>\ 

where p((e,7), (e',7;)) the natural number characterized by the condition the 

the remainder of^+pe~e 7' upon division by pe is pe_°rp((e, 7) , (e ' ,7 ')). 

Remark 6.3.15. — Note that in case (ii), we must have e = e' for if e > e' the 

7 + pe~e 7' = 7 (mod p) and 7 is prime to p. 

Proof of 6.3.14- — Viewing the M(C)7)'s as //-invariant elements of the ring Out w 
need to compute the product 

(6.3.15.1) 

ieS(e) 

p)/s£> ~ ^X(P)/S(D ®k 0To. 

'ieS(e') 

XpN-I€,-AI)0'iVPn-€'Y* 

Note that since e > e' we have 5(e') C 5(e). For i G 5(e) let Q denote the exponent 
of Xi in (6.3.15.1) (so a = pn-(e-a^A+Pn"(e,~ai)/3- iff G 5(e') and = p"-(€-«*) ft 
otherwise), and let c denote the exponent of V (so c = pn~e^ + pn_e y ) . 

By (6.3.13.5), we have in case (i) 

(6.3.15.2) c = p»e((c, 7) , (e', Y)) + P ^ V ' 

so the exponents of V on either side of (6.3.14.1) agree. In case (ii) we have by the 
definition of p((e,7), (e',7')) and e((e,7), (e',7')) an equality 

(6.3.15.3) pn-^ + pn-*'i = pne((e, 7) , (e', 7')) + p""arP((e, 7) , (e', V)). 

Therefore the exponents of V in both sides of (6.3.14.2) agree. 
To verify that the exponents of the Xi agree we consider two cases. 
Case 1: e 7̂  e'. In this case e = e" by 6.3.13 and we just need to show (i) by 6.3.15. 

We therefore need to show that 

(6.3.15.4) pn-^-ai)f3rl = pn-^-ai)(3i if i G 5(e) - 5(e'), 

and 

(6.3.15.5) pnei((e,7),(6,,7/))+Pn"(e"ai)A,, = pn-{e~ai)Pi+Pn~{e'~ai)& if ie S(e'). 

To verify (6.3.15.4), note that if i G 5(e) — 5(e'), then > e' which implies that 
pt-cH |̂ e-e Therefore 

(6.3.15.6) 7 +pe"ey = 7 (mod pe_ai). 
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On the other hand, by definition of 7 " we also have 

(6.3.15.7) p)/s£> ~ ^X(P)/S(D ®k 0To. (mod pe-ai). 

It follows that ft = fa and hence (6.3.15.4) holds. 
To verify (6.3.15.5) note that by definition of /3" we have 

(6.3.15.8) fb= 7 " = 7 + Pe~e V = Pi + P€-€'fi (mod pe~ai). 

Therefore p^'^'^ft'l is equal to the remainder of p n ~ + p71"^'ft[ upon 
division by pn. Prom this and the definition of e$((e,7), (e/',7')) equation (6.3.15.5) 
follows. This proves (i) for e ̂  e'. 

Case 2: e = e'. In this case we need to show that for i E 5(e) . 
(6.3.15.9) 

р»-(~ч)(Д + ß) = р»е<((с,7), 7')) + 

0 i fpe~a-1 (7 + 77) 
and i i S(e"), 

0 i fpe -a - I (7 + 7 ' ) , 
^n_(c"_a.)^, , if p€_ar j ^ + y j 

and z E S(c"). 

If z ^ 5(e/;), then we have â  > e" which by the definition of e" implies that pn~ai 
divides pn_e(7 + 7 ' ) . Since pn~ai = pn-e^e-ai implies that pe~ai divides 7 + 7 ' . 
Therefore in both of the first two cases in (6.3.15.9) we have pe~ai | (7 + 7 ' ) (note 
that a{ > ar for all i). In those two cases we therefore have by the definition of 
e»((e,7), ( e ' , 7 ' ) ) an equality 

(6.3.15.10) Pi p)/s£> ~ ^X(P)/S(D ®k 0To.OMO 

Multiplying this equation by pn (e a^ we obtain the first two cases of (6.3.15.9). In 
the last case note that by the definitions of 7 " and ft" we have 

(6.3.15.11) p n - e - y , = p n - e ( 7 + y ) (mod pn) 

and pn (e" ai^ft'l is the remainder of pn (e" ai^" divided by pn. Since fti (resp. ft[) 
is congruent to 7 (resp. 7 ' ) modulo pe~a^ this gives 

(6.3.15.12) pn~{e-ai)(fti +ft'i) = pn-(e-ai) (7 + y ) = pn-^,,-a^1" (mod pn). 

It follows that pn-(e/,-ai)/3f is the remainder of pn-^€-ai\fti + # ) divided by pn. This 
together with the definition of e^((e,7) , ( e ' , 7 ' ) ) proves the last equality in (6.3.15.9). 

• 
Lemma 6.3.16. — Let (€,7) &e a pair with e E (ar, ai] and 7 E (0,pe) wztó (7 ,p ) = 1. 

(i) J / e ^ o i £/ien 

(6.3.16.1) 

P)/S(D ®k 0To. 

Xi) MLMLK rt — a j 
= * ^(ai,pai-e7-l)-
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(ii) / / e = a\ and 7 = psi + 1 for some 0 < s < a\ — ar and t prime to p, then 

(6.3.16.2) 

i$S(e) 

Xi) M(e,7) = *pW"aiAf(ai-.f0. 

(iii) If (e, 7) = (ai,pai ari + 1) for some natural number i then 

(6.3.16.3) 
p)/s£> ~ ^X(P)/ 

£¨% 
% 

%PLM£ --tp ZL. 

Proof — We compute the product 

(6.3.16.4) 

i£S(e) 

MOLP 

ieS(e) 

„TI — (e — a,- ) r> LMO/LM 

inside the ring Out • 

To prove (i), let fa G (0,pai~ai) (i G S(a±)) denote the representative for pai~e^—l. 
To prove that (6.3.16.1) holds it suffices by comparing exponents of both sides and 
using the equality 

(6.3.16.5) 
£¨¨£%¨£M%M% 

i 

¨%P%¨£ V 
MOL¨%£ 

to show that 

(6.3.16.6) 

(Exponent of V) : pn-*<y = pn~a^ + pn-ai(pai-e7 - 1) 

(6.3.16.7) 

(Exponent of Xi) : 
pn =pai .pn-ai i £ g(ai} 
pn = paipn-ai + pn-ia.-a^p. ¿ G _kijmpl 
((u'h{i)Ui,ti((u'h{i)Ui,ti((u'h{i)Ui,ti((u'h{ 

The equality (6.3.16.6) is immediate as is the first equality in (6.3.16.7). The second 
equality in (6.3.16.7) follows from noting that if a* > e then pa^~a^ divides pai_e7, 
and therefore fa = pai~ai — 1. The last equality in (6.3.16.7) follows from noting 
that for i G S(e) the element pai~efa G (0,pai~Oi) is a representative for pai~ej and 
therefore pai~efa =fa + l. 

For case (iii) note first that we have 7 = 1 (mod pai~ai) for all i so Pi = 1 for 
all i. Therefore for every i (including i £ S(e)) the exponent of Xi in the left side 
of (6.3.16.4) is equal to 

(6.3.16.8) pn-(a\-ai) _ paipn-a\ 

Also the exponent of V in the left side of (6.3.16.4) is equal to 

(6.3.16.9) pn~ai (pai-ar i + 1) = pn~ai +pN~ARL. 

Statement (iii) therefore follows from (6.3.16.5). 
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For case (ii), let ft € (0,pai~s~ai) (i G S(a\ — s)) denote the representative of 
i modulo pai-s-ai. Using (6.3.16.5) and comparing exponents of V and the Xi, it 
suffices to show that the following equations hold: 

(6.3.16.10) (Exponent of V): pn~ai(pst + 1) = pn~ai + pn~{ai~sh, 

(6.3.16.11) (Exponent of Xi for i £ S(ai — s)): pTi—(ai—ai) __ pTi— (ai— a*)ft 

and 
(6.3.16.12) 
(Exponent of Xi for i G S (ai — s)): P)/S(D ®k 0To. n-(ai-a,i) _|_ n-(ai-s-a,i) 

The validity of (6.3.16.10) is immediate. Equation (6.3.16.11) holds because the con
dition i £ S(a\ — s) is equivalent to the condition that a\ — ai < s which as in case 
(iii) treated above implies that ft = 1. Equation (6.3.16.12) follows by noting that 
pspi G (0,pai_ai) is a representative for psi modulo pai-ai, and therefore ft = psft + l 
for i G S (ai - s). • 

Lemma 6.3.17 

(i) Zpar = V (here V G 0Ute which maps to VpU in 0Ut). 

(ii) Z - M(e?7) = VaM(e^, where a G N and b G (0,pe) are characterized by the 

equation 7 + pe °r = pea + b. 

(iii) Xi---xr-v = tpn ai ^(ai ,p°i-l) 
2/ ai > ar, and otherwise X\ • • - Xr • V = tpn ai Zpai 1 (in this case we hav 
ai = • • • — ary). 

Proof. — This follows immediately from the definitions. 

Proposition 6.3.18. — Let A denote the quotient of the polynomial algebra 

(6.3.18.1) Oute r(e,7)> W± {(e,7)|eG(a^ai],7G(0,pe),(7,p) = l} 

by the following relations (i)-(v). 

(i) Let (e,7) and (e',7') be pairs of integers with e, e' G (ar,ai\, 7 G (0,pe), 7' G 

(0,pe ) , 7 and 7' prime to p, and with e > e'. 

(a) If pe~ar does not divide 7 + p€~e 7' then 

(6.3.18.2) ?(c,7) ,T(e,,70 = ^((e'7)5 (C'JTO) -T(e,7)*(e',7')-

(b) 7/pe ûr divides 7 +pe e 7', tten 

(6.3.18.3) (̂e,7) * T(e',7') e , 7 ) , ( ^ Y ) ) . W " ^ ( ( u ' h { i ) 

w/iere p((e,7) * (e',7')) ¿5 defined as in 6.3.14-

(ii) Le£ (e,7) fee a pazr defining a generator T(eny 

(a) If e ^ ai then 

(6.3.18.4) 

LPMKLKP 

Xi %P¨P£ rt — a 1lmpo 
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(b) If e = ai and 7 = pst + 1 with 0 < s < ai — ar and i prime to p, then 

(6.3.18.5) 

i£S(e) 

Xi ¨£M£µ£ p)/s£> ~ ^X(P)/S( 

(c) If (e,7) = (ai,pai art + 1) for some natural number L, then 

(6.3.18.6) 

i£S(e) 

Xi) £%¨£¨£ t*n~aiwL. 

(iii) w?ar =VeOUfe. 

(iv) W • T(e?7) = VaT(e^, where a G N and b G (0,pe) are characterized by the 
equation 7 + pe~ar = pea + 6. 

(v) X i - - - X r V MOL¨£¨% T(ai,pai-i) ai > ar and otherwise Xi • • - Xr • F = 
p)/s£> ~ ^X(P)/S(D ®k 

Then the map 

(6.3.18.7) p)/s£> ~ ^X(P)/S(D ®k 0To. 
((e,7)|eG(ar,ai],7G(0,pe),(7,p) = l} Ae*0Ut(Ute) 

(6.3.18.8) T(e,7) K » M(*,7)> X(P)/S(D ® 

factors through an isomorphism 

(6.3.18.9) $ :.A Ae*0Ut(Ut*)-

Proof — That (6.3.18.7) factors through a map $ follows from 6.3.14, 6.3.16, 
and 6.3.17. The surjectivity of $ follows from 6.3.10. 

For the injectivity of $ note that relations (i), (iii), and (iv) imply that there is a 
surjection of Z[£]-modules 

(6.3.18.10) * : (®(€,7,m,0ZM * /(e,7,m,0) ® (®0',m,Z)Z[t] • 9(j,rn,l)) £¨ML¨£P 

where the left side is the free Z[£]-module on the generators /(C,7,m,z) and 9(j,rn,i) 
(here (e,7) is a pair of integers with e G (ar,ai] and 7 G (0,pe), m G Nr, I G Z, and 
0 < j < par). The map TT sends 

(6.3.18.11) /(e,7,m,Z) 

LPOMO 

MLM IKIL 
%¨¨%£ 

and 

(6.3.18.12) 9(j,m,l) 

i 

L.KIL 
vlwj. 

The kernel of n is generated by the relations (ii) and (v). Prom this it follows that A 
is free as a Z[t]-module with basis the monomials 

(6.3.18.13) 

i 

KLM v'r(£i7), 

i 
XR) vlwa, 

i 

xrmvi 
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where I G Z and in the first case there exists an i G 5(e) such that rrii = 0, and the 
second and third case at least one rrii is equal to zero and a G (0,p°r). The injectivity 
therefore follows 6.3.11. • 

Corollary 6.3.19 

(i) If ai = - • • = ar, then 

(6.3.19.1) A ~ 0Ute [W^/iW^1 = V,Xi • -XrV = t^'^W^1'1). 

In particular, if a\ — • • • ar = 0, t/ien £/ie map 

(6.3.19.2) Of/te -^A 

is an isomorphism. 

(ii) If a± = • • • = ar = 0, then for any morphism Y —• /rora a stack Y, the map 

(6.3.19.3) Oy —> RPe*Oy 

is also an isomorphism, where Y denote Y x§te?Ae §t and Pe : Y -+ Y is the 
projection. 

Proof. — Statement (i) follows from 6.3.18. 
For (ii), note that by 6.3.5 it suffices to consider the case when Y —» §te is a 

faithfully flat morphism. In particular, it suffices to consider the case when Y = Ute 
so (ii) follows from (i) and the vanishing of higher cohomology groups in 6.3.5. • 

Remark 6.3.20. — As the referee suggests, an alternate proof of 6.3.19 (i) can be ob
tained in the following steps. Fix throughout this remark an integer r > 1. 

(1) For an integer / > 1 let Mf denote the quotient of the free monoid on generators 
e i , . . . , er, ±w, and z modulo the relation 

(6.3.20.1) ei 4- • • • + er + w = fz. 

Note that there is a natural map 

(6.3.20.2) p : Mf —> 17 0 Z 

sending ei to the z-th standard generator of Zr, z to the generator of Z, and w to 

(6.3.20.3) fp(z) 

r 

i=l 

p(Xi). 

Then p is an inclusion and identifies M|p with Zr 0 Z. One verifies immediately that 
the map p identifies Mf with the submonoid of elements 

(6.3.20.4) ( ( a i , . . . , a r ) , 6 ) G Zr 0 Z 

for which 

(6.3.20.5) <H + j>0 

for all i. In particular, Mf is a saturated monoid. 
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(2) Fix integers e and a with a\e. Let 

(6.3.20.6) TT : Z r 0 Z — • (Z / (e))r 

be the map sending the z-th standard generator Z r to the i-th standard generator of 
(Z / (e ) ) r , and which sends (0,1) to the element 

(6.3.20.7) ( - a , . . . , - a ) e ( Z / ( e ) ) p . 

There is a map 

(6.3.20.8) Me/a —+ Ker(Tr) n (Nr 0 Z ) c Z r © Z 

which sends G Mfje/a to e times the i-th standard generator in Z r , w to the element 

(6.3.20.9) ( ( 0 , . . . , 0), e/a) G Z r 0 Z , 

and z to the element 

(6.3.20.10) ( ( a , . . . , a) , 1) G Z r 0 Z . 

This map (6.3.20.8) is in fact an isomorphism. Indeed suppose 

(6.3.20.11) ( ( a i , . . . , Or), n) G Ker(Tr) f l (Nr 0 Z ) , 

and let 0 < m < e/a be a representative for n modulo e/a. We then have 

(6.3.20.12) ai = a-n (mode) 

for all i, which implies that we can write 

(6.3.20.13) ai — eji + am 

for some ji >0. It follows that we can write 
(6.3.20.14) 

( ( a i , . . . , ar), n) = ( (e7 i , . . . , e7r), 0) + m ( ( a , . . . , a) , 1) + « ( ( 0 , . . . , 0), e/a) , 

where K is characterized by the equation 

(6.3.20.15) K,(e/a)+m = n. 
This shows that (6.3.20.8) is surjective, and it is injective as the induced map on 
groups 

(6.3.20.16) Meg7Pa ~ Z r 0 Z — • Z r 0 Z 

is clearly injective. 
(3) The geometric interpretation of the calculation in (2) is the following. Consider 

the scheme 

(6.3.20.17) Ut = Spec(Z[ t ] [Xi , . . . , Xr, V^/iX? • • • X?V = t)) - Spec(Z[Nr 0 Z ] ) . 
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The map n in (6.3.20.6) defines an inclusion of diagonalizable group schemes 

(6.3.20.18) // = D ( ( Z / ( e ) ) r ) c D ( Z r 0 Z ) 

and hence an action of \x on the affine toric variety Spec(Z[Nr0Z]) (note that this is the 
same as the action in 6.3.3). The isomorphism (6.3.20.8) then gives an identification 

(6.3.20.19) {Z[t][Xu...,Xr,V±]/{X?. .X?V = t)Y~Z[Me/a]. 

(4) Let Q denote the pushout of the diagram 

(6.3.20.20) 

N - •e 
•N 

¨°%¨£% 

Nr e z , 

where the map (ce, 1) sends 1 to the element 

(6.3.20.21) ( ( a , . . . , a ) , l ) G N r 0 Z . 

The commutative diagram 

(6.3.20.22) 

Nr e z 
xe Nr e z 

(<M) (a,l) 
N -

•e 
N, 

induces a map 

(6.3.20.23) Q -> Ker(7r) H (Nr e Z ) ~ Me/a. 

Let e i , . . . , er, ±w, z be the generators of Me/a considered in (1). Recall that under 
the embedding Me/a c Nr © Z the element e$ (resp. w, z) maps to e times the 
z-th standard generator of Nr (resp. (6.3.20.9), (6.3.20.10)). It follows that Q is the 
submonoid of Me/a generated by the e ,̂ v := aw, and z. In particular, as a monoid 
we can describe Me/a as 

(6.3.20.24) Q © N / ( ( v , 0 ) = (0,a): 
r 

2=1 

,(ci,0) + (0 , l ) = ( e / o ) - ( « , 0 ) 

Geometrically we have 

(6.3.20.25) Spec(Z[Q]) ~ Ute, 

and hence this discussion shows that we have an isomorphism of Oute -algebras 

(Z[t)[Xu. ..,Xr, F ± ] / ( X f • ..X?V = t)V 

(6.3.20.26) 

p)/s£> ~ ^X(P)/S(D ®k 0To.p)/s£> ~ ^X(P)/S(D ®k 0To.£¨£ 
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This recovers the isomorphism (6.3.19.1) (and in fact a stronger result as we do not 
need the assumption that a and e are powers of a prime in the above argument). 

Corollary 6.3.21. — Assume all a* = 1, and let R be a perfect ring of characteristic 
p > 0. Then the stack §>R^ is a perfect stack in the sense of 4-4-1-

Proof. — Take Y = S#,o in 6.3.19(h). Then Y is also isomorphic to 8^,0 and the 
map Pe is the relative Frobenius morphism of S.R,O- The result therefore follows 
from 6.3.19(h). ' • 

Corollary 6.3.22. — Let R be a ring. Then for I > a\ + 1 the map 

(6.3.22.1) L : Api-i*OsR0 —> Api*OsR0 — Api-i*Ap*0$R0 

induced by the natural map O$R0 —> Ap*O$R0 is an isomorphism. 

Proof. — It suffices to show that the map L becomes an isomorphism when restricted 
to the smooth cover UR$ of §#,0- Let A (resp. !B) denote the ring APi-i*0$ro(UR,O) 
(resp. A p**£>s R O(£/#, 0)). Let £ denote the ring 

(6.3.22.2) £ := R[XU - - -, Xr, V]/(X? • • • XfrV), 

and denote by Apj : £ —» £ the map sending Xi i-> Xf and V ^ Vpj. 

Then, as in 6.3.10, A (resp. !B) is identified with the subalgebra of £ generated by 

Z : = y p ( z - 1 } - a r (resp. Z' := V*l~ar) and the monomials 

(6.3.22.3; 

< 7 ) = 

LOIPOO 

( j _ 1 ) _ ( e _ a i ) / 3 < l - l ) - « 7 

(resp. M ( ® 7 ) = 
t€S(«) 

p)/s£> ~ ^X(P)/S(D ®k 0To. 

where e G ( a r , o i ] , 7 G (0,p c ) , (7,p) = 1, and /9» G (0,p£ ai) is the unique representa
tive for 7 (mod p£~ai). Since the diagram 

(6.3.22.4) 

UR,O 
AP ¨M%P£ 

£¨£¨£ 
^ , 0 

¨M%£¨L AP 

¨PM%%M 
Api-i P¨M%MO 

commutes, the diagram 

(6.3.22.5) 

A 
L"R,0 

¨PMLP 

£ -
M£M 

¨¨MMO 
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also commutes, where LuRf0 denotes the restriction of L to UR,Q. Since Ap is injective, 
it follows that LuR>0 is also injective. For the surjectivity it suffices to show that 

(6.3.22.6) LUR:0(Z) = Z', Ltfa,0(M£7)) = M&7), 

which is immediate from the definition of Ap. • 

6.3.23. — To completely characterize the sheaf Ae*0§t on S*e, it suffices to describe 
the action of the group scheme G defined in 6.1.1 on the algebra A. Indeed if s,b : 
Rte —> Ute denote the source and target morphisms respectively, then we know there 
is an isomorphism s*A —> b*A over Rte giving the descent of A to the stack §te> and 
since the natural map 7r : R —> R is etale and surjective, it suffices to understand 
what isomorphism we get over Rte by pulling back. 

Lemma 6.3.24. — An element g = (ui,... ,ur,h) G G acts on A by 

(6.3.24.1) T(£,7) ^ - • • -^-T(ei7), W . — (Uu-pai~ar)w, 

i 

where Xi := (fa — j)/pe~ai for i G S(e) and Xi := —pai~ej for i £ 5 ( e ) . 

Proof. — Under the natural map Ae*(0st)(^*e) ~* ®ut the element M(e?7) maps to 

(6.3.24.2) 
ieS(e) 

p)/s£> ~ ^X(P)/S( ^X(P)/S(D ®k. 

From this it is clear that an element of the form ( 1 , . . . , 1, h) G G fixes T(e?7) and W. 
To determine the action of C G, it suffices to determine the corresponding 17-

grading on A. Write A = ^dez^Ad, and let Out = 0/ez^AT/ denote the Zr-grading 
on Out defined by the Gr-action on Ojjt. Then the inclusion A C Ojjt sends Ad to 
KPnd, where if d = ( d i , . . . , dr) we define pnd to be (pndi,... ,pndr). It follows that to 
prove the lemma it suffices to show that (6.3.24.2) lies in the (pnAi,.. . ,pnAr)-graded 
piece of Ojjt, and that VpU ar lies in the (• • • , — pn+ai~ar-^... )_graded piece of Out-
This is immediate from the definition of the action of G on Ojjt • • 

6.3.25. — With notation as in 6.3.9, let R be a ring with an element 7r G R with the 
property that 7rpn 1 = 0. The base change Z[t] —> R given by 1 i—> TT induces a map 

(6.3.25.1) Ae : SR,V —+ Sfl,0 

and the map 11—• 0 induces a map 

(6.3.25.2) A'e : Sfl,0 — • Sfl|0. 

Theorem 6.3.26. — There is a natural isomorphism of O'§R0-algebras 

(6.3.26.1) K*0%R^ *A'e*OSRi0. 
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Proof. — LetARi„ (resp. ARi0) denote AE*O§Rn(UR,0) (resp. A^OsR,0(^fl,o)). To 
prove the theorem it suffices to construct an isomorphism of OuRt0-algebras 

(6.3.26.2) a : AR,W — • ^ , 0 

compatible with the descent data to S#,o- As in 6.3.23, the descent data on AR^ 
and ARio is determined by the actions of G. Therefore it suffices to construct a 
G-equivariant isomorphism (6.3.26.2). 

For this note that since the formation of Ae*0$t commutes with arbitrary base 
change on Spec(Z[£]) by 6.3.5, we have by 6.3.18 surjections 

(6.3.26.3) p I C)C/H,o[^(e,7)'^±]eG(ar,a1],7G(0,^),(7,p) = l * AR^ 

and 

(6.3.26.4) p' : OUR0[T(6^, ^±]ee(ar,ai],7e(o,Pe),(7,p)=i — > AR$. 

The kernel of p (resp. p') is the ideal generated by replacing t by ir (resp. 0) in the 
relations (i)-(iv) in 6.3.18. Since 7TPN AI = 0 in R this implies that Ker(p) = Ker(p'). 
Therefore there exists a unique isomorphism (6.3.26.2) such that pf = a o p. To check 
that this isomorphism a is compatible with the G-actions, it suffices to show that for 
any element g G G we have 

(6.3.26.5) <r(<?V(T(e,7))) = 5V(T(e>7)), a(g*p(W)) = g*p'(W) 

which follows from 6.3.24. • 

6.3.27. — There is a variant of the map Ae which we will use in example 7.2.13. 
Returning now to the situation of a general sequence {OJI, . . . , a r} , suppose m is 
an integer dividing every oti (say cti = m • ft and write /3 := ( f t , . . . , f t ) ) , and let 
Sif(oj)[m] —• Stf(oj) be the /xm-torsor defined in 6.1.15. As above, let §H(aO[ml*m 
(resp. §if (oi)tm) denote the stack 
(6.3.27.1) 

Stf(a)[ra] xSpec(zW)?tH^m Spec(Z[*]) (resp. Sjy(a) xSpec(z[t])^tm Spec(Z[t])). 

Then there is a morphism 

(6.3.27.2) *m'-»mx SH(/J)t — SH(c*)[m]t™ 

defined as follows. Let §#(/?) £s be the prestack defined in 6.1.8. The stack S#(c*)[ra] 
is the stack associated to the prestack Sij(a)[ra]]?m which to any scheme T associates 
the following groupoid: 

Objects: Collections of data ((x,v),w), where (x,v) G S#(a)j?m(T) and w G 
r(T, 0%) such that wm = v. 

Morphisms: For two objects ((x,v),w), ((x',vf),wf) G Sjy(a)[TO]]?m(T) the sheaf of 
isomorphisms between them is the sheaf over T associated to the presheaf which to 
any g :TF —> T associates the set of pairs ((ui)ieE(g*x)in) as in 6.1.6 such that 

(6.3.27.3) PÖOJKUYJ 

i<£E(g*x') 

£PJ - 1 

ieE(g*x) 

LLJHKYH 

' i£E{g*x) 

£¨LM%PO 
I W. 

ASTÉRISQUE 316 



6.3. THE MAP Ae 267 

The map \I/m is induced by the map on prestacks 

(6.3.27.4) : /xm x SH(/?)r Sn(û:)[m]^m 

which over a Z[t]-scheme h : T —» Spec(Z[£]) is the morphism of groupoids defined as 
follows: 

1. If C € /xm(T), 2 /1 , . . . , 2/R G r(T, O t ) , and s GT(T, 0 £ ) such that 

(6.3.27.5) p)/s£> ~ ^X(P)/S(D ®k 0To. 

then sends the object (£, G /xm x Sjf (/3)t(T) to the object 

(6.3.27.6) ( f a , . . . , yr, sm), Çs) € §H(a)*™HPS(^). 

2. Given two objects ( £ (y, *)) , (j/', a')) € fim x S£(/?)t(r) the sheaf 

(6.3.27.7) Isomumxs„(fl)((C, 2/. *)> (C, 2/', * ' ) ) 

is the sheaf associated to the presheaf which to any g : T" —• T associates 

(6.3.27.8) 
0 if<?*C^<7*C 

[Isom§H(/3)((y,s),(t/',s')) otherwise. 

The map on isomorphism sheaves 
(6.3.27.9) 

p)/s£> ~ ^X(P)/S(D ®k 0To.p)/s£> ~ ^X(P * IsomsH(/3)[m]tm (((y,*m),O0,(G/VmUV)) 

is the map associated to the map of presheaves which sends a collection of 
data ((v<i)ieE(g*y),h) as in 6.1.6 over g : T' —» T such that g*( = g*(f to the 
same collection {{ui)i(zE(g*y),h) which defines an isomorphism ((y,sm),£s) —• 
((2/')S'™),CV) in §„( /? ) [ m W T ' ) . 

Proposition 6.3.28. — The map in (6.3.27.2) is finite and restricts to an isomor
phism over Spec(Z[t±]) c Spec(Z[£]). 

Proof — Let h : T —> Spec(Z[£]) be a Z[£]-scheme, and let ( x i , . . . , x r , v, w) G 
§//(a)[m]^m be an object. Then the fiber product of the diagram 

(6 .3 .28.1) 

p)/s£> ~ ^X(P)/S(D 

££%% 

T 
(x,v,w) 

•§H(ot)[m]tm 

is by the above description of the prestacks S# (a)[ra]j?m and /xm x S#(/3)ps equal to the 
functor which to any morphism g : T1 —> T associates the set of elements ( G fim(Tf) 
such that 

(6.3.28.2) p)/s£> ~ ^X(P)/S(D ®k 0To. ¨PO¨P¨P¨P 
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This is represented by the affine T-scheme 

(6.3.28.3) SpecT{QT[z}/(zm - l , x f • • -x^wz'1 - (hg)*t)). 

Prom this the proposition follows. • 

6.4. The Hyodo-Kato isomorphism: case of semistable reduction and triv
ial coefficients 

6.4.1. — Let A; be a perfect field of positive characteristic p, W the ring of Witt 
vectors of /c, and let a : W —> W be the canonical lift of Frobenius. Denote by 
W(t) the p-adic completion of the divided power envelope of the surjection W[t] —• k 
sending t to 0. Let F :W(t) —> W(t) be the lifting of Frobenius induced by the map 
a and 11—• tp. 

Fix an integer r, and let §w[t](r) denote the stack S#(a:) over Ayy obtained by 
taking a = (1, • • • , 1) (r-copies) and H the full symmetric group on r letters in 6.1.1, 
and let §w(t)(r) be the base change via W[t] —» W(t) of Sw[t](r) to W(t). In what 
follows r will be fixed, so to ease the notation we usually write just §w[t] (resp. §w(t) 
etc.) for Svv[t](r) (resp. §w(t)(r) etc.). Let §w (resp. 8^) denote the reduction of 
§w(t)i and let F%W(t) : &w(t) ~* &w(t) be the lifting of Frobenius obtained from the 
map Ap (6.3.2). Denote by F$w : §>w —> &w the lifting of Frobenius obtained by 
reduction. 

Let y —• §>k be a smooth representable morphism of algebraic stacks with y a 
tame Deligne-Mumford stack proper over k (see 2.5.14 for the definition of a tame 
Deligne-Mumford stack). 

6.4.2. — Define graded projective systems 

(6.4.2.1) D. := {ir((WSuOcris ,e>WSvvJ} G 1*0*0, 
(6.4.2.2) E. := {H*(()jet/SWn{t) )cris, Oyet/sWn(t) ) } e ps(W{t)). 

By 2.6.8 and 5.1.20 the projective system D. is free of finite type mod 7 in ps(W). 
By functoriality the lifting of Frobenius F§w{t> induces maps 

(6.4.2.3) <pE:F*E.—+E., <po '• cr*D. —• D.. 

These maps extend to semi-linear endomorphisms <p^ and (/з¿ of the projective system 
of Leray spectral sequences 
(6.4.2.4) 

E? = H«(yet,Rruyet/§WnfOyet/Swn) = • HP+"(^et/BWn)clis,Oyet/§Wn), 

and 
(6.4.2.5)  
((u'h{i)Ui,ti«(yet,Rruyet/§WnfOyet/Swn) =• HP+"(^et/BWn)clis,Oyet/§Wn) 

Reduction also defines a map of projective systems 

(6.4.2.6) p\E. —• D. 
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compatible with the maps (fE and (fo, and this map p extends canonically to a 
morphism of projective systems of Leray spectral sequences 
(6.4.2.7) 
p)/s£> ~ ^X(P)/S(D ®k 0To. RPU\)et/SWn (t) * °Vet/SWn <*> ) ' Hp+q(0W§Wn (t) ) cris, Oyet/§Wn <t> ) 

P" 

El" = Hi(yei,RPuut/§w.üyet/Sw) • # P + 9 ( ( W S v v J c r i s , 0 W S l v J 

compatible with the endomorphisms (p'D and <p .̂ 

— The stack §w(t) satisfies all of the assumptions of 4.6.8. In the present 
situation, this amounts to the following. 

(i) The stack $w is flat over W. This follows from the fact that S#(a) is flat over 
Z[t] by 6.1.3. 

(ii) Le t§^} denote S^xSpec(^)?(TnSpec(Wr), and let Fgw/W : §>w -+ $w denote the 

map induced by Fgw. For a morphism Q —• S^, let denote Q x§w = 

Q xSpec(vtO,<r™ Spec(VF), let denote the fiber product Q x$WjFn^ §>w, and 

let Pn : —» be the projection. Then the second condition is that for 
any morphism Q —• §>w from a scheme Q the canonical map 

(6.4.3.1) %PO¨LMIK p)/s£> ~ ^X(P)/S 

is an isomorphism. This can be seen as follows. Since there is a commutative 
diagram 

(6.4.3.2) 

Spec(W) 
cr 

- Spec(W) 

t=o 
£¨%¨°£% 

Spec(Zm), 

there is a canonical isomorphism ~ §w- Under this isomorphism, the map 
F%w/w becomes identified with the base change of Apn along the morphism 
Spec(W) —> Spec(Z[t]) defined by sending t to 0. That (6.4.3.1) is an isomor
phism therefore follows from 6.3.19. 

Theorem 4.6.9 therefore gives a canonical isomorphism of sheaves on yet 

(6.4.3.3) 1 : RPUyè*tl&Wn*0yè*tl&Wn ®w W(t) ~ Rpuyet/sWri{t)*Oyet/sWn{t) 

compatible with the Frobenius endomorphisms, such that the composition of t with 
the reduction map 

(6.4.3.4) RPuyet/SWn(t)*Oyet/Swn{t] ' RPuyet/Swn*0yet/Swn 

is equal to the map 

(6.4.3.5) p)/s£> ~ ^X(P)/S(D ®k 0To.p)/s£> ~ ^X(P)/S(D RPuyet/Swn*0yet/Swn 

defined by the surjection W(t) —> W sending t to 0. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



270 CHAPTER 6. THE (y>, AT, G)-STRUCTURE ON DE RHAM COHOMOLOGY 

We now apply 5.3.33 with 

(6.4.3.6) EPQ = Apq =^ M 

the first spectral sequence in (6.4.2.7), 

(6.4.3.7) Epq = Qpq ^ N 

the second spectral sequence in (6.4.2.7), and 7" the map p". Then with notation as 
in 5.3.33 the map A. is an isomorphism, since by the above it is equal to the 
inverse of the isomorphism 

(6.4.3.8) 1 : flPwWSiv..0Wsw. ' RPu^et/SW.(t)^ p)/s£> ~ ^X(P)/S(D ®k 

obtained by reduction from t. By 5.3.33 we then obtain the following. 

Theorem 6.4.4. — There is a canonical isomorphism in ps(W(t))q 

(6.4.4.1) D. ®w W(t) ~ E. 

compatible with (fo and(fE- In particular, E. G ps(W(t))q is free of finite type mod 7. 

6.4.5. — Following the method of Berthelot and Ogus [9] and Hyodo and Kato [31, 
proof of 5.2], the above also gives information about cohomology over ramified exten
sions of W. 

Let V be a complete discrete valuating ring of mixed characteristic and residue 
field and let TT G V be a uniformizer. Let Rn denote the divided power envelope 
of the surjection Wn[t] —> Vn sending t to 7r, and let R denote the inverse limit 
\imRn. Denote by S# the base change over Wn[t] of §wn[t] t° R, and by Sy the stack 
&w[t] ®^[t],tHff V. 

Let X —• §v be a smooth representable morphism of algebraic stacks with X a 
tame Deligne-Mumford stack proper over Spec(F). Denote by y/Sfc the reduction of 
X modulo TT. Let X0 denote X 0 (V/pV), and define D. and E. as in 6.4.2. Also define 
C. G ps(V) to be the projective system 

(6.4.5.1) C. := {/r((X0)et/SKjcris,CVet/sKJ}-

Theorem 6.4.6. — There is a canonical isomorphism in ps(R)q 

(6.4.6.1) D. <g>w R^C. 

In particular, the projective system C. G ps (R) is free of finite type mod 7. 

The proof is in several steps 6.4.7-6.4.8. 

6.4.7. — For every integer r, let qr : W[t] —• R denote the VT-linear map sending t 
to the image of tpr under the canonical map W[t] —• i?, and let gr :W(t) R be the 
map which is equal to ar on W and sends t to tpV. 
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The diagram 

(6 .4 .7 .1) 

Ro 
PMOP 

Ro 

kit] 
*k[t) 

k[t] 

commutes. It follows that <S)R0,FRO RO is canonically isomorphic to the stack 

§W[t] ®w[t],qr Ro - $w(t) 9r R- Let SR denote the stack §w[t]R.The 
map Ap defined in 6.3.2 induces a map 

(6.4.7.2) 
M%M%§ £¨£%¨££ POPM 

as in 3.4.44. Let X0 denote the stack XQ ®ÌJ0,F£ ^O-

Let w be an integer such that {-KP ) C pV. Then the map Fyo : VQ —> Vo factors 
through the surjection Vo —> k. It follows that there is a commutative diagram of 
cartesian squares 

(6.4.7.3) 

PMP% ¨££%£ 

¨LOMP MP§P§M 

Spec(R) 
9w Spec(W(£)). 

6.4.8. — Let denote the projective system 

(6 .4 .8 .1) C.(w) p)/s£> ~ ^X p)/s£> ~ ^X(P)/S(D ®k 0To. e ps(R). 

By the base change theorem 2.6.2 we obtain from the diagram (6.4.7.3) an isomor
phism of projective systems 

(6.4.8.2) c(w) 
E. ®W(t),gw R-

On the other hand, by functoriality of crystalline cohomology we obtain a map of 
projective systems 

(6.4.8.3) c(w) O9MOP 

from the commutative diagram 

(6.4.8.4) 

¨¨MLML *X0/R 
x0 

T 
SR 

H 
BR > 
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where F£Q/R is the relative Frobenius morphism defined by the n-th power of Frobe
nius on XQ and 

(6.4.8.5) H := Fg(i)/R o F§(2)/Ro-"0 Fgo) j i 

By 3.4.45 there is also a map of projective systems 

(6.4.8.6) V. :C. C(w) 

such that the composites 

(6.4.8.7) H o(6.4.8.3) and (6.4.8.3) o H 

are both equal to multiplication by pK for some integer K. In particular the 
map (6.4.8.3) induces an isomorphism in ps(ii)Q. We therefore obtain a sequence of 
isomorphisms in ps(i?)<Q 

(6.4.8.8) 

c. (6.4.8.3) c(w) 

(6.4.8.2) 
E ®W(t),gw R 

(6.4.4.1) 
D. ®w,<pw R 

%%MM%§ 
D. ®w R. 

This completes the proof of 6.4.6. • 

Proposition 6.4.9. — Let B be a ring and Cm a bounded complex of B-modules such 
that there exists an integer r such that for every i there exists a morphism P —• Hl(C) 
with kernel and cokernel annihilated by pr and P a free B-module of finite rank. Then 
there exists a morphism of complexes Pm —• C* with each Pl a free module of finite 
rank and all the maps Pl —> Pz+1 equal to zero, such that the kernels and cokernels 
of the maps P% ~ Hl(P') —• Hl(C) are annihilated by pr. 

Proof. — Without loss of generality we may assume that Cl = 0 for i £ [0, m] for some 
m. We then prove the result by induction on m. The case m = 0 is trivial, so we prove 
the result for m + 1 given the result for m. Let Pm+1 Hm+1(C9) - Cm+1/d(Cm) 
be a map with kernel and cokernel annihilated by pr and pm+1 free of finite rank. 
Denote by Km the kernel of Cm Cm+1, and choose a section s : Pm+1 Cm+1. 
There is then a morphism of complexes 

(6.4.9.1) 

(C° Cm-1 . £%PM 0 %£MP% 

id id s 

MPMP Cm-1 Cm - Cm+1) 

which induces an isomorphism on cohomology for i < m + 1 and the map Pm+3 
iJm+1(C#) in degree m + 1. By induction we can find a morphism of complexes 

(6.4.9.2) (p0 _ , pm) (C° -> > C™'1 -> Km) 
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as in the proposition. The induced morphism of complexes 

(6.4.9.3) (P° • pm^pm^ C. 

then works for C*. • 

Corollary 6.4JO. — There exists an integer £ such that for any integer n and Rn-
module M the kernels and cokernels of the natural map 

(6.4.10.1) Cn ®fln M —> # * (M \ (X0,et /SflJcr iS, 0Xo,et/S«„ ) ®fl„ M) 

are annihilated by pl. 

Proof. — By 6.4.6, there exists an integer r such that 

(6.4.10.2) C * : = i?r((X0,et/S^)cris,Ox^et/SRn) 

satisfies the assumptions of 6.4.9 with B = Rn (that is, the integer r can be chosen in
dependently of n). Thus if K* represents the complex i2r((Xo,et/S#n)crisj Ox0,et/$Rri)» 
there exists a morphism of complexes P* —> K* as in 6.4.9. Let Q* denote the 
cone of this morphism of complexes. Since the kernel and cokernels of the maps 
iP(P*) -* Hl{K9) are all annihilated by pr, the map p2r : Q* -> Q* is quasi-
isomorphic to the zero map. Similarly, for any Pn-module M we have a distinguished 
triangle 

(6.4.10.3) P* (g)L M — • C* (g)L M —> Q* <8>L M — • P* (g)L M[l] 

which shows that the map 

(6.4.10.4) iP (P* ®L M ) ~ P* (8) M — • IP (C# (8)L M ) 

has kernel and cokernel annihilated by p2r. Since the cokernel of (6.4.10.1) is a quotient 
of the cokernel of (6.4.10.4), this implies that the cokernel of (6.4.10.1) is annihilated 
by p2r. Furthermore, for any element ra G F ( C * ) 0 M , the element prm can be lifted 
to an element ra G Pl 0 M since the cokernel of P* —» Hl(Cm) is annihilated by pr. 
If ra maps to zero under (6.4.10.1), it follows that ra is in the kernel of (6.4.10.4) and 
hence is annihilated by p2r. It follows that ra is annihilated by p3r. Consequently 
taking £ = 3r we obtain the corollary. • 

Corollary 6.4.11. — The natural map 

(6 .4 .11 .1) C. ®fi V —> { i T ( ( X o . e t / S O c r i s , 0Xo,et/Svn )} 

of projective systems induces an isomorphism in p s ( V ) q . 

Proof. — By the base change theorem 2.6.2 we have 

(6.4.11.2) i?r((X0)et /SfiJcns, O X O W S H J ®«- F« - ^ ( ( X o . e t / S y j c r i s , Ox0,«/8vn ) 

so the result follows from 6.4.10 • 
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Corollary 6.4.12. — There is a natural isomorphism 

(6.4.12.1) D.®WV~ {#d*R(Xn/SyJ} 

in p s ( V ) q . 

Proof. — This follows from the preceding corollary and the Comparison theo
rem 2.5.4. • 

Remark 6.4.13. — In Chapter 7 we give a proof of 6.4.12 which also works with coef
ficients and more general types of reduction. 

Remark 6.4.14. — Let D G Mod(W) denote limD.. The isomorphism 

(6.4.14.1) D®WK~ #*((X0,et/Sv)cris, C>Xo,et/S J ® Q 

obtained from (6.4.11.1) can be described more explicitly as follows. The sequence 
of isomorphisms in (6.4.8.8) induce after passing to the limit and applying ®RK a 
sequence of isomorphisms 

(6.4.14.2) 

i T ((X0,et/SvOcris,^^«(yet,Rruyet/§WnfOyet/Swn) 

p)/s£> ~ ^X(P)/S(D ®k 0To. cris,Oy(P-)(8)fcVb/§(-))) 

~ (lim i T ( ( y ^ p)/s£> ~ ^X(P)/S(D ®k 0To.£¨%M 

p)/s£> ~ ^X(P)/S(D ®k 0To. 

Let i7 denote 

(6.4.14.3) Homy (D ®W V, #*((X0,et/Mcris, Oxo,et/sv)), 

Define a sequence vn := ordp(pn!) = (pn — l)/(p — 1) as in 5.3.9, let m denote the 
relative dimension of y over k, and define fi^if) as in 5.2.2. By 5.2.4 there is a 
natural isomorphism £ : H —> QU(H). Therefore, the isomorphism (6.4.14.2) can be 
described by a collection of maps 

(6.4.14.4) hn : H*(QVSw^Jcris, Oy/sWuJ • iJ*((X0,et/§Viyn)cris, ̂ Xo.et/Sv^ ) 

such that the reduction modulo pVn of fon+i is equal to pmhn. It follows from the 
construction of the isomorphism (6.4.4.1) that such a collection of maps is given by 
the composites 

ff*(y/s,o V 
w + n tf*(y(p w + n ) / Ç n ) ) ^ 

¨MP% T(p™+n) rg(w+n)x iT^Xo/Sy^) , 

where to ease the notation we omit the structure sheaves and ip denotes the canonical 
map for which ip o ip = pd and ij) o cp = pd (3.4.42). This remark is the foundation for 
the construction in the next chapter. 
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6.5. The monodromy operator 

6.5.1. — We continue with the notation and hypotheses of 6.4.1. 
Let %w[t] be the stack over [A^/Gm] defined in 6.1.9 whose base change to A1 is 

%w\th and let §w(t) denote the base change of Sw\t] to the stack theoretic quotient 

(6.5.1.1) [Spec(W(t))/Gm], 

where u G Gm acts by multiplication by ul on №. There is then a natural cartesian 
diagram 

(6.5.1.2) 

f*(y(n)/Çn))^ Pri ^$^ùmlm 

X 

$ù^ù^ù ù^^po 
^^ù 

such that the diagram 

&w(t) x Gm 
x ^klkmùù 

(6.5.1.3) 

Spec(W(t)) x Gm 
(t,w)t—*ut 

Spec(W(t)) 

commutes. Under the identification §w(t) xsw<t) &w(t) — $w(t) x provided 

by (6.5.1.2) the diagonal map 

(6.5.1.4) A : &w(t) Sw(t) x$w{t) §w(t) 

becomes identified with the closed immersion 

(6.5.1.5) id x e : §w(t) — • §w<t) x Gm, 

which we (abusively) also denote by A in what follows. Looking at the first infinites
imal neighborhood of the diagonal we then obtain for every n > 0 a commutative 
diagram 

(6.5.1.6) 

^$ 
^$ 

&wn(t) 
A 

&wn(t) ®w W[(u-l)]/(u-l)2 
$ù^$ 

mlùpùp 

X 

%££¨£¨£%% ££¨%%££ 

Since (u—1) C Wn(t)[(u—l)]/(u—l)2 is a square-zero ideal, there exists by [8, 3.2 (4)] a 
canonical divided power structure on the ideal (p, u — l) + (t) C Wn(t)[(u — 1)]/(u — 1)2. 
We view Wn(t)[(u—l)]/(u—l)2 and §\yn(t)[(u-i)]/(n-i)2 as PD-stacks with this divided 
power structure. 
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Define 

(6.5.1.7) Kn := iO\(WSWrB(t>)crta,0WgWn<t)), 

6.5.1.8 K'n := ^ ( ( ^ e t / S ^ 
(£)<g)W[(u—1)]/ (u—1)2 )cris5 

^et/SWn(t)(8)W[(u-l)]/(u-l)2 )* 

By the base change theorem 2.6.2, there is a canonical isomorphism between Kn <S>wn 
Wn(t) and 
(6.5.1.9) 
#r((yet®u^n[«(yet,Rruyet/§WnfOyet/Swn) =• HP+"(^et/BWn)clis,Oyet/§Wn)^1/2 

On the other hand, since ^ xw W[(u - l)]/{u - l)2 is defined by a sub-PD-ideal 
there is also a canonical isomorphism between K'n and 
(6.5.1.10) 

^((yet®w^w;[(u-iM«(yet,Rruyet/§WnfOyet/Swn) =• HP+"(^etmù^pmm^pmpkil1/2 

It follows that the projection in (6.5.1.6) induces an isomorphism 

(6.5.1.11) pr[ : Kn ®w W[ (u-l)]/(u-l)2^Kn. 

Let A : W[(u - l)]/(u - l)2 ~ W © W • (u - 1) -> W • - 1) ~ W be the projection 
onto the second factor, and define N : ifn —» Kn to be the composite map 

(6.5.1.12) M%¨£% x* %¨%£ %PMOLM% 
Kn®WW[(u-l)}/(u-l)2 A 

Kn. 

Since x * ( ^ ] ) = Wl(t[j]) + «pr^[i] \ {u - 1) in Wn(t)[(u - l)]/(u - l)2 it follows that 
there is an equality of endomorphisms of Kn 

(6.5.1.13) N(№(.))=i№ .(-)+№N. 

In particular, passing to cohomology we obtain an endomorphism N : E. —> 22. of the 
projective system E. G ps(W(£)) defined in (6.4.2.2). 

Proposition 6.5.2. — T/ie operators NipE. and ptfE.N are equal, where (fE. denotes 
the Frobenius endomorphism. 

Proof. — Let FQm : Gm —• Gm be the map u \-> up. The map Ap in 6.3.2 defines 
by making the base change Z[t] —> Z sending t to 0 a map Ap?^ : §z,o —> §z,o-

The 
composite map 
(6.5.2.1) f*(y(p w+n)/Çn))^ . APio<8)cr f*(y(p w+n)/Çn))^ 

is then a lifting of Frobenius to §w,o which we (abusively) denote also by Ap in what 
follows. 

This lifting of Frobenius Ap is "FGm-linear". That is, if \ : &w(t) x Gm —• §w(t) ls 
as above, then the diagram 

(6.5.2.2) 

f*(y(p w+n) x %£M%P 

APxFGm M¨%¨£% 

§W{t) x r̂r 
X %£MP%% 
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commutes. Thus for any n G N, we can extend the action of Frobenius on §w(t) to 
an action on the whole diagram (6.5.1.6), where the action on Wn[(?z — l)]/(u — l)2 
is given by multiplication by p on (u — 1). It follows that the diagram 

KnKn-(u- 1 ) K n - ( u - 1) 

(6.5.2.3) VKU VKN -P 

Kn — K n - ( u - 1) 

commutes, where y>KN denotes the Frobenius endomorphism of Kn. • 

6.5.3. — If we replace W(t) by W and §w(t) by &w in the above, the same arguments 
give an endomorphism 

(6.5.3.1) ND. : D. —>D. 

such that if (pn. denotes the Frobenius endomorphism of D. then N(fr>. — PVD.N. 
Furthermore, the reduction map E. —> D. defined in (6.4.2.6) is compatible with these 
endomorphisms. 

Corollary 6.5.4. — The endomorphism N of E. agrees in ps(W(t))q with the endo
morphism obtained from the map 

(6.5.4.1) D. ®w W(t) —> D. ®w W(t), d <8> t[il h—• ND. (d) ® № + id ® t[j] 

and the isomorphism D. ®w W(t) ~ E. (6.4-4)-

Proof. — This follows from 5.3.24. • 

6.5.5. — The result 6.4.6 can also be strengthened as follows. The commutative 
diagram 

y • Spec(/c) 

(6.5.5.1) ^ j | 

Sw(t) • [Spec(W(*))/Gm] 
induces for every n a morphism of topoi 

(6.5.5.2) g : ( W V ^ c r i s — (Spec(A;)/[Spec(Wn(t))/Gm])cris 

such that the Wn(t)-module En is obtained by evaluating R*9*@yet/$w {t) on the 
object 

(6.5.5.3) (Spec(fc) Spec(Wn(*))) G Cris(Spec(fc)/[Spec(Wn(t))/Gm])cris. 

For every integer ra, the ra-fold fiber product of A]^ over [A1/Gm]vyn is isomorphic 
to 

(6.5.5.4) S p e c ^ M * , . . . , ^ ] ) . 
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In particular, there is an isomorphism 

(6.5.5.5) DSpec(fc)^((A1)^') ~ Spec(W„<*>(ui - 1,... , um^ - 1 » . 

Since the projection maps to Spec(Wn(£)) are flat, the base change theorem 2.6.2 
implies that the Wn(t)-module EN has a canonical HPD-stratification e£n. The mon-
odromy operator N is simply the connection induced by this HPD-stratification. Thus 
the projective system E. is a projective system in the category of modules with HPD-
stratification. This HPD-stratification also induces a HPD-stratification on D. relative 
to the map 

(6.5.5.6) Spec(W) — • (BGm)w> 

6.5.6. — Let A ^ denote the divided power envelope of the closed immersion 

(6.5.6.1) [Spec(Wn[t}/(tr))/Gm] C [Spec(Wn[t])/Gm], 

and let A(r) denote the divided power envelope (with compatibility with the divided 
power structure on (p) C W of 

(6.5.6.2) [Spec(W[t]/(tr))/Gm] C [Spec(W[t])/Gm). 

Define £jr,wn to be the pullback of $w[t] yia the map A&0 - [AVGm], and let &r w 
be the pullback to A ^ . 

Observe that the map W[t] —• V sending t to a uniformizer TT induces a cartesian 
square 

Spec(Vb) > Spec(Rn) 

(6.5.6.3) | 

[Spec(Wn[t]/(te))/Gm} > A{NE\ 

where e denotes the ramification index ofV/W. Also there is a commutative diagram 

Xo • Spec(V) 

(6.5.6.4) I 

&e,W • A<e> 

which induces a morphism of topoi 

(6.5.6.5) h : (Xo/Efijwn)cri8 — (Spec(Vb)/AW)cri8. 

The i?n-module Cn is equal to the evaluation of R*9*OxQ/ze w on tne object 

(6.5.6.6) (Spec(Fo) • Spec(i?n)) e Cris(Spec(V0)/A^). 

It follows that the module Cn has a natural HPD-stratification ecn and the projective 
system C. can be viewed as a projective system of HPD-stratified modules. 
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6.5.7. — Let psstr(R) (resp. psstr(VF)) denote the category of projective systems in 
the category of ii!-modules (resp. W-modules) with HPD-stratification relative to the 
map Spec(R) —• A^e^ (resp. Spec(VF) —• BGm). The commutative diagram 

(6.5.7.1) 

Spec(#) f*(y(p 

Spec{W] • BGm^w 

shows that the pullback functor ps(VF) —> ps(R) induces a functor 

(6.5.7.2) psstr(W) > psstr№), M. i—• M. <S>w R-

Theorem 6.4.6 can now be strengthened as follows: 

Theorem 6.5.8. — The isomorphism in 6.4-6 induces an isomorphism in psstr(i2)Q. 

Proof. — Let C{w) be as in 6.4.8, and let 0W : [A7Gm] -+ [A7<Gm] be the map 
induced by the maps 

(6.5.8.1) A1 —> A1, a^->apW, 

(6.5.8.2) Gm—>Gm, u i—> upW. 

For any integer r, this map 0W induces a map 

(6.5.8.3) f*(y(p w+n)/Çn))^ . A W , 

which we denote by the same letter 9W. Denote by £ ^ the stack over A^e^ obtained 
as the pullback of §w\t\ vi& the composite 

(6.5.8.4) P¨MLOM ££%%°¨£ 0-w %¨MLMIOL 
• [AVGm]. 

The map i\pw : § —» § induces a natural map i?pu> : Le,w —• £>w . 
There is a commutative square 

(6.5.8.5) 

LIKL/% 
+ Spec(Vo) 

¨%¨¨£%£ 
A(<0 

inducing a morphism of topoi 

(6.5.8.6) f*(y(p w+n)/Çn))^f*(y(pp^pùopojkhghf cris-

The module is then obtained by evaluating R*h^O-^(P™) /7-(«,) on 

(6.5.8.7) (Spec(V0) Spec(JRn)) € Cris(Spec(Vb)/Ale)). 
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By the same reasoning as above, the projective system has a natural structure 
of an object in psstr(i?). 

We verify that all the isomorphisms in (6.4.8.8) are compatible with the stratifica
tions. 

That the isomorphism (6.4.8.3) is compatible with the stratifications can be seen 
by observing that there is a commutative diagram 

(6.5.8.8) 

¨£M%P x0 

¨MM%P£ dp™ M%££ 

%%°P£ id £%¨¨ 

It follows that the map Cnw^ —» Cn is induced by a map of sheaves 

(6.5.8.9) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ 

In particular it is compatible with the stratifications. 
For (6.4.8.2), consider the following commutative diagram 

(6.5.8.10) 

OPOLJ GFHTN 

7-M 
§w<t> 

%P§M£M 
£¨M%¨%¨£ 

[Spec(W(t»/G], 

and the 6pw <s> er^-PD-morphism 

(6.5.8.11) 

(Spec(Vo) Spec(.R„)) 

rpw 
Fv0 

9w 

(Spec(fc) Spec(W„(t») . 

From this it follows that the map (6.4.8.2) is obtained from a morphism of shea\ 

(6.5.8.12) R^*°<e/sw(t) gw*R*h* i 0~(pV) /T(w). 
~̂  / ̂  w 

Therefore (6.4.8.2) is compatible with the stratifications. 
That (6.4.4.1) is compatible with the stratifications follows from 5.3.24 which shows 

that the isomorphism is compatible with the monodromy operators. Since the map 

(6.5.8.13) Spec(W(t)) [Spec(W(t»/Gm] 
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is smooth, it follows from 2.3.28 that the stratifications are determined by the mon-
odromy operators so (6.4.4.1) is compatible with the stratifications. 

Finally (pw ® 1 is compatible with the stratifications since there is a commutative 
diagram 

(6.5.8.14) 

ILOM 771W M%% 

&W(t) X[Spec(W(t))/Gm BGjm,W 
Apw Çt)crw 

$W(t) x[Spec(W(t))/Gm] B^m,W 

f*(y(p w+n)/Çn))^ 6pW®aw 
BGm^w 

and a Opvj 0 cr^-PD-morphism 

(6.5.8.15) aw : Spec(W) — • Spec(W). 

Finally we note that the operator N is automatically nilpotent. Let K denote the 
field of fractions of W. 

Proposition 6.5.9. — Let M be a finite dimensional K-vector space with a semi-linear 
automorphism (fM ' M —> M, and N : M —> M an endomorphism such that NcfM = 
P^PMN. Then N is nilpotent. 

Proof. — Let M = {B\eqM\ be the slope decomposition of (M, </?M) (see for example 
[34, II.3.4]). Let TT\ : M —• M\ be the projection and j \ : M\ M the inclusion. 
For any A and A' the diagram 

(6.5.9.1) 

KLKL ̈PMO¨% M 
N 

M £%¨£ %£M% 

<PM\MX %£M% P¥>M P<PM\MX, 

M%¨M% 
3\ M 

N M 
LMM %£M¨% 

commutes. If the composite 7r\' O N o j \ is non-zero, then it follows from this that 
A' = A — 1. Since the set of A's with M\ ^ 0 is finite, this implies that N is 
nilpotent. • 
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CHAPTER 7 

A VARIANT CONSTRUCTION OF THE 
(tp, N, GO-STRUCTURE 

Let i f be a complete discrete valuation field with ring of integers V and perfect 
residue field k of characteristic p > 0. Let W be the ring of Witt vectors of k, and let 
Ko be the field of fractions of W. Fix a collection a = { a i , . . . , ar} and a group H 
as in 6.1.1, and let 

(7.0.9.2) %%£M%£ f*(y(p w+n)/Çn))^ 

be a smooth morphism from a proper tame Deligne-Mumford stack X/V. Here 
Sif(a)ii,mfl denotes the pullback of the stack S#(a) defined in 6.1.9 by the map 
Spec(R) —> [A1/Gm] defined by the maximal ideal of R. We denote by the reduc
tion of X to /c, and by y the base change of X to Vb := V/pV. 

In this chapter we give a direct construction of the (<p, A", G)-structure on the de 
Rham cohomology of the generic fiber of X and also prove 0.1.8. We also prove results 
for coefficients. The main result is 7.1.3. 

7.1. The case when the multiplicities are powers of p 

Throughout this section a = { c * i , . . . , ar} and H are fixed so we write simply 8 
(resp. 8, etc.) for Sfl-(a) (resp. (a), etc.). For a ring R we write SR for the fiber 
product 8 xSpec(Z) Spec(iü). Let F^w : §w —» §w be the lifting of Frobenius obtained 
from the canonical lifting a of Frobenius to W and the map Ap : 8 —• S defined 
in 6.3.8. 

Definition 7.1.1. — An F-crystal of width b on ^éo/Sw is a pair (E,ip), where is 
a locally free crystal in (yo/SwOcris and ^ : F*E —> E1 is a morphism of crystals in 
(yo/§w)cris such that there exists a map ip : E F*E for which the composites (poi/j 
and i¡) o (p are both equal to multiplication by b. 

7.1.2. — Let (E, (f) be an F-crystal of width b on ^o/Sw-

Let X be the p-adic completion of X, and let ( £ ,V) be the module with inte

grable connection on the formal stack X/Sy,mv obtained from the restriction of E 
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to (yo/Sv,mv)cris and 2.7.7. Since X is proper over V the pair (£, V) is by the 
Grothendieck Existence theorem [15, III.5.1.4] obtained from a module with inte
grable connection (£, V) on X/Sy,mv. If X/K denotes the generic fiber of X, we 
obtain a module with integrable connection (£K, V) on X/K. The following is the 
main result of this and the next section: 

Theorem 7.1.3. — There is a natural (ip, N,G)-structure (Dm,<¿?, TV) on the de Rham 
cohomology groups H^(X/K^ (£K, V ) ) . The action of G on Dm factors through a 
tame quotient. 

Remark 7.1.4. — Recall (0.1.1) that by our conventions, a (y?, N, G)-module does not 
include a filtration. 

Remark 7.1.5. — We show in 9.6 that if (E, ip) is equal to Ox^w with the canon
ical map (p : F*E —> E induced by functoriality, then this (ip, N, G)-structure on 
H¿R(X/K) agrees with the one constructed in 8.5. 

In this section we prove the theorem for the special case when each ai is a power 
of p, say ai = pai. We furthermore order the a¿ so that a\ > 02 > • • • > ar. In the 
following section we then deduce the general case from this and also explain how to 
deduce 0.1.8. 

The comparison isomorphism. — Fix a uniformizer TT G V. The following theorem 
furnishes the isomorphism p (which depends on the choice of TT). 

Theorem 7.1.6. — There are natural isomorphisms 
(7.1.6.1) 

H*(XK,et,SK®nxK/K) - # * ((y/§V,mv )cris, <g> Q ~ H* ((%/SW|(o))cris, E) ®W K. 

Proof. — The isomorphism H*{XK,ET,£K <g> SI^K/K) ~ H*((y/Sv,mv)CT[s, E) 0 Q is 

provided by 2.7.7 and [15, 111.5.1.2]. 
For the second isomorphism the main difficulty is that the natural maps 0§VÁnP) —> 

RAP*0§V {ir) and 0§w(o) —> RAp*Osw (0) are not isomorphisms. We overcome this 
using 6.3.26. 

For each integer e, define 

(7.1.6.2) te) := y 0vo,Ff Vb, y£° := % ®k,F¿ k 

where Fy0 and Fk denote the Frobenius morphisms on Vb and k respectively. Note 

that Vo is an artinian fc-algebra, and let rk(Fo) denote its rank as a fc-module. If e 

is greater than logp(rk(Vb/fc)), then there is a natural isomorphism y(e) ~ <S>k Vo 

since Fyo :Vo —>Vo factors through k. 

Fix an integer r > logp(rk(Vb/fc))+ai, so that Apn+r is a map Sv/pn\,(ir) ~~* §v/pn!,(o) 

(since oidP(TTPN+R) > ordp (p?") > ordp(pn!)). Let 

(7.1.6.3) 

&v/pn\,(Tr) := Spec(Apn+rJleO§v/pTl! (7r)), &w/pn\,(o) := Spec(Apn+r*OsW/Pn!,(o)) 
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be the resulting affine stacks over §v/pn\,(o) and §v^/pn!,(o) respectively. We also define 

(7.1.6.4) V̂7pni(0) :— Spec(Apn+r5)eösv/pTl!)(0)) 
f*(y(p w+n)/Çn))^ 

We denote by y^n+r^ (resp. y0 the pullback of y(n+r) (resp. ^ + r ) ) to sf/^i.fr] 

(resp. S^/pn^o)) 

Let i%(n+7-) /̂ (n+r) i 
#0 /ôW/pn!,(0) 

(resp. ELin+r) , , etc.) denote the pullback of E to the 

topos M%MM 
/&W/ pn\ ,(0))cris (resp. •y(n+r) /Sv/p^!,(7r))cris5 etC.y By the base change 

theorem 2.6.2 the canonical map 

(7.1.6.5) Ru+Eüin+r) ft(n+r) 
00 I °W/pn\,(0) 

P¨0P ¨£f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn) 

is an isomorphism. On the other hand, by 6.3.26 there is a canonical isomorphism 

(7.1.6.6) òW7pn!,(0) V — ÒV/p"\,(7v) 

of affine stacks over §v/pn\,(o)- From the isomorphism y(n+r) ~ y£n+r) 0*. Vb over 
§Wpn!,(o) we therefore obtain a commutative diagram 

(7.1.6.7) 

KKK¨µ% 
£¨£%M 

¨HLKI%M%% 

S /̂p !̂,(0) ®W V - ÒV/P^!,(TT)5 

where the horizontal arrows are isomorphisms. This diagram induces an isomorphism 

(7.1.6.8) Ru*Eü(n+r) 
#0 

10 fc Vb / S ̂ p n i ( ( o ) <8> w V 
— i Ru^E^fn+r) /7r(n+r) 

/SV/pn!,(77) 

Composing (7.1.6.5) and (7.1.6.8) we obtain an isomorphism 

(7.1.6.9) Ru*Eü(n+r) ftin+r) 
òW/pn\,(0) 

®w V ~ Ru*E-(n+r) ,^(n+r) 
/öV/p"!,(7r) 

For each i, the triple 

(7.1.6.10) 
* /òV)(TT) O /ÒV,(7T) 

(resp. (Bg(i)^(i) , 
Ö0 /ÖW,(0) 0̂ /ÔW,(0) 

where $ denotes the map induced by the F-crystal structure on E, forms an F-span 
of width b in the sense of 3.4.41. Therefore, by 3.4.42 we obtain maps 
(7.1.6.11) 

Ru*EV/Sv,(«) 
vn+r 

%%¨¨£% 
Ru+Ejjin+r) ft(n+r), Ru*Eyo/Sw>(o) 

vn+r 
Ru*E-(n + r) ft(n + r) . 

¿0 /ÖW,(0) 
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Combining this with (7.1.6.9), we obtain maps 

(7.1.6.12) 

pn := (i>n+1 ® V)o (7.1.6.9) o un+r : RutEy/Sv/pn,M -^Ru*Eyo/§w/pnim ®w V, 

(7.1.6.13) 

en := R+ro (7.1.6.9) o (vn+r ® V) : Ru*Eyo/§w/pn,A0) ®w V ^Ru,Ey/Sv/pn,M 

such that pn o en and en o pn are both equal to multiplication by p2b(n+r)d where ^ 
is the relative dimension of X/V Moreover, it follows from the construction that the 
reduction of pn+i modulo pn\ is equal to pdpn. 

Define 

(7.1.6.14) H := Homv(^*((y/Sy,mv)CHs,E),if*((y0/V(o))cris,E) ®w V), 

(7.1.6.15) m := 2b(r + r)d, vn := (pn - l ) / (p - 1). 

Then in the notation of 5.2.2 the maps pn define an element of Q(H). By 5.2.4 this 
element then induces a map 

(7.1.6.16) £:#*(GVS^, 
mv)cris? E) * i^*((yo/§H^,(0))cris5 E) (&w V. 

That this map is an isomorphism follows from the same argument used in 5.3.14. • 

The monodromy operator. — The construction of TV is essentially the same as that 
given in 6.5. 

7.7.7. — The map Spec(W) -> [AVGm] defined by the map of free modules W W 
sending 1 to 0 factors as 

(7.1.7.1) Spec(W) — BGm c [AVGm]. 

Let [Sw,(o)/Gm] denote the pullback of S to B G m ^ . This notation is justified by the 
observation that there is a natural cartesian diagram 

(7.1.7.2) 

LÖW,(0)/Gmj %¨£%% 

BGsm,W - Spec(W) 

which makes §w,o a Gm-torsor over [§\y,(o)/Gm]. 
In particular, (6.1.12.2) factors through a representable smooth morphism 

(7.1.7.3) Sw,(o) —* [§v^,(o)/Gm]-

Let V1 denote the first infinitesimal neighborhood of the diagonal 

(7.1.7.4) A : §w,(0) > Siy,(0) X[8u,,(0)/Gm] §W,(0) - §W,(0) xSpec(WO Gm,w 

There is a canonical isomorphism 

(7.1.7.5) V1 ~ SW|(0) ®vy W[(tx - l)]/(w - l)2, 
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and V1 becomes a PD-stack by giving (p, (u — 1)) the canonical PD-structure. We 
thus have a 2-commutative diagram 

(7.1.7.6) 

£¨¨% 

§w,(o) 
pi Sw,(o) ®wW[{u-l)]/{u-l)2 

A 
§W,(0) 

p 

«(yet,Rruye §w,(o) 

where p is the map obtained from the action. 

Define 

(7.1.7.7) K := -RP((yo/Sw,o)cris»^y0/Sw,o) 

(7.1.7.8) •= ^r((yo/§iy[w-l]/(u-l)2,o)cris, 77i \ 
0̂/SvV[u-l]/(u-l)2,0̂ * 

By the base change theorem 2.6.2, pullback defines isomorphisms p* and pl between 
W[u-l]/(u-l)2 ®WK and 

(7.1.7.9) 

-#r((y0 xsfc,(o),p §fc[w-i]/(ti-i)2,(o)/Sw '[W-l]/(u-l)2,(0))cris,^o/SW[u_1]/(n_1)2,(O)) 

and 

(7.1.7.10) 

^"((yo X§fc)(0),pi §fc[M-l]/(u-l)2,(0)/S^ [U-l]/(U_l)2,(0))cris, ^O/S^tn-I]/^-!)2,^) )' 

On the other hand, both of these complexes are naturally isomorphic to K' since 
(u - 1) defines a sub-PD ideal of W[u - l]/(u - l)2. 

Let A : W[u — l]/(u — l)2 ~ W 0 W —> W be the projection onto the second 
factor. We define the monodromy operator N on DM to be the map induced by the 
composite 

(7.1.7.11) K 
p* 

K' 
Pl-1 W[u -!}/{u-l)2 ®WK 

A 
K. 

The Frobenius morphism 

7.1.8. — Define 

(7.1.8.1) * : Ru*Eyo/gWtio) Ru*E\}o/Sw,(o) 

to be the semi-linear map induced by the F-crystal structure on E. 

Proposition 7.1.9. — The induced map ip : DM 0 KQ —> DM 0 KQ is an isomorphism. 
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Proof. — Let F§wo : §w,o —>&w,o denote the lifting of Frobenius defined as the map 

(7.1.9.1) Sw,o - §z,o x Spec(VF) 
Apxa 

Sz,o x Spec(W) ~ SWlo-

For / > 0 let Fy*E denote the crystal obtained from E by pullback along the morphism 
of topoi defined by the commutative diagram 

(7.1.9.2) 

y -
%¨£%MPM 

-y 

§w,c 
%£MP% 

£%PM% 

where Fy denotes the absolute Frobenius morphism on y. For I > 0 let 

(7.1.9.3) 6t : ̂ r((y/S^o)cris,^-1*^/Swo) - iJr((y/Sw,o)cri8,^*^/sW|0) 

be the map induced by the commutative diagram 

(7.1.9.4) 

y-
Fy 

-y 

££%PM% ^S W,0 
- §W,0 

and functoriality of the crystalline topos. The map ip : F*E —• E induces by restric
tion a map FyEy/§w^0 —• Ey/$wo (which we again denote by ip), and the induced 
maps 
(7.1.9.5) 

J J " V ) : Hm(^/Sw^cris,F^Ey/Swo)^wK0 — ^m((y/S^,o)cris,^/§W0)®WX0 

are all isomorphisms, as by assumption there exists a map ^ : E ^ F^E such that 
the induced maps 
(7.1.9.6) 

Hmtyl) : Fm( (y /S^o ) cr i s ,Ey / §wo)^^o — ^ m ( ( y / § ^ o ) c r i s , ^ * ^ / § w o ) ^ ^ o 

satisfies Hm(<pl) o ffm(^) = 6' and Hm(^1) o ffm(^) = 6'. It follows that it suffices 
to show that the map 
(7.1.9.7) 

JJm(<Jl) : ^m((y /§W,o )cr is ,Ey /§^0)^X0 — ffm((y/SW,0)cris,i^^/SWfo)®W^0 

is an isomorphism. From the commutativity of the diagrams 

(7.1.9.8) 

#m((y/S^o)cris, FÏ-uEy/SWt0) ®w Ko • 
HM(5,) 

• ̂ m((y/§w,o)cris, Fi*Ey/Swo) ®w K0 

Hm(<p1-1) ¨%MP£% 

ffm((y/Sw,0)cris,^/Sw,o) ®W AO 
Hm(*i) 

• i/m((y/§^o)cris, F$Ey/8Wt0) ®w Ko 
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we conclude that to prove 7.1.9 it suffices to show that for I sufficiently big the map 
(7.1.9.9) 

Hm(5i) : Hm(^/§w^)c^F^uE^/Swo)^Ko — ^ ( ( y / S ^ 0 ) c r i s , ^ * ^ / S w , o ) № 

is an isomorphism. Since this is a semi-linear map between vector spaces of the same 
dimension, it suffices to show that (7.1.9.9) is surjective for I sufficiently big. 

We claim that (7.1.9.9) is surjective for 

(7.1.9.10) I > max{ordp(a^) + ! } • 

For any j > 1 let 

(7.1.9.11) Apj : §w,(o) «(i) 
* àW,(0) 

be the canonical map, so we have a commutative diagram of solid arrows 

(7.1.9.12) 

%£MP% 
Ki M%£PLO 

%PM£% 

Ap £%PMP %£MP% 

%£MP%% ô(l-l) ¨MPOM% 
%PMOKL 

V - 1 

where q is the map induced by the natural map L : Api-i*OgWQ —> Api^O$WQ consid
ered in 6.3.22. By loc. ext. the map q is an isomorphism, and therefore there exists a 

—(e) 
unique dotted arrow a filling in (7.1.9.12). From this and the definition of the y 's, 
we obtain a commutative diagram 

(7.1.9.13) 

M¨%M%%P 

y - %ML yd) 

%£MP% 

£%P¨M% 

&W,0 -
MP % 

£¨£¨£ 
MO PPO¨P 

£M%M¨P 

where the top horizontal arrows are the morphisms induced by absolute Frobenius on 
y. Let 

(7.1.9.14) 
Try : y(1) = y xSpec(fc))Ffc Spec(fc) -> y 

(resp. 7T§ : Sw,o - o\v,o Xspec(wv Spec(W) —• Siy?0) 
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denote the projection onto the first factor. Then (7.1.9.13) fits into a larger commu
tative diagram 

(7.1.9.15) 

y-
i 

£P%% 
• yd) 

rpl — 1 
V1)/ M%P£% yd) '«(1), •yd) 

¨%PM£ 
%£¨% 

nil) 
°W,0 

%M%£ MO% 
¨MP%P 

LMOKL 

7TS 7TS 

MO 

M 
LKF 

SFGHG 
HHGJG 

LKL 
bw,o 

MPMPM 

From this diagram we obtain isomorphisms 

(7.1.9.16) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ 

and 

(7.1.9.17) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ 

We therefore obtain a commutative diagram 

(7.1.9.18) 

f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ ¨P¨P i?r((y/§iy,o)cris,r((y/§iy,o)cris, 

£%¨M% 

i?r((y(1)/S^o)cris ,^4-1^y/SH,i0) 
F5/fe T 

i?r((y/§v^,o)cris, ^-Sy/Sw.o) 

MLJ 
Si 

jRr((y/§v^,o)cris,^y 1*^/Sw,o)' 

where 7T̂  is an isomorphism and ki denotes the map defined by F^k. From this it 

follows that to prove that (7.1.9.9) is surjective, it suffices to show that 

(7.1.9.19) 
f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ 

ffm((y/§lV>o)crisj-Fy/fc^g(0/8^0) 

is an isomorphism (in fact it suffices to show that H171^) is surjective). This follows 

from 3.4.45. • 
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The relation Nip = pipN. — This is essentially the same as the proof of 6.5.2. 

7.1.10. — Let i<Gm : Gm —» Gm be the map W H UP. Define a lifting of Frobenius 

(7.1.10.1) Ap : S^,o -+ 8^,o 

as in the proof of 6.5.2, and note that as in loc. cit. this lifting is "i*Gm-linear". That 
is, if p denotes the action of Gm (7.1.7), then the diagram 

(7.1.10.2) 

§VP,(O) x Gm 
p %¨P£%¨£ 

Ap x FGm £%MP% 

f*(y(p w+n)/Çn P 
§W,(0) 

commutes. Thus we can extend the action of Frobenius on §w,(o) to an action on 
the whole diagram (7.1.7.6), where the action on Wn[(ti — l)]/(u — l)2 is given by 
multiplication by p on (u — 1). It follows that the diagram 

(7.1.10.3) 

K 
(7.1.7.11) 

K-(u-l) 

3> %¨£%%¨P 

K 
(7.1.7.11) 

K-(u-l) 

commutes. Passing to cohomology we find that the operators ip and N on Dm satisfy 
the relation Nip = pipN. 

Remark 7.1.11. — In the case when all oti are equal to 1, it follows from 6.4.14 that 
the above constructed ((/?, N, G)-structure agrees with the one constructed in 6.4. 

7.2. Lowering the exponents 

7.2.1. — Write each ai — paifa with (ft,p) = 1, set /3 := YliPi, and write H for 
the group of elements a £ Sr for which aa^ = ai. Let 8(a) and 8(a) denote the 
stacks obtained from a = (o^i,... ,ojr) and the group H. Denote by Kf the Galois 
closure of K[T]/(T@ — TT) and let V be the ring of integers of K'. Denote by X' the 
scheme obtained by base change to V. We denote by TT' the uniformizer of V given 
by "T". Let Gj£i JK be the Galois group of K'/K. There is a natural homomorphism 
GK'/K denoted g i—• (g, characterized by (TT')9 = (9TT'. Let k' be the residue 

field, W the ring of Witt vectors of k', a : W —> W the canonical lift of Frobenius, 
and KQ the field of fractions of W. 

7.2.2. — There is a canonical map 

(7.2.2.1) B : SH(Pa)v,(,r') * S(a)v,(7T)5 

where pa denotes the set {pai,... ,par}. It is the map associated to the map of 
prestacks 

(7.2.2.2) f*(y(p w+n)/Çn))^ f*(y(p w+n)^ 
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which sends a collection (x\...., xr, v) satisfying 

(7.2.2.3) 
PAL P"R , 

X\ • • • XyT V = 7T 

to the collection 

(7.2.2.4) 
f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ 

Note the equality (7.2.2.3) implies that 

(7.2.2.5) 
f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn)) 

= (ir')ß = TT 

Similarly, there are natural maps 

(7.2.2.6) Bo : §ff (pa)iy',(o) Ha)w,(0)' 

and 

(7.2.2.7) f*(y(p w+n)/Çn))^ • §ff(pa), 

and B and Bo induce the same map on the closed fiber. 

Lemma 7.2.3. — The map B (resp. BQ) is finite, relatively Deligne-Mumford, and is 
an isomorphism over K (resp. Ko). 

Proof. — This is proven as in [63, 4.3]. • 

7.2.4. — Define 

(7.2.4.1) X := X xs(a) Sij(pa)v',(7r')-

The stack X is a proper tame Deligne-Mumford stack whose coarse moduli space 
equals X y . Moreover, the map 

(7.2.4.2) X f*(y(p w+n)/Çn 

is smooth. Hence we can apply the results of the preceding section to X. 

7.2.5. — Set y := X <g> V/pV and % := X ®v k. Define y := X <g> V'/pV and 

y0 :=X<8yfc ' . 
Let (E, <p) be a F-crystal of width b on yo/S(a)v- There is a natural commutative 

diagram 

(7.2.5.1) 

f*(y(p w+n)/Ç^ B MP%£%¨M 

f*(y(p w+n) %£MP% 
S(a)v, 

where the vertical maps are those given by (6.1.12.2). It follows that we can pullback 

(E, if) to an F-crystal of width 6, denoted E', on y o / § # (pa)v • We define 

(7.2.5.2) f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^f*(y(p w+n) 
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where as in the introduction KQ R c K denotes the maximal unramified extension of 
KQ in K. By 7.1.6 there is a natural isomorphism 

(7.2.5.3) f*(y(p w+n)/Çn K : H*((y/&H(p*)v>,n>)criB,E') ®V K. 

As in 7.1.2, the Grothendieck Existence theorem for stacks [68, 8.1] implies that 

the right hand side of (7.2.5.3) computes the de Rham cohomology of the module 

with connection (£/<•/, V) on XK'/K' obtained from E. By 7.2.3 the natural map 

%K' —• XK' is an isomorphism. It follows that there is a natural isomorphism 

(7.2.5.4) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^f*(y(p w 

where ( £ K > V ) denotes the module with integrable connection on X/K obtained 
from E. 

Moreover, by the constructions of the preceding section the module DM comes 
equipped with a monodromy operator NK' and Frobenius operator tp satisfy
ing 0.1.1 2). We define the operator iV to be /3 • NK1-

7.2.6. — It remains to construct an action of G := Gal(Kf/K) on DM. 

Define an action of Gop on S#0pa)w,(o) by letting rg : (pa)w,(o) —* (pa)w",(o) 
be the map associated to the map on prestacks which sends 

(7.2.6.1) (ari, ...,xr,v) f*(y(p w+n)/Çn))^ 

Note that by the definition of (6.1.12.2), the two maps (6.1.12.2), (6.1.12.2) o Tg : 
S if (pa)w,(o) ~~̂  &H(pa)w are equal. It follows that we have an action of Gop on the 
square 

(7.2.6.2) 

%P%VNJH 

Sj/(pa)w,(o) 

FV0 

(l(g)cr)oAp 

£¨¨M% 

MPaV',(o), 

and for every g G G an isomorphism of F-crystals g*(E, tp) ~ (E, <p). Moreover, these 
isomorphisms are compatible with the group structure on G. We therefore obtain an 
action of G on Hm((^o/&H(pa)w ,(o))cris, E') compatible with the action on W. The 
action of G on DM is defined using this action and the natural action on KQT. 

We now verify that condition 0.1.1 3) holds. 

Lemma 7.2.7. — The isomorphism 

(7.2.7.1) H%(%/SH(p*)w,A0))cris,Ef) W> K' ~ H*(XK,eu£K ® WXK/K) ®K K' 

provided by 7.1.6 is G-equivariant. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



294 CHAPTER 7. A VARIANT CONSTRUCTION OF THE (<p, N, G)-STRUCTURE 

Proof. — First note that the isomorphism 

(7.2.7.2) H%Çê/SH(p*)v',®v, K ~ H*(XKtet,£K ® ^ K / X ) ® K 

is G-equivariant, where the action of G on H*((y/§>H(pa)v,(7r/))cris,-E") is obtained 
from the action of G on §/f (pa)y%7r/ over §H(^)V,TT induced by the action on prestacks 
for which g G G acts by 

(7.2.7.3) (xi,...,Xr,v) (xi,...,xr,(g 1v). 

It follows that G also acts on Ru^E^, , ax , and to prove that (7.2.7.1) is 

G-equivariant it suffices to show that each of the maps 

(7.2.7.4) en : Ru*E~ . r((y/§iy,o)cris,- Ru*E'~.„ , x 
^/Sff(pA)VVPN!,(^/) 

used in the proof of 7.1.6 are G-equivariant. 

Write §H(pa)w^(o) ^or tne stac^ S#(Pa)w,(o) w^h G-action given by 

(7.2.7.5) (xi,...,xr,v) (xi,...,xrXgpn+rv). 

Then the maps 

(7.2.7.6) Apr+n : SHÌP^W/pn!,(o) S if (pa)v^7pn!,(o)> 

(7.2.7.7) Apr+n : SH(pa)yVp^!,(Tr/) S#(pa)v"/p"!,(o) 
f*(y(p w+n)/Çn))^f*(y(p w+ 

are G-equivariant. We thus obtain algebraic stacks with G-action 

(7.2.7.8) ÒV/pn\,(n') = Spec(Apr+n5*((9§ff(pa)v,/pTi!)(7r,))), 

and 

(7.2.7.9) $wf/pn\,(o) '•— Spec(Apr+n>s|((OsH(pa)w//pn!i(0))), 

and it follows from the construction that the isomorphism §[?^/ll\ rп̂  
f*(y(p w+n)/Çn) 

V is G-equivariant. 

Writing y 
—(n+r) 

(resp. mpl 
—(n+r) 

I as in the proof of 7.1.6, the map en is the composite 

Ru*EL lo/SH(p*yw,/pnU{0) 
V Ru*E—<n+r) /-~(n + r) 

f°W/pnl,(0) 
Ru*E' {n+rr((y/§iy,o)c 

1> f*(y(p w+n)/Çn))^f*(y(pM% 

where v and -0 are as in 3.4.42. By the above discussion the middle arrow is G-
equivariant, and by the naturality of the maps v and they are also G-equivariant. 
It follows that en is also equivariant. • 

Lemma 7.2.8. — The action of G on Dm commutes with the action of Frobenius. 
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Proof. — The Frobenius action is induced by the diagram 

(7.2.8.1) 

¨%P %£PM %PMOL 

Sw,(o) V',(0)> 

where the bottom arrow is the composite 

(7.2.8.2) §w",(o) • 
LMP% 

§w,(o) • 1®<7 §W,(0)« 

Since the action of G commutes with (1 ® cr) o Ap the result follows. • 

Lemma 7.2.9. — The monodromy operator N commutes with the G-action. 

Proof. — Recall that TV is induced by the Gm-action on §w',(o) given by 

(7.2.9.1) u - (#i , . . . ,xr,v) i—• (xi,... ,xr,uv). 

Evidently this commutes with the G-action. We thus obtain an action of Gop on the 
whole diagram 

(7.2.9.2) 

¨MP% 

§W,(0) V1 
%OL 

r((y/§iy,o)cris, — S^',(0), 

where is as in 7.1.7. From this the result follows. • 

Finally we observe: 

Proof of 0.1.8. — Assuming that the (<p, AT, G)-structure on H^ji(X) constructed 
in 7.1.3 agrees with the one constructed in 8.5 below (which is shown in 9.6), the 
theorem follows immediately from the above construction. Indeed the above shows 
that the action of Galois on D171 factors through the Galois group of the Galois 
closure of K(TT1^) (notation as in 7.2.1). • 

Example 7.2.10 (Compare with [31, 3.3]). — As above, let fc be a perfect field of pos
itive characteristic p, let W denote the ring of Witt vectors of fc, and let KQ denote 
the field of fractions of W. Let s be an integer prime to p and set 

(7.2.10.1) X := Spec(W[t]/(ts -p)). 

In this case we can work through the construction of the (<p, A/", G)-structure on DM 
explicitly. 
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First of all, the collection of c^'s reduces to the set {s}. Let K' be the Galois 
closure of K0[T]/(TS - p), let V C K' be the ring of integers of K', and let TT' G V 
be the uniformizer defined by "T". The stack 2>H(ol)W,(P) is equal to 

(7.2.10.2) [Spec(W[x, ^ ] / ( x ^ - p))/Gm], 

where г¿ G Gm acts by x i—> ux and v H-> Since the map Gm —» Gm sending г¿ to 
is surjective, this stack can also be written as (this is a special case of 6.1.17 (i)) 

(7.2.10.3) [Spec(W[x]/(xs -p))/»a] =r((y/§iy,o) 

With this identification the map X —> §i/(a)w,(p) is simply the quotient map. 
We also have (recall that r — 1, a = ai = 0, and # = { 1 } ) 

(7.2.10.4) S/f(pa)v,(7r0 - [Spee(y'[z,w^/zw = 7r ')/Gm], 

where W G Gm acts by z uz and w i-> u~1w. Making the change of variables 
2;' : = zv we see that 

(7.2.10.5) §H{P&)v,(*>) ^ (Spec(V'[z']/(z' - p))) x [Gm/Gm] ^ Spec(V')-

The map B : Spec(V) —> [X//is] is simply the composite map 

(7.2.10.6) Spec(V') • X projecti°n» [X/jiJ. 

To compute Dm, observe that there is a cartesian diagram 

Pri 
X x iis ^ X 

(7.2.10.7) P 

X >[Xlns], 

where p denotes the action of It follows that we have a commutative diagram 
with cartesian squares 

Spec(V') x ¡1, ^ + Spec(F') ~ SH(pa)v,|(7r,) 

(7.2.10.8) X x ^ ^ • X 

p 
Y ^ 

^ S#(a)w,(p)-

We conclude that X in (7.2.4.1) is isomorphic to Spec(F') x /jls. 
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Let G denote the Galois group of K'/Kq and let ( : G —> ps be the homomorphism 
defined in 7.2.1. To determine the action of g G G on X = Spec(Vf) x ps, let 
Xg ps —> Us be the map such that the map of rings 

(7.2.10.9) 9* 
%£MP% 

V -

%£MP% 
V 

sends the 77-component of i l ne^ ^ to ^ e (v)-component. Then g*((xri)r]efls) is 
equal to the element of n̂ ê s V' wnose Xg(^-component is g{xr]). On the other 
hand, for every g G G the diagram 

(7.2.10.10) 

Spec(F/) x ps 
9 Spec(F') x ps 

p p 

%PM¨£ 

commutes, which implies that the diagram of rings 

(7.2.10.11) 

f*(y(p w+n) 9* - n V 

f*(y(p w+n) x^(rj(x))r) 
V 

commutes. It follows that 

(7.2.10.12) f*(y(p w+n)/Çn))^f*(y(p 

Therefore XgM — Cg 'V- I*1 other words, G acts on Spec(F') x ps through the product 
of the natural action on Spec(F/) and the action on ps given by the character £. 

Let k' denote the residue field of V, let W denote the ring of Witt vectors of A/, and 
let Kq denote the field of fractions of W. Let (p : Kq —* Kq denote the endomorphism 
defined by the canonical lifting of Frobenius to W. Then by the definition of D771 
in (7.2.5.2), we have 

(7.2.10.13) f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^f*(y(p w+ 

which is zero for m > 0 and 

(7.2.10.14) 
£%°££ 

M%P%P%P 

Tsur 

The action of Frobenius is given by the component-wise action on Kqv, the mon-
odromy operator is trivial, and the action of an element g G Ĝ K̂q is given by send
ing an element (xv) G Y\r]efls K r̂ to the element of Ylne^ K%r with (g • 77-component 
g{xr])̂  where K is an algebraic closure of Ko and we abusively write also £ for the 
character 

(7.2.10.15) GK/K0 
restriction 

GK'/Kq 
C 

MPOOPM 
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Note that if Ko contains the s-th roots of unity, then £ : GK'/K0 —> l^s is an 

isomorphism, and the action GK'/K0 on D° is faithful (i.e., the bound Ko(p1^s) on 

the Galois action on D° is sharp). 

Example 7.2.11. — Let p be a prime, and let Mr1(p),Q denote the stack over QP 
whose fiber over a scheme S is the groupoid of pairs (E,P), where E/S is a gen
eralized elliptic curve in the sense of [12, II. 1.12] and P G Esm(S) is a section in 
the smooth locus of E —> 5, such that for every geometric point s —> S the sub
group (Ps) C I£§m generated by Pg meets every irreducible component of Eg. By [12, 
IV.3.4] the stack Mp^p)^ is a smooth and proper Deligne-Mumford stack over QP. 
Let (D, <p, N) denote the (</?, AT, G)-module associated to the ?>adic etale cohomology 
ffm(Mri(p)jQ ,QP), where G denotes Gsl^p/Qp. Define 

(7.2.11.1) 'K' = Qp(pl'<r-V), 

and let GK' C G denote Gal(Qp/if '). 

Theorem 7.2.12. — T/ie natural map 

(7.2.12.1) DG*' (g)K/ ^ r — • D 

zs an isomorphism (i.e., the potentially semistable representation Hrn(MFi^^ , Qp) 

becomes semistable over Kf). 

Proof. — Let Mri(p)?Zp denote the normalization of M\^^p in MFl(p)5Qp, where 
Mi5i?zp denotes the proper smooth Zp-stack classifying generalized elliptic curves with 
no level structure, and let s : Spec(Fp) —• MVl(p),zp be a geometric point. By the 
same argument proving [12, V.2.8] using the description of finite flat group schemes 
of rank p in [12, V.2.4] one obtains that the local ring OMFl(phZp,s can be described 
as follows: 

(7.2.12.2) aMri(p),Zp,^ 

W(¥p)lsl 

or if s is ordinary 

^ ) W W / ( ^ - P ) 

W(Fp)[[a;, 2/]/(xp_12/ — p) if s is supersingular. 

In case p — 2 this shows that MFl(2),zp nas semistable reduction, and if p ^ 2 
this shows that the (reduced) irreducible components of the closed fiber are smooth. 
Theorem 7.2.12 therefore follows from 0.1.8. • 

Example 7.2.13. — Let X/V and {a\,..., ar} be as in 6.2.1. Let / be the maximal 
integer such that pf\oti for all i, write a* = p^i, and set 7 : = ( 7 1 , . . . , 7 r ) . Assume 
that the following two conditions hold: 

1. The group fipf(K) has order pf (i.e., K contains all pf-th. roots of unity). 
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2. For any geometric point x —• X with image in the closed fiber, there exist an 
etale neighborhood U of x and an etale morphism 

(7.2.13.1) U —> Spec(V[Xu ..., Xn]/(X^ • • • X? = TT)), 

for some n> r. 

Fix an algebraic closure K <—> K with Galois group G^ , and let H denote the GK-
representation H*(J% et, Qp). Let D denote Dpst(H) (0.1.1.6). 

Let 7r' C K be an element with {TT'Y = 7r, and let K' denote K{TX') C K. Let 
V C if ' be the ring of integers. Note that the map V —> V induces an isomorphism 
on residue fields. Let Ko C K denote the field of fractions of the ring of Witt vectors 
of the residue field of K, and let KQV C K denote the maximal unramified extension 
of Ko in K. Denote by GK> the Galois group Gal(K/Kf). 

Theorem 7.2.14. — The action of GK' on D (obtained by restricting the GK-action) 
factors through a tame quotient of GK> • 

Proof. — Let 8(a) be as in 7.2.1, and let S(a)[p^] —• 8(a) denote the /ip/-torsor 
defined in 6.1.15. Let Y —> X denote the fiber product of the diagram 

§(a)\pf] 

(7.2.14.1) 

X ^S (a ) , 

where the horizontal arrow is the map defined in 6.2.1. Then Y is a ppf-torsor 
over X , and in particular YK is a \ivs (K)-torsor over XK- It follows that H is a 
direct summand (in the category of G^-representations) of the G^-representation 
W := H*(YK ET, QP). In fact, a retraction W —> H is given by the operator 

(7.2.14.2) 
1 

7C 
M%£¨¨£ 

(:W—• W 

defined by the fipf (K)-action on W. It follows that if E denotes Dpst(W) then it 
suffices to show that the action of GK' on E factors through a tame quotient. 

If x —• X is a geometric point in the closed fiber, and U —» X is an etale neigh
borhood of x with a morphism (7.2.13.1), then as discussed in 6.1.15, the torsor 
Y xxU —> U is the fipf-torsor of pf-th roots of 1 G 0\j. In particular, the fipf-torsor 
Y —> X is etale locally on X trivial. 

Let Py denote the fppf-sheaf on X corresponding to Y. Then if e : Xfppf —> XET 
is the natural morphism of topoi, we deduce that e*Py is a e*/xp/ = fipf(K) torsor. 
Let Y' —• X denote the corresponding scheme with ppf (if)-action. The map of 
sheaves e*e*Py —• Py induces a morphism of schemes Y1 —*Y over X, which is an 
isomorphism over K. 

Lemma 7.2.15. — The composite map Y' —• Y —> S(a)\pf]vi7r is smooth. 
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Proof. — The assertion is etale local on 7 , so we may assume that there exists a 
morphism (7.2.13.1). Then as in the proof of 6.1.17 we have 

(7.2.15.1) Y = Spec(V[X1, . . . , Xr&z^HX? • • • Xr°- - TT, Z*>! - 1)), 

from which it follows that 

(7.2.15.2) Y' = ]J Spec(V[XU ..., XN]/(X? • • • X? - TT)). 

C€/V(K) 

The result therefore follows from 6.1.17. • 

Let S : fjLpf (K) —» /xp/ be the natural map (where /ip/ ( if) is viewed as a constant 
sheaf), and let 

(7.2.15.3) 9pf : ppf X S ( 7 W - S ^ b ' W 

be the map defined in 6.3.27. Let Y" —> Y' be the fiber product of the diagram 

ppf(K) x S(7)v,7r' 

<5xid 

(7.2.15.4) /xp/ x 8(7)^',*' 

I V 

r ^S (a) [pV,^ 

Then Y"/V is proper with generic fiber Y ^ , and F" admits a smooth morphism 
to S(7)V/,TT/- This implies that YK> has log smooth reduction, so 7.2.14 now follows 
from 0.1.7. • 

Example 7.2.16. — A special case of 7.2.13 is obtained by taking 

(7.2.16.1) X = Spec(V[T)/(Tp - TT)). 

Let Kx denote the field of fractions of V[T}/{TP-TT). The group iJ*(X^, Qp) is then 
canonically isomorphic to 

(7.2.16.2) 
£%P%MM% 

Q p - H o m ( 5 X x , Q p ) 

where SKX denotes the set of embeddings Kx ^ K compatible with the given em
bedding K c—• K. The action of g G GK is given by sending a function F : SKX —• QP 
to the function 

(7.2.16.3) (a : Kx K) — F(ga). 

Thus the associated (<£>, AT, G/<:)-niodule is equal to 

(7.2.16.4) Hom(SKx,#0ur), 

with G^-action given also by the formula (7.2.16.3), replacing QP by KQT . 
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This description of D coincides with that obtained from the construction in the 
proof of 7.2.13. Indeed in this case the /xp-torsor Y —* X is trivial, and therefore the 

)-torsor Y' —• X is also trivial. It follows that the GK-representation W arising 
in the proof of 7.2.13 is simply 

(7.2.16.5) Hom{SKX,QP) ®qp Hom(/ip(K),Qp), 

with G/f-action given by (7.2.16.3) on the first factor and the trivial action on the 
second factor, and /xp(i^)-action (induced by the torsor structure) given by the trivial 
action on the first factor and the standard action on the second factor. 
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CHAPTER 8 

COMPARISON WITH SYNTOMIC COHOMOLOGY 

For the convenience of the reader who wishes to compare this chapter to [41], we 
deviate in this chapter from the notation in the rest of the text and use the letter A 
to denote a p-adically complete discrete valuation ring instead of V. 

8.1. Syntomic morphisms of algebraic stacks 

Recall [25, II. 1.1] that a morphism / : X —> Y of schemes is syntomic if it is flat 
and locally a complete intersection (for the definition of a local complete intersec
tion morphism in the non-noetherian setting see [6, VIII. 1.1], where the terminology 
"complete intersection morphism" is used). 

Lemma 8.1.1 

(i) If f : X —> Y and g : Y —• Z are syntomic morphisms, then g o / : X —• Z is 
syntomic. 

(ii) Let f : X —>• Y be a morphism of schemes, and Y' —> Y a quasi-compact, flat, 
and surjective morphism. Then f is syntomic if and only if the base change 
f : X xYY' —• y ' is syntomic. 

Proof. — Statement (i) follows from [6, VIII. 1.5] and (ii) follows from [6, VIII. 1.6]. 

• 
Lemma 8.1.2. — A locally of finite type morphism f : X —*Y between locally noethe
rian schemes is syntomic if and only if f is flat and the cotangent complex Lx/y has 
perfect amplitude in [—1,0] [6, I 4.7 and 4.8]. 

Proof. — This follows from [32, 111.3.2.6]. • 

Remark 8.1.3. — Let 5 be a locally noetherian scheme and a < b integers. By [6, 
1.5.8], if E G DBC6H(S) is a bounded complex with coherent cohomology sheaves, then 
E has perfect amplitude in [a, b] if and only if for every O^-module M the sheaf 
W(M <S>QS E) is zero for i £ [a, b]. From this it follows that the condition that E has 
perfect amplitude in [a, b] is local for the flat topology on S. 
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Lemma 8.1.4. — Consider a commutative diagram of schemes 

(8.1.4.1) 

X 
_£ 

Y'-
7T 

•Y 

h 

S' 
S 

s 

s, 

where f and g are smooth and surjective, and the square is cartesian. Then the 
morphism s is syntomic if and only if the morphism h is syntomic. 

Proof — If s is syntomic, then by 8.1.1 (ii) the morphism V —> Sf is syntomic, and 
hence by 8.1.1 (i) the composite X —> Y' —> S' is also syntomic. 

Conversely, assume the morphism h is syntomic. To prove that s is syntomic, it 
suffices by 8.1.1 (ii) to prove that the morphism Y' —> S' is syntomic. For this we show 
that Ly/s' has perfect amplitude in [—1,0]. For this note that it suffices by 8.1.3 
to show that g*Ly/s' nas perfect amplitude in [—1,0]. Consider the distinguished 
triangle 

(8.1.4.2) 9*LY>/s' — • Lx/S' — * LX/Y' — • 9*LY'/S'W\-

Since LX/YF — ^X/Y' (smce X —> Y' is smooth) and Lx/s' nas perfect amplitude in 
[0, —1] because h is syntomic, this implies the lemma. • 

8.1.5. — By [49, p. 33], it follows that there is a well-defined notion of a syntomic 
morphism locally of finite type between locally noetherian algebraic stacks. A locally 
of finite type morphism / : X —> ^ between locally noetherian algebraic stacks is 
syntomic if there exists a commutative diagram 

(8.1.5.1) 

X 
9 %PO¨PO 7T 

•X 

h 
f 

Y 
s 

•y, 

with s, / , and g smooth and surjective, X and Y schemes, and h a syntomic morphism 
of schemes. 

Proposition 8.1.6. — Let f : X —• y be a morphism locally of finite type between locally 
noetherian algebraic stacks. Assume further that X is an algebraic space. Then f is 
syntomic if and only if f is flat and there exists étale locally onX a regular embedding 
j : X c—• P over ^ with P —> y smooth. 
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Proof. — For the "if" direction assume that étale locally there exists such an immer
sion j . Since the property of / being syntomic is étale local on X, we may assume that 
X is a scheme and that such an embedding j : X P is defined globally. Then for 
any smooth surjection Y —• ̂  with Y a scheme, we obtain by base change a regular 
embedding ï x ^ 7 ^ P x y 7 over Y. It follows that X Y —> Y is syntomic, and 
hence / is syntomic as well (by the definition of a syntomic morphism of algebraic 
stacks). 

For the "only if" direction, assume / is syntomic and fix first any smooth cover 
Y —• y. By the existence of quasi-sections for smooth morphisms [15, IV. 17.16.3 (ii)], 
there exists after replacing X by an étale cover a section s : X —> Y XyX. Hence after 
shrinking on X some more, we may assume that there exists an immersion X Ay 
over Y. This immersion is in fact a regular immersion since this can be verified after 
making a smooth base change V —* y in which case it follows from [6, VIII. 1.2]. • 

The key property of syntomic morphisms that we use is the following: 

Proposition 8.1.7. — Let So S be a closed immersion of algebraic stacks defined by 
a PD-ideal, and let X —* So be a syntomic morphism of algebraic stacks. Then for 
any closed immersion j : X y into a smooth §-stack y, the divided power envelope 
D of X in y is flat over S. 

Proof. — It suffices to verify this after making a smooth base change S —> S with S 
a scheme. Hence we may assume that S is a scheme. Furthermore, we can replace y 
by a smooth cover Y —• y with Y a scheme. Hence we may also assume that X and 
y are schemes in which case the result follows from [7, 1.3.4.4]. • 

The base change theorem 2.6.2 can be generalized to a result for syntomic mor
phisms as follows. As in 2.6.1, let u : (£?',/', 7') —» (# , / , 7 ) be a morphism of 
PD-algebraic spaces, and let S/B be an algebraic stack which we assume flat over B. 
Set S' := S XB B\ and note that 7 (resp. 7') extends to S (resp. S') since S/B and 
S'/Bf are flat (1.1.12). Let B'0 C B' and Bo C B denote closed subspaces defined by 
sub-PD-ideals such that the composite 

(8.1.7.1) B'0 —>B' —> B 

factors through B0. Set So denote § x B 5 0 and let SQ denote S' xB' Bf0. 

Theorem 8.1.8. — Let f : X —• So be a syntomic morphism of algebraic stacks with X 
a tame noetherian Deligne-Mumford stack (2.5.14), and let f : X' —» SQ be the base 
change to SQ. Then there is a natural isomorphism in the derived category of sheaves 
ofOB'ET-modules 

(8.1.8.1) Lu*Rhx/B*0Xet/§ ~ Bhx>/B'*OXUv. 

Proof. — By the same arguments used in the proof of 2.6.2, one is reduced to the case 
when X, P, and B' are affine schemes, and there exists a closed immersion X ^ y 
over S with y/S smooth. Denote by X1 <—> y' the closed immersion over Sr obtained 
by base change, and let D (resp. D') denote the divided power envelope of X in y 
(resp. X1 in y;) and let V (resp. V) denote the coordinate ring of D (resp. D'). 
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By 8.1.7, the scheme D is flat over §. In particular, there is an isomorphism 

(8.1.8.2) Lu*Rhx/B*0Xet/s ~ OB> ®OB (Z>® ftj/s), 

and the arrow in question becomes identified with the natural map 

(8.1.8.3) 0B' ®OB {V ® fi;/s) — • V ® fi57g/. 

Thus to prove the theorem it suffices to show that the natural map OB' ®OB *D —> V 
is an isomorphism. This follows from [7, 1.2.8.2]. • 

8.2. The rings BCT[S, and Bst o f Fontaine 

8.2.1. — Let A be a complete discrete valuation ring of mixed characteristic (0,p), 
K the field of fractions of A, and k the residue field which is assumed perfect. Let W 
be the ring of Witt vectors of k and set Wn := W (g) Z/pn. Fix an algebraic closure 
K C X , and let 4̂ denote the integral closure of A in K. Define 

(8.2.1.1) An := A®Z/pn, An:=A®Z/pn, 

(8.2.1.2) S := Spec(A), Sn := Spec(An), 5 := Spec(A), 5n := Spec(Zn). 

8.2.2. — Define 
(8.2.2.1) 

#n r((5n/Wn)Cris, ®~sniwn) lim 

f*(y(p w+n)/Çn))^ 
r((Spec(A^)/Wn)cri8,C?Spec(A;)/Wn)> 

where the limit is taken over subalgebras A' C A finitely generated over A. 
As explained in [73, A. 1.1] the canonical map Bn —> An is surjective and the kernel 

Jn is a PD-ideal. 

&2.3. — For a sequence s = (sn)n>o of elements in An with = sn for all n, 
define 

(8.2.3.1) e(s) ( ( s n f ) n G l i m 5 n , 

where sn G Bn is any lifting of sn. If = sn + h is a second choice of lifting of sn 
then 

(8.2.3.2) . n 
o'P 

LMK 

2=0 

JKJK %¨£M%PM sp H 
n 

1=1 

MP% 

(pn-i)l 

f*(y(p w+n)/Çn))^ 

so e(s) is independent of the choices. 
For a sequence s = (sn) G lim fj,pn(K) = Zp(l) the image of e(s) in lim^4n is zero, 

and hence we obtain a map 

(8.2.3.3) l oge :Zp( l ) -> lim Bn, 
n 

log(e(s)) 
n>l 

( _ 1 ) » + 1 ( C ( S ) - ! ) » / „ . 

which is injective [23, 1.5.4]. 
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Set 

(8.2.3.4) B+ris : = Q ® \imBn, BCris := JB+fa[t-1], 
n 

(8.2.3.5) B+R := lim(Q ® l i m B J j M ) , BdR := fl^Jr1], 
r n 

where t is any element generating Qp(l) C B^ris. 

8.2.4. — Fix a uniformizer n G A. For s = (sn) a sequence of elements of A such 
that SQ = IT, = sn we have 

(8.2.4.1) 6007T-1 G Ker((E+R)* — c ; = (Q® BmAn)*), 
n 

and so us := log(e(s)7r_1) G B^R is defined. 
Define 

(8.2.4.2) в$~ в+ьЫ f*(y(p w+n)/Çn))^f* +n)/Çn))^ 

As explained in [73, 4.1] this ring does not depend on the choice of the sequence {sn} , 
and the element us is transcendental over i?cris. 

In particular, if cp : BCT[S —• i?criS denotes the Frobenius endomorphism induced by 
the natural Frobenius endomorphisms of the BN, we can extend ip to BST by declaring 
ip(us) := pus. Furthermore, we define a £criS-linear operator N : BST —» BST by 
N(uls) := ш*-1. The resulting data (Bst,(p,N) depends only on the uniformizer тг 
and not on the choice of the sequence s used in the construction. 

Remark 8.2.5. — As discussed in [22, 2.8], the ring B^R is a complete discrete valua
tion field with valuation ring B^R and uniformizer t. This discrete valuation v defines 
a filtration Fil̂ dR on B&R by setting 

(8.2.5.1) Fils {x G BdR\u(x) > г } , 

where v is normalized by the condition that i^(B^R) = Z. This filtration induces a 
filtration Fil#8t on Bst by setting 

(8.2.5.2) MPOOM¨M S s t H F i l ^ . 

8.2.6. — Following [41] we now give a crystalline interpretation of the triple 
(£?st,(£, N). The main result is 8.2.30 below, but in preparation for this theorem we 
need several auxiliary results. 

For any integer e > 1, let 8e : [A1/Gm] —> [A1/Gm] be the map induced by the 
maps 

(8.2.6.1) A1 /~/e A1 Gm 
M%£% 

Gm. 

Observe that this map 9E is flat. For an integer r, let A(r) denote the divided power 
envelope (1.2.3) of the closed immersion 

(8.2.6.2) [Spec(W[t]/tr)/Gm] • [Spec(WM)/Gm], 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



308 CHAPTER 8. COMPARISON WITH SYNTOMIC COHOMOLOGY 

and let A^r' denote the divided power envelope of 

(8.2.6.3) [Spec(Wn[t]/tr)/Gm] [Spec(Wn[t])/G ml • 

The maps 0E induce maps, denoted by the same letter, 

(8.2.6.4) 9E : A(re) —> A(r), ee : A<[e) —* A ^ . 

Observe that the diagram 

(8.2.6.5) 

[ S p e c ( M ] / r e ) / G m ] [Spec(Wn[i])/G m I 

Be 9e 

[Spec(Wn[t]/ir)/Gro] [Spec(Wn[t])/G m I 

is cartesian. Since the formation of divided power envelopes commutes with flat base 
change (1.2.3), it follows that the diagram 

(8.2.6.6) 

A(re) [AVGm] 

6e ¨£% 

PKLM 
[AVGm] 

is also cartesian. 
For a finite algebraic extension K C K' C if, let ex' denote the absolute ramifi

cation index of K'. 

If K c K' c K is a finite algebraic extension with ring of integers A' and ram
ification index ex'/K (also sometimes written e^//^), then there is a canonical 2-
commutative diagram 

(8.2.6.7) 

Spec(^ ) LOILC [AVGm] 

E"K'/K 

Spec(A) TI A [A1 /GM] , 

where the horizontal arrows are defined by the inclusions t ru C A and m^/ C A' 

and the interpretation of [A1/GM] given in 6.1.11. For every n > 1 the induced map 

t ru : Spec(Ai) —> [A1/GM] factors through AneK\ and therefore from (8.2.6.6) we 

obtain a commutative diagram 

(8.2.6.8) 

Spechi ) ¨£%¨PP¨£¨£ 

EK'/K 

Spec(Ai) %¨£M¨P% 

which induces a morphism of topoi 

(8.2.6.9) à A'I A : (Spec(Ai)et/A^))cri8 ( S p e c W i W A J ^ ) , ™ . m 
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Furthermore, if K' C K" C K is a second finite extension then it follows from the 
construction that 8 A"/A — /A1 ° $A'/A • 

Let (Spec(Ai)/An)criS denote the inverse limit topos [5, VI.8.1.1] 

(8.2.6.10) (Spec(3i)/An)criB := lim (Spec(^)et/A^'))cris 
KdK'CK 

with transition maps the morphisms of topoi 8A"/A' defined above. Since the mor-
phisms 5A" iA' are morphisms of ringed topoi there is a natural structure sheaf 

(8-2-6.il) Ospectfo/A* e (Spec(31)/An)cris. 

The projections 8A>/A induce a morphism of ringed topoi 

(8.2.6.12) hCTis : (Spec(Zi)/An)cris —+ (Spec(Ai)/A£*>)cri8. 

Proposition 8.2.7. — The sheaf ĉris*0Spec(Ai)/An ™ a Quasi-coherent flat crystal in 

the topos (Spec(v4i)/AkeK))cris and ^9hcris.OSpec(:5i)/̂ n = 0 for q > 0. 

The proof is in several steps 8.2.8-8.2.18. 

8.2.8. — Let U <-> F be any object of Cris(Spec(Ai)/An * ^ ) , and for any integer e > 
1 let F^ denote F x[Al/Gm]j6,e [AVGm]. We view F(e) is a PD-stack by pulling back 
the divided power ideal on F (this is possible because the map 0E is flat). The closed 
substack C F^ defined by this divided power ideal is equal to U x [Ai/Gm],0e 
[AVGm]. _ 

If K c K' C K is a finite algebraic extension with ramification index e^'/K^ then 
there is a canonical map 

(8.2.8.1) ^xSpec(A) Spec(^) — F<c*'/*> 

induced by the map U F and the map xtiA' : Spec(A') —> [A1/Gm]. From this 
and [5, V.5.1] it follows that for any q > 0 the sheaf ^9 ĉris*OspecCAi)/A *s e(mal *o 
the sheaf associated to the presheaf 

(8.2.8.2) (U^F) lim 
KCK'CK 

HQ((U®A A'/F^'/A)) 'Cris,0^AA7F(^/A))' 

Hence to prove the proposition it suffices to show that for q > 0 

(8.2.8.3) lim if* ((17® A A'/F^'/A)) 
)CRIS'°U®AA>/F(eA'/A)) = o, 

and that the formation of \imH°((U ®AA'/F^A,/A))cris, 0 ^ ^ / ^ / ^ ) i s compati

ble with base changes by morphisms (U' T') —> (U <-> T) in Cris(Spec(̂ 4i)/AieK)). 

Lemma 8.2.9. — The morphism U ®A1 A[ —» JJ^^'/K) is syntomic. 
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Proof. — Since \J^EK>IK) is étale over Spec(Ai) X[Ai/Gm],eeK, [A1/GM], it suffices to 

consider the case when U = Spec(Ai). In this case the stack JJ^e^'is isomorphic 
to the stack 

(8.2.9.1) [Spec(A! \t)/te-'/- = «)/i*eK,,K], 

where a scheme-valued point £ G №eK,/K acts by multiplication on t. To verify that 
the map Spec(A[) —•> JJ^K>'is syntomic, it suffices to verify that the morphism 
obtained by base change 

(8.2.9.2) Spec(Ai) *V^K,/K) Spec(Ai[t]/£e*'/K = n) _ _ Spec(^i[t]/te^/^ = 

is syntomic. This map is isomorphic to the map of schemes 
(8.2.9.3) 

Spec(A[[t,u]/(ueK,/K = IXK'/K — 7T,7r' = tix)) — • Spec(Ai[£]/te*'/K = TT). 

After base changing to a finite extension of the residue field k so that there exists a 
unit v G k so that (v7rf)eK'/K = 7r, this map is isomorphic to the map of schemes 

(8.2.9.4) Spec(Ai% u]/(teK'/K = TT, ue*'iK = 1)) —> Spec(A1 [t]/tEK'/« = TT) 

which is clearly syntomic. • 

Lemma 8.2.10. — Let (Ui <—• F\) —• (I/2 F2) ^e a morphism in the category 
Cris (Spec(t4I)/An K^). Then the induced map 

(8.2.10.1) 

OF2 ^OFI RT((UI ®Al A!YlFtK'IK) 'cris5 ^ o 
T T 

f*(y(p w+n)/Çn))^ 

Rr((U2®A2 A'2/FtK'/K) 'cris •) o 
U2®A2A'2/F2 K /K F 

is an isomorphism. 

Proof — Let Q denote the fiber product over F^K'/K) of Ui <g>Al A[ and F2(eK'/K 
By 8.2.9 and the base change theorem 8.1.8 there is a natural isomorphism 

(8.2.10.2) 

0 F , ® k . RTUU^A, AU, 
p(EK'/K)\ ) Cris 5 ^ ..o 

U1®A1A'1/F1 /K 

PM% 

H T ( ( Q / F 2 ( E * ' ' K ) ) . ) Cris 5 O-3pec(^)/F2eK'/íf >' 

On the other hand, the closed immersion Ui ®AX -^i C Q is defined by a PD-ideal in 
Q, and hence as in [8, 5.17] there is an isomorphism 

RY{{Q/F£K'/K) cris o f*(y(p w+n)/Ç 

~ RT((U2 ®AL A ; / F 2 ( )crisî ^ f*(y(p w+n)/Çn))^ 
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8.2.11. — We first show that \imHq((U®A A'I F{eA'/A))CV{S,OTT AT/A)) is zero 
for q > 0. For this note first that we may without loss of generality assume that U 
is connected. Furthermore, we can without loss of generality replace i f by a finite 
unramified extension K C K' (since then F ^ ' / A ) ~ p). It follows that we may 
assume that U = Spec(j4i). 

8.2.12. — Let K C K' c K be a finite extension, and let ir G A and 7r' G A' be 
uniformizing elements with (ir')eK'/Ka = TT for some a G ̂ 4'*. Then if n G O F is 
a section lifting TT SO that F —> [A1/Gm] is induced by 7r : O F —> OF, there is an 
isomorphism of stacks over F 

(8 .2 .12.1) F<e> ~ [Spec(0FM/te*'/* - *)/^v J, 
where the group HeK,/K acts by multiplication on t. This stack can also be described 
as 

(8.2.12.2) F(E) ~ [ S p e c ^ F M * ] / * 6 * ' / * ™ = 7r)/Gm] 

where w G Gm acts by £ i—• ut and u> i—> u~eK'/Kw. 

The map Spec(Ai) —> F^ is equal to the composite of the closed immersion 

(8.2.12.3) Spec(Ai) <—> Spee(0F[t, w^/t^'/^w = TT), TT' < — t, a<— w, 

with the natural smooth surjection 

(8.2.12.4) Spe^Op^w^/t^/^w = TT) — • [Spec(0F[t,w^/t^'^w = n)/Gm]. 

It follows that the group ^ ( ( S p ^ A ^ / F ^ V ^ ) ) ^ , © A (eK//JC)) is equal to 

the </-th cohomology group of the de Rham complex of the divided power envelope 

of (8 .2.12.3) over F^e\ 

Lemma 8.2.13 

(i) The module ft1 
Spec(0F\t,w±)/teK'/Kw=7r)/FKeK'/K) 

is free on one generator dlog(t), 

and the differential sends t to tdlog(t) and w to — e^//#u>dlog(t). 

(ii) If K' C K" C K is a second finite extension, then the natural map 
(8 .2 .13.1) 

A" ® A/ Q1 
Spec(0F[t,w±]/teK''/KW=7T)/F^K>'/K) 

%M%¨£ 
Spec(0F[t,w±]/t K"/Kw=ir)/FKeK"/K) 

sends dlog(£) to e^"/K' ' dlog(t). 

Proof — To see (i), consider the cartesian square 
(8.2.13.2) 

Spec(öF[£, w ^ / t ^ / K ^ = TT) 
Pri 

Spec(öF[t, w ^ / t 6 * ' / ^ = TT) X Gm 

F(e>> 

p 

Spec(0F[*, w*]/*6*'/*™ = TT), 
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where prx denotes projection onto the first factor and p denotes the action. If we 
write Gm = Spec(VF[^±]), then the pullback to Spec(0F[t,w±]/teK'/Kw = TT) of 
the ideal of the diagonal is generated by (u — 1). Let dlog(t) denote this basis for 
Q1 r((y/§iy,o)cris,e ,r((y/§iy,o)cris, Then the statements in (i) amount to the obser-

vation that 
(8.2.13.3) 
p*(t) - prj* = prl(t)(u - 1), p*(w) - prj(ty) EE -eK*/Kw(u - 1) (mod [u - l)2). 

Statement (ii) can be seen by noting that the transition map 

(8.2.13.4) F^K"/K) —> P^K'/K) 

is induced by the maps 
(8.2.13.5) 
(0F[t,W±}/tEK'/KW = TT) > {0F{i,W±]/iEK"/KW = TT), t I • tEK"/K^ w ^ wEK"/K>^ 

and 

(8.2.13.6) Gm —> Gm, u i—> v?*"/*'. 

This shows that the generator (u — 1) of Q,1r((y/§iy,o)cris,e ,r((y/§iy,o)(e , , is sent to 

the class of [ueK"iK' - 1). Since 

(8.2.13.7) if*"/*' - 1 = eKn/K\u - 1) (mod (u - l)2) 

this implies (ii). • 

8.2.14. — Prom the lemma it follows that if K' C K" C K is a second extension with 

P N | E K " / K ' (where n is the integer in 8.2.7), then since PUOF — 0 (since F is a scheme 

over ANEK^) the map 

^ ( ( S p e c ( ^ ) / F ( ^ V K ) ) c r i s , 0 S p e c ( A ; ) / F ^ , / K ) ) 

(8.2.14.1) | 

^((Spec(A'1)/F(e-'/K))cris,0Spec(^,/)/F(e/c///K)) 

is zero for q > 0. This therefore proves that #9ftcris*0specCAi)/An = 0 for g > 0. 

8.2.15. — That ftcris*0spec(Ai)/A is a quasi-coherent crystal can be seen as follows. 
By the same reasoning used in 2.5.12, for any object 

(8.2.15.1) (U^F)e Cris(Spec(i4i)/A&!*)) 

the restriction of ftcris*£>gpec(l4i)/A to FET is a quasi-coherent sheaf. Furthermore, 

for any morphism (UF ̂  F') (U F) in Cris(Spec(A,1)/AieK,)) with F' and F 
affine, 8.2.10 implies that the natural map 

(8.2.15.2) OF, ®LOF hclis*0Spec(Ai)rAn(F) — hCI-MOapec(Xi)/Ln(F') 

is an isomorphism. In particular, ftcris*^SpecCAi)/An is a quasi-coherent crystal. 
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8.2.16. — Finally for the flatness of ^cris*Ospec(]4i)/A > we use an argument we 
learned from [73, 4.1.5]. 

Let (U ̂  F) e Cris(Spec(yli)/AneK)) be an object with F affine, and let M be a 
OF-module. 

For any K C K' C K define a crystal MA' in (Spec(An)/F(e^V^))cris by as
sociating to any object T the global sections of the pullback of M to T. Then 
these crystals are compatible with the morphisms of topoi associated to further 
extensions K C K' C K" C K. The same argument used in the proof that 
^9^cris*C)Spec(^1)/^n = 0 for q > 0 shows that 

(8.2.16.1) limH^iSpeciA^/F^'/^) cris, M A') = 0 

for q > 0. 

Lemma 8.2.17. For any finite extension K <Z K' C K, the natural map 

M RT (Spechi ¨M%¨£¨£%P% 
y CriS 5 • Oc Spec(A/1)/F(e^,/^) 

(8.2.17.1) 

iür((Spec(AÍ)/F^/K))cris,>íA,) 

¿5 an isomorphism. 

Proof. — Consider the closed immersion Spec(^4/1) ^ Z defined in (8.2.12.3) over 
F^K>/K)^ an(i iet x> be the divided power envelope. Since V is flat over OF by 8.1.7 
(8.2.17.2) 

M®kFÄT((Spec(Ai) p(eKf/K)"j 

Cris 7 f*(y(p w+n)/Çn))^ 
f*(y(p w+n)/ 

f*(y(p w+n 

which by the definition of .A/i^' is equal to the right hand side of (8.2.17.1). 

8.2.18. From this lemma it follows that there is a spectral sequence 

(8.2.18.1) 

E%> = Tor-PIOAMiHq((SPEC(A'I)/F{EK'/K)) Cris 5 .O. Spec(A[)/F(eK'/'<~>') 

HP+o'(Spechi)/F^K'/K), M A>). 

From the vanishing (8.2.16.1) it then follows that 

(8.2.18.2) Tor_p>0j?(M,ff0((Spec(¿í)/ 
%¨£¨M¨££¨% 

crisi M%P£% 
Spec^D/F16*'/*''/ 

- 0 

for p > 0. This completes the proof of 8.2.7. 
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8.2.19. — The quasi-coherent crystal ftcris*0Spec(:4i)/An can be described explicitly 
as follows. Fix a uniformizer TT G A, let Rn denote the divided power envelope of the 
surjection Wn[t] —» An sending t to 7r, let i£n = Spec(i?n), and define 

(8-2.19.1) Pn ~ hcris,0Spec(Ai)rAn(En). 

Observe that the diagram 

(8.2.19.2) 

¨£%£¨P% Spec(W„[t]) 
I 

¨%M% 
[Ai/Gm]wn 

is cartesian. In particular, since the map Spec(Wn[t]) —> [A1 /Gm]wn is smooth, the 
crystal ^cris*0SPEC(^1)/A *s determined by Pn and the canonical connection 

(8.2.19.3) V :Pn—^Pn' dlog(t), 

where we write dlog(t) for the canonical generator of ̂ ^ [ ^ / [ A 1 /Gm]w corresponding 
to the element (г¿ — 1) in the ideal defining the closed immersion 

(8.2.19.4) id x e : A1 <—> A1 x Gm. 

The connection V satisfies V(£^ • m) — № V(m) + i№ • m. Note also that there is a 
natural map 

(8.2.19.5) Bn — r((S'n/H/n)cris5 ®SRL/WN ) M£¨¨%£ 

whose image is horizontal for V. 

Proposition 8.2.20 (Stack version of [41, 3.3]) 

(i) For each pn-th root (3 of TT in A there exists a canonical element vp G Ker(P^ —> 

An) such that the map 

(8.2.20.1) Bn(V)—+ Pn, V h— i/0 - 1 

an isomorphism. If ( e A is a root of unity with (f™ = 1 then v^p — (/'vp, 

where ( G Bn is any lifting of (. 

(ii) The map V is the unique Bn-Unear map satisfying 

(8.2.20.2) V ( ( ^ - 1)W) = ( ^ - l ) ^ % d l o g ( t ) . 

(hi) Tfte Frobenius on Pn is given by <p(isp) = i/^ and Frobenius on Bn-

(iv) T/̂ e action ofGal(K/K) is characterized by the condition that it extends the 
action on Bn, it preserves the divided power structure, and o(y$) — ^a((3) for 
any a G Gal(K/K). 

The proof is in steps 8.2.21-8.2.26. 
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8.2.21. — Fix /3 e A such that f3pn = TT. For any finite extension K C K' C K with 
PeKf and p2n\eK,/K, let £n(A') denote r((Spec(Ai)/WN)CRIB,0AI/WN). 

There is a canonical map p ^ ' • Spec(-Bn(A')(V)) —• [A1/Gm] defined as follows. 
Let TT' € A' be a uniformizer, and let TT' G Bn(Af) be any lifting of TT'. Then the map 
PK' is given by the map of free rank 1-modules XTtfpTl : Bn(Ai)(V) —• Bn(A[)(V) 
and the interpretation (6.1.11) of [A1/Gm]. By an argument as in (8.2.3.2) this map 
is independent of the choices, and there is a commutative diagram 

(8.2.21.1) 

Spec(^'1) £¨£¨¨ 

Spec(Bn(A')(V) 
MP%¨£ En 

£%PM 

[A1/Gm]wn 
0DK'/K 

[AVGm]Wn, 

where d^'/K := eK'/K/pn and # is the map induced by t h-> /3^(1 + F)_1. Let 

££n(A')(v) ""* Bn(Af){V) denote the line bundle corresponding to pxr, and let 7 : 

^B'(A')(V) ~* ^*(^^n ' be the canonical isomorphism making the bottom square 

commutative (the isomorphism 7 is obtained from (KfiPTL)®DK'/* 1—> (1 + y) . £). 

«.2.22. — For any object (Spec(^i) ^ T) e Cris(Spec(i4i)/[A7Gm] x*e ,[A7Gm] 

En), we claim that there exists a unique map A : T —> Spec(5n(74/)(F)) such that 
the diagram 

(8.2.22.1) 

T A Spec(Bn(A')(V)) %MP% 

PK> 

[AVGm]Wn 
Gpn 

[A1/Gm]ivn 
£¨M%¨£% 

[AVGTO]WB 

commutes and the composite of the top row is the given map to En. 
For this we use the interpretation of the stack [A1/Gm] given in 6.1.11. Let CT —> 

Or be the morphism of line bundles corresponding to the projection T —> [A1/Gm]vrTl • 
The given morphism 

(8.2.22.2) T AVGm] X0eK,/K,[A7Gm] En 

corresponds to a map T —» En and an isomorphism 

(8.2.22.3) f*(y(p w+n)/Çn))^ 

compatible with the maps to GT, where we write t also for the image of the coordinate 
t on A1 under the composite T —> En - » A ^ . 

There is also a second isomorphism tf : C^'/K ~ Or • t defined as follows. The 
pullback £T|spec(A/1) comes equipped with an isomorphism with m^/. The element /3 
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therefore defines a generator of CT Ispec (Ai)- Let ¡3 G CTK'/K be a lifting of this 
generator. Then the generator J3pn G CTK'/K is independent of the choice of lifting ji 
(again because the kernel of OT —* A[ has divided powers). The second isomorphism 
t' is defined by sending (3pTl to t. 

Since L and i' are isomorphisms of trivial line bundles, there exists a unique element 
vp G OT such that ¿/ = v$i. Furthermore, by construction the element v$ maps to 1 
in A[. We define the map A by sending V to v$ — 1. 

Let TT' be a uniformizer in A!. This uniformizer IT' defines a trivialization of the 
line bundle C>Bn(A')(y) since by construction of px1 it is defined as the pullback of the 
map of line bundles (t) —> O&i by the map Wn[t] -> Bn(A')(V) sending t to TT'P , for 
any lifting TT' of TT' to Bn(Af). Similarly, TT' defines a trivialization of the line bundle 

n 

LFT . Let 

(8.2.22.4) — • X* £>Bn{A'){v) 

be the isomorphism defined by these trivializations. If u G A' is a unit, then the 
isomorphism defined by UTT' is equal to that denned by c so in fact this isomorphism 
is independent of the choice of 7r;. 

8.2.23. — The uniqueness of the map A is seen as follows. Let CBn(A'){v) ~* 

OBn(A')(v) be the data corresponding to the map px1-
Let A' : T —> Spec(Bn(Af)(V)) be a second map with an isomorphism 

(8.2.23.1) T : LPT — • X*CBn(A>)(v) 

compatible with the maps to OT such that the composite 

(8.2.23.2) 4* ' /* A ' * 4 ? # ) < v ) ^n"(1+V(v))t, Or-t 

is equal to the map induced by L. By the universal property of Bn(A') we have A = A' 
when they are restricted to Bn(A'). 

n 

As in 8.2.22, there is a canonical isomorphism c : LFT —• A CBn(A')(v) defined as 
follows. Let TT' be a uniformizer in A'. This uniformizer TI' defines a trivialization of 
the line bundle CBn(A'){v) since by construction of px' it is defined as the pullback 
of the map of line bundles (t) —• OA1 by the map Wn[t] —• Bn(A'){V) sending t to 
7r/pTl, for any lifting TT' of IT' to Bn(A'). Similarly, TT' defines a trivialization of the line 

n 

bundle LFT . Let 
(8.2.23.3) c : C% —> A 7 * ^ ^ ) ^ ) 

denote the isomorphism defined by these trivializations. Then r — uc for some element 
u G 0?p reducing to 1 in A[. 

The isomorphism CTKF/K A/*£^,(/^)(v) is then equal to u**'/* • C ^ ' / K . Since 

Pn\d>X'/K by assumption and u = 1 + ft for some ft in the divided power ideal of T, 
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the element u K> iK is equal to 

(8.2.23.4) (i + / ^ = 2 _ £ l _ / i M = i. 

Let 7TFDK'/K = a/3 for some a G A'*, and let a G Bn(i4') be a lifting of a. Then 
the composite (8.2.23.2) sends TT'6*'/* to of(1 + A'(F)) • t. On the other hand, the 
map L sends n/eKf/K to a(l + A(V)) • t by the definition of the map A. It follows that 
\(V) = A'(V) and hence A = A'. 

8.2.24. — It follows that the choice of (5 defines a map 

(8.2.24.1) Bn(V) = lim Bn(A')(V) — Pn 

KCK'CK 

which we claim is an isomorphism. 
For this note that if K C K' C K is any finite extension with p2n\e^fthen there 

exists an extension K' C K" C K with pn\eK"/K>. There is then a commutative 

diagram 

Spec^ ' / ) A 
Spec(Bn(A»)(V)) 

M%PLO 

id PK" id 

(8.2.24.2) Spec(AÏ) [AVGm]Wn MOLPM 

°DK" IKI&K' IK 

Spec(Ai) [AVGm]wn 
°EK'/K 

[AVGm]Wn. 

It follows that the image in Pn of any global section 

(8.2.24.3) S G r((Spec(^/1)et/[A /Gm]^n)cris,C)Spec(A/1)et/[AVGm]wn) 

is in the image of (8.2.24.1). In particular (8.2.24.1) is surjective. 
To see that the map (8.2.24.1) is injective, let K C K' C K be an exten

sion with p2n\ejcf/K-> and let m G Bn(A')(V) be a section that maps to zero in 
Pn. After replacing K' by an extension we may assume that the image of m in 
r((Spec(A/1)et/A^,))cris,0Q ,At, /A(eK,)) is zero. Let K' C K" C K be an 

opec(A1 Jet/ZAn 
extension with pn\eK"/K' as above. Then the diagram (8.2.24.2) shows that the 
image of m in Bn(Ai)(V) is zero. Consequently the kernel of (8.2.24.1) is zero. 

This completes the construction of the element v$ and the proof that the resulting 
map (8.2.20.1) is an isomorphism. The statement that v^p = (pT follows immedi
ately from the construction. From this property (iv) also follows. 
8.2.25. — To prove property (iii), for any K c K' C K as in 8.2.21, let 

(8.2.25.1) f:Spec(Bn(A')(V)) Spec(Bn(A')(V)) 
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be the map induced by the canonical lifting (p of Frobenius to Bn(Af) and (1 + 
V) »-> (1 + Vy. For any lifting 0 G Bn(A') of /?, <p(0) = + h, where h is in 
the divided power ideal of Bn(Af). In particular, <p(i3)pTl = (3pn+1. It follows that / 
and the canonical liftings of Frobenius to En and [A1/Gm]\yn induce a semi-linear 
endomorphism of the commutative square 

(8.2.25.2) 

Spec(Bn(A')(V)) En 

%MPM 

f*(y(p w+n)/Çn))^ 6DK'/K 
[AVGm]Wn. 

From this and the universal property described in 8.2.22 statement (iii) follows. 

8.2.26. — Finally to prove property (ii), note that since V is a derivation it suffices 
to show that V(V) = (1 + V)dlog(t). To see this, let K C K' C K be any extension 
as in 8.2.21, and define an action of Gm on Spec(Bn(Af)(V)) for which a scheme 
valued point u G Gm acts by (1 + V) i—• u(l + V) . With this definition the group Gm 
acts on the entire diagram (8.2.25.2). In particular, looking at the first infinitesimal 
neighborhood of the diagonal there is a commutative diagram 

(8.2.26.1) 

Spec(Bn(A')) En 

A A 

Spec(Bn(A;) 0 Wn[{u - \))/[u - l)2) -En®Wn[(u-l)]/(u-l)2 

Spec(Bn(A>)) - " En 

[AVGm]Wn 
0DK'/K 

[AVGm]Wn-

It follows from 8.2.22 that for any object 
(8.2.26.2) 
(Spec(Ai) ^T)e Cris(Spec(i4i)/ AA/Gm : X^//JC,[AVGro]^n®Wn[(tX-l)]/(u-l)2), 

there exists a unique map A : T —> Spec(Bn(Af)(V) (8) Wn[(u - 1)]/(u - l)2) such that 
the diagram 

(8.2.26.3) 

T [AVGm]Wn 

A 9pn 

Spec(Bn(A')(V) ® Wn[(u - !)]/(« - l)2 %MP% [AVGm]w„ 

9DK'/K 

En ®Wn[{u - ! ) ] / ( « - I ) 2 [Al/Gm}Wn. 
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commutes and the composite of the left column is the given map to En ® Wn[(w — 
l)]/(u — l)2. Using this one sees as in 8.2.22 that there is an isomorphism 
(8.2.26.4) 

Bn(V)®Wn[(u-l)]/(u-l)2 - * hcris*0Spec(Ai)/An(En ® Wn[(u - l)]/(u - l )2 

such that for i = 1,2 the diagram 

(8.2.26.5) 

Bn(V)®Wn[(u-l)]/(u-l)2 
£%¨£% 

Bn(V) 

(8.2.26.4; (8.2.20.1) 

hcr^OSpecai)/An(En ® Wn[(u - l ) ] / ( u - l )2) %PM¨% 
Pu 

commutes. In particular, V ( l + V) is given by the class of 

(8.2.26.6) prl(l + V) - pr5(l + V) = (1 + V) • (u - 1) = (1 + V)dlog(t) 

so the connection must satisfy 

(8.2.26.7) V(V) = V ( l + V) = (1 + V)dlog(t). 

This completes the proof of 8.2.20. • 

Remark 8.2.27. — It follows from the construction that the image of v$ in Pn-\ is 
equal to v$v. In particular the map Pn —» Pn-i is surjective. 

8.2.28. — Let J\f : Pn —• Pn denote the endomorphism characterized by V(m) = 
Af(m)d\og(t) for all m G Pn> 

For a pn-th root /3 of TT in A, define 

(8.2.28.1) u0 := l o g ( ^ ) := £ ( - l ) " + 1 ( n - 1 ) ! ( ^ - 1)M 

n>0 

where we use the fact that vp maps to 1 in An. 

Corollary 8.2.29 ([41, 3.6]). — The map Af : Pn —> Pn is surjective, 

(8.2.29.1) {a G Pn|A (̂a) = 0} = 0o<i<iBn • wg1, 
(8.2.29.2) {a G Pn\M*(a) = 0 /or some i} = Bn(u0), 

and up is transcendental over Bn. 

Proof. — For any element a = X̂ n>o an(yp - l)'n' G Pn we have 

(8.2.29.3) Af(a) = £ ( n a n + an+1)[yp - 1)K 
n>0 

If 7 — En>o 7^(^/3 — l)'n' is any element then defining an inductively by 

(8.2.29.4) ai = 70, an+i = 7n - nan 

we obtain an element with image under N equal to 7 so M is surjective. 
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The formula (8.2.29.3) also shows that if Af(a) = 0 then a G Bn. Furthermore, 

(8.2.29.5) AT{up) = 1 + ]T(n(- l )n+1(™ _ 1)! + (-l)-+2n!)(z//3 - 1)M = 1. 

n>l 

It follows that for any j > 0 we have Af(v)p) = u^~XK From this the identifica

tions (8.2.29.1) and (8.2.29.2) follow. Indeed if Af^a) = 0, then by induction AT (a) = 

J2o<j<i-i a3u$ • Consequently a — J2o<j<i-i aju^p+1^ *s m the kernel of Af and hence 
lies In Bn. This implies (8.2.29.1) and"(8.2.29.2) follows from (8.2.29.1). The state
ment that up is transcendental over Bn follows from the equation Af(u^) = u^~^. • 

Theorem 8.2.30 ([41,3.7]). — For any choice of TT, there is a canonical B^ris-linear 
isomorphism between the ring B^ (defined using the chosen TT) and 

(8.2.30.1) {a G Q ® hmPn|AT(a) = o for some i > 0} 
n 

which preserves the Frobenius endomorphism tp, Af, and the action ofGal(K/K). 

Proof — Let s = (sn) be a sequence in A with so — TT and = sn, and let us G B^t 
be the element obtained as in 8.2.4. The isomorphism in the theorem is obtained by 
sending us to (u3n)n G limPn (this is well-defined by 8.2.27). The inverse map is 
given by 

(8.2.30.2) ((„,n - l)W)n (i!)-1(e(S)7r-1 - 1)', 

where e{s) is defined as in 8.2.3. • 

8.3. Crystalline interpretation of (B8t <8> D)N=0 

8.3.1. — Let A, K, etc. be as in 8.2.1, and let X/A be a tame (see 2.5.14), proper, 
regular Deligne-Mumford stack whose generic fiber XK —» Spec(K) is proper and 
smooth and whose closed fiber is a divisor with normal crossings. By definition, this 
means that for any etale morphism U —• X, with U a scheme, the scheme U is regular 
and the closed fiber of U is a divisor with normal crossings in U. Let y/k denote the 
closed fiber of X, and let r be an integer such that for any geometric point x —• y the 
scheme Spec(CK^) has less than equal to r irreducible components. 

Let &w[t] denote the stack S# (a) over A1 obtained as in 6.4.1 by taking a = 
( 1 , . . . , 1) (r-times) and H the full symmetric group on r letters. Let S denote the 
stack over [A1/Gm] described in 6.1.9, and let §>A,mA denote the stack over Spec(A) 
obtained by base change from the map Spec(A) —• [Ax/Gm] defined by the maximal 
ideal of A. 

Recall (6.1.9) that § is the stack associated to the prestack §ps which to any scheme 

T associates the following groupoid §PS(T): 
Objects: Collections (xi , . . . , xr, v) of elements of T(T, OT) with v G T(T, OT). For 

such an object we write (as before) E(x) for {i\x{ £ r(T, OT)}. 
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Morphisms: A morphism {x\,..., xr, v) —> (a^ , . . . , v') is a collection of data 
{{u, ti), A), where u = {wijie^^) is a set of elements Ui G T(T, OJ), ft : # (# ) —> ^ ( x ' ) 
is a bijection, and A G T(T, OJ). Composition is defined by the formula 

(8.3.1.1) ((uf, ti), Ar) o ((u, ft), A) = ( ( K ( 0 • ^ } ^ ( x ) , ft' o ft), A • V ) . 

If 7r G rru denotes a uniformizer, then by 6.1.8 the stack §A,mA can be described as 
the stack associated to the prestack which to any ^-scheme T associates the following 
groupoid: 

Objects: Objects {x\,..., xr, v) G SPS(T) with x\ • • • xrv = TT (where we abusively 
write also TT for its image in OT)-

Morphisms: A morphism {x\,... ,xr,v) —• (x[,... ,x'r,v') is a pair {u, ti), where 
h : E{x) —» JE^X') is a bijection and u = {ui]ieE{x) is a set of elements of T(T, OT) 
such that 

(8.3.1.2) ( J] ty=( II «*_1)( ftr((y/§iy 
i£E{x') ieE(x) i£E(x) 

Composition is defined by the formula 

(8.3.1.3) {u', ti) o (u, ti) = ({<(i) • Ui}ieE{x),ti o ti). 

We also consider the stacks §w{t)i and Sfc defined as in 6.4.1. Recall that these 
stacks are defined as follows. 

1- &w{t) is the base change 8 X[Ai/Gm] Spec(W(t)), where Spec(VF(t)) —• [A1/Gm] 
is the composite map 

(8.3.1.4) Spec(W(t)) ^ ^ - > Spec(Z[t])=A1 proJecti°n> [A1/Gm}. 

2. §w = xSpec(vy<t)),tK->o Spec(W). 

3. Sfc = §w ><Spec(w) Spec(/c). 

By the construction in 6.2 (see also 6.2.5) there is a canonical smooth map X —> 

§A,mA-

Warning 8.3.2. — Contrary to what the notation may suggest, it is not true that the 
stack §A,mA is equal to the base change of §w to Spec(v4) since the stack §w is 
defined by pulling back § via the map Spec(W) —• [Ax/Gm] defined by the zero map 
Ow —> Ow- It is true, however, that the reductions §A,mA ®A k is isomorphic to 
Sw ®w k ~ Sfc. Such an isomorphism is determined by the choice of a generator for 
nWmA which induces an isomorphism between the two arrows Spec (A:) —> [A1/Gm] 
obtained by reduction. 

For an interpretation of §>A,mA (resp. §) in terms of logarithmic structures see 9.1.26 
(resp. 9.1.21). 



322 CHAPTER 8. COMPARISON WITH SYNTOMIC COHOMOLOGY 

8.3.3. — For any integer e define A<e*e) as in 8.2.6, and let ^ -> A<eKe> denote 
the pullback of the stack S via the map 

(8 .3 .3 .1) A ^ — [AVGm]f*(y(p w+n)/Çn))^[AVGm]. 

Also define #LE) to be the pullback of 3^e) to A{nKe). 
For any finite extension K C K' C K with ring of integers A', there is a canonical 

map 

(8.3.3.2) XA> — > O ^ / K ) 

defined by the map X —> &A,mA and the composite 

(8.3.3.3) xA, > Spec(A') - ^ 1 » [AVGm]. 

Let £(EK'/K) c j ( e K ' / x ) be the inverse image of 

(8.3.3.4) [Spec(k[t]/te"')/Gm] C [Spec(W[t])/Gm]. 

Observe that by the definition of A ^ ' ) there is a natural divided power structure 
on the ideal of £<c*'/*) in ft^*'/*). We view 3^K'/K) as a divided power stack with 
this PD-ideal. 

For K = K' we write simply £ C Observe that £(c*'/*) - £ x[Ai/Gm]̂ ejK 

[A1/Gm] and that the pullback of £ via the map Spec(Ai) —» A^eK^ is equal to 

S# (O0AI,7T-

Lemma 8.3.4. — The map (8.3.3.2) induces a syntomic morphism XA[ —• £SeK'tK\ 

Proof. — That the morphism (8 .3 .3 .2) induces a map XA'X ~> £SeK'i*^ is clear because 
the map Spec(A/1) [AVGm] factors through [Spec(Z[£]/£e*')/Gm]. 

Let A ^ C A^e^ denote the closed substack defined by the divided power ideal. Re-

(e\ 

call that the stack A is isomorphic to [Spec(/c[t]/£e)/Gm]. Recall also that by 8.2.9, 
for any finite extension K C K' the natural map 

(8.3.4.1) Spec(Ai) — • A(c*° x (̂eK) Spec(i4i) 

is syntomic. 

The mapr ((y/§iy,o)cris, can be factored as the composite of the following maps: 
the map 
(8.3.4.21 
3Ui XsPec(A!) Spec(A/i; (£ x^e*) Spec(Ai)) xSpec(Ai) 

(Â(6X,) Spec(ili)) 

which is syntomic being the product of two syntomic morphisms (note that £ x^(eK) 

Spec(i4i) ~ §A,mA xSpec(v4) Spec(-Ai)), the isomorphism 

(8.3.4.3) 

(£ x5<eK) Spec(^i)) xSpec(̂ !) ( <S(«if) Spec(Ai)) 

(£ x5(eK) Spec(i4i)) xz(eK, A(e*'\ 
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and the projection 

(8.3.4.4 
(8.3.4.4) (£ xS(«ic> Spec(Ai)) MOMO 

Ä(€K' ̈P¨%P£P¨PP Ä ( E * 1 ~ I^K'/K 

which is obtained by base change from the syntomic morphism Spec(Ai) — > A €K 
and hence is syntomic. Since a composite of syntomic morphisms is again syntomic 
the lemma follows. • 

8.3.5. — If K' C K" c K is a second finite extension then there is a canonical 
commutative diagram 

(8.3.5.1) 

XA" 
• <ß(eK///K) j\(EK") 

¨P¨M%M%£ %(eK,/K) 

P¨P%L 

P¨PPM%% 

X - PMO 

6EK'/K 

£¨££¨£¨¨ 

Consider the inverse limit topos [5, VI.8.1.1] 

(8.3.5.2) (^y^ /*^n)cris • lim 

KcK'CK 

f*(y(p w+n)/Çn))^ 
) dis 7 

where as in 8.2 A denotes the integral closure of A in K and A\ denotes A/pA. The 

structure sheaves in (X̂ /Jln K'/K )̂Cris define a structure sheaf O'x- /#n, and there 

is a natural commutative diagram of ringed topoi 

(8.3.5.3) 

Ç^Ai ) cris 
7 

(Spec(Ai)/An)cris 

M%¨£M h 

(XAI /3^n )cris 
9 

( S p e c ^ J / A ^ ^ c r i , , 

where (Spechi )/An)criS denotes the inverse limit topos in (8.2.6.10) and h is the 
morphism (8.2.6.12). 

Define 

(8.3.5.4) Dn:= H%(y/A^USlOy/A(:K)), 

and let D = Q ® (hmDn). The group D is a module over the field of fractions K0 
ofW. By the constructions of 6.5 the W-module D comes equipped with a monodromy 
operator TV : D —• D and a semi-linear Probenius endomorphism ip : D —> D. Also 
define 

(8.3.5.5) f*(y(p w+n)/Çn))^ lim 
4 

n 
^ * ( (^Âi / ^ )cris, Ox7i /KB ) • 
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The main result of this section is the following: 

Theorem 8.3.6 ([41, 4.1]). — The kernel of the map 

(8.3.6.1) Af : = Af <8> 1 + 1 0 N : fl+ D -> B + <8>K0 £ 

¿5 canonically isomorphic to Q 0 H*(XA/3l). 

The proof is in steps 8.3.7-8.3.16. 

Let K : (X^ /3in)criS —> (Spec(Ai)/AieK^)criS be the morphism of topoi gof = hoj 
(where the notation is as in (8.3.5.3)). 

Proposition 8.3.7. — Let K C Kf C K be a finite extension, and write also h and K 
for the morphisms of topoi 

(8.3.7.1) (Spec (A '1 ) /A ( l e - ' ) ) c r i s — ( S p e c ^ O / A ^ ' ) ^ , 

(8.3.7.2) (XA[/XnK'/K)Us — ( S p e c ( A 1 ) / A ( f - ) ) c r i s . 

Then the natural map 

(8.3.7.3) {R9*0XAJ^) ^ ^ 0 W i ) / A ( e K „ — « ^ X a , / s < « , / K ) 

¿5 an isomorphism. 

Proof. — Let (U ^ T) e Cris(Spec(^i)/AleK)) be an object with T affine, set 

U' := Spec(Ai) xSpec(^) 17, and let 3 J ^ , A ^ , ) , and /k) be the stacks obtained 

by base change T —• AnK\ It then suffices to show that the natural map 
(8.3.7.4) 

RT{XAl x s p e c f A O ^ / ^ r ) ® ^ ^ ^ ^ 5 ) — RT{(XAl xSpec{Al)Uf)/^/K)) 

is an isomorphism, where we omit the structure sheaves from the notation. 
Using the same cohomological descent argument as in the proof of [7, V.4.2.1], 

one sees furthermore that it suffices to prove that (8.3.7.4) is an isomorphism after 
replacing XAl and U' by etale covers. By 8.1.6, we may therefore assume that XAl 
and U' are affine and that there exist regular embeddings X ^ xAlU ^> Y over 

and U' ^ Z over A ^ , ) with Y -* 3^}T and Z -+ A ^ f 0 smooth. Let Vx (resp. V2) 
denote the divided power envelope of XAl xAlU C Y (resp. JJ' C Z ) , and observe 
that by 8.1.7 the rings V\ and V2 are flat over T. Since 

(8.3.7.5) YxTZ^(Y xKci,9)0t (P2®^/A(eço) x <eK,/K> (Z x 9)0t (P2®^/A(eço) < £ ' / k ) ) 

and the divided power envelope of XAl Xspec(Ai) JJ' in Y xTZ is equal to Spec(X>i 
£>2), it follows that the arrow (8.3.7.4) can in this local situation be identified with 
the natural isomorphism 
(8.3.7.6) 
9)0t (

P2®^/A(eço) 9)0t ( P 2®^ / A (eço) - (2?i ®oT T>2) <8> îî* P 
9)0t (

P2®^/A(eço) 
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Corollary 8.3.8. — The natural map 

(8.3.8.1) (Rg.OXAi/^) ®L Rh*0Spec(Xi)/An — R^Ox^/3in 

is an isomorphism in the derived category of sheaves in (Spec(Ai)/An *̂ )cris-

Proof. — This follows from 8.3.7 by passage to the limit and [5, VI.8.7.3]. • 

Corollary 8.3.9. — There is a natural isomorphism 

(8.3.9.1) №*°xAl№) ^ ^Spectfo/An - ^ O l 7 i / X n . 

Proof. — Combine 8.3.8 with 8.2.7. • 

For ease of notation define 

(8.3.9.2) M « := ̂ ((Spec(A1)/A(f-))cris , (Wg.O^^) ®h h.OSpec(Xi)/K). 

Corollary 8.3.10. — There is a canonical spectral sequence in the category of projective 
systems of abelian groups 

(8.3.10.1) Ef* = = * ^ ( ( X ^ / ^ n ) c r i s , O x ^ / r R n ) . 

8.3.11. — Let Spec(Ai) ^ En = Spec(Rn) be the object of Cris(Spec(Ai)/AieK)) 
defined in 8.2.19, and let Kn denote the complex of i?n-modules obtained by evaluating 
Rg^O^ on En. Observe that we have a canonical isomorphism 

(8.3.11.1) Kn ~ Rr((XAl/SRnUs,0XAi/SRn). 

By 6.4.6 there exists an integer s independent of n such that Hm(Kn) admits a 
morphism to a free .Rn-module whose kernel and cokernel is annihilated by ps. 

For any object (U T) G Cris(Spec(v4i)/Ane*^) with T affine and a retraction 
r : T —> En, the base change theorem 8.1.8 implies that the natural map 

(8.3.11.2) KN ®L OT — R9*0XaJ5£)(T) 

is an isomorphism. By the same argument used in the proof of 6.4.10 this implies 
that the kernels and cokernels of the natural map 

(8.3.11.3) nm(K9) 0 0 T - , Rm9*0XAi/Jlp(T) 

are annihilated by some ps (for some possibly bigger s). 

Lemma 8.3.12. — Let n and m be integers, and let M be the crystal on the site 
Cris(Spec(i4i)/An^) defined by the module D™ ®w R with the stratification defined 
in 6.5.5 (where D™ is defined as in 6.4-2). Then there exist an integer s independent 
ofn and a map M —> Rmg*0^. /n?(i) whose kernel and cokernel is annihilated by ps. 
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Proof. — Let denote the evaluation of Rmg^OtY on the object 

(8.3.12.1) (Spec(Ai) ^ En) e Cris(Spec(v4i)/AieK)). 

As explained in 6.5.5 the module C™ also has a natural stratification, and 

(8.3.12.2) Uom(M,Rmg*0XAi/^)) * (Hom(Z>™,C™))£=0, 

where the right hand side denotes the set of morphisms horizontal for the stratifica
tions. By 6.5.8 there exists such a horizontal morphism inducing a map ip : M —• 
Rrng^Oer /fV(i) such that the induced map D™ <S>w R —> Cn has kernel and cokernel 
annihilated by ps for some integer s independent of n. From 8.3.11 it then follows 
that this map ip has the desired properties. • 

Proposition 8.3.13. — There exists an integer r (independent of n) such that M%q is 
annihilated by pr for all q > 0. 

Proof. — By the preceding lemma it suffices to show that 

(8.3.13.1) ^ ( (Spec(^1) /Al1) )c r iS )^ ® fc.0Spec(3.)/A„) 

is annihilated by pr for q > 0 and some r independent of n. As in 8.2.19, let Pn denote 
the value of ^*C)spec(A1)/An on Spec(An) ^ Spec(i?n), and by definition the value 
of M on Spec(An) Spec(i^n) is canonically isomorphic to Dn ®w R- Using the 
descriptions of the connections on Pn and D®w R in 8.2.28 and 6.5.5 respectively, we 
obtain that the cohomology groups (8.3.13.1) are computed by the de Rham complex 

(8.3.13.2) (Dn ®w R) ®R Pn9)0t (P2®^/A(eço) {Dn ^w R) ^r Pn 

Therefore the following lemma completes the proof of 8.3.13. • 

Lemma 8.3.14. — The map 

(8.3.14.1) N 0 1 + 1 0 N : (Dn ®w R) ®R Pn —> (Dn ®w R) ®R Pn 

has cokernel annihilated by ps for some integer s independent of n. 

Proof. — Let = limDn. By 2.6.8 and 5.1.20 the projective system D. G ps(W) 
is free of finite type mod 7 and therefore the natural map D00/pnD00 —> Dn has 
kernel and cokernel annihilated by some integer independent of n. Replacing Dn by 
Doo/(T + pnDOQ), where T C Doo denotes the torsion subgroup, we may therefore 
assume that is torsion free and that the projection 0 Z/pn —• Dn is an 
isomorphism for all n. 

By 6.5.9 the operator TV is nilpotent on D^. Let D^=0 denote the elements 
annihilated by TV, and let denote the cokernel. If N(ped) = 0 then N(d) = 0 
so Doo is also p-torsion free. In particular, writing (D^=0)n := (D^=0 0 Z/pn) and 
Dn : = JDQQ 0 Z/pn there is an exact sequence 

(8.3.14.2) 0 — • (D^=°)n -^Dn-^DN—>0. 
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Using the flatness of Pn, there is a commutative diagram with exact rows 
(8.3.14.3) _ 

0 (D£=°)n ®w Pn • Dn ®w Pn • Dn ®w Pn — 

10 AT iV<g>l+l<8>Af 
N 01+1(8) M 

0 • {D%r°)n ®w Pn • Dn ®w Pn > Dn ®w Pn > 0, 
where TV : Dn —> Dn denotes the endomorphism defined by TV. By 8.2.29, the map 
1 0 N : (D^=0)n ®w Pn —• (A^T°)n 0 w Pn is surjective, so by the snake lemma it 
suffices to show that there exists an integer s such that ps annihilates 

(8.3.14.4) Coker(TV 0 1 + 1 0 : Dn ®w Pn -* Dn ®w Pn) 

for all n. Since TV induces a nilpotent operator on Doo this follows by induction on 
the rank of D^. • 

Remark 8.3.15. — In what follows we write just Af for the endomorphism TV0 1 +1 0jV 
in (8.3.14.1). 

8.3.16. — From 8.3.13 and (8.3.10.1) it follows that there is an isomorphism in 
ps(W)Q 

(8.3.16.1) { ^ ( ( X ^ A n ) c r i s , O x _ /tkn)} ~ {M£0}. 

By the proof of 8.3.13 there is a canonical isomorphism 

(8.3.16.2) { M f } ~ Kev({Dn 0 w Pn}*{Dn ®w Pn}) 

in ps(W)<Q. By 8.2.27, the maps Pn —> Pn-i are surjective so the system {Dn®wPn} 
satisfies the Mittag-LefBer condition. Passing to the inverse limit we obtain an exact 
sequence 

(8.3.16.3) 0 — • Q<g> H*(X^/X) —* (HmPn) ®D^{limPn)®D — • 0, 

where D = Q 0 lim£>n as in 8.3.5. Since the monodromy operator on D is nilpotent, 
we can replace limPn by the part on which the monodromy operator is nilpotent 
which by 8.2.30 is equal to B^.. This completes the proof of 8.3.6. • 

8.4. Syntomic complexes 

We continue with the notation of 8.3.1. 

8.4.1. — First we need some general facts about hypercovers of X. 
We consider collections of data ( X . , XA',% ZA',9,FZA, #, T^"/K1) as follows. The 

simplicial space X, is an etale hypercover of X, for every K C K' C K the simplicial 
space XA',% is the base change XM (S>A A! and XA',% ^ ZA',9 is an immersion of 
simplicial spaces over the stack ^^'/K) sucn that each morphism ZA',N —» &EK'/K>} is 
smooth, FzA, # : ZA',% ZA>> is a lifting of Frobenius compatible with the canonical 
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lifting of Frobenius to Л^к'/К\ and for every Kf С К" С Ж the map тк„/К, : 
ZA",% —> ZA',9 is a morphism of simplicial spaces compatible with the liftings of 
Frobenius such that the diagram 

XA»,. > ZA»,. > К(ек"/к) > Д(в*") 

(8 .4 .1 .1) [ \тк,Чк, j [°*к„/к> 
XA>,. > ZA>t. > Ъ^к'/к) > Д(ек,) 

commutes. We further require that for a third extension К* С К" С К'" С К 

(8.4.1.2) тКш/к, — тк»/к' ° ТК"'/К"' 

Lemma8.4.2. — There exist such data (XM,XA/^ C—> ZA>^,FzA, 9,тк"/к')-

Proof. — By Galois theory, for any given К С К' С К there exist only finitely many 
extensions К С L С К'. Choose for each K' an embedding Spec(A') PA> into a 
smooth scheme PA> —> Д(Е*') with a lifting of Frobenius PpA, compatible with the 
lifting of Frobenius to A^K'\ and define 

(8 .4 .2 .1) QA> := П9)0t (P2®^/A(eço) x ^ \ o K 4 L ^ / A ( e ç o ) 
KCLCK' 

where the product is taken over Д(Е*-'). The liftings of Frobenius FpA, define a lifting 
of Frobenius FQA, on QA>. Since each of the projections 

(8 .4 .2 .2) PL xA(eL),eK,/L A(e*° - А(ек0 

are smooth and representable, and the scheme PA> appears in the product, QA> is 
an algebraic space smooth over Д(Е*') and the natural map Spec(A') —> QA> is an 
immersion since the composite with the projection QA> —> PA> is an immersion. 

For a second finite extension К С К' С К" С К there is a natural projection 
QA" —* QA' obtained by projection onto the components corresponding to extensions 
L С К" contained in K'. By construction, this map is compatible with the liftings of 
Frobenius. 

To construct the data ( X # , X A > °-> ZA'^,FZA, лчТК"/К,)ч choose first a hyper-
cover ХФ and an embedding XM <—> ZM into a simplicial space over such that each 
ZN —• IRW is smooth. Furthermore, choose a lifting of Frobenius Fz. : ZM ZM. 

Define 

(8 .4 .2 .3) ZA',* : = Z# хД(ек)QA' , 

where $ : Q^' —* А^ек^ denotes the composite 

(8-4.2.4) Qa/ > д(ек,) ' - * ' / * , д(ек). 

Then there is a natural smooth map Z ^ / . —> $ ( e ^ 7 ^ ) induced by the maps Z# —» 

and QA' —> Д^ЕК^ and an immersion XA>^ ZA',%' The liftings of Frobenius to Z% 
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and QA> induce a lifting of Frobenius FzA, m on ZA',m, and for any finite extension 

K' C K" C K the map QA" —> QA' induces a map 

(8.4.2.5) TK"IK' ZA",m — > ZA',% 

with the desired properties. • 

8.4.3. — With the natural notion of morphism, the collections of data (X%,XA',% 

ZA',%, FZA, #,TK"/K') form a category which we denote by HC(X). The category 

HC(X) has products given for two objects (xil\x^!^ <—• Z$^,Fzw ,T^]^K,) 

(¿ = 1,2) by 
(8.4.3.1) 

( A . XXA. , A . X%AA, y ^ A ' , . X A ' / K ) Z A ' , t ^ z ( 1 ) X^z(2) >TK"/K'XTK"/K')' 
Ow A' ,• A',» ' 

In particular the category HC(X) is connected. 

— Let (X.,XA',m ZA',*,FZA, 9,TK"/K') £ HC(X) be an object, and for 

every n denote by -XA^,* and the reductions modulo pn+1. Let A4^,» be the 
divided power envelope of the immersion XA'^% c—> and let JJJA, # denote the 
divided power ideal 

(8.4.4.1) JDA,n. := Ker(0D< . - OX<J. 

We view as a sheaf on XA' met — F>AF met- We also consider the p-adic com-

pletion := l i m D ^ . and the ideal JDA, # := lim J^*. The lifting of Frobenius 
FzA, # induces a lifting of Frobenius ip to 

Lemma 8.4.5. — The sheaf of rings ODA, . is p-torsion free. For any integer r in the 

interval [0,p — 1] we have ip{J$A, #) C PTODA, . • 

Proof. — That 0Da/ . is p-torsion free follows from the fact that each of the mor

phisms XA^N -> g(e*'/*) are syntomic by 8.3.4 and 8.1.7. 

For the second assertion, it suffices to show that for any element x G j j ^ and 

integer r' > r the element (p(x^r 1) is in prOjjA, #. For this write (p(x) = xp + py for 
some y. Then 

(8.4.5.1) ^(z[r']) = (xp + py)[r'] = p[r']((p - l)!x[p] + y)r\ 

and pr\p^r 1 if r < p — 1. • 

£.4.6. — For r G [0,p — 1], define a map 

(8.4.6.1) p " V :^/A(eço) x^\ - O D ^ , . 

by sending a local section x to the class of an element a G ODA, . for which pra = (p(x) 
for some lifting x G ODA, . of x. The above lemma implies that this is well-defined. 
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Define j£'x,/x(r) to ^e ^ e comPlex 
(8.4.6.2) 

KHHJKL 7̂ 1í.®°̂ ..íízA,../3i(,-'/-) 
d f*(y(p w+n)/Çn))^f*(y(p w+ 

For r 6 [0, p — 1] there is a map 

(8.4.6.3) P V : Jn,x.Mr) - *3n,X./0l(Q) 

given in degree q by the map pq r<p®p qtp on TI»"-9| LKM%¨% ~)9 
2 . - . / S ' ^ ' / K ' " 

Define 

the complex s f v ,T, (r) to be the mapping fiber of the map 1 — f*(y(p w+n)/Çn))^ 
f*(y(p w+n)/Çn))^ 

8.4J. — As explained in [39, 2.1], the product structure on j^Xm/Ji(r) induces a 

product structure on s^x./ft(r)- ^et r'r' ^ №>P ~ ^ ^e mteêers w^n r + r' ^ P ~~ 1? 
and consider two local sections in degrees q and 

(8.4.7.1) 

f*(y(p w+n) 
f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ 

K ZA'../XÍK'K)- = < x . / s ( r ) ' , 

(8.4.7.2) 

f*(y(p w+n) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ 
f*(y(p w+n)/Çn 

Then their product is given by 

(8.4.7.3) (x, y) • (*', yf) := (arc', ( - 1 ) W + Î/VOO) 

in 
(8.4.7.4Ï 

OP¨%¨P ̈PM%PL%% 
• ZA, joiieK'/K) 

(Qq+q -1 ̂ (eK//K) = < x . / * ( r + r')9+9' 

By construction the forgetful map 

(8.4.7.5) sn,x.Mr) Jn,x./x(°)> (X'V) X 

is compatible with the product structures. 

8.4.8. — Set 

(8.4.8.1) 
y := X ®A fc, y := ̂  ®fc fc, n : = ® A fc, ^ . := Y. 0fc fc, 

and let 6 : Y.,et —> Vet be the natural morphism of topoi, where the etale topos of Ym 
is defined as in 0.2.6. _ 

For every finite extension K c K' C K let tAf • Y.,et -> be the natural 

morphism of topoi, and define complex sn,x./^(r) and jn,x./3i(r) m V̂et by 

(8.4.8.2) f*(y(p w+n)/ lim 

KCK'CK 
^ , l 5 n , X . / ^ ( r ) ' 
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and 

(8.4.8.3) 3n,x9/n(r) : lim 
KCK'CK 

tA^Jn,Xm/Jl(r)' 

Also define 

(8.4.8.4) Sn,x/x(r) := M*sntx.Mr) e D(yet,Z/pn). 

The product structure on the s^x . /# ( r ) induce a map 

(8.4.8.5) sn,x/oi(r) <8> snix/n{r ) - ln,X/3l(r + r ), 

for r, r' G [0,p — 1] with r + r' < p — 1. 
Of course the above construction of sn,x/:fc(r) depends on the choice of an object 

in iJC(X), but the following lemma shows that the ambiguous notation is justified: 

Lemma 8.4.9. — If we perform the above construction with another object 

(8.4.9.1) (X.,XA,,. — ZA.,.,FS JK»/K<) e HC(X) 

to obtain a second complex sn,x/#(r) then there is a canonical isomorphism 
Sn,x/Ji(r) — Sn,x/oi(r) i>n D(yet,Z/pn) compatible with the product structure. 
Proof. — Consider first a morphism 
(8.4.9.2) 

f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ • (X9,Xa',* <-» ZA',;FzA,t.,TK»/Kt) 

in HCÇX). For any K C K' C K, there is a canonical map 

(8.4.9.3) in,x./^(r)lx<)# 
f*(y(p w+n) 

compatible with the Probenius endomorphisms. These morphisms induce a morphism 

(8.4.9.4) sÛ,x./x(r)\xA,. f*(y(p w+n)/ 

compatible with the product structures, and by passage to the limit a morphism 

Sn,x./x(r)\y~ -> snx /n?(r) which induces a map 

№.4.9.5) Sn,x/x(r) = R0*sn,x./x{r)\y~ 
f*(y(p w+n)/Çn))^ 

Sn,X/3l(r), 

where 6 : Y9 t —> yet denotes the projection. By the construction of snjx/^(r) this 
map extends to a map of distinguished triangles 
(8.4.9.6) 

Sn,x/x{r M*)mK>rt'xm/x(r) 
f*(y(p w+n) f*(y(p w+n)/Çn))^ +i 

a 0 OUJK 

f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^ l-p ru> 
****** if*.,*®. 

+ 1 
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By 2.5.5 the complex R0*j£'x./%(r) ls quasi-isomorphic to the restriction to yet of 

the complex Ru^/A(eço) x^\1^ u , ^ and similarly for R6*jA~ /m(r). It follows 

that the map /? is an isomorphism, and hence a is also an isomorphism. 

For a general second object (X9,XA',* <—> ZA'^^F^ ^K"/K') £ HC(X), let 

( X * , X*, # Z * #, FZ* , T£„/k, ) denote the product in HC(X) with ( X . , X A > 

ZA',%, FZA, . , TK-//IK'), and let s*x/^(r) denote the complex obtained using the prod
uct. Then there are isomorphisms 

(8.4.9.7) f*(y(p w+n)/Çn))^ ¨%PP£ 
sn,x/^(r) 

P̂2 f*(y(p w+n)/ 

which gives an isomorphism snjx/#(r) — Sn,x/oi(r)' If there exists a morphism / 
as in (8.4.9.2) then in fact this isomorphism agrees with the one defined by / as 
in the start of the proof. Indeed, let T denote the graph of / in HC(X). Then 
/* : snix/tk{r) snjx/n(r) is equal to the composite 

(8.4.9.8) ^/A(eço) x^\^/A(eço) x^\ Sn,X/^(r) 
r* ^/A(eço) x^\ 

On the other hand, since pr2 o T is the identity we have Y = pr2 so / * = pr2 o 
prî. • 

8.4.10. — The above lemma also implies (modulo the verification of the appropriate 
transitivity relations which we leave to the reader) that there is a natural action of 
G := Gel(K/K) on sn,x/:tt(r) compatible with the natural action on y. For any 
element a G G, this action cr*sn,x/^(r>) —> sn,X/oi(r) can be described as follows. 

Fix an object (X#,X^/jt <—• ZA',*,FZA, ,TK"/K') £ HC(X), and let 

(8.4.10.1) (X9,XA'* ^ ZaA,_m,Fz°. ,TK„ ,K,) £ HC(X) 

be the object with ZGA, m = ZA>^, Fz^, m = FZA, #, and r£„jK = TK<>/K>, but the 

closed immersions XA> ^ e-+ Z°A, # given by the composites 

(8.4.10.2) XA> 
a 

xA, zA>,.. 

From the construction there is a natural map of complexes 0"*sn,x./#(r) ~~* Sn,x./Ji(r) 
on Yet , where sn,*./#(r) is constructed using (X.,XA^. <--> ZA>,., FZA, #, TK»/KI) and 

Sn,x./x(r) is constructed using {X.,XA>,. ^ Z% ^FZ°A, ^T£„/K,). Applying R6* 

we obtain the map cr*sn^x/ji{r) —• sn,x/^(r) which by the proof of the lemma is 

independent of all the choices and compatible with multiplication in G. This action 

is also compatible with the product structure (8.4.8.5). 

Proposition 8.4.11. — There is a natural isomorphism 

(8.4.11.1) H*(yetJn,x.M0)) ~ H%(XÂjXnUs,OxAjxn), 

where the right hand side is defined as in 8.3.5. 
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Proof. — By 2.5.4, there is a natural isomorphism 

(8.4.11.2) f*(y(p w+n)/Çn))^ Ru^/A(eço) x^\(e Ki J K) 
A'x ,et/ -K-n 

which is functorial. It follows from this functoriality and [5, VI.8.7.7] that 

H'WETJN.X.MO)) : \jmH*(XA,n,.,j*XJ:k(0)) 

~ lim H (XA^^ÌRU^ f*(y(p w+n)/Çn))^ /1?(eK'/K))' 

and 

(8.4.11.3) 
\im H*(XA'n,9iRu, 

A ,̂et/̂ ri 
MMLM o 

XA'n,et/ 
f*(y(p w+n) 

— H ((X 4 /!Rn)cris, £%£¨PO%P 

Corollary 8.4.12. — ÏTiere zs a natural map 

(8.4.12.1) ff'CVet.Sn.X/aM) *̂((x3ri/Kn)cris,e>xx /*„r=pr, 
w/iere tte n</A£ /mnd side denotes the submodule on which Frobenius acts as multipli
cation by pr. 

Proof — The natural map sn,x./#(r) ~~* Jn,xm/oi(Q) induced by the maps (8.4.7.5) 
induce a map 

(8.4.12.2) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn 

which by the definition of sn,x/#(0 as the mapping fiber of 1 — p rcp lands in the 
part on which Frobenius acts by multiplication by pr. • 

8.4.13. — Following [41], we now briefly indicate for the convenience of the reader 
the remaining pieces needed to complete the proof of the Cst-conjecture in the case 
when p > 2dim(X ®A K) + 1. The reader interested in more details should consult 
loc. cit. and [73]. Also, it hopefully is clear from the preceding that stack-theoretic 
techniques can also be used in Tsuji's arguments in [73] which remove the hypothesis 
on the dimension. We do not discuss these things here since we do not have anything 
to contribute which is not already in the above references. 

Theorem 8.4.14 ([41, 5.4]). — Let XK denote the generic fiber of X and let i : y —> 
X <S>A A and j : X ^ —> X (Si A A be the natural maps. Then for 0 < r < p — 1 there is 
a natural isomorphism 

(8.4.14.1) T<riJ*Rj*(Z/pnZ(r)) f*(y(p w+n)/Çn) 

in D((X ®A A)et,Z/pn) compatible with the Galois actions. In particular, if m < 
r < p — 1 or dim(Xx) < r < p — 1 then by the proper base change theorem for étale 
cohomology [5, XII.5.1] there is a natural isomorphism 

(8.4.14.2) #*CVet,Sn,x/a(r))- # * ( X ^ , Z / ^ ( r ) ) 

compatible with the Galois action. 
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8.4.15. — Prom this and 8.4.12 we obtain a map 

(8.4.15.1) Hm(Xx,Z/pn(r)) —> Hm{{X^JXl)c^OX-j^nY=^ 

for m < r < p — 1. By 8.3.6, this induces by applying lim^ and tensoring with Q a 

natural map (using the notation of 8.3.6 

(8.4.15.2) Hm(Xw,Qp(r)) —> (B+ ®K„ DMY*=°>*°°*R. 

Recall (8.2.3) that there is a canonical map Qp(l) B^t such that Bst is obtained by 
inverting the image of a generator of Qp(l). There is thus a canonical map Qp(—r) «-> 
B^t- Tensoring (8.4.15.2) with Qp(—r) we obtain a map 

(8.4.15.3) V™ := ffm(%,Qp) —+ (Bst ®x0 D™)^=°'*=1. 

Extending scalars we obtain a map 

(8.4.15.4) Bst ®QP V™ — • S8t 0Ko £>m 

compatible with the monodromy operators, Frobenii, Galois actions, and product 
structure when it makes sense. Note that since K <S>K0 DM ~ H^XK/K) this 
map (8.4.15.4) can also be written as a map 

(8.4.15.5) Bst ®Qp Vm —> Bst ®K H?R(XK/K). 

8.4.16. — To prove that (8.4.15.4) is an isomorphism when the dimension d of XK 
satisfies 2d + 1 < p, one proceeds as follows. 

First observe that it suffices by replacing K by a finite extension to consider the 
case when XK is geometrically connected, and also we may assume that K/Ko is 
Galois. Define a trace map 

(8.4.16.1) tr : D2D —• K0 

by noting that the usual trace map on de Rham-cohomology 

(8.4.16.2) HSRVK) * K ®KO D2D — » K 

is G&l(KÎ î o)-invariant. We also have the trace map V2d Qp(_d). The canonical 

inclusion Qp(—d) C Bst induces an isomorphism Bst(—d) ~ .Bst- Hence the trace map 

on etale cohomology induces a map 

(8.4.16.3) tr : Bst <8>qp V2d Bst. 
The following proposition is proven by showing that the isomorphism in 8.4.14 is 
compatible with certain Chern classes of line bundles. 
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Proposition 8.4.17 ([73, proof of 4.10.3]). — The diagram 

(8.4.17.1) 

Bat ®QP V2d 
%£ 

Bst 

(8.4.15.4) (8.4.15.4) 

®K0 D2d 
tr 

Bst 

commutes. 

8.4.18. — To see that (8.4.15.4) is an isomorphism, note that it suffices to consider 
the case when m < 2d. Then there is a commutative diagram 

(8.4.18.1) 

Bst ®QP Vm X BST ®QP V2D-M Bst ®QP V2d ~ Bst 

(8.4.15.4) 

Bst ®K0 Dm x Bst ®K0 D2d~m Bst ®K0 D2d ~ Bst, 

where the horizontal arrows are given by cup-product. By Poincaré duality, the 
horizontal arrows are perfect pairings between finitely generated free 2?st-modules. 
In particular, the map (8.4.15.4) is injective. In fact it is canonically split since a 
complement is given by the set of elements m E Bst ®K0 Dm annihilating Bst ®QP 
y2d-m c ^ D2d-m gince ym and pm haye the game rank (for example 
after tensoring with C they are both isomorphic to Betti cohomology), it follows 
that (8.4.15.4) is an isomorphism. 

The only thing that remains for the proof of the Cst-conjecture is the following 
result. Recall (8.2.5) that there is a filtration FilBgt on the ring Bst- This defines 
a filtration Fi\Bst <g> Vm on BST <8>QP V™, and a filtration on BST ®K H^K{XK/K) by 
taking the tensor product of FilBgt and the Hodge filtration on H^(XK/K) 

Proposition 8.4.19 ([73, 4.10.3]).— The isomorphism (8.4-15.4) is compatible with 
these filtrations. 

Finally let us mention two results of Tsuji concerning functoriality which are needed 
in the next section. 

Theorem 8.4.20 ([73,4.10.4]). — Let K c L C K be a finite extension, Xf/0L a 
semistable proper scheme, and g : X' —> X a morphism over Spec(0L) —> Spec(F). 
Then the diagram 

(8.4.20.1) 

#dR ®QP H*(XL,QP) 
(8.1.15.5) 

BdR®LH*dR(X'L/L) 

9* 9* 

BdR ®Qp H*{XK,QP) 
(8.4.15.5) 

BdR ®K H*dR(X'K/K) 

commutes. 
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Theorem 8.4.21 ([74, A2.7]). — Let K c L c K be a finite extension, and X/OL a 
semistable scheme with general fiber XL- Let a £ Ga\(K/K) be an automorphism, 
and let XA denote the semistable scheme XA := X ®oL,a OL- Then the diagram 

(8.4.21.1) 

BdR ®QP H*ÇX?L,Qp) %MP%£ BdR®LH*dR(%l/L) 

cr*<g)a* a* <g><7* 

BdR ®Qp H*{XL,QP) 
M%PL 

BdR ®L#d*R(XL/L), 

commutes, where cx (resp. cx°) denotes the map (8.4-15.5) forX/OL (resp. Xa/OL)-

8.5. Construction of the (y?, N, G)-structure in general 

Following [74, Appendix], we explain in this section how to associated to any 
smooth proper scheme X/K a canonical (</?, iV, G)-module structure on H£R(X/K). 
For more details the reader should consult loc. cit.. 

8.5.1. — First we recall some general facts about correspondences. Let H*(—) be a 
Weil cohomology theory defined on the category of varieties over K and taking values 
in the category of graded C-vector spaces for a field C of characteristic 0 (cf. [45, 
1.2], but note that Tate twists are neglected in this reference). The case of interest 
for us is H*(—) equal to p-adic étale cohomology or de Rham cohomology. For an 
integer s and a smooth scheme X we write H*(X)(s) for the 5-th Tate twist of the 
cohomology ring H*(X). 

For technical reasons it will be useful to also consider smooth proper if-schemes, 
which are possibly not connected. Let us briefly discuss how to extend some of the 
results of [45] to this slightly more general setting. 

(i) If X is a smooth proper K scheme with connected components {Xi}iei then 
we define H*(X) := FUi 

(ii) If X and Y are smooth proper if-schemes, then for every integer n the pullback 
map 

(8.5.1.1) prï x pr* : ®p+q=nHp(X) 0 Hq(Y) — Hn(X x Y) 

is an isomorphism (the resulting decomposition of Hn(X x Y) is called the Run
neth decomposition). This follows from noting that if {Xi}iei and {Yj}j£j are the 
connected components of X and Y respectively, then there is a commutative diagram 

(8.5.1.2) 

f*(y(p w+n)/Çn))^f*(y(p w+n pr*Xpr̂  
Hn(X x Y) 

def. 

®p+g=n(iw ® (rw H^YJ)) 
def. 

N4>j(©^=ni^№)®ff*(^)) 
prïxpr£ 

¨%£ Hn(Xi x Yj) 
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where the vertical arrows are isomorphisms, and the bottom horizontal arrow is an 
isomorphism by [45, 1.2 B]. 

(hi) If X is a smooth proper X-scheme of pure dimension d, then there is a trace 
map tr : H2d(X)(d) —> C which is an isomorphism if X is connected. If {Xi}iei then 
H2d(X)(d) = YlieI H2d(Xi)(d) and the trace map for X is defined to be the sum of 
the trace maps of the X{ [45, 1.2 A]. 

(iv) Let X and Y be smooth proper connected if-schemes of pure dimension d and 
d' respectively. A class a e H2d'(X x Y)(d') defines a map a* : H*(Y) -> H*{X) 
as follows (we call such a class a a correspondence). First note that the Kunneth 
decomposition 

(8.5.1.3) Hn(X x Y) ~ ®p+q=nHp(X) 0 Hq(Y) 

defines a canonical map H2d'+*(X x Y){df) -> H*(X) <g> H2d'(Y)(d') whose compo
sition with 1 <g> tr : # * ( X ) <g> H2d'(y)(d') # * ( X ) we denote by q. Define a* to be 
the composite morphism 

(8.5.1.4) H*(Y) -J?L^ H*(X x Y) H2d'+*{X x Y)(d') —q—+ H*(X). 

Observe that if {Xi}iei and {Yj}jej are the connected components of X and Y 

respectively, and if OL^ denotes the (i,j)-component of a in H2d (X x Y){d') = 

Uij H2d\Xi x Yj)(d') then the diagram 

(8.5.1.5) 

H*(Y) 
a* 

H*(X) 

f*(y(p w+n)/Çn))^ £%¨% 
hH*(Xi) 

commutes, where Y2aij denotes the map which sends (vj)jeJ € TljH*(Yj) to the 

element of YliH*(Xi) with i-th component Y^jeJ aij(vj)' Note also that for two 

classes a,ße H2d'{X x Y){d!) we have (a + /?)* = a* + /?*. 

Proposition 8.5.2 

(i) Le£ f : X ^ Y be a morphism of smooth, and proper K -schemes of pure dimen
sion d and d! respectively, and let a G H2d (X x Y)(d!) be the class of the graph 
of f. Then a* is equal to the map f* : H*(Y) H*{X). 

(ii) Assume X and Y connected, and let Z be a third smooth proper connected K-
scheme of dimension d" and let ß G H2d (Y x Z)(d") be a class. Then for any 
a e H2d'(X x Y)(d'), the composite a* o /3* : H*(Z) H*(X) is equal to the 
map defined by 

(8.5.2.1) Pri3*(prï2(a) ' pr23(0)) e H2d"{X x Z){d"). 
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Proof. — For (i) note first that when X and Y are connected this is [45, 1.3.7 (hi)]. 
For the general case, let {Xi}iei and {Yj}jej be the connected components of X 
and Y respectively and observe that if we write a.^ for the (i,j)-component of a as 
above, then a{j = 0 unless X{ c f~x{Yj). Therefore if ctj C H2d'(f~1{Yj) x Y5){d!) C 
H2d (X x Y)(d!) denotes the class of the graph of the morphism f~1(Yj) —• Yj we 
have a* = ^ZJeJctj. From the commutativity of (8.5.1.5) it follows that it suffices 

to consider the case when Y is connected. In this case, if a* G H2d (Xi x Y)(d!) C 
H2d (X x Y)(d!) denotes the class of the graph of Xi —• Y we have a = Y2ieI cti, and 
a* = J2i OL*. Again using the commutativity of (8.5.1.5) this reduces the proof to the 
connected case. 

Statement (ii) follows from [45, 1.3.3]. • 

Corollary 8.5.3. — Let f : Y —> X be a generically étale morphism of proper smooth 
K-schemes of pure dimension d, and let a G H2d(X x Y)(d) denotes the class of the 
cycle f x id : Y <^-> X x Y. 

(i) If X and Y are connected, then a* o / * : H*(X) —> H*(X) is equal to multipli
cation by the degree of the field extension k(X) —• k(Y). 

(ii) In general the map f* is infective, and a* gives a splitting of the inclusion. 

Proof. — Let C X x Y denote the cycle / x id : Y c X x Y. 
To prove (i) it suffices by 8.5.2 (i) and (ii) to show that if Tf C Y x X denotes the 

graph of / , then 

(8.5.3.1) pr13.(prî2(r/) • p r ^ ) ) = [k(Y) : k(X)} • Ax 

in the Chow ring of X x X which is clear. 
To prove (ii), let {Xi} (resp. {Yj}) denote the connected components of X (resp. 

y) , and for Yj C f~1(Xi) let : Yj —• Xi be the restriction of / , and let 
oiij G H2d(Xi x Yj)(d) C H2d(X x Y)(d) be the class of T).. c X{ x Yj. Using 
the commutativity of (8.5.1.5) once more, it follows that the map 

(8.5.3.2) a* o / * : H*{X) —• H*{X) 

is equal to product of the maps 

(8.5.3.3) 

YjCf-HXi) 

a:jof*j:H*(Xi)—+H*(Xi)$ù^$ù. 

If dij denotes the generic degree of the map fy, we then get from (i) that (8.5.3.3) is 
equal to multiplication by the positive integer ^2Yjcf-1(xi) Therefore a* o / * is 
an isomorphism, which implies (ii). • 

If / : X —>• Y is a morphism of proper smooth if-schemes of pure dimension d 
and d' respectively, then the preceding discussion can also be applied to the de Rham 
cohomology groups H£R(X) and H^R(Y) over K. In the case when H*(—) = i7dR(—), 
the above argument also gives the following: 
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Corollary 8.5.4. — Let f : Y —• X be a generically étale morphism between proper 
smooth K-schemes. Then the map f* : HdR(X) —> HdR(Y) is strictly compatible with 
the Hodge filtrations. 

Proof. — Let Hftod(X) (resp. H^od(Y)) denote the graded (with respect to the 
Hodge filtration) algebra associated to HdR(X) (resp. HdR(Y)). It suffices to show 
that the map / * : H^od(X) —• H^od(Y) *s injective. 

For this it suffices to show that the map a* : HdR(Y) —> HdR(X) defined in 8.5.3 
respects the filtrations. For then there is a map a* : H^od(Y) —* ^HodPO sucn *na* 
a* o / * : Hftod(X) —> H^od(X) is an isomorphism. 

To see that a* respects the Hodge filtrations, let Fil denote the Hodge filtration on 

H£R(XxY). The class a of Tff lies in F'ùdH^(XxY). Hence if 0 G HPR(Y) lies in the 

j-th step of the Hodge filtration on HdR(Y), we have a • pr*./? G Fi\d+jH^p{X x Y). 

Since the Kunneth decomposition Hd^~p(X x Y) ~ ®p+q=2d+pHdR(X) ® HdR(Y) is 

strictly compatible with the filtrations, it follows that the component of a • pr*,(/?) 

lying in Hp{X) <g> H2d(Y)(d) in fact lies in FiP ® Fil2d. It follows that the composite 

(8.5.4.1) H*r{X x Y)^/A(eço) x ^ \ H l £ * { X x Y){d)^/A(eço) x̂ \H*dR(X) 

is compatible with the filtrations. • 

Theorem 8.5.5 ([74, A2]). — Let X/K be a smooth proper scheme with semistable re
duction, and letX/V be a semistable model. Then the isomorphism 

(8.5.5.1) BdR ®Qp H*(X, Qp) ~ BdR ®K 4 № ) 

induced by (8.4-15.4) is compatible with the endomorphisms defined by correspon
dences a G CHd(X x X). 

8.5.6. — We use this result in conjunction with de Jong's alterations theorem. 
Recall [37, 2.20] that if S is a noetherian integral algebraic space, then an alteration 

S' of 5 is a dominant proper morphism (j) : S' —> S of noetherian integral schemes 
such that over some non-empty open set U C S the morphism 0_1(C7) —• U is finite. 
Observe that if 5 is a Q-scheme then this last condition implies that (j) is generically 
étale. This notion generalizes to reduced noetherian algebraic spaces. If S is such a 
space over Q, then an alteration is a dominant proper morphism (/> : S' —• S of reduced 
noetherian algebraic spaces such that for every point s' G Sf of codimension 0 the 
morphism (j> is étale in a neighborhood of s' (and in particular <j>(s') is a codimension 
0 point of S). In what follows we will use this slightly more general definition of 
alteration. 

The main result about alterations that we need is the following: 

Theorem 8.5.7 ([37, 6.5]). — Let X/V be a flat, proper, and reduced V-scheme. Then 
there exist a finite extension K C L C K and an alteration X' —> X over Spec((!?£/) —• 
Spec(F) with X'/OL a semistable scheme. 
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Proof. — In the case when X is also integral this is [37, 6.5]. For the slightly more 
general case of the theorem, note that by replacing X by the disjoint union of its 
irreducible components, we may assume that X is a disjoint union X = U^X^, with 
each %i a flat, proper, and integral V-scheme. An examination of the proof of [37, 
6.5] shows that in this case there exists a single extension K C L C K such that for 
every i there exists an alteration X^ —> X* over Spec(0L) —• Spec(F). We then obtain 
the theorem by setting X7 := JĴ  X^. • 

Corollary 8.5.8. — Let X/K be a smooth proper algebraic space. Then there exist a 
finite extension K C L C K and a semistable proper scheme ^/OL and an alteration 
</> : yL ^ X over Spec(L) - » Spec(X). 

Proof. — By [46, IV.3.1], there exists a birational map X' —• X with X' an integral 
projective scheme. Replacing X by X' we may therefore assume that X is a projective 
scheme. Choose an embedding X C ¥K into some projective space, and let X C Py 
be the scheme-theoretic closure. Then X is a flat, proper, and integral F-scheme so 
the result follows from de Jong's theorem. • 

8.5.9. — Let X/K be a proper smooth algebraic space, and let Alt(X) denote the 
category of pairs (L,y,</>), where K C L C K is a finite extension, y / 0 L is a 
proper semistable scheme, and <\> : y^ —• X is an alteration. The set of morphisms 
(V, y', (j)') —» (L, y, fa) is the empty set unless L C V in which case a morphism is an 
X-map g : y ' -+ y over Spec(0L') - » Spec(0L). 

Proposition 8.5.10. — The category Alt(X) is non-empty and connected. 

Proof. — The preceding corollary states that the category is nonempty. 
To see that it is connected, let (Li, ^èi,fa) — 1,2) be two objects. We construct an 

object (L, y, tji) G Alt(X) mapping to both (Li, y*, fa). Choose first a finite extension 
V C K containing both Li, and let y^ denote the base change of y* to Spec(0z/). 
Let y ' denote y[ xSpec(C)L,) %- Since the maps y ^ —* XK are generically étale, the 
projection y7x L, XxL, y2,z/ ~~> XL> is generically étale. In particular, y;x L, XxL, y 2,1/ 
is generically reduced. Let ZF denote the closure of the natural immersion }$[ L, XxL, 
y2 L, y; with the reduced structure. Note that Z' is equal to the scheme-theoretic 
closure of (y^ L, XxL, y2 L/)red and hence Z' is proper, reduced, and flat over Ou-
Using 8.5.7, choose a finite extension V C L C K, and an alteration y —> £ over 
Spec(0L) —• Spec(0L') with y/C^L semistable. Then y with the natural projection 
<j> : —> X is an object of Alt(X) mapping to both (Li, y*, fa). • 

8.5.11. — Let X/K be a smooth proper scheme, and let m be an integer. We now 
construct the (ip, N, G)-structure (D171, <p, N) on H^(X/K). 

Choose a finite extension K C L C K and a proper semistable scheme ^/OL with 
an alteration (j) : y^ —• X over Spec(L) —• Spec(JK"). The Cst-conjecture for y / 0 L 
provides an isomorphism 

(8.5.11.1) BdR ®Qp Hm$L, QP) ~ £dR 0L H^WL/L) 
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which by 8.5.4 and 8.5.5 induces an isomorphism 

(8.5.11.2) BdR ®QpHm(X,Qp) BdR ®L H?R(XL/L) 

compatible with the filtrations and action of G&\(K/L). Define 

(8.5.11.3) Dm := (Bst ®Qp Hm{X,®p))G^K'V ®Lo K$r, 

where Lo denotes the maximal unramified extension of K$ in L. The space Dm 
inherits operators ip and N from Bst satisfying 0.1.11) and 0.1.1 2). 

Note that if a* : Hm($L,Qp) -> Bm(yL ,Qp) denotes the endomorphism giv
ing the projection to HRN(X,Qp) as in 8.5.3, then by 8.5.5 the map OJ* induces a 
Gal(if/L)-equivariant endomorphism of BdR 0Qp B"m(yz,>Qp)- It follows that there 
is an isomorphism 

(8.5.11.4) D™ ®Kur K ~ HXR(XL/L) ®LK~ H?R(X/K) ®K K. 

Lemma 8.5.12. — The data (Dm,(^, N) and the isomorphism (8.5.11.4) is indepen
dent of the choices. 

Proof. — To see that the data (Dm, <p, N) is independent of the choices, note that if 
L C L' C K is another finite extension then there is a natural map 
(8.5.12.1) _ _ 

(B8t £>Qp B ™ ( X , Q p ) ) G a 1 ^ ®Lo K%r —> (Bst ®Qp Bm(X,Qp))Gal(*/z/) ®L/ K%r 

which we claim is an isomorphism. Since both spaces have the same dimension (the 
dimension of H^R(XK/K)), it suffices to show that it is an injection. Since Bst is fiat 
over i^or, it suffices to verify this after base changing to Bst. For this consider the 
commutative diagram 
(8.5.12.2) 

(BBt ®Qp B™(X,Qp))Gal(*/L) ®Lo Bst (8.5.12.1) (B8t ®Qp B™(X,QP))GAL(*/L') ®L, Bst 

a b 

Bst &QT> V 
id 

Bst ® Q P V. 

By [24, 5.1.2 (ii)] the maps a and b are injective, and therefore the map (8.5.12.1) is 
also injective. 

To see that the isomorphism (8.5.11.4) is independent of the choices, it suffices 
by 8.5.10 to show that if (Z/,y',0') —> (L,y,0) is a morphism in Alt (A"), then the 
isomorphism (8.5.11.4) obtained from (Z/,y',<//) and (L,y,0) agree. For this in turn 
it suffices to show that the diagram 

(8.5.12.3) 

BdR®QpH™()j'L,,Qp) • BdR®L,H?R(y'L,/L') 

^/A(eço) x^\^/A(eço) x^\ BdR 0 L H™RtyL/L) 

commutes which follows from 8.4.20. 
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8.5.13. — To complete the construction of the (<p, iV, G)-structure, it remains to con
struct an action of G on DM such that the isomorphism (8.5.11.4) is G-equivariant. 

For this fix an object (L, y,</>) G Al t (X) . For any a G Gal(K/ i f ) , we obtain a 
second object (<T(L),T,<j>a) G Alt(X) by defining T := y xSpec(OL),a Spec(0L). 
There is then a commutative diagram 

(8.5.13.1) 

¨P%L % 
£ 

Spec(0L) a Spec(CL). 

By 8.4.21 the resulting diagram 

(8.5.13.2) 

BDR ®QPHm(t,QP) M¨P£¨£ BM®LH?R(TL/L) 

f*(y(p w+n) <7*(g)<7* 

f*(y(p w+n)/Çn))^¨M% £%¨£ #dR ®L H ^ L / L ) 

commutes. From this and the independence on the chosen model in Alt(X) it follows 
that cr* induces an automorphism of DM compatible with the automorphism on KQ R 
induced by a and also compatible with the isomorphism (8.5.11.4). This therefore 
completes the construction of the (<p, TV, G)-structure on H^(X/K). 
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CHAPTER 9 

COMPARISON WITH LOG GEOMETRY IN THE SENSE 
OF FONTAINE AND ILLUSIE 

Throughout this chapter we assume the reader is familiar with the basic notions 
of log geometry [40]. 

9.1. The stacks &og(S,Ms) 

9.1.1. — Let (5, Ms) be a fine log scheme, and let 

(9.1.1.1) &og(s,Ms) —> (S'-schemes) 

be the fibered category whose fiber over an 5-scheme / : X S is the groupoid of 
pairs ( M x , / 6 ) , where Mx is a fine log structure on X and fb : f*Ms —> Mx is a 
morphism of fine log structures on X. 

Thus the data of a morphism of fine log schemes (X, Mx) —• (S, Ms) is by definition 
equivalent to the data of an "ordinary" morphism X —» &og(s,Ms)-

Theorem 9.1.2 ([62, 1.1]). — The fibered category £O<7(S,MS) ^s an algebraic stack lo
cally of finite presentation over S. 

9.1.3. — This result enables one to translate many of the basic notions in log geometry 
into the stack theoretic language. For example it is shown in [62, 4.6] that a morphism 
of fine log schemes (X, Mx) —* (5, Ms) is log smooth (resp. log etale, log flat) in the 
sense of [40] if and only if the corresponding morphism X —» &og(s,Ms) *s a smooth 
(resp. etale, flat) morphism of algebraic stacks. Furthermore, as explained in [64, 
3.8] there is a canonical isomorphism 

(9.1.3.1) O1 
l£(X,Mx)/(S,Ms) 

O 1 
**X/Logis,Ms)> 

where the left hand side is the sheaf of logarithmic differentials defined in [40, 1.7]. If 
(X, Mx) —* (S,Ms) is log smooth, then fl\x MX)/(S MS) *s l°ca% r̂ee °f finite type 
and (9.1.3.1) also induces an isomorphism on tangent sheaves 

(9.1.3.2) T(X,Mx)/(S,Ms) - Tx/Hog(s,M3)' 
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9.1.4. — An important aspect of the stacks &og(s,Ms) discussed in [62, §5] is their 
relationship with toric stacks. Let P be a finitely generated integral monoid, and 
let Sp denote the stack-theoretic quotient of Spec(Z[P]) by the natural action of 
the diagonalizable group scheme D(Pgp) with underlying scheme Spec(Z[Pgp]). Any 
morphism of finitely generated integral monoids I : Q —> P induces a morphism of 
algebraic stacks S(l) : Sp —• SQ. 

Let A be a ring, and let /3 : Z[Q] —• A be a ring homomorphism defining a morphism 
Spec(A) —> So. Define maps 

(9.1.4.1) f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ 

(9.1.4.2) n : p 0 g g P _ > p g P , (p, ç ) i > p l(q), 

and 

(9.1.4.3) 
f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ 

We view Spec(Z[P 0 QSPD as a ^[Q]-scheme using the map m. 
The map TT defines a homomorphism D(Pgp) —• Z}(Pgp0Qgp) and hence an action 

of D(Pgp) on Spec(Z[P0Qgp]) over Spec(Z[Q]) (since the composite 7rom is the zero 
map). We therefore also obtain an action of D(Pgp) on Spec(^4 ®z[Q] Z[P 0 Qgp])-
The commutative diagram 

(9.1.4.4) 

Spec(yl ®z[Q]Z[^eQgp]) 
LMOL 

Spec(Z[P]) 

m MP%£% 

Spec(A) 0 
• Spec(Z[Q]) 

is compatible with the action of £>(PSP) and D(QSP), so by passing to the stack-
theoretic quotients we obtain a commutative diagram 

(9.1.4.5) 

[Spec(A ®m] Z[P © QSP])/£>(P«P)] • SP 

Spec(A) 
0 

-SQ. 

Proposition 9.1.5. — The diagram (9.1.4-5) is cartesian. 

Proof. — The diagram (9.1.4.5) is functorial in A in the sense that if g : A —> A' is a 
ring homomorphism and /3' : Z[Q] —> A' denotes the composite map 

(9.1.5.1) Z Q 
0 

A A1, 
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then there is a commutative diagram 

(9.1.5.2) 

[Spec(A' ®ZW] Z [ P 0 Q«P])/£>(PSP)] • SpecM'" 

[Spec(A ®Z[Q] Z[P © Q«P])/Z?(pgP)] - • Spec(A) 

SP -SQ. 

where the inside bottom square is (9.1.4.5) for ¡3 : Z[Q] —> A, the big outside square 
is (9.1.4.5) for ¡3' : Z[Q] —> A', and the top inside square is cartesian. Therefore if the 
proposition holds for ¡3 : Z[Q] —• A then it also holds for /?' : Z[Q] -+ A'. It follows 
that it suffices to prove the proposition for A = Z[Q] and ¡3 the identity map. 

Let V denote the fiber product Spec(Z[Q]) x$Q Sp. The stack V associates to 
any Z[Q]-scheme g : T Spec(Z[Q]) the groupoid of triples ( Z , / , s), where Z —• T 
is a Z}(Pgp)-torsor, f : Z —> Spec(Z[P]) is a £)(Pgp)-equi variant map, and s is a 
trivialization of the Z)(Qgp)-torsor Z xD(peP) D(Qgp) such that the induced diagram 

(9.1.5.3) 

Z -
f 

Spec(Z[P]) 

y i 

T x £>(Qgp) ox action,. 
Spec(Z[Q]) 

Pri 

T 

is commutative. Here the map y is the composite of the canonical projection 

(9.1.5.4) Z - ^ Z x D ^ D{Qgp) 

and the isomorphism 

(9.1.5.5) Z x^pgP) D(Qgp) ~Tx D(Qgp) 

defined by s. Note that giving the trivialization s is equivalent to giving this D(Pgp)-
equivariant map y. 

Now given the £)(Pgp)-torsor Z —• T, specifying the commutative diagram (9.1.5.3) 
is equivalent to giving a Z}(Pgp)-equivariant map 
(9.1.5.6) 

f:Z^(Tx D(Qgp)) xSpec(z[Q]) Spec(Z[P]) ~ T xSpec(z[Q])?m Spec(Z[P 0 Qgp]), 

where the action of D(Pgp) on the right side is given by the map 7r. NOW the cate
gory of pairs (Z, / ) consisting of a D(Pgp)-torsor Z —> T and a £>(Pgp)-equivariant 
morphism (9.1.5.6) is by definition the groupoid 

(9.1.5.7) [Spec(Z[P 0 Qgp])/D(Pgp)]{T). 
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In this way we obtain an isomorphism 

(9.1.5.8) [Spec(Z[P 0 Qgp])/L>(Pgp)] ~ V. 

It follows from the construction that this isomorphism agrees with the map defined 
by the commutative diagram (9.1.4.5). • 

Remark 9.1.6 

(i) If / : Q —• P is injective, then the stack 

(9.1.6.1) [Spec(A ®z[g] Z[P 0 Qgp])/L>(Pgp)] 

can also be described as follows. Let G denote Coker(Qgp —• Pgp) so we have an 
inclusion D(G) °-> D(PGP). There is an inclusion 

(9.1.6.2) Spec(A ®Z[QM Z[P]) Spec(A ®Z[Q] Z[P 0 Qgp]) 

obtained from the morphism of monoids 

(9.1.6.3) P 0 Q g p — * P , (p ,g )H ->p . 

The inclusion (9.1.6.2) is £)(G)-equivariant, where D(G) acts on Spec(A 0z[Q] ^[-P]) 
by the action induced by the natural action on Spec(Z[P]). We therefore obtain a 
morphism of stacks 

(9.1.6.4) [Spec(A ®z[ow Z[P])/L>(G)] —> [Spec(,4 ®Z[Q] Z[P 0 Qgp])/£(Pgp)] 

which we claim is an isomorphism. For this it suffices, as in the proof of 9.1.5, to 
consider the universal case A = Z[Q]. The map (9.1.6.2) induces a £)(P^)-equi variant 
map 

(9.1.6.5) Spec(Z[P]) x DWD{F&) — • Spec(Z[P 0 Qgp]), 

and since we a factorization of (9.1.6.4) as 

(9.1.6.6) 

[Spec(Z[P])/£>(G)] 

[Spec(Z[P]) x DWD{P&)/D{P&)\ 

[Spec(Z[P0Qgp])/D(Pgp)] 

it suffices to show that the map (9.1.6.5) is an isomorphism. 
Let a : Pgp —» G be the projection and define 

(9.1.6.7) 8 : P 0 Pgp —> G, (p,p;) .—• <r(p) + <r(p'). 

Then 6 induces an action of D(G) on the product 

(9.1.6.8) Spec(Z[P 0 Pgp]) ~ Spec(Z[P]) x D(Pgp) 
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and we have 

(9.1.6.9) Spec(Z[P]) x ^ ) D ( p g P ) ~ Spec(Z[P 0 Pgpp(G)), 

where the right side is the spectrum of the ring of £>(G)-invariants. With this identi
fication the map (9.1.6.5) is the map induced by the morphism of monoids 

(9.1.6.10) r:P®Qgp —>P®Pgp, (p, q) • (p, - p + l(q)). 

Note that r is injective as / is injective and the composition (JOT is the zero map 
P 0 Qgp —• G. We therefore obtain an inclusion 

(9.1.6.11) P 0 Qgp <—• (5_1(0). 

This map is surjective, for if (p,p') G ^-1(0) then p+p ' is in Qgp and therefore (p,p') = 
r(p,p -fp ') . Now as a D(Pgp) representation the ring Z[P 0 Pgp] is equal to a direct 
sum of rank 1 subrepresentations, and therefore the ring of invariants Z [ P © P g p p ^ 
is equal to the monoid algebra Z[J_1(0)]. It follows that the map (9.1.6.5), and hence 
also the map (9.1.6.4), is an isomorphism. In summary, when / is injective then for 
any morphism /3 : Z[Q] —» A we have a cartesian diagram 

(9.1.6.12) 

[Spec(A®z[Q] Z[P])/D(G)} •SP 

Spec(j4) 
%P 
%% 
¨ 

SQ. 

(ii) Suppose l : Q —• P is surjective and furthermore that I is exact, which means 
that the diagram 

(9.1.6.13) 

Q- -P 

P%¨%£ pgp 

is cartesian. In this case we claim that the projection induced by the map m (9.1.4.1) 

(9.1.6.14) [ S p e c ( Z [ P © Q g p ] ) / £ ) ( p 8 P ) ] Spec(Z[Q]) 

is an isomorphism, and therefore the map S(Z) : SQ —> Sp is also an isomorphism. 
For this note that since I is surjective, the map D(Pgp) —> D(Q№) induced by —/ 

is an inclusion and therefore the action of D(P8P) on 

(9.1.6.15) Spec(ZfP © Qgpl) ~ Spec(ZfPl) x D(QSP) 

is a free action. We therefore have 

(9.1.6.16) [Spec(Z[P © Qgp])/£>(psp)] -Spec(Z[P©Qgp]D(pgP)). 
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It therefore suffices to show that the map m : Q —> P 0 Qgp identifies Q with the 
submonoid 

(9.1.6.17) T T ^ O ) C P 0 Q g p . 

This is clear, for if (p, g) E P 0 Qgp maps to zero under 7r, then p + # = 0 in Pgp 
which implies that (p, — g) defines an element of the fiber product of the diagram 

(9.1.6.18) 

P 

Qgp Pgp, 

which since / is exact is equal to Q. 

Remark 9.1.7. — Note that the definition of the stack Sp makes sense also for finitely 
generated, but not necessarily integral, monoids P, and 9.1.5 and 9.1.6 remain valid 
in this more general setting. One place where such monoids arise naturally is the 
following. Consider a diagram of fine monoids 

(9.1.7.1) 

Q 
a 

Q' 

b 

p, 

and let P' denote the pushout of this diagram in the category of monoids. Even 
though Q, Q', and P are integral the monoid P' need not be integral. Nonetheless 
we obtain a commutative diagram of stacks 

(9.1.7.2) 

¨¨M%£% SP 

sQ. SQ. 

If b is injective the proposition 9.1.5 implies that this diagram is in fact cartesian. 
To see this let X = Spec(Z[Q/]) and let n : X —• <SQ/ be the projection. Since 7r is 

faithfully flat, to verify that (9.1.7.2) is cartesian it suffices to show that the natural 
map 
(9.1.7.3) 
(9.1.7.3) X X E , S P , X XSQ SP 

is an isomorphism. Let G (resp. G) denote the cokernel of the map Qfgp —> P/gp 
(resp. Qgp -> Pgp). Then by 9.1.6 (i) we have 

(9.1.7.4) X XSQ, Sp,~ [Spec(Z[P'])/D(G% 

and 

(9.1.7.5) X XSQ SP ~ [Spec(Z[Q'] ®Z[Q] Z[P])/D(G)}. 
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The map (9.1.7.3) is the map induced by the map (which is compatible with the group 
actions) 

(9.1.7.6) Z[Q'] <8>z[Q] Z[P] — ZIP7]. 

Therefore the statement that (9.1.7.2) is cartesian follows from the observation that 
the map (9.1.7.6) and the canonical map G —> G' are isomorphisms. 

Remark 9.1.8. — One can reinterpret the notions of integral and saturated monoids 
as follows. Let P be a finitely generated monoid and let 7 : P —> Pgp be the natural 
map. We claim that P is integral (resp. saturated) if and only if the stack Sp is 
reduced and irreducible (resp. reduced and irreducible and normal). 

For this choose first a finitely generated free group G and a surjection 

(9.1.8.1) S: G pgp 

and let F denote the fiber product G x pgP P so we have a cartesian diagram 

(9.1.8.2) 

F - a P 
I 

/3 y 

G -
6^ 

Pgp. 

Then F is integral (resp. saturated) if and only if P is integral (resp. saturated). On 
the other hand the induced map of stacks Sp —• Sp is an isomorphism by 9.1.7 (ii). 
Replacing P by F we may therefore assume that Pgp is torsion free. 

In this case the projection 

(9.1.8.3) Spec(Z[P]) —>SP 

is a smooth surjection. If P is integral then Z[P] embeds into the ring Z[Pgp] which is 
an integral domain (since Pgp is assumed torsion free). It follows that if P is integral 
then Sp is reduced and irreducible. Conversely if P is not integral then Z[P] cannot 
be integral. For if y G P are two distinct elements with same image in Pgp then x 
and y define two morphisms 

(9.1.8.4) / „ / 2 / : S p e c ( Z [ P ] ) ^ A 1 

whose restriction to Spec(Z[Pgp]) are equal. Here fx (resp. fy) is the map induced 
by the map of rings Z[t] —• Z[P] sending t to x (resp. y). It follows that if P is not 
integral then one of the following hold: 

(i) Z[P] is not reduced in which case the stack Sp is not reduced either. 

(ii) Spec(Z[P]) is not irreducible. In this case each irreducible component of 
Spec(Z[P]) is JD(Pgp)-invariant as D(Pgp) is a connected group. It follows that 
each irreducible component of Spec(Z[P]) defines a proper closed substack of 
Sp thereby showing that Sp is not irreducible. 
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We deduce that P is integral if and only if Sp is reduced and irreducible. 
Similarly P is saturated if and only if the ring Z[P] is normal [56, 3.3.1], and since 

the map (9.1.8.3) is a smooth surjection Z[P] is normal if and only if Sp is normal. 
Using this and 9.1.7 we also obtain an interpretation of the notion of integral (resp. 

saturated) morphism of monoids. Namely an injective morphism of fine monoids 
Q —• P is integral (resp. saturated) if and only if for any morphism of fine monoids 
Q —> Q' the fiber product of the diagram of stacks 

(9.1.8.5) 

SP 

SQ> SQ 

is reduced and irreducible (resp. normal). 

Remark 9.1.9. — In what follows we will only consider the stacks Sp for fine monoids 
P unless explicitly stated otherwise (the only place we use non-fine monoids is in the 
proof of 9.3.5 below). 

9.1.10. — For a log structure M on a scheme T, let M denote the sheaf of monoids 
M/OJ . By [62, 5.20] the stack Sp is naturally viewed as the stack which to any 
scheme T associates the groupoid of pairs (My, /3 : P —> M T ) , where MT is a fine log 
structure on T and ¡3 is a morphism of sheaves of monoids which fppf-locally lifts to 
a chart for Mr . 

In particular, if (S,Ms) is a fine log scheme and 0 : Q —• Ms is a chart with 
induced map ft : Q —» Ms, then there is a natural map S —• SQ. For any morphism 
of fine monoids I : Q —> P the stack Sp x$Q S is by [62, 5.20] isomorphic to the stack 
which to any 5-scheme / : T —> S associates the groupoid of triples (TV, 77,7), where 
N is a fine log structure on T, 77 : f*Ms —> N is a morphism of log structures on T, 
and 7 : P —• iV is a morphism of monoids which fppf-locally lifts to a chart such that 
the diagram 

(9.1.10.1) 

Q 
i p 

0 7 

£%¨%MP £%¨% N 

commutes. In particular, there is a natural map 

(9.1.10.2) Sp xsQ S —y &og(s,Ms)-

Theorem 9.1.11 ([62, 5.24]). — The map (9.1.10.2) is representable and étale. 

9.1.12. — This theorem is useful because it often enables one to replace the stack 

&°9(s,Ms) ^ tne simpler stack Sp x$Q S. For example, let / : (X,Mx) —• (S,Ms) 
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be a log smooth morphism. Then etale locally on S and X there exists by [40, 3.5] a 
chart for / : 

(9.1.12.1) 

X Spec(Z[P]) 

S Spec(Z[Q]) 

for some morphism of monoids I : Q —> P. It follows that the map X —» &og(s,Ms) 
factors through Sp x$Q S. Since the map (9.1.10.2) is etale this implies for example 
that the de Rham complex of X over &og(s,Ms) ls eclual to the de Rham complex of 
X over the stack Sp x$Q S. 

Proposition 9.1.13. — Let (X, Mx) —• (S, Ms) be a log smooth morphism between fine 
log schemes. 

(i) The isomorphism (9.1.3.2) is an isomorphism of sheaves of Lie algebras, where 
the left hand side is given a Lie algebra structure as in [58, 1.1.7] and the right 
hand side is viewed as a sheaf of Lie algebras using the definition in 2.2.6. 

(ii) If S is of characteristic p > 0, then (9.1.3.2) is an isomorphism of sheaves 
of restricted p-Lie algebras where the left hand side is given the restricted p-
Lie algebra structure defined in [58, 1.2.1] and the right hand side is given the 
restricted p-Lie algebra structure defined in 3.1.6. 

Proof. — The issue is etale local on S and X , so by [40, 3.4] we may assume that 

(9.1.13.1) X = Spec(Z[iV]) xSpec(z[Q]) S 

for some injective morphism of fine monoids 8 : Q —• N such that the torsion part 
of G := Coker(Qgp -+ iVgp) is invertible on S. Let R := X xSpec(z) Spec(Z[G]) = 
X XSNXSQS X, and let pr (resp. p) be the projection R —> X (resp. the map induced 
by Z[iV] —• Z[iV] ®z Z[G] sending n G N to n ® gn, where gn denotes the image of n 
in G). Let 7 : G —• OR denote the map 

(9.1.13.2) GG^OX ® z Z [ G ] = 0 * , 

and let /3 : N —> OR be the map 

(9.1.13.3) N f*(y(p w+n)/Çn))^ ®Z[Q] Os) ®Z Z[G] ^ OR. 

Then p*Mx (resp. pv*Mx) is the log structure associated to the prelog structure 

(9.1.13.4) N—y OR, n i—» 7(fln) • (3{n) (resp. m—• /3(n)). 

The map 

(9.1.13.5) N^O*R®N, n^(j(gn),n) 
therefore induces an isomorphism i: pr*Mx —* P*M\- Using the identification 

(9.1.13.6) X xCog(SlMs) X ~ lsomXxX f*(y(p w+n)/Çn))^ 
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the isomorphism i defines a morphism r : R —• X x^og^s Mg) X over the map pr x 

p : R —> X x X . By 9.1.11 the map r is étale. Let J denote the ideal of the 

diagonal map A : X —> JR induced by the map of rings Z[G] —• Ox sending g G G 

to 1, so that ^x/Log(s M ) *s isomorPhic to J/J2. The map g ^ 1 — g induces 

an isomorphism J/J2 ~ Ox <g>% G, and c/n = n(l — gn). Furthermore, under the 

isomorphism ^x/Zog{s,Ms) - fl(x,Mx)/(s,Ms) of I62' 5-24l the dement (1 - gn) maps 

to dlog(n) (notation as in [40, 1.7]). 
Let <7i,... ,gr G G be elements which form a basis for the free part of G, so that 

{d log (^ )} form a basis for Çt^x Mxy^s M5)> ANĈ  ^ denote the dual basis. Then 
the above discussion implies that the Lie bracket on T(x,Mx)/(s,Ms) induced by the 
one in 2.2.6 satisfies [dg, dg'\ = 0. Moreover, this condition determines the Lie bracket 
structure completely, and hence it agrees with that defined in [58, 1.1.7]. 

Furthermore, if S is a scheme in characteristic p > 0, then the definition of the 
p-Lie algebra structure in 3.1.6 shows that d{gp) = dg which by [58, 1.2.2] agrees with 
the one given there. • 

Corollary 9.1.14. — Let (X, M x ) —> (S,Ms) be a log smooth morphism between fine 

log schemes. Then the logarithmic de Rham complex Q*x MX)/(S Ms) ^s canon^ca^V 

isomorphic to the de Rham complex ^x/£og(s M > defined in 2.2.16. 

Remark 9.1.15. — In [43, 4.1.3(2)] a framed log scheme is defined to be a triple 
(X, M x , f3 : P —• Mx) consisting of a fine saturated log scheme (X, Mx) and a map 
/3 : P —• Mx from a fine saturated monoid P which étale locally on X lifts to a chart. 
The map (3 is called a frame for (X, M x ) . By [62, 5.20] giving a frame (3 for a fine 
saturated log scheme (X, Mx) is equivalent to giving a dotted arrow 

(9.1.15.1) 

%£¨%£ 
¡3 

X 
Mx 

^ (̂Spec(Z),Ospac(z)) 

making the diagram commute. 

9.1.16. — Let a = ( a i , . . . ,ar) be a sequence of positive integers, and let H c Sr 
be the subgroup of the symmetric group consisting of permutations a £ Sr such that 
aa(i) — ai f°r i- The stack S#(a) defined in 6.1.1 can then be interpreted as 
follows. 

Let MAi denote the log structure on A1 = Spec(Z[t]) defined by the map N —• Z[t] 
sending 1 to t. 

Proposition 9.1.17. — The stack S#(a) is canonically isomorphic to the open substack 

of £O#(AI5MAI) which to any f : X —> A1 associates the groupoid of pairs (Mx,fb), 

where Mx is a fine log structure on X and fb : /*MAi —• Mx is a morphism such 
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that for every geometric point x —> X there exist an integer £ and an isomorphism 
o~ • Mx,x 0 ~ Nr such that the diagram 

(9.1.17.1) 

^ A1 ,f(x) 
%PM 

MX,x 

T 

N k w 
commutes, where r is the projection obtained from a and k is the map induced by 
1 H-> ( a i , . . . , a r ) . 

Remark 9.1.18. — If (/, fb) : (X, Mx) —• (A1, MAi) is a morphism of fine log scheme 
and r : Nr —> Mx is a surjection which etale locally on X lifts to a chart and such 
that the diagram 

(9.1.18.1) 

/ " ' M A I 
fb 

Mx 

T 

N • 
k MP 

commutes, then for every geometric point x —» X there exists an isomorphism a : 
M x , j 0 ^ ~ Nr identifying Ts : Nr —» Mx,x with the projection onto the first factor. 

To see this we may work étale locally on X , and may therefore assume that r 
lifts to a chart a : W —> Mx- In this case, for every geometric point x —» X the 
projection Nr —• Mx ,x identifies Mx ,x with the quotient of Nr by the face Fx C Nr 
generated by the standard generators G Nr for which a(ei) maps to a unit in Mx,x-
Then Fx ~ for some ^ (the number of generators mapping to units in Mx,x) and 
if N C Nr denotes the submonoid generated by those generators e$ which map to 
nonzero elements in Mx,x then the natural map N 0 F5 —* Nr is an isomorphism 
and the composite iV ^ Nr —> Mx,x is an isomorphism defining a splitting of the 
surjection Nr —> Mx,x-

Conversely, suppose (/, fb) : (X, M x ) —> ( A 1 , ^ ^ ! ) is a morphism of fine log 
schemes such that for some geometric point x —» X there exists an isomorphism 

as in 9.1.17. Then in some étale neighborhood of x the morphism 
r lifts to a chart for Nr. Indeed the existence of a implies that Mx,x is a free 
monoid, and therefore there exists a section s : Mx,x ~> Mx,x of the projection 
Mx,x —* Mx,x- The composite map s o r : W —> Mx,x then extends to a chart in 
some étale neighborhood of x by [56, 2.2.4]. 

In summary, if (/, fh) : (X, Mx) —• (A1,MAi) is a morphism of fine log schemes 
and x —> X is a geometric point, then the condition that there exists an isomorphism 
0" • Mx,x 0 ^ Nr as in 9.1.17 is equivalent to the condition that in some étale 
neighborhood of x there exists a morphism r : Nr Mx which étale locally lifts to 
a chart such that the diagram (9.1.18.1) commutes. 

In particular, the set of points x G X for which there exists an isomorphism a : 
Mx,x © N ^ N r as in 9.1.17 is an open subset of X . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



354 CHAPTER 9. COMPARISON WITH LOG GEOMETRY 

Proof of 9.1.17. — Denote temporarily by 5F C &og^i^Mkl) the substack described 
in the theorem. 

Lemma 9.1.19. — The substack 7 C £O#(A1,MAI) ^s an open substack. 

Proof. — Let (/, fb) : (X,Mx) T-» ( A 1 , M A O be a morphism of fine log schemes 
corresponding to a morphism X —> - C O ^ A 1 , ^ ) - Let x G X be a geometric point 
such that there exists an isomorphism a : Mx,x © N ^ N r for some £ such that the 
diagram (9.1.17.1) commutes. To prove the lemma we must show that there exists 
an open neighborhood x G U C X of x such that for every geometric point x' —» U 
there exists an isomorphism a' : Mx,x' © ̂  ~ Nr such that the diagram (9.1.17.1) 
for x! commutes. This follows from 9.1.18. • 

Define Sif (a)ps as in 6.1.8. Recall that an object of S#(a)ps over some scheme / : 
X —• A1 is given by elements (x\,..., xr) G T(X, O x ) and an element v G T(X, O^-) 
such that 

(9.1.19.1) f-1{t)=x%1-->x?rv. 

For such an object let M(XjV) denote the log structure on X associated to the map 
Nr —» Ox sending the i-th standard generator ei to Xi. The map 

(9.1.19.2) N—>C>̂eNr, li—> (v,au...,ar) 

defines a morphism / ^ ^ : /*MAi -> M ( X ^ ) making ( M ^ ) , Ẑ )̂) an object of *5. 

If (x',vf) G §if(a)ps(X) is a second object, then an isomorphism 

(9.1.19.3) i : (M(XiV)j{XtV)) — (M(x.|V0,/(Vfi;0) 
in JF is by the universal property of the log structure associated to a prelog structure 
obtained from a morphism Nr —> M^y^ such that the composite 

(9.1.19.4) N 
li—,... ,ar) 

>^0Nr Af(x',t/') 

is equal to the map induced by fbx, v,y Let t —> X be a geometric point. The 

commutativity of the diagram 

(9.1.19.5) 
Mh1J{t) 

id 
f*(y(p w 

fb 

J(x,v) 
fb 

J(x',v') 

M(x,v),t %PM %PM¨£ 

shows that every standard generator ei of Nr which does not map to 0 in M^x^vyi 
is mapped under ¿ to an element with cti — a^y From this it follows that an 
isomorphism i as above is given locally by a section of the presheaf F((x,v), (x',v')) 
(notation as in 6.1.8). It follows that the prestack S#(a)ps is equivalent to the prestack 
whose objects are objects (Mx, fb) of 3T together with a chart Nr —• Mx- Passing to 
the associated stack it follows that ~ 3\ • 
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Remark 9.1.20. — If in 9.1.21 we instead take H to be the trivial group { e } C 5R, 

then an argument similar to the one used in the proof of 9.1.21 shows that the stack 
S{e}(a) is canonically isomorphic to the stack over A1 which to any / : X —• A1 
associates the groupoid of triples ( M X , T : Nr —> M x , fb), where (Mx, (3) is a framed 
fine saturated log structure on X (in the sense of [43, 4.1.3]), and fb : f*M&i —> Mx 
is a morphism log structures on X such that the following diagram commutes 

(9 .1 .20.1) 

/ " ' M A I 
fb 

Mx 

MP 

N 
k MOPL 

where as in 9.1.21 k is the map induced by 1 (c*i , . . . , ar). Equivalently, with 
the terminology and notation of [43, 4.1.3] the stack S{ey(a) is isomorphic to 
the stack over A1 (which we view as the underlying scheme of the framed log 
scheme ((A1, MAi), [N])) which to any scheme X associates the groupoid of triples 
(Mx, [Nr],#), where (Mx, [Nr]) is a framed log structure on X and 

(9 .1 .20.2) g : ((X, Mx), [Nr]) - ((A1, MAi), [N]) 

is a morphism of framed log schemes with underlying morphism of schemes / over 
the morphism [Nr] —> [N] defined by the map k. 

Proposition 9.1.21. — Assume all ai = 1 and that H is equal to the full symmetric 
group on r letters. Then the stack S#(a) defined in 6.1.9 is naturally isomorphic to the 
open substack of £o<?(sPec(z),e>* (z)) which to any scheme T associates the groupoid 
of fine log structures M on T such that for every geometric point i —• T the monoid 
Mi is a free monoid of rank < r. The map Sjj(a) —> S# (a) is the map which sends 
a pair (Mx, fb) to MX-

Proof. — Let JF C £o<7(Spec(z),e>* (z)) De the substack classifying log structures as in 
the proposition. It is an open substack since the sheaves M are constructible sheaves 
(see for example [62, 3.5 (ii)]), and for any specialization £ —» i the cospecialization 
map Mi —> Mfj is the quotient by a face. In other words, if Mf ~ Ns then M^ is the 
quotient of Ns by the irreducible elements which lift to an element in Mi whose 
image in OTI maps to a unit in OT,TJ-

Let T-̂ 5 be as in 6.1.12. There is a natural map —» 7 which associates to a 
collection ( # i , . . . , xr) G 7ff(T) the log structure Mx associated to the map Nr —• Or 
sending ei to Xi. Note that the log structure Mx is canonically isomorphic to the log 
structure associated to 0ie#(x)N ~^ @T which associates to (i G E(x)) the element 
xi. Thus for a second object (x[,..., x'r) G Tj^(T) an isomorphism Mx —> Mx> is 
given by units {ui}ieE(x) and a bijection h : E(x) —> E(x') such that x'h^ — UiXi. 
In other words, by an isomorphism in T^S(T). It follows that there is a fully faithful 
functor 7H —• 3 \ To show that it is an equivalence it suffices to show that any object 
of *5 is etale locally in the image which follows from [62, 2.1]. 
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Finally the description of the map S# (a) —> SH(&) follows from the preceding 
proof. • 

9.1.22. — Since a free monoid of rank 1 has no automorphisms, if M is a fine log 
structure on a scheme T such that for every geometric point i —> T the stalk Mi 
is a free monoid of rank < 1, then there is a unique map ¡3 : N —> M, which etale 
locally lifts to a chart. It follows from this and 6.1.11 that the stack [A1/Gm] can be 
viewed as the stack classifying fine log structures M whose stalks are free monoids of 
rank < 1. 

This is related to the interpretation of [A1/Gm] given in 6.1.11 as follows. For a 
log structure M on T as above, let P be the (9£-torsor of liftings of the map ¡3 to a 
chart N —> M. The map M —• OT induces a map of sheaves with (9^-action P —> OT-
If C denotes the invertible sheaf corresponding to P, then this map defines a map of 
invertible sheaves C —* Or- This functor is in fact an equivalence (this follows for 
example from 6.1.11, but can also be seen directly). 

More generally, for a free monoid N ~W the diagonal map N —> N sending 1 to 
( 1 , 1 , . . . , 1) is invariant under all automorphisms of N. It follows that for any fine 
log structure M on a scheme T such that the stalks Mf are free monoids, there is a 
canonical map /3 : N —> M. The inverse image of (3(N) in M is then a fine log structure 
on T whose stalks are free monoids of rank < 1. It follows from this that with notation 
and assumptions as in 6.1.11 there is a canonical map § # ( # ) —> [A1/Gm]. This is 
simply the map described in 6.1.9. 

9.1.23. — For an integer e > 1, let 8e : [A1/Gm] —• [A1/Gm] be the map defined 
in 8.2.6, and let 7^ denote the fiber product SH(&) X[Ai/Gm],0e [A1/Gm] defined 
in 8.3.3, where a = ( 1 , . . . , 1) (r times) and H is the symmetric group on r letters. 
From the above interpretations of [A1/GTn] and S#(a) , for any scheme T the groupoid 
3>(c) is equivalent to the groupoid of diagrams of fine log structures 

(9.1.23.1) 

Mi 
a 

M2 

b 

M3, 

where for every geometric point i —> T the stalks M1}£ and M 3 j are free monoids of 

rank < 1, M2?t is a free monoid of rank < r, the map Mij —> M2,t is the diagonal 

map, and Mijt- —> M3^ is multiplication by e. 
Let M denote the pushout in the category of fine log structures of the dia

gram (9.1.23.1). The diagram (9.1.23.1) can be recovered from M as follows. 
For every geometric point i —> T, the stalk Mi is either trivial or isomorphic to 
P :=W ©A,N,e N for some s. It follows that there exists a unique irreducible element 
Po in P such that epo is equal to a sum of distinct irreducible elements in P, and 
that there are s other irreducible elements in P. It follows that that there is a 
canonical isomorphism P ~ N 0N?e N with N ~ Ns. The stalk M3^ is recovered as 
the submonoid of P generated by po and M2,t is equal to N. Thus we recover the log 
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structure Ms as the subsheaf of M consisting of elements whose image in Mi lands in 
N • po for every geometric point £, and M2 is equal to the subsheaf of sections whose 
image in Mf lands in N. Finally Mi is equal to the subsheaf of sections whose image 
in Mi is in N • epo. 

Corollary 9.1.24. — The stack 7^ is isomorphic to the stack which to any scheme 
T associates the groupoid of fine log structures M on T which are isomorphic to a 
pushout of a diagram as in (9.1.23.1). 

Remark 9.1.25. — By an argument similar to the one used in 9.1.18, if X is a scheme 
and M is a fine log structure on X then M defines an object of y^e\X) if and 
only if for every geometric point x —+ X the stalk Mx is isomorphic to Ns 0A,N,e N 
for some s < r. Furthermore, the condition that there exists such an isomorphism 
Ns ©A,N,e ^ — Mx is equivalent to the condition that in some etale neighborhood of 
x there exists a chart Ns 0A,N,e N —> M. 

As in 9.1.19 this implies that is an open substack of <Co<7(Spec(z),e>* (z))-

9.1.26. — As in 6.2.1, let V be a complete discrete valuation ring with uniformizer 
7r and mixed characteristic (0,p), and let X/V be a flat regular scheme with smooth 
generic fiber for which the reduced closed fiber Xo,red C X is a divisor with normal 
crossings. Let {<*i,..., ar} be as in 6.2.1, and let H be the group of elements a G Sr 
for which aa(i) = o>i for all i. Let Sy^ denote the stack Sf/(o0(7r)cv obtained by base 
change from S#(a) from the map Spec(V) —> [A1/Gm] defined by the invertible sheaf 
(TT) with the inclusion into Oy. 

Let My denote the log structure on Spec(F) defined by the maximal ideal (TT) C V. 
From the above discussion, the stack Sjy(a)v> can also be described as the substack 
of £o<7(Spec(V),Mv) which to any / : T —> Spec(V) associates the groupoid of pairs 
(Mr, where Mr is a fine log structure on T and fb : f*My —» MT is a morphism 
of fine log structures such that for every geometric point i there exists a diagram as 
in (9.1.17.1). 

In particular, the canonical log structure Mx on X [40, 1.5 (1)] with the natural 
map fb : f*My —> Mx defines a morphism X —> Sij(a)v>- It follows from the 
construction in 6.2 that this map agrees with the one constructed there. 

9.1.27. — There is a generalization of the stacks &og(s,Ms) which is sometimes useful. 
Let r be a category with finitely many objects and finitely many morphisms, and let 
HogT be the stack over Z which to any scheme T associates the category of functors 
from r to the category of log structures on T. If / : V —> V is a functor then there is 
a natural functor 

(9.1.27.1) f* : zogr ^ £0gr\ 

It is shown in [64, 2.4] that the stack &ogT is an algebraic stack locally of finite 
presentation over Z. The following examples are especially useful. 

Example 9.1.28. — For any integer n > 0 let Log^ denote the stack LogT with V 
equal to the category corresponding to the ordered set [n] = { 0 , . . . , n } . The stack 
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associates to any scheme T the groupoid of diagrams of fine log structures on T 

(9.1.28.1) M0 
¨%¨£¨% 

Mn. 

Any order preserving map [n1] —> [n] defines a functor so the stacks Log^ in fact 
form a simplicial algebraic stack 

(9.1.28.2) [»]' %£MMP% 

If (£, Ms) is a fine log scheme, then the stack £O<7(S,Ms) *s canonically isomorphic to 
the fiber product 

(9.1.28.3) &og[1] xô*fzOg[0)iMs S, 

where 5\ : [0] —• [1] is the map sending 0 to 0. 

Proposition 9.1.29 ([64, 2.11 (i)]). — Let j < n be an integer and Sj : [n] -» [n + 1] 
the unique injective order preserving map whose image does not contain j . Then the 
induced map Sj : Log^n+1^ —• Log^ is relatively Deligne-Mumford and étale. 

Example 9.1.30. — Let • denote the category with four objects {0 ,1 ,2 ,3} and mor-
phisms given by 
(9.1.30.1) 

H o m ( j , j ' ) = 
{*} if j = j' or (j , j1) e { (0 ,1) , (0,2), (0,3), (1,3), (2,3)} 
0 otherwise. 

The stack Log^ associates to any scheme T the groupoid of commutative diagrams 
of fine log structures on T 

(9.1.30.2) 

Mo Mi 

M2 Ms-

In addition to the maps described in the following proposition, we will also sometimes 
consider the maps K* : £ogD —> Hog^ (¿ = 1,2) obtained from the functor Ki : [1] —> 
• sending 0 to 0 and 1 to i. 

Proposition 9.1.31 ([64, 2.11 (ii)]) 

(i) Let qi : [1] —> • (resp. q2 : [1] —> O) be the functor sending 0 to 1 (resp. 2) and 
1 to 3. Then the induced morphism q{ : Logu —> £o#W (resp. q% : £o#D —» 
Log^) is relatively Deligne-Mumford and étale. 

(ii) For i = 1,2, let Ti : [2] —> • be the functor sending 0 to 0, 1 to i, and 2 to 3. 
Then the induced morphism r* : £>og^ —» Log№ is relatively Deligne-Mumford 
and étale. 
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Example 9.1.32. — To illustrate the utility of the above stacks, let us construct using 
the stack theoretic approach the functoriality morphism for log differentials. Consider 
a commutative diagram of fine log schemes 

(9.1.32.1) 

(W,MW) a [X,MX) 

f 9 

(Z,MZ) 
b (Y, MY) 

We construct a morphism a5 Ql 
" ( X , M x ) / ( y , M y ) 

Q1 
lL(WiMw)/(Z,Mz) 

as follows. Let £ be 

the fiber product of the diagram 

(9.I .32.2; 

üoqü 

OMP 

Z 
b*MY^Mz M%%PLO 

There is a natural commutative diagram 

(9.1.32.3) 

MLOMLP Log* 

T2 

&og(z,Mz) c log® 

Z b'My^Mz 
ZogW, 

where the map c sends a morphism of fine log schemes (/, fb) : (T, MT) —> (Z, Mz) to 
the diagram /*6*My —» f*Mz —> M T . It follows from the definitions that the squares 
in (9.1.32.3) are all cartesian, and from 9.1.31 (ii) that the map £ —• £O#(Z,MZ) *S 
etale. Let p : W —> L be the morphism defined by the square 

(9.1.32.4) 

MY\w a*Mx 

f*Mz Mw. 

Then it follows that there is a natural isomorphism 

(9.1.32.5) O1 
lL(W,Mw)/{Z,Mz 

%PM¨£ 

The map K\ : £ogD —> induces a map K : £ —> £o#(y,Mr) sucn that the diagram 

(9.1.32.6) 

W 
a x 

¨¨%P 

%%MM K 
&og(Y,MY) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007 



360 CHAPTER 9. COMPARISON WITH LOG GEOMETRY 

commutes. There is therefore a natural map 

(9.1.32.7) a*^(I,Mx)/(y,My) - a*^X/Log(YiMY) > ^W/L — ^\w,Mw)/(Z,Mz) 

which is the desired functoriality morphism. 

Example 9.1.33. — Fiber products in the logarithmic category can also be described 
using the above techniques. Consider a diagram of fine log schemes 

(9.1.33.1) 

(X,MX) 

(Z,MZ (Y,MY). 

Let 3> denote the fiber product of the diagram 

(9.1.33.2) 

X xYZ 

(MY\X^MX)X(MY\Z-+MZ) 

LogD K2 X K\ f*(y(p w+n)/Çn))^ 

The stack 7 is the stack which to any scheme T —> X Xy Z associates the groupoid 
of diagrams of fine log structures 

(9.1.33.3) 

MY\T MX\T 

MZ\T M. 

Let Xf C y be the open substack classifying diagrams (9.1.33.3) which are cocartesian. 
Since such a diagram admits no nontrivial automorphisms the stack X' is in fact an 
algebraic space, and there is a tautological commutative diagram of log structures 
on X' 

(9.1.33.4) 

MY\T MX\T 

MZ\T Mx>-

Finally by the universal property of pushout there is a canonical isomorphism 7 ~ 
£>°9{X'MXf)' ^n particular, (Xf,Mx') is the fiber product in the category of fine log 
schemes. 

Remark 9.1.34. — Let LOG be the category fibered (not in groupoids) over the cat
egory of schemes which to any scheme T associates the category of fine log struc
tures on T. Any morphism of fibered categories A : LOG —• LOG induces for any 
finite category V a functor Ar : LogT —> Log1'. For any scheme T and functor 
( / : T LOG(T)) G LogT{T) the image A r ( / ) is the composite functor 

(9.1.34.1) r 
¨% 

LOG(T) 
A 

LOG(T). 
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For example, let e > 1 be an integer and take A to be the functor which associates 
to a fine log structure M on T the log structure associated to the pre-log structure 

(9.1.34.2) M(9 .1.7.3)—> OT. 

If e = p is a prime, then the induced morphism Ap : LogT <S> ¥p —• £jogT 0 ¥p is 
simply the Frobenius morphism. It follows that if R is any ring over Zp with a 
lifting of Frobenius FR : R —* R, then there is a lift of Frobenius to Hogv ®z R 
given by Ap ® FR. Furthermore, if V —• T is a functor then the induced morphism 
fiogT ® # —> £>ogr ® R is compatible with these lifts of Frobenius. 

Finally, it follows from the proof of 9.1.17 that with the modular interpretation 
given in the loc. cit. of S#(a) , the liftings of Frobenius used in the preceding chapters 
defined using the map Ap in 6.3 agrees with the liftings of Frobenius defined on HogT 
above. 

9.2. Comparison of crystalline topoi 

9.2.1. — Let (S, Ms, 1,7) be a fine log scheme with a divided power ideal (I,7), and 
let / : (X, Mx) —> (S, Ms) be a morphism of fine log schemes such that 7 extends to 
X . Recall [40, 5.2] that the log crystalline site, denoted Cris((X, MX)/(S, Ms)), is the 
site whose underlying category is the category of strict closed immersions (U, Mu) 
(T, MT) over / , with U -» X etale, Mx\u = Mu, and U ^ T defined by a divided 
power ideal compatible with 7. A family of morphisms {((Ui, M^) ^ (T^M^J) —• 
(([/, Mu) ^ (T, MT))} is a covering if the map JJ Ti —• T is etale and surjective. We 
denote by ((X, Mx)/{S, Ms))cris the associated ringed topos. 

Assume that there exists an open substack IX C &og(s,MS) sucn that (/, 7) extends 
to U and the morphism X —• &og(s,MS) factors through U. 

Proposition 9.2.2. — There is a natural equivalence of sites 

(9.2.2.1) Cr i s ( (X,Mx) / (S ,M5)) ~ Cris(Xet/U). 

Proof. — By definition of £jog(s,Ms)i to give an exact closed immersion (U,Mu) ^ 
(T, MT) as in the definition of Cris((X, Mx)/{S, Ms)) is equivalent to giving a 2-
commutative diagram 

(9.2.2.2) 

U j T 

X £>og(s,Ms)i 

with j a closed immersion defined by a PD-ideal compatible with (/,7). Since j is 
defined by a nil-ideal the map T —> £O<7(S,Ms) factors through IX, and hence giving 
(U, Mu) ^ (T, MT) in Cris ((X, MX)/(S, Ms)) is equivalent to giving an object (U ^ 
T,6) e Cris(X/lX). • 
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Corollary 9.2.3. — There is an equivalence of categories between the category of quasi-
coherent crystals in ((X, Mx)/{S, Ms))cris and the category of quasi-coherent crystals 
in (X/U)cris. 

9.2.4. — The equivalence in 9.2.2 is compatible with the projections to the etale topos 

(9.2.4.1) uXet/u : (Xet/lQcris — • XeU 

and 

(9.2.4.2) u(XMx)/(s,Ms) : Mx)/(S, M5))cris —+ XeU 

where the morphism U(x,Mx)/(s,Ms) ls defined as in [40, 5.9]. This follows from 
observing that the inverse image functors ^xet/ix an<̂  u\x MX)/{S MS) are e(ma,l hy 
definition. 

9.2.5. — Consider an exact closed immersion (X, Mx) ^ (Y, M y ) over (5, Ms) in
ducing a closed immersion X <—• Y over £O<7(S,Ms)- After replacing Y by an open 
subset we may assume that the morphism Y —> &og(s,MS) a^so factors through IX. 

Proposition 9.2.6. — The logarithmic divided power envelope ^ ( X , M X ) , T ( ^ ^ ) de
fined in [40, 5.4] is canonically isomorphic to the divided power envelope defined as 
in 1.2.3 of the closed immersion 1 ^ 7 over the PD-stack (IX, Iu,l) with log struc
ture equal to the pullback of My. 

Proof — To give an exact closed immersion (X, Mx) (T, MT) of (5, Ms)-log 
schemes with a divided power structure on the ideal of X in T compatible with 7 
is equivalence to giving a closed immersion X ^ T over IX with a divided power 
structure on the ideal of X in T compatible with (/11 ,7). Hence the result follows 
from the universal properties of the PD-envelopes in 1.2.3 and [40, 5.4]. • 

9.2.7. — Let (5, Ms, I,^) be a fine log scheme with a PD-ideal (/,7), let 
(X, Mx) —> (5, Ms) be a morphism of fine log schemes such that 7 extends to 
X , and let (X,MX) ^ (Y, My) be an exact closed immersion over (5, Ms) with 
(Y, M y ) —> (5, Ms) log smooth. Assume that the morphism X —» &og(S,Ms) factors 
through an open substack IX c &og(S,Ms) to which (/,7) extends, and let (D,MD) 
be the divided power envelope of (X, Mx) (Y, M y ) . Let V denote the coordinate 
ring of D viewed as a sheaf on Yet. Let d : V —> V ® ^\Y,MY)/(S,MS) denote the 
canonical connection. 

Prom 2.4.7, 2.3.28, 2.5.4, and 9.1.14 we now obtain the following: 

Theorem 9.2.8 ([40, 6.2]). — There is a natural equivalence of categories between the 
category of quasi-coherent crystals in ( (X, MX)/(S, Ms))cris and the category of quasi-
coherent V-modules £ with a map 

(9.2.8.1) V : £ —> £ ®0Y ^\YMY)/(S,MS) 

such that for an local sections e G £ and f EV we have 

(9.2.8.2) V ( / e ) = / V ( e ) + e ® d / , 
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and the composite 

(9.2.8.3) e V 
S 0Oy (̂y,My)/(5,Ms) 

V2 
S ®oY ^2(YÌMY)/{SMS) 

is zero, where V2 is the map defined by e(8>w H-» V (e) A u + e (8) du. 

Theorem 9.2.9 ([40, 6.4]). — With notation as in 9.2.8, let E be a quasi-coherent crys
tal in ((X,Mx)/{SiMs))cris and let (£,V) be the corresponding quasi-coherent V-
module with integrable connection. Then RU(X,MX)/(S,MS)*E is canonically isomor
phic to the de Rham complex £ (g> Q*D MD)/(S Ms) f ^)* 

9.2.10. — The functoriality of the log crystalline site can be understood using the 
method of 9.1.32. Let (Z, Mz, J, S) and (Y, My, J, 7) be fine log schemes with divided 
power ideals, and let b : (Z, Mz) —> {Y, My) be a PD-morphism. Consider a commu
tative square as in (9.1.32.1) such that (/,7) (resp. (J,S)) extends to X (resp. W). 
We define a canonical morphism of ringed topoi 

(9.2.10.1) ((WiMw)/(Z1Mz)Us- ((X,Mx)/(Y,My))cris 
as follows. Let £ be as in 9.1.32. Since the morphism £ —> £>og(z,Mz) 1S étale, the 
infinitesimal lifting property for étale morphisms implies that any object (U T) £ 
Cris(W/flog^z,Mz)) admits a unique structure of an object in Cris(VF/£). It follows 
that there is a canonical isomorphism of topoi 

(9.2.10.2) (W/£o#(z?Mz))cris ~ (Wy£)cris. 
Prom the commutative diagram 

(9.2.10.3) 

W X 

£ » &og(Y,MY) 

and 1.4.14 we therefore obtain a morphism of ringed topoi 
(9.2.10.4) 
((W,Miy)/(Z,Mz))cris ^ (W/£)cris (X/Log{YMY))CYÌS ~ ((X,Mx)/(F,My))cris . 

9.3. The Cartier type property 

9.3.1. — Let (X, Mx) —» (S, Ms) be a log smooth morphism between fine log schemes 
over Fp for some prime p. Let F(S,MS) 1 Ms) ~^ (£> Ms) be the Frobenius mor
phism, and let (X',Mx') denote the fiber product 

(9.3.1.1) (X',MX>) (X,MX) X(StMs),FiStMs) (s,Ms) 

in the category of fine log schemes. There is a canonical map F : (X, Mx) —> (X', M'x) 
defined by the Frobenius morphism F(x,Mx) : (x> Mx) -* (X, Mx). By [40, 4.10 (2)] 
there is a canonical factorization of F 

(9.3.1.2 [X,MX) 9 (X",MX„) h (X',MX,), 
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where the morphism g is exact and h is purely inseparable [40, 4.9]. The morphism 
g : (X, Mx) —> (X",Mx") is called the exact relative Frobenius morphism. 

9.3.2. — We can also consider the diagram 

(9.3.2.1) 

POP 
f*(y(p w+n)/Çn))^ 

•T-
7T 

X 

&og(s,Ms) 
FJI^(S,MS) f*(y(p w+n)/Ç 

where the square is cartesian. Recall that X' is only an algebraic stack, but by 3.3.2 
there exists a universal map e : X; —• X to a scheme. Let g : X —• X denote the 
composite map 

(9.3.2.2) 
X 

FX/Log{SMs) 
X' - e x'. 

The stack X' is by the definition of the fiber product of stacks isomorphic to the 
stack which to any 5-scheme / : T —> S associates the groupoid of data (MT, /b,7), 
where MT is a fine log structure on T, fb : / *Ms —• MT is a morphism of fine log 
structures on T, and 7 : (T, F^MT) —• (X, M x ) is a strict morphism of log schemes 
such that the diagram 

(9.3.2.3) 

(T, FJ-MT) 
7 %MPFD£% 

(Fs°f,FW)) 

(S,MS) 

commutes, where FT(fb) denotes the composite map 

(9.3.2.4) f*F*sMs FTf*Ms 
FUf") 

FTMT 

Here FT and Fs denote the Frobenius morphisms of T and S respectively. In partic
ular we obtain a commutative diagram 

(9.3.2.5) 

(T,MT) c (T, F^MT) 
7 

X,MX) 

(fjb) 

(S,MS] 
F(S,MS) 

+ (S,MS) 

where c is the morphism of log schemes which is the identity on T and the natural map 
F^MT —> M T on log structures. By the universal property of (X ' , Mxr) we therefore 

ASTÉRISQUE 316 



9.3. THE CARTIER TYPE PROPERTY 365 

obtain a morphism d : (T, MT) —• (Xf, Mx*). The functor sending (Mx, fb,7) to the 
underlying morphism T X' oi d defines a morphism of stacks 

(9.3.2.6) h! : X' — • X'\ 

which in turn induces a morphism h : X —• X ' . 
The composite map 

(9.3.2.7) P%P¨£ ¨¨%PPM MP%PM h 
X' 

e 
x, 

where e denotes the projection, is equal to the Frobenius morphism of X. 

Proposition 9.3.3. — There exists a unique isomorphism L : X* ~ X" such that tog = g 

and h — h o i (here we consider only the underlying morphisms of schemes of h and 

9)-

Proof. — Since X7 —> X' is universal for maps to schemes, the map 1 : X' —» X" is 
determined by the induced map I : X' —> X". Since the map Fx/c0g(s Ms) : X —» X' 
is faithfully flat (3.1.4), the map I is in turn determined by the map 

^•3-3.1) loFX/)IOG(SMS)=LO~g. 

The uniqueness of 1 therefore follows from the condition ¿ o g = g. 
By the uniqueness, it suffices to prove the proposition after replacing S and X by 

étale covers. By [40, 3.5 and 3.6], we may therefore assume given a chart /3 : Q —• Ms 
for Ms and an injective map 6 : Q —> P such that X — Spec(Z[P]) Xspec(z[Q]) S. 
Furthermore, we may assume that the cokernel G := Coker(Qgp —» Pgp) is p-torsion 
free, and that S = Spec (A) for some ring A. 

Let P' C Qgp 0Xp,ggp ̂ Pgp denote the image of the map Q 0Xp,Q P Qgp 0xP,Qgp 
Pgp (so the natural map Q 0Xp,Q P P ' is the universal map from Q 0Xp,Q P to 
an integral monoid). Let w : P' —» P denote the map induced by the map 

(9.3.3.2) Q 0 P — > P , (q,m)\—>6(q)+p-m, 

let 0' : Q P' be the composite map 

(9.3.3.3) f*(y(p w+n)/Çn))^f*(y(p w+n 

and let j : P —• P ' be the composite map 

(9.3.3.4) f*(y(p w+n)/Çn))^f*(y(p w+n 

By the construction of fiber products in the category of integral log schemes [40, 
2.7] we have in the present situation 

(9.3.3.5) X'= Spec(A®z[Q] Z[P'}), 
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and the canonical factorization 

(9.3.3.6) 

Fx 

X -X' X 

of the absolute Frobenius of X is identified with the composite 

(9.3.3.7) Spec(A<8>Z[Q]Z[P]) a Spec{A ®Z[Q, Z [P ' ] ) • b Spee(A ®z[g] Z[P]), 

where a is the map defined by the map of rings 

(9.3.3.8) f*(y(p w+n)/Çn))^ Z [P ' ] A®m] Z[P], 

and b is the map defined by the map of rings 

(9.3.3.9) FA®j:A®moi ZfPl - A®ZIQ} Z [ P ' ] . 

Lemma 9.3.4. — Let Gp denote Coker(xp : G —• G). Then the projection 

(9.3.4.1) pgp • Coker(u;9p : P'gp -+ Pgp) 

factors through an isomorphism Gp ~ Coker(P'gp —» Pgp). 

Proof. — By construction of P', j , and w there is a commutative diagram with exact 
rows 

(9.3.4.2) 

0- •Qgp pgp G 0 

Xp 3 

0 PMOL %¨MP G 0 

w xp 

0 Qgp - pgp G 0. 

The result therefore follows from the snake lemma. • 

In particular the map Spec(Z[P]) —> Spec(Z[P']) defined by w descends to a mor
phism of stacks 

(9.3.4.3) w : [Spec(Z[P])/D(Gp)] • Spec(Z[P']). 

The commutative diagram of monoids 

(9.3.4.4) 

Xp 

P - w P' 
3 

P 
e e1 e 

Q 
xp 

Q 
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induces a commutative diagram of stacks 

(9.3.4.5) 

[Spec(Z[P])/D(Gp)] 
W 

Spec(ZFP'l) j Spec(Z[F]) 

PMOL %¨PL LL 

¨PM%% S(w) 
•Sp. 

50) 
•SP 

S(6) 
\S(8' S(6) 

SQ 
S(xp) 

SQ. 

The map S(xp) : SQ —> SQ is a lifting of Frobenius, so we also have a commutative 
diagram 

(9.3.4.6) 

S-
Fs 

S 

SQ 
S(xp) 

SQ. 

Base changing along 5 —> <SQ we therefore obtain a commutative diagram 

(9.3.4.7) 

[X/D(GP)} X'- X 

Sp XSQ o >• SP> XSQS 
MPLLPP 

Sp XSq S. 

f*(y(p w+n) 

Lemma 9.3.5 

(i) The squares 

(9.3.5.1) 

[X/D(GP)} • X' 

SP XSq S 
ìS(w)xid 

Sp> xsQ S 

and 

(9.3.5.2) 

M 
¨£%M 

X 

SP> X5Q 
MOLP¨% 

p xsQ S 

are cartesian. 
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(ii) The square 

(9.3.5.3) 

[X/D(GP)} 
I 

X 

SP XSq S 
FSPXSQS 

SP XSq S 

is cartesian. 

Proof. — Note that (ii) follows from (i). 
To see that (9.3.5.1) is cartesian note that it suffices to show that the diagram 

(9.3.5.4) 

[X/D(GP)} -X' 

SP 
S(w) 

~SP> 

is cartesian. This follows from 9.1.5, 9.3.4, and the observation that the canonical 
map 

(9.3.5.5) X X' xSpec(z[P'])Spec(Z[P]) 

is an isomorphism. 
That (9.3.5.2) is cartesian can be seen as follows. Let P" denote the (not necessarily 

integral) monoid Q ©Xp,Q P so we have a commutative diagram 

(9.3.5.6) 
P 

oc 
3 

P" 
1 

P 
e' o" MOPL 

Q 
PMOL 

Q, 

where 6" is the composite map 

(9.3.5.7) Q 
9-(9,0) Q®P 

projection 
P", 

the map 7 is the composite map 

(9.3.5.8) P mt—>-(0,m) Q®P 
projection p", 

and a is the surjection from P" to its image in P"gp = Qgp ©XP,QSP -Pgp-
Set 

(9.3.5.9) Y = Spec(A ®z[Q]ifl» Z[P"]), 

and let 

(9.3.5.10) X ' - ^ Y ^ X 
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be the natural factorization of the map b : X' —> X (9.3.3.7). We then obtain a 
commutative diagram 

(9.3.5.11) 

X' 
s 

Y e x 

SP> XSq S? 
S(a)xid 

<Sp" x«sQ S 
^S(l)xFs, 

(9.1.k$.3) 

S FS 5, 

where Sp» for the not necessarily integral monoid P" is as in 9.1.7. 
Since the natural maps 

(9.3.5.12) X' •>^xSpec™)Spec (Z[F] ) , Y- X XS,FS S 

are isomorphisms, to prove that (9.3.5.2) is cartesian it suffices to show that the square 

(9.3.5.13) 

f*(y(p w+n)/Çn f*(y(p w f*(y(p w 

S-
FS %%M 

is cartesian. This follows from 9.1.7 which shows that the natural map 

(9.3.5.14) Sp" — > ^P xsQ,s(xP) SQ 

is an isomorphism. 

Lemma 9.3.6. — Let S be an ¥p-scheme and f : X —• y be an étale representable 
morphism of algebraic stacks over S. Then the diagram 

(9.3.6.1) 

X Fx •X 

ÏII UIU 

y Fy OU 

is cartesian. 

Proof. — Let 7 denote the fiber product y x py ,y X, and let q : X —> 7 be the map 
defined by the square (9.3.6.1). We need to show that q is an isomorphism. 

In the case when X and y are schemes the result is standard [28, 5.1], as the 
morphism q is étale (being a morphism between two étale ^-schemes), surjective, and 
radicial (since the Frobenius morphism Fx : X —> X is radicial). 

For the general case, let n : Y —• y be a smooth surjection. To verify that q is an 
isomorphism, it suffices to show that the map 

(9.3.6.2) q:X XyY — • !Pxy 7 
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is an isomorphism. On the other hand, we have 

(9.3.6.3) f*(y(p w+n)/Çn))^f*(y(p f*(y(p w+n)/Çn))^f*(y(p 

Under this isomorphism the map q becomes identified with the map 

(9.3.6.4) ( X x y Y) >(XxyY)xYiFYY 

defined by the commutative square 

(9.3.6.5) 

X xy Y 
£%¨£% 

Xxy Y 

Y 
FY 

Y. 

This therefore reduces the proof to the case when Y is a scheme. Combining this with 
the case of schemes discussed at the beginning of the proof, this therefore proves the 
case when / is schematic (z.e., for every morphism Y —• y with Y a scheme the fiber 
product X Y is a scheme). 

It remains to consider the case when y is a scheme and X is an algebraic space 
(note that if / is separated then X is automatically a scheme by [46, II.6.17]). In this 
case let U —» X be an etale surjection. We then obtain a commutative diagram 

(9.3.6.6) 

U 
Fu 

u 

X 
Fx 

X 

M%P %MP 

y 
Fy , 

•y, 

where the top square is cartesian by the case when / is schematic (applied toll —* X), 
and the big outside square is cartesian by the case of schemes. Since U —* X is étale 
surjective this implies that the bottom inside square is also cartesian. • 

By 9.1.11, the natural map Sp x$Q S —• £>og(s,Ms) ŝ étale and representable, and 
therefore by 9.3.6 the square 

(9.3.6.7) 

Sp XSQ 
FSpxs s 

S Z¿ p xsQ S 
I 

&og(s,Ms) 
f*(y(p w+n 

&og(s,Ms) 

is cartesian. Using 9.3.5 (ii), we therefore get an isomorphism 
(9.3.6.8) 
X' - Xx£og(s,MshFLog{SMs) &og(SIMS) - XXSPXSQS,FSPXSQSSPXSQS [X/D(GP)]. 
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This isomorphism identifies the diagram 

(9.3.6.9) X 
f*(y(p w+n)/Çn))^ 

%£¨% 
h' x, 

where hi is defined as in (9.3.2.6), with the diagram 

(9.3.6.10) X 
quotient 

\X/D(GP)} Z X, 

where z is the map induced by the map w in (9.3.4.3). It follows that in this case the 

scheme X is the spectrum of the ring 

(9.3.6.11) (A®zlQ] Z[P))D^ 

of Z)(Gp)-invariants in A <S>z[Q] Z[P]. 
Define a submonoid H C P by 

(9.3.6.12) 

H := {a G P\ image of a in Pgp equals bPc, for some b G Pgp, and c G Qgp}. 

By the explicit description of X" given in [40, proof of 4.12] we have 

(9.3.6.13) X" = Spec(A ®Z[Q] Z[H}). 

To complete the proof of 9.3.3, it therefore suffices to prove the following lemma. • 

Lemma9.3.7. — For any Z[Q)-algebra A, the map A ®z[Q] Z[il] —> A <S>z[Q] Z[P] 
induced by the inclusion H C P is injective, and identifies A ®z[Q] £/ie ring 
of invariants (A ®Z[Q] Z[P])D(<G^. 

Proof — Since D(GP) is diagonalizable, for any Z[Q]-algebra A the natural map 

(9.3.7.1) A ®z[q] (Z[P])D<G'> —+ (A ®z№] Z[P])D(G") 

is an isomorphism. Therefore it suffices to consider the case when A = Z[Q] (note 
that the injectivity for general A also follows, for if the result holds for A = Z[Q] then 
Z[H] is a direct summand of the Z[Q]-module Z[P]). 

As a £)(Gp)-representation, Z[P] = © f f G G ^ , where Mg C Z[P] is the free sub
group 

(9.3.7.2) em6p,m^Z • em c Z[P], 

where for m G P we write em G Z[P] for the image of m under the natural map 
P —» Z[P] and the sum is taken over the set of elements m G P with image # in Gp. 
To prove the lemma it therefore suffices to show that the natural map 

(9.3.7.3) H P fl Ker(Pgp — • Gp) C Pgp 

is an isomorphism, which is immediate from the definition. • 

Corollary 9.3.8. — The Frobenius morphism F^og(s Mg) : Log^s,Ms) ~* ^°9(s,Ms) ^s 
Frobenius acyclic in the sense of 3.2.1. 
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Proof. — It suffices to show that for any smooth morphism X —•» &og(s,Ms) w^n 
X affine, and any quasi-coherent sheaf £ on X' we have i P ( X ' , £ ) = 0 for i > 0. 
Furthermore, it suffices to prove this after replacing X by an étale cover, and hence it is 
enough to consider the local situation as in the proof of 9.3.3 where X = Spec(A<S>z[Q] 
Z[P]). In this case, we have the isomorphism X' ~ [X/D(GP)] given by (9.3.6.8). 
Therefore a quasi-coherent sheaf £ on X' is equivalent to the data of a quasi-coherent 
Ox-module E with an action of D(GP) compatible with the action on X. Since X is 
affine, the cohomology Hl(X,£) is canonically isomorphic to the group cohomology 
iP(£>(Gp), E). The result therefore follows from [14, 1.5.5]. • 

Corollary 9.3.9. — The log smooth morphism (X,Mx) —> (S, Ms) is of Cartier type 
in the sense of [40, 4.8] if and only if the morphism X —> £O<7(S,MS) factors through 
the open substack of £O#(S,MS) over which the natural map 0^0gis,MS)^s,FSs -+ 
F£ogis,Ms)*Onog(s,MS) is an isomorphism. 

From the above discussion and 3.3.21 we also obtain a canonical isomorphism of 
Ox "-modules 

(9.3.9.1) C'1 *L(X"iMx„)/(S,Ms) W < ï ( ^ ( X , M x ) / ( S , M s ) ) -

Proposition 9.3.10. — The isomorphism (9.3.9.1) agrees with the one defined in [40, 
4.12(1)]. 

Proof. — Denote temporarily by 

(9.3.10.1) C"1 n(X",Mx/,)/(5,Ms) : W 9 ( f i ( X , M x ) / ( 5 , M s ) ) 

the isomorphism defined in [40, 4.12 (1)] 
Let 7T : (X", Mx") —> (X, Mx) be the projection, and let 

(9.3.10.2) U • lL(X,Mx)/(S,Ms) ^ ( ^ ( X , M x ) / ( 5 , M s ) ) 

denote the composite map 

(9.3.10.3) *\X,Mx)/(S,Ms) 
7T* nq(9.1.7.3) c-\ 

W 9 ( ^ ( X , M x ) / ( 5 , M s ) ) ' 

Similarly define 

(9.3.10.4) D : Çt\x№x)/(S,Ms) ^ ( ^ ( X , M x ) / ( 5 , M s ) ) 

to be the map C 1on*. Since the natural map ^*^x?Mx)/(5,Ms) -> Sl\x»,MX")I{SZMS) 
is an isomorphism, the maps C~l and C_1 are determined by the maps D and D. It 
therefore suffices to show that D = D. 

To prove that D~~x — D~x we may work etale locally on S and X , and may 
therefore assume that X = Spec(A ®z[Q] Z[P]) as in the proof of 9.3.3. Let G denote 
the cokernel of QSP -> Pgp. Then by [40, 1.8] we have 

(9.3.10.5) tt\x,Mx)/(S,Ms) ~ °x ®z G' 
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and. For 5 i , . . . , 5 9 E G w e write 

(9.3.10.6) dlog(0i) A . . . A dlogGfo) G ^MX)/{SMS) 

for the element 

(9.3.10.7) (1 0 Qi) A ••• A (1 0 gq) G j \ Ox ®z G. 

The maps D 1 and D 1 are characterized by their values on the elements (9.3.10.6), 
and by [40, 4.12 (1)] we have 

(9.3.10.8) ZR^dlogfai) A A d log(^)) = [dlogfai) A A d log(^)] , 

where the right side denotes the class of the form in Hq{£l^x MX)/(S MS))-
It therefore suffices to show that we also have 

(9.3.10.9) IT^dlogtei) A • . . A d log(^)) = [dlog(̂ i) A . - . A d log(^)] . 

To ease the notation write just S for the stack Sp x$Q 5, and note that by 9.1.6 (i) 
we have an isomorphism 

(9.3.10.10) [X/D(G)} ~ S. 

Let X[G] denote the product X x D(G), let pr : X[G] —> X be the projection, and 
let p : X[G] —> X be the action. Let ^ x [ G ] / x denote the relative differentials of 
pr : X[G] -> X.. 

For g G G write fg G OX[G] f°r the image of g under the map 

(9.3.10.11) G9^Ox ®zZ[G] •• £>X[G] 

and note that the induced map 

(9.3.10.12) Ox[G] ®z G — • tix\G]/xi A®9 1—> « • dfg 

is an isomorphism. 
There is a cartesian diagram 

(9.3.10.13) 

X 
p 

X[G) 

pr 

%£¨%£ T 
-X 

which induces a map 

(9.3.10.14) P* : fi(X,Mx)/(S,Ms) — ^X/S ~^ ^X[G]/X' 
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Lemma 9.3.11. — For g G G the image of dlog(#) under the composite map 

(9.3.11.1) O1 
I£(X,MX)/(S,MS) —^ *Lx/s O1 

" *LX[G]/X 

is equal to fgx • dfg. 

Proof. — Note that for g, h G G we have fg-fh — fg+h and 

(9.3.11.2) / -1 • dfg + • dfh = (fh • dfg + fg • dfh)/(fgfh) = f^hdfg+h. 

Using this additivity and the fact that the image of P —> G generates G as a group, 
we conclude that it suffices to prove the result for elements g G G which are in the 
image of P. 

Also it suffices to consider the universal case of A = Z[Q]. 
Let m G P be an element, let g G G be the image of m, and let em G Ox = 

A <8>z[Q] %[P] be the image of m under the natural map P —• Ox- Since the isomor
phism (9.1.3.1) is compatible with the derivations from Ox (by construction of the 
isomorphism in [64, 3.8]), we have 

(9.3.11.3) p*{dern) = dp*{ern), 

and under the map 

(9.3.11.4) p* : Ox = A ®z[g] Z[P] - » (A ®Z[Q Z[P]) ®z Z[G] = Ox[G] 

the element em maps to pr*(em) • fg. Therefore 

(9.3.11.5) p*(dem) = d(pr*(em) • fg) = pv*(em)dfg. 

Since 

(9.3.11.6) emdlog(#) = dem 

in Q X,Mx)l{S,Ms) ' we obtain 

(9.3.11.7) pr*(em) • fgp*{d\og(g)) = p*(em)p*dlog(#) = pr {em)dfg. 

Since we are considering the universal case A = Z[Q], the element pr*(em) is not a 
zero-divisor and we obtain p*(dlog(#)) = fgldfg. • 

Consider now the commutative diagram 

(9.3.11.8) 

X[G] 
Fx[G)/x 

(X[G})'-
^X{G] 

•X[G] 

M%P 

X 
Fx I s 

%MP 
p 

pr' 

MLOM 

p 

pr 

X 
Fx 

X 

s 
Fs 

5 , 
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where the square 

(9.3.11.9) 

(X[G})> 
KX[G] 

X[G] 

pr' pr 

X Fx X 

is cartesian and 

(9.3.11.10) X[G] 
FX[G]/X 

[X[G\y-
*X[G] 

X[G] 

and 

(9.3.11.11) X 
Fx/S 

-X'-
7T 

X 

are the canonical factorizations of Frobenius. By the construction of the map C 1 
in 3.3.21, we then have a commutative diagram 

(9.3.11.12) 

*Lx/s ~ 
p* nq(9.1.7.3) 

D F>x[G] 

f*(y(p w+n) p* 
nq(QX[G]/x) 

where if Cx^ : Sl\x[G])'/x ~^ ^9№x[G]/x) *s tne Cartier isomorphism for pr : 
X[G] X the map DX\G) is defined to be the composite 

(9.3.11.13) Dq 
lLX[G)/X 

nX[G] nq 
lL{X[G))'/X • 

-̂i 
^X[G) ̂(^xw/x)-

Moreover, by the proof of 3.3.7 the horizontal arrows in (9.3.11.12) are injective. 
By 9.3.11 it therefore suffices to show that for # i , . . . , gq G G we have 

(9.3.11.14) f*(y(p w+n)/Çn))^ f*(y(p w+n)/Ç [ ( / ^ 4 f p x ) A - A(/*Mf*)] 

in ^~iq{^x[G]/x)' This f°H°ws from the classical construction of the Cartier isomor
phism [44, 7.2.3]. • 

Remark 9.3.12. — From the stack-theoretic point of view and 3.1.8 the difficulty in 
generalizing the theory of Cartier descent to the logarithmic setting can be reinter
preted as the problem of understanding the relationship between the category of quasi-
coherent sheaves on a stack and the category of quasi-coherent sheaves on the coarse 
moduli space. Indeed 3.1.8 shows that the category of quasi-coherent sheaves with 
logarithmic integrable connection and ^-curvature 0 on (X, Mx)/(S, Ms) is canoni
cally equivalent to the category of quasi-coherent sheaves on the stack X'. We would 
like to relate this category to the category of quasi-coherent sheaves on X" which 
by 3.1.8 is the coarse moduli space of X'. It would be interesting to study the work 
of Lorenzon [50] and Ogus [58, 1.3] from this point of view. 
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9.4. Comparison of de Rham-Wit t complexes 

9.4.1. — Let k be a perfect field of characteristic p > 0, and let L be a fine saturated 
log structure on Spec(/c). Let / : (Y,M) —+ (Spec(fc), L) be a smooth morphism of 
Cartier type between fine saturated log schemes. For n > 1 let (Wn,Wn(L)) denote 
the hollow log scheme defined in [31, 3.1], whose underlying scheme is the spectrum 
of the truncated ring of Witt vectors Wn(k). 

Remark 9.4.2. — For the results of this section, one does not need the log structures 
to be saturated, but we make this assumption because it simplifies the theory of 
charts, and is satisfied in all the applications we have in mind. 

9.4.3. — In this setup, Hyodo and Kato define the logarithmic de Rham-Witt complex 
W«Ku'Y [31, 4.1]. 

By definition, 

(9.4.3.1) W^KU)\ = RqU^Y,M)/(Wn,Wn(L))*(0(Y,M)/(Wn,Wri(L)))-

This graded Wn(fc)-module comes equipped with operators d, F, V, and 7rn as in 4.3.7 
[31, 4.1 and 4.2]. 

9.4.4. — Let W denote the spectrum of the ring of Witt vector W(k) of and let 
a : W —• W denote the canonical lifting of Frobenius. The log structures Wn(L) on 
the reductions Wn define a compatible system of fine log structures {Wn(L)} on the re
ductions of W. In other words, a compatible family of objects in £og(sPec(z),e>*)(Wn)-
Since the stack £o#(Spec(Z),o*) *s algebraic this compatible system of log structures is 
uniquely algebraizable to a fine log structure W(L) on W (this follows for example 
from the converse to [4, 5.3] alluded to in loc. cit., p. 182. Note that in the case 
when L is equal to the log structure obtained from a map Q —> k from a fine sharp 
monoid Q sending all nonzero elements to zero, then W(L) is simply the log structure 
obtained from the map Q —> W sending all nonzero elements to zero. In particular, 
the log structure W(L) is a hollow log structure on W, as this can be verified after 
replacing W by a finite flat covering where it is given by this construction. 

Similarly, the canonical liftings of Frobenius to (Wn,Wn(L)) defined in [31, 3.1] 
are obtained from a unique morphism of log schemes 

(9.4.4.1) F(w,w(L)) : W W{L)) — (W, W(L)), 

which in turn induces a lifting of Frobenius 

(9.4.4.2) f*(y(p w+n)/Çn))^ &°9(W,W(L)) &og(Wiw(L))-

The morphism F^og(ww{L)) is defined as follows. As in 9.1.34, for a log structure M 

on a scheme T let denote the log structure associated to the prelog structure 

(9.4.4.3) M 
xp 

M ¨£¨£%¨£ 

Note that there is a canonical morphism 7M • —> M of log structures on T. For 
a morphism S : M -> N of log structures on T, let S^) : - » denote the 
morphism induced by 6. 
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By the construction of W(L) in [31, 3.1], there is a canonical isomorphism of log 
structures on W 

(9.4.4.4) W(L)W ~ <r*W(L), 

which identifies the map a*W(L) —• W(L) giving the lifting of Frobenius F(w,w(L)) 
with the map jwiL) • 

Since the map FtLogiWfW{L)) covers the map a : W —> W, it is specified by a 
morphism 

(9.4.4.5) F'y(p w+n)/Çn f*(y(p w+n)/Çn))^ MPO¨£££¨%%M% 

over W. We define this map to be the functor sending 

(9.4.4.6) (T, MT) 
(9,9B) 

(W,W(L)) 

to the morphism 

(9.4.4.7) (T,MJ?>) 
GJJ¨§¨¨P 

(W,W(L)<r>) (W,a*W(L)). 

9.4.5. — Let T/W be a flat W-scheme with a lifting of Frobenius FT :T ->T, and 
let MT be a fine log structure on T. Let 

(9.4.5.1) j:(W,W(L)) (T,MT) 

be an exact closed immersion defined by a divided power ideal. This map induces a 
closed immersion 

(9.4.5.2) &og(j) : Log(w,w(L)) &og(r,MT)' 

For every integer n, let (Tn, Afrn) denote the reduction of (T, MT) modulo pn. Then 
(Tn, MTU) is an object of Cris((Spec(fc), L)/Wn), where Wn is endowed with the trivial 
log structure. 

In this situation, Hyodo and Kato construct in [31, 4.8] an isomorphism of graded 
Or-algebras 
(9.4.5.3) 

tHK : ®q>oOT ®Wn(k) W^KLU^ ®q>oRqU(Y,M)/(Tn,MTn)*£}(Y,M)/(Tn,MTn)-

We now explain how we recover this isomorphism using our stack-theoretic meth
ods, in the case when there exists a chart (3T • Q —> MT such that the induced map 
Q —> L is an isomorphism, and such that the diagram 

(9.4.5.4) 

Q 
xp 

Q 

W(k) PM W(k) 

defines a chart for the lifting of Frobenius F(w,w(L))-
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Note that we may without loss of generality assume that T is the spectrum of a 
p-adically complete local ring (replace T by the p-adic completion of the local ring of 
the point Spec(fc) —> T defined by j). 

Remark 9.4.6. — The most important example for the purposes of this text is when 
T = Spec(W(t)) (where W(t) is defined as in 5.3.1), and the log structure is defined 
by the map N —• W(t) sending 1 to t. 

Proposition 9.4.7. — There exists an open substack °^T C £O#(T,MT) flat over T such 
that the open substack •= fiog^)"1 (%r) of &og(w,w(L)) is stable under the lifting 
of Frobenius Fnog{ww{L)) (let F^w be the induced lifting of Frobenius to %w), the pair 
(Ww, Ffyw) satisfies the assumptions of 4-4-5> and the morphism Y —> <Co#(Spec(fc),L) 
factors through the reduction % of ^T • 

Proof. — Define %r C £O<7(T,Mt) to be the full substack whose objects are morphisms 
of fine log schemes 

(9.4.7.1) f:(X,Mx)- •» (T, MT) 

such that for any geometric point x —> X there exist an étale neighborhood U of x 
and a chart for the restriction fu of / to U 

(9.4.7.2) 

(U,Mx\u) Spec(P Z[P]) 

fu 7* 

(T, MT) 
ßT 

Spec(Q->Z[Q]), 

where 7* is induced by a morphism of monoids 7 : Q —> P satisfying the following 
conditions: 

(i) 7 is integral and injective; 

(ii) The quotient Pgp/Qgp is p-torsion free; 

(hi) If H is the submonoid of P given by (cf. (9.3.6.12)) 

(9.4.7.3) H:={ae P\a = Wc for some b G P9P\ c G Q9P} 

then the natural map 

(9.4.7.4) P 0 Q , x p Q H, (b,c) Wc 

is an isomorphism. 

Note that %T is clearly an open substack of £O#(T,Mt)- We claim that %T has the 
desired properties. 

To verify this, fix a morphism 7 : Q —• P as above, and let §P/Q,T denote the stack 
§P XSQ,/3T t defined in 9.1.4. If G denotes the quotient Pgp/Qgp and D(G) is the 
associated diagonalizable group scheme, then Sp/Q^ is the stack-theoretic quotient 
of 

(9.4.7.5) Spec(Z[P]) XSpec(Z[Q]),/3T T 
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by the natural action of D(G) induced by the action of the torus D(Pgp) on the toric 
variety Spec(Z[P]). By 9 .1.11 there is a natural projection SP/Q,T —> which is 
representable and etale, and the images of these morphisms cover 

To verify the flatness of %r over T, it therefore suffices to show that the 
schemes (9 .4.7.5) are flat over T, and this in turn follows from the fact that 
Z[Q] —> Z[P] is flat since 7 is integral and injective [40, 4.1]. 

The reduction §P/Q,W of §P/Q,T to W also comes equipped with a lifting of Frobe
nius F$p/Q w induced by the map 

(9.4.7.6) Z[P] ®Z[Q] W — Z[P] <8>Z[Q] W 

which is equal to a on W and multiplication by p on P, and the map D(G) —> D(G) 
induced by multiplication by p on G. It follows from the modular interpretation of 
§P/Q,W given in [62, 5.20] that the projection §P/Q,W ~~> ^>°9{w,w{L)) is compatible 
with the liftings of Frobenius. Since °ttw is the union of the images of these maps it 
follows that °t/w is stable under the lifting of Frobenius Fj^og(ww(L)). 

To verify the assumptions of 4.4.5, recall that we need to show that for any mor
phism X —• <$/ the natural map 

(9.4.7.7) Oxin) —> RPn*Ox(n) 

is an isomorphism, where X^ denotes X X\y,an W, X^ denotes X x<%w F% ^W, 

and 

(9.4.7.8) Pn : X x^wF^ fyw >Xxw^W 

is the projection (in 4.3.2 the "test scheme" X is denoted W, but we change the 
notation so as not to conflict with our notation for Witt vectors). Clearly to verify 
this we can work etale locally on X, and therefore it suffices to consider morphisms 
X —• 9/ which factor through some §P/Q,W It follows that it suffices to verify the 
above condition for §P/Q,W instead of since the diagram 

(9.4.7.9) 

f*(y(p w+n F? 

bP/Q,W &P/Q,W 

£¨%¨£% F£/ PM¨% 

is cartesian for all n > 0 since the vertical arrows are representable and etale. 

Lemma 9.4.8. — For every n > 1 the map 
(9.4.8.1) 

P eq,xP- Q —>{aeP\a = bp c , for some b G P91 and c e Q9P}, (a, c) 1—• ap c 

is an isomorphism. 
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Proof. — To see the injectivity of (9.4.8.1), note that since Q —> P is integral, the 
monoid P ®Q,Xpn Q is integral, so it suffices to verify that the induced map 

(9.4.8.2) (P eQ,xpn Q)gp ~ P ^ eQgP,Xpn Qgp — Pgp, (6, c) .—> 

is injective. This is clear because if b G Pgp and c G QSP are elements such that 
bPn c = 0 then b G <2gp because Pgp/Qgp is p-torsion free and hence (6, c) maps to 0 
in PgP eQgP,xp- <2gp. 

For the surjectivity of (9.4.8.1), we proceed by induction on n. For n = 1, we have 
the result by assumption. 

So we assume the surjectivity holds for n — 1 and prove it for n. Let a G P be an 
element such that a — bP^c for some b G Pgp and c G Qgp. Then by the case n = 1, 
we can write a — apc'', where a G P and cf £ Q. Then 7 := 6*̂  a-1 is an element 
of Pgp whose p-th power is in Qgp. Since Pgp/Qgp is p-torsion free it follows that 
7 G Qgp- Therefore a = bpri 7_1, which implies by the induction hypothesis that we 
can write a = epU q, where e G P and q G Q. This in turn gives 

(9.4.8.3) a = epn(qpc') 

which proves the surjectivity for n. • 

Let Zp/Q\y denote the scheme 

(9.4.8.4) Spec(Z[P]) xSpec{z[Q])^w W 

so that the projection Zp/Q^w —> &P/Q,W is a smooth surjection. Let Gpn denote the 
cokernel of the map 

(9.4.8.5) xpn : PgP/Qgp —> Pgp/Qgp, 

and let D(Gpn) denote the corresponding diagonalizable group scheme. The action 
of the torus D(Pgp) on the toric variety Spec(Z[P]) induces an action of D(Gpn) on 
Zp/Q,w> By the same argument proving 9.3.5 (ii) the fiber product of the diagram 

(9.4.8.6) 

Zp/Q,W 

MP%¨£% F? 
bP/Q,W MP%£% 

is isomorphic to the stack-quotient of Zp/Q^ by this action of D(Gpn). The projec
tion 

(9.4.8.7) 7rn : [Zp/Q,w/D{Gpn)\ — Zp/Q,W 

is induced by the map 

(9.4.8.8) FS : Z[P] ®Z[Q] W —^ Z[P] ®Z[Q] W 

given by multiplication by pn on P and crn on W. 
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Since any morphism to §P/Q,VF étale locally factors through Zp/Q^w, this implies 
that for any morphism X —> §P/Q,W the stack X^ is étale locally on X (with X(n) 
viewed as an X-stack via the projection) isomorphic to the stack-theoretic quotient of 
a finite X-scheme by the action of a finite diagonalizable group scheme. This implies 
that the sheaves 

(9.4.8.9) KPntOzw =0 

for i > 0. This also implies that to prove that the map Ox —» R°Pn^Ox(n) is an 
isomorphism, it suffices to prove it for X — ZP/Q\y. For if T is a quasi-coherent 
sheaf with action of D{Gpn) on Zp/Q^ (a D(Gpn) — OzP/Q ̂ -module in the sense 
of [14, 1.4.7.1] then since D(Gpn) is diagonalizable the formation of the subsheaf of 
invariants of T commutes with arbitrary base change on Zp/qy/ (this follows for 
example from [14, 1.4.7.3]). 

To prove it for ZpjQ^Wi n°te that the map (9.4.8.8) is obtained by base change 
along f3w • Z[Q] —> W from the map 

(9.4.8.10) Z[P 0Q,xpn Q] —+ Z[P], 

induced by the morphism of monoids (9.4.8.1). The result therefore follows from 9.4.8. 
This completes the verification that the pair (fy,F<&) satisfies the assumptions 
in 4.4.5. 

Finally the statement that Y —» £o#(sPec(/c),L) factors through follows from 
the argument used in the proof of [40, 4.12] which shows that locally on Y the map 
Y -> £o#(sPec(fc),L) factors through some SP/Qik- • 

9.4.9. — Let A*n Y/<%rw and A*n y/wt ê defined as in 4.3. Using the equivalence (9.2.2) 
we obtain canonical isomorphisms 

(9.4.9.1) W^KuqY ~ AqnY/^w, RquIYM)/ITRIMTRI>0(Y,M)/(TN,MTN) - ^n,r/^Tn-

Lemma 9.4.10. — The first isomorphism in (9.4-9.1) is compatible with the operators 
d, F, V, and 7rn defined in [31, 4.1 and 4.2] for W^KUJy and in 4-3.7 for AI Y/^w * 

Proof. — It suffices to verify the lemma étale locally on 7 , so we may assume that 
there exists a compatible system of liftings of (Y, M) to log schemes (YN, MN) smooth 
over (WN,WN(L)) as well as a compatible system of liftings of Frobenius to the log 
schemes (Fn,Mn). Let CN denote the logarithmic de Rham-complex 

(9.4.10.1) 
C"> : ^(Ym,Mm)/(wm,wm(L)y 

By 9.1.14 the complex is canonically identified with the de Rham-complex 

(9.4.10.2) ft-
Y/&og(Wrn,Wrn{L))> 

and this identification is compatible with the Frobenius endomorphisms. The lemma 
can now be verified as follows. 
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(i) The maps d at level n are in both cases obtained from the boundary morphism 
arising from the long exact sequence associated to the short exact sequences 

(9.4.10.3) 0 ^CS -C* C'2n • C * 0. 

(ii) The maps F are induced by the projection C*+1 —• C*, and the maps V are 
induced by the maps xp : C* —> C*+1. 

(iii) The maps 7rn are in both cases defined using the method described in 4.1.9. • 

9.4.11. — Prom 4.6.9 and with T as in 9.4.5, we therefore obtain an isomorphism 

(9.4.11.1) f*(y(p w+n)/Çn)+n)/Çn))^ ®q>oAqn,Y/WTn ' 

Proposition 9.4.12. — The diagram 
(9.4.12.1) 

f*(y(p w+n)/Çn))^¨P%% (9.4.9.1) 
®q>0OT ®W Aqn,Y/WWn 

JKUY? PMO 

®q>oRqU(Y,M)/(TnMTj*°(Y,M)/(TriJMTn) 
(9.4.9.1) (y(p w+n)/Çn))^ 

commutes. 

Proof. — The assertion is etale local on 7 , so it suffices to consider the case when Y 
is equal to the scheme Zp/Q^ associated to a morphism of monoids Q —> P as in the 
proof of 9.4.7. Let Mzp/QTn be the log structure on Zp/QITN defined by the projection 
to Sp/Q,Tn> so that (Zp/QiTri,MZp/Q Tn) is a log smooth lifting of {ZP/Q,k,MZp/Q J 
t o ( T n , M r J . 

In this case the square (9.4.12.1) is induced from the diagram of differential graded 
algebras 

(9.4.12.2) 

®ЯП [>l{ZP/QìWnìMzp/Q w)/(Wn,Wn(L))) q V ^P/Q,Wn/bP/Q,WnJ 
I 

P¨¨£ POO 

Wq>On, k»(Zp/QiTn,MZp/0 _ )/(Tn,MTn)t ©?>0«9(fizP/Q|TB/8p/Qirn) 

by tensoring the top row with OT- It therefore suffices to show that this dia
gram (9.4.12.2) commutes. 

Let G denote P<a>/Qgp so that 

(9.4.12.3) (ZP/Q,Wn,Mzp/Q tWn), t(Wn,Wn(L)) ~ °Zp/Q,wn ®% °i 

and similarly 

(9.4.12.4) nhp/Q,TnMzP/QiTn)/\ [TnMTj-°Zp/Q,Tn ®% G. 
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For g G G write dlog(g) for the element 1 (g) g in either of these two modules. By the 
proof of [31, 4.8], the map iHK is determined by the map in degree q = 0 and by the 
condition that 

(9.4.12.5) ^ [ dlog(g) ] = [dlog(ff)] 

for all g G G. It therefore suffices to verify that (9.4.12.2) commutes for q = 0, and 
that i[dlog(g)} = [dlog(#)] for all g G G. 

The commutativity for q — 0 follows from the construction. Indeed it follows from 
the definition of the map pn in 4.2.2 and descent theory that the map i in degree 0 is 
given by the map 

(9.4.12.6) Wn(OzP/Q,k) —> Wn(0Zp/QTJ 

sending a Witt vector ( ao , . . . , an_i) to 

(9.4.12.7) 
n-1 

¿=0 

• — i f*(y(p w+n)/Çn))^f*(y(p w 

where di G OzP/Q Tri is any lifting of â . By the construction in [31, 4.9] this agrees 

with the map iHK in degree 0. 
To verify that ^[dlog(^)] = [dlog(#)], let ZP/QiTri[G] denote the scheme 

(9.4.12.8) ZP/Q,Tn x D(G), 

and note that Zp/Q^Tn[G] with the two projections to Zp/Q^Tn defined by the first 
projection and the action is isomorphic to the fiber product of the diagram 

(9.4.12.9) 

ZP/Q,Tn 

ZP/Q,Tn > SP/Q,TN-

We define ^p/Q,v^n[G] similarly. By 4.3.20 the pullback map 

(9.4.12.10) f*(y(p w+n)/Çn))^¨PLM Wl(̂ Zp/Q)Tn[G]/ZP/Q)Tn) 

is injective, and by the same argument used in the proof of 9.1.13 the image of [dlog(#)] 
in H1(Q*Zp/Q t [G]/zP/Q T ) *s ^ e c^ass °f 9~ld>9, where we view g G G as a unit in 
the ring 

(9.4.12.11) °Zp/Q,Tn[G] OzP/Q,Tn®zZ[G}. 

The liftings of Frobenius to ZpjQ^wn and §p/Q,iyn also define a lifting of Frobenius 
to Zp/QiWn[G], which in fact is the lifting of Frobenius defined by the lifting of 
Frobenius on each of the two factors of (9.4.12.8). In other words, the lifting of 
Frobenius on ZP/Q^Wri[G] is given by the map 

(9.4.12.12) OzP/Q,Wn®znG] OzP/QtWn®zZ[G\ 
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which is Fzp/Q Wn on the first factor and multiplication by p on G. By [34, 0.1.3] 
there exists a canonical commutative diagram 

(9.4.12.13) 

Wn(ZP/Qtk[G}) 
S 

zP/Q,wn [G] 

Wn(Zp/Qik) 
t 

ZP/Q,Wni 

where s and t are compatible with the Frobenius morphisms and reduce to the identi
ties modulo p . By [34, 0.1.3.18], the map s sends g G 0Zp/Q Wn[G] to the Teichmuller 
lifting [g] G Wn(0Zp/QAG]). 

Let OLg G wiznl <r]/7 
n zP/Q,k[G\/<6p/Q,k 

be the image of g dg G Zp/Q,wn [G]/ZP/Q,Wn 
under the composite 

(9.4.12.14) 

ZP/Q,Wn [G]/ZP/Q,Wn 
S* 

UWN(ZP/Qtk[G\)/WN(ZP/QTK) 
PM¨%% 

n ZP/Q,k[G]/ZP/Qik'> 

where the second map is the projection map used in the construction of the Langer-
Zink de Rham-Witt complex (4.2.4-4.2.6). 

The following two lemmas now complete the proof of 9.4.12, as they show that the 
images of £[dlog(#)] and [dlog(#)] under the injective map (9.4.12.10) are equal, and 
in fact equal to ag. 

Lemma 9.4.13. — The image of ag under the map 
(9.4.13.1) 

Pn Wn llZP/Q,k[G]/ZP/Q,k A1 
n,ZP/Q^k[G]/ZP/QiT 

nl(nZp/Q,Tn[G]/ZP/QiTn) 

defined in 4-2.3 is equal to the class [g xdg]. 

Proof. — Note first that the image of g under the composite map 

(9.4.13.2) 

®ZP/Q,wn [G]/ZP/Q,W, 
s* Wn(0Zp/Qk[G]) pn 

^ fàzP/QìTri[G}/ZP/QjTn) 

is equal to the class of gpn by the definition of the map pn in 4.2.2. Since 

(9.4.13.3) Pn WnZ^ZP/Qik[G]/ZP/Qtk A* 
n,ZP/Q,k[G]/ZP/Q,T 

is a map of differential graded algebras, it follows that the image of ag under pn is equal 

to [{gpn)~l) -d[gpTl]. Now recall that d[gpU] is obtained by choosing a lifting I of gpU to 

0Zp/QT2jG], and defining d[gpU] to be the class of an element u G nzP/Q,Tn[G]/zP/QfTn 

for which pnuo — d£ in fti rr,i ,7 . Taking £ = gpn we see that 
y zP/Q,T2n[G\/Zp/Q,T2ri ° 

(9.4.13.4) [(^n)~1]-d\gpn] = [{gpnrlgpn-ldg] = [g-'dg] 

as desired. 
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Lemma 9.4.14. — The image of the class [dlog(g)] under the pullback map 

(9.4.14.1) ^ (^Zp/Q,Wn/Sp/Q,Wn 
Al 
n,Zp/Q,k/Sp/Q,Wn 

Wn lLZP/Q,k[G]/ZP/Q,k 

is equal to ag. 

Proof. — Let Rp/Q,Wn denote the fiber product 

(9.4.14.2) Rp/Q,wn '•= Zp/Q,wn [G] x 
action,Zp/QjW/n,action Zp/Q,Wn [G] 

so that we have a commutative diagram of schemes with liftings of Frobenius 

(9.4.14.3) 

Zp/Q,wn Zp/Q,wn [G] : : Rp/Q,wn 

T 
&P/Q,Wn 

Y 
- Zp/Q,Wr Zp/Q,wn [G] 

This diagram in turn induces a commutative diagram of modules 

(9.4.14.4) 

ÍÍ1 
RP/Q,Wn/ZP/Q,Wn [G] 

s* 
nWn(RP/Q,k)/Wn(ZP/Qjk[G}) 

IUIU 
n Rp/Q,k/ZP/Q,k[G] 

ft1 
Zp/Q,wn [G]/Zp/Q,Wn 

s* 
lLWn{ZP/Q,k[G])/Wn{ZP/Q,k) ~ 

qn 
Wn ^zP/Qik[G]/ZP/Qjk 

Zp/Q,wn/Sp/Q,wn 

where the left column is exact, and s* and are defined analogously to s* and 
Since the element g~1dg e Q}7 is in the image of ft- ,~ 

J J ^P/QiWn V^l/^ P/Q,Wn 0 -6p/Q,Wn/&P/Q,Wn 
(in fact g~xdg is the image of the element dlog(#)), it follows that ag is in the equalizer 
of the two maps 
(9.4.14.5) Wn *¿ZP/Q,k[G}/ZP/Q,k Wn *LRP/Qjk/ZP/Qik[Gy 

Since the morphism of diagrams 

(9.4.14.6) 

WnZ^R iz rn 
Pn 

A1 
n,Rp/Q,klZP/Q,w[G] 

n ZP/Qjk[G]/ZP/Q:k 
Pn 

A1 
niZP/Q,k[G]/ZP/Q^W 

induces an isomorphism between the equalizers of the vertical arrows by 4.6.7, it 
follows that to prove the lemma it suffices to show that the image of ag in 

(9.4.14.7) A1 
^n,ZP/Q>k[G}/ZP/QiW 

^ ^ZP/Q,Wri [G]/ZP/QjWn ) 
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is equal to the class of [g 1dg]. This follows from the same argument used in the 
proof of 9.4.13. • 

This completes the proof of 9.4.12. • 

9.5. Equivalence of definitions of syntomic complexes 

9.5.1. — Let A be a complete discrete valuation ring of mixed characteristic (0,p) 
and perfect residue field k. Let K be the field of fractions of A, W the ring of Witt 
vectors of fc, and Ko C K the field of fractions of W. Let X/A be a proper scheme 
étale locally isomorphic to 

(9.5.1.1) Spec(A[xi , . . . , xn]/(xi • • • xs - 7r)) 

for some integers s < n. Let MA (resp. M%) be the log structure defined by the 
closed point (resp. closed fiber) so there is a natural log smooth morphism (X, M%) —• 

(Spec(A), MA)- For r G [0,p— 1] let sn,x/^(r) De the complex constructed in (8.4.8.4), 
and let sl°gx(r) ^e tne logarithmic syntomic complex defined in [41, §5]. 

Proposition 9.5.2. — T/iere is a natural isomorphism sn,x/:R(r) — 5n,x(r) n̂ 

D(Xet,Z/pn) compatible with the product structure and with the action ofGal(K/K). 

Proof. — For each finite extension K C K' C K with ring of integers A' C K', let 
(XA',MxA,) denote (X,MX) x(Spec(A)jMA) ( S p e c ( ^ ) , M ^ ) - As in [73, p. 263] choose 
data as follows: 

(9.5.2.1) An etale hypercover Xm —> X. 

(9.5.2.2) 

For each finite extension K C K' c K an exact closed immersion 
f*(y(p w+n)/Çn))^ (ZA/.,MZA>.) 

over (Spec(VT), Ogpec^j) , where MxA,, denotes the pullback of the log 

structure M% , on %A'-

(9.5.2.3) 

For every inclusion K' C K" C K of finite extensions of i f a morphism 

f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^¨£ 
£ 

over (Spec(VT), Ogpec(iv)) *"a* diagram 

(XA».,MX^,.) (ZA».,MZIL„.) 

TK'K" 

f*(y(p w+n)/Çn))^ (ZA,.,MzAJ 

commutes and for if ' c K" C Ä7" C K we have 

TK'K'" = TK'K" ° TK"K'" 

(9.5.2.4) A compatible collection of liftings of Frobenius FzA, # to the (ZA'% , ̂ zA,%) • 
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It follows from 9.1.24 that such a collection of data is equivalent to an object 
(X9,XA',* <—> ZA',9,FZA, 9,TK'//K') of the category HC(X) defined in 8.4.3. 

Let DA',9 denote the divided power envelope of XA',% and let j£x°gz.(r) 
denote the complex 
(9.5.2.5) 

p w+n)/ 
d 

JDAII ®°*A>,. U1ZAIJW 

d Ar-2] 2 
JDK, ®°*A... UZA,./W 

where u\AiJyf := fi^,,.,MZA,.)/(sPec(^),o-pec(w))- A« m [41, 5.1] for 0 < r < p 

there is a well-defined map 

(9.5.2.6) f*(y(p w+n)/Çn))^ yw+n)/Çn)) 

Let x°.Kz. (r) be the mapping fiber of 

(9.5.2.7) f*(y(p w+n)/Çn))^¨£¨¨% f*(y(p w+n)/ 

Define Jnx9/$.(r) an<̂  snXm/^r) as m 8.4.6. Then it follows from (9.1.3.1) 
and 9.2.6 that there is a canonical isomorphism 

(9.5.2.8) f*(y(p w+n)/ Jn,X.gZ. (r) 

compatible with the Frobenius endomorphisms and the product structure. From this 
it follows that there is a natural isomorphism compatible with the product structure 

(9.5.2.9) 8n,x.Mr) 
f*(y(p w+n)/Ç 

As in 8.4.8, set 

(9.5.2.10) y:=X®Ak, y:=y®kk, Y.:=X.®Ak, Y.:=Y.®kk, 

and let 0 : Y9jet —> 3̂ et be the natural morphism of topoi, and for each K C K' C K 
let 7TK' : IVet -> yA',«,et be the natural projection. Then by definition we have 

(9.5.2.11) 
f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^M% 

and 

(9.5.2.12) 
MPLO%P f*(y(p w+n)/Çn))^f*(y(p 

We thus obtain an isomorphism sn,x/^(r) — 5n x(r) ̂ rom (9.5.2.9). That this isomor
phism is compatible with the Galois action follows from the construction in 8.4.10. • 
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9.6. Equivalence of the different constructions of (<p, N, G)-structure 

First we compare the construction of 6.4 and 6.5 with the logarithmic theory. 

9.6.1. — Let X/A be as in 9.5.1, let ]$/k be the reduction of X modulo the maximal 
ideal of A, and let Xo denote the reduction modulo p. Denote by Wn{t) the divided 
power envelope of 0 : Spec(fc) Spec(Wn[£]), let An denote A/pn, let Rn denote 
the divided power envelope of the surjection Wn[t] —> An sending t to a uniformizer 
7r G A, and let R denote the inverse limit R := lim Rn. 

Let Mx denote the natural log structure on X, and let My and Mx0 be the log 
structures obtained by pullback. Also define the log structures M#n and M^n{t) on 
Spec(i^n) and Spec(Wn(£)) respectively as the log structures obtained from the map 
N —> Wn[t] sending 1 to t. Also let Mw be the log structure on Spec(VF) obtained 
from the map N —> W sending 1 to 0. Observe that the lifting of Frobenius to W[t] 
induced by the canonical lifting a to W and t\-*tp induces a lifting of Frobenius 

(9.6.1.1) F(Spec(Wn(t))Mwn(t)) (Spec(Wn(t)),MWn{t)) (Spec(Wn(t)),MWn{t)). 

9.6.2. — By 9.1.21, we can write the projective systems C , D., and E. of 6.4.6 as 

(9.6.2.1] C. = {H*\ (Xo,et/£0#(Spec(Pn),MRn))cris, 3̂C0,et/&og(Spec(Rn̂ MRn ) )}' 

(9.6.2.2) D. = {i/*((yet/̂ 0^(Spec(V^ri),Mwn))cris, et /£ OP(Spec ( Wn ), Mw ) ) } ' 

(9.6.2.3) E. = {H*((yet/&Og(Spec(Wn(t))Mwn(t)))c™i( ̂ W£°0(Spec(Wn (t)),MWn {t) ) )} 

Also define projective systems 

(9.6.2.4) 

ciog = {^*(((X0,Mx0)/(Spec(i?n),MßJ)cris, O(X0,Mx0)/(Spec(ßri),MHTl))}5 

(9.6.2.5) 

Dl°* = {if*(((y,My)/(Spec(Wn),M^J)cris , ^,My)/(Spec(Wn),MWn))}' 

(9.6.2.6) 
£log = {F*(((y,My)/(Spec(Wn(t)),M^n(t)))cris, ' 0(y ,M„ )/(Spec(Wn (t)),Mwn <t> ) )}* 

Lemma 9.6.3. — There are natural isomorphisms of projective systems C. ~ C.log, 
D. ~ £)!og, and E. ~ i?!og. Furthermore, the isomorphism D. ~ JD!°s and i£. ~ E1!08 
are compatible with the Frobenius endomorphisms. 

Proof. — The isomorphisms are obtained from the equivalences of sites provided 
by 9.2.2. The statement that the isomorphisms D. ~ Dlog and E. ~ Elog are com
patible with Frobenius can be seen as follows. The arguments for both are the same, 
so we prove the result for D. leaving the case of E. to the reader. Let (plog denote 
the endomorphism of D. obtained from the logarithmic theory, and let tp denote the 
endomorphism obtained from the stack-theoretic approach. Let 
(9.6.3.1) 

&°9(F(Spec(Wn(t))1MWn{t))) 1 &09(Spec(Wn(t)),Mwn(t)) ~ * Ôflf(Spec(Wn<t»,MWn<t>) 
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be the morphism sending a morphism of fine log schemes 

(9.6.3.2) (T, MT) (Spec(Wn(t»,MWn<t>) 

to the composite 
(9.6.3.3) 

(T,MT) {Spec(Wn{t)),MWn{t)) 
F(Spec(Wn(t)),MWn{t)) 

(Sj>ec(Wn(t)),MWn{t)). 

Then (plog is obtained from functoriality and the commutative diagram 

(9.6.3.4) 

y 
Fu 

y 

&°9(Spec(Wn(t)),Mwn(t)) 

&og(F{spec{wn(t)),MWn(t))) 
&°9(Spec(Wri(t)),MWn{t))-

Thus to prove that </?log = ip it suffices to show that the diagram 

(9.6.3.5) 

w+nKLM 

9.1.21 

Ap®FWn(t}^ %¨£M%LMP 

9.1.21 

^ (̂Spec(TVn(t»,MlVn<t)) 
&og(F(Spec(Wn{t)hMWn{t))) 

&°9(Spec(Wn(t)),Mwn{t)) 

commutes which follows from 9.1.34. 

Corollary 9.6.4. — The isomorphism D. ® W(t) ~ E. in ps(W(t))q constructed 

in 6.4-4 agrees under the isomorphisms in 9.6.3 with the isomorphism Dlog 0 W(t) ~ 

Elog constructed in [31, 4.13]. 

Proof. — We have a commutative diagram of topoi (see the discussion in 9.2.10) 

(9.6.4.1) 

(yet/-t̂(Spec(Wn),AfWn))cris (yet/£;Op(Spec(Wn(t)),AfWn<t>))cris 
9.2.2 9.2.2 

((y,My)/(Spec(Wn),MWn))cri8 •((y,Mv,)/(Spec(Wn<t)),MWn(t)))cri8 

and therefore a commutative diagram in PS(VF)Q 

(9.6.4.2) 

E. 
projection 

D. 

9.6.3 9.6.3 

¨MP% projection Dlog. 

The isomorphism Dlog ® W(t) —* EXog therefore defines a section of E. —> D. com
patible with Frobenius. By the uniqueness statement in 5.3.17 (i) it follows that this 
section agrees with the one defined in 6.4.4. • 
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Proposition 9.6.5. — The isomorphism D. <S>Wn R — C. in ps(R)q constructed in 6.4-6 
agrees under the isomorphisms in 9.6.3 with the one constructed in [31, 5.2]. 

Proof. — As in 6.4.7, let gw : W(t) —> R be the map which is equal to crw on W and 
sends t to tp . Note that this extends naturally to a morphism of log schemes 

(9.6.5.1) (Spec(R),MR) —> (Spec(W(t)),Mw{t)) 

which we again denote by gw. Since (Spec(fc), M/~) (Spec(W(t)), Mw^) is a PD-
immersion, there exists a unique dotted arrow d filling in the following diagram 

(9.6.5.2) 

Spec(/c) Spec(^i) 

Spec(W(t) d ipec(R) 
id 

Spec(W(t)). 

As in 6.4.7, choose w such that (irpW) C pA. Then the pw-t\i power Frobenius mor
phism JFĴ  : Spec(Ai) —> Spec(^4i) factors through fc, and therefore we obtain a 
commutative diagram of log schemes 

(9.6.5.3) 

(X0,MXo) - (y ,My; -(Xo,MXo) 

(Spec(Ai),MAl)- ~(Spec(A;),Mfc) ^(Spec(Ai) ,MAl) 

(Spec(R),MR) 
9w (Spec(W(t)),Mw(t)) d Spec(R) 

Let 

(9.6.5.4) T ' °^ : R ®gvl,w(t) • C'°^ 

be the map in PS(JR)Q defined by the left side of the diagram (9.6.5.3). By [31, 5.3] 
the map rlog is an isomorphism. The isomorphism Dlog ®w R — Clog defined in [31, 
5.2] is by the construction in loc. cit. the composite morphism 

(9.6.5.5) 

( l o g \ - l 

Cl0g ~ R®a„.mt)E}°* 
[31, 4.13] , „ 

f*(y(p w+n)/Çn))^ 

On the other hand, the isomorphism (6.4.6) is constructed as follows. With nota
tion as in 6.4.7, let 

(9.6.5.6) H:SR-> S™ 

ASTÉRISQUE 316 



9.6. EQUIVALENCE OF THE CONSTRUCTIONS OF (<p, JV, G)-STRUCTURE 391 

denote the map 

(9.6.5.7) H : = F § ( i ) / R o Fg(2)/R o • • • o FS(W)/jR 

as in (6.4.8.5). We then have a commutative diagram (compare with (6.4.7.3)) 

(9.6.5.8) 

X 
MP%P 

I 

PM 

Si? • 
H 4W) 

i 
y(p w+n 

Spec(iî) 9w Spec(W(t)). 

Let 

(9.6.5.9) T :R®gw,W(t) E. —> C. 

be the resulting morphism in PS(JR)Q. By construction this map is equal to the 
composite 

(9.6.5.10) R®9w,W(t) E-
(6.4.8.3) c(w) (6.4.8.2) 

a. 

By the construction in (6.4.8.3) the isomorphism D. ®w R — C. is equal to the 
composite 

(9.6.5.11) 

CT~R®gu,tW{t) E. 

6.5~R®pr̂ w D. 
~ R ®w D.. 

To prove the proposition it therefore suffices to show that the following three squares 
commute 

(9.6.5.12) 

R®w Dloë 
i<g><pr 

R®vr,w Dloë 

9.6.3 9.6.3 

T 
R®w D 

l(g>¥>r f*(y(p w+n 

(9.6.5.13) 

R®<prfW Dlog 
[31, 4.13] 

y(p w+n)/Çn 

9.6.3 9.6.3 

R<S><pr,w D 
6.5 

R®9w,W(t) 
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and 

(9.6.5.14) 

R®Q„,w(t) £ l o g ^ - ^ C l o g 

9.6.3 9.6.3 

#®pw,w<t> E. r > a. 

The diagram (9.6.5.12) commutes by the compatibility of 9.6.3 with the Frobenius 
endomorphisms, and (9.6.5.13) commutes by 9.6.4. Finally the commutativity 
of (9.6.5.14) follows from an argument similar to the proof of 9.6.3 which we leave to 
the reader. • 

Lemma 9.6.6. — The monodromy operator N on D. constructed in 6.5 agrees under 
the isomorphism in 9.6.3 with the monodromy operator JVlog on Dlog constructed 
in [31, §3]. 

Proof. — Let D = Spec(Wn(u — 1)), and let be the log structure on D induced 
by the map N —> OD sending 1 to 0. There are natural projections 

(9.6.6.1) p,pr :(D,MD) — • (Spec(W„),MWn) 

over W induced by the morphisms of log structures Mwn —> induced by the 
maps N —• 0*D 0 N sending 1 to (u, 1) and (1,1) respectively. There is also a natural 
closed immersion (Spec(Wn), Mwn) ^ {D, MJJ) obtained from the map Wn(u — 1) —> 
Wn sending u to 1. Let (D^\MD(i)) be the first infinitesimal neighborhood of the 
diagonal, and set 

(9.6.6.2) K%*:= iZT(((y,Mv) / £ O0(Spec( Wn ), MWn ) ) /cris? ' f*(y(p w+n)/Çn))^MP%¨£ 

(9.6.6.3 f*(y(p w+n)/Çn))^f*(y( ^5'(D(1),M£)(1)))cris, ^,M,)/^o5(D(1) >Md(i)))-

Note that there is a canonical isomorphism 0D(i) ~ Wn[(w — \)}/(u— l)2. Then the 
base change maps 

(9.6.6.4) p*,pr* : < o g ®Wn Wn[(u - l )] /(u - l)2 
KLMPOPM 

are isomorphisms. Let A : Wn[(u - l)]/(u - l)2 —> Wn • (u - 1) be the map sending 
a + b • (u - 1) to b. Then by [31, 3.5] the monodromy operator Nlog is induced by the 
composite 
(9.6.6.5) 

TYYY p* flog LOPV ^ ^ n [ ( , - l ) ] / ( , - l ) 2 A 
^ • ( t i - l ) . 

Propositions 9.1.17 and 9.1.21 provide a natural morphism of diagrams of algebraic 
stacks from 
(9.6.6.6) 

$H(a)wn(t) 
A 

StffaW m ® w W ( u - l ) l / ( u - l ) 2 Pri Sff(o;)wn(t> 

p 

SH{®)wn(t) SH(a)wn(t) 
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defined as in (6.5.1.6) to 
(9.6.6.7) 

&Og(Spec(Wn),Mwn) 
f*(y(p w+n)/Çn))^ pr 

&09(Spec(Wn),Mwn) 

P¨¨% 

^05f(Spec(W„),MWn) £°P(Spec(Wn),OSpec(Wn)). 

This morphism of diagrams identifies (9.6.6.5) with the composite (6.5.1.12). Prom 
this the lemma follows. • 

Corollary 9.6.7. — The (</?, TV, G)-structure on H£R(XK/K) constructed in 6.4 and 6.5 
agrees with the one constructed in [31]. 

9.6.8. — Next we consider the construction of Chapter 7. 
Let X/A be a proper, tame Deligne-Mumford stack with a smooth morphism X —> 

§H(®)A, for some a and H as in Chapter 7, and assume that the generic fiber of X is 
a scheme. 

Theorem 9.6.9. — The (ip,N,G)~structure on H£R(XK/K) constructed in Chapter 7 
agrees with the one constructed in 8.5. 

The proof is in several steps 9.6.10-9.6.17. 

9.6.10. — Note first that as mentioned in 7.1.11, when X is semistable the structure 
constructed in Chapter 7 agrees with the one obtained in 6.4. Therefore, by the above 
comparison with the logarithmic approach in this situation, the theorem holds when 
X is semistable. 

9.6.11. — For general X we use an argument using alterations as follows. Let 
(D771, (p, N) denote the (<£>, AT, G)-structure on H^R(XK/'K) constructed in Chapter 7, 
and let (Dm,(p, N) denote the one constructed in 8.5. The choice of a uniformizer 
7r G A gives isomorphisms 

(9.6.11.1) Dm ®KSr K ~ H?R(XK/K) ®K K, Dm ®Kur K ~ H?R(XK/K) ®K K, 

and hence also a Galois equivariant isomorphism 

(9.6.11.2) i : Dm ®Kur K Dm ®Kur K. 

We must show that t(Dm) = Dm and that the resulting isomorphism ¿0 • Dm -> Dm 
is compatible with the Probenii and monodromy operators. Observe also that since 
Dm and Dm have the same dimension it suffices to show that t(Dm) c Dm. 

For this we can without loss of generality replace K by a finite extension, and 
hence by the construction of (Dm,(p,N) may also assume that X is a tame regular 
Deligne-Mumford stack whose reduced closed fiber is a divisor with normal crossings 
and all the multiplicities of the components of the closed fiber are powers of p. 
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9.6.12. — By [49, 16.6.1], there exists a generically finite proper surjective map 
Y —> X with Y a reduced scheme. By 8.5.7, there exist therefore a finite exten
sion K C K' C K, a semistable scheme X'/Af (where A1 is the ring of integers of 
K'), and an alteration 0 : X' —> X over Spec(^4') —* Spec(A). Let (D^,, <px', Nx*) de
note the (cp, JV, G)-structure on H^(X' K> / K'). By the construction in 8.5.11, the 
natural map H^{XK/K) —• H^l(X,K,/KF) is injective and admits a retraction 
r : H^X'K'/K1) H^XK/K) ®K K' compatible with the (<p, iV, G)-structures 

(£>m,</?,iV) and (D%,,yx>,Nx>)> In particular, 

(9.6.12.1) £>m = D£, H (H?R(XK/K) W ) C H?R(X'K,/Kf) ®K, K. 

Thus to prove that ¿(1}™) C Dm and that the resulting map ¿0 * Dm —• Dm is compat
ible with <p and iV, it suffices to show that the image of Dm in H^iX'K'/K') ® K ' 
is contained in D%, and that the resulting map j : D™ —• D^ , is compatible with the 
Probenei and monodromy operators. 

9.6.13. — Let Mx (resp. M p , M A S M A ) be the log structure on X (resp. X', 
Spec(A/), Spec(A)) defined by the closed fiber so that there is a commutative diagram 
of fine log schemes 

(9.6.13.1) 

(X',Mx>) 
MP%¨£% 

(X,MX) 

MLO% 9 

(Spec(A'), MAO (Spec(A), M A ) , 

where / and g are log smooth. 

9.6.14. — The key point to the comparison, is that in the construction in Chapter 7, 
we can replace the stack S#(a) by a variant constructed using the stack LogD defined 
in 9.1.30. 

For a log structure M on a scheme W, let M^ denote the log structure associated 
to the prelog structure 

(9.6.14.1) M -
xr 

M %PMPLO 

Let 7r' € A' be a uniformizer. For an integer r let £>A',(w,r) denote the fiber product 
of the diagram 

(9.6.14.2) 

%£P¨PMM% 

T2 

LW(Spec(A'),M$) 
Cr ¨%£M¨¨% 

where T2 is as in 9.1.31 (ii) and the map cr sends a morphism M^/\T —• M over a A'-

scheme T to the diagram M^\T —• M^|T —• M. The projection maps £A',(7r'r) -* 
y(p w+n)/Çny(p w+n)/Çny(p 
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Fix an integer w. Recall from 9.1.34 that for any finite category T the functor 
M H induces a functor 

(9.6.14.3) ApW : LogT —• Cogr. 

Moreover, if / : Tf —» T is a functor between finite categories then the induced diagram 

;9.6.14.4) 

M%P¨% 
Apw 

Zogr 
i 

%£MP r 

%£MP% Apw %PM£% 

commutes. Let ¿1 : [0] —> [1] denote the map sending 0 to 0 so that we have 

(9.6.14.5) £°5(Spec(A'),MW) Spec(i4') x M$,Cogl°i,8 Log™. 

Prom the commutative diagram 

(9.6.14.6) Spec(.4') 
MP% 

Log® 

%PM 

MOLPM 

¨%£¨% 

LogW 

A *î 
%¨MP£ 

Hog® 

we therefore obtain a morphism 

(9.6.14.7) ^(Spec^O .M^) - û (̂Spec(A'),Mi7"))' 

which we again denote by Ap». It follows immediately from the definition of cr that 
the following diagram commutes 

(9.6.14.8) ^(Spec^O.M^,') 
Cr 

W2] 

T2 

dog* 

V 

Hog* 

Apw Apw 
'T2 

f*(y(p w+n)/Çn))^ Crpw 
¨LM¨¨%£ 

and therefore we also obtain a map (which we again abusively denote by Ap™) 

(9.6.14.9) f*(y(p w+n)/Çn))^f*(y(p w+n)/Çn))^ 
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such that the diagram 

(9.6.14.10) 

•C'A',(*•"•) 
¨%£MP% MOL%¨£P¨% 

^°3(Spec(yl'),M^) 
Apu> 

L^(SPec(A'),M^W)) 

commutes. 
Let W denote the ring of Witt vectors of the residue field kf of Af, and let e be 

the ramification induced of K'/K. Let Mw' (resp. Mw) be the log structure on 
Spec(W) (resp. Spec(VF)) associated to the map N —• W (resp. N —> W) sending 1 
to 0. Let y (resp. y) denote the reduction of X' (resp. X) to k' (resp. fc). There is a 
natural commutative diagram of log schemes 

(9.6.14.11) 

f*(y(p w+n) 0 (y,My) 

( S p e c ( W ) , M ^ ) (Spec(W),Mw), 

where the map M w | w —* Mw' is induced by multiplication by e on N. 
Let £w,(o) denote the fiber product of the diagram 

(9.6.14.12) 

MPLO 

T2 

f*(y(p w+n)/Çn))^ c %MP%£ 

where c sends M W | T —• M over some T to M^y |T —» M W | T —• M . Again the map 

£w,(o) -* ^°^(Spec(w),Mw/) is etale. 
The stack £vy,(o) is a Gm-torsor over another stack Lw' defined as follows. For 

any ring R, let <Co#(£Gm,H,MBGm ) be the closed substack of £M which to any R-
scheme T associates the groupoid of morphisms of fine log structures Mi —> M2 on 
T, such that the image of every non-zero section of Mi in OT is zero and the sheaf 
Mi is isomorphic to the constant sheaf N. For any integer n there is a natural map 

(9.6.14.13) On ' £00(BGm,ji,MBGTOiJR) &og{BGrn RMBGm r) 

sending a morphism Mi —> M2 to the composite M[n>} —> Mi —> M2. The map c 
above then factors as 

(9.6.14.14) &09(Spec(W'),Mw') 
f*(y(p w+n)/Çn))^ LM%O%P% 

and £>w',(o) is defined to be the cartesian product 

(9.6.14.15) MOM%££% £°0(BGm|W,,MBGmtW,) %£MP% 
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The commutative diagram of log structures 

(9.6.14.16) 

MA\x> Mx\x> 

MA'\x> LLMO%¨% 

induces a morphism X' —> There is a commutative diagram 

(9.6.14.17) 

KILMO 

£w,(o) £0#(Spec(Vr'),Mw,) 

M¨%£MLP 
• ^(BGMTW/,AFB6MFW/)-

Remark 9.6.15. — As explained in [62, 5.1], one can define a notion of fine log struc
ture on an algebraic stack. There is a natural such log structure MBQ^ on the stack 
BGm. To describe this log structure, let N be the log structure on Spec(Z) associated 
to the map N —> Z sending 1 to 0. The trivial action of Gm on Spec(Z) extends to an 
action on the log scheme (Spec(Z), TV) by associating to a T-valued point u G Gm(T) 
the automorphism of N\T induced by the map N —• O J 0 N sending 1 to (u, 1). The 
stack £o#(BGm,MGm) is tnen eoxual to a generalization of the stacks &og(s,Ms) obtained 
by replacing (5, Ms) by an algebraic stack with a log structure. 

9.6.16. In summary, the stacks £>A*,and £w,(o) with the maps 

(9.6.16.1) f*(y(p w+n)/Çn))^f*(y(p w+n) 

enjoy all the same formal properties as the stacks §A',(ir'r) and V ' , ( o ) used in 7.1. 
Since the natural maps 

(9.6.16.2) 4̂', {itfr ) L°9{SVec{A')MAr)Y £w,(0) - £00(Spec(W")>Mw') 

are etale and compatible with the maps Ap™ and the Gm-action, it follows that the 
(<p, N, G)-structure on H£R(XfK,/K') can be constructed using the stacks £,4',(7r/r) 

and &w',(o) throughout 7.1 instead of the stacks SA',(7r/r) and V ' . to ) -

9.6.17. — The map K± : £D —> £ ^ induces morphisms 

(9.6.17.1) £ A' ,(7r/r) - £0^(Spec(A),Mir))' ^ ' , (0 ) - £ö5f(Spec(W),Mw) 

such that the diagram 

(9.6.17.2) 

%PMP %X 

£J4',(7T') £°^(Spec(A),MA) 
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commutes. This map K\ also induces a morphism 6 : £^',(0) ~~* ̂ 05(BGm,w,MBGm w) 
over the map 

(9.6.17.3) BG. ̈ M%£% BGm,W 

induced by multiplication by eK>/K (the ramification index of K'/K) on Gm. There 
is then also a commutative diagram 

(9.6.17.4) 

From this it follows that there is an induced map 

(9.6.17.6) 

%¨%££ ¨LIKLPM 

£w,(o) ^°^(Spec(W),Mw) 

£>W',(0) 
9 
y(p w+n)/Çny(p w+n)/Çn iMBGm w ) ' 

(9.6.17.5) 

^ - ^m((y/^0^(Spec(W),Mw))cris,C)y/^o^(Spec(vy),Mw,)) 

-> ^m((y7^W,(0))cris,C)V,/̂ w',(0)) f*(y(p w+n) 

compatible with Frobenius and that the diagram 

Dm MP% 

¨%¨£% /M%£M% 

Dm M%P¨LO 

commutes. 
Finally that the map (9.6.17.5) is compatible with the isomorphisms 

(9.6.17.7] Dm ®K0 K ~ H&VK/K), D%, ®K KF ~ H?R(XK,/KF) 

follows from the construction of these isomorphisms (7.1.6), the commutativity 

of (9.6.17.2), and the fact that the morphisms ^A'^,r) —> ̂ °^(sPec(A),M^r)) are 

compatible with the morphisms Apw. This completes the proof of 9.6.9. 

9.7. Theorem 0.1.8 implies 0.1.7 

Let (X,U) /V be a log smooth model as in 0.1.7, and let My be the log structure 
on Spec(y) defined by the closed point. 

Definition 9.7.1. — A modification of a scheme Z is a proper morphism of schemes 
y —> Z which is an isomorphism over some dense open subset in Z. 
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By 8.5.3 (ii) if / : y —» X is a modification of X over V with induced morphism 
Y —> X over K and if Y/K is smooth then the map on étale cohomology groups 

(9.7.1.1) / * : H*(X,QP) —> £r(F,Qp) 

is injective, where X := and y := Y^. 
To deduce 0.1.7 from 0.1.8 it therefore suffices to prove the following. 

Theorem 9.7.2. — There exists a modification y —• X over V such that the generic 
fiber Y of y satisfies the assumptions of 0.1.8 (and in fact we can take y to be the log 
smooth model in 0.1.8). 

The proof is in steps 9.7.3-9.7.7. 

Lemma 9.7.3. — Let X' be the normalization of X, and let VJ C X' be the inverse 
image ofUcX. Then (X\W) is also a log smooth model for X, and étale locally 
on X' there exists a morphism as in (0.1.4-6) with the monoid P saturated (i.e., if 
p G Pgp is an element and np G P for some n > 1 then p G P). 

Proof. — The assertion is étale local on X so we may assume that X is equal to 
Spec(V <8>Z[N] Z[P]) for a fine monoid P. Let P' C Pgp be the set of elements p G Pgp 
for which there exists an integer n with np G P. The scheme 

(9.7.3.1) X := Spec(F ®Z[N] Z[P']) 

is finite over X and normal by [42, 8.2 and 4.1]. It follows that there is a unique finite 

birational X-map X —> X' which since both schemes are normal is an isomorphism 

[15, 111.4.4.9]. • 

Replacing X by its normalization, we may therefore assume that X is normal and 
that étale locally there exists a morphism as in (0.1.4.6) with the monoid P saturated. 

The following result makes 0.1.5 more precise. 

Proposition 9.7.4. — Let M% be the log structure on X which to any étale W —• X 
associates the set of elements f G T(W, Ow) whose restriction to Wxxli is invertible. 
Then Mx is a fine saturated log structure on X, and the natural morphism (X, Mx) —• 
(Spec(V),Mv) is log smooth. 

Proof. — The assertion is étale local on X, and hence we may assume 

(9.7.4.1) X = Spec(V ®Z[N] Z[P]) 

with N —> P injective, Coker(Z —• Pgp) ^-torsion free, and P saturated. Let Mf 
denote the log structure on X defined by the natural map P —• V <S>z[N] Z[P]. By 
our assumptions, the natural map (X, M') —• (Spec(V), My) is log smooth. Hence 
by [42, 8.2] the log scheme (X, M') is log regular in the sense of [42, 2.1]. Prom this 
and [55, 2.6] it follows that Mx = Mf. • 

9.7.5. — By [55, 5.6] there exists a proper log étale morphism (X ' ,Mx ' ) —• (X, Mx) 
which is an isomorphism over a dense open set and such that for every geometric 
point x —> X' the stalk Mxr,x is a free monoid. 
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Lemma 9.7.6. — The scheme X' is regular and the reduced closed fiber is a divisor 
with normal crossings on X'. 

Proof. — We can without loss of generality replace V by an unramified extension. 
Hence since the residue field k is assumed perfect we may without loss of generality 
assume that k is algebraically closed. 

That X' is regular follows from [55, 5.2]. 
To describe the closed fiber, let x —• X' be a geometric point in the closed fiber. 

Choose an isomorphism Nr —• Mxf,x, and a lifting Nr —> Afpj5. Let xi G Oxf,x 
be the image of the i-th standard generator of Nr, and let I C Oxf,x he the ideal 
(xi,..., xr). By [42, 8.2 and 2.1 (i)] the quotient A := Ox',x/I is a complete regular 
local fc-algebra with residue field k. By the Cohen Structure theorem [16, 7.7], the 
ring A is isomorphic to / c p i , . . . ,£n] for some integer n. Let t{ G Oxf,x be a lifting 
of U. 

Let ( a i , . . . , ar) G Nr be the image of 1 G N under the composite 

(9.7.6.1) N ~ #°(Spec(I0 , My) —+ Mx>,x ^ Nr. 

By the definition of of ( a i , . . . , ar) and ( x i , . . . , xr) there exists a unit u G Ox',x such 
that 

(9.7.6.2) xl1 •••x?u = ir. 

Also since x maps to the closed fiber of X' not all a* are zero. Let 

(9.7.6.3) p : VlXi,..., Xr, T i , . . . , Tj -y(p w+ 

be the surjection sending to ^ and Ti to i{. Hue V^Xi,..., Xr, T i , . . . , TnJ* is 
a lifting of then 6 := X^1 • • • X^ru — TT maps to zero under p. We thus obtain a 
surjection 

(9.7.6.4) p : VpTi , . . . , Xr, T i , . . . , Tny(0) —> Or)i 

which we claim is an isomorphism. 
For this observe first that the ring V[ [Xi , . . . , X r , X i , . . . ,Tn]]/(#) is an integral 

domain by [42, 3.4]. The dimension of this ring is r + n. On the other hand, the 
dimension of the ring Ox',x is by [42, 2.1 and 8.2] also equal to r + n. From this it 
follows that the kernel of p is zero and hence p is an isomorphism. • 

9.7.7. — To complete the reduction of 0.1.7 to 0.1.8 it remains to show that there 
exists a modification X" —> X' with X" a regular scheme with reduced closed fiber a 
simple normal crossing divisor. This is done for example in [43, 4.2.12]. This therefore 
completes the proof of 9.7.2 and 0.1.7. • 

Remark9.7.8. — Assume IX C X is equal to the generic fiber and that X is normal. 
Let Mx be the log structure on X defined in 9.7.4 so there is a log smooth morphism 

(9.7.8.1) (X, Mx) — • (Spec(V), My). 
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By [55, 5.6] the morphism (X', M%>) —> (X, M%) can taken to be a so-called log-blowup 
along a coherent ideal in M%. By [75, 2.4.3.3] the natural map on log crystalline 
cohomology 

(9.7.8.2) H*clis((X, Mx)/(Spec(V), Mv)) — i7c*ris((X', Mx,)/(Spec(V), Mv)) 

is an isomorphism. In particular, if the closed fiber of X' is reduced, then the module 
D171 associated to %K is given by 

(9.7.8.3) ffcdsCPC, Mx)/(Spec(V), Mv)) ®Ko K%r 

with Galois action given by the action on KQT. 
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(<¿>, N, G)-module, 7 
2-category of S-stacks (for a stack S), 16 
F-crystal of width b, 283 

F-span of width 6, 143 

F-structure, 224, 235 
P-module, 70 

S-algebraic space, 16 

S-scheme, 16 

g-PD morphism, 31 

p-curvature, 105 

(H)PD-differential operator, 68 

(filtered) (ip, AT, G)-module structure (on a K-
vector space), 8 

(integrable) module with connection, 59 
(integrable) module with connection on 

X./S., 59 
(quasi-coherent) crystal in (^•,et/<S'»)cris5 53 
(quasi-coherent) crystal of -modules, 

100 
(quasi-coherent) crystal of ®XUs et/S~ 

modules, 49 

(strictly) simplicial object, 17 

étale crystalline site, 30 

étale crystalline topos, 30 

abstract Hyodo-Kato isomorphism, 237 

algebraic stack over a scheme 5, 15 

alteration, 339 

bounded p-torsion, 215 

canonical filtration, 204 

canonical projections, 196 

Cartier isomorphism, 123 

Cartier spectral sequence, 123 

Cartier-Raynaud ring, 171 

coherent module over Cartier-Raynaud ring, 
206 

correspondence, 337 
décalage, 142 
de Rham complex, 57 
de Rham complex (of module with integrable 

connection), 61 
de Rham-Witt complex of level n, 200 
de Rham-Witt complex of level n (for stacks), 

197 
de Rham-Witt pro-complex, 197, 200 
Deligne-Mumford stack, 16 
essential set, 241 
exact relative Frobenius, 364 
filtered (<¿>, N, G?)-module, 8 
free of finite type mod T (for modules), 216 
free of finite type mod T (for projective sys

tems), 217 
Frobenius acyclic, 107 
Frobenius morphism of a stack, 103 
HPD-stratification, 66 
isomorphism mod T , 216 
Langer-Zink de Rham-Witt complex, 163 
lisse-étale crystalline site, 30 
lisse-étale crystalline topos, 30 
log smooth reduction, 14 
logarithmic de Rham-Witt complex, 376 
module with (H)PD-stratification, 68 
module with (integrable) connection on an 

Artin stack, 63 
morphism compatible with PD-structures, 20 
pd-derivation, 165 
PD-morphism, 19 
PD-stack, 19 
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PD-stratification, 66 
perfect algebraic stack, 194 
potentially semistable representation, 9 
quasi-coherent PD-ideal (on a stack), 19 
quasi-coherent sheaf (on simplicial space), 17 
quasi-nilpotent (module with connection), 74 
quasi-nilpotent module with integrable con

nection, 74 

representable by Deligne-Mumford stacks, 16 
semistable representation, 9 
slope spectral sequence, 206 
standard topology on Hi(Xet, WCl^^), 204 

Stein factorization, 116 
syntomic morphism, 303 
tame Deligne-Mumford stack, 92 
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