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^ - M O D U L E S A N D T H E C O N J E C T U R E O F R A P O P O R T 

A N D G O R E S K Y - M A C P H E R S O N 

by 

Leslie Saper 

Abstract. — Consider the middle perversity intersection cohomology groups of var
ious compactifications of a Hermitian locally symmetric space. Rapoport and in
dependently Goresky and MacPherson have conjectured that these groups coincide 
for the reductive Borel-Serre compactification and the Baily-Borel-Satake compact-
ification. This paper describes the theory of ,C-modules and how it is used to solve 
the conjecture. More generally we consider a Satake compactification for which all 
real boundary components are equal-rank. Details will be given elsewhere [26]. As 
another application of £-modules, we prove a vanishing theorem for the ordinary co
homology of a locally symmetric space. This answers a question raised by Tilouine. 

Résumé (£-modules et la Conjecture de Rapoport et Goresky-MacPherson). — Consi
dérons les groupes de cohomologie d'intersection (de perversité intermédiaire) de di
verses compactifications d'un espace localement hermitien symétrique. Rapoport et, 
indépendamment, Goresky et MacPherson ont conjecturé que ces groupes coïncident 
pour la compactification de Borel-Serre reductive et la compactification de Baily-
Borel-Satake. Cet article décrit la théorie des £-modules et la façon dont elle peut 
s'employer pour résoudre la conjecture. Plus généralement, nous traitons une com
pactification de Satake pour laquelle toutes les composantes réelles à la frontière sont 
de «rang égal» . Les détails en seront disponibles ailleurs [26]. Comme application 
supplémentaire de la théorie des £-modules, nous prouvons un théorème d'annulation 
sur le groupe de cohomologie ordinaire d'un espace localement symétrique. Ceci 
répond à une question soulevée par Tilouine. 
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1. Introduction 

In a letter to Borel in 1986 Rapoport made a conjecture (independently rediscov
ered by Goresky and MacPherson in 1988) regarding the equality of the intersection 
cohomology of two compactifications of a locally symmetric variety, the reductive 
Borel-Serre compactification and the Baily-Borel compactification. In this paper 
I describe the conjecture, introduce the theory of ^-modules which was developed 
to attack the conjecture, and explain the solution of the conjecture. The theory of 
^-modules actually applies to the study of many other types of cohomology. As a 
simple illustration, I will answer at the end of this paper a question raised during the 
semester by Tilouine regarding the vanishing of the ordinary cohomology of a locally 
symmetric variety below the middle degree. Except in this final section, proofs are 
omitted; the details will appear in [26]. 

This paper is an expanded version of lectures I gave during the Automorphic Forms 
Semester (Spring 2000) at the Centre Emile Borel in Paris; I would like to thank the 
organizers for inviting me and providing a stimulating environment. During this 
research I benefited from discussions with numerous people whom I would like thank, 
in particular A . Borel, R. Bryant, M. Goresky, R. Hain, G. Harder, J.-P. Labesse, 
J. Tilouine, M. Rapoport , J. Rohlfs, J. Schwermer, and N. Wallach. 

2. Compactifications 

We consider a connected reductive algebraic group G defined over Q and its asso
ciated symmetric space D = G(M)/KAG, where K is a maximal compact subgroup 
of G ( R ) and AQ is the identity component of the R-points of a maximal Q-split torus 
in the center of G. Let T C G(Q) be an arithmetic subgroup which for simplicity 
here we assume to be neat. (Any arithmetic subgroup has a neat subgroup of finite 
index; the neatness hypothesis ensures that all arithmetic quotients in what follows 
will be smooth as opposed to F-manifolds or orbifolds.) The locally symmetric space 
X = T\D is in general not compact and we are interested in three compactifications 
(see Figure 1), belonging respectively to the topological, differential geometric, and 
(if D is Hermitian symmetric) complex analytic categories. 

Let (resp. ? i ) denote the partially ordered set of T-conjugacy classes of parabolic 
(resp. maximal parabolic) Q-subgroups of G. For P G CP, let Lp denote the Levi 
quotient P/Np, where Np is the unipotent radical of P. (When it is convenient 
we will identify Lp with a subgroup of P via an appropriate lift.) The Borel-Serre 
compactification [4] has strata Yp = Vp\P(№)/KpAp indexed by P G CP (for P = G 
we simply have YQ = X). Here TP = T D P , KP = K D P , and AP is the identity 
component of the R-points of a maximal Q-split torus in the center of Lp. The Borel-
Serre compactification X is a manifold with corners, homotopically equivalent with 
X itself. 
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^-MODULES AND RAPOPORT'S CONJECTURE 3 2 1 

Borei-Serre X = Upeo> YPì YP = Tp\P(R)/KPAP 

Collapse rNp\NP(R) fibers 

Bistre * = U P € 3 > * P , XP = TLp\LP(R)/KPAP 

7T Project = XPi£ x X p ^ —• XPih = 

Baily-Borel v * _ T T ^ f _ v 
Satake X " i W x 

FIGURE 1 

The arithmetic subgroup T induces arithmetic subgroups T J V p = T fl A/p in NP and 

r ^ p = rp/ r^Vp in Lp. Let DP = LP{R)/KPAP be the symmetric space associated 

to L p and let Xp = TLP\DP be its arithmetic quotient. Each stratum of X admits 

a fibration YP —• Xp with fibers being compact nilmanifolds T^p\Np(M). The union 

X = Up Xp (with the quotient topology from the natural map X —> X) is the re

ductive Borel-Serre compactification', it was introduced by Zucker [34]. The reductive 

Borel-Serre compactification is natural from a differential geometric standpoint since 

the locally symmetric metric on X degenerates precisely along these nilmanifolds near 

the boundary of X. 

Finally assume now that D is Hermitian symmetric. Then each Dp factors into a 

product Dpte x DPih, where Dp,h is again Hermitian symmetric (see Figure 2) . This 

induces a factorization (modulo a finite quotient) Xp = XPj x Xp^h of the arithmetic 

quotients and we consider the projection Xp —> Xp^ onto the second factor. Now 

among the different P G 7 that yield the same Xp,h, let G 7\ be the maximal one 

and set Fpt = Xp^- Thus each stratum of X has a projection Xp —• Fpt . The union 

X * = LI^€g>1 FR (with the quotient topology from the map X —• X*) is the Baily-

Borel-Satake compactification X*. Topologically X * was constructed by Satake [29], 

[30] (though the description we have given is due to Zucker [35]); if Y is contained in 

the group of biholomorphisms of D, the compactification X* was given the structure 

of a normal projective algebraic variety by Baily and Borel [2]. 

The simplest example where all three compactifications are distinct is the Hilbert 

modular surface case. Here G = Rk/qSL(2) where is a real quadratic extension. 

There is only one proper parabolic Q-subgroup P up to G(Q)-conjugacy; Yp is a torus 

bundle over Xp — S1 and Fp is a point. 
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D • o o o o o o o o < o 

a i c*2 « 3 0:4 0:5 OLQ 0L7 as ocg 

DP : o o o o o o < o 
r OL\ OL2 Ot-4 OCQ OL~L Q 8 OCQ 

L) P+ : o o o o o o o < o 
a i CK2 0:3 CK4 « 6 « 7 « 8 ûg 

V v ' N s/ ' 

F I G U R E 2 . A n example of Dp — DP^ x D p ^ and DP\ = D P t , £ x DP\ h 

3. The conjecture 

Assume that .D is Hermitian symmetric. Let E G 9Jtofl(G), the category of finite 

dimensional regular representations of G and let E denote the corresponding local 

system on X. Let 1C(X;E) and X C ( X * ; E ) denote middle perversity intersection 

cohomology sheaves^1) on X and X* respectively [10]. 

For example, 1C(X; E) = r ^ c o d i m Xp)jP*E if X has only one singular stratum X P ; 

here jp* denotes the derived direct image functor of the inclusion jp : X \ Xp X, 

codim Xp denotes the topological codimension, p(k) is one of the middle perversities 

[(k — 1)/2J or [(k — 2 ) / 2 j , and r ^ p ^ truncates link cohomology in degrees > p(k). 

In general the pattern of pushforward/truncate is repeated over each singular stratum. 

Note that since X may have odd codimension strata, XC{X\ E) depends on the choice 

of the middle perversity p\ on the other hand, since X * only has even codimension 

strata, TC(X*-,E) is independent of p. 

Main Theorem (Rapoport's Conjecture). — Let X be an arithmetic quotient of a Her

mitian symmetric space. Then 7r*2C(X;E) = TC(X*;E). (That is, they are isomor

phic in the derived category.) 

Following discussions with Kottwitz, Rapoport conjectured the theorem in a let

ter to Borel [22] and later provided motivation for it in an unpublished note [23]. 

Previously Zucker had noticed that the conjecture held for G = Sp(4) , E = C. The 

conjecture was later rediscovered by Goresky and MacPherson and described in an 

unpublished preprint [11] in which they also announced the theorem for G = Sp(4) , 

Sp(6) , and (for E = C) Sp(8) . The first published appearance of the conjecture was 

in a revised version of Rapoport ' s note [24] and included an appendix by Saper and 

Stern giving a proof of the theorem when Q-rankG = 1. 

(•^By a "sheaf" we will always mean a complex of sheaves representing an element of the derived 

category. A derived functor will be denoted by the same symbol as the original functor, thus we will 

write 7r* instead of /for*. 
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£-MODULES AND RAPOPORT'S CONJECTURE 3 2 3 

To see one reason why the conjecture might be useful in the theory of automorphic 

forms, note that the right hand side T C ( X * ; E ) is isomorphic to the L 2 - c o h o m o l o g y 

sheaf £ ( 2 ) ( X * ; E ) by (the proof of) Zucker's conjecture [17], [28]. The trace of a Hecke 

operator on L 2 - cohomology could then be studied topologically via the Lefschetz fixed 

point formula for Z C ( X * ; E ) . However the singularities of X are simpler than those 

of X * so a Lefschetz fixed point formula for X C ( X ; E ) should be easier to calculate. 

The conjecture says that this should give the same result. Also note that a Lefschetz 

fixed point formula for TC(X\ E ) involves a sum over while a Lefschetz fixed point 

formula for J C ( X * ; E ) involves a sum over 7\. Thus it is more likely that the former 

can be directly related to the Arthur-Selberg trace formula for a Hecke operator on 

L 2 - cohomology [1]. 

This program has been pursued by Goresky and MacPherson, but instead of 

XC(X] E ) they use the "middle weighted cohomology" WC(X; E ) in which cohomology 

classes in the link are truncated according to their weight as opposed to their degree. 

Thus weighted cohomology is an algebraic analogue of L 2 -cohomology . Goresky and 

MacPherson prove (in joint work with Harder [8]) the analogue of the above theo

rem, 7 r * W C ( X ; E ) ^ J C ( X * ; E ) , calculate the Lefschetz fixed point formula [12], and 

(in joint work with Kottwitz) show that it agrees with Arthur's trace formula for 

L 2 - c o h o m o l o g y [9]. 

Nonetheless the original conjecture remains interesting for a number of reasons. 

First of all, intersection cohomology is a true topological invariant and the local coho

mology of J C ( X ; E ) behaves better than that of W C ( X ; E ) when E varies. Secondly, 

the local property ("micro-purity") one needs to prove is much deeper for J T C ( X ; E ) 

than for > V C ( X ; E ) and should have applications elsewhere. And finally the method 

used to attack the conjecture, the theory of ^-modules, has application to other 

cohomology, in particular, weighted cohomology, L 2 -cohomology , and ordinary coho

mology. 

In §§5-10 we will indicate how the Main Theorem follows from three theorems in 

the theory of ^-modules . 

4. A generalization 

This section is optional; we will indicate a more general context in which the Main 

Theorem holds. First we sketchily recall the general theory of Satake compactifica-

tions [29], [30], [35], [6]. By embedding D into a real projective space via a finite-

dimensional representation a of G and then taking the closure, Satake constructed a 

finite family of Satake compactifications RD* of D. Each of these is equipped with an 

action of G(M) and is formed by adjoining to D certain real boundary components. 

Let D* denote the union of D together with those real boundary components whose 

normalizer is defined over Q; call these the rational boundary components. In the 
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geometrically rational case (a condition satisfied for example if a is Q-rational^ 2)) one 

may equip D* with a suitable topology so that X* = T\D* is a Hausdorff compactifi

cation of X] this is also called a Satake compactification. For D Hermitian symmetric, 

one of the Satake compactifications is (topologically equivalent to) the closure of the 

realization of D as a bounded symmetric domain and it is geometrically rational; the 

corresponding compactification of X is the Baily-Borel-Satake compactification. 

Let °G = f]xexQ(G) K e r X 2 so that G ( R ) = °G(R)AG [4]. Suppose that r ank°G = 

rank If, that is, °G(M) has discrete series representations. This is equivalent to the 

assumption that the maximal R-split torus in the center of G is also Q-split and that 

the real points of G d e r (the semisimple derived group) has discrete series represen

tations. (We may also substitute here the adjoint group G a d for G d e r . ) We say in 

this case that D is an equal-rank symmetric space. A Satake compactification RD* 

of D will be called a real equal-rank Satake compactification if all the real boundary 

components of RD* are also equal-rank symmetric spaces. The possible D that admit 

real equal-rank Satake compactifications are listed in [36]; they include the Hermitian 

symmetric cases but there are other infinite families as well. If such a RD* is geometri

cally r a t iona l^ then the corresponding compactification X* of X is also called a real 

equal-rank Satake compactification; note that we impose the equal-rank condition on 

all real boundary components even though only the rational boundary components 

contribute to X*. 

The generalization we alluded to above is that the Main Theorem holds for real 

equal-rank Satake compactifications. (Note that Borel conjectured that the analogue 

of the Zucker conjecture should remain true for such X* and Saper and Stern (un

published) observed that their proof could be adapted to this case.) 

5. ^-modules 

Now again let G be any connected reductive group over Q (with no Hermitian hy

pothesis). The "sheaf" ZC{X\ E) is actually an object of D # ( X ) , the derived category 

of complexes of sheaves S on X that are constructible. Here the constructibility of S 

means that if for all P G 7 we let ip : Xp c—• X denote the inclusion, then the local 

cohomology sheaf H(i*PS) = H(S\xP) is locally constant, or equivalently the coho

mology sheaf E p = H(il

pS) is locally constant on Xp. Thus by the correspondence 

between local systems and representations of the fundamental group one obtains a 

family of objects Ep G G r ( r £ p ) , the category of graded TLP-modules,.one for each 

P G J>. 

( 2 ) Borel points out that in his 1962 Bruxelles conference paper "Ensembles fondamentaux pour les 

groupes arithmétiques" he proves geometric rationality only when a is strongly Q-rational. In [27] 

we prove geometric rationality for the general Q-rational case. 

( 3 ) W e show in [27] that this always holds except for certain explicitly described situations in Q-rank 

1 and 2 involving restriction of scalars. 
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Instead of <S we wish to work with a combinatorial analogue in which Gr(rL P ) is 
replaced by G r ( L p ) , the category of graded regular Lp-modules. This analogue is 
what we will call an £-module on X. We will describe just what an ^ -module is more 
precisely later, but first let us give some of the properties of the categories 9Jlod(£jw) 
of ^-modules on W, where W is any locally closed union of strata of X: 

(i) if W = Xp, then 9J toD(£x P ) = C ( L p ) , the category of complexes of regular 
Lp-modules; 

(ii) for any inclusion j : W <—> W, there exist functors : ffltod(&W') —• 
9Jlod(£jw) and , j \ : 9Jlod(&w) —> 9JIOD(£JW'), as well as a degree truncation functor 
T^P : Wlod(Hw) 3Dtp&(W); 

(iii) there is a realization functor Sw • 9Hot>(£w) —» D # ( W ) which commutes with 
the functors in (ii) and for which the following diagram commutes: 

Wlod(&Xp) y D * ( X p ) 

Gr (Lp) GT(TLP) . 

Note that one advantage of £-modules over sheaves is that the left hand vertical 
arrows in (iii) are equivalences of categories, unlike those on the right; this is because 
dJlod(Lp) is a semisimple category. 

So roughly speaking an £-module is like a sheaf S with the "extra structure" that 
E p = H(ipS) is associated to a regular Lp-module, as opposed to merely a TLP-
module. Condition (ii) implies that the usual operations on sheaves preserve this 
"extra structure". The following example shows this is reasonable. Let E be a local 
system on X associated to a regular representation E of G. The smooth part of 
the link bundle of a real codimension k stratum Xp C X is the flat bundle with 
fiber | A p | ° x Tjyp\Np(№), where | A p | ° is an open (k — l )-simplex and TLP acts 
via conjugation on the second factor [8, §8] . Thus H(i*PiG*E) ^ M(rNp\Np(R)\E), 
the local system associated to the T^p-module H(TNP\NP(M)\E). However by van 
Est's theorem [7], H(TNP\NP(R);E) is isomorphic to the restriction of the regular 
Lp-module H(xip; E), where U p is the Lie algebra of Np(R). 

In fact this also suggests how to precisely define £-modules. Let 1P(W) C y cor

respond to the strata of W. For P < Q let be the Lie algebra of NP(R)/NQ(R). 

A n L-module M. G 9Jlod(&w) is a family (E., / . . ) consisting of objects Ep £ G r ( L p ) 

for every P G T(W) and degree 1 morphisms JPQ : H{XVP',EQ) Ep for every 

P <Q € y(W) such that 

2 fpQoH(n%fQR)=0 
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3 2 6 L. SAPER 

for all P ^ R G y(W). The functors vP and ip are given by 

ipM = (EPJPP) , 

ipM=(®H(n$;ER), ]T H(np;fRs))-

^P^R P^R^S ' 

We define the global cohomology H(X; M) of an £-module M to be the hyperco-

homology of its realization, H(X; Sg(Ai)). In general we will often write simply M 

for both the ^ -module and its realization Sg(M); it should be clear what is meant 

from the context. 

6. Examples of £-modules 

(i) Let E G VJlod(G). Then the ^-module iG*E defined by EG = E and EP = 0 for 

P ^ G corresponds via S% to Z G * E and its cohomology is the ordinary cohomology 

H(X;E) =H{T;E). 

(ii) It follows immediately from the properties of ^-modules in the previous section 

that given E G Wlod(G) there exists an £-module ZC{X\ E) which maps under S% to 

the intersection cohomology sheaf J C ( X ; E ) . For example, if 7 = { G , P} (that is, X 

has only one singular stratum) and p = p ( c o d i m X p ) , then 

~ _ [EG = E, EP = (T>PH(nP;E)){-l},\ 
[ ' > ~ \ fpG:H(nP;E)^T>*>H(nP;E) ) 

where T>PH(XKP\E) = 0 i > p LP(tip; E)[—i] and fpc is the projection. Note that the 

truncation r^p of local cohomology at Xp has been implemented externally via a 

mapping cone; this is valid in view of the quasi-isomorphism r^pC ^ C o n e ( C —> 

r>pC)[—1] for any complex C. 

(iii) The weighted cohomology sheaf and the L 2 - cohomology sheaf may also 

be lifted to ^-modules WC(X;E) and £J(2)(X]E)] for the latter we must replace 

dJloD(Lp) by the category of locally regular Lp-modules to handle the potentially 

infinite dimensional local cohomologies. 

7. Micro-support of ^-modules 

The support of a sheaf S is the set of points x such that H(S)X ^ 0. As is well-

known the global cohomology of S vanishes if the support is empty (that is, the sheaf 

is quasi-isomorphic to 0 ) . For an £-module M. we will state in the next section a 

more subtle vanishing result based on the micro-support of M which we now define; 

this is a rough analogue of the corresponding notion for sheaves [13]. 

Let P G ? and let 3xt(Lp) denote the set of irreducible regular Lp-modules . For 

V G 3vx(Lp) let £y be the character by which Ap acts on V. Let A p be the simple 
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roots of the adjoint action of Ap on tip; the parabolic Q-subgroups Q > P are indexed 
by subsets of A P . Define P < Qy ^ Qy € 9 by 

A p v = {a £ A p | ( f r + p , a ) < 0 } , 

A ? = { a G A P | ( f r + p , « K 0 } , 

where p denotes one-half the sum of the positive roots of G and the inner product is 
induced by the Killing form of G. Let MP = °LP so that L P ( R ) = MP(R)AP. Let 
V\MP denote the restriction of the representation V to Mp. 

The micro-support SS(M) of M is the subset of Up € y 3 t t ( L p ) consisting of those 
V G 3 t t ( L p ) satisfying 

0 ) № p ) * = V \ M P , and 

(ii) there exists Qy ^ Q ^ Q'v such that 

(7.1) H{itfQM)v ± 0 . 

Here i TQ : X q c—> X is the inclusion of the closure of the stratum XQ and the sub
script V indicates the V-isotypical component. A simple example of the computation 
of micro-support will be given in §11 . 

Condition (i) is equivalent to the existence of a nondegenerate sesquilinear form 
on V which is invariant under the action of M p . 

As for condition (ii), let JQ : X \ XQ ^ X be the open inclusion. Note that we 
have a short exact sequence 

0 — • ipi'QM —• ipM —• i*pjQ*j*QM —> 0 

and a corresponding long exact sequence. Topologically, this is the long exact sequence 
of the pair (U,U\(U H X q ) ) where U is a small neighborhood of a point of X p . Thus 
condition (ii) means that 

V

 XQ XQ 
A p —" S \ p . • ' 

XR \ XR \ 

H(U;M)V • H{U\{UnXQ);M)v 

is not an isomorphism for some degree and for some Q between Qy and Q'v. 
It is convenient to define the essential micro-support S S e s s ( A / f ) of M. to be the 

subset consisting of those V G SS(.M) for which 

Typev(M) = hnnge(H(i*Pil

QvM)v —> H(i*Pil

Q,vM)v) 

is nonzero. The essential micro-support of M. determines the micro-support (though 
not the actual parabolics Q that arise in condition (i i)) . In fact the relation between 
SS(A4) and SSess(Al) is analogous to the relation between the strata of a nonreduced 
variety (possibly with embedded components) and the smooth open strata of the 
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3 2 8 L. S A P E R 

irreducible components: there exists a partial order on Upeg> 3 t t ( L p ) such that if 

V G SS(M) then there exists V G S S e s s ( A 4 ) with V =4 V, and if V G S S e s s ( X ) and 

V ^ V then V G SS(A4). 

8. A vanishing theorem for ^-modules 

The justification for the definition of SS(.M) is that it is an ingredient for a van

ishing theorem for H(X; M). To state the theorem we need some more notation. 

Let V G 3tx(Lp) have highest weight fi G J)£ where J) is a fundamental (maxi

mally compact) Cartan subalgebra for the Lie algebra ip of Lp(M) equipped with a 

compatible ordering. Assume ( V | M P ) * — V\MP and define 

Lp(fi) = the centralizer of /i G J)£ C lpC , 

= the reductive subgroup of Lp with roots { 7 G &(lpc, fyc) I (7> A4) — 0 } > 

Dp(fi) = the associated symmetric space Lp(fi)(M)/(Kp D Lp(n))Ap . 

Choose a compatible ordering for which dim D p (/x) is maximized and let JDp(F) = 

Dp{n). Suppose now that V G S S e s s ( A ^ ) . Let c(V;M) ^ d{V\M) be the least and 

greatest degrees in which T y p e y ( . M ) is nonzero, and define 

c(V;M) = ±(dhnDp-dunDp(V)) + c(V;M) , 

d(V;M) = ^ ( d i m i } p + d im£>p(V) ) + d{V;M) . 

Set 

c(M) = inf c(V;M) , d(M) = sup d ( V ; . M ) . 
VGSSess(A^) V G S S e S s ( M ) 

(One can show that the same values are obtained if instead we consider all V G SS(A4) 

and let c ( V ; M) ^ d (V; M) be the least and greatest degrees in which (7.1) is nonzero 

(for any Q).) 

Theorem 1. — H\X\M) = 0 for i $ [c(M), d(M)}. 

Let us comment briefly on the proof which uses combinatorial Hodge-deRham 

theory. The sheaf (A4) has an incarnation as a complex of fine sheaves whose global 

sections are "combinatorial" differential forms. That is, an element of T(X; S'^(Ai)) is 

a family (up)p^o5? where each up is a special differential form on Xp with coefficients 

in E p . (For P = G, the special differential forms [8, (13.2)] on X = XQ are those 

which near each boundary stratum YQ of the Borel-Serre compactification X are the 

pullback of an NQ(R)-invariant form on YQ; they form a resolution of E G - ) The 

differential is a sum of the usual d e R h a m exterior derivative (on each up) together 

with operators based on the fpQ. 

To do harmonic theory we need a metric; unfortunately the locally symmetric 

metric on each X p is not appropriate since it would introduce unwanted L 2 -growth 

conditions on the differential forms. Instead the theory of tilings from [25] gives a 
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natural piecewise analytic diffeomorphism of X onto a closed subdomain Xo of the 
interior X; the pullback of the locally symmetric metric under this map yields metrics 
on all Xp which extend to nondegenerate metrics on their boundary strata. Now a 
spectral analogue of the Mayer-Vietoris sequence as in [28] reduces the problem to 
a vanishing theorem for combinatorial L 2 - cohomology near each stratum Xp. After 
unraveling the combinatorics one obtains contributions to the cohomology of the form 
H(2){Xp;Y) 0 T y p e y ( . M ) for V G SS e S s ( .M) ; by Raghunathan's vanishing theorem 
[20], [21], [28] this is zero outside the degree range [c(V; M),d(V;M)]. (The proof 
is actually more complicated since there are infinite dimensional contributions from 
SS(M) \ SSess (X) as well.) 

9. Micro-purity of intersection cohomology 

W e will say an £-module M. on X is V-micro-pure if SS e S s (A / i ) = { V } with 
T y p e v ( A / ( ) concentrated in degree 0. 

Theorem 2. — Assume the irreducible components of the Q-root system of G are of 
type An, Bn, Cn, BCn, or G2. Let E G 3 t t (G) satisfy (E\oG)* ^ E\oG. Then 
TC(X; E) is E-micro-pure. 

If D is a Hermitian symmetric space (or an equal-rank symmetric space admitting 
a real equal-rank Satake compactification as in §4) G will have a Q-root system of 
the indicated type and thus the theorem applies in the context of Rapoport and 
Goresky-MacPherson's conjecture. In fact it is quite possible that this restriction in 
the theorem may be removed; it is only required at one crucial stage in the proof. 

What the theorem is asserting is that V £ SSess(TC(X; E)) for V G 3xx(Lp) with 
P 7^ G. When P is a maximal parabolic we can give a brief indication of how this is 
proven; for definiteness we assume p is the upper middle perversity. In this case 

(9.1) * № I ^ < * * > ) ' " • Q ' ° -
0 \ ( r > » f f ( i i , ; E ) ) ( - l ] for<J = F , 

where p = \_\ d i m n p j . Let A be the highest weight of E. By Kostant's theorem [15] 
an irreducible component V of H(x\\ E) has highest weight w(\ + p) — p where 

w G Wp = {w G W | w~l^f > 0 for all postive roots 7 of ipc} , 

the set of minimal length representatives of the Weyl group quotient WLP\W. Fur
thermore V occurs in degree £(w), the length of w, with multiplicity 1. Assume now 

that V G SSess(TC(X; E)). Since the two cases in (9.1) above do not share a common 

component we must have Qy = Qy, that is, (£y + p, a) ^ 0 for the unique a G A p . 

Furthermore (9.1) also shows that the possibilities (£y + P,&) < 0 and (£v + P, ct) > 0 

correspond respectively to £(w) < \ dim np and £(w) > \ dim rip. However the fol

lowing lemma from [26] shows that in fact the opposite relation between weight and 
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degree holds (the nonnegative term dim x\p(V) here may be ignored for now—it will 

be defined in § 11): 

Lemma 3. — Let V G 3xv(Lp) have highest weight w(X + p) — p where w G Wp and 

A G f)c is dominant. Assume that (V\MP)* — V\MP-

(i) If(€v+P,a) ^ 0 for all a G A p , then £(w) ^ | ( d i m n P + d i m n P ( F ) ) . 

(ii) If (£v + p,a) > 0 for all a G A p , then £(w) < | ( d i m n p - dim tip ( F ) ) . 

The only remaining possibility is that £{w) = \ dim up, but since (£y -f p, a) ^ 0 

and (E\OQ)* = E\oG this is impossible by an argument based on [3]. By the way, 

Lemma 3 is basic to the proofs of Theorems 1,4, and 5 as well and has its origin in 

a result of Casselman for R-rank one [5]. 

When P is not a maximal parabolic the situation is far more complicated. The 

irreducible components of H(iPlC(X; E)) are among those of H{i*PiG*iyLC{X\E)) = 

H(xip;E), but they may occur in various degrees and with multiplicity. Since we do 

not know a nonrecursive formula for H(iPlC(X;E)) we must rely on the inductive 

definition. However condition (i) in the definition of micro-support is not preserved 

upon passing to a larger stratum. Specifically, let P < R and suppose V is an 

irreducible component of H(x\p; E) = H(nP; H(X\R; E)). It must lie within H(np; VR) 

for some irreducible component VR of H(X\R;E). The difficulty in using induction is 

that {V\MpY = V\MP does not imply (VR\MR)* = VR\MR-

These difficulties do not apply to WC(X; E) and in fact a fairly simple argument 

shows that Theorem 2 holds for WC{X;E) without any hypothesis on the Q-root 

system and for either middle weight profile. Indeed since WC(X; E) is defined directly 

in terms of weight the relationship between weight and degree provided by Lemma 3 

is not needed and hence the condition ( V | M P ) * — V\MP plays no role in the proof. 

10. Functoriality of micro-support and proof of the M a i n Theorem 

Let M be an ^-module which is ^-micro-pure (for example, M = XC(X;E) by 

Theorem 2) and assume we are in the context of Rapoport and Goresky-MacPherson's 

conjecture, that is, D is Hermitian symmetric and n : X —> X* is the projection onto 

the Baily-Borel-Satake compactification. The desired equality ir*M = X C ( X * ; E ) is 

equivalent to certain local vanishing and covanishing conditions on TT*M. [10]. To 

state them, let i x : {x} ^ X* denote the inclusion of a point in a stratum FR C X*. 

Since every stratum of X * has even codimension, p (codim FR) = \ codim FR — 1. The 

local conditions that characterize intersection cohomology now can be expressed as 

Hl(ilir*M) = 0 for x G FR, i ^ \ codim FR, and 
(10.1) • , i 

H\ixn*M) = 0 for x G FR, i ^ \ codim FR 

for every stratum FR C X*. 

ASTÉRISQUE 298 



^-MODULES AND RAPOPORT'S CONJECTURE 3 3 1 

Recall that for every P G CP with P+ = i? there is a fac

torization Xp = XPie x FR and that TT\XP is simply projection 

onto the second factor. Thus n~1(x) = WP^=RXpi x {x} = 

XR,£ x {x} and we let IRJ : XR^ = 7r~1(x) ^ X be the inclu

sion. Since H%(i%7r*M) = Hl(XR^i*ReM) and Hl(ixn*M) = 

H1(XR^;I-R£M) we can use Theorem 1 to see these vanish for 

i > d(iRiAi) and i < c{vR£M) respectively. Thus the follow

ing theorem implies that ( 1 0 . 1 ) holds (and hence completes the 

proof of the Main Theorem): 

X " . X 

Theorem 4. — Let M. be an E-micro-pure L-module and let 

FR be a stratum of the Baily-Borel-Satake compactification X*. 

Then 

d(î*R eAi) < \ codim F p — 1 and c(rR £A4) ^ \ c o d i m P p -h 1 . 

The same result holds if D is an equal-rank symmetric space and X * is a real 

equal-rank Satake compactification as in § 4. This theorem is actually a special case 

of a more general result on the functoriality of micro-support: for M. an arbitrary 

£-module and X* a real equal-rank Satake compactification as in §4 , the theorem 

gives a bound on SS(iReM) and SS(iR£M) in terms of SS(At ) . 

Since W C ( X ; E) is also P-micro-pure, the same argument yields a new proof of the 

main result of [8] (and in fact a generalization to real equal-rank Satake compactifi-

cations). 

11 . Example/application: ordinary cohomology 

As another application of ^-modules we consider the ordinary cohomology H(X; E) 

or H(T; E) with coefficients in E G 3tx(G). This is the cohomology H(X; M) for the 

^ -module M = iG*E which has EG = E and EP = 0 for P ^ G (see § 6 ( i ) ) . 

We calculate the micro-support of iG*E. Since iqiG*E = EQ we see that 

H(iPi0iG*E) = < 
Q [ 0 f o r Q ^ G . 

Thus for V G 3xx(Lp) to be in SS(iG*E) it must be an irreducible component of 

H(xip;E) satisfying ( V | M P ) * — V\MP and (£y + p,a) < 0 for all a G A p (since 

Q = G implies Q'V = G). The essential micro-support will consist of such V satisfying 

in addition the strict inequalities (£v + P> <*) < 0 . 

Let A be the highest weight of E. As in § 9, the irreducible components of H(xip; E) 

are the modules Vw(\+P)-P G 3xx(LP) with highest weight w(X + p) — p for w G Wp. 

Let rp : fy£ —> fj£ transform the highest weight of a representation of Lp into the 

highest weight of its complex conjugate contragredient; we assume that rj =• bp + ap = 
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&p,e + &p,p + cip is a fundamental Cartan sufralgebra of ip equipped with a compatible 

order so that rp is simply the Cartan involution [3]. We can now reexpress our 

calculation as 

SSess(iG*E) = I J { K , ( A + p ) - P \weWP, (w(X + p) , a ) < 0 for all a e A P , 

p and rP(w(X + p)\bP) = w(X + p ) | b p } . 

(In the last equation we have used the fact that r p ( p | b P ) = p | b P . ) Furthermore since 

V = Vw(\+p)_p occurs in H(i*pVqiG*E) in degree £(w) we see that 

(11.1) Z(V;iG*E) = \(dimDP-DP(V))+£(w) . 

We use Lemma 3 to estimate £(w), however now we need the term dim xip(V). To 

define it, recall we have defined £ p ( p ) C Lp in § 8 to have roots 7 _L p = io(A-|-p) — p. 

Since (w(X + p) — p ) | b P is invariant under rp , the roots of L p ( p ) are stable under rp . 

Thus given an Lp(p)-irreducible submodule of npc , the transform by —rp of its 

weights are the weights of another Z/p(p)-irreducible submodule of tipc- Define n p ( p ) 

to be the sum of the Lp (p)-irreducible submodules of tip whose weights are stable 

under — rp . Choose a compatible ordering for which d i m n p ( p ) is maximized and let 

rtp(V) = n p ( p ) . Note that n p ( V ) contains the root spaces of the positive (—rp)-

invariant roots, that is, the real roots. 

We now make two assumptions: that D is Hermitian symmetric, or more generally 

equal-rank, and that E has regular highest weight A. By the first assumption the 

Lie algebra of ° G ( R ) also possesses a compact Cartan subalgebra and therefore by 

the Kostant-Sugiura theory of conjugacy classes of Cartan subalgebras [14], [31], [32] 

there must exist at least dim bp,p + dim dp — d i m a c orthogonal real roots. Thus 

(11.2) d imnp(V r ) ^ d i m b p , p - h d i m a p — d i m a c • 

On the other hand, note that if 7 V = 2 7 / ( 7 , 7 ) then ( p , 7 v ) = 1 if and only if 7 is 

simple. Consequently for 7 a simple root of L p in any compatible ordering we have 

7 is a root of Lp(fi) (w(X + p) , 7 V ) = ( p , 7 V ) <=> (X + p, w'xjv) = 1 

4=> ( A , i t ; _ 1 7 ) = 0 and i t ; - 1 7 is simple. 

Thus the second assumption implies that L p ( p ) = H, the Cartan subgroup, and 

hence 

(11.3) dimDP(V) = d i m b p , p . 

Lemma 3(i) and equations (11.1)—(11.3) yield the estimate c(V;ic*E) ^ 

\ (dim Dp + d i m a p + dim np — d i m a ^ ) = \ d i m X . Thus Theorem 1 implies 

Theorem 5. — If X is an arithmetic quotient of a Hermitian or equal-rank symmetric 

space and E has regular highest weight then Hl(X]E) = 0 for i < \ d i m X . 
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This resolves a question posed by Tilouine during the Automorphic Forms 
Semester. For the case G = Rk/q GSp(4) where k is a totally real number field the 
theorem is proven in [33] using results of Franke. For applications of the theorem 
see [18], [19]. While this paper was being prepared we heard that Li and Schwermer 
also had a proof of the theorem.( 4 ) 

A vanishing range for the case where E does not have regular highest weight may 
be obtained by replacing ( 1 1 . 2 ) and ( 1 1 . 3 ) by the more subtle estimate on dim tip (V) 
given in [26]. 
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