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Q U E S T I O N S A B O U T SLOPES O F M O D U L A R F O R M S 

by 

Kevin Buzzard 

Abstract. — We formulate a conjecture which predicts, in many cases, the précise p-
adic valuations of the eigenvalues of the Hecke operator Tp acting on spaces of classical 
modular forms. The conjecture has very concrète conséquences in the classical theory, 
but can also be thought of as saying that there is a lot of unexplained symmetry in 
many of the Coleman-Mazur eigencurves. 

Résumé (Questions sur les pentes des formes modulaires). — Nous formulons une conjec­
ture prédisant, dans de nombreux cas, les valuations p-adiques exactes des valeurs 
propres de l'opérateur de Hecke Tp agissant sur les espaces de formes modulaires 
classiques. Cette conjecture a des conséquences très concrètes sur la théorie clas­
sique, mais elle suggère aussi de nombreuses symétries inexpliquées concernant les 
courbes de Coleman-Mazur. 

Introduction 

Let N ^ 1 be a fixed integer, and let p dénote a fixed prime not dividing N. If 

k G Z then there is a complex vector space Sk(To{Np)) of cusp forms of weight k 

and level Np. This space is fînite-dimensional over the complex numbers and cornes 

equipped with an action of the Hecke operator Upi an endomorphism whose eigenval­

ues are non-zero complex numbers. The characteristic polynomial of Up has integer 

coefficients, which implies that the eigenvalues are algebraic integers. Hence we can 

consider the eigenvalues as lying in C or in Qt for any prime l. 

The C/p-eigenvalues fall naturally into two classes, p-o\d ones and p-new ones. The p-

old eigenvalues are the roots of X2—apX+pk~l, where ap runs through the eigenvalues 

of Tp acting on Sk(To(N)). A deep theorem of Deligne says that the p-o\d eigenvalues 

ail have complex absolute value p ^ - 1 ) / 2 . The p-new eigenvalues are what is left, and 

it is well-known that thèse eigenvalues are square roots of pk~2. Hence the complex 

valuations of thèse t/p-eigenvalues are known in every case. Moreover, from thèse 

définitions it is clear that if / ^ p is a prime then the [/^-eigenvalues are ail Z-adic 

unit s. 
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2 K. BUZZARD 

Prom this point of view, the question that remains about valuations of eigenval­

ues is: 

Question. — What can one say about the p-adic valuations of the eigenvalues ofUp? 

The term "slopes" is used nowadays to refer to thèse valuations. A study of the 

simplest spécial case, namely N = 1 and p = 2, shows that the answer is nowhere near 

as simple as the other cases. The forms which are 2-new at weight k will ail have slope 

and this leaves us with the oldforms, whose slopes we can easily compute from 

the theory of the Newton Polygon, if we know the 2-adic valuations of the eigenvalues 

of T<i acting on cusp forms of level 1. The smallest k for which non-zero level 1 

cusp forms exist is k = 12; the space Si2(SL2(Z)) is one-dimensional, and T2 acts as 

multiplication by —24. Hence the 2-old eigenvalues of U2 at weight 12 and level 2 are 

the two roots of X2 -h 24X + 2 1 1 , and thèse two roots have 2-adic valuations equal 

to 3 and 8. Note that 3 ^ 8 , and so the story is already necessarily différent to the 

complex and Z-adic cases. We include a short table of valuations and slopes for small 

weights. 

Weight 2-adic valuations of Slopes of 

T2-eigenvalues U2 at level 2 

at level 1 

12 3 3,8 

14 6,6 

16 3 3,7,12 

18 4 4,8,13 

20 3 3,9,9,16 

22 5 5,10,10,16 

24 3,7 3,7,11,16,20 

26 4 4,12,12,12,21 

Prom this table, one wonders whether there is any structure at ail in the slopes. 

However, the purpose of this paper is to suggest that in fact there is a very précise 

structure here. In fact, in this paper we explain a completely elementary conjectural 

combinatorial recipe, recursive in the weight fc, for generating the above table line by 

line. In fact, for a large class of pairs (N,p) (including ( l ,p) for ail primes p < 100 

apart from 59 and 79) we give a conjectural recipe for the valuations of the Tp-

eigenvalues at level TV, and hence the slopes of Up at level Np. We strongly believe 

that there should be a recipe for generating the slopes of Up at level Np for any N 

and p, given as an input the slopes for level N and weights at most p + 2. However we 

have not yet managed to formulate such a recipe at the présent time. In this paper, 

we offer a recipe only in the case where p is ro(Af)-regular, a term that we shall define 

later. 
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QUESTIONS ABOUT SLOPES 3 

Before we explain our conjectural recipe, we shall explain what is known about 

the slopes of Up, and what has been conjectured before. The fîrst observation, hinted 

at by the apparent randomness in the table above, is that to find structure in the 

slopes of Up one should, contrary to the complex and Z-adic cases, not consider the 

slopes at one fixed weight, but let the weight vary. There are well-known concrète 

examples of this phenomenon. For example, a theorem of Hida says that for fixed 

level, the number of £/p-eigenvalues with slope zéro is bounded, and indeed for k ^ 2 

this number dépends only on k modulo p — 1 (resp. modulo 2) for p odd (resp. p = 2). 

As an example of this, we note that there are no slope zéro forms in the table above, 

and we deduce from Hida's theorem that in fact for N = 1 and p — 2 there will never 

be any slope zéro forms, however high the weight gets. 

Thèse theorems about C/p-eigenvalues of slope 0 were generalised by Gouvêa and 

Mazur to an explicit conjecture in [11] about the number of eigenvalues of arbitrary 

slope as the weight varies. The Gouvêa-Mazur conjecture says that if M ^ 0 is any 

integer, then for k and k' sufficiently large (which nowadays means at least M + 2) 

and congruent modulo (p— l ) p M , the number of C/p-eigenvalues of slope a at weight k 

and weight kr should be the same, for any a ^ M . Expérimental évidence for this 

conjecture was supplied by Mestre in the case where N = 1 and p is small. A few 

years after this conjecture was made, ground-breaking work of Coleman in [6] showed 

that cuspidal eigenforms naturally lay in p-adic analytic families, and an analysis by 

Wan [17] of Coleman's methods showed that one could deduce a weaker version of the 

Gouvêa-Mazur conjectures, namely that for k and k' sufficiently large, and congruent 

modulo (p — l ) p M , the number of eigenvalues with slope a at thèse two weights were 

equal, if a < 0(y/~M). The constants here are ail explicit. 

Note added in proof: For a few years the gap between the conjecture and the 

theoretical results was a mystery, but in some sensé the mystery was resolved when 

a counterexample to the Gouvêa-Mazur conjecture was found by the author and 

F. Calegari in the case N = 1 and p = 59. This paper was written before the 

counterexample was found and in fact it was the results in this paper which led 

the author and Calegari to a study of the particular case p = 59, which is the smallest 

prime for which (at level 1) the results of this paper do not apply. Note that for 

N = 1, although the Gouvêa-Mazur conjecture is false for p = 59, it may well still 

be true for N = 1 and p < 59, and indeed perhaps the results of this paper are an 

indication that it is true if p is To(iV)-regular (see later for the définition). This paper 

is not about the counterexample at p = 59 but about the extra structure discovered 

for p < 59. The counterexample at p — 59 is explained in [4]. 

The families in Coleman's work were beautifully interpolated into a mysterious 

géométrie object, constructed by Coleman and Mazur, called an "eigencurve", whose 

very existence implies deep results about modular forms. One can compute what are 

essentially local équations for small pièces of thèse eigencurves for explicit p and A", 
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4 K. BUZZARD 

and computations of this nature have been undertaken by Emerton in [9] and Cole­

man, Stevens and Teitelbaum in [7], where for N — 1 and p = 2,3 respectively the 

authors manage to compute the majority of the part of the eigencurve with smallest 

slope. Computations like this have concrète conséquences in the theory—for example, 

Emerton deduced from his computations that when N = 1, the smallest slope of U2 
was periodic as the weight increased, repeating the pattern 3,6,3,4,3,5,3,4 indefi-

nitely (one can see the first instance of this pattern in the table above, which already 

indicates that the table is much too small to be able to indicate what is going on). 

The computations of Mestre concerning the Gouvêa-Mazur conjecture were done 

about ten years ago, and because computers are currently increasing vastly in speed, 

it was clear that one could go much further nowadays. The author's motivations 

for actually going further were several—firstly, Wan's results, and unpublished anal-

ogous theorems of the author for automorphic forms on definite quaternion algebras, 

both gave a version of the Gouvêa-Mazur conjecture with a ^ 0(y/M) rather than 

a ^ M , and this led us to believe that perhaps the Gouvêa-Mazur conjectures were too 

optimistic. Hence we thought we would make a concerted effort to search for a coun­

terexample (Note added in proof: see [4] for the counterexample that we ultimately 

found). Secondly, several years ago we had corne up with an (again unpublished) fast 

algorithm for Computing a matrix representing T2 on Sfc(SL»2(Z)) and we felt that this 

would help us with the project. Thirdly, it seemed that a serious computation would 

be a way to get a "feeling" for the Coleman-Mazur eigencurves. Finally, William Stein 

has recently written a package that computes spaces of modular forms, and a serious 

computation seemed like a good way of testing his programs. We should remark that 

Gouvêa also did many computations since [11] was written, and the reader that wants 

to see the current status of things is strongly recommended to refer to [10] or to [16]. 

Our extensive numerical calculations did not (initially) reveal any counterexamples 

to the Gouvêa-Mazur conjecture (Note added in proof: however they did lead us to 

the observation that p = 59 was somehow différent to other primes p < 59 and this 

is what ultimately led to the counterexample). On the contrary, to our surprise, they 

revealed what in many cases seemed to be far more structure. The Gouvêa-Mazur 

conjectures predict local constancy of slopes, in some sensé, whereas, with the help of 

the numerical data, we were able to formulate in many cases a new conjecture, which 

predicted ail slopes precisely. 

Our investigations of the phenomenon of patterns in slopes were inspired by the 

aforementioned computations of Emerton, and also by results in Lawren Smithline's 

1999 UC Berkeley thesis. We are grateful to both Smithline and Emerton for several 

helpful remarks. Smithline proves in his thesis that there is some structure to the 

set of slopes of weight zéro 3-adic overconvergent modular forms of level 1, and this 

structure was one of the reasons why we were inspired to do thèse computations. We 
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are also grateful to William Stein and Tamzin Cuming for providing many spare CPU 

cycles, and to the référée for several helpful comments. 

Although the conjectural formula that is the heart of this paper is of a purely 

elementary nature, it seems very complicated to explain. The structure of this paper 

is as follows. In the first section we explain what we mean by the notion of ro(iV)-

regularity above. In the second, we formulate the conjecture. The third section is 

an attempt to explain heuristically our motivation behind the précise détails of the 

conjecture. Finally, the fourth section raises further related questions. In particular, 

the finiteness questions 4.4 and 4.5 do not apparently appear to have been raised 

before. 

Although we shah not mention overconvergent forms in the main body of this 

paper, we should perhaps mention that the original reason we were motivated to do 

thèse computations was to try and understand the geometry of the Coleman-Mazur 

eigencurves in some spécifie cases. Closely related to conjectures about the values of 

slopes of classical modular forms are analogous conjectures about the values of slopes 

of overconvergent forms, as one can see by a simple continuity argument and the 

theorem of Coleman that overconvergent forms of small slope are classical. In fact 

thèse conjectures below about slopes of classical forms could be entirely rephrased in 

terms of overconvergent forms. On the other hand, this rephrasing seemed equally 

complicated, if not more, and so we have not mentioned it below. However, in the 

spécifie case of p = 2 and N = 1, the author and F. Calegari have managed to corne 

up with a conjecture for both classical and overconvergent forms that is much simpler 

to state, and have furthermore have succeeded in proving it for overconvergent forms 

of weight 0—we can prove that the valuation of the nth slope 0ÎU2 is 1 -h 2v2 

(3n)r 
n! ; 

In particular, ail slopes are positive odd integers, which could perhaps be regarded 

as some very weak évidence towards Question 4.2 below. See the fortheoming [3] for 

more détails. 

Note added in proof: the fortheoming Northwestern thesis [12] of Graham Herrick 

attempts to explain the main conjecture of this paper in a much more conceptual 

manner. 

1. ro(iV)-regularity 

Let iV be a fixed positive integer and let p be a fixed prime not dividing N. For 

k ^ 2 an even integer, define v & to be the séquence of p-adic valuations of the eigen­

values of Tp acting on Sfc(r 0(iV)), with multiplicities, arranged in increasing order. 

For example, if N = 1 and p = 2 then we see from the table above that v24 = [3,7], 

where we use square brackets to dénote a séquence. 

We firstly remark that there is probably no elementary combinatorial formula for 

predicting vk in gênerai. For example, when k = 12 and N = 1 one finds that Tp acts 
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6 K. BUZZARD 

as a p-adic unit for most primes, but occasionally (for example for p = 2,3,5,7 and 
2411) the eigenvalue of Tp is divisible by p. Our goals are thus slightly more modest. 
Define kp = if p > 2, and define k2 = 4. 

Question 1.1. — Is there an elementary combinatorial recipe which, given Vk for ail 

k ^ kp, predicts Vk for ail k ^ 2? 

We have substantial numerical évidence suggesting that the answer to the question 

above is "yes", although we have not really made the question précise. Indeed, we 

shall not make this question précise in gênerai, but only in the case where the prime 

p is To(iV)-regular. We now give a définition of To (7V)-regularity. 

Définition 1.2 (r0(AT)-regiilarity: podd). — If p > 2 then we say that p is T0(N)-

regular if the eigenvalues of Tp acting on Sk(To{N)) are ail p-adic units, for ail even 
integers 2 < k ^ kp. 

If p = 2 then this définition is not a good idea in gênerai, because by Hida 

theory we see that the number of unit eigenvalues of Tp at weight 4 is bounded 

above by dim(.S ,2(ro(2iV))) — dim(S2(To(N))), which is almost always less than 

d im(S 4 ( r 0 (AO)) . 

Définition 1.3 (r0(iV)-regularity: p = 2). — We say that the prime p = 2 is r 0 ( iV) -

regular if 

(1) The eigenvalues of T 2 on 5 2(ro(A")) are 2-adic units. 

(2) There are exactly dim(5 2(r 0(2A/ r))) - dim(S2(To{N))) eigenvalues of T 2 on 

54(To(iV)) which are 2-adic units, and ail the others (if any) have 2-adic valuation 

equal to 1. 

The reader who would like a uniform définition should perhaps think of the déf­

inition as saying that p is To(iV)-regular if the valuations of the eigenvalues of Tp 

for k ^ kp are as small as possible. This définition for p — 2 is a little ad-hoc, and 

is based on the fact that a computation in the case of p = 2 and N = 5 showed 

that we did not want 2 to be ro(5)-regular. The modification is motivated by the 

following conséquence of (one form of) the Gouvêa-Mazur conjecture: if p = 2 and ail 

eigenvalues of T 2 on S2{To(N)) are units, then there should be no eigenvalues of T 2 

on S4(To(N)) with valuation strictly between 0 and 1. This justifies the phrase "as 

small as possible" above. 

Assume for the rest of this section that p > 3. Then any continuous odd irreducible 

Galois représentation p : Gal(Q/Q) —• G L 2 ( F P ) which has déterminant equal to an 

integer power of the cyclotomic character, and which is modular, has a twist coming 

from a characteristic zéro form of weight at most p -f 1, level equal to the conductor 

of p, and trivial character. Furthermore, one can read off whether the eigenvalue of Tp 

on such a form is a p-adic unit by the local behaviour of p at p. Détails of thèse results 

can be found for example in [15] and [8]. Finally, by the theory of thêta cycles, if 
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there is a mod p eigenform of level N and weight k with < k ^ p + 1 which is 

in the kernel of T p , then there is another such form of weight p + 3 — k ^ ^ r p . From 

thèse facts, one can easily deduce 

Lemma 1.4. — p > 3 is To(N)-regular if and only if any irreducible modular Galois 

représentation p : Gal(Q/Q) —> G L 2 ( F P ) with conductor dividing N and déterminant 

a power of the mod p cyclotomic character is necessarily reducible when restricted to 

a décomposition group at p. 

The restriction to p > 3 is because of technical problems lifting mod p forms with 

trivial character to characteristic zéro forms with trivial character, and could perhaps 

be avoided if we worked with r i ( i V ) , or with mod p modular forms. 

If one now assumes Serre's conjecture on modularity of continuous irreducible odd 

mod p Galois représentations, then one can deduce a purely representation-theoretic 

criteria for To(iV)-irregularity, because the word "modular" in the lemma above can 

then be replaced by "continuous and odd". This formulation of To(iV)-regularity 

can perhaps be thought of as an analogue to the representation-theoretic criteria for 

irregular (in the classical sensé) primes—if a prime is irregular in the classical sensé 

then there is an upper-triangular 2-dimensional mod p Galois représentation which is 

non-split, unramified away from p and tamely ramified at p. 

The first few SL2(Z)-irregular primes are 59, 79,107,131,139,151,173,.... 

2. The conjecture 

Recall that we have fixed N and p, where now p ^ 2 is back to being an arbitrary 

prime not dividing N. Below, we shall give a recipe for constructing séquences s 2 , 5 4 , 
5 6 , . . . . Thèse séquences dépend only on fc, p and the dimension of various space of 

cusp forms of level N and Np. The main conjecture of this paper is 

Conjecture 2.1. — Assume that p is To(N)-regular. Then the séquences s2, « 4 , . . • of 

integers are precisely the séquences v2, V 4 , . . . of p-adic valuations of Tp acting on 

sk(r0(N)). 

The recipe defining the Sk is messy, and it seems to us that its idéal présentation 

is as a computer program. The recipe dépends on the dimension of various spaces 

of cusp forms, sometimes with non-trivial character, and the only package of which 

we are currently aware that has thèse things built in is the MAGMA package [1]. 
We have implemented our conjecture in MAGMA, and the source is available at the 

author's web page [2]. We have also implemented our conjecture in pari-gp [14], 
but this was a little messier because we also had to implement some of the theory 

of Dirichlet characters, and also routines for Computing dimensions of spaces of cusp 

forms with non-trivial character. Again, the source is available at [2]. The reader 
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8 K. BUZZARD 

may well find playing with thèse programs a lot more enjoyable than attempting to 

read the description of the conjecture below. 

Firstly, some notation. A séquence dénotes a finite séquence [ai, a2,..., an] of 

integers. The square brackets are merely notational. If s = [ai, a2,..., an] is a 

séquence, then we let l(s) := n dénote the length of s and we let s[i] := a* dénote 

its ith term. We say that a séquence s is increasing if s[i] ^ s[i + 1] for ail i with 

1 ^ i < l(s). The union a U b of two séquences is the séquence of length l(à) + l(b) 

defined as the séquence a followed by the séquence b. Note that this is of course not 

commutative in gênerai. If a and b are séquences of the same length /, then Min(a, b) 

dénotes the séquence of length l whose ith term is Min(a[z], b[i\). 

For k an integer, write d(k) for the dimension of Sk(Fo(N)), write dp(k) for the 

dimension of Sk(To(Np)), and for e a Dirichlet character of level p, write d p > e(fc) for 

the dimension of Sk(To(N)DTi(p);e). For n , r ^ 0 w e define «(n , r ) to be the constant 

séquence [r, r , . . . , r] of length n. If v is a séquence of length l and e is an integer, 

we define v + e to be the séquence [v[l] + e, v[2] + e , . . . , v[Z] + e] and e — v to be the 

séquence [e — v[l], e — v[l — 1 ] , . . . , e — v[l]] (note the reversai of order). If v is a séquence 

and 0 ^ ô ^ l(v), we define <J(I;, 5) to be the truncation [v[l], v[2],..., v[S]] ofv. More 

generally, if 1 < ôi,Ô2 ^ l(v), we define cr(v, Ji, J 2) to be [v[5i], v[5i + 1 ] , . . . , v ^ ] ] , 

where this is interpreted as the empty séquence if 62 < S\. For a G Q, we write [a\ 

for the largest integer which is at most a. 

We begin by defining séquences ^ , £ 4 , . . . °f integers; note that later on we will 

define Sk to be tk for k > 2, and hence in particular for k > 2 we are conjecturing 

that tk is going to be the séquence of slopes at weight k. We will define the first few 

tk "by hand", and then proceed recursively to define tk for ail positive even integers fc. 

We set t2 = K{dp{2) - d(2),0). If p = 2 then we set t4 = t2 U «(d(4) - l(t2), 1) and 

define fcmin = 6. If p > 2 then for 4 < k < p + 1 even we set = K,(d(k), 0) and set 

& m i n = P + 3. For p > 2 what we are doing here is assuming that ail slopes are 0 for 

ail weights k < p + 3, and in particular for ail k < which is our To (A^)-regularity 

condition. 

Now let us assume that k > A:min is even and that we have defined ti for ail even 

l < k. We will now define tk- The définition dépends on three parameters a, b and c, 

defined thus. Let a be the unique élément of Z^i such that pa < k — 1 ^ pa+1. Let 

b be the unique integer with 1 ^ b ^ p — 1 such that pab < k — 1 ^ pa(b + 1). Set 

c = 1 + L ( f c ~ a - f
 b)J • Then 1 ^ c ^ p. Also, let m be the number of cusps on X0(N). 

We will firstly define a séquence V which will be the "first few slopes" of tk- The 

algorithm used for the définition of V will dépend on b and c. More precisely, the 

définition of V will dépend on which of the following cases we are in: b H- c ^ p — 1, 

b < p — 1 < b + c or b = p— 1. Note that if p = 2 then the third case is the only 

one that can arise. We will attempt to give some explanation of what is happening 
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QUESTIONS ABOUT SLOPES 9 

at this point in the algorithm, in particular the motivation behind the définitions of 

the in the next section. 

Case 1: — We set ki = k-^p-Vjp^1 and k2 = / c - ( 6 - 1 ) ^ " 1 -

2(b + c-l)pa-1. We set vx = t k l and v2 = t k 2 . Define B = pab + pa-l(c- 1) + 1, set 

e — k — B and let £ dénote x B _ 1 » where x is any Dirichlet character of conductor p 

and order p — 1 (note that p > 2). Finally set s = 1 + dPi£(l + e). 

If l(vi) ^ s — 1 then we set V\ = cr(vi, s — 1). Otherwise we set Vi = v± U (e — 

cr(^2, s — 1 — Z(vi))). Finally, we set F = V\ U «(m, e). 

Case 2: b < p - 1 < b + c. — We set fci = k - ((6 4- l ) p a _ 1 ( P ~ 1)) a n d k2 = 

k - p a _ 1 ( p - 1). We set vx = t k l and v2 = t k 2 . We define B = (b+ l ) p a - 1 ( P - 1) + 1 

and set e = k — B. Finally, set s = H - d p ( l + e ) , let s2 = [(s — 1)/2J and let e2 = [e/2\. 

If Z(vi) ^ s - 1 then we set Vi = a(^i, s - 1). If s - 1 < 2Z(vi) < 2(s - 1) then 

we set Vi = vi U (e — cr(^i,s — 1 — Z(i>i))). If however 2Z(i?i) < s — 1 then define 

tu = cr(t?2, Z(i>i) + 1, s 2 ) , and our définition of V\ dépends on the parity of s. If s is 

even then we set V\ = v\ U w U [e2] U (e — 1 — w) U (e — and if 5 is odd then we set 

V\ = vi U w U (e — 1 — w) U (e — vi) . Note here that [e2] dénotes the séquence with 

one élément, e 2 . 

Finally, if e = 1 then we define V = Vi U K(m — 1,1) and otherwise we set V = 

Vi U ^(ra, e). 

Case 6 = p — 1. — This is the only case that occurs when p = 2. It is similar to 

case 2 but w is slightly modified. We set ki = k — pa(p — 1) and fc2 = & — pa~1{p — 1). 

We set vi = t k l and i?2 = t k 2 . We set B = pa(p — 1) + 1 and e = k — B. Next, set 

s = 1 + d p ( l + e), set s 2 = [(s - 1)/2J and set e 2 = [e/2\. 

Again, if l(vi) ^ s — 1 then we set Vi = s — 1), and if 5 — 1 < 2l{v\) < 2(s — 1) 

then we set V\ = v\ U (e — a(vi,s — 1 — l(v\))). If however 2l(v\) < s — 1 then 

define wo = a(v2,l(vi) + l , s 2 ) and set w = Min(wo -f 1, K(1(WO),e2)) (recall that 

this minimum is taken pointwise). Now we proceed as in case 2. If s is even then 

we set V\ = v\ U w U [e2] U (e — 1 — w) U (e — vi), and if 5 is odd then we set 

V\ = V\ U u> U (e — 1 — w) U (e — vi). 

Finally, if e = 1 then we set F = Vi U ft(ra — 1,1) and otherwise we set V = 

V\ U /ç(m, e). 

We are finally ready to define t k . If l(V) ^ d(k) then we simply let tk be a(V, 

Otherwise, we set k$ = 2B — k, v% = t k 3 , and define tk = o~(V U (e + ^3),d(k)). 

This gives us an infinité séquence of séquences t 2, £ 4 , The définition of sk is 

now simple: sk = tk if k > 2, and s2 = ft(d(2),0). Having now defined sk we remind 

the reader that the conjecture is that sk should be the slopes of Tp on modular forms 

of level N. 

Note that although the définition of sk is messy, it is elementary to implement 

on a computer, and in particular it is much easier to compute sk than to compute 
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actual slopes of modular forms. For example when p = 2 it takes under a second to 

compute 5 1 , 0 0 0 , 0 0 0 (note that one does not need to compute sk for ail k < 1,000,000 

to compute s 1 , 0 0 0 , 0 0 0 ; indeed one only needs to compute 49 other sk) but Computing 

the characteristic polynomial of a matrix acting on weight 1,000,000 modular forms 

would be beyond modem computers. 

We remark finally that the fact that s2 differs from t2 indicates that perhaps one 

should work with slopes of Up at level Np rather than Tp at level N. 

3. Remarks on the conjecture 

Although the conjecture made above has some interesting conséquences (see the 

next section) and r aises some related interesting questions, the author feels that the 

précise form of the conjecture itself is deeply unsatisfactory. The conjecture is basically 

saying that there is a very précise and unproven structure amongst slopes, but it seems 

to us that when this structure is discovered and proved, it will probably not prove the 

conjecture as it stands—it is much more likely to explain how the conjecture should 

have been formulâted. F. Calegari and the author in fact have a much more readable 

form of the conjecture in the spécial case p = 2 and N = 1, and have proved several 

cases of it (see [3]). 

There was a lot of motivation behind the recipe in the conjecture. The recipe 

was formulated by firstly assuming that the Gouvêa-Mazur conjectures were in fact 

much too weak, and seeing what kind of conséquences this assumption had. We take 

the time here to explain a little about the motivation behind the détails that we 

understand. 

Let us consider, for example, the définition of V\ in Case 1. What is going on is that 

Vi should in fact be the vector of C/p-slopes on Si+e(To(N) nTi(p);e). The number e 

is chosen so that e + 1 is congruent to k modulo pa~l. The power of the Teichmùller 

character chosen is to ensure that the weight-characters x i—• xk and x •—> x1+ee(x) 

are in the same component of weight space. Hence one should expect small slopes in 

5 i+ e (Fo( iV)nr i (p) ; e) and Sk(To(Np)) to be close, and we are predicting that many of 

them coincide. The wp operator will send a form of slope s in S i+ e ( ro ( iV)n r i (p ) ; £ _ 1 ) 

to a form of slope e — s in Si+ c ( ro( iV) D Ti(p)'1e). So to explain the higher slopes in 

Vi we should look at small slopes in Si+e(To(N) D Ti(p); £ - 1 ) . The weight-character 

corresponding to thèse forms is close to x \-+ xr if r is an integer which is congruent 

to k + 2 — 2B modulo (p — 1) and to 1 + e modulo a high power of p. The integer k2 

has this property, because B is congruent to b + c modulo p—1. This then completely 

explains the motivation behind the définition of V\ in case 1. 

As another example, we explain the motivation for the final e + vs. Let us assume 

that we are in case 3. If / is an eigenform of weight ks and slope a then the Hodge-

Tate weights of the associated Galois représentation are 0 and k% — 1. Tate twisting 

this représentation e times gives a Galois représentation with Hodge-Tate weights 
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e = k — 1 — pa(p— 1) and ks — 1 + e = pa(p — 1). Hence p-adically thèse Hodge-Tate 

weights are close to k — 1 and 0 respectively, and the conjecture is predicting that 

there is a modular Galois représentation which does have Hodge-Tate weights 0 and 

k — 1 and which is highly congruent to this Tate twist. The associated modular form 

will have slope e + a and will presumably be highly congruent to the p-adic modular 

form 9e f of weight ks -h 2e = k. 

It is a pleasant exercise, if one really wants to understand the nuts and bolts of the 

conjecture, to try and explain ail the combinatorics involved in this way. However 

there is one step that the author cannot explain in this conceptual manner, and that 

is the construction of w in the middle of case 3. The fact that one sometimes has 

to add precisely 1 to an entry of wo seems to say geometrically that the eigencurve 

looks less "flat" near a p-newform, but is varying in a very précise way. What seems 

to be happening is that families of overconvergent eigenforms that do not contain 

any classical p-newforms seem to be a lot flatter in gênerai than families containing 

newforms. Here we use the word flat in a non-technical sensé, to mean that the slope 

tends to vary a lot less as one moves through the family. 

4. Conséquences of the conjecture and related questions 

In this last section we raise some conséquences and probable conséquences of the 
conjecture, and the thoughts behind it. We start by emphasizing that we strongly 
believe that ro(iV)-regularity is a red herring, and that there should be a recipe which 
gives either the valuations of the eigenvalues of Tp at level N, or the slopes of Up at 
level Np, in ail cases. This recipe should take as input the slopes at weight k < kp, or 
perhaps the slopes at weight k ^ However, if p is not To (iV)-regular the situation 
is more complicated. As an example of why it is more complicated we présent the 
first conséquence of our conjecture: 

Conséquence 4.1. — If p is To(N)-regular, and Conjecture 2.1 is true, then for any 

k ^ 2 the eigenvalues ofTp on Sk{To{N)) are ail non-zero, and the valuation of any 

such eigenvalue is an integer. 

Wan has asked whether in the gênerai case the denominators of the valuations are 

bounded by a constant depending on N and p, but independent of k. One may ask a 

stronger question (recall that fc2 = 4 and kp = for p > 2, and also that p is prime 

to N): 

Question 4.2. — Let M be the lowest common multiple of the denominators of the 

slopes of Up on forms of level Np and weight k, with 2 ^ k ^ kp. Does the denomi-

nator of any slope at level Np at any weight divide M ? 

Related to thèse questions are questions about fields of définitions of modular forms. 

Let fk dénote the characteristic polynomial of T 2 acting on the space Sfc(SL2(Z)). 
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Maeda has conjectured that this polynomial is always irreducible over Q, and various 

authors have checked both this statement and the stronger statement that the Galois 

group of its splitting field is the mil symmetrie group. For example, the author 

checked this for ail k ^ 2048. On the other hand, if one looks at the factorization 

of fk over Q2 for small values of fc, one cannot help but notice that the irreducible 

factors are always linear or quadratic. This is related to the fact that our conjectures 

are fréquently forcing slopes to be spread out, making it more difficult for them to 

repeat. We remark that the corresponding extensions of Q2 are sometimes ramified, 

even though we are conjecturing that the valuations are always intégral. This r aises 

the spécifie question 

Question 4.3. — Let f be a normalised eigenform of level 1. Does the extension 0/Q2 
generated by the coefficients of f always have degree at most 2 over Q2 ? 

More gênerally, we have 

Question 4.4. — Let N be a positive integer, and let p be a prime not dividing N. Is 

there a bound B = B(N,p) such that if f is any normalised eigenform of level N, then 

the coefficients of f generate an extension of Qp of degree at most B ? Equivalently, 

is there a subfield F Ç Qp, finite over Qp, and depending only on N andp, such that 

any normalised eigenform f G 5fc(Fo(iV); Qp) has q-expansion in F[[q]]? 

One might even consider the case where p divides N but we have not done any 

computations at ail in this case. 

A remark related to thèse questions: it is a récent theorem of Kilford (see [13]) that 

if / is a normalised eigenform of level Ti(4) and any odd weight, the coefficients of / 

necessarily lie in Q2. This resuit could have been noticed over 50 years ago, and the 

author finds it interesting that it was proved before it was conjectured. This might 

reflect on the current ease with which one can compute spaces of forms, thanks to 

Stein. Kilford's proof relies strongly on Coleman's theory of overconvergent modular 

forms, and explicit computations of matrices related to the U2 operator. Note added 

in proof: thèse results have now been generalised to level T i ( 2 n ) in [5]. 

Motivated by the Fontaine-Mazur conjecture, one can move completely away from 

the theory of modular forms. If p : Gal(Q/Q) —> GL2 (Q p ) is continuous, irreducible, 

unramified at a finite set of primes, and crystalline at p, then it has a conductor N(p), 

which is a positive integer prime to p. As before, let N be any positive integer and 

let p be a prime not dividing N. 

Question 4.5. — Is there a subfield F C Qp, finite over Qp and depending only on N 

andp, such that if p : Gal(Q/Q) —> GL2 (Q p ) is irreducible, crystalline at p, and has 

conductor N, then the trace of p(g) lies in F for ail g E Gal(Q/Q) ? 

One could relax the crystalline condition to a potentially semi-stable one, and 

let p divide N, for an even stronger question—here one has to define the p-part of 
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the conductor of such a représentation using Fontaine theory. One could even ask 

n-dimensional analogues of this question, but we shall leave this to the optimistic 

reader. 

We now move onto a rather amusing conséquence of Conjecture 2.1. The depen-

dence of the recipe in the conjecture on N is only via the dimension of various spaces 

of cusp forms of level N and Np. There are cases where thèse dimensions happen to 

coincide for différent N. For example, dim(5fc(r 0(6))) = dim(5fc(r 0(8))) for ail N, as 

can be seen from classical formulae for thèse dimensions. In thèse cases, the recipe 

might produce the same results for différent N. For example, p = 5 is both r 0 (6)-

regular and ro(8)-regular, and as a conséquence one gets the following rather strange 

resuit: 

Conséquence 4.6. — / / Conjecture 2.1 is true, then the 5-adic valuations of the eigen­

values of T$ on 5fc(ro(6)) coincide, with multiplicities, with the b-adic valuations of 

T 5 on 5fc(ro(8)). Similarly the slopes ofU^ on Sfc(ro(30)) coincide with the slopes of 

U5 <mS*(r0(40)). 

The author has checked the above conséquence in MAGMA for k ^ 60. The reader 
who knows about Coleman's results and the overconvergent theory will realise that 
as another conséquence of the conjecture, the overconvergent (finite) slopes of U5 at 
tame levels 6 and 8 must coincide for any weight-character in the closure of Z. This 
resuit is surely not explained by a morphism between the two eigencurves, and the 
author has no idea of a more conceptual explanation of this phenomenon. Perhaps 
it is just a numerical coïncidence. Even more unnerving is that it is very easy to 
find many more examples where coïncidences at small weight imply equalities at ail 
weights. The author does not know, unfortunately, of an example where the set of 
slopes coming from two levels are the same at ail small weights but where p is not 
regular (regularity in the sensé of this paper). 

We next raise some combinatorial problems, which can presumably be attacked 
using only elementary techniques, and are almost certainly accessible. 

Question 4.7. — Is the conjecture well-defined, in the sensé that every time a séquence 

is implicitly assumed to have at least a given length, it does have this length? 

Question 4.8. — The séquences vk are by définition increasing. Are the séquences sk 

produced by the conjecture always increasing? 

One baulks at the combinatorics behind thèse questions, although they are surely 
both accessible. We believe that the answers are affirmative, in both cases, but have 
only checked the détails in the case p = 2 and N = 1. 

Question 4.9. — Does Conjecture 2.1 imply that if p is F0(N)-regular then the valua­

tion of any eigenvalue ofTp on Sk{To(N)) is at most ? 
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This phenomenon, that slopes tend to be very small, was explicitly noted by Gou-

vêa. The author again convinced himself that the conjecture did indeed imply that 

ail slopes were at most in the case p — 2 and N = 1. 

Gouvêa also considered the following: if one divides the séquence of slopes of Up 

at weight k by a factor of k — 1, one gets a séquence of rationals in the closed interval 

[0,1], and this séquence can be thought of as giving a (finite) probability measure on 

this closed interval. 

Question 4.10. — Does Conjecture 2.1 imply that, as k increases, the measures tend 

to a limit, and if so then what is this limit? 

Numerical experiments with p = 2 and N = 1 suggest to the author that in this 
case measures were tending to a limit, which gave the point \ a mass of | , and which 
distributed the remaining mass of | uniformly on [0, | ] U [ | ,1 ] . This points to a 
natural conjecture in the gênerai case. 

There remains the very natural 

Question 4.11. — Does Conjecture 2.1 imply the Gouvea-Mazur conjectures in the 

TQ(N)-regular case? 

Again, the author convinced himself that this was the case when p = 2 and N = 1. 

We will not trouble the reader with the excruciating détails. 
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