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Abstract, — In these lecture notes, we will prove vertical control theorems for ordi­
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1. Introduction 

Let p be a prime. What I would like to present in this series of lectures is the 

theory of families of p-ordinary p-adic (cohomological) automorphic forms on reductive 

groups. After going through basics of the theory of p-adic automorphic forms, we 

would like to study 

(1) Vertical Control Theorem (VCT: construction of p-adic families); 

(2) p-adic L-functions (in Symplectic and Unitary cases); 

(3) Galois representations; 

(4) the Iwasawa theoretic significance of p-adic L-functions. 

1.1. Automorphic forms on classical groups. — Let G/z be an affine group 

scheme whose fiber over Zp is a classical Chevalley group; so, unitary groups are 

included (dependent on the choice of p). Take a Borel subgroup B and its torus T . 

When G is split over Q, we may embed G into GL(n)/Q. Let B be the Borel subgroup 

(we can take i t to be the group of upper triangular matrices in G ) . Let T be the group 

of diagonal matrices. We have a splitting B = T K U for the unipotent radical U 

of B . On the quotient variety G/U (which is a T-torsor over the projective flag 

variety G/£?), T acts by gilt = gtU, and hence T acts on the structure sheaf O Q / U 

by t<f>(gU) = (j)(gtU). This action gives rise to an order on X(T) = Hom(T / Q, G m ) 

so that the positive cone in X(T) is made of K € X(T) such that the tt-eigenspace 

L ( K ) on the global sections of O Q / U * s non-trivial. We then have a representation 

L ( K ; A) = LG(K', A) on L(K) given by <j)(gU) i-> 0 ( / i - 1 # [ / ) for h e G(A), as long as T is 

split over a ring A . When G = SX(2), T ^ G m , X(T) = Z by K n i f K(X) = xn, and 

L{n\ A) is the symmetric K- th tensor representation of 5L(2) , which can be realized 

on the space of homogeneous polynomials of degree n so that a G SL(2) acts on a 

polynomial P(X,Y) by P(X,Y) K + P((X,F)^"1). 

There are two ways of associating a weight to automorphic forms on G: One is to 

consider the cohomology group HD(T, L { K ; A)) of an appropriate degree d for a given 

arithmetic subgroup V C G(Q), and we call harmonic automorphic forms spanning 

HD(T, L ( K ; C)) automorphic forms of (topological) weight K. This way works well for 

any classical (or more general reductive) groups. 

When the symmetric space of G is isomorphic to a (bounded) hermitian domain 

H wi th origin 0 , like (the restriction of scalar to Q of) F-forms of Sp or SU{m,n) 

over totally real fields F , we have another way to associate a weight to holomorphic 

automorphic forms. I n this case, we have H = G(M)/Co for the stabilizer Co of 0, 

which is a maximal compact subgroup of G ( R ) . In the simplest case of S X ( 2 ) / Q = 

5 p ( 2 ) / Q , Go = S02{R) and H = H = {z e C | Im(*) > 0} wi th G ( R ) / 5 0 2 ( R ) = H 

by g »-> g{^/—T). As is well known that H is holomorphically equivalent to the open 

unit disk in C by z «-> 
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The group Co can be regarded as a group of real points wi th respect to a twisted 
complex conjugation in the complexification С of Co- In the case of S L { 2 ) / Q , 502(R) 
can be regarded as Sl in G m ( C ) by (* 3) i-> c\f^\ + d G 5 1 , and S1 is the set of fixed 
points of the twisted "complex conjugation": x \-> x~l in G m ( C ) = C x . Generalizing 
this example, we see that the compact group U(n) is the subgroup of G L n ( C ) fixed 
by the complex conjugation: x i—• lx~l. Any holomorphic representation p : С —> 
GL(V(p)) gives rise to a holomorphic complex vector bundle V = (G(R) XV)/CQ by 
the action (g,v) i—» (gu,u~1v) for и G Co- Since W is simply connected, we can split 
V = H x V as holomorphic vector bundles; so, we have a linear map Jp(g, z) :VZ —> 
Vg(z) for each given g G G(R) which identifies the fibers Vz and Vg(z) of V . Thus we 
have a function : G(R) x H —> G L ( V ) satisfying 

(1) (Cocycle Relation) Jp(gh,z) = Jp(g,h(z))Jp(h, z) for ft € G(R) ; 
(2) (Holomorphy) Jp(g,z) is holomorphic in 2. 

When G = SL(2), then G 0 = S02(M) С G = C x whose irreducible complex repre­
sentation is given by 

/ c o s ( 0 ) - s i n ( 0 ) \ / * * \ / * * \ . fc i f c f l 

UW cos(i) J = U dj ^ 4c rfj = { C l + d ) = 6 

In this case, Jp(g,z) = (cz + d) f c . This goes as follows: Split GZ,2(R) = PCo for 
P made of upper triangular matrices wi th right lower corner 1. For z = x + iy, 
define pz = (о T)• Then for g e 5 L 2 ( R ) , write gpz = p9(z)U wi th -u G Go, and we 
have p(u) — p{p~^gpz) = ( с г + d) f e by computation. Indeed, J(g,z) sends ( f , p z ) to 
(uv,Pg(z)) ~ (v,gpz) = (v,pg(z)U). 

One can view the complexification G as a real algebraic group; let Tc be a maximal 
real torus of G. To any character к of Tc, we can attach a rational representation 
J L C ( ^ ; C ) ( = pK) of G. Let V(K) — L c ( « ; C ) . For an arithmetic discrete subgroup 
Г С G(Q), a holomorphic automorphic form of (coherent) weight к is a holomorphic 
function / : H —> L c ( ^ ; C ) satisfying /(7(2;)) = JP(/y,z)f(z) for all 7 G Г (with some 
additional growth condition i f r \ W is not compact). Again the space of holomorphic 
automorphic forms is t r ivial unless the weight к is positive (with respect to a fixed 
Borel subgroup B). 

Often the complex manifold T\H is canonically algebraizable, giving rise to an 
algebraic variety (or a scheme) X r , called canonical models or Shimura varieties, 
defined over a valuation ring W in a number field wi th residual characteristic p. A t 
the same time, we can algebraize the vector bundle V(K) associated to V ( « ) . Thus 
we often have a coherent sheaf ш_к on Xr giving rise to V(K) after extending scalar 
to C. The global sections of H°(Xr,uSJA) for W-algebra A are called A-integral. 
automorphic forms of weight к. Note that, Tc is isomorphic to T , because they are 
maximal tor i in the same group G. Thus we can and wi l l identify T and Tc (with 
compatible choice of Borel subgroups В and Be = ВПС). On Xr, we may regard the 
Г-module LG(K; A ) as a locally constant sheaf associating to an open subset U С Xr 
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150 H. HIDA 

sections over U of the covering space LG{K>', A) = T\(Dx LG(K>', A)) over Xp . Here the 

quotient x LG{K',A)) is taken through the diagonal action. Thus each positive 

weight K € X(T) gives two spaces of automorphic forms: 

HD(XR,LG(K-A)), H°(Xr,u/JA) = GK(T; A). 

There is (at least conjecturally) a correspondence K I—• K* such that 

H°(Xr,u
K) Hd{Xv, L G ( K * ; O ) 

by a "generalized Eichler-Shimura isomorphism" which is supposed to be equivariant 

under Hecke operators. I f such equivariance holds, we say that the two modules: the 

source and the image are equivalent as Hecke modules. In the example of SL(2)/Q, 

we have K G X(T) = X(GM) = Z and K* = K - 2 with: 

G „ ( r ; C ) H\XriLSL{2)(K - 2;C)) (r C SL2(Z)) 

via / i * the cohomology class of [f(z)(X — zY)K~2dz\. This is valid i f K ^ 2. 

1.2. p -Adic interpolation of automorphic forms. — We would like to inter­

polate these two sets of spaces {H°(Xr, K and {Hd(Xr, L G ( K \ W))}« when the 

weights K vary continuously in H o m t o p _ ^ p ( T ( Z p ) , Z£ ) . On these two spaces, there is a 

natural action of Hecke operators; so, we want this interpolation to take into account 

the Hecke operators. To describe our idea of how to interpolate automorphic forms, 

we write W for the p-adic completion of W . What we would like to do in the two 

cases is: 

(1) (Universality) Construct a (big) space V which is a compact module 

over W[[T(Z P ) ] ] such that the K-eigenspace V[K] contains canonically the space 

Hd(Xr, LG(K', W)) in the topological case, resp. H°(Xr/W,cuK) in the coherent case 

as VF[[T(Z p)]]-modules. 

(2) (Hecke operators) Establish a natural action of Hecke operators on V , and 

show the inclusion in (1) is Hecke equivariant. 

(3) (VCT) Find an appropriate W][T(Z p)]]-submodule X c V of'co-finite type 

VF-dual is of finite type) such that X is stable under Hecke operators and X[K] is 

canonically isomorphic, as Hecke modules, to a well-described subspace of automor­

phic forms of weight K i f K » 0. 

The item (3) is called a vertical control theorem of the subspace X. Examples of 

the V C T are given as Theorem 3.2 for elliptic modular forms, Theorem 3.3 for p-

adic family of elliptic modular forms, Theorem 8.5 for automorphic forms on unitary 

groups, Theorem 9.1 for Hilbert modular forms and Corollary 9.3 for Hilbert modular 

Hecke algebras. A more general result on V C T can be found in [H02] and [PAF]. In 

[H02] page 37 and [ G M E ] 3.2.3, Hecke operators T are defined for a given (geometric) 

modular form / as a sum f\T(A/S) = J2a f(Aa/s) of the values of / at abelian 

schemes A A wi th a specific isogeny a : A —> A A of a given degree. This is perfectly fine 

if the degree is invertible on the base scheme 5, but otherwise i f S is of characteristic p 
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and the degree is p, one has to replace the sum by the trace from the (possibly purely 
inseparable) extension of S over which the isogeny is denned (as was originally done for 
elliptic modular forms in Katz's definition in [K3] 3.11). Thus the argument proving 
the control theorem in these works has to be modified slightly. This adjustment wi l l 
be described in the present lecture notes in 3.1.3, 7.1.6 and 8.2.2. The author is 
grateful to Eric Urban for his pointing out this error in the above cited works (except 
for [PAF]) of the author. 

We wi l l mainly deal wi th the coherent case where G admits Shimura varieties which 
are given as moduli of abelian varieties wi th PEL structure. However at some point, 
we need to use some results obtained in the topological case; so, a couple of lectures 
wi l l be devoted also to describe the situation in topological cases. I n any case, I wi l l 
often suppose for simplicity that G to be U(m, n) or its F-inner forms over a totally 
real field F , although we also give expositions for GSp(2g) from time to time. 

In the coherent case, we shall define V to be the space of formal functions on an 
formal pro-scheme, called the Igusa tower, classifying abelian schemes wi th a level p°° 
structure in addition to a PEL structure outside p. We wi l l prove the vertical control 
for the space X = Vord of nearly p-ordinary automorphic forms and prove that its 
W-dual H o m w ( V o r d , W) is W[[T(Z p)]]-projective of finite type. 

Actually, we have for any classical group a good definition of nearly p-ordinary 
cusp forms, that is, a cusp form is called nearly p-ordinary i f i t has the property that 
the Newton polygon of the Hecke polynomial at p is equal to the hypothetical Hodge 
polygon mechanically constructed out of the weight K, (of the motive attached to the 
cusp form). We can prove that the Newton polygon is always on or above the Hodge 
polygon (without recourse to hypothetical motives); so, a nearly p-ordinary form has 
minimal possible Newton polygon (see Section 4). 

One would expect that Homw(Vord, W) should be W[[T(Z p)]]-projective of finite 
rank i f G is associated to a bounded hermitian domain. Contrary to this, when we 
deal wi th the group like GL(n) (n > 2), the module H o m w ( F o r d , W) is of finite type 
over W [ [ T ( Z P ) ] ] , but i t is known to be of torsion. Natural questions are: 

(Q l ) When can one expect that the space Vord is W[[T(Zp)]]-coprojective (that is, its 
W-dual is projective)? What is the (expected) minimal value of n at which the 
vertical control holds? What happens if one specializes to a very low weight? 
IfVord is co-torsion, what is the Krull dimension of the W[[T(Zp)]]-module 
H o m w ( V o r d , W) ? What is its characteristic power series 2 / c o d i m ( y o r d ) * = 1 
in Spec(W[[T(Zp)}})? 

I t turns out that all these questions are quite arithmetic, as we wi l l see i t in the course. 
In the elliptic modular case, the lowest weight where V C T holds is 2. However, as 
Buzzard and Taylor studied, there is a good criterion via Galois representations to 
guarantee the l imit at weight 1 to be a true modular form (not just p-adic), which 
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played an important role in their proof of the A r t i n conjecture for some icosahedral 

cases. 

In the simplest example of S X ( 2 ) / Q , we take an arbitrary p-adically complete W-

algebra A = l im^ A/pnA. We consider a test object (E, 4>p, </>N)/A made of an elliptic 

curve E, a level p°°-structure (j)p : fipoo <̂-> E (that is a closed immersion of ind-group 

schemes) and a level iV-structure 0;v, like a point of order N (here, an inclusion of 

Z/NZ into the set of Af-torsion elements E[N] in E), all these data being defined 

over A. A p-adic modular form / is a functorial rule associating an element of A to 

a test object (E, 4>p,4>N)/A- Thus we have f(E, (J)P^<PN) € A, and for each p-adically 

continuous VF-algebra homomorphism A B , 

/((£, <\>p, 4>N)/A,P XB)= p(f(E, 4>p, <I>N)). 

A p-ordinary modular form which is an eigenform of T(p) has by definition a p-adic 

unit eigenvalue for T(p). In general, p-ordinary modular forms are linear combinations 

of such p-ordinary eigenforms (we wi l l give a more conceptual definition in the text). 

The evaluation of / at the Tate curve Tate(g)/z((g)) at the cusp infinity yields the 

^-expansion: 

/(<?) =7(Tate(«) o o,$r i,0Sn = 

We can deduce from the irreducibility of the Igusa tower that V is isomorphic to the 

p-adic completion of 

W[[q}} n ( 
oo 

£ £ G * ( r W ) ) ) . 
:=0 a 

Here we have embedded Gk(Ti(N)) into C[[q]] by the Fourier expansion, writ ing 

q = exp(27rzz). 

In the topological case of SL(2), V is given by i ? 1 ( r / , C ( f / / f 7 ( Z p ) , W ) ) , where 

C(f'/U(Zp), W) is the space of continuous functions on f'/U(Zp), T' = Yi(N)nY0{p) 

and f ' is the closure of T0(p) in SL2{ZP). Then L(/c; W) C{?f/U(Zp); W) induces 

a map H1^', £,(«; W)) into V. 

For any W[[T(Z p)]]-submodule X C V satisfying (VCT), the eigenvalue A(t) of 

a Hecke operator t on X is algebraic over py[[T(Z p ) ] ] . In fact, the Hecke algebra 

h in End\Y[[T(zp)]](X) generated by (appropriate) Hecke operators is an algebra over 

1/F[[T(ZP)]] of finite (generic) rank (or even of torsion). Take an irreducible component 

Spec(I) of Spec(h). The operator t projected to I , written as X(t) (that is, A : 

h -» I is the projection), can be considered to be an algebraic function (that is, 

global section of the structure sheaf) on Spec(I). In particular, i f P G Spec(I)(W) = 

Homw-ai g (I , W) wi th P|w ,[[T(Zp)]] = ^ for K > 0, X(t)(P) = P(X(t)) is the eigenvalue 

of t occurring in either H°(Xr,wK) or Hd(Xr, L(K; W)). In the simplest case of SX(2), 

we have T(ZP) = Z * = uz* x A for a finite group A . Thus W[[T(Z P ) ] ] = A [A] for 
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A = W[[UZP}} ^ W[[X]] (a formal power series ring) viaus (1+X)S = £ ~ = 0 ( ^ ) X n . 

Note that 

«((1 + X)s) = K(Us) = uKS = (1 + X)a\x=u«-i. 

The algebra homomorphism K : A —• W is the "evaluation" at X = uK — 1! Thus 

if I = A, A(T(n))(«) = A(T(n))(w K — 1) (viewing A(T(n)) as a power series) gives 

a p-adic analytic interpolation of Hecke eigenvalues. In general, we get the p-adic 

interpolation of Hecke operators parameterized by Spec (I ) . 

1.3. p -Adic Automorphic L-function. — Since the specialization A (T(n))(u K — l) 

is the Hecke eigenvalue occurring in the space of cusp forms, i t can be considered as a 

complex number uniquely (by fixing embeddings ioo : Q —• C and ip : Q ^ Qp). Thus 

we can think of automorphic L-functions L ( S , \ ( K ) ) made out of such eigenvalues; for 

example, the modular Hecke L-function of GL(2): 

oo 

L ( S , X ( K ) ) = £ i ( A ( T ( n ) ) ( u K - l))n-s, 
n=l 

writing i = ioo o i~x. Supposing that L ( m , A(«)) for a fixed integer m has rationality 

(up to a transcendental factor or a period a natural question we then ask is: 

(Q2) /5 it possible to interpolate p-adically the value L^^*^ ? Is it possible to find 

L \ G I such that L \ ( K ) = L(m, A(/s)) for K, ^> 0? 

This problem of course involves a subtle question of how to normalize the factor 

{ Q ( K ) } K in the aggregate (varying K G X(T)) to get an "optimal" integrality; so, 

i t is more involved than proving rationality (see Section 9 for some examples and 

[H96] for a general theory). Once we are successful in constructing canonical p-adic 

L-functions, we could ask more specifically 

(Q3) When is the p-adic L-function analytic? Where could it have singularity? If 

there is a singularity, what is the residue? 

See [H96] for some examples and conjectural discussions on these questions. 

1.4. Galois Representations. — Once an irreducible component I of the Hecke 

algebra is given, one would expect to have a Galois representation p\ : Gal (Q/F) —> 

G L n ( I ) such that the Hecke polynomial at £ =fi p gives rise to the characteristic 

polynomial of the Frobenius element. We could partially and conjecturally answer the 

question (Q3) that the associated p-adic L-function has singularity at P i f the Galois 

representation specialized at P, that is, p\ mod P contains the t r ivial representation 

(a p-adic A r t i n conjecture, See [H96]). We then further ask 

(Q4) For a given representation p\ as above, is their any good way to associate 

a Selmer group Sel(pA) so that the characteristic element in I of the Selmer 

group should be equal to the p-adic L-function or its numerator? 
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See [MFG] Chapter 5 for a general description of Selmer groups. I f this is affirmative, 
then this would describe the zero-set of the p-adic L-function. Related to this, V C T 
is often useful to identify the nearly p-ordinary Hecke algebra wi th the nearly p-
ordinary universal deformation ring i f at one weight the deformation ring wi th the 
given weight is identified wi th the Hecke algebra of the specific weight (see for example, 
[HM] Section 4.3). The argument proving VCT often yields another type of control 
theorem: so-called the horizontal control theorem (HCT), giving a precise description 
of the behavior of a Hecke algebra if one add primes outside p to the level of the Hecke 
algebra. This horizontal control (HCT) is used in the case of GL(2) to construct the 
Taylor-Wiles systems, which in turn proves the identification of the Hecke algebra 
of a specific weight wi th the deformation ring. See [MFG] Chapter 3 and [ G M E ] 
Chapter 3 for these topics. 

1.5. P l a n of the lectures. — I wi l l t ry to answer some of these questions in the 
lecture in some specific cases in a concrete way and in some other cases conjecturally. 
Here is a plan: 

(1) In a first few lectures in Apri l , 2000 (Sections 1-3), I wi l l recall the theory in 
the elliptic modular case wi th some proofs as a prototype of the theory and basic 
properties of nearly ordinary automorphic forms on general groups. 

(2) Lectures in May, 2000 (Sections 4-8) wi l l be devoted to prove the V C T for 
unitary groups. I wi l l describe the proof in the cocompact case in details (and touch 
briefly the non-cocompact case taking Hilbert modular varieties as an example: Sec­
tion 9). 

(3) Lectures in June, 2000 would first discuss applications of V C T and the q-
expansion principle in the Hilbert and the elliptic modular cases (Section 9), and in 
Section 10, we shall give a sketch of a proof of the (/-expansion principle of p-adic 
automorphic forms for split symplectic groups and quasi-split unitary groups (acting 
on a tube domain). 

Some of the papers and preprints of mine related to these subjects can be downloaded 
from my web site: www.math.ucla.edu/~hida. 

Although we have tried to give details of the proofs of the material described above 
in these notes, many results have to be taken for granted here in these notes. The 
book [PAF] covers similar materials wi th more details and contains a proof (different 
from the one presented in Section 10 of these notes) of the irreducibility of the Igusa 
tower over the mod p canonical models (in a more general setting). 

The author wishes to thank the audiences of the lectures for their interest and 
patience and the organizers of the automorphic semester at l ' institut Henri Poincaré 
for their invitation. 
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2. El l ipt ic Curves 

In this lecture, I t ry to sketch a proof of the VCT in the elliptic modular case. 

There are several different approaches: 

(1) Through the moduli theory of elliptic curves; this is what we do ([H86a] and 

[ G M E ] Chapter 3). 

(2) Through studying of topological cohomology groups and jacobians of modular 

curves. This way has an advantage of producing at the same time Galois represen­

tations into GI/2(I) , where I is a big ring (which is finite and often flat over 

[H86b]). 

(3) Through the theory of p-adic Eisenstein measures and p-adic Rankin convolu­

tion theory. This method was found by A. Wiles and explained in the elliptic modular 

case in my book: [ L F E ] Chapter 7. 

( 4 ) As an application of the identification of Hecke algebras and universal Galois 

deformation rings at many different weights (done by Wiles and Taylor). This method 

is exposed in my book [MFG] . 

We follow the first method. A shorter proof than the original in 1986 can be found 

in my book [PAF] Chapter 3 and also in my Tata lecture notes: Control Theorems 

and Applications, which can be downloaded from my web site. Also Chapter 3 of the 

book [ G M E ] contains a more down-to-earth description of the proof. 

2 . 1 . Basics of El l ipt ic Curves . — We shall give a brief description of the theory 

of the moduli of elliptic curves. Chapter 2 of the book [ G M E ] contains a thorough 

exposition of the theory. 

2.1.1. Definition of Elliptic Curves. — For a given scheme S, a proper smooth curve 

/ : E —> S is called an elliptic curve i f i t satisfies the following conditions: 

( E l ) E has a section 0 = 0E e E(S) (thus / o 0 = l s ) ; 

(E2) dims E = 1, and E is geometrically connected (this means that each geomet­

ric fiber of E over a geometric point is connected and of dimension 1); 

(E3) f & E / s (equivalently R } f * O E by Grothendieck-Serre duality) is locally free 

of rank 1 (genus = 1 ) . 

There is no harm to assume that S is connected, as we do from now on. For any S-

scheme cj) :T —> S, the fiber product E T = E x $ T is again an elliptic curve wi th the 

zero section Or = 0^ x I T . For two elliptic curves E and E' over S, an 5-morphism 

h : E —> E' is always supposed to take 0E to Q E -

2.1.2. Cartier Divisors. — A closed subscheme D C E is called an effective Cartier 

divisor (relative to S) on E i f f*Oo = f*(C>E/I(D)) given by an invertible sheaf of 

ideals 1(D) is 5-flat (so locally free). We define C{D) = 1(D)-1 and put deg(D) = 

deg(£(D)) = ranks f*(Oo)- In particular, the 0 section gives rise to a divisor [0] of 

degree 1 given by O[0] ^ <DS- We then think of J(ra[0]) = I ( [ 0 ] ) m and C(m[0]) = 
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7(m [0] ) _ 1 for m G Z. The line bundle £(ra[0]) can be regarded as the sheaf of 

meromorphic functions on E wi th sole singularity at 0 having pole of order equal to 

or less than m at 0. 

Write Divr (E/S) for the set of all degree r effective divisors relative to S. The 

association T i—• D i v r ( E T / T ) is a contravariant functor by pull-back of divisors 

D/E D/ET = D xE E T . 

I f S == Spec(fc) for an algebraically closed field A;-rational effective divisors 

can be identified wi th positive linear combinations of points on E(k). We have 

deg(J^ p rap[P]) = YlpMP' We can thus consider the group Div(E/k) of all for­

mal linear combinations (including negative coefficients) of points on E . Then deg : 

D i v ( E / k ) —* Z is a well defined homomorphism given by the above formula. 

2.1.3. Picard Schemes. — For any scheme X , we define P ic (X) as the set of all 

isomorphism classes of invertible sheaves on X. The association X i-» Pic(X) is a 

contravariant functor by the pull-back of invertible sheaves, and Pic(X) is a group by 

tensor product. We define, for each 5-scheme </> : T —> S 

PicE/s(T)=Fic(ET)/<f>* Pic(T). 

We can extend the degree map to deg : Pic#/s(T) —> Z 7 1 " 0 ^ for the set TTO(T) of 

connected components. Indeed, for any algebraically closed field k and a geometric 

point s : Spec(fc) ^ T , the fiber E(s) = E Xg^os s = E T XT s is an elliptic curve over 

the field k and deg(£) = deg(£(s)) for the pull back C(s) at s, which is well defined. 

By this fact, we can define 

P i c ^ / 5 ( T ) = { £ G Pic£ys(T) | deg(£) = r for all connected component of T } . 

Here is Abel's theorem (e.g. [ G M E ] 2.2.2): 

(Abel) P i c ^ / 5 ( T ) ^ E ( T ) = H o m 5 ( T , E ) by C([P]) 0 ^ ( [ O ] ) ^ 1 <—• P 

Thus an elliptic curve is a group scheme wi th the identity 0. I f 0 : C —> C is a 

non-constant S-morphism of two smooth geometrically connected curves, | 0 _ 1 ( s ) | is 

constant for geometric points s of C", that is, <\>*Oc is locally free of finite rank. We 

write this number as deg(0). Thus f\deg(<^ (j)*Oc is an invertible sheaf on C. I f 

4>: E —> E ' is an 5-morphism of elliptic curves, by our convention, <\> takes 0E to 0^/, 
and hence, at the side of the Picard scheme, i t is just C ^ / \ d e g ^ <$>*L\ so, obviously 

4> is a homomorphism of group schemes. 

2.1.4- Invariant Differentials. — By (E3), for a dense affine open subset Spec(A) of 

5 , H°(E, HE/A) = AM FOR A 1-differential u. For each point P G E(S), T P : X H X + P 

gives an automorphism on E . Since we can therefore bring any given cotangent vector 

at 0 to P isomorphically to a cotangent vector at P, each cotangent vector at 0 extends 

to a global section of Q E / S . Thus T£u = uo (cf. [ G M E ] 2.2.3). 
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2.1.5. Classification Functors. — A n important fact from functorial algebraic geom­

etry is: we can associate to each 5-scheme X, a contravariant functor X_: S-SCH ^ 

SETS such that X(T) = H o m 5 ( T , X ) . This association is fully faithful; in other 

words, writ ing CTF for the category of contravariant functors from 5-schemes to 

SETS, we have H o m 5 ( X , Y) ^ HomCTF(X, Y_) by X Y i-> 0(T) : X(T) -> Y(T) 

given by (j)(T)(T X) = <f> o / (e.g. [ G M E ] Lemma 1.4.1). This is intuitively 

clear because an algebraic variety is just a function associating to each ring R its 

i2-integral points X(R) — X(Spec(P)). I leave the verification of this to the reader 

as an exercise (the inverse is given by H O H I C T F O C H ) 3 F \-+ F(X)(lx) where 

F(X) : X(X) -+ Y(X) = H o m 5 ( X , Y)). 

Here is an example of how to use the faithfulness: Let N be a positive integer. 

Since E(T) is a group, x »-> Nx gives a functorial map N(T) : E(T) —• E(T); so, an 

endomorphism of elliptic curves N : E —• E. We define its kernel E[N] = E x E,N,OS: 

E[N] • E 

I N 

I t is clear that E[N](T) = Ker(N(T)). I t is known that degN = N2 and i f N 

is invertible over 5, E[N](k) = (Z/NZ)2 for all algebraically closed fields k w i th 
Spec(fc) S. 

We consider the following functor: 

V'TI{N){A)=[{E,P,U>)/A] 

from the category ALG of Z-algebras into S E T S , where a; is a nowhere vanishing 
invariant differential, P is a point of order exactly N, that is, m i—• mP induces an 
isomorphism Z/NZ/A ^ E of group schemes defined over A and [•] = { • } / = is the 
set of all isomorphism classes of the objects inside the brackets. Here Z/NZ as a 
group functor associates wi th T the constant group (Z/NZ)n°(T\ 

Therefore 0(Z/NZ)/S — © Z / A T Z ®S', SO, the structure sheaf of Z/NZ is free of finite 
rank N. Such a group scheme is called a locally free group scheme (of rank N). There 
is another example: Start wi th the multiplicative group G m (as a functor Gm(A) = 

Ax and as a scheme Spec(Z[£, £ - 1 ] ) , we consider the kernel //JV of N : x ^ xN as a 
functor HN (A) = { C £ A | (N = 1} and as a scheme 

fijsf = Spec(Z[t]/(tN - 1)) = Spec(Z[(Z/JVZ)]). 

Then /ijv is a locally free group scheme of rank N. I f N > 1, i t is not isomorphic to 

(Z/NZ), since for any prime p, / i p ( F p ) = {1} but (Z /pZ) (F p ) = Z/pZ for a prime p. 

We consider a version of the functor V'Vi ^ defined as follows: 

VTL(N)(A) = [(E,cf>N : E[N],UJ)/A] 
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2.1.6. Cartier Duality. — The two functors Vr1(N) and P^^N) a r e isomorphic by 

the following theory of Cartier duality: I f G is a locally free group scheme of rank N 

over S, there exists a group scheme G/s such that G(T) = H O ] I I T ( G T , G m / y ) = 

H o m T ( G T , / i A r / T ) î where €rm/s = G m x S and PN/S — UN X S over Spec(Z). We 

have G = G in an obvious manner, and Z/NZ = /IN by C ( m ) — C m f ° r C € MJV(^L) 

and m G (Z/ iVZ) (.4). 

Let E/s be an elliptic curve. The section 0 : S —> E induces a section of / * : 

P i c ( 5 ) —> Pic(E'); so, we have a splitting: 

Pic(£r) = ft Pic(T) 0 Ker(O^) and Ker(O^) = PicE/s(T), 

regarding PicE/s(T) as a set of isomorphism classes of invertible sheaves whose re­

striction to 0 is t r ivial , that is, 0*£ is isomorphic to Os-

Let P G Ker(7r) for a non-constant S'-morphism TT : E —> E ' . Then 

i r * : E ' < * PicE,,s —• PicE/s = E 

is an S-homomorphism. We are going to show that Ker(7r*) = Ker(7r) . Take C G 

Ker(7r*), and take an open covering E ' = \JiUi such that L\ui — f^1Oui- Since 

0*£ = Os, one can assume fi o 0E, = fj o O ^ for all i ^ j on Ui f l C/j. Let 

ft. = /* °TT ; we have 7r*£|vi = ft^CVi for = '7 r " 1 ( t / i ) . Let P G (Ker7r) (T) ; then on 

P^iVi) CiP-\Vj\ we have 

hi O P = fi O 7T O P = fi O 0E, = fj O 0E, = hj o P. 

This implies that hi o P's glue to give a global section h o P G T(T, 0 £ ) = G m ( T ) , 

getting a homomorphism Ker(7r*) —> Ker (7r) , which can be easily verified to be an 

isomorphism (because twice this operation yields an identity map of Ker (7r*) ) . Since 

iV* = N as we can see easily, we get E[N] — E [ N ] . Writ ing the pairing as ( , ) : 

E[N] x s E[N] —• fiN/s, we get (0(P),Q) = (P,0*(Q)); so, 0 i - > 0* is an involution 

wi th 0* o 0 = deg(0) ^ 0 (a positive involution). 

For a given additive level iV-structure <J>N Z/NZ ^ E [ N ] , by duality, we get 

TTN '• E[N] - » //jv which has a section < ^ well determined modulo C = <J>N(Z/NZ). 

Thus (E/C,</)'N : PN (E/C)[N],w') is well defined as an element of Vr1(N){^)^ 

where u / coincides wi th u) at the identity (because the projection E —> 2£/C is a local 

isomorphism; that is, an étale morphism). The inverse: V —• P ' is given by 

(E:,Q M J V — (£" = E'/lm(<l>'N),<l>N : Z / iVZ £"[W],a/ ') 

similarly. Since (E/C)/</>'N(IJLN) = E / E [ N ] = E , we have V = P = V and hence 

equivalence. 

2.2. Modul i of Ordinary El l ipt ic Curves and the Igusa Tower. — We now 

study the scheme Yi(iV) representing Vr1(N) over Z[-^]-algebras. This eventually 

leads us to the vertical control theorems in the elliptic modular cases. 
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2.2.1. Moduli of level 1 over Z [ | ] . — Hereafter, we assume unti l Section 3 (for sim­
plicity) that 6 is invertible in any algebra we consider. Let ( E , и)/A be a couple of an 
elliptic curve and a nowhere vanishing differential. We choose a parameter T at 0 so 
that 

UJ = (1 + higher terms of T)dT. 

By the Riemann-Roch theorem, dim H° ( E , C(m[0])) = m i f m > 0. We have two 
morphisms x, у : E —> P 1 such that 

(1) x has a pole of order 2 at 0 wi th the leading term T~2 in its Taylor expansion 
in T (removing constant term by translation); 

(2) у has a pole of order 3 wi th leading term — T ~ 3 . 

Out of these functions, we can create bases of H°(E, C(m[0])): 

- H°(E, £(2[0])) = A + Ax, H°(E, £(3[0])) = A + Ax + Ay. This implies that x 
has a pole of order 2 at 0 and у has order 3 at 0. They are regular outside 0; 

- Out of these functions \,x,y, we create functions wi th pole of order n at 0 as 
follows: 

n ^ 4 : 1, x, y, x2 (dim = 4) 

n < 5 : l,x,y,x2,xy (dim = 5) 

n ^ 6 : l,x,y, x2,xy, x3, y2 (dim = 6). 

Comparing the leading term of T~6, one sees that the seven sections 

l,x,y,x2,xy,x3,y2 

of H°(E, £(6[0])) have to satisfy the following relation: 

у2 + a\xy + азу = x3 + a2x2 + a 4 x + a 6 . 

We can k i l l in a unique way the terms involving xy and у by a variable change 
у \-> y + ax + b. Indeed, by the variable change у ^ y— ^x— we get the simplified 
equation: 

y2 = x3 + 6 2 x 2 + 64^ + &6-

Again a variable change: x i—> ж — 63/3 simplifies the equation to 

2/̂  — x3 -f~ с 2ж + c 3. 

Since £(3[0]) is very ample (deg(£(3[0]) = 3 > 2g + 1), finally making a variable 
change 2т/ i—> у (so now the T-expansion of у begins wi th — 2 T ~ 3 ) , we get a unique 
equation out of (E,cu) 

у2 = 4x 3 -g2(E,w)x -д3(Е,и) for g2{E,u),g3{E,uj) e A 

In other words, ^ С P2

A is given by 

P r o j ( A [ X , r , Z ] / ( Z F 2 - 4X3 + 92(E,UJ)XZ2 + g3(E,u;)Z3)). 
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I t is easy to see that this equation gives a smooth curve of genus 1 having 0 = oc = 

(0 ,1 ,0) in P 2 i f A = A { E , u)=gl- 27(g3)
2 G Ax. We recover the differential uo by 

dx/y. This shows that, writ ing R — Z [ ^ , #2, #3, ¿ 1 for variables g2 and #3, 

VTL{L){A) = H b m ^ i ^ l M ) = MM), 

where M\ = Spec(i?) for R = Z\\,g2,gs, ¿ 1 - We have the universal elliptic curve 

and the universal differential u; given by 

(E,u)/Ml = (Pvoj(R[X,Y,Z}/(ZY2 - 4X3 + g2XZ2 + g3Z
3)),j). 

For each couple (E,UJ)/A, we have a unique cp G Mi(A) = Horns (Spec (A) , Mi) 

(S = Spec(Z[|])) such that 

(E,v)/A * </?*(E,u>) = (E,u;) x M l Spec(A). 

I f we change u by \u for A G Ax = Gm(A), the parameter T w i l l be changed to 

AT and hence (x, y) is changed to (A~ 2 x , \~3y). Thus ( E , \U)/A wi l l be defined by 

( A " 3 * / ) 2 = 4 ( A " 2 * ) 3 - g2(E, \u;)(\-2x) - g2(E, XLU). 

This has to be equivalent to the original equation by the uniqueness of the Weierstrass 

equation, and we have 

gj(E1\u;) = \-2jgj(E,cu). 

Again by the uniqueness of the Weierstrass equation, we find that 

Aut((E,uj)/A) = {lE} 

as long as 6 is invertible in A. 

2.2.2. Moduli ofVTl(N)- — Consider (JE7, P,u) for a point P G E[£](A) of order £ for 

a prime £. We have a unique tp G Mi (A) such that 

ipE : {E,u)),A £ ^ * ( E , C J ) = (E,u>) x M l Spec(A). 

We thus have a commutative diagram 

E > Mi 

Spec(yl) > E > Spec(i4). 
Then P induces a unique morphism ( p P = ipE o P : Spec(A) —• (E[^] - {0})(A). This 

shows that, over Z [ i ] , 

"3*/)2 = 4(A"2*)3 - g2(E, \u;)(\-2x) - g2(E, XLU) 

Similarly, over Z [ ^ ] 

VRI(N)(A) = n I I P ) ( A ) 
E [ W ] - u m)(A) 

\ N>d\N / 
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We put Mrx(N) = E[7V] - \JN>d\N E[d]. Thus we have proven 

Theorem 2.1. — There is an affine scheme Air1(N) = Spec(i?n(iV)) defined over 
Z[g^ ] such that 

Vri(N)(A) =* PRI{N)(A) s H o m z [ ^ ] a i g ( i ? r i w , . 4 ) = Mrl{N)(A) 

for all Z[g^]-algebras A. The scheme MY^N)/ M\ is a n étale covering of degree 

(p(N) for the Euler function (p. 

The fact that the covering is étale finite follows from the same fact for E[7V] over 

Z[g^ ] since E[N](k) = (Z/NZ)2 for all algebraically closed fields k wi th characteristic 

not dividing N. Since M.\ is affine, any finite covering of M.\ is affine. 

2.2.3. Action of G m . — The group scheme G m acts on the functor VYX(N) m the 

following way: (E, <t>N,w)/A • (E, </>N, \UJ)/A f ° r A G Gm(A). This induces an action 

of G m on A4r1(N) a n d hence on Rr1(N)-

Here is a general fact on the action of G m . Let X be an A-module. Regard X as 

a functor from A-ALG to the category of A-modules A-MOD by X_{B) = X ®A B. 

I f a group scheme G/A has a functorial action: G x I I , we call X a schematic 

representation of G. I t is known {e.g. [ G M E ] 1.6.5) that i f X has a schematic action 

of G M M , then 

X = 0 X[K] 

such that X [*;](£) = {xeX\\-x = \Kx}, that is, is the eigenspace for the 

character Gm(B) -+ Bx taking z G G m ( J 3 ) = Bx to zK. 

The action of G m / ^ on A 1 r i ( N ) gives rise to a schematic action on Rr1(N) (because 
i t was defined by functorial action). Thus we can split 

Rr1(N)/A = © JkflMiNOjA), 

where on / G RK(Ti(N); A), G m acts by the character — K. 

Since / G RK(Ti(N);A) is a functorial morphism: 

Mrl{N)(B)=ri(B) y A\B) = B, 

we may regard / as a function of (E,4>N,U)/B wi th f({E,<j>N,w)/B) S B satisfying 

(GO) f((E,4>N,\u)/B) =\-Kf((E,4>N,u)/B) for A € Bx = Gm(B); 
( G l ) I f S ( S ' . ^ W s , then f{{E,4>N,w)/B) = f{{E',cj>'N,w')/B); 

(G2) I f p : B —> B ' is a morphism of A-algebras, then f((E,4>N,u)/B xB B') = 
p(f((E,4>N,Lj)/B)). 

I f a graded ring A = © 7 has a unit u of degree 1 , A = Ao ® z Z[u,u~x] and 

Spec(^4) = Spec(^4o) x G m by definition; so, Proj(^4) = Spec(*/4)/Gm = Spec(.Ao)-

I f A has a unit of degree n > 0, then Proj(*4) = Proj(^4^n)) = Spec(*40) for A{n) = 
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® j Anj. Since A 1 G R C RY^N), the graded ring RY^N) has a unit of degree 12, 
and hence, we have 

®m\MTL{N) = P r o j ( i J r i ( N ) / A ) = Spec(i?o(ri(-W); A ) ) = : Y i ( J V ) M . 

We consider the functor defined over Z[jf]-ALG given by 

£TL(N)(A) = [(E,<f>N : fjiN E[N])/A] . 

By definition, £Y1(N) — ^mXPr^N)- Since Proj(i?ri(jv)) gives the quotient by G m of 
Spec(i? r i(iv)) (see [ G M E ] Theorem 1.8.2), we conclude 

Theorem 2.2 (Shimura, Igusa). — We have an affine curve 

YX{N) = P r o j O R F l ( i V ) ) = Gm\MTl{N) 

defined over Z[^], which is locally free of finite rank over Mi — Proj(i?) = 
P X ( J ) — { o o } . For all geometric point Spec(/c) of Spec(Z[g^-]), we have Yi(N)(k) = 
[(E,</)N)/k\. The above assertion holds for any Z[-^]-algebra A in place of k if 
N ^ 4 . 

Here a "geometric point" means that k is an algebraically closed field. I t is well 
known that Ti(N)\$) classifies all elliptic curves wi th a point of order N over C for 
$) = {z eC \ lm(z) > 0 } ; so, we conclude 

Y1(N)(C) = r1(N)\Si. 

Thus Y i ( i V ) ( C ) is an open Riemann surface. 

2.2.4- Compactification. — For any Z[|]-algebra A, we put 

G(A) = A[g2,gs] = Z [ ± , <?2, <?3] ® A. 

Let G r i ( j v ) ( Z [ g ^ ] ) be the integral closure of G ( Z ) in the graded ring R R ^ N y Z ^ i y 

To see that G r i ( N ) ( Z [ g ^ ] ) is a graded ring, we write r for the non-trivial homo­
geneous projection of highest degree of r e i? i . I f r G R (K.M_±_, is 

integral over G ( Z ) , r satisfies an equation P(X) = Xn + aiXn~x -\ h an = 0 wi th 
CLJ G G ( Z ) . Then r satisfies P{X) = Xn + H i X 7 1 " 1 + • • • + an = 0, and f is integral 
over G ( Z ) . Then by induction of the degree of r, we see that G r i ( j v ) ( Z [ g ^ ] ) is graded 
(cf. [BCM] V . 1 . 8 ) . 

We put for any Z[g^]-algebra A 
oo 

GTl(N)(A) = GriiN) {n^])®A = 0 G f c (T i (A0 ;A) . 
/c=0 

We then define Xi(N)/A = Proj (G F l ( jv) (A)) . By definition, -Xi(iV) is the normal­
ization of Proj(G) - Proj(G< 1 2)) = P\J) ( J = ( 1 2 < ? 2 ) 3 / A ) for G< 1 2) = ®ZoG^k 
in Yi(N). As classically known, J - 1 has g-expansion starting wi th q, that is, 
J _ 1 G ^ Z [ [ Q ] ] (see [IAT] ( 4 . 6 . 1 ) ) . Thus the completion of the local ring of P ^ J ) at 
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the cusp co is isomorphic to Z [ | ] [[#]]. Moreover we have the Tate curve (e.g. [ G M E ] 

2.5): 

Tate(g) = Proj(Z[[<z]][|][X, Y, Z]/{ZY2 - AX3 + g2(q)XZ2 + g3(q)Z3)), 

which extends the universal curve over P 1 (J) — { 0 0 } to P 1 (J) locally at the cusp 0 0 . 
Since T&te(q)(A[[q}]) D (A[[q]]x)/qz (see [GME] Theorem 2.5.1 (2)), we may think 

Tate(g) to be a "quotient" &m/z[[q]]/qZ °f C m ! so, i t has a canonical level structure 

</>ivn : ^ G m - » Tate(g). The Tate couple (Tate(g), (j)c^n)/z[[q)] is a test object 

over Z[ [g ] ] [g - 1 ] ; so, by the universality of Yi(iV), we have a morphism 

l o o : Spec(Z[i][[<?]][^r1]) —+Y!{N). 

Since we may regard the Tate curve as a universal formal deformation of a stable curve 

of genus 1 (with the level structure ^ n ) centered at the Z[-^]-point represented by 

an ideal (q) of Z[-^][[<?]] ( [GME] 2.5.2-3), the morphism ¿00 is an infinitesimal isomor­

phism centered at the cusp 0 0 (by the universality of the Y\ (N) and the universality 

of the Tate curve). Since X\(N) is the normalization of P*( J) in Yi(iV), we conclude 

that the formal completion along the cusp 0 0 on X\ (N) is canonically identified wi th 

A[[<i\] b y ¿00. Replacing the level structure ^ n by < ^ n oa for a G SL2(Z/NZ), basi­

cally by the same argument, the local ring at the cusp a(oo) of Xi(N)/A is given by 

^ [ / ^ [ [ g 1 ^ ] ] for a suitable divisor d\N. We need to extend scalar to A[/x^][ [^ 1 / / d ] ] be­

cause the Tate curve (Tate(g), (jf^noa) is only defined over A[ / /d ] [ [g 1 / / d ] ] for a suitable 

divisor d\N dependent on the choice of a. This point is a bit technical, and we refer 

the reader to a more detailed account, which can be found in [AME] Chapter 10 and 

[ G M E ] 3.1.1. Thus X i ( i V ) is smooth at the cusps, and moreover / G Gk{Ti(N);A) 

is a function of (E,<t>N,w) satisfying (GO-2) and 

(G3) /(Tate(g),0A,-,u>) G A[Cjv][ fe 1 / / i V ] ] for any choice of 4>N and UJ. 

Since r i ( iV) \ ( i3 U P X (Q) ) is a smooth compact Riemann surface and is the nor­

malization of P X ( J ) in Yi(7V)(C), we conclude 

X 1 ( C ) - r 1 ( 7 V ) \ ( ^ U P 1 ( Q ) ) . 

The space Gk(V\(N)] C) is the classical space of modular forms on T\(N) of weight k. 

Since Tate(g) is the "quotient" (&m/'L{[q\\/ Q1 •> i t has a canonical differential u c a n induced 

by Y identifying G m = Spec(Z[£, t - 1 ] ) . In particular, 

00 

f(q) = /(Tate(g), < ^ n , w c a n ) = ^ a(n; f)qn wi th q = exp(2niz) 
n=0 

coincides wi th the Fourier expansion of / at the infinity i f / G Gk(Ti(N); C). 

2.2.5. Hasse Invariant. — Let A be a ring of characteristic p and ( E , u) be an elliptic 

curve over S = Spec(A). On each afflne open subset U = Spec(r({7, (9E)) in E , the 

Frobenius endomorphism x 1—> xp induces a morphism F a b s : U —> U. These glue each 

other to the absolute Frobenius endomorphism F a b s : E / A —> E / A - Note here that 
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F abs acts non-trivially on the coefficient ring A. We can define the relative Frobenius 

map: E —> E ^ = E X s , F & H S S by F a b s X 5 / for the structure morphism f : E —> S. 

This relative Frobenius is the classical map taking homogeneous coordinates of E to 

their p-powers. 

Let TE/S t> e the relative tangent bundle; so, its global section H°(E,TE/S) 1S 

the A-dual of H°(E,£IE/S), and H°(E,TE/S) is spanned by a dual base 77 = T](UJ). 
One can identify H°(E,TE/s) wi th the module of (^-derivations Deros(®E,o,Os) 

(cf. [ G M E ] 1 .5 .1) . For each derivation D of OE,O, by the Leibnitz formula, we have 

Dp(xy) (P^Dp-jxDjy = xDpy + yDpx. 

j — u 

Thus Dp is again a derivation. The association: D 1 - » Dp induces an F ab s-linear 

endomorphism F * of TE/S. Then we define H(E,u) G A by F*rj = J J (F , 1^)77. Since 

TJ(XUJ) = A _ 1 7 / ( 6 t ; ) , we see 

H(E, Xou)rj(Xuj) = F*T?(AU;) .= F*(X~1ri(u)) 

= X~pF*ri{u;) = X~PH(E,u;)ri(u;) = X~p H(E,UJ)XT)(XUJ) = X1~PH{E,uj)r1{Xuj). 

Thus we get 

H(E, XUJ) = X1~PH(E,CJ). 

Then H is a modular form of weight p—1 defined over F p : 

f T ( S , o ; ) € G p - i ( r i ( l ) , F p ) . 

We compute iJ(Foc, ^ ) . The dual of is given by D = wj^. The action of F 

keeps D intact, because D(w) = w (so Dp(w) = w). On the tangent space, F acts as 

identity, and hence H(Eoo,u) = 1. 

A n important fact is: 

H(E,UJ) = 0 E is super singular. 

This is because: 

(1) I f E/f is ordinary, then E\p]=fj,px (Z/pZ) over F p ; 

(2) fjbp = Spec(¥p[t]/(tp - 1 ) ) shares the tangent space wi th G m , because they are 

both of dimension 1 infinitesimally; 

( 3 ) F2 = p up to units in the super singular case. 

The zero locus of a section of a line bundle is a divisor; hence, on the moduli space, 

Xi(N) for p \ N, the points in X0(N)(¥P) corresponding to super-singular elliptic 

curves are finitely many. 

2.2.6. Igusa Curves. — Let W = Zp and Wm = W/pmW. Fix N wi th p \ N. We 

have a lift of Hasse invariant in G? p _ i ( r i ( l ) ;Z p ) , which is the Eisenstein series E 

normalized so that a(0,E) = 1. By Von Staut theorem, the ^-expansion E(q) of E 

is congruent to 1 modulo p; so, E modp coincides wi th H. Let ( E , </>N)/M D e the 
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genus 1 semi-stable curve (completed by appropriate Tate curves at the cusps) over 

M = Xx{N)jw. Let Mm = X i ( J V ) / W r m = Xi(N) x w Wm. Define S m C M m by the 

open subscheme of Mm on which E is invertible. The scheme S m does not depends 

on the choice of the lift E , since E = E ' = H modp guarantees M m [ - ^ ] = M m [ - ^ - ] 

for any other lift E ' as long as p is nilpotent in the base ring. We write Soo for the 

formal completion l im S m of S along S i . 

Since we have defined X\(N) by Proj(Gr1(jv))» the invertible sheaf uk {k > 0) 

associated to the k-th graded piece is ample. To see for which k, uft becomes very 

ample, we recall that an invertible sheaf of degree ^2g + l over a curve of genus g is 

very ample by Riemann-Roch theorem (see [ G M E ] Proposition 2.1.4). Computing the 

genus o£X\(N) {e.g. [ G M E ] Theorem 3.1.2), the invertible sheaf <d*jA corresponding 

to Gk{Ti{N); A ) is very ample i f k ^ 2 and N ^ 4 (or k > 2). Thus S m is affine, and 

Sm = Spec(Vr

m,o) for a W^-flat algebra Vm$. We consider the functors 

S'°:\A) = [{E,P,4>N)/A] and £™A{A) = [(E,fipa — E\p<*},<f>N)/A] , 

where P is a point of order pa. Then we see that 

£OTD{A) 2* £'OTD{A) = (E\pa]ét - E [ p a _ 1 ] é t ) / 5 (A] 

for all Wm-algebras A . We write TM^/SRN = ( E [ p ° f * - E ^ " 1 ] ^ ) ^ , which is an 

etale covering of degree pot~1{p — 1). I t is a classical result of Igusa that T m ? a is 

irreducible (and hence connected; see [ G M E ] 2.9.3), although we do not need this 

irreducibility here. We wi l l come back to the proof of the irreducibility of the Igusa 

tower over more general Shimura varieties later in Lecture 10. Since S m is affine, T m > a 

is also affine. We write T m j a = Spec(V r

m,Q ;). We have a tower of W m - f l a t algebras: 

Vm,0 C Vm,1 C . . . Vm,n C ;.; 

These algebras are etale over V ^ o and Gal{Vm,oc/Vm,o) = {Z/paZ)x. Over V m , a , we 
have a canonical isomorphism 

/can = V : Z/paZ = Pa= E\pa]ét. 

We then define Vm,oo = LL V™,a and 

V = V r i ( j v ) = l im 1^,00 and V = V r , w ) = | i m 

The space VT1(N) is the space of p-adic modular forms on Ti{N). By taking the 

Cartier dual of Z/paZ E\pa], we may regard / € VMJA as a rule associating an 

element of A to { E , 4>p : <-^> E\pa], <I>N)/A satisfying the conditions similar to (G0-

3). Each element / G VT1(N)®WA for a W-algebra A = l i m ^ A/p^A is a function of 

(E,<J>P,<I>N) satisfying the conditions similar to (GO-3) (see [ G M E ] ( G p l - 3 ) in page 

230). 
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3. Vertical Control for El l ipt ic Modular Forms 

3.1. Vertical Control Theorem. — We have a p-divisible module VY1(N) °N 

which G a ^ V ^ o o / V ^ o ) = Z * = T ( Z P ) acts continuously. Here T = G m . We shall 
construct a projector e acting on V out of the Hecke operator U(p) commuting wi th 
the action of Z * = Gal(Vmi0o/Vmio). The important features of e are 

- e = l i m n ^ o o U(p)nl; 

- V o r d = eV has Pontryagin dual which is projective over W [ [ G m ( Z p ) ] ] ; 

- For any k ^ 3, there is a canonical isomorphism 

V o r d [ - f c ] eH°{S,uk ® T p ) = eH°(M,uk ® T p ) ( T p = Q p / Z p ) , 

where V[-fc] = { / G V | zf = z~kf Vz G Z * } . We hereafter write H%rd for and 

G£ r d for eGk. 

3.1.1. Axiomatic treatment. — Let cuk = Gri(N)(k) = 0(k) for the embedding of 
Xi(N) = Proj(Gr 1 (iv)) into the projective space. Then wk = to®k. Computing the 
genus of X±(N), the Riemann-Roch theorem tell us that uk is very ample i f k ^ 3 
(see [ G M E ] Proposition 2.1.4 and Theorem 3.1.2). Therefore ujk is the pull back of 
0(k) of the target projective space. Let ( E , (f>N,w) be the universal elliptic curve 
over Y\(N). For each triple (E,<f)N,w) defined over A (called a test object), we have 
a unique ¿ : Spec(>l) —• Yi(N) such that £*(E,</>N,QJ) = (E,<J>N,V)- For each section 
/ G #°(yi( iV),a; f c ) , we define 

i*f = f(E,</>N,u>)u>°h 

The function (E,</)N,U) H-> f{E,(j>N,u) satisfies (GO-2). The condition (G3) assures 

that / extends to XAN). This shows 

H^X^N)^^) =Gk(T1(N)]A) 

for all Z[g^]-algebra A. 

Let ( E , 0 p , 0 j y ) be the universal elliptic curve over Sm. Pick a section / G 
H0(Sm,uik). Since / i p o o carries a canonical differential ujcan = dt/t, writ ing /xp<* = 

Spec(Z[t]/(t p < x — 1)), we may regard / as a function of ( E , (f)p, </>N) by f ( E , 0 P , </>N) — 

f(E,4>N,4>p,*wca,n). For each (E,(J>p,4>N) G £™d(A) for a Wm-algebra A, we have a 

unique morphism i : Spec(A) —> T m ? 0 0 such that (£", </>P, </>JV) = £*(E, </>p, 0 ^ ) . Then 

£*/ is just a function of / ( £ , </>p, 0JV) such that /(22, z~l(j)p, <PN) = zkf(E, </>p, <J>N) for 

z G Gal^^oo /V^i .o) = Z£ . This shows that 

Fm,oo[A:] = H°(Sm,<jk) and V[fc] = H°(S/w,u
k ® T p ) = J f V / w 0 T p , 

where T p = Q p / Z p . The last identity follows, since S is affine. This shows that V[k] 

is p-divisible, and its direct summand eV[k] is also p-divisible. 

We consider the following condition: 

(F) corankvK eV[fc] = rankw Hom(eV[fc], T p ) is finite for an integer k. 
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In practice, this condition is often proven by showing 

( 3 . 1 ) H°rd(S/w,uLk®Tp) = ^ ( ^ ( J V ) / ^ , ^ ® T p ) = G ^ d ( r x ( i V ) , T p ) . 

The left-hand-side (LHS) of ( 3 . 1 ) is p-divisible, since S is affine. The (RHS) is of 

finite corank since Xi(N) is projective. Thus eV[k] is p-divisible of finite corank. 

Decompose Z * = TT X A for a p-profmite group FT and a prime-to-p finite group A . 

For simplicity suppose that p > 2. Then TT is isomorphic to Zp and for its generator 7 , 

we have W[[TT]} = W[[X]] = A via 7 H-> 1 + X (that is, 7 s H + ( 1 + X ) s = £ ~ 0 ( s ) X J ) > 

and W [ [ Z * ] ] = A [A] . Let Vord be the Pontryagin dual module of eV. If eV[k] is of 

finite corank for one fc, then by duality, we have 

(3.2) VoM[X]/(X + 1 - 7*)V o r d [x] = ^ ° r d ®w[[T(zp)]lk W 

H o m w ( i î o

0

r d ( X 1 ( i V ) , ^ ) , W) H o m ^ C G T 1 ^ ! ^ ) ; W ) , ( X = fcU). 

In the middle equality, we have assumed ( 3 . 1 ) . Here the subscript or superscript "ord" 

implies the image of e. Decompose Vord by the character of A as follows: 

yord 

e ^ordw-
xeA 

If z H - > zk coincides with % on A T , then V o r d[x] ®A,fc W = ^ o r d ®w[[T(zp)]],fc W- B v 

Nakayama's lemma, we have a surjective homomorphism of A-modules: 

TT: A S M -» V o r d [ X ] , 

where s = s(x) = c o r a n k ^ eV [k]. If (F) holds for one k, it holds for all K inducing 

X, and TT has to be an isomorphism by the following reason: The number s is the 

minimum number of generators of F o r d[x] ®A,« W over K. We know that this module 

is VF-free, because its dual V[K] is p-divisible; so, it is free of rank s. The morphism 

7r induces an isomorphism modulo ( 1 + X) — 7 * for all K inducing x« Then 

Ker(7r) C f |Ke r (7r mod ( 1 + X - 7*)) = 0 , 
K 

and we get 

Theorem 3.1. — Suppose that (F) holds for one k. Write H®rd for eH° and G £ r d for 

eGk- Then V o r d[x] is A-free of finite rank s(x), and if ( 3 . 1 ) holds for k, then 

V°Td ®w[\z*]],k W = Hom^CG^CrxCiV); W), W). 

3.1.2. Bounding the p-ordinary rank. — Since .Si is affine, we have 

C f|Ker(7r mod (1 + X - 7*)) = 0, 

If fi, / 2 , • • •, fj is a sequence of linearly independent sections in H®rd(Si, cuk), we can 

lift them to fi e H°(S/w,uik) so that J{ = (fi modp). Since S = AfMU, we have 

H°(S/w,w
k) = limH°{M/w,w

k+n(p-V)/En. 
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Thus Emfi e H°(M/w, o ; f c + m ( p - x ) ) for all i = 1 , . . . J for sufficiently large m, and 

they are linearly independent. We now assume 

(C) e(Ef) = E(ef) for all / G H°(Suu
k). 

By this, e(Emfi) are still linearly independent in fl^rd(M/^-,o;fc+m(p~1)); so, we have 

d \ m K H ° o r d ( M / K ^ k ^ - ^ ) ^ j . 

If ranky^ H%rd(Si,LJk) is infinite, the rank of H^rd(M/K,u
k+rn(^p~1^) grows a s m - » oo. 

The condition (F) for all k follows from 

(F ' ) dim*: G £ r d ( r i ( J V ) , K) is bounded independent of k (K = Qp). 

Actually, the Eichler-Shimura isomorphism combined with a calculation of group co-

homology H^rd(Ti(N),L(k;K)) proves much stronger 

(E) If k ^ 3, d i m K Gg r d ( r i ( 7V) , K) depends only on k mod p - 1 ([LFE] 7.2). 

The projector e will be constructed in the following subsection. 

3.1.3. Construction of the projector. — Let (E,<J>P,<I)N)/A D e a test object . Suppose 

that A is flat over Zp. Each subgroup C of order p outside the image of 4>P is.étale 

over A[^]; so, we can think of the quotient (E/C,4>P,(J)N) defined over an étale finite 

extension B of A[^]. We define 

(U) f\U(p)(E,</>p,<l>N) = -J2f(E/c'<t>p'M-
P C 

Computing g-expansion, we know 

a(riJ\U(p)) = a(np,f). 

So the operator preserves integral structure over A. The above construction of U(p) 

works well for triples (E, </>P,<I>N) over general scheme T as long as T is flat over Zp. 

Thus we have U(p) operator well defined over S[^]. 

We shall extend the definition of U(p) to A with p-torsion following Katz [K3] 

3.10. For the universal elliptic curve E over 5 , we have a non-split exact sequence 

0 — • E[p]° —•+ E[p] — - + E [ p ] é t —+ 0. 

To have an étale subgroups C in E[p], we need to split the above sequence via base-

change from S to its finite flat covering S'. By the deformation theory of elliptic curves 

by Serre-Tate (which we will expose in Lecture 8) , for each closed point x G S i ( F p ) , 

we have a canonical identification of the formal completion Sx of S along x with 

the formal multiplicative group G m ^ over the Wit t ring W of F p . Then the above 

extension is equivalent to 

0 — • fip —• Tp — • Z/pZ — • 0, 
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where the group scheme T p / G m is defined as follows (cf [GME] Example 1.6.5 in page 

43): 

Tp = Spec 

Gm(iî)/:r
z). 

( x P - t * ) , 
¿ = 0 

Thus Tp is a finite fiat group scheme over G m = Spec(Z[£,£ 1 ] ) , and E[p] X 5 Sx = 

Tp x<G M Sx. For any commutative ring R 

Tp(R) = {(x,i/p) \xp = t \ xe Gm(R), i/p e.p^Z/Z} 

= Kei(Gm:(R)/x 
t ^ t p

 v G m ( i î ) / : r z ) . 

This shows that Os',x has to be isomorphic to the formal completion of the ring 

W[t^p,t'^p] = W[t,t-1][x]/(xp -t) along x = 1. Thus S' is a finite flat covering 

of S radiciel (or purely inseparable) at the special fiber over p. In any case, we have 

the trace map Tr^ : Osf —* Os and the inclusion t : Os °—> Osf- W e also have 

the Frobenius map <p : Os —» C*s'. In other words, Sf is the moduli of quadruples 

(E,(f)p,C,<t)N) for an etale subgroup C C E, and the Frobenius map ip for general 

base is induced by the correspondence: 

(E,<I>P,4>N) — (£7<P> = E/<j>p(»r),<P'P • lh = £ [ p 2 ] % M M p ) , £ [ p ] é t , < M , 

where <f>'p is induced by 

—<f>p(fJ-P) 
C ~ C 1 / p 

£[PT/<MMP)-

Then it is easy to check that the U(p) operator coincides with ^ Tr^ after inverting p. 

We thus use the formula (U) heuristically over general base A under the understanding 

that J2c m (U) indicates Tr^ if A has non-trivial p-torsion. In other words, in X ^ c 

the etale subgroups C is counted with multiplicity p if A has p-torsion; so, U(p) is 

divisible by p. In particular, p • T(p) = p • U(p) -f <p is the p-adic lift of the congruence 

relation of Eichler and Shimura as given in [K3] 3.11.3.3. 

Since E = 1 mod p, we confirm ( C ) . Let 

G T I ( A O ( ^ ) 1 )Gk(T1(N)]A). 

One can prove the p-adic density of GFl{N)(W)[±] HV inV ( [GME] Corollary 3.2.4 

and Theorem 3.2.10). Using this fact, we can show that l im n _+ 0 0 U(p)nl exists. The 

final result is as follows: 

Theorem 3.2 (VCT). — For all k^Z, we have 

V ° T d ®w[[i*]]tk
 W = Hom^(G2 r d ( r i ( iV) ; W), W). 

Similarly, if we write V™sP for th>e subspace of cusp forms in V O R D and write V°*d

p for 

its Pontryagin dual (that is the cuspidal quotient ofVord), the above result holds for 
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spaces of cusp forms replacing V o r d and G £ r d by and the subspace S%rd of cusp 
forms in Gfc r d . 

3.1.4- Families of p-ordinary modular forms.— Let a(n) : V o r d —» TP be the linear 
map associating / its coefficient of qn in the (/-expansion; so, a(n) is in the dual Vord. 
We now consider 

G ( X ; A ) = H o m A ( F O T d [ X ] , A ) . 

Wi th each </> G G ( x ; A ) , we associate its ^-expansion 
oo 

^ ) = ^ W n ) ) g » 6 A i . 
n = 0 

Theorem 3.3. — For each k ^ 2, we have 

(1) G ( x ; A) is A-free of finite rank; 
(2) G(X; A ) ® A ) f e W GftpiiN) n r 0 ( p ) , x W - f c ; W ) ; 
(3) £/ie a&owe identification is induced by ^ n a ( n , ^ ( 7 ( ! — 1 ) ) ? " £ VT[[<7]]. 

Proof. — The A-freeness follows from the freeness of ^ o r d [ x ] - We only prove the 
assertion when k induces x o n A ; s o > X w ~ f c is trivial. We have 

G(x; A ) ®A , * W S H o m A ( F o r d [ x ] , A) ® A , f c W 

S H o m H , ( F O T d [ x ] ® A , F C W, W) S Hom w (Hom w KGfc r d ( r i ( t f ) ; W ) ; W)) 

= G^iTiiN); W) = Gr d(rx(iV) n r 0 ( p ) ; W ) . 

We leave the verification of the specialization of g-expansion to the audience. • 

There is a version of this type of results for To(N) and also for cusp forms, which 
is valid for all weights k ^ 2 (see [GME] Chapter 3 in particular Theorem 3.2.17). 

4. Hecke Equivariance of the Eichler-Shimura M a p 

Let G/z(p) ( Z ( p ) = Q fl Z p ) be a connected reductive group (split over Z p ) . For 
simplicity, we often assume that G has trivial center. We shall prove semi-simplicity 
of the commutative Hecke algebra acting on the nearly ordinary cohomology group 
H^ord(X(U),L) C H?{X(U),L) for a modular variety X(U) associated to an arbi­
trary p-power level open compact subgroup U of G ( A ° ° ) . Here the locally constant 
or coherent sheaf L on X(U) is associated to a rational representation of G twisted 
by a finite order character. Although we have assumed that G is split over Z p , the 
argument works equally well for a connected reductive group G y w split over W (see 
[PAF] Chapter 5) . Here W is a valuation ring over Z ( p ) of a number field, and 
W = lim^ W / p n W is the p-adic completion of W . 
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4 . 1 . Semi-simplicity of Hecke Algebras. — We shall describe the semi-

simplicity of the Hecke algebra acting on topological cohomology groups. Later 

we relate the topological and the coherent cohomology groups by the generalized 

Eichler-Shimura map, which shows the semi-simplicity of the Hecke algebra acting 

on the (degree 0) coherent cohomology. 

4-1-1. Jacquet Modules. — Let n be an admissible semi-simple representation of 

G(QP) on a vector space V = V(ir) over a field K of characteristic 0 (in this lec­

ture, K is just a characteristic 0 field no more no less). Contrary to the tradition, 

I always suppose that V is a right G (Q p ) -modu le . Let 5 b e a Borel subgroup with 

split torus T — B/N for the unipotent radical N. 

We have a Haar measure du of N(QP) with fN^z ^ du = 1. We then define 

V(B) = V{B, TT) = {v - V7r(n) G V{TT) I v G V(n) n G N{QP)} , 

and put VB = VB(TT) — V/V(B), which is called the Jacquet module. We take a 

sufficiently large open compact subgroup Uw C N(QP) for each w = v — V7r(n) G V(B) 

so that n £ Uw. Then we see that j v V7r(u)du = 0 for every open subgroup U with 

Uw C U C N(QP). By this fact, we can conclude that the association V I—• VB is an 

exact functor. Later we shall give a canonical splitting VN = VB © V(B)N as Hecke 

modules, where V N = H°(N(ZP),V) (Bernstein-Casselman). 

Let V be a K-vector space. A function / : G(QP) —> V is called smooth if it is 

locally constant (uniformly under the left translation). In other words, there exists 

an open compact subgroup Cf C G(QP) such that f(kg) = f(g) for all g e G(QP) 

and k G Cf. For each admissible T (Q p ) - m o d u l e V, we define Ind^ V to be the space 

of smooth functions on G(QP) such that f(gb) = f(g)b for all b G B(QP), where b is 

the projection of b in T(QP). Then we let G(QP) act on Indg V by f(g)g' = f(g'g) 

for g G G(QP). This representation Ind^ V is the smooth induction of V from B 

to G. In this definition, we may replace B by a parabolic subgroup of G and T by 

the reductive part of P. Hereafter all representations of G, B and T are assumed to 

be smooth admissible. 

Since the smooth induction preserves admissibility ([BZ] 2.3), Ind^ V has compo­

sition series, and hence its semi-simplification (Ind^ VF)SS is well defined. The beauty 

of the theory of admissible representations is its purely algebraic nature; so, we do 

not need to assume any analytic assumptions; in particular, our representations are 

often not unitary as is clear from our main result Theorem 4.2. 

The following results are due to Jacquet and Bernstein-Zelevinsky and are well 

known [BZ]: 

(1) (Probenius reciprocity) HomB(VB, V) ^ H o m G ( F , I n d g V); 

(2) If 7r is absolutely irreducible, then d i m x VB < | W | , where W is the Weyl group 

of T in G (Bernstein-Zelevinsky); 
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(3) If 7r is absolutely irreducible and VB ^ 0, then Ind# A - » V for a character 

A : T(QP) -> KX (Jacquet); 

(4) ( I n d g A ) s s ^ ( I n d g A ^ ) s s for all w G W (Bernstein-Zelevinsky), 

where "ss" indicates semi-simplification, Xw(t) = X(wtw~1) and A = 5Q2X for the 

right module character 5B of B: /JV(Q ) (/>(u)du = 5 sip) JN(QP) 4>(b~1xb)du (V</>). We 

have the following corollary of the above facts: 

1 /2 

Corollary 4.1. — Suppose that n is irreducible and that VB[X] ^ 0, where A = 5Q A 

/ o r the module character 8B on B. Then n is a quotient of I n d g A . If Xw(t) for 

w eW are all distinct, VB C (&WEW XW as T(QP)-modules. 

Proof — Since the algebra in E n d ^ V e ) generated by the action of T is a finite di­

mensional commutative algebra, the A-eigenspace is non-trivial if and only if the max­

imal A-quotient is non-trivial. Thus, we have a morphism of T-modules: VB - » V(X). 

Since we have (Ind^ A ) s s = (Ind# A™) s s , by Frobenius reciprocity, all eigenvalues XW 

can show up as a quotient of (Ind# X)B whose dimension is bounded by \W\. Thus if 

all characters A™ are distinct, we have VB C (Indg \ ) B = ® w £ w Since V i * VB 

is exact, this is enough to conclude the assertion. • 

4-1.2. Double Coset Algebras. — We consider the double coset algebra made of formal 

linear combinations of double cosets of a subgroup in a semi-group. This type of 

algebra is considered in [IAT] 3.1 and often called a Hecke ring. We shall use the 

terminology "double coset algebra" to avoid confusion with Hecke algebras later we 

shall study. 

Let 

D = {x G T ( Q P ) | xNB(Zp)x'1 D NB(ZP)} 

which is called the expanding semi-group in T(QP). Write B = B(ZP) and N = N(ZP) 

for simplicity. Define so-called Iwahori subgroups by 

U0(r) = {ue G(Zp) | u m o d p r G B(Z/pRZ)} 

^ Ux{r) = { u e G(ZP) | u mod pr G N(Z/pRZ)} . 

These subgroups S have the Iwahori decomposition: S = N'T'N 9* N' x T x N for 

open compact subgroups T' C T(ZP) and Nf in the opposite unipotent *N = *iV(Zp). 

Each x G D shrinks *JV: i W a ; " 1 C *N. Then we have 

N£N= U N£u= U 

( • } B£B = U Bv£ and S£S = |J Su£, 
ueN^N^-1 UEN^N^-1 

where 5 is an Iwahori subgroup. By this fact, AJV = NDN, A = A # = BDB 

and A s = A p = SDS are sub-semigroups of G(QP), and the double coset algebras 
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generated additively over Z by double cosets of the group in the semigroup are all 

isomorphic as algebras: 

R = R(N, AN) & R(B, AB) = iJ(5, A s ) . 

Further these algebras are commutative: T(£)T(rj) = T(^rj) for T ( £ ) = N£N and 

£,77 e D (cf. [IAT] Chapter 3 and [H95] Section 2) . We let R act on v e VN = 

H°(N(ZP),V)by 

(4.3) v | T ( 0 = v\[N£N] =
 V7r^u>> = f vir(u)ir(€)du, 

and similarly for v £ VB in place of v € V ^ ; then the projection: —» V# is 

i?-linear. Here the Haar measure dit is normalized so that fN^z ^du = 1. 

Let E be the set of maximal (proper) parabolic subgroups P D B. Decomposing 

P = MpNp for reductive part Mp D T and the unipotent radical Np, we can identify 

the set E with the following set of co-characters: 

{aP : G m -> G \ aP{p) generates Z(MP)(QP) 0 D modulo Z(MP)(ZP)} , 

where Z(Mp) is the center of Mp. Then { £ a = a : ( p ) } a e £ generate D / T ( Z P ) , and 

# ^ Z [ T ( f a ) ] if the center of G is trivial. If G = GL(n), 

s = { a i I M p ) = d i a g l l ^ P L N - , ] } . 

For £ = n a e S we have 

00 
a^(QP) = U ZJNCJ. 

3=0 

We still denote by T ( f ) the action of N£N on V N . The formula (4.3) defines as well 

an action of T ( £ ) on VB. We see easily from (4.3) that T ( f ' ) = T ( £ ) J ' and for each 

finite dimensional subspace X c V(-B), T(£)|x*R is nilpotent on XN by (4.3). 

For any ^-eigenvector v e V N with vt = X(t)v (t e T ( Q P ) , v = v mod V(-B)) , we 

get 

(4.4) v|[JVa?JV] = [N : x-1Nx]X(x)v = \det(AdN(x))\p\(x)v, 

where "| | p " is the standard absolute value of Q p such that \p\~x = p and Ad is the 

adjoint representation of T on the Lie algebra of N. 

4.1.3. Rational representations of G. — Let us first define a canonical splitting: 

V N = VB 0 V(B)N as ^-modules . 

We have by definition, VN = VN(M = \JrV
u^rl The subspace Vr = VUl^ is 

finite dimensional and is stable under R. By Jordan decomposition applied to T ( £ ) 

( £ — L L A G S ^ ) ' w e c a n decompose uniquely that VR = V° 0 VND so that T ( £ ) is an 

automorphism on V r° and is nilpotent on Vnil. We may replace T ( £ ) by T ( £ a ) = T ( f ) ° 

for any positive a in the definition of the above splitting. Since T ( £ ) is nilpotent on 

any finite dimensional subspace of V(B), V° injects into VB; S O , dimV^° is bounded 
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by dim VB ^ \W\. For any T-eigenvector v G V B , lift it to v G V . Then for sufficiently 

large j , V7r(£~i) is in VN... Since VTT(^~^) is a constant multiple of v, we may replace 

v and t> by t J7r (£~ J ) and vir(^~^), respectively. Then for sufficiently large k, w = 

vT(£k) G V°. Then wT(£)~k is equal to v for the image w in V#. This shows the 

splitting: V N = VB 0 V ( B ) N as i?-modules when the action of T on VB is semi-

simple. In general, taking a sufficiently large r so that F r surjects down to VB- We 

apply the above argument to the semi-simplification of VR under the action of the 

Hecke algebra. Thus V° = \Jr V° = VB, and this concludes the proof. 

Let G ( Z ) C G ( A ° ° ) denote a maximal compact subgroup hyperspecial everywhere 

(by abusing notation; see [Tt] for hyperspecial compact subgroups). We assume that 

the p-component of G ( Z ) is given by G(ZP). We now assume K to be a finite extension 

over QP. Let O be the p-adic integer ring of K. We write U = UQ(T) for r > 0. Recall 

the Iwahori decomposition U = N'T(ZP)N. We consider the space of continuous 

functions: C(A) = { 0 : U/N(ZP) -> A} for A = O and IT. We would like to make C 

a left A ~ 1 - m o d u l e for the opposite semi-group A " 1 of AP = A c / . For that, we first 

define a left action of AP on YV = U/N(ZP). Since U acts on YV = U/N(ZP) by left 

multiplication, we only need to define a left action of D. Pick yN(Zp) G Y\j and by 

the Iwahori decomposition, we may assume that y G N'T(ZP) C U and consider yN. 

Then for d e D, dyNd'1 = dyd^dNa1-1 c dyd-xN(QP) and dyd-xN{%) is well 

defined in G(QP)/N(QP). Since conjugation by d G D expands N(ZP) and shrinks 

TV', c f o d - 1 G /7, and the coset dyd~xN(Qp) DU = dyd~xU is a well defined single 

coset of AT, which we designate to be the image of the action of d G D. We now let 

A " 1 act on C by d<t>(y) = </>(d _ 1?/). In this way, C becomes a A ~ 1 - m o d u l e . 

We consider the algebro-geometric induction module: 

(4.5) L(K; K) = {(j>:G/N->Ke H°(G/N, O G / n ) \ </>(yt) = n(t)(j>(y) V* G T) , 

where OG/TV is the structure sheaf of the scheme G/N. We let G act on L(K\ K) by 

gcj)(y) = (/)(g~1y). Then L(K;; K) — ind^ K _ 1 (following the normalization of induction 

as in [RAG] 1.3.3), which is the induction in the category of scheme theoretic repre­

sentations (that is, polynomial representations). We call K dominant if L(K,',K) ^ 0. 

We write this representation as pK = : G —> GL(L(K; K)). 

We restrict functions in L(K\K) to YV = U/N(ZP) and regard L(K\K) C C(K). 

Then multiply L ( « ; K) by a character e : T(Z/prZ) = C/o(r) /Di(r) ~* 0 > < (regarding 

it as a function on C(0)). Since Q * = Z * x p z , we can decompose T(QP) = T ( Z P ) x 

( p z ) r for the rank r of T , and we can extend e to T ( Q P ) requiring it to have constant 

value 1 on (pz)r. In this way, we get the twisted A ~ 1 - m o d u l e L(KS; K) = SL(K; K) C 

C. The pull-back A ^ - a c t i o n preserves L(KS;0) = L(KS;K) nC(0) but original pK 

may not be. Then for £ G D , 

(4.6) #ie acta'on o / £ _ 1 G A " 1 ¿5 #wen &?/ ^ ( O " 1 ^ ) / 9 * ^ - 1 ) -
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Since the action of £ on Yjy is conjugation: x v-> the front tt(£)_1 comes from 

the definition of L(K\K) in (4.5): 0 ( £ ^ _ 1 ) = tt(£_1)Ptt(£-1 )</>(#)• By definition, the 
new action is optimally integral. 

Example 4.1. — To illustrate our integral modification of the action, let us give an 
example in the simplest non-trivial case: Let L(tt; K) be the space of homogeneous 
polynomial of two variable (X,Y) of degree n > 0. Then we let G = GL(2) act on 
0 ( X , Y) G L{K; K) by ( a

c

b

d ) _ 1 0 ( X , Y) = (ad - bc)v(f)(dX - bY, -cX + aY) for an 
integer v G Z. Then L(K;K) = i n d ^ K _ 1 f o r K : diag[a, d] H-> (ad)van for the upper 
triangular Borel subgroup B C GL(2). If the integer v is negative, the lattice L ( « ; 0 ) 
is obviously not stable under the action of the diagonal matrices 

D = { z d i a g [ l , d ] | 0 ^ d G Z p , * G Q £ } . 

The modified (integral) action defined above is just 

(l s r 1
 o y ) = # d x , Y ) = d - " ( I ° r 1

 Y ) = K (J S r 1 (l°d r 1
 y ) . 

4-1.4- Nearly p-Ordinary Representations. — Hereafter we assume that K is an ele­
ment K0 of X(T) up to finite order character of T(ZP). Let U be an open subgroup 
of G(Z). We consider the associated modular variety: 

X(U) = G(Q)\G(A)/£/G 0 0 + * U ^ r , 
r 

where Coo+ is the identity connected component of the maximal compact subgroup 
of the Lie group G(R) and T runs over the following finite set 

{G(Q)ntUG+(R)t~1 | t G (G(Q)\G(A)/£/G(R))} 

where G+(R) is the identity connected component of G(R). For the symmetric space 

X = G+(R) /Co , we have written Xr — T\X. For any O-module A, we define a right 

action of u G f/Goo+ on L(K\ A) by 0|w = pK(u~L)4> if f/p c £/o(r) for some r > 0. 

We define the covering space X(U) of X(U) by 

(4.7) Af(C/) = G(Q)\(G(A) x L ( « ; A) ) /£7Coo+ = U * r , 
r 

where j(x,(/>)u = (p(xu,<j)\u) for 7 G G(Q) and ^ G C/Goo+, and we define Ar = 
T\(X x L ( K ; T 4 ) ) by the diagonal action. We use the same symbol L(K]A) for the 
sheaf of locally constant sections of X{JJ) over X(U). 

We consider the limit, shrinking S, 

(4.8) C{A) = CQ(K;A) = KmH?(X(S), L(K; A)). 

Here H?(X(S),L(K; A)) (A = K or 0 ) is the image of the compactly supported 
cohomology group H«(X(S), L(K; A)) in W(X(S), X ) ) . On the space the 
group G(A°°) acts from the right via a smooth representation, which is completely 
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reducible. Thus in particular, we have an action on H°(U, CQ(K; K)) = £Q(K; K)U of 

the double coset algebra 

Ru = R(U, G(Apo°) x A P ) R(Uip\ G(Apo°)) ® R 

of double cosets UxU with x G G(Apo°) x A P , where U = Up x C/(P) and we have 

assumed that Up = J/oO")-

We take £ £ D such that i V ( Q p ) = \JJ&N(ZP)€~J > We may assume that £ = 

n a G E £ a . Then T ( f ) acts on Cq(n\0)N (N = N(ZP)) through the A p ^modu le 

structure on L(K; O). We write this operator as T. On the other hand, T ( £ ) acts on 

CQ(K;K)N through the action of G ( A ° ° ) via the rational representation pK. The 

corresponding operator will be written by the same symbol T . Since the action 

through and the modified integral action of £ - 1 G A " 1 differs by the scalar 

(4.6), the two operators T and T are related on the image of CQ(K; 0)N by 

(4.9) m)=K(t)-1T(0. 

When K = 0 (the identity character), the action of the Hecke operator is (truly 

canonically) induced by the Hecke correspondence T ( f ) C (X(U) x X(U)), and in this 

case, T(£) = T ( ^ ) . If K > 0, we may relate cohomology groups of the sheaf L(K; K) as 

a part of the cohomology group with constant coefficients of a certain self-product Z 

of copies of the universal abelian scheme over X(U). Since the Hecke operator then 

has interpretation as an isogeny action on the universal abelian scheme, it can be 

regarded as the action induced by the Hecke correspondence in Z x Z. The action of 

T ( f ) and T ( £ ) uses different action of A " 1 . This action of A " 1 determines the part of 

the cohomology group over Z identified with the cohomology group over X(U) with 

locally constant (but non-constant) coefficients. Thus the motivic realization of the 

two operators T ( £ ) and T(£) could be actually different, and the operator T(£) may not 

even have motivic realization (as in the Hilbert modular case of non-parallel weight). 

For example, in Scholl's construction [Sc] of the Grothendieck motive associated to 

an elliptic Hecke eigenform / , if one changes the action of congruence subgroup T of 

SL2CZ) by a power of determinant character, the physical sheaf over Xr(C) obtained is 

the same, but its rational structure (including the Galois action) different. In this way, 

we can construct the motive associated to the standard p-adic Galois representation 

pf of / and its Tate twists p / ( m ) as the etale realization of motives directly realized 

over a self-product of the universal elliptic curve. For a Hilbert Hecke eigenform / , 

we could twist pf locally at each p-adic place by a power of the p-adic cyclotomic 

character, but this twist may not extend to a global twist because the exponent of the 

cyclotomic character depends on the p-adic place. In particular, if / is of non-parallel 

weight, the process of defining T(£) corresponds to untwisting pj to reach a p-ordinary 

Galois representation at each p-adic place p, which cannot be performed globally; so, 

the operator T(£) may not have a motivic interpretation. 
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For any U = UP x U^) with UP D N = i \T(Z p ) , the limit e = limn_+oo T ( £ ) n ! 

exists as an endomorphism of HQ(X(U), L(K; A)) for A = O and K. Thus the limit 

e extends to an endomorphism of CQ(K] A)N for A = O and K. It is easy to see, if 

U P D N , 

(4.10) # ° ( C / , e(£*(/c; i f ) N ) ) = c (H?(X(U), L(/c; X ) ) ) . 

We write Cq

nord(hi] A) for e (£ 9 ( f t ; An irreducible representation 7r of G ( A ° ° ) ) , 

which is a subquotient of £ 9 ( f t ; i f ) , is called nearly ordinary of p-type n if e ( V ( 7 r ) N ) 

does not vanish for the representation space V(TT) of TT. 

Semi-simplicity of Interior Cohomology Groups. — Let TT be a cohomological 

automorphic representation of p-type K. Suppose TTP is a subquotient of Ind# A (this 

is automatic if TT is nearly p-ordinary). Then for its p-component TTP (acting on 

V := V ( 7 T P ) ) , we find a character A : T(QP) —» i f x with the above property such that 

VB[A] T^O and 

| d e t ( A d N ( x ) ) " 1 A ( x ) | p - | |de t (Adi>r(x)) |pA(x) | p < |/c(a?)| p. 

The equality holds if and only if TT is p-nearly ordinary (in this case, automatically 

VB ^ 0 and Indg A - » TTP because 9* VB 0 VX-B) 7^ as fl-modules). 

For the moment, suppose that G(QP) = GLn(Qp) and write A(diag[£ i , . . . , £ n ] ) = 

niLi ^i(^i)- Define the Hecke polynomial (at p) by 

H«(T) = * T ( l - A , ( p ) T ) , 

1=1 

and write AN for the Newton polygon of Hn(T). Define the Hodge polygon AH of TT 

to be the Newton polygon of niLi(l —
 (KP)i(p)T). Then the above inequality implies 

A N > A H 

and the two extreme ends of the two polygons match. 

We return to a general group G and assume that TT is nearly p-ordinary. B y 

definition, 

/ (j){u)du = 5B{b) [ (j){b-lxb)du. 

This shows that 

(4.11) SB = I d e t o A d j v l p 1 . 

By definition, 2p = det o Adjv is a sum of positive roots, and p is a sum of fundamental 

weights with respect to B. This shows 

( 4 . 1 2 ) | A | P = M P . 

Note that K is non-negative with respect to B because K is dominant. Since K ^ 0, 

np > 0, that is, Kp is in the interior of the Weyl chamber of B. This shows that if 
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W¿1, 

(4.13) |A™(d)| P < | A ( d ) | p for all d G D, 

because W acts simply transitively on Weyl chambers and each element in the interior 

of the chamber of A has the maximum p-adic absolute value in its conjugates under W. 

In particular, we get 

Theorem 4.2. — Let n be an irreducible nearly ordinary representation of p-type K. 

Then there exists a character A : T(QP) —> Kx such that A V(TTP)B ®wew^w 

and \X\P = \ P K \ p , where p is the sum of fundamental weight with respect to B and 

I |p is the absolute value on K. Moreover eH°(N(Zp),V(7rp)) is one dimensional, on 

which T ( £ ) - U£U for£eD acts by scalar | p (Olp*( f )• 

Now suppose that U = Up x G(ZP) with Up = Uo(r) for r > 0. B y the above 

theorem, we get the following semi-simplicity of the Hecke algebra (for cohomological 

nearly ordinary cusp forms of p-type n) from the fact that the spherical irreducible 

representation of G(Qi) has a unique vector fixed by (any given) maximal compact 

subgroup: 

Corollary 4.3. — Let the notation and the assumption be as above. Then the Hecke 

module eH?(X(U), L{n\ K)) is semi-simple. 

Note that the projector e = ep is actually defined over £Q(K;Q)N. Thus the above 

semi-simplicity remains true on esH?(X(U),L(K,;Q)) for es = Yl¿es
e^ w ^ h a finite 

set of primes 5 (where G is split over Z¿) and a subgroup U of level M , which is a 

product of powers of primes in S. For such nearly 5-ordinary automorphic forms, 

semi-simplicity of the Hecke operator action is always true. 

4.2 . T h e Eichler-Shimura M a p . — Before starting detailed study of the nearly 

ordinary part of coherent cohomology groups, we shall make explicit a generalized 

Eichler-Shimura map for unitary groups and hence the association of the weight: 

K i—> ft* so that H%u (Xr,wK) ^ Hd(Xr, L(K*; C ) ) . T O construct the map, we briefly 

recall an explicit shape of the symmetric domain of unitary groups. 

^.2.1. Unitary groups. — Define the complex unitary group G by 

G = C7(m,n)(R) = {ge G L m + n ( C ) | glm,ng* = / m , n} , 

where J m , n = d i a g [ l m , - l n ] = ( V - i n ) • 

We want to make explicit the quotient space X = G/CQ following [ A A F ] 3.2. We 

consider 

y = { Y G GLm+n(C) 
Y*Im,nY = diag[T, 5 ] with 0 < T = T* e M m ( C ) , l 

0 > S = S* € Af n (C) J ' 
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Write y = (c D ) - By a simple calculation, we have 

V * T V - ( A*A-C*C A*B-C*D \ _ A \ ^ \ T c i 

Since A*A > C*C ^ 0, A is invertible. Similarly £> is invertible. Put z = BD~l. We 
then see 

A*B = C*£> ( C A " 1 ) * = A " * C * = = 

B*B - D*D = D*(z*z - ln)D < 0 

and 

y = ( 1

z ? 1 * ) d i a g [ A - D ] 

with 2 * 2 < 1 thus we get 

(4.14) P x GL m (C) x GL n (C) a y 

by ( 2 , A , D ) ^ Y{z) diag[A, D] for Y(z) = ( ^ £ ) . Here 

v = {z e M m , n (C) | 2*z < l } . 

Since V I—• g y for g € G takes y into itself isomorphically, we have 

gY(z) = Y{g{z)) diagfhfo, z),j(g, z)] h(g, z) = a + Fz and j(g, z) = cz + d 

* 0 = ( S $ ) € G . 
By these formulae, it is clear that for the zero matrix O G D , 

G/Co = V via g .—+ g(0) 

and Co — U(m) xU(n). Therefore the complexification C of Co is G L m ( C ) x GLn(C). 
The functions th~1 and j correspond to the standard representation of GLm and GLn, 
respectively. Since 

Y{wYIm,nY{z)={l.wS:.r_1), 

replacing z and w by z + and z, we get 

d i a g ^ ^ M I ( 1 _ £ t f . z ) * gw$&-i) di^[h{g,z),j(g,z)} 

= DIAG[*/»($, 2 ) , 2 ) * ] y ( 3 ( z ) ) I M , N R (5(2 + A 2 ) d i a g [ % , z),j(g, 2 ) ] 

= y(*) V i m , n g Y ( 2 + A*) = ( „ ) . 

Prom this, we conclude 

(4.15) dg(z) = *h(g, z)~xdzj{g, z)~\ 

We can show (see Shimura's books: [EPE] (6.3.9) and [AAF] Section 3) : 

d e t ( % , 2 ) ) = d e t ( p ) - 1 DET(j(fl, z)). 
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This can be shown also as follows: On the diagonal torus Te C U(m) x 17(n), for 

g = d i a g [ i i , . . . , i m , t m + i , . . . , ¿ m + n ] , satisfies tj = tj1 and 

j{9, z) = cz + d = d i a g [ i m + i , . . . , £ m + n ] and h(g, z) = a + btz = diag[if \ . . . , i " 1 ] . 

Then j (resp. ft) corresponds therefore to (resp. the contragredient of) the standard 

representation of GLn(C) (resp. G L m ( C ) ) ; so, the corresponding highest weight char­

acter, after applying "det", is: 

m+n m 

d iag [£ i , . . . , tm+n] i—• Yl tJ ( r e s P - I I tj1)-

j—m+l j=l 

This relation coincides with the above formula of Shimura. We thus embed the prod­

uct U(m) x U(n) into GL(ra) x GL(n) by g J(g) = (*ft(#, 0 ) " 1 , j(g, 0)) . We also 

write J(#, z) = (*ft(flf, z)-l,j{g,z)). 

Writing c b = / \ ^ . we get 

dg(z) = det(grdet(j(g,z))-m-ndz. 

Write / i m , n € -X"(T) for the character 

/ i m , n ( d í a g [ í i , Í 2 , • • • »*m+n]) = (¿1 X ¿2 X • • • X ¿ m ) ~ n X ( t m + i X • • • X ¿ m + n ) ™ • 

Suppose that K ^ / x m ? n , and write « * = K — iXrn,n> We try to find a non-zero 

polynomial function pK* : V —> Homc(Z>c(ft*; C ) , L G ( ^ * ; C ) ) in Z such that 

p ( a ( * ) ) o p ^ ( J ( a , z ) ) = ap(z) ( p £ = i n d g N C K * ) 

for all a G G, where G = GL(m) x GL(n). Since £> = G / G o , if it exists, such a 

function is unique. By the above (hypothetical) formula, we could define p by 

p ( a ( 0 ) ) o ^ . ( 7 ( a , 0 ) ) = op(0), 

if we find an appropriate map p(0) € Komc(Lc(K*;C),LG(K*;C)). If we change a 

by cm for u G ?7(m) x Í7(n), then we have 

p(a(0))opC.(J(a)J(u)) = aup(0) 

p(a(0)) o pc

K.{J{c*)) = aup(0) o ^ . ( . / ( u ) ) " 1 . 

Such a map p(0) with up(0) o p ^ , ( J ( ^ ) ) _ 1 = p(0) exists because GL(m) x GL(n) is 

identified with a subgroup of GL(m + n ) ( C ) = 17(ra + rc)(C) (thus it corresponds to 

the identity inclusion: L C ( K * ; C ) = p £ c_> i n d p L ( m + n ) p £ = L G ( ^ * ; C ) = p £ for 

P = d iag [GL(m) ,GL(n) ]£? ) . Take K * | T c to be the highest weight cjn associated to 

the standard representation of GL(n). Then K* corresponds to the standard repre­

sentation of C/(ra,n), and we have PUn(z)(x) = {%)x for x G C n . We verify easily 

that gpu,n(z)(x) = pLJn(z)(j(g,z)x). Thus p(z) is a polynomial in z in this special 

case. Similarly to the above, if K*\TC

 = corresponds to the contragredient of the 

standard representation of GL(ra) , then « * is associated to the complex conjugate of 

the standard representation of U(ra, n ) , and we have p^m (z)(x) = ( \™ ) x for x G C m . 
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Again we verify that gp^m(z)(x) = (z)(Hdi z ) x ) i
 a n d Pujm(

z) * s a polynomial in z. 

For general K, LC(K*;C) (resp. LG(K*; C ) ) is a quotient of Lc{^n\C)0t(8)Lc(^m; C)®S 

(resp. LG{I^7I\ C)®* (8) Loi^mi C ) ® s ) . The general p K * (2;) is a constant multiple of the 

projected image of the tensor product of copies of pUJl (z) and hence is a polynomial 

in z. 

We define for / G i 7 ° ( X r , u>7 r) a holomorphic differential with values in L ( « * ; C ) by 

" ( / ) = P « - ( * ) ( / ) d « . 
— \J / JT rv y - / w / 

Note that here L c ( ^ ; C ) = Lc ( f t* ;C) (8) £c(Pm,n;C) and that Lc(Pm,n;C) is one-

dimensional; so, we can identify L C ( K ; C ) with L c ( « * ; C ) canonically as vector space, 

and thus, the above definition is consistent. We can easily verify that a*uj(f) = 

Clon(a) w(f). 

Theorem 4.4. — Assume that K ^ Pm,n- Then the association: f \-+ [ou(f)\ G 

Hd(Xr, L(K*; C ) ) for d = dime V induces the embedding: 

HLP(Xr,uK) Hd(Xr,LG(K*;C)), 

where [w(f)] is the de Rham cohomology class of 00(f). 

As an exercise, compute K* when G = GSp. 

4.2.2. Hecke equivariance. — We are going to show that the Eichler-Shimura map 

is equivariant under Hecke operators and is compatible with normalization of Hecke 

operators. 

We have normalized the Hecke operator on the topological cohomology group taking 

the action of £ G AB normalized as p ^ ( £ - 1 ) = K~1(£)p(£(£_1). Note that here, for 

any algebraic character x or C —» G m , pK — pK <g> x = Px«* 

We normalize again in the same way the action on wK taking the action of 

j 5 ^ ( £ _ 1 ) = ^ - 1 ( O P K ( C _ 1 ) m addition to the division by /x(£) (p = / x m , n ) - Let 

T = T(£) and write also coset representatives by £. Recalling K* = K / X - 1 and noting 

that ( f t T H O P K ' C C 1 ) = K ' H O P K K " 1 ) for £ G D, we have 

"(/)|Ttop = ;(^-1(0)-V^(r1Mew)(/(ew))d(^w; 

= p(z) (pit)-1
 £ K-1 (OPK(J«,= p(z) (pit)-1

 £ K-1 (OPK(J«, 

= p(z) (pit)-1 £ K-1 ( O P K ( J « , ) = u ; ( / | T c o h ) . 

In short, the extra modification of the action of the Hecke operator T ( £ ) by the 

character p on the coherent cohomology is absorbed by d (£ (z ) ) = p(£)~1dz on the 

topological cohomology. Hence the normalization of Hecke operators at p is identical 

on the left-hand-side and the right-hand-side of the Eichler-Shimura map. 
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5. Modul i of Abel ian Schemes 

We recall the construction of moduli spaces of abelian schemes. The theory of 

moduli varieties of abelian varieties has been studied mainly by Shimura and Mumford 

in the years 1950's to 1960's. Shimura proved in the late 1950's to the early 1960's the 

existence of the moduli varieties over a canonically determined number field relative 

to a given endomorphism ring, a level AT-structure and a polarization. This of course 

gives a moduli over the integer ring of the field with sufficiently large number of primes 

inverted. 

Basically at the same time, Grothendieck studied the moduli of subschemes in a 

given projective scheme X/S (flat over S) and also that of the Picard functors. The 

existence of a moduli scheme, the Hilbert scheme Hi lbx / s , of closed flat subschemes 

of X/s enabled Mumford, via his theory of geometric quotients of quasi-projective 

schemes ([GIT]), to construct moduli of abelian schemes with level TV-structure over 

Z [1/N]. 

We recall here the construction of Grothendieck and Mumford briefly, limiting to 

the cases which we will need later. We will redo the construction of Shimura varieties 

with a canonical family of abelian varieties in the following lectures. 

5 .1 . Hilbert Schemes. — In this subsection, we describe the theory of the Hilbert 

scheme which classifies all closed 5-flat subschemes of a given projective variety X/s-

This is a generalization of the earlier theory of Chow coordinates which classifies 

cycles on a projective variety. The theory is due to A. Grothendieck and main source 

of the exposition here is his Expose 221 in Sem. Bourbaki 1960/61. 

5.1.1. Grassmannians. — Let GL(n) : ALG —• GP for the category of groups GP be 

the functor given by GL(n)(A) — GLn(A). This functor is representable by a group 

scheme GL(n) = Spec (z det(t ) ] ) • We m a ^ e x t e n o ^ t h e functor to the category 

of schemes SCH by GL(n)(S) = A u t o s ( £ > § ) • We recall the notation [*] = { * } / ^ 

introduced in 2.1.5 which implies the set of isomorphism classes of the objects: "*" in 

the bracket. Then we define a contravariant functor Grass : SCH —> SETS by 

G r a s s 0 n > m ( S ) 

= [TT : 0$ - » T | 7r : C^-linear surjective, T locally Os-free of rank m] . 

For each morphism f : T —> S, the pullback / * 7 r : 0% - » f*T gives contravariant 

functoriality. The quotient TT : Og —• T is isomorphic to IT' : Og —> T' if we have the 

following commutative diagram: 

0 • Ker(Tr) • On

s — T • 0 

0 • Ker( 7 r
/ ) y On

s - 2 - * F • 0 
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with exact rows. The stabilizer of 7r : Og —> 0 ™ can be identified with the maximal 

parabolic subgroup 

P = { ( g &) G G L ( n ) | d is of size ra x ra} . 

As is well known, the quotient Grass^m,™, = GL(n)/P is a projective scheme defined 

over Z and represents the functor Gras s m , that is, 

H o m 5 C i f ( S , G r a s s y , ™ ) = [TT : On

s - » JT] 

functorially. Of course, if m = n — 1 or 1, we have Grasses,™ = P n - 1 . 

We can generalize this construction slightly: Let S be a scheme. Let £ /$ be a 

locally free sheaf on S of constant rank n. Then, for each 5-scheme Sf — • 5 , we 

define a contravariant functor from S-SCH to SETS by 

G r a s s g , m ( g / ) 

= [IT : f*£ ^» J7 \ n : Op-linear surjective, .T7 locally O^z-free of rank ra] . 

Then covering £ by sufficiently small open subschemes Ui so that £\ji = Ojj, we have 

Grass^n m represented by Grass m / [ / . = Gras s m xt/*- The gluing data gij : OuiOUj = 

£uinUj — OujdUi give rise to a Cech cocycle ^ with values in GL(n). This gluing 

datum induces a gluing datum of { G r a s s m / t / . } , giving rise to the scheme Grass£ ? m 

over 5 which represents the above functor. One can find a detailed proof (from a 

slightly different view point) of what we have said here in [ E G A ] 1.9.7. 

5.1.2. Flag Varieties. — We can further generalize our construction of the grassman-

nian to flag varieties. We follow [ E G A ] 1.9.9. We consider the following functor from 

S-SCH to SETS: 

m (Q'\ _ c c Ker (7 r J + i ) C Ker(7Tj), and £j is locally 
M a g B ( A ) - ^j-.t^tj f r e e o f r a n k n _ j ( i < j < n _ i ) • 

Here the subscript B indicate a split Borel subgroup of GL(ra), since Flag is repre­

sented by a projective scheme F l a g B = GL{n)/B if £ — Og. In general, we can show 

that 

F l a g B

 c — • Grassi x s Grass 2 • • • x s Grass n _i 

given by (TTJ) t—> ( 7 r n _ j G Grassj)j is a closed immersion ( [ E G A ] 1.9.9.3). By Plucker 

coordinates ( [ E G A ] 1.9.8), we can embed Gra s s m into the projective bundle of / \ m £\ 

so, F l a g B is projective. 

The Flag variety is basically the quotient of GL(n) by its upper triangular Borel 

subgroup B. We can generalize the construction to the quotient of GL(n) by the 

unipotent radical of B. We consider the following functor: 

F l a g ^ S ' ) = [(TTJ^J) | (TT,) e F l a g B ( S ' ) and : K e r f o ) / K e r f a + i ) ^ . 

Here we understand that Ker(7To) — £, and j runs over all integers between 0 and 

n — 1. If £ = and 5 is affine, writing 1 = (7Tj,</>j) for the standard flag TTJ : 
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0$ —> , projecting column vectors down to lower n — j coordinates, the upper 

unipotent subgroup U of GL(n) = Autos(Os) l s t n e stabilizer of 1. Therefore Flag^ 

is represented by F\a,gu/S = GL(n)/U. In general, cover S by open affine schemes 

Si = Spec(-Af) so that we have an isomorphism £ = 0$.. On Sij = Si D 5 j , by 

the universality, F lag^ /5 . XsSij is canonically isomorphic to Flag^/^. XsSij. Thus 

these schemes glue each other, giving rise to a scheme Flag^/^ representing Flag^. 

Obviously Flag^ is a T-torsor over F l a g s for the maximal split torus T C GL(n). 

Here the action of T on Flag^ is given by (TTJ^J) I - > {itj,tj<l)j) for (ti,..., tn) G T = 
n 

GM x • • • x G m . See [ G M E ] 1.8.3 about torsors. 

Let 7r : Flagf/ —>> F l a g B be the projection: (7Tj ,0 j ) t—• ( 7 ^ ) . Then for a character 

K of T , we define a sheaf = H0(TT~1(V), C^Fiag^ [«]) for each open subset V C 

F l a g B . Then £ K is a locally free sheaf on F l a g 5 . Since / : F l a g B —» 5 is proper flat 

over 5 , we find that / * £ K (which we again write £ K ) is a locally free sheaf on 5 . In 

this way, we can associate a /s-power £ K of the original locally free sheaf £ , which is 

non-zero if and only if K is dominant weight K of GL(n) with respect to ( 5 , T ) . 

5.i .#. F t o Quotient Modules. — Let / : X —• 5 be a flat projective scheme over a 

(separated) noetherian connected scheme S of relative dimension n. Here the word 

"projective" means that we have a closed immersion ¿ : X/s ^ P / s - Thus X has 

a very ample invertible sheaf Ox(X) = L*OPN(1). The sheaf of graded algebras 

A = © ~ = 0 f*(Ox(l)n) determines X as X = P r o j 5 ( . A ) . 

For a given coherent sheaf f on I , we write T(k) for T'<8>ox C?x(&) and define 

a sheaf of graded modules F = 0 f c > o Fk by = f*F(k). Then F is a graded ^4-
module of finite type, and we have T = F. Removing first finitely many graded pieces 

of F does not alter T = F. Thus defining F(n) = ®k^oF(n)k with F(n)k = Pn+fc, 

we have F(ri) = !F(ri). 

We suppose that T is Os-flat. For each geometric point s = Spec(&(s)) G S, there 

is a polynomial Pp(T) such that 

dimX(s) 

Hj(X(s),F(n)®OsHs)) = Q if J > 0 .Hj(X(s),F(n)®OsHs)) > n . 

For sufficiently large n, the ampleness of 0(1) tells us that 

Hj(X(s),F(n)®OsHs)) = Q if J > 0 . 

Thus actually Pjr(n) gives the dimension of H°(X(s), F{n) <g>os M S ) ) » which is equal 

to the 05 - r ank of / * T (by flatness of T)\ so, P^* is independent of the choice of s G S 

(connectedness of S). When S = Spec(A) , then F is associated to a graded module, 

and Pr(ri) is the Hilbert polynomial of this graded module (see [CRT] Section 13). 
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We consider the following contravariant functor for each locally noetherian S-

scheme <j)\T —• S (inducing (j>x : XT = X Xs T ^> X): 

Q u o t ^ ^ 5 ( T ) = [TT : <i>\T -» M. | A4 is a coherent 0 x T - m o d u l e flat over Or ] • 

The isomorphism between such 7r's are similarly defined as in the case of Grass. 

For simplicity, we always assume that schemes T are noetherian. Each Ai G 

Quot (T ) has its Hilbert polynomial P M , and obviously for g : T' —> T , g*M. has the 

same Hilbert polynomial. Thus we can split the functor as 

Q u o t w s = UQwg/x/s, 
where 

Q u o C Y / c ( r ) - [TT : <fxT -» M G Q u o t ^ ^ T ) | P M = P . 

Here is a theorem of Grothendieck: 

Theorem 5.2. — Le£ £/ie notation be as above. Suppose that X/s is projective. Then 

the functor Q u o t ^ is representable by a projective scheme Qp = Q u o t P / x / 5 of 

finite type over S. Thus for any S-scheme T, 

H o m s ( T , Qp) * [TT : f*T _ » M e Q u o t ^ / x / 5 ( T ) | PM = P 

functorially 

We are going to give a sketch of the proof of this theorem. We recall X = P ro j 5 (*4) 

for a sheaf A of graded (9s-algebras generated by A\. We cover Q u o t p by the subfunc-

tor Q. defined as follows for each positive integer j : Qj{T) consists of isomorphism 

classes of n : T/xT M/xT satisfying the following three conditions: 

(a) RlfT,*M(n)ixT = 0 for all i > 0 and n > j ; 

(b) RlfT,*K<(n)/xT = 0 for all i > 0 and n ^ j , where K = Ker(7r); 

(c) AkfrAKU)) = /T, .( /C(J + fc)) for all k > 0. 

Write i f (resp. M) for the graded 0 M - m o d u l e with K = JC (resp. .M = M). Define 

K(J) and M(j) as above; so, = @k>oK(j)k with = K(j + fc). First 

covering T by affine schemes Spec(jB^) and writing B% as a union of noetherian rings, 

we can reduce proofs to noetherian T; so, we may assume that T is noetherian as 

we remarked already. Then by a theorem of Serre ( [ E G A ] III Section 2) , for any 

coherent sheaf G/xT>
 w e n a v e t n e vanishing: R% fr^Q{n)/xT = 0 for n » 0. Thus (a) 

and (b) will be satisfied for a given ix for a suitable j . Since T is coherent (and X/S 

is of finite type) , it is finitely presented; so, K is finitely generated as </>*w4-modules, 

because M is finitely presented (cf [ C R T ] Theorem 2.6). Thus K(j) is generated by 

Kj = K(j)o for some j , and the last condition will be fulfilled again if j 0. This 

shows that Q u o t p ( T ) is covered by Qj(T) for each T. 

The Euler characteristic is additive with respect to the exact sequence: 0 —> K —• 

T M -> 0: x(JF) = X(1Q + X(M). Thus the conditions (a) and (b) tell us 
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that the Hilbert polynomials P;c(n) and Pf(n) give exact Or-rank of /T , * /C and 
j T ^ T . The vanishing of R}fT^X/XT = 0 implies that hAxx

 = <t>*f**/x ( [EGA] 
III, [ALG] III. 12.10 or [GIT] 0.5); so, the conditions (a) and (b) are stable under 
base-change. The tensor product is a right exact functor; so, the surjectivity of 
Pk • Ak ® fr,*JC(j) —> fr,*K(j + &) is also kept under base-change; so, Q is a well 
defined contravariant functor, and we have 

Quot* 
.7 j 

By these three conditions (a-c), TT G Qj(T) is determined by M j = fT,*M-{j) as 

a flat quotient of rank P ( j ) of Fj = fa^U)- Thus 7r I—> (7TJ : Fj - » M j ) induces a 

functorial injection 

Q . ( T ) G r a s s - , P i j ) ( T ) 
j - J > W / 

If TT' : —> M ' is in the image of then TT' satisfies: 

(i) Fj+k/^{Ak)K' for X ' = Ker(Tr') is locally 0 T - f r e e of rank P(j + fc) for all 
k ^ 0. Here we consider ^ ( . A ^ l f ' in (j)*(A) • F ; 

(ii) Define a graded module K'* by <t>*(A) • i f ' . We require the associated sheaf 
-—-~ * 

K' = K'JXT on XT to satisfy (b) and the quotient M.' = T IK' to satisfy (a) (these 
(a) and (b) are open conditions). 

For any graded 0* (*4)-module M = 0 f c M j t , defining = 0 f c ^ M f c , we have 

= M as already remarked. By this fact, the condition (i) assures that fr,*M- is 

locally O^-free, and the image of Q-{T) is characterized by (i) and (ii). 

We are going to prove the represent ability of assuming that j = 0. The general 

case follows from the same argument replacing 0 by j everywhere. Let 7 r u m v : F 0 / G - » 

M ) (F0/G = F 0 ®os ®G) be the universal object defined over G = Grass. Here we 

have changed our notation and write Mo for the universal quotient of F 0 / G (with 

rank F ( 0 ) ) . Thus for any morphism TT' : F 0 —• MQ on T with MQ locally-free of rank 

P ( 0 ) , we have a unique 5-morphism 0 : T —> Grass such that TT' = 0 * 7 r u m v . Let 

K = K e r ( 7 r u n i v ) . Write g : G = Grass —> S for the structure morphism. We consider 

the subset: 

z = LeG dimk(s)(AkF0/G/{AkK)) <g> k(s) = P(k) for all k > 0 > 

and the stalk (AkF$ / G / (AkK)) 8 is free for all k ^ 0 

Write M f c = AkF0/G/(AkK) and put M = 0 ^ o M f c . Then M f c = AkM0. The 0 G -
module M is flat on a generic point of ZQ = S u p p ( M ) = G. Since flatness is an open 
condition, we find an open connected subscheme Vo C ZQ which is maximal among 
open subschemes V over which M is flat. Repeating this process, replacing M and 
ZQ by M ®Oz0 Ozi and Z\ — Zo — Vb, we can split Z0 = |_Jf Vi into a finite disjoint 
union of connected subschemes Vi so that M ( g % CV* is flat over Vj. Then we find a 
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polynomial Qi(ri) such that 

ranko v . (Mn ®Zo Ovi) = Qi{n) if n ^ n*. 

By this fact, the open subscheme 

UN = {s e Z0 I d i m f c ( s ) ( M n ® G z q k(s)) < P(n) 0 ^ V n ^ N} 

stabilizes as N grows. Therefore on an open (dense) subscheme U = Uoo of Zo , if 

n ^ 0, we have d i m ^ ( s ) ( M n <8>oZo &( s ) ) ^ ^C 7 1) f ° r a U s £ U. Then we have an exact 

sequence:  

(Mn ®Gzq k(s)) < P(n) 0 

and Z is the closed subscheme of U on which all matrix coefficients of pk vanishes for 

all k ^ 0. Thus the image of Qo fall into Z_. The condition (ii) can be checked to be 

satisfied on an open subscheme of Z. Thus we have 

Theorem 5.2. — The functor Q^ is represented by a quasi-projective scheme Qj of 

finite type over S. 

Here the word "quasi-projective" means that the scheme has an open immersion 

into a projective scheme. Since Grass is projective, Qj is quasi-projective. 

The next step is to show that the increasing sequence of quasi-projective schemes 

{Qj}j stabilizes after j ^ TVQ; so, Q u o t p is represented by a quasi-projective scheme. 

The key point of the argument is to show that for any given set of coherent sheaves 

on X, each of whose members appear as a fiber of a coherent sheaf C on an extension 

XT (for an 5-scheme T ) , we can take T to be of finite type over S. This is an involved 

argument; so, we refer the audience to the first section of the paper of Grothendieck 

already quoted at the beginning. Once this is shown, \Jj Qj has to be quasi-compact 

(covered by T as above) , and the union is finite; so, Q u o t p itself is of finite type and 

quasi-pro j ect i ve. 

We can check this fact for X = P y 5 and T — Ox in a different manner. In this 

case, writing X = P r o j ( £ > 5 p o , . . . , T n ] ) and A C X for Spec [os [^,...,^ ) , 
then Rlf*0(j) = 0 for all i > 0 if j > n + 1 by a computation of cohomology groups 

by Cech cohomology with respect to the covering X = \J^=0Dj (see [ A L G ] III.5). 

A version of the argument of Grothendieck for X = P n to prove (a) and (b) for 

sufficiently large j for all M. and /C is as follows: Since Pjr = PJC + PM with PM = -P, 

PJC is determined by P. Choosing homogeneous generators # i , . . . , x r of degree — p 

of /C, we have a surjection: 0(p)r - » /C taking ( a i , . . . , a r ) i—> YH=iaixi- Here r 

and p are determined by the first two leading terms of PJC and hence those of P. Let 

/C 0 = Ker(7r). Then r P a ^ = PJC0 + PK,- Let r 0 = r and p = p0. The polynomial PJC0 

is determined by PJQ. Thus the first two leading terms of P)c0 are bounded below and 

above independent of /C. 
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Repeating this argument, we find an integer AT0 ^> 0 such that for integers pi > 
—No (i = 0 , 1 , . . . , n) we have the following exact sequences: 

0 — • Ki — • 0 ( P I ) R I — • —+ 0 

with K-i = /C. Then by the associated long exact sequence, if j ^ No + n + 1, 
R q + 1 f*JCi(j) = Rqf*lCi-i(j). Since cohomological dimension of P n is n (as easily 
checked by Cech cohomology) , for i > 0, 

0 = R n + i + l UKn(j) = R^UKn-^j) = • • • = ir/*/C(j). 

By the same argument, R%f*M.(j) = 0 for all i > 0 and all j > No + n 4- 1. 
Since D{ fi X is affine for any projective scheme the same argument 

works for X in place of P n , and Quo t^ . . is represented by a quasi-projective 

scheme (see [PAF] pages 261-262). It is customary to identify n G Q u o t c , x / X / 5 ( T ) 

with a closed immersion of SpecQ(Im(7r)) into X; so, QuotQx/X/S represents the 

following contravariant functor 

Hilbjy/sCn = {closed subschemes of XT flat over T with Hilbert polynomial P} . 

This scheme is called the Hilbert scheme of X for the polynomial P . 
We now finish the proof of the following theorem. 

Theorem 5.3 (Grothendieck). — For each projective scheme X/S for a noetherian con­

nected scheme S and a numerical polynomial P(t) G Q[t], the functor H i l b Y / 5 is 

represented by a projective scheme H i l b ^ 5 over S. 

Proof — We only need to prove the projectivity by the valuative criterion. Let 

7T : Oxv —• M/v G Q u o t ^ ^ / Y / g ( r y ) for 77 = Spec( i^) of the field K of fractions 

of a discrete valuation ring V. Then we define Ker(7r)/s for T = S p e c ( F ) by the 

largest subsheaf over T of OxT inducing Ker(7r), that is, OxT H Ker(7r), which is a 

coherent sheaf with quotient M/T locally free over XT inducing M/V after tensoring 

K, because V is a discrete valuation ring. Thus the point n G Q u o t ^ , X / S ( v ) extends 

to Q u o t ^ ( T ) . Since Q u o t p = (J Qj is quasi-projective, it is separated; so, it is 

proper. Since QuotQx/X/S is quasi-projective, it has to be projective. • 

5.1.4- Morphisms between Schemes. — In this section, we first consider the con­
travariant functor SecX/Y/S* H o m 5 ( X Y) : S-SCH-+ SETS given by 

S e c x / y / 5 ( T ) = H o m y T ( Y T , X T ) and Homs(X,Y)(T) = H o m T ( X T , y T ) . 

Here for Sec, X is supposed to be an S-scheme over Y. The latter is a special case of 
the former because 

H o m T ( X T , y T ) - S e c y x / x ( T ) (Yx=YxSX). 
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Each section s : Y —> X defines a closed subscheme of X/$ isomorphic to Y via the 

given projection / ': X —• Y. Write H = Hi lbx / s = U p H i l b £ / 5 . Then we have the 

universal closed subscheme Z of XH = X XS H satisfying the commutative diagram: 

Z - ^ X H 

H — H 

such that for any 5-scheme T and a closed subscheme W <^-> XT flat over T , we have 

a unique morphism (/>w : T —> H over S such that the pull back of the above square 

by (j>w is identical to 

w—^-*xT 

T T. 

We consider 5-subschemes U C H such that fu : Zu C X\j YJJ for a given 

/ : X —• Y induces an isomorphism fu : Zu = Yc/. From this, it is easy to see 

that Sec_Y/y/g is represented by the maximal subscheme U of H/s with this property 

fu : Zc/ = It/ . For each closed point x £ H, if / x is an isomorphism, it is an 

isomorphism on an open neighborhood of x\ so, U is an open subscheme of H. Since 

Hi lbJ / s is projective over 5 , and J7 fl H i l b ^ / 5 is open, each connected component 

of £7 is an open-subscheme of the projective scheme H i l b ^ / 5 for some P ; so, each 

connected component of U is quasi-projective over S. Thus we get 

Theorem 5.4. — Let X/s and Y/S be projective schemes over a connected noetherian 

scheme S. Then the functors Secx/Y/s
 a n ^ H o m g ( X , Y) are representable by schemes 

S e c x / 5 andHomx/s over S, respectively. Each connected component ofSecx/s a n d 

H o m x / 5 is quasi-projective over S. 

By construction, the scheme representing these functors may not be of finite type 

over S, because H i lbx / s could have infinitely many components. However each con­

nected component of the scheme is of finite type over S. 

Corollary 5.5. — Let the notation and the assumption be as in the theorem. Then 

the functor: T/$ > H o h i t ( X T , X T ) is represented by a scheme Ex/s o v e r S whose 

connected components are quasi-projective over S. 

If a section s : S <—> X is given, keeping representability, we can insist an endomor-

phism (j> G ET(XT) to take ST to ST- This goes as follows: Consider the functorial 

map: EX/S(T) 3 4> i-> 4>{ST) € X_(T) which induces a morphism a : EX/s —• X. Then 
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writing the set of endomorphisms keeping s as E^(XT), the functor: T t-» E^(XT) 
is again representable by a scheme 

Ejc/S = Ex/S xX,a,s S 

over S. 

5.1.5. Abelian Schemes. — A n abelian scheme X/S is a smooth geometrically con­
nected group scheme proper over a separated locally noetherian base S. 

We can drop "local noetherian" hypothesis, because a smooth geometrically con­
nected and proper group scheme over any base is a base change of such a scheme over 
a locally noetherian base (cf. [DAV] 1.1.2). 

We actually suppose that S is a noetherian scheme for simplicity. Since X is a 
group, it has the identity section 0 : S —» X. As in the elliptic curve case, any 5-
morphism 4> : X —• X' of abelian schemes is a homomorphism if </>(0x) = 0 ° 0 = ®X' 
(by Rigidity lemma: [ABV] Section 4, [GIT] 6.4 and [GME] 4.1.5). In particular, 
if X is an abelian scheme over S, every scheme endomorphism of X/g keeping the 
zero section is a homomorphism of group structure. Thus E^/s is a ring scheme 
associated to the functor: T i-» E^(XT) with values in the category of rings. 

Assume that X is an abelian scheme over a connected noetherian base S. Take 
a connected component E C E^/g. Each connected component of Ex/s is quasi-
projective over S. Since S is noetherian, E is of finite type over S, because of our 
construction: 

Ex/s — Ex/s X*,<T,O S. 

Suppose we have a discrete valuation ring A with field of fractions K and a morphism 

7] : S p e c ( K ) —• E which is over a morphism i : Spec(A) ^ S. In other words, we 

have the following commutative diagram: 

Spec ( iO — E 

Spec(A) — — > S. 

Then rj gives rise to a section of ^XjS{K). Since homomorphisms of abelian schemes 
are kept under specialization (which we call the rigidity of endomorphism; see [GME] 
Subsections 4.1.5-6 and [DAV] 1.2.7), rj extends to Spec(A) uniquely. By the valuative 
criterion of properness, we find that E is projective over S. If 0 is an endomorphism of 
the abelian scheme X/$, Ker(</>) is again a group scheme. If d ims Ker(</>) = 0, Ker(</>) 
is a locally-free group scheme of finite rank; in this case, we call 4> an isogeny. We define 
the degree deg(^ ) of (j) by the rank of Ker(</>) over S in this case. If d ims Ker(0) > 0, 
we simply put deg(</>) = 0. If the connected component E C E^^s contains an isogeny, 
the degree is independent of the point of E. As is well known, for any abelian variety 
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over a field, the number of isogeny with a given positive degree is finite. Thus E is 
projective and quasi-finite; so, E is finite over S ( [GME] Proposition 1.9.11). 

Corollary 5.6. — Let X/s be an abelian scheme over a connected noetherian base S. 
Then the functor T i—> E n d T ( X r ) is represented by a scheme E n d x / s — ^x/s o v e r 

Each connected component ofEndx/s i>s projective over S. If the connected component 
contains an isogenyy it is finite over S. Here E n d r ( ^ T ) denotes endomorphisms of X 
compatible with group structure on X. 

The subscheme E corresponds to a section XE of E n d Y / g ( X r e ) = E n d ^ X ^ ) . We 
assume that XE • XE —• XE is an isogeny; so, Ker(xE) is a locally-free group scheme 
over E, and E is finite over S. We consider the subalgebra AE = Z[XE] C E n d ( X ^ ) . 
Since E is connected, E n d ^ X g ) is an algebra free of finite rank over Z (see [ A B V ] 
Section 19). W e suppose that B = AE ® Z Q is semi-simple and commutative. Thus 
it is a product of finitely many number fields, and hence the algebra automorphism 
group Aut(i3) is finite. 

Let us fix a commutative algebra A free of finite rank over Z with semi-simple 
B — A ®z Q . Suppose that A — Z[x) for a single generator x. Let E x C E n d ^ / s be 
the collection of all connected components E such that 6E • A = AE with 6(x) = XE> 
A priori, the scheme E x / s may have infinitely many connected components, although 
we later see that up to inner automorphisms of E n d ( X / s ) , the number of components 
are finite using the fact that E n d ( X s / s ) Q is a semi-simple algebra of bounded 
dimension, where s G S is a geometric point and XS is the abelian variety fiber XS 

over s 6 S. Suppose that we have an embedding 6T : A c-> E n d r ( ^ T ) for an S-
scheme T / 5 . Then by the rigidity of endomorphisms, 6T(X) is a T-point of E x . In 
other words, E x / 5 represents the following functor 

FA(T) = { 6 T : A ^ E n d T ( X T ) I OTO-A) = i d x T } 

from SCH/s into SETS. On J7A, the finite group A u t ( A ) of algebra automorphisms 
acts by OT *—> OT ° cr. 

We can generalize the above argument to any algebra A free of finite rank over Z 
with semi-simple A<g>zQ. We take a finite set of generators { # 1 , . . . , Xj} and consider 
E = E X l X s EX2 Xs • • • X s KXj. Then we define E ^ to be the maximal subscheme of 
E such that we have an algebra embedding 0 : A End]gA {X^A) taking Xi to X ^ E A 

for all i. Then we have 

Corollary 5.7. — Let S be a noetherian scheme, and X/s be an abelian scheme over S. 
Let A be an algebra free of finite rank over Z with semi-simple i 0 z Q . Then the 
functor 

T/s — [ ( X r , 0 : A ^ EndT(XT)) \ 6(1 A) = idx] 

is representable by a scheme E ^ over S, and each connected component o / E ^ is finite 

over S. 
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A semi-abelian scheme X/s is a smooth separated group scheme with geometrically 
connected fiber such that each geometric fiber is an extension of an abelian variety by a 
torus. The toric rank may depend on the fiber. We suppose that X/s is a semi-abelian 
scheme. It is known that any homomorphism of semi-abelian schemes: X\j —> Y\j 
defined over an open dense subscheme U C S extends uniquely to X/s —• Y/s a s long 
as S is normal (endomorphisms are kept under specialization; a result of M. Raynaud: 
[DAV] 1.2.7). Thus if X/s is an abelian scheme a normal scheme S, we have a unique 
extension of the scheme Endx^/ t / over a dense open subscheme U of S to the scheme 
Endx / s o v e r S which represents the functor in the above corollary. Applying the 
valuative criterion using this rigidity of endomorphisms, we find that E n d x / s has 
connected components each projective over S. Suppose that we have an embedding 
6S : A ^ E n d x ( s ) / s ( ^ ( 5 ) ) f ° r a geometric point s G S with abelian variety fiber 
X(s). Then by the rigidity of endomorphisms, the maximal connected subscheme 
Z C S containing s such that 0S extends to the embedding 0 : A End(X/z) is a 
closed connected subscheme Z C S. Thus each connected component of Endx / s is 
projective over S. In the same manner as in the case of an abelian scheme X/s, we 
can prove that each connected component of Endx / s is quasi-finite; so, it is finite 
over 5 . Thus we get (see [PAF] Corollary 6.10) 

Corollary 5.8. — Let X/s be a semi-abelian scheme with abelian variety fiber over 
a dense open subset of S. If an abelian variety fiber X(s) has an inclusion A c—> 
E n d s ( X ( s ) ) 7 then the functor 

T/s •—• \{XT,e-.A^ E n d T ( X T ) ) ] 

is represented by a scheme over S. Each connected component of this scheme is finite 
over S. 

5.2. M u m f o r d Modul i . — We describe the Mumford construction of the moduli 
over Z of abelian schemes of dimension n with a given polarization of degree d2. 

5.2.1. Dual Abelian Scheme and Polarization. — We consider the following Picard 
functor: 

Picx/sCO = P i c ( X T ) / / £ P i c ( T ) = Ker(O^) 

for / : T —• S. It is known that P icx / s is represented by a (locally noetherian) 
reduced group scheme (Grothendieck: Bourbaki Sem. Exp. 232, 1961/62; [ABV] 
Section 13, [GIT] 0.5 and [DAV] 1.1). Let X be the identity connected component 
P ic^ / s ° f t n e g r o u P scheme representing Picx/s - Then X/s is an abelian scheme. 

Let £ u n i v G X(X) = P ic° v 9 / 9 = Ker(0* ^ ) corresponding to the identity. 

Then the sheaf £ u m v is characterized by the following two properties: 

- 0 * ~£ u n i v = £>o; 

XxsX X' 
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- Let T —• S be an 5-scheme. For any invertible sheaf L on XT algebraically 

equivalent to OxT-> there exists a unique morphism LL : T —• X such that 

(L x i d x ) * £ u n i v = L. 

Let L be an invertible sheaf on X. For x G X , we define the translation T x (? / ) = 

x + 2/, which is an automorphism of X. Then (T*L) 0 L _ 1 is an element in X , and 

we obtain a morphism A ( L ) : X —• X . This S-homomorphism is an isogeny (that 

is, surjective) if and only if L is ample (that is, choosing a base of H°(X,L®n) for 

sufficiently large n, one can embed X into P y ^ locally on S; see [ A B V ] Section 6 ) . 

The degree of the polarization is defined to be the square root of the degree of the 

homomorphism A ( L ) . 

There is another construction of A ( L ) . Consider a*(L) ® p\(L) 0 p^L)"1 as an 

invertible sheaf on Xx = X X 5 I , where a : X x X —> X is the addition on the 

group scheme X . Then this invertible sheaf induces an X-valued point of P i c x / s ( X ) , 

which factors through X , because at the identity, this sheaf specializes to the trivial 

invertible sheaf (so, the image is in the connected component of P i c x / s ) . We claim this 

X-valued point of X is actually A ( L ) . By specializing this sheaf at x : S —• X G X ( 5 ) , 

we get T*(L) 0 L _ 1 0 x * ( L ) , which is equivalent in P i c ( X ) / / * P ic (S) to TX*L 0 L - 1 , 

as desired. 

5.£.£. Moduli Problem. — We fix three positive integers n, d and N. We consider 

the following functor over Spec(Z[-^] ) : 

AdlN(S) = [(X,(I>n : (Z/NZ)2n * X[N],\)/S] 

where 

( 1 ) X/s is an abelian scheme with dims X = n, 

( 2 ) </>iv is an isomorphism over 5 , 

( 3 ) A is a polarization, etale locally A = A ( £ ) on S and d e g ( A ) = d2. 

It is known that if A is locally of the form A ( L ) , then 2 A is globally A ( L A ( A ) ) for the 

invertible sheaf LA(A) given by ( l x x A ) * ( £ U N I V ) (see [ G I T ] Proposition 6 . 1 0 ) . 

Here is a theorem of Mumford: 

Theorem 5.9 (Mumford). — There exists a quasi-projective scheme Mm over Z [ - ^ ] 

such that 

( 1 ) For any geometric point s = Spec(fc) o / S p e c ( Z [ - ^ ] ) , Ad,N(k) = Mpf(k); 

( 2 ) If N ^ 3 , £/iere e:mte a universal object ( X , X)/mn

 s u c h that for each triple 

( X , <f>N, A ) G A ^ A K S ) there exists a unique morphism 1: S —* M^v such that 

( X , 0 J V , A ) = ( X , </>, A ) x m n S = * * ( X , 0 , A ) . 

( 3 ) TTie above association: ( X , 0 J V , A ) / S H-» induces a functorial isomorphism: 

Ad,N = MN, where MN(S) = H o r n . 1 (S,MN). 
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We are going to give a sketch of the proof of the above theorem. Let XJA be an 

abelian scheme over a ring A. The key idea is that for a given very ample invertible 

sheaf L/x, the embedded image of X under L in P M for m + 1 = rank^ H°(X, L) 

is determined just by the choice of basis b of H°(X,L). In other words, the images 

of the embeddings associated to different basis are transported each other by an 

element of PGLm+i(A). Since for an abelian scheme, by the generalized Riemann-

Roch theorem (see [ A B V ] Section 16), we can compute the Hilbert polynomial P 

of L, the moduli functor of ( X , b) is a subfunctor of H i l b p m . Proving that the image 

is a quasi-projective subscheme H of H i l b p m , the moduli of X is constructed as 

M i = PGL(m + 1)\H. This an outline of what we are going to do. 

5.2.3. Abelian Scheme with Linear Rigidification. — Let ( X , </>JV, A) / s £ Ad,N(S), 

and write / : X —> S for the structure morphism. We consider the invertible sheaf 

L = / * L A ( A ) 3 on S of rank 6nd. The sheaf L A ( A ) 3 is very ample, because C? is very 

ample if C is ample (see [ A B V ] Section 17) and ampleness of LA(X) follows from 

A ( L A ( A ) ) = 2A as we already remarked. 

Let Sym(L) be the symmetric algebra: 0 ^ o Lk and put P ( L ) = Pro j (Sym(L)) 

which is a projective scheme over S locally isomorphic to P / ^ . A linear rigidification 

is an isomorphism i : P ( L ) = P / ^ . Thus t is determined by the choice of a base of L 

up to scalar multiplication. 

Since the very ample sheaf L A ( A ) 3 on an abelian scheme satisfies ( [ A B V ] Section 

16): 

- L = / * ( L A ( A ) 3 ) is locally free of finite rank; 

- i?v*(£A(A)3) = O i n > o , 
the formation of / * ( L A ( A ) 3 ) as above commutes with base change. Thus the associ­

ation 

A'dAs)= [(XAN,\,L)/S] 

is a well defined contravariant functor. 
The embedding I : X/S <-> P ( L ) P ™ determines the sheaf L A ( A ) 3 = 0 ( 1 ) , 

which in turn determines A because A ( L ) = 6A ( P i c x / s / ^ is torsion free). Having 

(j>N is equivalent to having 2n (linearly independent) sections Oj — 4>N(^J) of X over 

5 for the standard base { e i , . . . , e 2 n } of (Z/NZ)2n. We write cr0 = e for the identity 

section of X. 

We record here what we have seen: 

Proposition 5.10. — The data ( X , </>JV, A, ¿) is determined by the embedding 

(I : X/s c—• P / ^ , c r 0 , a i , . . . , c r 2 n ) . 

In other words, defining a new functor by 

Wd,iv(£) = [C : X/S C > P / S ^ O J ^ I J ' ' ' ia2n)/s]i 

we have an isomorphism of functors: A'd N — Hd,N-
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5.2.4- E m b e d d i n g into the Hilbert S c h e m e . — For simplicity, we just write P for 

P m

 x . We write So for Spec(Z[-^] ) . We consider the functor Hilbp associating to each 

S the set of closed subschemes of P / s flat over S with Hilbert polynomial P. As we 

have already seen, this functor is represented by a projective scheme H = Hilbp over 

Z . Write Z —•> H for the universal flat family inside P / # with Hilbert polynomial P. 

For each subscheme V C P/s flat over S having Hilbert polynomial P , we have a 

unique morphism h : S —> H such that V is given b y t o 5 x # Z c P / s over S. 

By the generalized Riemann-Roch theorem ( [ABV] Section 16), the Hilbert poly­

nomial of ( X , L) (or of the image I{X)) is given by 

P{T) = 6 n d T n . 

Thus the image I(X) induces a unique morphism h : S —» H such that I{X) — Sx^Z 

in P / s . 
k 

Let HK = Hilbp'*1 = Z x H Z x H x H Z. Then by the very definition of the fiber 

product, we get 

H o m 5 o ( S , Hk) = {{h,8U...,sk)\he H o m 5 o ( S , # ) , S j G H o m 5 ( 5 , Z ) } , 

where h : S Z i f for the projection p of Z to H (so, is determined by any 

of Sj). Thus HK classifies all flat closed subschemes of P with Hilbert polynomial P 
having k sections over S. The universal scheme over Hk with k sections is given by 

Z^> = Z x H H k . It has k sections: 

T i : H k 3 z ^ > z) e Z ^ (* = (*!,..., zk)). 

This shows that H d , N C H_k for k = 2n + 1 . For simplicity, write H0 for Hk. Since 

"smoothness" is an open condition (because it is local; in other words, smoothness at 

a point x of a morphism / follows from formal smoothness of the local ring at x over 

the local ring at / ( # ) ) , there is an open subscheme H\ of H o over which Z is smooth. 

Then Hi represents smooth closed subschemes in P with Hilbert polynomial P and 

k sections. 

Now we use a result of Grothendieck. Abelian varieties have rigidity such that if in 

a smooth projective family X —• S for connected locally noetherian S with a section 

e : S —> X, if one fiber is an abelian variety with the identity section induced by e, X 

itself is an abelian scheme ( [ G I T ] Theorem 6.14). This shows that over i^i , Hi has 

a closed subscheme H<i over which Z2 = ZH2 is an abelian scheme with the identity 

section e inducing To on X. 

Let Tj (j = 1 , . . . , 2n) be the universal 2n sections of Z^K\ We have a maximal 

closed subscheme H3 C H2 with [N] on = e,.where [N] is the multiplication by the 

integer N. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



196 H. HIDA 

The relation YljLi ajTj = e for a given a = (a,j) G ( Z / N Z ) 2 n — { 0 } gives a closed 

subscheme Ha of H3] so, we define H4 = H3 — | J a Ha. Thus the abelian scheme Z 4 

over H4 has 2n linearly independent sections of order N. 

Since Z 4 is a subscheme of P / H 4 , it has the line bundle 0 ^ 4 ( 1 ) which is the restric­

tion of 0 ( l ) / p . Then we define H$ to be the maximal subscheme of H4 such that 

p * L = L A ( A ) 3 for a polarization A : Z 4 —• * Z 4 , where p : Z 5 = Z 4 x # 4 i f5 ^ Z 4 is 

the inclusion. It is proved in [ G I T ] proposition 6.11 that the maximal subscheme H$ 

with the above property exists and is closed in H4. 

5.2.5. C o n c l u s i o n . — By the argument in the previous proposition, the functor 7id,N 

is represented over S o by a quasi-projective scheme H5 with the universal abelian 

scheme X = Z $ over i f 5 . The group P G L ( m + 1) acts on H5 by 1 i-> ¿ o g (g e 

P G L ( m + 1) ) . Then Mumford verifies through his theory of geometric quotient that 

the quotient quasi-projective scheme exists ( [ G I T ] Chapter 3 and Section 7.3): 

Md,N = P G L ( m + l ) \ H 5 . 

It is easy to check that if P G L ( m -hi) has no fixed point, then H § is a P G L ( m + 1)-

torsor over Md,N- This is the case where the structure ( X , <J>N,X) does not have 

non-trivial automorphisms, which follows if N ^ 3 by a result of Serre (see [ P A F ] 

pages 281-282 for this point) . In this case, M^N represents the functor Ad,N over So-

Otherwise, M^N gives a coarse moduli scheme for the functor. 

5.2.6. Compactification. — Here we quote a result from Faltings-Chai [ D A V ] V.2 

on the minimal compactification. Let X = ( X ^ J V ? 0jv> ^ ) ^d,N be the universal 

abelian scheme of relative dimension n with level iV-structure <j)N and the polarization 

of degree d2. We assume that N ^ 3. 

Since we have already studied via Tate curves the compactification of M = Md,N 

when n = 1 (the moduli of elliptic curves), we assume here n > 1. We then define 

u = /*fix/M- This is a locally free sheaf over M of rank n. We define deto; = / \ n cu. 

In [ D A V ] IV, a smooth toroidal compactification M = Md,N over ^ [ ^ ] is made 

(actually, details are exposed there for d = 1 but the argument works for d > 1 over 

Z [ ^ ] ) . We shall come back to this topic later with more details. They also proved 

that cu extends to the compactification M. Then we define a graded algebra 

00 00 

9 = Gd,N = 0 H° (MdtN,det(u)®m) = 0 H° (MdtN,det(u)®m), 

m=0 ra=0 

where det (a ; ) < 8 > m is the ra-th power of the invertible sheaf det(o;). The last identity 

in the above definition follows from Koecher's lemma ( [ D A V ] V.1.5) if n > 1. It is 

proven in [ D A V ] V.2.5 that this graded algebra is finitely generated over Z[(jv, ^ ] for 

a fixed primitive iV-th root C/v of unity, and by the first equality, the graded algebra 

is normal. Thus we may define Gd,N to be the normalization of Qd,i in the algebra 
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T^d,N defined below. W e define the minimal compactification by 

MIn = PToj(gdtN). 

It is called "minimal" because any smooth toroidal compactification Md,N covers 

canonically M% N . 

We can define a sheaf of graded algebras over M^N by 

oo 

n = Tld,N= © U (det(w)®m) . 
171— — OO 

Then Md,N = S p e c M ( 7 £ ) represents the following functor: 

Vd,N(S) = [(X,</>N,\,u>)/s | (*,</>AT, A) 6 AdMS),H°(X,detnx/s) = Osu;] , 

and we have 

Md,N = <&m\Md,N 

as a geometric quotient. Here Md,N is the relative spectrum of 71 over M ; so, Aid,N 

is affine over Md,N- In particular, Md,N is a G m - t o r s o r over Md,N if AT > 3. Here 

a £ G m acts on the functor VD,N by (X,<J>N,\,LJ) ^ (X,(/>N,\,au). The relation 

between the moduli scheme classifying abelian schemes with level structure and the 

one classifying with an extra information of nowhere vanishing n-differentials is ex­

actly the same as in the elliptic modular case, which amuses me a bit, and it is also 

interesting that this is proven only after a hard work of compactifying smoothly the 

open moduli Md^. 

6. Shimura Varieties 

In this lecture, we sketch basic theory of Shimura varieties of PEL type following 

[Sh3], [D2] and [Ko]. 

Shimura originally constructed canonical models in the 1950's to 1960's as a tower 

of quasi-projective geometrically connected varieties (over a tower of canonical abelian 

extensions of the reflex field) with a specific reciprocity law at special algebraic points 

(in the case of Shimura varieties of PEL-type, they are called CM points carrying an 

abelian variety of C M type; [Sh3]). His theory includes interesting cases of canonical 

models of non PEL type (for example, Shimura curves over totally real fields different 

from Q ) , but in this paper, we restrict ourselves to the case where we have a canonical 

family of abelian varieties over the canonical model (so, the construction of the models 

is easier, as was basically done in [Sh2]). 

Deligne reformulated Shimura's tower as a projective limit of (possibly non-

connected) models over the reflex field (incorporating theory of motives in its scope) . 

We follow Deligne's treatment in order to avoid the definition of the canonical fields 

of definition of the connected components, although by doing this, we may lose some 

of finer information. 
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Kottwitz extended the Deligne's definition of Shimura varieties of PEL type to a 

projective limit of schemes over a valuation ring of mixed characteristic, when the 

level is prime to p. Since we are interested in formal completion at p of the Kottwitz 

model (and an analogue of the Igusa tower over the Kottwitz model) , what we use 

most is Kottwitz 's formulation. 

6 .1 . Shimura Varieties of P E L Type . — We construct the moduli of abelian 

schemes with specific endomorphism algebra. 

6.1.1. E n d o m o r p h i s m s . — Let B be a finite dimensional simple Q-algebra with cen­

ter F. Let S be a set of primes of F over p. We always assume 

(unr) We have an isomorphism Bp = B <g)q Qp = 0 p E 5 M n ( F p ) and F p / Q p is un-

ramified for all p G S. 

Let "*" be an involution on B which satisfies Tr(xx*) > 0 for all 0 ^ x G B^ = 

B (£)Q R. We call such an involution a positive involution. We fix a maximal order 

O = OB of B stable under *. We assume that the isomorphism in (unr) induces 

O P = 0 ® z Z p ^ 0 p G 5 M n ( 0 F | P ) . 
We fix a left 5 -module V of finite type and assume that we have a non-degenerate 

alternating form ( , ) : V x V —• Q such that (bv, w) = (v, b*w) for all b G B. Write 

Vp = V ®Q Qp and Voo = V 0 Q R. We also assume to have an O-submodule L C V 

of finite type such that 

(LI ) L ® z Q = V; 

(L2) ( , ) induces H o m z p ( L p , Zp) = Lp, where Lp = L <S>z Z p . 

Put C = End J e(V r ) , which is a semi-simple Q-algebra with involution again denoted 

by "*" given by (cv,w) = (v,c*w). Then we define algebraic Q-groups G and G\ by 

(6.1) G ( A ) = {x G C <8>Q A | xx* G A x } ; G ^ A ) = {x G G ( A ) \ xx* = 1 } . 

We now take an R-algebra homomorphism h : C = C ® Q R with h(z) = 

h(z)*. We call such an algebra homomorphism * - h o m o m o r p h i s m . Then h(i)* = —h(i) 

for i = \ /—T and hence xl = / i ( i ) _ 1 x * / i ( i ) is an involution of Coo. We suppose 

(pos) The symmetric real bilinear form (v, w) i—• (v, h(i)w) on Voo is positive definite. 

The above condition implies that ¿ is a positive involution {e.g. [Ko] Lemma 2.2). 

Since h : C —> Coo is an R-algebra homomorphism, we can split Vc = V ® Q C into 

the direct sum of eigenspaces Vfc = V\ 0T^2 so that / i(z) acts on Vi (resp. V2)) through 

multiplication by z (resp. z). Since ft(C) C Coo, h(z) commutes with the action of 

B] so, Vj is stable under the action of Be = B ® Q C. Thus we get the complex 

representation p\ : B ^ E n d c ( V i ) . We define E for the subfield of Q fixed by 

{a G Au t (C) I Pi = P i } -

The field E is called the reflex field (of B). We write OE for the integer ring of E. 

Let Z ( p ) = Z p n Q and put 0 ( p ) = O 0 z Z ( p ) . 
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Let be an open compact subgroup of G ( A ^ p o ° ^ ) for 

A ( p o o ) = { x £ A I Z p = Xoo = 0 } . 

Let KP = {g G G ( Z p ) \ g L p = L p } , and put K = KP x C G(A(°°>) . We call 

an open compact subgroup K of G(A^°°^) of this type an open compact subgroup 

maximal at p. 

We study classification problem of the following quadruples: ( X , A, i, r}^)/s- Here 

X is a (projective) abelian scheme over a base S, X = P i c ^ ^ p O is the dual abelian 

scheme of X, A : X —» X is an isogeny with degree prime to p (prime-to-p isogeny) 

geometrically fiber by fiber induced from an ample divisor (polarization), i : 0 ( p ) ^ 

E n d | ( p ) ( X ) - E n d 5 ( X ) 0 Z Z ( P ) , and r/ ( p ) is the level ^ - s t r u c t u r e (see below for 

the definition of the level structure). The base scheme S is assumed to be a scheme 

over S p e c ( Z ( p ) ) . We now explain the meaning of the level i f (^-structure rfp\ We 

consider the Tate module: 

T ( X ) = HmX[iV] , T&\X) = T ( X ) ®z Z ^ and V^(X) = T ( X ) ®Z A<*°°\ 
n 

where N runs over all positive integers ordered by divisibility, and = n ^ p Z e -

This module is equipped with a non-degenerate skew hermitian form induced by the 

polarization A. Fix a base (geometric) point s G S and write Xs for the fiber of X at s. 

Then the algebraic fundamental group 7Ti(S, S) acts on V^(XS) leaving stable the 

skew hermitian form up to scalar. Then rft) : V { A ^ ) = V ®Q A ^ ° ° ) V^{X8) 

is an isomorphism of skew hermitian £?-modules. We write rfp^ = rfp^ mod K ^ and 

suppose that a o rfp^ = fj^ for all a G 7Ti (5 , s) (this is a way of describing that the 

level structure rfp^ is defined over 5 ) . Even if we change the point s G 5 , everything 

will be conjugated by an isomorphism; so, the definition does not depend on the choice 

of s as long as S is connected (see [PAF] 6.4.1). When S is not connected, we choose 

one geometric point at each connected component. 

As examples of and open compact subgroups K maximal at p of G ( A ( ° ° ) ) , we 

could offer the following subgroups: 

f = {x G G(A<°°>) | x L = L } , f <*> = { x e f \ x p = l}] 

? № ( N ) = {xe f(p) \x£ = £ mod N L for all i G L} 

for an integer N > 0 prime to p. 

Since every maximal compact subgroup of GLB(V(A^°°^)) = A u t £ A ( V ( A ( ° ° ) ) ) 

is the stabilizer of a lattice L stable under a maximal order, we find a lattice L 

with L <g>z Z
{p) stable under where Z ^ = Ue^P%e for ^ running through 

all primes different from p. Changing L by a sublattice of p-power index if neces­

sary, we may assume that L satisfies the conditions (L l -2 ) . We call a quadruple 

X _ / s — ( X > \ h V ^ ) / s isomorphic to 2L'/s = (X', X ,if ,7]'^)/$ if we have an isogeny 
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4> : X —> X' defined over S such that p \ deg(0) , </> o \ f o <p = cA with c £ 

cfroiocj)*1 = %' and rf^ = (j>offp^. In this case, we write X ~ X'. We write X — X ' 

if the isogeny is an isomorphism of abelian schemes, that is, deg (^ ) = 1. 

Let So = Spec(OE ® z %(p))- We take the fiber category C = CB of the quadruples 

( X , A, i,rj(p^)/s over the category So-SCHof So-schemes and define 

(6.2) H o m C / s ( ( X , A, i,TjW)/s, (X', A', ? ( p ) ) / s ) 

f , 6o\'o<f> = c\ with 0 < c € Z , X w l 
= ^ H o m s ( X , X ' ) ® z Z ( p ) ^ . I ( p ) _ J . 

^ (pot = i' o (/) and r/' = 0 o rjKP) J 

We consider the functor : S0-SCH-+ S £ T S given by 

= = { X / 5 = ( X , \ , i , r f * ) ) / s | X satisfies (det) b e l o w } / « . 

This functor is representable by the Shimura variety S h ^ defined over So as we will 

see later. Here the determinant condition is given as follows: We fix a Z( p ) -base 

{ a j j i ^ j ^ t of 0 ( p ) and consider a homogeneous polynomial 

f(Xu ...,Xt) = d e t ( a i X i + • • • + atXt\Vl). 

Then f(X) e 0 E <8>Z Z ( P ) [ X I , . . . , X t ] and coefficients of / ( X ) generates E over Q . 

Here OE is the integer ring of E. For a given quadruple X = ( X , A, z, r}^)/s, w e have 

the Lie algebra L i e ( X ) of X over Os, which is a 0 ( p ) <8>z O^-module via i Then we 

can think of g(Xu . . . , Xt) = d e t ( a i X i + • • • + atXt\Ue{X)) G Os[Xu . . . , Xt\. We 

impose 

(det) j(f(X1,...,Xt))=g(X1,...,Xt), 

where j : OE 0 ^ ( p ) —• is the structure homomorphism. Over a field of character­

istic 0, one can characterize representations of a semi-simple algebra by its trace, but 

over a general base, we need, by the Brauer-Nesbitt theorem, the entire characteristic 

polynomial to determine a given representation; so, the determinant has to be fixed 

as above. 

Allowing any closed subgroup K c G(A(°° ) ) (not necessarily maximal at p ) , replac­

ing isogenics of degree prime to p by (any) isogenics and imposing one more condition 

(pol) below, we may consider the functor VK ' E-SCH^ SETS given by 

-p(S) = VK(S) = {X/s = ( X , \ , i , r j ) / S I X satisfies (det) and ( p o l ) } / ~ , 

where rj : V(A^) = V <g>Q A(°°> ^ V(X) = T ( X ) (g>z A(°°>, 77 = (77 mod K), K is any 

closed subgroup of G ( A ( ° ° ) ) , and ( X , A, i, rj)/S ~ ( X ' , A', i'rj')/5 if the two quadruples 

are equivalent to each other under an isogeny (not necessarily of degree prime to p). 

Here is the condition (pol) : 
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(pol) There exists an B-linear isomorphism / : V = # i ( X , Q ) such that f~1ohx°f 

is a conjugate of h under G ( R ) , (/(8) 1A(°°)) ^ V a n d Ex(f(x), f(y)) — OL{X, y) 

up to a e Q x , 

where £JC is the Riemann form on Hi(X, Q ) (see [ABV] Section 1) and hx ' C c—• G ^ 

is the R-algebra homomorphism induced by the complex structure on = Hi ( X , R ) 

induced by the complex structure of X(C). This functor is representable by the 

Shimura variety Shx denned over E. The scheme ShK/E is the model Deligne studied. 

We have a canonical inclusion i : ShK/E S h ^ Xs0E if K is maximal at p. The 

isomorphism class of G over each local field is determined by the level structure 77, but 

G is not uniquely determined globally without the condition (pol) . In other words, 

if G does not satisfy the Hasse principle, even if K is maximal at p , the inclusion i 

may not be an isomorphism. As verified by Kottwitz (see [Ko] Section 8 and [PAF] 

Theorem 7.5), if G is either an inner form of the symplectic group (type C groups) 

or an inner form of a quasi-split unitary group U(n, n) (type A ) or F is an imaginary 

quadratic field, we have ShK/E = S h ^ *s0E. Otherwise, the situation is more subtle 

(see [Ko] Section 8) . 

6.1.2. Construction of the Moduli. — Here is a brief outline of how to show the 

representability of the functor V$ for K maximal at p. If KM is sufficiently small 

so that A u t s ( X ) = { l x } , the prime-to-p isogeny giving the isomorphism X « X' 

in the definition of can be taken to be an isomorphism by changing X' in the 

isomorphism class under (and insisting rfp\L^) = T ( p ) ( X ) ; see the argument 

below and [Dl] 4.10). Therefore we have V$\S) ^ V'K(S), where 

V'K{S) = [X/s | X with (det), X » 3X' e V(p)(S) and ^ p \ l ^ ) = T ^ ( X ) ] , 

where [ ] = { } / = . Under this setting, we change the morphism set of C/s from 

H o m C / s to I s o m c / s : 

( 6 . 3 ) I s o m C / s ( ( X , A, i, rjM)/s, ( X ' , A', *', 7 7 ' ( P ) ) / 5 ) 

= < < / > e I s o m s ( X , X ' ) 
0 o A' o (j) = cA with 0 < c G Z , x v, 

(j)oi = i' o (f) a n d 7 / '
 P = <̂  o ry( p) J 

Then we claim that the fiber category C is an algebraic stack for any given K^ and 

is an algebraic space if Autc/s(X) = {lx} for all objects X oi C/s (see [DM] for 

definition of stacks). By forgetting B-linearity of rf^ and restricting i to Q , we have 

a functor from CB into the fiber category CQ of ( X , A, i^rf^) for B = Q for a suitable 

choice of an open compact subgroup GSp(2d)(A^poc^) (d = d i m X = \ dimQ V ) . This 

fiber category is proven to be an algebraic stack and is representable by a quasi 

projective scheme M = M Q / S 0 by Mumford (see Section 5, [GIT], [Sh2] and also 

[DAV], [CSM]). 
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We now supplement the above outline with details. We are going to show that we 

can replace by " = " in the definition of the functor imposing an additional 

condition. Let A / s = (A,\,i,rfr))/S. Then rf*) induces V ( A ^ ) = V(»QA^ °* 

V(P°°)(A), and therefore, we have r)^\L^) C V^°°\A) for Z>> =L®Z Z < P > . 

Urj^(L^) C T<*>\A), the cokernel is an etale group subscheme C C A / s locally-

free over S of rank prime to p . Make the quotient abelian scheme A! = A / C over S 

(see [ A B V ] Section 12 and [GME] Proposition 1.8.4), and then we have a prime-to-p 

isogeny <f> : A —• A! with Ker(0) = G. We then consider Af = (A', A ' , f , r / ( p ) ) / s 

given by A = 0 o A' o i ' ( a ) = (f) o z(a) o 0 _ 1 and r / ^ = 0 o rfp\ Then A ' satisfies 

i7 / ( p ) (L(p)) = T W ( A ) . 

If rft\l№) D T M ( A ) , we can find a prime-to-p isogeny A' —> A such that 0 o 

^/(p) = ^(p) ? A ; = 0 o A o 0, 2 ; ( a ) = 0 " 1 o f ( a ) o </> and r / ( P ) ( Z > ) ) = T<P>(J4). This fact 

follows from the canonical identification: T ( A ) = 7Ti (A,0) for the origin 0 of A (see 

[ A B V ] Section 18). 

If neither ry(p)(L^)) C T^\A) nor rj^(L^) D r W ( A ) , we can find two prime-to-p 

isogenies: A A " and A ; A / ; forA77 = {A",\",i",7)"^)/S so that » / , ( p ) ( L W ) = 

r;(p)(Z,kO) n T ( P ) ( A / ; ) and r / ( P ) ( Z > ) ) = T ^ ( A ' ) . Thus always we can find in the 

prime-to-p isogeny class of a given A/S, a, quadruple A / 5 with r]'^p\L^) = T ^ ( A ' ) . 

If 0 : ^ / 5 - ^ 4 / 5 is a prime-to-p isogeny with rfiP){L<*)) = T^(A) and 

V'(P)(L(P)) = Tto(A'), then deg(^) = 1 and A / s ^ A'/s by </>. 

Thus insisting f | W ( i W ) = T ^ ( A ) , we can replace « by = in order to define the 

functor (see [ D l ] 4.12). In other words, 

V%\S) * {A/s | (det) and rj^{L^) = T^(A)}/^ . 

The functor defined in this way can be proven to be representable by an So-scheme 

M ( G o , X 0 ) / K by works of Deligne, Mumford and Shimura (c / . [Ko] and [PAF] 7.1.2). 

Since r^ p o °^ (TV) for N prime to p gives a fundamental system of neighborhoods of 

the identity in G ( A ^ ° ° ) ) , we may assume that K = f(N) = f(P°°\N) x f p . We 

only need to show that C is relatively representable over the Mumford moduli M Q 

given by Theorem 5.9. Let V'K be the functor with respect to K and B. Write 

2d = d imQ(V) . Then d — d ims X for 2L/s E ^K^)^ which is therefore independent 

of the choice of 2L/s by (det) . For simplicity, we assume that the polarization pairing 

( , ) in (L2) gives the self duality of L. Then we can identify the similitude group of 

( , ) acting on L with GSp2d(%). In this way, we let GSp2d{A) act on V ® Q A. Write 

Ko for the maximal compact subgroup of GSp2d(^°°^) preserving L and principal 

level N structure. Then K0 n G(A(°°>) = K and K = f(N) with respect to B = <Q>. 

As described in Theorem 5.9, VF<%0 is representable by a quasi-projective scheme 

M = MQ = MJV defined over Z ( P ) . Let X / M be the universal quadruple over M and 

A e X be the universal abelian scheme. We consider the functor from M-SCH into 
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S E T S : 

T / s i • [ (A T , i : 0 B <-> E n d T ( A T ) ) | t ( l B ) = i d A ] 

This functor is represent able by a scheme MB/M basically by Corollary 5.7 (see Corol­

lary 6.11 in [PAF] for the version of Corollary 5.7 which is necessary to prove this 

fact). Since the level structure RJ^ on A gives rise to a level structure rfp^ of ( A T , i), 

we have a triple X_ = ( A T , hV^)/T- Thus is a subfunctor of the above functor. 

Again by the rigidity of endomorphisms under specialization, V'x is represented by a 

closed subscheme S h ^ of MB whose connected components are (each) finite over MQ 

(see [PAF] 7.1.2 for more details). We are going to show that S h ^ is of finite type 

over MQ (SO it is projective and finite over M Q ) . Take a geometric point x G M Q , 

suppose that we have i : OB End A as above, which gives rise to a geometric point 

y G S h ^ . For a given T , if T is connected, E n d ( A r ) <8>z Q is a semi-simple alge­

bra of finite dimension with positive involution (see [ A B V ] I V ) . Thus the number of 

embedding B End ( A T ) <8>Z Q is finite up to inner automorphism. Moreover the 

number is bounded by a constant only depending on the dimension of A , that is d, 

because d i m ( E n d T ( A T ) ® z Q ) is bounded by 4d2 (e.g. [ G M E ] Theorem 4.1.19). If 

one changes i by an inner automorphism induced by a G End ( A T ) and if we sup­

pose that ( A T , a i a " 1 , A, fj^) is still an element of VfI^(T), it is easy to show, by 

the condition that rj^{T^p\X)) = L< p) combined with (L l -2 ) that a has to be an 

automorphism of A T - Since automorphisms of an abelian variety preserving a given 

polarization are only finitely many by the positivity of polarization, there are only 

finitely many possibilities of having i : OB E n d ( A r ) which gives rise to an element 

OIV'%{T). Thus S h ^ } M Q is quasi finite. Then the projectivity of each connected 

component of S h ^ over M Q implies the finiteness of the map: S h ^ —• M Q . Actually, 

one can show that the morphism: S h ^ —> M Q is a closed immersion (over Q ) if N is 

sufficiently large (cf. [Dl] 1.15 and [PAF] 8.4.2). 

Again by the rigidity of endomorphism of abelian schemes (and semi-abelian 

schemes) over a normal base under specialization ( [DAV] 1.2.7), for N sufficiently 

large, V'K is represented by the schematic closure of S h ^ ^ in M Q / S 0 , and hence CB 

for general B is a representable by a scheme Sh^So projective over MQ/SQ if is 

sufficiently small. 

Although we assumed that L is self dual, replacing GSP2D by its suitable conjugate 

in G L ( 2 d ) 1 we can easily generalize the above argument to a given polarization of 

degree prime to p. 

In exactly the same way, we may conclude VK — V'K over E (not over So) even if 

K is not maximal at p; so, we get the representability of VK by the Shimura variety 

Shx /js and the inclusion Sh^/E ^ S h ^ * s 0 E if K is maximal at p. Hereafter, 

if confusion is unlikely, we remove the superscript " (p)" from the notation S h ^ , 

and if we consider the Shimura variety S h ^ over So-scheme, we implicitly assume 
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Shx/E = S h - x Xs0E, that K is maximal at p and that the model is the integral 

Kottwitz model S h ^ . As we already remarked, ShK/E = S h ^ X s 0 E holds if G is a 

type C group or F is an imaginary quadratic field ( [ P A F ] Theorem 7.5). 

In the non-compact case, in [ D A V ] , depending on the data at the cusps govern­

ing how toroidal compactification is done, a semi-abelian scheme (universal 

under the data) is constructed. Then a similar argument using Corollary 5.8 (ap­

plied to G m place of A / M q ) gives a projective scheme over M Q for a toroidal 

compactification M Q of the Mumford moduli (by Chai and Faltings). Since the endo-

morphism algebra of an abelian variety X / k for an algebraically closed field k (after 

tensoring Q ) is semi-simple, there is only finitely many possibility of embedding B 

into Endfc(X) (g>z Q up to conjugation. Thus the morphism MB —• M Q has finite ge­

ometric fiber everywhere, that is, the morphism is quasi-finite. Since the scheme MB 

is proper over M Q (see Corollary 5.8), it has to be finite. Thus writing u = f*^A/MB 

for / : A —» MB and defining det(cj) by its maximal exterior product, we can define 

a graded algebra: 

oo 

g K = g§= e H ° ( M B , d e t ( u ) n ) . 
n=Q 

Moreover, as seen in the last subsection of Section 5, M Q = Proj(^Q-) and hence we 

have the minimal compactification of Sh# defined by S h ^ = P r o j ( £ | f ) , which is finite 

over the minimal compactification M Q of the Mumford moduli. 

If one shrinks enough the group K outside p , any endomorphism of the semi-abelian 

scheme sitting over the cusp of MK extends uniquely to infinitesimal neighborhood 

of the image of the cusp of MB in M Q ; SO, MB is etale around the cusp over the 

image of MB in M Q . The smoothness of MB at cusps for a well chosen cuspidal 

datum was shown by Fujiwara for C of type A and C ( [ F ] ) . If one choose the cuspidal 

data for G S p ( 2 d ) and G so that they are compatible (in other words, so that the 

pull back of the semi-abelian scheme over M Q is the semi-abelian scheme over MB 

associated to the cuspidal data for G ) , this guarantees that the g-expansion parameter 

is well defined over So and projectivity for MB of level prime to because it is finite 

over M Q . 

Even if K is not very small, we always have a coarse moduli scheme S h x represent­

ing the functor V$ or VK over So or E accordingly. The above arguments all work 

well. We write Sh/c for a toroidal compactification of S\IK and S h ^ for the minimal 

compactification. Since the natural morphisms: 
S h ^ — • M Q and S h ^ — • M Q 

are quasi-finite and projective, they are finite. Let V be the image of S h ^ in M Q . 

Then V — P ro j (£*) for a graded algebra Q* which is the quotient of QQ . Then, 

assuming the existence of a smooth toroidal compactification of S h x , we have 

(Proj) S h ^ = P r o j ( a £ ) . 
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Here GB LS the integral closure of GQ for the Mumford moduli in the algebraic closure 

of the total quotient ring of G* if K is sufficiently small. This follows from the fact 

that S h ^ is smooth outside cusps, and at the cusps, if K is sufficiently small, it is 

finite over M Q (and normal over V). The graded algebra GB * s the graded algebra of 

automorphic forms on G if d i m S h x > 1. 

We have formulated the moduli problem for the similitude group G. But we can 

impose polarization À without ambiguity modulo Z ( p ) = Z p D Q. Then we automat­

ically obtain the moduli problem for G\\ so, we do not describe the moduli problem 

and Shimura varieties for G\, although our theorems are valid also for G\ with some 

obvious modification. 

6.2. Shimura Variety of Unitary Similitude Groups. — We could think of 

the Shimura variety of the unitary similitude group given by 

(6.4) GU(A) = {x e C ®Q A I xx* e (A <g)Q F 0 ) x } , 

where FQ is the subfield of F fixed by the involution "*". Thus we have GU D G D G\. 

To define the moduli problem of abelian schemes associated to GU/Q, we need to 

modify slightly the morphisms of the fiber category CB'> We define the fiber category 

A = AB over SCH/$0 to be the category of quadruples 2L/s — (X,\i,rftp)) for 

mod K, where K C GU(A^) is a closed subgroup maximal at p. Write 

Oo for the integer ring of Fo- Then we define 

(6.5) RomA/s(X/s,X'/s) 

IA^TI ™(v v ' \ ^ v $o\'o(j) = \oi(a)witha£{Oo®Z(p))+\ 
= ^ H o m ( J , X ) 0 Z ( p ) . (p) V, 

^ (poi — i'o<p and 7]' = <p o r)KP) J 

where (Oo 0 Z ( p ) ) + indicates the group of totally positive units in (Oo <S> Z ( p ) ) x . We 

then consider the functor 

V^)lA(S) = {X/s I X satisfies ( d e t ) } / « , 

where indicates isomorphism classes in AB/S-

The above functor can be proved to be representable if K is sufficiently small by 

the same argument as in the case of G (see [PAF] 7.1.3), and its generic fiber gives 

the Shimura variety over E (defined adding a requirement analogous to (poi) ; see 

[PAF] Theorem 7.5). The compactification of the moduli space MK/s0 can be also 

done as described above. The only point we need to make explicit is that if the class 

À of polarizations modulo multiplication by totally positive element in (Oo <8> Z ( p ) ) x is 

defined over 5 , we can always find a representative À defined over S. Indeed, picking 

one symmetric polarization A, the pull back by 1 x A of the universal line bundle 

over X XstX/X (the Poincaré bundle) is always ample and is equal to 2A (see [GIT] 

Proposition 6.10); so, in the class A, we can always find a polarization globally defined 

over S. 
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6.2.1. Classification of G. — Let Fo be the subfield of F fixed by the involution "*". 
We define for Fo-algebras A, 

Go ( A ) = {x e C <8>F0 A j xx* = 1 } . 

Then we have G\ = Resp0/qGo- The involution "*" either induces a non-trivial 
involution on F (a positive involution of the second kind) or the identity map on F 
(a positive involution of the first kind). If "*" is of second kind, F is a totally imaginary 
quadratic extension over a totally real field Fo (a C M field over Fo) , "*" coincides 
on F the unique non-trivial automorphism over Fo (complex conjugation; see [Shi] 
and [ A B V ] Section 21). Then Go is an inner form of a quasi split unitary group 
over Fo. We call this case Case A and call the group G type A. 

When "*" induces the identity map on F , then F = Fo is totally real, and the 
group Go is an inner form of either the symplectic group (Case C and the group of 
type C) or an orthogonal group of even variable (Case D and the group of type D ) . 
We have 

(6.6) Goo = 
M n ( C ) / o and x* = Is/xISyt in Case A, 

M 2 n ( R ) / o and x* = JnxJn in Case C, 

M n ( H ) / o and x* = -ilxi in Case D, 

where I0 is the set of all field embeddings of F 0 into R, EI = R + Ri + Rj + Rfc is the 
algebra of Hamilton quaternions, Jn = ( ^ ~Qn ) , Isj = ( Qs _ ° i t ) for the t x t identity 
matrix 1 ,̂ and x i—> x is either complex conjugation or quaternion conjugation. 

Suppose that p > 2 if we are in Case D. When is sufficiently small, Sh# is 
smooth over So- This follows from the fact that the deformation ring of a quadruple 
( X , A, i , r ) { p ) ) is always formally smooth (cf. [GIT] Proposition 6.15, and [K]). If G = 
E n d s ( y ) is a division algebra, the big division algebra B sitting inside E n d s ( X ) ®<Q) 
for S = Spec(/C) with /C = Prac(V) for a valuation ring V forces reduction of X 
modulo the maximal ideal my to be an abelian variety; so, by the valuative criterion 
of properness, ShK/So is proper. Since Shj^ is projective over the Mumford moduli 
MQ which is quasi-projective over So, ShK/So has to be projective ([Ko] Section 5) . 

We now briefly describe the complex points of Sh^- We can define the symmetric 
domain X as the collection of h : C ^ Goo satisfying the positivity, etc., we described 
above. Since the stabilizer Ch of a fixed h in G(R) is the product of the center and 
a maximal compact subgroup, the connected component of X is isomorphic to the 
symmetric domain V = G(R)/G/ l. An explicit form of V as a classical bounded 
matrix domain is given in [Shi] (see also [ A C M ] Chapter VI for the domains in 
Case A and C ) , along with an explicit method of constructing all possible analytic 
families of abelian varieties over the domain. We have computed V for unitary groups 
(that is, groups of type A ) already in Section 4. The complex analytic space S h x ( C ) 
is given by G(Q)\G(A)/KCh, and its connected component is given by T\V for the 
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congruence subgroup T = (gKg~1G(R)+)nG(Q) with a suitable g e G ( A ( o o ) ) , where 

G+(R) is the identity component of the Lie group G(R). 

7. Formal Theory of Automorphic Forms 

In this lecture, we describe the theory of false automorphic forms. The theory we 
describe is a generalization of the work of Deligne-Katz in the elliptic modular case 
(see [Kl] Appendix III). The main purpose of this lecture is threefold: 

(1) Approximate p-adic automorphic forms by finite sums of classical forms; 
(2) Define the p-ordinary projector; 

(3) Find a set of (axiomatic) conditions which guarantees the V C T . 

7.1 . True and False Automorphic Forms. — In our application, we remove 
super-singular locus from the moduli M/W of abelian schemes of PEL-type and write 
S/w for for a lift E of the Hasse invariant. In this setting, sections in H ° ( S , uK) 
are called "false" automorphic forms. On the other hand, sections in H°(M,wK) are 
called "true"or "classical" automorphic forms. 

7.1.1. An analogue of the Igusa tower. — Let W be a mixed characteristic complete 
discrete valuation ring with residue characteristic p . Let robea uniformizing param­
eter. Write Wm = W/pmW. Let 5 be a flat V^-scheme. We put Sm = S x w Wm-
Then Sm is a sequence of flat Wm-schemes, given with isomorphisms: 

Sm+l ®Wm+i W m — Sm-

Let P be a rank g p-adic etale sheaf on the 5 m ' s ; thus, P/sm+1 induces P/sm, P = 
lim P/pnP, and Pn = P/pnP is a twist of the constant sheaf (Z/pnZ)9. We write 
Soo for the formal completion of S along Si ; so, SQO = J l m

m Sm. 
We can slightly generalize our setting and could suppose that there exists a finite 

extension F/Q with integer ring O = OF and a homomorphism: O c—• E n d s m ( P ) 
such that Pn = (0/pNO)9 for all n locally under etale topology. Since we can transfer 
any of our results to this slightly general situation, just replacing Zp by OP — 0®zZpi 

we state our result only for P with Pn = (Z/pnZ)9. This simplification also allows us 
to save some symbols. 

Let be the vector bundle P <g>z„ Os^ • We define 

um,n : T= I s o m S m ( P „ , ( Z / p " Z ) » ) 

to be a finite étale S m - scheme which represents the following functor on SCH/sm : 

(TT : X — • S m ) I—• {isomorphisms ipn : P n / X ^ (Z/pnZ)9

/x}. 

The representability follows from the theory of Hilbert schemes as we have seen. By 

definition, Tm^n/Sm 1 S étale. Since each geometric fiber of T m ? n over S m is isomorphic 
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to GLg(Z/prZ) everywhere, it is faithfully flat and finite. Therefore T m > n is affine 

over S m . We define Vm,n = # ° ( T m , n , 0 T m , J . 

The group GLg(Z/pnZ) acts on T m , n freely by ^ i-> gi\) for g e GLg{Z/pnZ), and 

we have Tm n/^n n' — Tm n' for all n' < n, where 

r n , n ' = {xe GLg{Z/pnZ) \ x = l m o d p n ' } . 

Then we have a tower 

Kn,o C Vm,i C • • • C V ^ n 

with Vm,o = H°(Sm, Osm)- We put Vm,oo = Un ^n,n and T m ) O C = l i m n T m , n . 

7.1.2. Rational representations and vector bundles. — For a given ring A or a sheaf 

of rings A over a scheme, we look at the projective scheme T/A — Fl&gB/A of all 

maximal flags in A9 (cf. [PAF] 6.1.3). We write B C GL(g) for the upper triangular 

Borel subgroup. Let U be its unipotent radical, and put T = B/U for the torus. 

Then T ^ GL(g)/B. We define H/A = F l a g ^ / A = GL(g)/U. Write 1 for the origin 

of 7i represented by the coset U. Then 

R A = H°(H,ON)-- 0 RA[K] 

K£X(T) + 
for the space RA[K] of weight K. Here 

RA[K] = { / : - A 1 € r(GL(g)/U,0GL{g)/u) \ f(ht) = n(t)f{h)} 

for t e T for the diagonal torus T ^ ^ *B/*£/. The pull-back action of G L ( # ) 

on itU[tt]: / ( # ) » p(h)f(x) = f(h~1x) gives a representation p = pK such that 

RA[K}U = A o n which T acts by — W$K, where WQ is the longest element of the Weyl 

group of T. The dual -RAM* = H o m ^ ( i ? A [ ^ ] 5 A) is the universal representation of 

highest weight K {cf. [RAG] II.2.13). Thus the coinvariant space RA[K]U (on which 

T acts by — K) is A-free of rank 1, and there is a unique {/-invariant linear form 

4an • RA[K] —• A (up to A-unit multiple), which generates (RA[K]*)U• We can 

normalize £ c a n so that it is the evaluation of <j> £ RA[K] at the origin 1 £ GL(g)/U. 

Then we have a tautological embedding - R A [ « ] C—• F(GL(g)/U, OcL(g)/u) given by 

^ ^ { h ^ l c M h - 1 ) ^ ) } . 

If h~1 € Mgxg for the g x g matrix algebra MgXg as a multiplicative semi-group 

scheme, the action of p{h) is well defined on i ? ^ [ « ] for any A. 

In [ R A G ] , a slightly different module is considered: 

H°(-K) = md?B

Lig) A(-K) = { / : GL^/'U -+ A 1 | f(xt) = t~Kf(x) V* G T } , 

The action of GL(g) is given by hf(x) = / ( / i _ 1 # ) . In this context, -K is a positive 

weight with respect to *J3, and the H°(—K)U contains the highest weight vector. Using 

conjugation by wo, we can remove the use of the lower triangular Borel subgroup lB, 

but we need to modify the results of [RAG] accordingly, when we quote them (this 

will be done without further warning). 
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Let / E RA/P™A[K]' By definition, / induces a function on GLG(ZP) by f(h) = 

pK(h)f(l). Therefore we see that h i—» ̂ c a n ° f(h) is an element in RA/P^AIK] by 

tautology. This shows the following fact: 

(c) We have a canonical map RA[K] — • C(GLG(ZP)/U(ZP), A)[K], 

which is injective if A is flat over ZP. Here C(GLG(ZP)/U(ZP), A) is the space of 

(p-adic) continuous functions with values in A on GLG(ZP)/U(ZP), and " [ « ] " indicates 

the K-eigenspace under the right action of T(ZP) on GLG(ZP)/U(ZP). The cokernel of 

the map (c) is large, because it is the continuous induction from B(ZP) to GLG(ZP) 

for a p-adic ring A if Pn is constant. When A is a finite ring, the space of continuous 

functions C(GLG(ZP)/U(ZP), A) is equal to the space of locally constant functions 

£C(GLG(ZP)/U(Zp),A), and we use CC instead of C when A is finite. 

7.1.3. Weight of automorphic forms and representations. — We define a coherent 

sheaf cjmn on T m , n by ( 7 r ^ n P m ) ® z 0 T m j T 1 - On T m ? n with n ^ m, we have the 

universal isomorphism 

I c a n : 7r*mtnPn * ( Z / p n Z ) » ; 

so we have an action of G a l ( T m ? 0 0 / . S ' m ) on n P m , and 

^can = ^can 0 id '. u ; m > n = ^ 

is an isomorphism. Then we can identify 7 i / T m n with . 

p r : y = y m , n = GL(cjm^n)/Ucain — • T m , n 

on Vm,n (n ^ m ) , where C/can is the pull back of U under cjCan- Thus u;Can induces an 

isomorphism: 

^n-PYAOY^}) = RvmjK}. 

W e write a;^ n for the sheaf PY,*(OY[K]) on T m > n . By definition, GLG(Z/pNZ) acts 

on r on the'left. The Galois group G a l ( T m , n / S m ) = GLG(Z/pNZ) acts on o ^ > n 

via the rational structure given from u ; m , and we then descend the sheaf to LO^ 

on S m . In other words, for an 0 T m , n - a l g e b r a A, / E H°(SpecTrntn(A),u^in) is a 

functorial rule assigning f(X,ip) E to X / ^ and ^ : P n / x — {^/pn^)g/x' We 

let /i E GLG{Z/pNZ) = G a l ( T m , n / S m ) act on / by / ^> { ( « ) ^ p{h)~lf{X, hi/*)}. 

Then for any 0 T m ) O - a l g e b r a A , 

A 1 ^ F ° ( G a l ( T m , n / 5 m ) , F ° ( S p e c ( A ) x 5 m r m , n , a & j n ) ) 

defines a coherent sheaf on 5 m (by the Hochschild-Serre spectral sequence), which we 

write u^. We have 

H0 (Sm, Wxm) 

= { / € / / ° ( T m , m , J ? v m . r a [ « ] ) I /(^, H) = ^ ) for Vft € G L f f ( Z / p m Z ) } . 
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There is another description of L0_m/Sm' Since P m = (Z/prnZ)9 on T m ? m , the action 

of Gal(Tmin/Sm) on Pm extends to an action of the Galois group on RZ/P™Z[K], which 

determines an étale torsion sheaf Pm over S m . Then we have 

<p(f) =<a»(/) e fl°(Tm, 

In this construction, we have de t f e (u ; m ) = (/\g u/)®k and S y m f c ( a ; m ) = a ;^ 1 for the 

first standard dominant weight uo\. 

By our definition, for each / G H°(Sm,ui^l), 

<p(f) = < a » ( / ) e fl°(Tm,m,flrmim[«]), 

which can be regarded as a functorial rule assigning each test object 

(X/Sm,tl>:Pm/x*(ï/pmZ)9

/x) 

a value <p(f)(X, ip) G i f ° ( X , [«]) such that <p( / ) (X, fo^) = p(h)<p(f)(X, tp) for all 

fo G GLg(Z/pmZ) and ^( / ) (F,</>*^) = </>*(<p(f)(X,t/>)) for any morphism 0 : y X 

of ^ - s c h e m e s . Similarly, </? G V ^ n is a functorial rule assigning ( X , tjj) a value 

( p ( X , ^ n : Pn 9* (Z/pNZ)9) G H°(X,Ox) such that <p{Y,<t>*rl>n) = </>*(<p(X, t/>n)) 

for any morphism 0 : Y —> X of S m -schemes. Thus we have a natural map of 

# ° ( ^ m , m , ^ T m , m [ f t ] ) into Vm,m associated to each linear form £ G - R v m > m [ « ] * . The 

map associates / G i J ° ( T m > m , i ? r m > m M ) with a rule: (X,ip) i-> £((p(f)(X,i/>)), which 

is a matrix coefficient of (p(f)(X,t/j). 

We let G GLg(ZP) act on test objects by ( X , ?/>) H-> ( X , fo/0). In this way, we 

identify GLG(ZP) with G a l ( T m > 0 0 / 5 m ) . For the Borel subgroup 5 C GL(g), we put 

T ^ n for the quotient Tm,n/B(Z/pNZ). Thus V ^ n = # ° ( T * j n , <9 t B J is made of a 

functorial rule ( X , T/VJ I—• (p(X,iJjn) G H°(X,Ox) such that <p(X,bip) = (p(X^) for 

all ^ and 6 G B(ZP). We define similarly V ^ n and T ^ n for the unipotent subgroup 

U CB. 

/ A s 

Let e i , . . . , e p be the standard base = * ( 0 , . . . , 0 , 1 , 0 , . . . , 0) of (Z/pNZ)9, and we 

consider the standard filtration l n : (Z/pNZ)9 = LG D LG-\ D • • • D LQ = { 0 } given 
b y LJ = T,{=i(z/Pn%)ei- T h e n V£*n gives a (full) filtration fil = fil^n of P n , and all 

full filtrations Pn = P ^ } D P ^ ~ 1 } D • • • D P ( 0 ) = { 0 } of Pn are given in this way. 

Since the stabilizer of l n is B ( Z / p n Z ) , we may regard <p G V£n as a functorial rule 

assigning a value </?(X,fil n) G H°{X,Ox) to a test object ( X , f i l n ) . To describe V%n 

in this way, we need to bring in an isomorphism of graded modules: 4>N : gr(f i l n ) = 

®gj=i(Z</pnZ) inducing <№ : p W ) / p ( i - i ) (Z/pNZ). In other words, T ^ n classifies 
triples ( X , f i l n , 0 n ) . Since we pulled back the filtration l n by -0 n, fo G GLG(ZP) acts 
on (X , fh \ / , n , 0 n ) by filn H-> ^ ; " 1 / i ~ 1 ^ ; f i l n = (fo-0n)*ln and 0 n t-> ip~1h~lip(f)n. 

We can think of the image of - R y m ! m [ ^ ] inside V ^ m [ « ] , which is the homomorphic 
image of H°(Sm,um) under / i—> £c&n o </?(/). Thus we have a natural map 

(7 . 1 ) i S : H ° ( 5 r o , ^ ) — V ^ I 0 0 [ « ] , 
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where V ^ m [ « ] is the tt-eigenspace of the right action of T. The above map is injective 

if m = oo . Then we define 

(7.2) i 4 = 0 H ° ( S m ^ ) . 

Here implies sufficiently regular. See [ P A F ] 5.1.3 for a definition of regularity. 

We assume to have a locally free sheaf ujS of finite rank such that LÛ<S>W Wm = u m 

for all m. From a;, we can create uïfs as 7r*0Fia g c / fe) M f ° r ^ : Flag^ —> 5 . The global 

sections H°(S,ui) inject into ^ ( S o o , ^ ) = lim i l 0 ( 5 m , a ; m ) . We define 

# - 0 / r ° ( S , a ; K ) — ¿ 4 = l i m ^ . 
K m 

We call an element of H°(S,uJs) a false automorphic form of weight K. A true 

automorphic form is a global section in H°(M,uSJM) for a compactification M D S 

of 5 we will specify later. In other words, false automorphic forms are meromorphic 

sections over M with a specified location of their poles. 

7.1.4> Density theorems. — We suppose now that for all K ^> 0, the short exact 

sequence: 
v m 

0 - ^ u K - i — • uK
 —-+ u4 —•+ 0 

gives rise to an exact sequence: 

( H y p l ) 0 — * H°(S,uK) H°{S,ULK) — i î 0 ( 5 m , ^ ) — 0; 

( H y P 2 ) V £ > 0 0 = Vv/pmVu. 

This condition is obviously satisfied when 5 m is affine. From this, we have 

(7.3) R'/pmR'^R'm and i f ° ( S , / ) / f f f ° ( 5 , y K ) ^ ( S m , ^ ) . 

We now define a homomorphism 

p(m) : R'm — V%m 

in the following way. Over Tm,mi we have a canonical isomorphism u j c a n — Zcan ® i d : 

^m,m = 0 9

T M M . Then 

/ 9 ( m ) ( E « » 0 / « ) = {(X/Tm,m,1>) " E « 4 a „ « a n ( / « ( X ^ ) ) } 

for fK e •ff°(S'm>k>m)- Here, the image of (3(m) actually falls in V^n because £ c a n o 

pK(u) — £ c a n for ah u G U(ZP), and ^^(fn) G JRy-m m [ « ] - By construction, (3(n) m o d 

p m = /3(m) for all n > m. Thus taking the projective limit, we have 

/ 3 ( o o ) : / ? ' T O ^ ^ = l i m V ^ i 0 0 . 
m 

Since 5 m is flat over W m = W / p ^ W and T%n = Trn^n/U(Z/pnZ) is étale over S m , 

V%TOQ is flat over W m . Therefore, F* 7 is a W-flat G L g ( Z p ) - m o d u l e . This is a sub­

tle point. If LU extends to the compactification M m , assuming M m to be W m - f l a t , 
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H®(Mm,uj_K) is also Wrn-flat. It is easy to create an example in the Hilbert modular 

case such that H°(Mi,uK')/H0(Mi1uiK) ^ 0 for the interior M of the Satake com-

pactification of S if K is not parallel but K mod \(0/pO)x | is parallel. By the Koecher 

principle, if yj_K extends to the Satake compactification M * as a line bundle, we have 

H®(M*w,uiK) = H°{M*w,uK); so, we cannot expect the good base-change property. 

Since B normalizes £/, we can think of the action of T = B/U on Vu and the 

/s-eigenspace of Vu. By definition, ft = /?(co) induces 

(3 = 0K : — U r n J ï ° ( 5 m , ^ ) — VU[K] 

Proposition 7.1. — Suppose (Hyp 1,2) for S. The above map 0K is an injection. 

Proof. — Since T m ? n is faithfully flat and etale over S m , we may make a base-

change: T^n/Sm to T^injSm Xsm T m > m , and hence we may suppose that P is con­

stant. Then Vmoo i s m & d e up of locally constant functions on GLg(Zp)/U(Zp) with 

values in Vm$. By taking the limit, Vu is the space C(GLg(Zp)/U(Zp), V ^ o ) of 

continuous function on GLg(Zp)/U(Zp) with values in Voo,o = hm Vm^. Then 

H°(S,LUK') is inside the limit of global sections of l i n i m Rvm,0 M> which injects into 

C(GLg(Zp)/U(Zp), V^o,o)M- This shows the assertion. • 

We now put, for /3 = (3(oo) 

Lg(Z/pnZ)/U(Z/pnZ)] = OTu0[GLg(Z/pnZ)/ 

Theorem 7.2. — Suppose (Hypl-2) for S. The inclusion /3 = /3(oo) : D' -» Vu 

induces an isomorphism 

D'/pmD' ^ Vu/pmVu for all m. 

In other words, Df is p-adically dense in V. 

Proof. — The injectivity of D'/pmDf -> Vu/pmVu follows from the definition (see 

[Kl] Appendix III) (or as easily seen after faithfully flat extension to T m ? m ) . 

We thus need to prove that D'/pDf —» Vu/pVu = is surjective. Since 

Tm,n/Sm is etale finite, replacing 5 m by T m ? 0 0 , we may assume that P is constant 

(see [Kl] Appendix III pages 364-5), because we can recover the global sections of LUK 

over Sm as Galois invariants of that over T m ? n . Then 

0Tun = 0 S l ®w W[GLg(Z/pnZ)/U(Z/pnZ)] = OTu0[GLg(Z/pnZ)/U(Z/pnZ)). 

This shows ViiOQ = CC(GLg{Zp)/U(Zp), V ^ o ) , where CC(GL9(Zp)/U(Zp), Vh0) is the 

space of locally constant functions on the p-adic analytic space GLg(Zp)/U(Zp) with 

values in i f 0 ( S i , Os1) = Vi , 0 - Writing V£?0 as a union of VT-free modules X of finite 

rank, we have CC{GLg{Zp)/U{Zp),V^0) = \JX CC(GLg(Zp)/U(Zp),X). Thus we 

need to prove that 

CC(GLg(Zp)/U(Zp),X/pX) = Vx/pVx, 

ASTÉRISQUE 298 



p-ADIC A U T O M O R P H I C FORMS 213 

where T>x is the space of polynomial functions of homogeneous degree > 0 (with 

coefficients in K = W[^\ on the flag manifold Flagf/) which has values in X over 

GLg(Zp). This last fact follows from Mahler's theorem of the density of the linear span 

of the binomial polynomials in the space of continuous functions on Zp with values in 

Zp (see [PAF] Theorem 8.3 for more details of the use of Mahler's theorem). • 

W e now assume that there exists a proper flat scheme M/w such that S C M , and 

M — S is a proper closed subscheme of codimension ^ 1. We further assume that u/S 

extends to M. Then automatically tum extends to Mm by the theory of flag varieties. 

The sheaf u/M is uniquely determined by { ^ m / M m } m = i , 2 , . . . by the formal existence 

theorem of Grothendieck [EGA] III.5.1.4. By the properness of M , Hl(M,uiK) is a 

^ - m o d u l e of finite type. Thus taking the projective limit with respect to m of the 

exact sequences: 

0 _ + H°(M,u") ®w Wm — H0(Mm,um) — H\Mm,uLK)\pm) —> 0, 

we get l i m m i 7 ° ( M m , ^ ) = # ° ( M , < ) . Let R M = 0 K > > O # ° ( M m , u 4 ) and R = 

© « > o H°(M, w!JM)- Then we know that R is p-adically dense in RQQ = l i m ^ RM. By 

definition, R C R'. Note that d e t ^ - 1 is trivial on S i . Let a G H ° ( S U d e t ^ - 1 ) 

be the section corresponding to 1 G d e t ^ ) 1 3 - 1 = 0 ^ . W e assume that a ex­

tends to M i so that it vanishes outside S i . Suppose that we have a section E G 

H°(M, d e t ( o ; ) * ( p _ 1 ) ) such that E mod vo = a1. By further raising power, that is, 

replacing E by EpTn, we may assume that E mod p — a1. Then by definition, 

Q(Mm,^)0det^-1)(a;yn)) ffQ(Mm,^)0det^-1)(a;yn)) 

En 

We would like to show that P{R[\]) n V* 7 is dense in Vu. Pick / K G p m V ^ for 

/ K G H0(S,LJK). We need to approximate f = fK modulo pm+lVu by an element in 

H°(M,UJK <g> det(u/)k). This section / G # 0 ( S , C J k ) can be written as / = g£/E
E m o d 

p m + i for G I E H°{M,UJK ® d e t ' f e ) ) . Then for k > £, we have / = g i E k - £ / E k mod 

p m + 1 . Thus we may assume that A: = pmt(p — 1). Then as a function of ( X , ?/>), 

mod p m + 1 is a constant. Thus / = geEk~£ mod p m + 1 J?oo. This shows the density 

of0{R[±])nVu mVu. 

Corollary 7.3. — Suppose the following conditions in addition to (Hypl-2) for S: 

(1) S C M for a proper flat scheme M/w such that S M C M m = M <g>w Wm is 

Zariski dense for all m; 

(2) LU extends to a locally free vector bundle on M of rank g; 

(3) there exist an integer t > 0 and a section E G i f ° ( M , d e t ^ p - 1 ^ ( a ; ) ) such that 

E mod w is the constant section 1 generating d e t * ^ - 1 ^ ^ ) = Osx; 

(4) M — S is the zero locus of the section E. 
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Put 

D = p(® H°(M,u"))[±]nVu. 

Then D is p-adically dense in Vu. 

7.1.5. p-Ordinary automorphic forms. — We now suppose to have a projector e (so 
e2 = e) acting (continuously) on Vu, which projects down V 1 7 ^ ] onto a W-iree 
module of finite rank (for all K > 0) . We put Vu = lim Vu/pnVu = Urn V ^ . 
We have Vc/[«] = l i m ^ V ^ m [ « ] . Since Vu is W-flat, Vu is p-divisible, and its direct 
summand eVu is p-divisible. 

In practice, the projector e will be constructed so that it brings V{/[«] down onto 
eH°(M/w,uiK <g> T p ) for K > 0, where T p = Q p / Z p . This implies 

(7.4) eVu[n] = e / f 0 ( 5 / V K , ^ ® z p T p ) - eH°{M/w,uiK ®Zp T p ) 

if « > 0. By ( H y p l ) , H°(S/w,vK®zp T P ) is p-divisible. By assuming (7.4), eVul*] i s 

p-divisible. Since H°(M/WILOK) is a W-module of finite type, eVt/[«] is a p-divisible 
module of finite corank. In any case, we just assume that eV[«] is p-divisible and of 
finite corank for K, ^> 0. 

Let Vy be the Pontryagin dual module of Vu- Since Vu is a discrete T(ZP)-
module, Vjfr is a compact W[[T(Z p ) ] ] -module . Let T(ZP)P = I V be the p-profinite 
part of T(ZP). Then T ( Z P ) = TT X A for a finite group A of order prime to p. We 
fix a character x : A -> F x for F = W / t u W . Then we write \ : A - » W x for 
the Teichmuller lift of x- We write C X+ ( T ) for the set of algebraic characters 
K : T —> G m such that K = x m ° d ^ a n d ^ is sufficiently regular so that the above 
equation (7.4) holds. Then X% is Zariski-dense in S p e c ( W r [ [ r r ] ] ) ( W ) . We write V * r d 

for eVlj. Let us decompose 

v0*rd = e vG*rd[x] 
xeA 

into the direct sum of the x-eigenspaces under the action of A . The x-eigenspace 
V*rdK] i s a c o m P a c t module over W[[TT}}. Then by (7.4), V* rd[x] ®w[[rT]U W is W -
free of finite rank s(x) for K E X ^ . Thus, by topological Nakayama's lemma, V* rd[x] 
is a W[[IY]]-module of finite type with minimum number s(x) of generators. Since 
X% is Zariski-dense in Spec(W[[ IY]] ) , we see that V* rd[x] is W[[IY]]-free of rank s(x). 
Thus we have, assuming (7.4) for the middle equality, 

(7.5) r a n k ^ [ [ r T ] ] V*rd[x] = r ank^ V*rd[x] ®w[[rT]],K W 

= r a n k ^ ( e # ° ( M , u ; * ) ® Z p T p ) * = r a n k w eH°(M,uK) 

for all K E X%. Therefore we get 
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Theorem 7.4. — Suppose (Hyp l -2 ) , the existence of the idempotent e : Vu —> Vu as 

above and the assumptions of Corollary 7.3. Then V * r d is a well controlled W[[T(ZP)]]-

projective module of finite type. If we assume {7 A), this means that 

V 0 * r d ®W[[T(Z P)]],K W *é H o m w ( e H ° ( M , ^ ) , W) 

canonically if K is sufficiently regular. For each x-component, V * r d [ x ] is free of finite 

rank over W[[TT]] for the maximal p-profinite subgroup TT ofT(Zp). 

7.1.6. Construction of the projector ecL- — We are going to construct an approx­

imation ecL of the projector e. In the paper [H02] Section 2.6, we wrote: "CGL is 

constructed using solely local data of the Galois group Gal(Tm,oo/Sm) = GLn(Zp), 

while the projector e will be constructed as e = eceGL for a global projector CQ 

depending on the group G" This statement is misleading. We actually need a global 

input. To explain this point, let us introduce the expanding semi-group of GLn(Qp). 

Writing ? = B and U, we introduce two subgroups IB,U and Ijj,n of GLg(Zp) by 

(7.6) I ? , n = {xe GLg(Zp) I x mod pn e?(Z/pnZ)} . 

Let d i a g f X i , . . . , Xj] denote the diagonal matrix whose diagonal blocks are given by 

X\ to Xj from the top. We first look at the semi-group given by 

D = D G L { g ) = { d i a g f c 6 1 , . . . , p e *] I ei ^ e 2 < • • • < eg) . 

Then = h,nDI?,n = U(ZP)DU(ZP) and A ^ = B(ZP)DB(ZP) are semi­

groups, and we call them expanding semi-groups. If confusion is unlikely, we simply 

write A for one of these semi-groups. 

The global input we need comes from the fact that Tm^n in our application classifies 

not just trivializations of Pn but abelian varieties X with X [ p n ] e t = Pn. In other 

words, each g G GLn(Qp) acts on 5 m by an appropriate isogeny of abelian varieties 

classified, and it acts not only the étale quotient of the p-divisible group of the abelian 

variety but also on the connected component of the p-divisible group. The action 

changes the isomorphism class of the abelian varieties, and hence it acts on S m through 

endomorphisms (not necessarily through automorphisms). 

Since at this point, we do not assume that 5 m classifies abelian varieties, we instead 

assume to have such an action of the expanding semi-group (as defined below) on S m 

which is at worst "radiciel" mod p; so, it does not affect the étale trivialization Pn. 

This action ô : Sm —• Sm sends an S'm-scheme X Sm to 6 • X = X XSm,ô Sm. 

We consider the following triples: 

X = ( X / 5 m , f i l n , 0 n : ®g

j=1Z/pnZ *Ê gr(filn)), 

where filn : P n / X = P^g) D P^g~l) D • • • D Pn^ = { 0 } with ^ : Z/pnZ * P^j)/P^j~l) 

for j — 1 , . . . ,g. If P is constant, the space classifying the above test objects over 

Sm is given by T^n — Tm,n/U(Z/pnZ). Similarly, the classifying space of couples 

( X , f i l n ) over Sm is given by T^n = T m > n / ' B ( Z / p n Z ) . On test objects over T m ? n , 
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we have a natural action of h G GLn(Zp)) given by ( X , ^ ) ( X , h^). Writing 
filn = / 0 _ 1 l n , we then see that ' 0 _ 1 / i ~ 1 l n = / 0 ~ 1 l n = h • f i l n . Thus the Galois action 
on filtrations is given by h • fil = (ip)~1h~1ip)Pn^) and h • (j) = where 
ip : Pn = (Z/pnZ)9 such that ^ * ( l n , i d ) = (filn,</>n) for the standard identification 
id : g r ( l n ) = (Z/pnZ)9. Thus these test objects are always invariant under U(ZP). 
The new test objects ( X , f i l n , </>n) are useful in defining an isogeny action of 6 G A 
and in constructing the idempotent e^L? although we may stick to the test objects 
( X , ^ n : Pn ^ (Z/pnZ)9) if we want. We assume that 

( d l ) 6 induces an isomorphism <S*filn/«5.x = filn/x compatible with the action of 
the semi-group on filn (this holds if 5 mod p is radiciel), where the action of 6 G A on 
filn is the multiplication by 6 up to scalars (as we specify later); 

(d2) h • X = X if h G GLn(Zp). 

Here is how to create the idempotent e<-L using p-Hecke operators (modulo pm). 
We study Hecke operators tj (j = 1 , . . . , g) acting on Vu and n for ? = B and U. 
We can thus think of the Hecke ring B ( J ? ) n , A ) (n = 1 , 2 , . . . , oo) made of Z-linear 
combinations of double cosets I?inSI?in for 6 G A ^ . These two algebras are com­
mutative and all isomorphic to the polynomial ring Z [ t i , . . . ,tg] for tj = h,najh,n 

with OLJ = d i a g [ l ^ _ j , p l j ] . A key to getting this isomorphism is that once we choose 
a decomposition: U(Zp)ajU(Zp) = \_]jU(Zp)5j, then h^najh,n for any n and ? is 
decomposed in the same way: I?,najh,n — |Jj h,n^j (see [ P A F ] (5.3)) . We have for 
a = U9jZl <Xj 

(7.7) f?,n+i V? ,n+ i a f? ,n = 7 ? ? n \ / ? , n a / ? , n = 7?,n+iV?,n+ia^?,n+i-

For J G A f , the action p(6~x) is well defined on RA[K] for any p-adic ring A, 
because p(6~1)(/)(y) = (f)(8y) for y G GL(g)/U. Decompose J? j n(SJ? > n = |J . 7?, n<^ and 
regarding / G i f ° ( T j l ^ , 0 ; ^ ) as a function of test objects X/Tmoo, w e define 

(7.8) f\[I?,nSI?tn)(X) = Y^p^MSjX), 
j 

where 6X = (S • X , 6(6* filn))- The sum above is actually "heuristic", because if the 
action of 6 on S is wildly ramified (that is, purely inseparable in characteristic p ) , we 
need to replace the sum by the trace as already described in 3.1.3. We will clarify 
this point in 8.2.1 more carefully; so, for the moment, we content ourselves with this 
heuristic action. 

Although we have not yet specified the action of the element 6 G A ^ on 6* filn, if 
it exists, then the operator is well defined independent of the choice of 6j because for 
u G 

P((u6j)-l)f(u6jX) = pm-'Muy'fWjX) = P(6j1)f{6jX). 

Further, by (7.7), 

(7.9) for f G H°(T^n,u"), f\t(Pr~l G H°{T*A,UL"), 
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where t(p) — f l f = i tj- When Pn cornes from a universal abelian scheme, we have a 
natural isogeny action on test objects, and in this way, we can define Hecke operator 
on # ° ( 5 m , o ; " ) . 

Since filn is an element of the flag variety of (Z/pnZ)9, to study the action of A on 
filtrat ions, we study general flag varieties. For each commutative ring A, we consider 
the free module L = L(A) = A9 and the flag space 

(7.10) y(A9) = {{Li) \L = Lg, LiD U/L^ * A for i = 1, • • • , , 

(7.11) y (A9) = { ( L i , fa) J (Li) G y(A\ fa:A^ U/L^ for i = 1 , . . . , g} . 

We can extend the above definition to Pn over Sm: We define for each scheme T / 5 m 

y(Pn)/T = { ( P « r ) I Pn = P ^ , P W D P f \ - J E ) = Z / p " Z (i = 1, • • • ,g)}, 
A i 

y(Pn)/T = {(Pi%,4>i) I ( P « ) e y(Pn)/T, 4>i : Z / p " Z S JJjJLç (i = l,.. .,g)}. 

After a finite étale extension to T / 5 m , the spaces y(Pn) and y(Pn) get isomorphic 
to y((Z/pnZ)9) x S m T and y((Z/pnZ)9) x S m T. Writing the standard base of L as 
e i , . . . , e ^ , we define 1 = (Yl]=i Aei, fa = id) G y (A9), which we call the origin. 
We may let GLg(A) act on y (A9) and y(A9) by x((Li),fa) = (xLi,x o fa). Then 
GLg(A)/U(A) = y (A9) by xU(A) »-> x l . Now we assume that A to be a p-adic ring, 
that is, A = lunn A/pnA. We then define 

yn(A9) = {(Li,fa)\(Li/pnLi) = 1 G y(A/pnA)}. 

Similarly, we define yn/T(Pn') for n < ri < oo. We note that y n ( Z $ ) = Iu,n/U(Zp) 
via x l x and similarly yn(Z9) = lB,n/U(Zp). So we have the conjugate action 
of A on these spaces introduced in Section 4. 

We now write down explicitly the conjugate action of the semi-group A on yn(A9). 
Since y(Z9) = y(Q9) (because y = Flag# is projective), the group GLg(Qp) acts 
naturally on y(Q9). This action is described as follows: Take x G GLg(Qp). Then 
x(Li) = (xLi <g> Qp D L ( Z p ) ) G 2 / (Zg) . We write x(L<) = (x • L») , that is, x - L{ = 
xLi 0 Q p D L(ZP). We now define an action of the semi-group A ^ = lB,nDGL(g)lB,n 
on y n ( Z ^ ) . For each uôv! G A f with u,uf G / s ,n and J G DGL(gy We write J = 
d i a g [ p e ^ ) , . . . , p e ^ ) ] . Then for (Li, fa) G y n ( Z g ) , V e < № < ï : L i / L . - i - Ô-Li/Ô-L^ 

is a surjective isomorphism as shown in [H95] page 438. Since IB,U acts naturally 

on flag varieties, the above action of DcL(g) extends an action of the semi-group A f . 

For a given X = ( X , fil, fa) = (X,^"1!), ip brings "fil" to 1, and hence the action of 

A ^ defined on the neighborhood of 1 (after conjugation by *fa) is enough to get an 

association: X t—• {SjX}. By this, after a change of the base scheme Sm (for example 

to T = T m ? 0 0 ) to trivialize y(P), we have an action of A„ on y(P). However this is 

sufficient to define the Hecke operators [i?, n W?,n] acting on H°(Tm^n/srn,w
K) by the 

following reason: After extending scalar, define / | [ J ? ) n W ? > n ] by (7.8). The formation 
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of / | [ J ? ) n 5 I ? > n ] commutes with the base-change, in other words, it commutes with the 

Galois action of the base: G a l ( T / 5 m ) ; so, / | [ J? ) n 5J? ) 7 l ] is actually defined over the 

original base scheme n / S m - This justifies the contraction property (7.9). 

Let tj = U(Zp)ajU(Zp) in i ? (Z7(Z p ) , AQO) with aj = d i ag [ l j , p l ^_ j ] , and define 

~ r i j=i^ - As shown in [H95] Lemma 3.1, a for a = I l j = i aj contracts 

yn(Z/pn+1Z) to the origin l n + i . Identifying yi(Z/pnZ) with IB,I/IU,TI, if the filtration 

filn corresponds to x G i s , n 5 then the filtration is given by Yl]=i (Z/pnZ)xj for the j - t h 

column vector Xj of x. Choose a representative set U{Zp)aU{Zp) — \_\U^R U(Zp)au. 

Then we have lB,n+iOLlu,n = [JueR lB,n+iotu, and aux~x = x~xauf for some v! G R. 

This x - 1 >-» x " 1 coincides with the action of au on the flag variety yi{{Z/pnZ)9) if one 

identifies elements in IB,I with a flag. Here we need to use x _ 1 instead of because 

the action of h G GLg{Zp) on nitrations is given by / z / »—> /i • fil = {il)~lh~lfil))fil 

as already explained. The element xu gives rise to a couple (au • X , filn+i?n = 

a n ( a * filn+i)), which is uniquely determined independently of the choice of au. We 

then define for / G V £ n + 1 f\t(p)(X,filn) = YlueRf(a™ ' ^ A + i . u ) - Similarly, if 

we start from / G V ^ n , by the same process, we get xu G Iu,n/U(Zp) corresponding 

to ( X , f i l u > n , b e c a u s e we still have Iu,n&Iu,n = \AueR^u,n^w We then define 

/ | t ( p ) ( X , f i l n , 0 n ) = J2ueRf(au ' -X",filu,n,0u) and define the idempotent eGL by 

eQL — l i m n ^ o o t(p)nl whenever it is well defined. 

As we have seen in Section 4, n(a)t(p) = t(p) on H°(Soo,^o)i because on we 

used the action of A coming from schematic induction. 

7.1.7. Axiomatic control result — In this subsection, we describe a simple prerequi­

site to have the control theorem relating false automorphic forms (sections over S) to 

true automorphic forms (sections over M). Later we will verify the requirement for 

automorphic vector bundles on Shimura varieties of PEL type. 

Since in this general situation, S m is not supposed to classify anything; so, we 

cannot define Hecke operators acting on H°(Sm,^K) in this generality. Anyway, we 

suppose to have a Hecke operator r(p) acting on H°(Sm,uiK) and i f ° ( M m , u K ) such 

that r(p) = t(p) on H°(Suu
K) if K > 0. We define e 0 = l imn-oo r(p)n[. 

Now suppose that there exist further two projectors CQ acting on and e°G on 

i J ° ( M m , a ; K ) for K » 0 (depending on the reductive group G) such that ec^GL = ZG, 
eGeo — eG a n d eG = &G n i o d p , that is, they are equal each other on eGH0(Si,uK). 

In addition to the above conditions, writing K for the field of fractions of W, we 

suppose the following two conditions: 

(C) eG{Ef) = E [ e a f ) for / £ H ° ( 5 i , y " ) , 

(F) d i m x eQH°(M/KiUK <8> detk(w)/K) is bounded independent ofk. 

Let / 1 ? / 2 , . •. be a sequence of linearly independent elements in eGH°(Si,cuK) over 

Wx. Since H0(S/w,uSJw) ® w Wx = H0(SuuiK) ( H y p l ) , we can lift JI to fi G 

HQ(S/w->uf)/w) s o that fi = (fi m o d p ) . Then for any given integer N > 0, we 
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can find a sufficiently large integer m such that Emfi e # ° ( M / W , o / ^ ) . Since 

multiplication by E is an isomorphism on Si (by definition of Si = M i [ ~ ] ) , by (C) 

and e<3 = e°c m o d p , {(e<Q(Ernfi) mod p)}i=i,. . . , iv are linearly independent over W\; 

so, { e ^ ( E , m / i ) } ^ = i , . . . , i v are linearly independent over W. This implies 

dimK e°GH°(M/K,uiK ®dett(p-1)m(ui)/K) ^ N. 

If rankw^ eGH°(Si,LUK') = oo, we can take N to be arbitrarily large, which contradicts 

the boundedness (F) of the dimension. Thus r a n k ^ eGH°(Si,uK) has to be finite, 

and rankv^i eGH°(Si,uK <g> d e t f c ^ _ 1 ^ ( a ; ) ) is independent of k. Thus the existence of 

the desired projector follows from (F) , (C) and (7.4). 

The condition (F) can be proven in our application via group cohomology using 

the (generalized) Eichler-Shimura isomorphism combined with the p-adic density of 

£*cusp in £*cusp ( s e e [H95] for such boundedness for forms of G L ( n ) , [TiU] for inner 

forms of GSp(2n) and [Mo] for more general groups). 

The condition (C) can be proven either by g-expansion or the fact that Hasse 

invariant does not change after dividing an abelian variety by an etale subgroup. 

8. Vertical Control for Projective Shimura Varieties 

8 .1 . Deformation Theory of Serre and Tate. — Let W be a complete discrete 

valuation ring of mixed characteristic with residue field F of characteristic p. We 

suppose that F is an algebraic closure over ¥ p = Z / p Z . In this section, we describe 

deformation theory of abelian schemes over local W m -a lgebras for Wm = W/pmW. 

We follow principally Katz's exposition [K]. 

8.1.1. A Theorem of Drinfeld. — Let R be a local W m -a lgebra . Let G : R-LR —> AB 

be a covariant functor into the category AB of abelian groups. When m = oo, the 

category R-LR (resp. Woo-LR) is made of p-adically complete local jR-algebras A — 

lim^ A/pnA and morphisms are supposed to be p-adically continuous. For simplicity, 

we always assume that rings we consider are noetherian. Thus if we regard G as a 

functor from the category of affine R schemes (or formal schemes), it is contravariant. 

Suppose that, for any faithfully flat extension of finite type A <-> B of R-algebras, 

( 1 ) The group G(A) injects into G (J5) , that is, G(A) <-> G(B); 

( 2 ) Let B' = B®AB and B" = B®AB®AB. Write i{ : B Bf (i = 1 , 2 ) two 

inclusions (that is, ¿ i ( r ) = r ® l ) and : B' c—> B" be three inclusions (i.e. ¿ i 2 ( r®s ) = 

r (8)s(8)l). If x e G(B) satisfies y = G(ti)(x) = G(t2)(x) and G(ti2)(y) = G(i2s)(y) = 

G(tis)(y)y then x is in the image of G(A). 

Such a G is called an abelian sheaf on R-LR with the /pp/ - topology (or simply abelian 

fppf-sheaf). If XjR is an abelian scheme or a torus (a multiplicative group, like G m ) , 

then G(A) - X(A) = H o m 5 ( S p e c ( ^ l ) , X) (S = Spec(i?) or S p f ( # ) ) is an fppf'-sheaf. 
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We call G P-DIVISIBLE if for any X G G(A), there exists a finite faithfully flat extension 

B of A and a point Y G G(B) such that X = PY. If G comes from an abelian scheme 

X, it is p-divisible (E.G. [GME] Corollary 4 .1 .18) . This also shows that X\P°°] = 

\JNX\PN] for X\PN) = K e r ( p n :X^X) is p-divisible. 

Let R be a local Wm-algebra and / be an ideal of R such that = 0 and N1 — 0 

for a power N of p . We define a new functor G j and G by 

G / ( A ) = K e r ( G ( A ) — • G ( J4/J ) ) and G ( A ) = K e r ( G ( A ) — • G(A/mA))> 

where is the maximal ideal of A. When G(A) = ROMR_ LR(R-, A) (= G(A)) 

for U = R[[TU... , T n ] ] (that is G / j R = S p f ( 7 i ) / j R ) and the identity element 0 cor­

responding to the ideal ( T i , . . . , T n ) , we call G a formal group. If G is formal, 

G/(;4) = { ( t i , . . . , * n ) G / } by H o m ^ L H ^ A ) 3 0 ^ ( ^ ( T i ) , . . . , 0 ( T n ) ) . 

Suppose that G / # is formal. Then multiplication by [N] induces a continuous 

algebra homomorphism [N] : 1Z —• 1Z. Then on the tangent space at the origin: 

TO = (TI,..., T n ) / ( T i , . . . , T n ) 2 , the addition induced by the group law of G coincides 

with the addition of the tangent vectors (CF. [ A B V ] Section 11). Thus [N](TI) = 

NTI mod ( T i , . . . , T n ) 2 , and [JV](G/(A)) = G / 2 ( A ) because AT/ = 0. Similarly, we 

have inductively, [N](GIA(A)) = GIa+i(A), and [NU]GI = G 0 = { 0 } . We get 

(8 .1) GI C Ker([AT] : G — • G ) if G is formal. 

Theorem 8.1 (Drinfeld). — LET G AND H BE ABELIAN FPPF-SHEAF OVER R-LR AND I BE AS 

ABOVE. LET Go AND HO BE THE RESTRICTION OF G AND H TO R/I-LR. SUPPOSE 

(i) G IS P-DIVISIBLE; 

(ii) H IS FORMAL; 

(hi) H(A) —> H(A/J) IS SURJECTIVE FOR ANY NILPOTENT IDEAL (H IS FORMALLY SMOOTH). 

THEN 

(1) Hom jR_Gp(G, H) AND HOMJI/J.QP^O, HQ) IS P-TORSION-FREE, WHERE "Homx -Gp" 

STANDS FOR THE HOMOMORPHISMS OF ABELIAN FPPF-SHEAVES OVER X-LR; 

(2) THE NATURAL MAP, SO-CALLED 

"REDUCTION m o d / " : H O I U R - G ^ G , H ) — • H o m j R / / _ G p ( G o , H O ) 

IS INJECTIVE; 

(3) FOR ANY FO G HOIUR/j_Gp (Go, HO), THERE EXISTS A UNIQUE $ G Hom^-Gp(G, H) 

SUCH THAT $ mod I = NU FO. WE WRITE NU F FOR $ EVEN IF F EXISTS ONLY IN 

ROMR_GP(G,H)®ZQ; 

(4) IN ORDER THAT F G Hom JR-Gp(G, H), IT IS NECESSARY AND SUFFICIENT THAT N" F KILLS 

G[N"]. 

PROOF — The first assertion follows from p-divisibility, because if PF(X) = 0 for all £, 

taking Y with PY = X, we find F(X) = PF{Y) = 0 and hence / = 0. 
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We have an exact sequence: 0 —• Hi —>• H —• HQ —• 0; so, we have another exact 

sequence: 

0 — • H o m ( G , iJ j) — • Hom(G, H) m ° d / > Hom(G, F 0 ) = H o m ( G 0 , JJ 0), 

which tells us the injectivity since Hi is killed by Nv and Hom(G, H) is p-torsion-free. 

To show (3) , take / o G Hom(Go, HQ). By surjectivity of H ( A ) —> H 0 ( A / I ) , we can 

lift / o ( x m o d J) to y G The class y mod Ker(iJ —• i J 0 ) is uniquely determined. 

Since K e r ( H —> Ho) is killed by Nu, for any x G G ( A ) , therefore iV^y is uniquely 

determined; so, x \-> Nuy induces functorial map: Nvf : G ( A ) —> H ( A ) . This 

shows (3) . 

The assertion (4) is then obvious from p-divisibility of G. The uniqueness of / 

follows from the p-torsion-freeness of Hom(G, H). • 

8.1.2. A T h e o r e m of S e r r e - T a t e . — Let A/R be the category of abelian schemes 

defined over R. We consider the category Def (R, R/I) of triples ( X o , D, e), where X o 

is an abelian scheme over R/I, D = ( J n with finite flat group scheme over R 

with inclusion ^ J D ^ n + 1 \ which is p-divisible, and e : D o = X o \ p ° ° ] . We have a 

natural functor ^ / j R -> D e f ( # , given b y I ^ ( X 0 = I mod I, X [ p ° ° ] , id) . 

Theorem 8.2 (Serre-Tate). — T h e above functor: A/R —> D e i ( R , R / I ) is a canonical 

equivalence of categories. 

Proof. — By the Drinfeld theorem applied to X[p°° ] and X (both abelian /pp/-sheaf), 

the functor is fully faithful (see [K] for details). 

For a given triple, ( X o , D, S)/R, we need to create X/R which gives rise to 

( X o , D,S)/R. It is known that we can lift X o to an abelian scheme Y over R. This 

follows from the deformation theory of Grothendieck ( [ G I T ] Section 6.3). When 

R/I is a finite field, by a theorem of Tate, X0 has complex multiplication. By the 

theory of abelian varieties with complex multiplication, X o can be lifted to a unique 

abelian scheme Y over R with complex multiplication (because the isomorphism 

classes of such abelian varieties of C M type corresponds bijectively to the lattice in a 

C M field). Thus we have an isomorphism : Yb[p°°] —* Xo[p°° ] . Then we have a 

unique lifting (by the Drinfeld theorem) / = N " o № : Y\p°°] -> D of Nva^\ Since 

the special fiber is an isogeny having inverse (a^)~l, f is an isogeny, whose (quasi) 

inverse is the lift of N " ^ ) - 1 ) . Thus K e r ( / ) is a finite flat group subscheme of Y. 

The geometric quotient of Y by a finite flat group subscheme exists (see [ A B V ] 

Section 12) and is an abelian scheme over R. Then dividing Y by K e r ( / ) , we get the 

desired X/R G A/R. • 

8.1.3. Deformation of an Ordinary Abelian Variety. — Let A be a ring of charac­

teristic p and (X,u) be a pair of an abelian variety over S = Spec(A) of relative 

dimension g and a base UJ of H ° ( X , tlx/A) o v e r A. We have the absolute Frobenius 

endomorphism F a b s • X/A —• X / & . Let T x / s D e the relative tangent bundle; so, 
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H°(X,Tx/s) is spanned by the dual base rj — T](LJ). For each derivation D of Ox,o, 
bv the Leibnitz formula, we have 

Dp(xy) = 
3=0 

(^JDp~jxDjy = xDpy + yDpx. 

Thus Dp is again a derivation. The association: D i—• Dp induces an F ab s-linear 
endomorphism F* of TX/S> Then we define H(X, (j) e A by F* f\g r] = H(X, uo) f\9 n. 
Since TJ(XUJ) == A - 1 rj(u>) for A G G L ^ ( A ) , we see 

H(X,\Lu)9f\r](\Lu) = F* f\rj(\co) = F*(det(X)~1 ^\TJ(UJ)) 

= d e t ( X ) ~ p F * Д т?И = d e t ( A ) - p # ( X , и) Д rçM 

= d e t ( A ) - p t f ( X , a;) det(A) Д ^(Аа^) = аеЬ(\)г-р
 H (X, а;) Д гу(А^). 

Thus we get 

Н(Х, Хи) = det( Х)1'1* H (X,UJ). 

We call X ordinary if X\p] = (Z/pZ)9 x fi9 etale locally. In the same manner as in 
the elliptic curve case, we know 

H(X,ÜÜ) — 0 <^=> X is not ordinary. 

Let F be an algebraic closure of ¥ p . Let R be a pro-artinian local ring with residue 

field F. Write CL/R be the category of complete local /¿-algebras with residue field F. 

We fix an ordinary abelian variety X 0 / F - Write X/R for the dual abelian scheme of an 

abelian scheme X/R. We write T X [ p ° ° ] e t for the Tate module of the maximal étale 

quotient of Х [ р ° ° ] . We consider the following deformation functor: V : CL/R —> SETS 
given by 

V x o ( A ) = [ (Хд4, ix) I X is an abelian scheme over A and ix ' X <8u F = X o ] . 

Here / : ( X , LX)/A — (XF, LX')/A if / : X —> X' is an isomorphism of abelian schemes 
with the following commutative diagram: 

X (gu F X ' <8) Л F 

¿ X ' * 

XQ X Q . 

Theorem 8.3 (Serre-Tate). — We have 

(1) ,4 canonical isomorphism V(A) = H o m z p ( T X o [ p ° ° ] é t x T X 0 [ p ° ° ] é t , G m ( A ) ) tak­

ing (X/A,Lx) to qx/A( , ) • 

(2) T/ie functor V is represented by the formal scheme 

RomZp(TXo\p°°}ét x TX0\p°°ìét,Gm) ^ G£. 
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(3) QX/A(X,U) = Qx/A^y^) u n ^ e r the canonical identification: X = X . 

(4) Let fo : X 0 / F —» Yo/F be a homomorphism of two ordinary abelian varieties with 

the dual map: fo : Yo —• X o - Then fo is induced by a homomorphism f : X/A —> F/^ 

/ o r X G Pxo(-A) a^d Y G P y 0 ( A ) and only if qX/A(x, fo(y)) = qY/A(fo(x),y). 

Proof — We are going to give a sketch of the construction of qx/A-

We prepare some facts. Let / : X —> Y be an isogeny; so, K e r ( / ) is a finite flat 

group scheme over S. Pick x G K e r ( / ) , and let C G K e r ( / ) C Y be the line bundle 

on Y with 0*£ = e > 5 ( 5 = Spec(A) for an artinian i?-algebra A). Thus / * £ = O x . 

Cover F by affine subsets Ui = S p e c ( ^ ) so that £\u. = (f)^1Oui' Since 0 y £ = Os, 

we may assume that (4>i/(j)j) o O y — 1. Since / : X —> Y is finite, it is affine. Write 

V* = f~l(Ui) = Spec (Bi ) . Then f*C\Vi = ^ x O y i with ^ = & o / , and we have, 

regarding x : S —*• K e r ( / ) , 

_ fao f OX _ </>j o Oy _ 

(fj O X O f O X (f)j o Oy 

Thus (fiO x glue into a morphism £ ] : 5 —* G m , and in this way, we get a pairing 

e / : K e r ( / ) x K e r ( / ) — + G m . 

Since X is a Ker( / ) - torsor over y , we have X Xy X = Ker(f) XsY. Thus for any 

homomorphism ( : K e r ( / ) —> G m , we can find a morphism 0 : K e r ( / ) X s Y —> P 1 

such that <fi(y + i) = £(t)(f>(y) for £ G K e r ( / ) . This function 0 gives rise to a divisor Z) 

on y x = y x<? X . By definition f*xC(D) = 0 X x , and ef(x,C(D)) = ((x). Thus, 

over X , e ^ / x : Ker(f)/X x Kei(f)/X —> G m is a perfect pairing. Since X —• S is 

faithfully flat, we find that the original e / is perfect. 

We apply the above argument to / = \pn] : X —> X , write the pairing as en and 

verify the following points (e.g. [ G M E ] 4.1.5): 

( P I ) en(a(x),y) = en(x,a{y)) for a G E n d ( X / A ) ; 

(P2) Write X o [ p n ] ° = fjLpn C X o [ p n ] . Then e n induces an isomorphism of group 

schemes: X0\p
n]° = H o m ( X 0 [ p n ] 6 t , / x p n ) ; 

(P3) Taking limit of the above isomorphisms with respect to n, we find 

X ° * H o m ( T X [ p ° ° ] ^ , G m ) * H o m ( T X o [ p ° ° ] 6 t , G m ) 

as formal groups. We denote the induced pairing by 

E x : X ° x T X 0 [ p ° ° ] 6 t — • G m . 

In particular X ° = G ^ . 

The structure of the p-divisible group X[p°° ] is uniquely determined by the extension 

class of: 

(8.2) 0 — H o m ( T X 0 [ p ~ ^ G m ) [ p n ] — X\pn] ^ X0\p
n]6t —+ 0 
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for n = 1 , 2 , . . . , o o . Take x = l i m ^ n G T X 0 [ p ° ° ] 6 t for xn G X\pnf\ Lift xn to 

vn G X\pn] so that 7r(v n) = xn. Then qn(x) = p^Vn G H o m ( T X o [ p ° ° ] 6 t , G m ) [ p n ] . 

Take the limit of qn to get g(a;) G Horn(TX 0 \p°°] 6 t , G m ( A ) ) . This g(ar) completely 

determines the extension class of (8.2) so the deformation X/& because it is determined 

by (Xo, X\p°°]) by the Serre-Tate theorem in the previous subsection. Then we define 

Qx/A(x,y) =q(x)(y). 

It is known that for any given q(x, y) as above an extension (8.2) exists by the theory 

of Barsotti-Tate groups studied by Messing (see [CBT] Appendix) . This shows the 

assertions (1) and (2) . All other assertions follows from (P l -3 ) easily. • 

8.1.4- Symplectic Case. — We now fix a polarization Ao : Xo —> Xo of degree prime 

to p. We consider the functor 

(A) = [ ( X M , i x , A) | ( X , LX) G VxQ{A) and A induces A 0 ] . 

Here we call / : (X,\x,tx) —» (Y,\Y,IY) an isomorphism if / : (X,LX) — (Y^Y) 

and / o Ay o / = \ x . Note that by Drinfeld theorem, E n d ( X / ^ ) is torsion-free, and 

hence, End(X/A) <^> EndQ(X/A) = E n d ( X / A ) ® z Q- We write a* = A 0

_ 1 o S o A 0 

for a G E n d ( X 0 ) <8>z Q- Since E n d ( X / ^ ) C E n d ( X 0 ) again by Drinfeld's theorem, 

the involution keeps E n d Q ( X / ^ ) stable (because on E n d Q ( X / ^ ) , it is given by a* = 

A - 1 o a o A). The involution a i—> a* is known to be positive (see [ A B V ] Section 21). 

The polarization Ao induces an isomorphism A 0 : X [ p ° ° ] 6 t = X\p°°]6t. We identify 

TXo\p°°]6t and TXo\p°°]6t by A 0 . Then the involution a ^ a is replaced by the 

positive involution "*". Then it is clear from the previous theorem that 

Vx0,Xo(A) - H o m z ^ S y m ^ X o b 0 0 ] ^ , ^ ^ ) ) - G # > + 1 > / 2 ( J 4 ) . 

8.2. Proof of the V C T in the Co-compact Case. — We first describe the 

deformation space in the unitary case, and then we prove the V C T for such groups. 

8.2.1. Unitary Case. — We fix a division algebra B with positive involution "*". The 

center of B is either a C M field F (* inducing complex conjugation on F) or a totally 

real field on which * is trivial. We fix a 5-module V with *-hermitian alternating 

form ( , ) satisfying conditions (Ll -2) in Section 6. Out of these data, we define the 

group 

G1(A) = {x e C <8>QA\ xx* = 1 } , 

where C = E n d J e ( ^ ) and (xv,w) = (v,x*w). For simplicity, we suppose that F = 

Q[\/—D] for a positive integer D (we suppose that — D is the discriminant of F/Q). 

In particular, we have ShK/E = S h ^ xs0E f ° r K maximal at p ([PAF] Theorem 

7.5). The group G i is an inner form of a unitary group of signature (m, n ) . Let 

e = diag[l , 0 , . . . , 0] G OB,P- By the condition (det), the representation of F on 

e(Lie(X)) for ( X , A,¿,17^)) G V(A) (A G W-CL) is m i d + n c for id : Of ^ W and 

non-trivial automorphism c of F. We fix an 0#-la t t ice L of V such that ( ) induces 
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a self duality of Lp = L Zp. We suppose that p = pp in F ; so, OBJP = OB <8>Z 

Z p = MR(OF,p) 0 M r ( 0 F ? p ) . Supposing that X / F is ordinary, we have L i e ( X / F ) = 

Lie(Jf[p]° F ) , where X\p]° is the connected component of X\p\. Thus we may assume 

that TpX[p°°]6t 9* MRXN(0F,P) and TpX[p°°]6t * MRXRN(0F,P). 

For an artinian local W-algebra A with residue field F = W/mw = ^P and 
(X,\,i,r)№) e V(A), we consider Dx = e(X\p°°]). Since X\p°°] ^ Dr

x as Barsotti-
Tate p-divisible groups, the abelian scheme X as a deformation of XQ = X <S>A F is 
completely determined by Dx-

Suppose that XQ is ordinary. We write the OF,P-component of TpD^ = TpD^Q as 
TpD^. Then the symmetric pairing 

q x / A ( , ) : TpXolp^f x T ^ o ^ f — Gm(A) 

induces a homomorphism: 

Qx/A • TPD% ®zp TVD% —> G m ( i ) , 

because the pairing is c-hermitian (that is, the involution * induces complex conjuga­
tion c). Since the level iV-structure outside p lifts uniquely to deformations, we can 
ignore the level structure while we study deformations of ( X o , Ao, ¿0 , VO'^/F- SO we 

consider the functor 

^ x 0 , A 0 , i o ( ^ ) = [(X/A,i>x,\i) I (X,LX,\) € VXQ,\0(
A) a n d * induces ¿0 ] . 

Then the above argument combined with the theorem of Serre-Tate (Theorem 8 . 3 ) 

shows 

Vx0,\M) = H o m Z p ( T P Z ^ ® O f 0 i P T¥D%,Gm{A)) = S(A), 

because the symmetric (c-hermitian) form on 

(TPD$ x T¥D$) ® (TPD% x TWD%) 

is determined by its restriction on {TPD^ x { 0 } ) x ( { 0 } x TpDx). 

8.2.2. Hecke Operators on Deformation Space. — Let Oc = {x G C \ xL C L}. We 

write G i ( Z ) for 6g fl G i ( A ( ° ° ) ) , where Oc = Oc ® z Z . We fix an open compact 

subgroup i f C 6? i (Z) such that K = Kp x with ^ G L m + n ( Z p ) via the 

projection to p-factor. 

We consider p-ordinary test objects X_ = ( X , A, ¿ , 7 7 ^ ) / ^ over a local artinian W-

algebra A. Since the pairing qx/A € S ' (^) is actually determined by its restriction to 

Qx/A : TpD*x x TpDjJ, we only look into this restriction. We study the OF,p-hnear en-

domorphism algebra EndBT(sX[p°°]/A) of the Barsotti-Tate group eX[p°°]/A- Write 

each endomorphism a as ( a g ^ ) with 

aaeEndBT(eX[p°°]0), ba e H o m B r ( e - X ' [ p 0 0 ] 6 t , e - X ' [ p 0 0 ] 0 ) and 

c a G E n d O F o , p ( e T f ( X ) ) . 
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If A is an algebraically closed field of characteristic p , the étale-connected exact se­

quence £ X o [ p ° ° ] 0 ^ £Xo[p°°] - » £ X 0 [ p ° ° ] é t is (non-canonically) split. In any case, a 

acts on Tx,p = TPD^ 0 T p D ^ diagonally via aa and da. We regard T = G™ as a 

maximal split torus of GLm{0F^) x GLn(0F,p), which is the automorphism group of 

e X [ p ° ° ) é t x e X [ ( p c ) ° ° ] é t . 

Let X / ShK be the universal abelian scheme. We write Pt = £X/s[p°°] é t [p*] and P's — 

£ X / s [ p ° ° ] e t [ p s ] and apply the theory developed in Section 7 to each piece Pt and P s '; so, 

we obtain the theory of false automorphic forms for GLn(0F,p) X GLm(0F^) (OF,P — 

0Fp = Z p ) . Since p is unramified in F , O F ® Z p — for the set of embedding 

I = {a = id, c} of F into Q . Then we consider nitrations fil^ and fil c of e X [ p * ] e t and 

6 : X [ p s ] e t , and consider the following test objects: 2L(t,s)
 = {X, A , i , r f p \ f i l ^ - , f i l c } / ^ . 

Let M — S h ^ and S = M [ - ^ ] , where E is a lift of the Hasse invariant. We write 

Tj?t,s/Se f ° r t n e étale covering over Se = S <g>w We (We = W/p£W) classifying the 

above test objects. Similarly, Tijt,s classifies 

( ^ A ^ T / ^ O F / P * ) 7 1 x ( 0 F / p s ) m ^eXlptf x e X [ p s ] é t ) . 

The covering Te,oo,oo/Se is an étale Galois covering with Galois group isomorphic to 

G L m ( 0 F j ) x G L n ( 0 F , p ) . 

We had an action of the expanding semi-group on filtrations of Pt (0 < t € Z ) for an 

étale sheaf Pt = ( Z / p t Z ) n . If we have a p-isogeny f3 : P ^ = |J t P t —• P ^ preserving a 

filtration of PQO, we may assume that the matrix form of /3 is given by (3j = ^ ln

0"
J

 p \ . ̂  

with respect to a base compatible with the filtration. Then the action of is to give 

a new filtration on . 

Since we cannot separate Pt and P/ (which is sitting in the single universal 

abelian scheme X ) , we define am+j = d i a g [ / ^ , p l m ] and consider an isogeny of 

type am+j. We can thus interpret the operator action in terms of the quadruple: 

( X , A , ¿ , 7 7 ^ , R i o - , f i l c ) / F as follows: Take an isogeny a : X —> Xa of type a m + j as 

above (inducing (3 on P ^ and multiplication by p on P ^ ) . Then we get a new 

filtration (3(ûla). The p-isogeny is insensitive to the level TV-structure, and Xa has 

an induced polarization, still written as A. Then we have 

( 8 . 3 ) f\(tj(p) x ^ m ( p ) ) ( X , A , z , ^ ) , f i l a , f i l c ) 

= J2 M P ' 1 ) / ^ A, t, rf»\ /3(fiU), file). 

Thus we have a GL(n) x GL(ra)-Hecke operator tj(p) x £ m ( p ) acting on the coher­

ent cohomology H°(Se1LJK). This is actually an over-simplified version. The exact 

sequence: 

0 Hom(P; , G m ) — > X[p*] - ^ P t ^ 0 

may not split over Se; so, the isogeny a can be defined only over a finite flat 

extension S ^ ™ * 3 of Si (which is radiciel over an étale extension of Se)- In other 
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words, if we replace the term: f(Xa, A, i, rj^p\ /3(fil<j), filc) in (8.3) by the trace 

T r 5 « m + J ^ 5 ^ ( / ( X / 3 , A , 2 , ^ p \ ^ ( f i l 0 - ) , f i l c ) ) , we can relate tj to a global Hecke operator 

Ui(p) which is divisible by the degree of Sfrn+j
 over the maximal étale cover of Se 

under Sfm+j. The operator tj is not well defined on coherent cohomology, although 

it is well defined on £-adic étale cohomology (because ^-adic étale cohomology is 

insensitive to radiciel base-change). 

For the moment, we pretend that the over-simplified version (8.3) is valid (and we 

later justify our argument). Thus for a while, our argument is just heuristic. 

Since Gi(Qp) = G L m + n ( Q p ) , we can embed GL(n) x GL{m) into G i ( Q p ) 

by (x,y) i—> diag[x,y}. This implies the p-isogeny whose kernel sits in X[p°° ] e t 

(resp. X[p°°] e t ) corresponds to x (resp. y). Write P = Pm,n for the upper triangular 

parabolic subgroup of G\ whose Levi subgroup is given by the image of GLn x GLm. 

Let Um,n be the unipotent radical of P m , n -

Write aj = aj(p) G G(QP) whose projection to Cp = C % F P is given by 

d i a g [ l m + n _ j , p • lj] and v(ptj) = p. We then have Hecke operators 

Uj(p) = U(aj(p)) = UBajUB, 

where U& is the upper unipotent subgroup of G \ ( Z P ) . Since we identify G i ( Q p ) with 

G I / M + N ( Q P ) by projecting down C ®Q Q p to the first component Cp, as a double 

coset, we see (symbolically) 

Uj(p) = I 

U Uj3(tj-n(p) x tm(p))u if j > n, 
U G Um, n IOL J 1 Um, n « j 

U UB(to(p)xtj(fi))u if j < n , 
\,uÇ.Um,n/oiJ1Um,nOlj 

where we mean, for example, by ( £ j _ n ( p ) x £ m ( p ) ) , the double coset: 

f 7 ( d i a g [ l 2 n - i , p - lj-n] x p * ^m)U 

in GLn(Fp) x GLrn(Fp) for the upper triangular unipotent subgroup U. This shows 

that the Hecke operator Uj(p) induces 

[Um,n : OL~lUm,nOLj]{tj-n(p) x t m ( p ) ) or [Um,n : a j 1 ^ ^ ] ( t 0 ( p ) x £ m ( p ) ) 

according as j > n or not. By computation, we get the following heuristic multiplicity 

formula: 

í i ì—n{m-\-n—j) -г • ^ 

(8.4) [Um,n : <*i(p)-1Um,n<*j(P)] = »т,пЫ = { , ' • ! / . ^ n ' 

This formula suggests us that Uj(p) is divisible by / i m , n ( ^ j ) , which we will justify 
later. 

Since the universal deformation space of ( X , A, i,rj(p\ nip, n i p ) ^ is isomorphic to 

S = R o m ( T p D % ®oFo,p T ¥ D $ , G m ) , 
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as already seen, we can think of the effect of the isogeny /3 : X/§ —* Xf g oî type OLJ 

on the universal deformation space X^§, which sends 

Rom(TpD% x T¥D$,Gm) 3 q(x,y) .— q(a(x),a(y))/p. 

We need to divide by p as above by the following reason: Since q G S measures the 

depth of non-splitting of the exact sequence Hom(P/ ,G m ) X[p] - » Pt, and the 

sequence for t = 1 is split if q is a p-power. Thus the isogeny a exists over S1^. 
Here we have written the group structure on G m additively; so, "division by p" would 

become "taking p-th root" if we had formulated the group structure multiplicatively. 

The isogeny is defined over a smaller covering S[(q o a)1^] = Spî(Os[(q ° OL)1^}) by 

definition; so, Sa/S is given by S[(q o a ) 1 / / p ] . At this point, we are taking p-th roots, 

and hence pure inseparability (we pretended not to have) comes in. Then the action 

of the isogeny a of type OLJ on S only depends on its effect on TpD^ and TpD^ not on 

the individual choice a. This means that the covering Sa over S carrying the isogeny 

a only depends on the image of a in the Levi-quotient of P. Indeed, taking a base 

(xi)i of TpDx and (yk)k of TpD^ so that the matrix of the isogeny is exactly aj, the 

effect on T = (Tk,i) = (e(xk, yi)) is given by 

(8-5) ( V T J — M p H V r j M p ) - 1 , 

and 5 f has degree of pure inseparability given by the value in (8.4). Hereafter we 

write S"j for Sf. 

Here is the justification of our argument. Write the multiplicative variable on S 

as an m x n variable matrix t = (£fc,z). The conjugation: ( V u ) *~* aj ( V in ) aJ1 

induces Tkj »—• p~1Tk,i for some indices (&, / ) . We split the set of indices (fc, I) into a 

disjoint union I U J of two subset so that the conjugation by aj induces Tk,i »—> p~xTk,i 
if and only if (A:,/) G / . The covering SOCj

 is given by Spf(Os[t]/^](k,i)ei)' Thus a 

formal function, on S has expansion a^tç G W^t^i, }] for £ G Z / u , / . Writing 

£(/) for the /-part of the index f, a formal function / on has expansion / = 

¿ e a ^ ( J ) / P + « J ) , and we have 

£:£(/)=0 mod p 

because / x m 5 n ( a 7 ) is the degree of the (purely) wildly ramified covering Saj - » 5 and 

Tr(t^f ) = l^m,n{otj)t%l^ or 0 according as p\i or not. Thus by replacing the term: 

f(Xai A,z,77 ( p ),a(fil ( T),a(fil c)) in (8.3) by the trace 

Trsa/s(f(Xa, A, i, rfp\ a(fil f f), a(fil c))), 

we get the p-divisibility of the operator £/j(p) as the (heuristic) multiplicity formula 

(8.4) suggests. This justifies the heuristic argument we gave (the heuristic argument 

is actually valid for £-adic étale cohomology with £ ^ p as already explained). 
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Let Si = S ®w W£. On the universal deformation X§, the sheaf e(Lie(X))^ 
is given by e(Lie(X\pe]°)). By duality, u§t = Oge ® z p -X"^]®*, which again only 

depends on Xo[p*] e t ; so, the Hecke operator Uj(p) is still divisible by / i m ? n ( a j ) = 

[Up : aJ1Upaj] on u; | for all K > 0. Thus the action of the correspondence of 

characteristic 0 on H°(Soo,uiK) is exactly a multiple by the number in (8.4) of the 

operator induced by the mod p correspondence, which is an integral operator. Prom 

this our claim is clear. 

In any case, we can divide the action of Uj(p) by the number in (8.4) keeping the 

integrality of the operator on uA 

Lemma 8.4. — Let the notation be as above. We have a well defined integral operator 
[Up : a^Upa^Ujip) on tf°(Tm,n,a;" ® fi5/w). 

We then define 

(8.6) eG = lim (C/(p)) n ! , 
n—>-oo 

where 
m-\-n 

U(P) = n PP : " ( P ) ; 1 ^ ) ; ] " 1 w 

3 = 1 
As for Tj(p), if K ^ /im,n (that is, K — / / m , n is in the Weyl chamber), Tj(p) = 

[^•(p) mod p on H°(Me,(jK)® u°M/w) for = S h K / w The operator Tj(p) is 
well defined on cuK over M as a linear operator, using moduli theoretic interpretation. 

Let U be the upper unipotent subgroup of Gal(Zg > 0 0 j 0 0 /£g) . Following Lecture 7, 

we can define the space of p-adic automorphic forms Vu on Soo (which is the formal 

completion of S along Si). Thus 
V = l h n ( l h n V f M ) 

e t,s 

for Vt,t,s = H°(Tt,t,a, 0 T I tmf. We also define 

V = U m ( l j m V f M ) 
e t,s ' 

The boundedness condition (F) in Section 7 is verified in [H95] in Case A because 

G i ( Q p ) ^ G L m + n ( Q p ) . The hypotheses (Hypl-2) are clear because S = ShK[±] is 

an affine scheme in the cocompact case. The value f\Uj(p)(X, A, i,rj(p\&l, u) is the 

sum (more precisely, the trace) of f ( X / C , A7, i', rj,<<P\ fil', a/) for etale subgroups C of 

X\p\. Since the Hasse invariant is insensitive to etale isogeny (by its definition), the 

commutativity condition (C) in Section 7 holds. Then we have 

Theorem 8.5. — Let W be a p-adic completion of the integer ring of the Galois closure 
o f F / Q . Suppose that M/w = ShK/W is proper over W. Let B be the upper triangular 
Borel subgroup of G L m { O p ^ ) x GLU(OF,P) and U is the unipotent radical of B. Let 
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T = B/U, and regard it as a diagonal torus of G\(QP). We say k 6 X(T) positive 
if k is positive with respect to the opposite Borel subgroup of B. We write X+(T) for 
the set of positive weights k. 

(1) There exists a canonical inclusion for A = ZP and Qp/Zp 

(3 : 0 H\M/W,u? ®Zp A) c—• V ®zp A. 
K€X+(T) 

(2) Im(/3)[i] n V is dense in V; 
(3) Write U(p) = Ili<j<m+n uj(P) for standard Hecke operators at p of level 

p°°, that is, 

u ( t ) ) =

 uito) 
AP> [Up : a^Upaj] 

for the unipotent radical Up of the upper triangular maximal parabolic subgroup of 
G L m + n ( O F , p ) with Levi-subgroup isomorphic to GL(m) x GL{n), and define the or­
dinary projector e = linin-.oo U(p)nl on V. Then 

eH0(S,uiK (g>zp Qp/Zp) is a p-divisible module with finite corank. 

(4) If n> / x m , n is sufficiently regular, eH0(S,LOK <g>zp QP/ZP) (resp. eH0{Soo,uiK)) 
is isomorphic to H°rd(M,uiK ® Z p Q P / Z P ) (resp. H°rd(M,uK)); 

(5) Let V* r d be the Pontryagin dual W[[T(ZP)]]-module of eV (which is isomorphic 
to the W-dual of eV). Then V* r d is W^T^-free of finite rank, where YT is the 
maximal p-profinite subgroup ofT(Zp); 

(6) IfKGX+(T), 

VQ*rd ®w[[T(zp)]U w = H o m w ( e # ° ( S o o , W ) . 

Although we restricted ourselves to cocompact unitary cases here, a similar result 
can be obtained in more general settings of cusp forms on a non-compact Shimura 
varieties of unitary groups and symplectic groups (see [H02]). In [H02], we have 
given the heuristic argument for the divisibility of U(p), but it can be justified using 
the trace (in place of the sum of the values) from (wildly ramified) finite flat covering 
(carrying specified p-isogeny of the universal abelian scheme) over the Shimura variety 
as we did; so, the final result in [H02] is intact. 

9. Hilbert Modular Forms 

We shall give concrete examples in the non-co-compact case. These are Hilbert 
modular varieties. We give a sketch of the proof of the vertical control theorems. 
More details can be found in Chapter 4 of [PAF]. 
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9.1. Hilbert Modular Varieties. — We first recall the toroidal compactification 

of the Hilbert-Blumenthal moduli space. Main references are [C], [K2] and [Ra] (and 

[HT], [DT]). 

Let A = lim^ A / p n A be a p-adic ring. Let F be a totally real field with integer 

ring OF and N be an integer ^ 3 prime to p. So our groups are given by G = 

R e s O F / z G L ( 2 ) and G± = R e s O F / z S L ( 2 ) . We write T for the diagonal torus of G\ 
defined over Z; thus, we have T(A) = (OF ® Z ^4) x • We consider a triple 

(X, A, <\>: ( t r 1 ® z Miv) 0 (OF ®Z Z/NZ) * X[N]) 

over a scheme S made of an abelian variety with real multiplication by OF (an AVRM). 

This means that X/s is an abelian scheme with OF End(X/s) such that Lie(X) 

is free of rank 1 over Os ®z OF- Here d is the absolute different of F, and A is a 

c+-polarization for a fractional F-ideal c. This means that A : X = X <g>oF c. The 

word c+-polarization means that the set of symmetric morphisms induced (fiber by 

fiber) by ample invertible sheaves: P+(X) C Hom(X,X) is isomorphic to c+ by A. 

This notion only depends on the strict ideal class of c. Thus hereafter we assume that 

c c O F . 

Tensoring X over OF with the following exact sequence: 

0 — > c — > OF —> OF/C — > 0, 

we get another exact sequence: 

0 — • Ton (OF/C, X) —• X ® c — > X — > 0. 

Thus the above condition on polarization can be stated as 

X/X[c] ^ X 

for X[c] = {x e (X <g> c)\cx = 0}. We also note that 

X = X,/X'[a] X' = X®a X = X'® a~\ 

which will be useful. 

To describe the toroidal compactification, let 

C = {£ e Foo | ¥ > 0 for all a : F ^ R} 

be the cone of totally positive numbers in F^ = F ® Q R . Choose a cone decomposition 

C = [_\aa such that 

(1) a is a non-degenerate open rational polyhedral cone without containing any 

entire line. Here the word "rational" implies that the cone is generated by a finitely 

many elements in F + = F D C over R + ; 

(2) the set of cones {a} is permuted under multiplication of T(Z)( iV) 2 , where 

T(Z)(N) = {e e O* | e = 1 mod N}. 

There are only finitely many cones modulo T(Z)(7V), and s(a) Ha ^ { 0 } implies that 

e = 1 (see [ L F E ] Theorem 2.7.1 for an exposition of such decomposition); 
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(3) a is smooth (that is, generated by a part of a base of O F ) ; 
(4) {a} is sufficiently fine so that the toroidal compactification is projective (see 

[C] and [DAV] IV.2.4 for an exact condition for projectivity). 

Let <Jv be the dual cone: 

a v = {x e Foo I TrF/Q(xa) ^ 0 } . 

Then С = fla 
Here is an oversimplified description of how to make the toroidal compactifica­

tion over W/z , where W is the discrete valuation ring we took as the base ring. 
Each Hilbert modular form / (defined over a ring W) has a ^-expansion f(q) — 
X^eanc a ( £ ' f)^ ^ o r a n ideal a - Thus we convince ourselves that the formal stalk 
of the minimal compactification at the cusp oo is the ring Roo(u) = W[[q^]]anc = 
W[[an C]], which is the completion of the monoid ring of the semi-group аГ)С. Thus 
^oo(a) = Па RAa) where Ra(a) = W[[qt]]an*v = W[[a П cr v]]. For each a as above, 
by enlarging a if necessary, we may assume that а Пег is generated over Z by t±,..., tr 

(0 < r ^ [F : Q] = g). Then we have a base of crv so that T r ( ^ ) = Sij 
for 1 ^ г < j ^ r and Tr(cr£r+j) = 0 (j > 0). Then each £ E а П <rv can be uniquely 
written as £ = J2i m * & with m3- G Z and m3- ^ 0 if j ^ r. Thus writing T3 = , we 
find 

Ra(a) = W[[Tu...,T9]}[T^,...,±}. 

Thus Spf(i? a(a)) = AR x Gf^r which is a compactification of Spf(i? r(a)) for each 
face r of <J. Thus we can glue {Spf (R a (a ) )} a on the ring in the common intersection 
of the cr v ,s, and getting a formal scheme X on which T(Z)(N) acts by translation. 
Then make a quotient X/T(Z)(N). The algebraization of the quotient is the toroidal 
compactification at the infinity cusp. 

We consider the moduli space MC,N/W of test objects (X, Л, ф)/A for VF-algebras A, 
where W is a discrete valuation ring containing all conjugates of Op. We assume that 
W is unramified over Zp and that Nc is prime to p. Prom the above data, we get 
a unique toroidal compactification M = MCIN of A4C,NY which carries a (universal) 
semi-AVRM Q = QC^N with a level structure D ® fiN <-> G[N}. The semi-AVRM 
coincides with the universal abelian scheme A — AC,N over A4C,N- Let be the 
formal completion of M along M\ = M <S>w Wi. Write SQO С for the ordinary 
locus, that is, SQQ is the maximal formal subscheme of on which the connected 
component G\p)° of Q\p] is isomorphic to ¡1^ locally under etale topology, and thus 

5oo is the formal completion of S = M[^] along Si = S <8>W Wi, where E is a lift of 

Hasse invariant. Then we put Sm = S XW Wm. Let 

Tm^n/Wm =Isomo F (D- 1 (8)/Xp-,^bn]°) = lsom0 F {6\^]° ,0F/p
nOF). 

Then Tm^n/Srn is an etale covering with Galois group T(Z/pnZ) = (0F/p
n)x

 for 

T = R e s O F / z G m . By a result of K. Ribet [Ri] (see also [PAF] Theorem 4.21 and 

[DT] Section 12), Tm,n is irreducible. 

ASTÉRISQUE 298 



p-ADIC AUTOMORPHIC FORMS 233 

The sheaf w^/g^ = Os^ ® z p lini^ £/[pn]° is isomorphic to the dual of /* lAe(Q/M) 
for / : Q —» M . In other words, LU/m = Hom(f*Lie(G/M),OM) is the al-
gebraization of the formal sheaf u;^ on Soo (which is unique). Identifying 
X(T) = Hom aig_ g p(T, Gm/w) for the set / of embeddings of O F into W, 
we write tuk for the sheaf associated to k G X ( T ) + . We then define 

M * = P r o j ( © t f ° ( M , ^ ) Y 

where £ = J2*ei a' T h e n 5 * c M * i s d e f i n e d b Y 

S* = Spec ( 0 H ° - 1)) 

for the lift of the Hasse invariant E. Write n : M —• M*. 
The only thing we need to verify is (Hypl): 

H°(S,uik) ®w Wm = H°(Sm,Uk ®w Wm) 

for the sheaf LJk C of cusp forms of weight k. Since H0(S,cok) = JfiT°(5*, 7r*(cuk)) 
and 5* is affine, we need to verify 

TT* Ык/s) ®W Wm = 7Г* {u¿k/S ®W Wm). 

We shall do this stalk by stalk. Outside the cusps, the two sheaves are the same; so, 

nothing to prove. 

Now we have for each cusp x associated to the ideals a b - 1 = c and a p-adic W-
algebra A = lim^ A / p m A : 

(9.1) i¿Qj~A)x - tf0(T(Z)(7V)2, А[[Ь(аЬ)+]]) 

= { £ С б * ( « ь ) + 6 A[[^(ab)+}} I a ( e 2 0 = e f c a(0 Ve e T ( Z ) ( N ) } , 

where (ab)+ = G ab | ^ » 0} | J{0} = C fi ab, and T(Z)(N) = {u e 0 £ | 

u = 1 mod N} acts on A[[^(ab)+]] by e £ e e ( f l b ) + a ( £ ) g * = E ^ ( a b ) + e" f c a(e 2 0(^-

When TV ^ 3, for each E T(Z)(7V) 2 , there is a unique e e T(Z)(iV); so, there is no 

ambiguity of (±e)~k
 in the above formula. We define to_k by requiring its stalk at every 

cusp is given by those g-expansions vanishing at the cusp. The group cohomology 

H ° ( T ( Z ) ( N ) 2 , X ) commutes with ®wWm if X is A[T(Z)(AT)2]-free. Then from the 

above fact, we get 

(9.2) n*(vk/w)x ®w wm = n*(<ilk/wm)x-
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We put 

V £ 7 = H°(Tm,n, 0 T M , N (-D)), V c u s p - lim V™* 
m 

Vcusp = lim V™%, Rc

e

usp = 0 H°(M,uk) 

D™sp = 0(R™sp)l±}nVcusp. 

Here k > £ means that ka > £a for all a € / , and D = n~1^2x:cusp %) is the 
cuspidal divisor on the toroidal compactification. 

In this GL(2)-case, it is known that we have two Hecke operators U(j>) acting on 

cusp forms of level divisible by p and T(p) acting on cusp forms of level prime to 

normalized as in Lemma 8.4 to keep integrality of tuk. The operator U(p) has its effect 

on ^-expansion a(£, f\U(p)) = a(£p, / ) and decreases the level to the minimum as long 

as it is pn for n > 0, and if k > 2t, then T(p) = U(p) mod;?. Let e (resp. e°) be the 

idempotent attached to U(p) (resp. T(p)). We attach a subscript or superscript "ord" 

to the object after applying the idempotent e or e° (depending on the setting). From 

this, we conclude 

Theorem 9.1. — Let F be a totally real field of degree d and N be an integer N ^ 3. 
Suppose that p is prime to NNF/Q(DC). Then we have the following facts: 

(1) D^usp is dense in Vcusp; 
(2) The Pontryagin dual V ^ ^ * (which is isomorphic to Homw(K° r

Sp, W)) of V™*P 

is a projective W[[TCZP)]]-module of finite type; 
(3) ®w[[T(zp)]lk W - Hom w (# o

0

r d (Soo ,w f c ) , W) ifk > 3t; 
(4) If k ^ St (t = ~^2a a), e induces an isomorphism 

< d ( ^ o o , ^ ) = ^ o

0

r d ( M , ^ ) , 

where f&dOSoo, ?) = e#°(Soo, ?) and # o

0

r d ( M , ?) = e ° # ° ( M , ?) . 

We shall give a very brief sketch of the proof (see [PAF] Theorem 4.8 for more 

details). 

Proof. — The assertions (1) and (2) follows from the general argument, using the 

theory of false modular forms (Section 7). Then the assertions (3) and (4) follow 

for sufficiently large k. It is known that dimH® r d(M',u k) depends only on &|T(Fp) if 

k^3t (see [H88] Theorems 2.1 and 8.1 and [PAF] Theorem 4.37). From this, the 

assertion (3) and (4) for small k follows. • 

9.1.1. Moduli problem of T\(N)-type. — Let T\(N) be an open compact subgroup 

in GL2{OF) (OF = OF ® Z Z) consisting of elements congruent to upper triangular 

matrices of the form (g *) modulo N. Let T(N) be the subgroup of Ti(N) consisting 

of matrices congruent to 1 module N. 
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In place of the full level iV-structure, we could have started with the moduli problem 
classifying test objects (X, A, (j): D"1 ®z №N X[N])/A- AS long as the moduli prob­
lem is representable (that is, N is sufficiently deep), we get the same assertions as in 
Theorem 9.1 replacing MCJN by the moduli M . f for weight k with ka = kr mod 2 
for all <j, r : F Q. This parity condition is necessary to define e i—• £ f c / 2 for totally 

positive units e € T (Z) (since £* = 1 for such units). In this subsection, we only 

consider the moduli problem of Ti(A^)-type, and accordingly, we define V, V, V££^* 

and V™% f ° r ri(iV). For simplicity, we hereafter assume that k is even (so we write 

2k instead of fc), since the general case is exposed already in [H96] Chapter 2 . Since 

these spaces actually depend on the choice of the ideal c, we add subscript c if we 

want to make explicit the dependence on c. 

We consider a test object (X, A, </>)/A of level Ti(N). For any ideal a prime to Np, 
we make a quotient X' = X/X[a] = X ® z a; thus, X = X' <g> a. Then X'[N] = X[N] 
canonically; so, (j) induces a level ri(7V)-structure </>'. Let P(X) = { A € Hom(X, X) \ 

A = A } and P+(X) C P(X) is the subset made of polarizations. Then we have 

an isomorphism: A : P = c of Oi?-modules taking P + onto the subset c+ of totally 

positive elements of c. Dualizing the exact sequence: 

0 — • X[a] — > X —>X' — • 0, 

we get another exact sequence: 

0 —> X'[a] — > X f —> X — • 0, 

because X'[a] is the Cartier dual ofX[a]. This shows X' £ X ® a = X ® ca = X ' ® c a 2 , 

A induces A' : P{X')+ 9* ( c a 2 ) + . Thus (X, A,0) ^ (X' ,A' ,</>') induces [a] : VCA2 2* Vc. 
We identify Vc and VCA2 by [a]. Thus Vc only depends on the strict ideal class of c 

(and also modulo square ideal classes). 

We then define 

( 9 . 3 ) v s £ p ( f i ( j \ r ) ) = e v x , « a n d v s # * ( f i ( j v ) ) = e v s & : « , 
c c 

where c runs over strict equivalence classes of ideals modulo square classes; thus, it 

runs over the group ClJ / ( C l £ ) 2 , where ClJ is the strict ideal class group. 

Note that 

P G L 2 ( F A ) = U P G L 2 ( F ) ( g ? ) r 1 ( i V ) P G L + ( F 0 0 ) , 
a€Cl+/(Cl+)2 

where a runs over a complete representative set for Cl£ / ( C l £ ) 2 in F£; FQO = F(£)QR; 

PGL^iFoo) is the identity connected component of PGL2(F00), and Ti(iV) is the 

image of f i(iV) in PGL 2 (J R A° 0 ) )- Thus we may regard V c ° ^ * ( f X(N)) as the W-

dual of the space of p-adic cusp forms of level ri(JV) on PGL2(F&). For a given 

modular form / = ( / c ) the above spaces, say in VCUsp,c? it has (/-expansion at the cusp 
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oo = (a = O F , b = С 1 ) : 

/с = E а(£;Л)<?с. 

If / G VCusp,c[2fe], as we have already seen for level iV-modular forms, a(e 2£; / ) = 
£2ka{£',f) for e G T(Z) C SL2{OF). Since we only have level f i(iV)-structure, / 
satisfies invariance under the matrix (§ ? ) f ° r totally positive units e in addition to 
the invariance under ?i ) for arbitrary units 5. Thus we actually have 

/ ) = £ f c a (£; / ) f ° r all totally positive units e. 

Choose a finite idele c so that cOp = c and cp — 1. For finite integral ideles 2/ and 
/ € VCUsp,c5 w e m a y define a continuous function y 1—> a p (?/ ; / ) G K/W for the field 
of fractions AT of W as follows: Choose ideal representatives (prime to Np) c and 
a so that yOp — £ca2 for £ G ( c a 2 ) ^ 1 , and write y — u£ca2 for ideles u, c, a with 

= c p = 1, COF = c, a(9p = a and ap — cp = 1. Then we define 

a P (y; /)=«*o(e; /« |[o]) . 

We can verify that a.p(uy; f) = a p (y; / ) for u G 0 £ with tip = 1 and if / G V c u s p ? c [2£;] , 
then 3ip(uy] f) = upa.p(y; f) for u G Oj£. Thus a p is well defined independently of the 
choice of c, and for an integral ideal n prime to p, choosing a finite idele n so that 
UOF = n and rip = 1, 8Lp(ny;f) is well defined independent of the choice of n. We 
write ap(yn; / ) = ap(ra/; / ) . 

We extend the function a p outside integral ideles by defining it to be 0 and extend 
it to general / G VCUsP,c using the fact that VCUsP,c = ]C2fc VcusP>c[2fc]. By the q-
expansion principle due to Ribet (which we will prove in a more general setting in 
the last lecture: Section 10), the p-adic modular form is determined by the function 
a p on integral ideles. An important fact (see [H96] 2.4) is the following formula for 
integral ideals n prime to p and the Hecke operator T(n): 

(9.4) a p (y ; / |T (n ) )= £ N{\)-^{yn/\2; f). 

For w G O F , p H F p

x , we write T(w) for the normalized Hecke operator corresponding 
to the double coset U(ZP) (J ° ) U(ZP). Then we have 

(9.5) *p{y<f\T{w)) = *p(yw-f). 

Lemma 9.2. — Le£ h 6e tte subalgebra of End(V°^ p(ri(A/"))) generated topologically 
by T(w) for w G O F , p H F p

x and T(n) /or integral ideals n prime to p. Then h = 
V£&*(f i(JV)) a 5 W[[T(Zp)]]-mo^/e 5 . 

Proof — We shall give a sketch of a proof. We consider the following pairing: ( , ) : 
V c

o ^ P ( f i ( A 0 ) x h - K/W given by (f,h) = a p ( l , / | / i ) . Then (T(w)T(n) , / ) = 
ap(t<;n;/) by (9.4) and (9.5), and hence, by the (/-expansion principle, if (/, h) = 0, 
then / = 0. By the perfectness of the Pontryagin duality, we thus have a surjective 
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h-linear morphism: h - » V£u^*(ri(iV)) of Hecke modules. Since h acts faithfully on 
vcu!?p* (? i (JV)), we conclude the injectivity. • 

Since a similar duality holds between the weight 2k Hecke algebra h2fc(ri(iV); W) 

acting on 0 C H°rd{Mfi{NU,u2k) and V?£ p (f i(N))[2k], Theorem 9.1 implies the con­

trol result for the Hecke algebra: 

(9.6) h ®W[[T(zp)]],2fc W ^ h 2fc(fi(i\0; W) for all 2k > St. 

We can extend this result to GL(2) (from PGL(2)). Let Z = ClJ(p°°) be the ray 

class group modulo p°°oo, that is, lim^ C\p(pr). We decompose Z = Tz x Az so that 

Tz is p-profinite and has order prime to p. 

Since the universal nearly p-ordinary Hecke algebra for p > 2 on Res F /Q GL{2) is 

the Pontryagin dual of C(Z, V££gP), the Hecke algebra is isomorphic to 

VS&4ÏI(W)®WW[[Z\] 

as W[[Z x T(Z p)]]-modules (see [MFG] Theorem 5.6.1 for a proof when p > 2 and 

N = 1 and [PAF] 4.2.12 for more general results). Thus we have the following facts 

when N is sufficiently deep so that the ri(Af)-moduli problem is representable: 

Corollary 9.3. — Let p \ 2NNF/q(d) be a prime. Suppose either p > 5 or that N is 

sufficiently deep so that the Ti(N)-moduli problem is representable. Then we have 

(1) The universal p-nearly ordinary Hecke algebra of auxiliary level Ti(N) is 

W[[Tz x IY]]-/ree of finite rank; 

(2) The specialization of the universal Hecke algebra at each arithmetic point P G 

Spec(W[[Z x T(Zp)]])(Q p) inducing weight k > 2t in X + ( T ) produces the nearly 

ordinary Hecke algebra of level T\(N) and weight P without any error terms. When 

k ^ 2t, the specialization produces the Hecke algebra of weight k with level Ti(N) fl 

f o b ) . 

See [PAF] 4.2.12 for the proof when p ^ 5. 

9.2. Elliptic A-adic Forms Again. — We describe how to view A-adic forms as a 

p-adic modular forms denned over A. Once this is done, we can evaluate A-adic forms 

at elliptic curves, which gives us a convenient method of constructing and analyzing 

p-adic L-functions. Then, we shall give a short account of the A-adic Eisenstein series 

and examples of A-adic L-functions. 

All arguments presented here can be generalized to Hilbert modular case, Siegel-

Hilbert modular case and quasi-split unitary cases, which will be treated in a forth­

coming work. 
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9.2.1. Generality of A-adic forms. — For simplicity, we assume that p > 2 and only 

consider the A-adic forms of level p°°. Let A = Z P[[T]]. In the third lecture, we 

introduced the space G(x\ A ) of p-ordinary A-adic forms, which is a free A-module of 

finite rank with 

G ( X ; A) ®A,k Z p * Gfd(r0(p),Xv-k;ZP) 
for all k ^ 2. Here k : A —> Zp is the evaluation at uk — 1 of the power series. If we 

identify A with the Iwasawa algebra Z p [ [ l + pZ p ]] (via 1 + T ^ w G 1 + p Z p ) , k is 

induced by the character 1 + pLp 3 z i—• zk G Z * . 

We write G ( A ) for the A-module made of formal g-expansions 

$ = ^ a ( n ; $ ) ( T ) g " e A i 

such that - 1) G V[fe] for infinitely many k. Thus we have 0 X G(x] A) C G ( A ) , 

where x runs over (actually even) powers of Teichmuller characters. 

We now consider the space of p-adic modular forms V/A over A of level p°°. In 

other words, we shall make base-change T m > n / Z p to T m 5 n / A = T m ? n / Z p x Z p A and 

consider p-adic modular forms over A. The functions in V/A = ^<8>zPA classify couples: 

(Z£, </> : /ipoo <^-> E\p°°])/ji defined over p-adic A-algebras R, and / G V/A is a functorial 

rule assigning the value f(E, </>) € R for each couple ( E 1 , a s above. 

This space has two A-module structures: One coming from the base ring A and 

another coming from the action of G a l ( T m i 0 0 / S m ) = Z * by diamond operators (z). 
Let v : 1 + p Z p —> A X be the universal character given by v(z) = [z] G 1 + p Z p . Then 

we can define 

(9.7) G ( A ) = { / G V/A | f\(z) = V* G 1 + p Z p } . 

Each $ G G (A) has a ^-expansion at oo: <I>(T, q) = a ( n 5 $)CF)(7N- By definition, 

we have a natural map: 

V/A 0A ,s Z p • V / Z P 

for each s : A —> Z p taking $ (T) to $(w s — 1) for s G Z p . Here the tensor product 

is taken using A-module structure induced by the diamond operators. The map is 

injective by the ^-expansion principle. Since on G ( A ) , the two A-module structures 

coincide, this map brings $ G G ( A ) to a p-adic modular from of weight s. Therefore, 

$ is a A-adic form. 

Conversely, starting from a A-adic form we regard $ as a bounded measure on 

1 + p Z p having values in V / Z P . Here we use the fact that Z p [ [ l + pZ p ]] is canonically 

isomorphic to the measure space on l + p Z p by a(T) f xsda = a(us — 1). Thus 3> is a 

bounded Zp-linear map of C(l + p Z p , Z p ) into V/%p. Then for each test object (E, (j))/R 

for a p-adic A-algebra i?, regarding R as a p-adic Zp-algebra, we can evaluate / 4>d$ G 

V/zp
 a ^ (E,<t>p)/R, getting a bounded Zp-linear form from the space C(l - h p Z p , Z p ) 

into i?, which we write $(E, (j))(T) G #§>z pA = i?[[T]]. Since R is already a A-algebra, 

the A-module structure A&R —> R given by A <g) r = Xr induces a surjective algebra 
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homomorphism m : R®ipk -» R. We then define $(25 ,0) by ra($(25,0)(T)). Then 
the assignment: (25,0) i—> $ (25,0) satisfies the axiom of the p-adic modular forms 
defined over A. It is easy to check that this p-adic modular from is in G(A) having 
the same ^-expansion at oo as $. Thus we have found: 

Theorem 9.4. — The subspace G(A) C V/A is isomorphic to the space G(A) of all 
A-adic forms via q-expansion at the cusp oo. In particular, we have 

0 G ( X ; A ) ^ e ( G ( A ) ) 
X 

for the p-ordinary projector e : V/A - » V ^ D . 

Let (E,u)/w be an elliptic curve with complex multiplication by an imaginary 
quadratic field F = Q[y/—D]. We suppose that u is defined over W = W D Q fixing 
an embedding ip : Q «-> Qp. Suppose that p splits in F and write p = pp. Under this 
assumption, E has ordinary good reduction modulo p; so, E is p-ordinary. We may 
assume that W = W(¥p) and £ [p°° ] is the etale part of E\p°°] over W. Thus we have 
0 : /ipoo = E[p°°]. In this way, we can evaluate a given A-adic form $ at (25, 0). 

Corollary 9.5. — If $ (25,0) = 0 for infinitely many distinct E with complex multi­
plication, then $ = 0. There exists a finitely many elliptic curves (Ei,(/>i)/w such 
that any given linear form G(\]A) —• A is a A-linear combination of evaluation at 
(Eu<t>i). 

If $ e G(x; A) and further if / = $(uk -1) e G f c ( r 0 (p) , x^~k\ W ) , then f(E, u>) G W. 
The morphism fipoo <^-> E induces a canonical differential ucan — </>*dt/t. Then a; = 
^p^can5 and we have a result of Katz [K2] Chapter II: 

( E Q l ) ПЕ,ш)=т^Г] 
•Ф(Е,ф)(ик -1) -

= v щ - e W c Q . 

We may assume that £ / ( C ) = C/G>F- Let w be the variable ol C . Then dw induces a 

canonical differential cjoo on 25(C). Then u = Ooo^oo, and we get a result of Shimura 

[Sh4]: 

(EQ2) f(E,U) = = 6 W C Q . 

The lattice OF = 22i(25, Z) c C is generated over O F by a single element 7 = 1 and 

^00 = / 
J1 

because J^dw = 1. 
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9.2.2. Some p-adic L-functions. — For simplicity, we assume that p > 2 and only 

consider the A-adic Eisenstein series of level p°°. Let us fix an even power x = ua of the 

Teichmuller character. For simplicity, we choose a ^ 0 mod p— 1; so, x is non-trivial. 

Then we consider the Kubota-Leopoldt p-adic L-function — ̂ Lp(l — s,x) = « o ( ^ s — 1) 

(u = l+p) with a 0 G Z P [[T]] (cf [LFE] 3.4-5). Then we have 

L p ( l - fe, x) = (1 - x w " * ^ - 1 ) ^ ! " *, Xur*) 

for positive integers A:. Then we define an element £x G G(x; A) by 

a (n ,£ x ) = ] T x ( ^ _ 1 ( l + ^ ) l o g ( d ) / l o g ( u ) and a ( 0 , £ x ) = a o ( T ) . 
0<d|n,pfd 

We want to relate £x{uk — 1) to the following classical Eisenstein series: 

Ek{E,u>) = \ J2 7 T u ' 
2 (mwi+nw2r 

(m,n)#(0,0) V 7 

where (15, CJ) /c corresponds to the lattice L = 7Lw\ + ZK;2 by Weierstrass theory (that 

is, E(C) = C/L and UJ — dw for the variable w G C ) . As is well known (e.#. [LFE] 
5.1), for even k > 2 

= - \ « i - *) + E ( E < * * _ i y ) 

^ n>0 0<d|n ' 

for c(fc) = T{k)/(2TTy/-l)k. Thus shows that if uk = x, then 

f x ( u f c - 1) = c(fc)- 1 (£7fc - p ^ E M ) . 

If we take the elliptic curve (E,UJ) defined by y2 = 1 — x 4 with u = dx/y, then it has 

complex multiplication by Q[V^-T] and for k > 2 with uk = x, we have 

- £ f e ( i ^ ) - - ^ - , 

where Afc is a Hecke character of conductor 1 such that Afc(a) = ak. Since in 

S X 2 ( Z ) (o i ) *5^2(Z), we can find a such that {W\,W2)OL is a base of p; so, we re­

discover Katz's p-adic interpolation of Hurwitz numbers: 

£x{E,w){uk-l) _ i (L(k, Afc) - / - ^ f c C p K ^ l f c , Afc)) 
ft* - 2 c ^ fiF 

= 2 c ( f c ) - 1 ( l - p - 1 A f e ( p ) ) % ^ . 

This is a A-adic version of Katz's way of constructing the p-adic Hecke L-function: 

Lp(s) = SX(E,uo)(us - 1) ([K2] and [HT]). 

A p-adic Rankin product can be constructed similarly. Let $ be a normalized 

Hecke eigenform in G(x;A) . Writing L for the field of fractions of A. As seen in 

Section 4, the Hecke algebra acts semi-simply on G(x;A); so, we can decompose 

uniquely G(x; A) ®A L = L $ 0 X as Hecke modules. Let £ : G(x; A) —• L be the linear 
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form denned by ^ = + x for x G X. We consider two copies of A, say Z P[[S]] 
and Z P[[T]]. Take two Hecke eigenforms $ G G(x ;Z p [[T]]) and * G G(^;ZP[[S]]). 
Extend linearly £ to G (x ;Z p [ [T]] )® Z p Z p [ [S]] - » L® Z p Z p [ [S ] ] . Then we define 

L P ( S , T ) = ^ ( c ( * ( 5 ) £ ^ - i ( ( l + T) ( l + 5 ) " 1 - 1))), 

where e : V/zp[[T)] ~^ /̂z"p[[T]] * s ^ n e P - ° r d m a r v projector. Then we see 

* ( S ) £ ^ - i ( ( l + T) ( l + S ) - 1 ) ^ ^ - ! ^ - ! = * ( " m " l ) ^ - i ( t i * - m - 1). 

Thus # ( u m - l )£ x V , - i ( u m ( l + T) - 1) G G(x; Z P[[T]]) and hence L p ( tz m - 1 , - 1) is 
the coefficient of \I>(?/m — l)i£fc_m in 3>(?xfc — 1) for a suitable Eisenstein series Ek-m 

of weight k — m. As is shown by Shimura, this coefficients can be computed by the 
Rankin product value 

D(k - 1, Ф(«* - 1), Ф ( и т - 1)) 

(Ф{и* - 1),Ф(м* - 1)) 
(к > ra) 

for the Petersson inner product ( , ) up to an explicit constant; so, Lp gives p-adic 
interpolation of the Rankin product. For an explicit evaluation formula for LP(S, T), 
see [LFE] Chapter 7 and 10 and [H96] Chapter 6. 

What I would like to emphasize is that the we have used almost everywhere are: 

(1) Vertical Control Theorem; 
(2) The g-expansion principle (irreducibility of the Igusa tower). 

10. Igusa Towers 

We sketch a proof of irreducibility of the generalized Igusa tower by using the 
determination of the automorphism group of the arithmetic automorphic function 
field by Shimura and his students. The method is classical and goes back to works of 
Deuring [Du] and Igusa [1]. By this result, the g-expansion principle holds for p-adic 
modular forms on symplectic groups, and for unitary groups, one need to modify it in 
an appropriate way. We can construct, as Panchishkin did for Siegel modular forms, 
the p-adic Eisenstein measure for quasi-split unitary groups. The difference of our 
result from Panchishkin's treatment is that our measure has values in the space of 
p-adic automorphic forms (not just in the formal g-expansion ring in Panchishkin's 
work), since we dispose the g-expansion principle. A detailed proof of the result 
presented here and a further generalization are in [PAF] Section 8.4. 

10.1. Automorphism Groups of Shimura Varieties. — Let the notation be as 
in Section 6. For a number field X, we write Ix for the set of all field embeddings 
of X into the algebraic closure Q of Q in C. Let W be the ring of Witt vectors 
W(¥) for an algebraic closure F of F p , and we identify W with a subring of the p-adic 

completion of an algebraic closure Qp of Qp. We fix an embedding ip : Q Qp and 

write W for the pull back image W under ip. We write myv; (resp. m) for the maximal 
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ideal of W (resp. W). Recall the setting in Section 6 that Fo is a totally real finite 

extension of Q, that F = Fo in Case C and D and that in Case A, F is a totally 

imaginary quadratic extension of a totally real field Fo. Let the algebraic group G be 

as in Section 6 and also assume that we are in Case A or C. Presumably Case D can 

be treated similarly, but the results of Shimura we need are often formulated only for 

groups of type A and C. Towards the end of this lecture, we assume for simplicity 

that Fo = Q and G in Case A is quasi-split over Q. 

10.1.1. Automorphism Groups of Automorphic Function Fields. — For the moment, 

we do not assume that Fo = Q. The group G is indefinite at oo, that is, G(R) is 

not compact modulo its center Z(R) . We use the formulation of Sh^ described in 

Section 6 which represents the functor V classifying quadruples (X, z,A, rj)/s for E-

schemes S, where E is the reflex field. Thus E is the minimal field of definition of 

the complex representation of B on V\ in Section 6. Take a finite Galois extension 

F'/Q containing F. When we are in Case A, writing formally the signature of G as 
S ' = E<x m ( A ) E T G W , r a f o r embeddings a : F F' and for 9t'F, = Gal(F ' /F) , E 

is the fixed field of 9\pf = {& € Gal(F'/Q) | so~ = s}. Then we can define ra'(cr) for 

o~ £ IE by 

Y m(°") Y (tîj) 1 = Y m'(<T) Y та-
<T£IF rem', aeiE Testw 

Then 6 = J2aelE m'{a)a can be regarded as a character of Res^/Q Grn/E with values 

in Res jp/QGm/Jp (see [Sh3] Section 1 ) . Then 6(E£) = 0(ResE/QGm/E(A)) is a closed 

subgroup of F£ = R e s F / Q ( G m / F ( A ) . 

Kottwitz formulated the Shimura variety over OE ® Z Z ( p ) , but we only need 

Deligne's models over E to define the automorphic function field We then take a 

tower {VK} (allowing K not necessarily maximal at p) of the geometrically irreducible 

component of ShK so that VK(C) = TK\5 for TK = i fG(M)+ fl G(Q) and VK is cov­

ered by V'K if C if, where 3 is the symmetric hermitian domain of G(M)+. Then 

the union R of the function field Q(VK) of VK is independent of the choice of the tower 

(up to isomorphisms), since VK is the canonical model in Shimura's sense ([ACM] 
and [AAF] Chapters I and II). Since the group G(A(°°)) acts on the functor V by 

isogenies, we let G(A) act on V through the projection G(A^°°^). Let Q+ C G(A) be 

the stabilizer of the tower {VK}K- Since VK(C) = I V \ 3 , the closure of \JK TKG(R)+ 

is contained in Q+. 

We now suppose that G is an inner form of GSp(2n) /Q in Case C and in Case A 

G(Q) = {ae GL2N{F) \ 'aJna = u(a)Jn for i/(a) G Q } 

with JN as in ( 6 . 6 ) for an imaginary quadratic field F. Therefore E = FQ = Q, 

6 = id : Q c—> F, B is either Q or a quaternion algebra over Q in Case C, and in Case 

A, B = F and G in Case A is quasi-split over Q (any quasi-split unitary group acting 
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on a hermitian space of dimension 2n). In this case, we have an explicit description 

of £+ by a work of Shimura ([ACM] 26.8, [AAF] 8.10, [Mik], [Mit] and [MiS]): 

(Shi) G+ = ^ - 1 ( ( F X ) 1 ~ C R ^ ) in 67(A) for ^ = det/z/ n : G(A) FA

X in Case A; 

g+ = G(A)+ = {x e G(A) I is(xoo) > 0} in Case C; so, we have ¿7+ D SG(A) 

(SG(A) = {xe G(A) | det(a?) = v(x) = 1}) and = A x = (A(°°) ) x X R X ; 

(SH2) (Shimura's reciprocity map) Let Z C G be the center. Then we have a 

canonical exact sequence: 

1 — Z ( Q ) G ( R ) + — 67+ ^ Aut(J?) — • 1, 

and r is continuous and open under the Krull topology on & (see [IAT] 6.3 for the 

topology and [PAF] Theorem 7.7 for a description of r ) . 

(Sh3) The maximal abelian extension Q a b of Q is the field of scalars of that is, 

& D Qab and R and C are linearly disjoint over Q a b- In particular, r(x) acts on Q a b 
through the image of v(x) under the projection: A x -> A X / R + Q x = Gal(Q a b/Q) 
(Artin reciprocity map). 

(Sh4) The subfield EK of Q a b fixed by v(K) is the field of definition of VK, that 

is, EK is isomorphic to the algebraic closure of Q in Q(VK)-

(Sh5) The extension &/Q(VK) is a Galois extension with 

G a l ( £ / < № ) ) = T(KG(R)+). 

The first three terms of the exact sequence of (Sh2) are proven in [Sh3] and [Mik] 
along with finiteness of the cokernel of r. The surjectivity of r can be shown, using 
the result in [Mit] (see [MiS]). When F0 ^ Q, we need to replace Q X G ( R ) + by 
the adelic closure F X G ( R ) + in (Sh2) and Coker(r) is non-trivial (basically given by 
Aut(Fo)), and the notation Q+ is often used in place of 6 + in the literature we quoted. 

We suppose the following condition: 

(ord) p split in F (in Case A), 
(spt) G in Case C is split over Qp. 

Thus, identifying G(QP) with the symplectic or unitary similitude group of J n , we 
have the parabolic subgroup Pn C G given by { ( Q *) | * is of size n x n). 

We fix a place *P of Q a b over p. For an open compact subgroup K = Kp x K^ 
with Kp = GLg(Zp) x Z x in Case A and GSpg(Zp) in Case C, we know that S h ^ 
(and hence VK) has good reduction at ^ } and hence VK = {VK mod is irreducible 
(as described in Section 6). Recall that such an open compact subgroup is called 
maximal at p. Let v be a valuation of & over 3̂ such that the residue field of v 
restricted to Q(VK) is the function field of VK mod 3̂ for any open compact subgroup 
maximal at p. In other words, the field Uz<::max at P^P(YK) for K maximal at p is 
the residue field of v restricted to R^ = \JK:MAXGLT PQ(VK) C &. The valuation 
v\a(P) is unique and is discrete, because R^ is the function field of a smooth model 
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lim^ a t Vft:/w o v e r the discrete valuation ring W. Since R/M.^ is algebraic, 

v|^( P) extends to a valuation t> on & (which is not discrete). 

Let 

V = {a e Aut(j?) | v o a = v} . 

Thus V is the decomposition (or monodromy) group oiv inside Aut(£). Since 

is algebraic, V is unique up to conjugations in Aut(£). 

We now state our main theorem: 

Theorem 10.1. — Let the notation and assumptions be as above. Suppose that we are 

in Case A or C with Fo = E = Q. In addition to (ord) and (spt), we suppose that 

G in Case A is quasi split isomorphic to U(n,n). Then the group T> is the image 

(under r) of a conjugate in Q+ of 

P = G (Pn(Q P ) x G ( A ^ ) ) H £ + I v(x) e Q p Q x R ^ | , 

where R x is the identity connected component o / R x . 

We will prove the theorem in Case A in the following section. See [PAF] 6.4.3 and 
Section 8.4 for the proof valid for more general Shimura varieties in Cases A and C. 

Suppose that K is maximal at p and is sufficiently small. Let S = Shx[^] for 

a lift E of the Hasse invariant H. Let S° be a geometrically connected component of 

S/w Since S is smooth over W, by the existence of the projective compactincation 

of S h ^ y W as described at the end of 6.1.2, S° = S° <S>w ¥ is geometrically connected. 

Let T i } O C /5 i be the Igusa tower as in Sections 7 and 8. Since we only care Ti 5 Q O , we 

simply write TQQ for T i j 0 0 . Let Ln be the Levi subgroup of G\ fl Pn. Thus LN(ZP) 

is isomorphic to GLN(ZP) in Case C and to GLn(Op) x GLn(Op) in Case A, writing 

O = Op for the integer ring of F. By construction, LN(ZP) acts transitively on the 

set of geometrically connected components of over Thus Gal(T^/S , °) for a 

geometrically connected component of is a subgroup of LN(ZP). In Case A, 

by (ord), we have E = {p,p}. We define a subgroup © of LN(ZP) by 

(10.1) <& = 
{(9p,9p) e GLn(Op) x GLn(Op) \ det(gp) = det(^-)} in Case A, 

GLN(ZP) in Case C. 

Let UJ^ be the cr-eigenspace of the action of O on u, where a : O <-> W is an 

embedding. For the moment we suppose that we are in the unitary case. Extending 

scalar to C (from W), the automorphic factor ja{g, z) defining ua satisfies 

det(jC(7(g, z)) = det(g) 1 det(ja(g, z)). 

In Subsection 4.2, jCa(g,z) (resp. ja(g,z)) is written as h(g,z) (resp. j(g,z)). These 

sheaves are actually defined over W, and the difference (which is det(#)) factors 

through the map r |Q A B (because basically det = vn on Q+). Thus the two sheaves 

det(a^) and det(tuC(T) are equivalent over W = W(¥p). 
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We take a geometrically connected component T£> of T^ Xs S% containing the 

infinity cusp. Since uL/s° = Pi <S)z Os^ the Galois group Ga l (T^ /5 i ) in Case A has 

to be contained in 0 . By (Sh5), we now conclude from the theorem that the Galois 

group Gal(T£,/Si) of the Igusa tower contains <&; so, they are equal. 

Corollary 10.2. — Let the assumption be as in the theorem. The Galois group 

Gal(T^/.Si) is equal to the above group (5. In the symplectic case, TiyTn Xs S° is ge­

ometrically irreducible. In the unitary quasi-split case, each geometrically irreducible 

components of the Igusa tower T£, has Galois group over S± isomorphic to <& as 

in (10.1), which is a proper subgroup of GLn(Op) x GLn{Op) = Ln(Zp) and hence 

Ti,m x s S° for m > 1 is not irreducible. 

The irreducibility was first implicitly proven by Deuring [Du] and explicitly by 

Igusa [I] in the elliptic modular case and was generalized to the Hilbert modular case 

by Ribet [Ri] and to the Siegel modular case GSp(2n)/q by Faltings-Chai [DAV] 
V.7. There is a further generalization in [PAF] Section 8.4. 

Corollary 10.3. — Let the assumption be as in the theorem. We assume that G = 

GSp(2n)/q. Then a p-adic automorphic form (in Vu) on G is determined by its 

q-expansion at the infinity (or any other cusps unramified over Sh/^j. Iff and g in 

Vyw have congruences a (£ ; / ) = a(£;#) modp f e , then f = g in V^oo ~ VU/pkVU> 

10.1.2. q-Expansion Principle for Quasi-split Unitary Groups. — Hereafter we as­
sume that F is an imaginary quadratic field with (p) = pp and that G is given by the 
quasi-split group GU(n,n). As stated in Corollary 10.2, the original Igusa tower is 
not irreducible; so, to get the g-expansion principle, we need to take a smaller tower. 

Let us explain how to define a smaller (irreducible) tower. Let X be the univer­
sal abelian scheme over 5° . Then we write Pm (resp. P m ) for the etale quotient 
X[pmY* of X [p m ] (resp. X [ p m ] 6 t ) . The original tower T m / S f represents the functor 
I s o m ( ( 0 / p m ) n x ( 0 / p m ) n , P m x P m ) taking an SJ'-scheme T to the set of O-linear 
isomorphisms ^ : (0/pm)n x ( 0 / p m ) n = Pm x Pm. By the shape of © in (10.1), we 
find that 

2n 
Qm/Sf = MPm 0 Pm) = ( A n P m ) ® ( A n P m ) 

is constant over S% because (3 acts trivially on Qm/F- Thus fixing an isomorphism 

Lm : (Z/pmZ) x St * Qm (m = 1,2, . . . ) 

over F so that £m+1 induces ¿ m , the irreducible component Tm(Lm)/Si (corresponding 
to tm) represents a subfunctor 

T ^ - {y, 6 I som T ( (0 /p"T x ( 0 / f ) " , P r a x Pm) | A 2 > = t} 

of I s o m ( ( 0 / p m ) n x ( 0 / p m ) n , P m x Pm). Considering the tower T ° m ( i m ) over Wa, 

we can think of the ring of global sections Va,m(tm) = H°(T°m(Lm)/Wa,OT^ m), and 
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define 

VU(L00)=limV00,a(t00)
u. 

a 

This space of p-adic modular form is a subspace of Vu we considered before. 

The formal scheme Too,m = lim^ Tajm is etale over the formal completion 5 ^ and 

extends to a unique toroidal compactification T m ? 0 0 etale over the toroidal compact-

ification SQO of S^. In other words, taking the semi-abelian scheme G / s ^ extending 

the universal abelian scheme X / s ^ , we have = I som(0 /p m O, G [p m ] ° ) , where 

G [p m ]° is the Cartier dual of the connected component G [p m ]° (which naturally ex­

tends X [ p m ] 6 t = P m 0 P m by the duality). Since 5oo contains the infinity cusp, we 

have a well chosen infinity cusp of Too ? m . 

Corollary 10.4. — Let the assumption be as in the theorem. Suppose that G is given 

by GU (n, n) for an imaginary quadratic field F where p splits. Then a p-adic auto-

morphic form (in Vu(ioo)) on G is determined by its q-expansion at the infinity (or 

any other cusps unramified over S h ^ . If f and g in Vu{boo)/w have congruences 

afaf) = a&9) m o d / , then f = g in Vfe^) = Vu{L^)/pkVu(L^). 

10.2. Quasi-split Unitary Igusa Towers. — We shall give a sketch of a proof 

of the theorem in the quasi-split unitary case of even dimension at the end of this 

lecture. The proof in the split symplectic case is basically the same and actually easier 

(see [PAF] 6.4.3). 

10.2.1. Preliminaries. — First we describe necessary ingredients of the proof. Recall 

that Jn = ( J* ~QN ) . Then G = GU(n, n) can be identified with the following group 

functor: 

G(A) = {ae GL2n{A ®Q F) | aJ^a0 = i/(a)J n , v{a) e Ax } . 

Here c is the non-trivial automorphism of F/Q extended to A ®Q F for each Q-

algebra A. We consider the F-vector space V of dimension 2n and the alternating 

pairing (x,y) = xJnSj0. Then (bx,y) = (x,6 c y); so, the positive involution * on 

B = F is given by c. Then C = End F V = M2n(F)opp- in other words M 2 n ( P ) acts 

on V by the right multiplication. Let L C V be a O-lattice with Lp = Homz p (L p , Z p ) 

under ( , ) . We take h : C Coo = C ®Q R to be h(i) = -Jn ® 1. In this case, the 

representation of O on V\ is just a multiple of the regular representation of O; so, its 

(p-adic) isomorphism class is unique under (ord). We consider the following moduli 

problem for an integer N > 0 prime to p: To each W-scheme 5, we associate the set 

of isomorphism classes: [(X, i, A, rfp^)/s | (det)] such that 

- i : O End(X/s) taking 1 to idx; 

- rj^ is made of a pair of r?*p) : T^(XS) £ modulo f (*°°> as 6^-modules 

for any geometric point s G S and TJN : L/NL = X[N], where for L = L ®% Z, 

f = f L = {at e G(A( ° ° ) ) | xL = £ } . 
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- A : X —> X is a polarization which induces ( , ) on L^^ under 771 and of degree 

prime to p. 

The open compact subgroup of G(A^°°^) corresponding to this moduli problem is: 

f(N) = fL(N) = {x G fL I (x - 1)2 = NL}. 

Suppose that N is sufficiently large so that the moduli problem has a solution, that 

is, we have a fine moduli scheme M. 

We want to know the exact objects the generic fiber Mv classifies. For a given 

quadruple (X, i, A, 77^), if it has a generic fiber X^, T(XV) can be embedded (as 

skew hermitian O-modules) into V <S>Q A(°°) SO that the embedding coincides with 77 

at £ for each prime £ \ p. Thus we know the isomorphism class of the localizations 

of Hi(Xr}1Z) as skew hermitian O-lattice in V outside p. Let V be the image of 

# i ( X „ , Z ) in V. 

For any given O-lattice A C V, we define 

- /JL(A) to be the ideal of Z generated by (x, x) for all x G A; 

- ^o(A) to be the O^-ideal generated by (x,y) for all x,y G A. 

If A is maximal among lattices having the same /x, we call it maximal. By the self 

duality at p of L', fJio(LP) = OF,P- It is easy to see that / i (A)0 C /io(A) C D - 1 / i (A) 

for the relative different d of F/Q. If LP D LF

P with /j,(L'P') = v(LF

P), then by (ord), we 

find 

A*(Lp)OF,p C fio(L'p) C fjLo(L%) C n(L'P)0FLP. 

Thus L'P = LP and hence L'P is maximal with fJb(LP) = Z p . By the same argument, 

Z/ p is maximal with /JL(Lp) = Zp. Then by a lemma of Shimura proven in the 1960's 

([EPE] 5.9 or [Ko] Corollary 7.3), there exists xp G G i ( Q p ) so that L'P = xPLP. By 

self duality of LP and L p , we see that xp G TP and hence x p G T p . Thus we find that 

L'P — LP as skew hermitian O^p-modules. 

This shows that there are only finitely many isomorphism classes of hermitian O-

lattices in the genus class of L (approximation theorem). Thus the generic (geomet­

rically) irreducible component of M classifies (X, i, A, rfp^)/s satisfying the following 

conditions: 

- i : O <—> End(X/s) taking 1 to id^; 

- is made of a pair of 771 : Hi (Xs, Z) = L up to isomorphisms as skew hermitian 

O-modules for any geometric point s G S and 77JV : L/NL = X[N]. 

- A : X —• X is a polarization which induces ( , ) on L under 771. 

This type of moduli problem has been studied over the reflex field E by Shimura 
(see, for example, [ACM] Section 26, [AAF] Chapters I and II and [Sh2]). In the 
formulation of [AAF] Section 4, the above conditions are summarized into a PEL 
type: ft = (V, L, J n, £1 , . . . , ¿2™), where tj are generators of L/NL over O and ^ is 
the isomorphism class over Q of the representation of F on Fi C V <g>q C on which 
h{y/—i) acts by the multiplication by \/—T. A quadruple (X, i, A, rj^) over C is called 
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of type £1 if we have a real analytic isomorphism VQQ — • X ( C ) with Ker(£) = L such 

that 

- £ induces an identification of V\ = Lie(X) as complex vector space on which F 

acts by \I>, 

- £ induces the polarization ( , ) on V (up to positive rational multiple). This 

means that (x,y) = Tr F/Q(xJn

tyc), 

- £(at) = i(d)£(t) for t G V and a G O, 

- 77: {0/NO)2n - X[iV] given by 77K • • •, a2n) = a ^ f e ) . 

The condition on \I> is equivalent to (det) over E = Q. We can think this moduli 

problem over E for an arbitrary JV and get a tower of moduli space MN. We now 

take L to be 0 2 n . Then each geometrically irreducible component of MN is defined 

over Q[Civ]- The component VN/QM = ^ ( A O / Q ^ ] classifies quadruples ( X , i , A, 77) 

over Q[//JV] under an extra condition that ejv(£i, ¿7) = for the duality pairing 

ê v : X[iV] x X[7V] —» /XJV and the dual base tj of ¿7 under ( , ) localized at N. We 

then consider the union of the tower of fields Q[^N](VN) = Q(Vjv), and write the field 

as Naturally the group x G G(A^°°^) acts on M = lim^ MN by changing L to xL 

and ^ to and if x G Gi(A(°°)), x keeps ( , ) . Let 

(A) = {x G G(A) I det(a?) = z/(x) n , i/(a?) G Ax } . 

Then we have the following explicit description ([AAF] 8.8): 

= ^ ( A ( ° ° ) ) G ( Q ) + G ( R ) + = (fL(N) n F ( A ^ ) ) ) ^ ( Z X ) G ( Q ) + G ( R ) + , 

where G(R)+ is the identity connected component of G(R), G(Q)+ = G(Q) nG(R)+, 

and ¿(5) = diag[l n , s
_ 1 l n ] G i f (A) for s G A x . To see this, we write ip = det/isn : 

G(A) -> F£. Then i f (A) = Ker(^). By (Shi), for a given x G we have ^ ( x ) = <^ 

for u G R x and C = £ 1 ~ c for £ G M x (<=> CCC = 1). Taking a G G(Q)+ with ip(a) = C, 

we find that xoT1 G i f (A), which shows the first equality of the above expression. 

For the second equality, we refer the reader to [AAF] 8.8. Since F is imaginary 

quadratic, it has only finitely many units; so, ( F X ) 1 _ C R + is a closed subgroup of F£, 

and hence Q+ is a closed subgroup of G(A). This is the reason why we do not need 

to take closure of ( F X ) 1 _ C R X in F* in the definition of Q+ in (Shi). 

For p \ N, we have 

Ga\(Q[^Npm,VNpm]/Q[^Npm,VN]) 9* T(iVp m ) / r ( iV) SG(Z/pmZ) 

for N sufficiently large by (Sh3,5) (and the strong approximation theorem). Here 

SG(A) = SL2n(A 0 Z O) n GX(A) and 

T(N) = { 7 G SG(Q) I 7 L = L and (7 - 1)1* C NL£ \/£\N} . 

The moduli variety MNpm classifies quadruple (X,\,rj,<j) : (O/p^O)271 X [ p m ] ) for 

a level T(iV)-structure 77. Thus taking the universal abelian variety X over MJV, we 
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have, for each Shp^^-scheme T 

MNpm{T) = {<f>: (plvmO)fT S X [ p m ] / r } . 

The action of g G G(ZP) on MNP™ is induced by the action on the level structure 

(p i—• (f> o Q. Thus taking 2n-th exterior power /\Q n X[p m ] , we find that g G G(ZP) 

acts by det(p) G Op . Then by the description of the stabilizer Q+ of a geometrically 

irreducible component Sh, we find that the action is trivial on / \ G

n X [ p m ] if g G 

g+ fl SG(A(°°)). Thus the group scheme 

2n 
A x [ p m ] = ( A 2 n x [ p m ] ) e ( A 2 n x f i n ) 
o 

is constant on each geometrically irreducible component VN of MN- In other words, 

A2nX[pm]/VN is a base-change of /x£m x (Z/pmZ)n from Q to V^/Q. 

Now we look into the Kottwitz model Sh~^ for iV prime to p. In the rest of the 

paper, we always suppose that N is prime to p. Since each geometrically irreducible 

component of Sh-^ <S>z(P)Q = MN/Q is defined over Q[//JV] in the sense of Weil, 

it remains irreducible after taking spacial fiber modulo myy (Zariski's connectedness 

theorem combined with the existence of a smooth projective compactification). Thus 

we can talk about geometrically irreducible component V ^ y w of Sh-^ whose 

generic fiber is VN/Q and whose special fiber is the special fiber of the schematic 

closure of VN in Sh$N)/ysr 

Since the universal abelian scheme X/y^ extends to the universal abelian scheme 

of the Kottwitz model V ^ w , 

2n 

Qm = A X [ p m ] ^ = (A nX[pm]* t) ® ( A n X [ p m ] " t ) 

is constant over S°/¥. Since the Igusa tower T m over S°/¥ is given by 

M l O / P ^ / v w . X b T ] * ) . 

Tm cannot be irreducible, and each irreducible component of Tm/jr is contained in 

Tm(^m) for an isomorphism 6 m : Z/pmZ = /\2nX\pn]6t = Q m - Thus, for a geometri­

cally irreducible component of T^ , the Galois group Gal (T^/5°) is a subgroup 

of 0 in (10.1). We reached the same conclusion before stating Corollary 10.2 by 

looking into vector bundles cua. In any case, we need to show that 

GalCC/SÍ) = 0 

to prove Corollary 10.2. 

Since p splits in F, we have SG(Z/pmZ) = 5 L 2 n ( Z / p m Z ) . Since we have a smooth 

model of MN over W, we take the valuation v of AN = Q\P>N](VN) corresponding to 

the generic point of VN mod = VN <S>W F containing the infinity cusp. Since Mjy- = 

Proj(£/p^) under the notation in Section 6, we can write the Satake compactification 
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of VN/W as Proj(i2) for R = 0 ^ o Rj with Rj = H°(VN, det(u;) / w ) . By ^-expansion 

at oo, we can embed R into W [ [ ^ ] ] ^ G M N ( F ) + ? where 

MN(F)+ = {*xc = x G M n ( F ) | x is totally non-negative}. 

and the symbol ^ [ [ ^ ] ] ^ M N ( F ) + indicates the completion by the augmentation ideal of 

the monoid algebra of the additive semi-group M n ( F ) + with indicating the element 

represented by £. Each / G Rj has g-expansion a(£; f)q^ G W [ [ ^ ] ] ^ G M N ( F ) + -
Replacing q^ by exp(27ri Tr(£z)) 2 G 3, we get the Fourier expansion at 00 of / 
(regarding W C ) . 

We take a valuation i> of A which is induced by a valuation v on R given by 

v ( E ^ = lnU ordp(a¿), 

where ord p is the discrete valuation of W with ordp(p) = 1. Here we used the existence 

of the smooth toroidal compactification of VN (p f TV) worked out by Fujiwara ( [F]) 

and the ^-expansion principle for / G Rj on T(N) with p \ TV to assure that the 

residue field of v restricted to Q(VW) for p \ TV is the function field of VN mod 

Since the Satake compactification of MNP™/Q is again given by Proj(7£)/Q[M i V p m] for 

1Z = ®j^$1Zj with 1Zj = H0(MNprn/Q, det(LU)yQ), we can extend the valuation v to 

71 by the same formula in terms of the unique extention of ord p to W[/xpm]. This 

extension induces a valuation on Q(VNP™) = &Np™ and on A = ( J m \JN&Npm- We 

are going to show that the decomposition group Dv of v in Aut(&) contains P n (A)n£? + 

and GI(A(P°°>). 

10.2.2. Proof of the irreducibility theorem. — Let L C V be an O-lattice satisfying 

(Ll-2) of Section 6 and recall 

f L = {x G G(A<°°>) \X2 = 2} 

fL(N) = {x G f L | (x - 1)2 = TVL}, 

where L = L <g>z Z . Let be the universal abelian scheme over VN C S h p ^ for TV 

sufficiently large. We have the following specification of the action of Q+ (see [ A A F ] 

Theorem 8.10): 

(1) x G G+ acts on the maximal abelian extension Qab of Q by the image of v(x) 

under the reciprocity map of class field theory. 

(2) If 7 G G ( Q ) + = G(Q) fl G ( R ) + , 7 regarded as an element of G(Q)+ C G+ 

satisfies / T ^ ) = / 07 . 

(3) If x = (I S L ° J with s G Z X , then a&r^) = a{a(& f)) for all £ G M n ( F ) + , 

where cr is the automorphism of Qab corresponding to s _ 1 by class field theory. Strictly 

speaking, writing / = h/g for g,h G 7^-, we have fT^ — ha/ga with a(^;xa) = 

a(a(£;x)). 

(4) The natural action of r L (TV) ( p ) on VtN = I$om(L/tL/VN,XN[t]/vN) induces 

the action of f L ( i V ) ( p ) n Q+ on E(V?L{M)). 
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By (1), V — DV is contained in the image (under r) of 

{xGG+\ V{X) E Q £ Q X R * } . 

Let Un be the unipotent radical of Pn. By (2), we have r (P n (Q) ) C £>, since (g c

d) G 
Pn(Q) acts on g-expansion just by \-> exp(27ri Tr(£cd _ 1 ) )g d Then by density 

of Q in A, we conclude that 

(U) r ( U n ( A ) ) c P . 

By the strong approximation theorem, cusps of TK = K D SG(Q) are in bijec-

tion to K\SG(A^)/Pn(Q). Choosing K to be maximal, by Iwasawa decompo­

sition: SG(A^) c KPn(A(°°)), the above set of cusps is embedded into K n 

P n (A (~>) \P n (A<~>) /P n (Q) . We have G(A(°°>) = \_\heB G(Q)bK for a finite set B C 

P n (A(P°°>). Prom this, K\ (P n(A<°°>) fl 5G(A^°°))) / P n ( Q ) is a finite set indexed by 

ideal classes. Thus the action of b G P n(A^ p^) brings the ^-expansion of / G 1Zj to its 

^-expansion at other cusps. If KP is maximal, VK is smooth over the valuation ring of 

and hence the action preserves v restricted to (3(H°(VK, Wk)) (p\ N), where (3 is the 

embedding into the space VU of p-adic modular functions (with respect to T(N)) we 

studied in Section 7. Note that the integral closure R of the graded algebra R (V£ = 

Proj(P)) in RUW for U(L) = Un(Zp) x fL(JV)(p) is contained in VU by definition. 

Let LJK C cuK be the sheaf of cusp forms. Since DCUSP = (®K H°(VK,WK/Q)J fl V^SP 

is p-adically dense in V ^ s p (the density theorem in Section 7), we conclude that the 

action of P n ( A ( p o o ) ) fl P preserves v restricted to = \J^N Qab(Viv) and also 

Run(zp) = ULftU(L) D £ ( P ) for t h e u n ip 0 t en t radical Un of P n , because &UW is 

generated by ratios f/g of cusp forms / and g in R D Dcusp. Here L runs over all 

lattices satisfying (Ll-2) in Lecture 6. Thus P - r (£7 n (Z p ) ) / r (£ / n (Zp) ) C A u t ( ^ ^ ) ) 

contains the image of (P n (A( p o o >) fl P ) x Un(Zp) in Aut( jF»( z ")) . 

Then by (U), we conclude V contains the image under r of 

P n ( P n ( A ( p o ° ) ) x C / „ ( Z p ) ) . 

By the same argument applied to K^, we find that T ( P f~l / f ( p ) ) C V. Note that 

P n ( y P n ( A ( p o o ) ) P „ ( Q ) f L ( A T ) ( p ) ) 

is dense in P and hence V D T ( P ) (see the proof of Theorem 6.27 in [PAF ] for a 

different argument giving this inclusion). 

Since g = (g * ) G P n G ( Z p ) acts on T m through its diagonal entries (a, d), we find 

that Ga^T^/S^) has to contain <8 because the matrices (a, d) fills (3. This proves 

Corollary 10.2. 

The reverse inclusion: r (P ) D T> follows from the existence of the exact sequence: 

0 —> Xfp 0 0 ]^ . — X [ p ~ ] / S . — x b ° ° ] f s ? — > o . 
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See [PAF] Theorem 6.28 and 8.4.3 for more details of how to prove the reverse 
inclusion from the above exact sequence. This finishes the proof of Theorem 10.1 in 
Case A. 
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