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A L G E B R A I C C O N S T R U C T I O N OF T H E STOKES SHEAF 

F O R I R R E G U L A R LINEAR q-DIFFERENCE EQUATIONS 

by 

Jacques Sauloy 

Je laisse aux nombreux avenirs (non à tous) 
mon jardin aux sentiers qui bifurquent. 

Jorge Luis Borges, Fictions 

Abstract. — The local analytic classification of irregular linear çr-difference equations 
has recently been obtained by J.-P. Ramis, J. Sauloy and C. Zhang. Their description 
involves a g-analog of the Stokes sheaf and theorems of Malgrangc-Sibuya type and is 
based on a discrete summation process due to C. Zhang. We show here another road 
to some of these results by algebraic means and we describe the g-Gevrey dévissage 
of the q-Stokes sheaf by holomorphic vector bundles over an elliptic curve. 

Résumé (Construction algébrique du faisceau de Stokes pour les équations aux g-différences 
linéaires irrégulières) 

La classification analytique locale des équations aux -̂différences linéaires irré
gulières a été récemment réalisée par J.-P. Ramis, J. Sauloy et C. Zhang. Leur des
cription fait intervenir un (/-analogue du faisceau de Stokes et des théorèmes de type 
Malgrange-Sibuya et elle s'appuie sur la sommation discrète de C. Zhang. Nous mon
trons ici comment retrouver une partie de ces résultats par voie algébrique et nous 
décrivons le dévissage g-Gevrey du ç-faisceau de Stokes par des fibres vectoriels ho-
lomorphes sur une courbe elliptique. 

1. Introduction and general conventions 

1.1. Introduction. — This paper deals with BirkhofFs program of 1941 ([3], see 

also [2]) towards the local analytic classification of (/-difference equations and some 

extensions stated by J.-P. Ramis in 1990 ([13]). 

A full treatment of the Birkhoff program including the case of irregular (/-difference 

equations is being given in [16]. The method used there closely follows the analytic 

procedure developed in the last decades by B. Malgrange, Y. Sibuya, J.-P. Ramis,... 

for the "classical" case, i.e., the case of differential equations: adequate asymptotics, 
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228 J. SAULOY 

(/-Stokes phenomenon, (/-Stokes sheaves and theorems of Malgrange-Sibuya type; ex
plicit cocycles are built using a discrete summation process due to C. Zhang ([27]) 
where the Jackson (/-integral and theta functions are introduced in place of the Laplace 
integral and exponential kernels. 

To get an idea of the classical theory for linear differential equations one should look 
at the survey [25] by V.S. Varadarajan, especially section 6, and to get some feeling 
of how the change of landscape from differential equations to (/-difference equations 
operates, at the survey [7] by L. Di Vizio, J.-P. Raniis, J. Sauloy and C. Zhang. 

The aim of this paper is to show how the harder analytic tools can, to some extent, 
be replaced by much simpler algebraic arguments. The problem under consideration 
being a transcendental one we necessarily keep using analytic arguments but in their 
most basic, "19th century style'*, features only. In particular, we avoid here using the 
discrete summation process. 

Again our motivation is strongly pushed ahead by the classical model of which 
we recall three main steps: the devissage Gevrey introduced by J.-P. Ramis ([12]) 
occured to be the fundamental tool for understanding the Stokes phenomenon. The 
underlying algebra was clarified by P. Deligne in [4], then put at work by D.G. Babbitt 
and V.S. Varadarajan in [1] (see also [25]) for moduli theoretic purposes. On the 
same basis, effective methods, a natural summation and galoisian properties were 
thoroughly explored by M. Loday-Richaud in [9]. 

Some specificities of our problem are due, on one hand, to the fact that the sheaves 
to be considered are quite similar to holornorphic vector bundles over an elliptic curve, 
whence the benefit of G A G A theorems, and, on another hand, to the existence for 
g-difference operators of an analytic factorisation without equivalent for differential 
operators. Such a factorisation originates in Birkhoff ([3]), where it was rather stated 
in terms of a triangular form of the system. It has been revived by C. Zhang ([26], 
[10]) in terms of factorisation and we will use it in its linear guise, as a filtration of 
(/-difference modules ([22]). 

In this paper, following the classical theory recalled above, we build a (/-Gevrey 
filtration on the (/-Stokes sheaf, thereby providing a (/-analog of the Gevrey devissage 
in the classical case. This (/-devissage jointly with a natural summation argument 
allows us to prove the (/-analog of a Malgrange-Sibuya theorem (theorem 3 of [25]) 
in quite a direct and easy way; in particular, we avoid here the Newlander-Nirenberg 
structural theorem used in [16]. Our filtration is, in some way, easier to get than the 
classical one: indeed, due to the forementionned canonical filtration of (/-difference 
modules, our systems admit a natural triangularisation which is independent of the 
choice of a Stokes direction and of the domination order of exponentials (here replaced 
by theta functions). Also, our filtration has a much nicer structure than the classical 
Gevrey filtration since the so-called elementary sheaves of the classical theory are here 
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THE STOKES SHEAF FOR ^-DIFFERENCE EQUATIONS 229 

replaced by holomorphic vector bundles endowed with a very simple structure over 
an elliptic curve (they are tensor products of flat bundles by line bundles). 

On the side of what this paper does not contain, there is neither a study of con-
fluency when q goes to 1, nor any application to Galois theory. As for the former, 
we hope to extend the results in [20] to the irregular case, but this seems a difficult 
matter. Only partial results by C. Zhang are presently available, on significant exam
ples. As for the latter, it is easier to obtain as a consequence of the present results 
that, under natural restrictions, "canonical Stokes operators are Galoisian" like in [9]. 
However, to give this statement its full meaning, we have to generalize the results of 
[21] and to associate vector bundles to arbitrary equations. This is a quite different 
mood that we will develop in a forthcoming paper ([23]; meanwhile, a survey is given 
in [24]). Here, we give some hints in remarks 3.11 and 4.5. 

Also, let us point out that there has been little effort made towards systématisation 
and generalisation. The intent is to get as efficiently as possible to the striking specific 
features of (/-difference theory. For instance, most of the results about morphisms be
tween ç-difference modules can be obtained by seing these morphisms as meromorphic 
solutions of other modules (internal Horn) and they can therefore be seen as result
ing from more general statements. These facts, evenso quite often sorites, deserve 
to be written. In the same way, the many regularity properties of the homological 
equation X(qz)A(z) — B(z)X(z) = Y(z) should retain some particular attention and 
be clarified in the language of functional analysis. They are implicitly or explicitly 
present in many places in the work of C. Zhang. Last, the (/-Gevrey filtration should 
be translated in terms of factorisation of Stokes operators, like in [9]. 

Let us now describe the organization of the paper. 
Notations and conventions are given in subsection 1.2. 
Section 2 deals with the recent developments of the theory of (/-difference equations 

and some improvements. In subsection 2.1, we recall the local classification of fuchsian 
systems by means of flat vector bundles as it can be found in [21] and its easy 
extension to the so-called "tamely irregular'1 (/-difference modules. We then describe 
the filtration by the slopes ([22]). In subsections 2.2, we summarize results from [16] 
about the local analytic classification of irregular (/-difference systems, based on the 
Stokes sheaf. The lemma 2.7 provides a needed improvement about Gevrey decay; 
proposition 2.8 and corollary 2.10 an improvement about polynomial normal forms. 

In chapter 3, we first build our main tool, the algebraic summation process (theorem 
3.7). Its application to the local classification is then developed in subsection 3.2. We 
state there and partially prove the second main result of this paper (theorem 3.18): a 
(/-analog of the Malgrange-Sibuya theorem for the local analytic classification of linear 
differential equations. 

Section 4 is devoted to studying the (/-Gevrey filtration of the Stokes sheaf and 
proving the theorem 3.18. In subsection 4.1, we show how conditions of flatness 
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230 J. SAULOY 

(otherwise said, of g-Gevrey decay) of solutions near 0 translate algebraically and 

how to provide the dévissage for the Stokes sheaf of a "tamely irregular" module. In 

subsection 4.2 we derive some cohomological consequences and we finish the proof of 

the theorem 3.18. Finally, in subsection 4.3, we sketch the Stokes sheaf of a general 

module. 

The symbol • indicates the end of a proof or the absence of proof if considered 

straightforward. Theorems, propositions and lemmas considered as "prerequisites" 

and coming from the quoted references are not followed by the symbol • . 

Acknowledgements. — The present work is directly related with the paper [16], writ

ten in collaboration with Jean-Pierre Ramis and with Changgui Zhang. It has been a 

great pleasure to talk with them, confronting very different points of view and sharing 

a common excitement. 

The epigraph at the beginning of this paper is intended to convey the happiness 

of wandering and daydreaming in Jean-Pierre Ramis' garden; and the overwhelming 

surprise of all its bifurcations. Like in Borges' story, pathes fork and then unite, the 

same landscapes are viewed from many points with renewed pleasure. This strong 

feeling of the unity of mathematics without any uniformity is typical of Jean-Pierre. 

1.2. Notations and general conventions. — We fix once for all a complex num

ber q <G C such that \q\ > 1. We then define the automorphism aq on various rings, 

fields or spaces of functions by putting aqf(z) = f(qz). This holds in particular for 

the field C(z) of complex rational functions, the ring C{z} of convergent power series 

and its field of fractions C ( { z } ) , the ring C[[z]] of formal power series and its field of 

fractions C ( ( z ) ) , the ring O ( C * , 0 ) of holomorphic germs and the field A ^ ( C * , 0 ) of 

meromorphic germs in the punctured neighborhood of 0, the ring 0(C*) of holomor

phic functions and the field A4(C*) of meromorphic functions on C*; this also holds 

for all modules or spaces of vectors or matrices over these rings and fields. 

For any such ring (resp. field) R, the ^-invariants elements make up the subring 

(resp. subfield) RGq of constants. For instance, the field of constants of A i ( C * , 0 ) or 

that of A4(C*) can be identified with a field of elliptic functions, the field Ai(Eq) of 

meromorphic functions over the complex torus (or elliptic curve) E q = C * / g z . We 

shall use heavily the theta function of Jacobi defined by the following equality: 

0q{z) = E 
nez 

-n(n+l)/2^n_ 

This function is holomorphic in C* with simple zeroes, all located on the discrete 

^-spiral [—l;g], where we write [a;q] = aqz, (a G C* ) . It satisfies the functional 

equation: aq0q = zOq. We shall also use its multiplicative translates 0q^c(z) = 08 q (z /c) 

(for c £ C*) ; the function 0 q c is holomorphic in C* with simple zeroes, all located on 

the discrete g-spiral f—c; q] and satisfies the functional equation: 0~q@q,c zc@q,c-
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THE STOKES SHEAF FOR (/-DIFFERENCE EQUATIONS 231 

As is customary for congruence classes, we shall write a = a (mod qz) for the 

image of a G C* in the elliptic curve E f / . This notation extends to a subset A of C*, 

so that A does not denote its topological closure. Then, for a divisor D = ^ ni[(*i] 

over E q (i.e., the //,- G Z , the (\, G E f / ) , we shall write evE y(-D) = X! / ; ' n ' ^ E ( y f ° r its 

evaluation, computed with the group law on E ( / . 

Let K denote any one of the forementioned fields of functions. Then, we write 

Dq,K — K (a-a-1 ) for the Ore algebra of non commutative Laurent polynomials 

characterized by the relation a • f = aq(f) • a. We now define the category of q-

difference modules in three clearly equivalent ways: 

I)iff\Iod(/v. aq) = {(E, $) | E a if-vector space of finite rank. 

$ : E —> E a crr/-linear map} 

= { ( A " * , $ . 4 ) I A G GL„(K),$A(X) = A-1'aqX) 

— finite length left VqK-modules. 

This is a C-linear abelian rigid tensor category, hence a tannakian category. For 

basic facts and terminology about these, see [21], [11], [6], [5]. Last, we note that all 

objects in DiffM od (iv, aq) have the form VqK/DqKj<P-

2. L o c a l ana ly t i c c lass i f ica t ion 

2.1. Devissage of irregular equations ([21],[22]) 

Fuchsian and tamely irregular modules. For a ^-difference module M over any of 

the fields C ( z ) , C ( { z } ) , C ( ( z ) ) , it is possible to define its Newton polygon at 0, or, 

equivalently, the slopes of A/ , which we write in descending order: /11 > • • • > /7^ G Q , 

and their multiplicities ri , . . . , t'k G N*. The module M is said to be pure of slope ji\ 

if k = 1 and fuchsian if it is pure of slope 0. The latter condition is equivalent to 

M having the shape M = (Kn.®A) with A(0) G G L n ( C ) . There are also criteria of 

growth (or decay) of solutions near 0, see further below, in section 2.2, the subsection 

about flatness conditions. 

Call £ the category Dif fMod(C(z),aq) of rational equations. Fuchsian modules 

at 0 and 00 over C(z) make up a tannakian subcategory Sf of £ . In order to study 

them, one "localizes" these categories by extending the class of morphisms, precisely, 

by allowing morphisms defined over C({z}). This gives "thickened" categories 

£(0) 

and £j°\ A classical lemma says that any fuchsian system is locally equivalent to one 

with constant coefficients. This suggests the introduction of the full subcategory Pf (0) 

of £f] made up of "flat" objects, that is, the (C(z)r\$A(i)) with A G G L n ( C ) . Thus, 

the inclusion of Vj into £ ^ is actually an isomorphism of tannakian categories. 
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232 .J. SAULOY 

To any A G G L n ( C ) one associates the holomorphic vector bundle FA over Eq 

obtained by quotienting C* x C " by the equivalence relation ^ 4 generated by the re

lations (z. X) ~ 4 (qz. AX). This defines a functor from Vf(o)] to the category F ib p (E , 7 ) 

of flat holomorphic vector bundles over E r / . This is an equivalence of tannakian cat

egories. Note that the classical lemma, alluded above equally holds for any fuchsian 

(/-difference module over G({z}) or over C((z)). which implies that this local classifi

cation applies to DiftMod(C({z}). aq) and Di f fMod(C( (^ ) ) . aq) as well. The galoisian 

aspects of this local correspondence and its global counterpart are detailed in [21]. 

A pure module of integral slope // over K = C({z}) or C((z)) has the shape 

(Kn, <3>2 -fl 4 ) with A G G L n ( C ) . For such a module, the above construction of a 

vector bundle extends trivially, yielding the tensor product of a flat bundle by a line 

bundle. We shall call pure such a bundle. 

Direct sums of pure modules play a special role in [22], [16] and in the present 

paper. We shall call them tamely irregular, in an intended analogy with tamely 

ramified extensions in algebraic number theory: for us, they are irregular objects 

without wild monodromy, as follows from [16]. The category of tamely irregular 

modules with integral slopes over C({z}) can. for the same reasons as above, be seen 

either as a subcategory of DiflMod(C({z}). aq) or of S(i)l We write it £ ^ ^ . It is 

generated (as a tannakian category) by the fuchsian modules and by the pure module 

(C({z})< z~lcjq) of slope 1. We can thus associate to any such module a direct sum 

of pure modules, thereby defining a functor from E(0) mi.1 to the category F i b ( E g ) of 

holomorphic vector bundles over E f / . This functor is easily seen to be compatible 

with all linear operations (it is a functor of tannakian categories). 

Filtration by the slopes. — The following theorem is proved in [22]. 

Theorem 2.1. — Let the letter K stand for the field C({z}) (convergent case) or 

the field C ( ( z ) ) (formal case). In any case, amy object M of DiffMod(A", crq) ad

mits a unique filtration (F>µ ( M ) ) / i G Q by subobjects such that each F ^ ( A I ) = 

F<µ^(M)/F>fl(M) is pure of slope ¡1. The F^ are endofunctors of D ifEVIo d (K.aq) 

and gr = 0 F{µ) is a faithful exact C-linear C<>-compatible functor and a retraction 

of the inclusion E(0)mi of into E(0) In the formal case, gr is isomorphic to the identity 

functor. 

From now on, we only consider the full subcategory s[0^ of modules with integral 

slopes. 

The notation Ef^ will be justified a posteriori by the fact that all its objects are 

locally equivalent to objects of £ (existence of a normal polynomial form). This is 

an abelian tensor subcategory of S{{)) and the functor gr retracts £ [ 0 ) to E(0) mi,1 We 

(1)̂ The subscript "mi" stands for "modérément irrégulier", the subscript 1 for restricting to slopes 
with denominator 1. 
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THE STOKES SHEAF FOR g-DIFFERENCE EQUATIONS 233 

also introduce notational conventions which will be used all along this paper for a 
module M in s[0^ and its associated graded module Mo = g r ( M ) , an object of S^ii-

The module M may be given the shape M = ( C ( { z } ) n , 3>a), with: 

(2.1.1) A = AU = 

del 

V 

z'^Ai 

Uij ... 
0 

0 
0 . . . 0 . . . z-^Ak ) 

. 

where \i\ > • • • > fik are integers, rt G N*, Al G G L r i ( C ) (i = 1 , . . . , k) and 

U = (Uij)1 <i<j<k^^ G n 
<<i j<<k 

M a t 7 , , r 7 ( C ( { 4 ) ) . 

The associated graded module is then a direct sum Mo = Pi 0 • • • 0 Pk, where, for 
1 ^ 2 < j ^ k, the module P% is pure of rank rl and slope m and can be put into the 
form P% = (C{{z})r\<5>z-rtAi). Therefore, one has M0 = (C({z})n, $ A ( ) ) , where the 
matrix Ao is block-diagonal: 

(2.1.2) A0 = 

V 

z-^Ai 
0 

0 
0 

0 . . . 0 . . . z'^Ak ) 

. 

The set of analytic isoformal classes. — This section comes from [16]. The definitions 
here should be compared to those in [25], p. 29 or [1]. 

In Di f fMod(C( (z ) ) , cr 9), the canonical filtration of a module M is split; more pre
cisely, the associated graded module g r ( M ) is the unique formal classifyer of M. The 
isoformal analytic classification is therefore the same as the isograded classification, 
whence the following definitions. 

Definition 2.2. Let P\,. . ., Pk be pure modules with ranks 7 * 1 , . . . , Vk and with inte
gral slopes / ! ! > • • • > iik. The module Af 0 = P\ 0 • • • 0 Pk has rank n = t\ + • • • + r/,.. 
We shall write J7(Mo) for the set of equivalence classes of pairs ( M , g) of a module M 
and an isomorphism g : g r ( M ) —> A/Q, where ( M , g) is said to be equivalent to (Mf. g') 
if there exists a morphism u : M —> M' such that g = g' o gr(/i) (u is automatically 
an isomorphism). 

We write 0 for the algebraic subgroup of G L n made up of matrices of the form 

(2.2.1) F = 

V 

..................Fij......... 

0 

. . . 0 
0 . . . 0 . . . / , . / 

. 
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234 J. SAULOY 

Its Lie algebra g consists in matrices of the form 

(2.2.2) sd 

/1 

V 

^ 
ft.j ••• 

0 

. . . 0 

0 . . . 0 . . . o r , 

\ 

. 

For F in 0 , we shall write F[A] = (crqF) AF 1 for the result of the gauge transfor
mation F on the matrix A. 

We shall identify P% with ( C ( { z } ) r \ $ z - ( h • A.). where A, G GL r ? . ( C ) . The datum of 
a pair (Af, g) then amounts to that of a matrix A in the form 2.1.1. T w o such matrices 
A, A! are equivalent iff there exists a matrix F G <3(C({z})) such that F[yl] = A'. 

Write 0 ^ ( C ( ( z ) ) ) = { F G <5(C((*))) | F[A0] G G L n ( C ( { z } ) ) } . The sub-
group &(C({z})) of 0 ( C ( ( z ) ) ) operates at left on the latter (by translation) and 
& A ° ( C ( ( z ) ) ) is stable for that operation. The theory in the previous section entails: 

V (Ui,j) 1<i<j<k E 
n 

i<i<j<k 
M a t , , , r j ( C ( { z } ) ) , 3 ! F E 0 ( C ( ( 2 ) ) ) : F[A0] = A v . 

This F will be written F(U). Its existence can also be proved by direct computa
tion, solving by iteration the fixpoint equation of the z-adically contracting operator: 
F i—> (Au)~ (aqF)Ao. It follows that the unique formal gauge transformation of 
0 ( C ( ( z ) ) ) taking Av to Av is F(U,V) = F{V)F{U)~\ Besides, Av is equiva
lent to Ay in the above sense if and only if F(U,V) G 0 ( C ( { ^ } ) ) , or, equivalently, 
F(V) G <&(C({z}))F(U). This translates into the following proposition. 

Proposition 2.3. Sending Au to F(U) induces a one-to-one correspondence between 
J7(MQ) and the left quotient < 8 ( C ( { z } ) ) \ < 9 * ' ( C ( ( z ) ) ) . 

One, thus, recognizes in the isoformal classification a classical problem of summa
tion of divergent power series. In order to illustrate the possible strategies, we shall 
end this section by examining a specific example. We shall try, as far as possible, to 
mimic the methods and the terminology of the "classical" theory (Stokes operators 
for linear differential equations and summation in sectors along directions). 

Example 2.4. The module MU = ( C ( { z } ) 2 , §AU ) corresponding to the matrix Au = 
( o 2 ) * s formaily isomorphic to its associated graded module MQ. More precisely, there 
exists a formal gauge transformation F such that F[Ao] = Au, that is, F(qz)Ao(z) = 
Au(z)F(z). If one moreover requires F to be compatible with the graduation, that is, 
to have the form F = (J { ) , then there is unicity of the formal series / , which must 
satisfy the functional equation 

f(z) = -u(z) + zf(qz). 

ASTÉRISQUE 296 



THE STOKES SHEAF FOR g-DIFFERENCE EQUATIONS 235 

We call fu this unique formal solution (it can be computed by iterating the above 

fixpoint equation) and Fu the corresponding formal gauge transformation. One checks 

that two such matrices Au and Av are analytically equivalent if and only if the formal 

power series fu-v = fu ~ fv is convergent. In this case (two slopes), the problem is 

additive. 

For u — 1, the unique solution is 

h = - E 
n>0 

ri(n-l)/2zn^ 

the so-called Tschakaloff series (up to the sign). It is divergent and may be seen as a 

natural (/-analog of the Euler series. Thus, A\ is not equivalent to A§. 

In general, we apply the formal g-Borel-Ramis transform of level 1, defined by 

Bq,i I 
71 

a zn — 
E 

71 

q-n(n-l)/2ançnm 

It sends convergent series to series with an infinite radius of convergence. Our func

tional equation is transformed into 

( i - 0 * W ( 0 = - B , , i « ( 0 -

The existence of a convergent solution / has only one obstruction, the number v — 

BqAu(l). This number can therefore be considered as the unique analytic invariant 

of Mu within the formal class of Mo. It can also be considered as giving a normal 

form, since Au is the unique matrix in the analytic class of Au such that I / e C . It is 

a particular case of normal polynomial form (see further below). 

The functional equation can also be solved by a variant of the method of "varying 

constants' 1. We look for the solution in the form g = 0q,\f - For convenience, we also 

write v = 0q,\u, which is an element of ( 9 ( C * , 0 ) . We compare their Laurent series 

coefficientwise and we get 

V n e Z , (1 - Xq")gn - rn. 

If A 0 [1;#] (prohibited direction of summation), there is a unique solution g G 

O ( C * , 0 ) (it does converge where it should), thus a unique solution / G 7 W ( C * , 0 ) 

such that 0q,\f has no poles in C * . We then get a unique solution / A , u with (at most) 

simple poles over [—A; q]\ it is the summation of fu in the direction A G E 9 and its 

"sector" of validity is (the germ at 0) of C * \ [—A;g], the preimage by the canonical 

projection C * —> E C Y of the Zariski open set E Q \ { — A } . 

There is another way of looking at this summation process, with a deeper analytical 

meaning. We can consider Bchif(E) as a meromorphic function (p over the £-plane and 

apply to it some q-analog of the Laplace transform. In our case, putting 

ZxqQ (z) = 
E 

Çe[A;q] 

№ 
0q (z/E) 
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236 J. SAULOY 

gives again /a,u- This discrete summation process is due to Changgui Zhang see ([27], 
also see [7]) and it is heavily used in [16]. In this work, we rather use the first more 
algebraic and more naive method. 

2.2. Classification through the Stokes sheaf ([16],[15]) 

The Stokes sheaf and its Lie algebra. — First, we recall the relevant definitions about 
asymptotic expansions. The semigroup E = (7~ N operates on C* with quotient E g (its 
horizon); in the classical setting, one would rather have an operation of the semigroup 
E = e^" 0 0 ' 0^ with horizon the circle S1 of directions. We consider as sectors the germs 
at 0 of invariant open subsets of C*. We introduce two sheaves of differential algebras 
over C* by putting, for any sector U, 

B(U) = {/ G 0(U) I / is bounded on all invariant relatively compact subset of U} 

A'(U) = { / e 0(U) | 3fe C[[z}} : V n e N , z~n(f - Sn-!f) e B(U)}, 

where, as usually, Sn-\f stands for the truncation. For any sector U, we write 
Uoo = U"/£ for its horizon (an open subset of E 9 ) . We now define a sheaf of differential 
algebras over E Q by putting 

AV) = lim A'(U), 

the direct limit being taken for the system of those open subsets U such that their 
horizon is Uoo = V. There is a natural morphism from A to the constant sheaf with 
fibre C{z} over ~Eq and it is an epimorphism (^-analog of Borel-Ritt lemma). We call 
Ao its kernel, the sheaf of infinitely flat functions. For instance, it is easy to see that a 
solution of a Fuchsian equation divided by a product of theta functions is flat within 
its domain (more on this in the next subsection). 

We, then, write Aj = In + Mat n (*4o) for the subsheaf of groups of GL n ( ^4 ) made 
up of matrices infinitely tangent to the identity and we put A f = Aj D (3(A). This 
is a sheaf of matrices of the form 2.2.1 with all the Ftj flat. Last, for a module 
M — (C({z})n, &A), we consider the subsheaf A / ( M ) of A f whose sections F satisfy 
the equality: F[A] = A (automorphisms of M infinitely tangent to identity). This is 
the Stokes sheaf of the module M. 

Note, for further use, that A / ( A f ) is a sheaf of unipotent groups so that one can 
define algebraically the sheaf A / ( M ) of their Lie algebras: we put A/ = Mat n (^4o) , 
Aj = A/ fl g{A) (see 2.2.2) and take as sections of A / ( M ) those sections of Aj such 
that (crqf) A — Af. Obviously, / is a section of A / ( A / ) if and only if In + / is a section 
of A / ( A f ) , or, equivalently, e x p ( / ) is a section of A / ( A f ) . Indeed, the triangular form 
and the functional equations are easily checked, and the flatness properties stem from 
the well known fact that, for nilpotent matrices, / and exp(/) — In are polynomials 
in each other, without constant terms. 
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The q-analogs of Alalgiunge-Sibuya theorems. One can find in [16] the following 

^/-analogs of classical theorems by Malgrange and Sibuya: 

Theorem 2.5. There are natural b eject ire ma.ppings 

<ò{C{z})\<bA»{C[[z\]) 0 ( C ( { c } ) ) \ 0 ' , " ( C ( ( c ) ) ) —> H[(E,r Af). 

Actually, the following more general theorem is proven in loc. cit.. dealing with 

an arbitrary algebraic subgroup G of G L „ . Its proof relies on some heavy analysis 

(Newlander-Nirenberg theorem). 

Theorem 2.6. Let AI{) be as above. There a/re natural bvjective ma.ppings 

F (Mo) G(C{z\)\GA" (C[[=]\) G(C({z}))\GA" (C(( - - ) ) ) Hl(E,r A f ) . 

where A ? = Af n G(A). 

The former theorem is deduced from the latter together with the existence of 

asymptotic solutions. One can explicitly build, by discrete resunnnation. privileged 

cocycles associated to a class in F(AIQ) and to "Stokes directions". In the next chapter. 

I shall exhibit an algebraic variant of this construction. Morally, it is possible because 

the sheaf A / ( M o ) is almost a vector bundle over the elliptic curve E, y. 

Flatness conditions. Details about the contents of this section can be found in [17] 

and [16]: see also the older references [14] and [13]. 

The above notion of flatness can be refined, introducing ry-Gevrev levels. These 

may be characterized either in terms of growth (or decay) of functions near 0 . or in 

terms of growth of coefficients of power series. We shall use here the following simple 

terminology and facts. 

We start from a proper germ of r/~~N invariant subset U of ( C * , 0 ) . Then any 

.solution of a fuchsian system that is holoinorphic on U has polynomial growth at 0 

(see for instance [21]): this is for instance true for a quotient of tlieta functions. We 

say that / G O(U) has level of flatness ^ / (where t is an integer) if. for one (hence 

any) theta function 0 — 0(J_\. the function f\0\F has polynomial growth near 0 . We 

easily get the following implications. 

Lemma 2.7 

(i) Fort > 0 . t-flatness implies flatness in the sense of asymptoties. 

(ii) Solutions of pure systems of slope //, are ft-flat. 

(iii) //' a solution of a pure system of slope // /,s t-flat with t > //, then it is 0 . 

Normal polynomial forms. The computations will follow the same pattern as ir 

[16], [15]. However, we shall need a slightly more general version afterwards (propo

sition 2.8). 

We start with a computation with two slopes. Take integers // > ///, square invert-

ible matrices A e GL, . (C) and A' G GL.,./(C). Just for this section, call V(r. /•'. //,. / / ' ) 
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the sul)space of Л ч г , г ' ( С ( { с } ) ) spanned by matrices all of whose coefficients belong 
qo E p'< k < = Czk 

For U G Mr.r>{C{{z})). write Br = (z~ A _ ..],', ) . Then, for any such U. there 
exists a unique pair ( K F ) with F G Mr.r'(C({z})) and V G V(r. / • ' . / / . / / ' ) such that 
the matrix (7

(J J F ) defines an isomorphism from Bu to By. This amounts to solving: 

(2.7.1) W4F)(Z-" A')-(Z->LA)F=V ~U. 

Successive reductions boil the problem down to example 2.4. We shall write 
Ked(//. A ///. A', U) for the pair (F. V). 

Now. we come back to our usual notations 2.1.1 and 2.1.2. We consider the 
matrix Au associated to U = (Ujj) G H^^j^.. Mr,.rj{C{{z})). Them there 
is a unique pair (F , V) with F = (F,-.y) G "n ' i^ /<.KA M>,\C({z})) and V = 
(^-.y) ^ rii^/<y^A- Vf/'/. /;,. //,-. / / , ) such that the associated gauge transformation F G 
0 ( C ( { z } ) ) defines an isomorphism from Au to Ay. The pair (F , F ) can be computed 
by solving iteratively a system of equations of the type 2.7.1 for 1 ^ / < j ^ A;. This 
is done by inductively with the help of the formula: 

(FT.J. ¥,./) = Red 
( 
ei .Ai;µj.Aj.Ui.j +s E 

<<j 

(aq FiU) UI.J-
E 

Kl<;j 
VUFT.j 

) . 

What we get is, in essence, the canonical form of Birkhoff and Guenther. Standing 
alone, this statement confirms our earlier contention in section 2.1, to the effect that 
all objects of s[°^ are locally equivalent to objects of £ . 

Now, we shall have use for an extension of these results allowing for coefficients in 
0 ( C * , O ) (instead of C({c})). 

Proposition 2.8. Let Au be as above, but with U = (ULj ) G П MTi,r, ( 0 ( C * , ( ) ) ) . 
<<i<<j<<k 

Then, there exists a unique parr (F. V) with F = (FLj) G r i i ^ o ^ Mr,.r, ( 0 ( C * . ())) 
and V = (Vi,j) G Tii<i<)<kV(r< • rj • t1'* I1 j) such that the associated gauge transfor
mation F G ( 3 ( 0 ( C * . O ) ) defines an isomorphism from Au to Ay. 

Proof. The same induction as before can be used, and the proof boils down to the 
following lemma. 

Lemma2.9. Let //, > /// inZ. A G GL , . (C) ,A ' G GL, . / (C) andU G Mry{G(C*,0))). 
There exists a unique pair (F. V) with F G M,-.,•>{0{C*. 0)) and V G V(r. r ' . / / . / / ' ) 

satisfyinq 2.7.1. 

Proof. The same reductions as in loc. cit. entail that we may as well assume from 
the beginning that //, — 0 and /// = —1. The equation as written has unknown F 
and right hand sick1 V — U in a space of rectangular matrices. Call s the rank of 
this space and call B the matrix of its automorphism F i—> AF A! 1 relative to some 
basis. Multiplying both sides of 2.7.1 by A1 1 at right, we get an equivalent equation 
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of the shape z oqX — BX — Y — Y(0) for which we want to show that, for arbitrary 
B G G L S ( C ) and Y G O ( C *, 0 ) s , there is a unique solution (X,Y^) G ( 9 ( C * , 0 ) s x C s . 
Note that, replacing X = J ^ n G Z A T n z n , Y — J2nezYnZn and Y^ respectively by 
E n e z BnXnzr\ Y,nez B^YnZ71 and B - l Y ^ \ we do not change the conditions on 
X , y , y ( ° ) , and we are led to study a similar problem with B = Is. The latter 
problem can be tackled componentwise: we are to show that, for any u G ( 9 ( C * , 0 ) S , 
there is a unique pair ( / , v) G 0 ( C * , 0) x C such that zaqf — f = u — v (compare to 
example 2.4). 

We apply the g-Borel-Ramis transform of level 1. This clearly sends 0 ( C * , O ) to 
0(C*): indeed, for any A > 0, Anq~n^n~1^2 tends to 0 when n —» =Loc. From 
the computations in example 2.4, we deduce that we have to take v — Bq^u(l) — 
J^nezQ'71^71^1)/2Uni we mus^ then prove the existence and unicity of / . Replacing 
u by u — z/, we may assume that Bq,\u(\) = 0. We write f'n = g _ n ( n _ 1 ) / 2 f n and 
u'n = q~n<yn~l^2un the coefficients of the g-Borel-Ramis transforms Bq,\f and Bq^u. 
We know that E - r o u'k = 0 and we require that V n G Z , f'n_i — f'n = u'n. The only 
possibility allowing f'n 0 for n —> =boo is given by the two equivalent definitions 

f 
J n 

= clef 

-f-oc 
E 

k=n+1 

u'k 

def 
= 

n 
E 

k = — oo 
4 -

For n —» +oo, we thus take (using the first definition of f'n) 

f = qn(n-1)/2 
-)-oo 

E 
fc=n+l 

sd 
qk(k-i)/2' 

By assumption on ix, there exists A > 0 and C > 0 such that, V n ^ 0, \un\ ^ C A n . 
Then 

l/n| ^ 
CAn+1 

q ( 
l + 

A 

M n + 1 

= 
^ i 2 

|^|(n+l) + (n+2) + • • • 
) . 

whence \fn\ = O ((A/\q\)n) when n —> +oo. 
On the side of negative powers, putting, for convenience, gn = / _ n and vk = ^- /c 

and, using the second definition for f'nl we see that 

gn - „n(n+l)/2 
T oo 
E 

k=n 

Vk 
Qk(k+l)/2 . 

By assumption on w, we have, for an?/ 5 > 0, \vk\ — 0(Bh) when k —> +oo and a 
similar computation as before then yields that, for any B > 0, \gn\ = 0(Bn) when 

n —> +oo, allowing one to conclude that / G ( 9 (C* ,0 ) as desired. • 

We shall actually need only the following consequence of the proposition. 
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Corollary 2.10. - Let A = Ajj in the canonical form 2.1.1, with U — (Ul^J) G 

ri i^.<j^fe A 1 r , , r , ( O ( C * , 0 ) ) . Then, there exists F G <S(0(C*,O)) sucft tfm* A y = 

F[Au] has the same form, but with V = (Vij) G Yii^<j^k Mr^rj(C({z})). • 

Obviously the same properties hold if one replaces O ( C * , 0 ) by 0 ( C * ) . 

3. Algebraic summation 

3 . 1 . T h e a l g o r i t h m . — We keep the notations M 0 , A0, Au of 2.1.1 and 2.1.2 and 

the corresponding conventions from section 2.1. Also, we shall, for 1 ^ i < j ^ k, use 

the abréviation µi,j = / I 2 — \i3 G N*. 

Definition 3.1 

(i) A summation divisor adapted to AQ is a family (Dli])i<i<jJ<k of effective divisors 

over the elliptic curve E g , each DHJ having degree / I ^ j , the family satisfying moreover 

the following compatibility condition: 

Vz, Lj such that I ^ i < I < j ^ k, I)tJ = D^i + DHJ. 

Obviously, it amounts to the same thing to give only the k — 1 divisors D ^ + i , i — 

1 A- 1. 

(ii) We say that the adapted summation divisor (^2,;)i^2<j^A; is allowed if it sat

isfies the following conditions: 

Vi , j such that 1 ^ i < j ^ /c, e v E ( / ( A , j ) 0 ( l)'' '-'" 
Sp(A-) 

Sp(A,-)" 

Here, for S^T C C*, we put S/T = {s/t \ sE S,tE T } ; X and ev£ f / were defined in 

the introduction. 

Note that, for an adapted summation divisor, the condition of being allowed is a 

generic one. 

Example 3.2. — A special case is that of an adapted summation divisor concentrated 

on a point ft G E g , that is, each DLJ = //,., |n|. Then the condition that D is allowed 

is equivalent to: 

Vi , j such that 1 ^ i < j ^ k, / I^- a 0 Sp(A,) - Sp(A,-)-

It is generically (that is, over a non empty Zariski open subset) satisfied by a G E q . 

Now, let (I)/.,) i <i<j<k yv/,- be a summation divisor adapted to AQ. We choose points 

ai G C* for nk < I ^ /ii such that, for 1 ^ i < j ^ k. 

D ij= E 

f'j^l'"'lC 

a,] 
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These certainly exist. We then put: 

U = 0µi 
n 

nk<I<µi 

&q,-cii • 

Lemma 3.3 

(i) The functions f\ //, G M(C*) are such that: 

(11) For1 i — 1 , . . . . A*. Gqti — (\jZ1'' I,. where ar G C*. 

(12) For 1 ^ /' < j ^ A'. divE (t-i) — cHve (t;,) = DUJ (the notation is explained 

in the course of the proof). 

(13) For 1 ^ i < j ^ A', k function t^j = o~qti/tj belongs to 0 ( C * ) . 

(ii) //"¿/¿6 summation divisor (^/.;)k/<j^A: ^ 'moreover allowed, for 1 < / < .y ^ A\ 

¿/¿6 spectra of a;AL and (YjAj have empty intersection on Fjq: 

Sp(n,/1,-) n S p i n a l / ) = 0 . 

Proof. It is an immediate consequence of the properties recalled in the introduction 

that these functions f?- indeed satisfy ( i l ) . Moreover, the functional equation implies 

that the divisor dive* (£/) of zeroes and poles of t; on C* is invariant under the action 

of qz, so that it makes sense to consider it as a divisor divE ( /(A,;) on E q (alternatively, 

one can consider tL as a section of a line bundle over E f / and the notation is then 

classical). Again, because of the properties of theta functions, one clearly gets (i2). 

Assertion (i3) conies from the equalities 

dj = <Tqt¡. 

ti 
X 

t, 

tj 
= <nz>" x a function with positive divisor. 

The function 0q

li 0q/6(hai satisfies the same functional equation as t^ which means that 

their quotient is elliptic so that its divisor on E „ has trivial evaluation. Therefore. 

d i v E ( j ( i , ) = 
( - 1 ) " ' " 

Oí i 

The conclusion (ii) then follows from the definition of an allowed divisor. • 

We now introduce a temporary and slightly ambiguous notation. For an adapted 

summation divisor D = (A ; . j ) i ^<y^A ' , we write B d for the following block-diagonal 

matrix: 

Od = 

V 

Trt1 

o . . . 

0 

. . . 0 

o . . . 0 . . . 1,1,. 

\ 

J 

= 

Of course, it does not only depend on D, but on a particular choice of the functions 

¿1, tk whose existence has just been proved. However, the summation process we 
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are denning will produce a result that only depends on D. For a family of rectangular 

blocks U'j -, we shall use the following abréviation: 

A'U'= 

I 

V 

i; 

K, • • • 
o 

. . . 0 

0 . . . 0 . . . A', 

\ 

) 

. 

Lemma 3.4 

(i) The effect of the gauge transformation Go is to ''regularize'' the diago

nal blocks of A = ALJ: GD[A\ = A'(r,, where, for 1 ^ / < j ^ k, U'LJ = tLjULj G 

Mn.rj ( 0 ( C * , 0 ) ) and, for i = 1 .k, A\ = (\lAl G GL,.,. ( C ) . If moreover the adapted 

summation divisor D is allowed, then, for 1 ^ i < j ^ k, Sp(A' : ) n Sp(A^) = 0 . 

(ii) Suppose we started with Au in polynomial normal form, Then, we get A'u, 

such that U'lj G M r , . r , ( ( 9 ( C * ) ) . 

Proof. The computations are immediate. • 

We shall now take two matrices Au and Ay in the formal class of AQ. flatten their 

slopes through the gauge transformation 0/j>. and then link the resulting matrices 

A[If and Ay, by an isomorphism defined over C*. This relies on the following 

Proposition 3.5 

(i) Let 

AV' -

V 

i; 

U'lj • • • 
0 . . . 

. . . 0 

0 . . . 0 . . . A'k 

\ 

) 

and A'y, = 

V 

»; 

0 

. . . 0 

0 . . . 0 . . . Al 

\ 

) 

where, for i = 1 k. A'; G G L , . . ( C ) are such that, for 1 < /' < j < k. S p ( ^ ) n 

S p ( ^ ) = 0 and. for 1 < •/ < j A-. U' .y U , € M , , r , ( e > ( C * , 0 ) ) . 

Ih, //. there exists a unique I ' G <£>(0{C* A))) .such that F'[A'V,\ = \\ . 

(ii) //. for 1< /< /' • k. Ujj. V/j G Mr,,rj(0(C*)), then F' G < 8 ( 0 ( C * ) ) . 

Proof. We have to solve inductively the system of equations 

( s F ' ) d 1 I F = = 
= 

-.7 
f i = + 

sf 

j>= 

V: = 
=! 

fi 
s d E 

i<l<j 

(DgF'i.l)U'j 

The induction is the same as the one we met when building normal polynomial forms. 

The proposition then follows from the following lemma. 
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Lemma 3.6 

(1) Let B G G L I S ( G ) and C G G L ^ ( C ) be invertible complex matrices such that 

Sp(B) n Sp(C) = 0 . Then, for Y' G A / M ( 0 ( C * , 0 ) ) 7 £/ie equation 

(aqX
r) B - CAT = V 

has a unique solution X' G A / / M S ( Ö ( C * , ( ) ) ) . 

(ii) J / F ' G W M ( 0 ( C * ) ) , Jften X ' G A / M ( 0 ( C * ) ) . 

Proof. —- We write the Laurent series: 

X' = 
E 

ne zi 

Xn zn and F ' =: E 
nez 

Y'nzn 

By identification, we obtain X' =^g" B c ( ^ r i ) ' where &q»B<c * s the automorphism 

A/ I ^ M(qnB) — C A / of A / t , s ( C ) ; that it is indeed an automorphism comes from the 

assumption that qnB and C have non intersecting spectra. For n —• + o c , (I)-1qnB,C 

q~n$J3 o and, for n —> - o o , $~T ,£ <- —> ̂ o i v Taking ]r, 7?[ x c / R to be the annulus 

of convergence of Y\ we conclude that the annulus of convergence of X' is]R,]r,|Q|R[ x 

e ' R . Anriuli of definition actually grow, again an illustration of the good regularity 

properties of the homological equation. • 

Putting all together, we now get our first fundamental theorem. 

Theorem 3.7 

(i) Let An, Ay be defined as above, in the formal class of AQ. Then, there exists a 

unique F G <&(M{C*A))) such that F[AN] = AV and, for l ^ i < j ^ k, d i v E „ (/•'/,/) ^ 

— Djj (the notation is explained in the course of the proof). 

(ii) If Au, Ay are in polynomial normal form, F G <S(M{C*)). 

Proof. — We put A[Jf = ®D[AU] and A'v, = GD[AV}, then F[Au] = Ay is equivalent 

to F'[A'Uf] = A'v,. where F' = QDFSD-1. The matrices F and F' together are 

upper-triangular with diagonal blocks I r1 j , . . . . . . . . , I T k and their over-diagonal blocks are 

related by the relations: /•',-.; = ^Fjj. This implies the unicity of F G 0 ( A / f (C* , ())) 

(resp. (*5(Ai(C*))) subject to the constraint that the coefficients of FT^ belong to 

^ ( 9 ( C * , 0 ) (resp. ^ 0 ( C * ) ) . Since div E„(*0 - d i v E ( / ( ^ ) = D M , this proves (and 

explains) the given condition. • 

As a matter of notation, we shall write FJJ(U, V) for the F obtained in the theorem: 

it does indeed depend only on D. We see it as the canonical resummation of F(U.V) 

along the "direction" D. We shall write, in particular, FJJ(U) — FD(0,U). 

Let us call &D(M(C\Q)) (resp. ®D(M(C*))) the subset of <3{M(C\(0))) (resp. of 

®(M(C*))) defined by the constraints divE (FT , ) :> -D, ,• for 1 ^ / < j ^ A'. 

Corollary 3.8. FD(U,V) = FD(V)FD(U)-1. 
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Proof. — Actually, 0 D ( M ( C * . O ) ) = B D 0 ( ( 9 ( C * , O ) ^ 1 and 0 D ( M ( C * ) ) = 

6 D 0 ( O ( C * ) ) B D

1 , so that these subsets are subgroups. Then, the statement follows 

from the unicity property in the theorem. • 

Corollary 3.9. — The conclusion of the theorem still holds if one only assumes that 
U =( Ui.j) E II1 <i<j<k M ri ri (O(C* , 0)); 

Proof. — This immediately follows from corollary 2.10. • 

Remark 3.10. — It is not difficult to prove that F(U.V) is the aymptotic expansion 

of FD(U,V) in the sense of section 2.2. One first has to extend the definitions so as 

to allow for a pole at 0. The proof then proceeds in two steps. 

(i) First, one proves that, in its domain of definition. Fp(U, V) is a section of the 

sheaf zdB for some d £ Z . This is done using only the functional equation that it 

satisfies, and studying inductively its upper diagonal blocks F Z / Y . 

(ii) Then, one proves that the operator F i—» Ay1 {&qF) AJJ, sends &(zdB) to 

<5(zd+l B). Starting from FD(U, V) and iterating yields the conclusion. 

Actually, in [16], a stronger result is proved. It relies on a refined definition of 

asymptotics taking in account the position of poles: this is essential to get summation 

by discrete integral formulas. 

Remark 3.11. To give our theorem its functorial meaning, one should proceed as 

follows. One generalizes the construction of a vector bundle FM from a ^-difference 

module M. This defines a fibre functor UJ over E^. Then, for each JD, if one restricts 

to an appropriate subcategory of S[°\ M ^ Fo(AI) is an isomorphism from the fibre 

functor LU ogr to cu. On the other hand, endowing Fa/ with the filtration coming from 

that of M. one defines an enriched functor and the underlying principle of all our 

uses of the homological equation is that this functor is fully faithful. This is exploited 

in [23]. 

3 .2 . Applications to classification 

One direction of summation, Let Au. Ay be defined over C ( { z } ) . Suppose AJJ 

and Ay are analytically equivalent. Then the power series F(U,V) is convergent and 

satisfies the conclusion of theorem 3.7, so that, by unicity, FD{U,V) = F(U,V) for 

any allowed summation divisor. Conversely, 

Proposition 3.12. Suppose FD(U,V) e < S ( 0 ( C * , 0 ) ) . Then Av and Ay are analyt

ically equivalent (and all the above holds). 

Proof. — The gauge transform F = Fu(U,V) is obtained by solving the system of 

equations 

z-"< (<rgFitj) A3 - z-'-'AiFij = Vitj - Uitj + E 
'<Kj 

Vi,l fI?j — 
E 

i<Kj 

( a q Fi,l) Ui.j. 
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By induction, we are reduced to the following lemma: 

Lemma 3.13. - - Let // > /// in Z, A e GLr{C),A' G G L r / ( C ) and Y G Mr,r{C({z})). 

Let X G Mr.r'(0(C*, 0)) be a solution of the equation: 

(aqX) (z-* AF) - (z->lA)X = Y. 

Then, one actually has X G MR'.r>(C({z})). 

Proof. Going to the Laurent series and identifying coefficients, one finds 

Vn G Z q'^Xn+^A' - AXn+v = YN. 

Since Y G Mr,r'(C{{z})), YN = 0 for n < 0. Therefore, for n < 0, writing d = 

/1 - //' G N*, one has Xn = q~nAXN+DA1~L. Since \q\ > 1, either Xn = 0 for 

/7. << 0. or the coefficients of X are rapidly growing for indices near —oc prohibiting 

convergence and contradicting the assumption that X G A ^ R . 7 - / ( 0 ( C * , ())). • 

In order to make this a statement about classification, we introduce one more 

notation. We write 

<0${M(C\Q)) = {Fe eD(M(C*,0)) I F[A0] e G L „ , ( C ( { 3 } ) ) } . 

Clearly, the subset <0%'(M{C*,())) of the group 0 / ) (Al (C* , ())) is stable under the 

action by left translations of the subgroup 0 ( 0 ( C * . ( ) ) ) . Now. the above proposition 

immediately entails 

Proposition 3.14. Mapping Au to Fp(U) yields a Injection 

^(A/ 0 ) 0 ( 0 ( C * ) ) \ 0 £ " ( X ( C T , O ) ) . • 

This is strikingly similar to the corresponding "formal modulo analytic" description 

in proposition 2.3. 

Varying the direction of sunn nation. Let D = (D j_))\<^l<1^k be an allowed sum

mation divisor for Mo, A0. We consider as its support and write Supp(D) the 

union Ui<v<y<A- S u p p ( D 7 i 7 ) and define the following Zariski open subset of E ( / : Vp = 

~Eq \ Supp(D) . We also write Up for the preimage of Vp in C*. Thus, the elements 

of <3D(M(C*. ())) are holomorphic germs over (Up.O). 

Now let D' be another allowed summation divisor. Then, for any A\j in the formal 

class of AQ. the gauge transformation Fp^p>(U) — FD(U)~]Fry(U) sends AQ to itself. 
clef 

It is holomorphic on the open subset (UDHUD', 0) . We call £ / D D , the sector UDC\UD'• 

which is the preimage of the open subset VD^D' = VD H VD' of E q . Note that, if D 

and D ' have non intersecting supports (which is easy to realize), then Up and Up> 

cover C* and Vp and VD' cover E f / . 

Lemma 3.15. —- Fp.p>(U) is a section of the sheaf A/(A /Q) o?;er VD,D'-
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Proof. One only has to prove that the upper-diagonal part of F = Fr)^u>>(U) is 
flat. But its rectangular blocks satisfy: (o-qFli3) (z~^' Aj) = (.: ''' A^F,.,. This is a 
pure system of slope /x ? i J > 0 , hence F ? J is indeed flat by lemma 2 . 7 . • 

We now call 11 (resp. 23) the covering of C* (resp. of Eg) by the open subsets Up 
(resp. VD), where D runs among all the allowed summation divisors for ^4 0, Mo- The 
following is immediate. 

Corollary 3.16. The family {FD.D'{U))D,D' is a Cech cocycle of the sheaf A i (M 0 ) 
for the covering 23 of E q . • 

Proposition 3.17. Mapping An to the cocycle ( F D . D ' ( ^ ) ) defines a one-to-one map
ping: 

F ( Mo) Z1 (D, A1 (Mo)). 

Proof. If An is analytically equivalent to Ay, we have Ay = F [Au] for a unique 
F G 0 ( C ( { z } ) ) and it is clear (by unicity) that FD(V) = FFD(U) for all allowed 
divisors D. whence FD,D'(V) — Fp,p>(U) by immediate computation. This shows 
that the above mapping is well defined. 

Conversely, just assume that Fr),D'(V) — ^ D , D ' ( ^ 0 for two allowed divisors with 
non intersecting supports. This equality gives F[j(U.V) — Fo'(U.V). Hence, both 
sides are holomorphic over UDUUD' = C* (near 0 ) , and we already saw in proposition 
3 . 1 2 that this implies the analytic equivalence of Ajj and Ay. • 

We now come to the second fundamental result of this paper. 

Theorem 3.18. The above mapping yields a bijective correspondence: 

F(Mo) = H 1 (Eq, AI (Mo)). 

Proof Let Au and Ay have the same image in Hl (Eq, A / ( M o ) , hence in 
H1 (23, A / ( A / o ) (in Cech cohoinology, the Hl of a covering embeds into the direct 
limit). There is, for each allowed divisor D, a matrix G(D) G <&(0(UD)) fl A u t ( M 0 ) 
in such a way that: 

VD.D' : FO.D'(U) = (G(D))-1[ FDD'(V)G(D'). 

One draws that FD(V)G(D) (FJJ(U)) 1 does not depend on D, so that it is holomor
phic on [jUo = C*; call <3> their common value. As a gauge transformation, it sends 
Au to Ay. By proposition 3 . 1 2 , Au and Ay are analytically equivalent, which proves 
the injectivity. 

We now prove that our mapping from ^(AIQ) to jt71(23, A[(AIQ)) is onto. For 
that, we take {$D,D')D.D' € Zl (23, A/{Mo) ) . By definition of the sheaf A / ( M 0 ) . each 
component &o.D' is an element of ®{0(U n.r)>)), so that our cocycle can be considered 
as describing a vector bundle over C*, trivialized by the covering U and with structural 
group in 0 . By [19], theorem 1.0 (see also [18]) it is trivial in the following sense: there 
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is. for each D. a $ D G <&(0(UD)) in such a way that, for all D, D, <&DJJ> = $ D $d ' -
Since the ^ d . D ' are autoniorphisms of ,4q. the <!>/;> [Ao] are all equal to a same matrix 
Aw. Moreover, this is holomorphic over C*. By corollary 2.10, there is a f G 
0 ( ( 9 ( C * , ( ) ) ) such that Av = ^[AVi] is meromorphic at 0. Then Y (i)D is holomorphic 
on ( [ / / } , 0) and sends A0 to ALi. Put GD = FD(U)~1YCI)D. This is a section of A / ( J / \ / 0 ) 
over Vd. The equalities FD(U)GD = Y (I)D entail ®j/&D' = GD

LFDjy(U)GD>. that 
is, the cocycle (^D.D')DJJ' is equivalent to the cocycle (Fq.D'(U))D,D' which ends 
the proof of our statement. 

There remains to check that the natural mapping from HL (QJ, A / ( M o ) ) to 
H[ (E ( / . A / ( M Q ) ) is onto (we already said it was one-to-one). This is the content of 
proposition 4.4. to be proved after the discussion on the ry-Gevrey filtration of the 
Stokes sheaf the in next chapter. • 

4 . T h e (y-Gevrey f i l t ra t ion o n the S tokes shea f 

The sources of inspiration for the contents of this chapter are [12], [1], [9], [25] 
and [4]. 

4.1. The filtration for the Stokes sheaf of a tamely irregular module 

We stick to the conventions of section 2.1, in particular, the notations of 2.1.1 and 
2.1.2. 

Conditions of flatness. Let F be a section of the sheaf A/( i \ /n) . Then, for 1 ^ / < 
j ^ A*, the block Ft_j is solution of the equation 

*,Fi.j (z-»JAj) = (z-X'Aj)Fi.j. 

From this and lemma 2.7, we deduce that FK] is (/U — // ; )-llat and that, if it is /-flat 
for some t > //A — / / , . then it vanishes. 

We now introduce a filtrat ion of the Stokes sheaf and a filtration of the sheaf of its 
Lie algebras. For real non-negative t, we call A ^ M n ) the subsheaf of Xi(AIQ) made 
of /-fiat sections and A ^ i l / o ) the subsheaf /.„ + XT

I(M0) of A / ( i \ / ( ) ) . The latter is a 
sheaf of luiipotent subgroups, while the former is the sheaf of its Lie algebras (see the 
discussion in section 2.2). Both filtrations are decreasing and exhaustive (the 0-term 
is t he total sheaf, the /-term is the trivial sheaf for t > p\ — ///,.). 

From the previous argument, we see that Aj (Mo) has a very simple concrete de
scription in terms of matrices: its sections have non trivial blocks only over the "curved 
over-diagonal" consisting of those (-/ .^-blocks such that µi - µj = t. There is a similar 
description for A j ( M o ) (taking in account the block-diagonal of identities). We shall 
however have use for a more intrinsic definition of these filtrations. We first describe 
the filtration of A / ( i l / 0 ) . 
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Proposition 4.1 

(i) The sheaf XJ(MQ) IS the sheaj of sections of the vector bundle associated (see 
section 2.1) to the tamely irregular module End > ( ) (M 0 ) -

(ii) The above filtration on the sheaf A/(Mo) IS the decreasing filtration associated 
to the graduation inherited from E n d > 0 ( A / o ) . 

Proof. We have A / 0 — I\ I\- whence: 

End(A/ 0 ) = ® 
l <:/..;<; A-

H o m ( P 7 , P ) . 

The internal Horn Hom(Pj.Pi) is a pure module of slope fit — fij. Therefore, 
E n d > 0 ( A i o ) is the sum of those H o m ( P 7 , p ) such that fit > /z 7 , i.e. i < j . 

On the other hand, the vector bundle associated to Hom(Pj , p ) has as sections on 
an open subset V of E f / the morplhsms from P3 to p that are holomorphic on the 
preimage U of V in C*. This implies that the sheaf of sections of the vector bundle 
associated to the module E n d > ( ) ( A / o ) is indeed A / ( A / Q ) : that it is the direct sum of its 
subsheaves (Mo), where Xj (Mo) is the sheaf of sections of the pure vector bundle 
associated to the pure module 

E n d ( t ) ( A / 0 ) = 0 
f = µj = t 

H o m ( P 7 , P 2 ) ; 

and that A ^ ( A / 0 ) is the direct sum of the A^ ] (M0) for all t' ^ t. • 

Actually the whole structure only depends on the nitrations and the properties of 
internal Horns, so that it can be extended to an arbitrary tannakian category. 

Proposition 4.2. — Lett be a nonnegaiive integer. 

(i) A | ( A / o ) is a sheaf of normal subgroups of A/ (Mo)-
(ii) The map / i—• 1 + / induces an isomorphism: 

YI (t) (Mo)= A^(A/o) 
A ^ + 1 ( M 0 ) ' 

Proof. Actually, these are purely algebraic properties: for a impotent two sided 
ideal / of a non commutative algebra A, the subgroups 1 + I1 of the unit group 
are normal and their successive quotients are isomorphic to the quotient modules 

It / It +1. 

We now are in position to reconstruct the Stokes sheaf by successive exact se

quences: 

(4.2.1) 1 A t-i = : M > ) A', ( M . ) A = (Mo) 0. 
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Note also that, again from general algebraic considerations, we have a sequence of 
central extensions: 

;4.2.2) 0 Y(t)I( Mo) A / ( M 0 ) 

A * + 1 ( M 0 ) 

A ; ( M 0 ) 

A* (Mo) 
1 

4.2. Cohomological consequences 

Lemma 4.3. Let V be a proper open subset o / E r / . Then H1 (V, A / ( A / 0 ) ) is trivial. 

Proof. We apply theorem 1.2 of [8] to the exact sequence 4.2.1. This gives an exact 
sequence of pointed sets: 

Hl(V,A',+ 1(M{))) / / ' ( K A ' ^ A / o ) ) / / ' ( K A ' ^ M o ) ) . 

If the extreme terms are trivial, so must be the central one (this, by the very definition 
of an exact sequence of pointed sets). The rightmost term is the first cohomology 
group of a vector bundle (after proposition 4.1) over an open Riemann surface. Such 
a bundle being a trivial bundle, its Hl is trivial. The leftmost term is trivial for 

t > U1- µk-. By descending induction, the inner term is trivial for all t, hence for 

t = 0. • 

Proposition 4.4. The covering 23 /«s good. 

Proof. This means that the map from Hl (23, A / ( A / 0 ) ) to H[ (E ( 7 , A / ( A / ( ) ) ) is an 
isomorphism. After [1]. cor. 1.2.4. p. 113, this follows from the lemma, • 

Note that this ends the proof of theorem 3.18. 

4.3. The Stokes sheaf of a general module. — We briefly sketch here how the 
previous results extend to the Stokes sheaf of a module M. We take M in the formal 
class of A/y and identify it with (C({z})n, An), according to the conventions of section 
2.1. 

The mapping i—> Fi)(U)^Fjj(U)~1 defines an isomorphism from A/ (A/y ) to 
A / ( A / ) over Vj). Therefore, the two sheaves are locally isomorphic, Actually, the 
latter is obtained from the former by the operation of twisting by the cocycle 
(FD,D'{U))D,Dn>, described in [8], prop. 4.2 (also see [1], II.1 or [25], pp. 30-31). 
According to the same references, their Hl are isomorphic. Moreover, the same 
operations provide a local isomorphism of the sheaves of Lie algebras, so that A / ( A / ) 
is a vector bundle. Last, these isomorphisms preserve the nitrations by levels of 
flatness. 

Remark 4.5. One should also note that the mapping X i—> Fu(U)X defines an 
isomorphism from the space of solutions of AQ holomorphic over (Uo,Q) to the same 
space for An. This means that their sheaves of solutions are locally isomorphic. Since 
the former is a vector bundle, so is the latter. This yields an explicit way of associating 
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a vector bundle with an arbitrary module with integral slopes (for arbitrary slopes. 

see [23], [24]). 
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