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KRICHEVER MODULES FOR DIFFERENCE AND
DIFFERENTIAL EQUATIONS

by

Marius van der Put & Marc Reversat

Dedicated to Jean-Pierre Ramis on the occasion of his 60th birthday

Abstract. — In order to understand an analogue of Kronecker-Weber and some abelian
Langlands theory for function ficlds, an explicit comparison between Krichever dif-
ferential (or difference) modules of rank one and abelian differential (or difference)
equations is carried out.

Résumé (Modules de Krichever pour les équations aux différences et différentielles)

On compare explicitement les modules de Krichever différentiels ou aux différences
de rang 1 aux extensions abéliennes différentielles ou aux différences. Ceci permet de
donner, dans ces situations, un analogue du théoreme de Kronecker-Weber.

Introduction

The observation that the “elliptic module” of Drinfel'd has an analogue for dif-
ference and differential operators was made around 1977 by Krichever, Drinfel'd,
Mumford et al. (sce [Dr, Kr, Mu, L1]). Geometric Langlands theory (sce [L2,
F-G-K-V, F-G-V]) for differential equations is developed on the basis of this obser-
vation. In this paper we investigate some rather basic questions for the analogues of
Drinfel'd modules for difference and differential equations. The main question is the
relation between abelian differential (resp. difference) equations and Krichever differ-
ential (resp. difference) modules of rank one. By abelian differential (vesp. difference)
cquation we mean a differential (vesp. difference) module such that its differential
(resp. differcuce) Galois group is an abelian (lincar algebraic) group. For this purpose,
explicit calculations of the universal Picard-Vessiot ring and the universal differential
(resp. difference) Galois group for abelian differential (resp. difference) equations are
carried out. In other words. we investigate Langlands theory for function fields where
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208 M. VAN DER PUT & M. REVERSAT

the Frobenius endomorphism is replaced by a differential operator or a difference op-
erator. This is seen as a first step towards GL,-theory for Krichever modules. The
differential field extension defined by the “torsion” of a rank one Krichever differential
module has a vague resemblance to the torsion of rank one Drinfel'd modules. In
contrast to this, the rank one Krichever difference modules provide abelian extensions
in perfect analogy with rank one Drinfel'd modules. For the theory of (¢-)difference
cquations we refer to [P-S] and the recent survey [D-R-S-Z.

1. Abelian differential equations

Let K be a differential field. We suppose that the field of constants C' of K is
algebraically closed and has characteristic 0. The Tannakian category of all differential
modules over K is called Diff r. One associates to Diff iy a universal differential
Picard-Vessiot ring Univy. This is the direct limit of Picard-Vessiot rings for all
linear differential equations over K. The universal differential Galois group Gy, i
is the group of the differential automorphisms of Univy /K. This is an affine group
scheme. For a full Tannakian subcategory C of Diff . there is also a universal Picard-
Vessiot ring Unive and a universal differential Galois group Ge. From the Tannakian
formulation of differential Galois theory it is clear that Unive is a subring of Univ
and that Ge is a quotient of G,,iv c. In this section, we present explicit calculations
of Unive and Ge for the case when C consists of the differential modules for which
the differential Galois group is commutative. We write, in this situation. Guniv. xab
for G¢ and this group scheme is equal to (Guniv i )an, the abelianized group scheme
obtained from Gy, -

Lemma 1.1. Let M be a differential module over K with o differential Galois group
G that is the product of two (algebraic) groups Hy and Hy. Let R be the Picard-Vessiot
ring of M. Then R = Ry ¢ Ry where R;, i = 1,2 is the Picard-Vessiot ring for a
differential module M; over K with differential Galois group H,;.

Proof. Let L be the ficld of fractions of R and put Ly, = LY L, = L', By
Galois correspondence L; is the Picard-Vessiot field of some differential module M/,
over ' with differential Galois group H,;. Let R; C L; denote the K-subalgebra of L;
consisting of the clements [ € L; such that the K-vector subspace of L;. generated
by f and all its derivatives is finite dimensional. Then R; is the Picard-Vessiot ring
of M; (compare [P-S03], Corollary 1.38). One considers the natural map

ViR Ry — Ly o Ly~ L.

This is a morphism of differential algebras over K. Morcover, ¢ is equivariant for the
action of H; x H,. Let Ly C L denote the field of fractions of the image of «v. This is
the Picard-Vessiot field for the differential module Ly ¢ My over Ly since (compare
[P-S03]. Proposition 1.22):
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KRICHEVER MODULES FOR DIFFERENCE AND DIFFERENTIAL EQUATIONS 209

(a) Ly is generated over L by the entries of a fundamental matrix for the differ-
ential module Ly & M, over L.

(b) the field of constants of Lg is C.

Let I3 denote the group of the differential automorphisms of Ls/L;. The embed-
ding Ly C L induces a morphism H, — 3. From the equalities L;l;["‘ =L,.L" =1,
and the Galois correspondence of differential Galois theory one deduces that Ly = L
and H, — Hj is a bijection. The Picard-Vessiot ring Ry of Ly 0 My over Ly is
equal to the image L) @ Ro/1 of Ly @ Ry in Ly, In particular [ is a maximal
differential ideal of L &y R>. The group of differential automorphisms of Ry/K
is Hy. If the ideal I is not zero. then the group Hy of the differential automorphisms
of Ly ¢oye Ro/I is a proper subgroup of Hy. This contradicts the equality Hy = Hs.
We conclude that ¢ is injective and that L is the field of fractions of the image of
. Any clement f in the image of ¢ has the property that the K-vector space gen-
crated by f and all its derivatives is finite dimensional. Thus. we have obtained an
ijective ¢v 1 Ry @ Ry — R which induces a bijection for the corresponding fields
of fractions. We will regard ¢» as an inclusion Ry ®x Ry © R. Consider an element
f € R. Let 1" be the K-vector space generated by f and all its derivatives. The
dimension of W over A is finite. Define the ideal J C Ry @y Ry to consist of the
clements g € Ry o Ry satisfying gV C Ry ¢ Ry. Then, J is a non zero differential
ideal and hence, equal to Ry o o, Thus, Ry @ Ry = R 0

Corollary 1.2. The  universal  Picard-Vessiot  ring Univy.a, for the category
of the differential modules with abelian  differential Galois group has the  form
K[{s(a)aer}-{yd) oe ] where the “symbols™ s(a). y(b) satisfy:

s(0) =1, s(ay)s(az) = s(ay + az),
y(0) = 0. yby) + y(ba) = ylby + ba).
s(a) = as(a), yb) =b.

The relations between the symbols depend on the field K. They are generated by:
s(fIy =N f for fe K and suitable o f) € C*;
y(f)y = f+d(f) for suitable d(f) € C'.

Proof. Any abelian linear algebraic group G' (over (') is a finite product of copices of
the groups G, (the multiplicative group). G, (the additive group) and finite cyelic
groups. According to the lemma we have only to consider differential modules Af
over K with differential Galois group in {G,,.Z/nZ.G,}. For the first two classes
of groups. the differential module is direct sum of 1-dimensional modules.  Indeed.
the solution space Voof M. is a direct stun of 1-dimensional spaces. invariant under
the differential Galois group. Hence, for every equation 3’ = ay (with « € K) the
universal Picard-Vessiot ring Univy_,, should contain a non zero solution which we
call s(a). Let M be an indecomposable differential module of dimension m having

SOCIETE MATHEMATIQUI DIE FRANCE 2001



210 M. VAN DER PUT & M. REVERSAT

differential Galois group G,. The corresponding solution space V' of dimension m
over C' has an indecomposable G,-action. This action has the form ¢ — exp(tN),
where N @ V. — V is a nilpotent map such that N™ 7! # 0 and N™ = 0. Let
Vi = ker(N') for i = 1,2,.... There are submodules M; C M corresponding to
the V;. One considers the 2-dimensional Ay with its trivial 1-dimensional subspace.
This produces an inhomogenous equation y’ = b for some b € K. Let L D K be the
Picard-Vessiot field for Al. Then there is a differential subfield Lo = K(y(b)) of L,
with y(b)" = b. This is the Picard-Vessiot field of Ay. Since Ly /K and L/K have the
same differential Galois group, namely Gg, one has (by the Galois correspondence
for differential fields) that Lo = L. Therefore, Univg ,, must contain an element
y(b) with y(b)" = b for every b € K. Morcover, Univg ., is generated over K by the
elements {s(a)}aen and {y(b)}rcx. One can normalize the y(b), such that y(0) = 0
and y(by + b2) = y(b1) + y(b2) for all by, by € K. This is done by considering a basis
{Bi}icr of K as vector space over Q. One chooses symbols y(B;) for every ¢ € I.
Any b is a finite sum Y, A\ B; (with all A\; € Q. Define now y(b) := > \jy(B;).

For every integer n > 1 and every i € I we choose an invertible symbol s(#B,)
This can be done such that s(%B,)" = ,S'((—;J—l)!B,;) for all i € [ and n = 2. An
arbitrary eclement @ € K can be written as a finite sum ), (’—§~>~|B, with ¢; € Z
(almost all equal to zero) and n; > 1. One defines s(a) := [], s(rnlﬁB[)"'. Clearly
$(0) = 1 and s(ay + az) = s(ay)s(az) for all s, so.

Relations between symbols clearly depend on the field K. Between the symbols
{s(a)} and the symbols {y(b)} there are no relations since the corresponding differen-
tial equations 3y’ = ay and ¢’ = b have unrelated differential Galois groups (namely a
subgroup of G,,, and G, ). The symbols {y(b)} form a group for the addition. Hence
it suffices to introduce a relation y(b) = f with f € K whenever the equation y' = b
has a solution in K. Consider the exact sequence 0 — ' — K — K’ — 0, where
K = {f

an additive (or even C-linear) map v : K’ — K satisfying v(b)' = b for every b € K'.

J € K} and the sccond map is f +— f’. This sequence splits and we fix

Then the relations that we want are y(b) = v(b) for every b € K.
Consider the exact sequence
l—C"— K" — K"/C" — 1.
This exact sequence splits since the group C* is divisible. One identifies K*/C* with
the group {f'/f | f€ K*}. Let 6 : {f'/f | f € K*} — K* be a homomorphism of

groups satisfying d(a)’/d(a) = a. Then the relations that we want are s(a) = d(a) €
K* foreverya e {f'/f| e K"} O
Define the group Isomy ; and the C-vector space A(K) by the exact sequences
Q

1 — K"/ — K — Isomy | — 0,

%)
00— K/C 20 K — A(K) — 0,
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KRICHEVER MODULES FOR DIFFERENCE AND DIFFERENTIAL EQUATIONS 211

where « is the map f — f'/f and /3 is given by f — f’. Then Isomy is equal to
the group of the isomorphy classes of the 1-dimensional differential modules over K.
Indeed, consider the I-dimensional module M(a) := Ke with de = ac and a € K.
Then M(a) = M(b) if and only if @ —b = f'/f for some f € K*. Moreover, M (a) &y
M(b) = M(a+b).

Let C[Isomy ] denote the group algebra of the group Isomy ; over the field €.
We recall that the clements of this algebra are the finite formal expressions
Zuelm“”\,_l Aala] with all A, € C. The addition is the obvious one. The multi-
plication is induced by the rule [a] - [b] = [a+ b]. Take a basis {b;};er of A(K) over C.
One forms the C-algebra C'[Isomp . {t;}ics] where the {t;}icr is a family of indeter-
minates. This algebra is made into a Hopf algebra by the formulas [a] — [a] @ [a] and
it 1410t

Corollary 1.3. The affine group scheme Gy, i, is cqual to
Spec(C'[Isomyp . {ti}ici]).

Proof. An clement ¢ in Giv. van(C) is a differential antomorphisi of the differ-
ential ring Univ ey, /. Then g is given by elements ¢(g.a) € C* (for @ € K') and cle-
ments d(g.b) (for b € K satisfying g(s(a)) = ¢(g.a)-s(a) and g(y(b)) = y(b)+d(g.b).
Now a + ¢(g.a) is a homomorphisi from K to (" satisfying ¢(g.a) = 1 if the equa-
tion ' = ay has a solution in A*. In other words a — ¢(g. a) is any homomorphism
Isomp . — . The map b= d(g.b) is a C-lincar map and d(g.b) = 0 if there exists
ay e N owith ¢ = b, In other words, b+ d(g,b) is any C-lincar map A(K) — .
A C-lincar map (@ A(K) — ' is determined by the collection {€(b;)}ier. Hence.
g corresponds to a C-algebra homomorphism C[Isomy . {t; }ies] — €. The multi-
plication of clements in Giv.an (C) is induced by the Hopf algebra structure of
C'[Isomp . {t;}ier]. This deseription remains valid if C' is replaced by any C-algebra
(commutative and with identity). This proves the statement of the corollary. ()

1.1. A is the field of formal Laurent series ('((.17)). — Once provides N = C'((«r))
with the usual differentiation [+ df /dr. An casy caleulation shows that Isomy
is cqual to 'Ol '/Zr " Indeed. the image of the map f - f'/f consists of
the Laurent series m /o + C[[r]] with m € Z. As an additive group Isomyy is the
direct sum of Q/Z and an infinite dimensional vector space over Q. Furthermore.
we need only to introduce the symbols s(a) for a € o~ 'C'r=!]. The only relation is
s(l1/a) =,

For theradditive™ equations ' = b we need only to consider b = ' Indeed, the
map f+— f’ from A to itself has a I-dimensional cokernel, generated by the image of
271 We will write log.e for the symbol y( ). The conclusion is:

Univean = N{s(@) uer 10 1)-logr]
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212 M. VAN DER PUT & M. REVERSAT

and the only relation between the symbols is given by s(1/0) = &, The affine group
scheme Guyiv, ican is the Spec of the Hopf algebra C[Isomg . t] over €. We note that
the part C[t] of the Hopf algebra comes from the one factor G, corresponding to
log .. Finally. as it should be. Spec(Univ ) is a torsor over Gy, .- This torsor
is not trivial, due to the torsion subgroup Q/Z of Isomy ;.

1.2. K is the field C'(r). — We follow the same procedure as in the last subsection.
The group Isomy ;| is equal to K'/V, where V' consists of the elements f € K = C(x)
which have at most poles of order one and such that all the residues of fdur are in Z.
The surjective map K — K/V has no scction because the group K'/V has torsion
elements. One way to make Isomp 1 more explicit is to consider partial fraction
decompostion of the elements in K. An clement f € C'(x) is written as a finite sum
Ix + e feo with foo € Cla] and f. € (¢ — )" 'Cl(a = )7 for cach ¢ € (.
This yields a direct sum decomposition 4 ,ep1 ey Isomy 1 of Isomy ;. Furthermore,
Isomp )~ = Cla] and for every ¢ € Cone has Isomy | = (r—c¢)LC[(r—c) []/Z%

For the ~additive™ equations ' = b with b € I'. we use also partial fractions. The
only equations that one has to consider are 3/ = 1/(r — ¢) with ¢ € C'. We will write
log(a — ¢) for the symbol y(1/(x — ¢)). The KN-algebra Univy .y, can now be written
as

K s(a)}uen - flog(r — )} ec]
with, as before. the relations s(0) = 1. s(ay + a2) = s(ay)s(az) and the new relations
s(1/(e—¢)) = @ — ¢ for every ¢ € O Farthermore s(a)’ = as(a) for all @ € K and
log(w —¢) = 1/( — ¢) for all ¢ € C'. The group scheme Gunivopan 18 the Spee of the
Hopt algebra Cllsomyp 1. {t }eec].

Oue can give this the following interpretation. The nniversal Picard-Vessiot ring
for the global abelian situation has as symbols the union of all local symbols for the
completions C'((w—c)) (all ¢ € (') and C'((~ 1)) of C'(r). We note that the completion
C((r1) of C'(r) at ~¢ behaves somewhat differently because its differentiation d/dur
is not the one associated to the local parameter =1 A better way to formulate the
differential equations that we arve dealing with:

(a) the multiplicate equation in the form dy/y = w with w a differential form for i
(or for the cirve PL).

(b) the additive equation in the form dy = w with w a differential forn.

We will make this more explicit for the case of a function field over C.

1.3. I\ is a function field over . — K is the function field of a smooth, irre-
ducible, projective curve X over ', Let €2 denote the C-vector space of all differential
forms for KA. In other words. 2 is the set of meromorphic 1-forms on X. We have to
consider two types of equations:

(a) dy/y = w with w € Q (multiplicative cquations) and

(h) dy = w with w € Q (additive equations).
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KRICHEVER MODULES FOR DIFFERENCE AND DIFFERENTIAL EQUATIONS 213

For any (closed) point 2 € X one considers the field K, which is the completion
of K w.r.t. the discrete valuation attached to x. Let €2, denotes the universal finite
differential module of K, over C'. This means that after identifying K, with C'((t))
one has Q, = C((t))dt. For the equations of type (a) one has an exact sequence

0 Jac(X) — Q/{dy/y |y € K} =2 Goexu/{dy/y |y € K2} — C/Z — 0.

By Jac(X) we mean in fact the group of the C-valued points of the Jacobian variety
of X. The term Q/{dy/y | y € K*} is equal to Isomy ;. The term 0, /{dy/y |y € K}
is equal to Isomp, ;. The last map is induced by the map @,ecx$2, — C, given by
the formula (w,).ex — >,y Resy(w,). The map L is induced by the obvious map
0 — HJ?EX Q.. Let w € Q. w # 0 represent an element in the kernel of L. Then w
has at most poles of order 1 and all the residues of w are in Z. One associates to w
the divisor D = »_ .\ Res.(w)r. Then w € {dy/y | y € K*} if and only if D is
a principal divisor. We will omit the verification that the above sequence is exact.
This sequence provides the relation between the global multiplicative symbols (i.e..
for Univ g 1) with the local multiplicative symbols (i.e., for Univy, a1,). One observes
that the collection of the multiplicative local symbols have relations induced by “the
sum of the residues is zero™. For X = Pl an example of these relations is

Here s. and s, denote local symbols at the points ¢ and oco. Further A € C*. The

above relation is obtained by transforming

d A
d(r —¢) y=e=cY
into the equation
d —Ar
de VT et

If the curve X has genus g > 0, then apart from the local multiplicative symbols one
needs also symbols for the group Jac(X) in order to obtain all global symbols.
For the equations of type (b) one has an exact sequence

0 — HAR(X.C) — Q/{dy |y e K} L DrexQ/{dylye K.} — C — 0.

The map L is induced by the obvious map € — H,,-ex Q.. Let w € Q represent an
element in the kernel of L. Then the residue of w at every point a € X is zero. The
group H (X, (') is the De Rham cohomology group with coefficients in €' is equal
to {w € Q | all residues 0}/{dy | y € K}. This cohomology group has dimension
2g over C' where ¢ is the genus of X. The group A(K) is equal to Q/{dy | y € K}
and A(K,) is equal to Q,./{dy | y € K,}. Therefore the exact sequence provides
the relation between the global additive symbols (i.e.. for Univy g,) and the local
additive symbols (i.c., for Univy .,). For every @ € X there is in fact one local
symbol, namely logt, where ¢, is a local parameter. Between these local symbols
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214 M. VAN DER PUT & M. REVERSAT

there is just one C-linear relation, induced by “ the sum of the residues is zero”. We
note that for X = P, this relation is obviously logx + logz~! = 0. Furthermore, if
the genus g of X is strictly positive then one needs 2¢g new additive symbols coming
from a basis of H{ (X, ) over C'.

1.4. Krichever differential modules of rank one. — Let X be a smooth, ir-
reducible, projective curve over the algebraically closed field C' of characteristic 0.
Choose a (closed) point o € X and let A be the coordinate ring of X ~ {oc}.
Let K denote a differential field (or more generally, differential ring) with field of
constants C'. A differential Krichever module over K is an injective C-algebra homo-
morphism ¢ : A — K[J] such that ¢(A) ¢ K. We denote by Univy the universal
Picard-Vessiot ring (or field) of K. The following result is sketched in [L1]. Here we
provide a more complete proof.

Proposition 1.4. Let A, K, ¢ be as above.

(1) There is a positive integer r, called the vank of ¢ such that for every a € A,
a # 0 the degree of the operator ¢(a) is equal to r - deg(a).

(2) For every non zero ideal I C A the C-vector space

V(I):={v e Univk | ¢(f)o =0 forall f €T}

has a natural structure of A-module. For this structure V(I) is isomorphic to (A/I)".
Moreover, the torsion A-module
W(p) :={v e Univiy | Ja € A, a # 0 with ¢(a)(v) = 0}
s isomnorphic to (Qt(A)/A)". where Qt(A) denotes the field of fractions of A.
(3) The differential Galois group of the set of operators {o(f) | f € I} is an
algebraic subgroup of GL,.(A/I).

Proof. For any non zero ideal I C A, the set of operators {o(f) | [ € I} generates
a left ideal in K[9]L; where Ly is a (monic) operator. Indeed, K[J] is a (left and
right) Euclidean ring. This observation clarifies the statements (2) and (3).

The map from a € A~ {0} to Z, given by a — — deg(o(a)), extends to a discrete
valuation on the field of fractions of A. This valuation has negative values on A and
is therefore equivalent to the discrete valuation attached to the point ~o. It follows
that there is an rational number r > 0 such that deg(¢p(a)) = r-deg(a) holds for every
a€ A a#0.

Consider an clement © € V(1) and an clement a € A. The operator ¢(a) acts
on Univy in the obvious way. The clement ¢(a)v belongs again to V(1) because for
f € I onehas ¢(f)p(a)v = ¢(fa)e and fa € I. In this way V(1) is an A-module and
also an A/I-module.

Let P be a non zero prime ideal of A. Then V(P") is a torsion module over
the valuation ring B = Ap. Choose m € A such that m generates the maximal
ideal PB of B. The map o(x) : V(P"'") — V(P") is surjective. It follows that
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KRICHEVER MODULES FOR DIFFERENCE AND DIFFERENTIAL EQUATIONS 215

W= U, V(£") is a divisible torsion module over B. Let Qt(53) denote the field of
fractions of B. Then W is as B-module isomorphic to (Qt(B)/B)N ) for some integer
N(P) = 1. Hence V(P") = (A/P" )N for all n > 1. In particular, N(P) is the
dimension of V() as vector space over A/ . Using that A is a Dedckind ring one finds
that V(I.J) = V(1)@ V(J), if I and J are relatively prime ideals. For I = Pt .- P7*
(with distinct prime ideals Py, ..., P,) one has that the dimension of V(1) over C' is
equal to Y7 n; N(P,)-dim¢ A/P,. This is also equal to Y7 N(P ) dime A/P"’
For a principal ideal I = (a) one has dime V((a)) = r - deg(a ) =r-dimc A/(a) =
Sor v -dime A/P) . Tt follows that all N(P;) are equal to 7. If one varies a then
one finds that all N(P) arc equal to r. In particular, r is a positive integer and
V(I)=(A/I)" for every non zero ideal 1.

Finally, the elements of the differential Galois group G of the set of differential
operators ¢(I). act on V(I). This action commutes with the action of ¢(a) for a € A.
Indeed, g € G commutes with 9 and the multiplication by clements in K. Therefore
G is an algebraic subgroup of GL,.(A/I). O

Remarks 1.5 (Isogenies and isomorphisms)

(1) An isogeny u : ¢ — ¢ Dbetween two Krichever differential modules
¢, ¢+ A — KIJ] is a non zero element of K[9] satisfying u - ¢(a) = ¢'(a) - u for
all a € A. This formula implies that deg¢(a) = deg ¢’ (a) for all @ € A. Therefore
¢ and ¢ have the same rank. An isogeny u : ¢ — ¢ is called an isomorphism if
ue K*.

(2) We will prove the following result:

Let w: ¢ — & be an isogeny. There exists a v € K[J], v # 0 and an a € A such
that v-u = ¢(a).

Consider ker(u) := {f € Univg | u(f) = 0}. For any b € A and any f € ker(u)
one has ¢(b)(f) € ker(u). Indeed u - ¢(b) = ¢'(b) - w. Hence ker(u) is an A-module of
finite dimension over (. Therefore there is an a € A, a # 0 with ¢(a)(ker(u)) = 0.
In particular, ker(u) C ker(¢(a)). This implies that ¢(a) = v - u for some v € K[J)].

Examples 1.6 (The rank one Krichever modules ¢ : C'[t] — C'(x)[0])

Put ¢(t) = ap + a19 with ap,a; € C(x) and ay # 0. For every f € C[t] \ C. the
differential operator ¢(f) has an abelian differential Galois group. We want to de-
termine the Picard-Vessiot ring Unive,y 4 obtained from this category of differential
operators. In Unive,) we consider the following clements:

(a) an invertible f. solution of the ()p(‘l'z\t(n‘ o(t).

(b) invertible solutions y(c) of y(c¢) = < 1/( for all ¢ € C. We impose the rules
(as we may) y(0) =1 and y(c1 + ¢2) = y(c )1/(( 2).

(¢) a solution z of 2/ = 1/a;.
We claim that

Unive e = Clo)f f Ayle)eec, 2]
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We observe that fy(e) is a solution of the operator ¢(t — ¢) and fz is a solution of
the operator ¢(#?). This proves one inclusion. The clements fy(e)z', i =0.....n — 1
arc solutions of the operator o((t — ¢)"). We will show. by induction on n. that the
elements 1, z, ..., z" are lincarly independent over €' for every n > 1. For n = 1 this
is obvious. Suppos(\ that 1,....; 2"~ are lincarly independent over €' and consider an
(‘Xpr(*s%ion cot+crz+ -+ =0 with ¢ ... ¢, € C. Differentiation yields that
o Lie) 4+ 20p2 o ne,2" Y =0and so ¢ = --- = ¢, = 0. Hence ¢y = 0. too. This
shows the ot her inclusion and proves the claim.

The structure of the differential ving C'(a)[f. f~'. {y(c)}eec, 2] depends of course
on ag.ap. For “generic” ap.a;. the only relations is this ring are the ones imposed
above, namely y(0) = 1 and y(c¢1 + ¢2) = y(c1)y(ea). The differential Galois group is
then a product of Gy, (this factor comes from f). G, (this factor comes from z) and
Spec(C[C)) (this factor comes from {y(c)}eec). where C[C] is the group algebra of
the group C' over the field C.

In special cases, the factor G, can become a finite group if the equation

—=% y has a non zero solution in C'(x) for some integer n > 1. If ay happens

y =
to be an element of C'. then the factor G, disappears. Furthermore, the factor G,
(hs(l])peals if y' = 1/a; happens to have a solution in C'(x). Finally, it is possible
that ¢ = +-y has a non zero solution in ' (@) for some ¢ € C. ¢ # 0. In this case
the group {¢ € C' | y = £ y has a solution in C'(.)} is generated by some element
co # 0. One finds a I'Glii‘tl()ll y(co) = g for a Mu‘ml)lo ge C(r)*

The set V' C Univey,y of all solutions of all o(f) has a C'[t]-action and according
to proposition 1.4, V is isomorphic to C'(¢)/C[t]. The differential Galois group G
for the collection of all these differential equations is an algebraic subgroup of the
automorphism group of C'(t)/C[t]. The latter is equal to ('/[7]*, where (/\[f] is the
projective limit of all C't]/(f). One observes that G. which is the group of the
differential automorphisms of Unive(,y . is much smaller (even in the generic case)
than (/’[\f]* Indeed, only one additive equation is needed and there is (at most) one
factor G, in this group.

[t is clear that the “torsion” of a single Krichever module ¢ of rank one cannot
generate the full Unive, . One reason for this is that the differential operators
o(f) (with f € C[t]) have their singularities in the union of the set of poles of ag/ay,
the set of zeros of ay and possibly ~c. If one considers the differential operators o( f)
for all f € C'[t] and all ¢. then one obtains the Picard-Vessiot ring Unive,) 1, Even
in the local situation. i.c.. K = C((r)). the set of differential operators o(f) (all
feCft]~ ) and a singl(\ Krichever module o. given by o(t) = ag + a0, will not
produce the local universal abelian Picard-Vessiot ring Univep))y.a,. Indeed. the set

”"+( y (all c € C) and y' = 1/a;. is too small for that.

of equations y' =
We compare ”llh with the Drinfel'd situation, where o Fylt] — F,()[7] is a

Drinfel’d module of rank one. Then ¢(t) = + + ar. Let ¢ be another rank one
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Drinfel’d module. given by ¢/'(t) = ¢ + a/7. Then ¢ and ¢’ become isomorphic after
taking the cyclic extension Fy(1)(b) of Fy (1) of degree dividing ¢ — 1. given by the
equation ab?™! = o’
same infinite abelian extension of F,(1). For the case ¢(t) = t — t7. this extension is

characterized as the maximal abelian extension of F, () which is totally split at the

Hence the torsion points of ¢ and ¢’ produce essentially the

place oc. O

Remarks 1.7 (Some interpretations of Univ (. »). The term ag in the operator
o(1) = ap + a1d is of minor importance for Unive(, 4. In the following examples we
will take ag = 0.

(1) For the case a; = x, all ¢o(f) arc regular singular at the two points @ = 0 and
= o0 (and regular outside 0.50). The differential ring C'((2)) @) Unive . is
the universal extension of C'((.r)) for the collection of all regular differential equations
over C((x)) (the same holds with @ replaced by «=1).

(2) Suppose that a; = (@ — py)--- (r — py) with distinet py..... ps. For each i
the differential ring C((r — pi)) @y Unive,) .4 is again the universal extension of
C'((x = p;)) for the collection of all regular singular equations at p;. However. the
various local solutions. like (. — pi)'/2, log(a — p;) ot cetera, are not independently
present in Univer e

(3) In the general case. the interpretation of the differential ring Unive:(,) » remains
unclear. Take for instance @, = 2%. Then Univey.e = Clr){y(e)}eec] where the
y(e) satisfy y(e)" = S y(c). The y(c) are solutions of some irregular equations at
ax=0.

2. Abelian difference equations

The field ' is algebraically closed and has characterstic 0. The two types of
difference equations, namely ordinary difference equations and ¢-difference equations.
that we will study correspond to the two automorphisms o and o, of C'(r) given by
or=x+1and o0 = qr. It is assumed that ¢ € C™ is not a root of unity. Difference
Galois theory. as developed in [P-S]. provides an adequate Picard-Vessiot theory and
difference Galois groups. We note that (¢-)difference equations is a multiplicative
theory.  Let us make this explicit. A (¢-)difference module is a vector space Al
over i of finite dimension (and & = C'(r) or C(( ")) or C'((r))). provided with an
additive invertible operator @ @ M — M satistying ®(fm) = a(f)P(m) (or &(fmn) =
a,(f)P(m)) for m e M and f € K. The tensor product of two (¢)-difference modules
M and N is the vector space M ¢ N provided with the operation & given by
O(mcon) =d(m) e d(n).

An important difference with differential Galois theory is that Picard-Vessiot rings
are reduced but may have zero divisors. The role of the differential Picard-Vessiot
ficld is taken over by the total ring of quotients of the Picard-Vessiot ring. Lenma 1.1
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and its proof remain valid for (¢-)difference equations. Indeed, the one ingredient for
this proof, which is not available in [P-S], is the following theorem.

Theorem 2.1. — Let K be a field of characteristic zero provided with an autormor-
phism o of infinite order. The field of constants C' = {a € K | oa = a} is supposed
to be algebraically closed. Let N be a difference module over K with Picard-Vessiot
ring R and difference Galois group G. Let Qt(R) denote the total ring of quotients
of R. Then the following properties for an element f € Qt(R) are equivalent:

(1) f € R

(2) The C-vector space generated by the orbit {gf | g € G} is finite dimensional.

(3) The K-vector space generated by {o™ [ | n € Z} is finite dimensional.

For the differential case, this theorem is proved in [P-S03], Corollary 1.38. This
proof can be adapted for the difference case.

We will make the universal Picard-Vessiot ring Univ,, for the category of the
(¢-)difference modules with abelian difference Galois group explicit as well as the
structure of the universal abelian (g-)difference Galois group Guniy.ab-

2.1. Abelian g¢-difference equations. — As in section 1, we have to consider
scparately, two types of cquations:

(a) (multiplicative equations) o,y = ay with a € K™,

(b) (additive equations) o,y =y + b with b € K.

For K we have the possibilities: K = C(x). K = C((x)) and K = C((x~1)). For

the multiplicative equations we consider the exact sequence
E - Yok ¥ -
1 — K"/ — K" — Isomp; — 1,

where « is given by f — o, f/f. As before, Isomp ; is the group of the isomorphism
classes of the I-dimensional ¢-difference modules. For the field K = C((x)) one
calculates that the image of «v is equal to the subgroup ¢% x (1+2C/[[x]]) of K*. Hence
Isomp | = a2 x (7*/(12. Hence the local multiplicative equations that contribute to
the universal abelian Picard-Vessiot ring are oqy = ay and o,y = cy with ¢ € C™.

The same description holds for the field K = C'((x~1)).

For the field K = C(x) the description of Isomg ; is more involved. One considers
the exact sequence of groups

I — ("2% — O(x)" — Ggece jqz Div(e) — 0.

Here @ is seen as a subset cg? of C* and Div(@) is the group of the divisors on this
subset. An clement f € C'(x)* is mapped to (dive(f))e. where dive(f) is the restriction
of the divisor of f to the set . We note that $zDiv(?) is equal to the group of the
divisors on C'*. Every divisor Y. n;[o;] on € is the divisor of ], ((.’1# — (»,)/.1:) "
C'(x)*. In particular, the above sequence splits an this leads to an exact sequence

1 — (7*/(12 R Tg— Isomp, — Ded — 0.
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The main calculation takes place for the group Div(¢). One has to calculate the
cokernel of the operator —1 + o,. One observes that Div(€) is in fact a free module
over Z[og, (rq’l}, generated by the divisor [¢]. Hence the cokernel of —1 4 o is iso-
morphic to Zlog, o, ']/(—1 + 0,) = Z. Since the above exact sequence splits one has
Isompy = C*/q% x 22 Gzec gz L. More explicitly, the multiplicative equations that

one has to consider for the construction of Univy ), are:

(i) ogy = xy,
.. €r—cC . . . . .
(i) o,y = —— y for ¢ in a set of representatives of C*/ q% and
x
(iil) o,y = cy with ¢ € C*, again in a set of representatives of C'*/¢%.

For later use we introduce names for the invertible solutions in Unive(,). a1, of these
equations, namely fy for (i), f. for (ii) and y(c) for (iii). They only relations between

these elements are:

ofe= [fe)q for ceC”,
y(q) =2 and y(cic2) = y(er) - y(ee) for all ¢y, ey € C*.

Define the C-vector space A(K) by the exactness of the sequence

00— K/C l—» K — A(K) — 0,

where 3(f) = o,(f) — f. Take K = C(x). For the investigation of A(K’). which is
the cokernel of the map form KA to itself. given by f — o,(f) — f. we use partial
fractions. Write C'(x) = @,,ezCa"™ O Daec /g2, 021C(0)en- The space C(r)z, con-
sists of the partial fractions Y, c(m)/(¢" ¢ —¢)", where ¢ € €™ is chosen such
that ¢ mod ¢% =7 and where all e(m) € C. One observes that the spaces Ca™
and C'(a)z,, are invariant under the action of o,. Hence the cokernel of the operator
—1+0, is the direct sum of the cokernels for each of these spaces. For the spaces Ca'
with m # 0, the cokernel is 0. On €' - 1 the action of —1 + o, is trivial. The action of
o, ou the space C'()z, makes C'()z,, into a module over the ring Cloy,. o, ’}. This
module is in fact the free module generated by one element. namely 1/(x — ¢)”. Hence
the cokernel of —1+0, on this vector space is isomorphic to C'lo,, o, N/(=1+0,) =C.
The cokernel of =1+, on C'(r)z, is represented by the element 1/(x — ¢)". There-
fore we have found a basis for A(K) over €', namely the images of the clements 1 and
1/(x —¢)” with n = 1 and ¢ in a sct of representatives of C*/¢%. The corresponding
additive equations are oy = y+ 1 and o,y = y+ 1/(x — ¢)" (for n > 1 and ¢ in a set
of representatives of C'*/¢%).

For the field K = C((x)) the cokernel of —1 4 o, is 1-dimensional and the corre-
sponding additive equation is o,y = y + 1. The same holds for the field C'((x~1)).

One can combine the above information in a straightforward way to obtain an
explicit descriptions of Univy ., and Guniv b for the fields K = C(x). C((x)),

Cle=h).
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2.2. Abelian ordinary difference equations. — K = C'(x) and o(x) = = + 1.
The methods used in the last subsection lead to explicit formulas for Isomg 1, A(K),
Univ]\’.al) '().Ild Gnniv.}\’,abA

1 — C* — CV('I)* — %FGC/Z DIV(E) — 0
Here ¢ is seen as the subsct ¢ +Z of C' and Div(¢) is the set of the divisors on .
I — C" — Isomg.1 — SeccyzZ — 0.

The multiplicate equations that contribute to the formation of Univy a, are oy =
(x — ¢)y with ¢ in a set of representatives of C'/Z and moreover the equations oy = cy
with ¢ € C*. We prefer to split up the first collection of multiplicative equations as
Lty for c € C* and oy = xy.

x "

oYy =
For the calculation of the cokernel of —1 + ¢ on C'(x) one considers the decompo-
sition

C’(.IT) = ('V['lf] D ('h?(;("/z, 1121(7(*'17)7.n~

where C'(x)z,, consists of the finite expressions D -, d(m)/(x +m — )" with all
d(m) € C and with a fixed choice of ¢ € ¢ It is easily seen that C(x)z,, is a
free Clo, o~ 1-module generated by 1/(x —¢)". Hence the cokernel of —1 + ¢ on
C'(x)z.n has dimension 1. The corresponding additive equation is oy = y+1/(x — ¢)".
Furthermore, —1 + ¢ is surjective on Cfz] and has kernel C'- 1. This describes the
additive part of Unive(,),al-

Finally. we consider the difference field C((x~1)). The cokernel of f +— of/f on
C((x1))* is easily seen to be

22 O x (L 'Ol )/ + e HZ 4+ 2 2C [ ).

The third group in this product can be identified with C/Z. The corresponding
multiplicative equations are: oy = xy. oy = cy with ¢ € C* and oy = (1 + cx ')y
with ¢ in a class of representatives of C'/Z. The cokernel of —1 + ¢ on C'((a 1)) has
dimension 1. The corresponding additive equation is oy = y + a1

2.3. Krichever difference modules. — (' is an algebraically closed field of char-
acteristic 0. One considers as before a smooth, irreducible, projective curve X over C
with a specified point oo € X. Then A denotes the C-algebra of the regular functions
on X ~\ {~c}. One considers a C-algebra R (commutative and with a unit element)
provided with a specified C-algebra homomorphism v : A — R and an endomorphism
of infinite order o. The skew polynomial ring R[o] is defined as usual. The elements
are finite formal sums Z[)“ r; - o' with all #, € R. The definition of the addition is
obvious. The multiplication is induced by the formula o -r = o(r) - 0. A Krichever
difference module of rank r over R is a C-algebra homomorphism ¢ : A — R[o]

satisfying:
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(a) For a € A, a # 0, the element ¢(a) has degree r - deg(a), and the leading
coeflicient of ¢(a) is invertible,

(b) ¢(a) =~(a) +*0 + 0% + - -

With the above data, one considers R[o] as a left R[o] ©@c A-module by the formula
(f®a)g=f-g-Pla) for f,g € R[o] and a € A. For any non zero ideal I C A, the
subset R[o]¢(I) of R[o] is also a left R[o] ®c A-module. Hence R[o]/R[o]¢(I) is a
again a left Rlo] ®¢ A-module.

A level I-structure for ¢ is an isomorphism of left R[o] ®c A-modules

N: R (IT1A)" — Rlo]/R[o]o(1).

One regards R as a left R[o]-module by the formula (3 r;0)r = > r;of(r). This
explains also the left R[o] @ A-module structure on R ®¢ (17'/A)".

The two basic cases are A = C[z| and (R, o) is an extension of

(a) (C(x),0) with o(x) =+ 1 or
(b) (C(x),04) with o4(x) = gz (¢ # 0 and g not a root of unity).

In the above cases, v : A = Clx] — R is injective. We note that more general
situations, e.g.. ker(y) # {0} or A # C[z], seem of interest.

As for Drinfel’d modules with a suitable level structure, one may try to show the
existence of a universal Krichever difference module of a fixed rank and provided with
a suitable level structure. In other words, one may want to construct a fine moduli
space.

We consider the basic example: ¢ of rank 1, (R, o) of type (a) or (b) and with level
structure A for the ideal (). Put ¢(z) = x + ao with a € R*. The level structure A
prescribes an element (say) b € R* with #b+ao(b) = 0. The universal object that one
can make for this situation is a ring U = C'(2)[{bn }n>0, {0, '}] (i.e., U is a polynomial
ring over C'(x) in the variables {b, },>0. localized at the set of all b,,). The operation
o on U is given by o(b,) = byt for every n > 0. The universal ¢ is given by
o) =x— .’172—‘]}0 and by is the prescribed invertible solution of ¢(x)y = 0. We observe
that U is not finitely generated over the field C'(2) and so the “fine moduli space”
Spec(U) is not of finite type. It is however of “finite difference type.” The definition
of this concept can be given as follows. A free difference algebra of finite type over
C(x) is an the polynomial ring R = C(2)[{b(7),, }i=1.....s, n>0] in the variables {b(i),,}.
Moreover, the endomorphism o on R extends the given endomorphism of C'(x) (i.e.,
either o(x) = x + 1 or o(x) = qu) and satisfies a(b(i),,) = b(i)ny1 for all n > 0. A
difference algebra of finite type over C'(x) is the quotient of a free difference algebra
of finite type over C'(x) by an ideal that is invariant under o.

Theorem 2.2. — Let the ring A, the ideal I C A (with I # A,{0}) and the rank r be

given. There exists a universal Krichever difference module of rank r and level I (of
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type (a) or (b)). The corresponding universal ring U is of finite difference type over
C(x).

Proof. — The proof is analogous to the one given in [L1] for the case of differential
Krichever modules. We only sketch the proof for the difference case. One wants to
obtain a universal U, o, ¢, A. Write A = C[f1,.... fs| = C[F1, ..., Fs]/(Gy1,...,Gy).
For the definition of the universal ¢ one has to introduce variables for the coefficients of
all ¢(f;). The variables corresponding to the leading coefficients should be invertible.
Moreover one has to introduce the o'-images of all these variables. For the formulation
of the level structure A : U ¢ (171 /A)" — Ulo]/U[o]é(I) one has to introduce again
a set of variables and all their o'-images. This produces a free difference algebra of
finite type over C'(x) (suitably localized). In this free object one has to divide out the
ideal given by all relations Gy.. ... G and the relations which make the map A into
an isomorphism of left modules over Ulo] @¢ A. We note that I # A garantees that
the Krichever difference modules with level I structure have no automorphisms. O

2.4. Krichever ¢-difference modules of rank one. — We consider the rank one
Krichever module ¢ : Cla] — C(x)[o] with ¢(x) = & + ao for the casc 0 = o,. The
interesting question is the structure of the subring Univg of Unive .,y ., generated
by all the solutions of all ¢(f) (with f € C[z] ~ C'). In the sequel we will use the
notations of subsection 2.1.

First we consider the multiplicative equations involved in ¢. They are o,(y) = =*y
and o(y) = <=y for all c € C". Let g € Unive,), 41, be an invertible solution of the
first equation. Then the solution of the other equations are ¢g - f. with ¢ € C*. Hence
{fc}eecr C Univy. Using the f.'s one can modify the first equation into an equation
of the form o,y = da"y for certain d € € and n € Z. One concludes that Univg
contains almost the complete multiplicative part of Unive (), a,- The only possible
exceptions are the elements fo and the {y(c)}. In case a = —a this is precisely the
part of the multiplicative symbols of Unive,) .1, that is missing in Univy,.

Now we investigate the additive equations involved in ¢. They are incorporated
in the difference operators ¢((x — ¢)’). An invertible solution h of the operator
o(r —c)is gf. if ¢ € C* and g otherwise. Define zp = 1 and for n > 1 the elements
Zn € UI]iV(j'(.,,.)
has the following recurrence relation

ab by the formula ¢(x — ¢)hz, = hz,—;. Then all z, € Univg. One

zp=1 and (v —c¢)(1 —0y)z, = 2,1 forn > 1.

For every n > 1, there are polynomial expression A, in z1,..., 2, such that 0,4, =
A, +1/(x — )" A calcuation yields

Al =2z, Ay = Nf — 229, Az = @f — 32129 + 323.

For the general case we consider a “generating function” F = % . z,T™ which
>
belongs to Univy[[T]]. The action of o, on T' is supposed to be trivial, i.e., 0,7 = T.
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One observes that (x —¢)(1 —o,)F =T - F and thus o, F/F = (1 -T/(x — ¢)). Write
F = Hn%(l + a,T") (with all a,, € Univyg). Then
_ n n T
11 (1 - L.M.) R
S e ) T g

Taking — log on both sides of this formula one obtains

Z Z l((l — m,)a,,,T”)'" B Z "

Sl 1+a,Tm = m(x —c)m
Comparing the coefficient of 7" on both sides implies that:
(1 — 04)as+ a polynomial expression in the ai,...,a,—1 and their images under o,
is equal to 1/(x — ¢)®. We conclude from this that Univy contains all the additive
symbols of Unive(,) a1, with the exception of the symbol corresponding to o,y = y+1.

For the formulation of the theorem below we introduce the following terminology.
A ring R with C(x) € R C C((x~ ")) will be called an abelian difference subring if:

() 0g(R) = I

(b) For every finite dimensional C'(x)-vector space V C R the C(x)-vector space
V generated by {ogr|neZ, reV}is finite dimensional, and

(¢) the group of the C'(x)-automorphisms of the field C(:l:)(‘7) which commute with
o4 is abelian.

It follows from this definition that C7(:17)(‘7) is the field of fractions of the Picard-
Vessiot ring of a ¢-difference equation over C'(x) with abelian difference Galois group.
Furthermore there is a unique maximal abelian difference subring of C'((x 7)), namely
the one generated by all multiplicative equations o,y = ay and all additive equations
oy = y+ b over C(x) that have a (non trivial) solution in C'((x~')). The next
proposition easily follows from the preceding calculations

Theorem 2.3. -~ The rank one Krichever q-difference module
¢ Clr] — C(x)[oy] with ¢p(x) = x — xo, satisfies:

Univy, has an o,-cquivariant embedding in C((x~")). Its image is the maximal abelian

difference subring of C((x~1)).

In the general casc i(x) = x+ao, with a € C(x)*, one observes that Univ,, contains
an invertible element b with o,b = =£b. Moreover b™'4(2)b = ¢(x). Hence Univ,, =
Univy[b, b~ ']. Using the elements in Univ,, one can transform the equation o,y = ==y
in to an equation o,y = cx’y for suitable ¢ € C* and n € Z. The Picard-Vessiot ring
of this equation over C(x) is C(x)[b.b™ '] and Univ,, = C(2)[b. b '] @,y Univy. We
note that the difference Galois group G of o,y = ca”y over C(z) is a subgroup of
G,,,. If 2™ is not a root of unity, then G = G,,, and b is transcendental over C'(x). If
cx™ = d where d is an m''root of unity, then G is a cyclic group of order m. Moreover
the ring C(2)[b, b~ 1] = C(2)[T, T~ /(T™ — 1) has zero divisors if m > 1.
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We conclude that Univy, is equal to C(x)[b, b~ '@ 1) U with C(x)[b, b~ 1] as above
and U the maximal abelian difference subring of C((2~1)).

Remarks 2.4 (Comparison with rank one Drinfel’d modules). - The rank one Drin-
fel’d module ¢ : F,[t] — F,(t)[7]. given by &(t) = ¢ — t7, has the property that
the field extension of F, () obtained by all the torsion elements for ¢ is the max-
imal abelian extension of F,(#) which is totally split at t = oo (see [G-P-R-V]).
Theorem 2.3 is the perfect analogue of this.

2.5. Krichever difference modules of rank 1. — The same questions as in the
last subsection are studied but now for o given by o(x) = = + 1 Let ¢(x) = @ + ao.

The multiplicative equations involved in Univ, are oy = This can be sep-

r—c

arated into the equations oy = —*y and oy = y for dll ¢ € C*. The last
collection of equations produces all multiplicative oquatu)nb for C(: T) with the excep-
tion of oy = xy and oy = cy with ¢ € C*. For the additive equations, incorpo-
rated in the difference operators o((x — ¢)™), one finds, as in the ¢-difference case,
all the additive equations oy = y + 1/(x —¢)" with ¢ € C and n > 1. Onec ob-
serves that Univy involves equations that have no (non trivial) solution in C((x~1)).
The equations are 0'1/ = (14 cx )y for ¢ € C* and oy = y + 2~ '. We enlarge
C((x™1) to C((a=")[{x }eec, log(x)]. This algebra is well known from the theory
of differential equations. It is the universal Picard-Vessiot extension for the collec-
tion of all regular singul(u differential equations over C'((x7')). The formal rules are
J)%(.I‘,") = cxf, (m log(x) = 1 and relations 2“1 0 = p1 72 2¢ = 2" € C((a™ ")) if
¢ is equal to tho integer n. Their behaviour under o is given by o(a¢) = (1 + 2~ 1)“a®
and olog(z) = log(x) + Z”>l ;1”—.1. ™. As for g-difference equations one defines
abelian difference subung,s of C((x7 1)) [{2“}eec, log(x)]. The maximal abelian differ-
ence subring is denoted by U.

Theorem 2.5. The rank one Krichever difference module
¢ : Clx] — C(x)[o] with ¢(x) = x — xo satisfies:

Univy has a o-equivariant embedding in C((x1))[{a¢}ecec, log(x)]. Its image is the
mazimal abelian difference subring U.

For a general rank one Krichever difference module . given by ¥(x) = = + ao,
one has that Univy = C(2)[b,b" '] @,y U, where C(x)[b.b~ '] is the Picard-Vessiot
ring for the equation oy = Ay (hlutdble A € C(x)*) and U is the maximal abelian
difference subring defined above.
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