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b-FUNCTIONS AND INTEGRABLE SOLUTIONS OF
HOLONOMIC D-MODULE
by

Yves Laurent

A Jean-Pierre Ramais, a l'occasion de son 60° anniversaire.

Abstract. — A famous theorem of Harish-Chandra shows that all invariant eigendis-
tributions on a semi-simple Lic group are locally integrable functions. We give here an
algebraic version of this theorem in terms of polynomials associated with a holonomic
D-module.

Résumé (b-fonctions et solutions intégrables des modules holonomes). — Un célebre
théoreme de Harish-Chandra montre que les distributions invariantes propres sur
un groupe de Lie semi-simple sont des fonctions localement intégrables. Nous don-
nous ici unc version algébrique de ce théoréme en termes de polynomes associés a un
D-module holonome.

Introduction

Let Gy be a real semisimple Lic group and gg be its Lic algebra. An invari-
ant eigendistribution T on Gy is a distribution which is invariant under conjugation
by elements of Gg and is an cigenvector of every bi-invariant differential operator
on Gr. The main examples of such distributions are the characters of irreducible
representations of Gg. A famous theorem of Harish-Chandra sets that all invariant
cigendistributions are L{ -functions on Gy [4]. After transfer to the Lic algebra
by the exponential map. such a distribution satisfies a system of partial differential
equations.

In the language of D-modules. these equations define a holonomic D-module on the
complexified Lie algebra g. We call this module the Hotta-Kashiwara module as it
has been defined and studied first in [6]. In [20], J. Sekiguchi extended these results
to symunetric pairs. He proved in particular that a condition on the synumetric pair is
needed to extend Harish-Chandra theorem. In several papers, Levasseur and Stafford
[15, 16, 17] gave an algebraic proof of the main part of Harish-Chandra theorem.
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146 Y. LAURENT

In [3]. we defined a class of holonomic D-modules. which we called tame D-modules.
These D-modules have no quotients supported by a hypersurface and their distribution
solution are locally integrable. We proved in particular that the Hotta-Kashiwara
module is tame, recovering Harish-Chandra theorem. The definition of tame is a
condition on the roots of the b-functions which are polynomials attached to the D-
module and a stratification of the base space. However. the proof of the fact that the
Hotta-Kashiwara module is tame involved some non algebraic vector fields.

The first aim of this paper is to give a completely algebraic version of Harish-
Chandra theorem. We give a slightly different definition of tame and an algebraic
proof of the fact that the Hotta-Kashiwara module is tame. This proof is different
from the proof of [3] and gives more precise results on the roots of the b-functions.
However our first proof was still valid in the case of symmetric pairs while the present
proof uses a morphism of Harish-Chandra which does not exist in that case.

Our second aim is to answer to a remark made by Varadarajan during the Ramis
congress. He pointed the fact that an invariant eigendistribution, considered as a
distribution on the Lie algebra by the exponential map, is not a solution of the Hotta-
Kashiwara module. A key point in the original proof of Harish-Chandra is precisely
the proof that after multiplication by a function. the cigendistribution is solution of the
Hotta-Kashiwara module (see [23]). The study of the Hotta-Kashiwara module did
not bypass this difficult step. Here we consider a family of holonomic D-module, which
we call (H-C)-modules; this family includes the Hotta-Kashiwara modules but also
the module satisfied directly by an eigendistribution. We prove that these modules
are tame and get a direct proof of Harish-Chandra thceorem.

1. V-filtration and b-functions

We first recall the definition and a few properties of the classical V-filtration, then
we give a new definition of quasi-homogeneous b-functions and of tame D-modules.
We end this section with a result on the inverse image of D-modules which will be a
key point of the proof in the next section.

1.1. Standard V-filtrations. — In this paper, (X, Ox) is a smooth algebraic va-
riety defined over k, an algebraically closed field of characteristic 0. The sheaf of
differential operators with cocfficients in Oy is denoted by Dx. Results and proofs
are still valid if & = C, X is a complex analytic manifold and Dx is the sheaf of
differential operators with holomorphic coefficients.

Let Y be a smooth subvariety of X and Zy the ideal of definition of Y. The
V-filtration along Y is given by [10]:

ViDy = { P ¢ Dxl|y |VlcZ P, c T,

Y

(with Ii, =0x if 1 <0).
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O-FUNCTIONS AND INTEGRABLIE SOLUTIONS OF HOLONONIC D-NODULE 147

This filtration has heen widely used in the theory of D-modules, let us recall some
of its propertics (for the details, we refer to [19]. [12]. [18]. [14]). The associated
graded ring gry-Dy is the direct image by p @ Ty X — X of the sheaf Dy, x of
differential operators on the normal bundle 7y- X If M is a coherent Dy-module. a
VD y-filtration on M is a good filtration if it is locally finite, i.c. if. locally. there are
sections (wuyq. .. .. un ) of Mand integers (ky.... hky) such that Vi M =5 Vi, Dyu,.

If M is a coherent Dy-module provided with a good V-filtration, the associated
graded module is a coherent gry-D y-module and if M is a coherent submodule of M
the induced filtration is a good filtration (sce [19, Chapter T, Proposition 1.4.3] or
(18]).

Let 6y be the Euler vector field of the fiber bundle Ty X. that is the vector field
verifying Oy (f) = kf when [ is a function on Ty X homogencous of degree A in the
fibers of p. A b-function along Y for a coherent Dy -module with a good V-filtration

is & polynomial b such that
Vi e Z. b0y + kgt M =0

If the good V-filtration is replaced by another. the roots of b are translated by integers.
Here. we always fix the filtration. in particular. if the Dy -module is of the type Dy /7.
the good filtration will he induced by the canonical filtration of Dy

1.2. Quasi-homogeneous V-filtrations and quasi-O-functions. — Let ¢ =
(Pre.... 24) be a polynomial map from X to the vector space W= A% and my.. . .. iy

be strictly positive and relatively prime integers. We define a filtration on Oy by:

POy = Y Oy

(m.a)y=-—hk
with a € N7, (meay =3 mia; and o = e TR =0 we set \',f@_y =QOy.
This filtration extends to Dy by:
(1) ViDy ={ P cDx |VIe€Z.PV;"Ox C \',j‘_ko_\- }
Definition 1.2.1. A (p.m)-weighted Euler vector field is a vector field i in 37, 0 Vy
such that () = e for o= 10000 d. (Vv is the sheaf of vector fields on X')
Lemma 1.2.2. Any (p.om)-weighted Euler vector field is in V7 Dy and if ny and 1

are two (Lom)-weighted Euler vector fields. iy = 1 is in V7 Dy

The map ¢ may be not defined on X but on an étale covering of X More precisely.
let s consider an étale morphism v @ X7 X and a morphism o @ X/ — 1 = k7 If
my..... mg ave strictly positive and relatively prime integers. we define \}\_’;O_y as the
sheaf of functions on X such that for is in L',fO_\-/. This defines a V-filtration on Oy
and on Dy by the formula (1). The map TX — T'X x ¢ X/ is an isomorphism and a

vector field 1 on X defines a unigue vector field #* (1) on X', By definition. a vector
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148 Y. LAURENT

field 1y on X is a (. m)-weighted Euler vector field if v* () is a (p. m)-weighted Euler
vector field on X7,

Definition 1.2.3. Let « be a section of a coherent Dy -module M. A polynomial b
is a quasi-b-function of type (w.m) for u if there exist a (@, m)-weighted Euler vector
field n and a differential operator Q in V7, Dy such that (b(n) + Q)u = 0.

The quasi-b-function is said regular if the order of ) as a differential operator is
less or equal to the order of the polynomial b and monodromic if (Q = 0.

The quasi-b-function is said tame if the roots of b are strictly greater than — > m;.

These definitions are valid for any map o but here we always assume that o is
smooth. Then if Y = ¢ 1(0). we say for short that b is a quasi-b-function of total
weight [m] = 3 m; along Y. Remark that lemma 1.2.2 shows that the definition is
independent of the (¢.m)-weighted Euler vector field .

Let M be a coherent Dx-module. A V7D y-filtration on M is a good filtration if
it is locally finite.

Definition 1.2.4. Let M be a coherent Dy-module and VZM a good VEDy-
filtration. A polynomial b is a quasi-D-function of type (».m) for VZM if, for any
ke Z.b(n+k)V;MCV, M where iy is a (2. m)-weighted Euler vector field.

The quasi-b-function is monodromic if b(y + k)V,;7 M = 0.

Definition 1.2.3 is a special case of definition 1.2.4 if Dy is provided with the
filtration induced by the canonical filtration of Dy,

Recall that if M is a Dx-module its inverse image by v is its inverse ilage as an
O yv-module. that is:

vt M = Oxr i, 10 1/71,/\/1 =Dy _v Du-rpy Vo ' M

where Dyr .y is the (Dyr, v~ "Dy )-bimodule Oy ), 10 v Dy,

Lemma 1.2.5. Let v o X' — X be an étale morphism and let o be a morphism
X' — W =k Let M be a coherent Dy -module.

The polynomial b is a quasi-b-function of type (p.m) for a section u of M if and
only if it is a quasi-b-function of type (p.m) for the section 1w of v M.

Proof. If v : X' — X is étale. the canonical morphism Dy — Dy/_y given by
P P(1¢ 1) is an isomorphism and defines an injective morphism v* : v~ 1Dy —
Dxo.

Conversely, the morphism v : v,Oy: — Oy given by v(f)(x) = Z,,c:/ ) S(y)
extends to a morphism v, Dy — Dy .

These two morphism are compatible with the V-filtration defined by ¢ and. by
definition. a vector field 5 on X is a (. m)-weighted Euler vector field if and only
if v*(1)) is a (@.m)-weighted Euler vector field on X'. 0 If (b(y) + R)u = 0 we
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b-FUNCTIONS AND INTEGRABLE SOLUTIONS OF HOLONONIC D-MODULE 149

have (b(v*n) + v*R)(1 @ u) = 0 and conversely. if (b(r*n) + Ry)(1 20 u) = 0 then
(b(n) + veRy)u = 0. a

Remark 1.2.6. In [3] we gave an other definition of the V*-filtration and quasi-b-
function. The two definitions are essentially equivalent in the analytic framework but
may differ in the algebraic case. More precisely. the filtration in [3] is given by a
vector field 1 which we called positive definite. For a given V7-filtration, we may
find a defining vector field with coefficients in formal power series (or in convergent
series if & = C) but in general not in rational functions. The definition of [3] is more
intrinsic in the analytic case but not suitable here.

1.3. Tame D-modules. — Let us recall that a stratification of the manifold X is
aunion X =, X, such that

For cach ov. X, is an algebraic subset of X and X, is its regular part.
{X,}a is locally finite.

XoNXy = for a 75 /3.

IN,NX;#othen X, DXy

If M is a holonomic D x-module, its characteristic variety Ch(M) is a homogencous
lagrangian subvariety of T X hence there exists a stratification X' = [J X, such that
ChiM)y < U, Ty, X [9. Chu 5] The set of points of X where Ch(M) is contained in
the zero section of T X is a non empty Zarisky open subset of X its complementary
is the singular support of M.

For the next definition. we consider a cyclic Dy -module with a canonical generator
M =Dxyu="Dxy /T where T is a coherent ideal of Dy .

Definition 1.3.1. -~ The cyelic holonomic Dy -module M = Dy is tame if there is a
stratification X = [J X, of X such that Ch(M) C J, Ty X and. for cach a. a tame
quasi-b-function associated with X, .

With definition 1.2.3. this means that for cach o, there is a smooth map ., from
a Zavisky open set of X to a veetor space Vosuch that X, = ,71(0). positive integers
M. ... mq. a (pom)-weighted Euler vector field 1 and a quasi-0-function b, for u
with roots > —> ;. A subvaricty of X is counic for 1, if it is invariant under the
flow of 1,. The module M is conic tame if it satisfy definition 1.3.1 and if morcover
the singular support of M is conic for cach 1y,.

The following property of a tame Dy -module has been proved in [3]:

Theorem 1.3.2. If the Dy -module M is tame then it has no quotient with support
in a hypersurface of X.

If A is a real analyvtic manifold and X its complexification. we also proved:
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150 Y. LAURENT

Theorem 1.3.3. Let M be a holonomic and tame Dy -module. assume that its sin-
gular support is the complexvification of a real subvariety of M, then M has no dis-
tribution solution on M with support in a hypersurface.  If M is conic-tame. ils
|

loc

distribution solutions are in L

Remark 1.3.4. It is important to note that the definition of tame and the conclu-
sions of theorem 1.3.3 depend of the choice of a gencrator for M.

1.4. Inverse image. — Let o 0 X — W oand ¢’ @ X' — W be two morphisms
from smooth algebraic varietics X and X’ to the vector spaces 11 = A7 and 17 =
Y let my. ..oy and mh..... m', be strictly positive integers. Let f @ X/ — X
and F' @ W — W be two morphisins such that oo f = Foo'. We assume that
Fis quasi-homogeneous. that is Fo= (Fy.. ... Fy) with F,(/\’”’l,n ..... /\”"/V,lpp) =
A E (e rar).

If AVis a Dy-module its inverse image by f is:
. v . c—1 A7 / . |
TN =0x o f'N=Dyvi_x pup, | 'N

where Dyr . x is the (Dyr. f~'Dy )-bimodule Oy Zrooe f 'Dy.
We define a filtration on Dy .y by

\’I* Dy/i_.y = Z ‘,"/_r" Oy f—l V"I‘p’D_\»

itk

By the hypothesis. go [ 1s a section of \'Lf/(') v/ for any ¢ section of Vi7Ox . hence
the filtration on Dy is compatible with the corresponding filtrations on Dy and
Dy

If a Dy-module N is provided with a V=-filtration. this defines a \"*'/D_\>/—Iilt1'zlli()n

on fTN by

(2) Ve TN = § Vo Oy o f TWIN = E Vo Dyrx o [TIVIN

itk itk

The V-filtration has not all the good properties of the usual filtration. in particular

non invertible clements may have an invertible principal symbol.  In the proof of
theorem 1.4 1 we introduce its formal completion given by

Dypy =1

i1

WDy with 13 Dyy = limVDy/Vi, Dy
I /

By definition the graded ring of Dy jy- is the same than the graded ring of Dy . If
M is a coherent Dy -module provided with a eood V-filtration. its completion VM is
defined in the same way and has the same associated graded module than VM. The

following properties may bhe found in [19] and [14].
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The sheaf 15X|y is a coherent and noetherian, flat over Dx. We remind that a
coherent sheaf of rings A is noetherian if any increasing sequence of coherent A-
submodules of a coherent A-module is stationary. The sheaf of rings VoD x|y is also
coherent and noetherian.

If M is a Dx-module provided with a good V-filtration, the associated graded
module is a coherent gr,, Dy-module and if A/ is a coherent submodule of M the
induced filtration is a good filtration. If & : (ﬁle)N — M is a filtered morphism
which defines a surjective graded morphism grv(ﬁx;y)N — gry M — 0 then s is
surjective.

As ﬁle is flat over D, if M is coherent we have VM= @le ®p, M. Remark
also that ‘A/Ox, the completion of Ox for the V-filtration, is the formal completion

of Ox along Y usually denoted by O and 13X|y is a O . -module.

X[y XY
After completion by the V-filtration, we get a similar formula:
. ~ v - ~ 1 . 15
(3) VAN =Y ViOox @ f 'VIN
itj=k

Let Y = o 1(0) and Y/ = ¢ ~1(0), let p: Ty X — X and p/ : Ty» X' — X’ be the
normal bundles, f : Ty, X' — Ty X be the map induced by f,

Theorem 1.4.1. — We assume that ¢ is smooth on X'. If N is a holonomic Dx-

module provided with a good V?Dx -filtration, then fTN is holonomic, ])’7lgrv,,w N
is equal to fTp~tery . N and isomorphic to the graded module associated with a good
V' Dy -filtration of fTN.

Proof. — We recall that if A/ is coherent, then fTA is not coherent in general but if
N is holonomic, then f*AN is holonomic [8].

The filtration on NV is a good V#D x-filtration hence we may assume that there are
sections (u1, ..., uy) of N and integers (ki, ..., k) such that V2N =3 V.7, Dyu,.
Let Dx/—.x[N] be the sub-Dy/-module of Dy . x generated by the sections of Dy
of order less or equal to N. This submodule is finitely generated hence coherent.
For each N, (u,...,uq) defines a canonical morphism (Dx/_.x[N])¢9 — fTN and
the family of the images of these morphisms is an increasing sequence of coherent
submodules of the coherent Dy ,-module f*A. As Dx/ is a noetherian sheaf of rings,
this sequence is stationary, hence there is some Ny such that for ecach N > Ny,
the morphism (Dx/ . x[N])? — f*N is onto. The filtration V¢ Dy .y induces a
good filtration on Dx/_. x[N] hence, for N > Ny a good filtration on f*A which
is denoted by V,fo/ [N]f*N. To prove the theorem, we will prove that if N is large
enough, gry, fT A is equal to the graded module gry| N]f’L/\/ associated with the good
filtration V,f/ [N]fTN.

We assume first that the integers m/ are equal to 1, that is that the V¥ -filtration
is the usual V-filtration on the non singular variety Y’ = ¢'~1(0). For N > Ny,
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152 Y. LAURENT

pt 8ry N fYN is a coherent Dy, x--module. A direct calculation shows that
P lery fTN = f*p’lgrf, . If M is holonomic then gr{ " is also holonomic [12.
Cor 4.1.2.] hence p'~!gr,, f TN is holonomic hence coherent.

Consider the completion V f A of f* N for the V-filtration and V[N]f* N of fTA
for the V[N]-filtration. The graded module of Vf* N is equal to the graded module
of V fT*N which is coherent. Let uy,...,uy; be local sections of XA/f*N whose classes
generate the graded module, then uy, ..., u; generate LA)‘JFJ\/ as a filtered Vﬁqu/—
module and applying the same result to the kernel of (VZS X/‘y/)l\l — ‘7f TN we get
that V f* A admits a filtered presentation

(VDxrjy)¥ — (VDxoy )M — VTN — 0.

This shows in particular that each \A/k fTN is a coherent V(ﬂA?X/W/—lnodule. We know
that, for any N, BTN JTN is coherent hence for the same reason, cach Vi[N]fTA
is a coherent VoD x/ )y -module.

Consider the family of the images of VL[N])‘JE/\/ in Vi fTA, it is an increasing
sequence of coherent sub-modules of the coherent VUD\'n' -module VA fTAN hence
it is stationary because the sheaf of rings VU’DX/W/ is noetherian. Moreover, the
filtration V £+ A\ is separated hence the maps Vi [N]ftN — Vi.ft A are injective and
the union of the images is all 17/,, fTN, so there is some Ny such that for any N > Ny,
Ve NIfTN = Ve f*N. This implies that gry f* N = gry vy f TN is the graded module
associated with a good V-filtration of fTN.

Assume now that the numbers m/} are positive integers. Let W” = W', we define
the ramification map F,, : W’ — W' by F(sy....,84) = (8'1"/‘, .. ‘*5:1”:[) and the
corresponding map f,, : X” X' <y W" — X. Applying the first part of the proof,
we get VIN|fEfTN = VIEFTN i N is large. The formula (3) shows that

f," /+N = ‘70)\'// @7f,1 ‘A,-OX, fﬁl‘/}f/?N = OW (V}O‘A/ fl‘,};’o./\[

Here O is the set of formal )owcr series in (si,...,8q) while OA is the set of
0 ) I
f()rmal powor s‘(\rios‘ in (s, s ) h(‘n(( O is a finite free Og;-module. So, if
=S m!, VI TN is isomorphic to (V )‘*/\/') M as a VOy -module.
In the same way, V[N]f f+ N is isomorphic to (V[N]fTA)M' hence VIN]fTN =
VIN]f*N. This shows that gry.. f"A is the graded module associated with
By e, g

Ve NN which is a good filtration of f*N. O

Remark 1.4.2. — The result was known when f is a submersion, Y = f~1(Y) and the
V-filtrations being the usual V-filtrations along Y and Y’ [14]. The introduction of
the weights m; and m/ allows f to be non submersive and Y to be a proper subvariety
of f~1(Y); the relation between the weights is given by the quasi-homogeneity of F.
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b-FUNCTIONS AND INTEGRABLE SOLUTIONS OF HOLONOMIC D-MODULE 153

Corollary 1.4.3. — Under the hypothesis of theorem 1.4.1, if N is a holonomic Dx -
module provided with a good V¥Dx -filtration. f*N is provided with a good V ' Dy-
filtration such that a polynomial b is a quasi-b-function of type (¢.m) for the filtration
of N if and only if b is a quasi-b-function of type (@'.m') for the filtration of fTN.

Proof. Let ' be a (¢'.m')-weighted Euler vector field, then n = f.1) is a (¢.m)-
weighted Euler vector field. As definition 1.2.4 is independent of the (p.m)-weighted
Euler vector field. we may assume that the quasi-b-function for A is relative to 1.
By definition. for any Q in Dx/_ x, we have 'Q = @Qn hence for any polynomial
b(1)Q = Qb(n) which shows the corollary. O

Corollary 1.4.4. — Under the hypothesis of theorem 1.4.1, if N is a holonomic Dy -
module and u a section of N with a quasi-b-function of type (p.m), then the section
ILx/—x @ u of fYN has the same polynomial b as a quasi-b-function of type (@'.m’).

Proof.  Recall that 1x/_ v is the canonical section 1@ 1in Dy x = Ox' &5 10
F Dy, If uis a section of A, we set on Dyu the filtration image of the filtration
of Dx. Then. by definition of the filtration Ve [N]f*N used in the proof of theorem
1.4.1, 1y x @ uis of order 0 for this filtration. Then corollary 1.4.4 is a special case
of corollary 1.4.3. O

2. Reductive Lie algebras

2.1. Statement of the main theorem. — Let G be a connected reductive alge-
braic group with Lie algebra g. let g* be the dual space of g. The group G acts on g by
the adjoint action hence on the symmetric algebra S(g) identified to the space O(g*)
of polynomial functions on g*. By Chevalley's theorem, the space O(g*)¢ ~ S(g)“

of invariant polynomials on g* is equal to a polynomial algebra &[Q;. . ... Q] where
Q... Q; arc algebraically independent. These spaces are graded and we denote
S(@)Y = Dp=09k(@)Y. Tt is also the set O (g*)¢ of invariant polynomials vanishing

at {0}, their conmumon roots are the nilpotent elements of g*.
The differential of the adjoint action induces a Lie algebra morphism 7 @ g —
DerS(g*) by:

(T(A) () = (%/ (exp(—tA)-x) =g for Aeg. feS@)=0(g). reg

i.c. T(A) is the veetor field on g whose value at @ € g is [r, A]. We denote by 7(g)
the set of all vector fields 7(A) for A € g. It generates the set of vector fields on g
tangent to the orbits of G.

Let Dg; be the sheaf of differential operators on g invariant under the adjoint action
of GG, The principal symbol a(P) of such an operator P is a function on T*g = g x g*
invariant under the action of . Examples of such invariant functions are the elements
of S(g)” identified to functions on g x g* constant in the variables of g. If F is a
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154 Y. LAURENT

subsheaf of Dg; ., we denote by o(F) the sheaf of the principal symbols of all elements
of F.

Definition 2.1.1. A subsheaf F' of Dg’ is of (H-C)-type if o(F') contains a power
of Si(g)¥. An (H-C)-type Dg-module is the quotient Mg of Dy by the ideal Zp
generated by 7(g) and by F.

The main result of this paper is
Theorem 2.1.2. Any Dg-module of (H-C)-type is holonomic and conic-tame.

Here (H-C) stands for Harish-Chandra. There are two main examples of such
Dy-modules which we describe now.

Example 2.1.3. An element A of g defines a vector field with constant coefficients
on g by:
. d . .
(AD)f)w) = 2 fla+ tA)fimo for f € S(g"), v e g

By multiplication. this extends to an injective morphism from S(g) to the algebra
of differential operators with constant coeflicients on g; we identify S(g) with its image
and denote by P(D,) the image of P € S(g). If F'is a finite codimensional ideal of
S(g)“, its graded ideal contains a power of S (g)“ hence when it is identified to a set
of differential operators with constant cocfficients, £ is a subsheaf of Dy of (H-C)-type
and Mp is a Dg-module of (H-C)-type. If A € g*, the module ,/\/lf\ defined by Hotta
and Kashiwara [6] is the special case where F'is the set of polynomials Q@ — Q(\) for

Q€ S()“.

Example 2.1.4. - The enveloping algebra U (g) is the algebra of left invariant differen-
tial operators on (. Tt is filtered by the order of operators and the associated graded
algebra is isomorphic by the symbol map to S(g). This map is a G-map and defines
a morphism from the space of bi-invariant operators on G' to the space S(g)“. This
map is a linear isomorphism, its inverse is given by a symmetrization morphism [22,
Theorem 3.3.4.]. We assume that & = C. Then, through the exponentional map a
bi-invariant operator P defines a differential operator P on the Lic algebra g which
is invariant under the adjoint action of GG (because the exponential intertwines the
adjoint action on the group and on the algebra) and the principal symbol o(P) is
equal to a(P).

Let U be an open subset of g where the exponential is injective and Ug = exp(U).
Let T be an invariant eigendistribution on U¢; and T the distribution on U given by
(T, ) = (IN Yo oxp). As T is invariant and cigenvalue of all bi-invariant operators,
T is solution of an (H-C)-type Dg-module. As this module is conic-tame by theorem
2.1.2, the results of theorems 1.3.2 and 1.3.3 are true for it, hence T and T are a
L], ~function.
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As g is reductive. it is the direct sum ¢ @ [g. g] of its center and of the semi-simple
Lic algebra [g, g]. We choose a non-degenerate G-invariant symmetric bilinear form &
on g which extend the Killing form of [g,g]. This defines an isomorphism from g*
to g and the cotangent bundle 7T%g = g x g* is identified with g x g. Then if A (g)
is the nilpotent cone of g, the characteristic variety of an (H-C)-type Dg-module is a
subset of:

{(ry) €gxallry =0.yeN(@)

so it is a holonomic Dg-module [6].

2.2. Stratification of a reductive Lie algebra. — In this section. we define the
stratification which will be used to prove that an (H-C)-type module is tame. This
stratification is classical (see [1] for example).

The stratification of a reductive Lie algebra is the direct sum of the center by the
stratification of the semi-simple part, so we may assume that g is semi-simple. An
clement X of g is said to be semisimple (resp. nilpotent) if ad(X) is semisimple (resp
ad(X) is nilpotent). Any X € g may be decomposed in a unique way as X =5+ N
where S is scmisimple, N is nilpotent and [S, N] = 0 (Jordan decomposition). An

clement X is said to be regular if the dimension of its centralizer g% = {Z € g
[X.Z] = 0} is minimal, that is equal to the rank of g. The set g, of semisimple
regular elements of g is Zarisky dense and its complementary g’ is defined by a G-
invariant polynomial cquation A(X) = 0. The function A may be defined from the

characteristic polynomial of ad(X):
det (T Td = ad(X)) = T" + > A(X)T"

Here n is the dimension of g. Then Ay = 0. the rank [ of g is the lowest ¢ such that
A Z 0 and A(X) = N\(X). This function is homogencous of degree n — 1.
The set M(g) of nilpotent elements of g is a cone equal to:

Nig) = {X ca|VPeO@" PX) = P0)}

and the set of nilpotent orbits is finite and define a stratification of 91 [11. Cor 3.7.].

We fix a Cartan subalgebra h of g and denote by 20 the Weyl group 23(g. h). Let
O = d(g.h) be the root system associated with h. For cach o € ¢ we denote by g,
the root subspace corresponding to « and by b, the subset [g,.g-n] of b (they are
all 1-dimensional). Let F be the set of the subsets P of @ which are closed and
symmetric that is such that (P 4+ P)n® C P and P = —P. For cach P € F we
define bp = > cpba. gp = > cpfa- h), ={Hebh|aHH) =0ifae P} and
(hp) ={Heh|aH)=0ifaeP.a(H)#0ifa¢ D}

The following results are well-known (sce [2, Ch. VIII, §3]):

a) qp = hp +gp is a semisimple Lie subalgebra of g stable under ad b and b is an
orthocomplement of hp for the Killing form, hp is a Cartan subalgebra of qp. The
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Weyl group Wp of (qp,hp) is identified to the subgroup 20’ of 20 of elements whose
restriction to hp is the identity.
b) b+ gr is a reductive Lie subalgebra of g stable under adh. For any S € b,
h+gpr Cg”and (hp) ={Sechplag”=b+gpr}
¢) Conversely, if S € b, there exists a subset P of ® which is closed and symmetric
such that g° = b + gp. P is unique up to a conjugation by 20.
To each P of F and cach nilpotent orbit O of qp we associate a conic subset of g

(4) Sroy= |J ¢ (x+9)
Xe(hg)

where G- (X 4+ ) is the union of orbits of points X + O.

If X =S+ N is the Jordan decomposition of X € g, the semisimple part .S belongs
to a Cartan subalgebra which we may assume to be b because they are all conjugate.
Hence there is some P in F such that g° = h + gp. Then, if the orbit of N in qp
is O. X € Sip o). For a detailed proof of the fact that it is a stratification, see [3].

2.3. Polynomials and differentials. — Let us begin with some elementary cal-
culations. If 3 = (3...., 3,) i1s a multi-index of N" we denote |3] = > 5; and
gl= pit- 6,0 i o is another element of N". we denote by o < 3 the relation
ap < Breoan <5,

Lemma 2.3.1. Let 3 € N" and M = 73|, let N € N such that N < M, then

s A
Z al(3—a)t  NIYM - N)!

Jov| =1

<3
Proof
3 oy 1
_—— —_ M =1+ a)) (L )
Z(Y'(/i—n HZ a B — o)t ( 1) ( )
a3 =1 ;=0
hence if t =2y = -+ = 1, we get:
;3! :
> et = (1 Y
al(d —a)!
o<
and the coefficient of +V in both side of the equality gives the lemma. U
Lemma 2.3.2. Let us denote v = (ry....,. vy), Dy = (Dyys..., D, ), «% =
(o vp) and DY = (DYoo DYy et 0 =3 D, then:

N1
D DY =00 1) (0 - N 1)
laj=N "
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Proof. To prove the equality of the two differential operators we have to show that
they give the same result when acting on a monomial 27, so lemma 2.3.1 gives:

N NUOoal 14! ;
— Dot = — = =00 1) (0= N+ 1)’
D Pt = ) G T (- (O =1)-- 1)

lo|=N lo|=N
a<3
O
Proposition 2.3.3. Let pro.... pn(&) be homogeneous polynomial on X = C" and
assume that:
n
({pi(&) =0} = {0}
i1
Let T be the ideal of Dx generated by py(Dy). .. .. pu(D,) and M =Dy /I. The Dy
module M is holonomic and the b-function of M relative to {0} is equal to
b(O) =600 —1)---(0+n— M)
where M is the sum of the degrees of the polynomials py, .. .. pn and 0 the Euler vector
field of X. This b-function is monodromic in the canonical coordinates of C'.
Proof. The Nullstellensatz shows that there is some integer My such that the
monomial £* are in the ideal generated by py...., po if Jof > Ay In fact it is known

that the lowest Ay is AL — n (the proof uses the Hilbert polynomial). Then lemma
2.3.2 shows that the b-function of M divides € --- (6 +mn — M). It has been proved by
T. Torrelli [21] that all integers 0... .. M — n appear effectively as roots of b. O
Proposition 2.3.4. - Let py...., pn be the same polynomials as in the previous propo-
sition and let Py.... P, be differential operators such that o(P;) = p;. Let T be the
ideal of Dx generated by the operators Py, ..., P, and M = Dx /T. The Dx-module
M is holonomic and the b-function of M rclative to {0} is equal to
bO) =00 —1)---(0+n— M)

The b-function of M along a vector subspace L of C" divides the same polynomial .
Proof. Each function £ for |a| = N = M —n + 1 is written as §¢ =5 ¢ (&)p: (&)
and

N o N!
o) = > Dy = > 4 (De)pi(Dy)

la|l=N ‘_‘_(»y]:N
. A\'! LY (Y D [) . 1) l\v' Loy D D P , D
- Z K ¢ (D) Pi(e. D) + Z e ¢ (D) (pi(Dy) = Pi(a. D))
,'_NJZN '{‘f\l|:N

By definition. the order for the V-filtration along {0} is always less then the usual
order with equality if the operator has constant coefficients. So the order for the
V-filtration of %.1'”(1}‘(1),,')(1),-([),,) — Pi(x.D,)) is strictly less than the order
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of Z ‘(N‘,' 2N (D )pi (D) which is the order of b(#). that is 0. On the other hand
Z gt (D, )P,-,(.'l', D, ) is in the ideal Z hence b(0) is a b-function.

F()I the sccond part. we choose linear coordinates of C" such that L =
{ ety lg) €C" |t =0} and we write

(D)) = Y M/ ‘DY)

3!
[Bl=N

As all D} for |4 = N arc in the ideal generated by py(D,. Dt).. ... pu(D,. Dt) the

proof is the same then before. O

2.4. Proof of the main theorem. — Lect ¢ @ Y — X be an algebraic map. A
vector field «w on Y is said to be tangent to the fibers of ¢ if u(f o p) =0 for all f
in Ox. A differential operator P is said to be invariant under ¢ if there exists a
k-endomorphism A of Oy such that P(fop) = A(f)oy for all fin Ox. If we assune
from now that ¢ is dominant. A is wniquely de 1(1111111(‘(,1 by P and is a differential
operator on X. We denote by A = o, (P) the image of PP in Dy under this ring
homomorphisini.

We fix a Cartan subalgebra b of g and denote by 0 the Weyl group 20(g. h).
The Chevalley theorem shows that O(g)< is equal to k[P .. .. P where (Py.. ... )
arc algebraically independent invariant polynomials and [ is the rank of g. that the
set of polynomials on b invariant under 20 is Q)™ = kp,... .. pi] where pjis the
restriction to b of P and that the restriction map 2 — Pl defines an isomorphisin
of O(g)¢ onto O™ [22. §4.9.]. The space W = b/ is thus isomorphic to A
and the functions ... .. Py define two morphisms ¢ g — W and ¢ : h — 11
Pr) = (P (). .., Pr(e)) and () = (pi(z)..... pi(z)).

An operator @ of D;’v transforms invariant functions into invariant functions hence
is invariant under ¢ and ¢, (Q) is a differential operator on W. A vector field of 7(g)
annihilates the functions Py, .. .. P, henee is tangent to the fibers of . In the same
way, let D;*:U be the space of differential operators on b which are invariant under the
action of the Weyl group 20. they are invariant under ¢ and define operators on W
through ..

Let D(g)¢ (resp. D(h)™) be the set of global sections of D;" (resp. of DEU). The
morphism of Harish-Chandra [5] is a morphism of sheaves of rings 6 : D(g)¢ — D(h)¥
which satisfies the following properties:

(1) If f € O>g)" ~ O then §(P)(fly) = AV2P(f)a 12,

(2) If f € O(g)”, 6(f) is the restriction of f to b

(3) If f € S(g)” and f is considered as a constant coefficients operator. then §(f)
is the restriction of f to h*.

(4) The morphism § is surjective onto D(h)™

(5) The kernel of § is D(g)“ N D(g)7(g).
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The last two results have been proved algebraically by Levasseur and Stafford in
[15] and [16]. Let £ be the Euler vector field of g and ¢ the Euler vector field of b.
The function A is homogencous of degree n—1 (2.2) hence d(E) is equal to 0 —(n—1)/2.

Let Dy [d™!'] be the sheal of differential operators on W with poles on {d = 0}
and D(W)[d '] be the ring of its global sections. The function A is invariant hence
of the form d(F.. ... P,) and the formula Q +— d'/?Qd~"/? defines an isomorphism ~
of Dy-[d~']. We get a diagram:

DOW)[d '] —— DOV)[d ]

If f is a polynomial on W and @ an operator of ’D;’ we have ¢ (0(P))(f) =
AW (P))(f) from the definitions hence the diagram is commutative. We can avoid
the denominators [d7 '] in the diagram because of the following lemma:

Lemma 2.4.1. The morphism ~ sends the image of v, into D(W) while its inverse

/

v~ sends the image of p. into D(W).

Proof. This commutativity of the diagram shows that if an operator of D(117) is
in the range of ¢, then its iimage under v is in D(W).

Conversely let us choose a positive system of roots for (g. h) and define a function
by m = [I,=oc. Then 7 is a product of distinet lincar forms, its square 72 is equal to
the restriction of A to b and it is changed to —7 under a reflection of the Weyl group.

Let P € D(H)™ and [ € (’)ﬁn. by definition the function Pf is invariant under
20 while the function 77 P(7f) is in Oy[7 '] and is invariant under 20. Hence the
function 7 = P(xf) is in Oy and changes its sign under the action of reflections.

Let z be a point of {7 = 0}. there exists a root «v such that a(z) = 0. Let s be the
reflection which let the hyperplane {a = 0} invariant. We have 7(2) = 7(2%) = —7(2)
hence 7(2) = 0. As 7 vanishes on {7 = 0} and 7 has multiplicity 1, 7 is divisible by 7
and 7' P(7f) has no denominator.

So the operator 7' Pris in D(h)¥ [7~'] but applied to an invariant polynomial it
gives a polynomial. Its image wunder ¢, is thus a differential operator of D(W)[d "]
which sends any polynomial to a polynomial hence an operator of D(117). O

Let F be an (H-C')-type subsheal of D; we define four D-modules:
M is the (H-C)-type Dg-module. It is equal to the quotient of Dy by the ideal
Ty generated by 7(g) and F.
N is the quotient of Dy by the ideal generated by o, (F).
A/l';, is the quotient of Dy, by the ideal generated by §(F).
N'Ilj. is the gquotient of Dy by the ideal generated by @, (d(F')).

SOCHSTE MATHEMATIQUE DE FRANCIE 2001



160 Y. LAURENT

Let 14—y be the canonical generator of Dg_.- as defined in the proof of corollary
44 and ug—w its class in ¢ " Ap. We denote by MY the Dg-submodule of ¢t N
generated by wg_yy.

Theorem 2.4.2. — The module M‘}p s conic-tame.

In this section we prove this theorem and in the next section we prove that My is
isomorphic to M.

Proposition 2.4.3. Let n be the dimension of g. U its rank. Then there exit some
positive integer N such that

. - n—1
BT) = (T = N+ (T4 1) - (T + 5 )

is a quasi-b-function of total weight (n +1)/2 for N along {0}. Moreover, N = 0 if
o(F) = 54(g)

Proof. - We recall that the rank [ of the algebra g is the dimension of a Cartan
subalgebra and that the degrees ny. .. .. n; of the generators Py, .. .. P, of O(g)“ are

called the primitive degrees of g and that their sum is (n+1)/2 [22]. The map
¢ g — Wis defined by (Py..... ). hence if = >" 0D, is the Euler vector field
of g, = . (F) is cqual to > n;t; Dy,.

The morphism ¢ is graded and its restriction to S(g)® is the map Q — ¢ = Q|
hence o(0(F)) the set of principal symbols contains a power of Sy (h)% (and is equal
to S (0)W if o(F) = S;(g)). We may then apply proposition 2.3.4 to the module
/\/l"l and we find that its b-function is equal to by(v) = V() — 1) -+ (J — M) where
9 is the Euler vector ficld of h and M is a positive integer equal to (n — [1)/2 if
o(0(F)) = S, (h)¥. This means that there exist differential operators R Ap.. ... A,
on b such that I is of order —1 for the V-filtration in {0} and

bo() + R(z.D.)=A (2. D) (. D)+ -+ Ai(z. D)qi(=. D>)

The action of 2 on Dy, does not affect the V-filtration and by (1)) and all ¢;(z. D.) are
ST - y Wev] or 0 if wo take v 11O alie at je L 2w
invariant under the Weyl group. so if we take the mean value (that is a0 Yoweam )
we find the same relation with R and all A; invariant under 20.

Applying o, and 47" we find

(6) bo(v " (@ () +77 (e (R)) = Biva(Qy) + -+ + B (Qr)

with By....,B; in D(W) (lemma 2.4.1) and 7~ (¢.(¢;)) = ¢.(Q;) (the diagram 5 is
commutative).

Asp=(p1,..., pi) and p; has degree n;. 2. (V) is equal to y = > n;t;Dy,. We have
F ) = d V2 (0)d"Y? = o (ATT20AY?) and the function A is homogeneous of

degree n — [ hence A~Y2)AY2 = )4 (n = 1)/2 and v L) =+ (n —1)/2. O
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Proposition 2.4.4. — For cach nilpotent orbit S of codimension r. MY has a b-function
of total weight (n 4+ 1)/2 along S equal to

b(T):(T—N)~~~T(T+1)~-~(T+”;l)

with N =0 if o(F) = S(g). Here n is the dimension of g and 1 its rank.
All roots of b are strictly greater than —(n +1r)/2 hence this b-function is tame.

Proof. Let us consider first the null orbit S = {0}. We apply corollary 1.1.3 to
X' =g, X =W, f=4¢, W =g, ¢ is the identity map of g, ¢ the identity map
of W and F:g* — 1 is the map ¢». The weights (m/... .. m,,) on gare (1..... 1).
that is the V-filtration on g is the usual v-filtration relative to {0}, and the weights
(my..... my) on W are the primitive degrees considered in the proof of Proposition
2.4.3. Then F is quasi-homogeneous and we get directly the result for S = {0}.
Consider now the nilpotent orbit S of maximal dimension. then S is the smooth
part of the nilpotent cone zm(l U og — W is smooth on .S, We apply corollary 1.4.3

to X' =g, X =W, f=1, =W, ¢ =1, p and F are both the identity map of
117, The weights on g and on U arc the weights (my.. ... my) considered on 117 in the

case of the null orbit.

We consider now a non null nilpotent orbit S. Let X € S. by the Jacobson-Morozov
theorem, we can find H and Y in g such that (H. X.Y) is a sly-triple. They generate
a Lie algebra isomorphic to sl which acts on g by the adjoint representation. The
theory of slo-representations shows g splits into a direct sum @ _, E(\;) of irreducible
submodules.  The dimension of F(\;) is A; + 1 hence n = > (A + 1). Morcover

g=[X.glog . dimg"' = and we can seleet a basis (Yy..... Y,) of g* such that
[H.Y;] = =\ Y. The tangent space to S at X is [X. g] hence » is the codimension
of S.

The map v: G x g' — g giv on l)x v(g.Z) =g (X + Z) is a submersion hecause
its tangent map is the map g x g — g given by (Z'.Z) — [Z'. X+ Z. Let gy be
a linear subspace of g such that g = gV & g1, we have [g. X] = [g;. X]. We choose
functions (o, ..., «,) on G whose differentials at the unit e of G are the equations
of g1 in gand define A ={g e G |ai(g) = = a,.(g)}. Then there is a Zavisky
open subset U of A x g' containing (e.0) which is smooth and such that the map
v:U — g is ¢tale.

Let (sy...... s.-) be the coordinates of g* associated with the basis (Y. ... Y,). they
define functions (sp.....: s,) on U and v(s '(0)) is equal to S. Let 1y = v*E on U
(E be the Fu](‘r vector ﬁ(!l(] of g). A standard caleulation [23. Part 1. §5.6]. shows
that ny(s;) = (Ai/2 + 1)s; hence the nmp Fy:g" — gdefined by Fy(Z) = X + Z
is 111(\51—110111();;( neous 1f the weights on g' are mi = (N/2+1) fori=1..... rand
the weights on g are (1...., 1). The map F :g" — W defined by F(Z) = (X + Z)
is thus quasi-homogencous with the weights (mf.. ... m’) on g and (m..... my)
on 1.

SOCIETE MATHENATIQUE DI FRANCE 2001



162 Y. LAURENT

Now, we apply corollary 1.4.3 to X/ = U, X = W j Vo, W= g¥. ¢ the
projection U — g¥ and F : g¥ — W = k! given by F(Z) = /(X + Z). This gives the
b-function for v MY, and thus for MY, by lemma 1.2.5 ]

Let us now consider the non-nilpotent strata of the stratification of g (§2.2):

Proposition 2.4.5. The module MY, admits a tame quasi-b-function bs along cach
stratum S.

More precisely, if the stratum is Sip o) according to definition (1) and qp the
associated semi-simple Lic subalgebra of g, then

a) bg depends only on IP and its roots are integers greater or equal to —(m — k)/2
where e is the dimension of qp and k its rank.

b) The total weight of bs is equal to (m + r)/2 where v is the codimension of O
moqp.

In particular. on the stratum of codimension 1 in g. the roots of the usual b-function
of MY are half integers greater or equal to —1/2.

Proof. We fix a Cartan subalgebra of g and a subsct P of roots with the notations
of §2.2. This define a scmi-simple algebra qp to which are associated the maps
Up qp — Wp and ¢op @ hp — Wp. Here Wp is a vector space of dimension the
rank of gp. The Cartan \ll])dl;_)( ‘bra b splits into the direct s b = bp @ b5 and this
define a map ¢ = pp o 1:h — W =k hp

Let S € b, we know fmm section 2.2 that g7 = by & qp and as S is semisimple
we have g = [g, 5] 0 g®. The map v : G x g% — g defined by v(g. Z) = g - (Z + S) is
thus a submersion. Let (.. ... «,) be functions on & whose differentials at ¢ are the
equations of [g. S] in g and define A = {g € G| a(g) = = a,(g)}. Then there
is a Zarisky open subset U of A x g° containing (¢.0) which is smooth and such that
the map v : U — g is étale. Let ¢ : U — 117 be defined as the composition of the
canonical projection A x g — g and of ¢'p.

Now we follow the proof of proposition 2.4.3 with 111( same notations. Applying
the sccond part of proposition 2.3.4 to L = {0} x (h5). we find that N admits a
monodromic b-function along L which is equal to ()()(l)p) =vUpp—=1)--(Vp—=N'+1)
(Up — N') where Jp is the Euler vector field of hp and N’ is less or equal to
N = (n—=1)/2 with n the dimension of g, This means that there exists [ dif-
ferential operators R, Ay, .... A; on b that we may assume invariant under 20p,
with R of order —1 for the Vfiltration associated with L such that by(vp) + R =
Az D) (D) + -+ A(z.DO)qi(D-). If A =0 we have R = 0.

As these operators are invariant under 20, hence under ¢ we may apply ¢, and
7~ and find an equation bo(v () + 4 1ol (R) = Biow(Qr) + -+ B (Qy) with
Bi,...,B;in D(W) and ) = @.(¥). In the coordinates of W defined by the isomor-
phism ¢’ : &' © (h) — W, the vector 1 is equal to S nit; Dy, where the n; are the
primitive l(\gl(!(&s of hp, it is associated with the manifold L' = o' ({0} % (h5)).
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As A is the product of Ap by a function which does not vanish on a neighborhood
of L. the function d which defines the morphism + is the product of the corresponding
function dp associated with hp by a function o which does not vanish in a neighbor-
hood of L’. So we have

,}71(,/) =0 1/2(/;1/2]/(]117/20!/2 _ Q~1/2 (1 + 1/\;’/))01/2 =+ Np)+a

where Np is (m — K)/2 (m is the dimension of qp. A its rank) and « is a function
which vanishes on L” hence of order at most —1 for the V'-filtration. The operator
7 Lol (R) s also of order —1 for the V-filtration.

We have proved that NV admits a b(y))-function along L’ which is equal to O(T) =
(T'— Np)---(T"— Np + N). The end of the proof is the same than to the proof of
proposition 2.1.1. O

Proposition 2.4.5 shows that M. is tame. To prove theorem 2.4.2 we have still to
prove that it is conic. This come from the fact that the singular support of M. is
conic for the Euler vector field of g and the vector fields associated with the strata
arc cqual to this Euler vector field modulo veetor ficlds tangent to the orbits.

2.5. Isomorphism with the inverse image. — We recall that MY, is the sub-
module of " Ny generated by tg—y. it is the image of the morphism Mg — o N

Theorem 2.5.1. The canonical morphism M — MY is an isomorphism.
Proof
Ist step: From semi-simple Lie algebras to reductive algebras. Assume that the

result has been proved for semi-siimple Lie algebras and let g he a reductive algebra.
direct sum of its center and a semisimple Lic algebra. By induction, we may assume
that g = ¢ & g’ with ¢ subspace of the center of dimension 1 and g’ reductive Lie
algebra for which the result has heen proved.

Let ta coordinate of ¢ and 7 the corresponding coordinate of the dual space ¢, By
the hypothesis. there is a differential operator in F' whose principal symbol is equal to
some power 77, This means that g’ = {f = 0} is non characteristic for Mp. Let K be
the kernel of My — A/l',’,. We have an exact sequence ) — K — Mp — /\/l',); — 0
of non characteristic Dg-modules. As the inverse image is an exact functor in the
non characteristic case, this gives an exact sequence 0 — K/IK — Mp/tMp —
MY JIMY — 0. I we prove that K/tK = 0. we will have K = 0 (as K is non
characteristic).

So, we have to prove that My /tM e — MY /tMY). is injective. Here we use the
same proof than in [13. Lemma 2.2.3.]. In fact. as Dg-module Mg/t Mo is generated
by the classes of 1.D,.. ... D! and the submodule generated by D¢ is a module
on g of the same type than Mg for which the theoremn is true. Then we consider the
quotient of M/t Mg by the module generated by [);'—J and argue by induction.

SOCIETE MATHEMATIQUE DE FRANCIE 2004



164 Y. LAURENT

2nd step: The result is true at points X € g whose semi-simple part is non zero

By the first step, we may assume that g is semisimple. Let S be a non zero
semisimple clement of g. g% its centralizer and G the corresponding group. The
spaces O(g)” and O(g*)“ " are isomorphic hence the space Wy associated with a” is
equal to W and the map ¢ : g7 — W is the restriction of ¢ : g — 1W. Thus the
sheaf of differential operators on g invariant under the action of G is isomorphic
to DY

By induction on the dimension of g, we may assume that the theorem is true for
g” hence that the morphism M5 — ’l/’:./\/p is injective. Here M7 is the D,
associated with F and Np the quotient of Dy by the ideal generated by F. By
definition. the germ at S of T Np is (0"Np)s = Og.s CICIN ((J’!;%./\/p)s. On the
other hand. we have (Dg/Dy7(g))s = Og.s ®o, s . (Dgs /Dg-\'T(gS))S hence Mp g =
Og.s Do s . M3 . The morphism My — ¢ Np is thus injective at the point S
henee at all the orbits whose closure contains S that is in particular at all points X

s module

whose semisimple part in the Jordan decomposition is S.

Ind step: The case of nilpotent orbils. Let K be the kernel of Mp — M. By
the second step. we may assume that the theorem is true at all non nilpotent points
of g that is that K is supported by the nilpotent cone. Let K(g)¢ be the set of global
sections of K invariant under G, we get an exact sequence

0— K(@)" — M(g)" — Mo(g) —0

and by [7. lemma 3.2.] we have M(g)Y = Mo(g)¥ = N hence K(g)¢ = 0. Then
K =0 by [17, lemma 3.2.]. O

Remark that the third step is also a consequence of the property (5) of the Harish-
Chandra morphisin which has been proved by Levasseur-Stafford [16].
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