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VIEWS OF PARAMETER SPACE: 
TOPOGRAPHER AND RESIDENT 

Mary Rees 

Abstract. — In this work, we investigate the structure of certain parameter spaces. 
The aim is to understand the variation of dynamics — in particular, of hyperbolic 
dynamics — in certain parameter spaces of rational maps. In order to do this, we ex
amine the topological and geometric structure of larger parameter spaces, of branched 
coverings of the Riemann sphere C, where some of the critical points are constrained 
to have finite forward orbits. 
We obtain a complete topological description of the spaces under consideration, from 
two points of view, which we call the Topographer's View and the Resident's View. 
The Topographer's View is, in essence, a geometrising theorem. It shows that the 
space in question is, up to homotopy equivalence, a countable union of disjoint ge
ometric pieces, joined together by handles. The most typical geometric pieces are 
varieties of rational maps, and tori. The Resident's View is a view of the whole 
parameter space from the dynamical plane of a map (a resident) in the parameter 
space. This is necessarily a two-dimensional view, in which the geometric pieces of 
the parameter space appear as disjoint convex regions in the dynamical plane. 
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Résumé (Points de vue sur l'espace de paramètres: le topographe et le résident) 
Dans ce travail, nous étudions la structure de certains espaces de paramètres. L'ob

jectif est de comprendre les variations de dynamique — en particulier de dynamique 
hyperbolique — dans certains espaces paramétrant des applications rationnelles. Pour 
cela, nous examinons la structure topologique et géométrique d'espaces plus grands 
paramétrant des revêtements ramifiés de la sphère de Riemann C, où plusieurs points 
critiques sont contraints à avoir une orbite positive finie. 
Nous obtenons une description topologique complète des espaces considérés, de deux 
points de vue, que nous appelons la vue du topographe et la vue du résident. La vue 
topographique est, en somme, un théorème de géométrisation. Elle montre que l'es
pace en question est, à une équivalence d'homotopie près, une réunion dénombrable 
de morceaux géométriques disjoints, reliés ensembles par des anses. Les morceaux géo
métriques les plus typiques sont des variétés d'applications rationnelles et des tores. 
La vue du résident est une vue de l'espace des paramètres tout entier depuis le plan 
dynamique d'une application (un résident) situé dans l'espace des paramètres. C'est 
nécessairement une vue en dimension 2, dans laquelle les morceaux géométriques de 
l'espace des paramètres apparaissent comme des régions convexes disjointes dans le 
plan dynamique. 
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TOPOLOGY, COMBINATORICS, 
VIEWS 





INTRODUCTION 

The objects of study in this paper are rational maps of the Riemarm sphere C, 
considered as dynamical systems. The basic problem is to understand variation of 
dynamics in a given family of rational maps. The total dynamics of a rational map is 
greatly influenced by the dynamical behaviour of its critical points. So it is natural 
to consider families of rational maps in which some critical points are constrained 
to be periodic, or eventually periodic. Thus, we wish to study a parameter space 
of dynamical systems, with specified dynamics on some invariant set which varies 
isotopically throughout the parameter space. A rational map with a finite invariant 
set is a holomorphic map of a marked Riemann surface. So our object of study is 
a topological space in which the points are both dynamical systems and geometric 
structures. 

Paths are important in topology. When the points in a topological space M are 
themselves mathematical objects, then paths in the space reflect this additional struc
ture. For example, let So be a compact topological surface, M — A/(.So) the moduli 
space of Riemann surfaces homeomorphic to So, and let S £ M. We get different 
views of S from the endpoints of a closed homotopically nontrivial path in M based 
at S. If we wish to understand a space of mathematical objects, then we need an 
understanding of the different views of each mathematical object. This involves un
derstanding the extra structure inherited by paths in M when the points in M have 
additional structure. For example, if M is as above, then closed paths in M based 
at 5, which avoid singular points, give rise to homeomorphisms of 5, modulo isotopy. 

Study of any parameter space of dynamical systems involves looking at relative 
movement of points in the dynamical plane as a point moves in parameter space. 
This simple-minded idea manifests itself in virtually every paper written on dynamical 
systems. Sometimes the study of relative movement is local, as in, for example, basic 
theory of persistence (or otherwise) of fixed points and corresponding local dynamics. 
Sometimes it is global, as, for example in study of the Mandelbrot set for quadratic 
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polynomials ([D-Hl], [D-H2], [T2]), when, roughly speaking, it is possible to trace 
the movement of the unit circle (invariant under z i—> z2) as the parameter varies 
throughout the Mandelbrot set (and even outside it). In fact, the idea is especially 
prevalent in holomorphic dynamical systems, where dynamics of all points are largely 
influenced by the dynamics of critical points. It is also especially true in any parameter 
space where the dynamics are constant on some isotopically varying set. 

Now we consider movement in the dynamical plane as we move along a path in 
parameter space. In many parameter spaces (as in many topological spaces), the 
choice of path is important. It is possible to lose sight of this, because in the examples 
just cited — of local movement, and of movement in the Mandelbrot set — the 
choice of path is not important. Suppose for simplicity that we wish to consider the 
movement of one continuously varying point in the dynamical plane, relative to some 
other continuously varying point, where both are in the complement of an isotopically 
varying set on which dynamics are constant. Then a closed path in parameter space 
gives rise to a path in the dynamical plane minus the set with constant dynamics. 
(We shall assume for the moment that this path in the dynamical plane is closed: 
it depends on exactly how we make our definitions.) This gives rise to what I call 
the Resident's View of parameter space. This is a view which is comprehensive, 
but is in terms of the dynamical plane of some fixed dynamical system resident in 
the parameter space. It is really a view of the fundamental group of the parameter 
space V, that is, a set-theoretic identification of this group with a subset of the 
fundamental group of the complement C \ Z in the dynamical plane of a set Z on 
which dynamics are constant. This is a very simple identification, and as such can be 
made for other of parameter spaces of dynamical systems. I do not know if there are 
other situations in which it has the far-reaching properties which it possesses for the 
parameter spaces considered here. It turns out that this map from one group to the 
other is injective. The map then gives rise to a map from the universal cover of V to a 
subset of the universal cover of C \ Z. It is then possible to obtain information about 
the variation of dynamics on V - from the resident's view of the universal cover. This 
is our aim. Some specific examples are given below (without full details or proof, of 
course). This is yet another application of the idea that, for many topological spaces, 
the fundamental group contains all the essential information about the topology, and 
that, in a topological space with additional structure, all the essential information 
can be obtained from a fundamental group with additional structure. 

Given a topological space, a common aid to understanding structure is to show 
that a topological space has a stronger structure up to homeomorphism or homotopy 
equivalence — such as a geometric structure of a particular type. Let us call the 
establishing of a such a structure a Geometrizing Theorem. Well-known examples 
of such results are Thurston's theorems [Tl] producing hyperbolic structures on 3-
manifolds (under various conditions). I want to highlight two Geometrizing Theorems 
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which concern spaces of maps. One is the Nielsen-Thurston classification of compact 
surface homeomorphisms up to isotopy ([F-L-P], [Cas]). This can be interpreted 
as: a connected component of homeomorphisms of a compact surface contracts to a 
set of homeomorphisms preserving a geometric structure. This structure is either a 
hyperbolic metric on the surface, or a finite disjoint set of simple loops, or a pair of 
transverse measured foliations. The details are unimportant. The point is simply that 
the space of homeomorphisms is homotopically equivalent to a smaller space which 
has a more exact description. The other result is Thurston's Geometrizing Theorem 
for critically finite branched coverings of the sphere. This result can be regarded 
as a description of the topology of a connected component of orientation-preserving 
branched coverings with forward orbits of a fixed finite cardinality, modulo Mobius 
conjugation. In the presence of a certain combinatorial condition, the component is 
contractible to the unique rational map within it. In the absence of the combina
torial condition, the component is contractible to a space (usually a torus) of maps 
preserving a stronger geometric structure. Note that the basic intention of this result 
is arguably to use the larger space to study the smaller, so that this can be regarded 
as a Geornetrization Theorem in reverse. The smaller set was initially known to be 
finite, and is shown to be singleton, but, of course, there is more to it than that. 

There are other cases in which enlarging a topological space gives crucial infor
mation about the original. A large part of the long tradition of studying topological 
spaces of geometric structures comes from algebraic geometry. In such spaces, singu
larities are important, and it is often appropriate to blow up the singularity in order 
to understand the structure near it. In these examples, the enlarged space is often 
homotopically larger than the original. 

In summary, both enlarging and reducing have been found useful in studying topo
logical spaces, in a wide variety of situations. Sometimes, a space is found to be 
endowed with - or to be homotopically equivalent to a space endowed with a 
geometric structure whose existence was not originally known. Sometimes a space 
of geometric structures is found to embed homotopically in a larger space, of which 
the points might be more easily constructed. This gives rise to what I shall call the 
Topographer's View of a Parameter space. Again, specific examples are given below, 
without full details. 

Some Key Examples. — Both the Topographer's View and the Resident's View 
are important in understanding topological structure of a parameter space of rational 
maps, and, more importantly, the influence of the topology on the scope and type of 
variation in dynamical behaviour. These views are complementary. Neither is more 
important than the other. Now we view a number of examples, in an attempt to get 
a feel for the shape of the general results, which will be stated later. For the formal 
statements of results, see Chapter 5. 
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6 INTRODUCTION 

Example 1. Let V35o be the family of maps 

9a : z —> 
(z-a)(z-l) 

z 2 û G C , a = 0 , ± 1, 

where the critical points of ga are c\(ga) = 0 and c2(ga) = 2a/(a + 1). The critical 
values are v\(ga) = oo and V2(ga) = — (a — l) 2/4a. Dynamics are constant on the set 

which is the period 3 orbit of 0 under ga, for any a. Note that for a — 0, ga degenerates 
to a degree one map, and a — ±1 give V2(ga) = 0, 1 respectively. Let Bs,o D 1/3,0 
be the family of orientation-preserving degree two branched coverings g of C with 
critical points 0 = ci(g) and 02(g) ^ {0, 00, 1}, where 0 ^ o o ^ l h - > 0 i s a periodic 
cycle under g. We shall see in Chapter 1 that the inclusion of 1/3,0 in #3,0 is a 
homotopy equivalence. This is the Topographer's View: that B^^o is, up to homotopy 
equivalence, the same as the subspace 1/3,0 of rational maps within We shall, by 
abuse of notation, sometimes identify 1/3,0 with C \ {0,±1}. 

Now we consider the Resident's View. The set Z is forward-invariant under g, 
for any g G #3,0- By definition, 02(g) ^ Z, where 02(g) is the second critical point 
of g. This is equivalent to the statement that V2(g) ^ Z, where V2(g) = 9(02(9)) is 
the second critical value. The idea of the Resident's View is to describe the space 
£?35o in terms of C \ Z, which is the punctured dynamical plane of for any fixed 
g G ^3,0- This is done by describing the universal cover of ^3,0, together with the 
action of the fundamental group 7Ti(i?3,o), in terms of the universal cover of C \ Z 
together with the action of the fundamental group 7Ti(C \ Z). Since inclusion of 
1/3,0 in #3,0 is a homotopy equivalence, inclusion induces an isomorphism between 
7*1(̂ 3,0) and 7Ti(V3.o). We need to choose basepoints in the fundamental groups, and 
we choose some gao G 1/3,0, and then consider the fundamental groups TT\ (1/3,0, 9a0) 
and 7ri(C \ Z,V2(g))- The Resident's View includes an injective map 

The map p is not a group homomorphism, and not surjective. The idea of its definition 
is as follows. If we move along a path in B^,o from gao to g, then this determines a path 
in C \ Z from v2(g) to 02(g): which (up to endpoint-preserving homotopy), depends 
only on the endpoint-preserving homotopy class of the path in Bj^. If we trace a 
closed path in B30 starting and ending at gao then we obtain in this way a closed path 
in C \ Z starting and ending at v2(g(M))- This does indeed give a map between the two 
fundamental groups. For a more formal definition, see 1.12. The fundamental groups 
act freely on the universal covers. So if we fix lifts gai) and V2(gao), we have an injective 
map, which we also call p, from TT\ (1/3,0, 9a{)) • to 7Ti(C \ Z,V2(ga())) • V2(gao)- Now, 
since ga{) G 1/3,0, ^1(^3,0, ^a0) '9a()

 can be regarded as a subset of the universal cover of 
1/3,0, while 7Ti(C \ Z, V2(ga{))) • V2(gao) is, °f course, a subset of the universal cover of 
C \ Z. Both these universal covers are isomorphic to the open unit disc D: not just 

Z = {0,oo,l}, 

p : TTI(C \ Z,v2(g))—>7ri(y3)0,Pao)-

ASTÉRISQUE 288 



INTRODUCTION 7 

topologically, but conformally as well, since the universal covers inherit structures of 
complex manifolds from the complex manifolds T/3,0, C \ Z. So we can identify ga() 

and V2(gao) with points in D. The covering-group-actions of the fundamental group 
TTI(V3,O, <7a0) and 7Ti(C \ Z,V2{gau)) on the unit disc are by Möbius transformations. 
These actions extend to D. Then it turns out that the map p, which is now a map 
between the subsets 7Ti (1/3,0, #ao) ' 9au and 7Ti(C \ Z,V2(ga^)) ' ^2(^00) °f ^ extends 
continuously to a homeomorphism, also called p, of the unit circle <9D. We can then 
use p to define a new action of 7Ti (1/3,0, g0 ( )) — ^1 (£>3,o? #A0)

 0 1 1 by 

(1) (]' P(z) = p(g-z) 

for r/ G ^1(1/3,0,^00) and z G where the action on the righthand side is by Möbius 
transformations. The left-hand action is by homeomorphisms. The map p is not 
defined on the open unit disc, only on a discrete subset of it. It is, of course, possible 
to extend it homeomorphically to D and to then define a new action of 7ri(Z?3,o) o n D 
by (1). Although the extension is not unique, the resulting action of 7Ti(Z?3,o) on D is 
unique up to isomorphism of topological group actions. This is what we mean by the 
Resident's View in this case: an action of 7Ti(i?3,o) — 7ri(V3,o) on the universal cover 
of C \ Z which is isomorphic the action of ^(V^o) on the universal covering space 
ofV3.(1. 

In this very simple first example, the homeomorphism p : dD —> dD has another 
description. Consider the map 

pi : a 1 > V2(ga) : V3,o • C \ Z, 

which is actually a double covering. This then lifts to a map between the universal 
coverings, and is simply a Möbius transformation. This Möbius transformation co
incides on dD — and only there — with p. The action of 7TI(£>3,o) 011 3D defined 
using p is therefore an action by Möbius transformations and each of these Möbius 
transformations is a Möbius transformation in some subgroup of TT\ (C \ Z,V2(gai)) 
acting on dD - but the subgroup is not (pi)*(7RI (1 ,̂o, #«0))-

Both 1/3,0 and C \ Z are punctured surfaces. The maps g±\ are well-defined degree 
two maps, with ^2(̂ 1) — 0 and ^(p-i) = 1, while go is degree 1. Each puncture has 
lifts in dD. This works as follows. For any A C {0,=bl}, let TTI {V^^^A, gao) denote 
homotopy classes of paths a : [0,1) —» 1/3,0 where 

lim a(t) G A, 

and homotopy is through paths with this property. Let 7Ti(C \ Zi, Z, V2(gao)) be 
similarly defined for any Z\ C Z. Paths represented by elements of TTI(V:^O, A, ga(}), 
7ri(C\Zi, Z, V2{ga{))) lift to paths in D starting from g. v2(g) respectively and limiting 
on points in dD lying in a countable set which are, by definition, the lifts of the 
points of A, Z\ to dD. The fundamental groups TT\ (1/3,0? 9a0)

 a n d TT\ ( C \ Z, V2{g)) act 
on 7Ti(V35o, A, g(l{)) and 7Ti(C \ Z, Zi, V2(ga()))

 011 the left, respectively, by composition 
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8 INTRODUCTION 

of paths. If we identify a path with the lift of its second endpoint, then these actions 
identify with the restriction to the sets of lifts of the natural actions of 7Ti (V^o, gao) 
and 7ri(C \ Z,V2(gaii)) on dD. Now we restrict to A — {±1} and Z\ = {0,1}. 
Similarly to the map p on fundamental groups, there is a map 

P2 : 7^3,0, {±1}) —^ TTI(C \ Z. {0, l},7;2(0ao)), 

which is defined in much the same way as p: a path from g(l() to g\, #_i gives rise 
to a path from V2(gai)) to 0, 1. So p2 can be regarded as a map from lifts of ±1 to 
lifts of 0, 1 again by identifying paths with the lifts of their second endpoints, that 
is, as a map from one countable subset of dD to another. Then p2 is a restriction of 
p : dD dD. 

We shall return to the Resident's View of this example in 1.15. 

Example 2. - Now we consider V34 and -63,1. These are obtained by removing from 
V ô and #3,0 those maps g for which 112(g) G #_1({0, 1, 00}) = Z(g), where v\ (g) = oc 
and V2(g) are the critical values of g. The space Vs,i is simply V ô with finitely 
many extra punctures. The inclusion map of V ,̂i in Z^i is no longer a homotopy 
equivalence, although (as always, it turns out) it induces an injection of fundamental 
groups. The group TTI(£>3J) which, of course, projects onto 7ri(JE?3,o) — ^3 ~ is 
now infinitely generated and infinitely presented. Before describing the structure, we 
consider the punctures 0, oc of V^i. 

Note that if a = 0, then qn. degenerates to the period 3 Möbius transformation 
^ | ^ z - 1 
Z 

Let 71 be a simple positively oriented loop round 0 and close to 0 in V34. Now we 
consider ga in V34 for large values of a. Let 

G„{z) = —g^y/Ez). ^ in 
Then 

GJz) = — + -= 1 + - — . 

lim Ga{z) = - -. 
So 

The critical values of Ga are v\ — oc — which is of period two under Ga with orbit 
(0, oc} (as for qa) and 

v2(Ga) = - ? P ^ = 4VA/4+0 ( lVa) . . 

Then 
GJv2) = JL + 0(1/ava)'\ Gl(v2) = l ^ + 0 r - L V 

Let 72 be a simple positively oriented loop round oo and close to oc in V3.1. 

ASTÉRISQUE 288 
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The Topographer's View of Z?3?i and is as follows. Up to homotopy equivalence, 
B^^i is the union of two pieces, joined together along a handle. One of the pieces is 
V34, and the other is S1 x We/,i,i- Here, Wef,1,1 is a cyclic cover of Vef,i,i. The space 
^4/, 1,1 is the family of maps 

kb:z\—> 1 + J, ft G C, b ^ 0, -4. 

The critical points of are c\(kb) = 0 and c2(kb) = 2. The critical values are 
vi(fcb) = 00 = /c6(0), and v2(kb) = 1 + 6/4. Also, Â (oo) = kb(oo) = 1. The ueF 
is for "eventually fixed". The first index 1 means that the first forward image of 
vi(kb) = oc is fixed. The second 1 means that r2(kb) is not a first preimage of 
vi(kb) — 00, nor of the fixed point Â (oc) = 1. The restrictions on parameters ensure 
that for kb G K./.i.i. v2(kb) 0 kb~l({00,1}), and {00,1} = [vi(kb), kb({vi(kb)}) is 
forward invariant. We take \ \ < f. 1.1 to be the cyclic cover for which the covering map 
is exp : We/, 1.1 -> V ( /.l.i- Then we join 72 to the loop in Sl x 11V 1.1 given by 

t 1 • (c '"'../•) : [0,2?r] > 51 x ^ / ,1 ,1 , some fixed x G lF,./.i.(,. 

to obtain B31. We give a sketch of B^j below. 

^.1({vi(kb 

a = OG 

({vi(kb 

({vi(kb 
B3A. 

In particular, by the Topographer's View, 7Ti(B,gai)) can be regarded as containing 
TTI(̂ 3,I) and 7ri(̂ 1 x HV.i.i )• 

Now we consider the Resident's View, and we fix a resident ga{) G V3J. The 
sets Z{g) = {0,oo,l,a;o(^),a:i(^)} = ^ ({O^oo} and Y(g) = Z(g)U{v2(g)} vary 
isotopically as # varies over £?3,i. Here, xo(g) and x\(g) are preimages under g of 0 
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10 INTRODUCTION 

and 1 respectively. (The only preimage of oo is 0.) Write Z = Z(gao), B = B%,\ and 
V = V3.1. We again as in Example 1 have a map 

p : ni{B,g(l{)) > 7ri(C \ Z,v2{ga{)))-

This map restricts to a map on TT\ (V, g(U) ), which can again be regarded as a subset 
of the open unit disc, but this time, p does not extend continuously to a map on dD. 
What happens is more interesting. 

Let C denote the set of ends of B corresponding to degree two branched coverings g 
for which V2(g) £ Z(g). We can describe an end by having a family of neighbourhoods 
U£ (e > 0) such that for all g in Us, there is a loop in C \ Y(g) of length < e with 
respect to the Poincaré metric on C \ Y(g), which separates ?'2(#), and one particular 
point of Z(g) \ {vi(g)} from all the other points of Z(g). We write TCi(B,C,ga{i) for 
the set of paths in a : [0,1) —» B with a(0) = ga{), and lini/ .1 o(/) G (7, modulo 
homotopy through paths of this type. Let 7Ti(C \ Z, Zv2{ga.{i) be similarly defined. 
Then, again as in Example 1, there is a map 

P2 :^(£,C7,f; a ( )) - ^ ^ i ( C \ Z , Z , i ; ( r ; a o ) ) , 

and by identifying elements of Ti\{B, C.g(l{)). 7Ti(C \ Z, Z1v(ga())) with lifts of second 
endpoints, p2 can be regarded as a map between countable dense subsets of dD. But 
K\(V.V n C, g t t ( )), identified with lifts of its second endpoints, is not a dense subset 
of dD. Let X(V) denote its closure. Let H(V) denote the convex hull of X(V), 
that is, the smallest convex subset of D which contains X(V). The homeomorphism 
of dD given by any element of TTI (B, g(M) ) either preserves the set X(V). or maps 
it to another set whose convex hull has interior disjoint from that of H(V). Such 
convex hulls are known as rational convex hulls. The stabilizer in TT\(B) of H(V) is 
K\(V,ga{))- The action of it\(V) on 0H(V) is semiconjugate to the standard action 
of 7Ti(V) on the boundary of the universal cover of V, via a map which sends the 
closure of each component of dH(V) \ X(V) to a point, but otherwise sends distinct 
points to distinct points. The components in D of the complement of the rational 
convex hulls correspond naturally to S1 x WE/,1,1, or, at least, to its preimages in the 
universal cover of B. These components are known as Levy convex hulls. Thus, the 
Resident's view of the universal cover of B, with the preimages of V and S1 x We/5i,i 
in it, is D, decomposed into rational and Levy convex hulls. The correspondence is 
consistent with the actions of TT\(B) on the universal cover of B and on dD. 

The geodesies in the boundaries of the rational or Levy convex hulls have special 
properties. They all project down to the same simple closed loop £2 in C \ Z . The loop 
("2 is actually well-defined up to isotopy in C \ Y(gai)) (as we shall see in Chapter 3, 
especially 3.13), and C2 C g^ite) up to isotopy in C \ Z(gao). The loop ( 2 is related 
to the cusp at a = oc in V34 (which 72 is a simple loop round). Assume (without 
loss of generality) that ao is near 00. Let C2 °e a bounded simple loop separating 0 
and oc. The isotopy class with respect to Y(GCI{)) is uniquely determined, because 
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V2(Gao) is near oo. The image of (2 under the map z \—> (l/^/âô)z is £2- The loop Q2 
is a Levy cycle. For more details on Levy cycles, see Chapter 2. The isotopy class of 
(2 is illustrated below. 

Period 3n = l bounding loop. 

Example 3. — Now we consider B^i2 and 14,2, which are similarly defined, this time 
using Z(g) = #~2({0, 00,1}). Then B?)j2 is a chain of three geometric pieces: the 
pieces 14,2 and S1 x We/,i,i joined as in the case of £?3,i, and, in addition, a piece 
14,1,1, which is the family of maps 

hb:z\—> bz + z2, b G C, b ^ 0,4. 
The critical points of hb are C\(hb) — 00 (which is fixed) and c2(hb) — —6/2, so that 
the second critical value is V2(hb) = — b2/4. The set {00, 0, —6} = hb({0, 00}) contains 
two fixed points 0, 00, and —b is the other preirnage of 0 under hb. The restrictions 
on parameters in 14,1,1 ensure that v2(hb) 0 h^1 ({0, 00}), which may explain the 
notation: there is one fixed critical point, one other fixed point, and V2{hb) avoids 
both these and their first preimages. Let 7̂  be the negatively oriented loop round 0 
in 14,i,i- Then join S1 x 144/, 1,1 to 14,1,1 by joining S1 x {x} and 7J, for any fixed 
x G We/, 1,1 to obtain ^3,2- This is the Topographer's View. 

The Resident's View is similar to Example 2. It comprises an identification of lifts 
in Bs^2 of two different subspaces of B^^ with disjoint convex hulls in the disc D. 
These subspaces are (up to homotopy equivalence) 1/3,2 and the join of S1 x 144/, 1,1 
with 14,i,i- It would be possible to make a finer decomposition into convex hulls, 
giving distinct convex hulls corresponding to the sets S1 x Wef, 1,1 and 14,1,1, but 
we have elected not to do it in the main theorems of Chapter 5. The bounding 
geodesies are, again, lifts of a simple closed loop called Q2- It coincides with the loop 
of Example 2 up to the appropriate isotopy, but the set Z(g) ha been enlarged, so it 
is now defined up to a finer isotopy. Once again, the loop generates a Levy cycle. 

Example 4- — The space is a union of four pieces. The spaces 14,3 and 
S1 x 144/, 1,2 replace 14,2 and S1 x 144/, 1,1 in £3,2- Here, 144/, 1,2 (like 144/, 1,1 with 
14/, 1,1) i s the cyclic cover of 14/, 1,2 given by the exponential map and 14/, 1,2 is the 
family of maps kb G 14/, 1,1 for which v2(kb) 0 k~2({l, 00}). In general 14/,i,m will 
be the family of maps kb G 14/,i,i f° r which v2(kb) 0 /c^~m({l, 00}). The spaces 14,3, 
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12 INTRODUCTION 

S1 x 144/, 1,2 and ^1,1,1 are joined as in #3,2. Let Vi4,i,i be the cyclic cover of 14,1,1 
such that exp : Wi,i,i —>• Vi,i,i is the covering. The last geometric piece is a copy of 
S1 x W4,i,i which is joined to 14,3 by identifying 71 with the loop 

t 1—> ((• .x) : [0,2TT] —• S1 x somme fixed x P^i,i5i, some fixed x G W1,1,1. 

In the Resident's View the unit disc D is partitioned into convex hulls which are 
lifts to ¿3,3 of three different subspaces of #3,3. These subspaces are 14,3, the join of 
S1 x We/,i,2 and VMa, and ^ x ^ 1 . We have Y(g) = p~3({0, 00, l})U{v2(g)}7 and 
the convex hull boundaries project to simple closed loops Ci and C2, which generate 
Levy cycles. This loop (2 coincides up to suitable isotopy with the loop of that name 
in Examples 2 and 3. The loop £1 is associated with the cusp 0 of 14,3, in the same 
way that the loop ("2 is associated with the cusp 00. If we assume (without loss of 
generality) that CLQ is close to 0, then we simply take d to be a simple closed loop 
bounded from 0, 1, 00, and separating 00 from 0 and 1. Such a loop is uniquely 
determined up to isotopy in C \ Z(ga{)), because all points of Z(gao) are close to 
{0, 00, 1} for ao close to 0. We can even choose Ci to be approximately periodic under 
gao, because gao is approximately a period three Möbius transformation over most 
of C. 

Example 5. We omit and consider #3,5 briefly. The space 1/3,5 replaces 1/3,3, 
and 14.1,2 replaces 14,1,1 — where 14,1,2 is simply the family of maps hf, G 14,1,1 such 
that v2(hb) 0 /i^2({0, 00}). In general 14,1.™ will be a family of maps G 14,1,1 
such that v2(hb) ^ /?̂ m({(), 00}). The space S1 x U'r/. 1.2 in B3,3 is replaced by a 
union of two geometric pieces: Sl x We/,i,3 and Sl x These are joined by 
identifying S1 x {x} and S1 x {y} for some fixed x and y. An extra copy of 14/,1,1 
occurs, sandwiched between the copy of Sl x 144/, 1,1 arid a final copy of 14,1,2- Let 
7" be the loop round 0 in V(,fAA- Then Sl x {x} in S1 x We/,i,i is joined to 7^. 
A simple loop round oc in 14,/,1.1 joined to a simple loop round 0 in 14,1,2-

For n > 5, £?3,n is always a union of finitely many geometric pieces. We always 
have copies of Sl x IL4/,i,m and S1 x W\^^n> (for varying rn and rn') joined directly to 
V3,n• The chain of spaces between S1 x We/,i,m and the copy of 14,i,r (for varying r) 
increases in length. The space 14,i,r is always the end of a chain of sp>aces. 

The Resident's View is basically unchanged from that of Example 4, because we 
have chosen not to introduce a finer partition of convex hulls corresponding to the 
lifts up to homotopy convex hull of the complement of 14,™: there are more convex 
hulls, simply because the fundamental group is larger, but they are of the same types 
as before. 

Justification of String of Examples. One of the reasons for considering this string 
of examples is to try to indicate that not only topological structure is being described. 
The topological changes in this string of examples are not important. Successively 
more critically finite maps become associated with cusps in the parameter space. 

ASTÉRISQUE 288 



INTRODUCTION 13 

The Resident's View shows which of these are given by rational maps, and tells us 
how to determine which are distinct, by using the set-theoretic identification of the 
fundamental group ni(B3IN) into 7Ti(C \ Z). The Resident's View is actually similar 
to a view obtained in [R3] and [R4], but is a finite version, which makes a better 
transfer of information possible, including the identification of one fundamental group 
into another. 
Example 6. — We consider B^Q. Note that T/4,0 identifies with the space of maps 

Q,.A:Z\—> 1 + - + -T 

where (c, d) G C 2 and various points are removed. We compute these. The critical 
points are 0 = c\(gc^) and —2d/c = C2(gc,d)-> and 00 = gc,d(Q)-> 1 = <7c,d(°o)> 1 + = 
gc,d(l)-> a n ( i the condition gf: d(l) — 0 yields 
(1) (1 + c + d)(l + 2c + d) + d = 0. 
It follows that V^Q is a 10-times punctured sphere. Degeneracy of gc^ to a Möbius 
transformation occurs when (c, <i) = ( — 1, 0) or ( — 1/2, 0), giving, respectively, period 3 
and 4 Möbius transformations, and also as c, d —• 00 with either c + d = o(c) or 
2c + d = o(c). In both cases, the conjugate of gCA\ by 2 1—> ^/cz is close to a period 
two Möbius transformation. The condition that v2 is not in the periodic orbit of v\ 
yields another 6 punctures. 

Then 7Ti (JE^O) is infinitely generated. The space B^Q is still the union of pieces 
with a clearly-defined geometric structure, but this time there are infinitely many 
pieces. Fortunately, the pieces are of only finitely many different homeomorphism 
types. One of these pieces is, of course, V ô- Countably infinitely many are of the 
form S1 x SL. There is just one more, of the form SL x W2^I0, where W2_\^ is an 
infinite cyclic cover of V2,i,o- Here, V2,i,o is the space of maps 

rnb : z 1—> - 5 — ^ b G C. b / 0, 1, 2. 
The critical points are c\(rnb) = 0 and (//>/,) = —2(1 — b)/b. Then vi(rnb) — oc, 
ci(rnb) is period 2 under m&, and 1 is fixed by mb. Then H'2,1,0 is the infinite cyclic 
cover for which z ^ ez + 1 is the covering map. The join between F^o and S1 x W2,i,o 
is similar to those in previous examples. Let 73 be a simple positively oriented loop 
round the end of V^o with c, d large and c + d = o(c). Then we identify 73 with the 
loop in S1 x H/72,i,o given by 

/ 1 > (( ~'f.x). / G [H. 2TT\ some fixed .r G Uo.i.o-
We write T0 for this union of V^o and S1 x W2,i,o (in line with notation that we 

shall adopt later). The space B40 is an increasing union of spaces TK.N, where {ftn}n^o 
is an unbounded increasing sequence with KQ = 0. For n ^ 1, the ftn = logAn, where 
XN > 1 comprise the eigenvalues > 1 of hyperbolic matrices in SL(2,R), in increasing 
order. The infinitely many tori S1 x SL are indexed by Kn for n > 1. For the n'th 
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torus, the loop elt ^ (1, elt) (t £ [0, 2TT]) is joined to some closed (probably not simple) 
loop 5n in TKn_1 which intersects T/4,0 nontrivially. I know nothing about the loops 
5n, except that they are all homotopically distinct. 

We give a somewhat symbolic sketch of the subset T0 of J34 rj below. This is the 
Topographer's View. 

V4.0 

c = oo\y= S1 

c + </ = o{c) 

S1 x 

M" 2,1,0 
Period 4 n = 0: the subset To. 

Now we consider the Resident's View. Once again, the unit disc D is a union of 
convex hulls which are associated in a natural way with lifts to B40 of homotopically 
distinct subspaces of #4,0- But this time we have infinitely many such subspaces, 
although all but two of them are tori. The boundary of any convex hull corresponding 
to a lift of S[ x W2/1.0 is, similarly to before, a union of lifts of a simple closed loop 
generating a Levy cycle. The boundary of a convex hull corresponding to a torus is 
different. Any geodesic in such a boundary projects to a simple geodesic in C \ Z(g) 
(for a suitable basepoint </), which can also be regarded as a simple geodesic £ in 
C \ Y{g), but this simple geodesic is not closed. Instead, its closure is a geodesic 
lamination, which up to isotopy is contained in its preimage under g. One can then 
use g I I to define an isotopy class of a pseudo-Anosov homeomorphism o n C \ Z(g). 
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Example 7. We consider briefly B±.N for n ^ 1. For n ^ 1 there is an additional 
geometric piece homeomorphic to S1 x W e/,i,m (for varying m) joined to 14,0 round 
the puncture 2c + d = o(c) for c, d large. This is within the space T0 for B^N 

For n ^ 2 there is another copy of S1 x M^/j.m (for varying m) joined round the 
puncture (c\d) = ( — 1,0), and the space S1 x 1T4,I,O, which is replaced by a union of 
finitely many pieces. These are also within the space To for I?4,n. 

For n ^ 4, there is a copy of x VFi,i,m (or, for larger n, this is replaced by a 
chain of finitely many pieces) joined round the puncture (c,d) = (—1/2,0). and the 
infinitely many copies of S*1 x Sl become S1 x S1 x 114,1,7»/ (which is replaced by a 
chain of finitely many pieces for larger n). No chains develop between 14./, and the 
first adjacent spaces. This is the Topographers View. The Resident's View is similar 
to that in Example 6. 

Example 8. We consider one feature of BQ^. Stimson's calculations [Sti] indicate 
that Ve,o is a punctured surface of genus 6. This time, one of the geometric pieces 
joined to 14, o in £>6i0 is S1 x 114,1,0? where 114, uo is a cyclic cover of 14,i,o- L* the 
Topographer's View, there are three handles joining Sl x 114,1,0 to 14, o- The join is 
from loops round three different punctures in Vf̂ o to the loop S1 x {,/;} in S1 x U 3.1.0 
for any fixed x in W-SJ^Q. This has consequences for the Resident's View also. This is 
one of the simplest parameter spaces in which convex hulls corresponding to lifts of 
one of the ''subsidiary spaces" 6'1 x 114,1,0 in this case have boundary geodesies 
of more than one type, in fact of three different types in this case. The geodesies 
project to simple closed geodesies which generate three nonisomorphic Levy cycles. 

Example 9. We consider an example of a different type. For c £ C let 

/,(--) = z 2 + c. 

and, for p ^ 2 let V be an irreducible component of 

V = {g = fc o fd : c, d G C, 0 has period p, c £ |r/(0) : 0 ̂  i ^ p}}, 

quotiented by conjugation by Möbius transformations. (This actually means quo-
tienting by the equivalence relation (c,d) ~ (cue, uü2d) ~ (uj2c,ujd), where LO3 = 1, 
uj / 1.) Let B be the larger space of degree four orientation-preserving branched 
coverings with fixed critical point 00 of multiplicity 3 and three other critical points, 
including 0 and two others which map to the same critical value V2{g), such that 
0 = ci(g) has period p, 1)2(9) ^ {#'''(0) : 0 4 i ^ p} — Z(g). Such a space B is of poly
nomial type because of the presence of a fixed critical point of maximal multiplicity. 
The Topographer's View is that the inclusion of V in B is a homotopy equivalence. 
The Resident's View is that the identification of TTI(V) = JTI(B) into 7Ti(C \ Z(g)) is 
injective and extends continuously to a homeomorphism of the boundary dD of the 
universal cover D of V to the boundary dD of the universal cover D of C \ Z(g), so 
that the covering group 7Ti(V) can be regarded as acting on either circle dD. (The 
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Resident's View is not actually proved for polynomial type in this paper, but it is 
true.) 

We give a very rough statement of the Topographer's View and the Resident's View 
below. The results concern a space D of branched coverings of either polynomial or 
degree two type. It is hoped that the examples above indicate roughly what these 
words mean. Full statements are deferred until Chapter 5. The results are split 
between five theorems in Chapter 5. All necessary concepts are defined in Chapters 
1-4. 

Topographer's View 
(1) Let B be of polynomial periodic type. Then the inclusion of the sub space V of 

polynomials in B is a homotopy equivalence. 
(2) Let B be of degree two periodic or eventually fixed type and V the subspace 

of rational maps. Then the inclusion of V\ in B is infective on fundamental groups, 
for any component V\ of V. The space B is an increasing union of spaces BKN. In 
some cases, we have HC0 — 0 only, but in the other cases, {Kn}n^o is an increasing 
unbounded sequence with KQ = 0 and V C BQ. For each n ^ 0, BKI) is homotopy 
equivalent to a finite ordered graph of topological spaces. For each such graph, the 
edge topological spaces are all tori. For n — 0, the node topological spaces include the 
components of V. For n ^ I, the node topological spaces include the components of 
B K n „ r The graphs and their nodes and edges can be computed from the Resident's 
View. 

Resident's View. Let B be of degree two type, with one critical point periodic or 
eventually fixed for all maps in B. Let V denote the space of rational maps in B. Let 
G = TTI(B). Let B denote the universal cover of B. Let D denote the closed unit disc. 
There is a, partition V{B) of D into convex regions, and an action of G on dD, such 
thai the following hold. The action of G on dD extends to an action on the convex 
regions. There is a, G-invariant coarsening VN(B) of the partition V(B) restricted 
to a subset of D, such that the quotient by the G-action of the dual graph of VN{B) 
is the graph used to describe BK() from V if n — 0, and BKN from BKN_1 if n > 0. 
Each lift V\ to B of a component V\ of V corresponds to a single convex region C in 
the partition V(B), whose stabiliser in G is 7Ti(Vi). There is a monotone map from 
dD = dV\ to dD fl dC minus countably many points, which is homommphism of the 
two TVi(V\)-actions. The inverse of this map extends continuously monotonically to 
map dC to dD = dVi. 

All structure can be computed from any f G B. 

There is, implicit in the Resident's View, a combinatorial condition for the space V 
of rational maps in B to be connected 

The Topographer's and Resident's Views are proved using an iteration on a finite-
dimensional Teichmuller space which is analogous to the technique used by Thurston 
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to prove a géométrisation theorem [D-H3], [T2] for critically finite branched coverings 
of C. Both the method of proof and the results obtained can be regarded as a special 
case of a generalisation of Thurston's Theorem. We summarize a reformulation of 
Thurston's Theorem in Chapter 1. It is clear from the present work that the degree 
two result that we obtain is indeed only a special case of a generalisation of Thurston's 
Theorem to families (rather than single maps) of branched coverings in which some 
critical points are constrained to have finite orbits. In order to deal with the higher 
degree case, one has to understand Thurston obstructions better than I do at present. 
I believe that work of Shishikura (dating back to at least 1988) in which he derives 
trees with expanding metrics from Thurston obstructions, essentially carries out the 
classification of Thurston obstructions, but he has not yet written up this work. 

Thurston's theorem gives a way of projecting a critically finite branched covering to 
a rational map which is actually semiconjugate to it, if a certain combinatorial condi
tion is satisfied. (The method also gives much information even in the absence of the 
combinatorial condition.) The present method also involves projecting branched cov
erings to branched coverings which are either rational maps or preserve some geometric 
structure. But there is not, nor was there ever intended to be, any relation between 
the dynamics of individual branched coverings and their projections. However, pro
jection along an entire path can, and often does, preserve dynamical information in 
some sense. The present work, like Thurston's Theorem, involves finite-dimensional 
Teichmuller spaces. 

The organization of this paper is as follows. 
Chapters 1 7. We develop the basic concepts and theory which enable us to state 
the main results, the Topographer's View and the Resident's View, in Chapter 5. The 
theory developed in these chapters is mostly combinatorial or topological in nature. 
In Chapter 1, we summarize some basic material about mapping class groups of 
punctured spheres, and adapt it to our purposes. We develop a theory of invariant 
loop sets satisfying a Levy Condition in Chapters 2-4. This theory is suggested by the 
theory of Thurston obstructions [T2] for critically finite branched coverings, which 
has been extensively studied by many authors ([TL], [L] for example). In Chapters 
6-7 we start to reduce the proofs and identify the main steps. 
Chapters 8-16. — We develop the theory of Teichmuller distance which we will need 
in the proofs. The theory developed is specific to Teichmuller spaces of marked 
spheres, although some of it extends without any difficulty to the Teichmuller space 
of any compact marked surface. Some of the material appears to be new. Other 
material undoubtedly is not, but in any case work is needed to get it into our context. 
We start (Chapter 8) with a formula for the first derivative of Teichmuller distance, 
which is clearly related to Ear le 's original formula [Ear] but in a special case where 
very simple coordinates can be used. The proof also bears a resemblance to that 
of F. Gardiner [Garl]. We then derive a formula (Chapters 10-13) for the second 
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derivative. I am not aware of any existing analogue in the literature, although I am 
sure the distance function is known to be generically C2. We actually show that the 
distance function is C2 everywhere at nonzero distance for marked spheres, a result 
which appears to be new. Other topics covered include: an analysis of the distance 
function in the thin part of Teichmuller space (Chapters 9, 14-15); a characterization 
of points on or near a geodesic between two points in Teichmuller space (Chapters 
14-15); triangles of geodesies in Teichmuller space (Chapter 15); and a number of 
results about when quadratic differentials can be expected to have the "same shape" 
in the thin part of Teichmuller space. 
Chapters 17-24: Proof of the Topographer's View. — The steps needing proof were 
isolated in Chapter 7. Basically there are two of them, covered in Chapters 17-21 and 
22 24 respectively. The first involves using a natural analogue of Thurston's pullback 
function [T2], [D-H3], together with pushing (a technique which forced much of the 
development of the Teichmuller theory) to homotope certain branched covering spaces 
to subsets with a geometric structure, joined together by handles. The second step is 
then an analysis of these handles. This analysis made necessary the interpretation of 
the second derivative of the Teichmuller distance function in Chapters 10-13. 
Chapters 25-31: Proof of the Resident's View of Rational Maps Space. — The proof 
of the Resident's View was reduced to this step in Chapter 7. This is basically a 
result about extending a map from one disc to another to a map of one boundary 
to another. Such a result is a key point in the proof of the Mostow rigidity theorem 
[Mos], a result to be borne in mind, although in the present case the map of discs is 
very far from a quasi-isometry. The proof involves extensive study of how covers of 
certain moduli spaces -moduli spaces of rational maps sit inside Teichmuller space. 
Thurston pullback has to be employed again, although this time it is "foreshortened" 
in a certain way. The theory of triangles of geodesies, and the analysis of points near 
geodesies between two given points (Chapters 14-15) is important in this proof. 
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CHAPTER 1 

THE TOPOLOGY OF SPACES OF HOMEOMORPHISMS 
AND BRANCHED COVERINGS 

1.1. Homeomorphisms of the Sphere. — It may be as well to start by stating 
the obvious. We shall use C throughout to denote the two-dimensional sphere, even 
when we are not considering the complex structure. We denote by Hom+(C) the 
topological group of orientation-preserving homeomorphisms of the sphere. This space 
is path connected and locally contractible. The inclusion within it of the group of 
Möbius transformations is a homotopy equivalence. Thus, the fundamental group 
of Hom+(C) is that of PSL2(C), which is Z2. Hence, the quotient of Hom+(C) 
by left (or right) composition by Möbius transformations is simply connected. Let 
X C C be a finite set. We can also consider the set Hom+(C,X) of orientation-
preserving homeomorphisms fixing X pointwise. This topological group is, of course, 
not connected, but locally path-connected and locally contractible. If X has one 
or two points, without loss of generality, X — {oo} or {0,oo}, the inclusions of, 
respectively, affine transformations or scalings z H-> \Z (A G C*) in the identity 
component of Hom+(C,X) are homotopy equivalences. In these cases, the quotient 
of the components of Hom+(C, X) by right or left composition by these subgroup of 
Möbius transformations are again simply-connected. If X has three or more points, 
the components of Hom+(C, AT) are simply connected. The group 7r0(Hom+(C, X)) 
is, of course, the pure modular group PMG(C,X), more usually described as the 
group Hom+(C, X) modulo isotopies fixing X. The larger group MG(C,X) is the 
quotient, by isotopies that are constant on X, of the group of homeomorphisms of C 
which map the set X to itself. 

1.2. <ja. — As in [R3], [R4], we use the notation aa for a homeomorphism of C 
which is defined by a path a, where a is any locally injective path in C, parametrised, 
for convenience, by [0, 1]. If a is injective, the homeomorphism o~a is defined to 
be the identity outside a small disc neighbourhood of Im(cv), and to map a(0) to 
a(l). In general, we write a as a product cx\ * • • • * ar of simple paths, and define 
o~a. — o~ar

 0 ' ' ' 0 aai • Although this is not a very precise definition, if, for example, 
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a is a closed loop with a((0,1)) C C \ X but QJ(0) = a(l) G X for some finite 
subset X, then <ra is well defined up to isotopy constant on X, and depends only on 
the homotopy class of a in C \ X. Such homeomorphisms are commonly used to 
generate PMG(C,X) ([Mag], [F-B], for example). Similarly, if Xt (0 < t ^ 1) is a 
continuous family of finite subsets of C, and #(Xt) is constant, then there is a path 
(ft of homeomorphisms with cp0 = identity and (pt(Xo) = Xt, and if Xo = Xi, the 
isotopy class of (pi, relative to isotopies which are constant on XQ , is determined by 
the path Xt. Therefore, Hom+(C,X) is locally contractible. 

1.3. Homomorphisms from Fundamental Groups and Pure Braid Groups 
into Pure Modular Groups. — Let X C C be a fixed finite set, and first fix 
xo £ X. Then [a] \—> [cr"1] defines a homomorphism of 7Ti(C \ (X \ {xo}),£o) into 
PMG(C,X). Of course, if X has ^ 3 points, the image of the homomorphism must 
be trivial, since PMG(C, X) is trivial in these cases. But it is not hard to show that, 
if X has > 3 points, [a] i—• [cr^1] is an isomorphism onto its image. (Here, [, ] denotes 
homotopy class and isotopy class respectively. In future, we shall frequently confuse 
loops and their homotopy classes, homeomorphisms and their isotopy classes.) For 
example, we can use the following. If ß is a simple closed nontrivial, nonperipheral 
loop in C \ X which has essential intersections with a, then aa(ß) and ß are noniso-
topic. If X has 4 points, then [a] i—> [a"1] is an isomorphism onto PMG(C, X), which 
is thus a free group on two generators. For given an arbitrary [<p] £ PMG(C,X), 
there is an isotopy cpt of C which is constant on X \ {XQ} with po = identity, ipi = (p. 
We then take a(t) = ipt(xo), and find that [crQ] — [tp]. 

The path Xt of 1.2 is a path in the topological space y of ordered sets in C of 
cardinality n (for some n). The fundamental group of this space is the so-called pure 
spherical braid group. We can find a path ot through Möbius transformations such 
that the first three elements of atXt are constant in t. This induces a homeomorphism 
between y and ^/PSL2(C) x PSL2(C), where ^/PSL2(C) denotes the quotient by 
left Möbius composition, which is the pure modular space. We also have an isomor
phism between the corresponding fundamental groups. But the fundamental group of 

PSL2(C) is isomorphic to PMG(C,X), where #(X) = n, and the isomorphism is 
given by {cjfXt} i—» [̂ î 1], using the notation of 1.2. Recalling that the fundamental 
group of PSL2(C) is Z2, we thus have the well-known isomorphism between the pure 
spherical braid group and PMG(C,X) x Z2. 

1.4. The Presentation of the Pure Modular Group. — Although it is well-
known (see [F-B], for example), it seems a good idea to introduce here the presenta
tion of PMG(C, X) for a finite subset X. This entire paper is concerned with certain 
subgroups of the modular group or pure modular group for varying X, since these are 
the fundamental groups of the branched covering spaces that we are studying. 
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Increasing Discs. 

Once again, it is easy (but very tedious) to write down the automorphism explicitly 
in terms of any generating set of Hi, for any generating set of Hj. Finally, given any 
isotopy class [p], we can compose successively by unique ^ <G Hi so that ripj o • • • o 
'ipk-2 ° p preserves the disc boundaries dDg (I > j — 1) up to isotopy. (Actually, 
dDn^2 is automatically preserved.) Then we can compose successively with Dehn 
twists & £ Hi round dDj-i (2 ^ i ^ n — 2) so that £7- ° ' • ' ° £2 0 V;2 0 • • • 0 V;n-2 0 ^ is 
isotopic to the identity restricted to Dj, modulo Dehn twist round dDj. Then using 
the normalisation of Hi by Hj (j < z), we can rewrite 

M = №n-2 ° • ' • ° ° SR

2"1 ° * * * ° C-2] 
as 

[p] = [pn-2 O • • • O <£2], 

with pi G Hi. Moreover, this representation is unique, because if 

[(pn-2 o • • • o p2] = [identity], 

then we see by induction (for decreasing z), first, that pi preserves D^-i, and then 
that pi is isotopic to the identity. This defines the presentation. 
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The very standard type of argument of 1.3 is all that is needed to derive the presen
tation of PMG(C, X) in general. If X = {xl : 0 ^ i ^ k - 1}, let Dl (1 ^ 2 < k - 2) 
be a decreasing sequence of closed topological discs, such that Dl contains precisely 
the points Xj (j ^ i). 

Let Hi (2 ^ i ^ k - 2) be the subgroup of PMG(C, X) generated by 

{[cra] : a(0) = a(l) = xu Im(a) C Dt}. 

Then, as we have already seen, Hi is a free group on i 2) generators. It is easy to 
choose a generating set, in terms of loops a, but we leave that to individual choice. 
It is also clear that, for j < i, conjugation by and element of H3 is an automorphism 
of Hi. For if ¡3 and a are closed loops based at possibly different points and cp — o~p, 

о-в ° о-а о ап

г = (Tua. 

Xk-l / Xk-2 / Л ••• f Xi X() 
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1.5. Some Useful Facts about the Presentation. — I prefer not to give an 
explicit presentation of the pure modular group, but here are a couple of useful facts 
concerning it. 

(1) If X has ^ 5 elements, then PMG(C,X) has nontrivial commuting elements. 
For example, aa and up commute whenever the loops a and /3 are disjoint. Thus 
PMG(C,X) cannot be isomorphic to a Fuchsian group if ^ 5. (This might 
seem irrelevant.) 

(2) If a is a simple closed loop, then aa is, up to isotopy, a composition of Dehn 
twists round the loops bounding an annulus neighbourhood of a. If a encloses a single 
point of X (but, of course, is based at another point of X), then one of these twists is 
trivial. If X has 4 points, this enables us to write a a , for a based at XQ, in the form 
<j/3, for some (3 based at xi, given x\ G X. We shall use this in 1.11. 

1.6. Branched Coverings of the Sphere. — Let / : C —» C be any degree d 
orientation-preserving branched covering with critical value set Y. Then 

^2 : C \ f~ (Y) —> U/H 

is a covering. Let U denote the universal covering space of C \ Y with covering map 
7r : U —> C \ Y. Then the fundamental group 7Ti(C \ Y) acts freely on U, and for 
any subgroup K of 7Ti(C \ y), the quotient space U/K is also a covering of C \ Y 
with well-defined covering map TTK given by 7TK([U]K) — ^(u), where [U]K denotes 
the orbit of u G U in U/K. The point of covering space theory is that all coverings of 
C \ y are of this form. In particular, / determines a conjugacy class of subgroup H of 
7i~i(C \ y) of index d, consisting of those based loops whose based lifts to C \ f~1(Y) 
are closed. Then by the standard covering space theory there is a homeomorphism 

^2 : C \ f~ (Y) —> U/H 
such that / = ilH ° ̂ 2 • Now any covering space U/K of C \ Y also has the structure 
of a complex manifold in such a way that TTK is holomorphic. If K is of finite index in 
7Ti(C \ y), then U/K must be C \ FFo, up to holomorphic equivalence, for some finite 
set Wo. Any finite degree holomorphic map from one punctured Riemann sphere to 
another extends to a rational map of the Riemann sphere. So there is a finite set 
VFQ C C, a rational map fo : C —> C with f0~1(Y) — WQ and a homeomorphism 

-00 : C \ Y1 —> U/H 
such that 7iH = fo ° ^o- Moreover (again by standard covering space theory), /o, VFo, 
ipo are unique in the sense that if / i , VFi, ipi have similar properties, then ip^/1 o ip0 

is a Möbius transformation. So then write </? = 0o ° V;2- Then / = / 0 o and / and 
(f are unique up to right composition with a Möbius transformation, subject to this 
identity, fo being rational and (p a homeomorphism. Conversely, all maps of this form 
have critical value set Y and determine the same conjugacy class of subgroup H. If 
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d = 2, so that Y has exactly two points, there is obviously only one choice for H in 
any case. 

If / and g are close branched coverings whose critical value sets have the same 
multiplicities, then g — ^ o / o ^ " 1 , for some homeomorphisms p and V; which are 
close to the identity. Recall that / is critically finite if < oc, where the 
post critical set X(f) is defined by: 

X(f) = {fn{c) : c critical, n > 0}. 
Now, if / and g are close critically finite branched coverings, and # (X(f)) = # (X(g)), 
and p, 'ijj are as above, then p, ip must map X(f) to X(g). Conversely, any map 
0 o / o p~l with p(X(g)) = ii)(X(f)) is critically finite. Thus, by 1.1, the set of 
critically finite branched coverings with postcritical set of cardinality k is locally 
contractible. 

1.7. Thurston Equivalence. — Thurston equivalence for critically finite branched 
coverings / , g was introduced in [Tl] (probably the first time that the study of 
purely topological critically finite branched coverings was introduced into the study of 
complex dynamics). In [R3], two equivalent conditions for Thurston equivalence were 
given. In particular, recall that / ~ g if and only if / c^^ g for some homeomorphism 
p : C —>• C with p(X(f)) = X(g), and / g if and only if there is a path gt 

of branched coverings with X(gt) = X(g) for all t, and p o / o p~l — g(h g = glm 

Although is not an equivalence relation, / g if and only if g c^^-i / , and 
/ ~Tp0ip h whenever / g and g h. By 1.3, we can give yet another definition 
of the Thurston equivalence class of / . It is the connected component of critically 
finite branched coverings g with #(X(g)) = which contains / . This set is 
path-connected. There is also an alternative definition of the set {g : g îdentity / } , 
which can be described as the connected component of {g : X(g) — X(f)} which 
contains / . Again, by 1.3 it is clear that this set is path connected. By 1.1, if X(f) 
has at least 3 points, the set is also simply-connected. Even if X(f) has only one 
or two points, the quotient of {g : g îdentity / } by conjugation by the appropriate 
subgroup of Möbius transformations is simply connected, again by 1.1. 

In 1.3 of [R3], we refined the concept of equivalence and defined (/, Y0) ~ (g,Y\) 
for sets Y{ that contain the postcritical sets and are forward invariant under f,g. The 
definition of (/, YQ) Y\) differs from / g only in that gt = g on Yi, for all t. 
If / g then (f,f~n(X(f)) ~^Ti (g1g'n(X(g)), where ipn is defined inductively by 
po = p, Pn o / = g o pn+1 and pn = p on X(f). 

1.8. Thurston's Theorem for Critically Finite Branched Coverings 
Thurston's theorem for critically finite branched coverings of C can then be stated 

as follows. We do not define the term associated orbifold, but we recall that the 
associated orbifold of / is always hyperbolic if either # (X(f)) > 4 or the forward orbit 
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of every critical point contains a periodic critical point.The term Thurston obstruction 
will be defined — actually in a more general context, but with attention drawn to 
the critically finite case in 2.4. For now, we recall that a Thurston obstruction 
for / is a positive linear combination of disjoint simple loops in C \ X(f) which is an 
eigenvector with eigenvalue ^ 1 for some linear map defined in terms of / . For more 
detail, see [D-H3], [T2] (or 2.4). 

Theorem. — Let f : C —> C be a critically finite branched covering such that the 
associated orbifold is hyperbolic. Then the connected component of 

{g:#{X(g))=#(X(f))} 
containing f contains a rational map if and only if f has no Thurston obstruction. 
In that case, the rational map is unique up to Möbius conjugation, and the quotient 
of the component by Möbius conjugation is simply connected. 

Thurston's theorem is stated in this way to make clear that the Topographer's 
View (see Chapter 5) is regarded as a special case of a generalisation of it. This is 
not quite the usual statement but is certainly what is implied by the usual proof. For 
notes towards the proof see [T2], and see [D-H3] for a complete proof. We shall also 
be discussing the proof of Thurston's theorem in Chapter 6. In fact the "if" direction 
is essentially proved in 6.6-15, when a number of properties of the "pullback map'1 are 
proved in more generality. (The "if" direction of the result has more implications and 
is therefore more powerful, but the "only if" direction is surprisingly hard to prove in 
full generality.) The proof of Thurston's Theorem reveals a lot about the structure of 
critically finite branched coverings and their Thurston equivalence classes even when 
the associated orbifolds are not hyperbolic, or when Thurston obstructions exist. 

1.9. Definition of B(Y,fo). — It is time to specify the parameter spaces with 
which this paper is concerned. It seems a good idea to make definitions more general 
than we need at present. So let / 0 : C —> C be an orientation-preserving branched 
covering. Let Z C C be finite, with fo(Z) C Z. Let Y = Y(fo) be the union of Z and 
the critical values of fo. It may be that some of the critical values are already in Z. 
In the cases studied in detail in this work, there will always be at least one critical 
value in Z. We consider pairs (/, Y(f)) such that: 

(1) / : C —> C is an orientation-preserving branched covering of the same degree 
as fo; 

(2) Y(f) is the union of a finite set Z(f) with f(Z(f)) C Z(f) and the critical 
values of / ; 

(3) there exists a (not necessarily unique) bijection r : Y —> Y(f) which maps Z 
to Z(f), and maps any critical value v of fo to a critical value v(f) of / . Moreover, 
r o fo = / o r on Z, and v(fo) and v(f) have the same numbers of preimages, and of 
the same multiplicities. 
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Then we define an equivalence relation ~ by 

(f,Y(f)) ~ {g,Y(g)) 

if and only if there is a Möbius r : C —> C such that: 

g = rofoT-\ r(Z(f)) = Z(g). 
Let [/, Y(f)} denote the equivalence class of (/, Y(f)). Then we let B(Y, fo) denote 

the connected component of classes of [/, Y(f)] containing [fo, Y(fo)]. We write / G B 
for short, whenever possible. If / G B(Y, f0) then B(Y, fo) = B(Y(f), / ) . Of course, 
this notation does not make very clear that the structure of Y includes the named 
subset Z with dynamics and critical values of fixed topological type, but it is at least 
reasonably simple. We write V(Y,f\) for the connected component of [f:Y(f)} for 
which / is rational and containing [/i, Y(/i)]. 

As in 1.6, g G B(Y, f) if and only if g can be written in the form 

•\\) ofo cp~l 

where <p, ip are orientation-preserving homeomorphisms with y!j(Y(f)) = Y(g), 
(f(f~1(Y(f))) = g~1Y(g). Thus, as in 1.7, B is locally path-connected. 

In present applications, B(Y, fo) will usually be a family of degree two maps, that 
is, fo will usually be a degree two branched covering. In that case, Y will contain 
two critical values ?>i, V2, with v\ G Z and 02 ^ Z. We then say that B(Y, fo) is of 
degree two type. Actually, our setting is more specific. The critical value in Z will be 
either periodic or eventually fixed. There may be one other periodic orbit in Z, but if 
so, it will be fixed. In these cases, we shall say that B(Y, fo) is of periodic degree two 
type or eventually fixed degree two type. We shall also have to consider the case when 
B(Y,fo) is a family of degree d maps (for some d) and Z contains one fixed critical 
point of local degree d, and any other critical value in Z is periodic. In this case, we 
shall say that B(Y, fo) is of polynomial type. Our real interest is in the degree two 
periodic type, but studying this case leads to the study of the other cases. 

We shall continue to use the notation of the introduction for some periodic degree 
two type spaces. We write 

Hp, n 5 Bp, 1, r i , B e j ̂  7 rl ^ n 

for the spaces of degree two branched coverings B(Y, fo) where / 0 has critical points 
c\. i>2 with v\ G Z, V2 ^ Z. Furthermore the set Z and its dynamics are described 
respectively by: 

Z = fön({fo(vi) •• 0 sc i < p}), fSM = vly /¿(«1) ̂  V l , 0<i<p, 
Z = /o""({/o(«i) :0^»<rfU {x}), f0{x) = x, Vl as above, 
Z = fö'"({fo("i) : 0 < i < m}), /om+1(t'i) = fT(v{), /^(v,) ± ffa), 0 < i < m. 

For the spaces of rational maps within these spaces, we write 
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Vp^ii Vp,l,n* Vef,'rn,ri-
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It would be possible to vary the definition of B(Y, fo), and add extra structure by 
numbering some of the points in Z or Y. We could then require the bijection r in the 
definition of equivalence relation to preserve numbering. The examples we are chiefly 
interested in do not necessitate such numbering. However, for degree two type, we 
shall habitually refer to the critical values as v\ and v2 with v\ G Z and v2 ^ Z. 

1.10. Definition of (B(Y, fo), N). — It will also be necessary for us to consider 
pairs of spaces (B(Y, / 0 ) , N), where B — B(Y, fo) is as in 1.9 and N C B is a finite 
union of neighbourhoods of ends as follows. Fix e0 less than the Margulis constant 
for surfaces. Each component TVi of N will be an open neighbourhood of a single 
end, and if N\ and N2 are two such, then N\ D N2 — 0- For / G N\ there is a set 
T(/, iVi) C C\Y(f) of geodesies of length ^ Eo with respect to the Poincaré metric on 
C \ y(/), which varies continuously for / eNu such that T(f\ Nx) c / _ 1(r(/, N±)) 
modulo Z(/)-preserving isotopy, f~l(T(f1N\)) C TVi) modulo Z(/)-preserving 
isotopy and trivial and peripheral loops, such that the lengths of all geodesies in 
T(/, N1) have length < eo for / G N\, and at least one of these geodesies has length 
exactly Eo for / G 0N\. Then N\ and dN\ are invariant under Möbius conjugation 
as they need to be because, strictly speaking, B(Y, fo) is a set of Möbius conjugacy 
classes. Furthermore the set T(f\Ni) is to have additional properties. Each loop 
7 G r(/,A/i) bounds a disc D{j) c C such that D(j) n D(^') = 0 if 7 / 7', 7, 
7' G T(/, N1). If, for at least one / G A/i, each component of f~i(D(j)) is a disc 
for all 7 G r(/, iVi), then the same is true for all g G N\. Suppose that this is true 
for N\. We can then define a branched covering g\ and sets Z(pi), associated 
with N\. Fix any f <E N\. Choose a set Z(g\) to consist of one point in each disc 
D(j) (7 G r(/, N1)) intersected by Z(/), together with all the points of Z(f) which 
are not in any such disc D("y). Extend this to a set Y(gi) by adding in a point 
from each disc D(^f) which contains no point of Z(f), and any remaining points of 
Y(f) \ Z(f) which are not in any disc D(j). The critical values of g\ will then be 
the points of Y(gi) which are either contained in discs (̂7) containing at least one 
critical value of /, or are critical values of /. We now choose the critical points of g\\ 
one in each component D\ of some f~1(D(^)) which contains a critical point of /, in 
which case the local degree at this critical point is the degree of / : D\ —• (̂7), and 
the remaining ones are the critical points of / which are not in any f~~1(D(~/)). So 
the critical points, critical values and local degrees at critical points have now been 
specified. The map g\ then maps points of Y(gi) so that a point in D(j) maps to a 
point in /(12(7)), and gi = f near any point of Y(gi) which is not in any disc D(j). 
Then B(Y(gi),gi) depends only on TVi, not on the choice of / G N\. If g\ exists, then 
N\ is the intersection with B(Y,fo) of a neighbourhood of B(Y(gi), gì) in a larger 
space of branched coverings. 

We are mostly interested in spaces B(Y, fo) when fo is degree two, one critical point 
vi is in Z and Y\Z — {i^}. In that case, a natural example is when T(/, iVi) consists 

ASTÉRISQUE 288 



CHAPTER 1. THE TOPOLOGY OF SPACES OF HOMEOMORPHISMS 27 

SOCIÉTÉ MATHÉMATIQUE] DE FRANCE 2003 

of a simple loop bounding a disc containing v2 and exactly one point of Z \ {^I}, and 
a simple loop bounding a disc round each of the other points of Z, for / G Nj. 

We shall always consider the situation when all but at most one component of N 
is like Ni above, that is, g\ exists. The exception will only occur as follows. The 
space B(Y,fo) will be of polynomial type with v\ a fixed critical value of maximal 
multiplicity. For the exceptional neighbourhood No and / G iVo, T(/, N0) will consist 
of a single loop 7 bounding a disc D(j) containing v\ and at least one other critical 
value of /. Since v\ has maximal multiplicity, f~x{D(^)) will not be a disc. 

1.11. Modular Subgroup Interpretations of ir\(B). — Let B = B(Y,f0). As
sume that Z = Z(fo) contains at least 3 points. Then each (not necessarily closed) 
path t 1—• gt in B (t G [0,1]) defines paths through sets Y{gt), g^1Y(gt) starting 
from l7", g0~

1Y\ with Y = Y(go). Thus, by 1.2, we have paths through homeomor
phisms starting with the identity and ending with homeomorphisms fixing Y", go~lY. 
The end homeomorphisms are uniquely determined up to isotopies constant on Y, 
g^l(Y) by the homotopy class of the path in £?, where we take homotopies fixing 
endpoints. Note that the paths through homeomorphisms can be taken of the form 

<Pu 9tl 0 <Pt O0o, 
and pt and g^1 o pt og0 are isotopic via an isotopy constant on Z. We write $i({^}), 
2̂ ({#£/) for the isotopy classes of the end homeomorphisms pi, g^1 o <p1 o g0. 

We now restrict to closed paths in B based at some go G B: that is, elements 
of 7Ti(B,go). Again by 1.2, $1 and 2̂ are antihomomorphisms of 7i\{B^go) into 
MG(C, Y) and MG(C, g0~

1Y). We prefer to keep these as anti-homomorphisms rather 
than take inverses to get homomorphisms. Write pi = p. We define 
G\ = {[p] G MG(C, Y) : g^1 o p o g0 is well defined and isotopic to p mod Z(go)}. 

Then $1(^1(5,50)) C Gi. 
The following lemma will imply that if two paths in B with the same endpoints 

give homeomorphisms which are isotopic via isotopies constant on Y (or g0~
1Y), then 

the two paths are homotopic in B. 

Lemma. $1 is an anti-isomorphism, onto G\, and §2 is injective. 

Proof. — First we prove that $1 is injective. Injectivity of $2 then follows imme
diately. So suppose that $>i({gt}) = [identity]. Then we have a path pt through 
homeomorphisms with pt(Y(g0)) = Y(gt) and pi is isotopic to the identity mod
ulo Y(g0). We can assume without loss of generality that pi is the identity. We 
can also assume that {0, l,oo} G Y(gt) for all t and that these are fixed by all pt. 
Since Hom+(C, {0,1, oo}) is simply-connected (1.2), there is a continuous family pSit 

((s,t) G [0,1] x [0, 1]) with ipo:t — pu pi:t = po,s = Pi,s = identity for all s,t. Then 
define 

9s,t = P7} °9t°Ps,t. 
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Then gij = gt but Y(go,t) — Y(g0) for all t. So there is a continuous family i/)t fixing 
Z(go) with 

9o,t = 9o° il>t-
Then, since Hom+(C, Z(go)) is simply-connected, {ipt} is a trivial path in 

Hom+(C, Z(go)), and hence both {go,t} and {gi,t} = {9t} are trivial in B. 
Now we show that 3>i is surjective. Let [p] G G\. Let pt (t G [0,1]) be a path 

from the identity to p. Then since p and g^1 o p o g0 are isotopic modulo Z(g0), we 
can choose a path ipt from the identity to g^1 opog0 with ipt(Z(go)) = pt(Z(go)) for 
all t. Then 

9t = ¥t°9o o^t"1 

is the required closed loop with &i({gt}) = [p\. • 

1.12. A Set-theoretic injection of i\\ (B) into 7Ti(C\Z). — Let Y\Z = {v} be a 
critical value of go, with just one critical preimage c, as happens in all the cases (mainly 
degree two) which most interest us. Then the isotopy between homeomorphisms pt 

and g^1 o pt o g0 = tpt given by the path {gt} in 1.11 can be sharpened: there is a 
path at starting from v(go) such that 

Pt = il)toaat in MG(C,y). 

We are particularly interested in this in two special cases. 

Case 1. — Let go{v) — v and let {gt : t G [0,1]} be a closed path. Then a\ — a is a 
closed path. So Ci can be described as 

(1) G\ — {p G MG(C, Y) : g^1 o p o g0 o erQ = p in MG(C, Y), 

for some a G 7Ti(C \ Z, i;)}. 

Now using the above write ijj = g^1 o p o g0. Then the image of $2 is G2, where 

(2) G2 = {ip e MG(C, : ffo"1 o 0 o aQ o g0 = i> in MG(C, ^ F ) , 

for some a G TT\ (C \ Z, ?;)}. 

Then we define p : 7Ti(B,go) —» TTI(C \ Z,v(go)) by 

P({#}) = 
We can also regard p as a map on G\, since G\ and 7Ti(B,go) are anti-isomorphic 

Case 2. — Let g\ G AT, with near a point of Z(gi) which is not fixed. We can 
choose the homeomorphisms pt (t G [0,1]) so that p^1 is bounded except near v(gt), 
when v(gt) is near a point of Z(gt). This means that ijj^1 is bounded near v(gt), and 
the second endpoint of at is near the corresponding point of Z(go). Then we define 
p2 : TTi (5, TV, # 0 ) — TTI (C \ Z, Z, v(^0)) by 

P2({#*}) = «• 
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Lemma. — The maps p and p2are injective. 

Proof. — Although p is not a group homomorphism, if 3>i(/?i) = [<£>i], $2(Pi) = 
and P denotes the reverse of the path /3, we have 

piß, *ß2) = Mp(ß2)piß, *ß2) = Mp(ß2)piß, *ß2) = Mp(ß2)piß, *ß2) = Mp(ß2) 

p(ß1) = Mp(ßi)) = <pi(p(ßi))-
Now let 

P(ßi) = P(fo). 
Then 

piß, *ß2) = Mp(ß2) * P(ßl)) 
is trivial. So write 

Then 
piß, *ß2) = Mp(ß2) 

M e {[*] £ MG(C.r): [x] = [ft1 °X°0o]} = 
But go is a polynomial and by Thurston's Theorem (1.8) the Thurston equivalence 
class BQ of go is simply connected. But by 1.11, 7i\(Bo,go) is anti-isomorphic to H, 
which is therefore a trivial group. So [p] is the identity and Pi — p2 

The proof for p2 is similar. Suppose that 

Mßl) = P2(fo) 
for two paths Pi, p2 in TX\(B, AT, go) with second endpoints in ends A/"i, N2 of 2? 
near critically finite maps hi, h2. Then p2(px * /̂ 2) is trivial, and the isotopy class 
®i(Pi * P2) is represented by a homeomorphism <p mapping Y(hi) to Y(h2) so that 
h^1 o p o hi and are isotopic via an isotopy constant on Y(h\), that is, h± ~<p h2 

in the notation of 1.7. Then Ai = 7V2, so we can take h\ = h2. Then by Thurston's 
Theorem as in the case of p, p is isotopic to the identity, and so P2 * Pi is a trivial 
path, as required. • 

1.13. An action of 7Ti(B,go) on the unit disc boundary. — Once again, let 
Y \ Z = {v} and go(v) = v. Let [p] G G\ and a = p([p}) and ijj = p o a~l. Then, in 
the notation of 1.7, 

o~a o #0 go. 
Similarly, for any g0 £ B, if a = p2(p) for some P G 7Ti(B, N,g0) and /10 is the 
critically finite map (up to equivalence) determined by A/", then 

cra o g0 h0 

if ?;(/io) is preperiodic, and if v(ho) is periodic then 

0> 1 O (TA O ûf0 ^ /¿0, 
where £ is a path in C \ Z(go) with g0

 0 C — a UP to homotopy preserving endpoints 
and Z(go). To see this, we first note that the result is obviously true if we take g0 
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in B close to ho, because then a (and () can be taken as short paths. Then we note 
that the equivalence remains true if we vary go continuously. 

Let D be the unit disc and let ix2 : D —» C \ Z be the universal covering map. 
We assume that 7^(0) = v. We are now going to show how 7i\(B,go) acts naturally 
on dD. Let (3 G ni(B,g0). Let p = 4>i(/3) and V; = ®2{P)- Let p2((3) = a and let 
5 : [0, 1] D be the lift of a with 5(0) = 0. Let jp'1 be the lift of ip~l such that 
^-1(0) = 5(1). Then | <9£> depends only on the class of tp~l in MG(C, Z) (which 
is the same as the class of p~l). Then for z G dD, we define 

Y = ZU{v2}. 
Note that TTI(C \ Z,Z,go) can be regarded as a subset of dD, because if we have a 
path a £ TCI(C \ Z, Z, go) then we can take the lift 5 : [0, 1] —> D with 5(0) = 0, and 
5(1) G dD. Then if /?i G 7Ti(B,go) and /?2 G 7Ti(B, N, g0), and we regard Im(/?2) as a 
subset of <9D, 

A • P2{fo) = p2(/̂ i * fa) = ax*ip1 1(a2), 
where &2(/3i) = ip\, ai — p(/3i), a2 = p2(fh) and at is the lift of with a^(0) = 0. 
This follows from the multiplicative properties of p2, as in the lemma in 1.12. Thus 

P2 • {MB,9o),*i(B,N,g0)) — (n1(B,g0),dD) 
is a homomorphism of left-TTi (B, go factions. 

1 . 1 4 . When Z has 1 or 2 points and B is degree two. — Now we restrict to 
the case when go is a degree two branched covering with critical values v\, V2, and 
critical points c\, c2, with v\ G Z and v2 ^ Z. Write 

Y = ZU{v2}. 

If Z has one or two points, then every branched covering represented in B is of the 
form go o 99 up to equivalence, where p fixes Z. This representation is unique if Z has 
two points, but if Z has one point so that go(z) = z2 without loss of generality, 
and Z = {00} — then p can be replaced by z 1—> A-1(p(A22:) for any A G C*. It follows 
that G = 7Ti(B) is trivial if Z has one point, and infinite cyclic if Z has two points. 

1 . 1 5 . Return to Example 1 . — We return to Example 1 of the Introduction. 
Thus, any element of B^^o is represented by a branched covering / with critical values 
v\(f) = 00 with period 3 orbit 00 1—> 1 1—> 0 1—> 00, and v2(f) ^ {00,1,0}, and any 
element of V^o is represented by a rational map with precisely the same properties. 
Recall that T/3,0 identifies with C \ {0, ±1}, where a G C \ {0, ±1} identifies with the 
map 
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c2 = c2(a) = 2a 
a + 1 c2 = c2(a) =c2 = c2(a) =c2 = c2(a) = 

c2 = c2(a)2 
4a 
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Now we claim that the inclusion of V^o in £>3?u is a homotopy equivalence. In 
particular, 7Ti(i?3,o) — TTI(^,O)- It suffices to construct a homotopy inverse to this 
inclusion. Fix g G -63,0 with c\(g) — 0, v\(g) = oc and g(vi(g)) = 1. If v2 7̂  0, l,oc 
(which is true throughout -63.0), then there are exactly two values of a, a = a 7 , j = 1, 2 
such that ga has the same critical values as g. Then, as explained in 1.6, by standard 
covering space theory, there is 0 7 G H o m + ( C ) fixing the critical point 0 such that 

// = ga j o 0 r j = 1, 2. 
In fact, since oc G g~^(l), the covering space theory says that given either point 
x G we can choose '0y- so that 0 7(oo) = x. So since we can take x = oc, 
we can choose 'ijjj so that ijjj (oc) = 00. Write # - 1 ( 0 ) = {l,x'}. Then ipj must map 
{l ,x '} to {l,cij}= .9,7/(0). We have 

#a2 = gai o -0i o 
It follows that 0i o is a Möbius transformation, but not the identity, because 
gax ^ ga,2. So we cannot have -0i o '02~

1(1) = 1, because if so then ipi o '0.J1 fixes the 
three points 0, oc and 1, and must be the identity. If r , (1) = a y for both j = 1 and 2 
then t-j(.r') = 1 for both j = 1 and 2 and 0i 0 i J

2

l ( ^ ( ) ( > s fix 1, a contradiction. So 
exactly one of '0i, 02, say 0 i , must fix 1 also. It follows that 

£3,0 = {/ 0 01 : / ^ Vs,0, 0i G Hom+(C), 0i fixes 0, 1, oc}, 
and both / and 0i are uniquely determined by / o 0 X . 

Then the map 

/ o V'! / : /.'.,,, V3.o 
is well-defined and is the required homotopy inverse to inclusion. 

Now we shall give an explicit description of the map 

p : 7ri(£3,o) = 7Ti(V3,o) —> TTI(C \ {0, 1, oc}). 

Three values of a, one real and negative, and a pair of complex conjugates, give 
polynomials, up to Möbius conjugation. For the sake of concreteness, we denote by 
CLQ the value in the upper half-plane, and by ci\ the real and negative one. Thus, 

-(ao - Ir 2d0  = = òn. sav. 
The Julia set of gao includes the rabbit-like set sketched very roughly below. 

Indeed, this Julia set is sometimes known as the rabbit. The important feature of it 
is that gao fixes the intersection point of the three ears and maps homeomorphically 
arcs connecting the points 0, oc, 1 to the intersection point, permuting these arcs 
(rotating in an anticlockwise direction). The Julia set of ga0 is the complex conjugate 
of that for gao, and is sometimes known as the antirabbit. The polynomial which is 
Mobius-conjugate to gao is in the upper half of the quadratic Mandelbrot set. 
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Rabbit. 

We give below a very rough sketch of the parameter space C \ {0, ±1} with the 
hyperbolic components containing ao, ao? =tl and a±. In particular, note that the first 
four of these have boundaries meeting at zero, while the last three have boundaries 
meeting at two points, which are complex conjugates. A similar sketch is given in 
[R3], and much better pictures in [W]. 

V3.0 

We consider a generating set for 7ri(V,an) consisting of simple loops round 0, ±1 
as drawn below. We shall call these loops 70, 71, 7-1. 

Even though p : TTI (̂ 3,0, &o) —» TTI(C \ {0,oc,l},60) is not a homomorphism, it 
is sufficient to describe the map on generators, if we also describe the antihomornor-
phisms $1 and <1>2 on generators in 7Ti(V3,o). Here, <£2 is $2 followed by the natural 
projection to MG(C,7), where Y — {0, 00, l,6o}- Note that <£>2 is not injective, al
though both $1 and $2 are. The images G\ of <£>i and of $ 2 are both in PMG(C, Y). 
By 1.3, PMG(C,y) is naturally anti-isomorphic both to 7Ti(C \ {0,oc,l},o0) and 
to 7Ti(C \ {0, 00,60}, 1) (f°r example). Here, we are using #(Y) = 4. Thus, we can 
regard $1 and 3>2

 a s homomorphisms from ^1(1/3,0,̂ 0) to 7Ti(C \ {0, oc, 1}, 60), or 
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a0 

Generators for 7TI(V3,o). 

equivalently to 7Ti(C \ Y',yo) for some other decomposition Y = Y' U {yo}- Write 
g = ga{). Then clearly the image of $1 in 7Ti(C \ {0, 00,60}, 1) (for example) is the 
subgroup of loops whose lifts under g are closed. This gives reassurance that $1 is an 
isomorphism onto its image, because such a subgroup is the fundamental group of a 
double cover of C \ {0, oc, 60) branched over oc, 60, which is a four-times punctured 
sphere (as is C \ {0,±1}). 

The description of p in terms of 3>i and <&'2 *s now particularly simple. Let 
lj J TTIO^O) U = °> ±X) with ^(7i) = Pj and $2(7,)_ = 0 for fi^Q e 
7Ti(C \ {(), 00, 1}, bo). Then p(^fj) = (3j * C;, where (as usual) denotes the reverse 
of (. It is easy to compute p} by considering the image of 7?- under the map a ̂  V2(a). 
Then one can compute the loop in 7T\ (C \ {(). 00, 60}, 1) or 7T] (C \ {1, oc, bo}, 0) giving 
the same element of PMG(C.F), take its preimage under g in 7Ti(C \ {lA).bo}.oc) 
or 7Ti(C \ {oc, 0, 60}. 1), and compute the loop in 7rL(C \ {0, oc. l}J)o) giving the 
same element in PMG(C, Y). This loop is ("y. We carry out this process for each of 
the loops 70, 7±i below. 

f3o and equivalent. 

It seems useful to interpret the path p('jo) in terms of the inadrnissable shared 
mating which is associated with the point 0. The concept of mating of critically finite 
polynomials (of the same degree) is due to Douady and Hubbard, and subsequently 
studied by Tan Lei [TL], and Wittner [W]. One takes two polynomials, each restricted 
to a topological disc containing the finite critical orbit, and pastes the two together 
along the bounding circle, to get a critically finite branched covering, which may or 
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Pu 11 back and (о. 

ß\ and equivalent. 

Pullback and Qi. 

ß-\ and equivalent. 

may not be Thurston equivalent to a rational map. Note that go is a period three 
Möbius transformation (as has already been mentioned in the introduction). We can 
construct a critically finite branched covering which is C° close to go, with two distinct 
period 3 critical orbits. The branched covering thus obtained has two invariant circles 
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Pullback and C-i-

up to isotopy (as we shall see) which makes it a shared mating, and is not Thurston 
equivalent to a rational map, which makes it inadmissible. We are going to show that 
the path p(7o) helps us to identify the two matings involved. 

In order to define the associated matings, it is easier to draw pictures if the rabbit 
is converted to its disc model, as shown. 

As well as converting the rabbit to its disc model, we can change gai) up to Thurston 
equivalence to a critically finite branched covering which preserves the round circle 
and permutes the set of three arcs bounding the triangle. In future, we shall call this 
branched covering Si/7 (as we have in previous papers) and this is further explained 
in Chapter 2. A similar branched covering which we call «sG/7 is equivalent to the 
antirabbit polynomial. Now we draw the antirabbit disc model on the exterior of the 
round disc containing the rabbit disc model. Note that if r/ : [0, 1] —> C is the path 
indicated, with ?/(()) = bo, then taking inverse images under or] o $i/7, the circle is 
preserved up to isotopy in C \ {0, 1, oc, bo}, and so are the two sets of arcs, one set 
interior to the circle, and one exterior to it. We can take 7/(1) close to the triangle 
vertex and perturb Si/7 so that r/(l) has period 3 under si/7. Let £ : [0, 1] —> C be 
the path with si/7 o £ = // and £(1) = sf^7(rj(l)). Then a^1 o aTj o si/7 is Thurston 
equivalent to the critically finite branched covering we constructed from go, and also 
equivalent to a branched covering which we denote by si/7 u,s 6/ 7. We summarize this 
notation (which was used in [R3] and [R4]) in 2.3. 

Now we extend the path 77 above to the closed path /3Q, we see that a new circle 
is left invariant by cr#() o 67/7, as are the arcs of the old circle meeting the new circle 

Rabbit and its disc model. 
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Rabbit and aritirabbit. Rabbit and new antirabbit circle. 

which cut separate the points 0, 1, oo from a central triangular region. The points 
0, oo, 1 are now arranged in a clockwise direction round this triangle, so that ap0 os1/7 
is equivalent to the antirabbit polynomial, that is, to ga0, and so is o~pQ o gao. Thus we 
have seen that the combinatorial properties reflect that we have traced a path from 
9a0 to Qa0 which went past gQ. 

In a similar way we can move round further from the antirabbit to the rabbit, as 
shown in the diagram of the antirabbit and the new rabbit circle. 

Antirabbit and new rabbit circle. Antirabbit with previous rabbit circle. 

The closed loop drawn above goes clockwise round 0. The same is true for £0, but 
this in itself does not prove anything. However, we now draw the antirabbit with 
the previous rabbit circle, and we see that with reference to this, the closed loop 
goes clockwise round 0 and does not cut across the central triangular region (for the 
original circle) except adjacent to 0. This shows that with reference to the original 
rabbit puncture, the path being traced is (0 and o cr#0 o ga{) is equivalent to gao. 
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CHAPTER 2 

LOOP SETS SATISFYING THE INVARIANCE AND 
LEVY CONDITIONS 

2.1. Let B — B(Y,fo) be one of our branched covering spaces. More precisely, the 
elements of B(Y) are (f,Y(f)) (up to Möbius conjugation) where / is a branched 
covering and Y(f) = Z(f)UV(f) is a union of the critical values of / and a finite set 
Z(f) invariant under / . For more precise definitions, see 1.10. We usually write / for 
(f,Y(f)), and y , Z etc. for Y(f), Z(f) where no confusion can arise. In this chapter 
we consider pairs (/, T), where T is a set of simple disjoint nontrivial loops in C\Y(f). 
The nodes and edges of the graph B which will ultimately be used to describe the 
topology of B are described in terms of such pairs satisfying certain conditions. The 
topological spaces associated to the nodes and edges, and identifications between 
them, are also described in terms of pairs (/, V). Important conditions which can be 
satisfied by a pair (/, Y) are the Invariance and Levy conditions. Important objects 
associated to pairs satisfying these conditions are periodic homeomorphic gaps and 
conjugacy of isotopy classes on these and one or two reduced map spaces. 

2.2. The Invariance and Levy Conditions. — Let (/, V) be such that / G B 
and r is a finite set of simple disjoint nontrivial loops in C \ Y(f). We do not insist 
that all loops in T be isotopically distinct in C \ Y(f). We consider the following two 
conditions which can be satisfied by (/, T). 

The Invariance Condition. - (i) For any 7 G T there exists 7' G T such that 7 is 
isotopic in C \ Z to a component of f~~l(~i'). 

(ii) For any 7 G r , any component of / _ 1 ( 7 ) is either trivial or peripheral in C \ Z, 
or homotopic in C \ Z to some loop of T. 

The Levy Condition. — For 7 G T, there are m ^ 1 and a finite sequence 7̂  
(1 ^ i ^ m) in r with 7 m = 7, 7̂  is isotopic in C \ Z to a component 7,- of f~l(7^+1), 
at least one r ) l is rionperipheral, that is, does not bound a disc containing just one 
point of y ( / ) , and for some r > 1, 7̂  (1 ^ i ^ r) is a Levy cycle for (/, Y(f), that is, 
/ j 7̂  is a homeomorphism and 71 = 7 r . 
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Remark 
(1) The definition of Levy cycle for (/, Y(f)) coincides with the usual definition of 

Levy cycle if / is critically finite and Z = X(f) (= F) , where X(f) is, as usual, the 
postcritical set of / . We allow Y to include peripheral loops (round a single point in 
Y) because Y \ Z is not invariant under / in general. 

(2) The following definition will be useful. It extends a definition in the critically 
finite case. We say that a Levy cycle {7^ : 1 ^ i ^ r} (71 = 7r) is degenerate if there 
is a disc Di bounded by 7? such that Di is isotopic via a Z preserving isotopy to a 
component D[ of f~1Di+\. It follows that each Di contains the same number (> 2) 
of periodic points of Z, and none of these points is critical. 

2.3. Examples 
(1) Let / be degree 2 such that the forward orbit of v\ is finite. Let Z(f) contain 

the forward orbit of v\, but let v2{f) 0 Z(f)- So Y(f) \ Z{f) contains the single 
point v2{f). Take any simple loop 70 which bounds a disc Ao containing v\ and v2 

but no other points of Y(f). We shall show how to use YQ to generate a loop set 
satisfying the Invariance and Levy Conditions. 

First, extend 70 to a set r 0 of disjoint simple loops by adding simple loops bounding 
disjoint discs round all the other points of Z. Then / - 1 ( A o ) is an annulus which 
contains, up to Z-preserving isotopy, just the loop of To bounding a disc containing c\. 
Then Ti, which is TQ U / - 1 ( r o ) up to Z-preserving isotopy is a set up disjoint simple 
loops up to F-preserving isotopy, is a set of simple disjoint loops in C \ Y. Similarly, 
by induction, T n + i , which is YTL U f~1(/yn) up to Z-preserving isotopy, is a set of 
disjoint simple loops in C \ Y. Then for some n we must have = T n , modulo 
trivial loops and copies. Then / - 1 ( r n ) C F n , modulo trivial loops and copies and 
Z-preserving isotopy. We claim that F n contains a nonempty loop set satisfying the 
Invariance and Levy Conditions. If V\ is not periodic then this is clear, because if 
r o C To is the set of loops bounding discs round the periodic orbit in the forward 
orbit of v\, then F 0 C / _ 1 (7o) modulo Z-preserving isotopy, and if Y'I+1 is isotopic 
to / _ 1 ( r ' ; ) via Z-preserving isotopy with Y[ C r ' ; + 1 , Y'M + L = Y'7N C YN satisfies the 
Invariance Condition for some rn, and is generated by a degenerate Levy cycle in a 
natural sense. If v\ is periodic of period p, then we consider the annuli A% such that At 

is an annulus containing fp~l(vi), 1 ^ i < p, and Ai is a component of / _ ? ( A o ) . Let 
Zi = : 1 ^ i ^ p}. Then all the At are disjoint up to Z-preserving isotopy. 
So at least one must have one trivial boundary component modulo Z\-preserving 
homotopy. That means that there is a loop 7 0 bounding a disc D0 round a point 
ZQ of Zi, and 7- + 1 isotopic to a component of / _ 1 (7 - ) via Z-preserving isotopy, such 
that 7̂ , and 7 0 are isotopic via Z\-preserving isotopy. Then similarly we can define 7,-
for all i ^ 0 so that all the loops 7- are disjoint modulo ^-preserving isotopy, and 7̂  
and Yi+P are isotopic via Z\-preserving isotopy, and j ' i p bounds a disc D'ip round 
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Z{) with D'ip C £>( i + 1 ) p and such that the only points of Y in £ ^ + 1 ) p \ D'vp are in 
Z \ Z[. Then for some rn we have 7 | m + 1 ) p = 7^p. Then we have a Levy cycle 
r o = {Ymp+i '• 0 ^ i < p} which is nondegenerate, and contains To up to ^-preserving 
isotopy if Z = Z\. In general it only contains r 0 up to isotopy preserving Z\ U {vi}. 

(2) Let / be critically finite, and X(f) C Z C f~lX(f) for some i > 0. Let F 0 

be any union of Levy cycles for / . Then we can find a loop set containing Ti which 
satisfies satisfies the Invariance and Levy conditions, and is generated by To in a 
natural sense. This is done in exactly the same way as was done in Example 1 in 
more specific cases. We have r 0 C / _ 1 ( r 0 ) up to Z-preserving isotopy. Inductively, 
we define T n + i to be f~lTn up to Z-preserving isotopy and trivial loops, so that 
r n C r n + i . This uniquely determines Tn up to F-preserving isotopy. Then for 
some n, Tn = r n + i . For this n, Tn satisfies the Invariance and Levy Conditions. 

(3) Now we specialise the second example. We use Thurston's theory of quadratic 
laminations [T2] (also described in 1.10 of [R3]), which was used to describe critically 
finite quadratic polynomials (and many others) up to topological conjugacy. We 
also use the notation we used to describe this theory in [R3] 1.10. For each odd 
denominator rational q in (0, 1), we have an invariant lamination Lq on {z :| z |< 1} 
with minor leaf iiq, where \iq has one endpoint at < 2~' ( l and other endpoint at a 
point e27rip, where p ^ q is another odd denominator rational in (0,1), and /; and q 
have the same period k under the map x i—> 2x mod 1. We shall then have Lq — Lp 

and fig = fip. A lamination is a closed set of chords in the unit disc with disjoint 
interiors. The lamination Lq is forward invariant in the sense that if £ G Lq is a 
chord in {Z : \Z\ ^ 1} with endpoints Z\, Z2 then there is also a leaf D2 G L where 
C2 has endpoints z\ and z\- If £\ is a chord with endpoints w\ and w2, then —f[\ is 
the chord with endpoints —w\, —w2. The lamination Lq is also backward invariant 
in the sense that if £ G Lq then there is £\ G Lq with —£i G Lq such that £\ = £. In 
any invariant lamination L the minor leaf is the image of the (one or two) longest 
leaves in L. Then Lq is by definition the smallest invariant lamination which has fiq 

as minor leaf. Given q, \.iq is also uniquely determined: p is the only odd denominator 
rational of the same period as q such that the leaf fiq with endpoints e2nlq and e2lxlq 

generates a forward invariant lamination in which it is the shortest leaf — and hence 
the square of the longest leaf. In general, invariant laminations are allowed to have 
diameter leaves, and hence also degenerate leaves (a single point on the unit circle) 
since the square of a diameter is a degenerate leaf. But for q an odd denominator 
rational in (0,1), Lq has no diameter or degenerate leaves. It is an important result 
from [T2] (and very useful for computation) that the different minor leaves fiq, for 
odd denominator rationals q, are disjoint with endpoints included. 

There is a critically finite branched covering sq of C which is simply Z h-> Z2 outside 
the unit disc and on the unit circle, maps leaves of Lq to leaves of Lq as dictated by the 
map on the endpoints, and then maps each gap of the lamination component of the 
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complement of ULQ in the unit disc to another gap, and is a branched covering on 
each gap of degree one or two, with at most one critical point, with degree as dictated 
by the map on the boundary. If pq has endpoints e2niq and e2lTlp then sq — sp. It is 
again part of Thurston's theory [T2] that every gap is eventually periodic, and, for q 
an odd denominator rational, there is exactly one periodic orbit of gaps for which the 
return map is degree two. The only gap in the orbit which is mapped with degree two 
by sq is the gap containing 0 and sq is defined so that 0 is the critical point. Then sq is 
chosen so that 0 is periodic, of the same period as the gap itself. The minor leaf pq is in 
the boundary of one of the gaps in this orbit, the one containing the critical value, and 
the period of this gap under sqi and hence also the period of the critical point, is the 
same as the period k of q under ^ x mod 1. We also write po = pi = 1 (the point 
on the unit circle), take LQ — L\ to be the empty lamination, and SQ(Z) — s\{z) — z2. 
Each critically periodic quadratic polynomial is Thurston equivalent to sq, for exactly 
one minor leaf pq and corresponding odd denominator rationals q, p with pq — pp. 
Conversely, for each odd denominator rational q. sq is Thurston equivalent to exactly 
one critically periodic polynomial in the family z i—> z2 + c. 

An even denominator rational q also determines a lamination LQ, and there is an 
associated map sq which can be modified slightly to be a branched covering which is 
Thurston equivalent to a critically finite quadratic polynomial. Any critically finite 
quadratic polynomial is Thurston equivalent to sq for some odd or even denominator 
rational q in [0, 1]. The situation is only slightly more complicated than in the odd 
denominator case. For each even denominator rational q there is a clean invariant 
lamination LQ with a minor gap or minor leaf pq, which might be degenerate, with 
vertex or endpoint at e2lxxq. There is a map sq preserving LQ, which is not a branched 
covering if p,q is a minor leaf rather then a minor gap, but has arbitrarily small 
perturbations to a critically finite branched covering equivalent to a polynomial. The 
polynomial corresponding to p and q is the same if and only if Lq and Lp have the same 
minor leaf or gap. Since minor gaps are always finite-sided, the map from rational to 
polynomial is finite-to-one. 

In [R3] 1.10, we also introduced the inverted laminations L _ 1 on {z :| z |> 1} 
which is simply the image of L under z i—> z~l. The critically finite branched 

covering sq H sq' preserving LQ U L~F

L is defined to be equal to sq on {z : \z\ ^ 1 and 
(sq'(2-1))"1 for {z : \z\ ^ 1} U {oc}. We did this in the case when q and q' are both 
odd denominator rationals. This was our terminology for the mating of polynomials 
introduced by Douady and Hubbard. If q or q' is an even denominator rational, we 
have a map from LQ U L",1 to itself such that a leaf with endpoint at a G Sl maps 
to a leaf with endpoint at a2. Thus, we have a self-map on the set T of closed loops 
formed from the closures of leaves in LQ U L~,1. If some leaf with a periodic endpoint 
is part of a closed loop, then all the leaves in the loop will have endpoints of the 
same period, and thus there are finitely many leaves on the loop. Perturbing sq and 
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z I—» (sq'(z~l))~1, we can make a branched covering / with Y C f~1Y up to isotopy. 
So, for varying rationals q and qr the sets Lq U L~,1, and maps sq u ,sy, or some minor 
modification of this if q or q' has even denominator, give abundant examples of Levy 
cycles, and hence of loop sets satisfying the Invariance and Levy Conditions. 

For minor leaves or gaps fiq (the gaps arise in some of the critically preperiodic 
cases), we write fip < /.iq if fip separates fiq from 0 in [z :| z |< 1}, and fio < // for all 
// / /io- Since minor leaves never intersect transversally, this is a partial order. The 
minimum //, A // of two minor leaves always exists, although it might be fio. It is not 
/io if and only if fi and // are in, the same limb. (This can be taken as a definition 
of being in the same limb.) It is a fact that if fip ^ fiq, all periodic leaves in Lp 

(and many others) are in Lq. So if p is an odd denominator rational with fip ^ iiq 

and //i-p < fiq< then fip U f-H-p generates a Levy cycle for sq u sq', or for a branched 
covering / obtained by modification if q or q' is an even denominator rational. 

Now let 1 — q' be either in the full orbit of q under z i—>• z2, or a vertex of a 
finite-sided gap of Lq. with /; such that 

fip = fiq A fip / //0-
Then we can generate a loop set Y so that (sq u sq>,T) satisfies the Invariance and 
Levy Conditions by using periodic loops in Lp U L^p, for any choice of Z. 

Below are all such possible T up to horneoniorphisin in the case Z = {f'(c\ ) : 
/ ^ 0} and ci has period 3 or 4. Here, (cpq') = (1/7,6/7). (3/7,1/3), (1/15.14/15), 
(4/15,11/15), (2/5.1/3), (2/5.2/5) or (7/15,1/3). The black dots denote the v}-
orbit, with r denoting fr~lv\, and the white dot denotes v2. The unit circle is shown 
(dashed) to indicate how the examples are computed. 

(4) Extreme Pairs Let / be degree two, let Z(f) contain the critical value v\ and 
Y(f) x Z(f) = {/'2}. Let r consist of a simple loop bounding a disc containing ¿'2, 
and a single point of Z \ {r 1 }. and simple loops bounding discs containing each of the 
remaining points of Z. Then each component / - 1 ( r ) is a single peripheral or trivial 
loop and r C / _ 1 r modulo Z(/)-preserving isotopy. So T satisfies the Invariance 
Condition but not the Levy Condition. 

More generally the condition imposed on F(/, TV]), for TVi, / and F(f.Ni) in 1.10. 
is precisely that it should satisfy the Invariance1 Condition. It will not satisfy the 
Levy Condition if for every 7 E T(f.Ni) with corresponding disc D bounded by 7 
and disjoint from r(/',iVi), every component of f~l(D) is a disc. These were the 
circumstances (in 1.10) in which we could define a branched covering g\ associated to 
N\, such that N\ was the intersection of B(Y, / 0 ) with a neighbourhood of B(Y(g\, g\) 
in B(Y,fo) U B(Y(gi.gl). We can then choose a path t h-> gf :: [0, 1] Nx U {fji} 
with g0 = /, gt E iVi for t E [0,1). Then for t E [0, 1), Y(gt, NY) varies isotopically in 
C and perturbing Y(gt, N\) to Yt in the same isotopy class via an isotopy preserving 
Y(ft), we can ensure that Yt converges to a set Y0 of peripheral loops in C \ Y(go). 
We call (go,Yo) extreme. 
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(1/7,6/7) (3/7.1/3) 

(1/15,14/15) (4/15,11/15) 

(2/5,1/3) (2/5,2/5) 

(7/15,1/3) 
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2.4. The Thurston Obstruction Condition. — The Levy Condition is mainly 
useful for (/, Y(f)) G B if B is of degree two type. For critically finite maps / , a loop 
set can be a Thurston Obstruction, and a Levy cycle is a special case of a Thurston 
obstruction. The generalisation of Thurston obstruction to the partially critically 
finite case might be necessarily messy. We give a definition below which is suggested 
by the line of proof in Chapter 6. (See 6.13.) 

Let (/, r ) satisfy the Invariance condition. For 7 G T, let 77(7) denote the same 
loop up to isotopy in C \ Z. So TT is the identity in the critically finite case, when 
Y — Z. Let [r] denote the equivalence class of T for the equivalence relation ~ such 
that Ti ~ T2 if every nontrivial nonperipheral loop of Ti is isotopic via ^-preserving 
isotopy to a loop of T 2 and vice-versa, and I \ , T2 have the same numbers of loops in 
each nontrivial nonperipheral ^-preserving isotopy class. We define [7r(r)] similarly, 
using Z-preserving isotopy. 

Then following Thurston [T2], we can construct a linear map /* : R ^ —• R ^ 1 ^ , 
regarding the isotopy classes [7] ([7] G [r]) as basis elements. If / 7 has nontrivial 
nonperipheral components 5j, and / | S7 is degree n 7 , then we set 

{n(Si)} = [TT(S2)} 

and extend linearly. The only difference from the critically finite case is that /* does 
not have a square matrix. We say a matrix A = A([y}, [5]) with all entries ^ 0 is 
compatible with /* if 

{n(Si)} = [TT(S2)}{n(Si)} = [TT(S2)} 
[]G[r] 

If Y = Z is then there is only one matrix A compatible with /*. In general, there 
might be more than one compatible matrix, because two loops Si, S2 G Y separated 
only by points of Y \ Z will satisfy {n(Si)} = [TT(S2)}. We define ||A||OG for A = (a?;,j) 
by 

\\A\\„ = Maxi(<J2M) 
Then || • I|oo is an operator norm, related to the || • |loo-norm on the domain and range. 

The Thurston Obstruction Condition. For any rn ^ 1 there are matrices Ai 
(1 ^ i ^ m) compatible with f* such that 

{n(A)} = [TT(S2)} 

If Y = Z — that is, / is critically finite - - then this coincides with the original 
condition for a Thurston Obstruction. We then have Az = A for a fixed matrix A 
for all i, and therefore 111= 1 ^ = Am. Since all entries of A are ^ 0, the condition 
lim inf^i-.oo | |A m | | < 1 is equivalent to the largest-modulus eigenvalue of A (which 
is positive) being < 1. If Y contains a Levy cycle for (f,Y(f)) then it satisfies the 
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Thurston Obstruction Condition. Our aim is to show that, in a number of cases, the 
Thurston Obstruction Condition implies the Levy Condition. This generalizes known 
results for critically finite maps ([L], [TL]). 

2.5. Definition of Ti( / , T), r 2 ( / , T). — Let (/, T) satisfy the Invariance condition. 
If D is some set with boundary in UT, then the Z-preserving isotopy class of f~xD is 
determined by the ^-preserving isotopy class of D. There are finitely many sets D\ 
such that dD\ C T and such that D\ contains the union of nontrivial nonperipheral 
components of f~1(D) up to Z-preserving isotopy, and is contained in the union of 
nontrivial components of f~1(D) up to Z-preserving isotopy. The number of such 
sets Di is bounded by #(V \ Z). Similarly and inductively, for each choice of Dri1 

n ^ 1 there are finitely many choices for Dn+i such that dDn+\ C T and such that 
Dn+\ contains the union of nontrivial nonperipheral components of f~l(Dn) up to Z-
preserving isotopy and is contained in the union of nontrivial components of f~~l(Dn) 
up to Z-preserving isotopy. We define Fi = T\ (/, T) to be the set of loops 7 in T with 
the following property: 

There is a disc D bounded by 7 such that, for all n ^ 1, all components of Dn are 
discs, however defined. 

If (/, Y(f)) is in a degree two type space, this is equivalent to saying that the 
components of f~nD never contain both critical values, however defined. 

Note that Ti contains no loop from any nondegenerate Levy cycle. We define 
r 2 = r 2 ( / , r ) by 

r 2 = r \ I \ . 

2.6. Lemma. Let (/, T) satisfy the Invariance Condition and, let Y — Ti( / , T). Then 
(/, T) satisfies the Thurston Obstruction Condition if and only if'T contains a degen
erate Levy cycle for (/, Y). 

Proof. — The following argument is essentially the same as in the critically finite case 
in [TL]. 

Let Zi denote the set of periodic points of Z. For 7 G T, since V = Ti( / , T), there 
is at least one component D of C \ 7 such that all components of f~nD are discs, 
however defined. (See 2.4.) Let n(j,D) be the number points of Zi in D and let 
71(7) be the minimum of the one or two possible numbers n(7, D). Let Br be the 
set of isotopy classes of nonperipheral loops 7 in T with 77.(7) = r- Then for any A 
compatible with /*, 

Mb], [S\) + 0 only if 7 G Br and 5 G Bs for s ^ r. 
Let At be compatible with /*. Let A;,(r,s) ^ e the submatrix defined by 

Ai,ir,s) = (Ai(h],[S])) ( b ' ] e i ? r , [S}€BS). 
Let AtJ- — A,i^r%ry Then At has a triangular form with respect to the submatrices 
Ai\r,s), with the submatrices A\^r down the diagonal. Then any product f l l i i M '1S 
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also of triangulär form, and the submatrix of ([7], [S]) entries for [7] G Br and [5] G Bs 

is 0 if s > r, and if s ^ r it is a sum of ^ mr~s products of matrices of the form 

m 
n 
1=1 

^([[7]], [[*]]) ^0 

with ti+i ^ ui ^ U. So we need to show that such products decrease in || • like Am 

for some 0 ^ A < 1. So it suffices to show that either T contains a degenerate Levy 
cycle for (f,Y) or, for some m and any choice of A;, and any r, 

(1) m II 
n 
i=l 

Ai,r 

oo 
< 1. 

We do this by showing that Al,r splits further into subblocks corresponding to isotopy 
classes in C \ Zi, so that it looks like a permutation matrix. Write [[7]] for the isotopy 
class of 7 in C \ Z\. Write 

M[h}\A[S\}) = (A(hl[S'})) (V e [[7]], 6' e [[6]}). 

Then if A is compatible with /* and [7] G Br, there exists at most one isotopy class 
[[6]], for [5] G Br such that 

^([[7]], [[*]]) ^ 0 . 

For such a [[£]], write [[5]] = T([[7JJ). Then it suffices to show that either [[7]] contains 
a loop in a degenerate Levy cycle, or, for sufficiently large ra, 

(2) 
II m 

n 
i=l 

^([[7]], [[*]]) ^0 II 
00 

< 1, 

where this is interpreted as 0 if Tp([[7]]) is not destined for some p ^ rn. If (̂[[7]]) is 
defined for all p > 0 then we can take rn to be the period of [[7]] under r. Now we 
notice that the row sums of each matrix Al(r

t~1 ([[7]]), T2([[7]]) are ^ 1, and ^ ^ if 
a disc D bounded by 5 G ([[7]]), for which all components of f~n(D) are discs, 
contains a periodic critical value of Z\. So either (2) holds, or, iterating backwards, 
some 7' G f~n(~f) with [[7']] = [[7]] intersects Z in Z\, and is in a degenerate Levy 
cycle. • 

2.7. Corollary. If B is of polynomial type and (/, T) satisfies the Invariance Con
dition, it satisfies the Thurston Obstruction Condition if and only if T contains a 
degenerate Levy cycle for (/, Y). 

Proof. Fix a critical value vi G Z of multiplicity d = degree(/). For any 7 G T 
let D = D{^) be the component of C \ 7 not containing v\. Then all components of 
f~nD are discs, however defined, and F = r i ( / , T). So then we apply 2.6. • 
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2.8. Definition of P. — For the rest of this chapter, let B = B(Y, f0) be of degree 
two periodic or eventually fixed type and let / G B. Then Z contains at most two 
periodic orbits. If it contains two periodic orbits then one of these is a fixed point. If 
it contains a periodic orbit of period > 1 then this periodic orbit contains the critical 
point c\. Also, Y \ Z = {̂ 2} = {f{c2)}. 

Lemma. — Let f G B and let (/, T) satisfy the Invariance Condition. Then there 
exists a set P with the following properties. 

(1) P is either a loop ofT or a component of C \ (UT) which is not a disc. 
(2) There is a component P' of f~lP such that P' C P up to isotopy preserving Z. 
(3) If P is a loop ofY, then f : P' —• P either reverses orientation or is degree two. 

If P is a component of C \ (UT) and f \ P' is a homeomorphism, then the boundary 
component of P which separates it from v\ and v2 is not fixed up to isotopy. 

If in addition P satisfies 
(4) / I P' is a homeomorphism, 

then P is the unique set satisfying properties 1 to 3. 

Proof. — After composing / on the right with a homeomorphism isotopic via a Z-
preserving isotopy to the identity, we can assume that T C f~lT. Let A 0 be the 
component of C \ (UT) which contains v\ this is consistent with notation we 
shall use later. Then f-l{A'Q) is connected. If A 0 n f'1(A/

0) / 0 then we can take 
P = AQ. SO now suppose that A 0 n / _ 1 ( A 0 ) = 0. The following argument is basically 
a discrete version of the result that a continuous order-reversing map of the interval 
contains a fixed point and is similar to arguments used previously, by Tan Lei for 
example [TL]. Number the loops of V and components of C \ (UT) which separate 
AQ and / _ 1 ( A 0 ) in order, A- , 1 <C i ^ r, with A[ nearest to A 0 . Then there is a 
component A ' / of f~1A'1 which separates A 0 and / _ 1 ( A 0 ) . For if not, the component 
D of C \ / _ 1 ( A Q ) containing A 0 must be mapped strictly inside itself by / — to a 
component f(D) of C \ A 0 disjoint from / _ 1 ( A Q ) . Then dD and df(D) are distinct 
loops in T separated by v\, and the sequence of discs fl(D) would have to be strictly 
decreasing, with fl\D) and fl+l(D) separated by fl{vi), which is impossible. Now 
inductively we define a component A-^ i of f~l A - + 1 , if A- 7 a component A 7 / of f~lA[ 
has been defined, does not intersect A - and separates A - and / _ 1 ( A Q ) . We take A 7 /

+ i 
to be the component of / _ 1 A 7

+ 1 which is adjacent to A 7 / . If A 7

+ 1 n A 7 /

+ 1 = 0 then 
A - R

+ 1 must separate A - + 1 and / _ 1 ( A Q ) , because A ^ + 1 is adjacent to A". We cannot 
have A" defined and separating / _ 1 ( A 0 ) and A- for all 1 ^ i < r, because Ar

r is 
adjacent to / _ 1 ( A 0 ) So for some i ^ r we must have A 7 n A'( 7̂  0. Then since 
r C / _ 1 r , we must have A'-' C A- . We then take A- = P and A'( = P r , and property 
2 holds. We have that / | P' is a homeomorphism if and only if A 0 either contains 
v2 or separates v2 from / _ 1 ( A 0 ) . In that case, the component of C \ P' containing 
f~lA'{) is mapped to the component containing A 0 . So property 3 holds. 



CHAPTER 2. LOOP SETS SATISFYING THE INVARIANCE AND LEVY CONDITIONS 47 

If, in addition, P satisfies 4, and U is a component of C \ P with U fl f~lU ^ 0, 
then by 3 for P, £/ does not contain vi, v2, and hence cannot contain any set satisfying 
1 to 3. It follows that P is unique satisfying properties 1 to 3. • 

2.9. Corollary. Let f G B and (/, F) satisfy the Invariance Condition. Let P be 
defined for (/, T) as above. 

(1) Suppose that f \ P' is not a homeomorphism. Then F = TifT). In particular, 
(/, r ) does not satisfy the Thurston Obstruction Condition. 

(2) Suppose that f | P' is a homeomorphism. Then dP contains a Levy cycle for f 
and (/, T) does satisfy the Thurston Obstruction Condition. 

Proof 

(1) For any 7 G r take D(j) to be the component of C \ 7 disjoint from P. Then 
by induction on 77., any nontrivial component of f~nD(/y) is disjoint from P. So 
7 G Ti(r) . Since B is of periodic or eventually fixed type, there are no degenerate 
Levy cycles in F for (/, Y). 

(2) Each component of dP is isotopic in C\Y to a unique component of <9P'. So for 
each 7 G F in dP there is a unique loop that we call /*7 G T in <9P with 7 C / _ 1 ( / * 7 ) 
up to ^-preserving isotopy. There is at least one periodic cycle under f\ in <9P, which 
is a Levy cycle. • 

2.10. Definition of AQ. — Let (/, F) satisfy the Invariance Condition and let 
T2 = F2(f,F) 7̂  0. Then F'2 C f~1F2, up to isotopy preserving Z. Let A be a disc 
component of C \ (Ul^). Then for some least n ^ 0, a component of f~NA is a disc 
component of C \ (UT2) containing v\ and ^2, up to isotopy preserving Z. We call 
this component AQ, and Ao f lF = 0, dAo G F2- Then we have the following lemma, 
very similar to both 1.4 of [R4] and an argument in [TL] 

2.11. Lemma. Let 7 ^ OAQ, 7 C A 0 ; and let D C A 0 be the disc bounded by 7. 
Then either 7 G Ti, or 7 is periodic, and 7 = OAQ and D = AQ up to isotopy 
preserving Z (but not Y). 

Proof. — Let D = D(~f) be the disc in A 0 bounded by 7. We define the nesting depth 
of 7 to be the maximum number n such that there exist discs Dt (0 ^ i ^ n) with 
boundaries isotopically distinct in C \ Y with 3Dt C F and D^+i C Z î- If 7 7̂  7o 
up to isotopy preserving Z then the nesting depth for 7 is less than that for any loop 
which is 70 up to Z-preserving isotopy, any component D' of f~lD is a disc, we can 
define the nesting depth of dDf using D', and it is ^ the nesting depth for 7. Then 
by induction we prove that all components of f~nD are discs whose boundaries have 
nesting depth less than that of any loop which equals 70 up to Z-preserving isotopy. 
We can also use this induction for 7 equal to 70 up to isotopy preserving Z but not Y, 
unless for some least n > 0 a component of f~ny is isotopic to 7 up to ^-preserving 
isotopy. • 
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2.72. Corollary. —- The loop set Y2 satisfies the Levy Condition, and V satisfies the 
Levy Condition if and only if Y — U n ^ o / up to isotopy preserving Z, copies, 
trivial and peripheral loops. Consequently, if (/, T) satisfies the Invariance Condition, 
then (/, T) satisfies the Thurston Obstruction Condition if and only ?'/(/, T7) satisfies 
the Invariance and Levy Conditions for some r 7 C F. 

Proof. Let 7 G r 2 . Write 7 = 70. Then since T2 C f~lF2, we can inductively 
choose 7?; G T2 (i > 0) so that 7; is isotopic in C \ Z to a component of / - 1 7 7 ; + 1 Then 
7 r = 7,s for some 0 < r < ,s, and {7? : r ^ i < s} is a Levy cycle. Thus, Un^>of~nF2 

satisfies the Invariance and Levy Conditions. As we have already noted, any Levy 
cycle in F is contained in T2, so the proof is finished. • 

2.13. Gaps. — Now let F C C \ Y be any set of simple disjoint loops. 

Definition. A is a gap for F if A is a component of C \ UT such that A \ Z is not 
an annulus. 

Now suppose that (,/', F) satisfies the Invariance Condition. If A is a gap for T, 
then choose Af such that / _ 1 ( A 7 ) contains a component A 7 7 intersecting A essentially 
modulo isotopy preserving Z. By the Invariance Condition, every component of <9A77 

is either trivial or peripheral isotopic to a loop of F via a Z-preserving isotopy. Again 
by Invariance, no component of dA can be in the interior of A 7 7 modulo Z-preserving 
isotopy. So the nontrivial nonperipheral components of A and A 7 7 coincide modulo 
Z-preserving isotopy. So A ' is unique with this property and we write A' = / * A . If 
/ I A 7 7 is a homeomorphism, then / * A has at least as many boundary components 
as A , and we say A is mapped homeomorphically. Since there are only finitely many 
gaps, each is eventually periodic under If A has period k and each flA is mapped 
homeomorphically, we call A a periodic horneornorphic gap. Then there is p isotopic 
to the identity relative to Y such that 0A = fk 0 <p maps A homeomorphically to 
itself, and [0A] G MG(A) is uniquely determined, where MG(A) is the group of 
homeomorphisms of A modulo isotopies that preserve <9A, but do not necessarily fix 
it point-wise. We call this the conjugacy of isotopy class of A . 

We say that a connected union A of loops of T, gaps of T and annulus components 
of C \ ( u r u y ) is a maximal periodic horneornorphic union if all gaps in A are periodic 
and horneornorphic and A is a maximal union satisfying these properties. Then we 
can define / * A in the same way as for gaps, A is periodic under /* of some period A:, 
we can again define a conjugacy of isotopy class [0A]-

2.14. Classification of Gaps. - Let (/, T) be invariant and let T2(T,f) ^ 0. Let A be 
any periodic gap for T. Then there are three possibilities: 

(1) A is horneornorphic, 
(2) the gap AQ with AQ C A 0 , <9AO C A 0 up to isotopy preserving Z, is periodic, 

and A is in the forward orbit of A'0, 
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(3) A is contained in a disc D bounded by a loop of T, where D intersects the 
forward orbit of c\, which is periodic. IfT satisfies the Levy Condition, then A = D. 

Proof — We shall consider separately periodic gaps with a boundary component in 
T2 = T2(r, / ) , and those with no such boundary component. 

First, suppose that A has a boundary component in T2> Then the same is true for 
/ * ( A ) , i ^ 0. So flA is never properly contained in A0 up to Z-preserving isotopy, 
by 2.11. So either fl(A) = A0 for some least i ^ 0, or / * ( A ) D A0 = 0 for all i ^ 0. 
In the latter case, A is a homeomorphic gap. 

Now suppose that no boundary component of A is in I^, that is, every boundary 
component is in T\. Then there is a disc D with A C D, dD C dA such that all 
components of f~n(D) are discs. Then if A = fll(A) for a least integer n > 0, we 
have that D is a component of f~n(D) up to Z-preserving isotopy. Suppose that A 
is not homeomorphic. Then D is not either. If n = 1 then D = f~1(D) up to Z -
preserving isotopy. But then C \ D = /_1(C \ D) modulo Z-preserving isotopy, and 
T2(r , /) = 0. So n > 1. Then D must contain a point in Z of period > 1, which 
must be in the forward orbit of v\, and since v\ is either periodic or eventually fixed, 
vi must be periodic. 

Finally, if r satisfies the Levy Condition, A = D, because any loops in the interior 
of D are not in f~n(T2) for any n > 0. • 

2.15. Important Gaps. — As above, we denote by AQ the component of C \ (ur) 
with AQ C A0, ^A0 C A0 up to isotopy preserving Z , and such that A0 is either a 
gap or intersects Z . Then we might have V2 €= Ao \ AQ. It can also happen that V\ 
and ¿'2 are both in A0 but in different components of A0 \ A0. If A0 has period no 
under let A({ be the component of f-n»A'0 with A0r C A0, dA'^ C dA". Let E-t 
be the component of C \ (UT) containing v7. Then E-i might not be a gap. But if 
it is, we write E[ for the component of f~pEx containing V[. We also write A0(/, T), 
Ei(f\T) etc. if confusion can arise. 

2.16. Extra Conditions on Loop Sets. — Let (/, T) satisfy the Invariance and 
Levy Conditions throughout this section. We now define some extra conditions on 
( / , n . 

Node Condition. The set E'z(f, T) is a gap, that is, the component of C \ ( u r u Z ) 
containing i)2 is not an annulus. If this holds, we also say that (/, F) is a node. 

Edge Condition. — The set ^ ( Z , T) is not a gap, that is, ^ ( Z , T) \ Z is an annulus. 
in this case, we also say that (/, T) is an edge. We say that (/, T) is an extreme edge 
if E2(f, T) is a disc. 

Maximal Reduced Condition. Any maximal periodic homeomorphic union is a 
single gap. If A0 ^ E2, and (/, Tr) is obtained from (/, F) by adding additional loops 
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to the full orbit of A 0 , then (/, Ff) does not satisfy the Levy Condition. If two loops 
are isotopic modulo Z but not modulo Y, then neither is peripheral. 

We remark that if (/, T) does not satisfy the Maximal Reduced Condition, then we 
can remove loops from the full orbits of interiors of maximal periodic homeomorphic 
unions, remove at most one peripheral loop, and possibly add loops to the full orbit 
of A 0 , SO that it does. We shall see in 3.3 that there is exactly one such loop set, 
which we call the Maximal Reduced Version of (/, T). 

For the remaining conditions, we take (/, T) satisfying the Maximal Reduced Con
dition, and we shall define (/, F) to have one of the following properties if its Maximal 
Reduced Version does. 

If Ei is periodic and E2 / Ei but f\E2 = E\ for some i > 0, then (/, F) is a capture. 
We say this capture is periodic or preperiodic, depending on whether E2 is periodic or 
preperiodic. These alternatives can only occur if B (with (/, Y(f)) E B) is of periodic 
type rather than eventually fixed type. If (/, F) is a capture then E2 ^ A 0 . By 2.14, 
if (/, F) is not a capture then either E2 = A 0 is periodic or E2 is preperiodic. In the 
latter case, f\E2 = flE2 up to isotopy for all i > 0, and / | flE2 is a homeomorphism 
for all i ^ 0, unless v\ G fl^lE2, which can only happen in the fixed type case. In any 
case, / | flE2 is a homeomorphism for all sufficiently large i. We then say that (/, F) 
is preperiodic homeomorphic. We give no special name to the case when E2 = A 0 is 
periodic, although this is arguably the most important case. 

If 9Ao(/, T) C OP then (/, F) is minimal nonempty. (The reason for this termi
nology will become clear in Chapter 3.) If this is not true, but 

(1) r = T', where Ff = Un>Qf-ndP 

up to ^-preserving isotopy, modulo copies of loops and trivial and peripheral loops, 
then we say that (/, T) is primitive. 

Let (/, Ff) also satisfy the Invariant, Levy and Maximal Reduced Conditions. We 
say that (/, T') is a tuning of (/, F) if F C F' and Ff ^ F. If this happens then 
there must be loops of F' in the interior of A 0 ( / , T), which must then be periodic 
and equal to ^ ( / c T ) , since (/, F) is Maximal Reduced. If (/, r ; ) satisfies just the 
Invariance and Levy Conditions then we say that (/, Ff) is a tuning of (/, F) if its 
Maximal Reduced Version is. 

If T / 0 , and (/, T) satisfies the Invariance and Levy Conditions, then (/, F) 
is exactly one of: nonempty minimal, primitive, or tuning. This follows from the 
definitions. 

2.17. Nodes and Edges. — The following lemma gives a simple passage from an 
edge to a node, and vice versa. 

Lemma. — Let (/, F) satisfy the Invariance, Levy and Edge Conditions, hut such that 
(/, r ) is not an extreme edge. Let 71 be the loop which is isotopic to 70 = dAo(f, F) 
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up to Z-preserving isotopy, but such that v2 is between 70 and 71. Let Ff be obtained 
from F by removing those loops in the backward orbit of 71 which are not also in 
the backward orbit ofF\ {71}. Then (/, Ff) satisfies the Invariance, Levy and Node 
Conditions. 

Conversely, let (/, F) satisfy the Invariance, Levy and Node Conditions. If E2 = 
A 0 ? let 71 be isotopic to 70 up to Z-preserving isotopy, but let v2 be between 70 and 71. 
If E2 ^ AQ, SO that E2 is a disc, let 71 be isotopic to dE2 up to Z-preserving isotopy, 
but let v2 be between 71 and dE2. Let F' be the union of F and the backward orbit 
of 71 .Then (/, F') satisfies the Invariance, Levy and Edge Conditions. 

Proof. — Immediate. • 

2.18. Reduced Branched Coverings and Map Spaces. — Let (/, F) satisfy 
the Invariance, Levy and Maximal Reduced Conditions. Suppose that A 0 exists as in 
2 .15 . If A 0 is periodic of period £ under /*, we define a reduced branched covering g 
of A(, by 

G = F ON A£, 

and then g is extended by mapping components of C \ AQ to components of C \ A 0 

as dictated by the boundary maps, and each component of C \ A 0 contains exactly 
one point of a set Y(g), where the remaining points of Y(g) are A 0 D Y. We also 
choose g so that / , g have the same critical values vi, v2, and so that g(Z(g)) C Z(g), 
where Z{g) = Y(g) \ {g(c2)}. Thus we continue to have a labelling of critical points 
and their orbits. A reduced, branched covering for E{ is similarly defined whenever Ei 
is a periodic gap. 

This construction for A 0 is the same as that of critical branched covering in 1.9 
of [R4] for critically finite branched coverings except that there we used / _ 1 A 0 

rather than A 0 , but it makes no difference. 
The reduced map space £ ( / , I \ A 0 ) for A'0 (or B(f,T,Ej) for E3) is B(Y(g),g), 

where g is a reduced branched covering. Note that, if the Edge Condition is satisfied, 
then B(f,F, A 0 ) is an equivalence class of critically finite branched coverings if A 0 is a 
periodic gap, and similarly for B(f,F,E{). If E2 is a periodic gap, then either E2 = A 0 

or E2 is in the periodic orbit of E\. In the latter case, B(f,T,E{) and B(f1F,E2) 
are naturally identified. Note also that if A is periodic and g G B(f, T, A ) , A = A 0 

or Ej, then 
3 < #(Z(G)) < #(Z(/)). 

Now we consider B{f,F,E\), in the cases where E\ is a periodic gap. If (/, F) 
is preperiodic horneornorphic or a preperiodic capture, then B(f,F,E{) is critically 
finite, v\ is periodic and v2 is eventually fixed under g £ B(f,F,E\). If (/, F) is 
a periodic capture, then B(f,F,E{) = B(Yf,f), where f is degree 4, Z(f') = 
{v0} U orbi tal) , Y' = Y(f') = Z(f') U {^2}, 0̂ is fixed and of local degree four, vi 
is periodic and of local degree two, v2 has two critical points in its preimage, both 
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mapping with local degree two. If (/, T) is minimal nonempty — or, more generally, 
whenever A 0 = E\ = E2 then B(f,F,Ei) is of degree two periodic type. (This 
includes some cases when (/, T) is primitive.) If (/, T) is not a periodic capture, and 
E\ 7̂  A 0 then B(f, r, E\) is critically finite and equivalent to a polynomial. 

Now we consider T, AQ) when A 0 is a periodic gap, but E\ ^ A 0 . If (/, T) is 
a capture, or preperiodic homeomorphic with E2 ^ A 0 , then B(f,F,A'Q) is critically 
finite with both critical points eventually fixed. The Maximal Reduced Condition 
ensures that the critically finite maps in this space are irreducible, that is, either 
equivalent to a rational map or to 

[x] I—> [Ax + b] : R 2/ > R 2/ -
where [x] is the equivalence class for ~, x ~ y if x = ±y + ra (ra G Z2), and A 
is an integer matrix with determinant 2 and eigenvalues A, /i, |A| < 1 < 2 < |//|, 
26 = 0 mod Z2. If (/, T) is primitive and E\ / A0 — or more generally whenever 
E2 — A0 / £\ — then T, A0) is of degree two eventually fixed type. 

2.19. Examples of Reduced Branched Map Spaces 
(1) We consider the cases listed in 2.3, so that / = sq u sq' and r C Lq U L , . 

Then B(f, T, A 0 ) contains the subset 
{ g x \ z : z ---^+ z2, A / 0} 

whenever ^ = a n d is homotopically equivalent to this subset. These maps have 
a distinguished noncritical fixed point at 0. Now let {q,q') = (3/7, 1/3) or (4/15, 6/7) 
or (7/15, 1/3) or (7/15,3/7). Then B(f,T,A'0) contains the subset 

{ h\ : z ---^ z2 + Xz - A 
z2 

} 

for which the second iterate of the critical point 0 is fixed. In all these cases, 
B(f, r, Ei) is the Thurston equivalence class of z \-+ z2. Now let (q,q') = (2/5, 1/3). 
The reduced map space for A0 contains the subset 

{ h\ : z ---^ 1 + \z 
22 } 

— for which ci = 0 has period 2. 
In all these cases, it can be shown that the reduced branched map space is actually 

homotopically equivalent to the given subset. 
(2) We give an example of a reduced map space of polynomial degree four type 

for i?io,o- There is no such example for Bp,n with p < 10. We consider Sn/31, 
which is equivalent to a polynomial with critical point of period 5. Let sq denote 
the tuning of this, with critical point of period 10. Write [[a, b}] for the leaf with 
endpoints e 2 7 r m , e2nib. Then /x 1 1 / 3 1 = [[11/31,12/31]]. This leaf is separated from 
the minor gap of Lx/3 by the leaf [[17/48,19/48]] of Ljy3, while the forward image 
[[13/31,17/31]] is separated from the minor gap by [[5/12,7/12]]. Let / = squsqt for 
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any odd denominator rational q' G [5/12, 7/12]. Let V be obtained by taking inverse 
images under / of the loop /¿1/3 U /i~^3. See the diagram. As in 2.3, the unit circle 
is shown (dashed) to indicate how the example is computed. Then (/, T) satisfies the 
Invariance and Levy Conditions and B(f, T, E2) is of degree four polynomial type. 

Degree four polynomial type. 
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CHAPTER 3 

NODES, EDGES AND ENHANCED LEVY SETS 

3.1. Throughout this chapter, / G B(Y) — B, where B(Y) is of degree two periodic 
or eventually fixed type. We shall use the group G = ni(B,f) in this chapter, 
which, as we recall from 1.11, has interpretations as subgroups of MG(C ,7) and 
M G ( C , / _ 1 7 ) . The purpose of this Chapter is to examine the structure of the set 
of pairs (/, r ) . We define an equivalence relation on the set of pairs and an action 
of G on the set of pairs. The equivalence classes are called enhanced Levy sets. 
We also associate pairs (/, T) to convex regions in the unit disc, which are disjoint 
(after restricting the set of pairs slightly), and show that boundary convex regions 
in components of the union correspond to minimal nonempty pairs. This is the 
groundwork for the Resident/s View of B. 

3.2. We use the gap notation of 2.10, 2.15. 

Lemma. — Let (}\T), (f\Tf) satisfy the Invariance and Levy Conditions, with 
E2(f,T) = E2(f,T'). Let (/, T) satisfy the Maximal Reduced Condition. Then a loop 
of Tf is contained either in T or in the full orbit of a periodic homeomorphic gap of 
T, up to isotopy preserving Y. 

Proof. —• Write 70 — <9Ao(/, T). If T satisfies the Edge Condition, let 71 be the unique 
loop of T which is isotopic to 70 in C \ Z but not in C \ Y. Let S = Si G f , and let 
Si G V (1 ^ i ^ n) satisfy: Si C / - 1 ( & i + i ) , Sp = Sn up to Z-preserving isotopy, with 
1 ^ p < ri, and such that {St : p ^ i < n) is a Levy cycle. By the Levy Condition, 
any S G r ; satisfies these properties. Suppose that any intersections of Si with u r 
are essential in C \ Y and hence also in C \ Z, since E2(f,T) = E2(f,T'). The 
number of transverse intersections with UT can only decrease under taking inverse 
images. So the number of intersections of Si with UT must be constant for p ^ i ^ n. 
Similarly, the numbers of intersections with gaps, periodic homeomorphic gaps, and 
periodic gaps, must be constant. So for p ^ z, Si can intersect only periodic unions or 
gaps, and only periodic sides of periodic gaps which are not separated from the fixed 
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set by Ao(/, T). Suppose A 0 = A 0 ( / , T) is periodic (and hence not horneornorphic). 
Suppose 5i has an essential arc of intersection with AQ . Then the arc must have both 
endpoints in 70 (or possibly 71 if T satisfies the Edge Condition), since this is the only 
periodic boundary component. Then A 0 7̂  E2 and v2 ^ A 0 . So then the reduced 
branched covering for A 0 lias no Levy cycle. But we can form a Levy cycle by joining 
essential arcs of Si along 70 (or 71), and taking the full orbit. This is a contradiction. 
So Si has no essential intersections with AQ, if A 0 is periodic. So the only possibilities 
are that Si £ T, or Si lies in a periodic horneornorphic gap of T. Then we obtain the 
required conclusion for S = S\ • 

3.3. Corollary. / / ( / , T") satisfies the Invariance and Levy Conditions, then there 
is a unique (/, T) satisfying the Invariance, Levy and Maximal Reduced Conditions 
with E2{f,T") = E2{fS) such that: 

(1) every loop ofT \ T" is in the full orbit of a periodic horneornorphic gap ofT", 
(2) T" \ T = 0 unless A 0 7̂  E2 and A 0 is periodic, in which case every loop of 

Y" \ T is in the full orbit of A'0. 

Proof. - If AQ is periodic and A 0 / E2, then the reduced branched covering fi for 
A 0 is critically finite degree two (2.18). If there is a loop set satisfying the Invariance 
and Levy Conditions for f\, then we can add the full orbit of this loop set to T" to form 
a larger loop set satisfying the Invariance and Levy Conditions. There is only space to 
do this finitely many times. So now we assume that T" cannot be augmented in this 
way. Any connected union of horneornorphic gaps is again horneornorphic. So first 
form Fi by removing from T" any loops in the interior of a maximal horneornorphic 
union. It is possible that the preimage A of a maximal horneornorphic union might 
include E\ or E2 and not be horneornorphic. If that is the case, we also need to 
remove loops in the interior of A and the backward orbits of these in F, to obtain T2-
If A 0 ( r 2 ) is periodic then A 0 (F 2 ) = A 0 (F") and if A 0 ^ E2. So T2 satisfies the 
Maximal Reduced Condition as well as the Invariance and Levy Conditions. 

So suppose that both (/, T) and (/, T') satisfy the Invariance, Levy and Maximal 
Reduced Conditions with E2{f, r " ) = E2(f, T) = E2(f\ T'). Apply 3.2. • 

3.4. Definition. — We call (f\Tf) as in the Lemma the Maximal Reduced Version 

o f ( / , D -

3.5. The next two lemmas are preliminary to defining the group associated to a 
pair (/,T). 

Lemma. Let (/, T) satisfy the Invariance and Levy Conditions. Let A be a periodic 
gap of T of period k under f. such that fk | A is a homeomorphism. Then either fk 

cyclically permutes all the components of OA, or it fixes one and cyclically permutes 
the rest. If A contains a point of Z, then this point is fixed, and the components of 
OA are cyclically permuted. 
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Proof. — Replacing A by some f3 A if necessary, we can assume that all flA / A are 
in the same component of C \ A. If some component of C \ A intersects Z in only a 
fixed noncritical point of Z, then A is fixed by / . Take any component D of C \ A 
bounded by 7 C dA which contains no ,/'zA, and which intersects the forward orbit 
of v\. Thus, at most one component of C \ A is excluded. Inductively, let Do = D, 
and let Dj+i be defined as the component of f~xD3 whose boundary is common to 
some feA, if f(c\) ^ Dh. Then for a minimal j , D3 contains f(c\) and no flA. Thus, 
the boundary is uniquely determined, and has 7 in its forward orbit. Hence all but 
at most one component of OA are in the same cyclic orbit under / . By the nature 
of Z, A can contain at most one point z of Z, which then has to be fixed, and by 
the specified properties of Z, is the only fixed point of / in Z. Suppose that A does 
contain such a point. So A is also fixed. Then D, as above, can be any component of 
C \ A and all components of dA are in the same orbit. • 

3.6. Classifying the Gap Homeomorphisms. — The next Lemma uses 
Thurston's isotopy classification of surface homeomorphisms [F-L-P]. Let S be 
any compact surface with boundary and / : S —» S an orientation-preserving 
homeomorphism. Then / is irreducible if there is no set L of simple closed disjoint 
non-boundary-nomotopic loops such that f(T) is isotopic to T. For every (5 , / ) , 
either / is irreducible, or there is a set of T of simple closed disjoint non-boundary-
homotopic loops such that f(T) is isotopic to T and such that if Si is any component 
of S \ u r and rn is the least integer > 0 with f 7 7 1 (Si) isotopic to 5^, then fm \ St is 
irreducible. An irreducible homeomorphism is either isotopic to an isometry for some 
complete hyperbolic metric on S or is isotopic to a pseudo-Anosov. This means that 
frn is isotopic to a homeomorphism which leaves invariant two transverse measured 
foliations on S-i which have finitely many singularities of specified types [F-L-P]. 
One of the foliations is called stable (or contracting) and the other is called unstable 
(or expanding). The fact that the foliations are measured and transverse means that 
there is a measurement of length on all leaves of both foliations. Then there is A > 1 
such that fm multiples length of leaves of the unstable foliation by A and length of 
leaves of the stable foliation by A~L. 

3.6. Lemma. -— Let F : A —> A be a homeomorphism of a holed sphere with bound
ary, which either cyclically permutes boundary components or fixes one and cyclically 
permutes the rest. 

(1) Write 

Д = U Su 
t 

i=1 
where the Si are closed subsurfaces with disjoint interiors that are permuted by F, 
the loops dSi are all isotopically nontrivial and distinct, arid such that the first return 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



58 CHAPTER 3. NODES, EDGES AND ENHANCED LEVY SETS 

map Frn to S = St is, up to isotopy, either an isometry for some complete hyperbolic 
metric on S or a pseudo-Anosov. Then this decomposition is unique. 

(2) Let PMG(A) denote the group of isotopy classes preserving each component of 
OA, where isotopies preserve OA but do not fix it pointwise. The centraliser of F in 
PMG(A) is free abelian, of rank ri\ + ri 2 , where rii is the number of cycles of St in 
the above decomposition for which the return map Frn \ Si is pseudo-Anosov, and n2 

is the number of cycles of loops dSi in the interior of A. 

Proof 

(1) This uses a technique that we have applied previously in both Chapter 8 of 
[R3] and 3.3 of [R4]. Note that at most one subsurface Sz = S is fixed by F and that 
Frn | S has the same property as F : A —> A, namely it either cyclically permutes the 
boundary components or fixes one and cyclically permutes the rest. If h — Fm | S 
is an isometry, we can find an arc a joining distinct components of dS such that all 
arcs hla are (up to isotopies preserving OS but not fixing it pointwise) either disjoint 
or equal, and Int(S') \ (\Ji^ohla) consists of two discs. We simply take a to be a 
geodesic arc of minimal length joining any two distinct components of dS if h 
cyclically permutes them all or between the fixed component and any of the others 

if h fixes one component. Then the set U?;^o/izcv consists (up to isotopy) of simple 
disjoint cyclically permuted arcs, and hp = identity, where p is the least integer > 0 
such that hp fixes all components of dS. If h is pseudo-Anosov, there is no such arc 
set in S. So any F-invariant set of simple disjoint loops T in A can only intersect 
OS essentially, for S in the decomposition, if Frn \ S = Ji is an isometry, and then 
all components of dS must be intersected. If OS is intersected transversally by V 
for some S, then dSf is intersected transversally for some S' with dS' n (9A ^ 0, 
which is impossible. So there is S in the decomposition such that T fl S is a set of 
disjoint simple loops invariant under /?. This is impossible if h is pseudo-Anosov, 
unless r n S C OS up to isotopy. We get the same conclusion if h is an isometry 
by considering intersections of T with the fo-orbit of a. Hence no simple loops, apart 
from the dSt components, are mapped periodically by F and the decomposition of A 
into the Si is unique. 

(2) All components of all dS{ are fixed by any Lp £ PMod(A) in the centraliser of 
F, as are any arcs hla. Since the centraliser of any pseudo-Anosov is cyclic, we obtain 
the result. • 

3.7. The Group G(f, T). — Let / be our chosen basepoint in B and G = 7i\(B, f). 
Then as we have seen in 1.11, 7i\(B,f) identifies with the set of [ip] G MG (C ,7) 
arising from closed loops in B based at / . Let (/, T) satisfy the Invariance and Levy 
Conditions. We define G(f, T) to be the subgroup of those cp in G for which ip(T) = T 
up to isotopy. Our Lemmas imply that G(f, T) = G(f,T/) if (/, T') is the Maximal 
Reduced Version of (/, T). 
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3.8. The Equivalence Relation on Pairs and Enhanced Levy Sets 
Let / , g E B and let (/, F) satisfy the Invariance and Levy Conditions. Then any 

path from / to g induces a homeomorphism p : C —>• C with <p(Y(f)) = Y(g). As we 
have seen in Chapter 1, if p<j and pi are two choices for cp, then there is an isotopy pt 
between p0 and pi with pt(Y{f)) — Y(g) for all t. Then (g,p(F)) also satisfies the 
Invariance and Levy Conditions. 

We define ~ to be the equivalence relation generated by: (/, F) is equivalent to its 
Maximal Reduced Version, and, if (/, F) satisfies the Invariance, Levy and Maximal 
Reduced Conditions, then (/, F) ~ (<??r') if, for some path, from / to g and associ
ated p defined up to isotopy constant on Y(f), p(F) = F'. We let [/, T] denote the 
equivalence class of (/, F). Thus, if we fix / , [/, T] is simply the orbit of (/, F) under 
the action of G. We can transfer all the definitions of 2.16 (Edge, Node Conditions 
and so on) from (/, F) to [/, T]. For the later definitions, except for the definition of 
tuning, we need to take (/, T) satisfying the Maximal Reduced Condition. If [/, F] 
is a tuning of [/, F'] and both (/, T) and and (/, F') satisfy the Maximal Reduced 
Condition, then loops of Ff are either in F or in orbits of periodic horneornorphic gaps 
of T. If we do this, then Reduced Map Spaces and Conjugacy of Isotopy Classes also 
depend only on [/, F] (and not on (/, F)). The group G(f1F) depends only on [/, T] 
up to isomorphism. Therefore, we shall often write G[f,F]. 

We call the equivalence classes [/, F) enhanced Levy sets. 

3.9. Theorem. — Let (/, F) and (g,Ff) satisfy the Invariance, Levy and Maximal 
Reduced Conditions. Then, for some Dehn twist composition r round loops of F, 
[f o r, T] = [g, Ff] if and only if the following hold for some orientation-preserving 
homeomorphism p : C —> C. 

(1) p{Y{f)) = Y{g), p{v%{f)) = Vi(g) (i = I, 2), p(F) = F' and p o / = g o p on 
z{f). 

(2) The elements [V̂ A] and [I/^A] of MG(A), MG(^A) are conjugated by some 
homeomorphism which maps each component b of dA to pb, for at least one gap A 
in each periodic horneornorphic cycle. 

(3) The reduced map spaces for A0(f), A'0(g) are the same, as are the reduced map 
spaces for Et(f), Et{g), i — 1, 2, whenever these gaps are periodic. 

Proof — Suppose that 1, 2 and 3 hold for (/, F) and (g,Ff). Then we can change 
the definition of p on each periodic horneornorphic gap A so that p conjugates [I/JA] 
and [VVA]- Then we can change the definition of p on all but one gap in each cycle so 
that pof = gopupto isotopy constant on dA. Then we can change the definition 
of p on preimage gaps so that p o / = g o p on any gap in the backward orbit of a 
periodic horneornorphic cycle. Then we can change the definition of g on whichever 
of A'0(g) Ei(g), E2{g) are periodic, and change the definition of p on gaps in the full 
orbits of these, so that pof = goipon each gap A, for p and ip isotopic via an 
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isotopy constant on dA and Z. Then 

0, 1] -+ C\(ZU(ur)) 

where r is a composition of Dehn twists round loops of T. • 

Remark. — In general, if r is a Dehn twist round loops of T, [/, T] and [/ o r, T] can 
be distinct. However, we do have the following. 

3.10. Minimal Isometric Nodes and Edges: characterization 
Lemma. — Let (/, T) be minimal nonempty isometric. Then [/, T] = [sp u sq,Tf], 
where sp u sq preserves Ff, fip U Pilp E T, p,v is minimal and [i\-p ^ \iqi and 
ci(sp u sq) = oo; vi(sp u sq) = (sp u sq)(oo). (See 2.3 for the notation.) 

Proof. — Assume without loss of generality that / preserves its fixed set P and that 
/ | P is an isometry with respect to some metric. Let dP have k components. Let a 
be an arc of minimal length joining components of dP. Then {fla : 0 ^ i < k} is a set 
of disjoint simple cyclically permuted arcs with endpoints on dP (as in 3.6). Choose 
a fixed point xo of / in P. Let Pi be an arc from the critical value v2 of / to xo, which 
crosses dP exactly once, and is disjoint from the arc set Uzfla. Let /3k = Po C f~1{/3i) 
be the arc joining XQ to the critical preimage c2 of v2, which is in a different component 
of C \ P . Then similarly define an arc pi C / -1(f t+i) for k > i ^ 2, with one endpoint 
at x0. NOW [/, Y] = [cr7o/,r], for any path 7 : [0, 1] -+ C \ ( Z U ( u r ) ) with 7(0) = v2. 
To see this, note that [alt o / , T] = [<J7 o / , T], where 7̂  = 7 | [0,t]. Replacing / by 
G1 o / if necessary for suitable 7, we can assume that P\ C f~~1p2. Thus we have 
made / critically finite. There is an invariant circle separating the critical orbits, 
formed as follows.Take the boundary of a small disc neighbourhood of UiPi where 
Po = pk and Pi C f~l0i+i, 0 ^ i < k. The loop set c^P gives L\—p U Lp1 up to 
isometry, for some p with fip minimal. See the diagram in the case k = 3. The arcs 
Po and pi need not be adjacent in general. 

vi 

B1 
p x0 ßo 

C1 

Minimal Isometric. 

Hence ff, Ti = \sv u sa. r ' l , for some q and Tf. 
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3.11. Equivalence and the Edge Group. — Again, let fip be minimal and 
fii-p ^ fiq. For the moment, write [spusg] for the (unique) equivalence class [spusq, Y] 
where Y contains fipUfi^[^p and (spusq, Y) satisfies the Invariance and Levy Conditions, 
and the Edge Condition. Let T' be the loop set defined similarly for sp' u sq'. The 
question which naturally arises is: when is [sp U5G] = [sp> usg/]? We must have p' = p 
or 1 — p, by considering the isotopy class [vbp] (2.13) where P — P(sp u s j is the fixed 
gap. This corresponds to looking at the rotation order of the arcs 0i of 3.10. Equally, 
given [sp u sq], there is at least one q' such that [sp u sq] = [si-p u sq']. The invariant 
circle which realises [sp u sq] as [si-p u sq'] can be drawn in exactly the same way 
as the rabbit and antirabbit circles in 1.15, that is, by a half-twisting the circle for 
sp u sq round the fixed set. See the pictures in 1.15. 

So now suppose that p = p'. It turns out, in the lemma below, that [sp u sq] — 
[sp H sqf] if and only if sp u sq and sp u sq> are Thurston equivalent as critically finite 
branched coverings. This equivalence is considered in Stimson's thesis [Sti]. It is 
claimed incorrectly in [Sti] that if spusq ~ spusq> then fiq = fiq'. The true result is a 
little different, and is shown by the same method (after correction) that is employed 
by Stimson. 

Lemma. — The group G[sp u sq] is cyclic. The number of different leaves fiq> such 
that [spUsq] = [spUsq<] is the same as the number of fiq> such that spusq is Thurston 
equivalent to sp u sq> as a critically finite branched covering, and is N, where TV ̂  1 
is the integer such that the generator of G[sp u sq] is a2 o G\, where o\ is an N-fold 
Dehn twist round the forward orbit Y\ of fipU \T\}_p and a2 is a composition of Dehn 
twists round loops isotopically distinct from and disjoint from the loops ofY\. 

Remark. — Write / = sp u sq. Let Y C C \ X(f) be the smallest loop set containing 
Ti such that /_1( r ) C Y modulo trivial loops and homotopy in C \ X(f). Let 
/* : Rr —> Rr be the usual linear map for critically finite maps, (with the same 
formula as in 2.4). Then TV is also the least integer ^ 1 such that there is an eigenvector 
of /* with entry TV in the entries corresponding to Ti and integers in all entries. 

Proof — The proof, a slight modification of Stimson's method, is combinatorial. We 
first note that if sp u sq ^ sp u sqf, where this denotes Thurston equivalence as 
branched coverings, then [sp u sq] = [sp u sq']. The converse takes a little more work. 
So now suppose that [sp u sq] — [sp u sq,Y] = [sp u sq',Y'] = [sp u sq>]. Let tp be the 
homeomorphism with ip(Y) = Y', tp o (sp u sq) o ip~1 = sp u sqt for vo isotopic to ip via 
an isotopy constant on Z(sp u sq) D {(sp n sq)l(oo) : i ^ 0}. 

We have 

P(sp u Sq) = P(sp uSq>) = P, E2(sp u Sq) = E2(sp u sq,) = E2, 

V(A0(Sp U Sq)) = A0(SP U Sq'), <P(E!(SP H Sq)) = E^Sp II Sq>). 
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The reduced branched coverings for A0 - which are critically finite since we are 
considering edges — are Thurston equivalent, and similarly for E\. (See 2.15, 2.18). 
If A0 = Ei, then the reduced branched covering is a critically periodic polynomial, 
and we deduce immediately that pq = pqr. If A0 7̂  E\, then the reduced branched 
covering for A0 is a polynomial with the finite critical value eventually fixed. The 
Thurston equivalence classes of these are in one-to-one correspondence with rationals 
in (0, 1) of the form r/2n for n > 0 and integers r, 0 < r < 2n. It follows that 
AQ(SPUsq) = A0(spusq') — A0. Then since TTI(B(A0) is trivial, the homeomorphism 
p is the identity on A0 up to isotopy, and fixes all boundary components. Consider 

Then ip(Q) — f2, and p | Q must be isotopic to a composition of Dehn twists ti, t'0 
times round the loops jz (0 ^ i ^ k — 1), 70, where ji C OP with 7^+1 C (spusq)~l (7 )̂ 
and 70, 7Q are separated by v2 — 0, but are isotopic in C \ Z(spusq). Then we obtain 
U = for 0 ^ i ^ k - 2, = ¿0 + giving ¿0 = 0» ^ = t for 0 ^ z ^ k - 1. So 
then we can adjust </? to induce a Thurston equivalence sp u sq sp 11 sg/. So now, 
given p and \iq we need to determine how many different \iq> there are with sp 11 sq 
Thurston equivalent to sp 11 sq>. 

The claim in Stimson's thesis was that, by taking inverse images under sp u sq and 
SpUSqf, p is isotopic to the identity on all gaps in the full orbit of A0. But this is only 
true so long as gaps are pulled back homeomorphically, or so long as a gap is in the 
forward orbit of A0. (This is how the mistake arose.) The map p is the identity on 
the full backward orbit of A0(sp u sq) if and only if TV | t. Distinct homeomorphisms 
are given by 0 ^ t < N. We write pt for the homeomorphism corresponding to t, 
so that po is the identity. Each such t does determine a pq> = because if 7 is 
the loop of T nearest to then 7 is nomotopic to dEi(sp 11 sq) and pt{l) must be 
nomotopic to dEi(spUSqf). If sq is not a tuning then these boundaries are hornotopic 
to fii-q U/i"1, pii-qt U Pqf1- If Sq is a tuning, then the fact that the reduced branched 
coverings for E\{sp u sq) and E\{sp 11 sq) are equivalent under pt shows that \iqi is 
uniquely determined by pt. • 

3.12. Examples. — This integer TV must always be 2rn for some m ^ 0. We can 
see this by analysing the types of matrix A which can occur for /* : Rr —* Rr with 
respect to the standard basis. Take the first few rows and columns to be indexed by 
the loops of T\. There may or may not be a second periodic cycle of loops T2 in V. 
If T2 exists, it is not a Levy cycle, and we take the last few rows and columns to be 
indexed by the loops of T2. Then 

Q = PUE2U( Û o (sp 11 sqY(A0)). 

A = 
( 

Pi o 
A21 A22 ) 

or 

( 

Px 0 0 

A2i ^22 0 
A31 ^32 ^2 ) 
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where A22 is lower triangular with GTs on the diagonal, Pi is a permutation matrix and 
P2 almost is, but one of the entries is multiplied by 1/2. All entries of the matrix A 
are integers or half-integers. Then det(^22 — I) = ±1, and (if P2 exists) det(P2 — /) 
has two terms, one of which is ( — l)r and the other is ^( — l)r+1, if P2 is an r x r 
matrix. So det(p2 — /) = ±^ and (P2 — has integer entries. So the inverse of 
the matrix A22 - I has all entries in Z/2m' for some rri ^ 0, It follows that N = 2m 
for some rn ^ 0 

The picture illustrates Lq for q = 55/127 or equivalently q = 56/127, since these 
are ends of the same minor leaf. In this case rn = 1. The point 2nq mod 1 on the 
circle is labelled n for the least possible n ^ 0 The period of q under x H-> 2X mod 1 
is 7, while the period of p — 1/3 is 2. This gives the lowest possible period of q with 
rn ^ 1. 

Writing / = sp LI sq, and letting 70 = fip U /i^-p as before, there is one nonperiodic 
component 71 of /^x(7o) and for i ^ 3 we can inductively find one nontrivial nonpe-
ripheral component of /_1(7?;). Taking these five loops 72 (0 ^ i ^ 4) to index the 
rows and columns, the matrix of /* is 

(1 0 0 0 0\ 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 

2 
0 0 

^0 0 0 1 

The smallest eigenvector for eigenvalue 1 with integer entries, written as a row vector, 
is (2, 2, 2, 1, 1), that is, N = 2 = 2rn and m = 1. The q' with jiq, ^ iiq and s1/3 u Sq -
S1/3 11 sq> is q' = 72/127 (or equivalently q' = 71/127). 
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3.13. The sets C(/, Y). — Fix a basepoint / . We are going to construct a convex 
hull C(/, T) in the unit disc D, regarded as the universal cover of C \ Z, for each (/, Y) 
satisfying the Invariance and Levy Conditions, or Invariance and Extreme Conditions, 
such that C(/,r') = C(/,T) if (/,r) is the Maximal Reduced Version of and 
such that C(/, Y2) C C(/, Ti) if (/, Yx) ^ (/, T2). We shall call C(/, T) a £ew/ convex 
hull if (/, T) satisfies the Levy Condition. 

Let 7T2 : D —» C \ Z be the covering map, with 7R2(0) = v 2 (/). Let F 2 ( / , T) be the 
lift of E2(f, T) with 0 G £ 2 ( / , T). Let A 2 (/ , T) be the disc with E2 c A 2 , <9A2 C <9F2 

and A 2 disjoint from the fixed set of (/, Y). Let A 2 be the lift to D with E2 C A 2 . 
If (/, T) is a node, we simply take C(f,Y) to be the geodesic version of E2, that is, 
C(/, T) is the geodesic convex hull of E2 OS1. If (/, Y) is a edge, which is not minimal 
or a minimal tuning we take C(/, Y) to be the geodesic version of <9A2. The geodesic 
version of an extremal edge (/, Y) is a point on S1. In fact, this point coincides with 
P2([/3]), where p2 is the map defined in 1.12 and [/3] G 7TI(J3, TV, / ) is defined as follows: 
(3{t) = a(Xt o f where a is the (unique) path in C \ (UT) from v2 to a point of Z, and 
a.t ~ ol\ [0,t], where a is parametrised by [0,1]. 

Now suppose that (/, Y) is an edge which is minimal or a minimal tuning. Then E2 

is adjacent to a periodic homeomorphic gap Q such that [I/JQ] is irreducible. If [IPQ] is 
isometric, we define C(/, Y) as for the other edges. Now let [I/JQ] be pseudo-Anosov. 
Then there are two transverse measured geodesic laminations on C \ Y which are 
preserved by VJQ1 up to isotopy with transverse measures multiplied by a scalars A, 
A - 1 , 1 < A. We take the lamination whose transverse measure is multiplied by A 
and let Q.2 = ^h(f,Y) be the complementary component which contains both critical 
values. Up to y-preserving isotopy, we have A 2 C 0 2 . See the diagram, which is a 
sketch in the case when v\ has period four. 

Q.2 and A2. 

ASTÉRISQUE 288 



CHAPTER 3. NODES, EDGES AND ENHANCED LEVY SETS 65 

Then we take C(f, T) to be the geodesic version of the lift il2 \ A 2 of tt2 \ A 2 

which is adjacent to E2. Then dC(f, Y) contains countably many geodesies projecting 
to dQ2, and one projecting to dA2. 

3.14. Lemma. If C( / , T) C\C(f,Yf) / 0, then one is contained in the other, in 
which case one is a tuning of the other, or C(f,Y), C(f,Y') intersect at most in a 
boundary component. 

Proof This is similar to the Parameter Laminations Theorem 1.16 of [R3], but 
in the present finite situation the proof is simpler. It is also similar to 3.2. The 
basic idea, in any case, is that Levy cycles for a critically finite degree two branched 
covering do not intersect. 

We can assume, replacing / by ap o / for fi : [0, 1] —> C \ Z with /3(0) — v2 

if necessary, that E2(f,Y) and E2(f,Y') have geodesic boundaries. So suppose that 
E2(f,Y) Pi E2(f, Yf) / 0. We can assume that T and r ' have only transverse inter
sections, and that both satisfy the Maximal Reduced Condition. Then replacing / by 
f oi/i for a homeomorphism / o 'if;, we can assume that / preserves both Y and Y'. We 
can also assume that / is critically finite. Then a periodic loop of F can only intersect 
periodic loops and periodic horneornorphic gaps of Y'', and vice versa. Then, by the 
Maximal Reduced Condition, there are no transversal intersections. So (f.Y U Y') 
satisfies the Invariance and Levy Conditions. So 

A i ( / , r u r ' ) = A i ( / , r ' ) c A i ( / , r ) , 

without loss of generality. So either (/, Y U Y') satisfies the Edge Condition, in which 
case C(f, F) n C(f.Y') is a common boundary component, or A'Q(f, Y') — A 0 ( / , Y) 
and F = Yf up to isotopy, or 

A'0(f,r') = E2(f,T') C A[,(/ ,r) = E2(,f.T), 

and r ; C r up to isotopy, in which case, (/, Y') is a tuning of (f.Y), without loss of 
generality. • 

3.15. An action of G on Convex Hull Boundaries . — Fix a basepoint fo of 
B. Remember (1.11) that G = ^i(B) is antiisomorphic via <£>i to the subgroup G\ of 
PMG(C, Y) of ip such that p and / 0

- 1 o p o f0 o aa are isotopic via an isotopy fixing Y 
for a closed path a in C \ Z based at v2. Then [a] — p([p])- Then if (/o,T) satisfies 
the Invariance Condition and p G G\, so does (fo, p~l(Y)), and similarly for the Levy 
Condition or the Extreme Condition. Let = o~a o p~l as in 1.13, and let 0 b e 

the lift to D as defined there. Then il;~1(E2(fo,Y)) is nomotopic to E2(fo,p>~1(Y)). 
It follows that, with the notation of 1.13, if [p] = <£i ([/?]), 

CC/o,^" 1 (r)) n S1 - [/3] • C ( / 0 , F) n 5 1 . 

In particular, the action of G on defined in 1.13 preserves the set of boundaries of 
convex hulls. 
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3.16. Adjacent Convex Hulls. — We now know that if each of (/, F) and (/, F') 
is primitive or minimal nonempty, then the sets C(f, F) and C( / , Ff) have disjoint 
interiors. The following theorem gives us important information about the union of 
the sets C( / , T). It is an analogue of the Parameter Gaps Theorem of 1.16 of [R3], 
and the idea of the proof is the same. 

Theorem. The boundary of a connected component of Levy convex hulls is a union 
of convex hulls C(f,F) where (/, F) is a minimal nonempty isometric edge, and of 
components of dC(f,F) lifting to geodesic lamination leaves, where (/, F) is a minimal 
nonempty pseudo-Anosov edge. 

Proof Suppose that (/, F) is minimal nonempty or primitive and satisfies the 
Node Condition. Fix a boundary component 7' of E2(f,F) projecting to a boundary 
component 7' of E2(f, F). Let il be the gap on the other side of 7'. Let Q. be the 
lift of il adjacent to E2. If (/, F) is minimal nonempty and Q is the fixed set, then 
7' is also in the boundary of (/, Ff) for (/, F') minimal nonempty satisfying the Edge 
Condition. The corresponding convex hull is either 7' or Q, depending on whether 
the fixed set is isometric or pseudo-Anosov. 

So now suppose that i} is not the fixed set. Then we shall construct (/, Ff) such 
that 

Let Fi be the set of loops 7 G F with t he following property. There exist n and 7?; G F 
(1 ^ i ^ n) with 7 = 71, 7/ C / - 1 (7/4-1) up to Z-prcserving isotopy, 7./ 7^ 7' up to 
Z-preserving isotopy for 1 < / ^ //, and 77, is not in the interior of A2(f,F). Then 
77 G Ti, because we arc assuming that (/, F) is either primitive or minimal nonempty. 
In the latter case, we are assuming that 7' is not in the boundary of the fixed set. Let 
a be a path with first endpoint at v2 and the second in the gap of Fi adjacent to 7' 
and intersecting such that a intersects 7' just once. Then inductively define 

We assume inductively that a has second endpoint in the gap of Fi adjacent to 7' 
and intersecting Q. We have Fi C F2 and then Ft C I\+i by induction. Then for 
some /', Fi = T^+i. So (/, Fi) satisfies the Invariance and Levy Conditions, and we 

3.17. Tunings of (/, T) and convex hulls of pairs for B(f,F,Af

Q). — Let (/, F) 
satisfy the Invariance, Levy and Maximal Reduced Conditions. Recall that tunings of 
(/, T) exist only if E\ (/, F) = E2(f,F) = AQ(/', T), in which case this set is periodic. 
Recall that B(f\F,Af

0) is a component of B(Y(f, F, AQ)), where Y(f,F, A 0 ) = Y' 
is obtained from <1> : C —̂  C which is a homeomorphism on A 0 but collapses each 
component of C \ A 0 to a point in Y'. We can assume that fp maps AQ into A 0 , 
where AQ C AQ and all loops of <9AQ \ 0A'{) are trivial or peripheral. Let g be any 

f C C(f, F') and 12 n C( / , F') \ 7' / 0. 

r 12 n C(/, F') \ 7' / Ti 

take ( / , r ' ) = ( / , r , ) . • 
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branched covering which equals fp on AQ and preserves Y' and maps C \ AQ to 
C \ A 0 . SO we have a natural map 

( / , r ' ) ^ f c r ' n A ; ' ) 

which maps tunings of (/, Y) to pairs for B(f, T, A 0 ) . 
We can lift $ to $ : E2(f\ Y) -» D, since>D is the universal cover of C \ T, A 0 ) . 

Assume without loss of generality that E2(f,Y) — C(f:Y) and suppose that 3> is 
chosen with 3>(0) = 0. Then from the definitions, it follows that 

$ ( c ( / , r ' ) ) = % r ' n A ; ' ) . 

3.18. A Partial Ordering on Enhanced Levy Sets. — We now define a partial 
ordering on enhanced Levy sets. We take 

( / , r ) < ( / , r ' ) 

if 
a) C( / , Yf) is properly contained in C(/ , Y) and (/, Yf) is not an edge; or 
b) if C(f,Y') is adjacent to C(/ , T) or in dC(f,T) and is properly contained in 

A 2 ( / , r ) ; or 
c) C( / , r ) = 0A 2 ( / , r ' ) . 
We then take the partial order generated by this, and then define [/, Y] ^ [/, Yf] if 

this is true for some representatives (/, Y) and (/, Y'). This is a well-defined partial 
order, because the original ordering is clearly G-invariant. 

3.19. Examples in period three. — Now we describe the nodes and extreme 
edges and the ordering on enhanced Levy sets, for B(Y) when Y(f) = Z(f)u{v2(f)}, 
v\(f) € Z(f) has period 3, and 

Z(f) = / " n { / > i ) : i > 0} 

for 0 ^ n ^ 5. Recall that we described the structure of B(Y) in these cases in 
the Introduction. All our enhanced Levy sets will be of the form [/, Y] where / is 
critically finite. This means that Y(f) can be regarded as a subset of the full orbit 
of the postcritical set of / , but Y{f) may not be forward invariant under / . Let 
Y''(f) denote the forward orbit of Y(f). Then (/, Y) will satisfy the Invariance, Levy 
and Maximal Reduced Conditions for (f,Y'(f)). By 3.2 (and 3.3-3.5 in general but 
3.2 suffices in the present case), Y is uniquely determined up to y'(/^-preserving 
isotopy by / . So we shall simply write [/] rather than [/, T], remembering that for the 
moment, these are all either nodes or extreme edges. For this current definition, we 
can have [/] = [g] for two critically finite branched coverings which are not Thurston 
equivalent and may even have postcritical sets of different cardinalities. In fact (since 
we are only dealing with primitive Enhanced Levy Sets) it is easy to generate Y by 
considering the backward orbit of dP where P is the fixed set. 
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We use the notation for matings sq u sv as in 2.3 (recalled from 1.10 of [R3]). We 
shall also need captures originally introduced by Wittner [W]. I shall use a notation 
slightly adapted from [R3]. Given sq, for an odd denominator rational cp suppose 
first that the endpoints of fiq are not in the same orbit under z i—>• z2. Take q' in 
the full orbit of q under x i—> 2x mod 1. Then e27Ttq is in the boundary of a unique 
gap G of the invariant lamination Lq in the full orbit of the central gap. Let ay be 
a simple path starting at oc, crossing S1 at e2ntq into G and ending at the point XQ 
in G which is in the full orbit of 0 under q. Write 

e2^xq=e2^xq 

Then aq' o Sq is a capture. If the endpoints of fiq lie in a single orbit, then e27V7q will 
be in the boundary of two gaps in the full orbit of the central gap. We then simply 
use more points to uniquely determine the gap, and write, for example aqiq> for a 
homeomorphism given by a path which crosses into a gap with e2^xq and e27Tiq in 
its boundary (if this uniquely determines the gap). 

It will also be necessary to consider matings in which the critical points are not both 
periodic. For example, if e2nlq , e27Ttq and e27Viq are the vertices of the preperiodic 
triangular minor gap T of the lamination Lq> then we write sq^q/' q/// for a branched 
covering preserving Lq> and with preperiodic critical point whose eventual period is 
the eventual period of T. 

In all our examples, the fixed set P is either the closed loop /¿1/3 U / i^/ 3 , or (up 

to homotopy) A U A - 1 , where A is the triangle with vertices at e27rt^1^7\ e

27™(2/7)5 

^¿(4/7) _ 

Case n = 0. — The 3 enhanced Levy sets, and the ordering, are: 

[S3/7 1 1 S1/3] ^ [«3/7 1 1 S1/3] and [si/7 11 s6/7] = [ s 6 / 7 11 S1/7]. 

(The last equality arises because SI/7USQ/7 is a shared mating. There is a homeomor
phism (f which fixes both critical orbits of si/7 u Sg/7, but for which S1/7 11 Se/7 — <p 
S6/7 11 51/7.) These are all extreme edges. 

Case n = 1. — The ELS [,Si/3 u S3/7] is a node for for n ^ 1, and i?2[^i/3 u ^3/7] 
is periodic with degree two eventually fixed type reduced map space. The following 
enhanced Levy sets and orderings are added: 

[«3/7 U Sl/3] < lr 0 CT5/14 0 ^3/7], 

where r is any integral Dehn twist round the loop /11/3 U M^/3. All integral twists do 
give distinct enhanced Levy sets. The ELS [r o cr 5/ 1 4 o S3/7] is an extreme edge, and 
remains so for all n ^ 1. 

Case n = 2. - The ELS [ s 3 / 7 u s 3 / 7 ] is a node for n ^ 2, E2[s<s/7 u s 3 / 7 ] is periodic 
and the corresponding reduced map space if of periodic degree two type. We add in 
one more extreme edge and ordering: 

[S3/7 U S3/7] < [̂ 13/28 0 S3/7]-
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It will become clear in Chapter 4 why we do not need a Dehn twist in this example. 

Case n = 3. — The ELS [si/7 u s6/7] is a node with E2 [si/j u s6/7] periodic, and the 
corresponding reduced map space is of periodic degree two type.The new ELS's and 
orderings are 

[«3/7 U «1/3] ^ [r o CT19/5Q o s3/7], [s3/7 H S1/3] ^ [r o a23/56 0 «3/7]» 

[013/28 0 'S>3/7] ^ [0~27/56 0 «3/7], 

[,S1/7 LI 66/7] ^ [T' o 6̂ /7 LI «9/56,11/56,15/56] ^ [T' ° ^9/56,11/56 ° «1/7], 

[T' O S1/7 II 59/565ii/56,15/56] ^ I7"' 0 ̂ 11/5675/56 0 «1/7], 

where r' is any integral Dehn twist round /¿1/7 U /¿¿/7, and r is as in case n = 1. All 
of the new ELS's are extreme edges, except for \r' o 61/7 u S9/56,11/56,15/56]? which are 
preperiodic homeomorphic. The ELS [0*13/28 °«3/7] is now a preperiodic capture, and 
^2 [043/28 0 «3/7] x Z is a once-punctured annulus although it was a disc for n = 2. 
It develops more topology as n increases. For n — 6, for example, it will be a once-
punctured four-holed sphere (since it maps under the degree two map (s3/7 u S3/7)4 
to the annulus E2[s3/7 11 s3/7] for n = 2). 

Case n = 4. - It is time to stop listing all the new extreme edges. There are 5 new 
ones. 

Case n = 5. — We have 8 new extreme edges, and some of the previous new ones 
become preperiodic captures. We do not give a systematic list, but 

[«3/7 LI S1/3] ^ [«3/7 LI «13/3l] ^ [«3/7 U «3/7], 

[«3/7 U «13/3l] ^ [093/224 0 «3/7]-

Here, [«3/7LT«i3/3i] is of degree two eventually fixed type, while [0̂ 3/224 0 «3/7] is one °f 
the extreme edges. As indicated by the ordering, A2 [̂ 3/7 11 ^3/7] and A2 [0*93/224 0 «3/7] 
are in different components of C\ E2[s-s/7usi3/3i}. This confirms that [«3/711613/31] 
is not an annulus: it is, in fact, a 3-holed sphere. There are also tunings of [¿»3/7 u6*1/3] 
between [«3/7 11 «1/3] and [63/7 u 673/31], which we have not listed. 

3.20. Examples in Period 4. — We consider only the case when B — B(Y), 
and for [/, Y(f)] e B, Y(f) = Z(f) U {v2(f)}: where Z(f) is the period four orbit of 
vi(f). Then the primitive node Enhanced Levy Sets, and the extreme edges, are 

[«4/15 U «6/7] ^ [«4/15 11 «11/15], [«2/5 U «1/3], [«7/15 U «l/s] ^ [«7/15 U «7/15], 

b ° «1/15 U «14/15], 

where Lp is the identity off the four holed sphere P which is the fixed set for 67/15 u 
«14/15, an(l is either the identity or such that Lp o 6i/15 u 674/15 I P ^ pseudo-Anosov. 
All the pseudo-Anosov ones contribute to the topology of B(Y), (without increasing 
Y to f~nY for some n > 0), as we shall see. 
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CHAPTER 4 

THE GROUP OF AN ENHANCED LEVY SET 

4.1. Let D be of degree two periodic or eventually fixed type. In this chapter, we 
examine the subgroup structure of G — TT\(B). We introduced the subgroup G[f.T] 
associated to an Enhanced Levy Set in 3.6. We describe this subgroup in 4.5 below in 
terms of a topological space B[f, T]. It turns out that G[f, T] is the fundamental group 
of a fibration over a covering space of B[f\T], with torus fibres. We also examine, in 
4.1G, intersections between subgroups, arising from Edges (i.e. Enhanced Levy Sets 
satisfying the Edge Condition) joining Nodes. For such an intersection we obtain a 
handle between the Node topological spaces. Finally, we make some remarks about 
computing examples, and give some examples. 

4.2. Characterization of G[f,T]. — In this chapter, it will be convenient to 
consider only (/, T) satisfying the Invariance, Levy and Maximal Reduced Conditions. 
It will also be convenient to choose / to preserve the point set UT not just up 
to isotopy. We may need to have parallel copies of some loops in F to achieve this. 
Throughout this chapter, we use the characterisation of G as a subgroup of MG(C, Y) 
(1.11). Then we can characterize G[f, F] as the set of [p] e MG(CT) such that: 

p preserves UT (pointwise) and p is isotopic to f~l opo f via an isotopy preserving 
zu(ur ) . 

We can take the isotopy to preserve UT, because / does. 

4.3. The spaces B(f\T) and (B, N)(f, T). — We continue with the standing 
hypotheses on (/, T). We describe the topological space B[f\T] — B(f\T). 
Periodic Case. Suppose that E^ / , T) is periodic. Then B(f,T) is simply the 
reduced map space B(f, T, £"2). See 2.17. 

Preperiodic Capture. B(f,T) = ^ ( / T ) \ Z> 
Preperiodic Horneornorphic. Let A be any gap, and let p be a homeomorphism 
of A. Then we use [p | A] to denote the isotopy class of p | A modulo isotopies which 
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leave dA and A n y invariant. Let MG(A, A n y ) denote the group of such isotopy 
classes, and PMG(A, A n y ) denote the group of isotopy classes of homeomorphisms 
which fix A n y and each component of OA (not necessarily pointwise). 

First, suppose that B is degree two periodic type. Then / | flE2(f1T) is a home
omorphism for all i ^ 0. Let p be the eventual period of E2 under / . Then we can 
regard the centraliser of [fp \ fl(E2)\ on flE2 as a subgroup of MG(E2, E2 n Y). 
Then we let H be the intersection of this centraliser with PMG(E2,E2 f lF) . We 
recall from 3.6 that the centraliser is free abelian. We can choose representatives 
in Hom+(£2,^2 H Y) so that this group which we continue to call H is also 
abelian, using the classification of surface homeomorphisms [F-L-P]: we can take free 
generators (p.j of H (1 ^ j < r) so that for j ^ A:, the sets where tpj and (p^ ^ identity 
are disjoint. Then we take B[f,Y] to be the mapping torus of H on E2\ that is 

£ [ / , r ] = ( £ 2 x R r ) / ~ 

where ~ is the group orbit equivalence relation generated by: 

G TT\(B[J\ T\) = ni(E2 \ Z,v2) 

where cy G R7 is the vector with 1 in the j ' t h position and zeros elsewhere. 
If B is degree two eventually fixed then the only difference is that /* : E2 —>• f E2 

may be degree two, and flE2 may be fixed and contain a fixed point ZQ of Z. in which 
case we have to consider PMG(/Z£2, {¿0}) and lift to the double cover PMG(E2, {¿1}), 
where z\ is the preimage of ZQ in E2 • 

Edge Condition. If (/, T) satisfies the Edge Condition, B(f.T) is a point 
Note that, in all cases, rrj (B[f, V)) identifies with a subgroup of PMGf^, Y n E2). 

In the preperiodic capture case, we identify [o;] G TT\(B[J\ T\) = ni(E2 \ Z,v2) 
with [acx]. In the preperiodic homeomorphic case, Y n E2 — {v2} or {z\,v2}. and 
the subgroup of PMG(E2,Y n E2) is a semidirect product of H with TTI(E2,V2) (or 
7T\(E2 \ {21}, ^2))- This makes sense even though H is initially described up to iso-
topies which can move v2. 

4.4. The groups Hj. — Excluding the forward orbit of E2 if E2 is preperiodic 
homeomorphic, let A?; (1 ^ i ^ r) be a set of connected periodic homeomorphic gaps 
for (/, T) which includes precisely one gap from each periodic orbit. (Forget about 
the use of A2 to denote a disc containing E2 in the last chapter — we do not need 
it in this chapter.) Let nL be the period of At under / , so that fn> : A{ —> A^ 
is a homeomorphism. Then HL is the intersection of the centraliser of [fni] with 
PMG(Aj, A2 n y ) . Of course, A? n Y is at most a single fixed noncritical point of Z. 
Then, as we have seen in 3.6, Hi is free abelian, and the rank of Hi can be computed in 
terms of the number of irreducible cycles of components of fn' | A^ and the number 
of pseudo-Anosov cycles. 
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4.5. Elementary Structure of G[f\T]. Let T2 = T2(f\T) as in 2.5. There is an in
jective homomorphism 

B = Bi x B 2 x G 3 : G[f,T] —> 7n(ß[/ ,r]) x f j H, x Zr* 
i=l 

with the following properties. 

(1) a) KerBi is central in Gr-
b) Ker(Bi X 0 2 ) is a group of Dehn twists round loops ofT, and is isomorphic under 

B 3 to Ker(/* - J) n Z r , where /* is as in 2.4. The kernel is infinite cyclic if (f,T) 
is minimal nonempty, and the projection [p] ̂  0-s([p],^f) £ Z is an isomorphism on 
the kernel, for any loop 7 in the boundary of the fixed set. 

(2) The image of Bi has at most finite-by-abelian index. More precisely we have 
the following. 

a) It is of at most infinite-cyclic-by-finite index if E2(f.T) is periodic degree two. 
b) It is of at least infinite cyclic index if B is periodic degree two and [/, T] is 

rninirnal nonempty satisfying the Node Condition. 
c) It is of finite index 3) if[f\T] is a periodic capture. 
d) / / [/, r] is preperiodic horneornorphic, then the image contains an index two 

subgroup of the normal subgroup i\\ (E2[,/', T}). 
(3) The image of G2 is cyclic if [/, T] is rninirnal nonempty pseudo-Anosov. 

Remark. It does not seem to be possible to say any thing more precise about the 
image of O2, nor about Ker(Bi) in general. See the discussion of an example in 4.17. 

4.6. First step in the proof of Elementary Structure: Construction of B 

Let [p] e G. We can assume without loss of generality that p preserves UF point-
wise. Also, p preserves Z, and must fix all periodic points of Z. So ^ ( A ) = A 
if A is any periodic gap, or if A = Ei, E2 or Aq. Let A be any periodic home-
omorphic gap. Then each component of C \ A contains periodic points of Z. So 
[p I A] G P M G ( A , A n Y). 

Let A be any connected periodic gap union, of period /; under / , and let A ' c A be 
the set with dA C OA' such that fp{A') = A. Then our characterization of G[f\T] 
in 4.2 implies that 

(1) p I A ; is isotopic to f~p opo fp 

modulo isotopies of A which are constant on An Z. Thus, we can regard [p | E2] as 
an element of TT\ (B[f. T}) (since this identifies with a subgroup of MG(^2, Y H E2)). 

Then we define 

(-MM) = [vp 1 E2], 

e 2 ( M ) = ([¥>! a , ] , . . . , h A r]). 
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Let Y\ denote the union of the periodic points of Z and v2 • These points are fixed 
by all elements of G. Let 7 G T 2. Fix two points of Y\ on each side, giving 4 in all, 
and call this set ^(7): it does exist. Take any iionperipheral loop 7' in C \ Y(j) 
which cuts 7 exactly twice. Orient the loops 7, 7', and fix the crossing where the 
angle between the directions of 7 and 7' is in (0,rr). Take any [p>] G G(f, T). Then 
regarded as an element of PMG(C,7(7)), ip fixes 7 and twists j f an integer number 
03([92], 7) times round 7. This integer does depend on the choice of 1 (̂7), but then 
not on the choice of 7' and on the choice of orientations of 7, 7' (although it does 
depend on the orientation on C ) . Define 

e 3 (M) = ( e 3 ( M , 7 ) ) . 

Then B = Oi x 62 x 63 has been defined. 

4.7. Lemma. Let A = AQ or Ei be periodic of period p, with v2(f) £ flA, for any 
i ^ 0. Then if if I A satisfies (1) of 4.6, 

[p I A] = [identity I A]. 

Proof. Note that, under these hypotheses, the reduced map space B(f\ T, A) con
sists of critically finite maps of degree two. If A = E\, this reduced map space contains 
a polynomial, and branched coverings in this space admit no Thurston obstruction. 
If A = A 0 , the Maximal Reduced Condition implies that branched coverings in this 
space admit no Thurston Obstruction. In both cases, it follows that TT\ (B(f, T, A)) 
is trivial. If A = A 0 , B(f\ r, A) might be a Thurston equivalence class with a Eu
clidean, rather than hyperbolic, orbifold. But that happens only in one special case 
previously referred to in 2.17. In that ease we can identify C with R 2 / ~ (where ~ 
denotes the relation x ~ ±x + ra, and m G Z2) and maps in B(f\ T, A) are equivalent 
to g : [x] 1—> [Ax + b] for a fixed A G GL(2.Z) with irrational eigenvalues and deter
minant 2 and b with 2b = 0 mod Z2. There are no homeomorphisms of R 2 /Z 2 which 
commute with the endomorphism given by A, even up to homotopy. But any element 
of the subgroup of MG(C,7(p)) which identifies with rri(B(f, T, A)) would have to 
lift to such a homeomorphism of the torus. So tti (B(f, T, A)) is trivial in this case 
also. Thus, in all cases, using the identification of TX\ (B(f, T, A) ) with a subgroup of 
MG(A, A n V). we have the result. • 

4.8. Elementary Structure: identifying the kernel of Oi 

Proof of la) of 4-5. — First, we need to show that 0 is injective. Let [<p>] G Ker(0). 
Then Lp fixes all boundaries of all periodic gaps, and in addition preserves E\, E2 

and A 0 . Since Lp G Ker(0), [up \ A{] and [lp \ E2] are trivial in PMG(A?J and 
PMG(^2,^2 n y)- By 4.7, if E\ or A 0 is periodic and not in the forward orbit of 
E2, [ip I Ex] and [LP I A 0 ] are trivial in MG(E1.E1 n Z) , MG(A 0 , A 0 n Z). Using the 
characterization 4.2, we obtain that Lp \ A is isotopic to the identity for all periodic 
gaps A. By continuity it follows that Lp fixes all gaps and loops of T. In particular, 
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p fixes all boundary components of all gaps. Using 4.2 again, we deduce that p | A 
is isotopic to the identity for all gaps A . Hence p must be a Dehn twist composition 
round loops of T. Since [p] G Ker(Bs), the twists round all loops of T2 are zero. 
Hence, using the characterization of 4.2, the twists round all loops of T are trivial. If 
[/, r] satisfies the Edge Condition and a is the simple loop (in either direction) based 
at v2 in E2, then we use the fact that aa is isotopic to a composition of Dehn twists 
round the components of dE2. Hence [p] = [identity], as required. 

Let [p] G Ker(Bi) and [i/j] GxxxxxxxxxxxxxxxxxxxxxxxxThen [p] is the identity on the full orbit of 
E2, A 0 , EI, and [p] and [tp] commute on the full orbit of any periodic horneornorphic 
gap — where we take isotopies which are constant on gap boundaries. Hence [p] and 
[ip] commute. 

Proof of lb) of 4.5. — The first part is obvious. The claims in the case of (/, T) 
minimal nonempty are proved in 3 . 1 1 . • 

4.9. The image of B. — Let E2[f, T] — A 0 be periodic of period p. We need to 
exhibit a subgroup of 717 (.£?[/, T}) of at most finite-by-cyclic index which will be in the 
image of 0 i . Recall that ni(B[f, T}) is regarded as a subgroup of M G ( A 0 , A 0 D V ) . 

Therefore, the elements are regarded as isotopy classes [p | AQ]. We define L to be 
the subgroup of elements of 7T\(B[f,Y\) satisfying ( 1 ) to (3) below. We shall then 
show that L is in the image of Bi. 

The first property of an element of L is the simplest: 

( 1 ) [if I AQ] € P M G ( A Q , AQ n Y). 

This property is even a little stronger than is needed. Since A 0 n Y is finite and <9A0 

has only finitely many components, this is a finite index condition. 
Now let 70 = OAQ C 5A 0 , and let Ao = A(f~~1E2) be the annulus bounded by the 

two components of / _ 1 7 o - The second defining property for an element of L is 
(2) Composing p with a Dehn twist round 70 if necessary, in A0, f~l o p o / is 

isotopic to the identity. 
Suppose simply that f^1 o p o / is isotopic to r 2 n , some n G Z, where r denotes a 

single Dehn twist round AQ. This is clearly an index two condition. Note, however, 
that if this holds, and 77, denotes a single Dehn twist round 70, then f~l o (r^71 op) of 
is isotopic to the identity. So the representative r0~

n o p satisfies (2). So (2) is an 
index two condition. 

To give the third property, recall that there is a continuous map <f> : C —> C which 
is injective except on C \ A[ } , and that each component of C \ A 0 maps to a point in 
Y(f, T, A 0 ) , while the points of Y(lA0 map to the remaining points of Y(/, T, E2). Let 
p be a homeomorphism of <9A0 which fixes boundary components and is serniconjugate 
under $ to an element of 717 ( !?[ / , T}) (under the natural correspondence). Then we 
have: 

( 3 R ) p is isotopic to r O f~p o p O fp 
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via an isotopy which is constant on Z D A0 and on <9A0 where r is a composition of 
integral twists round all but one loop of <9A0, and a half integral twist round at most 
one loop 72 of <9A0 (which is at least a second preimage of 70). The loop 72 (if it 
exists) is in the preimage under fp of the loop in <9A0 separating v\ from A0, if this 
exists. (Note that f~p o p f is initially only defined on AQ, but can be extended 
to A0 by mapping disc components of A0 \ AQ as dictated by f~po(po fp on their 
boundaries.) Then our third defining condition of [if | A0] G L is 

(3) composing (p with integral twists round nonperiodic loops of dA'0 if necessary, 
Lp is isotopic to f~P O (f o fp 

via an isotopy which is constant on Z D A0 and on <9A0. 
Now 70 is fixed by fp and all other loops in dA0 are in the full orbit of 70. For any 

homeomorphism Lp of A0 fixing boundary components, (3 r) must hold for some r. 
The condition of r having zero twist round 70 is clearly of at most cyclic index. Now 
suppose that r has 0 twist round 70, and let (3T) hold for Lp. Then r corresponds 
naturally to a vector m = (ra7) G R r S where Ti is the set of components of <9AQ, 
excluding 70, m 7 G Z for 7 7̂  72 and m 7 2 G Z/2. Then (3) holds for r' o Lp, if r' 
corresponds to the vector n G Z r and n is a solution to 

(A - 7)n = m, 
where A is /* restricted to R F l . The matrix A is strictly triangular, with zero 
diagonal entries, and all entries are integers, except for one in the row indexed by 72, 
if 72 exists. Then the set of m G Z F l for which there is an integer solution is of finite 
index. So (3) defines a subgroup of at most cyclic-by-fiiiite index. 

4.10. Proof of the image property of Bi when (/, T) is periodic degree two 
The following lemma completes the proof of 2a) of 4.5. 

Lemma. — L is in the image of Si. 

Proof Let [Lp I A0] G L, that is [Lp \ A0] satisfies the defining properties (1) to 
(3) of 4.9. Then we can choose the homeomorphism Lp so that (2) and (3) of 4.9 
are satisfied. This is possible, because for (2) we choose an appropriate Dehn twist 
round 70, and then given that, for (3) we choose an appropriate Dehn twist round 
the remaining loops. We can assume that Lp is the identity on <9A0 by property (1). 
We are going to extend Lp to fix all loops and gaps of T. We define Lp inductively on 
the full orbit of A0. Suppose that Lp has already been defined on the gap A, and A! 
is a gap which contains a component of / _ 1 A with dA! C df~lA. Then we define Lp 
on A' n / - 1 A by 

/ o = </? o / 
and extend ip to discs of Ar \ f~l A if necessary. This uniquely determines Lp on 
A; unless A = Ao when there are two choices: we make the choice which fixes all 
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boundary components (rather than inducing a permutation of order two). Then p 
fixes all boundary components of all these gaps, and we extend p to be the identity 
elsewhere. By property (2), if A is a gap in the full orbit of A 0 and A ' is a component 
of / _ 1 A such that all components of 6W are either trivial or nomotopic to a single 
loop of r, then f^1 o p o f is the identity. Using this and property (3), we see that 
characterization 4.2 does hold for p. So [p] G G[f,T], and [p | A 0 ] G Im(Bi), as 
required. • 

4.11. Proof of the Image Property of Bi in the degree two periodic minimal 
nonempty case (2b) of 4.5. — Now let B be period two and let [/, F] be minimal 
nonempty satisfying the Node Condition. We want to show that (3) of 4.9 defines a 
subgroup of 7Ti(B[f,T]) which is of infinite index. The gap E2 is periodic, of some 
period p. Let a\ be the simple nontrivial loop in E2 \ Z based at v2 which is freely 
isotopic in C \ Z to 70 = 0A0. Let 71 be a simple loop in E2 \ Y such that a\ lies in 
the annulus bounded by 70 and 71. Let 77 denote Dehn twist round 7j, appropriately 
orientated. Let a = 07 *ai. Then aa is isotopic via a Y preserving isotopy to TQ OT^2. 
Of course this is isotopic to the identity via an isotopy preserving A 0 n Z and <9A0. 
But f~p o o~a o fp is isotopic to TQ O 77" \ and hence to TQ via an isotopy preserving 
AQ OZ and <9A0. Thus, cr™ satisfies (3 r) of 4.9, where r has a nonzero twist round 70, 
for any n 7^ 0. If T' is any twist round loops of F such that f~po (T7 o a[\) o fp | A 0 

is isotopic to T' O a™ I A 0 , then r' o cr™ also satisfies (3T). This is because (/, F) is 
minimal, and hence f~p(F \ dP) D dP = 0 . Thus, there is no choice of T' such that 
rf oa^ satisfies (3) of 4.9. It follows that [cr£] ^ Im(Bi) for n ^ 0. Hence Im(Bi) has 
infinite index in 717 (B[f, F]), as required. 

4.12. Proof of the Image Property of Bi in the Periodic Capture case (2c) 
of 4.5. — We can prove a stronger property this time, partly because E2 is a disc. 
Take any element of 717 (£?(/, T, ^2 ) ) represented by p on E2. Let E2 be of period p. 
Initially, we only have 

f~popo fp is isotopic to rn o p on E2 

via an isotopy fixing E2 D Z, where r is a single Dehn twist round dE2. However, fp 

is degree four on dE2. So now assume n — 3m, and we can replace p by r~~4m o p 
and hence eliminate r n . We can take p equal to the identity on dE2 and extend the 
definition of p to the full orbit of E2 as in the previous case. Since all components 
of the full orbit are discs, there are no awkward annuli. We then take p to be the 
identity outside the full orbit of E2. Then the characterization of 4.2 holds for p, so 
[p>] G G. So the image of Bi is of index at most three. • 

4.13. Proof of the Image Properties of B in the preperiodic capture cases 
(2d) of 4.5. — Take any closed loop in E2 \ Z based at v2 which lifts to a closed 
loop in f~lE2. Then aa defines a homeomorphism of E2 which is isotopic to the 
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identity via Z-preserving isotopy, and lifts under / to another such homeomorphism 
of f~lE2. We can take o~a to be the identity outside E2l and then 0i([cra]) = [a], as 
required. • 

4.14. Proof of the Image Property of 02 in the Minimal Nonempty Pseudo-
Anosov case (3 of 4.5). — Let P be the fixed set for (/, Y) which is minimal 
nonempty pseudo-Anosov. Then there is n such that for any component of /~(n+1)p 
which is not in / ~ n P , all boundary loops are trivial. (This is not true for a general 
(/, T), when components can degenerate to loops of Y.) Take any element [p] of 
PMG(P) in the centraliser of / | P , and define p on the full orbit of P so that 
fop = ip o / , fixing all components. Then extend p to be the identity elsewhere, and 
®2(M) = Vp\ as required. • 

4.15. Edge Subgroups and Adjacent Nodes. — Let [/, Y] satisfy the Edge 
Condition and let [/, Yf] be an immediate successor or immediate predecessor node, 
using the ordering of 3.16. Then, replacing (/, Y) by an equivalent loop set if necessary, 
we can assume that Yf C T, and therefore G[f,Y] C G[f, Yf]. We can also assume 
that (/, T) and (/, T') satisfy the Maximal Reduced Condition. Now we define a set 
C7[/,r,r/] C B[f, r']. 

Periodic Case. — Suppose that E2(f, Yf) is periodic of period p. Then we can use Yf 
to define a critically finite branched covering go as follows. Let 

n = E2(fX)^E2(f,T), 

and let ft' be the component of f~pft in E2(f\Yf). Then let go = fp on ftf and map 
the disc components of C \ ft' to components of C \ Sl as indicated by the map on 
their boundaries, so that the following holds for a finite set Z(go) which is the union 
of Z(f) n E2(f,V) and one point in each component of C \ ft: Z(go) is invariant 
under go and contains all critical values of go- If [/, rr] is a successor of [/, F] then 
go is simply the reduced branched covering of (/, T) for A0(/, T) and is a polynomial 
of degree two or four. If [/, V) is a predecessor of [/, Y] then, naming as v2(go) the 
critical value of go in the same component of C \ ft as v2(f), v2(go) is eventually 
fixed. 

Then B(g0,Y(g0)) is disjoint from B(f,T', A0), but B(g0, Y(g0)) U B(f, T , A0) is 
connected and locally contractible. Let C[/, T, Yf] be the intersection with B(f, Y', A0) 
of a tubular neighbourhood of B(g0, Y(g0)) in B{g0, Y(g0)) U B(f, T7, A0). The con
struction of such a tubular neighbourhood is given in 1.10. 

Preperiodic Capture. C[/ ,r ,r ' ] = E2{f\Y) C E2{f,Y'). 

Preperiodic homeomorphic. — Recall that B(f1Y') is a fibration over a torus with 
fibre E2(f,Y'). Then C [ / ,r ,r ' ] is the subspace fibration with fibre E2{f,T). 

4.16. Proposition. — The image Si(G[f, Y}) is in 7Ti((7[/, T, Yf}). 
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Remark. — The Topographer's View implies that the inclusion of C[f\ T, V] in 
B[f,F'] is injective on 

Proof of Proposition. This is basically definition-chasing. Take a path (ftlTt) re
alising an element of G[f\ T}. Let T[ C Tt be the corresponding path through loop 
sets starting and ending at Tf. We can assume that ft preserves Yt and T't (not just 
up to isotopy). The periodic case is obviously the most substantial. We consider the 
case when E2(f,T') is periodic of period p degree two. We think about our explicit 
construction of the tubular neighbourhood in 1.10. Let $ be the map which collapses 
components of C \ E2(f. V) to form the reduced map space for ^ ( J , f ) . We can 
embed <I> in a closed path of maps where collapses components of C \ E2(yft. T / )• 
We can also assume $>t maps E2(ft, T t) close to the corresponding collapsed point. 
If [/, T'\ is a successor of [/, T], then the annulus E2(f\ T) is periodic, as is E2(ft,Tt) 
and E2(ft, Tt) is equal to a component of fi~p(E2(ft, Tt)). This gives us a path of the 
reduced branched coverings in the tubular neighbourhood that we constructed. • 

4.17. Computation of Examples. — The statement of the Elementary Structure 
Theorem is a little vague. In many examples, the following holds: 

(1) 0i x O2 is injective, and the image is of finite index. 
We have seen that this fails to be true but in an orderly way if [/, T] is 

minimal non-empty. I initially hoped that it would be possible to characterize those 
[/, T] for which (1) fails to be true, but this hope now seems ill-founded. To see why, 
it is necessary to discuss the computation of examples. 

First, we consider the computation of Ker(Bi x O2) for a node [/, Tj. A Dehn twist 
composition o is in the kernel if and only if 

This is a straightforward linear equation in variables indexed by Y. In fact, we obtain 
the kernel up to finite index by considering Dehn twists round loops of r 2 , where 
T2 = T2(f\T) is as in 2.5. In fact, one can reduce further, considering loops to be 
equivalent if they are not separated by a periodic gap. Hence we obtain annuii B} 

(1 ^ /' ^ rn). Then let A — (a?,7) where ahJ is the number of components of f~lRj 
in Rt (assuming / leaves T point wise invariant). Then a solution to (2) corresponds 
to an integral solution x to 

This is precisely the equation we considered (with T2 = dP) in 3.8. Of course, kernel 
and image are related in linear algebra and (A — I)Zm is of finite index in Z r n if and 
only if the x = 0 is the only solution to (3). Further, (A - I)Zm = Z m if and only 
if det(^4 — /) = ±1. These statements imply, correspondingly, that ImGi x O2 is 
of finite index and that Oi x 62 is surjective. The converse implication is not clear, 

(2) / o a o / = a. 

(3) (A - I)x = 0. 
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but in examples computation of det(^4 — I) plus some auxiliary calculation leads to a 
description of G[f, T] 

There is a neat and quick way to compute det(A — I). First, we need a quick 
computation of A. We have such a computation for the examples [sp ii sq] that we 
considered at the end of Chapter 3 for Ds,n for various n ^ 0. To compute A, take r 
with jir — fip A fii-q (as in 2.3), and consider the finite set .s('.'(//,.) (k ^ 0). If fir is 
minimal, equivalence classes of loops of T2 correspond to the leaves s^:fi,r Otherwise, 
equivalence classes of loops of T2 correspond to rectangular regions of D \ (Ufcsjf//r), 
that is, with two bounding leaves. If these are numbered Rj then alyJ is the number 
of components of s~l(Rj) fl Rt. In fact, this is always either 0 or 1. For the explicit 
examples we consider, /ii/3 ^ fir ^ /ii/2, fh- joins e27r7,r and e27r^1-r\ and s^.fir joins 
e2ivix an(j e27r?(i-r) wnere x _ 2fcr mod 1. We can project these leaves to points on 
an interval, and the rectangles between them to intervals between the points. In the 
examples below, we draw {y : 0 ^ y ^ 1/2} with 1/2 to the left of 0, because we 
are considering this interval to be the projection of the circle {e27T7y : 0 ^ y ^ 1/2}. 
The orbit of fir then becomes the orbit of the critical value of a unimodal interval 
map. The critical value is the leftmost point, and the image of the critical value is 
the rightmost point. We number the intervals It (1 ^ i ^ n) from right to left. We 
write i —> j U • • • U j + k, or i —• f for j ^ f ^ j + />;, if the image of is Ij U • • • U Ij+k 
This is equivalent to a%^} — • • • = . /,. = 1. 

Example 1. Consider [.s3/7 u .s3/7] or any capture [ap o s3/7] with 3/7 < p < 4/7. 
Then r = 3/7. This gives orbits 

3/7 6/7 5/7 3/7 
4/7 -> 1/7 2/7 -> 4/7 

r = 3/7. 
1 ^ 1 U 2 , 2~>1. 

Example 2. Consider [,s3/7u6*13/31] (considered in 3.19 in the period 3, n — 5 case). 
Then r = 13/31. This gives orbits 

13/31 -> 26/31 -> 21/31 -> 11/31 -> 22/31 -> 13/31 
18/31 -> 5/31 -» 10/31 20/31 -> 9/31 18/31 
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r = 13/31. 
1 -> 4. 2 -> 2 U 3, 3 -> 1, 4 -> 1 U 2. 

Example 3. — Consider [¿'7/15 u 6*116/255]. Then r = 116/255 (which has period 8). 
This is an extension of the examples of 3.20 and would occur in the period 4 case 
for n sufficiently large. It is primitive in the sense of 2.16. We omit the denominator 
255 below. 

116 —>232 209—>163—>71—> 142—>29 —>58 —> 16 
139 —> 23 —> 46 -> 92 —> 184 —> 113 —> 226 —> 193 —> 139 

r = 116/255. 
1 —> 7, 2 - > 4 u 5 U 6 , 3 ^ 2 U 3, 4 —> 1, 5 -> 1 U 2, 6 —> 3 U 4, 7 —> 5. 

Now we give a formula for det(A — /) which is simply derived from the usual 
definition of determinant in terms of permutations of indices. Our formula actually 
gives det(B), where B is any matrix which has only 0's and l's off the diagonal and 
only 0's and —l's on the diagonal. For this we need to define a set of permutations 
£ (£ ) of {i : 1 < i ^ rn}. The condition for a to be in E(J5) is 

blM%) ± 0. 

In general, it is possible for the set S(P) to be empty. If B — A — I for A as above, 
then bl}j 7̂  0 equivalent to: exactly one of i = j , i —> j holds. We remark that for 
the above examples there is precisely one t with t —» t, and this always happens if 
iir ^ fii/s — but this is a peculiarity of the leaf £¿1/3. If fir is ^ any other minimal 
leaf, there is no such t. Note that T,(A — I) is always nonempty. In general, let ns be 
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the number of elements of T,(B) with s disjoint nontrivial cycles. Then our formula 
is 

det(B) = (-l)myj(-l)«n s. 

The sum is interpreted as 0 if T,(B) = 0. 

Example 1. We have t = 1 and the only element of T,(A — I) is the cycle 2-^1—^2, 
and det(A — I) = — 1 (as we can easily check, of course). As in all three examples, there 
are no groups Ht1 so 0 2 is trivial and G[s:i/7 u s3/7] is isomorphic to T\\ (B[s3/7 H S3/7]) 
(for n ^ 2). 

If we take one of the captures [ap o 53/7] with 3/7 < p < 4/7, then we can check 
that G[crp o 53/7] is isomorphic to 7Ti(E2[ap

 0 S3/7]). This actually has nothing to do 
with det(^4 — I). It has more to do with the fact that, if / = <jp o 53/7 then only two 
components of C \ f~1E2 intersect Z. 

Example 2. We have t = 2. The only nontrivial cycle containing 2 is 2 —> 3 —> 
1 —• 4 —> 2. So this is the only permutation in T,(A — J), and det(^4 — I) = 1. So, 
again G[s3/7 H s13/31] is isomorphic to 7Vi(B[s3/7 U .S'13/31]). 

Example 3. We have t = 3. The only nontrivial cycle containing 3 is 2 —» 6 —» 
3—^2. The only cycle disjoint from this is 1 —-> 7 —> 5 —> 1, which is included in 
one of the two elements of T,(A — I) and not in the other. So 774 = n2 = 1 and 
det(A — /) = 1 — 1 = 0. We can easily check that the kernel has dimension 1 by 
showing that the determinant of the matrix obtained by replacing some column of 
A — I by another column is non-zero. If we can insert the column with ±1 in the last 
entry and 0's elsewhere then this shows that the image of B1 is of infinite-cyclic by 
finite index and the image has infinite cyclic index if the determinant is =bl. If we 
replace the seventh column of A — 7, and call this matrix £>, then elements of T,(B) 
must fix 7, and otherwise the rules are the same as for Yt{A — I): there is then one 
element of T,(B), with nontrivial cycle 2 - ^ 6 ^ 3 - ^ 2 , and so the determinant of B 
is 1. So Ker(Bi) is one-dimensional and Im(Bi) is of infinite cyclic index. 

There are also examples with similar features to this one of the form [53/7 u sp], 
which occur in the period 3 case for n sufficiently large, but higher period of p is 
required. I found one of period 12. The nature of the example is similar to Example 3 
in the following sense (although Example 3 was originally found by trial and error). 
The orbit determined by 116/255 can be constructed by taking the standard period 3 
orbit - generated by 3/7 taking a period two tuning of this, and then giving an 
extra "twist" to destroy the tuning but keep the property of two disjoint cycles of 
intervals. Similarly, the period 12 orbit can be constructed by taking the period 5 
orbit determined by 13/31, taking a period two tuning of this and then giving an 
extra "twist" to destroy the tuning. 
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C H A P T E R 5 

G R A P H S OF T O P O L O G I C A L SPACES A N D T H E 
T O P O G R A P H E R ' S A N D R E S I D E N T ' S V I E W S 

5.1. In this chapter, we state the Topographer's and Resident's Views concerning the 
topological structure of the space B(Y, fo) of branched coverings, where B = B(Y1 fo) 
is of polynomial of degree two periodic or eventually fixed type. More generally, in 
order to carry out an inductive process, we describe the topological structure of the 
pair (B,N) (see 1.10), where TV is a deleted tubular neighbourhood of finitely many 
spaces of critically finite branched coverings with one critical value eventually fixed. 
From now on in this chapter, except in the statement of the Polynomial Type Theorem 
in 5.9, we take B(Y, fo) to be of degree two type. 

5.2. Some graphs and their duals. — A topological space S is a graph of 
topological spaces if there is a finite graph G such that the following hold. 

(1) To each edge node v, and edge e of G, there are associated closed subspaces 
Sv and Se of S. 

(2) There is a closed equivalence relation ~ on 
U„((S„ x {i/})u(U eS e X {€})) 

generated by relations of the form (x, v) ~ (fu.e(pc), e), where v and e are an adjacent 
node and edge and fu^e is a homeomorphism from a closed subset of Su to a closed 
subset of Se. 

(3) The space S is horneornorphic to the quotient space 
( U , ( S , x H ) U ( U £ S £ x { £ } ) ) / ~ . 

Up to homotopy equivalence, S is also the space 
Si = (U„(S„ x {v}) u (UeS£ x [0,1] x {c}))/ ~i , 

where, if we call the nodes attached to e ^ , v\ (in whichever order we like) then ~! 
is such that (x,i/j) ~i (fu^{x),j,e) for j = 0, 1. A possible advantage of the space 
Si is that there is a continuous map from Si onto G which maps each space S„ x {u} 
to v and each space Se x (0,1) x {e} to e. 
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A graph of topological spaces is a useful way of describing T if the sets Su and Se 

have a particular structure. There is no distinction, in the definition above, between 
the forms that can be taken by the topological spaces Su and S€ for nodes and edges 
v and e. 

There are two complementary views of the topological space B = B(Y,fo). The 
topographer's view is that B(Y, fo) is nomotopic to an increasing union of graphs 
QN(B) of topological spaces, each with a clearly recognizable geometric structure. 
The resident's view is that the universal cover B of B(Y,fo) is a union of pieces 
projecting down to sets in a partition V(B) of the resident's space which is the 
unit disc D, regarded as the universal cover of C \ Z. Each set in the partition is 
the geodesic-convex hull of a subset of dD (using the Poincaré metric). We need to 
describe V(B), and to obtain the graphs from it. In order to do this, we shall use the 
pairs (/o,r) examined in Chapters 2-4. 

In Chapter 1, we described an action of G = TTI(B, fo) on dD. This clearly gives 
an action on the set of geodesic-convex hulls of subsets of dD. We shall see that V(B) 
is invariant under the action of G. We shall then take coarsenings VN{B) (n ^ 0) on 
various subsets, and dual graphs QN(B). We then define 

Gn(B) = gn(B)/Gi 

with some nodes removed, as described below in 5.6: after quotienting by the G-
action, only two edges meet at these nodes, so it makes sense to remove them. The 
tree QN(B) is not the universal cover of QN(B): because the stabilizer in G of a node 
of QN(B) is always nontrivial, and the stabilizer of an edge is often nontrivial. 

5.3. The Partition V{B). — By partition, we mean that the interior of a set in the 
partition is disjoint from any other set: some of the sets in the partition are closures 
of single geodesies, or points on dD. We also mean that the union includes the whole 
open unit disc. The partition may not be locally finite: it is likely that sets in the 
partition accumulate on others. The sets in V{B) include all closed sets C(/o, T) (3.13) 
where (/o,T) satisfies the Invariance and Levy Conditions and is minimal nonempty 
or primitive (see 2.16), or (/o,T) satisfies the Invariance Condition and is extreme 
(2.3.4). We have seen in 3.14 that the interior of any such set C(/o, T) is disjoint from 
any other such set. The remaining sets in V(B) are the closures of complementary 
components. The collection V(B) of sets is then clearly invariant under G. We shall 
see in the Resident's View Theorem that these complementary components are in 
natural one-to-one correspondence with components V\ in B of the preimage of the 
set V C B of rational maps. We shall also see in 5.5 that there is a natural way to 
define the component C(V\) from Vi, although it is not at all obvious that is then a 
complementary component of the union of sets C(/o,T). 
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5.4. Putative Nodes and Edges of the covering graphs: Singletons and 
Pairs. — At least some of the putative nodes and edges of our graphs Gn(B) can 
be defined independently of the partition V(B), as follows. 

We shall refer to (/o,T) satisfying the Invariance, Levy and Maximal Reduced 
Conditions as a pair. Let V be obtained from F by adding in loops to the full 
orbit of the fixed gap P of F, so that the fixed gap P' of V is irreducible. Let ^p' 
be the homeomorphism of P' as in 2.13. If typi is isotopic to an isometry, define 

r) = 0. Otherwise, '0P' is isotopic to a pseudo-Anosov with invariant transverse 
measured foliations, which are expanded and contracted by ippt by A ± 1 for some 
A > 1. Then let «( / 0 , r ) = log A. The possible numbers K,(f0.T) (for / e B) form 
an increasing discrete sequence {ftn}n^o with no = 0. If #(Z) ^ 3, then n = 0 is 
the only possibility. Otherwise, the sequence {nn}n^o is infinite and unbounded. If 
(fo, T) is minimal nonempty or primitive, and ft(/o, T) = Kn, then (fo, T) is a putative 
node or edge of the graph QN(B). The alternatives node or edge depend on whether or 
not it satisfies the Node or Edge Condition, except in the case of minimal nonempty 
pseudo-Anosov edge pairs (/o, T), which are putative nodes of QN(B). This is because 
the associated convex hull C(/o,r) has nonempty interior. These give all the edges 
of QN(B), and some of the nodes. 

We now introduce singletons, which give the remaining nodes of QQ(B). Let B 
denote the universal cover of B, and V the set of rational maps in B. Singletons are 
simply the components V\ of the preimage of V in B. In future, we shall tend to use 
V to denote the full preimage of V in B. 

5.5. Convex hulls C(V\). — We are now going to make a connection between the 
singletons and the remaining sets in the partition V(B). For each singleton Vi, w e 

are now going to define a subset C(V\) of the closed unit disc D, which will be the 
geodesic-convex-hull of its intersection 8C(V\) Pi dD with dD. So we only need to 
define dC(Vi) ndD. 

Recall from 1.10 that there is an associated set of ends N C B = B(Y, / ) , such that 
N \ N consists of critically finite maps. We need to know that the space of rational 
maps V\ covered by V\ intersects at least one of the components of N. Using the 
notation of 1.9, this is equivalent to: V contains at least one map g with critical point 
02(g) in the forward orbit of c\(g), where V is a component of VPJQ, Vp,i,o or Ve/,m,o-
Something similar was proved in 2.4 of [R3], where we showed that V contained a 
polynomial. We can use exactly the same idea here. Our standard normalisation is 
to regard V as a space of rational maps 

c d 
9cd '• z 1—> H r- -o 

z zz 

satisfying a polynomial equation in c and d. This normalisation gives ci(gc^) = 0 
and vi(gc,d) = co. If vi(gCid) is never a critical point for (c, d) G V, then the function 

lim z2g'cd(z) = —c 
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never vanishes on V. Then (c,d) ^ 1/c is bounded and holomorphic on V, and hence 
constant. So there is Co such that c = CQ on V, and d varies freely on 1/. Taking 
d — —1 — Co gives an element of V with 0 of period 3, which means that V must 
consist of maps with 0 of period 3. This is clearly not true with c = CQ and d varying 
freely. So we have obtained the required contradiction. 

By the definition of universal covers, V\ corresponds to a homotopy class of some 
path 7 from / (B = B(Y,fo)) to Vi, up to homotopies keeping first endpoint at fo 
and second endpoint in V\. Fix such a path 7, with second endpoint f\. Then 
7Ti(Vi, Vi f l i V , / i ) / 0 . Then define 

dC(Vi) H dD = {p2([7 * Oi]) : [a] e TT1(VUV1 n NJX)}. 

This definition is clearly independent of the precise definition of 7 
We shall refer to the sets C(V\) as rational convex hulls. It is not clear that the 

set C(V\) is a single set in the partition V(B), nor that the union of all sets C( /o , r ) 
and C(V\) covers the interior of D, but this is part of our statement of results, and 
will be proved. Note that, in analogy, lifts of cusps are dense in the limit set of a 
Fuchsian group. Note also that dC(Vi)P\dD is invariant under the action of the image 
of 7Ti(Vi, /0) in G = 7Ti(B, fo). (This action was defined in 1.13.) 

5.6. The partitions and the graphs. — We define partitions Vn(B) of subsets of 
the disc inductively, then take Qn(B) to be the dual graph (actually a union of trees) 
and Qn(B) to be the quotient of Qn(B) by the C-action (with one minor modification). 
We take 

V0(B) = {C(Vi) : Vi singleton} 

U {C(/ 0 , T) : (/0, T) putative node or edge of Go(B)}. 

This is clearly (7-invariant. Then we define Vn(B) inductively by 

Vn{B) = { C ( / 0 , r ) : ( / 0 , r ) putative node or edge of Qn{B)} 
U {U : U is a component of Uo^< n 'Pi(B)}. 

We may as well call such components U singleton. The graph Qn(B) is Qn(B)/G with 
the minor modification that as follows. If (/0, Y) is pseudo-Anosov satisfying the Edge 
Condition, with Kn = ft(/o,r), then it is a node of Qn(B), because the corresponding 
set C(foJF) has nonempty interior. But after quotienting by the G-action, only two 
edges meet at this node. So in VG(B), Qn(B), we delete this node, and denote the 
resulting edge by [/o,T]. 

Part of our statement of the Resident's View (in 5.10) is that Vn{B) is a locally 
finite partition of any component of UVn(B), and hence Gn(B) is a locally finite graph. 
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5.7. The Topological Spaces associated to Nodes and Edges. — We describe 
topological spaces associated to the singletons and pairs and which are the nodes and 
edges of the graphs Qn(B). Let v = [Vi] be a singleton node of Go, where V\ projects 
to a component V\ of rational maps in B. Then Su = V\. 

Let v — [/, T] be a node or edge of Qn for some n ^ 0. The definition of the 
topological space Sv is suggested by the Elementary Structure Theorem 4.5, which 
gives an injective homomorphism 6 from G[fo, T] to 7Ti(B(fo, L)) x Zq (q ^ 0), where 
we can obviously choose q so that the projection of Im(B) to Zq has finite index. 
We choose Su to be the corresponding covering space of B(f0,T) x Tq, where Tq 

denotes the (/-dimensional torus. The Elementary Structure Theorem shows that the 
appropriate space is an abelian-by finite covering space. Thus, Su is a torus of some 
dimension (actually ^ 1) precisely when v is an edge. Note that this includes extreme 
edges. If v is a minimal isometric or pseudo-Anosov edge, then Sv is a circle or two-
dimensional torus respectively. If v — [/o,T] is a node then Su is a fibre bundle over 
a covering space of B[fo,T] with a (possibly 0-dimensional) torus as fibre. 

The topological spaces corresponding to the singleton nodes of Gn(B) for n > 0 
have to be defined inductively, using the Topographer's View of 5.11. The compo
nents of Gn-i(B) are in 1-1 correspondence with the singleton nodes of Qn(B). The 
Topographer's View at level n — 1 associates a topological space Sv to each compo
nent v of the graph of Gn-i(B). These are also the topological spaces associated to 
the singleton nodes of Qn(B). 

5.8. Natural identifications between Node and Edge Spaces. — Let v = 
[/o, T] and e = [fo, T7] be a node and edge of VG(B) or G(B), with v and e adjacent, 
which means that T C V. Write Bx = B[f0,T] and Gx = G [ / 0 , r ] , G[ = G[foX}. 
Then the abelian group G[ identifies with a conjugacy class of subgroups of G\ con
taining the centre of G[f,T], that is, the preimage under B : G\ —> 7i\(Bi) x Zr/ of 
{1} x 7jq (see 4.5, 4.6), and this preimage is of at most cyclic index in G\. Further, 
by 4.16, the image under projection to ix\(B\) if B\ is a map space is TTI(N), 
for some deleted neighbourhood of critically finite maps in B\ \ B\. So the torus S£ 

identifies with a subspace of Su. Recall that S„ is a fibre bundle with torus fibres 
over a covering space of B\. Then S£ identifies wTith the subbundle over either a 
point or homotopically nontrivial loop in the covering space of B\. We thus have an 
equivalence relation ~, which is a union of equivalence relations ~ n , where ~ n is an 
equivalence relation on on 

LI{£¿4 : ¡1 is a pair node or edge of Gn}-

The Topographer's View will involve an extension of the equivalence relation ~ n to 

LLjS^ : ¡1 is a node or edge of Gn}> 
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5.9. Polynomial Type Theorem. — This is relatively easy to prove, and its proof 
is completed in Chapter 6. 

Polynomial Type Theorem. Let B = B(Y, fo) be of polynomial type. Then under 
inclusion, B is homotopy equivalent to V — V(Y,f), where V is the space of rational 
maps in B. 

Let B be of the polynomial degree four type with fixed critical value vo of maximal 
multiplicity, v\ periodic, and v2 the image of two critical points. Let N C B be the 
subset in which the Poincaré distance between VQ and v2 is less than s, for some fixed E 
less than the Margulis constant. Then under inclusion, (B.N) is homotopy equivalent 
to (V, TV'), where N' is a tubular neighbourhood, of oo in V. 

This theorem implies that the set of polynomials in B is connected. The second 
part of the theorem for polynomial type is included simply because it is needed for 
the results about degree two type. 

5.10. Theorems for Degree Two Type 

Theorem: Injective on TTi. — Let B = B(Y, fo) be of degree two type. Let V\ be any 
component of the rational maps in B. Then the inclusion V\ B induces an injection 
TTl(Fl) -+7Ti(£). 

Let B denote the universal cover of B. The theorem implies that any component V± 
of the preimage of V\ in B is simply connected, and is (as the notation suggests) the 
universal cover of V[. In 5.5, we chose a point f\ G Vi and a path 7 in B from / 0 to f\ 
so that the lift of the path identifies a component in B of the preimage of V\. By 
Injective on this preimage component is simply connected and identifies with V\. 
Then using 7, p2 : m (B, TV, / ) —> dD restricts to a map p2 : m (Vi, Vi n TV, /1) dD. 
The map p2 on TT\ (B, TV, /0) was shown to be injective in 1.12. By Injective on 7Ti, 
it is also injective on 7r(Vi, V\ D N,f\), which we can regard as a countable subset 
of dD, identifying V\ with the disc D. 

Theorem: Resident's View of Rational Maps Space. — Consider 

P2 : ^ ( V i , V i n / V , / i ) —>dD. 

(1) p2 extends continuously to dD except at countably many points, where right 
and left limits exist. 

(2) A point of discontinuity of the extension on dD — dV\ is either an endpoint 
of a path lifting a geodesic to a puncture of V\, or is an endpoint of a lift of a closed 
geodesic in V\. 

(3) The right and left limits at such a point are either the endpoints of C(f\T) 
for some minimal nonempty isometric (/, T) satisfying the Edge Condition, or are 
the endpoints of a geodesic in dC(f,T) projecting to a geodesic lamination leaf, for a 
minimal nonempty pseudo-Anosov (f, Y) satisfying the Edge Condition. 
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(4) The inverse map p^1 of the extension extends across such geodesies to map 
dC(Vi) continuously and monotonically to dD, and injectively except for mapping 
the closure of each geodesic in dC(f,T) to a point. Moreover 

p-\g-z)=g- P2-\z) for all z e dCfa) ndD,gG 7n(Vi, / ) . 

Remark. — We can also regard 7RI(Vi, fi) as a subset of V\ = D, 7TI(C \ Z, v2) as a 
subset of D. Then 1.12 gives a map p : 7TI(Vi,/i) —-» D. The theorem holds with p2 

replaced by p, that is, we can show that p also extends continuously to dD. The proof 
for p is not greatly more difficult than that for p2, but one has to prove the version 
for p2 first, and then the proof for p has an extra step at each stage. I have therefore 
omitted the proof for p. The proof for p2 will be given in Chapters 25-31. 

We call this theorem the Resident's View, because it gives an identification of V\ 
with a subset C(V\) of the universal cover of the dynamical plane C \ Z . In particular, 
the topology of V\ is recorded in the action of 7TI(Vi) on the boundary of C(V\). 

We call the following theorem the Topographer's View, because it identifies B, up 
to homotopy equivalence, with a union of spaces with a strong geometric structure. 

Theorem: Topographer's View of B. Let B be of degree two type and N c B a union 
of tubular neighbourhoods of critically finite spaces B' c B \ B. Then (B,N) is 
homotopically equivalent to 

(UTf=05n(B),U~05n(7V)) 

with either Sn(B) — Sn(N) = 0 for n > 0, or {Sn(B)}n^o, {Sn(N)}n^o are increas
ing families of spaces, and the following hold. 

(Sn{B),Sn(N)) = ( ( U s „ ) / ~ „ , l l s , ) , 

where v runs over the nodes and edges of a graph Qn(B), \i runs over the extreme edges 
[/, r] corresponding to components of N, and the equivalence relation ~n relates only 
points from spaces indexed by adjacent nodes and edges of Qn{B) and is an extension 
of the equivalence relation of 5.8, as follows. 

(1) Let v — [Vi] and let s = [/, T], where (/, F) is minimal nonempty satisfying the 
Edge Condition. Let e be isometric. Then Se is a circle and identifies with a simple 
loop round a puncture in V\ = Su. 

(2) Let e — [/, T] be pseudo-Anosov, with n{fT) = nn. Then S£ is a two-
dimensional torus, and a simple homotopically nontrivial loop in S£ (corresponding to 
an element of G{e) = TTI(S£) with a pseudo-Anosov component) identifies under ~n 

with some homotopically nontrivial loop in Su for some singleton node v in Qn[B). 
[Remember that Su is a component of Sn-\{B).] 

The structure of Gn{B) is described completely by the following. 
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Theorem: Resident's View of B. Consider the sets C(Vi), C( /o , r ) , for all single
tons Vi, and pairs (/o,r) satisfying the Invariance, Levy and Maximal Reduced Con
ditions, and which are either primitive or minimal nonempty. Thus, V(B) is a G-
invariant partition of D. Furthermore, Vn(B) is a locally finite partition, restricted 
to any component of \SPn. Then the quotient Çn(B) = Çn(B)/G of the dual Qn(B) 
ofVn(B) is the same graph as in the Topographer7s View. 
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CHAPTER 6 

AN ITERATION ON A TEICHMÜLLER SPACE 

6.1. Definition of standard Teichmüller space. — Let Y C C be a finite set, 
# (Y) ^ 3. Then we write T{Y) for the Teichmüller space of C with marked set Y. 
This space (as usual) is described as follows. Let ^ : C -> C be homeomorphisms 
(¿ = 1,2). We say that p>\ ~ p)2 if, for some Möbius transformation <j, (pi and a o (p2 
are isotopic via an isotopy which is constant on Y. Let [cp] denote the equivalence class 
of cp with respect to ~. Then T(Y) is the set of all [cp], and has a natural topology. 
If # (F ) = n, then T(y) is homeomorphic to R2n~6. We have a natural projection 
from the quotient of Hom+(C) by Möbius left composition onto T(Y). Note that the 
inverse images of points are homeomorphic to quotients of Hom+(C,y), and hence 
contractible, by Chapter 1. 

If W C Y with #(W) ^ 3, then there is a natural projection from TT : T(Y) —• 
T(W), given by 7r([p]) = [ip]w, where [<p]w denotes (p modulo isotopies constant on 
W, and left composition by Möbius transformations. 

6.2. The Teichmüller space of B, and the Projection of the universal 
cover. — Now let B = B(Y,f0) be as in 1.9. Suppose that # ( F ) = #(y( /0)) ^ 4. 
Then T(Y) = T(y(/o)) is the Teichmüller space of B, also denoted T(B). If we fix 
basepoints, then there is a natural projection from B to T(B), as follows. We identify 
the elements of B as homotopy classes of paths in B starting at fo. Then, as we have 
seen in 1.11, a path ft (t G [0, 1]) gives rise to paths [<pt] G T(Y), [ip't] G T(f0~1Y), 
with [ipo] = [identity] and ipt{Y{fo)) = MY (ft)), ri(fö\Y(fo))) = ft'^Yift)), 
[<pt]z = Wt]z, ft = (ft ° fo ° In fact tne maP 

TT------BT(ß)----^ft'^Yift)),ft'^Yift)), 

is well defined, and is the natural projection. 
Let V denote the space of rational maps in B, with preimage V in B. Then TT \ V 

is injective, so we can, and shall, regard V as a subspace of T(F) , which, in general 
will be disconnected. According to Injective on T\\ of 5.11, the components of V are 
simply connected in the cases that most concern us. But this is very far from being 
obvious. 
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6.3. Modular Group Actions. — Classically, MG(C ,7) can be regarded as a 
discrete subset of T(Y), and acts on T(Y), on the right, by 

[if] - [vb] = [ipoi/j] 

Here, we are using [] to denote both equivalence classes in T(Y) and in MG (C ,7) . 
Recall (1.11) that the group G = ni(B) also identifies with 

d = № € MG(C, Y) : [0] z = [/0"x o V o f0]z}, 

and thus also acts on T on the right. But G — TT\(B) also acts on B on the left. (See 
1.1.) We easily verify that 

Ag-[.ft]) = A\ft])-g-1-
In fact, this is an extension of the fact that the map <f>i of 1.11 is an anti-isomorphism. 
Thus we have a quotient map 

[TT] : B > T/G 

which is, in fact, also a homotopy equivalence. (To see this, we need to choose the 
section of 7T to be G-invariant. This can be done.) 

6.4. Teichmuller metrics. — Once again, we recall the standard theory. (See 
[Gar2], for example.) For a quasi-conformal homeomorphism x '• C —> C, let D\z 

denote the derivative of x a t z, a n d (D\Z)T is its adjoint. Let K(x)(z) be the 
quasi-conformal distortion A//i of x a ^ z, where A2 > / i 2 > 0 are the eigenvalues of 
(DXz)TDXz. Let _ 

Hxllqc = ess sup{K(x)(z) : z G C}. 
The Teichmuller metric dy on T{Y) is defined by 

dY([<Pi]M) =inf{(l/2)log| |x| |qc : [̂ 2] = [xo^i]}-
Note that the action of MG (C ,7) on T(Y) is isometric with respect to dy. In the 
case when # (Y) — 4, and T(Y) identifies with the upper half plane H, then the 
Teichmuller distance is actually half the Poincaré metric. 

The following standard information was important in the proof of Thurston's the
orem, and will also be important here. The infimum in the definition of dy([(fi}, if 2]) 
is attained by a unique with quasi-conformal distortion which is constant (say, K) 
almost everywhere. Moreover, there are coordinate systems on C \ cpi(Y), C \ P2ÌX) 
such that, in these coordinates, x n a s the form 

X(x + iy) = (K1/2x + iK~1/2y). 

These coordinates are given by quadratic differentials o n C \ (pi(Y), C \ ^{Y), and 
thus are defined except at finitely many singularities. If these quadratic differentials 
are q\dz2\ q^dz2 respectively, then the coordinates are given locally by 

f y/Tjdz, 
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whenever qj is finite and ^ 0. Here, q3(z)dz2 is holomorphic on C \ pj(Y), and 
qj(z)dz2 has at most simple poles. This ensures that the path integral is bounded. If 
z = then dz = —dw/w2. So qj is a rational function with at most simple poles, 
occurring only at finite points of pj(Y), and at least 3 more poles than zeros, up to 
multiplicity. If oo is a simple pole of qj(z)dz2, then qj has exactly three more poles 
than zeros, up to multiplicity. If oo is a zero of q3(z)dz2 of multiplicity m, then qj 
has exactly m + 4 more poles than zeros, up to multiplicity. So qj(z)dz2 has exactly 
4 more poles than zeros, up to multiplicity. It is usual to normalise q3 so that 

In this case, qi(z)dz2 and q2(z)dz2 are uniquely determined by x- We shall say that 
qi(z)dz2 is the quadratic differential at [p\] for d([ipi], [p2\)- Using this definition, 
—q2(z)dz2 is the quadratic differential at [p2] for d([p2], [pi]). We say that q2(z)dz2 

is the stretch of q\(z)dz2 at [p2]. 

6.5. Thick and Thin parts of Teichmuller space. — For each [p] £ T(Y), 
there is a unique Poincaré metric p^ on C \ p(Y). We write T^e(Y) for the subset 
of T(Y) for which all closed geodesies have p^-length > s. It is well-known [TI] that 
the quotient of T^e(Y) by the action of MG(C, Y) or PMG(C, Y) is compact, for any 
e > 0. 

The Margulis decomposition [TI] tells us that for some e = £0, depending only on 
# ( y ) , for any [p] £ T(Y), geodesies of length < SQ in C \ p(Y) cannot intersect, 
nor even self-intersect. We then have a thick-and-thin decomposition of the surface 
C \ p(Y) into sets (C\p(Y))<£0 and (C \ p(Y))^£o, where (C\p(Y))<£0 is the set 
of points x such that there is a closed nonperipheral geodesic segment in C \ p(Y) 
of length < £0 with both endpoints at x, and (C \ p(Y))^£() is the complement of 
(C \ p(Y))<£{). Then (C \ p(Y))<£0 is a union of disjoint homotopically nontrivial 
and nonperipheral cylinders in C \ p(Y). A cylinder homotopic to (̂7) has modulus 
within 0(1/eo) of 27r2/e, if e is the length of the geodesic homotopic to p(j). 

Given a set F of disjoint simple nonperipheral loops in C \ Y, we write T( r , e) for 
the set of [p] in T such that (̂7) has length < e for all 7 G T. 

6.6. Properties of the Pullback Map. -— We now come to the key object of this 
paper, namely, our pullback map 

which is a generalisation of Thurston's pullback on a Teichmuller space [T2]. Indeed, 
our pullback reduces to Thurston's (essentially) in the case when B(Y) is a space of 
critically finite maps (that is, Y = Z). The basic properties of r are more important 
than its definition, so we give them first. For the third property, we say that B — 
B(Y,fo) is exceptional if Y = Z, # (F ) = 4, Z contains no critical points, but every 

f Ы = 1-

r : T >T 
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point of fQ~~ (Z) \ Z is critical and all critical points of /0 are in f0~ (Z) \ Z. As 
usual, we let V denote the space of rational maps in B. From now on, given Y we fix 
a constant £n > 0 such that the Margulis decomposition (6.5) holds. 

1. The Commuting Property. — r : T —» T commutes with the (7-action. 

2. 77ie Fixed Set. — The set {x : rx = x} is 7r(V), where V is the preimage of V 
in the covering space B, and rr : B —+ T(i?) is the natural projection defined in 6.2. 
The fixed set is all of T if # (Z) < 3. 

3. Distance-Decreasing along Iterates. ~ For any x, the sequence 

{d{Tn{x),Tn+l(x))} 

is decreasing. Moreover, if # (Z) ^ 4 and B is not exceptional, then for an integer k 
depending only on Y and some 1 ^ m ^ k, 

d(rrn{x),rni+l(x)) ^ \{x)d{x,r(x)), 

where \{y) ^ A(e, M) < 1 if ¿(2/, r(y)) ^ M, and 2/ G T^ £. 

^. TTie TTwn Part Invariance Property. — For L, £1 < £0 depending only on # (F) 
and a given constant M > 0, the following holds. Suppose £ ^ £1, d(x,r(x)) ^ M 
and x G 7^. Then there is (/o,T) satisfying the Invariance Condition such that 
x G T( I \Le) . 

5. The Thin Part Levy Property 

Polynomial type. — Let B(Y, fo) be of polynomial type. If e\ > 0 is sufficiently small 
given Eo and M, and x G T^>eo, d(x: r(x)) ^ M, then rn(x) G 7^£l for all n ^ 0. 

Degree two type. — Let #(Y", /0) be of degree two type. There is an integer m > 0 
depending only on (/0, Y) such that, given M > 0, there are £1 ^ £0 and Z/ such that 
the following hold. Let £ ^ £1, let d(x,r(x)) ^ M, let r"(x) G 7̂ >£ for 0 ^ i < m, 
and let there be a least integer n ^ m with r n x G 7^e. Then there is T satisfying the 
Invariance and Levy Conditions such that rnx G T(T,L'e). 

6. Close to zero distance. — Let B(Y, fo) be of degree two type. Given E > 0, there 
is 5 > 0 such that if d(x,r(x)) < 5, then either d(x,y) < £ for some y G V, or 
x G T(r ,£ ) for some (/o,T) satisfying the Invariance and Levy Conditions. 

6.7. Definition of the Pullback M a p . — Now we define r. We fix a space 
B(YJo) as in 1.9. Let Z C V be as in the definition of B(YJ0) in 1.9, and let 
# (Z) > 3. Then po fo : C C is a branched covering. Let [<£>] G T = T(£ (F , / 0 ) ) = 
T(Y). So there is a holomorphic branched covering s : C —» C and an orientation-
preserving homeomorphism cpi : C —> C such that p o f0 = s o pi, s is uniquely 
determined up to left composition with a Möbius transformation, and [pi] G T(f^lY) 
is uniquely determined. By abuse of notation, we shall often write 

[pi] = [s" 1 o p o /0]. 
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Now Z( / 0 ) = Z C Y fl / 0

_ 1 ( r ) (see 1.9). So [ ^ ] z G T(Z) is uniquely determined, 
where this is the natural projection to T(Z) (see 6.1). Then r([cp]) will be a lift of 
[pi}z to T(Y), as follows. 

We consider [py]z and the projection [p)z of M to T(Z). So by 6.4 we can find a 
unique x : C —> C such that p\(Z) — \. ° <p(Z), [<£i]z = [x° <̂ ]z and 

<p(Z), [<£i]z = [x° <^]<p(Z), [<£i]z = [x° <^] 

Then \x° ^p\y is uniquely determined, and and we define 

<p(Z), [<£i]z = [x° <^] 

6.8. Remark. — If Z — Y — that is, if B(Y, /0) is a space of critically finite maps 
then the definition of r is precisely the same as Thurston's original definition [T2]. If 
Z ^ Y we may still have chosen f0 so that Y C / ^ O O , and thus fai] G T{f~l(Y)) 
projects to faifa, but even so, it is definitely not the case that in general fai]y = 
[X°^}Y-

6.9. Proof of Property 1. — Let fa] G T(Y) == T(B(YJ0)) and fa] G G ^ 
MG(C, Y). Then if 5 is as in 6.7, 

[s 1 o p o o / 0 ] z = [(5 1 o o /o) o ( / 0

 1 o if; o / 0 ) ] z = [(s

 1 opo f0) o -0] z . 

So if x is as in 6.7, so that [xo p]z = [s 1 o p o / 0 ] z , 

[s 1 o o ̂  o fQ]z = [x O o ^ } z . 

and r(fa] • ip]) = r(fa]) • fa], as required. 

6.10. Proof of Property 2. — Again, let s be as in 6.7, given fa] G T"(y), 
y — y( /o) . It is clear that r fixes fa] if and only if [s" 1 o o fo]z = fa]z? that 
is, if and only if p o / 0 = s o <pi with cpi and (/? isotopic via isotopy constant on Z 
(composing s on the left with a Möbius transformation if necessary). Then 

s(p(Z)) = s{p1(Z)) = p(Z), s = ipo foOlf!1. 

So s G V and 7r(s) = [p] where s is a preimage of s in V and TT is as in 6.2. The 
converse is also clear, that is, if s G V then T(TT(S)) = TT(S). It is also immediate that 
r fixes all points of T if # (Z) $C 3. • 

6.11. Proof of Property 3. — Let [p] G T(Y). Let 5 be a holomorphic branched 
covering whose critical values are in p(Y). Let q{z)dz2 be a quadratic differential on 
C \ p(Y). Then 

s*q(z)dz2=q(s(z))(s'(z))2dz2 

is a quadratic differential o n C \ s XXXX(the pullback). If 5 has degree d then 

y \S*q\=dj \q\. 
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Now assume that #{Z) ^ 4, where, as usual, Z is as in the definition of B(Y, /0). 
Write r(fa]) = fai] G xxxxLet x : C \ <£>(1̂ ) —> C \ (pi(Y) be the homeomorphism, 
as in 6.7 minimising quasi-conformal distortion, in both T(Y) andxxxxxxxxxxxxxxxxso that 
r(fa]) = fai] = [x 0 p]' Let q0(z)dz2 = q(z)dz2 be the quadratic differential at 
fa] for d(fa], fai]) and let p(z)dz2 be the stretch of q(z)dz2 at fai]. (See 6.4.) Let 
I logX = <i(fa], T([</?])) Then x takes the form 

(i) y)1—>Kl/2x,K~1/2y) 
with respect to the singular local coordinates given by q(z)dz2, p(z)dz2 on ( C , ip(Z), 
(C,(/?i(Z)) respectively. Let the holomorphic branched covering s = SQ be as in the 
definition of r(fa]) in 6.7. Let si be the holomorphic branched covering at [r(fa]) used 
to define r(r(fa])). This means that the critical values of s\ are the images under \ 
of the critical values of s. Then the homeomorphism that we denote by s ^ o ^ o s has 
the form (1) with respect to local coordinates given by s*q(z)dz2 and s\p{z)dz2, and 

d(r«(M),TB+i(M))<d(M,r(M))z 

using TÏZ • T(Y) —* T(Z) to denote the natural projection. So 

(2) d(r (M), r 2 (M )) ^ log AT - d( M, r ( M )). 

Let d be the degree of / 0 . Let q\{z)dz2 be the quadratic differential at r(fa]) for 
^(r(fa])> 7 - 2 (fa])- We have strict inequality in (2) unless 

TBTBs*q(z)dz=qi(z)dz . 

Define fai] = T% (fa]) for i ^ 1. Let be the holomorphic branched covering with 
\s~l o <^ o f0]z = fai+i]z- Let qi(z)dz2 be the quadratic differential at r 2(fa]) for 
^( r*(fa])5 7 - 2 + 1 (fa]))- Proceeding inductively, we have either 

(3) d ( r « ( M ) , T B + i ( M ) ) < d ( M , r ( M ) ) 

or 

(4) -s*qi(z)dz2 = ql+\{z)dzfor 0 ̂  i < k. 

If (4) holds, and if ipi(Wi) is the pole set of qi{z)dz2, then for all 0 ^ z < /c, 

/0" (Wi) C Wi+i U {c : c critical }. (5) 

We have #(W*) ^ 4 for all i, as explained in 6.4. Then f$ (W*) contains #(Wx)d 
points up to multiplicity. So if f^1{Wl) contains n3 points of multiplicity j , for 
1 ^ j ^ r, then 

Ejrij = #{Wi)d, E(j - l)nj ^2d~2 
d 7=1 
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because the number of critical points is 2d — 2 up to multiplicity. It follows that 

r 
# {Wi)d ^ m + V 2(.7 - 1)//., ^ /;, - id 1. 

n+1 

with strict inequality unless 7?; - 0 lor r > 2, and unless / 0 (H VJ contains ail critical 
points of fn. Then 

- (u ; . , ) = //, > (-(ir,) - iw + i ^ 2#(ir,) - 4 > #(H'U 

with strict inequality if #(IT,) > 4. So if (5) holds for all 0 ^ i < k. and k is large 
enough given #(Z) . #(№',;) = 4 for all 0 ^ / < A;. It also follows that Wt = W for all 
0 ^ / < A', fo(\V) C W, all points in W are noncritical. the points in / ( )

 1 (11") \ IT 
are precisely the critical points of fo, all of local decree 2. and B(Y, fo) is a space 
of critically finite maps. In fact, the set W contains either 2 or 4 periodic* points, 
depending on whether d is even or odd. So we are in the exceptional case. 

So (3) holds in the nonexceptional case, for A; sufficiently large, depending only on 
#(Y). To obtain Property 3. we have to refer to an estimate which we shall prove in 
8.3. There is a constant C = C(M) such that the following holds. Let 

([p]) ([p]) ([p]) ([p]) ([p]) ([p]) 
Then, by 8.3, using the homeomorphism s-^ o \ i o.s,-. where [\j opt] = ([p]) ([p]) ([p]) ([p])and \ / 
minimizes dstortion, if d([p}. r([p})) ^ M. 

r'+ 1(M).r'+ 2(M))<(l-CI^,r J|*+i|Vi(r'(M).r'+ 1(M)). 

By compactness of the space of the corresponding space of quadratic differentials, we 
see that, except in the exceptional case, for some 1 ^ / ^ k. if d(\p]. r(\p]) ^ M and 

([p]) ([p]) 

d(r'([p}).r^([p]) ^ X(M.s)d(r^\[p}).r' ([p])) 

for \(M,s) < 1. 
This proof is basically the same as Thurston's original proof in the critically finite 

case [T2]. The exceptional case is the case of Euclidean orbifold. 

6.12. Proof of Property 4. — By 6.5, there is a constant C such that the following 
holds, for all sufficiently small e. Given p : C —» C. any geodesic on C \ p(Z) of 
length < e is isotopie in C \ p(Z) to at least one geodesic in C \ tp(Y) of length 
< Ce. Conversely, a geodesic in C \ <p(Y) of length < e is isotopie in C \ ^(Z) to a 
geodesic of length < Ce in C \ p(Z). 

So now consider x — [p] G T with d(x,r(x)) ^ M and r(x) = [p\]. Let s 
be the holomorphic branched covering used to define r([p]) = [ijj], so that [p\]z = 
[s~l o p o fo]z- So pi(Z) c s~l(p(Y)). So for e > 0 sufficiently small, a geodesic 
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on C \ ,s l((f(Y)) of length < s is isotopie in C \ fi(Z) to at least one geodesie 011 
C \ Vi(Y) of length < C2£\ and vice versa. Now 

(У)(У)(У)(У)(У)(У)(У)(У)(У)(У) 
is a locai isometry. So if 7 is a loop such that ^(7) is isotopie to a geodesie of 
length < £, and 71 C fo~l(l) is nontrivial and noiiperipheral in C \ Z, then ^1(71) 
is homotopic to a geodesie of length ^ C2e in C \ p\(Z), and (¿»(71) is isotopie to 
a geodesie of length ^ Còe 011 C \ p{Y). Also. ^1(7) is isotopie in C \ <+>i(Z) to a 
geodesie of length ^ CAe in C \ s~](p(Y), and so there must he 72 C C \ Y such 
that 7 C /(71(7'2) hi C \ Z and ^(72) is isotopie to a geodesie of length ^ C'V in 
C \ ip(Y). Repeatedly applying this procedure, we obtain an invariant ( /o,T) with 
7 G r and [p] G T ( r . Lc) for a suitable L depending only onxxxxxxxxxxxxxxxxxxxxxThe process 
has to terminate1 after finitely many steps, because short loops have1 to be isotopically 
disjoint. 

6.13. Proof of Property 5. — Once again, this actually mimics Thurstoirs orig
inal proof in the critically finite case [Т2]. [D-H3]. 

Given (Jo,F), there1 is an integer in with the following property. Let ( /о,Г) be 
any invariant set such that Г2(/о,Г') = 0 (sex1 2.5). Let A, = (A,(^\b)). (7, S G Г. 
/ ^ 1) be positive entry square matrix with 

Mk.=>'-ь-<*м<*)-
лег 

whore n(S) denotes the isotopy class of S in С \ Z. Then for any vector v = ((',). if 
\\v\\x=Max, |r;|. 

II П'" .A;v\(У)< M k . 
ОС 2 

Now choose L\ so that, 
U >4(#(y)deg(/()))m. 

Now let r"(;r) G T<C- for a least n ^ 7/7. Write [^j = T"-™(.J;) and [ĉ 2] = r"(x). 
Let t be sufficiently small. There is L2. depending only on L\ and(У)(У)such that 
the following holds. We can find s; with L2s ^ ef ^ e and (/0, Tf) satisfying the 
Invarianee Condition such that Tn-'"(x) G T(T'.e') and r'"-m(.r) £ T(7,L16T/) for 
7 ^ r;. This is achieved by using property 4. If r"~m(x) ^ T(^\L\e) for any loop 7 
then we simply take T7 = 0 . If at least one loop 7 exists with Tn~m(x) G T(^',Li£) 
then we enlarge1 to an invariant set T\, and take s-2 to be the length of the longest 
of these loops (e2 ^ LL\e). We then repeat the process if there1 is a loop 7' ^ 
with r" '"(./') G T(7/,Lic9). Sine'e1 loops of length ^ the Margulis constant are 
disjoint, the process must terminate. So V exists (even if empty). We them have 
T" (X) G T(V\L'e) for a constant L' depending only 011 M. fo and M. So it suffices 
to show that r2( /o.r / ) ^ 0 . This will ensure1 that V / 0 . In the Polynomial case, 
this is impossible, and we will deduce that T" (X) G T^£. 

ASTÉRISQUE 288 



CHAPTER 6. AN ITERATION ON A TEICHMULLER SPACE 99 

Suppose on the contrary that the set T2(fo,T/) = 0. Let sni be the holomorphic 
branched covering of degree (deg(/o))m such that [<p2]z — Ism1 ° V?i ° f^z- Now 
take 70 with rn(x) G T(7 0 ,e) . Consider the component A(70) of (C \ <£2(30)<£o 
homotopic in C \ p2(Y) to ^2(70)- Then by 6.5, 

(1) modulus (^(70)) > 2TT2/£ -O{l/eo). 

But to within < (deg ( / 0 ) ) r n #(y ) annuli of moduli <C 2ix2 / LX£ + O( l /e 0 ) with bound
aries of bounded distortion, A(70) is a union of preimages under sm of components of 
(C \ (fi(Y))<£() homotopic to loops of (pi(Tf). (A similar argument was used in [R2] 
7.5. See section 2 of that paper for an explanation, if needed, of why the boundaries 
have bounded distortion.) So for v with ||̂ z||oo ^ 2TT2/E + 0(1/£0), 

(2) modulus (A(7o)) ^ II Ut 1 A4\ + (deg(/0))
m # ( T ) ^ 2 / / ^ + O(1/E0)) 

11 1100 

^ 7T2/£ + 7V2/2£ + O(l/£0). 
But (1) and (2) are incompatible if 5 ^ £1 for £1 small enough. So T2(fo,Tr) / # 0 
and Property 5 is proved. 

6.14. Remark. The precise statement of Property 5 is a source of some considerable 
technical difficulty in the case of degree two type. Although we have shown that a 
sequence rnx which enters the thin part must first enter T(T, LE) for (/ 0 , T) satisfying 
the Invariance and Levy Conditions, it is not clear that this property will persist 
as long as rnx remains in the thin part. This necessitates the construction of a 
modification r' of r in the thin part in the proof of the Topographer's View (and, 
less directly, in the proof of the Resident's View). This, in turn, is one of the reasons 
for the development of the theory of Teichmuller distance, in the second part of this 
paper. 

6.15. Proof of Property 6. — Let L\ and L2 be as in the proof of Property 5. 
Let £ > 0 be given. Let S > 0 be sufficiently small. If d(x,r(x)) < S and x G T^£j/L2, 
then 

y = lim rn(x) G V 

exists, and 
d{y,x) ̂  5 / (1- A), 

where A = A(e, 1). So now suppose that x G T<£/L.2 and d(x,r(x)) < 6. We proceed 
much as in the proof of Property 5. Construct T', as in the proof of Property 5, 
such that x G T(T',£f) and x £ T(j,Li£f) for 7 ^ V. This time, we can ensure 
that E/L2 ^ E' ̂  £, and, for sure, T' / 0. Then we consider rm(x) = [p2]. Now 
suppose that L 2 ( /o , r / ) = 0. Arguing as in the proof of Property 5, we see that if 
4̂(7) is the component of (C \ (f2(Y))<£{) homotopic to ^2(7)? then the modulus of 

^(7) is < 7/8 of the modulus of any component of (C \ ipi(Y))<£(). This contradicts 
d(x,Trn(x)) < mS, if S is sufficiently small. So T2(/o,r /) 7̂  0, as required. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



100 CHAPTER 6. AN ITERATION ON A TEICHMULLER SPACE 

6.16. Proof of the Polynomial Type Theorem. — Now we use Properties 1-5 
to prove the Polynomial Type Theorem 5.9. We shall use the same basic idea to 
prove the Topographer's View for degree two type, although the additional technical 
difficulties in that case are considerable. 

We are given a polynomial type space B of branched coverings in which the space of 
rational maps is V. We are also given an end TV with Nf = VnTV, of the type described 
in 5.9. The spaces B, V and the pairs (B,N), (V,Nf) are homotopy equivalent to 
locally finite simplicial complexes, or pairs of such, and hence are homotopy equivalent 
to CW-complexes [Mi], or pairs of such. The spaces B, V are also K(ir, 1)'S, and B 
is trivially homotopy equivalent to T/G Hence, by 7.8 of [Spa], it suffices to show 
the following. Let a : (A,<9A) —> (T/G, VQ) be continuous, where A is an interval of 
disc and Vb C V (possibly Vb C N'). Then a is homotopic to map into (V, Vb), via a 
homotopy which is constant on <9A. 

To show this, we have 

a(A) C (T^£o H {x : d{x,rx)) < M})/G 

for suitable M and EQ > 0, since A is compact. We can regard r as a map on T/G by 
Property 1. Then by Properties 4 and 5, since B is Polynomial type, there is e± > 0 
(depending only on EQ and M) such that rn(a(A)) C T^£l for all n ^ 0. Then for 
all x G o;(A), limn_^00 r

n(x) exists, by Property 3, and is in V, by Property 2. By 
Property 2, T(X) = x for x G OJ(<9A), and in fact this is true if we lift a to T. So 
rna is homotopic to a for all n ^ 0, and limn_^00 r

na is homotopic to a. This is the 
required homotopy. • 
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H O W TO A P P R O A C H T H E T O P O G R A P H E R ' S A N D 
R E S I D E N T ' S V I E W S 

7.1. In this chapter we give the first outline of the proofs of the main results for degree 
two type spaces. In 5.11, we split the results up into four theorems — Injective on 7Ti, 
Resident's View of Rational Maps space, Resident's View (of the whole space), and 
Topographer's View. In this chapter, we shall state other results, and show that the 
four original theorems are equivalent to: the Resident's View of Rational Maps space, 
the Level K tool, and Descending Points. 

7.2. Subspaces of T/G associated to pairs and singletons. — Fix B — 
B(Y.f0). Let T T(B). Let (B,N) be of degree two type. As usual, let B denote 
the universal cover of B, and G = 7i\(B). Let V denote the space of rational maps 
in B, with preimage V in B. We can also (6.2) regard V as a subset of T, and V as a 
subset of T /G. Let Qn = Qn(B) be the graphs defined in 5.6. The putative nodes and 
edges include pairs [/, T] which are primitive or minimal nonempty, and singletons V\ 
in the case of QQ. In fact, these are all the putative nodes and edges in the ease of QQ. 

We are going to define a space T / x c T/G for each pair [/, T], and for each single
ton Vi. Let // = V\ be singleton. This means that V\ is a connected space of rational 
maps, and V\ is a connected component of the preimage of V\ in B. Define 

Tlt = Vi. 

Now let /i = [/o,r] be a pair. Fix any S > 0 less than the Margulis constant, so that 
any nontrivial nonperipheral loop of length ^ S is simple and any two such isotopically 
simple loops are isotopically disjoint. We define 

Tll=T(r,6)/G = T(T,e)/G(f0,T), 

since G(fo, T) is the subgroup of g € G for which g -T(T. S) nT(T, 5) ^ 0. Sometimes 
we may wish to vary 5, in which case we shall write Tfl(S). But the spaces T/Jj(S) for S 
less than the Margulis constant are all homeomorphic. Also, the definition of X), is 
independent of the choice of (/o,T) in the equivalence class, up to homeomorphism. 
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Let ^ be the ordering on nodes and edges defined in 3.18. For the same /i, we define 

K[fK[fK[fK[fK[fK[fK[fK[fK[fK[fK[fK[fK[fK[f 

where the unions are over those pairs with are primitive or minimal nonempty. Thus 
if /i is a node or edge of Qn, the union is over some nodes and edges of Qn Let TV be a 
union of deleted neighbourhoods of codimension one critically finite spaces in B \ B, 
with associated edges £(N), and define 

TN = \J{Ts:ee£(N)}. 

In 5.4 we defined a number T) ^ 0 for pairs (/, T) satisfying the Invariance 
and Levy Conditions. We define K[f, F] = n(f, T). This definition makes sense. Note 
that if /i ^ v for pairs //, v then ^(/i) = K(V), because K(H) is determined by the fixed 
gap. We also define K(VI) = 0 if V\ is a singleton node of Go 

We define 

T0 = U{r„ : «(M) = 0}, U = To N K So = U { ^ :K[fK[f = 0 } / ~ . 

Here, ~ denotes the equivalence relation given by identifying edge spaces Su into node 
spaces Sfl, for adjacent /x and v, as in 5.7. Then we have the following. 1, 2, 3 and 4 
are essentially obvious. 5 and 6 will be proved shortly. 

7.3. Theorem. The following hold, if, in the case of 5 and 6, identifications between 
loops in sets Sfl, for pairs /i with = 0, and singleton spaces V, are suitably defined. 

(1) Tv and Su are homotopy equivalent, for any putative node or edge of Qo and 
any putative node or edge pair ofQn, n > 0. 

(2) Let v = [fo, r] be a pair which is a node of Qn for some n, and let E be any set 
of adjacent edges, so that we have an inclusion Ss C Su for e G E. Then the following 
are homotopy equivalent: 

(Tv, \}{Te : £ G E}) and (S„, \J{S£ : £ G E}) . 

(3) T^fj, and S^>^ are homotopy equivalent for any pair node // 
(4) Given (B,N), ( T ^ , T ^ ; / DT/v) and (S^^, Pi SN) are homotopically equiv

alent for any pair node /i. 
(5) TQ and So are homotopy equivalent. 
(6) Given (B,N), (To,Tyy nTo) and (SQ, SQ C\ PSN) ure homotopy equivalent. 

Most of the Proof. - - We consider 1-4. Since the spaces involved are homotopy equiv
alent to locally finite simplicial complexes, and hence homotopy equivalent to CW-
complexes [Mi], and are K(TT, 1)'S, it suffices ([Spa] 7.8) that the fundamental groups 
be isomorphic, under an isomorphism that preserves subgroups in the case of 2 and 4. 
This is true, simply by the construction of the spaces PS^, PS^FL. • 
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7.4. Proofs of 5 and 6: Intersections between V and TQ. — The following is 
basically in Stimson's thesis [Sti]. We outline the proof given there. 

Proposition 

(1) If S is sufficiently small, and V fl Tv ^ 0 for some pair node v, then K(v) = 0, 
so that Tv C T-^FL for some minimal nonempty isometric edge p. 

(2) Let ¡1 be a minimal nonempty isometric node. Then the components T^[JL fl V 
are homotopic in T^>^ to the circles T£ for the minimal nonempty edges e ^ p, and 
in V to simple loops round punctures of V. This gives a one-to-one correspondence 
between minimal nonempty isometric edges and punctures in V. 

Proof (outline) 

(1) First, we identify punctures in V, as in Stimson's thesis. Consider the maps 

c d 
9c M : z —̂* H h- -p . 

z zl 

The critical points of gcj are 0 and —2d/c. Fix any integer k ^ 3. There is a 
polynomial F such that F(c, d) = 0 if and only if 0 has period k under gc^. Similarly, 
there is a polynomial G such that G(c, d) = 0 if and only if gk

c d(0) is fixed by gCld, 
for any k ^ 2. Our space V is either the zero set of such a polynomial, minus finitely 
many points, or a finite cover of such a zero set, minus finitely many points. The latter 
occurs if V is one of the spaces VPHI of 1.9. The excluded points include points above 
(c, d) for which the critical value g" d{ — 2d/c) lands in Z(gc,d), and, more importantly, 
those values for which gc^ degenerates to a Möbius transformation. Whenever this 
happens, the Möbius transformation is periodic, with period bounded by the size of 
the orbit of the critical point 0 of grA\ (which is constant over V). A periodic Möbius 
transformation is an isometry, anal hence we are in T(T, 6) for some isometric [/•, T]. 
It only happens when either d. = 0 or c, d are both large. In the latter case, by 
conjugating by z i ~> \/c.z we get the period two Möbius transformation z i—>• 1/z. So 
at these singularities, the limiting Möbius transformation has two fixed points whose 
multipliers are roots of unity (^ 1). Fix one of these fixed points. For some nearby 
maps in V, the multiplier will be inside the unit circle. Thus, any such puncture of V 
is in the closure of a hyperbolic component of some polynomial. The main result 
of Stimson's thesis [Sti] is that the puncture is in the closure of precisely two such 
hyperbolic components if the corresponding Möbius transformation has period ^ 3, 
and precisely one if the period is two. This is actually wrong. However, the method 
of Stimson's thesis (which is outlined below) gives a combinatorial rule for computing 
the number of polynomial hyperbolic components limiting on any puncture in terms. 
The number is always a power of two, as we showed in 3.12. This rule and Stimson's 
method (together with a correction of the mistake in the combinatorics) are outlined 
below. It is also shown in [Sti] that the only singular points of V are these Möbius 
transformation punctures (and this is correct). 
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(2) Now suppose that /i = [/o> T] is a minimal isometric enhanced Levy set satis
fying the Edge Condition. See 2.3 for a summary of the following notation, or 1.10 
of [R3]. By 3.10, there are odd denominator rationals p and q such that the corre
sponding minor leaves / i p , pq satisfy: q has the same period under x \-+ 2x mod 1 as 0 
under maps in V', iiv is minimal and p,p $C p>\-q, and there is F' such that 

[./ü.rl = [.spu.sq.r']. 
Let / be the polynomial (up to Möbius conjugation) in V which is Thurston-equivalent 
to sq. Let g be the polynomial Z H Z 2 + C equivalent to sp. Let h be the polynomial 
with a parabolic fixed point in the boundary of the hyperbolic component of g< and 
let C be the multiplier at that fixed point. Let H be the intersection with V of the 
hyperbolic component of / . Let R, be the ray in H of maps which have multipliers r£ 
(r G (0,1)) at the attractive fixed point. Then R limits on a (unique) puncture in V, 
for which the corresponding Möbius transformation has a fixed point with multiplier c\ 
(If the limit of the ray was a rational map, it would have a parabolic fixed point with 
multiplier and we could draw a "Levy cycle" round the forward orbit of the critical 
points which was contracted under inverse images.) 

So now we have a correspondence between the "degenerating" punctures of V and 
minimal isometric edges. It is not yet clear (as is claimed) that the correspondence 
is one-to-one. But now we analyse maps in V near a degenerating puncture. Let £ 0 

be the corresponding primitive k'th root of unity (k ^ 2) -xxxxxxxxxxxxxxxxxxxxxxxxxxnot uniquely determined 
if k ^ 3, since we can replace Q) by ( 0 . Let p = p(Co) he such that sp is Thurston 
equivalent to the unique critically finite polynomial z \—> z2 -f-c such that the boundary 
of the hyperbolic component of this polynomial contains a polynomial with parabolic 
fixed point and multiplier /x0 at this fixed point. Then up to Möbius conjugation, the 
maps in V near this puncture are of the form 

2 + A» 2 \ - i 
CzPJz),CzPJz),CzPJz),CzPJz),CzPJz),CzPJz),CzPJz), CzPJz), 2(1 + /)) 2 + P 

where ( is close to £o and p is close to 0. This map has fixed points at 0, oc, multiplier 
C at 0 and critical points at 1, 1 + p. If k = 2, this representation is not unique, because 
coniligation bv z i—» Ilz allows us to renlace C bv 1/C and o bv ( 1/1 + /;) — 1. 

For z near 1, the k'\\\ iterate of this map is of the form 

CzPJz),CzPJz),CzPJz),CzPJz),, 

So for bounded b (and small p) we have 

CzPJz),CzPJz),CzPJz),CzPJz),CzPJz),CzPJz),CzPJz),CzPJz), 
2(2b- lì 

Since 1 is supposed to be periodic for maps in V, we see that (k = 1 + O(p). By 
standard theory of singularities of algebraic curves, £ has an expansion in powers of 
pi/m £ o r s o m e integer m ^ 1. So for some a G C, we can write 

(1) Ck = 1 + ap + o(p). 
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So then we have 
1 

Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]Г]] 
The map 

b i—> a + b + 2(2/;-l) 
1 

has fixed parabolic point at oc and critical points at 0, 1 (corresponding to 1 and 
I + p). If a — 0 then both critical points are attracted to 0. But 0 is supposed to be 
periodic of bounded period (since the same is true for 1 under fi^_p), so а Ф 0. and 
only the critical point 1 is attracted to oc. It follows that given AI > 0 there is N 
such that h^k(l + /;) is distance ^ Alp from 1. (For more detail see [Sti].) 

Again, we outline1 from [Sti]. As (Q.()) traces a circle in V round the puncture 
of V, the straight line segment тп — т„((,р) joining //^'^+1^(1 + p) and h"kp(l -f p) 
does not intersect the periodic orbit of 1 under h^.p for •// ^ N. The multiplier of 
the fixed point 0 of is C- So if |C| < 1, 0 is an attractive fixed point. So in the 
case |C| < 1. li('s ш the hyperbolic component of a rational map which is Mobius 
conjugate to a polynomial. Choose1 an odd denominator rational q — q(Q^ p) so that 
this polynomial is Thurston equivalent to sq. Tliere are1 actually two choices for q 
given by the two endpoints of pq.) Let p = pc.(> be1 the uniforinishig map so that 

(̂()) = (). з̂(с-) = ( с - ) ( с - ) i + p = AO-
Now suppose, further, that ( = A Co for real A, 0 < A < 1. Then for sufficiently 
large n. the image under <p of the straight line1 segment joining A '̂ + 1 '̂ and Xnk is 
isotopic to T„ relative to the forward orbits of 1. 1 -\- p. It follows by induction that 
the same1 is true1 for all // ^ N. and that t here is a preiniage r = r((.p) of r,v under 
h(p~l which joins Ii(;.f,{I + p) and Iik+i(l + /;), and is disjoint from the periodic orbit 
of 1. Moreover, T = rc.p varies continuously with (Op)- All the1 critic-ally finite1 maps 

(с-)(с-)(с-)(с-) 
are Thurston equivalent and are also equivalent to .s/;n.sr/ for p — p(Co) arid q = q(£. p) 
for any (C-p) m a polynomial hyperbolic component near the puncture. Let F be the 
loop set containing Lv Usuch thatsuch that (sp if sq,T) satisfies the Invariance, Levy 
and Edge conditions. By abuse of notation, use T to use the same loop set in the1 
complement of the critical orbits of o~~l o Iic-p. It follows that the homeomorphism p 
corresponding (under <3>i. as in 1.11) to a simple closed loop round a puncture pre
serves F, and of course. 1-\- p and the forward orbit of 1. It remains to show that the 
homeomorphism represents a generator of 7V{(T£) = G[sp u sq. F], where e = \HV n sq\. 
Wc have seen in 3.11. 3.12 that G[spnsq, T] is a cyclic group generated by Delm twists 
round the loops of T, and that the Delm twist round each of the loops of UP is the 
same, say L. and L has to be a multiple of 2M for some ?n ^ 1. If k ^ 3 then L is also 
the degree oi p \ U'', where U' C V is a neighbourhood of the puncture, and the set U 
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of maps JiQ^p which are Möbius conjugate to maps in U' under conjugacies mapping 
1 to 0 has two components, each mapped homeomorphically to U' under this map 
of conjugacy identification. So the degrees of p and (' — Co on U and U' are all L. 
If k — 2 then the set of maps h^^, mapping to U' in this way may have one or two 
components. We claim that there is one component if m = 0. and that there are two 
if rn ^ 1. Let U be one of these components, and let rr : U —> U' be the projection. 
Since twists of the critical point 1 -f p and the critical value —1(1 + (1 + ^a)p + 0(p2) 
round the fixed point —1(1 -h ^ap + ()(p2) both contribute to the Dehn twist round 70, 
the degree of p \ U and of (Q + 1) | U is | L deg(rr). If rn = 0. then £ must trace 
a complete path round —1 on a circuit in U round the puncture. A hyperbolic com
ponent is passed through each time either |("| < 1 or 1 < 1 — 0(p2). This is only 
possible if the two hyperbolic components are conjugate, that is, deg(( + 1) | U) — 1. 
deg(7r) = 2, and hence L — 1. Now let rn ^ 1. Then the homeomorphism p is a 
composition (T\ o rj'2. where o~\ is an L-fold twist round the loop 70 = Hp U fh-p^ and 
o~2 is a composition of Dehn twists round strictly preperiodic loops (3.11). The Dehn 
twist <T\ can be written as rr\mi o a\:2- where the o~\,i and a[2 are L/2-fold twists 
round loops parallel to. and either side of. 70. Then p and (,s/; 11 sq)~

[ o p o (sp u sq) 
are isotopic via an isotopy fixing 70 U X(sp u sq). It follows that the lift of a closed 
path in U' going once round the puncture and starting in a hyperbolic component 
is indeed a closed path: because fixed points are preserved, it must end in the same 
hyperbolic component, not just in a Möbius conjugate of it. Then the map from U 
to U' is a homeomorphism. So if k ^ 3, 011 a simple path round the puncture in U 
or Ur, C passes through L different regions with modulus < 1 that is, L differ
ent hyperbolic components of maps which are Thurston equivalent to maps sq> with 
.Hp H sq' Thurston equivalent to sp 11 sq. In the ease of k = 2. that is, p = 1/3, so 
that .Hp = .s'i/^ = .S'2/3 = Si-p, and if rn ^ 1. the number of hyperbolic components is 
actually 2deg(( + I) \ U = L, because such a hyperbolic component is passed through 
each time either |C| < 1 or IC^1! < 1 - 0(p2). But the number of distinct q' is L 
in each case. So, for all k, the hyperbolic components passed through always give L 
different q' such that sp u ,sy ~ ,HP U sq. By 3.11. there are exactly 2 m such q', giving 
L ^ 2 m . We already have 2 m | L. So 2"' = L. So the path round the puncture is 
indeed a generator of TT 1 (V. ) . • 

7.5. Rat ional Convex Hulls . — We have now completed the proof of the Topog
rapher's View "to level 0 . given the Injective on TT\ result of 5.10. The next step is to 
prove the Resident's View "to level 0" given Injective on TT\ and the Resident's View 
of Rational Maps Space (RVRMS). So we need the following. This, with RVRMS 
completes the proof of the Resident's View to level 0. 

Lemma. Assuming injective on rri and RVRMS, the convex set C(V\) defined in 
5.5 is a single component of the complement of the Levy convex hulls C(f\T). 
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Proof. Identify Vi with the open unit disc with boundary dD. The RVRMS says 
that a map p2 maps dD to dC(V\), with right and left limits existing at every point, 
and these coinciding except when the limits are OC(fo, T) for some minimal nonempty 
edge pair (fo,T). (In fact, <9C(/o,r) = C(fo,T) if (/o,T) is isometric.)Then every 
geodesic in dC(Vi) is of the form dC(fo, T) for some minimal nonempty edge (/o, T). 
We shall call a connected component of the union of Levy convex hulls a Levy compo
nent, and shall call a complementary component just that. Thus, C(V\) is a union of 
Levy components and complementary components. Their boundaries are permuted 
by7n(Vi). 

Now we need to show that C(V\) is a single complementary component. First, we 
claim that it cannot be contained in a single Levy component or its boundary. This is 
simply because C(V\) is defined as the convex hull of points C(p) for extreme pairs // 
which do not satisfy the Levy Condition. In fact, these sets C(p) must be dense 
in dC(V\) n dD. So now suppose that C(V\) contains a Levy convex hull C\. Then 
dC(V\) intersects infinitely many components of dD \ Ci, because it cannot have 
open intersection with dC\. Moreover, for any extreme pair //, with C(p) G C(Vi), 
C(p) dC\. Now let g be the parabolic element of TTI(VI) fixing the parabolic 
point XQ with p2(xo) = C(/i) (using the realisation of TTi(Vi) as a group of Mobius 
transformations). Let / be the component of dC(V\) \ dC\ containing C(p). Then 
g • I H I ^ 0 because C(/x) G / . Then g • / C / or g~l .1 C / , because g • C\ = C\ or 
g -Ci nCi = 0. Then g-p2\l) C p2\l) or g'1 -p2

l(I) C p2

l(J). This is impossible, 
because p2

l(I) is an open neighbourhood of Xo, and xo is a parabolic point. So we 
have a contradiction, and C(V\) is a single complementary component. • 

7.6. Corollary. - If p2 : dD = d\\ —> c^C(Vi) is continuous except at the specified 
exclusions, then p2 is injective. 

Remark. This shows that 4 of the RVRMS follows from 1-3. 

Proof. We now know that dC(Vi) is a single complementary component. If p2 is 
not injective, then we can find an open interval / C dD, and, for x G / , a point 
y(x) ^ / such that p2(x) = p2(y(x)). Let x G / be fixed by a hyperbolic element g of 
TTI(VI), that is, g has precisely two fixed points on dD. We can assume without loss 
of generality that x is an attractive fixed point of (/.Then l im n _^ + 0 0 g~n{y{x)) = x' 
is the repelling fixed point of g. We can approximate any point of / x dD by such 
pairs (x, X'), since pairs of fixed points of hyperbolic elements are dense in dD x dD 
[G-H]. So p2(x) = p2{x') for all x' G dD, x G / . So p2(dD) is a single point, This is 
impossible, because p2 is injective on parabolic points by 1.12. • 

7.7. The Level K, Tool and Descending Points. — We now state two results: 
the Level K Tool, and Descending Points. We shall show that these, together with the 
Resident's View of Rational Maps Space, imply Injective on TTI, and the Topographer's 
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and Resident's Views, that is, all the results of 5.10. Write 

F{x) = d(x,r(x)). 

This can be regarded as a function on T or on T/G. Define 

Kie) = \J{Tft(e) : ^ K}. 

The results depend on constants DL > 0 and sets Kt1 for 0 ^ i ^ 2 which will be 
defined explicitly in 18.11. The number e0 > 0 is smaller than the Margulis constant, 
The constants EL satisfy E% < EL+\. We do not define the sets K% yet, but we write KH 
indiscrinately for a subset of T/G and for the preimage in T. We have Kt C A^+i for 
0 ^ i ^ 2, and Kj C T<£{) (or C T<£(JG). The K is supposed to indicate compactness 
in T/G. (We shall use "C" for something else shortly.) If EQ > 0 is large enough, and 
ft(/i) > 0, then K is bounded from 0. and, as we shall see in 17.4, for all sufficiently 
small £, depending only on # (F ) , 

Ttl(e) n {x : F(x) <: - E{)er2^/E} = 0. 

The Level K Tool then says that a certain subset of K\ acts as a "plug" between the 
disjoint sets T'K(e) and {x : F(.r) ^ K - E0er2n'2^}. Write 

A^(//,6) = Ki H 7 ) ^ / ( 1 - Eie)) H : F(.r) ^ K,(p) - E^e'2^^} 

if > 0, and, if K(JI) = 0, simply take Kl(j.i,e) ~ 0. We shall assume in future 
that Ei is chosen given Eo so that, if e' ^ s, then 

A"()(/!,£') C J f , ( / i , £ )u r , ( e ) , 

A'0(/i,£) C {x : F(x) < K. - £0e^2"2/e'} U A'^/x.e')-

We then define 

T"(E) — {J{KI(/LL. s) : /i minimal nonempty, K(/X) ^ K,} 

U T^e) U {x : F(x) ^ K - E0e-2"2/£}, 

T"(e,s') = \J{K0(n,e") : \.i minimal nonempty, H,{p) ^ K, C' sC e" < e} 

U T^(£') U {x : F(x) < K - A0e"27r2/e}. 

Then we have 

T : ' ( £ , £ ' ) c T : ' ( £ ) n r : ( £ ' ) . 

Level K Tool. — Let KQ be given. Let e be sufficiently small, and e/e' sufficiently large, 
given K,Q. Let 2E0e~~27T lz ^ K ^ KQ. Let a : A —> T/G be continuous, where A is the 
unit interval, disc or circle, and 0 C dA with 

a{d) C T'^[e, e'), d(a{x),r o a{x)) ^ K for all x G A. 

TTien a can 6e homotoped, via a homotopy constant on a | 0, to ex : A —* T/G, with 

a'(A) C 7?(e). 
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Moreover, for KI depending only on K, e", if a(x) G T^e" ? 

d((\(./•). a (x)) ^ «!. 

Descending Points. ----- T/ie following holds for any minimal nonempty node /1 = [/0, r] 
wẑ /i ^ ^(AO > 0? and for e sufficiently small given KQ. Let P be the fixed set for 
( /o,T) and let p > 1 be the least positive integer such that ffi fixes the components 
of DP. 

Then each component C of Ki(fi.,s) is contractible within A"2+1(/i,e:) to a nontrivial 
closed loop 7^ = lv{z) for a minimal edge v ^ /i such that the following holds. The 
loop 7i/(&) varies continuously with e. The group 7Ti(7zy) (which is determined up to 
conjugacy in G) is the same central subgroup of G(fo,T) for all such v. Using the 
usual representation of elements of G as homeomorphisrns, the generator gv of fK\(^fu) 
satisfies gv — /Q on P, up to isotopy. This gives a one-to-one correspondence between 
components of' K 1(1.1, e) and minimal edges v < /j,. 

7.8. How to obtain Injective on ix\ from the Level K Tool and Descending 
Points. — Let a : A —> T/G be continuous with a(dA) C V. Then there is K, > 0 
such that d(a(x),r o a(x)) ^ K for all x G A. If K, is sufficiently small given c5o > 0 
and e > 0, then by Property 6 of 6.6, 

a(A) cTi')(e)U{x:d(x,V <S0}. 

Then we can homotope a to a\ by a homotopy constant on OA. so that o/(A) C 
V U TQ = T0. Then since the inclusion V T0 is injective on 7Ti, by 7.4, we can 
ensure that a'(A) C V. 

Now let K, be bounded from 0. Let e\ be sufficiently small given n. It suffices to 
show that a is nomotopic to a" with a = a" on OA and 

(1 ) /•"(.>') ^ K - Vi for all x G a"(A), 

where 

U{(eU{(e)U{(e)U{ 
For we can then repeat the argument until we obtain a path nomotopic into V. First, 
we obtain 0/ as in the Level K tool. Then we consider the boundary of the set 

W — {x : cx'(x) G (J{T^M(£i) : fi minimal nonempty, K,(+I) > 0 } } . 

Perturbing a' slightly if necessary, we can assume that d\V is a finite union of disjoint 
topological circles disjoint from OA, since a(dA) C V. Then there are finitely many 
disjoint topological discs A2, 1 ̂  /' ̂  r such that 

W C U,A,. U/0A/ c dW. 

By the Level K Tool, 

dAi C |J{Xi(/i,£i) : /i minimal nonempty}. 
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Some components of dW may be interior to some of these discs. Then by Descending 
Points we can redefine a' in each Az to obtain a", where 

a"(Ai) C [J{K2(p, £1) : ¡1 minimal nonempty} C {x : F(x) ^ K — rji}, 

as required. • 

7.9. How to obtain the Topographer's View. — We show how to obtain the 
Topographer's View from the Level K Tool, Injective on TT\ and Descending Points. 

The space T/G is obviously the increasing union of sets TK/G where 

TK = {x : F{x) < K], 

and F is as in 7.7. Let Tyv be the subspace of T/G defined in 7.2. Recalling that F 
can equally well be regarded as a function on T/G, we define 

TN,K = TN n {x : F(x) ^ K}. 

Let To be as in 7.2. For K > 0, we shall choose TK inductively to have the homotopy 
type of T"(e) for any e sufficiently small given K. By Descending Points, the com
ponents of K(p,e) are in 1-1 correspondence with minimal nonempty edges v ^ //. 
Then by Descending Points of 7.7, we see that T"(e) is homotopy equivalent to 

(T^e)UTK-„/G)/~K, 

where ij = EQ6~27T IS and ~^ identifies a closed loop 7V (^I) from each component of 
T'H(e) with some closed loop in THi—n/G. Then, by induction, T"(e) is also homotopy 
equivalent to a space 

TK = (Tfc)UTK-„/G)/ ~K . 
Here, by abuse of notation, we use ~K to denote the two naturally corresponding 
equivalence relations. In fact, this makes sense, because we can regard all the spaces 
TK as being embedded in T/G x ( — 1. 1). We also see by Descending Points that T"(e) 
is homotopy equivalent to T"(e, s') for all e' ^ c, via a homotopy with image in TK/G. 

Let a : S1 T/G or a : ([(), 1], {0, 1}) (T/G,TN) be continuous. Then we 
have a : Sl TK/G or a : ([0. 1], {0. 1}) -> (TJG/l\M) for some K > 0. Then, by 
the Level K tool, for all sufficiently small s given K, a can be homotoped to a', via a 
homotopy constant on {0, 1} in the second case, with 

«'(A) C TZ(e). 

Now let a• : A —> T/G be any continuous map with a(d) C T^(ei), where A is 
the unit disc, and d C <9A. Then by compactness of A, there is K.\ ^ K such that 
a(A) C TKl/G. Let e and e' be as in the Level K tool with K.\ replacing KQ. Applying 
a homotopy if necessary (not constant on d), we can assume that a(d) C T"(e,£r), 
a(A) C TKJG. Then by the Level K tool, we can homotope ex to a', via a homotopy 
constant on <9, with or7(A) C T"{(e). Then by Descending Points, and the same 
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technique as in 7.8, we can homotope o/, via a homotopy constant on <9, to a" with 
a"[A) C T£2{e), where 

H-2=Maxf^KjE~\-'2ll'~/e). 
Then by applying the Level K tool and the technique of 7.8 finitely many times, we 
can homotope a to rv/", via a homotopy constant on <9, so that 

n"'(A) C T^(e). 

Now i / Cr is homotopy equivalent to a locally hmte smipncial complex, and hence is 
homotopy equivalent to a CW complex [Mi]. Since T/G is a K(7T. 1) and T/v ^ T/G 
is injective on TTI , by [Spa] 7.8, the above homotopies on maps o show that (T/G, T/v) 
is homotopy to the increasing union of sets (T",T/V,K.) and hence to the increasing 
union of sets (TK. Ty K ) . This completes the proof of the Topographer's View. 

7.10. How to obtain the Resident's View. — We have now realised THn as a 
graph of topological spaces over a graph Qu, and the universal cover as a graph of 
topological spaces over a graph Qu. To prove1 the Resident's View, it remains to show 
that Qn is the dual of Vu and that Vn is a locally finite1 partition of a subset of the 
disc, and that V is a partition of the disc*. 

By 7.4. and the Resident's View of Rational Maps Space. Go is the dual of To. 
which is a locally finite partition of any connected component of UTo- The stabiliser 
in G of each component of UTo is 7Ti(To). up to conjugacy. Now suppose inductively 
that we1 have proved this for Qn, V„. and 7V\(THn). Then consider the ease // + 1. So 
we have to consider identifications between components of S„ and S^ft in S„ + \. Here 
//. is a minimal nonempty pseudo-Anosov node pair of Gn+i, with h'(ji) = K.„ + \, and 
Sn* S-^f, are the preimages of S-n. S-^fl in the universal cover S,, + i of .S^ + i. Let P 
be1 the1 fixed set of //, with p l)oundary components. Let i /. '/'• be1 as in 2.13: this is a 
pseudo-Anosov isotoi')ty class on P. hot [\ j — [y'7pP]- We can choose \ np to isotopy to 
preserve two transverse geodesic laminations on P. corresponding to the stable1 and 
unstable1 foliations of the pseudo-Anosov. There is a unienie g G G (regarding g as an 
element of MG(C. Z). using the anti-isomorphism <£i of 1.11) which equals \ on P. 
and is the identity off P. with zero Delm twists round components oidP. (The1 map \ 
is specified on the two geodesic laminations, which include DP up to isotopy. Hence g 
is also specified on OP.) Let C be1 the component of 

Uin /n -n : L/o-r] > [,/]} 

which contains C(p). Hê re, [//] = [/o.Ti]. if // = ( /o , r i ) . All components of dG 
project down to the same geodesic /~ in the1 unstable geodesic lamination, adjacent 
to the component of the1 complement of the lamination which contains v\ G Z. This 
geodesie: corresponds to a singular leaf of the unstable foliation of the pseudo-Anosov. 
and is fixed by \ . Now. considering the action of g G G on the unit dise* D. g acts as a 
lift of the hoineomorphism on C \ Z, fixes all components of DC. Considering g as an 
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element of 7T\(S^FX) = TTI(T^/X) <̂  TTI(T/G) = G, the closed loop in S^FL determined 
by g is the one which is freely nomotopic to at least one closed loop in Sn, and in fact 
to finitely many, in 1-1 correspondence with minimal nonempty edges v of GR> + i with 

X<I(T^/ 

It remains to show that each component of DC is adjacent to a component of UVtl. 
which is fixed by g. There is a unique1 half geodesic ^+ in the stable lamination, 
starting from corresponding to a singular leaf in the stable foliation. Let U be 
any component of D \ C. Then OU n DC is a lift of f~, and by abuse of notation 
we write £- = DU n DC. Take theî lift of A+ which starts on OU D DC and lies in U. 
By abuse of notation we call the lift f+ also. Let xu be the (unique) endpoint in 
DU H OD. Then g • xv = x( . and for all x G 3D n U \ 

(1) lim gn • x G ĉ C 
U—>OG 

We see this as follows. We can assume that g fixes the start point of /?+ on /;". We 
identify x with a half-geodesic I which starts on t'~, at the same point as / + . and 
with a lift in U which starts on DC and ends at x. We call lift £ also. The lifts and 
projections are shown in the diagram. 

U and C. 

Regarding g as a homeomorphism of C \ Z. gn(. the initial segment of gn£ ap
proaches ^_ as 7i increases. Then regarding g as a homeomorphism of the closed disc, 
gn(' api^roaclus dC in the Euclidean metric. This gives (1). Hence, if U contains a 
component of UVn which is fixed by g. then that component must be adjacent to C. 
There must be such a component, because the orbits (under G) of such components 
are in 1-1 correspondence with minimal nonempty edges v of Qn with v ^ [//]. This 
completes the proof that the graph Qn+\ is the dual of Vn+i. 

It follows that sets of V-n+\ do not accumulate on C(fi), if K-(fi) = Kn+\. Hence 
the partition Vn+\ is locally finite1 restricted to any component of LTPr, + i. Finally, 
we need to see that V is indeed a partition of the disc. We already know that any 
two sets of V have disjoint interiors. First we show that the open elisc contained in a 
single component of L)V. We use the map 

p2:m(BNJ0NJ0,NJ0)+TTI(C\Z,Z,I;I) 
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of 1.12. This is map is trivially surjective. because 
p2{[t i—> (TNT o fo}) = [a]. 

Here, we take at — a | [0,£], a : [0,1] —> C. But regarding 7Ti(C \ Z,Z,v\) as a 
subset of dD — C \ Z, it is clearly dense. Up to homotopy, the path t i—> ant o / 0 lies 
in TK/G for some K > 0. It follows that P2([a]) £ where U is a component of LTPn, 
for some n. Hence a single component of Un(LTPn) contains the whole open disc. Any 
set in V is in Vn f° r a least n. So P is indeed a partition. 
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TEICHMULLER DISTANCE 





CHAPTER 8 

L1 ESTIMATES ON THE DISTORTION AND THE FIRST 
DERIVATIVE OF TEICHMULLER DISTANCE 

8 . 1 . All of the following nine chapters are concerned with Teichmtiller distance on 
Teichmiiller spaces of marked spheres. Some of the theory generalizes easily to other 
Teichmtiller spaces of finite type surfaces. We use the notation introduced in Chap
ter 6. Thus, if Y C C is finite, then 

T(F) = {M :oeHom+(C)}. 

Here [cpi] — [(f 2} if and only if there is a Möbius transformation a such that J O ^ and 
ip2 are isotopic via an isotopy constant on Y. We shall occasionally write [(f]y if more 
than one Teichmüller space is being considered. We use the Teichrnüller distance, 
introduced in 6.4, defined by 

d(M,[-0]) = inf{ilog||x||„c:[xo^ = [^]}, 
where 

Hxllqc = l|A"(x)l|oo, K(x)(z) = A(*)/Mz), 

where \(z)2 ^ p(z)2 ^ 0 are the eigenvalues of DxjD\z, and D\z is the derivative 
of x at z (considered as a 2 x 2 matrix). We shall occasionally write dy if more than 
one Teichmiiller space is being considered. 

The theory says, of course, that the iiifimum in the definition of distance d above 
is attained uniquely by a quasi-conformal homeomorphism \ with the following form, 
if d([ip], [I/J]) > 0. There are quadratic differentials q(z)dz2, p(z)dz2 of unit area with 
at most simple poles, at most at the points (p(Y), ip(Y) respectively, such that if a 
coordinate £ = £ + it) is given by 

C(2) = f za 
\foÜ~)dt 

and similarly for a coordinate and p, then \ carl De expressed in these coordinates 
as 

C + iV>—• y/KZ + iii/VÌC. 

z 
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Thus, K(x) is the constant K. In this situation,we shall say that q(z)dz2 is the 
quadratic differential at [p] for d(([(/?], [^]), and p(z)dz2 is the stretch of q(z)dz2 at 
[ip]. We may also say that p(z)dz2 is the stretch of q(z)dz2 by factor \f~K. It follows 
that —p(z)dz2 is the quadratic differential at [xjj] for d([ifj). [</?]), and —q(z)dz2 is the 
stretch of —p(z)dz2 at [</?], by factor x/lf. 

The standard proof that the infimurn of quasi-conformal distortion is achieved 
uniquely gives a bound on the distortion of any quasiconformal homeomorphism x-
in terms of how close it conies to achieving this minimum distortion. The bound is, 
in fact, an L1 bound. Some of the results in this chapter elaborate this principle. We 
also use the principle to give a formula for the first derivative of Teichmuller distance 
(for marked spheres). While a general formula is known [Ear], both the formula given 
in our special case of marked spheres, and the simple-minded proof, appear to be new. 
At the end of the chapter, we specialise to consider the first derivative of the function 
d(x,rx), where r is one of the pullback functions on T(Y) defined in 6.7. 

We want to conserve y for elements of Y. For this reason, we shall write the 
standard area element in the plane in the form 

simply to avoid writing z — x + iy and using dxdy. If it seems reasonable, we shall 
avoid writing the area element altogether. 

gleaned from [Abi], and will prove very useful. 

Lemma. — Let Y C C be finite, and let [<p\, [1/;] £ T(Y). Let x, Xi be two quasi-
conforrnal homeomorphisms with [xi0(f] — [xoip] — №• Let x be the homeomorphism, 
minimizing distortion K(x), so that K(x) = K is constant. Write K(xi)(z) = Ki(z). 
Let q(z)dz2 be the quadratic differential at [ip] for d([<p], [I/J])- Then 

dz A dz 
2i 

8.2. An Estimate of Quasi-CoQuasi-Conformai Distortion. — The following lemma is 

(1) 
dz A dz 

d([<p], [I/J]d([<p] 2i 
with equality if and only if Xi — X-

Remark. — The proof is much as it is given in [Abi], where it is used to show simply 
that K ^ ess supK(xi), which clearly follows. 

Proof. — We use the coordinate £ + ¿77 as in 8.1, and similarly for the range. Write 
/ = X"1 °Xi, so tnat> if / = /1+^/2, Xi = Xi,i +^Xi,2 for real / 1 , /2, xi,i, Xi,2, then 

1 
fi = YI 1. Then, as in [Abi], 

v7^ 

(2) d([<p], [I/J]d([<p], [I/J] 
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and hence 

(3) Jsup{(D(Xl)^D(xi)C",f)</ Jsup{(D(Xl)^D(xi)C",f) : IMI = l}dÇdi, 

< / \(Qd£dn, 

where 0 < /-/(C)2 ^ A(£)2are the eigenvalues of D(xi)7 D(xi)c- But, for A = A(£). 

for A = A(£). 

A = \ — • \/A/i. (4) 

The squares of the terms on the right are, respectively, K(xi)(C) and det I)( \ \ )<;. So, 
by Cauchy-Schwartz, 

(5) Jsup{(D(Xl)^D(xi)C",f)K(xi)(OdtdV det D(x,)Cd4dri. 

By the choice of coordinates (with a and r; both having mass 1). 

(5) / d e t D ( x i ) c ^ / = l. 

Then (2) to (6) give (1), because d£dr/ = (l/2i)\q(z)\dz A c^. • 

#.3. Lemma. Continue with the same hypotheses and notation as in 8.2. The fol
lowing holds for a constant L > 0. Let 9(z) be the angle in (—7r/2,7r/2] between the 
directions of maximum dilatation of x and Xi (it z. Then 

K< / Kx\q\~L / |#№ -1) |q|. 
Remark. - Suppose that K\ is constant. Let M > 1 be given. Then, by taking logs, 
it follows that there are constants C*i(M) > 0, C2(M) > 0 such that, if K\ <C M then 

d(\<p],M\\ogK (A1- C1AM) / \e\2\q\), 
and if K\ ^ M then 

d ( M . M ) < è b log gA'i - с 2 ( м ) / |в|2|д|. 

The first of these has already been used, in 6.11. 

Proof. The proof is simply a more painstaking version of 8.2. Use the same co
ordinates C, C' as before on domain and range. Let 0'(Q be the angle between the 
directions of maximum dilatation of v_1 and \7l at yi (C). Then 

DX71 ( 
I/VK o 

Jsup{(D(Xl) i) 

(xi)(Odtd(xi) (Odtdx1) ( 
Jsup{(D(Xl)^D(xi)C",f) 

,sin0' cos6>' ( 
,/K7 o 

o 1 Vk1 • ) ( 
cos 0 sin#N 
- sin 0 COS 0 I)) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 

file:////ogKAi-CAM


120 CHAPTER 8. L1 ESTIMATES ON THE DISTORTION 

So we find that, for }\ as in the previous lemma, 

19/11 
1 1 

> detD(Xi)c 
VK JKYCOS(|0|Isiii6>sin0'|I|JKXIsiii6>sin0'|Isiii6>sin0'| . 

v/Ai 
Write 

a(C) = ,/detD(Xl)o *>(<) = |cos(|0(C)| - |0'(C)l)|, c(C) = | sintf(C) sinfl'tf)!-

± nen 
0 < a, 6, c, 6, c ^ 1, ||a|| = 1. 

Write 
(fc,m) = / k(Ç)m{Ç)dÇdr), 

(all functions involved are real-valued), and 

iifc||2 = (fc.fc). 
So 

v A' + VK ( ~ - I\dZdr, < ^ « , 6 + — - 1 c . 

So by (2) of the lemma, 

\fK ^ (y/Kla,b+ (— - l)c) 

So we obtain 
WK^a) -Vk^( J Km, 1 - b + 1 - —- c V 

Now for any k, m, 

\\k\\ \\m\\ - {k,m) = 
li ||m.||A:-i|fci|m|l2 

2||A:|| ||m|| 
Apply this with k = a and rn = \/K\. Remember that ||a|| = 1. We write 

X=\\m\\ = ^ J K\. 

So 

A - \/K = (y/K{, a) - \TK + A - (a, y/K[) 

> UfKla. 1 - b+ (\ - —\c\ + — \\\a - A/RTII2 
2A 

The righthand side is a sum of positive terms. We now assume that X/K is bounded, 
because otherwise the proof is finished. So if we write \f~K5 = A — y/K, we obtain, 
for a constant M[. 

IlXa - y/K~i\\ ̂  MiVKS. 
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So 

for constants Ci > 0, C2 > 0. Since (1 - b) ^ (1 - b)]/'2 ^ 1, we deduce that 

Similarly, we deduce that 
/ Ki(l-b) <: AI2ÔK. 

/ (A'i - l)c ^ ALjSK. 
So we have 

Now write 

[Ki\\e\ - Î H2 ^ M4ÔK, f \oo,\(KL - i) < M46K. 

\ 0 \ \ + \O\(\0\ -\0% 1= / \0\2(lu-l). 

VK8VK8{y/Kla, l-b) = (Aa, for 2/^Y 
A 

y/Kla y/Kla+b 
A 

||v^i(l-fe)ll 
A 

||v^i(l-fe)ll 
A 

<: Ci 
<: / A^(l-6)-C2v^||v/î^(l--^)ll 

This gives, using Cauchy-Schwarz, 
I ^ AI4ÔK + s/AhSKVL 

So I ^ M55K, that is, 

/ |0|2(A'i - 1) ^ M5KÔ ^ MsVK J / Ki -VK\ < L~l I / Ki -A , 
as required. • 

8.4. The Derivative of the Teichmiiller Distance Function. — Let [p] G 
T(Y). Let h (h(y)) G C V " { x } with all \\h\\ small. We define [p + to be 
[p'] G c l o s e to [p] in the uniform topology, with ^(/y) = V̂ O//) + h{y)- To 
simplify subsequent notation, if oc G we define //(oc) = 0. Similarly, we write 
[0 + / / ] . Thus we have charts round each of [ip], [I/J] in T(Y). Fix any Y\ C Y such 
that T \ Y\ contains 3 points, and 00 ̂  Y\. Then 

<p + h]: h(y) = 0 for y i Yx 

is a very natural chart for the complex manifold structure of T(Y) at [p]. Of course, 
such simple charts are not available for Teichmiiller spaces of other finite type surfaces. 

Using these natural coordinates, we now give a formula for the first derivative of 
Teichmtiller distance. The formula obviously recalls the result of [Ear], that the first 
derivative is essentially given by the quadratic differential. Since Ear le's result was for 
the Teichmiiller space of a general finite type surface, it naturally used the formalism 
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of Beltrami differentials, and the duality between quadratic differentials and Beltrami 
differentials. But there is no reference in the following statement, or in the proof, to 
B e11rami differentials. 

The Derivative Formula. — Let [p], [0] G T(Y) with d([ip],[i/;]) > 0. Let q(z)dz2 be 
the quadratic differential at [p] for d([up], [0]), and let p(z)dz2 be the stretch of q(z)dz2 
at [<0]. Write 

h (h. q) = 27T Reip(y))h(y))Resfa, ip(y))h(y)). 
yeY 

Then 
d{[p + h], ['0 + h']) = d{[p), [-0]) + h (h. q) - h(h'pp) + o(h) + o(hr). 

In particular, (^,0) ^ <Hp. r) is d/ifferentiable. 

Proof •— ft suffices to prove the formula with h[ = 0, provided the o(h) and o(h') 
terms are uniform on compact subsets of {[<p], ['0]), because 

d([p + h], [ijj + h']) = d(c + b + £])• 
This is the familiar fact that a function with continuous partial derivatives is continu
ously differentiate, together with the fact that —p(z)dz2 is the quadratic differential 
at [ip] for d([p], [0]), with stretch —q(z)dz2 at [p]. So we are using the continuity of 
the map 

(№.tt<})^(<l(z)dz2,p(z)dz2), 
which is proved, for example, in [Abi]. 

Furthermore, we need only prove that 
d{[<p +1], [</,]) < d{[<p], [i>]) + h(h. q) + o(h). 

again, provided the o(h) term is uniform on compact subsets of p. For let q\(z)dz2, 
Pi{z)dz2 denote the quadratic differentials at [p + h], for d([p + fr], [0]). Since q\ 
is close to q for small h, we obtain 

d([<p], [•</>]) < d([ifi + h], [0])-h{h,q)+o(h), 
which gives equality, as required. We shall also assume that all residues of q(z)dz2 
at points p(Y) (y G Y) are ^ 0, since the result will then follow at points with zero 
residues by continuity. (This is just for convenience: it is not hard to do the exact 
calculation in that case also.) 

We use 8.2. Let \ an(l K(x) ue ay m 8.2. Note that K(x) is constant, and, 
as in 8.2, we write K = K(x)- Wre shall construct a family Xh OI" quasi-conformal 
homeomorphisms with the following properties. 
1. Xo = X, Xhiiv + h)(w)) = ip(w) 

2. {K{Xh)^)-K)\q\ 
dz A dz 

2i = i{h) 
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is real-analytic in h. 

3. \K{Xh){z) -K\ = O(h) 
uniformly ii\ z, h and = 0 near the poles of q. 

Let qh denote the quadratic differential for the minimising quasi-conformal home
omorphism from [p + h] to [xp]. Then 3 will imply 

/ 
(K(Xh)(z) - K)\qk\^^- = 1(h) +o(h). 

This will then imply, by 8.2, that 

d([<p + hi [</>]) < d(M, w) + IM + 0{h). 

It is probably worth noting that this alone implies that [cpi] ^([^i],[^]) is dif-
ferentiable at [tpi] = [p] with derivative DI(0). So any mistakes in our subsequent 
calculation do not greatly matter. Anyway, the result will be proved if we can con
struct Xh so that, in addition, 

4. 1(h) ^ 2Kh(h,q). 
We shall, in fact, work locally. Fix y E Y and assume without loss of generality 
that (f(y) — i/j(y) — 0. Also assume without loss of generality that Res(g,0) = 
Res(p. 0) = 1. We write h for h(y), and for S > 0 sufficiently small we consider \h\ < S 
only. Then it suffices to construct 

(K(Xh)- K ) — = M R e H o M , \K(Xh(z) - K\ = O(h) 

Here, S < ro and r\ is small, and A = {z : r0 ^ \z\ ^ n } . Then Xh is defined as 
follows. 

Xh : C C 

with the following properties. 

5. x/i = X except in {z : |z| ^ n} . 

6. X/?.(̂ ) = X(> - )̂ in : \z\ ^ r0} 

7. 

Xh = ( i - № ) ) x W + /Wx(2-/i) 
where 

/ - 1 on \z\ ^ r0, / = 0 on |2| > n, /(2;) = . ri - \z\ 
r\ - r0 

for ro ^ 12; I ^ Ti . 

It remains to prove 7. It is convenient to consider the functions (h and ( = £0, where 

at*1'2) = s/ыГ). 
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Thus, K(Ch)(z1/2) = K(xh){z) for The advantage is that C is given in \z\ < r\/2 
by a (real)-linear map with matrix 

'у/К о 
о 1/VK = D. 

Let A7 be the double cover of A. If t(z) = z1/2 then the determinant of t is l/(4|z|). 
So it remains to prove 

8. 
Л' 

(K(0,)(z) - К) dz Л dz 
2Ì -- TvKRc(h) + o(h), \K(Ch)(z) -К\= 0(h). 

Now we see that 

(K(0,)(z) - К) 2C(z) 
2C(z) Ci z 

h 
2z 

2 (Uz))2 + 0(h¿) 

We can rewrite this as 

Chiz) = Cíz) - F(z)Dcz - + 0(h¿), 

where 

г,* = m 
and2(aVA denotes the derivative of the (real)-differentiable function (" at z. Write 

2(aVA2(aVA2(=E(z)=D{Ch-Oz. 

Thus, for fixed h, a, b, c, eZ are functions of z. 

8.5. Lemma. - A(O0(» = ^ + V^(« ~ Kd) + 0(h2). 

Proof 
trace(D + £;)T(D + £) = A + ~ + 2(aVA + ~4=) +0(h2), 

A V \/ K J 
det(D -h JE7) = 1 + + ri\/Â + 0(h2). 

The ratio of these is s + s 1, where s = AfGJfz) is the distortion. Then 

s + - = A' + 77 + 2aV/Â - aVÂ 2(aVA 2(aVA 2(aVA 2(aVA 2(aVA 2(aVA 2(aVA 2(aVAdKy/K - —= + 0(/z2). 

So 

8+-=K+- + -=[K--)(a-Kd) + 0(h<). 
Writing s = A'(l -f /i), we have 

8+-=K+- + -=[K--)(a-Kd) + 0(h<) 

which gives the required result. 

ASTÉRISQUE 288 



CHAPTER 8. L1 ESTIMATES ON THE DISTORTION 125 

8.6. Now we return to the proof of the derivative formula, that is, of 8 of 8.4. Then 
it remains to prove 

\Œ(7T7 UKKd7T7 UKKnRe(h) + o(h)7T7 U K a K d \ = O(h). 
f 

Write 
G(z)7T7UK=Ch(z)-C(z). 

Of course, G depends on h, but we simplify the writing. We have 
7T7 UK7T7 UK7T7 UK7T7 UK7T7 UK 
7T7 UK7T7 UK7T7 UK7T7 UK7T7 UK 

So 
у/К (a - Kd) = \/KRe ( (1 - A')—— + (1 + K)^). 

Now we have 
7T7 UK 7T7 UK7T7 UK7T7 UK7T7 UK 

and for any complex number w. 
7T7 UK7T7 UK7T7 UK 

So 
Dt* 7 =^-7T7 UK + 1)- + (K-1)- . 

It follows that 
G(z) = L(z) + M(z) + 0(h2), 

where 
L(z)=7-7={(KL(z)=7-7={(KL(z)=7-7={(K 

L(z)=7-7={(KL(z)=7-7={(KL(z)=7-7={(K 

Then 

L(z)=7-7={(KL(z)=7-7={(KL(z)=7-7={(K{(KL(z)=7-7={(K 

L(z)=7-7={(KL(z)=7 
independently of z, and 

L(z)=7-7={(KL(z)=7-7={(KL(z)=7-7={(K0.{(KL(z)=7-7={(K) = 0 

So a — Kd is actually constant on A', up to o(h) and (KL(z)=7-7=) . So 
fa 
A 

L(z)=7-7={(KL(z)=7-7={(KL(z)=7-7={(K, 

as required. • 
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Remark. An argument in the same spirit can be used to obtain the semi-directional 
derivatives of (</?, xj)) i—>• d((p,ip) at a point p = ij). 

8.7. Corollary. — There is C > 0 s^c/i £foa£ ¿/¿6 following holds. Let Y C C be finite 
with {0,l,oo} C Y and # (Y) ^ 4. Le£ p0i] ; [^2] G T(F) ana7 Je* rf([^i],[^2]) ^ £• 
Given y G Y \ {0,1, 00}; normalize so that 0, I, 00 are /ixea7 6y -01, '02; ^n<i assume 
without loss of generality that V;i(y) is bounded and bounded from 1. TTien 

| ^ i ( y ) - ^ ( y ) l ^ 
IVMy)l ^ 

Remark. — Although this is obtained as a corollary of the Derivative Formula, it is, 
of course, well-known. 

Proof. — We can assume without loss of generality that Y = {0, 1, 00, y}. Then the 
quadratic differentials of integral 1 at [-0i] are all of the form (q(z)dz2 for \(\ = 1 
and a fixed q. Let Res(g, 0i(y)) — A. Then A-0i(y) is bounded and bounded from 0. 
Let [p^] be such that d([ipi], [p^]) = 1 and (q(z)dz2 is the quadratic differential for 
d([ipi], [p^]) at [0i]. Then consider the function 

Fc№])=d(W,[<P<}) 
near [I/J] — [-01 ]. We see that 

^ ( [ V ^ - i W i l K e . 
By the first derivative formula, we deduce that 

I Re(\aMy) - Mv)))\ < e(l + o(l)). 
Since this is true for all |£| = 1, the result follows. • 

8.8. We now give two results which we shall use later. See, in particular, Chapter 
17 and 25.2. These are both results about quadratic differentials for nearby geodesies 
or quasi-geodesics. The results are basically consequences of 8.3, but 8.7 is used in 
the first result. 

Close Points Lemma. - Let [p], ['0i]? [fo] e T(Y) with 1/M < d([<p], [fo]) and 
d([i/)i}, ['02]) ^ £• Let rj be the homeomorphism minimizing distortion such that 
[rj o '0X] = [0 2]. Let qj(z)dz2 denote the quadratic differential at [p] for d([p], [ipj]), 
and let pj(z)dz2 be the stretch of q3(z)dz2 at [ipj]. Let 9, 6' be defined a.e. on C, 
with values in (—7r/2,7r/2], by 

0(z) = ^(arg(gfi(z)) - arg(g 2 (»)), 

6\z) = ^rg(Pl(z)) - m*g(p2(z))). 

Then for C depending only on M, and j = 1, 2, 

j \e\2\Qj\<Ce. 

ASTÉRISQUE 288 



CHAPTER 8. L1 ESTIMATES ON THE DISTORTION 127 

Now let £q be ^ the Margulis constant. Let S be a component of ( C \ 0i(Y )̂)̂ >£o or 
( C \ '0i(y))<£o. Take a suitable normalisation as follows. Let {0,1, oc} C 0 i (T) 
with 0i(O) = '02(0). V;i(1) = '02(1)? 0i(oc) = 02(oc)- ' £ '¿5 a component of 
C \ 0i(y))^£(), let these three points all be in different components of C \ S. If S is 
a component of ( C \ 0i(Y))<5()? let T be an adjacent component of ( C \ 0i(Y))^£-() 
and let the three points all be in different components of C \ (S U T). Then if s > 0 
is sufficiently small given so, and j = 1 or 2. 

Proof. Let Xj De ine quasi-conformal homeomorphism of minimal distortion with 
[Xj 0(^] = [0j]- Let rj minimize distortion with [?/ o 0 J = [</>2]- Then 0 is the angle 
between the directions of maximal dilatation of \ i , X2- Then 0 + 0(\fe) is the angle 
between the directions of maximal dilation of \ \ and V1 °X2, or of X'2 and 7/0 xi- To 
see this, let v be a unit tangent vector at z in the direction of maximum dilatation 
for X'2, let v1- be a unit vector, perpendicular to v and let 

So there is a constant C2 such that, if 7/ makes angle ^ C-2\/s with drt;, then v' cannot 
be in the direction of maximum dilatation of о x2- The bounds on the integrals 
of 02 then follow directly from 8.3. 

Now let S be a component of (С \ 0i(Y~))^£() or (С \ 0i(T))<£(), normalised as 
explained. Isotoping 77 if necessary, but keeping the distortion 1 + 0(e), and keeping 
1// о L'\\ = [02], we can ensure that // is within 0(e) of the identity in the Cl norm. If 
S has only three complementary components, this is trivial. Otherwise, we use 8.7. 
Then в' + 0(\Je) is the angle between the directions of maximum dilatation of x\~l • 
X21 0 !h and 9' 0 rl + is the angle between the directions of maximal dilatation 
of X2"1 an(i X^1 0 V1- Then the results follow directly from 8.3. • 

8.9. Triangular Lemma. - Let p, ф\, 02, в, q\, p\, q<2, P2 be as in 8.8, but this time, 
let both d([(p], [0i]) and d([0i], [02]) ^ l/M. Let Xi (I ^ г ^ 3) minimize distortion 
with [xi о <£>] = [фг], / = 1,2, and [\-л о 0i] = [02]- Write 

P2Obe<C2, 

v' = (cos а) с + (sino;)?;1" 
with \a\ < 6. Then for a constant C\ depending only on Л/, 

I|£>(V2),(«')II ^ \\о(х2)~МШ-с^2). 

Let q-¿(z)dz2 be the quadratic differential for а([ф\],[ф2\) at [Ф\]- Let 

0'= i(axg(93)-arg(Pl)). 
Then 

(i) / \0\2Ы^Се, 
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(2) j \0'oXl\2\q2\^Ce, 

J Itf'oxa1!2!. (3) j W oXp\2\P2\^Ce. 

Proof. Write Kj = K(xj)i j = 1, 2 or 3. These are all constants. We shall obtain 
(2) first, by an application of 8.2. Note that K(xz ° Xi)(z) i s A2 where A2 ̂  A - 2 > 0 
are the eigenvalues of AtA where Q" — 0f o xi and 

fWz 0 \ /cos<9" -sin0"\ fy/Kl 0 
A 1 0 l/y/K^J \sin6" cos0" ) V 0 1/v/̂ T 

Then 
A2 + A"2 = trace A1 A = ( A ^ 3 + (ATi A^)"1) cos2 0" + ( A ^ " 1 + K^K'1) sin2 0". 

So 
A2 + A"2 ATaATg + (Ai A^3) -1 - Ctf'aKx{Kz - A^ 1). 

So 
K(Xi ° Xa) = A2 < A ^ 3 ( l - C i O -

By 8.2 we have 

K2 < y KiU o Xi)M < Â iA's (l - d ^0'(xi(z))2|<fe|) • 
Since 

d([<p), ['0i]) = | logA'i, d(M, [^]) = | log A'2, d([V>i], [V2]) = § logA's, 
(2) follows. Then (3) is exactly similar, with [p] and [fo] interchanged. 

We shall obtain (1) by an application of 8.3. Let 0\ be the angle between the 
directions of maximal distortion of xi a n < l X3 0 Xi- To obtain (1) by an application 
of 8.3, it suffices to show that 
(3) 0i =0 + 009"). 
This seems natural, since 0\ = 0 if 0" = 0. Arguing much as in 8.8, let v be a unit 
tangent vector at z in the direction of maximum dilatation for xi- Let v1- be a unit 
vector, perpendicular to v and let 

v' = (cosa)v -j- (sina)!'-1 

with I a I ^ 5. Then for a constant C\ depending only on M, 
\\D(xy)Av')\\ ^ \\D(x,)z(v)\\(l-ClS2). 

Then if KiS ^C2\6"\. we obtain 
\\D{X3°XiUv')\\ < \\D{X:i°XiUv)\\. 

So if v' is in the direction of maximum dilation of X3°Xi •> w e must have 5 = 0(6"/K\), 
which gives (3), as required. • 
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8.10. Pullback and Pushforward of Quadratic Differentials. — Let q(z)dz2 

be a quadratic differential on (C.Y). This means that any poles of q are in Y, and 
are at most simple. Let s : C —» C be holomorphic. Then s*q(z)dz2, the pullback of 
a(z)dz2 under ,s\ is defined bv 

«*a(z)dz2 = (s,(z))2a(z)dz2. 
Then any poles of s*q(z) = (s' (z))2q(s(z)) are in s~l(Y), and are at most simple. So 
s*q(z)dz2 is a quadratic differential on (C,«s_1(Y)). 

We define the pushforward s*q(z)dz2 of q(z)dz2 by 

*+q{z) = E 
.s'(a) .s'(a). 

.s'(a). 
.s'(a). 

if 0 is not a critical value. Then s*q is meromorphic with poles at most at the critical 
values of ,s and the images under ,s of the poles of q. It is easily checked, that, since q 
has at most simple poles, so does s*q. In fact, if S > 0 is sufficiently small. 

I .s'(a). 
(z - b)*.q(z)dz = Y 

s(n) = b 

f 
I \w-a\=8 

(s(w) - b)q(w) 
.s'(a). 

dw = 0. 

Therefore s*q(z)dz2 is a quadratic differential on (C..s(Y)). Furthermore: 
Res(.s*tf,a) = Res(r;? s(a)) • .s'(a). 

Ros(.s*g.&) - E 
.s'(a) .s'(a). 

R*<s(9/s'.a). 

Both formulae are pretty easy. The second needs a change of variable, like the one 
above. Thus 

f 
\z-b\=6 , 

E 
q(v) 

(«'(«0)2 •dz = E 
»{a) = b 

f 
.s'(a). 

a(w) 
-6 «'(«') -d/itK 

I \s*<l\ ^ f q\ I = I d I 
\s*q\. 

Equality holds in the lefthand inequality if and only if all terms q(w)/(s'(w))2 in 
the sum defining s*q(z) have the same argument. In this case, they must also have 
the same modulus. So lefthand equality holds if and only if q — (l/d).s*(,s*g). The 
equality q = (l/d,)s*(s*q) always holds. 

8.11. The derivative formula for d{.i\Tx). — Let r : T(Y) -» T(Y) be a 
pullback map for a space B(Y,fo)< as defined in 6.7. We have seen that, roughly 
speaking, 

T(\LO\) — \я 1 O LD O /ni 
for a suitable holomorphic function ,s, given cp. Then we have the following. We use 
local coordinates as in 8.4. 
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The Derivative Formula for d(x. rx). Let q(z)dz2 be the quadratic differential at [if] 
for d([ip],T([<p\) and letp(z)dz2 be the stretch of q(z)dz2 at r([<£>]). Then 

d{\ip + h],r([ip + h])) = d([<p], T{{ip + h]) + 2n Re ( ] T R.cs(ry - <p(y)h(y)) + o(£) 

Proof It suffices to prove this formula for //_ = (//.(?/)) where, for just one y G F, 
Ii(y) 7̂  0. Of course, we normalise so that, for this y, (p(y) / oo. Then write h(y) = //. 
Write [V'] = r{[f])- Let ,s be the holomorphic branched covering with [•*/'] — [.s-1 opo f{)] 
(by abuse of notation). Them there is a holomorphic branched covering «s/,.. depending 
on h and the choicer of y G Y. such that 

'R«8(«(=)'R«8(«(=)'R«8(«(=) 
If y is not a critical value of jo then si, — s. In any case, h • S}} and h i—> k(h) 
are holomorphic functions in h near 0. We normalise again so that, for k — (k{y')). 
k(j/) = 0 if V;(//) — 00• This essentially follows from the Riemann Mapping Theorem. 
There is a quasiconformal homeomorphism \ of distortion 1 + mapping ^p{y) to 
tp(y) + h and fixing ^('//) for // G V \ { y } . Then we consider the covering space of C 
using the branched covering \ o .s, with a complex manifold structure with respect to 
which \ o,s is holomorphic. The covering space is conformally equivalent to the sphere, 
with holomorphic covering map sh. Clearly, .s/, is unique up to right composition by 
a Mobius transformation. Then -ŝ 1 o \ o .s also has distortion 1 + 0(h). It follows by 
8.7 that the critical points of 67, are within O(h) of those of ,s. after right composition 
by a suitable Mobius transformation. So // i—• ,s/, and h ̂  k(Ii) are Lipschitz. But .s/,. 
and k(fi) are implicitly defined by a set of holomorphic functions. So Ii i—» sj, and 
h i—> k(h) are holomorphic near 0. 

We obviously want to apply the general derivative formula 8.4. This means that if 
T{[<P + h_]) = [</•' + A:], we want to show that 

V Rcs(/,. <%'))*(//) = Res(*./^(j/))fc. 
y'ev 

But 
'R«8(«(=) E 

'R«8'R«8(«(=)(«(=) 

Res(p.V(//)) 
z - w(y') 

So by the formula of 8.10 for residues of it suffices to show that for ;/ € Y, 
•</>(//) ± x. 
(1) W) = E /'R«8((«'(=)(--t%'))-1-#«0). 

z - w(y') 
We now know that A; = O(Ii). Since // .S/v is holomorphic, we can find polynomials 
r, a, /1 where dcg(/i) < deg(f) and r and / have no common factors such that 

Q(h2)cvQ(h2)cvQ(h2)cvfQ(h2)cv(«(=)2 
t " I I iri I ()(hJ) t'1 v ' A; = 
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Of course, a = ¡3 = 0 if y is not a critical value of fa. Now for y' G Y, 

(2) s'(il>(y'))k(y') + hiWy')) = M„ ,,,,,„,, + 0(/i2) 

where (5^, denotes the Kronecker S. Write 

at — (3r 
7 = t2 

Then expanding (2), and using s(ip(yr)) = p(fo(y')), we obtain 

(3) s'(il>(y'))k(y') + hiWy')) = M„ ,,,,,„,, + 0(/i2) 

Suppose that y' is a critical point of fo of multiplicity m. Here, multiplicity m = 0 
means that ?/ is not a critical point. Then 

s^Wy')) = 4 W ) + fc(y')) = 0, 0 < i < m, ,s<"l+1>(V.'(y')) ^ 0. 

Expanding, and using k(yf) = 0(/i), we obtain 

7(i)O0G/)) = °« 0 < z < m, 

fc(2/,)s(m+1)(^(2//)) + &7(m) W ) ) = 0. 
Thus, (1) reduces to: if '*/' is critical of multiplicity m (including m = 0), 

(4) E 
/0 ('«>)= 2/ 

Res((.s ' '(^)(^-0(y ')))-1,0(W)) + 7(i)O0G/)) 
,s(m + 1)(0(^)) = 0. 

For this, we consider the function 

7 U 
A-'(2)(Z - V(î/')) 

By the choice of 7, this function is meromorphic with poles only at points 'ijj(w) for 
fo(w) = V and at ip(y), and is 0( l /z2) for large z. So the residue sum is 0. Moreover, 
(7 — 1)/V is holomorphic at points IJJ(UJ) with fo(w) = y. So the lefthand side of (4) 
is the residue sum, as required. • 





CHAPTER 9 

PRODUCT STRUCTURE 
IN THE THIN PART OF TEICHMULLER SPACE 

AND TEICHMULLER DISTANCE 

9.1. Product Structure in the Thin Part. — We continue to use T(Y) to 
denote the Teichmuller space of a sphere C with finite set Y of marked points. Let F 
be a set of disjoint simple nontrivial loops in C \ Y. As in 6.5, we write 

T(r,e0) = lb] : (̂7) lias length < £0 for 7 G T}. 

Here, length is with respect to the Poincaré metric on C \ (p(Y)- Having fixed a 
suitable £Q the Margulis constant), the thin part of T(Y) is the union of all such 
sets T(F, so)- There is a particularly simple way to give a component of the thin part 
of T(Y) a product structure, as follows. 

Let E denote the set of all loops of T, and of all components a of C \ (UT) such 
that a \ Y is not an annulus. We call such components gaps, as in 2.13. We choose 
a set A{ot) C Y such that each component of C \ a contains exactly one point of 
A(a). For 7 € E H r, wc choose ^(7) C Y containing exactly two points on each side 
of 7. If S E S is nearest to 7 on one side, the two points of A (7) 011 that side are in 
different components of C \ S. If 7 C da, we also choose A(a) and A(7) to intersect 
in three points. This is possible, by starting with some S or 7 G E and then working 
outwards from this base. Let [tp] G T{Y). Then we have a map 

T{Y) — P[ T(-4(«)) 
T(A(a)) 

given by 
M 1—• (b«D, 

where [tpa] is the class of [tp] in T(A(a)). We write 7ra for the projection into T(A(a)). 
It is not clear that the map (7ra) is a homeomorphism. However, if we now restrict 

(7ra) to T(T, J) for S sufficiently small, it becomes injective (and hence open). The 
reason is roughly as follows. Each point of Y occurs in at least one A(a). If a 
and ¡3 are an adjacent loop and gap, then A(a) n A(/3) contains 3 points. Hence, if 
[pa] — [ipa] fc>r all a, we can normalise so that <p(Y) = ip(Y), and if 7 G T, then 
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ip(p()XXXV;(7) UP to isotopy. So o is defined, and fixes all loops and gaps of F, up 
to isotopy. Then ijb~l o tpa is isotopic to the identity via an isotopy preserving A(a) 
for each gap or loop a. This means, in particular, that o <pa has zero Delm twist 
round each loop a of T. So [p] = [?/;]. 

If a is a nonperipheral loop, then A(a) contains precisely four points and T(A(a)) 
identifies isometrically with the upper half plane. To make an identification we need to 
choose two simple nonperipheral nonisotopic loops QI, C*2 in C \^4(a) which intersect 
precisely twice. It is natural to choose oq = a. There is some choice for 0̂2, but we 
choose it so that intersections between a and a 2 are positively oriented. Having chosen 
these loops, we can define a torus branched cover of each [p] G T(A(a)) such that 
the covering map is a homeomorphism from each preimage loop onto a and a double 
covering of a single preimage loop 0.2 onto OL^. Let the covering transformations 
determined by a and CX2 be z ^ z + \ and z 1—» z + a. Then Iin(a) > 0. Then 
[(f] 1—• —a is our chosen identification of T(A(a)) with the upper half plane. It may 
seem perverse to take — a rather than a, but this ensures that right action on T(A(a)) 
by the mapping class group of the torus translates to left action on the upper half 
plane by SL(2, Z). So we can identify na with a map from T(Y) to the upper half 
plane. If we restrict to T(Y)(T,5) then the image is open, and contains a half plane 
of the form 

{z:lm(z)>(TT2/Ô) - C} 

for a suitable C > 0 independent of S. We have chosen this normalisation because, 
if [if] G T(Y) and the geodesic homotopic to tp(cx) has length Si for Sf1 — s^1 > 0 
and bounded from 0, then 2TT2/Si + 0(1/SQ) is also the modulus of the component of 
(C \ (p(A(a)))<£o homotopic to (p(a). In future, especially from Chapter 16 onwards, 
we shall often use the quantity 

m«(M)= logIm(7ra(M). 

Let C > 0 be suitably chosen. Let 1/S' = 1/S — C. We see that a point ([<̂ a]) m 
the image of T(T, S) is in the interior of the image if [ipQ] G (T(A(a))^s' f°r au gaPs 
a and [<pa] G {z : Im(z) > (2TT2/S) — C}. Each such set is connected. It follows that 
the image of T(T, S) contains 

n 
a a gap 

Im(z)Im(z) n 
a. a loop 

{z G C : Im(z) > (2TT2/S)-C}. 

9.2 The Teichmuller metric as a maximal metric. — Let da denote the Te-
ichmuller metric on T(A(a)), and dy the Teichmuller metric on T(Y). Then da is 
a semimetric on T(Y), that is, nonnegative, symmetric and satisfies the triangular 
inequality, but it is possible to have da{x, y) = 0 for x ^ y. Then, clearly, 

do,dydo,dy. 
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This chapter is concerned with refinements of this. We consider how to estimate 
Teichmuller distance in the thin part of Teichmuller space using the natural product 
structure there. The very rough idea is that the distance dy is approximately the 
maximum of the distances da on T(T, co). We give a procedure for estimating distance 
depending on precisely what coordinates in the product give dominant distance. These 
results are summarised in the Same Shape and Maximal Distance Lemmas. 

9.3. Subsurfaces, semimetrics and associated quadratic differentials 
Definition of Subsurfaces. Let x = [p] G T(F.c). with e ^ the Margulis constant. 
Let E denote the set of loops and gaps (as in 9.1). We shall usually write S — C\p(Y). 
Then S<£ denotes the set of points through which it is possible to draw a nontrivial 
and Ì ion peripheral closed loop of Poincaré length < s, and S^>£ = S \ S < £ . Then 
for a G E. we define 5(n, [p],s)~ also called S(A(c\).[p], s) as follows. If a is a 
loop, then S(o, [p]. e) is the component of S<£ homotopic to p((\). If o is a gap. 
then S((\. [p].c) is the union U of components of S^£ and S<£ homotoi)ic to p{(\). 
with components of S^£ adjacent to OU. In particular, if ^ C On is peripheral, then 
S((\.[p].e) includes the component of S<£ homotopic to p{*). We may write S((\) 
if e and [p] are fixed. 

We can also define S(A.E) for any A C Y: we take S(A) to be the union of all 
components T of S^>£ and S<£ such that each component of C \ T contains a point 
of A. and at least two points if T is a component of S<£i). If A — A((\), this definition 
agrees with the previous one. Of course, if A' C A C Y. then S(AF) C S(A). 

Let U be any connected subsurface of S such that OU C S<£ consists of round 
circles up to bounded distortion (under the natural normalisation of S<£). We shall 
sometimes choose A(U) C Y to intersect each component of C\U in precisely either 
one or two points. If U is an annulus A(U) will intersect each component in two 
points. If U is not an annulus. then A(U) will intersect each component in one point. 
Then 

S{A(U)) c U. 

Seniirnetrics and Other Metrics. For any Y' C T, we have a natural projection 
T(Y) —> T(Yf). and consecmently a semimetric dy on T(T), which also identifies with 
the Teichmuller metric on T(Y'). If Y' = A((\). we shall also call this semimetric da. 
If U = S(Y') (as above), we shall also call this semimetric: dy. More generally, for 
any U for which we can define A(U) (as above.4) we shall write dy = d^yy Of course, 
this depends on the choice of A(U), but in fact the different choices do not change dy 
much. 

Quadratic Differentials. For any Y' C T, let ny : T(Y) -> T(Y') denote the 
natural projection. For any [ip], [0] G T = T(T), there is a cmaelratic differential 
qy(z)dz2 at TTy(Vp\) for c/y/([cp]. [0]). (See 8.1.) This can also be regarded as a 
cmaelratic differential on C, p>{Y)), since poles occur at most at the points p(Yr) C 
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p(Y). One of the subjects of this chapter is the relationship between qy(z)dz2 and 
the quadratic differential q(z)dz'2 at [p] for d([p}. [//'])• 

9.4. Good Boundary, the Pole-Zero Condition, and Dominant Area. — We 
need to make some definitions which we shall use several times. Let x = [p] G T( I \ e) 
and S = C\p(Y). 

We say that a subsurface U has Co-good boundary if OU C S<£{) and all components 
are images of planar round circles under maps with derivative of modulus bet ween 
Co and CQ1 . We say that an annulus T C S is a Co- good shape annulus if T is an 
annulus with good boundary of modulus ^ C^1. There is Co such that, whenever 
So is sufficiently small, there are Co-good shape amiuli adjacent to each boundary 
component in every component of S<£{). The constant Co is independent of [p], and 
even of Y. This follows from standard distortion results for univalent functions. See. 
for example, section 2 of [R2]. We say that a subsurface U C S has Co-good shape 
if U contains disjoint embedded Co-good shape annuli adjacent to each component 
of OU. 

From now on in this chapter, we fix Co and eo > 0 such that Co-good shape annuli 
exist in S<£{) adjacent to boundary components, and we shall simply talk of good 
shape. 

Areas. Let q(z)dz2 be a quadratic differential at [p]. If ov is a gap. ofT. and U C S 
is a subsurface, let a(rv, U,q) denote the (/-area of U. that is, 

We write a((\. U) if it is clear which quadratic differential is being used. If a is a gap, 
write a (a) = a (a, S((\. [p]. co). q) if £o, [p] and q are fixed. We may also write a (a, q). 
and so on. If a is a loop, let a(a) — a((\.q) = a((\.s.q) denote^ the minimal area in 
S(a, [p>],£) of a good boundary annulus of modulus 1. 

Pole-Zero Condition. If D C S, let pp. ZJJ be the numbers of poles and zeros of q 
in D. Then we say that U C S satisfies the Pole-Zero Condition (for q) if. for every 
component D of C \ U. if U is not an annulus. 

Let U C S with good boundary. First suppose U contains at least one component of 
S^eu- We say that U has C\-dominant area for ^ if the following holds for any good 
shape annulus T C U adjacent to the boundary of modulus ^ Co and any good shape 
T' C Q separated from dll by at least some points of S^£(p. 

f(Ta(T 

PD - zD ^ I. 
and if U is an annulus, 

>n¿D = 2. 

(o(T.q) 
a(T',q) D1. 
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Now let U C S(a,6o) for some loop a, and be homotopic to S(a,eo). Then U has 
Ci-dominant area for q if C7 satisfies the Pole Zero Condition for q and has modulus 
> ma(l — 1/Ci). Here. ?j7fV = '№•<>([<+>}) i» as in 9.1. 
Boundedly Proportional Again, fix a suitable Co > 0. We say that q and r̂ / are 
boundedly proportional on U if there is a constant C > 0 such that the following holds 
for any good shape aimuli T. T'\ 

o(T'.q)a(T'.qa(T'.q,r) 
o(T'.q)a(T'.qa(T'.q,r) 

f Ca(T'.«) 
Ca(T'.«) 

We are now ready to start stating and proving results about the closeness of 
quadratic differentials for d and dn. 

9.5. Same Shape Lemma. Let Co be given. Let C\ and, C[ be sufficiently large given 
Co- Let [<£>]. [<0] <E T(Y). arid M = ± log A" = d([< ]̂. [V']). £^ g(c)r/c2 fee Me quadratic 
differential at [<p] for d([p}. [0]). Lei 5 = C \ 7a/re rm;/y connected good sliape 
U (Z S. satisfying the Pole-Zero Condition, such that each component of U Pi S<£{) 

which adjoins OU has modulus >^ C\(M + 1). Let Q be U minus a good shape annulus 
of modulus C\(AI + 1) adjacent to each boundary component. Let Q have C\ -dominant 
area for either q or q\. 

Letq[(z)dz2 be the quadratic differential at U fordv{\v\, W) = h log Ai - LetOAz) 
denote the angle between, \Jq\z) and \/qi(z). Let b be the maximum of the a(T,q). 
and, b\ the maximum of the a(T.qi). for T running over the annulus components of 
U\Q. Then 

(1) K.+C'C^K-I) 
f 

# i | 2 M ^ A". 

(2) A" < A', + C'b,(K - 1) - C'r'iK - 1) f 
l^iH'yil-

Also, q and q\ are boundedly proportional on Q. Let T C Q be of good shape, and 
of modulus ̂  Co, //' an, annulus. Normalise so that T is bounded, and at, least two 
boundary components have diameters bounded from 0. Let a(T. q\) = Then, any 
zeros of q in T are distance ^ C\ s/bi/ai from the same number of zeros (up to 
multiplicity) of q\, and similarly with q and qi interchanged. 

Proof. (1) is immediate from 8.3 (although the roles of q and qi have been inter
changed). In fact, to get (2), we shall also use 8.3, this time with q playing the same 
role here as there. Let B — U\Q. Let \. \ i be the quasi-conformal homeomorphisms 
with [\ o Lp\y = ! \ i o p\.\{c) = k'i..\(r i • Then we claim that we can construct 
a quasi-conformal homeomorphism \ 2 which is \ i on Q, and \ on C \ U, and with 
K{\2) = 1 + C(A" - 1) on B. We shall do this in the lemma below. Then 8.3 gives 

KM f C\(.» 
K\q\ + 

f KM + a(U x Q) + C3(K - 1)6 - C2(K - 1) 
f 

\Vi\'2\q\-

SOCIRTE MATHEMATIQUE DE FRANCE 2003 



138 CHAPTER 9. PRODUCT STRUCTURE IN THE THIN PART OF TEICHMULLER SPACE 

This gives 

(3) I K\q\ < L KM-C*(K-I) J, \0,\2\q\ + b + C,{K -l)b. 
Note that «(C \ Q-Qi) — 0(b\). So we can derive (2) from (3) if, for a suitable 
constant C\. 

(4) I 
C,xb a(Q.q) 

a(QiQl) dbi 
b 

So it remains to show that q and q\ are boundedly proportional on Q (see 9.4). If U 
is an annulus, this is automatic, by the Pole Zero Condition. So now suppose that U 
is not an annulus. Then we shall prove (4) by proving (4) for good shape surfaces 
T C Q. by induction on the distance of T from Oil. If T is an annulus. we take it 
of bounded modulus. The idea is that if q and qjr are boundedly proportional on T' 
adjacent to T, then they are also boundedly proportional on T with a somewhat worse 
bound, which we can then improve. Let T C Q be any good shape surface which is 
either a component of S^£{) or bounded modulus annulus in S<E() n Q. Normalise so 
that T is bounded, and at least two components of C \ T are bounded apart, with 
diameters bounded from 0. Then by (3) 

(5) I l̂ ii2M̂ c.ib/c-2. 
If T' is a component of U \ Q- and T" C Q is a good shape annulus of modulus Co 
adjacent to T'. then a(T\ q) = 0(a(T".Q) by the Pole-Zero Condition for q. By the 
inductive hypothesis, and the C\-dominant area condition for q or q\, we deduce from 
(5) that C-^b/C'2 = o(a(q.T)) if C\ is large enough. So any zeros of q in T are close 
to zeros of q\ in the normal plane metric, and vice versa. It then follows immediately 
that q and q\ are boundedly proportional on T. with a better bound, and we can 
continue the induction. Let a\ = a(T.q\). as in the statement of the Lemma. We also 
obtain, by Cauchy-Schwartz on (5), and using bounded proportionality of q, q\\ 

(6) I KMKMKMKMKM 
The bound on the distance between zeros follows immediately. So the last statement 
of the lemma is also proved. • 

9.6. Lemma. \2 can be constructed as in 9.5. 

Proof. Continue writing S = C\p(Y), and also write Sf = C \ r( V). We need to 
construct \2 on each component T of U \ Q. to l)e xi on one boundary component, 
and x on the other. Normalise p and 0 so that the boundary component 0 of S<E() 
homotopic to T satisfies 

0Ciz:Coe~2n'2^ < \z\ < C^-2n^^\ 

ASTÉRISĈUE 288 



CHAPTER 9. PRODUCT STRUCTURE IN THE THIN PART OF TEICHMULLER SPACE 139 

with X nearer 0. Take the same normalisation for the component of S'<£Q homotopic 
to x(¿0- Now we can find annuli Ti, T2 C X of comparable modulus which contain 
no zeros of q or qi, with T\ separating T2 from U. 

There are xi and holomorphic coverings s\(z) = \\zv', «2(2) = A2*
2 for an integer 

p ̂  1 and IAi| = IA21 = 1 such that if T\ = s^1 (si (Xi)), then 

Xi(x + iy) = WK\x += WK\x ++ o(l)). 

WK\x= ( 
/ST 0 
0 1/y/K] f o i l / v 7 ^ ) . 

We can further reduce Xi, again to an annulus of comparable modulus, and assume 
that 

Ti C {z : e" b < |*| < e~a} 
for A'ie~a = o(l) and b — a ^ A, if C\ is large enough. Now we claim that we can 
construct X2 which is Xi 0 1 1 the outer boundary of Xi and the identity on the inner 
boundary. We do this by constructing X2 on T\. 

We take p = sj x2 + ?/2, s = log(l/(logp)) and £ : [—6, —a] —» [0, 1] to be a function 
of bounded derivative with t — 0 near 6 and 1 near a. This is possible lib — a is large 
enough, that is, if C\ is large enough. Then we define 

X2(x,y) = (l-t(s(p)))xi(x,y)+t(s(p)) 
( 

X 

y 

( 

Then s'(p) — — l/fjoloff/o), so ps'(p) —> 0 as p —0. Note that, writing Yi (2;, = 

Dx = ( l - i ) 
( 

,/7?7 n 
0 (1/vAKT) ) 

+ tI + o(l/y/K¡) 

+ t'(s(p))s'(p 
>(( 

2: 
.2y ) ))xi(x,y)+t(s(p))t(s(p) 

) 

It follows that Z?X2 is invertible and 

AT(I>X2) = A"((l - í)£>xi + i/) + o(l), 

and we get the required estimates. 
Similarly we can construct X2 on X2 to be x on component of <9X2 furthest from U. 

Then the construction of X2 is complete. • 

9.7. Maximum Distance Lemma. — The following holds for a suitable constant C 2 de
pending only onxxxxxxxxxxxLet [<p], ['0] G T(T,e) C T(Y) with M = d([ip\,[^]) and 
C2eM < 1. Xe£ [<p] £ T(7,C2£;) /or 7 £ T. Xe£ Ei denote Me se£ 0/#aps o/T. (See 9.1). 

There is at least one a G Si U T of C\-dominant area. For any such a, 

Dx = (l-i) 
( 

d Q (M,[^) + e - 1 / c ^ if a G Si, 
iJM,H>]) + C2Me i f a e r . 
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Remark. — The conclusion of this lemma means that the Same Shape Lemma can 
then be applied. As we shall see, we also use the Same Shape Lemma to prove this 
lemma. 

Proof. — We need to find Q and U as in the Same Shape Lemma 9.5, such that either 
U C S(j) for some 7 G T, or U \ S<£o = S(a) for some gap a of T. (See 9.3.) Let 
61, C\ be as in the Same Shape Lemma. For some C2, we also need C\b\ ^ C^ME 
if U C S<£(), and C\bi ^ e~c'2l£ if U \ S<£o is £(«) for some gap a. If C2 is 
sufficiently large given C\ of 9.5, Q will have C\-dominated area, from the condition 
[p] T(7, C2S) for 7 ^ r. So it remains to find such a U 

Suppose there is a good shape annulus A C £(7) of modulus ^ n2/e satisfying the 
Pole-Zero Condition. Then b\ ^ 2C\Me. Then if C2/C1 is large enough, we can take 
U = A. So now suppose that no such A exists. Then we can construct a sequence 
of good shape surfaces Si (0 ^ i ^ N, N ^ #(X)) such that SN is our required 
surface C, as follows. Take So = S. Suppose Si has been constructed. Inductively 
we assume that Si satisfies the Pole-Zero Condition, and that an annulus of modulus 
^ 7r2/3£ in S<£() nSz adjoins each component of dSt. We take i — N if Si is homotopic 
to S(a) for some a. Suppose not. Then there is 7 G T and a £(7) C Si which is 
not homotopic to any boundary component. At least one component of Si \ S(j) 
can be extended by adding an annulus of modulus ^ (7r2/2s) — 0(1/eo) in £(7), 
so that the Pole Zero Condition is satisfied. Then assuming C2 is sufficiently large 
(again depending only on Ci), we simply take 52-+i to be this extended component of 
St\S(j). Then Si+i satisfies the inductive hypotheses. The condition C\b\ < a~c'2^£ 
then follows simply for C2 large enough depending on C . • 

9.8. Another Maximum Distance Lemma. The following holds for some C3 > 0 de
pending only on #(Y), Mo > 0, and for e > 0 sufficiently small given Mo > 0. 
Let d([p},[ij;}) = M < Mo- Let q(z)dz2 be the quadratic differential at [p] for 
d([p],[i/j}). Let [\ 0 p) = [V;] with x minimizing distortion. Let [<p'\, [ijj'] G T(T,s). 
Let £ (t G [0,1]; be isotopies with \p'] = o <p'], [0'] - Ko 0 V], M = Ki 0 V>'], 
[<//] = [£[ oi/)}. For all t, let 

where the minimum ofT is taken over all C\-good shape (see 9.3) subsurfaces of 
C\p(Y) Then 

nTa(T,nTa(T,nTa(T,nTa(T,nTa(T, = Щ. Vt < C3 2MinTa(T, q), 

(1) d([p%[ a(T,nTa(T,nTa(T, 

Proof. This is rather similar to 9.5. We shall prove more generally that 

(2) d ( H , [ ^ ] ) < d ( M , H ) + C37h. 
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Write qt{z)dz2 for the quadratic differential for d([(pt},[ijjt}). By 8.2 (as in 9.5) it 
suffices to prove that 

Clearly, (3) will hold so long as qt and q are boundedly proportional (see 9.4), and this 
has to be true for t sufficiently small. Let xt minimize distortion with [xt ° & ° ¥>] = 
Wt ° 0]- Then o xt ° £t ° tp\ — W\- As m 8-8-9, we see that the angle 6t between 
the directions of maximal distortion of x a n d ^'t~

l °Xt°£,t at- z is controlled by 9(q, qt) 
(the angle between q and qt) and K(£t) + ° X - 1)-

Then by 8.3 if 0t denotes the angle between q and qt we obtain 

So then, if C3 is sufficiently large, we obtain that the angle is very small and (3) will 

(3) i K(Ü°X°tt)\qt\ ^e2AI(l + C:}rìt). 

{quq?\q\ ^ C6C3rjt < C^C6 min a(T, q{quq?\q\ ^ C6C3rjt < C^C6 min a(T, q 

which yields 
0{quq?\q\ ^ C6C3rjt < C^C6 min a(T, q). 

hold for a t' > t. if t < 1. • 
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C H A P T E R 10 

T H E F O R M U L A FOR T H E S E C O N D D E R I V A T I V E OF 
T E I C H M U L L E R D I S T A N C E 

10.1. The purpose of this chapter is to give a formula for the second derivative of 
the Teichmuller distance function d for the Teichmuller space of marked spheres of a 
set of real codimension 2 in T{Y) x T(Y). We start with a simple proof that it is 
real analytic off this set. This first proof is based on the methods of Chapter 8. The 
explicit formula 10.16 for the second derivative fails to make sense at precisely the 
points identified in 10.2. We shall see, however, in Chapter 12, that the Teichmiiller 
distance function is C 2 on {({p}. [r]) G T(Y) x T(Y) : [p] ^ [V]}. 

10.2. Lemma. - Let [p] / [*/']. Let q(z)dz2 be the quadratic differential for d([p]. [</>]) 
at [p] (see 8.1). Suppose that q has only simple zeros, and, nonzero residues at all 
points of p(Y). Then d is real analytic in a neighbourhood of ([p], {<.'}). 

Proof. We assume without loss of generality that 0, 1, oo G Y and, for all [pi] G 
T(Y). we choose pi to fix 0. 1. oc. A quadratic differential q\ (z)dz2 near q(z)dz2. with 
poles at pi for [pi] near [p], is determined up to scale by its poles and zeros, and by the 
residue at one pole, up to positive scaling. A Beltrami differential is then determined 
by q\ (up to scale) and by a distortion A'i near K\ where 1 log K ~ d([p], [r:). We 
parameterize the set of K\ near K and q{ (up to scale) near q by A where A is an open 
subset in R 4 " - 1 2 . For convenience, we take 0 G A corresponding to (K.q). Write 
(K\.q\) for the distortion and quadratic differential up to scale. The corresponding 
Beltrami differential v\ then satisfies 

//A(;) = (K\ - 1 ) ^ ) / ( ( A ' A + l)|gA(-)|). 

This is clearly well-defined for all z apart from the poles and zeros of q\. 
Let p(z)dz2 be the stretch of q(z)dz2 by factor \/K, and let p x(z)dz 2 be the stretch 

of q\(z)dz2 by factor K\. (See 8.1.) Parametrize quadratic differentials near /; simi
larly by an open set A; C R 4"' - 1 2. We are now going to show that the map 

F : (K\,q x) '—> (Kx.qx.Kx.px) : A —> A x A' 
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is real-analytic. There is a similar real-analytic map 

G : к"{Cl Л') —> Л x Л' 

and we shall also be interested in the map 

Fi : Л —> T{Y) x T(Y) 

obtained by projecting A, A' to neighbourhoods of [ĉ ], [(])] £ T(Y) by using the 
standard projection of quadratic differentials to T(Y). This map is well-known to be 
injective [Abi], and hence a homeomorphism onto its image. 

We want to use the real analytic version of the Measurable Riemann Mapping 
Theorem [A-B]. We cannot apply the theorem to the family A ̂  v\ : A —-> L°°(C) 
because this is not even continuous, let alone real analytic. However, we can find 
a family of homeomorphisms (A of C such that CA maps the zeros of poles of q to 
those of q\, CA is pure translation in a neighbourhood of the zeros and poles of c/, 
Co = identity, (A, z) H-> Qx(z) : A x C -4 C is C X . and real analytic in A. Then let 
P\ = CAZ7A- that is, identifying v\ with the corresponding Riemannian metric, 

/>A(". r) = /A(DCA^-DCA^)-

Then the singularities of px are the poles and zeros of q, and A 1—• fi\(z) is constant 

be the standard Beltrami differential (that is. corresponding to the standard metric). 
Let ÇA be the quasi-conformal homeomorphism. normalised so that ÇA fixes 0, 1. oc, 
for example, with (ÇA)*̂ O = Px- We can normalise so that £o(p(Y)) = 0(^0- By 
Theorem 3 of [A-B], it follows that A ^ ÇA(~) is real analytic for all z. 

In particular. A 1—> ÇA(-) is real analytic when z is a pole or zero of q. We note 
also that the points CA(^(//')) aro the poles for q\, while the points £\(<p(y)) are the 
poles of p\, and the images under ÇA of the zeros of q are the zeros of PA- Moreover. 
(X. z) ÇA o Cx~l(z) *s real analytic in (X.z), and a diffeomorphism in z, away from 
the poles and zeros of q\. To see this, if we identify complex numbers with 2 x 2 real 
matrices in the usual way. we have 

So now (z. A) 1—> CA 0 CA L(z) '1H rea^ analytic away from the poles and zeros of px. So 
(z.X) ^ Pxiz) is real analytic in annuli round the poles of p\. which are near the 
poles of Then let Ax be an annulus of fixed internal and external radii centred on 
a pole zx of px, bounded from all zeros and poles. Then for a constant a, 

It follows that the residue is real analytic in A. This completes the proof that F is 
real analytic. 

for z near the poles and zeros of q. and A p,x : A —> L°°(C) is real analytic. Let CTQ 

(n i / ПГ \ /^°Сл о£ л = ^D(^x oÇx )Сл0С~>. 

Res (/JA, z\) = и / Px-
•A4 л 
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Now we consider the real analytic local homeornorphism F\. The distance function 
is the log of the first coordinate of F x

_ 1 . So the distance function is real analytic at 
([</?]: ['0D if the derivative of F\ is inve rtible at F~l{[if], [0;]). We use the notation 
[tpx] = [ip + ¿1] of 8.4, where hy e C N _ 3 . Then it suffices that 

(i) Рг1([<р+а1]ЛФ+к1])-КЧ[<р+Ь2]ЛФ+к2]) = o№i-ft2||1/2)+o(llfci-à2ll1/2) 

It suffices to prove this in each of the cases kx = k2 and hx = h2. We consider first the 
case kx = k2, and for simplicity of writing, we assume that = k2 ~ Q and hx = 0, 
h2 = h. If [ip] and [ip + /i] are obtained from ['*/;] by different stretches of the same 
quadratic differential with poles at ip(y) (y G Y), then d ( — + /1]. ['0]) = 

(̂IIAII) (which can be estimated straightforwardly, although of course it also follows 
from the Derivative Formula of 8.4). Then (1) follows because F is C°°, and we 
get 0(||/i||) rather than o(\\h\\1//2). This means that it suffices to prove (1) with 
c/([<̂ ]. [0]) = d([ip + h\. [0]) and kx — k2 = 0, or similarly with /i1 = h2 = 0 and 
d([v?],M) = d(M.[^ + fc]). 

Now let \ be the quasi-conformal homeomorphism of minimal distortion such that 
[x 0 9] = [0], and let \h be as in 8.4, so that [\h 0 + Z0] = [0]- The term of 
8.4 is 0. So the calculation there shows that 

K < 
/ ^(xâ)kl 

xâ)k 
2i = K + o{h), 

Let 0 denote the angle between the direction of maximum distortion for \h at z. and 
\/^2(^)5 where q2(z)dz2 is the quadratic differential at ta + Zil for G?(k?-r-/d, [01). Then 
it ioilows ir oui 0.0 that 

/ \e?\q\ = o(h). 

But over all but small neighbourhoods of the points tp(y) (y E Y), the direction of 
maximum distortion for Xh at z is the direction of yjq{z). It follows that q2 is within 
o(\\h\\1/2) of g, and hence that 

F- 1 (M,[ -0] ) -F- 1 ( [9 + ^],[-0])=o(||/tH1/2) 
as required. In the case h-^ = h2 = kx = 0, k2 = k, let q, q2 be the quadratic 
differentials for d([(f], [ip]) and r / ( [ ' 0 + /c] at and let p. p2 be the stretches at [0], 
[0 + k}- We show in the same way that p and j>2 are o(||/i||1 / /2) apart. Then because 
G is real analytic, q and q2 are o ( | | - 1 / 2 ) apart, and the proof of (1) is finished, as 
required. • 

10.3. Standing Assumption and Notation. — For the rest of this Chapter, 
we fix [if], [0] G T(Y), = n ^ 4, and quasiconformal homeomorphism x with 
[0] — [x 0 V?] and K(x) = K minimal, so that ^logA' = d([ip], [0]). Thus, x n a « a 
linear form with respect to singular coordinates given by the quadratic differential 
q(z)dz2 for d([ip], [0]) at and the stretch p(z)dz2 of q(z)dz2 at [0], as in 8.1. We 
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also suppose? that q has only simple zeros and nonzero residues at all points p(y). 
y G Y. (Thus, similar properties hold for /; also.) 

We assume without loss of generality that three fixed points of Y are mapped by 
both p and 0 to 0, 1, oo. We write bj (1 ^ j ^ n — 3) for the other points p(y), that 
is, the other poles of q, and b') for the other poles of p. We write 

a.j — Rcs(qJ)j) and a,} — Res(/>, bj). 

10.4. The Second Derivative. — We have seen in 8.4 that a neighbourhood of 
([<p], [</>]) identifies with a neighbourhood of 0 in C n " 3 x C n " 3 ^ C 2 n " 6 ^ R 4 n " 1 2 . 
Therefore, the second derivative of the Teichmuller Distance Function d identifies 
with a real symmetric matrix of real dimension An — 12. The Derivative Formula of 
Chapter 8 tells us that the first derivative of d identifies with the row vector 

27r(ai, . . . , an_a, -a\,. . . , -a'n_3), 

where a7 denotes complex conjugate, and we identify a complex number c + id with 
(c, d) in the usual way. Then the derivative Da3 of a3 is a 2 x (An — 12) real matrix, 
and the second derivative of d (if it exists) is 

27r(Dai,. . . , Dan-z, —Dax, . . . , —Da'n_:i). 

Note that this matrix is not obviously symmetric. Before stating a more illuminating 
formula, we need to describe our framework and establish notation. 

10.5. Holomorphic 1-Forms associated to g, p. — We can write 

q = 
n-3 
E 

27r(Dai 
27r(Dai27r(Dai 

27r(Dai) 
z{z-\)(_z-bj)-

and similarly for p in terms of functions pj. Let S be the closed nonsingular Riemann 
surface 

{(z.u)eC2 :q(z) = u2}. 
Thus S has genus n — 3. Let 7R : 5 —> C be projection onto the first coordinate. Thus 
7r is a 2-fold covering branched precisely at the zeros and poles of q (including oo), 
that is, at 2n — 4 points. Let 5', 7r/ be similarly defined for p. Then 

n (ivo/Vq)dz) = 
o1(z)dz 

u 
is a (single-valued) holomorphic 1-form on S. Note that q3(z)dz/u is holomorphic at 
the preimages under TT of 0, 1, oo, bj and the zeros of q, since qf(z)dz — 2udu = 0 
on S. Similarly, q0(z)dz/u has zeros at the preimages under TT of the other poles 
of q. So 7r*((qj/y/q)dz) ^ 0 at n~l(bk) if and only if j = k. It follows that for 
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1 ^ j ^ n — 3 these forms are linearly independent. In fact they form a basis for the 
space of holomorphic forms over C, since this has dimension n — 3 [Gun]. We have 

7T*(y/qdz) = 
n — 3 
E 
3=1 

7T* ( 
<ij zdz ) 

10.6. Harmonic 1-forms. — Now given any meromorphic 1-form on 5, given 
locally by 

f(z)dz = {u(x,y) +iv(x,y))(dx + idy), 
we naturally define 

Re(f(z)dz) = udx — udy, lm(f(z)dz) — Ke(if(z)dz) = vdx + udy. 
We call the real part of a holomorphic 1-form harmonic. Equivalently, a C1 form 
given locally by vdx + udy is harmonic if and only if 

dv 
dx + 

du 
dy = 0. 

Note that a nonzero harmonic form on S cannot be a coboundary — for if it were, 
it would be dh for a harmonic function h — and since S is compact, it admits no 
nonconstant harmonic functions. Now let f\{z)dz and J2{z)dz be meromorphic 1-
forms and define Re(fj(z)dz), Im(fj(z)dz) as above. Then we also have the following. 
Re(/1(z)dz) A Re(f2(z)dz) = Im( f^lz) A lm(f2(z)dz) = lm(h(z)h(z))dx A dy, 
Re(h(z)dz) A lm(f2(z)dz) = - lMfi{z)dz) A Re(f2(z)dz) = Re(fl(z)h(z))dx A dy. 

10.7. Definition of in, i>', w,. — We define 

(/1(z)dz) A Re(f2(z)dz) = Im( f^lz) A lm(f2(z)dz) = lm(h(z)h(z))dx < n - 3, 
V 9 y 

lMf i{z )dz )=Re lMf i{z )dz , /v )dz ) ) lMf i{z )dzv=v{z )dz , /v )dz ) )1 < / < n -3 . 

where Jqdz)—> S is a lift of x : (C,{z)dz,/v)dz))-> (C , V;(^)) (by abuse of notation) chosen 
so that \[Kv = v', (rather than y/Kv = —v), where 

v = Re(n*(Jqdz)), v' = X* (Re TT'* (y/pdz)). 

Define 
Jqdz) Jqdz) 

z-bj 

W2i-1 — Re I 7T ( * I —7z c/z Jqdz) Jqdz)Jqdz)Jqdz)Jqdz)Jqddz)Jqdz)Jqdz)Jqdz) vd 
Note that 7r*{(fj/y/q)dz) is a meromorphic form on .9 with just one singularity —- a 
double pole at 7r~1(bJ). 
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10.8. The Cup Form. — The v3 (1 ^ j ^ 2n — 6) are linearly independent, since 
the set of V2j-i + iv2j, for 1 ^ j ^ n — 3, is linearly independent. They form a basis 
for the space of harmonic forms on S: which intersects the space of coboimdary forms 
trivially. Hence they form a basis for H1(S, R). Similarly, the X*vj form & basis for 
the harmonic forms on Sf. So the v'3 = (x"1)*X*7;j also form a basis for H1(S1 R), 
although these forms are not harmonic. (They can be treated as differential forms 
even though x 1S not differentiable at the preimages of zeros of q, because x can De 
approximated by diffeomorphisms.) Since each w3 is the real part of a meromorphic 
form with zero residue, it also defines an element of Hl{S, R). The cup form 

U : HlCR) x Hl(R) —> R 

is nondegenerate antisymmetric and for differential 1-forms u, u' we have 

u U v! = / u A v!. 
is 

This also holds if u or u' £ {?;'• : 1 ̂  j ^ 2n — 6}. It follows that 

V2j-l U V2fe-1 = 2̂.7 U V2k = 2 
f 

Im qqq 
\q\ 

V2J-1 U V2fc = -V27- U V2fc-l = 2 
/ 

Re qkqk 
vk 

We also have 
V2J-1 U V2fc = -V27- U V2fc-l = 2V2J-1 U V2fc = -V27- U V2fc-l = 2 

Note that there is no reason to suppose that v3 U Wk = fs Vj A Wk, and in fact this is 
not true in general. I shall be doing the calculation in 11.10. However, we do have 

fs 
w2l-\ A v2k-i = 2 

/ 
r 
Im 

V2J 
{z-b3)\q[ 

and so on. If j — A;, this has to be interpreted as an improper integral. 

10.9. Definition of J, J'. — We define a linear map J on H1(S,H) by: u + iJu 
is the unique holomorphic form with real part u. Then J2 = —I and J preserves U. 
Note that 

Jv2j~i = v2j, Jv2j = -v2j-i. 
We define J' by: if u' = x*u f°r u harmonic and u + holomorphic on S'then 
J7?/ = x*x- Then, again, J/2 = —I and J' preserves U. We see that 

u + zjy = -K*(y/qdzx*v' + zx*./V = ir'*{y/pdz) = x* ( :VKV+ fc-l = 2 
vk 

so 
V2J-1 U V2fc = -V27- U V2fc-l = 2 vk 

vk 
J'v = 

Jv 
K ' 

J'J?; vkvkvk 

Note also that 
v U = 2 

f 
\Q\ =2 . 
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10.10. Definitions of V. W. V' W' TT. TT' T . Dnfine 

V = (vid) = (Vj U Vi), W = (wij) = / wj A Vi , T - (T; U Vi) 

We define V7, W similarly using ?/ and w'-. For any X C HX(S, R), let 

X - 1 = {u : 7i U x = 0 for all x <E X}. 

Of course .r G {^j^ f°r all Now let ^ (or i^) be the projection of v3 (or v1-) onto 
{?;, JT;}1- = {V, J V } - 1 along sp(i;, J?;) = sp(?/, J V ) . Then let /7, ¿7', I\ be obtained 
by deleting the last two rows and columns from the matrices with (?', j)-entries 

uj U Ui, u'1 U u[, ii A U Ui. 
It can be checked that 

V = -TV_1T, U' = -T[TJ~XTX. 

Since U is nondegenerate, V is invertible. Also, for any j , u^j-x + can be 
expressed as a complex linear combination of u^k-x +i'U'2k for A: ^ j . It follows that U 
is invertible. The space spanned by 

1 "/,:/•••- l.'l.j) or \ а[. : к •• 2/ I. 4J} 
is {v, Ju}1, (and the same as the space spanned by all iik, or all u'k). In particular, 
Ti is invertible. 

1 0 . 1 1 . Definition of A, A', B, B', II, £1, £1. — The matrix A is the 2rc - 6-
dimensional row vector 

(ai,. . . , an_3), 
where we identify the complex number c + id with the row vector (c, d) in the usual 
way. The matrix A7 is defined similarly. If we write M(c + id) for the 2x2 real matrix 

( 
<c -d 
d c 

then B is given by the matrix which has the matrices 

M 
( «.,(26, - 1) 

bAbj - 1) ) 
down the diagonal (1 ^ j ^ n — 3) and zeros elsewhere. The matrix B' is defined 
similarly using a'- and b'-. The (2n — 6) x (2n — 6) matrices £, II have the 2 x 2 
matrices 

0 - r 
\i 0 = M(-/), ( 

1 0 
V0-1 ) 

respectively down the diagonal, and zeros elsewhere. The matrix (2n — 8) x (2n — 8) 
matrix Ei is defined similarly to E. The matrix E\ is given by deleting the last two 
columns of E, where 

E = I- AlAVT, - T,AlAV. 
The matrix E' is defined similarly. 
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10.12. Symmetric and Positive Matrices. — The matrix — VE = (vi U JVJ) is 
symmetric and positive, since 

( 
^2i-l U Jv2j-\ V2i-1 U JV2 

\ V2% U Jv2j-1 V2i U J^27 

= M 
'( qqqi 

\q\ ), 
In fact, — VE is positive definite, since it is invertible (even though it is an integral 
of rank one matrices). Similarly, — V'E, — UEi, — U'E are symmetric and positive 
definite. So the same is true for the inverses V~lE, V'~lE, U~1E\, U'~lE\. 

The matrices Ili? and HB' are symmetric and of zero trace (and hence not positive). 
We shall see in 11.11 that — V~1WH and V / _ 1 WII are also symmetric — that does 
not seem to be obvious, although it is clear that they have zero trace. 

10.13. An Inner Product on Harmonic 1-forms on S. — We define a positive-
definite inner product (, ) on harmonic 1-forms on S by 

(x,y) = x U Jy. 
Of course, we can also regard this as an inner product on H1{S).Then {v^Jv}1-, 
defined as before, is also the orthogonal complement of {v, Jv} with respect to (, ). 
Note that the linear maps J J' and J' J are symmetric with respect to this inner 
product, while J is skew-symmetric and J' has adjoint —JJ'J. Write 

C = -JJ' on {v.Jv}1-
Then it is easily checked that C is positive with respect to this inner product. In fact 
we shall see later (in 11.8) that 

I 
K <C < KI. 

If we defined C on the whole space H1(S) we would have to replace < by ^. Note 
that we have 

((u^Uj)) = -UEU {{u'^Cu'j)) = -U'EU ((u'iiUj)) = -TxEx, 

((u^Cui)) = EiTiEic/Tr 1. 

10.14. Rules Relating Linear maps on H1(S) and Matrices of Integrals 
Let 

X : R 2 n " 8 —> {v, Jv}1-
be defined bv 

X((xi)) = u if (г¿, г¿г) = Xi for all i. 
Then, if P : {v, Jv}± -> {v, Jv}1- is any linear map, the matrix of X~lPX : R 2 n " 8 -> 
p2n-8 (with respect to the standard basis on R 2 n - 8 ) is given by 

((ui,Puj))U~ Ei = luiUJPu^U-^L 
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To see this, note that if (a. ///) = x; for all /', and 

u = E 
j 

bjUj, 

then 

( ]C h>">) U J(l/ = Xi ̂  (ui U Ju№ = ^ ̂  -ZiUb = x<=>b = U-1^. 

where x and b denote the column vectors and {pi) respectively. The result then 
follows, since 

X-lPXx = {{Pu.uù) = = ((ui,Puj))b={{ui,Pui))U-1Elx. 

As a consequence, we have the following: 

Rule 1. - {(uuP^iij)) - ((•ai,P1^))C/-1Ei((ixl-,P2'^». 
Rule 2. I = ((uf. Puj^U-^idui. P-^Uj^U-^. 

10.15. Some Symmetric Positive Linear Maps on H1(S). — Wedefine the 
following linear maps, all of which are rational functions of C as in 10.13, and hence 
commute. 

D = I-^, F = D~1 1 + ^ , G= ~ , H = CF. 
C c or1 n-i 
K K k 

Note that 

D>0, FH -G2 =D-2C([I +— ) - 4 — ) = C > 0 , 
C\2 c 
K K 

assuming Lemma 11.8. Now we are ready to describe our formula for the second 
derivative of Teiehmuller distance. 

10.16. The Second Derivative Formula. — The second derivative formula 2TTR 
is given by 

R=Ri+R2 + #3, 
where 

Hi = ( 
-V^WU-UB - HB 0 

0 V'^W'II + IIB' 

) 

R2 = 2 R 
K2 - 1 (-

' K2 + 1 2K 
2K K2 + 1 ) I P, where P = 

( 
AT, 0 
0 -A'E 

) 

B3 = ATTQ 
( 

({FUl.u:l)) ((GUil<» 
(({FUl.u:l)) ((GUil<» ) 

d, where Q = 
( 
ExU^Ei 0 

0 E[U,~lE1 

) 

The kernel K\ 0 K2 in R2n~6 ©R2n"6 of QF above is such that K} has dimension 2. 
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10.17. Remark. — We have already rioted symmetry of R2 and R^, and have indicated 
that symmetry of R\ will be proved in 11.11. It is also clear that R2 is positive (of 
rank two). Also, by 10.15, R3 is positive, but has a kernel, as stated in 10.16. We 
shall see in 11.8 that the kernel is as claimed. We shall also see that the kernel 
of R2 + R3 has dimension 2. W7e expect something like this to be true, for the 
following reason. Let [\] be a pseudo-Anosov isotopy class. Then we know that the 
critical points of [ip] I—» d([p], [pox]) are minima, and lie on a geodesic in Teichmuller 
space. Therefore, we expect the second derivative of this map to be positive, with a 
nullspace of dimension one. This means that if 2nR is the second derivative matrix 
of (.2', y) 1—> d(,r. y) at (.7;, y) = ([p], [p o x]), then we expect 

(// hf) R ( h 
b 

) 
> 0, 

with equality for h in a one-dimensional subspace. At such a point we have B = B', 
V = V, W = W. So the first term in the Second Derivative Formula vanishes. 

10.18. Start of Proof: the Equation for the Second Derivative Matrix 

Let h = (hj) and h' = (h'-) be small. Let Xi b e the quasiconformal homeomorphism 
of minimal distortion with xi 0 (p + !±)] = [ijj + ¡1]. Let q\(z)dz2 be the quadratic 
differential at [ip + h] for d([p + h]. ['0+ /&']), and let p{(z)dz2 be the stretch of q1(z)dz2 

at [0 + h']. Let the residues at b3 + hj, h'.- + /?/• for q\, p\ be a} + kj, cij + kj. Let 
K(\ + E) = K(xi) (recalling K = K(x), log A' = d([p\, [ip])). Then if ~k = (kj) (where 
kj denotes complex conjugate), the second derivative matrix 2nR (if it exists) is given 
by 

(SDE1) 
( 

k 
—1 
k ) 

= R ( 
/7. 
ti ) 

+ <>{h) + o{hr). 

Conversely, if R exists satisfying (SDE1), then 2nR is the second derivative. W7e claim 
that (SDE1) is implied by the existence of a unique solution (x. x'. s) to (SDE2) and 
similar equations involving h't, where 

x + iJx = 
11-3 
E 
.7=1 

"(('A - I)"(('A - I) .r' + iJ'x' = 
n-3 
E "(('A - I)"(('A - I) 

<r + /7 = 
71-3 
E hj{w2j-i + rà2.y), Ò + z J6 = 

n-3 
E 
¿=1 

"(('A - I)he 
be(bt - 1) (<>2£-l + ÌV2e). 

(SDE2) ( 
x 
Jx = ( 

JÏÎK 0 

0 VK ) ( 
a:' ' 
bbb 

) 
( 
x 
xy ) = 

( 

' b ' 
Jb = 

( 
w 
t 1 

x U = -6 U - / 
w A Ji;. 
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Here, (SDE2) is to be regarded as an equation for real and imaginary parts in 
H1(S): we are not requiring pointwise equality for the forms on each side of the 
equation, which is clearly impossible, since singularities occur on the righthand side 
only. 

Proof. — Take h'rn — 0 for all m. Write 

5i = {(2,«)eC2:g1(^)=«2}, 

and let S[ be similarly defined using p\. Let n\ : S\ —• C, TT[ : S[ —> C be the 
projections onto the first coordinate. By abuse of notation write Xi : ̂ 1 ~~> ^1 f°r the 
lift through 7Ti, TT[ of Xi C —» C. Then the relationship between q\ and pi can be 
expressed as 

K\{>/<Edz) = 
( 

X>l*(\ZpTdz), 
0 

0 
X>l*(\ZpTdz), ) 

X>l*(\ZpTdz), 

where we identify complex-valued forms with column vectors of real-valued forms, 
just as we had similar equations involving q, p, x, 7r, 7r'. This can be rewritten in the 
following way. Let 7 be any loop on .Si, and let 7' = Xi7- Then 

(i) 
Fvhk 

X>l*(\ZpTdz), 
( 

rTÏKMl -e)1'2 
0 

0 
/^(l + s)1/2 ) 

f 
7ri*(v^"^)-

We also have 

(2) 
/ kill = 1. 

We can assume 7, 7/ are bounded away from the zeros and poles of q, p (and hence 
also from the zeros and poles of qi, pi). Then, projecting, (1) gives 

(3) 
•/7T17 

\fq~\dz = 
( 

JUK(l-e)1/' 0 
0 sfK{l+e)1'2 ) 

fxvy 
\fV\dz. 

Now 
(z-be- he)'1 = (z- h)~l + h,(z - b£)~2 + o(h£) 

So 
ae((bt + he)2 - (be + he)) 

z(z - l){z - be - he) 
= a(qi + ///// + 

a((2b( - 1)//, 

bt(bt.-l) 
Qe + o(hf), 

and 

\A/iO) = x q(z) + 
n — Ò 
E 
.7=1 

E 
n-3 
E 
¿=1 ( 

fp + (26̂  — l)a£hi 
bt(be - 1) ) 

+ o(h) + o(k) 

(4) = y/^(z) -f 
n-3 
E 

(\Zp 

.̂y'/.y 
(\ZpTdz) 

f 
n-3 
E 
¿=1 ( 

E 
X>l*(\Z), + 

(2b i — \)a£h£q£ 

2b((b(-l)y/q(z) ) 
X>l*(\ZpTdz), 
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(5) \qi\ = \q\ + \q\Re 

( 
n-3 
E q(z) 

- + 
n-3 
E 
i=i 

( 
'hi fe 

- + 
(2b i — l)atheqi 
bi(bi - l)q(z) ) ) 

+ o(h) + o(fc). 

We have a similar expression for pi in terms of p except that there is no h'ni term 
for any m, since h'rn — 0 for all ra (and no / i m term for any m either). We also have 

(6) 
JT/K(l - e)1'2 = JÎÏK - JÏÏK(e/2) + o(e). 

VK(l + eY'z = VK + VK(s/2) + o(e). 

(7) 
( sfiJK 0 

0 \[K ) Mi' 
Vp(z)dz = 

f2 '7T17 
Vp(z)dz 

Putting (4) to (7) in (3), (2), and then lifting up via 7r, 7r', we obtain (SDE2), up to the 
addition of a term o(h) + o(k) + o(k') + o(£). The solution to (SDE2) is unique if and 
only if, for any solution (x. x', e) which is correct to within o(h) + o(k) + o(kf) + o(e), 
x, x' and e are all O(h). So the existence of a unique solution to (SDE2) implies 
(SDE1). • 
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SOLVING T H E S E C O N D D E R I V A T I V E E Q U A T I O N 

1 1 . 1 . In this chapter, we shall prove the Second Derivative Formula of 10.16 by 
solving equation (SDE2) of 10.18. We also give an independent verification of the fact 
that the matrix R of 10.16 is symmetric. This essentially means showing that the 
matrix R\ of 10.16 is symmetric. 

Throughout this chapter, we shall use expressions such as (hj) to denote column 
vectors. Row vectors will be denoted by expressions such as (hj)*. 

1 1 . 2 . Splitting up the Equation ( S D E 2 ) . — To solve (SDE2) of 10.18, it clearly 
suffices to solve in the case when hj = 0 for all j . and the case when hj = 0 for all j . 
Apart from briefly in 11.8, from now on we suppose that h'q = 0 for all j . Write 

Consider the righthand side of (SDE2). We are going to write it as a sum of 3 terms. 
Let be the unique element of H1(S) with 

Write w(2) = w - w (1). Then the righthand side of (SDE2) can be written as 

We let (SDE2.1), (SDE2.2), (SDE2.3) be the equations with the same lefthand side 
as (SDE2), and first, second and third terms, respectively, from the righthand side 
of (SDE2). Then it is clear that (SDE2.1) and (SDE2.2) can be solved immediately 
by taking x' — 0 and x — —6, x — —w^ respectively. So to solve (SDE2), we 
only need to solve (SDE2.3) and add the solutions to (SDE2.1), (SDE2.2), (SDE2.3). 
Specifically, we write 

\-Jb) + \-Jw<») + Ut + Ju/1) У 

w = Jw<»)= w A Vj, 1 ^ j ^ 2n — 6. 

f -b\ ( - № W \ / -ш<2> \ 
\-Jb) + \-Jw<») + Ut + Ju/ 1) У • 

f -b\ ( -№W -ш<2> \\-Jb) + \-Jw<») + Ut + Ju/1) У 
\-Jb) Jw<») Ut + Ju/1) У •\-Jb) + \-Jw<») + Ut + Ju/1) У 
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(SDE2.1) (vJ)
tS^-ì)(9e) = -b, 

(SDE2.2) (vJ)
tS^-ì)(9e) = -b,(vJ)

tS^-ì)(9e) = -b, 

We shall show in 11.5 and 11.9 that 

t = Jw^ -JuPK 

Then, e and 

X 
k v' 

= 
(vJ)

tS^-ì)(9e) = -b, 
(vJ)

tS^-ì)(9e) = -b, 
(c) 

give a solution to 

(SDE2.3) x 
KJx 

= 
JÌTK o 

S(9eb,/K/ 

x' 
J'x' 

+ E V 
— Jt 

= 
(vJ)

tS^-ì)(9e) 

(vJ)
tS^-ì) = x U Jv = 0. 

We also need to show uniqueness of solutions. So to solve (SDE2), we need to solve 
(SDE2.3), as well as giving the form of S(1^ and S^2A\ 

11.3. The form of S^1'1), 5 ( 2 , 1 ) . — Let B be as in 10.11, and V and W as in 
10.12. Let 

aj [2bj - 1) 
6,(0,-1) 

= #27-1 + 02Ì,#27-1 + 02Ì,#27-1 + 02Ì,#27-1 +3, 

Then 

(^•) t s ( M ) (^) = - : 
n-3 

fe=i 
(02k-lO2k-l - P2kÛ2k)v2k-l - (P2k02k-1 + 02k-lO2k)V2k), 

which gives 
S^V = -IIB. 

Taking cup product with (vi) on the left gives 

-VS^l) = Wli. 5 ( 2 ï l ) = - r ^ n . 

It follows that S^1'1) + i s the top left quarter of i?i in 10.16. So in solving 
(SDE2.3), we shall want to see the left half of the matrix R2 + R3 from the formula 
of 10.16. 

11.4. First Solution of (SDE2.3). — To solve (SDE2.3), write 

-7/j(2) = 7J7J + Sv + z, 

x = aJv + ra, 
a' i— 

x = a'Jv' + P'v' + rri = —=Jv + P'y/Kv + m 
y/K 
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with z, m, m' G {t?, Jv} - 1. (We have incorporated the information x U Ji; = 0.) Then 
(SDE2.3) gives two equations, which become six when we equate the components in 
the span of each of TJ, JXK and in {?;, Jv}1-. Altogether, we obtain 

a' 
Jm - y/KJ'm' = -Jz. K —a + KOL — 7, 

Jm - y/KJ'm' = -Jz. xx 
Jm - y/KJ'm' = -Jz. y/K 

m' 
Jm - y/KJ'm' = -Jz. Jm 

Jm - y/KJ'm' = -Jz. 

From these, we obtain 

a = 7-
K2 + l 
K2 - V I 

a — 

2jK 
K2 - 1 

ß' = 0, e = 6. 

The last two equations give 

( - 4 = - V ^ J J ^ 
VK \m' = 2z; 

Jm JmJz 
JmJz 

) T O=(l-
JmJz 

A' z. 

Remembering C = — JJ' and — J'J = C 1 and using the notation of 10.15, we obtain 

m = (C- I 
K 

m = (C JmJz 

B 
jz = Fz, 

I 
rn = 

4 , ( 
VK 

-1 I 
K 
' x —1 1Z = ^LD^Z. 

VK 

11.5. More Information about the Righthand side of (SDE2.3). — It follows 
from the lemma below that 

Jm - y/KJ'm' = -Jz.Jm - y/KJ'm' = -Jz.Jm - y/KJ k # 2).' 

W2 (2) U 7J2J-I = -4?r, TJ;^ U vk = 0, ^ 2j - 1. 

This implies that, for all k, 
(2) I I 7 (2) . , (2) j (2) (2) T (2) w2j-l U Jt'A' = w2j U S O ™2j = -Jw2j-H w2j-l = Jw2j 

Thus 

71 — 3 71 — 3 71 — 3 71 — 3 
E 
3=1 

Jm - y/KJ'm' = -Jz. E 
JmJz 

Jm - y/KJ'm' = -Jz. E < 
JmJz. 

2j-1^2j-l - E 
JmJz 

1^2j-l ). 

which justifies the righthand side of (SDE2.3). 

Lemma. Let ¡1 be a meromorphic l-form on a compact Riemann surface S with 
zero residues at all singularities and at worst double poles. Let v be a holornorphic 
l-form on S. Let pj G S (I ^ j ^ r) be those singularities of /1 which are not zeros 
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¡1 U v\ = / \i f\v\ — ixi CLj , M U v2 = / ¡ 
J r 

3 = 1 

J r 

2=I 

We shall prove this lemma in 11.10. Here, we explain why it gives the required 
identities for w)j U vk- We take ¡1 = w2j-\ + iw2j and v = v2k~\ -h 2̂fc- The only 
singularity of ¡.1 is a single double pole. If k / j then this double pole coincides with 
a zero of and the lemma gives 

• U z/i = / /iAl/i, /iUf2 = / /x A is2. J.J J 

lms gives all the required identities involving w 2 / - i ' w2j -> v2k-i and v2k for k 7̂  j . 
So now suppose that k = j . Then at the double pole of /i, if v is expressed in local 
coordinates as we see that ¡1 takes the form (4/£2)<i£. So the lemma gives 

/i\J vi — / /i A 1/1 = —4vT2, /̂ Uz/2— / /x A v2 = —47T, 
JJ J 

or, as required, 

W2j U ^2j-l - / W2j A V2j-1 = -4TT = i^2j-l U ^2j - / w2j-i A ?J2j. 
J J 

11.6. Interpreting the Solution of (SDE2.3). — We have obtained expressions 
for a, af m, m! in terms of 7, 6, z. (We do not yet have expressions for 7, <5, z in 
terms of known quantities.) The relation to the matrix is given by 

(i) 
aJv + m 

-a'J'v' -m' + W 0 
0 (v'j)\ 

-a'J'v' -m' 

Let A be the matrix of 10.11, which is a row matrix. We can write 

v + iJv = ̂  cLj(vj + Uvj), v = [vj)A\ Jv = (vj)T,At, 
ro —3 

J' = l 

and similarly for ?7, J V , using A' instead of A. Let U, U' be as in 10.12. Then for 
any y G {?;, J?;}~S we have 

y = (uj)
tU-\y\Jui) = (u'JU'-'iyUu'j). 

Here, we have 1 ̂  j < 2n — 8, since [/ is a (2n — 8) x (2ra — 8) matrix. So 

m = ( ^ j r ' f r o U u i ) = {u])U~\Fz\JuJ) = (u^U'1 (Fuk U u^U'1 (z U ufc) 

= (u i ) t / - 1 s 1 ( ( M j ,F M f c ) ) ;7- 1 ^u« f c ) ! 
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of v. At pj, choose local coordinates so that v = d( and the Q~2 - term in the Laurent 
expansion of ¡1 is -zzdQ. Write v = v\ + iu2, where h>\, v2 are harmonic. Then 

(2) ,(2) 
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in = (u'AU'-'iin U u'A = (u')£/'-' — U 

= U'AU'-1 U u • r ' f z U U f c) 

= (u f/'-'E, « U —=./( - JJ )D~ ui. )U-'(ZULU.) 

= (u f/'-'E, « U —=./( - JJ )D~ ui. )U-'(ZULU.) 

= (u f/'-'E, « U —=./( - JJ )D~ ui. )U-'(ZULU.) 

To proceed further, we need more information about z, 7, 

11.7. We first note that 
-(w^} UVi) = 47rE(̂ ). 

Next we analyse E, defined by 

(Vj)E 4 7 r E ( ^ ) . u u / / 2 / , <>.)• 
Now for all j , 

"./ = r.i ~ 
v. U Jv 

2 v H 
v:j U v 

2 
XX 

since 77 U Ju = 2. So 

(,-)£=(^)-'<> 
' Vj U Ji; ̂  

2 I + Jv 
( Vj U v \ 

2 
47rE(^). 47rE(^). rv, U .//• 

2 
47rE(^). 47rE(^). 

2 
where ('c7). (î ) are row vectors. Applying on the right, we obtain 

VE = V - VAF /V.; U Jv\ 
2 

+ VEA r, U r-
2 I, 

or 
E = I-

ATAT,V 
2 + 

47rE(^). 
2 

7 - 47rE(^). 
2 + 

EALAV 
2 

So i£ is as defined in 10.11. It follows that EE = EE, and E(VE) 1 is symmetric, or 
EV'LE = V-LEEK 

So 
E = VV'LE = VEV~LE + V(I - E)V-LY« 

where 
VEV~LE = VV~1EET = EE*, 

V(I - E)V'LE = -VA1 A --VEA'AE = -(v U VI)A - -(Jv U vT)AE. 

So the component of —it/2) in sp(i;, Jv) is 

2TT(A(0*))Î; - 2TT(AE(0£))JV. 
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So 

7 = -2TI\AE(0*), £ = 2nA(e(). 

Since 5 = £, we recover the First Derivative Formula 8.4. We also obtain, for 1 ^ i ^ 
2n - 8, 

(zU^) =ÀÀ"2 À"2 ) = E\{-w{2) UVi) = 4TT^E(0*) - 4TTSI^((9€). 

So we obtain 

aJ'y = — 2TT 
K2 + l 

K2 - 1 
(v7-)*EA'AE(0*) = 2TT 

7^2 + l 
A"2 - 1 

)£E£A"AE(0*))£E£A"AE(0*) 

and similarly 

a'Jv' = 2TT 
À"2  

À"2 - 1 
(^•)£E£A"AE(0*), 

m - 4 ^ ( ^ ) / ^ 1 c / - 1 E 1 ( ^ , F ^ ) c / - 1 E 1 ^ ( 0 , ) , 

m! = 47r(^O*^î^ /" 1Si((^ î-Gw f c))C/- 1Ei£ ,î(0^. 

Then (1) of 11.6 gives an expression for . This agrees with the left half of the 
matrix R2 + R's of the Second Derivative Formula 10.16. Thus, as far as the first 
half of the matrix R is concerned, the proof of the Second Derivative Formula is now 
reduced to proving the lemma of 11.5. 

11.8. The Second Half. — Now we consider the changes needed to solve (SDE2.3) 
in the case when h0 = 0 for all j , but h'3 ^ 0. (The changes to (SDE2.1) and (SDE2.2) 
arc clear.) These are obtained from the first half by interchanging J and J' and 
replacing m by J'u'^ u'% by Jui. Thus U is replaced by U' (since J' preserves U) and 
{UJ, Fuk) = Uj U JFuk is replaced by 

J'u'i U J'(J'F{-J'))J'u'k = v!, U JCFu'k = {u'^Hu'k), 

since 

J'FJ' = J'[I-
JJ'\ 
K 

(+ J.V 
K {-J') = (I + 

J ' J N 

K 
( _ 

.V.F 

K 
-1 

Similarly 

{u,-r Guk) = u,j U JGuk 

is replaced by 

JUJ U J'J'G( — J')J'uk = UJ U JGuk = {uj,Gu'k) 

since 

J 'G(-J ' ) = J'(-JJ')(l + 
kk 
K 

xx 
(k') 
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11.9. Lemma. Define an inner product on harmonic forms by 

(UJ, UJ') = UJ U JUJ'. 

Then with respect to this inner product on {v, Jv}±, the symmetric linear operators 
J J' and J' J satisfy 

1 
K 

I < -JJ', -J'J < KI. 

Proof. It is easily checked that J J' and J' J are symmetric with respect to this 
inner product. It suffices to show that 

0 ^ -JJ' < KI 

since, after transferring to S' by x*, the corresponding inequalities for J' J are proved 
similarly. The sharper lower bound on — JJ' is obtained by using — J'J = ( —JJ ' ) - 1 . 
So we need to show that for any harmonic form UJ 0 in {v. J?;} - 1, 

0 < UJ U J(-JJ'UJ) = UJ U J'UJ < K(UJ U JUJ). 

We have the lower bound, because if UJ' is the harmonic form on 5" which is cohomol-
ogous to then x* J , { J J is cohomologous to the harmonic conjugate J"UJ' of UJ', and 
UJ U J'UJ = UJ' U J" J > 0. We use (, ) to denote the inner product (/i, v) = // U J"v 
on harmonic forms on S' also (by abuse of notation). Write £ + irj = ( = ((n~l z) for 
the coordinate for the singular Euclidean structure on 5, S' given locally by 

(mbi +a2b2)d^df} f . 
and similarly for Sf, using p, so that the matrix of Dx with respect to these coordinates 
is ( jyyrr)- Then for each of S, S', (. ) is the restriction to harmonic 1-forms of 
an inner oroduct defined on C° forms bv 

(/z./y) = / (mbi +a2b2)d^df}. 
f 

where ft. v are given in local coordinates by ci\d^ + a2dq and b\d£ + b2di] respectively. 
If ¡1 is cohomologous to /// and v is harmonic, and v' is the harmonic conjugate of v, 
then 

(/i, v) = fi U z/ = fi' U v' = (///, v). 

Now we have 
(Y*CJ) < KIUJ.UJ), 

with strict inequality since CJ is not a multiple of d£ in local coordinates (because 
UJ £ {7;, Jf}^). By Cauchy Schwarz, 

(UJ\UJ')2=(X*UJ.UJ')2(x*^S x*^}^'iUf) < K(uj,uj)(uj'\UJ'). 

So 
(a/, UJ') < K(LJ, UJ), 
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that is, 
UJ U J'UJ = UJ' U J"UJ' < K(uj U JUJ), 

as required. • 

11.10. Proof of Lemma 11.5. — Write // = \i\ + ¿//2, where /11 and //2 are real 
and define elements of H1(S, R). So let u;̂  be a harmonic l-form with = CJA-
in Hl(S, R). Fix any .x'o G 5. Then a function f3 is well-defined except at the 
singularities of // bv 

//.(•/') = / (t'k ~ ^k)> 
I, 

where 7:r is any path from XQ to x. Then we have 

/'/,• - ojk + dfk, 

and fj is harmonic with singularities at the singularities of //. It is important to note, 
however, that f\ and /2 are not usually conjugate harmonic functions. In fact, there is 
usually not a conjugate harmonic function to f\. defined globally 011 S. Since dfk - 0 
in Hl(S, R), we have dfk U v — 0. However. 

o;̂  U v = / ujk A v = lim / ujk A v, I 

IL 
where Ss is a, surface obtained by deleting ^-parametrised neighbourhoods of the 
singularities of /1, and these neighbourhoods converge to the singularities as S —+ 0. 
So 

lik Uis - ilk A v = fik U v - lim / ilk A v = - lim / dfk A ZA 
I • I . I, I , 

Now, on Ss, dfk A is = d(fkv). So, if we let jj(S) be the boundary component of Ss 
excluding the j'th singularity, and oriented anticlockwise around the singularity, 

a uv- / a A v = E lim 
I 

A". 
I 

If the j 'tli singularity is a zero of v, take a1 = 0. So to prove the lemma, it suffices to 
prove, for each j , 

-TT/GU = lim / (/1+2/2)^1, -7ra7- = lim / (f\+if2)^2-
6-+Q 

I 
6^0 

I 

First, suppose that p3 is not a zero of v, and choose a local coordinate with v — dQ. 
Write C = £ + Then z/i = z/2 = J//. By linearity, we can assume that a3 = 1. 
Take jj(S) to be a square of sidelength 25 and centred on 0. Then the C^1 term in 
the Laurent expansion of f\ + if2 about 0 is — This is the only term which gives 
a nonzero contribution in the limit. Then 

- / c V = -2 Ixxx 
Ixxx •l-d 

(f + >S)df 
(/1+2/2 

1 = — iri, 
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- / C ^ 2 = - 2 
(ô -h iî])dr] 

if + S2 — ~7r< 
Xi (S) (/1+2/2 

f 

-ô 

r6 

as required. 
•If pj is a zero of v then for some n > 0, v = (x + iy)n(dx -f ?'<%) in a suitable local 

coordinate, while f\ + ¿/2 locally has only a simple pole singularity. So the limits of 
the integrals round jj(S) as S —> 0 are 0. • 

1 1 . 1 1 . Introduction of Singular Harmonic Functions to show that K^VVTI is 
symmetric. — Observe that V~lW is essentially a complex matrix, that is, V~lW 
is divided into 2x2 submatrices Cj:t all of the form M(a — i(3). Let — 47rF~1XTI = D 
and D = (Dj^) for 2 x 2 matrices D3^- Then V~lE is also essentially a complex 
matrix, and symmetric, with resulting consequences for the D3^-

Lemma. — There are harmonic functions g7, h3 with singularities only at 7i~l(b3) 
such that if the local coordinate Q = £ + irj is given locally by 

a*-Hz)) = 
f qk(t)dt 

Vii*) 

then g:l(C) + Re(4/C) = Gj(C), M O + Im(4/C) = Hj(0 are continuous near T T " 1 ^ ) -

Let k j . The (k,j) block Ckj + Dk.j of V~1W - 47rV
r-1En is given by 

Ck,+Dk, = -
' (&-)«(0,0) (/(,-)«(0,0)\ 

(Gj)„(0,0(Gj)„(0,0 

Let k = j and let 

rAz) = q(z) 
{<Ll{z)T{z~b:j) 

Then 

(Gj)„(0,0(Gj)„(0,0 
'(G,-)«(0,0) № ) « ( 0 , 0 ) 
.(Gj)„(0,0) ( ^ 0 , ( 0 , 0 ) . - M ( r ^ - ) / 3 ) . 

Remark. - Using the notational convention Hç = (Hç — iHr])/2. = (Hç-\-iHv)/2, 
and if M is as in 10.11, this becomes 

Cj,k = - M ( ( . 9 j + ? 7 l j ) c ( 0 ) ) ' if./ /•-. 

C^- = -A/((G, + ^ ) C ( 0 ) ) * - M(r;-(ò,)/3). 

/ ' a l l = -M«9j + %)<(0))' if./ ^ A:. 

D J . j n=-M((G,+zff , ) . (0) ) t . 

Proof of the lemma. It follows from 11.5 (proved in 11.10) that, in Hl(S), 

(Wjy = (vjYiV-HV - 4тгТ/"1ЕП). 
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Then the following equation holds pointwise for harmonic functions g3, hj with sin
gularities only at 7T~1(bj), that is, only at the (common) singularity of w2j-i and 
w2j. 

(w2j-i w2j) = }] (v2e-i v2A Cej + } (v2e-i v2e) Dej + (dgj dhA . 
e £ 

First assume k ^ j , and evaluate both sides at 7T~1bkl using the local coordinate £ + irj 
with 0 corresponding to 7r~l(bk). The lefthand side vanishes, and on the righthand 
side terms involving vrn for rn / 2k — 1 or 2k also vanish. The term {y2k-\ v2k) is 
simply (d£ drj) So we have the required formula. 

Now let k = j . Again we want to evaluate at (0, 0). We have to subtract off the sin
gularity (Re(4/(£ + in)2)dS> Im(4/(£ + irj)2)dr]) from both (w2j-i w2j) and [dgj dhj). 
The evaluation of the sum of the (v2£-i v2e) is as before. This time there is a possibly 
nonzero constant term in (w2j-i w2j), which we need to calculate. We have 

c 2 = 
4(z - bj) 

a, 
(1 + o(l)), a, = Res(«j, b3) = \W<>„ tQ.h,\ = r^b,). 

We need to calculate Q more accurately from the formula 

c = 
f 

y/{t-bj)rj{t) 
dt = 

f 1 1 

sjdjit - bj) 
1 -

r'j(hj)(t - bj) 
2a3 

+ 0((t-bj)2))dt 

= 2 
z — b.j 

dj 
(_ rf(bj)(z-bj) 

6cij 
+ 0((z-b2)) 

= 2 / z - bi 
V "J 

• 1 -
r'ibiK2 

24 + o(C4)Y 

So 
a7-

z - bj = 
4 

kk 
(_ r'(6,)C2 

24 + 0(C4 )) = 
4 
c 2 

(C2) 

3 + 0(C2), 

cijqjdz 
(z - D3)^q 

AdC 
C2 

r'AbAdC 

3 
0((t-bj)2))dt 

• which gives the result. 

11.12. Introduction of Green's functions to prove that V _ 1VFn is Symmet
ric. — First, we recall some properties of Green's functions on Riernann surfaces 
and establish some notation. Fix j , /c, 1 ^ j , k ^ n — 3. Choose charts 

ipo : {C : ICI < M — 5, (̂ i : {C : |C ~ 1| < ¿0} — S, 

(A)(0) = K~lbk, (^i(l) = ir-1bji 

tPo{v2k-i + iv2k) = d(, (pl(v2j-i + iv2j) = dC 

Let 
Ss = S x (M{C : ICI < ô}) U M{( : IC " 1| < «})), 

ASTÉRISQUE 288 



CHAPTER 11. SOLVING THE SECOND DERIVATIVE EQUATION 165 

and let Gs be the Green's function of .Ŝ -, so that Gs is defined on Ss x Ss \ diagonal. 
If we use a holomorphic coordinate ( on Ss as above, then Gs is real-analytic off the 
diagonal, and in a neighbourhood of the diagonal, Gs((1X2) + log'ICi — C21 is real-
analytic. Locally, if j /c, in the product of the charts for cpo and (̂ 1, we can consider 
Gs as a function of (Ci, 1 + C2) for 

S<\Ci\, IC2I <<*<). 
We also have 

G6(Ci,l + C2) = 0 if ICiI = <5 or K2I =6. 
By considering Fourier series, we see that we have an expansion of Gs of the form 

G5(Cl, 1 + C2) = RCf ICiI =f ICiI =f ICiI =(««,m(d)/»(C2)/m(Cl) + d,.,m(<>)/n(C2)/m(Cl)) ), 
C2) =0 

00 

where 
fn(C) = loeflc 1/(5). f„rn = Cn - 52nC for n > 0. 

The coefficients cn.m and d n , m are uniquely determined if we specify that cn,o and 
co,n are real and dn^ = do_n = 0, for all n. 

If j = A;, we take (p\(l. + C) = v̂ o(C)5 and expand £¿-(("1,(2) a n o - then w e have a 
similar expansion except that we have in addition a term 

- log - ICi -C2I 
^ 2-C 2Cil 

11.13. Verification of symmetry of V WH 

Lemma. -- Fix j and k. Then 
(a/öO(.9i+2/i?-)(0) = lim2ci.i(J) 

0^0' 
(d/dC)(Qi+ihi)(Q) = lim 2d, ,(6). 

6^0 
By 11.11, this is enough to prove symmetry of V -1TL H (and confirms symme

try of V~lH, which, of course, we already know). To see this, note that because 
G(l -\- (2X1) = G((i,l + (2), the coefficient c 1 ? 1 of /1 (Ci )./i (C2) i n the expansion of 
both functions is the same. 

Proof of the lemma. Now, g3 and h3 are harmonic functions on the surface Ss: and 
hence they and their derivatives can be expressed in terms of the Green's function Gs 
and their values on dSs> We use the local coordinates (4, 1 + C2 as already indicated. 
We are only interested in the values of the derivatives of g.j and h3 (and hence of the 
functions themselves) for small £, and need to consider Gs((,C) f° r small and (' 
near 0 or 1. If g is any harmonic function on Ss, then Green's Theorem gives, for any 
C € Ss, 

(1) 2 ^ ( 0 = -
L 6^0 

g*d2Gs(C-) 
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where *d,2Gs(Ci •) *s the conjugate harmonic form to d2G$ and d2G denotes d of the 
function £2 + ¿772 G(£, £2 + ^2), that is, if £2 = £2 + ^/2, then 

<5o}U{C = 
dGs, 
drj: 

<5o}U{C + 
dGs 

0 £ 
(C,C2)*?2 = -1 

.0GS 

dÇ2 

-<i<2 + i 
.dGs 
#<2 

c. 

and similarly if £2 — 1 + £2 + ^/2, and we orient OSs anticlockwise round 0, 1 (in the 
local coordinates). Now let go be a continuous function defined on 

{<: Kl <5o}U{C: K - I K M -

Then for any S > 0 we can define a harmonic function on Ss by the formula 

/ 
JdS 
'dSs ' 

go * d2Gs(Ç, •) 

which is bounded between the maximum and minimum values of go. Taking limits as 
S —> 0, we obtain a bounded harmonic function on S itself (since a bounded harmonic 
function cannot have isolated singularities), which must, therefore, be constant. Now 
g7(() and hj(Q are bounded for |£| < So, and gj(l + £), h3{l + C) differ by bounded 
harmonic functions from — 4Re(l/£), —4Im(l/£) respectively for |£| < So, since, in 
our local coordinate 1 + £, w2j-i + iw2j takes the form (4/(2)d(. So taking limits as 
S —> 0, we obtain, for |£| < So, and constants M3, Nj, 

TTQj (C) = 2 lim 
J\C2\=Ô 

Re(l/C2)*^2^(C,l + C2) + M J, 

7r/t7-(C) = 2 lim 
db 1, £ = £ 

Im(l/C2)*^2^(C,l + C2) + Ar,. 

The convergence is locally uniform in £. So if £ = £ -f- ¿/7, we can differentiate the 
formulae with respect to £ or 7/, and the constants will disappear. The derivatives of 
g, and hj are continuous for |£| < 5Q. So we obtain 

—T2 kl 
3£ 

(0,0) = lim lim 
<5'—0 (5-*0 / /j<|=<5' 

dC 

'101=5 
Re(l/C2)^r(*d2Gi(C,l+C2)), 

dc 

dv 
and similarly for the other terms. So 

TT2 - ^ ( 0 , 0 ) + / . ^ (0 ,0 ) = lim lim dg:, 
dk dt 

.dh. 
<5'̂ 0 ¿-»0 

f 

J\C\=S' 

d( 
xx 

f 

J\<2\=S 

1 d 
£ 2 3 £ 

(*d 2 ^(£, l + £2)), 

and similarly for d 
07] ' So 

(2) 7r2(d/dC)(Q, +ihn) = lim lim 
x-ovx-o 

f 

J\ç\=S' 

dk dk 

J|C2] = <5 

1 

C2 
/ d * 

(*d2G*(C,l + C2))-

Now 
f 

IC1=<5 

dkdk 

c 
= 0 for n ^ -2 , 

f 

'KM 
C~ldC, = 0 for n ^ 0. 
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So we only need to consider the C2 -term in 
--2 d2g3 

g2C3 
and the constant term in 

d2Gs 

g2C3 
Then we obtain 

7r2(d/d0(9i+ihj)(Q) = lim lim 
¿'-•0 6^0 I JK\=5> 

g2C3 
6' < L J\Qi\=d 

->clA{dQ2 "<52C2

2rfC2) 
C2 

- = 47r2r1.1 

Now suppose that j = A;. Then our expressions for 
«92GA 

<5»C<9C2' 

d2G& 

g2C3 are augmented 

by 
— 

1 + C2C 
(¿2 - c2C)2 

(C2-C)- 2. 

because of the log term. Both contribute nothing to the double integral. So in this 
case also we obtain the formula. 

The case of d/dQ is similar. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 





C H A P T E R 12 

T H E S E C O N D D E R I V A T I V E OF 
T E I C H M U L L E R D I S T A N C E IS C O N T I N U O U S 

1 2 . 1 . The main purpose of this chapter is to prove the following theorem. 

Theorem. - The function 
rf:(M r V ) ] ) _ . d{[<p],ty]):T(Y)xT(Y) — [O.oo) 

is C2 at any point ([ip], [0]) with d([(p], [t/>]) > 0. Furthermore, if #{Y) = n and the 
multiplicities of zeros of q are k-t, 1 < / < s, then the kernel of the term R2 + R3 of 
the second derivative (in the notation of 10.16) has dimension 

We shall also obtain bounds on the second derivative D2d in certain cases: of 
quadratic differentials with zero residues (in 12.9). as distance approaches 0 (in 12.11) 
and for quadratic differentials of a certain shape in the thin part of Teichmuller space 
(in 12.10). 

1 2 . 2 . Extending continuously is enough. — To show that Teichmuller distance 
is C2 at ([ip], [V7]) with d([p], U:\) > 0. we only have to show that 

Proposition. D2d extends continuously from the set of ([ip]. [ft]) for which the 
quadratic differential q(z)dz2 for d([p], [0]) at [ip] satisfies the Standing Assumption 
of 10.3. 

We now show why this is enough. We claim, first, that the set of [X/J] for which 
q(z)dz2 at [ip] does not satisfy the Standing Assumption is a union of real analytic 
submanifolds, all of codimension at least 2. This is because the set of q(z)dz2 with 
zero residues or multiple zeros is a union of real analytic submanifolds. Let M be one 
of these submanifolds. Let {(q\.K\) : A £ A} be a parametrisation of M x (l.oc). 
Let {/IA : A G A} be the real analytic family of Beltrami differentials determined 
by (q\.K\) : A G A} as in 10.2. Then as in 10.2, Theorem 3 of [A-B] gives a real 
analytic submanifold of [0A] such that q\(z)dz2 is the quadratic differential at [<p] for 
d([y], [0A]), with \ logiiA - d([<p], [0A]). Then for any ([^], [0]) with d([<p], [0]) > 0, 

2 + E 
.s 

¿=1 

V 
2 
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for almost all vectors (h,k) of length ^ S for S sufficiently small, D2d is defined at 
([(f + th], [ij) + tk]) for almost all t G [0, 1]. Now if g is a function for which g"(t) is 
defined almost everywhere on [0, 1] and extends continuously then </'(0+) exists and 
is defined by the formula 

</'(()+) = linuT1 
(5 — 0 

g"(t)dt. 
f 
JO and thus coincides with the continuous extension. Thus (for suitable choice of di

rections), all second order partial derivatives exist and coincide with the continuous 
extension. So D2d exists and is continuous. 

12.3. The Main Reduction. — Let q(z)dz2, be the quadratic differential at [<̂ ], 
and p(z)dz2 the stretch at [ijj]. Let q satisfy the Standing Assumption of 10.3. Let 
v,v' be as in 10.7, J, J' as in 10.9, V. W, T as in 10.10. The following is the main 
step needed to prove that Teichmùller distance is C2. It will be proved in 12.7. 

Proposition. — Let [ip] G (T(Y))^£{). The functions V~1, V~1W extend continuously 
to all ([cp],q), and are bounded by a constant C(EO). If a3 = Rcs(q,bj) = 0, then the 
7 'th row and column ofV~l are 0. 

12.4. We shall also need the following. 

Lemma. - Let [<p], [ip] e (T(Y))^£{) with 1/M ^ d([<p], [I/J]) = ^logK ^ M. The 
linear map (K -h J'J)~l on {v.Jv}1- is bounded by C(zo. M). using the cup form 
inner product of 10.8. 

Proof. We examine the proof of 11.9. We see that it suffices to show that for any 
harmonic UJ G \V, JV\±, 

X*v U J"x*u ^ (A' - fl)(u> U JUJ). 

As in 11.9, J" denotes harmonic conjugate on S'. This is proved similarly to 11.9, but 
we just check the conditions. We assume without loss of generality that UJ U JUJ = 1, 
and that UJ is the real part of r(z)dz/\Jq{z) in local coordinates. Then the condition 

eu G \v,Jv\ gives 

/ 
rq 

• = o, 

and hence 

/ 

\r±q\2 

\Q\ 
= 2. 

The functions r2/q and q have a bounded number of poles and zeros, and the poles 
are bounded apart and simple. The integral of modulus of each function is 1. It 
follows that we can find a bounded disc of size bounded from 0 on which oxg{r/y/q) 
is bounded from arg yjq. Then we can complete the proof as in 11.9. • 
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12.5. Proof of 12.1 given 12.3. — By 12.2, we only need to show that the 
second derivative extends continuously. We consider the terms Ri, R2, R3 in the 
Second Derivative Formula 10.16. Clearly R\ extends continuously, and by 12.3 R2 
also extends continuously. It remains to consider R%. The projections E and E' of 
10.11 are continuous because the entries of AV are 

M 
I 

qq3 

kl 
) 

and similarly for A'V'. The top left quarter of R% is U 1Yj\(Fui U Uj)U *Ei, with 
others similarly defined (see 10.15). We claim that these extend continuously because 
V~l and V'-1 do. 

First, we show continuity of U~i, and, similarly, of U'~x (see 10.9). We assume, 
renumbering if necessary, that an_3 ^ 0. Let S be the {2n — 6) x (2n — 8) matrix 
which has the (2n — 8) x (2n — 8) identity matrix in the first 2n — 8 rows and the 
matrices 

M( -aj > 
xc=3 

(1^<< j<<n – 4) 

in the last two rows. We claim that 

(1) U'^x = StV^XS, or, equivalently, / = -5V~1S5C/Si. 

This is because StE\ is the (2n — 8) x (2n — 8) identity matrix, and 

VEEi = (Jt'? U ?;,)Fi = (Jv7- U ut) = (JÎX7- U ?xz) = St/Ei. 

MnltinlviriPnn the left hv E P*ives M V We also have 
U-l(JJ'uiUuj)U-1 = StEV-l{JJ'vtUvJ)V-lEtS-1 

U-l(JJ'uiUuj)U-1=StEV-l{JJ'vtUvJ)V-l Et S. 

Now we consider the continuity of £/_1£i(F^ U Uj)U~lYi\, and the other quarters 
of R's. We consider these as functions of q. Note that, when the Standing Assumption 
is satisfied, 

U-l(JJ'uiUuj)U-1 = StEV-l{JJ'vtUvJ), 

for harmonic 1-forms xt G Jt '}^ with x2l — J x2l 1. Since £/_1£i extends continu
ously to the set of all </, :r2 U J.x2 remains bounded for all i. So x% must be a harmonic 
1-form on the corresponding (possibly degenerate) surface S = Sq (see 10.5), even 
if q does not satisfy the Standing Assumption. Moreover, Jx.2i-\ — ̂ 2i- Now let 
q(z)dz2 be the quadratic differential at [ip] for d([<p], [?p]), with stretch p(z)dz2 at [ip]. 
Let S' = Sp. Then by 12.4, C = - JJ' and F^1 = (/ + JJ'/K)'1 are defined and 
bounded on the span of the even in the absence of the Standing Assumption, 
and are continuous in (q,p), that is, in ([</?], [^]). Let x'% be similarly defined, using 
U'. It follows that F, G, H (see 10.15) are defined on the span of the x% or x'q, and 
the matrices ((Fxt, Xj)), ({Gx^Xj)), ((Hx^Xj)) are defined and continuous in q, p. 
These are the four quarters of R%. So R% extends continuously, as required. • 
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12.6. How genus reduces. — Let q(z)dz2 be any quadratic differential at any 
point of T(Y). Let S be obtained by removing singularities and then filling in punc
tures on 

{(z,u) e C2:q(z) = uz}. 
If q7Udzz are quadratic differentials satisfying the Standing Assumption with qrn —> q, 
then the corresponding surfaces Sm degenerate as m —• oo, reflecting the fact that the 
genus of S is lower than that of Sm. In fact, the genus S is described by the following-
formula. 

Lemma. Let n' be the number of poles of q (all simple, possibly < n in general). 
Let Zi (1 ̂  i ̂  s) be the zeros of q, with z% of multiplicity k{. Let s — s\ -f s2, where 
s\, s2 are respectively the numbers of zeros of odd and even multiplicities. Then the 
genus of S is 

n' + s i 
2 

- 1 = n! - 3 -
s 

E 
•¿=1 

kt~ 
2 , 

Proof. — We have 
x 

E ' 
i=l 

ki = ri - 4. 

So 
x 
E 

i=1 

\ki 
2 _ 

– 
x 
E 
;=i 

ki 
2 

x 
2 

n' — s i 
2 

- 2. 

So the two different claimed expressions for the genus coincide. As usual, define 
ir(z,u) = z. Let A denote the set of zeros and poles of q. Then 

7T : S \ 7T—1 (A) —> C \ A 

is a covering. So the Euler characteristic of S is 2(2 — + #(7r_1(v4)), and the 
genus is #(A) — 1 — ^#(7r_1(A)). The crucial point of the calculation is that 7r"1(zt) 
has one point if kt is odd, and two if k% is even. • 

12.7. Proof of 12.3. — Let qrn —> q. We need to show convergence of V^1 and 
WrnV~l. Recall that the matrices WrnV~l and V~l give the coefficients of the 
in the expressions of the singular forms u'j 1^ and w^n. In turn, we showed in 11.11 
that these coefficients are given by the linear terms in the expansions of g;-,m, hj rn 

in local coordinates given at TT,,,1 (/;,;) by qimin/y/%7i>, with an extra term r^m(6j,m)/12 
giving 2 x 2 matrices down the diagonal of \\'m Vm

 1. where 

r,rn(z) = 
Qrn(z) 

(z,z)2 (z,u)x,m 

The term ^.m(^,m) is easily seen to converge: to 0 if b3 is a zero of q. Here. #j,m h3,rn 
are harmonic functions with singularities at ^^(bj^) of a certain form with respect 
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to local coordinates given by Qj^rn/y/chi- Thus, in order to prove 12.3, it suffices to 
prove the following. 

Lemma. — Let qrn —> q where qni has only simple zeros and all residues non-zero. 
Let m be a real parameter. Then the linear terms of gj,m, hhni in expansions in the 
appropriate local coordinates at ^ ^ ( ^ m ) do converge. If the limit bi ofbit7n is a zero 
of q then these limits are 0 for all j , and for all j 7̂  i if bz is not a pole of q. If b7 is 
not a pole of q and not a zero of q, then the limit for j = '/ is — r'(6 z)/3. 

Proof. The idea is to produce a nonconstant harmonic function on a compact 
surface without boundary, if the linear terms do not converge, and thus to obtain a 
contradiction. Let Srn be the surface which is the usual double branched cover of 

ttz.w) : qrn(z) = u;2} 

with branched cover 7rrn. Fix i, j , that is, fix convergent sequences bi,7n, b7.m of poles 
of qrn. We may as well take i = 1. Let 61, b3 be the limits, which may or may not be 
poles of q. 

Now use the local coordinate £ near 7r,~1(6i/m), where Cl71"^1 (̂ l,™)) — 0 and 

Cfc1(2))= (qi,m/y/q^)(t)dt. 
fb 

bl,rn 

Then there is an embedded disc Km — {£ : |£| ^ rrn] in Sni with r7n ^ 7*0 > 0 with TQ 
depending only on q. In fact, if b\ is a zero of q, we can take r7n —-» 00, because we can 
:ake rm z> C\/|fri,7n — z 2 , m | , where Z2Jn is the second nearest zero of qm to 61,m. 
Thus, g\,m and foi,m can be regarded as functions on Krn — : \(\ ^ r m } D A 0̂. 
such that fbv 11.11) 

0i,m(.T, y) + 4 He(i/(.r + / ? 4 , m ( ; i : , y) + 4 Im(l/(:i; + iy)) 

are harmonic functions on Krrx. 
The general Fourier series expansion of a harmonic function g in {rel° : r G (0. To)} 

(as used in 11.12) is of the form 

E 
n^o. n e z 

r (n-„e + a n e ) + a 0 + a 0 logr, 3m0 _ - ¿7̂/9 > 

where 

27r(anr
n + â n r " n ) = / g(rew)e,-iniid6 if n / 0, 

-I 
*2TT 

27r(a0 + an log'*") = 
fb r»27T d6 if n / 

So the coefficients can be computed from integrals for just two values of r, say r — TQ/2 
and r = r 0/4. Let oj n j . m be the coefficients for giJU. We have a T l , i ,m = 0 for n < —2, 
a-1,1,m = — 2, a ( ' u m = 0. We need to show that lim™-^ oq,i / m exists: and = 0 if 
b\ is a zero for ep and similarly for the coefficients for h\^rn. We also need to prove 
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convergence of corresponding coefficients in Fourier expansions of #i,m, /ii,m in discs 
round points K~^(bjirn) for j ^ 1. 

For the moment we continue to consider <7i,m and 0 G Ko (corresponding to 
7rm (̂ i5m))- "We only consider cj\^rri from now on, since the arguments for hi m are 
exactly analogous. Choose real 0 < \i,7n ^ 1 and ci,m such that Xi^n9i,m + ci,m is 
bounded on dKo -and bounded from constant if we have to take limm_+00 Ai,m = 0. 
Then \\,rng\,m + ci,m is harmonic on SVn \ {TT̂ 1 (&m)} and bounded on 5rn \ i \o- Take 
a convergent subsequence. The limit function #i can be regarded as a function on: S 
(if b\ is a pole of g); or C if h\ is not a pole of g. If h\ is a zero of ç, then 

C = lim Km, 
m—oo 

and 
9l + lim 4AimRe(l/(x + i2/)) 

m—>oc 
is also a well-defined bounded harmonic function on C. Thus in all cases, KQ — 
{C * |Cl ^ ro} can be regarded as a subset of the domain of g\. In all cases, the 
function is harmonic in the complement of 0 £ Ko, and bounded in the complement 
of Ko- Moreover the Fourier series coefficients satisfy the same restrictions as those of 
the #i,m, because we simply take limits in the integral expressions for the coefficients. 
Then if linv^oo Ai,m = 0, we see that g\ is nonconstant and extends continuously 
to 0, giving a nonconstant bounded harmonic function on C or S, which is impossible. 
Therefore {Ai)Tn} is bounded from 0, and we can take a subsequence so that 

gi = lim gi.mk + ci,mk-k—>oo 
If gi is a function on C (that is, if ¿»1 is a zero of q), we deduce that gx{x -f- iy) + 
4Re(l/(x + iy)) is constant, and thus lim^oo c*i.i,mA. = 0. Because there are no 
nonconstant bounded harmonic functions on C, or S, we see that all subsequences of 
#i,m + ci,m have the same limit by suitable choice of {cijn}. Hence we can choose 
Ci,m so that limm_oo g\,m + ci,m exists, and thus limm_J.00 ai.i,m exists, as required. 

We compute lim^^oo ai7i/m when h\ is neither a pole nor a zero of q. Then 
b\ = linin^oc 6i,m — lim^^oc z\Ml where z\,m is a zero of qrn, but all other zeros of 
qrn are bounded from bm. Write 

rm = rl,m(^l,m),«l,m = Rcs(çm, &i,m) = n,m (6i,m). 
(This is the usual definition of d\iin-) We have 

qm{z) 

ri,m{h,m) 
= rii17l(z)(z - Òi,m) = 

zHz-lf 
ri,m{h,m–1) ;{z-ziirn){A + 0(z-bhm)) 

for a constant A. We deduce that 

ri,m{h,m) = A(°l,m ~ Zl,m) = «l,m, Kn = r'lrn(bijn) = A + 0(&i,m - 2l,rn)-

So 

n,m(z)(z - 6,m) = r ^ z - blìTn)(z - zi,m)(l + 0(z - biìTn) + 0(zi,m - òi,m)). 
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Note that r[n is bounded from 0 (since the limit is nonzero), and that zi.m — b\,nl — 
0(ai,m). Then define 

{b\,m - zisn)u/2 = z - (zUrn + 6i,m)/2 + J(z - zUm)(z - &i,m). 

Then the u coordinate describes a branched cover of the z coordinate. The branch
points are u = ±1, and for \z — 61,m| ^ CS, for a suitable constant C, u takes all 
values in 

{u: \ahrn\/ö^ \u\ ^S/\ah7n\}. 

Also, we have 
du 
u 
= dz 

\J\Z - bl,m){z - Zh?n) 
So 

c = 
fx m 

bm -1 

(1-m(y) dt 
vbm(t) 

= 
I bl.m 

dt 
Vr'n(t - bUm)(t - *i,m)(l + 0(t - 6,,m) + 0(zhm - 6i,m)) 

= 
1 

Vr'rr, 
log//(:)( l + 0(zlan - bUm)) + 0(z - bljn). 

So 
u = exp( v/Z7(l + 0(2i,m - bUm)) + Of* - 6im)) 

So now in the u coordinate, #lvm and h\:m must converge, respectively, to the real 
and imaginary parts of —4^/r^/(u — 1). We have z — bi,m = ()(a\.„,C2) for small 
z ~~ î,m- So #i,m, /̂ i,m are given to first approximation by the ( term in 

V ?™ 
exp(v/?';„C) - 1 

ai - 4 
c(i + \ / c c / 2 + /•;„ eve) 

= ( - 4 / 0 ( 1 - r;„C76 + r ;„C76 + rf'„C2/4 + o(c3): 

= -4/C + 27r' _r' C/3 + O«2). 

So the limit of the (-term is as required. 
Now we consider the Fourier series expansion of gii77l in a disc round 7TLN] (bj.,,,) for 

j ^ 1. Taking limits of Aj,„,(/i.mTCJ.m for suitable A;,m ^ 1, ('j.n> as before, we obtain 
a harmonic function on a surface which is a compact minus finitely many points, and 
bounded on the complement of KQ. AS in the previous case, we can deduce that 
{Xj.m} is bounded and therefore take XJJtl — 1 for all 77?. The surface is disjoint from 
KQ if b\ is not a pole of q, or if bj is not a pole of q. Therefore in these cases the limit 
function is bounded and for the Fourier coefficients, lim^^oo ai.7,m = 0- If b\ and bj 
are both poles of q, then lim^^oc aq,7-,m exists, just as for {o:i,i,m}. • 
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12.8. The Kernel. The following lemma gives the dimension of the R2 + R;i 
term of the second derivative of the Teichmuller distance function that was claimed 
in 12.1. This will complete the proof of 12.1. 

Lemma. — Write 

Xi = lim V7-lWrn, -4TT lim V~lY,Il = X2. 
771 —> oc—>—>—>m —> oc 

Then, using the notation of 12.6, 
2 x genus(S) - raiik(X2). 

Proof. The substance of 12.7 is that linear terms in the expansions of the harmonic 
functions #7-,m, h h r n converge to linear terms in the expansions of limiting harmonic 
functions on S. We have seen that if hj. is not a pole of q, then C;j = Di^j = 0 = 
C-hl = for all /. 

So now we can assume, after deleting some points, that the residue of q at each 
point bj is nonzero. We use 11.11 and take limits. So then if we write X\ = (C z / ;), 
X2 = (Duj). we can interpret the nonzero 2 x 2 matrices CUJ, D{J as follows: 

where //, UJ, UJ' and UJ" have the following properties. Let ( be the local coordinate at 
7r~1(bj) with ( = 0 at 7T-1 (bj) and dQ = TT*(qjdz/\fq). Then ?/ is any meromorphic 
l-form on S given in this local coordinate by d((4(~2 + 0(1)) (which is the same 
form as 7r*(fjdz/s/q) see 11.5.) Now let (" be the local coordinate at 7r - 1 (/>,;) with 
C = 0 at 7r-1(fr.,;) and dC, — 7T*(q%dz/'yjq). Then UJ and UJ' are holomorphic 1-forms, 
UJ" is antiholomorphic vanishing at 7r~l(bi), UJ = d((l + O(C)) near 7r~1(b7). and 
UJ' — ?•/ = 0(C)^C near 7r~l(6?;). Although UJ. uj' and UJ" are not uniquely determined, 
the 2 x 2 matrices d,j and Dt) are. 

Let S have genus N + 3. Fix a rational function Q whose poles are 0, 1, bj. 
1 ^ j ^ N, and whose zeros are the other poles of q and the distinct odd order zeros 
of q. Then S is biholomorphic to the surface {(z,n) : Q(z) = u2}. Then as in 10.5, 
7r*(^j/v /Q) (1 ^ J ^ N) are a basis for the holomorphic 1-forms on S, and thus are 
linearly independent in Hl(S1 C). For all 1 ̂  j ^ n — 3, let ujj be a holomorphic l-form 
such that in the local coordinate Q at 7r_1(fy), UJ3 = (1 + 0(())d(. For 1 ^ j ^ TV, 
we can choose UJ3 to be a (nonzero) multiple of TT*''(q.jdz/'y/Q)> For 1 ^ j ^ n — 3 
(n — 3 ^ TV), let rjj be a multiple of 7r*(fjdzj\[Q) such that in the local coordinate 
C at Ti~l(bj), 7r*(fjdz/y/Q) = (4C 2 + 0{l))d(. again agreeing to first order with 
Tr*{fjdz/y/q). Then by 11.5 (applied to Q). 

So {uJk, Vj '• 1 ^ 3-k ^ N} form a basis of H1(S,C) (over C). So any meromorphic 
l-form on 5 with zero residues at any poles can be written as a complex linear 

(1) // = uj(C.Wj + DLj) + J + UJ" in Hl. 

rjj U UJk 87Tiôj,k. 1 ̂  j . k ^ N. 
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combination of these, as an element of H (S, C ) . In particular, this can be done for 
ru for anv n — 3 > £ > N. So 

Ve = 
N 

E 
i=1 

Xi(Ker(X 

for some t3it G C and holomorphic 1-form £. For any 1 ^ k ^ n — 3, we also have, 
in tf1 

T)j = wfc (CkJ + DkJ ) + wu4, +w OJIJ 
T)j = wfc (CkJ + DkJ ) + u4, + OJIJ ,<<l<<^j^N 

where these expressions satisfy the same conditions as in (1). So then, we have 

Xi(Ker(X E 
.7-1 

Xi(=0 at ii-1 Ker(X(b(t) 

and hence 

DkJ = 
N 

E 
.7 = 1 

t3jDkj, 1 ̂  k ^ n — 3, 

and this gives the bound on the rank of X2. The lower bound on the rank is clear 
from the linear independence of {r]j : I ^ j ^ N}. 

12.9. When X\ can be bounded by X 2 . — We saw in 12.8 that, in the presence 
of multiple zeros or zero residues of q, X2 has a kernel, which can be computed. It 
does not appear to be the case, however, that X\ also has a kernel in general. If one 
examines the proof in 12.8, then it is clear that Xi(Ker(X<2)) can be computed, and 
that one can find a basis of this subspace, such that coordinates of vectors in this basis 
are rational functions of the a?; and bj. It appears to be possible for X\ | Ker(X2) to 
have maximal rank. However, 12.8 shows that a reduction in the rank of both X\ and 
X2 is associated with zero residues of q. We now give a more precise estimate. We 
write X\ = (Ci.j) and X2 = (Dtj) as before. The result has content when a residue 
is small, when the result of 12.8 implies that for some i the rth row and column of 
both X\ and X2 are small, for some i. 

Lemma. — As usual, let a.-} = Res(q,b3) with all poles bounded and bounded apart. 
If at most one zero of q is close to bj, then Chk and Djk are 0{a3) for all k ^ j . 
In general, Chk and Dhk are 0(y/o

T]) for all j / k and Ch3 and D3^j are 0(a.j/ej), 
'where e3 is the distance from b3 of the closest zero. 

Remark. — The proof will show that better estimates are possible, but it does not 
seem worth pursuing them. 
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Proof. There is nothing to prove if a3 is bounded from 0. To simplify notation 
we take j = 1. We assume that q satisfies the Standing Assumption 10.3, since the 
general result follows by the continuity arguments of 12.7. We need to consider the 
harmonic functions g\ and h\ which have singularities 4Re(l/£), 4Im(l/£) for a local 
coordinate 

As usual we take the surface S branched over the zeros and poles of q. If b\ is 
approximated by at least one zero of q then S is close to a degenerate surface S\ 
which might be disconnected. If e is the distance of the nearest zero of q from b\, 
then = \J(z — b\)lS\ — \/«i/^iC(l + 0 ( 0 ) is a local coordinate which is close 
to a coordinate bounded and bounded from 0 on S\. It follows from the type of 
continuity arguments used in 12.7 that \/s^~/a~i(gi + ih\) is bounded with respect to 
coordinate Cj5 away from the singularity 7r_1(&i). SO g\ -f ih\ = 0( \ /<TI/£I ) away 
from the singularity, which means that g\ and /¿1 have expansions in the Ci coordinate 
about Cj = 0 in which the coefficients of (j and ( x are 0( \/ai/si). So if we expand in 
terms of the coefficients of ( and C are 0(ai/£i), that is, C14 and D u are 0(a\/ei). 
Of course, this has no content unless b\ is approximated by at least two zeros of q. 
Now we consider k ^ 1. There is a finite union of disjoint annuli in S separating 
7r~1bk from 7T~1bi such that any path from ix~lb\ to n~1bk crosses annuli with sum of 
moduli ^ I log(l/£i) — 0(1). If b\ is approximated by just one zero of q. then there 
are just two annuli, both of modulus 01og(l/^i) — 0(1). The functions g\ and h\ 
are bounded on all of these annuli. Moreover, annuli which are the same distance 
from Tr^bi — that is, separated from 7i~1b\ by the same number of other annuli — 
are preimages of the same annulus under TTI. SO it suffices to prove the following. 
Let S2 be a surface with finitely many boundary components, and let there be an 
annulus embedded in S2 of modulus m homotopic to and adjacent to each boundary 
component. Let #2 C S2 be the complement of the annuli. Let g\ be harmonic 
on £2 and varying by at most L on dS2, where any boundary components of <952 are 
preimages under 7r of a the same annulus. Then g\ varies by at most 0(Le~rn) on S2. 
We shall then apply this to a decreasing family of surfaces S2 containing 7r~1bk but 
not containing 7i~1bi. This will complete the proof. 

We consider the lift of g\ to the universal cover of S2l taking this to be the unit 
disc D. We continue to call the lifted harmonic function g\. Then 

c = 
Ibi 

v/ l /a i ( t -6 i ) ( l + Q(t - W))dt = 0(v/ (z-6 , ) /a i ) ( l + 0(z - bx)). 

(1) 9i(reie) = 
1 

2TT l 

rx 
si ( O 

1 - r 2 

| r ei0 _ eit 12 dt 

where g\ \ S1 is invariant under the action of Fuchsian group Y which has zero measure 
limit set and there is a fundamental domain for the action of Y on the domain of 
discontinuity in S1 which is a finite union of at most two intervals of length 0(e~ m ) . 
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If there are two intervals I\ and I2 then 

fi,gi 
\h I = 

fi,gi 

/2/ 
(l + 0(e"m)). 

Also 
XyJ, 9i 

/i1/ 
/7, 3i 
I'll 

(l + 0(e-m)). 

This means that we can write the integral (1) up as a countable sum of integrals over 
the orbits of one or two intervals, and we obtain 

Si (re*9) = 
fi,gi 

\h\ (l+0(e-m)) 

for any such interval, as required. • 

12.10. Another continuity result. — Let qm(z)dz2, prn(z)dz2 be quadratic dif
ferentials with prn(z)dz2 a stretch of qrn(z)dz2. Assume for the moment that they 
satisfy the Standing Assumption with corresponding bases of harmonic 1-forms Vjj7n, 
(Xm)*(vj,m)i as m Chapter 10, and Wjj77l, w'JJTl for real and imaginary parts of mero-
morphic 1-forms. Let Tm — (^mU^m), like T in 10.10. We use matrices V^1, V^"1, 
V-1 Wm, lW'ra, as usual. 

Lemma. — Let qni —• q, prri —> p with p ^ q. Then {Vrn1TrnVr'n *} is precompact, 
the kernel of any limit contains the kernel ofV'~lH and the image is orthogonal to 
Ker(l/-1E). 

Proof. — First we claim that, for a constant (7, for all vectors x = (XJ), y = (2/7), 

|(ETmx,?/)|2 ^ Ci^VLx.xM^V^v.y). 

To see this, write 

e = E xj, v'j. n = E y, vj. 
j j 

Then, by Cauchy Schwartz, 

(ETmx, y)2 = (£ U JmV)2 < (£ U JmOiv U Jmr/) ^ C(£ U Jm(-Jm J'm0){v U Jmrç) 

= C(£ U J' 0(r/ U Jmr/) - C (EV 'x ,x ) (EVm^) . 

Then replacing x by EV^ xx and i/ by EV^ ^ yields 

vv-1 m t3 v1-1 Ex, 7 >> C(E v-1 x,x) (EV-1m y, y 

This gives the result. • 
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12.11. We use V"1 and V'^-W, V~lTV'~l even in degenerate cases, when V and 
W are not actually defined (because, as we have seen, V~l and l / - 1 ! ^ still make 
sense, by taking limits). 

Lemma. — Let qs(z)dz be the quadratic differential at distance S along the geodesic 
qiven by q(z)dz — qo(z)dz , with correspondinq V? and VÂ Ws andTs = (Vj aUi^). 
Then 

lim V'1 - Vr1 = 0, lim V~lW - VrlW* = 0, lim V~lTxVrl - V~l = 0. 
6->0 

Proof. — The first two limits follow from 12.7. To get the other limit, we use the fact 
that the matrix V~1TsV6~

1 gives the coefficients of in terms of the vk. As 5 —» 0, 
Wj*$ —> w^p in homology (because of the formulae 11.5 for u/ 2j U Vk,s, and because 
Vk,s ~> vk in homology). This, together with the bound on image from the previous 
lemma, gives the result. • 

12.12. Another result about bounds on entries of ATi, X2. — The following 
lemma (as we shall see) is proved by a very similar method to 12.7. It will be needed 
towards the end of the proof of Descending Points in Chapter 22. 

Lemma 
(1) Given C\ > 0, there is a constant C2 > 0 such that the following holds. Let 

the poles {b3 : 1 ̂  j ^ n — 3}, and zeros {ZJ : 1 ̂  j < n — 4} of q be bounded, and 
bounded from the poles 0, 1, and let 

e" m /Ci ^ \bj -bk\<: Cie~ m , \b3 - zk\ ^ C1e'nx for all j , k. 

Then all entries in V~l, WV~l are ̂  C2e
m. 

(2) Let q be as in 1, and let q' — qs be similarly defined, with residues within S of 
those of q, and poles within e - 7 7M of those of q, and with corresponding matrices V^1, 
VS~

1WS, V~lT6V5~
l. Then there is e{5) with \\ms^0e{5) = 0 such that 

\\e-rnV~l -e'^V^W < e{6), 

\\e-rnV~lW - e-rïlVô-
lWô\\ ^ s(5), 

\\e~^V~l - e-™V-lT6V-l\\ <: e{6). 

Proof 

(1) It suffices to look at an arbitrary sequence {gm} satisfying the conditions of q, 
and to show that all entries in the corresponding matrices V^"1, WmVr~

l are ^ C2e
rn 

for some C2. We use much of the notation of 12.7. Again, the terms r^m(b3,m) are 
easily seen to be 0(em): we are considering the z — bhni term in the Taylor series 
expansion of qm(z)/(z — b3\jn)(qrn^(z))2. Expand out only one term at a time. There 
are the same number of terms within 0(e~m) of b3^ni on top and bottom, all terms 
on the bottom are e~7n/C at b3jn and those on top are closer to b3i7n, if anything. 
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So now we only need to consider the coefficients in the harmonic functions. We 
take an embedded disc in S7n round Kml (pj,m)- In the (^-coordinate we only know, 
now, that KjiTn can be chosen to have radius ^ roe_m//2. Let KQ — {£ : |£| ^ TQ}. 
Then we consider the harmonic functions 

Gi.,,m«) = e~r'í/¿9l,m(e-m'z0, С G Ко x {0}, m/2 -m/2, 
and similarly for /?a,rn. If j / 1, these functions are harmonic on all of KQ. If j — 1, 
and 4Re(l/£), 4Im(l/£) are added to these functions, we obtain harmonic functions 
on all of KQ. The Fourier coefficient expansions for these functions are {e~7ndn,j,m} 
(n ^ —1) where {cLnj,m} are the coefficients in KjjT1l for gi, m . We can then take limits 
along subsequences of the functions A ? , m e _ m / 2 g i 5 m + c J i m for suitable constants Cj,m on 
limits of the SM which contain the disc KQ, which is a local chart at limm_ > 0 0 7T"1 (bj.m.)-
Arguing as in 12.7, we can take A; rn — 1 for all m. In local coordinates the limit 
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function is the limit of Gi m and thus we obtain that hm„,m—>oo e ma1 rii 7 - m exists. 
Then for the entire sequence, {ai.j ? m} is bounded, as required. 

(2) For the first two inequalities, it suffices to take a sequence qrn as above foi 
which poles and residues converge. The SM converge, and the harmonic functions 
Aj,me - m / / 2<7i,m + Cji7n must converge, because otherwise we obtain nonconstan 
harmonic functions (without singularities) in the limit. So linim-^ e~7naij^n 

exists for all j . The limit of the z — b^rn term in the Taylor series expansion o 
qni(z)/(z - bJirTl)(qrn,j(z))2 exists. So lim™-^ e~mV~1, l im m _ 0 0 e~mV~1 W7n exist 
and this is enough for the first two inequalities. 

The last inequality is proved similarly to the last limit in 12.11. For this we do neec 
to take qm, q'rn with the same limiting residues and corresponding V77l, Vr

f

n: Trn. 
12.10 we know that {e~rnVZ1TrnVr

f

7~
1} is precompact, with bounds on image space 

of any limit.Then we obtain the result as in 12.11, using convergence in homology or 
the appropriate subsurface. 





C H A P T E R 13 

T H E S E C O N D D E R I V A T I V E A N D T H E S O L U T I O N OF 
A D I F F E R E N T I A L E Q U A T I O N 

13.1. In this chapter, we give yet another interpretation of terms in the second 
derivative of the Teichmuller distance function for marked spheres. Continuing with 
the notation of Chapters 10-12, let q(z)dz2 be a quadratic differential on C with at 
worst simple poles at the points 0, 1, oo and bj, 1 ̂  j ^ n — 3, and let a3 — Res(g, bj). 
Assume in this chapter that a3 / 0 for all j , that residues at 0, 1, oo are also / 0 
and that all zeros are simple. We again call this the Standing Assumption, as in 10.3. 
Let S be as in 10.5, with genus n — 3, v3, w3 as in 10.7, V, W as in 10.10, II, E as in 
10.11 and tt = EIL Then let 

X = X(q) = V-lW - 47rV-1ft. 

We have seen in 11.11 that, if (v3) and (w3) denote row vectors, then 

(WJ) = (vj)X. 
We showed that XII is symmetric, and, indeed, that both of y - 1 l T I I and V r _ 1 E = 
V~lVtH are symmetric (although the second is obvious by inspection). In this chapter, 
we shall exhibit X as a solution of a differential equation. One of the consequences 
is another proof of the symmetry of ATI. Recall that the proof in Chapter 11 used 
Green's functions. The proof given here is more elementary, but heavier computa
tionally. It is the proof that one expects to find first, because the only technique used 
is integration by parts. In fact, it was not the first proof to emerge. The reason is 
that, although the forms v3 form a basis for H1(S) over R, in order to get a basis of 
meromorphic 1-forms over C, we have to include all of v^j-x + iv2j and w<i3-\ Jriw23, 
1 ^ j ^ 77,-3. This is related to the fact that X is not a complex-linear matrix. 
Instead, it occurs as the solution of a differential equation in which the coefficients 
are complex-matrix-valued functions. 

13.2. A notation convention. — Let P = (pij) be an m x m matrix with 
complex coefficients. We shall denote by Pct the matrix (pjj). Note that P can also 
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be regarded as a real 2m x 2m matrix, by replacing each entry a + ib (as usual) by 
M(a + ib) — (5 ~6)- By abuse of notation, we shall write products such as PY, 
where Y is a real 2m x 2m matrix, not necessarily associated with a complex m x m 
matrix. Note, for example that 

n p n = P, 

where P = (Pij) as a complex matrix. If we regard P as a 2m x 2m real matrix, 
and then Pf denotes the real transpose. Thus, Pl = (P)ct, by abuse of notation. So 
P = Pct if and only if P n = (PU)K 

13.3. The form of the differential equation 

Quadratic Differential Equation Theorem. — Let X be a real variable, and let q\dz2 be 
any C1 family of quadratic differentials on C satisfying the Standing Assumption. 
Write X(X) = X(q\). Then X(X) is a solution of a differential equation 

dY 
(1) — = YPY + QY + YQct + R 

dX 
where P, Q, R are complex-linear-matrix-valued functions of X with P = Pct, 
R = Rct. 

13.4. Remark. — It follows from (1) that 

(2) a\XU)_ = (xn)(rLp)(xri) + Q(Xn) + XU{UQctU) + All, 

where (IIP)' = UP, (All)* = RU and UQctU = Qt. It follows immediately that 
if X(A0)n = (X(Ao)n)* for some A0 then X(X)U = (X(A)II)* for all A, because 
both X(A)n and (X(X)IY)1 solve (1). Note also that if Y is a solution of (1) on a 
connected open set of A and Y(XQ) is complex linear and Y^Ao) = ^(^o)c£, then 
uniqueness implies the same two properties hold for Y(X) for all A. The following 
lemma shows that, given the theorem, X(q)U is symmetric for all q satisfying the 
Standing Assumption. Hence, by continuity, X(q)U is symmetric for all q. 

13.5. Lemma. — There exists q(z)dz2 such that 

X(q)n = (X(q)m,t. 

Proof. — Choose q so that all poles bj (1 ^ j ^ n — 3) and all zeros Zj (1 ^ j ^ n — 4) 
lie on the real line, and so that the following hold, where 

Ti = {0,1} U {zj: : 1 ̂  j < n - 4}, T2 = {00} U {bj : 1 ^ j ^ n - 3}. 

(1) Points from Xi, X2 alternate, so that any two adjacent points of T\ are separated 
by precisely one point of X2, and vice versa. 

(2) Under some Möbius transformation of R U {00} to {z :| z \— 1}, points of 
T\ U X2 are mapped to points equally spaced around the circle. 
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It follows from 1 and 2 that there is a group of Möbius transformations of Xi U X2 
which acts transitively, whose action is isomorphic to that of the dihedral group on 
2n — 4 letters, and any transformation in the group which maps one point of X2 into X2 
leaves both T\ and X2 invariant. Write X = (Ehk) for the decomposition of X into 
2 x 2 submatrices. Thus, Ej^ represents the coefficients of v2j-\ and v2j in w2k-i 
and w2k- We need to show that for all j =̂  /c, 

Ej4k = Ek^j. 

So fix k ^ j . By our choice of q, there is a Mobius involution a which interchanges bj 
and bk and leaves each of the sets Xi, X2 invariant. Let bp be such that a interchanges 
oo and bp. Write a also for the lifted involution to the surface S. Then for all 
£ ^ 2n — 6, a*W£ can be written as a real linear combination of a*vrn (1 ^ rn ^ 2n —6) 
and Ej,k represents the coefficients of o*v2j-\ and a*v2j in <J*w2k-i and o~*w2k- Let 
7r : S —> C denote the natural projection (as before). Then the following hold. 

a) For any rn ^ n — 3, v2rn-i + iv2m vanishes at 7r-1(^) except for £ = rn. 
b) For any r 7̂  p, cr*(̂ ;2r_i + iv2r) vanishes at ir~l(bz) except for ^ = p, t, where 

cr(6r) = 6t for r p and t = _p if r = p. In particular, t = k if r = j . 
c) The meromorphic form cr^u^fc-i +'¿^2/0 has a single double pole singularity at 

7T~1(bJ) and vanishes at TT"1^) for £ ^ j , p. 
Therefore, a*(y2r-i + iv2r) can be written as a complex linear combination of 

v2t-\ +iv2t and v2p-i +iv2p. Similarly, o~*(w2k-i + iw2k) can be written as a complex 
linear combination of w2j-\ -\-iw2j, v2j-\ Jriv2j and v2p-\ -\-iv2p. It remains to show 
that the coefficient of v2k-i + iv2k in cr*(^2j-i + ^2.7) is the same as the coefficient of 
W2j-i + iw2j in CT*(u>2/c-l + '/'̂ 2fc). 

Because <r2 = identity on S, the coefficients of v2k-i -\-iv2k in cr*(v2j-i + ";2j) and 
of i>2j-i + ^2j in or*(̂ 2/v-i + iv2k) multiply to 1. In fact, these coefficients (which 
depend, up to sign, on the choice of the lift a on S) are given respectively by 

(1) 
( 

d'(bk)a, 

ak 4 

laf(bj)ak 
a3 

where the signs of the square root are such that the product is 1. (Note that 
a'{bj)<j!(bk) = 1.) Let V2j-i + iv2j be of the form d£ for a local coordinate £ near 
7T~1(bj). We saw in 11.10 (and can check again) that in this coordinate, W2j-i +iu)2j 
is of the form 

(2) 
/ 4 

v e 
+ 0(1)W. 

We could also use £ as a local coordinate for cr^t^-i + ^2j) near TT 1(bk)- Then 
o~*(w2j-i + i>w2j) is also given by (2) in this coordinate. The same holds with j 
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replaced by k1 and a local coordinate £ near TT 1(bk). It follows from (1) that 

AC 
(V d'{bk)aj 

ctk 
+ o ( i )W, C = 

(V 

<j'(bk)aj 
ak 

+ o(l)U, 

4 

F2 
e= 

(V 

and hence the coefficient of W2j-i + iw2j in cr*(i02/c-i + r^2k) is 

l(j'(bk)a3 

ak 
= (1) 

) 

4 ce, 

¡a'(bk)a.j 

(V ak 
with the same choice of sign as in (1), as required. • 

13.6. First Reduction in 13.3 

Lemma. — To prove Theorem 13.3 it suffices to show that we have complex linear 
equations (using column vectors) 

(1) 
(d(v2k-i + ÌV2k)' 

dX 
J = C(v2k-1 + W2k) + D(w2k-1 + ÌW2k), 

(2) 
/d(w2k-l + lW2k)\ 

dX 
= G{v2k-l + ™2fc) + H(w2k-1 + 

with 
Cct = -H, D = DCK G = Gct. 

Proof. Assume that (1) arid (2) hold. We have 
(wk) = (vk)X. 

Then 

(3) 
(awk) = (dvk) X+ (v1) dX 
dk dk dk 
\ dX J \ dX J v dX ' 

Then reverting to real row vectors and using the abuse of notation explained in 13.2 
we have 

(4) 
dvk\ 

. dX ) 
(awk) = (dvk) X+awk) = (dvk) X+ (v1) dX 

(5) 
dwk 
dX 

) = (v^G* + (w^H1 = (vkXG1 + XHl). 

Then from (3), (4) and (5) we obtain 

(vkVG* + XH*) = (vkMC* + XD*)X + (vk)-
dX 
~dX' 

This gives 
dX 
~dX 

= -XD*X - ClX + XH* + Gl. 

Write P - -£>* - —D (see 13.2), Q = -Gl = -C° and R = GcThen P= Pct, 
Hl = Qct and = f? c t as required for 13.3. • 

A.STÉRISQUE 288 



CHAPTER 13. THE SECOND DERIVATIVE AND A DIFFERENTIAL EQUATION 187 

13.7. Second Reduction: in Choice of Family. — Let q(z)dz2 be any quadratic 
differential, as usual with poles at 0, 1, oo, bj (1 ^ j ^ n — 3) and zeros at Zj 
(1 ^ j ^ n - 4). Thus, for some a / 0 , 

q(z) = a-
n n—4 

•J'=l 
(z - Zi) 

z(z-l) n n —3 
•¿=1 

(z-bi) 

If is any C1 family satisfying the Standing Assumption, then a (A), bj(X) and Zj(X) 
are all C1 functions of A and 

_d_ 

dX 
d da 

da dX 
= 

n —3 
E 

i-1 

b-db, 
<%7 <iA + 

n —4 
E 
i=1 

b 

db 
dzo 

dX 

It follows that we can restrict to considering complex parameter families in which 
only one of the functions a, bj, z3 is nonconstant. For each such parameter we need 
to satisfy (1) of 13.6. So we need to prove the following Reduced Theorem. 

13.8. Reduced Theorem. — There are complex-matrix-valued functions Cj, DJ? Ej, 
Fj, Gj, Jj, such that, in H1^), if (v2k-i + ^2fc) and (w2k-i + ̂ 2k) denote column 
vectors, 

d 

dz3 

•{V2k-1 + iv2k) = Cj(v2k-1 + iv2k) + Dj(w2k-1 + iw2k), 

d_ 
dzj 

-(W2k-1 + iw2k) = Gj(v2k-1 + iV2k) + Hj(u)2k-1 + iw2k), 

where 

Cf = -Hj, D3 = Df, Gj = Gf. 

Similarly, 

d_ 
db3 

[v2k-l +iV2k) = Ej(v2k-1 +iv2k) + Fj(w2k-1 + iw2k), 

d 

db3 

\W2k-\ + iW2k) = Jj{v2k-1 + lV2k) + Kj(w2k-1 + iw2k), 

where 
pet —1{ p. — pct J — j c t 

Furthermore, 

d 
da -{V2k-1 + W2fc) = 

- 1 
2a 

-{V2k-1 + iV2k), 

d_ 
da (W2k-1 + iw2k) = 

1 
2a 

-(>2/c-l + ^2fc). 
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The specific formulae are as follows. 

Cj[k,i) = aebkjbk - l)be(be - 1)  k # l.), 
Kbk-z^bt-ZjYz^l-ZjYq^Zj) 

Cj{k,k) = akbl(bk - l)
2 

–––––––––––––––––––––––––– 2{bk-zjyzm-z]yq'{zJ) + 
1 

+- rrr. r, 2(bk-Zj) 
DAkJ) = bk(bk - l)bt(be - 1) 

2(bk-zj)(be-zj)zj(l-zjyq>{zj)-
EAk,k) = -1 

2(bk - bj) n=j, l, (j, j)2= 2bj - 1 
bjibj-lV 

Ej(j,k) = bk(bk - 1) 
l(bk - b^bjibj - 1) k=j, Ej(k,£) = 0 if j ^ k and k ̂  £, 

Fj{k,k) = 1 
2ak 

F3{kJ) = 0 if k ^ £, 

Gi(k,£) = -akaebkjbk - l)be{be - 1) 
2(bk - ZjY(bt - ZjYz^l - zjyq'izj) 

k^e, 

Gi(k,k) = -ajbi(bk - iy-ajbi(bk ok 
2(bk - ZjyZj(l - z3Yq'{Z]) 2(bk-ziy 

J j ( k, k ) — -ajbi(bk 

2(bk-b3y . 3 Ï k, •Ißk.j) ./,(./. A-) -akbk(bk - 1) 
2b]\b]-l){bk-bjy jy^k, 

JjUJ) = 1 
2 ( 

n-3 
( E 
n=4 
p=1 

akbk(bk - 1) / 1 _ _1_ _ 1 
- !)(^ - bk) - h b0 bj - 1 v 

\ -
A3 

bjibj-l). 

13.9. Remark. — As one would expect, this is an extremely tedious calculation, and 
the reader will probably want to skip the rest of this chapter, at least in the first 
instance. 

13.10. Calculation of Cj, D3, Ej, F3. — Recall that 

V2k-\ + lV2k = TT 
( qkdz\ 
dq 

Now d 
dz:> 

3*\ 
VI/ 

1 dqk 

Vq dzj 
qk 1 dq 

2y/qq dZj 
Using 

q = a 
n n — 4 

m=l (Z - Zm) 
z(z-l) n n-3 

p=l (Z ~ fep) 

dqk 
dZj = o, 

1 dq 
qdZj 

-1 
Z-Zj 

we have 
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So d 
azj 

( qk ^ 
vq 

= 
qk 

2^q(z - Zj) = 1 
2(bk-z3) 

Qk 
i) y/Q 

h(bk - 1) 9j 
Z{bk - Zj) y/q 

where 
9j(z) = 1 

(Z — Zj)Z{Z — 1) 
So the formulae for C3 and Dj then follow from Lemma 13.14 below. Now remember 
that 

Qk(z) bk(bk-l) 
z(z - l)(z - bk) 

fk(z) = akbkjbk -1) 
z(z-l){z-bky 

So if /c 7̂  j , we have 
d 

db3 

Qk -qk 1 dq 
2^/qqdb3 

-Qk 
2(z-b1)xfq 

bk(bk ~ l)qj 
2{bk-b3)b3{b3-l)^q 

Qk 
2(bk-b3)^ 

and 
d q3 

O0j Jq 
(2b3 - l)q3 

bj(bj-l)VQ + fj 
a3^q 

u 
2ajx/q = (2bj - 1)qj 

(2bj - 1)Vqj + fj 
2ajy/q 

This immediately gives the formulae for Ej and Fj. 

13.11. The d/da Calculations. — We have 
dqk 

da = 0, ldq_ 
q da = 

1 
a 

Recall that 
ak = a n n — 4 rn = 1 (bk — zni) 

bk(bk-l) n •P^k (bk - bp) 
and hence dak 

da 
Ok_ 
a 

So 
d 
da 

Qk -Qk dq 
2q^fqda 

-Qk 
2a Jq' 

d_fk_ 
da y/q 

fk 
ayjq 

fk 
2a^q 

fk 
2a^q' 

which gives the d/da calculations required for 13.8. 
13.12. Calculation of Gj, Hj, Jj, Kj. — From the formula for ak given in 13.11, 
we have 

dak 
dz3 

-Qfc 
7 5 bk - z3 

dak_ 
dbj 

ak 
bk - b3 

if M j , 
a 
db3 

(a3b3(b3 - 1)) = -ajbj(bj - 1) ( 1 
bj + 1 

b3-l + E 
1=j 

1 
bj - bk 

). 
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So 

A A 
dzj Vq 

-fk 
(bk - zj) vq 

+ Jk 
2{z - Zj)^ 

= 
— fk 

2(bk - z3)^q 
akqk 
2(bk-zjy^q 

+ 
akbk{bk - l)g3 

2(bk-z3)
2^ 

usiner 

(1) 1 
———— ——————— (z-bk)

2(z-z3) 
= 

1 
(bk ~ Zj)(z - bk)

2 + 
1 

(hk ~ z3y(z - ZJ) = 
1 

(bk - z3)
2(z - bk) 

The calculation of Gj and H3 then follows from 13.14. If j ^ k, we have 

a fs 
obj ^/q 

fk 
(bk - b3)y/q 

fk 
2(z-bj)y/q 

— 
fk 

2(bk-b3)^q 
+ adqk 

2(bk-b3y^q = 
akbk(bk -

2(bk-b3yb3(b3 -l)Jq 

using 

(2 1 
(z-bky(z-b3) = 

1 
(bk ~ bj)(z - bk)

2 + 1 
(bk-b3)

2(z-b3) = (bk - b3)
2(z - bk)' 

1 

This gives the formulae of 13.8 for J3(k,£) and Kj(k,£) if k ^ j . Finally, we have 

d_h_ 
db, Jq 

= ( 
n-4 
E 
m= 1 

1 
bj - Zj 

n-3 
E 
k=l k^j 

1 
bj - bk 

2frj - 1 

6,(6,-1) ) 
A 
Vb 

+ 
3ajbj(bj — 1) 

2z(z- l)(2-6 J-) dv/« 

Then the formulae of 13.8 for Jj(j,i) and Kj(jJ) follow from 13.15 and 13.16. 

13.13. Lemma. — In H1^), 

(1) ( 
n — 3 
E 
fc=i 

a/c6fc)7T* ( 
dz 
z ( z - l ) 2 ^ ) 

n — 3 
E 
k=l 

7T* ( 
akqk 

bk -1 

qk - 1 

Vq 
+ 6& 

fkdz 

Vb 
), 

(2) 
n — 3 

( E 

fc=l 
bn (bk - 1)) TT ( 

dz 
Z 2 ( 2 - l ) ^ ) = 

n-3 
E 
fc=i 

7T ( (bk 1 
fkdz 

Vq 
+ 

ak (1 - bk) 

6fc Vk 
), 

Proof. — We have 

d_ 
dz (zJq) = Jq + 

zq> 
2Jq + (q + z 

2Jq 

n — 3 
E dkQk ( 

-1 
z 

1 
z - 1 

1 ' 
z - bk 

) 

= 
Vk 

2 — 
1 

2Jq 

n — 3 
E 
k=l 

( 
OkÇk_ 
z - 1 

— akbkQk 
z - bk 

y 

Then using 
1 

(z-l)(z-bk) 
= 

1 
z-1 

1 
z - bk 

1 
z - 1 ), 
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and rearranging, we obtain (1). Similarly, 

d 
dz 

( ( z - l ) ^ ) = Vq + 
(z - iW 

2 ^ = Vq 1 
2v^ 

n-3 
E 
k=l 

Q>kQk 
( z - 1 

z 
+1 + z - 1 

z - bk 
) 

= Vq 
2 + 

1 
2sfq 

n-3 
E 
k=1 

( 
ak, qk 

2 
(bk - 1)akqk 

z-bk 
). 

Using 
1 

z(z - bk) 
1 
bk 

( 
1 

z-bk 
1 
z 

), 

and rearranging, we obtain (2). • 

13.14. Lemma. In H1 (S), 

z2{z3-l)2qf(z3)^ ( 9jdz 
Vq ) = – 

n-3 
E 
k=l 

bk(bk -1) 
bk - z3 

TT* ( 
fkdz 

) 
n-3 
E 
/c=l 

dkbkibk - 1) 
(bl – zj)2 7T* ( 

qkdz 
Vq 

). 

Proof 
(1) 

d Vq 
––––––––= dz z — z1 

-q 
{z - z 7) 2

v/ç 
+ q' 

2(z - 2;j)v^ 
Now we write 

(2) z(z-l)q 
(z — zj)2 = c 

z - z3 

+ 
n — 3 
E 
k=l 

Ck 
z - bk 

Then 

Ck = lim 
z-^bk 

z(z - l)q(z)(z - bk) 
(z-zj)2 = 

bkjbk - l)flfc 
(6fe-^-)2 

c = lim 
z —>zj 

z(z - \)(q(z) - q(Zj)) 
Z—>Zj = zAzn - lV(z 7). 

Now write 

(3) 
z(z-l)q' 

z - z7 

= 
d 

z - z3 

+ 
e 
z + 

f 
z - 1 + 

n — 3 
E 
/c=l 

Sk 
Z - — 

n-3 
E 
fc=i 

ft 
(z - bk)2 

Then 
d = lim z(z — l)g'(z) = Zj(zj — l)q'(zj). 

z —>zj 
Since 

q'k(z) = bkfbk -1) 
z(z - l)(z - bk) ( 

-1 
z = 

1 
z - 1 

1 
z — bb y 
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we have 

e = lim 
z—>0 

z2{z-l)q'(z) 
Z - Zj 

lim 
z—>0 

n — 3 
E 
k=l 

akz2(z - l)q'k(z) 
Z - Zj 

= lim — 
z—>0 

n-3 
E 

z—>0 

akbk(bk - 1) 
(z - Zj)(z - bk) = 

-1 n — 3 
E 
k=l 

a>k(bk - !)• 

Similarly, 

f = lim — 
2->i 

n — 3 
E 
fc=i 

Q>kbk(bk ~ 1) 
(z - 6fc)(z - Zj) = 

n — 3 
E 
fc=i 

CLkbk. 
1 - Zj 

Also, 

tfc = lim 
z-^bk 

z{z-l){z-bk)2qf{z) 
z-z3 

= — lim z—>bk 
cikbk{bk - 1) _ 

Z - Zj 
-akbk(bk - 1) 

bk - Zj 
Finally, sk is the coefficient of l/(z — bk) in the partial fraction expansion of 

akz(z - l)q'k 

Z — Zj = 
-akbkjbk ~ 1) 

(z - Zj){z - bk) ( 
1 

z-bk + 
1 
z 

1 
z-1 y 

So 
Sk = akbkjbk - 1) 

bk - Zj ( 
1 

bk ~ z3 

— 
1 
bk = 

1 
bk-l y 

Now substituting (2) and (3) in (1), we obtain, in Hl(S), 

(4) Zjjzj ~ l)q (Zj) 
2 

7T '9jdz\ 
Vq 

n-3 
E 
fc=i 

2 1 Sk - Ck 
bk(bk - 1 ) TT* qkdz 

Vq ( ) 

— 
n — 3 
E 
fc=i 

akjbk - 1) 
2 -̂

-TT* ( 
dz 

z\z~\)Jq 
) + 

n-3 
E 
fc=i 

dkbk 
(z —zj) 

7T* ( 
<iz 

—————— (z-1) 2z Vq i 

— 
n-3 
E 
fc=i 

1 
2(bfc-z7-) 

7T ( 
fxdz 
79 

). 

Then using (1) and (2) of 13.13, we obtain 

Zi(zj - \)q\zM* ( 
9jdz 
Vq ) 

n — 3 
E 
k=l 

Sk - 2ck 
%(bk - 1) 7T 

( qkdz 
Vq 

) 

+ 
1 

1 - Z7 
( 

n-3 
E 
k=l 

Ukbk 7T* 
bk-i ( 

qkdz 
Vq ) 

+ 
n — 3 
E 
A:=l 

bk TT* ( 
/fcCfe 
Vq )) 

-U 
1 
Zj ( 

n — 3 
E 
A—1 

(bk - 1)TT* ( 
fkdz 
Vq ) 

n — 3 
E 
k=1 

Qfc(l - bk) 
bk 

* 
•7T 

( 
qkdz 
Vq )) = 

n-3 
E 
k=l 

1 
6/e -zj 

7T 0 
fkde 
Vq 1 
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Then the coefficient of 7r* ( fkdz\ 
vq 

is 

vq + bk-l = 
1 -bk(bk - 1) 

1-zj Zj uk ~ *j z3(z3 - l)(bk - Zj) 

The coefficient of 7r* Qkdz\ 
vq 

is 

(bk-zj^Zj - + ak-bk + 
ak(bk - 1) 

(bk-zj^Zj(bk-zj^Zj(bk-zj^Zj(bk-zj^Zj(bk-zj^Zj 

= 
- 1 1 I N 

+ 
akbk 

afe(6fe-l) 
bk- Zj\bk- Zj bk bk-lJ (bk-l)(l-z3) Zjbk 

-akbk(bk - 1) = 
(bk-zj^Zjizj-l) 

13.15. Lemma 

• 

(1) n-3 
E 
a j 
a j 

akbk(bk - 1) 
ziz-lKz-bM* 

vq 
n —4 
vq 

vq 

1 
— Z£ 

= 
n-3 
E 

vq 

1 
a j a j a j 

Proof. - We claim that both sides of (1) represent 

d 
lim -(Ì2 ziz-lKz-bM*) 

s —>o J ziz-lKz-bM*) 
This is clearly true of the righthand side of (1). For the lefthand side, note that 

(2) 

d 
dz 

[z(z ~ l)(z - b^qiz)) 
z(z - l)(z - bj)q(z) 

a j 
a j a j -A-

/1 1 , 1 \ 
\z z — 1 z — bj ) (xi) 

9(2) 
vq 

Then the limit of (2) as z —> b3 is 

1 
= lim z —> bj 

(z-bJ)(q'(z) + 
(bk-zj^Zj(bk-zj^Zj(bk-zj^Zj 
V z z — 1 z — bj < 

(bk-zj^Zj 

1 
a j z-^bj 

- lim 
n-3 
E 

3 k=i 
dkqk(z) = 

n-3 
E 
;—1 ziz 

akbkjbk ~ 1) 
ajbj(bj - l)(b3 - bk) ' 

as required. • 
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13.16. Lemma. In Hl(S), 

(1) ^ 
'Ml ibiib; — l)dz 

2z(z - l)(z - b j) 3Jq 

= -
71-3 

k=l 
k=j 

« , 6 , ( 6 , - 1) 

a ,6,(6, - 1 ) ( 6 , - 6 , ) 
+ 

2b, - 1 
6 , ( 6 , - 1 ) 

7T* 
fidz 

v q 

+ 
n-3 

k=l 
k=j 

(ikbfAbk - 1) 
bj - 6, 

1 

bj - bk -
1 

vq -
1 

bj - 1 
-

a. 
6 , ( 6 , - 1 ) 

7T 
qjsz 
2vq 

-
n-3 

, = 1 

6 , ( 6 , - 1 ) 

2(6 , - 6,) 6, (6, - 1) 
7T 

fkdz 

vA 
-

n-3 

, = 1 
k=j 

« , 6 , ( 6 , - 1) 
2 (6, - 6,) 26, (6, - 1) 

7T* qkdz 
vq . 

Proof. - We have 

d 

dz 
,/q 

z - bj 
= 

-q 

(*-bj)2y/q 
+ 

a' 

2(z-bj)y/q 

= -
n-3 

, = 1 

ukqj 
( . - 6j)2 Vq 

-f 
n-3 

k=l 

akq'k 

2(z-bj)y/q 
So 

(2) 
d 

dz 

vq 
z - bj 

+ 
3a;b,(b; - 1) 

2 {z - bj)*z(z-l)Jq 

= -
n-3 

,= 1 
k=j 

0 , 6 , ( 6 , — 1) 
z ( z - l ) (2 - 6,) (2 - 6,) v ^ 

1 
z - bj 

+ 
1 

2(z - 6,) 

-
n-3 

A: = l 

« , 6, (6 , - 1) 

2^(z - l ) (z - 6,) (z - 6,) 

1 
. z 

+ 
1 

2 - 1 . 

Now, if k ^ j , 

(3) 
1 

z(z - bk) (z - bj) 
= 

1 

6 ,6 ,z 
+ 

1 
bk (bk - bj) (z - bk) 

+ 
1 

6, (6, - 6,) (z - 6,) ' 

(4) 
1 

(z - l)(z - b k)(z - bj) 
= 

1 
(6 A : - 1) (6, -l)(z - l) 

+ 
1 

(6 , - l ) (6 , - 67) (z - 6, ) 

+ 
1 

(6, - l ) (6, - 6 , ) (z - 6 , ) ' 

while 

(5) 
1 

z(z - bj)2 
= 

1 
bj(z - bj)* 

+ 
1 

b) z 
-

1 
6?(z - 6, ) ' 
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(6) 
l 

(z - 1)(z - bi)* 
= 

1 

(bj - l)(z - bj)* 
+ 

1 
(6, - l)2(z - 1) -

1 

( 6 , - 1 ) 2 ( ^ - 6 , ) ' 
Using (3) to (6), and (2) of 13.12, the righthand side of (2) above becomes 

(7) 
fj 

Q 
-

n — 3 

k=l 

akbk(bk - 1) 
a3b3(b3 - l)(b3 - bk) 

-
1 

26, 
-

1 
2(6, - 1) 

+ Qi 
2vq 

n — 6 

fc=l 

cikbkibk - 1) 
bj{b3 - 1 ) { b 3 - b k ) 

1 
bj - bk 

-
1 

bj -
1 

bi - 1 
+ 

au 
b2 + 

a, 

(bj -1)2 

-
71 — 3 

fc=l 
k=j 

akqk 

2 ( 6 , . - 6 7 K / Â 
1 

6fc - b. 
+ 

1 
bk + 

1 
bu - 1 -

n —3 

k=l 
k=j 

fk 
2{bk-b3)^q 

-
n — 3 

k=l 

Clk 
2z(z - 1 ) J q 

bk - 1 
b3z 

+ 
bk 

(bi -1) Dfz - l) . 

Now we use Lemma 13.13 to substitute for the last two terms of (7). The fk and qk 
contributions to the last two terms are, respectively, 

bk-l 
2bj 

-
bk 

2(bj - 1) 
fk 
fq 

-
cik(l - bk) 

2b3bk -
(ikbk 

2(6, - l ) ( 6 f c - l ) 
Qk, 
vq 

The last two terms give 

1 

2b3 

n-3 

k=l 

(bk - 1 )fk 

/q 
-

l 

2 6, - 1 ) 

n-3 

k = l 

bktk 
vq 

-
1 

26, 

n-3 

k=1 

M l - bk) 
bk 

Qk 
fQ 

-
1 

2 6, - 1 

n-3 

k=l 

Clkbk: 
bk - 1 

Qk 
fq 

So the coefficients of 
fk 

'Q 
and 

Qk 

/Q 
are given respectively by 

bk - 1 
26, 

bk 
2 ( 6 , - 1 ) ' 

- ak (1 - bk) 
bjbk 

-
(ikbk 

2(6, - l)(6fe - 1) 
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CHAPTER 14 

DISTANCE BETWEEN GEODESICS 

14 .1 . Let t\ = {xt : t e [0, T]} and £2 = {yt '• t € [0, T}} be two geodesic segments in 
the hyperbolic plane parametrised by length, with d(xo,yo) < fi, d(xT,yr) ^ S. Then 

d(xt,yt)<< ^С5е-т1п«'т-*\ 

Of course, a similar statement holds in hyperbolic space of any dimension. How
ever, we cannot prove such a strong statement in Teichmiiller space with the Teich
miiller distance d. This is related to the other well-known ways in which Teichmiiller 
space differs from hyperbolic space, such as, for example, there being several different 
boundaries of Teichmiiller space, each of which inherits some, but not all, of the char
acteristics of the boundary of hyperbolic space. We do, however, have the following. 
We use the notation S(a, [<£>]), a(a,q), ma of 9.3, 9.4, 9.1 for quadratic-differential 
areas and moduli of the appropriate subsurfaces. 

14.2 . We shall prove the following in 14.9. The diagram shows the situation under 
consideration. 

x ' 

y 

if 

w 

The geodesic and y. 

Proposition. — Given eo > 0, M > 0, there is M\ > 0 such that the following hold. 
Let [x,w] be a geodesic segment in the Teichmiiller space T(Y), with respect to the 
Teichmiiller metric d. Let y G T(Y). Suppose that y' = [<//] G [x,w] with d(x,yf) = 
d(x,y). Let q(z)dz2 denote the quadratic differential at y' for d(yf,w). Let 

d(x, y) + d(y, w) — d(x, w) ^ M. 
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(1) Let y' G T^£i). Then d(y, y') ^ Mx. 

(2) Given E > 0 there is E' > 0 such that if y G T<£> then y' G T<£. 

(3) Tfte following holds given C > 0, for Mi depending on Eo, M and C. Suppose 

that y' G T<€o, T is the set of loops 7 with p''(7) 0/ length ^ 5o; and a is a loop or 

gap ofY with a ( a , g ) ^ C if a is a gap, and a(a,q) ^ C/ma(yf) if a is a loop. Then 

all geodesies homotopic to if'{da) have length ^ M\ at y, and 

da{y,y') ^ Mx. 

Remark. — It can happen that y G T^£o but y' G T<£, with E arbitrarily small if 

d{x, y) is large enough. 

14.3 . Poincaré Length and a Modification. — Let 7 be a loop in C \ 7 . 

Then we denote by |y?(7)| the length of the geodesic homotopic to 92(7), with respect 

to the Poincaré metric on C \ V>{Y). We normalise so that C \ <p{Y) nas area 1-

Strictly speaking, we should use a notation of the form 1* (̂7) | [^ ] , but it should be clear 

from the context that we are using the Poincaré metric on C \ <p{Y). Let p denote 

the Poincaré metric. We need to consider another length with respect to another 

measurable Riemannian metric p' on C \ p{Y) when studying Teichmiiller distance. 

We fix Eo ^ the Margulis constant. We define p' to be p on (C \ p{Y))^£o and 

peripheral components of (C \ p{Y))<£(). So it remains to define p' on a nonperipheral 

component A of {C\.p{Y))<£o. Let 7 ' C C \ Y be the nontrivial nonperipheral simple 

loop such that A is homotopic in C \ p{Y) to 92(7')• We map A biholomorphically 

to an annulus of the form 

{x + iy : 0 < y < l/y/e}/{x + iy ~ x + iy + y/e). 

Here, E is, of course, uniquely determined, and is boundedly proportional to the 

Poincaré length of the geodesic homotopic to p{~f')- Then we take p' to be the image 

of the standard Euclidean metric dx2 + dy2 in A. 

Let 7 be any simple geodesic. Then we define |<£>(7)|' to be the //-length of the 

Poincaré geodesic homotopic to ^ ( 7 ) . Note that ^ ( 7 ) is bounded from <p{Y), so there 

is no problem with the definition of p' near p{Y). Let a be a loop or subsurface such 

that p{a) is homotopic to a component S{a) of (C \ p{Y))^>£() or (C \ p(Y))<£o. 

We also define \p{j n a)\' to be the p' length of the geodesic homotopic to ^ ( 7 ) with 

5 (a ) . 

We have 

(l) p ^ Cp', | é ) K * ( 7 ) f , | ^ n a ) K C | ^ n a ) | ' 

for a constant C. The reverse inequality does not hold in general. This is because 

the shortest Poincaré length of a path between the components of OA is 0 ( l o g ( l / £ ) , 

while for p' it is 0{l/y/e). However, we obviously have p' = p if [<p] G T^£o. We have 

|(^(7)| = ^ ( 7 ) | ' whenever either of these quantities is bounded. 
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14.4. The metric p' and Teichmiiller distance. — We can use | • |' to estimate 
Teichmuller distance. Let 7 C C \ Y be any simple loop. This ensures that, for 
a suitable > 0, and any [9?], the geodesic nomotopic to 92(7) does not intersect 
peripheral components of (C \ cp(Y))<£i). Note that l/\(p(j)\f is, to within a bounded 
constant depending on £q, the maximum modulus of an annulus in C\ip(Y) homotopic 
to ^ ( 7 ) . Then there is a constant C > 0 (depending on £0) such that the following 
holds. Let x : C -> C with ||x||qc = K (8.1), and let [ip] e T(Y). Then 

| X o ^ ( 7 ) | / ^ C 7 v ^ ^ ( 7 ) | / -

So if x minimizes distortion up to isotopy constant on <p(Y), we obtain 

( i ) 
|X o y (y)|'| 

|V(7)I' 
< Ced ([y]), [Xoy]. 

We shall see below (in 14.7) that we have a reverse inequality also. In fact, we shall 
see that, for a suitable constant C we can find 7 such that 

(2) 
ed([<p],[xoip]) 

c 
< \x°<P(-y)\' 

wm1 

14.5 . Q-d length. — We need to recall some facts about length of loops with 
respect to the singular metrics induced by quadratic differentials. We consider T(Y). 
Let q(z)dz2 be a quadratic differential at [up], let {[xt o cp] : t e [ 0 , o o ) } be the half-
geodesic determined by q(z)dz2, and let T± be the corresponding foliations, so that \t 
multiplies length on leaves of T± by e±l. Let 7 be any simple nontrivial nonperipheral 
loop in C \ Y. Then ^ ( 7 ) can be chosen up to a homotopy which is a limit of isotopies 
to be a union of segments which are each at constant angle to T±. If there is more 
than one segment, they can be chosen so that any two are between zeros of q or points 
of (p(Y), with angle > 7r at any zero outside <p(Y). We shall then say that 92(7) is in 
good position. Good position is unique, up to reparametrisation. Moreover, no two 
segments intersect transversally, and the number of isotopically distinct segments is 
^ << # (Y)— 3. We then define \(p(j)\q to be the sum of the lengths of the segments 
with respect to the singular metric pq = \q(x + iy)\(d/x2 -\-dy'2). Then |^ (7) |q depends 
only on the isotopy class of 7. Then for a constant C depending only on £q, 

( i ) pq ^ Cp', b ( 7 ) | , < C |V(7 ) I ' -

This follows from simple analysis of the metric pq. For suitable C depending on £q, 
we have pq ^ Cp' (equivalently pq ^ Cp) on any component of (C \ (p(Y))^£{). For a 
nonperipheral component A of (C\ip(Y))<£(), if we use the biholomorphic equivalence 

(p : A —> {x + iy : 0 < y < l/y/e}/(x + iy ~ x + iy + \/e} 

then we see that (p*pq ^ dx2 + dy2, and thus pq ^ p2 on A, which yields pq < Cp'. 
We are using the fact that the pf/-area of C \ <p(Y) is 1, that is, J \q\ = 1. 

Let [<p], q, a be such that a(a.q) ^ Co if a is a gap, and a(a1 q)ma([(p]) ^ Co if 
a is a loop. Let [ip] E (T(A(a))^£o if a is a gap. We can always find at least one a 
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such that these conditions hold, for e0 and C0 sufficiently small (depending only on 
# (Y)). Then for a constant C\ = C\(Co,eo), and any loop 7 in a 

(2) Ml)\ = 1^(7)1' ^^1 ^ ( 7 ) 1 , . 

This holds whether a is a loop or a gap. It follows immediately from the definition 

of pq. To see this in the case when a is a loop, note that the Pole-Zero Condition 

of 9.4 must be satisfied for S(a, [p>],£) for all sufficiently small £, depending on Co. 

By (1) and (2), pq is then boundedly proportional to p' on S(a, |y?],£o), with bound 

depending on Co

if 7 is a closed loop in C \ Y and a is a subsurface of C \ Y, then we also define 

192(7 H a)\q. To do this, we simply put p(a) and ^ ( 7 ) in good position to compute 

\ip(-yr\a)\q. 

14.6. The Q-d Length function along a geodesic. — Let {[\t 0 ¥>} t E [0,T]} 

denote the geodesic in T(Y) joining [p] and [x o p}. Let xo = identity, xt = X, 

d([p],[xt 0 V?]) — Let qt(z)dz2 be the quadratic differential for this geodesic at 

[Xt 0 (p]i with qo = q. Let 7 C C \ Y be any simple loop. Then |x* 0 92(7) |qf is 

relatively easily computed, because if 71 is a segment at angle 0 with T+ and with 

|y1|q = L, 

|X* ° ^ (7 l ) |m = £ e2' cos26» + e-2t sin20. 

So 

IXt °<P(7)I = 

r 

j=1 

a2e2* + ò2r-2 ' 

for suitable a?, b3 ^ () and r. In fact, r < # ( Y ) — 3, but this does not matter. Write 

a = 

r 

.7 = 1 

a.j, b = 
r 

j=l 

hi. 

Then we have 
aé + be 1 

2 
^ \Xt op(~f)\qt < v ^ a e ' + fte"'). 

It follows that £ 1 ̂  |xf 0 )k// nas â  most one essential minimum in the following 

sense. There is a constant C such that the following holds. Given 7, there is s G [0, T] 

such that 

(1) e l ' - ' l |x, o V ; ( 7 ) L |Xt ° ^(7)!, , < |Xs o ^(7)! , , for t e [0, T]. 

14.7. The upper bound on Teichmiiller distance in terms of Q-d length 

and modified Poincaré length. — We are going to use (1) of 14.6 and (1) of 14.5 

to obtain the upper bound (2) of 14.4 on Teichmiiller distance. If 7 is such that the 

essential minimum s — 0 or s is bounded, then we have, for suitable C 

ed([v],[x°v]) ^ (J' Ixo<A7)|9T 

1^(7)1* 
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If 7 also satisfies (1) of 14.5, then we obtain 

ed([<p\i[x0ip]) <^ QU l x ° ^ ( 7 ) r 
1 ^ 7 ) 1 ' 

which gives (2) of 14.4 (with C" replacing C) as claimed. So it remains to find such 
a 7. As we have seen, if S is a component of (C \ (p(Y))^>£() or a nonperipheral 
component of (C \ ip(Y))<£0, of g-area bounded from 0, and satisfying the Pole-Zero 
Condition of 9.4 if S is an annulus, then (1) of 14.5 holds for any simple loop 7 with 
|(^(7)|// |(^(7) fl S\f bounded. So we need to find such a loop for which the essential 
minimum 5 = 0. 

First, let S be a component of (C \ ip(Y))^£o nomotopic to tp(a) for a subsurface a 
of C \ Y. Consider a set F of 7 C a such that a \ ( F U ( u r ) is a union of topological 
discs with at most one puncture and annuli parallel to da, and such that | ^ ( 7 ) | is 
bounded for 7 G T. If |x/ 0(f(l)\qt < £1 f°r some t, then this happens for some t ^ T\, 
for T\ depending on e\. Then \\t 0 ^ ( 7 ) I < Ce\. If this is true for all loops adjacent 
to a component of a \ (Y U ( u r ) ) , then the area of that component is 0(s2). So if 
£\ is sufficiently small, given the g-area of cv, for each t, there is at least one loop 
7 € r with \tyt{l)\qt ^ £i- So there is e\ (depending on E\) and 7 G T such that 
1 ^ ( 7 ) 1 ^ . ^ £i f°r au t- So then the essential minimum for 7 is within a bounded 
distance depending on £Q of 0. 

Now let S be a nonperipheral component of (C \ ip(Y))<£(). Let S be nomotopic 
to (f>(Y). Fix 7o such that ^ ( 7 0 ) \ 5 1 is bounded and 70 intersects 7 ' exactly twice. 
Let 7n ( n G Z) be obtained from by Delm twist n times round 7 ' . Then we have the 
following formula for \\t 0 <^(7u)|<7, • 

\Xt°^(ln)\qi = (r/i + nc)2e2t + (bi + nd)e~2t + 
r 

.7-2 

a2e2t + b2(-21 

where 

\Xt °<P{l')\qt = d2e2t + d2e~2K 

Iо,-1 + 16,-1 < C(\ai\ + \bi\), \c\ + \d\ < С. 1/C s; a i d - bit; si 1. 

So either \c\ > \d\C3 or \c\ ^ \d\/C:\ and we can choose n so that \bi + nd\ ^ \d\/2. 
Then 

I (61 +nd)c\ ^ 
d2 

2C3 
< 1 

2C 

|a1 + nf| > 
1 

2C |d| 
> 1 

2C2 
> 

\b\ + nd| 
C 

It follows that 0 is an essential minimum for either 7 ' or for 7n, for some n. 

14.8 Stable and Unstable lengths. — Let [cp] G T{Y) and let q(z)dz2 be a 
quadratic differential at [if], with corresponding expanding and contracting foliations 
F+, F-. At each nonsingular point, the tangent space of the surface C \ (f(Y) is 
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the direct sum of the tangent spaces of Jr±, and we have corresponding seminorms 

|| • | |± on tangent vectors. Again, let (^(7) be in good position. Let Dip(j)(t) define 

the derivative of ^ ( 7 ) at t. Then we define 

M 7 ) l + = 
t 

/0 
\\D<p(>y)(u)\\ + du, 

and similarly for |</?(7)|_. Again, this definition depends only on the isotopy class 

of 7, and good position gives the minimum value of the integral, in the homotopy 

class of 92(7). We shall write |v?(7) |g,± if we are considering more than one quadratic 

differential. 

In the notation of [F-L-P], we have 

| V ( 7 ) | + = ¿ ( 7 , ^ - ) , 

where i is the intersection function. We shall need, in Chapter 25, to use the inter

section number between two measured foliations. If T and Q are measured foliations 

on surfaces S and Sf. and x '• S ~> *s a homeomorphism, then i(x.J~~iG) is a con

tinuous function. Indeed, it is Lipschitz [Rl] with respect to a natural metric. It can 

be defined as limn_+00 z(.?>,, £/) by taking any limit of a sequence {Fn} of measured 

foliations supported on simple loops [F-L-P], [Rl] . 

As for I • \q, we can define ^ ( 7 fl if a is a subsurface of C \ Y. 

14.9. Proof of 14 .2 . — Let xj G [x,w] with d(x.i/) = d(x,y) = t. Write 

{[X, o p] : s G [0, T]} = \x, w], x = [<p], y' = [xt, o w = [XT o <p] = y= [</>], 

and let qs(z)dz2, be the quadratic differential at [x.s 0 for d([xs 0 <p\5 [XT 0 ^p])-

Let y' G 7^£0, in which case take Y = 0 , or let T be the set of loops such that V;(7) 

has length < £0. If T = 0 , let a = C. If T 7̂  0 , let a be a loop or gap of T with 

r/(n. ijt) ^ Ci if a is a gap, or a(a,qt) ^ Ci/ma(y') if a is a loop. We call such an a 

a good component. Then we claim that, for any nontrivial nonperipheral loop 7 with 

nontrivial intersection with a, either 

( i ) 

ed(x,y') 

c 
< \<ph)\' 

\Xt ° n a)\' 

or similarly for w, XT 0 <fi replacing x, <p. If a G T we we claim that, further, either 

(1) or its equivalent for w holds for y' = [x^ 0 <p] replaced by any y\ = [xs o cp] in 

[x, w] f lT(ft , £o)- To see this, we consider the function s 1—> |x.s 0 ̂ (7)\q„ f°r anY simple 

loop 7. Then because this function has just one essential minimum (14.6) we have 

either 

or 

et 

C 
< 1^(7) U , 

IX* ° <P{l)\qt 

e2(T-t) 

c 
< 

\XTop{~f)\qT 

\Xt 0 w ) l < / , 
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But we also have, by (1) of 14.5, 

lv(7)U ^ CV(7) | ' , ÌXT o v>(7)| C\XT o V(7)|'. 

This allows us to replace | • |go, | • |gT by | • |'. The area lower bound gives that 

pqt is boundedly proportional to p' on S(a). If a is a loop, then pQs is boundedly 

proportional to p' on S(a) for all [xs ° <p] G T(a,£o). This allows us to replace 

Ix* °<£(7)lgt by Ix* o<P(7na0|' 
We claim that, for a constant C\ depending on M, and any good component a, 

and any nontrivial nonperipheral any loop 7 intersecting a nontrivially, 

(2) lxt°¥>(7na)|' C i | V ( 7 ) l ' . 

This would be enough to prove 1 of 14.2 (with a = C) and most of 3 of 14.2. To see 
(2): by (1) of 14.4, 

l¥>(7)l' 
1^(7)1' 

^ Ced^J^ = Ce1 = Ced(x,y'ì 

|XTO(^(7) | / 

1 ^ ( 7 ) 1 ' 
</ сеа([Ф],хто^]) ^ CeMe{T'l) = CeMed{x'y>). 

Then (2) follows from (1) above. 
If |^(7)|x (equivalently |^(7) I) is sufficiently small then we deduce from (2) that 7 

has no essential intersections with a. This proves 2 of Proposition 14.2, namely, that 
for suitable ef0, if y = £ T<£> then y' = [\t 0 <p] £ ^<e0- We also see from (2) that, 
if 0(7) is bounded, then \\t 0 ̂ (7 u a)| is bounded and hence so is # (da D 7). Then 
we can homotope <9a into a finite union of segments of loops 7 such that 1 ^ ( 7 ) 1 is 
bounded. Hence |0(<9a)| is bounded. This gives part of 3 of Proposition 14.2. 

Now we need to consider two cases of a. First, suppose that cu is not an annuhis. 
Then we can find a set of loops T in a such that all components of a \ (UT U Y) 
are at-most-once-punctured discs or annuii parallel to a, and with |V;(7)I bounded for 
7 G r (but also, as we have seen, bounded from 0). Then we also have, by (2), that 
\Xt 0 ^ ( 7 ) 1 is bounded for all 7 G T, which gives the bound on da(y,y'). Now let a 
be a loop. Let [2/1,2/2] be the maximal interval on [x,w] such that z G T(a,£o) for 
z G [2/1,2/2]- Let 2/1 G [ x , 2/] and 2/2 G [2/, H with d(x,yi) = d(x,y[). What we have 
proved above for y and y' holds equally well for 2/?; and 2/̂  because the triangular 
equality still holds. Write yl = [ ^ ] . If = x or then da(yl:yl) is bounded. Then 
suppose that yz 7̂  x or w. Then |04(<^)| is bounded above. Then there is a subsurface 
Pi D a such that r/j. (•//,-. //J) is bounded (in terms of M ) . It follows that da(2/^2/0 is 
bounded for i = 1, 2. Since (T(A(a)),da) is isometric to the upper half plane with 
the Poincaré metric, we deduce that da(y,yf) is bounded. • 

14.10. The function d'a. — This is a concept which will be needed in Chapters 
25-31, and also in 14.13 below. 
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Let x = [up] £ T(da1£o) and y — [ip] G T(Z). Let x G (T(A(a))^£o if a is a gap. If 
a is a gap, we choose a set of loops Ta, as follows. Take Ta to be a set of nontrivial 
nonperipheral loops in a with |<£>(ra)| $C C(eo) (for a suitable constant C(eo)) and 
such that every component of C \ (ura U Z) is a topological disc with at most one 
puncture or an annulus parallel to the boundary. We then define 

d'a(x,y) = sup{| log(№(7)|' + 1) - log(|v(7)l'l + 1)1=76 rQ}. 

Of course, this definition depends on the choice of Ta, but only to within a bounded 
constant, depending on £Q. If a is a loop, we choose x' nearest to y on the geodesic 
[x,y] with x' G T(OJ,£Q). Then we define 

d'a(x,y) = da(x,xr) + | log ( |V (a ) f + 1) - l og ( | ^ ( a ) | ' | + 1)|. 

By 14.4 and 14.5 (applied to T(A(a))), this differs by a bounded constant from 
da(x,y), if y G T(da,£o) also. Now let ß be a loop or gap, and let S(ß) be as in 9.3. 
If y G T(dß, £o), we can also define, if a is a gap, 

d'aJ}(x,y) = sup{| log(|V(7 n S(ß))\' + 1) ~ log(^(7 ) l ' + 1)1 : 7 G TQ}. 

To measure |'0(7n5f(/3))|/, we choose ip so that any component of ip(~/)n(C\'ip(Z))^>£0 
intersects the boundary of (C \ ip(Z))^£() perpendicularly. If a is a loop, let x' be as 
above. We define 

d'Jx, y) = da(x, x1) + I log(№(<* n S(ß))\f + 1) ~ log(|*>'(<*)!' + 1)1-

Thus, 

d'a(x,y) = d'a^(x,y). 

14.11. Lemma. — For a constant C, 

\d'aJi{x,y)-d'ßJy,x)\ ^ C. 

Remark. — This can be applied, in particular, with (3 — C. 

Proof. — If a and (3 are gaps then this follows immediately from the fact that 
exp(d'a^(x, y)) and exp(d^ a(y, x)) are both boundedly proportional to # (TaDFp). If 
a is a loop, and /3 is not, then both exp(d'a^(x, y)) and exp(d'p Q(y, x)) are boundedly 
proportional to #(cv H T^) expda(x, x') for as defined above. If both a and (3 are 
loops then both exp(<i^ p(x,y)) and exp (dp a(ypx)) are boundedly proportional to 

(# (a H /3) + 1) exp(da(.x, a') + dß(y, y']) 

for similarly defined. 
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14.12. Comparing Geodesies in Two Teichmuller Spaces. — Throughout 
this work, we are interested in the relationship between Teichmuller spaces T(Y), 
T(Z) with Z c # ( y \ Z) = 1. The following lemma is concerned with this set-up. 

Lemma. — Let Y = Z U {v}. Given so > 0 there is C such that the following holds. 
Let [<pi], [̂ 2] G T(Y). Let q(z)dz2 be the quadratic differential for dz([(fi], [^2]) at 
[ipi], and | • | + the corresponding measure of unstable length. Let \f2\z = [x 0 ^Pi]z, 
where x minimizes distortion up to isotopy constant on ipi(Z). Then 

VP2]Y = [0-lx O a72 O <773 O X O <£l]y = [X 0 ̂ /3 0 <PI]Y, 

where the paths 7j /mve £/ie following properties: 

|7i |; ^ C7ed>'([^i],[^2])5 |73|/ ^ ^7edz([v?i],[v2])! 

TTie pa /̂i 72 is trivial unless [pi], [̂ 2] G T(r/, £0) /or a Zoo£> 77 swe/z. ^ i ( ^ ) 6 
5(77, [(^i],£0)- ^ case, 72 '¿5 a single segm,ent in 5(77, [^2],^o)-

Proof. — We consider the surface C \ cpi(Y). If [epi] G (T(Z))^>£o, let a be a path 
joining v to z for some z G Z such that |c/?i (or) | is bounded. Now suppose that 
[fx] G (T(Z))<£0 and that <fi(v) G [<^i],£o) U £(77, [<£>i], £r0) for a gap C and a 
loop 7/ adjacent to £. Suppose that £ contains at least one point z of Z . Then we 
choose a path a = joining v and 2: such that 

(fi(a) C 5(C, [<Pi],£o) U [^i],e0), 

|(^i(a) n 5(C, [<£i],£o)| is bounded, (fi(a) has at most one component of intersection 
with 5(77, [<£i],£o), and then only if ipi(v) G 5(77, [<pi],£o)« Now suppose that ( does 
not contain a point of Z. Let TV be the modulus of the Euler characteristic of C. 
Decompose ( into ^ 2N cells, using a set T of arcs in ( with endpoints on d(. and 
such that each component of dC, is some 7 G T, up to homotopy. Choose these so 
that |(/?i(r)|, is bounded, and ^1(7) is in good position with respect to the quadratic 
differential for dz([(fi], [^2]) for all 7 G T. Then choose a with one endpoint at v and 
the other in some disc bounded by UT, and otherwise to have the same properties as 
before. 

First, we assume that either [cpi] G T^0 or 1; e ( for a gap (. By 14.4, both 

|<p2(ûOf = 0{edY^^), \x o fi(a)\' = 0(edz^^), 

and similarly for T, where defined. If a ends at a point of Z , we deduce that 7 = 

f2 (or) * X 0 ̂ i (a ) also satisfies 

|y|' = O(edY([y1], [y2], 

as required. If T is defined then the sets ^ ( T ) and x 0 ̂ i ( r ) intersect. It follows 
that there is an isotopy mapping ^ ( r ) to X 0 ^ i ( r ) , and (̂ 2(<̂ C) to x 0 y>i(dQ, which 
moves all points distance 0(edv^1^^2^). We can then improve this isotopy further 
to map (f2{v) to x 00(edv^1 and the distance moved is again 0(edY^Lpl^^(f2^). So then 
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206 CHAPTER 14. DISTANCE BETWEEN GEODESICS 

take 73 = X ° Wii®) and 71 to be the union of ¥2(0) and a homotopy arc between 
V?2(r) and X 0 ̂ i ( r ) . Then and 73 have the required properties. 

Now we suppose that (fi(v) G £(77, [(^i],£o) for a loop ry. Let 771, r/2 be the loops in 
C \ Y such that [y>i] G T(T/I, ef0)P\T('q2, ^o): this 1S> m fact, true for ef0 = 2eo(l + o(l)). 
First, suppose that [(f2]z ^ T(r\, £Q). Then, by numbering 771 and 772 suitably, there is a 
first point [ip[] on the geodesic in T(Y) joining [<pi] to [^2], such that [p^] £ T(rji,e'0). 
Assume without loss of generality that £ (used in the definition of a) is adjacent to 
771. Then 

Ivi И Г sí C0edY^Vl^K 

Let [<///] be the first point on the geodesic joining [ipi] and [v?2]in T(Z) with [p>'[\ ^ 

Tin,so)- Then 

|y"1(a)|' < C0esz ([y1],[y"]). 

and hence 

1^2(a)I ' ^ dedY(^^\0(edv^1|X o <pi(a)|' < dedz^l]^\ 

Then again let 7,3 = X 00(edv^1 and let 71 be the union of (f2(a) and an arc joining 
(f2(T) and X 0 ̂ I ( r ) if necessary. Then 71 and 73 have the required properties. 

Now let [ip2] € T(T],£Q). A point [ip[} on the geodesic in T(Y) joining [ipi] and [tp2] 
as above might still exist, in which case we still have a bound as above on \Lp2(a)\f. 
Let [p'{] be the first point on the geodesic joining [<pi] and [<̂ 2] hi T ( Z ) , if it exists, 
with <p'{(v) G 5(C', [<£iMo) for a gap If C = C, then we can bound W{(a)\f and 
|X 0 V9I(A)|/ as before, and can define 71 and 73 as before. If 7^ then is the 
other gap adjacent to 77, then we write a = a[ U a2 U a3 where we have 

\ip"{a'j)\ < C e ^ ^ ' ^ 

for JF = 1, 3, and <-Pi(oi) is a single arc in the component of (C \ ip"(Z))<£o homotopic 
to tpi(i]). Then up to homotopy we can assume that X 0 ̂ 1(^2) 1S a single arc in the 
component of (C \ (p2(Z))<£o homotopic to ^2(77) and for j = 1, 3, 

|y2(a'j)|' < Cedz ([y1],[y2]). 

This gives the required estimates. 

14.13. Another Comparison. — Here is another lemma similar to the last, which 
is, again, a result about comparing certain paths in T(Y) with geodesies in T(Z) with 
the same endpoints. This will be needed in Chapters 25-30. 

Lemma. — Let [cpQ] G T(Y) and let [cpi] = [\i o po], [̂ 2] = [X2 0 ^1] £ T(Y), where 
X I ; X'2 minimize distortion up to isotopies constant on ipo(Z), <pi(Z) respectively. Let 
[̂ 2] — [x° Wo], where \ minimizes distortion up to isotopy constant on cpo(Z). Then 

[ip2] = [cr7 o X o ip0]Y 
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where 7 = 75 * • • • 71 and the following properties hold for the paths 7*: 

|7i|' ^ Cedz^°^^2^. 
|7i|' ̂  Cedz^°^^2^. |7i|' ̂  Cedz^ 
|7i|' ^ Cedz^°^^2^. |7i|' ^ Cedz^ 

T/ie £>a£/z 72 trivial unless tpo(v) G £(770, [</?o],£o) /or a loop 7/0 with [<£o]z, Vp2\z £ 
T(rjo,8o), in which case 72 ¿5 ai mosf a single segment in 5(770, [9̂ 2], ^0)- The path 74 
¿5 trivial unless ipi(v) G 5(7/1, [<£i],£o) /or a /007? rji, with [y>i]z, Vp'i]z £ T('qi,eo) in 
which case 74 is at most a single arc in S(rji, [(^2],£o) 

More generally let /3 be any loop or gap with [^2} £ T(d(3,6o). Write S(f3) = 

S{P,[ip2],£o)- Then 

|7i nS(ß)\' < CeM^-[^\ 

Ьз n S(ß)\' < Cíe^'^'l-l^]) + е<'<1»"1'^1)), 
Ьз n S(ß)\' < Cíe^'^'l-l^]) + е<'<1»"1'^1)), 

Here, 171 D S(/3)|' is measured as in 14-10-

Proof. — This is a very similar method to 14.12. This time we need to define paths 
ao and or, and a loop set TQ. We start with the loop set r0. This is like the loop 
set T of 14.12 (which is not always defined). Choose a gap Co and adjacent loop 7/0 so 
that 

ipo(v) G S (Co, [<po],e0) U 5(770, [<p0],£o). 

In addition we can choose Co so that the following holds, if (po(v) G 5(r/0, [< ô]: eo)-
Let r/o, 7/Q be the loops in C \ Y homotopic to 7/0 in C \ Z such that [ipo]y G 
T(7/0,£0) fl T(r)H,£'Q) for s'Q = 2£0(l + o( l ) ) . Let £ be the union of the geodesic in 
T(Z) joining [(po]z and [fi\z, and the geodesic in T(Z) joining [f\]z and [f2]z- We 
can regard this as a path in T(Y), and we can regard points in £ as points in T(Y). 
Let [</?'] be the first point on £ such that [<p'\ £ T(r/0,E0) n T(r/o,£0), if this exists. 
Number so that [<//] ^ T(r/0,e0). We can choose Co so that Co is adjacent to 7/Q. 

We choose a loop set To in Co such that \(fo(^o)\ is bounded, and each component 
of Co \ (U(po(ro) U(po(Z)) is either a disc or punctured disc round a point of ^>Q(Z) or 
parallel to the boundary. We choose Fo so that (fo(^o) is in good position (14.5) with 
respect to the quadratic differential at [(fo] for dz([<Po]i [pi])- As in 14.12, we choose 
ao ending at v so that 

ipo(a0) C S (Co, [<£o], £0) u S(T]0, [<£o],£o), 

|(/?0(ao)n/S'(Co, [^0]: £o)\ is bounded, ^0(^0)^^(7/0, [V?o]> ^0) has at most one component, 
and then only if (fo(v) G S(r]o, [(fo],£o)-
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Then (^2(^0) has the same properties as X0iPi(a) m 14.12, with the same differences 
depending on whether or not ipo(v) ̂  5(?7o, [<A)]>£o)« The paths 71, 72 (which may be 
trivial) and part of 73 come from ^2(^0)-

Now we choose a\. Let TQ be obtained from ^ ( T o ) by a bounded homotopy, so 
that Lpi(Y[y) is in good position with respect to the quadratic differential q\(z)dz2 at 
[ifi] for dz([<Pi], [^2])- Then choose a\ ending at v so that: 

a) (fi(a0) = (fi(o.o) * (pi(oji) has a bounded number of intersections with (^(FQ) 
and is in good position with respect to q\(z)dz2, and ipi(a'0) ends in (C \ (fi(Z))^£{)1 

b) \(pi(o,i)\^£() is bounded and (pi(a\) has at most one intersection with a compo
nent of (C \ Lpy(Z))<£0 and only if ipi(v) E S(r]i,[(p\],£o) for some loop 771. 

All this is possible, because </?I(OJO) has only boundedly many intersections with 
^ i ( ro ) . Since |(^2(«o)|/ is bounded by | c^2(To)we obtain 

I ^ K ) ! ' < C e d z ^ ^ \ 

Arguing as in 14.12, either 

|y2(a1)|' < Cedz ([y1],[y2] 

or ai = evij * «1,2 * ^1,3 where ipi («1,2) is a single segment in 5(771, [^1], £0) for some 
loop 7/1 and for j = 1, 3, 

b ( a i . i ) ! ' < Cedz(^i].k2])_ 

The path 73 then comes from ip2(a0), parts of ^2(^1,3) and ^2(0^0) and their joins 

along if2(^0) to (^2(^0)- The path 75 comes from (^2(^1,1)-
The estimates 011 |77 fl S(/3)|' are proved in exactly the same way, by bounding 

I V 2 K n 5(/3))|', |v72(ai n 5(/?))| ' and 1^(0!,, n ' • 
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CHAPTER 15 

TRIANGLES OF GEODESICS 

15.1. In this chapter, we continue the study of geodesies in Teichmuller space. The 
results include: a way of recognizing bounded loops at some point of a given geodesic £, 
in 15.9, and a theorem about triangles of geodesies in 15.8. The latter generalizes the 
following result about triangles of geodesies in the hyperbolic plane H for a suitable 
constant C independent of the geodesies being considered. Given geodesies between 
any two of the points x\, .T2, x$ G H, there is a point y G H which is distance ^ C 
from a point on each of the three geodesies. As usual, any difficulties in generalizing 
this result concern the thin part of Teichmuller space. The first lemma gives the 
generalization in a relatively easy case, using the results of Chapter 14. Throughout 
this chapter, we continue to use the notation ma, S(a), a (a) of 9.1, 9.3, 9.4. 

15.2. Lemma. — Let [x\,xz\ be a geodesic segment in T(Z), and let 

x2 G [AS'I,.X\3] n T^eo. 

Let x*4 G T(Z). Then for a suitable constant C > 0, at least one of the following 
holds: 

d(x\, x2) + d(x2i X4) ^ d(xi, X4) + C, 
d(x3, x2) + d(x2, X4) ^ d(xs, x4) + C. 

Proof — Write xi = [pi]. Let | • |g,+ denote the unstable length for the quadratic 
differential q(z)dz2 for d(x2. .r.\) at x2. Let | • \Pi± denote the unstable and stable 
lengths for the quadratic differential p(z)dz2 for d(x2lxs) at x2. Let r(z)dz2 be the 
stretch of p(z)dz2 at X3. By 14.7, there is 7 such that, for a constant Ci, 

1^2(7)1' >Cied(x^\Ml)\'-

But since [p>2] G T^£o, |v^2(7)| = 1^2 (7)T is boundedly proportional to \(f2(l')\P (see 
14.5), and hence to one of |(^2(7)|p,+ or |(/?2(7)|P,-• Assume without loss of generality 
that it is the former. Then 

Ы 7 ) | г >-ЫC2¿á^* C 2 ¿ á ^ * » | V 4 ( 7 ) I ' » 
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Then by 14.4, 14.5, we have 

e2d(x3,x4) ^ C3 l¥>3(7)r 
y4(y)|' 

;> ç^ed(x3,x2) + d{x2,X4) 

which gives the result. 

15.3. Thick and dominant over long distance. — The result 15.2 does not 
quite imply that x2 in 15.2 is a bounded distance from one of the geodesies [xi,X3J, 
[x3, x4], even if x2 G T-^£Q. But we want to head towards such a result. If x2 G T<£Q in 
the lemma above, then the approximate triangular equality of 15.2 is clearly not likely 
to hold, and a suitable analogue needs to be sought. For this, we need the concept of 
long, (v)-thick and dominant gaps. This is more special than the concept of dominant 
area introduced in 9.4, and also more special than a common type of restriction that 
we make: x G T(da,e) D (T(A(a))^u for e « v. 

Fix a geodesic segment £ in T ( Z ) , a point x G £, and a gap a with x G T(da, £Q), 
for £0 ^ the Margulis constant. Fix functions r : (0,1) —•» (0, 1), L : (1, oo) —-» (0, oo) 
and s : (0, 1) —> (0, 1). Let a be a gap. Let ±q(z)dz2 be the quadratic differential for 
d(x, xf) at x, any x' G £. Write a(a, g) = a(a) = a(a, x), a(<9a, q) = a(<9a) = a(<9a, x). 
Note that this is boundedly proportional to the square of \(p(da)\q if x = [<£>]. Then 
a is long (u)-thick and dominant along a segment £\ of £ (for given functions r, A, s) 
if ¿1 C T(da,r(y)) n (T(A(a))^I/ and a(da,x) ^ s(i/)a(a,x) for x G ¿ 1 , and ¿1 has 
length ^ 2A(v). If x is the midpoint of some such segment £\, we say that a is long, 
k'-thick and dominant at x. 

It was shown in 9.7 that there is always at least one gap or loop of dominant area. 
The following is similar. 

15.4. Lemma. — Let functions r, A s, and a constant D\ be given. Then the following 
holds for suitable functions r' and A! and v(r, A, s) > 0. Let x' G £' D T(d(3, r'(vf) n 
(T(A((3))^ with a(d(3) ^ r ' ( i / ) , and £' of length ^ 2A ' ( i / ) . Then either (3 contains 
a loop of D\-dominant area, or xf is within Af(vf) of a point x, such that some gap 
a is long distance thick and dominant for x, £ r, A, s, and for v ^ i/(r, A, s). 

Remark. — This lemma can always be applied with ¡3 = C, no matter what r' is. 

Proof. — Let 

n(u) =r(v)e-c*M 

for a suitable constant C. We can assume without loss of generality that r\(v) ^ v. 

Put N = #(Z) and choose r' so that r'(rj) ^ r^(rj) for all r/, where this denotes 
TV-fold iteration. Take z/q — and i/̂ +i = Ti{^i)- Assume without loss of generality 
that v' ^ £Q. Then r'(v') ^ ri(h>N-i)- If either segment of length A(z//v_i) starting 
from x' in £' is in (T(A(f3))^UN_1, then we can take x — x' and a = [3. If not, 
there is a nonempty loop set r^v-i hi (3, and XN-I within A(z/jv-i) of x' such that 
XN-I G T(Fiv-i , ̂ iv-i)- Then inductively we can construct an m, 1 ^ m ^ ]V, 
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points x% and loop sets for m ^ i ^ N, with = 0, Pi + 1 C T ,̂ ^ ^ I\+i, is 
within L ( ^ ) of #¿+15 ^ £ 1~(Ti, ^i) and #m is the centre of a segment of £' of length 
2A(>m+i) in 

T(rm, r(i/m+i)) \ U(^ (7 , ^m+i : 7 £ rm}. 

If r is sufficiently fast decreasing given s and D\ (as we can assume) then we can 
either find a loop a of Di-dominant area, or a gap a with a (da) ^ s(z/m+i)a(a). • 

15.5. Subdominant Area. — There is another measurement of area which 
is sometimes more useful in measuring area that a(a). Let a be a gap. Let 
{wt : t G [0,T]} be a geodesic segment in T(da,£o) C T(Z) with length as the pa
rameter t. Write 7ra for the projection to T(A(a)). Write qt(z)dz2 for the quadratic 
differential for the geodesic at wt = [xt ° ^Po], where \t is the quasi-conformal 
homeomorphism minimising distortion. Choose a subsurface St (a) — \t(So(a)) of 
C \ tpt(Z) which is homotopic to <ft(ot) such that the boundary components \t(da) 
are in good position (14.5). The surface St (a) may, however, be degenerate, in that 
it may not be the closure of its interior. Write st(a) for the g^-area of St(a). Let 
£t(da) be the ^-length of da. By 14.6 this has an essential minimum. So there is t0 
such that 

Cre^-Htoida) < £t(da) < C2e*°-*^0(Öa) for t <: t0, 

Cie*-*°^o(9a) < £t(da) < C2et-toetQ(da) for * ̂  t0. 

In contrast, the function t i—> s*(a) is constant. So, given constants D2 < D\ with 
Di/D2 bounded,there are 0 ^ u\ ^ u2 with u2 — u\ bounded such that 

stick) ^D2(£t(da))2 for t(£ [to-~u2,to + u2], 

st(a) ^ D1(£t(da))2 forte (t0 - ux, t0 + m). 

The case u\ = 0 is allowed. In (¿0 — u2,to + ¿¿2), st(c^) is boundedly proportional to 
a(a1qt) of 9.4. If D\ is sufficiently small and [\t 0 V?] G (T(.A(a))^g;0 then ce is of Di-
dominant area for £ G (to — г¿l, to + ^ i ) . We shall refer to a being of D2- subdominant 
area for t ^ (to — ^2,^0 + u2). Then we have the following. 

15.6. Corollary. — Take the same hypotheses as in 15.4, and in addition a constant 
D2 > 0. Then a segment £ of length 2 A (is) starts within A'(u') of x', and a loop set 
T, such that the following hold. 

£cT (T,r (v))\ 

7^r 
T ( 7 ^ ) -

For every loop of T, either 7 is Di-dominant at all points of £, or D2-subdominant 
at all points of £. For each gap a of T, either a(da,x) ^ s(v)a(a,x) for all x G £, 
or a(a,x) ^ D2a(da,x) for all x G £. If no loop is D\-dominant, then at least one 
gap satisfies a(da,x) $C s(v)a(a,x) for all x G £. Put briefly, every gap is thick, and 
either dominant or subdominant along the entire length of £ 
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Proof. — Arguing as in 15.4, find a segment £" of length ^ A\(v) in T{F,r(v)) \ 
U7^rT(7,z/), for a suitable Ai = A\(v) ^ A(v). Define the quantities st(a), £t(da) 
along this segment, as in 15.5. Take t = 0 as the centre of this segment. There are 
only finitely many gaps. We consider the functions (£t(a))2 / st(cv), as a varies over 
the gaps. As we have already noted, st(cy.) is constant and each function behaves 
like cae_2lt-t"l for different constants ca and ta. So each function takes values in 
the interval [s(v), 1/-D2]] only on at most a union of two intervals, each of length 
log(l/ D2s (is)). So if A 1(1/) is sufficiently large given D2 and s(v), we can find £ C £" 
on which all functions take values outside [s(v), I/D2}. We know that either there 
is a dominant loop, or at least one function must take a value < 1/D2, and hence 
< s(v). • 

15.7. Projections look like geodesies. — We saw in 9.5 that projections of 
geodesies to dominant area gaps look like geodesies. But in fact this is true more 
generally. We have the following. 

Lemma. — Let a be a gap of T, and let [w,u] be a geodesic segment in T(F,£o). 
Let the projection to T(A(a)) be in (T(A(a)))^£{). Then the projection of [w,u] to 
T(A(a)) is within a bounded distance of a geodesic segment. 

Remark. — We are not assuming that da(w,u) is close to maximal. 

Proof. — Write 

[w,u] = {wt:te[Q,T]} 

with w — wo, u = WT and with length as the parameter. Let u\ and u2 be 
as in 15.5. We claim that, for suitable choice of D\ and D2 the projection of 
{wt : t G [to — ui, ¿0 + ^1]} to (T(A(a))^>£() is within a bounded distance of a geodesic. 
This follows from 9.5, because for t G [to — ui,to + ^1], st(a) = at(a)(l + o(l) and 
at (da) — 0((£t(da))2): so the Dominant Area Condition of 9.4 holds. Then we claim 
that the projection of each component of {iut : t £ [to — u\,to + u\]} is bounded. It 
suffices to prove that the projection of each component of {wt : t £ [to — u2,to + ^2]} 
is bounded. 

It is obviously sufficient to consider the case t G [0,£o — W2], since the case t G 
[to + u2,T] is exactly similar. It suffices to find a set of loops FQ in So such that 
every component of So \ (UTo) is a disc or an annulus parallel to dSo, and such that 
|Xt(To)I is bounded for all t G [0, to — u2}. Let \xt(l)\qt denote the q-d length of Xt(l) 
for the quadratic differential qt(z)dz2. Let S't be the component of (C \ (pt(Z))^£o 
homotopic to (pt(a). Then St is a limit of isotopies in C \ tpt(Z) from S't. Let Dt be 
a union of discs in the interior of S't round the zeros of qt. Then for any loops 71, 72 
with 7i C S+ \ Dt, 

hi I 

<-l|72| 
< 

|y1|q 

l72|9t 
< C7i h i I 

|72| 
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Note that the loops of dS[ are not particularly short in the Poincaré metric, although 
they might be homotoped — outside S[ — to be of very short Poincaré length. For 
any loop 71 in S[, the minimum of \qt, for j[ homotopic to 71, is achieved on St, 
But the minimum can be achieved to within a bounded proportion on S't. So for 
geodesies in the interior of Sft, their Poincaré lengths are boundedly proportional to 
the qt q-d lengths of good position homotopy representatives in St- The loops of dS[ 
are bounded in the Poincaré metric. So bounded loops in S't are those whose homotopy 
representatives in St have q^-lengths bounded by a multiple of the (ft-length of dSt. 
So it suffices to find a constant C and TQ such that 

lx*(r0)|„ ^ C\dSt\qt 

for all t G [0, to — U2\- There are unstable foliation arcs connecting the components 
of dSo cutting So into cells and of lengths bounded by the lengths of 8SQ. So we 
simply take r0 to be any set of bounded loops in So cutting So into cells. Such loops 
can be arranged up to homotopy along finitely many segments of dSo and transverse 
unstable segments, Then the required bound on |xt(ro)|gt follows. 

15.8. Triangles of Geodesies. — We need a little notation to explain the following 
statement. A loop 7 is a Aq-Pole-Zero loop along a geodesic segment £\ if for all 
[p] G £\ there is an annulus in 7, £0) of modulus ^ Aq satisfying the Pole-Zero 
Condition 9.4. Also, if 7 is a nontrivial nonperipheral loop in C \ Z, we need to 
be more precise than in 9.1 about the identification of T(A(^)) with the upper half 
plane. We need to fix a loop ( C C \ Z which intersects 7 exactly twice and such 
that each component of C \ (7UC) contains exactly one point of ^.(7). Then we take 
Re(7r7([<£>])) to be within a bounded distance of n such that \a™ o (p(()\ is minimal. 
Up to bounded distance, this normalisation is independent of the choice of C\ 

Theorem. — Let yo, yi, 2/2 £ T(Z) with yj — [fj\. Take any y — [p] G [2/05 -

(1) There exist Ko > 0, rrio > 0 such that the following hold. Let a be a loop which 
is mo-Pole-Zero on £ C [yo-iVi] C T. Then £ is a union of two segments £Q and £\, 
such that for all y G £j there are y', £[• with y' G £j C [^,¿/2] such that y' G T(a,£o), 
and 

|Re(7ra(y)) -Re(^(^)) l ^ K0. 

In addition, given > 0, there exist K\ > 0 and rri\ > 0 such that if a is m\-
Pole-Zero along £ then either a is m[-Pole-Zero along £'•, or £j and £'• have length 
< K1. 

(2) There exist parameter functions r, s, A such that the following hold. Let a 

be a long v- thick and dominant gap along £ C [2/0? C T for parameter functions 

r, s, A. Then £ is a union of two segments £0 and £1, uniquely determined up to 

moving the endpoints a bounded distance, such that for all y G £j there are y', £'• with 
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yr G £'a C [2/7,2/2] such that y' G T(da,So), and 

da(y,y') ^ C(v). 

In addition, if parameter functions r', s', Af are given then for suitable choice of A, 
r, s given these, and two more functions v\, A\ : (0, 00) —* (0, oo), either a is long 
v\{y)-thick and dominant along £'3 for parameter functions A', r', sf, or £j and £'• 
have length ^ A\(u). 

(3) If y G £3 and y' are as in either 1 or 2 above and w G [2/,2/j] with w, (3, fi 
satisfying the conditions of y, a, \i in 1 or 2 above, and a n /3 ^ 0, then w G and 
w' G [yr,Vj\, where /i.j are defined relative to fi as the £j to £. 

Idea of the proof — The key is a characterisation of loops 7 such that |^(7) | (equiv
alent ly ^ ( 7 ) | ' ) is bounded, because in order to find y' with da(y, y') ^ C(v), we need 
to find y' such that \(pf(j)\ is bounded whenever 7 C a and |<£>(7)| is bounded. We 
need the following definition for the proof of 15.8. 

15.9. Almost-bounded loops, and a lemma. — For a loop 7 and [up] G T(Z), 
define 

\<p('y)\" = \<p('y)n(c^<p(z))>eo\' + 

/3 
nB(y), 

where the summation is over loops /3 with [(/?] £ T(/3, £o) such that /3 n 7 ^ 0 and 
71^(7) — # ((^(7) fi^(/3)), where ¿(/3) is an arc between the components of dS((3, [<£>], £0) 
which meets these components at right angles (with respect to the Poincaré metric. 
We say that ^(7) is almost bounded if 1^(7)\" is bounded. Roughly speaking, this 
means that the intersection of ^(7) with (C \ ip(Z))^£o is bounded — but there is 
also a bound on twists round short loops. 

We shall use the following criterion to prove 15.8. 

Lemma. — Let [2/0,2/1] C T{Z) be any geodesic, and write yj = [<Pj]. Let [tp] = y G 
[2/o,2/i]- Let q(z)dz2 be the quadratic differential at y for d(y,yi). 

The following holds for a sufficiently large constant DQ = Do (6) > 0. Let a be a 
DoM-Pole Zero loop at y (15.8). Let jf intersect a essentially. Let \(p(y n a)\q > 
ó"1\(p(Ya)\q}-. (See the end of 14-5 for this notation.) Then 

( i) M\M<y)\' < IvoCV)!'-

A similar statement holds for (fi replacing cpo if \(p(jf f l a)\q ^ 8~1\ip(j' n a)\q^. 

Given a function Co : (0,1) —> ( l ,oo) , there are functions r, A, s as in 15.8, but 

this time of variables (V, 8) G (0, l)2, and there is a function C\ : (0, l)2 —• (1, 00) and 

a constant DQ such that the following hold. Let a be a long, u-thick and dominant 

gap for y, [2/0,2/1]; r? A7 s- Let 7 C a with \ip(l)\ ^ C$(v). Let f fl a / 0 , Let 

l¥>(7% 0 - 1 l ¥ > ( 7 % , - Tfeen 

(2) IVo(7)lV(7 'n5(a)) | ' ^ C^, S)\MY)\'• 
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A similar statement holds with Lp\ replacing (fo, if \(p(Y)\q ^ S~x|<^(7')• 
Conversely, suppose that |^(7)|// is sufficiently large given Al, for all [if] E [yo?2/i]-

T/̂ en there are 70 ant/ 7^ both intersecting 7 transversally, with no transversal inter
sections between 70 and j[, such that, for both j = 0 or 1, 

(3) | ^ ) I ' M < 1^(7)1'. 

Remark. It would be preferable to have a necessary and sufficient condition for 
|(^(7)| to be bounded. The above falls somewhat short of this, but can be improved 
upon in some circumstances, as we shall see. 

Before we prove this, we need the following. 

15.10. Lemma. — Let Q± be the expanding and contracting foliations of a quadratic 
differential q(z)dz2 at [if] E (T(Z))^£o. Let a decreasing function e : (0, 00) —> (0, 00) 
be given. Then there is a decreasing function L : (0, 00) —•> (0, 00) such that, given 
<5 > 0, one of the following holds. 

(1) There are a nontrivial nonperipheral loop j , and L ^ L(5), such that 

\<P{l)\q = L a7ld 1 ^ ( 7 ) 1 + ^ S ( L ) ' 
(2) We have £+ D £- / 0 for any segments £± of Q± with £+ and \£~\- ^ L(ö), 

\t+\+>5. 

Proof. — Let TV = 4 # ( Z ) and let the function g be defined by 

g{L') = 
9.N 

e(2NL')' 

Let gJ denote the j ' th iterate of g. Now define 

L(S) = 
N-l 

3=0 
gH2/6). 

Fix a segment £^ of Q+ of length 5. Suppose that 2 does not hold for at least one 
segment of length L(S) of Q_. Lift to the surface supporting the orientable cover of 
the foliation Q+, which also supports the orientable cover of Q-. Let A denote a lift 
of the £/_|_-leaf segment £+. So now we can assume that Q± are orientable foliations on 
an orientable surface, and it suffices to find a closed loop 7 on this surface of length 
L < L(5) with |7|+ < z(L)- Such a loop with automatically project to a nontrivial 
nonperipheral loop. 

Take the union of all £/_-leaves of length ^ L(5) which start on A and end the 
first return to A, or at length L(5), whichever comes first. Then this union of leaves 
is a surface S with boundary (by our assumptions), which is also a union of ^ N 
rectangles, with base on A, with opposite side also on A if the height is < L(S). The 
boundary of the surface is contained in the union of the sides of the rectangles, 
and ^ 2N Q+ segments, the sum of whose widths is ^ 26, since the area is < 2. At 
least one of the rectangles has width ^ 8/N. Order the rectangles as Ri, 1 ^ i ^ m 
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such that Ri has width Ax, height Lz, and Az+i ^ A ,̂ Ai ^ 5/N. Then Li ^ 2/A^, 
since the total area is 2. (We took a double cover of a surface of area 1.) Then either 
there must be 1 ^ i < m with A,+i < e(2NLt)/N and L3 ^ gJ~1(2/S) for j ^ i, 
or Lrn ^ grn~1{2/5) and S has purely leaf boundary. We put i = m in the second 
case. Then consider the surface formed by Uj^iRj, which again has boundary. In its 
boundary, we obtain a loop <p(j) with 

M 7 ) l - ^ 2 
j<i 

Lj = L < 
m — 1 

J=0 

g*(2/ô) ^ L(ô), 

1 ^ ( 7 ) 1 + ^ 
j>i 

A? ^ e(L), 

where the last sum in the above is interpreted as 0 if i = m. • 

15.11. Adapting to thin part. — Lemma 15.10 implicitly makes sense if [p] G 
T<£{). However, the following version for [<p] G T<£{) is proved in exactly the same way, 
and will be useful. We shall always apply it when 3 is assumed not to hold. 

Lemma. — Let Q± be the expanding and contracting foliations for a quadratic dif
ferential q(z)dz2 at [up] G T(Z). Let S C C \ <p(Z) have good boundary (9.4), and 
q-area a. Let a decreasing function e : (0, 00) —> (0, 00) be given. Then there is a 
decreasing function L : (0, 00) —>• (0, oo) and a constant C > 0 such that, given S > 0, 
one of the following holds. 

(1) There is a loop 7 with (/9(7) C S such that \p>(^)\q = Ly/a ^ L(S)y/a and 

№(7)1+ < e(L)y/E. 
(2) We have £+f~]£- 7̂  0 for any segments £± of Q± in <p{S) with ^ Lyfa, 

\e+\+ >dy/E. 
(3) \(dS)\q2e(L{6))y/E/C. 

Proof. — This is exactly the same as 15.10, except for a couple of relatively minor 
points. The first is that the total area is a, so all length measurements are multiplied 
by y/a. The second is that G--leaf segments can leave 5, so that we take leaf segments 
starting from A up until first return to or exit from S (the lift of S to the orientable 
cover), whichever conies first. If we assume that 2 does not hold, we can then deduce 
1 or 3. The closed loop as in 1 might be formed by taking a segment between two 
different components of dS and doubling back along this. • 

15.12. Proof of 15.9. — Let q(z)dz2 be the quadratic differential for d(y,yi) at 
y — [<p>]: with stretch qi(z)dz2 at y\ — [<pi]. 

We consider the case when a is a loop first, because then the idea is particularly 
simple. Let T be the annulus in S(a, [p]) satisfying the Pole-Zero Condition and of 
modulus > Df)M. Let 

(1) W y n a ) | , , + > % ( V n o ) | , . 

ASTÉRISQUE 288 



CHAPTER 15. TRIANGLES OF GEODESICS 217 

Then (p(7/) passes through this annulus in a direction bounded from stable. Then 
consider stable leaves starting from ^ ( 7 ) . Any one will cross p(^i') at least D'0M times 
in T, for D'Q arbitrarily large if D0 = Do(S) is large enough. As we move along the 
geodesic towards [pi]: the stable leaf segments contract. Take any [ip] on the geodesic 
between [ip\ and [pi] with corresponding quadratic differential p(z)dz2. Every point 
on 0 ( 7 ) in any S((3, [I/J]) is matched with K'0 points of V;(77)- The matching preserves 
I • |Pj_|_-length, which is boundedly proportional to | • \' on any bounded type subsurface 
of C \ ip(Z). It follows that, assuming Do = Do(5) is large enough, 

\Ml')\' > M\V1 (a)\', 

as required. 
Now let a be a gap which is long distance thick and dominant at [p] for [?y0,2/1], and 

functions r, A, s, and that is, [p] is in the centre of a segment of length ^ 2A(z/) of 
[Uo, Hi] nT(da, r(v)) H (T(A(a))^u with a(da, [p)]) < s(v)a(a, [p]). As before, assume 
without loss of generality that (1) holds. In what follows, constants CH depend on v. 
Let R be a rectangle in S of g-area ^ a(a, q)/C2, bounded by two unstable and two 
stable leaf segments, and such that there are n segments of ^ ( 7 ' ) crossing between 
the stable leaf segment d-R in dR, with n ^ \<p(jf H a)\'/C3 and n > 1. Then by 
15.11, one of two things happens, for a function LQ(V) given e{L,v). 

a) A stable leaf segment of length ^ L0 — Lo(u) starting from any point of p>(~f) 
crosses an unstable side of R. 

b) For some L ^ Lo there is a nontrivial nonperipheral loop 7 " C a such that 

|y(y")|q < L 'a(a,q), \(p(-y")\q,+ «S e(L, v) a(a,q). 

Now take s(L, v) — L~le~8jr ^^lv. The large distance dominant area condition for 
suitable functions r, A, s means that b) does not hold, because b) implies an entry 
into T(7r/,z/) for some 7 " C Int(a) within time \ log(L0(zv) + 27r2 # (Z)/h>). So every 
point on ^ ( 7 ) can be joined by a stable segment of length $J Lo to n points on Lp(^' Do) 
in the rectangle R. At most boundedly finitely many points on (^(7) are matched with 
each set of points on ^ ( 7 ' Ha). As before, the matching preserves | • \q̂ + length, and 
persists as we move along the geodesic. Again, | • is boundedly proportional to 
I • and to I • \' restricted to any bounded type subsurface of C \ ipi(Z), on each of 
which every point of (^(7) is matched with n points of (pHr). So we have 

n\Ml)\' < C 4 1 ^ ( 7 ' ) I ' , 

that is 

(2) \ f i h ) \ ' \ f h ' n s ( a ) ) < < C1 \' ^ d i ^ c y ) ! ' , 

as required. 
Now we consider the converse. So suppose that \p(^f)\" is sufficiently large for all 

[<p] G [2/0,2/1]- We can assume ^ ( 7 ) is in good position with respect to the quadratic 
differential q(z)dz2 at any point [cp] G [[v^oM^i]]- Let qo(z)dz2 be the quadratic 
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differential of d([cpo], [<Pi]) at [</?0], and let qi(z)dz2 be the stretch at [cpi]. We can 
find [if] G [[p>o], Vfi\] such that one of 1-3 holds. By 15.6, given D\, we can assume 
that every gap at [<p] is either long distance thick and dominant, or Di-subdominant, 
and that every loop is either Df1 -dominant or Z)i-subdominant. The constant C5, 
as before, depends on v, for suitable chosen functions r, s, L. 

1. There is a union £ of segments of ̂ (7) , with all segments of | • |'-length ^ I/C5, 
with \£\' ̂  |(^(7)|7C5, such that, for any £x C £, 

(3) |l1|q,+ > 
|l1|q 

C5 

and d([ip], [<po]) ^ C5. 
2. This is similar, but with | • \q^ replaced by | • and d([</?], [<£i]) ^ C5. 
3. There are unions £ and £' such that 1 holds for £ and 2 holds for £'. There is no 

restriction on the position of [p] on [[tpo], [<£i]]- It is possible, but not inevitable, in 
this case, that £ — £'. 

Now let [p>] G [[v?o], [^1]] be such that 3 holds. Then there is a gap or loop a such 
that 

\ens(a, M ) f > 
|y (y)"| 
C * # ( Z ) Y 

If a is long distant thick and dominant, take any 7^ C a with |<£>(7i)|' bounded and 
such that 7 and r)[ have at least one essential intersection. Replacing 7 by 7^ and 7' 
by 7 in (2), we have 

(4) l¥>i(7i)l'l¥>(7na)|' < C i lv iMI ' . 

This then gives (3) of 15.9 if \tp'(^)\" is sufficiently large for all [p'\ G [7/0, Vi] given M. 
If a is a subdominant gap, then we can still find 7^ C a such that 7 and 7J have 
at least one essential intersection, each point on ^(7^) locks with ^ Mp){^ fl O)/CQ 
segments of (^(7 n S(a) along short stable segments and |v?(7i)|' is bounded. We can 
do this, because every stable segment in (p(a) (taking (p(da) in good position) has 
length o(\(p(da)\q). Then, again, we obtain (4) above, for suitable C\. Similarly, we 
can find 70. If 70 and 7[ are in different gaps then they are obviously disjoint. If they 
are in the same gap a, we can clearly take them to be disjoint if a is subdominant. If 
a is long distance thick and dominant, we claim that we can take 70 = 7^. Note that 
if 7' C a for a large distance dominant at ip and |<^(7')| is bounded, then |^(7/)lg is 
boundedly proportional to both of |^(7/)|g,±- So the claim holds. So in all cases we 
obtain (3) of 15.9, as required. 

If 1 holds, then we only need to construct 7J, and can then take 70 = and 
similarly for 2. • 

15.13. Proof of 1 of 15.8. — Now we consider the case of 15.8 when a is a 
mo-Pole-Zero loop (for suitable mo), which is the simplest case. Fix a loop /3 which 
intersects a just twice. Consider, for varying n G Z and [ip] G [yi.Uj] (i, j G {0 ,1 , 2}) , 

ASTÉRISQUE 288 



CHAPTER 15. TRIANGLES OF GEODESICS 219 

the function h^(n) = \^P{o~™(fi))\', and let n([^]) denote the value for which this is 
minimal. Let ni = n([<^]), i = 0, 1, 2. Let Mij be the maximum modulus of an 
annulus homotopic to (p(a) for [</?] G [yi,yj\- As usual let ma(yi) denote the modulus 
of S(yz, a, eo) — zero if S(yi, a, 2EQ) = 0 . We shall show the following, which is not 
needed for 15.8, but will be needed later: 

(1) \m - rij\ + \(m(X(yl) + ma(yj)) ^ CMij. 

Fix i and j . Let y[ be the point nearest yi on [yi,yj\ such that y\ G T(a,2eo) 
and 5'(QF,£:o) contains an annulus of modulus ^ 1 satisfying the Pole-Zero Condi
tion. Let y'j be similarly defined. If there are no such points we can simply define 
y'i ~ Vj = Vi- We also claim that n ([?/>]) is constant between yi and y[, and similarly 
between yj and y'j, and varies monotonically between y[ and y'j. This will suffice to 
prove 1 of 15.8, since 

n ( M ) = Re(7Ta([̂ ]) + 0 ( l ) 

for [4>] G [yi, y^]. 
The n for which the minimum of occurs can be recognized from the good 

position of the loops ^ ( ^ ( Z ^ ) ) with respect to the quadratic differential at [ip] for 
d([ip],y3). Write (]' = a^(P). For any [tp] G [yi,yj], the good position of ^(cr™([3') 
is a union of up to four segments, at most two of which are close to segments of 
'ip(ft') and the others to segments of ip(a) (twisted round 0(m) times). If the good 
position of ip(a) consists of arcs at more than one angle, then the good position of 
ip{v™(t3')) is exactly on top of tp(a) U tp([3') all [ip] G [yi,yj]> If this is true then 
the minimum of is constant for [ip] G [yi,yj], that is, nl = rij. If V ; ( a ) is â  
constant angle with the foliations of the quadratic differential for d([ip],yj), then the 
minimum of can only change if relative lengths change, that is, the segments 
of stable (or unstable) foliation along which 'ip(p™{P')) is locked with ip(a) U ip(P') 
grow proportionally much longer than ip(a) U 'ip(P'). This is only possible if there is 
W £ [UiiVj] with [tp] G T(a,eo) and a is a ra^-Pole-Zero loop on at [tp] (15.8) for m'x 
bounded from 0. The more needs to change, the larger m\ needs to be. So n([ip]) 
remains constant on [yt, y^] U [y'j, y3]. It also varies monotonically on [y[, y'j] to within 
(9(1), that is, if [ip], [ip'], [ip"] are successive points on [yi,y'j] then n([il)"]) — n([tp']), 
n([ip']) — n([tp]) have the same sign unless one of these is 0(1) . 

Fix a set A(a) such that all points of A(a) are in different components of C\(aUf3'). 
We now regard a, P as loops in C \ A ( a ) . Write |-|i for length in surfaces C\ip(A(a)). 
Then for [tp] G [y'i, y'j], n([ip]) = n'(7ra([yj]) + 0(1) where n''([ipi]) is the value of m for 
which [ipi«(P))\i is minimal. Then n'(7ra([yj]) = Re(7ra([̂ ]) + 0(1) . The path in 
the UDDer half-olane 

{ua([U]) : [U] E [y', y'j]} 

is within bounded distance the arc of a circle with centre on a horizontal line on or 
above the real line, but below both 7ra(^) and ira(y'j). We have Im(7rQ(^)) = ma(yl) 
and similarly for y'-. The maximum of raa (?/•), mŒ(y'0) is ^ the maximum of ma(yi), 
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ma(yj). The highest point on this circle arc is Mij + O(l ) , and satisfies the bound 

(!)• 

15.14. Before starting to prove 2 of 15.8, we need to bound growth in gaps disjoint 
from the long thick and dominant. 

Lemma. — Fix long thick and dominant parameter function A, r, s, and Ao > 0. 
Given these there exists M such that the following holds. Let a geodesic segment £ 
and a C C be a maximal subsurface up to homotopy relative to Z with the property 
that a is disjoint from all (A,r, s) long thick and dominant gaps, and Ao-Pole-Zero 
loops, along segments £\ C £. Suppose also that that a\Z is nontrivial nonperipheral. 
Then 

(1) \<p(da)\^M for all [if] e £, 

(2) M~1 <: 
|y(y)|' 

№(7)l' 
^ M for all [ip], [ip] G l , 7 C Int(a). 

Proof. — First we show that (1) implies (2) for some M± = M\(M) replacing M. 
It will then follow that if (1) holds then (1) and (2) hold for some possibly larger 
constant M. We proceed by induction on ~x(a x %)•> where \ denotes Euler charac
teristic. If a\Z is an annulus there is nothing to prove. By hypothesis, a intersects no 
long thick and dominant gaps (for parameter functions A, r, s) or Ag-Pole-Zero loops. 
It follows that, except on a segment of £ of bounded length, a(a, [p]) = o(a(da, [</?])) 
for [ip] along £, because otherwise we would have £ long and a(da., [p>]) = o(a(a, [up]) 
along all but bounded length of £ and we could find a long thick and dominant in
side a. So: £ — £\ U £2 U £3 where £2 is bounded and for [p>] E £\ <p(da) is mostly in 
the stable direction and there are finitely many homotopy classes of arcs ( crossing a 
between boundary components such that points on most of the length of <p(da) are 
joined to other point on ip(da) by arcs in the homotopy classes <p(C) of comparatively 
short unstable length. A similar statement holds for ¿3, with stable and unstable 
interchanged. If the arcs ( cut a into cells then we have (2) with £\ replacing £. If 
not, then for any complementary component ¡3 of the arcs ( in a, we have (1) with 
/3 replacing a and £\ replacing £. Then we also have (2) for (3 for a suitable M i ( M ) , 
by the inductive hypothesis. So we have (2) for suitable M2(M) for a with £\ replac
ing £. Similarly we have it for £3 replacing £, and since £2 is bounded, we have (2) for 
suitable M3(M). 

So now it remains to prove (1). Along £ we have a finite (but arbitrarily large) Ar, 
successive segments £n,\, 1 ^ n ^ TV, subsurfaces aUii D a, 1 < n ^ N, such that £n^i 
and .£n+i5i are adjacent for all n, aUji is a union of gaps and loops with \ip(dan,\)\ 
bounded along £n and (3 Pi arh\ = 0 for any (A,r, 5) long thick and dominant gap (3 
or Ao-Pole-Zero loop (3 along a subsegment of £n^. We can obviously arrange that 
an ^ o7n+i for all n. Then the conclusion of the lemma holds if we replace £ by £n. 
Now we amalgamate segments, and take intersections of gaps, as follows. For all 
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^ ^ A^, some N2, we shall have an^ = CIM,I D ojm+i,i for some m. We start with 
«1,2 = ar,ina2,i- If aU)2 = am,inam+i,i then we take an+i,2 = «m+2P,i nam+2p+i,i 
for the least p ^ 1 such that cvm+2p,i H am+2p+i,i 7̂  AN,2- If there is no such P then 
we take n — N2 if A" is even, andA^2 = n + 1, CVN2,2 = CYN,I if AT is odd. We 
take £n^2 to be the union of £M+R,I for 0 ^ r < 2p. Then \(P(dan^)\ is bounded 
for [IP] G ̂ n,2- To see this, it suffices to see that |<^(d(am,i PI cvm+i,i))| is bounded 
(up to homotopy) for [<P] G £M,I U ̂ ™+i,i, for each m as above. This follows since 
|(^((9am+i,i nam,i)|) is bounded for [P] G ^m,i up to homotopy — since it is bounded 
at the right endpoint and (1) implies (2) — and hence is bounded along £ra^x U£M+I,2, 
since \(P(daM+I^I)\ is bounded for [CP] G £M-\-I,I- Similarly |<^(#amji D am+i,i)| is 
bounded for [P] G ̂ m,i U ̂ m+i,i- Since we have similar bounds for m + 2z, z ^ p, 
we get the required bound on \(P(dan^2) | for G £n,2- We continue the process, 
defining segments £n^ and e*n,/c- The process terminates for some k bounded in terms 
of #(2"), because an,k is properly contained in some amjfe-i, except for n = Nk, when 
we simply have Q.MK,K C CTNK-^K-I- In fact, for /c bounded in terms of #(Z) we have 
Nk — 1 and we must have = ci and result is proved. • 

15.15. Proof of 2 of 15.8: finding one almost-bounded loop. — Take any 
[<P] G [2/0? • First, we consider a long, z/-thick and dominant a at for [y0, 2/1], and 
suitable functions r, A, s. Write q(z)dz2 for the quadratic differential for d([P],yi) 

at [v?]. Let 7 C a with | ^ ( t ) | ^ K. We start by showing that there is [<PF] G 
[2/0,2/2] U [2/1,2/2] such that 

(1) \f\7)\" ^C(K,v). 

Suppose for contradiction that \P>'(^)\" ^ C(K,v) for all such [<P'\. Then by (3) of 
15.9, assuming that C(K, is) is sufficiently large given a constant M, there are loops 
7o, 72, 7 i , 72 7 all intersecting 7 essentially, and so that 70, 72 have no transversal 
intersections, neither do J[ and 72, and 

(2) (1^2(72)1' + |V2(72)I')M < 1^2(7)1', 

M 7 o ) | ' M < M 7 ) f , \Ml'i)\'M ^ 1^(7)1'. 

Assume as usual that the images under (P of all loops are in good position with respect 
to q(z)dz2. By (2) of 15.9, it follows that, if M is sufficiently large given Ô, 

(3) W7ona)|9>_ ^ %(7o Ha)\q, 

(4) K 7 i n a ) | g , + < % ( 7 i n a ) | g . 

Since 7oH72 = 0, we deduce from 15.11 that, if M is sufficiently large given 5, (3) also 
holds for 72, and (4) also holds for 72. It follows from 15.11 that, if M is sufficiently 
large given N, then 72 and 72 have ^ Â  intersections in a. 

Now we claim that the method of 15.9 implies that, for a suitable C\ = C\(y), 

(5) IV2(7)l'<C'i(|¥?2(72)|/ + l¥'2(72)l'). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



222 CHAPTER 15. TRIANGLES OF GEODESICS 

which will contradict (2), and hence give (1). To see this, let p(z)dz2 be the quadratic 
differential at [ip] for d([<£>], 1/2)- Then we only need to lock all of 92(7) to segments of 
^(72 U72) by stable foliation segments (for p(z)dz2) of length 0(1^2(7) |p). We see this 
as follows. Continue to take ^(72), ^(72) m good position with respect to q(z)dz2. 
Now |v^(7)| is bounded. So 92(7) is in a subsurface S' of S(a) bounded by segments 
of leaves of the stable and unstable foliations of q(z)dz2, and we can ensure that (/9(7) 
is bounded from the boundary of S'. Write dS' = d+Sf U d-S'', the partition into 
unstable and stable leaf segments. Since there are long segments of 92(72), ^(72) close 
to stable and unstable foliations respectively, by 15.11, we can find segments £2, £'2 
on ^(72), ^(72) m S(a) such that every component of d+S' is close to a subsegment 
of £2, and every component of d-S' is close to a subsegment of t2, and such that, for 
a suitable constant C2 = C^z^), 

N ' + 141' ^ c2|v(7)l-

Then we can find a surface S", with S' C S" C S(a), with boundary a subset of ̂ 2 ^ 2 , 
such that S" \ (̂ 2 U^2 U <p(Z)) is a union of at-most-once-punctured topological discs 
and containing ^(7) in its interior. 

Then (S"',^2,^2) maps under a bounded distortion homeomorphism r isotopic to 
the identity to good position with respect to p(z)dz2. It follows that every point of 
r o (/2(7) can be locked by a bounded segment of the stable foliation of p(z)dz2 to 
T o (¿2(72 U 72). Therefore, by the method of 15.9, (5) holds contradicting (2) and 
hence (1) holds for some [(p'\ E [2/0,2/2] U [2/1,2/2]- D 

15.16. Proof of 2 and 3 of 15.8: finding other almost-bounded loops 

Assume without loss of generality that [cp'] E [2/0,2/2]- Take any [ip] E [2/0, M] and 7' 
such that 7' C ¡3 where /3 is mo-Zero-Pole or long thick and dominant at /3, /3D a 7̂  0 
and |'0(7/)| is bounded. We are interested in the case [ip] = [ip], a = 13 to prove 2 of 
15.8 and [ip] C [2/0, M ] , fl /3 / 0 for 3 of 15.8. We no longer need a to be a gap 
— only that 7 does not satisfy the criterion of 15.9 to be not almost bounded. We 
claim that \(p"(^')\ is almost bounded for some [(p"] E [2/0, [p']]- We shall show this 
by a method similar to 15.15. We can assume that either a C (3 or d([ip], [(p]) is large 
enough to ensure that (by 15.11 and the property ip(j) H ̂ (P) 0> that 

is, /3D 7 7̂  0. Suppose, for contradiction, that l ^ " ^ ' ) ! " > Mi for all [<p"] E [2/0, [<£']]• 
Then by 15.9, if Mi is sufficiently large given M , there are disjoint loops 73 and 74 
such that 

(i) \Mi3)\'M < M V ) I ' , 

(2) (1^(74)1'+ |V'(7)I')M < b'(7 ')l ' -

Then 1^(73 H /3)|g must be dominated by ^(73 C[(3)\q-. So ^(73) has long segments 
almost tangent to the stable foliation. Hence so does ^(74), by 15.11, simply because 
73 and 74 are disjoint. But \ip(^f\(3)\q^+ is boundedly proportional to |^(7)|g. Assume 
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as usual that '0(7'), V;(7) are m g°°d position with respect to q(z)dz . We can find a 
union Si of topological discs in S(/3, [I/j]) such that each topological disc in the union 
is bounded by stable segments and segments of V;(7 Y\ P), and '0(70 C S\. The stable 
segments can be taken as subsegments of a sufficiently long stable segment starting 
from any x G S((3, [ijj]) by 15.11. This means that we can replace the stable segments 
by segments of ̂ (74)- So we have a union S2 of topological discs bounded by segments 
of ^ (7) and ^(74) with 'ip(Y) C S2. The topological discs in the union have bounded 
diameter. Then, as before, we can transfer the whole configuration to have good 
position with respect to the quadratic differential at [p] for <i([0], [<£'])• Working as 
before we obtain, for a suitable C\, 

(3) |y'(7')l ' <C-i(lv'(7) | , + lv'(74)|'). 

contradicting (2) if M is large enough. • 

We are now in a position to apply the following. 

15.17. Lemma. — The following holds for a suitable function C2 '• (0,1) —» (1,0c), 
and for suitable long thick and dominant functions r, s, A, given functions Co, C\ : 
(0, 1) —• ( l ,oo) and an integer N. Let Y, Y'0, T[ be loop sets in a subsurface a such 
that: 

a) a \ (UT U Z) is a union of discs, once-punctured discs and annuli parallel to 
da, and similarly for Y0, Y[, and similarly for L7o,7i} where 7̂  is any loop in Y'3, 
j = 0, 1 and # (7 H 7') $C TV for any 7, f e T u r j U 1^; 

b) there are points [p'o], M , W\] with [p] G [[p'o], W\] such that a is long, v-thick 
and dominant (for r, s, A) at all points of the geodesic segment [[^Q], [<p>i]] and such 
that 

\f(T)\ < c o m , i^;-(r;.)i < c o m , 3 = 0,1; 

c) there is a geodesic segment [2/0,2/2] such that, for any 7 G T U T0 U Y[, there is 

some [cp7] G [2/0,2/2] such that |<^7(7)|" ^ C\(u). 

Then there is \(p'} G [2/0,2/2] such that 

(1) lv ' ( r ) | " ^ C2{v). 

Proof. — It suffices to prove (1) for some for V- replacing T, for one of j = 0, 1, 
because any loop of T is a union of finitely many bounded segments of Y'p or for 
{7o,7J} replacing Y for one loop jj from each 1^, because any loop of Y is a finite 
union of segments of 7^, 7^. So now suppose for contradiction that none of these 
possibilities occurs. Then we can choose [p'\ G [2/0/2/2], and loops 7̂  G F̂ -, such that 
\f' (Yj)\" are large for j = 0, 1, and such that there are points [p'-\ on opposite sides 
of [p'\ in [2/0,2/2] such that | ^ (7^) | / / are bounded. Presumably [p'0] G [2/0, [p'}} and 
[^i] ^ [[^'^ 2/2]- and for convenience we assume this — but it does not matter if 
the opposite is the case. Let q(z)dz2 be the quadratic differential for d([ip'], y2). By 
considering cr™, o cr^ (7O for varying (but bounded) n and m, we can make a loop 
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7 C 70 U 7( with bounded intersections with each such that if ^ ' (7) is taken in good 
position with respect to q(z)dz2, then </?'((% U7O fl (3) C ^'(7) for any subdominant 
/3, and (p'(/3 Pi 7) / 0 whenever ipf(/3 D (70 U 7^)) / 0, if /3 is dominant. Every point 
of <//(7o) can be joined along a bounded stable segment to a different point of (//(7) 
and every point of ^/(71) can be joined along a bounded unstable segment to a point 
of p>'(^). It follows that |(^//(7)|// cannot be bounded in [[(/?'], 2/2], because |^//(70])|// 
is not bounded there, and similarly cannot be bounded in [2/0, [<&']]• Yet |^(7)| is 
bounded. So we have a contradiction to 15.15. 

15.18. Lemma. — Under the same hypotheses as in 15.17, \(p'(Y)\ ^ C(v). Moreover, 
we can assume that a is long thick and dominant at [ip1]. 

Proof. — Since da is in the convex hull of Г, \<p'(da)\" ^ С$(у) for a suitable 
function C3. There is [p^] G [2/0, WW with |</?о(го)1" ^ C2(z/). So we also have 
\ц>о(да)\" ^ C2{y). Similarly, given an integer N\, assuming the long thick and dom
inant parameters are suitably chosen, for 0 ^ j ^ N1, we can construct loop sets Г_^, 
W-U+i)] e ЫШ-j]] ^ d WL{3+1)] e [уоЛ^-j]] such that | ^ ( Г _ , - ) | ^ C o M , 
W-j(v-j)\" ^ С2{У), and property a) of 15.17 holds. So then \^(да)\" ^ C3(u). 
By 15.9, da. does not intersect any long, thick and dominant gap or loop along 
[[v^-jvJ' [^o]]- 1^-14, there is a not necessarily connected union cv0 of gaps and 
loops, ao D da, such that дао is bounded along 7vJ' [^oll an(l (2) °f 15.14 holds 
for all 7 С Int(ojo). Then all have boundedly many intersections with a0. This is 
impossible unless da С дао up to homotopy. So da is bounded along [[v?" tvJ, [^o]]-
Then any long thick and dominant gap intersecting a along a segment of [[</?" tvJ, [p'o\] 
must be contained in a. Suppose that such a gap (3 is properly contained in a. Then 
it must be long, thick and dominant along [[pff^No^ [р-к]] f°r ^2 arbitrarily large 
by suitable choice of the long, thick and dominant functions. Then #(д[3 П I \ ) is 
bounded for к ^ i ^ к + А з̂, which is impossible. So ¡3 = a. There must be at least 
one long thick and dominant gap along 5 [̂ 0]] by 15.14, if N\ is sufficiently 
large. The only gap which can be long thick and dominant is a. So a is long thick 
and dominant all along [[(/?" ̂ J, [p'o]]^ an(l the bops of da are bounded. In particular, 
we have (^/'(Г' •) ^ C±(N\,v) for a suitable constant C4. Since N1 only has to be 
chosen suitably depending on v, we obtain \p>"_ 3(Y'_ 3)\ ^ C(v) and |(/?'(Г)| ^ C(v) for 
suitable choice of function С. • 

15.19. Essential disjointness of £0, ̂ i- — Suppose that y — [p], £, a are as in 2 
of 5.8 and we also have w = [ip] G £ and w, y G £0 H £\, with w G [2/0, y]- Let y' = [p>f], 
w' = [ip'] be the corresponding points on [2/0,2/2] and y" = [<p"], w" = [ip"] the points 
similarly defined on [2/1,2/2]- Then we have w' G [2/, 2/2] and y" G [w"',2/2], since we 
have already proved 3 of 15.8 in the gap case in 15.16. Fix loops 7 C a and £ C (3 
such that 1^(7) I < M, ^ ' ( O l ^ M and similarly with ip", if" replacing <//, ip'. By 
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(2) of 15.9 applied to [2/0,2/1] = [2/7 2/2] we have 

1^2(01' <Ci ( i / )b2 (7 ) | 
M 

1^(7)1' 

and applying to [y0,yi] = [«/',2/2] we have 

1^(7)1') << C1 (v) №2 (01 
Af 

\<P"(Q\R 
If <if ¿7, is sufficiently large we obtain a contradiction. • 

15.20. Proof of 3 of 15.8 when :i is a loop. — Let // = [p). y' — \p'\ a, w. 
ft be as in 3 of 15.8. Fix 7 intersecting ft exactly twice, and denote n which 
minimises \ij;(cr™((3))\. Then since w G [2/0,2/] we have n(w) G [n(yo),n(y)]. Since 
|(^(<9a)| is bounded, n(y) is also the n such that the number of essential intersections 
of o~Vj{fi) with da is minimal, and this is also n(y') since \p>f(da)\ is bounded. So 
n(w) G [n(y0),n(y')} C n(2/0,n(2/2)] and w G /i0-

15.21. How to get short loops in the boundary. — We have the following 
extension of 15.14. 

Lemma. There exist long thick and dominant parameter functions A, r, s, and 
A0 > 0 and an integer No such that the following hold. Given e\ > 0, there exist 
Ai > 0 and an integer N1 > 0 such that the following hold. Let £ C T be a geodesic 
segment. Let 7 be a loop which is disjoint from, all (A,r, s)-long thick and dominant 
gaps and Ao-Pole-Zero loops along £. Let 7 be in the convex hull boundary of a set 
of N (A, r, s) long thick and dominant gaps and A0-Pole-Zero loops ¡3, where la) or 
lb) holds, and, 2a) or 2b) holds 

la) N ^ N0. 
lb) Any two of the (3 intersect. 
2a) Each gap ft is (A,r, s) long thick and dominant along a segment of £ of length 

^ Ai, and each loop ft is a A\-Pole-Zero loop along a segment of £. 
2b) N ^ N\. 

Then |(^(7)| < ti for at least one [tp] G £. 

Proof. Write £ = {[(ft] : t G [0,T]} where d([ip0], [ipt]) = t and let qt{z)dz2 be the 
quadratic differential for £ at [pt]- For any loop 7', write 

F{W) = \VT(I)\QT. 

We are going to prove the Lemma by induction on the topological type of the convex 
hull of the ft as in the statement of the lemma. 

By 15.14, we know that there is M > 0 such that |</?(7)| ^ M along £. This implies 
that, for any 7' which intersects 7 or is not separated from 7 by any loop of Poincaré 
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length < £o, 

(1) F(tn) ^C \MF(t,Y), 

where C\ — C\{so) depends only on SQ. TO prove the lemma, we only need to 
strengthen this, and in fact, in one respect it suffices to prove a weaker statement. It 
suffices to show that, for suitable S\ > 0 given e\ > 0 (in fact, Si — e~k^£l for some 
integer k will do), there is t such that 

(2) F(*,7 K 5iF(t,7') 

for at least one 7' such that ^¿(7') has bounded Poincaré length and 7' is not separated 
from 7 by any 7" such that Lpt{l") has short Poincaré length. Let to be the essential 
minimum of F(t,~{). We know that, for suitable C\ (independent even of £0), 

( 3 ) 
ce|t - t0| 

C1 
^ F(t,j) ^ dee1'" '"1 

for some c and to-
We can find in and ah < bt, 1 ^ i ^ m, such that a2+i = 6Z for z < m, a0 = 0, 

&m < ¿0, and loops 7; such that \<ft{li) ^ Ci for t € Ii = [a?;, 6i] and 7?; is not separated 
from 7 by any loop 7' such that | ^ ( 7 ' ) | < to for some t E I{. Then for t G [0,T], for 
suitable CI and ^ G /?, 

(4 ) 
cie|t - ti| 

C1 
< F(t,yi) < C1cie|t - ti|, 

and, for all 7^ with 7& H 7̂  ^ 0, or 7̂ . separating 7v from 7 and t G I,,, 

(5) C f ^ ^ t K F f r f r , * ) . 

So now for t € Ik, with t ^ to, we have 

F(7 , í) < C1ei"-tJF(7,<I) < Cf^-'F^.t) < C\ 
Ft^.t.A 
F (yk,ti) 

F(-ïk,t). 

But also we have 

C?e ' ' - fF (7 I ,* I ) < Cfe**-t+*'-,"F(7i,fei) 

< C?e2<^-6')+6'-tF(7fe,6i) < Q5e2(''-6')F(7fc,t). 

So we obtain (2) if either 

(6) C f e ^ - ^ ò - i 

or 

(7) 
C4 FhiM) 

Fhk.t;) 
< g1. 

Of course, we obtain (6) if bt — ti is sufficiently large for some i for which 7 ^ 7 ^ 7̂  0 
or 7^ separates 72 from 7 for some k > i. We obtain (7) for suitable i and k if m 
is sufficiently large, simply because 7̂  and 7^ must then have a large number of 
intersections for some i ^ k, and if 7?; and 7^ have a sufficiently large number of 
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intersections given (7) must hold. Similarly we obtain (2) from analogues of (6) 
and (7) if there exist such intervals I% C [to,T] and loops 7̂  such that either m 
is sufficiently large or ti — ai is sufficiently large and there exists k < i such that 
7i H 7fc / 0 or 7/c separates 7̂  from 7. If either of these occurs we shall say that 
7 is a Si-good convex hidl of loops 7 .̂ So if 7 is a #i-good convex hull of loops 7^ 
|^t(7)| < £i f°r some t: in fact we can take t to be the essential minimum of F(j,t), 
which is a long way from the ends of the interval of s along which |<^s(7)| is bounded. 
If I (fs (7) I is small for s = 0 or T, then this statement is still true if we extend £ to a 
maximal segment £' with |^(7) | ^ M for p> G £'. 

So now suppose that 7̂  satisfy (4) and (5), but that m is bounded. The proof is 
completed if, for at least one i < k, \(pt(ji)\ < £1 for e'x sufficiently small and some 
t G Ii, and 7j fl 7^ / 0 or 7^ separates 7̂  from 7. If m — 1, then 7 = 71 must be 
the boundary of a long thick and dominant along most of [[po], [pr]}, and the proof 
is finished. By abuse of notation we shall write [0,T] instead of [[c^o], [pr]]- SO now 
suppose that m > 1 and 7i ^ 7. This means that for any i the convex hull of long 
thick and dominant gaps and Pole-Zero loops along Iz is strictly smaller than along 
[0,T], because there are none between 7 and 7 .̂ For 7V0 sufficiently large, and A/i, 
Ai sufficiently large the hypotheses of the lemma are then satisfied for this smaller 
convex hull and any given e[ > 0 replacing Si for some i with k existing as claimed. 
So then \(pt(ji)\ < ¿1 for some t G U by the inductive hypothesis, and the proof is 
completed. • 

15.22. We finish with a lemma which shows that for 7rp(z) to be within a bounded 
distance of [ 2 / 0 , H T(dP,eo) for points y0l y[, 15.9 gives a criterion which depends 
only on gaps intersecting ¡3. 

Lemma. — The following holds for" a suitable function C2 • (0,1) —• (l,oo), given 
a constant M2 > 0, and long thick and dominant parameter functions A, r, s and 
mo > 0 given A', r', s' and mf0 > 0. Let ct3- be gaps or loops at y3- = [(p.j] G T(Z), 
j = 0, 1. Let y[- — [<p'j\, j = 0, 1 be any other points such that a3 is a loop or gap at 
y'- and let daj(yJ:yj) ^ M2. Let z — G [yo^yi], let (3 be long v-thick and dominant 
at z with respect to A, r, s, or mo-zero-pole with (3fl OJO 7̂  0, [3 D a\ ^ 0. Then there 
is z' G [2/0,2/1] such that dfj(z,zf) ^ C2(v) which long thick and dominant with respect 
to A', r', s' or ra0-Zero-Pole. 

Proof. — If ¡3 is a loop we use 5.19 above. Now let (3 be a gap. Take any loop 7 C (3 
such that 1 ^ ( 7 ) 1 is bounded. Then we shall use criterion (3) of 15.9 to show that 7 
is almost bounded at some point on [2/0,2/1]- Let 7Q J[ be two disjoint loops which 
both intersect 7, and hence intersect (3. Then because 70 H 71 — 0 and (3 is long 
thick and dominant, '0(7O), ^{li) are simultaneously boundedly transverse to either 
the stable or unstable manifold for the quadratic differential for d(z,yi). (This uses 
15.11 a loop which was close to the stable manifold would have to be long and then 
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by 15.11 would intersect any loop close to the unstable manifold.) Suppose without 
loss of generality that ^(70), ^(7i ) are simultaneously boundedly transverse to the 
stable manifold. Then they intersect ip(dai) transversely. Then ip(j) is a union of 
finitely many segments with endpoints in ip(dai), each of which can be joined along 
bounded stable segments to VKTO)? and similarly for ry[. This means that at yi, ^1(7) 
is a union of boundedly many arcs with endpoints in ip\{da\), each arc bounding a 
rectangle with parallel side in ipi(70) and adjacent sides in cpi(dai). The same will 
be true for j[ replacing 70, and the same will be true for (p[ replacing tpi, simply by 
applying the homeomorphism (f[ o ^ 1 , which moves Lpi(da\) a bounded distance. So 
then by the criterion of 15.9, 7 is almost-bounded at some point on [y'0, y[] (because 
(3) of 15.9 fails for 7). By 15.16, we obtain a point [ij/] on [y0,y[} where F is almost 
bounded, for any set of loops T which is bounded at [ip] Then by 15.18, we find that 
ipf(T) is bounded and /3 is long thick and dominant at z' = [ipf]. • 
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CHAPTER 16 

HARD SAME SHAPE 

16.1. The main purpose of this chapter is to prove the Hard Same Shape Theorem. 
As one might expect, is a harder theorem with a similar conclusion to that of 9.5. 
It gives conditions under which quadratic differentials have the "same shape" on sub
surfaces. Here, hard is a comparative term only, and it is by no means the hardest 
possible result of this nature. But such results are very delicate, because shape of a 
quadratic differential on subsurface of nonmaximal distance often changes drastically 
under small perturbations. 

In 16.6 we show that the Teichmuller map is Holder, a result which is most certainly 
known, but would be hard to reference, given our context of marked spheres. This 
result is needed in a small way in the proof of Hard Same Shape, but is also used 
to prove a result (16.8) about triangles of geodesies: a result which I suspect can 
be improved using the calculus of Teichmuller distance, and in particular the result 
12.2 that Teichmuller distance is C2, but I cannot currently see how to implement this 
improvement. However, a related result is proved in 16.9, using the same technique as 
in the proof of Hard Same Shape. The last results 16.10-12 (about the minimum of the 
mapping class function) are placed in this chapter for similar reasons: I suspect better 
estimates are possible using the calculus of Teichmuller distance. The calculation in 
the present proof bears some resemblance to that in 16.6. 16.12 also uses a concept 
from Chapter 14: otherwise the flavour of this chapter is closer to that of 10-13. 

16.2. The Hard Same Shape Theorem. — We use the projections 7ra of 9.1, 
and the identification of 9.1, if a is a loop, of na(T(da, eo)) with a subset of the upper 
half plane. 

Hard Same Shape Theorem. — Given M > 0, there are constants C\, L > 0 such that 
the following holds for all sufficiently small e and 5 > 0. Let a C C be a closed disc. 
For j = 1, 2, let Yj C C \ {da) be finite, with Yx fl a = Y2 D a = Y0, # (Y0) ^ 2. Let 

[<^], [ ^ ] G T ( ^ , £ ) \ U { T ( 7 , . ) : 7 c l n t ( a ) } cT(Yhe), v^Ls. 
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Let q3\z)dz2 be the quadratic differential for d([tpj], [ipj]) at [fj], with stretch p3\z)dz2 
at [îpj]. Let [ipj] = [XjOLPj] with Xj minimizing distortion. Choose a point yo G YQ and 
another point y j G YJ\YQ. Normalise so that (fj(yo) = ipj(yo) = 0, (fj(yj) = ipj{yj) = 
oo. Write Zkj for the zeros of q3 with \zk^\ ^ |^/c+i,j|- Let n3 — #{Y3 \ YQ) — 2. 
Write 

Case 1: Qj(z) — 
n j (1 - Z/Zkj) 

YEY^YOI1 ~z/(fj(y)) YEYO 

ay,j 
z - WAV) 

Case 2: Qjiz) = k=l (1 - Z/Zk,j) 

yeYj^Y<M - г/<Рз(У)) 
z-1 

YEYO\{YO} 

ay,j 
z - <Pi(y) 

Normalise further so that for some real X, 0 < À ̂  1, 

Case 1: X 
YEYO 

CLYA = 
YEYO 

AY,2. 

and the points of ipi(Yo) are bounded and bounded apart, and similarly for Yo \ {y0} 
replacing Yo in Case 2. 

Let 

\zk,j\ ̂  M_1 e 27r 

for 1 ^ k ^ n3 or 1 ^ k ^ rij• + 1 depending on whether we are in Case 1 or 2. Write 

Case 1: Qj{z) = 
YEYO 

&J,Y 

z - yj (y)' 

Case 2: QAz) — z 1 

yev"()\{y0} 

ay, j 

z - (y) 

Let Qi have no zeros in {z : e27^1 1/M)/£ < \z\}. Let 

|d(b2], m) - d([y1], [№i])| ^ Ô, d([y1], [^i]) ^ M, 

l^i(2/) - V2(y)\ < ¿, |^i(2/) - i¡j2(y)\ ^ S for all y G F0-

Le£ X2 = °Xi°£, on {z \z\ ^ e27r (1_1/2M)/£}? where the homeomorphisms £' are 
isotopic to the identity via isotopies almost constant on the boundary and on (f2(Yo), 
^ lC^o) respectively. Let 

A = 

YEY0 

Iflh/.il ( = 0(a(a,qi)). 

Write B = log(|2:nj + i5i I + 2) in Case 1, and B = 1 in Case 2. Then 

ay,2 = XayA + 0{(51/Cl + e~l/c^)XAB) for all y G Y0. 

Similar results hold for p\, p2. 
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16.3. Remarks 

( 1 ) In applications, a C C will often be a subsurface with more than one boundary 
component •— but an application of the easier Same Shape result 9.5 will allow us to 
reduce to the case of a disc. 

( 2 ) The condition on isotopy between \i and X2 might seem awkward and unnat
ural, but it is the right condition for applications. Roughly speaking, it says that 
projections under 7ra, 7TQa are close — but since in some applications Y\ and Y2 are 
completely unrelated, there may in general be no other way to make sense of the 
statement. 

( 3 ) The difference ay^ — ay.i is small if, for example, S = 0(e~2lT ^£). 

16.4. Outline of Proof of the Hard Same Shape Theorem. — By (easy) 
Same Shape 9.5, there is nothing to prove unless 

(i) M M . ^ ] ) <<%>i],[Vi])-<*i 

for Si ^ e C{)lz. So from now on we assume that ( 1 ) holds. Recall that q3(z)dz2, 
Pj(z)dz2 and Kj with ~ log Kj = d([(pj], [V;j]), are uniquely determined by solving 

(2) 
yj(y) 

qjdz -
V 

U 

Kj 0 

Kj H Ai) 
fpjdz = 0, 

for all nontrivial nonperipheral loops 7 C C \ Y3. This, of course, is an equation we 
have considered extensively in Chapters 10-13. For such loops, we can expand the 
integrals for y/q2, y/p2 in terms of y/qi, y/Vii ancl thus we shall see that q2 must be 
close to qi, and p2 to pi. Given the representation of qi in the statement of Hard 
Shape in 16.2, it is natural to consider the function Q3 of 16.2, and the surface 

Sj = {{z,w):Qj(z) = w'2}. 

By our assumptions in 16.2, the numerator of Q3 is of degree # (lo) — 1, # (lo) — 2 in 
Cases 1, 2 respectively, and thus there are # ( l o ) — 1, # № ) ~ 2 zeros respectively up 
to multiplicity. If all of these zeros are simple, then S3 has genus # (YQ) — 1, # (lo) — 2 
respectively. The condition ( 1 ) above ensures that in Case 1 there is at most one zero 
z'0 of qi in 

{z:Do^ \z\ < Ar'e27"2^} 

for suitable Do — and none at all in Case 2 - because otherwise some set 
{z : \z\ ^ D0} satisfies the Dominant Area Condition 9.4: a calculation would show 
that {z : r/2 ^ \z\ ^ r} had area 0(Ar~~2). Then Same Shape 9.5 would contradict 
( 1 ) . So the surface S3 might have unbounded geometry, but, as we shall see, this is 
somewhat controlled. There are # ( l o ) variables a3iV with one relation between them 
given in 16.2. We shall see that these are determined uniquely by ( 2 ) above. 
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16.5. Solving the Equations. — With the calculations of 10 .18 onwards in mind, 
write 

P2(y) = (fi(y) + h{y), dyo = X(aVii + k(y)). 

Then for any closed loop 7 C a, 

'ipj('y) 
qj(z) = 

yj(y) 
iQjW + OiAe-^/*), 

^2(7) 
Qo(z) = VX 

^1(7) 
Qi(z) + 

yEY0 

hMv) 

(z - <Pi{y))y/Qi(z) 

-

yeYn 

2h(y)ay,1 

(z - vi(y))WQi(*: 
+ 0(A\\h\\2) + 0(\\k\\2)), 

and similarly for pj(z)dz2. with YQ replaced by YQ \ {iJo} in Case 2. Assume for the 
moment that all zeros of Q\ are simple and distance at least ¿1 apart, with residues 
of modulus at least S\ at points (fi(y) (y G YQ or y E YQ \ {2/0} in cases 1 and 2 
respectively). Using the method of computation of the Second Derivative Formula 
(from 10.18 onwards through Chapter 11) we choose a basis of holomorphic 1-forms 
on Sj. Letting TT(Z,W) = z be the usual projection, the natural choice is 

Case 1: TT* dz 
Qj(z) 

1 

,z - ipj(y) 
-

1 

2: 
(y e Y0 \ {2/0}) 

Case 2: 7r* dz 

/Qjz) 

1 

z - <Pj(y) -
1 

2 - <^U/i) 
(y G r0 \ {2/o,2/i) 

These are indeed nonsingular at 00, since Qj has one more pole than zero. We also 
have meromorphic 1-forms 

7T* dyidz 

'Qj(z) 

1 

(z - <Pi(y))2 

for y G YQ in Case 1 and y G YQ \ {2/0} in Case 2. Write 

*o \ {2/0} = {/;/ : 1 ^ ^ m = # (y0) - ! } • 

Then let V2£-i + ?̂ 2/̂  'u>2£-i + /'//'2/ be the holomorphic and meromorphic 1-forms 
defined above for y = y^, on Si, with Vi harmonic and wt harmonic singular. As 
in Chapter 11, let J, J' send a harmonic 1-form on Si, S2 to its conjugate. Write 
he = h(yi), k? = k{y(j). Again working in parallel with Chapter 11, write 

X + IJX = 

M 

l=1 
kAv2e-i + ÌC21)' w + it = 

m 

£=1 

he{w2f-i + uu2*), 

with £ — 1 replaced by ^ = 2 in the expression for x + 2 J# in Case 2. Then define i^, 
u^, x', w' 1 t! in analogy with Chapter 11, using the holomorphic and meromorphic 
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1-forms on S2 described above. Then to show that a3^2 is close to a^i, it suffices to 
show that we can solve the following equations in H1(Si): 

( i) 
x 
Jx -

A71/2.x' 

K]'2x' 
= - w 

t 
+ 

K-1/2w' 
K1/2t' + 0(S) + 0(e-2^/£) + 0(A\\h\\2). 

This mimics the equation (SDE2) of 10.18, but there are some differences. The most 

important is that this is the only equation. There is no additional requirement that 

\Q2\ have integral 1: of course \q2\ lias integral one, but we are only considering 

Q2 I S(a), so the mass condition does not appear. The method of solution of (1) still 

mimics the solution in 11.2. We write the righthand side of (1) as a sum of terms and 

solve each set of equations separately. Each time we have to show that we can solve 

with 

k = 0((\\h\\ + ôe-2n2/£)ABeCtt/l/ô^Cli ) 

for suitable Co, CQ . We write w = w(1) + u/2' as in 11.2, and similarly for w'. 

Following the derivation in 11.4, we obtain equations such as 

( A ' i + JJ')x = (K1-JJ')wW. 

We claim that, for suitable CQ, 

(A'I + JJ ' ) -1 =0(B51Cli). 

We use a method based 011 that of 11.9. We need to show that for any harmonic 
1-form on 5i, 

UJ U J'UJ ^ (K\ - CB-l5i")(u U JUJ). 

As in 11.9, we consider (UJ + iJu))(z) and y/Qi(z)dz pointwise, and use the complex 
numbers yjQ\(z), iyQ\(z) as a basis of C over the reals. It suffices to show that 
UJ -h iJuj is bounded from being a real multiple of y/Qi(z)dz on a set E — E(UJ) with 

(UJ A JUJ)(E) ^ B~1S\'{)(UJ A JUJ)(S1). 

Our assumptions give that all zeros of Q\ are in {z : \z\ ^ DQ} for a suitable Do = $i 7, 

7* < #(Y), and: 

Case 1: a = 

Y£YO 

av,i, Qi(z) = 
az'l(l + 0(eBz-1)), \z\ ^ 2eB 

azni + lz-'2(l + O ( A ) ^ 1 ) ) , 2D0 ^ \z\ < \eB, 

Case 2: Qx (z) = az~2(l + OO"1)), \z\^D0i a = 

YEYO^IVO} 
aVA-

Now let UJ be given. Note that any UJ + IJUJ is 7r*(^/R(z)dz) where R is a rational 

function which has a pole at znj + i in Case 1. Let D\ be the maximum modulus of a 

zero of R. Take 

EX = {z : eB ^ \z\ < 2eB}, E2 = {z : 2D0 ^ \z\ ^ \DX}, E = EX U E2. 
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We have E2 7̂  0 , so E 7̂  0 . For a constant CR depending on R, we have 

Case 1: R(z) = a'1cRz~2(z - znj+1)~\ \z\ ^ 2DX 

Case 2: R(z) = a^CRz'3, \z\ ^ 2DX. 

On E\ (which may be empty) R, is bounded from being a real multiple of Q\\ except 
on finitely bounded modulus subannuli in E\, R is asymptotic to cx~x CRI3Z~~I for on 
different annuli, for varying j : ^ 3. If E\ is of large modulus, the integral of \R\ over E\ 
is at least a bounded multiple of the integral over {z : \DQ ^ \z\ ^ DQ} which is at 
least DQ (t ^ #(Y)) times the integral over {z : \z\ ^ DQ} The integral of \R\ over 
any annulus 

{z : n ^ \z\ ^ r2} in 2D1 ^ rx < r2 - 1 ^ r2 ^ eB 

is then boundedly proportional to \a~lcn\log(r2/ri). The integral over |z| ^ eB is 
0(a"1 CR). SO has the required properties. 

Then to obtain the required bound on k, we also need to bound the coefficients of 
the vn when expressing any W£ as a linear combination of the vn: we can derive the 
coefficients of w ^ L i , w2£ U ~ 1> 2) fr°m those of w2£-i, w2£. The simplest way to 
do this is probably to use the harmonic functions approach of 12.7. According to this 
approach, write v^t-i + iv2£ = TT*(^/ Ri(z)dz). Let 7*0 (as in 12.7) be the radius of a 
maximal embedded disc in Si round TT-1 (cpi(y)) in the coordinate 

C(^-1(2)) = 
z 

Vi (y) 
RAt)dt. 

Then the bound on coefficients is O(r0~1) = 0(Aec°/iy) for suitable Co > 0, taking 
into account the distance between the points of (pi(Y0). If we allow zeros of Qi to 
approach within 0{52), or residues to be 0(S2) then the method still works with an 
increased error term. We shall deal with this in 16.7 below. 

16.6. The Teichmuller Map is Holder with respect to the Teichmuller 
metric. — The Teichmuller map is the map which sends (q(z)dz2,K) to [ip] G 
T(Y"), where d([</?], [ip]) = | log AT and q(z)dz2 is the quadratic differential at [cp] for 
<i([(/?], [ip])- One of the consequences of Teichmuller distance d being C2 (12.1) is 
that the inverse of the Teichmuller map is C1. We also know (from 10.2) that the 
Teichmuller map is real analytic at a generic point. It is not globally C1 because the 
inverse map is C2. However, it is Holder with respect to the Teichmuller metric on 
the range. Here is a proof. 

Lemma. — Let q1{z)dz2, q2(z)dz2 denote quadratic differentials at [p] G (T(F))^zy 

for d([p], [/I]), d([p], [p2]) respectively, where d([p], ['0i]) = d ( M , [^2]) ^ M. Let the 

residues of qi, q2 agree to within 0(5). Then for a constant Co depending only on 

#(Y), 
d([x/>],[ip']) = 0{81'c"eCn'lJ). 
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Proof. — Let [ipj] = [xj o where Xj minimizes distortion. By 8.3 we only need to 
show that 

(i) K(X2 0xI1)\r\ =O(S1'c0ec°/"), 

where r(z)dz2 is the quadratic differential for d([^\], [^2]) at [ip]. A direct computation 
(similar to those employed, for instance, in 8.3, 8.9) shows that the distortion is 

K{x2°XÎ1){z) = l + 0((e{x^{z)))\ 

where 9 is the angle between q\(z)dz2 and q2(z)dz2. An application of Rouche's 
Theorem 

1 
2ni A 

q'j 

qj 
= # (zeros inside T) 

gives that q\ and q2 have the same number of zeros inside any contour T on which 
\qi\ > RS for R sufficiently large. In particular, there is a pairing of the zeros of q\ 
and q2 (up to multiplicity) such that any pair is 0(S^k) apart, where k = # ( F ) - 4 
is the total number of zeros of q\ up to multiplicity. Outside discs of radius R5l/k 
round zeros of qi. 

(0(z))2 ^ C\0(z)\ < ò 
|q1 (z)| 

Changing coordinates if necessary, assume that z\ = 0. We consider the integral 
near 0. Number the zeros Zj so that \ZJ\ < Fix 1 ^ rn < k so that, for some p, 

\ZM\ ^ P < km+l|? 

pm 
k 

J=M + L 

\zi\=S. 

Then p < S1^. Write 

0 = 
k 

j—M-{-L 

M. 

To show (1), we need to show that (remembering that r has at most simple poles) 

p<|z| 
Slzl-^+Vp-^xdy = 0(61/k), 

where z = x + iy and dxdy is the usual planar measure. But the integral for £ = m 

is 0(8pl-rnf3-1) = 0(S^k). So the estimate holds. • 

16.7. The case of Multiple Zeros or Zero Residues. — We return to the proof 

of the Hard Same Shape Theorem. We consider the case of q\ having approximately 

multiple zeros, or approximately zero residues at points of (fi(Yo). It seems to be 

impossible to treat this case by the direct method above. Instead we need to consider 

the maps 

a^ibPj})^ (qj,Pj), j = i,2. 
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As pointed out in 16.5, these maps are C1. Therefore, if Pj is defined similarly to Q3 
in 16.2, the maps 

e , : a^],['0,]) — (Q,-,P,-) 
(j = 1, 2) are C1. Consider the following statements (1) and (2) 

(1) 62([H, [H) = 6i([Vl], + 0((5 + e~2* /t)ABec«^6;G« 8^c»), 
(2) <P2(y)-<Pi(y)=0(6), My) ~ My) = 0(5) for all y G Yo 

(for a suitable normalisation). Then (1) holds for ([^2], [1P2]) as in (2) and for 
([</?i], [ipi]) varying over a set in which zeros of Qi are bounded apart by 62, residues at 
points of (pi(Yo) have modulus at least 62, and ([<pi], [ipi]) satisfying the hypotheses of 
16.2. Then by 16.6, this set of ([(fi], [ipi]) intersects a 52 °- neighbourhood of every 
point ([< î], [ipi]) satisfying the hypotheses of 16.2: regarding this set as a subset of 
CY^{vo} x Cy°x^>. But these maps are C1 and the derivatives are 0(ABe*^^u). 
So on this set also we have 

e2([^2], [H) = ei([y>i], №1]) + 0((6 + e-2* ^)ABec0/vô-c0 5-Cn) 

+ 0{ABec°/usA"Sl/Co). 

Given the bound on Si, v, for suitable 82 and C\, we can make this 

e2(b2], \M) = O1([y1], [4>i]) + 0({8l'ci + e-VC^AB), 

as required. 

16.8. Corollary of 16.6. Let [ip], [f], [ip] G (T(Y))>V. Letq1(z)dz2, q2{z)dz2 be the 
quadratic differentials at [ip], [£] for d{[<p>], [£]) and [d([£], [ip]). Let p\{z)dz2 be the 
stretch of q\{z)dz2 at [£]. Let the residues of pi and q2 agree to within 0(5). Then 

d([y], [y] - (d([y], [E] + d([y], [y]) = 0((s1/C1 eC1/v). 

Proof. - Let ip2 be such that s([e], [^2]) = D([E], [V7]) and Pi(^)cb2 is the quadratic 
differential at [fl for d([£l fó2])- Then by 16.6, 

d([i;]M) = 0((o1^ec^)' 

The result follows. • 

16.9. An infinitesimal triangular equality. — 16.8 can be regarded as a reverse 
of the Triangular Lemma 8.9. It is possible to prove it by a method resembling that of 
16.2. Here, we prove an infinitesimal version, in a slightly different context — outside 
(T{Y))^U. We shall use this in Chapter 18. 

Lemma. — The following holds for a suitable constant C > 0 given M. Let a C C; 
Y0, Yi be as in 16.2. For 1 < i < 3, let 

[(fi] G T{da,e) \ U{T(7,z/) : 7 D a = 0} C T(YX). 
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Let 8 ̂  e~CQlv. For i < j , let qzj(z)dz2 be the quadratic differentials for d([(fl], [<Pj]) 
at [npi], with stretch pij(z)dz2 at [<fj]. Normalise (fi as in 16.2, with corresponding 
normalisations of qij(z)dz2, pij(z)dz2 (i < j). Let the zeros of qi:j (i < j) have the 
same properties as in 16.2. For i < j , let 

da([<Pi], fa]) < [<Pj]) ~ M"1 < M - M-1, 

d([Vl], [<p2]) + d([<p2], [<p3]) ~ [<P3Ì) < S. 

Let A and B be defined as in 16.2, but using q\j2 instead of q\. Let 

Res(ç2,3 ~ Pi,2, ^2(2/)) = 0{5A) (y e Y0). 

Then 

Rested, <p(y)) = Res(gli2, Mv)) + 0((ô1/c + e " 1 ^ ) ^ ) , 

and similarly for p\^, p2^. 

Proof. — The method is very similar to that of 16.2. By the Triangular Lemma 8.9. 

0(<Zi,2,3i,3)2ki,3| =o(ô). 

Then (easy) Same Shape 9.5 implies that residues qi,2 and qi^ are within 0(81^c°) on 
5(C \OJ, [(^i],i/) (normalising so that points of f\ (A(C\a)) are bounded and bounded 
apart). Write \ logK = d([<^i], [<p3]), ^ l o g X i = d([<^i], [<p2]), | l o g K 2 = d{[f2], [tps])-
Then our hypotheses imply that for 7 C a, 

Vi(7) 
91,2 ~ 

l/y/K!K2 0 
0 A / F T E 

^3(7) 
P2,3 

l / v / ^ i 0 
0 v/^T, y2(y) 

rpïâ- \/q2~3) = O(J), 

and hence 

^1(7) 
/gÏÏ2 -

I/VK 0 N 
0 VK N 

^3(7) 
'P2,3 = O(d). 

Define from in the same way as Qj is defined from qj in 16.2. In Case 1 of 
16.2, the corresponding coefficients aij^y differ from the residues by 0(e~1/Me). In 
Case 2, the ai^)y((fj(y))~l differ from the residues by 0(e~2n ^e). Let 

Sij = {(z,w) : Qij(z) = w2}. 

Then, again in analogy, we obtain, for 7 C a. 

Vi(7) 
Ql ,2-

A/VK 0 

0 y/K 
^3(7) 

P2,3 = 0(<S) + 0(Ae^2n /£). 

Then Qi,3, Pi,3 are those perturbations of Qi,2, p2,3 which give equality in the above. 
Working as in 16.4-5, we obtain Qi,3, Pi,3 with the required bounds on Qi,3 — Qi,2, 
Pi53 — P2,3 if the zeros of Qi,2 are bounded apart and residues bounded from 0. We 
obtain the general case by arguing as in 16.6-7. • 
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16.10. The infimum for the mapping class map. — We now give two results 
which we shall need later and which concerns the map 

G : M 1—> d([<p], hp o M) : T(Y) T(Y) 

where [ip] G MG(C, Y) (the mapping class group, as in Chapter 1). The calculus of G 
was studied by Bers [Bers]. As we know, if the isotopy class of [ip] is pseudo-Anosov, 
then G has a non-zero minimum value, achieved uniquely on a geodesic in T(Y) 
invariant under [ip] *—» [apoip]. If [ip] is reducible but has a pseudo-Anosov component, 
then the infimum of G is non-zero. In both cases, we call the infimum /sQ^]). Now 
let r(z)dz2 be the quadratic differential at [cp] for d ( [ p o ip]) with stretch t(z)dz2 
at [(p o ip]. Then as we also know from 8.4, 

DG = 2TT Re(Res(r - t, <p(y))) 

(in suitable coordinates). One can then ask about the size of ||Dc7|| when G — ft ([?/>]) 
is small. If G were real analytic, we would have G — ft([ip]) = o(\\DG\\), but it is 
unclear if this is the case. So it is unclear if, in the pseudo-Anosov case, one can find 
a path of finite length from a given point along which G decreases to the minimum 
value. Our first lemma says that we can at least bound the diameters of such paths if, 
for example, we start near a minimum value. We use the local coordinates on T(Y) 
introduced in 8.4. 

16.11. Lemma. — Let Y = {yt : 1 ^ i ^ n}. Let ip : (C, Y) (C, Y) be pseudo-
Anosov. The following holds for S > 0 sufficiently small. Let [ipo] G T(Y) be a point 
on the minimizing geodesic for G([ip]) = d([ip], [cp o ip]), for [ip] pseudo-Anosov. Let 
^oil/t) 7^ 1 ^ i ^ n — 3. Let ro(z)dz2 be the quadratic differential for G at [ipo]. 
Let 

Res(r0, (po(yi)) = au 1 < i ^ n - 3. 

Then G has no singular points on 

U = {[ipo + h\: \h(yi)\ < ô, i ^ n - 3, h(yl) = 0, i > n - 3, Re \N — 3 
RI=L aiutili)) = °}-

Remark. One can then find a vector field w on U and tangent to U such that 
DG(w([(p]) < 0 for all [ip] G U \ {[<A)]}- One can then construct an open neighbour
hood U\ C U of [tpo] such that the w-flow forward orbit of U\ is contained in U, as 
follows. Take Si > 0 to be the minimum value of G on dU. Then choose Ui C U such 
that G < Si on Ui. 

Proof. — Take any [ip] G U. As above, let r(z)dz2 be the quadratic differential at [ip] 
for G([if]) with stretch t(z)dz2 at [<p>oip]. Then given the form of (7, we need to show 
that there is no A G R with 

(1) (Res(r - t,ip(yi)) = \(a,i) = ARes(r0, <£o(2/))> 1 < i < n - 3. 

Normalise so that ipo{yn) — ̂ (Vn) — 00• 
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Using the relations 

n-l 

2=1 
Res(r,^(y?;)) = 0 , 

n-l 

i=1 
ip(yi) Res(r, <p(yi)) = 0 

and similarly for ro, V?o, and using tp(yi) — foiVi) — O(S), (1) implies 

Res(r - t, ip(yi))x = ARes(r0, foiVi,)) + 0(\S), i > n - 3, 

and hence (since G is C by 12.1) 

(2) Res(r - t, (p(yi)) = A Res(r, ip(yi)) + 0(X5) for all i 

If we did not know that G were C2 we would get an error term O ( A ^ ) , which would 
be good enough. Then (2) implies 

(3) 
(r - t)f 

\r\ 
= \(l + 0(6)) = \r-t\(l + 0(6)). 

But 

|r| = 1*1 = 1. 

Assuming 5 is small enough, r — t is small enough to expand, 

|t| = \r+(t-r)\ = | r |+2Ro (t - r)r 
\r\ 

+o 
\t - rl2 

|rj 
•fO \t-r\ 

2̂  

and hence 

Re 
(t - r)f-

\r\ — o \t - r\ , 

which contradicts (3) above. So (1) does not hold for any A G R, as required. • 

16.12. Bounding G — K([V;]) by DG. — The following is the best estimate I can 
find at the moment. For simplicity, it is stated here in the pseudo-Anosov case. In 
the applications in Chapter 19 the reducible case will also be considered. 

Lemma. - Let [ip] be pseudo-Anosov. Let k = #(Y) — 4 and let M be given. Let 
\\DG\\ ^ 5, G([f]) ^ M Then 

\G([<p]) - KW)\=0{o1'2 + 1'2k). 

Proof. — We have [tp] G (T(Y))^zy for v depending only on Af, since [ip] is pseudo-
Anosov. We have Res(r — t,p>(y)) = 0(6) for all ij G 7 , by assumption. 

But t(z)dz2 is also the stretch of r(z)dz2 by A, where \ log A = d( [</?], [c^o'0]), that 
is, unstable foliation leaves of r(z)dz2 are stretched by A, and stable foliation leaves 
are contracted by A-1. Now for closed paths 7 in C \ Y we need to compare stable 
and unstable lengths as defined in 14.8. We write |<^(7)|_ and |(^(7)|+ for the stable 
and unstable lengths with respect to the quadratic differential r(z)dz2. It is probably 
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worth emphasizing that the unstable and stable lengths are not the same as the real 
and imaginary parts of 

y(y) 
vr, 

(whose definition is, in any case, unclear) although 1^(7) | + (for example) is given by 
putting 92(7) in good position (14.5) — as a union of arcs ojfc and taking 

k 
Re 

ak 
r , 

with positive sign for each term. Let k = max(2, #(Y) — 4). Then any quadratic 
differential on C \ <p(Y) has zeros of multiplicity at most k. (Of course, there are no 
multiple zeros at all unless #{Y) ^ 6.) Then we claim that 

(1) \<P ° 0(7)|o,+ = \\<ph)\o,+ + 0{8"2+l'2k). 

This estimate is clear when r is not close to having multiple zeros, or zero residues at 
points of ip(Y), when we obtain simply 0(S). So to obtain (1), we need to estimate 
local path integrals of the form 

(2) r\z) + 0(S)dz, z~l(r(z) + 0{S))dz, where r(z) = 
k 

3 = 1 
(Z ~ Zj) 

over paths where \r(z)\ = O(S) and \r(z)\ ^ RS for a suitable r. Changing coordinates 
if necessary, assume that z\ = 0. Number the zeros z1 as in 16.G, and let /3, rn be as 
in 16.6, except that enlarge rn if necessary so that 

\zm\ml3 = 0{5), \zm+l\'n/3^ RS 

for a sufficiently large R > 1. Then we need to estimate the integrals over paths on 
which \r(z)\ = O(S) and paths on which \r(z)\ ^ RS. This means estimating on paths 
on which \z\ = 0({S//3)^m) and on which \z\ ^ R±{S/f3)^rn. We have 

P> Km+i|fc-m, \z7n^rp^RS. 

This yields (since R ^ 1) 

/3 ̂  (RS/f3){k-m^m, (3 ^ 6(k-m)/k, (6/(3) < Srn/\ (S/(3)l/m ^ S^k. 

Then the integrals of (2) over paths on which r(z) = 0(S) become 0(S1^2^1^k), 
0(Si/2+i/2ky o n paths on which \r(z)\ ^ RXS for Rx ^ 2, and thus \z\ ^ R2(5/f3)1/m 
we have 

r(z) + OiS)dz = r{z)dz + 0{op-1,2z-m/2) 

= 7{z)dz + 0(5/3-1/2(5/^)1/m-1/2), 
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(with (£//3)1/m~1/2 replaced by \og(5/fi) = 0(\ogo) if m = 2), 

/z'l(r(z) + 0(ô))dz = z~lr(z)dz + 0(ôf3-1/2(S/(3)1/2ni-1/2). 

In both cases the error term is 0(ô^2(ô/(3)^2rn) = 0{8^2+1^2k). This gives (1), as 
required. But (1) says that A is within 0(ô^2+1^2k) of an eigenvalue (with positive-
entry eigenvector) of a certain integer-valued matrix, which is one of the matrices 
defining the piecewise linear action of ip on the projective space of measured foliations 
on C \ Y (see [F-L-P]). This means that 

logA-/€(P0]) + O(^/2+1/2fc) 

as claimed. 
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CHAPTER 17 

DISTANCE AND THE PULLBACK MAP 

17.1. Let B be a branched covering space of degree two type, T — T(B) (6.2) and 

F(x) = d{x,r{x)). 

This chapter is devoted to some estimates which will be needed in the proof of the 
Level-K Tool in Chapters 18-21. Some of these are estimates on F in subsets T(T, s), 
where (/o,T) is invariant in (17.4-6, 17.9). These are basically refinements of an 
easy lower bound (17.4) in terms of combinatorial data associated to (/o,T). Some 
invariants of ( /o , r ) depending on combinatorial data are defined in 17.2. These are 
related to some earlier definitions in Chapter 2. The other estimates in this chapter 
involve the quantity m1(x) of 9.1, and its behaviour along a sequence {TU(X)}. The 
results on this topic are given in 17.7-8. Various related definitions are given in 17.3. 

17.2. Definition of K (Q) , K,Q{Y). — Let (/o,T) be invariant. Let a be any loop or 
gap of r of period p with periodic orbit [a]. We define 

£(¿1/2+ lim 
xcwxc 

inf{ max 
a'E[a] 

dcx>(y,r(y)) :yeT(T,e)}. 

Let f C T be the maximal loop set such that ( /o , r ' ) satisfies the Invariance and 
Levy Conditions. We suppose that V ^ 0. Let A be the fixed union of r;. Let A 
be any periodic gap of T;, of period p, such that V2 is not in its periodic orbit. If 
A is homeomorphic, let [IPA] be the gap map of A (see 2.13). If A is of degree two, 
let TA be the pullback map (6.6-7) on the associated critically finite branched map 
space 5 ( / o , r , A) (see 2.18). Write dA for the Teichmuller metric on the associated 
Teichmuller space T(A(A)). (See 9.1.) Depending on whether A is homeomorphic or 

degree two, 

«(A)=p-1inf{dA(2/ ,2 / . W A ] ) : y <E T(A -(A))}, 

K(A) = p inf {C?A(2/, TA : y € T(A (A) )} . 
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Then we define 

«o(r ) = Max{«(A) : A is a gap of T, À C Q} 

Note that AS (7) = 0 for any loop 7 C O, 7 G T. This is reminiscent of our definition 
of /s(/o, r ) in 7.2 — but not identical to it, except when (/0, T) is minimal nonempty. 
For T, r ' as above, we have Ko(T) = K,O(F'). If ( / 0 , ^ ) satisfy the Invariance and 
Levy Conditions for i = 1, 2, and [/o,Ti] = [/o,r2] (see 3.8), then KQ(TI) = ^0(^2)-
Indeed if a is a gap of Ti which is a union of gaps for r2, then 

K,(a) = max{^(/?) : (3 C a, ¡3 a gap or loop of r2} . 

Now let V C r be maximal such that ( /o,r ;) satisfies the Invariance and Levy 
conditions.Let 7 G T \ V be periodic of period n. Let d be the degree of /0 I 7;, where 
y is the (unique) component of /0~1(7) which is homotopic in C \ Z to a loop in [7]. 

Then 

«(7) = 
1 

xc logd. 

We define 

K,'0(T) = max{AÎ(7) : 7 G T} . 

17.3. m7 and discrete loop sets. — From now on, we work with T rather than 
T/G. Let x G T(y)(7 ,£o) f°r anv simple nontrivial nonperipheral loop. Let 7r7 be 
the projection to 7^(A(j)) — {z : IM(z) > 0} as in 9.1. We recall that 

m1(x) = loglm 7r7(x). 

We remark that there is a constant C such that if e is the length of 7, then 

2tt2 

e 
— C ^ m1(x) ^ 

2TT2 

e 
+ C. 

We also remark that, again for suitable C > 0, if x = [<£?], and the points of (/2(^(7)) 
are normalised so that two on one side of 92(7) are at (say) 1 and 00, and a third 
is at 0, then the fourth is distance ^ Ce~2jr Is from 0 and distance ^ (1/C)e~27r le 
from 0. If x ^ T(y) (7 , £0) we define m1(x) = 0. Note that this definition depends on 
the choice of ^.(7) (a very little) but not on the choice of a2 (see 9.1). 

Now we need to define a function m^r for any invariant ( / 0 , T), T c C \ F, with 
T2 = r2 ( /o , r ) ^ 0 (see 2.5) and x G T{T,e0). Let ft = O(/0 , r ) be the maximal 
connected union of periodic homeomorphic gaps which containing the fixed set of T. 
(See 2.8.) We call Q the fixed union of T. (We reserve P for an irreducible fixed gap.) 
Let 70 C dQ be the loop separating Q from T;2. Let 7Q be the loop of T homotopic 
to 70 in C \ Z but not in C \ 7 , such that a component of /0'1(7o) is homotopic 
in C \ Z to the component of /0^(7) m dft up to Z-preserving isotopy, if such a 
loop exists. If no such loop exists, we define m7'(x) = 0. Let Tf C T be the smallest 
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invariant loop set containing r2 ( /o , r ) , but not including 7A, if 7A exists. Then we 

define 

mint,r{x) = 

7Cint(r2) 
ra7(x), 

mdir(x) = 
m10{x) 

m1Q{x) + m^{x) 
ffsdf 

ra7(x), 

mis(x) = raint,rO) + ma,r(a;), 

£(¿1/2+1/2^ 

7er\r ' 
m1(x) + 

m7/(x) 

m70 + m7/ (x) dfsff 
ra7(x), 

matrix) = rn10(x). 

If a is a periodic loop or gap, we write [a] for the periodic orbit. If 7 is a loop, we 

write 

mh]{x) = 
l'e [7] 

m7/(x). 

For 7 C int(O), let A be the set of loops of Y in int(f2) separating 7 from AQ. Then 

we define 

ra7,a,r(#) = 
dssf 

RAY (x) + rrid,r(x). 

We define 

^[7],a,r(^) = mm (m7/,a,r(^) : 7r e [7]}. 

Let x = [(/?]. We define rai ([</?]) for m^r f^ ] ) , where Y is the largest invariant loop set 
in which all loops of ^(7) have length < €0. We define ra2 ([(/?]) similarly. Apart from 
this, we shall drop the suffix Y where the context is clear. 

Again assuming that Y2(f0:Y) 7^ 0, we say that ( /o , r ) is discrete if Ao(/o,T) is 
equal to, or adjacent to ft. It is possible, in the discrete case, to have v2 ^ AQ. In that 
case, the reduced map space B(A'Q: fo,Y) (2.18) is critically finite, and may possibly 
have Euclidean orbifold (see 6.11). In this case, we shall say that (/0, Y) is Euclidean. 
Otherwise, we shall say that ( /o , r ) is non-Euclidean. 

We shall say that (/0, T) is (£1, L2l £, is)-adapted to x (or sometimes just (Li, L2)-
adapted) if it is discrete and invariant, x G T(Y,e), L\e ^ is, L2is ^ £0, and the 
following hold. The loop set ^ ( / 0 , T) 7̂  0. Let a be a periodic degree two gap of Y. 
Let ( C da and 7 C hit (a). Then m1{x) < m^(x)/Li and x ^ T(7, is). 

17.4. A Lemma showing certain thin parts cannot be re-entered 

We continue with the notation of 17.2-3. Recall that F(x) = d(x, T(X)) 

Lemma. — The following hold for C sufficiently large and C sufficiently small and 
Ô > 0 sufficiently small. Let x G T(Y.ô) where (fo,Y) satisfies the Invariance and 
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Levy conditions, with r2( /o,r) / 0. Let e' be the lengths of the shortest loop for x 
in <9ft. Let a be the minimal nonempty node with a < [fn.rl. Then 

F(x) ^ K(n) £(¿1/2+1/2^ 

Proof — Write [ipn] (as usual: 2.13) for the isotopy class of fo | ft. Then 

(1) dn(r(x),x • [L/JQ]) £(¿1/2+1/2^ 

To get this, write TTQ(X) = [ip], TT^(T(X)) = [p'\. We can normalise so that all points 
of (p(A(Q)) are bounded and at least two are bounded apart, and so that, for any y 
the distance between points p'{y) and p o ipn(y)) (y G A(Q)) is 0(me~27T le ), where 
m is the distance of the next nearest point of pf{Y) to pf(y), which gives (1). Then 

F(x) = d(x,r(x)) ^ dn(x,r(x) ^ dn(x,x • [I/JQ]) - Ce-2^le' > K(/i)-CV27r2/£' . 

77.5. Lemma. — Take the same hypotheses as 17.4- If P G int(ft) is a connected 
union of gaps fixed up to isotopy by f0, and £ is the length of the shortest loop in dP 

for x, then 
Fix) ^ K(P) + Cfe -2TT2/s 

Proof — Suppose that [I/JQ] is reducible and P C ft is fixed (not necessarily irre
ducible). Let 

(2) d(x,T(x)) < K(P) + £(¿1/2+1/2^ 

for a small C > 0. The idea is to obtain a contradiction by showing that for some 
C" and some choice of A(P) 

dA(P)(x,T(x)) ^ H(P) £(¿1/2+1/2^ 

Write x = [p] and r(x) = [p']. By (1) and (2) we have 

dn([p],[poïJjn}) ^ K(P) + C"e-27r2/e + Ce-27r2/e'. 

If C is small, this is only possible if the loops p{dP) have length ^ C,' for a small E' 
because (as we shall see in 20.14, but this is well-known) the function 

sd dn([p], [po^n]) 

has no local minima. Given a constant L\ > 0, we can choose E' so that there are v 
with L\Q' < and a gap union Q containing P such that all loops of p(dQ) Up(dP) 
are homotopic to geodesies of length ^ (f but any other geodesic homotopic to p(j) 
for some 7 C Q has length > v. Let n, nk be the numbers of components of dP, dQ 
respectively, and */;p, ipq the gap maps. Normalise so that, for any choice of A(P), 
the points of p(A(P)) are bounded and bounded apart. Fix a choice of y G A(Q) 
such that p{y) is separated from p(P) by the shortest loop of p{dP) (of length s). 
Then we can choose 

A(Q) = {fl0(y) : 0 ^ 1 < nk}. 
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Then in the notation of Chapter 8, we have 

[<P']P = [IPOL/JQ + 0(e-27r2(l/e+l/C')]p = [if o ipp + hQ + O (E-2^(l/e+l/C'))]p> 

Here hQ = (/io(V)) is a vector with ho(y') — 0 for y ' y and 

h0(y) = M(y)) - <p(y), 

so that \ho(y)\ J> C-le-27T2(l/e+l/i/)> Similarly we can define hj (0 < j < k) using 
fQJ(y) instead of y. Thus, 

j 

hi = 0\ ̂ e-27r2(l/e+l/C,))> 

Define 

MP) = {F?NJ(V) : 0 ^ i < n}. 

By the First Derivative Formula 8.4, we see that 

ûU,(p)(M, W\) = dA (P)([w\, [<P o i/jP + h. + 0(e-2^(1^+i/C/))]) 

£(¿1/2+1/2^xvcvvvvv •f 27rRe(c/i7-(2/)) + 0(e-27H(l/e+l/C')) 

^ K ( P ) + 27rRe(c^-(2/)) + 0(e-2-2(1/^i/c/))7 

where c is the residue of the quadratic differential for G^(p) ([</?], [</? o '0p]) at [cp\. It 
follows from the fact that ipp cyclically permutes the points of A3(P) that the residues 
at all points (f(Aj(P)) are bounded from 0. So c is bounded from 0. So either we can 
find a lower bound on dp ([</?], [pr]) by suitable choice of j and /i7- to make arg(c/zJ) 
boundedly in the right half plane, or for all choices of j , 

dAi(P)([<P], [<£>']) = «(¿0 + 
^ - 2 ^ ( 1 / , + ! / ^ 

This actually means that the points tp(fQJ(y)) are approximately collinear. Let q\ 
denote the quadratic differential for d([v?], [<£>']) at [<£>]• Choose j — and then choose 
A(P) — so that qi has at least one pole distance ^ C~1e~27T (1/£+1/") from (P o 
ip3Q(y) e A(P). Now we use ttp to denote projection from T(A(Q)) to T(A(P)). 
Let q2 denote the best quadratic differential for dp([</?], [<//]). Let Xi7 X2 be the best 
quasiconformal maps. Let 0 = arg(gi) — a r g ^ ) - Then by 8.3, 

d([<p],[<p']) >dp(M,[v']) + Ci l#l2 > k(m) + £(¿1/2+1/2^ 

This gives the required contradiction. 

77.6. Lemma. — Take the same hypotheses as in 17.4, 17.5 and let C be as in 17.5. 
Now let 

Fix) <: K(FI) + £(¿1/2+1/2^ 

Then Q is irreducible. Further, if 7, 7' are /oops m aq £/ien 

|mT(x) — m7/(x)| ^ C, |m7(x) — m7(r(x))| < C. 

In particular (/o,T) zs discrete, so that A0 is adjacent to Q 
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Proof. — We now know that ft = P is irreducible. So 

dp(x,r(x)) ^ K(LL) £(¿1/2+1/2^ 

Suppose for contradiction that there is 7 C dP such that 

(3) |m7(r(x)) -my(x)\ > A, £(¿1/2+1/2^£(¿1/2+1/2^ 

It follows that there is an annulus A of modulus ^ C2A (where C2 depends only on 
K>(fi) and C) homotopic to ^(7) (x = [p]) such that the quadratic differential q{z)dz2 
for d(x, T(X)) at x satisfies the Pole Zero Condition on A, that is, has two more poles 
than zeros in each component of C \ A. It follows from 9.5 that, for C3 bounded 

from 0, 
F(x) ^ dP(x,r(x)) + C73eC2Ae-2-2/£ > £(¿1/2+1/2^xvvv 

if A is large enough given C. So by our hypothesis, (3) does not hold. It follows that 
r is discrete. It also follows that, for suitable A given C', 

7 cap 
m7(r(x)) ^ 

7cap 
m^(x) — A. 

But if 7, 7r C dP with 7 C / o - ^ y ) , then 

m7(r(x)) < ray (x) + O( l ) . 

So we must also have 

m1i{x) ^ ra7 Mx))+0(A), 

that is, for suitable C (given C in this case), 

|m7(x) — my (x)| ^ C. 

/7.7. Lemma. — Let (/o,T) 6e invariant with r2 ( /o , r ) 7̂  0 . Le£ ft be as in 17.3. 
The sets A(7) (7 G T) can be chosen so that the following holds. Let a, a! be any 
loops in ft with a' C f0~1(a). Let rna>yz(^(y) denote Im 7Ta^z(^~(y) where a' is taken 
up to Z-preserving isotopy, A(af, Z) C Z has four points, two in each component of 

C \ a ' and 7ra/ z is projection to T(A(a , Z)). Then if y G X(r,£o)> 

(i) ma(y) - mQ/,z(r(y)) df 0(mM(y) ) - \ e 'm"a(y ) + e-m-'-»(»))). 

Hence, 

(2) 
[0!]Clnt(ft) 

£(¿1/2+1/2^x j(y))\ £(¿1/2+1/2^ 

Proof. — Clearly, (2) follows from (1). We can choose the sets A{j3) so that, for any 
loops a, a' C ft with a' C /^_1(a/), each point of fo(A(af)) is in the same component 
of C \ ft as a point of A(a), and f0(A(a') — A(a) if a does not separate AQ from the 
centre of P'. Now fix a:, a' as above. Write y — \p\. Let s be the holomorphic map 
used to define r(y). Write 

r(y) = W] = [s 1 O (f O /g]. 
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Recall that ma([p\) = Im(7ra([(/?])). Now 

b'U(a') = [si OIPOG] U(a') = [«1 ° <̂ ]̂ (A(a'))» 

where si, g are homeomorphisms as follows. We take G to agree with /0 on the 
component of /0"1(P/) homotopic to ft, and to map A(ot!) to fo(A(af)). We take si 
to agree with s on 

s_1(UflCN5(/3,b],eo)) 

(see 9.3) and to be of bounded distortion in the complement. If a does not separate 
An from the centre of ft then g(A(a')) = A(a) and 

(3) ku^M = 1 + 0 ((ma sd -1 e-maM{y)^ 

where q(z)dz is the quadratic differential for da([<£>], [s~ o p]) at [p]. We get this 
because 1 is conformal except on a set of ^-measure 0({ma(y))~1e~rUa'd^). So 
then the bound on da([p], [s-1 o p}) follows from 8.2. If a does separate A0 and the 
centre of ft then [sf1 o p]A{cx) = [s'1 OXO p]A{a) where 

K(s^1OX)\q\ = l + 0((ma(y))-1( e-m(X,d(y) e-m(X,,d\y)y 

Again, the required bound on da([ip], [s1 o x 0 p\) follows from 8.2. 

17.8. We need to consider rriQ(x) for x G T(T,£Q) for a Euclidean discrete invariant 
(/0, T). 17.7 helps for all but one of the loops that separate AQ from ft. The following 
Lemma implies that F-decreasing, F-between, or a property we might term TTIQ-
increasing, hold for x and ( /o , r ) discrete Euclidean. 

Lemma. — Let (fo,T) be discrete invariant Euclidean, r2 ( /o , r ) ^ 0. Let x G 
T ( r , £ o ) n T ( ^ , e ) 7 x <£ T(~f,v) /or 7 C Int(A0)? Lxe ^ v. Let F(x) ^ K. Let 
70 = <9A0 Pi dft. There are sf0 > 0 and an integer ko, both depending only on K, such 
that the following hold. Let k0 < k ^ 2k0. Then rl{x)) £ T(7,£0) for 7 C Int(A0) 

for i ^ k and 
£(¿1/2+1/2^£(¿1/2+1/2^ 1 

El k loff 2 

Proof — We start by considering B(A'Q, fo,T). Write 7TQ(X) = x\ = [pi]. Write 
B(A'0, /0, r ) = B(Yi, fi) with associated pullback T\. Let si, si7n be the holomorphic 
maps used to define r i (xi) , r f (xi) from Xi. Normalise <£>i so that the points of <£i(Yi) 
corresponding to A(A'0) Pi ̂ 4 (70) are at 0, 1, 00, and similarly for rf(7/i), n ^ 0. We 
claim that, for n sufficiently large (depending only on K), 

(i) £(¿1/2+1/2^xc 

We claim also that for ef0 > 0 depending only on K: r^(y) G (T(Y{))^2E'Q f°r an n ^ 0-
By our assumptions, f\ is of a very particular type. We can regard C as 

( ( C / ( Z + * Z ) ) / z ~ - z ) = { [ 2 ] : * E C } . 
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Identifying C with R2, we can regard 2 x 2 real matrices as linear maps of C. Then 
for A G GL(2J Z) , [z] i-* [Az] is well defined. Then for some such A of determinant 2, 
fi([z]) = [Az)} = [fi(z)] up to Thurston equivalence. We also have a bound on A in 
terms of M. In fact, we can take A of the form 

A = 
1 -1 

1 1 
Ax = V2B 

for B G SL(2, Z) . The choices of fi and A are restricted by the requirement that both 
critical points of fi be in the backward orbit of the same fixed point. 

The Teichmuller space T{Y\) then identifies with the Teichmuller space of the torus 

C / ( Z + zZ), and with the upper half-plane H. Then we can identify x\ G T(Y\) with a 

bounded matrix X G SL(2, R ) , with a torus C / X ( Z + zZ), and with element X -i — 
p[X) of H, using the usual action of GL+(2,R) on H by Möbius transformations. 
(This is the same identification, up to scale, as in 9.1.) Write px for the R-linear 
map of C given by the matrix X. This descends to a map, also denoted cp x 

px : C / ( Z + *Z) C/X(Z + iZ). 

We denote the isotopy class by [(fx}- Then taking si to be the lift of si to 
C / X i ( Z + zZ), ri([(px]) = [<PxJ where si o cpXl = cpX° fi = VXA- Similarly, 
Ti(VPx\) = Vfx.n] where sijn o pXn = VXA»•• Write B — Y^Ai G SL(2,R). Since we 
are assuming that A is bounded, so is B, and for each n there are Cn G SL(2, Z) 
and bounded Dn (independently of n) such that Bn = DnCn. The eigenvalues of 
are distinct (because A G GL+(2, Z) cannot have trace 2a/2 and either both on the 
unit circle or both real). If the eigenvalues of B are on the unit circle, then B ^ ± 7 
has a unique fixed point in H. If the eigenvalues are real, one then uses the fact 
that quadratic numbers have bounded continued fraction expansions. This ensures 
that each point on the geodesic in H fixed by the Möbius action of B is a bounded 
distance from the SL(2, Z) orbit of, say, i G H. (If we are lucky, B2 will itself be in 
SL(2, Z) , but this is not guaranteed.) 

The bound on 

d(xUTi(xi)) = l 
2 

dP(p(X),p(XA)), 

where dp is Poincaré distance, gives a bound on the torus C / X ( Z + iZ). The point 

p(X) is a bounded distance from the geodesic or point fixed by the Möbius action of 

B, that is if the torus is of bounded type. So there is sf0 > 0 depending only on M 

such that x\ G (T(Yi))>2£' , and similarly for r f (x) for all n ^ 0. So the second claim 

is proved. 

So then sijn o (pxTl — ^2N/2XD„ ° ^cv, • If we choose s\i7l so that the lift to C is 
given by z i ^ 2n/2z, then Xn SL(2, Z) is a bounded element of SL(2, R ) / SL(2, Z) . It 
follows that the holomorphic map an : C —> C which identifies all points of 

C + Xn(Z + zZ) ±z, 
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and maps 0 to 0 lies in a compact set of such maps, and 

<r'n(0)=0, K(0)=pn 

for (3n bounded and bounded from 0. Then noting that 

si,n°crn(z) = cr0(2n/22:), 

for n large enough depending only on M, 

\s'hn(0)\ > 2n/4. 

So (1) holds, as claimed. 
Taking e larger if necessary, we can assume for n ^ k that 

r n ( x ) e T ( r , £ o ) n T ( M ^ ) , 7 - ( * ) ^ T ( 7 , 4 / 2 ) for 7 C Int(A0). 

We shall write x = [p], r{x) = [p'}. Let 5 be the holomorphic map used to define 
r(x), from x. Write 7^ = dAj ndfl. We take the same choice of sets A(pfj) as in 17.7. 
Normalise S(ApX, is) so that the points of p{~i3) n<p(A(Aj)) are at 0, 1, 00, with two 
points of p{A{~f3) near 0. Normalise S{A'j,tu(x),v) similarly. Then s~x and s^1 are 
close, not just on S(A'0,x, is) but near 0 as well. In fact, they are C^-close to within 
e-i/Cie on any bounded set. Recall (9.3) that if [p] G T(7,£n), m-f{[LP}) is defined as 
Im(7r7([</?])), where 7r7 is projection to T(A(j)) and this is identified with the upper 
half-plane H. If the four points of p(A{^)) are at 0, 1, 00 and a for a near 0, it follows 
that ra7 ([</?]) = — log |a| + O( l ) . As explained in 9.1, the identification with H was 
chosen so that m1{[p\) was the modulus of 5(7, [(/?], £0) to first order. A calculation 
with elliptic integrals confirms this and shows that 

™7(M) = - l o g | a | - l o g 2 + 0(alog(a)). 

It follows that 

£(¿1/2+1/2^x£(¿1/2+1 + log|(5r1),(0)| + 0(e-1/Cl£). 

We also have estimates on rnlj_1(r(x)) — mlj(x) for 0 < j ^ p — 1 from 17.7. So 
similarly, for bounded n using [n/p] to denote the largest integer ^ n/p as usual, 

mho](rn(x)) = mho](x) +-logl5i,[n/p] + i(°)l + 0(ne-^Cie). 

So for a suitable ko depending only on k and C\ sufficiently large given /CQ, (1) gives 
the required result. 

17.9. Lemma. — Take the same hypotheses as in 17.6. Then ( /o,r) is nonEuclidean. 

Proof. — Let p be the period of AQ and write 

Q = PU 
ds 
u 

i=0 
ds d 

By our definitions, k(ll) = k(P). Suppose that 

F{x) sC K(fi) +C'e-27l2/£. 
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There are two cases to consider: 

(i) K(A'q) = «(//), 
(ii) K ( A 0 ) < 

(i) We consider the quadratic differentials qp(z)dz21 q^{z)dz2 for dp(x,r(x)) 
and d&' (X,T(X)) at x, and compare these with the quadratic differential q(z)dz2 
for d(x,r(x) at x. Let 0p, 6 ^ be the angles between q and g>, #A;,- Consider the 
annulus S(dAo,x,eo) (9.3), which has modulus 2n2/'e + O(l ) . Let i be a subannulus 
of 5(9Ao, x, ^o) of modulus bounded from 0 and separated from each boundary by 
an annulus of modulus n2/s + O( l ) . Then the measure of 4̂ with respect to both qp, 
QA'0 is ̂  Cie_7r Is for a suitable Ci > 0. One of Qp, 0^ is bounded from 0 in A. So 

for C2 > 0 independent of £, 

c 

\0p\2\qp\^C2e-^^ or £(¿1/2+1/2^£(¿1/2+1/2^ 

So by 9.5, for C3, C*4 > 0, 

-F(x) = d(x, r(x)) ^ max(dp (X,R(A;)) ,dA ; ,(X,T(X)) + 
£(¿1/2+1 

£(¿1/2+1/2^cvvvvwxv £(¿1/2+1/2^xc + (C*3/2)e^2/£. 

This yields the required contradiction. 
(ii) First, we claim that, if C is sufficiently small, 

a>Q(r(x),T2(*)K K(U) - 2C/e'27r Ie. 

To see this, we use an argument similar to 6.11. Let q(z)dz , q\{z)dz be the 
quadratic differentials for d(x,r(x), G?Q(T(X), r2 (x) at x, r(x). Let s be the holo-
morphic branched covering used to define r(x) from x. Let 6(z) be the angle between 
s*q(z) and ^i(^) . Then for C\ > 0 bounded from 0, by 8.3 (as used in 6.11) 

dQ((r(x),r2(x)) < d{x,r(x) - Ci \0\2\qi\-

But, because K(A'Q) < ft(P), s*q(z)dz2 has an approximate triple pole at 
5_1(S'(^Ao, x, £o)) — where q\ has at most a simple pole. So considering the 
integral over S{AF X, r(x), e\) for a sufficiently small ei, we obtain, for C" > 0 
sufficiently small 

dn(T(x),T2(x)) < k(/x) - 2C'e-27r /e. 

Now since we are assuming that ( /o , r ) is Euclidean, V2 ̂  Q- Now we can choose 
A(Q) so that v2 £ A(Q) and f0{A(Q)) c A(Q). Let / Q be the branched covering 
which has both critical values in A(Q) and JQ \ JQ1{Q) = fo \ fo1{Q)- Write 
T(X) — [p2]- Write V2,Q for the critical value of JQ in the same component of C \ Q 

as v2- Let TQ be the pullback corresponding to JQ. Then (^2(^2)? ^2(^2,Q) lie in a 

disc of measure 0(e~27T /£~2n /6) with respect to the quadratic differential qi^{z)dz2 

for dQ{r{x),r2{x)) at T(X). Similarly of r2(x) = [^3] and TQ(T(X)) = [^4] then 
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^3(; ( / ) , (p4(y) lie in a disc of measure 0(c 'E ' ) with respect to the stretch of 
Qi,Q(z)dz2 at r2(:/;). Then by 9.8, assuming S > 0 is sufficiently small, and ;r/ = T{X) 

dQ(x'.TQ(x')) ^dQ(r(x),T2(x)) - C1e-'27T'~/£~'27T'2/6 ^ H(fi) - C'e-2^ 'E 

So now, replacing Y by A(Q), r by rg, .x by r(x) assume that 

d(x,r(x)) ^K(/jL)-C'e-2n2/£: 

and we shall obtain a contradiction. Fix an integer À: with k > 20C + log C 1 for C 
as in 17.4, 17.6. By 17.8, if e is sufficiently large given k, 

m\(Tk(x)) > mi{x) + \k\og2. 

The lengths of any two loops in dP differ by at most (7, by 17.6, so for any 7 C OP 

we have 
nh(Tk(x)) ^ rrh(x) - 2 C + 1 logA-. 

Then if Ek is the shortest loop in DP for rA;(.r), 

2n2/Ek ^ 2n2/s + C + logC""1. 

So (assuming C > logC) 

F(rk(x)) < K(LL) - C'er2*1'e £(¿1/2+1/2^vxcvvvv 

contradicting 17.4. 

17.10. Let ( /0,r) be as in 17.4. We now know that if 

Fix) < tzia) + C'er2n /£ 

and C is sufficiently small then [/o-T] = /i for [/o,r] satisfying the Node Condition. 

Lemma. Take the same hypotheses as in 17.4. Let a C hit (ft) be a gap of'F and 

F(x) <: *(a) +<<-'". 

Then for all 7 C da, rn^Ax) $C rn/C. 

Proof. — Let Q be the smallest connected subsurface containing the orbit of a. Then 
by 17.5, for any 7 C dQ, //?-. (;r) > m — C if C is large enough. These 7 include all but 
one loop in do! for each a' G [a]. Suppose that ///-.. (x) ^ m/C for the final boundary 
component 7 of a. We can assume this holds for all 7' G [7] since d{x,r(x)) = F(x) 
is bounded. Let q(z)dz2, qa'(z)dz2 denote the quadratic differentials for ri(x, r(./;)). 
c?a/ (:r, r(x)) at x and 0a/ the angle between them. For at least one a' we must have 

£(¿1/2+1/2^£(¿1/2+1/2^ 

Then by 9.5, 

dix, rix)) ^ da/ (x,r(x)) +C-1e-m/vc, 

which gives a contradiction. 
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CHAPTER 18 

PUSHING THE PULLBACK MAP 

18.1. In this chapter, we return to the proof of one of the main results of this work, 
namely the Topographer's View, which was stated in 5.10. More precisely, we return 
to the proof of one of the results to which the Topographer's View was reduced, 
namely, the Level K, Tool of 7.7. We show that it suffices to construct a modification 
T' : T/G —» T/G of the pullback map r. We produce the first versions of the 
properties of r' in this chapter in 18.3, and deduce the Level n Tool in 18.4. We 
give a second version in 18.5, and show that it implies the first in 18.9. We give the 
third version (which is based on the second) in 18.11. In Chapter 19 we shall show 
that the third version implies the second, and produce a fourth version, in terms of a 
vector field, and show that the fourth version implies the third. The vector field will 
then be constructed in Chapters 20-21. 

18.2. Introduction of r/. — Throughout this chapter we fix D — D(Y, f0) of 
degree two type (see 1.9). As usual, the structure includes a set Z c Y invariant 
under /o, and we write G = ivi(B, f0). We write T = T(B) = T(Y) (see 6.2), and we 
use the pullback map r : T —* T (see 6.6, 6.7). We write d for the usual Teichmuller 
distance on T(Y), we write dz for the semimetric defined by projection to T(Z), and 
as in 7.7, we define 

F(x) = d(x,r(x)) = dz(x,r(x)). 

Initially, this is defined for x G T, but since F is G-invariant, we can also regard it as 
a function on T/G. We can also, of course, regard r as a function on T/G. We recall 
that the Level K Tool is concerned with a continuous map a : A —• T/G, where A is 
the unit interval, disc or circle, with F(a(x)) ^ K, for all x G A, and possibly some 
restriction on a | d for some d C <9A. Note that if A is the circle then a and r o a are 
freely nomotopic. If OL(D) C V, then roa\d = a\d. If A is a disc with d = <9A, a 
and ra are nomotopic via a homotopy preserving <9A, since T/G is a K(TT, 1). Thus 
it would be natural, in trying to modify a, to consider the sequence rla. In fact we 
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need to demie 

r' : T > T 

where T' is a G-invariant modification of r with certain additional properties. Thus, 
T' can also be regarded as a function on T/G. 

18.3. First Version Properties of r' 

Numbers used in the properties. - The number 8Q is chosen less than the Margulis 
constant. Numbers e2 < si < £Q and Si > 0 are fixed, and 

M = -l 
2 

e"27r2/ei. 

The number E2 was introduced in 7.7, together with constants EQ, E\. SO far, the 
only restriction on it is that EQ be sufficiently large, depending only on # ( V ) , and 
E\, E<2 sufficiently large given EQ and E\. The number Si is independent of S\ and E2. 
It actually depends on SQ of 7.8. 

Basic Property of T' . Identifying r' with its lift to T, 

r = <r o r o CTi , 

where a, cr\ are the identity on V. Thus, T' — r on V. Moreover, 

F(T'(X)) < F(x), 

with strict inequality whenever rf(x) / T(.T). From Property 3 of 6.6 it then follows 
that, for a k depending only on #(Y). F(rfk(x)) < F(x) whenever F(x) > 0. 

Then we can choose TV large enough that, if 6\ ^ F(x) ^ K and r'lx G T^£2 for all 

i ^ N then 

F{T'NX)<K-//L 7/1 

We then have to consider what happens if rh(x) 6 T<£.2 for some ?' ^ N. This is the 
purpose of the following property. It says that entry into T<£2 occurs in the right way 
— which, as we shall see, essentially follows from the properties of r which are stated 

and proved in Chapter 6. More importantly, it says that any subsequent exit from 
T<6L occurs in the right way through the "plugs" constructed in 7.7. The constant 
L > 0 will be suitably chosen. The subsets KQ, K\ of T/G are as in the statement of 
the Level K. Tool in 7.7, but have not yet been defined: they will be described in 18.8 
and defined precisely in 19.3. By abuse of notation, we write Ki also for the preimage 
of K, in T. The integer 7V0 will be determined only by Y and /0, as we shall see in 
17.8. The integer k\ depends only on Y and E$. 

Exit through Plug Property for r'. - Let x G T<£2 with Si ^ F(x) ^ where either 

x G KQ, or x — T,ni(x') with x' G T^E2 and m ^ 7V0 is minimal with r'rn{x') G T<£2. 

Then there is a minimal ¡1 — [/o,T] such that x G T^M(L^2). Let e ^ e\ with e/'e2 
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sufficiently large. Let i be minimal with rn(x) ^ T^^(s). Then 

rH(x) £T>lt(e/(l-Eoe)), £(¿1/2+1/2^xvv for i < j < i + ki, 

F(T,i+kUx)) ^Khi)-E0e-2^/£, T'^(x)tT^(e/(l-E0e)). 

It then follows from the Basic Property that F(r^(x)) ^ — E§e~2lx21£ for all 
j ^ i + k\. The Exit through Plug Property then implies that for some e'- and ¿1, 
r'i(x) G Ki{n,e'j) for i ^ j ^ ¿1, with £^ = ei: for example, for i, s as above and 
some j , i < j ^ i -\- k\, the number e'3 satisfies e'3 ^ e/(l — E0s). 

18.4. Proof of the Level K Tool given 18.3. — Recall that the Level K Tool of 
7.7 concerns a : A —» T / G with P(a(x)) ^ K for all x G A and a(d) C T"E§e~2lx21 for 
^ C dA. We recall (from 7.7) that 

T'J(e) = \J{K1fae): jj, minimal nonempty, K(/Ì) < K} 

UT'(e) U \x : F(x) < K - £(¿1/2+1/2^ 

TX(e,e') = \J{K0(»,e": : ß minimal nonempty, K(P) ^ K, e' < e" sC e} 

UfK(£' )U{i :F( i ) £(¿1/2+1/2^xcx 

These were originally defined as subsets of T/G. We identify them with their preim-
ages in T. The Exit through Plug Property then implies that, if e is sufficiently small 
and ele' sufficiently large, 

r\T^e,s'))czT^e), 

and if e2 <: e' and r,l(x) g T<£2 for i <C N0 (N0 as in 17.3), but r'n(x) G T<£2 for 
a least n, then r/m(x) G T"(e) for all m ^ n. Now choose £2 sufficiently small that 
rn(x) G T^£2 for z ^ iVo and x G OJ(A). Let iV be as in 18.3. Inductively, we can 
define Oii by CVQ — a, and o^+i is an extension of r''a.i so that = a on d: and 

I m ( % i \ ^ ) C ^ ) -

Then we take 0/ = ajv- If £ is sufficiently small that 

£(¿1/2+1/2^£(¿1/2+1/2^ 

then o/(A) C T"(e), as required. 

18.5. Second Version of Properties of r'. — We shall now describe the Second 
Version of the properties of r' = a o r o <ji, a — <j2 o <TI . We shall see that they imply 
the First Version Properties of r'', in 18.6-10. Let the numbers £0 > £1 > £2 > 0 
be as in the First Version Properties. The Second Version Properties are for x with 
F{x) ^ K and depend on ¿1 > 0, and constants Ci, Li, L2, Z/1? L'2. These constants 
are yet to be chosen. The constant C\ will depend only on K and # (Y). The constant 
L2 will depend on Li, and L2 on L^. We shall have Li ^ I/l7 L2 ^ L2. We use the 
definitions of 17.2-3. 
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Basic Properties. — As before, we have 

(i) F(T'(X)) < F(x), F{ax{x)) < F(x). 

We have a(x) — o~\(x) — x, except when x £ T(r,£0) H T(<9Ao,£) for some e ^ £o 

and (/o,T) which is (Z/l5 L2)-adapted to x, and mi(x) ^ ex . 

i f 7 e r x r 2 ( / 0 , r ) (2.5) for all such T, then 

(2) m1(o-j{x)) ^ m1{x) + Ci. 

(3) For all loops 7 C int(Q) for the fixed union ii of some such T, and all 7 C ft if 
max(Ko(r), K ( A Q ) ) ^ ^o(r) , one of (3a), (3b) holds: 

Loop. — F-between. 7 C d/3 for some gap p C intuii for the fixed union ft\ of some 
such Ti D r, and 

(3a) F(<tj{x)) ^ « ( / ? ) + e " -mh](cr7(x))/Ci 

m[7] nondecreasing 

(3b) m[7](ai(x)) ^ m[7](x). 

Let (/o,T) be (Li, L2)-adapted to x and rrii(x) ^ 3//4. Let F(x) ^ 6\. In addition, 
one of the following holds. 

Nondiscrete or Euclidean. — There exists (/0, Ti) which is (Li, /^-adapted to r'{x) 
with A^o(ri) ^ ^o(L) which is either nondiscrete, or discrete Euclidean. If ( /0 , r i ) is 
discrete Euclidean then for any a C A'- or a C Oft, d(7ra o o\(x), 7ra(x)) ^ C r 1 and 

d(lT(x O r' (X) , 7Va ° T O <J\ (x) ) ^ Cl 1 . 

F-between 

(4) mint(r'(x)) > mi(x)/ 

^o(r) + e-c?mi(r/^)) ^ F ( r / ( x ) ) ^ ^ o ( r ) + e-mi ( r ' C x ) ) / ^ 

mi-control. — Either max(^Q(r), K(A'0)) > Ko(L), or (4) holds. Let 7 C int(fJ). 
Then either (3a) holds; or max(hz0(T), K(A0)) ^ fto(r) and 

m[7](r (z)) + m[7],a (^ (x ) ) <mint(r,(x)). /CÎmô.of r 'W) ; 

or 

ra [7]-increasing 

mb](r {x)j ^ m[7] (r o cri(x)) + 2 
L 

-™h],a(Too"i(a0) 

In addition, if [7] = [70] and max(«ó(r), K(AQ)) > fto(r), then 

m[7](r/(x)) ^ m[7](r o o~i(x)) + ra7> (#) + 1. 
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Minimal — The loop set (/o,T) is minimal nonempty, K0(T) < KoiT) and 

F(T'(X)) ^ «0(r) + e-rn1(r/(x))/C1> 

If in addition F(x) ^ K0(T) + e-Cimi(x\ then 

F ( T ' ( X ) ) ^ F(x) - e"™0-0^-0^2/*0. 

Preliminary definition of Ki 

{a(x) : x G TJei), ¡1 minimal, m2(x) ^ El} C Ki. 

We shall give the full definition in 18.12. 

18.6. Lemma. — Let No be sufficiently large given # ( Y ) , K. Let the Second Version 
Basic Property hold. Let e2 > 0 be sufficiently small. Let x' G T', F(x') ^ K. Let 
Tfi(x') G T<£2 for a least i = i0 ^ 0. Let i0 ^ N0. Write x = rfi°(xf). Then for a 
constant C<3 depending only on C\, and some minimal nonempty /x; rri2(x) ^ 63777,1(0;), 
x G T^^C3e2). 

Proof. — This is very similar to 6.13 (proof of property 5 of r) . Note that r' = r 
except on a union of sets T(r ,£o) with r2(/o5r) 7̂  0, where, indeed, r2(fo,T) 
includes all loops of length ^ £o/Lf2. The Second Version Basic Property gives 
m1{r'(x)) ^ m1{r(x)) + C\ when 7 contributes to either m2(r(x) or m2{r'(x)). We 
also have mi{r'(x)) ^ mi(r(x))/C\. So, exactly as in 6.13, the Second Version basic 
property implies that, for an integer TVo and Ai G (0,1) depending only on (Y,/o) ; 
C4 depending only on (Y,/0) and on Ci, SQ; e ^ SQ sufficiently small and F(y) ^ 
T,N«(y)eT<£, 

(3) m2(T,No(y)) Xim2(y) + C4 
N0 

i=0 
>i(r"(j/)). 

The contribution from m\ occurs only if there are loops 70 C dQ and 7^ G T isotopic 
to 70 in C \ Z with v2 separating 70 and 70. In fact, given Ai G (0, 1), we can choose 
No and C4 so that (3) holds. We also have, if 7 is in the backward orbit of some Levy 
cycle then some component of f(fN°(^f) is in the fixed set, and hence 

mi(r,Ar°(j/)) >nh(y)/C4. 

Then if Ai is small enough (as we can assume), and C3 is suitably chosen given Ci, 
if rfi(y) <£ T<£ for 0 ^ i < N0l and y' = r,N°(y), then m2(yf) < C3m1(yf), and 
y' G T ( r , Cse) for (/0, r ) as above. So then there is a minimal nonempty ¡1 with ¡1 $C 
[/0? T2(/o, T)]. (See Chapters 2-3, in particular 2.5, 2.16.). By definition (see 7.2) this 
means that y' G T>w(C3s). We apply this with y = TH°-No{xf), y' = T'^{X') = x. 
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18.7. Indiscrete increases mi. — Now we show that mi-increasing holds auto
matically if (Jo, T) is not discrete. 

Lemma. — Suppose that L\ is suitably chosen (depending only on #(Y)). Let x G 
T( r ,£ ) where (/o,T) is not discrete, L\E ^ eq. Then 

mi^(r(x)) > rrii^{x) + 7r2/e, 

mdjr(r(x)) ^ ma,r(x) + TT2/e, 

£(¿1/2+1/2^£(¿1/2+1/2^vvcvvc 

Proof. — Let 7Q (if it exists) be the loop separating v\ and v2 which is homotopic 
in C \ Z to a loop in dQ and with x G T(j0,£o). Because m1(x) is the modulus 
of 6,(7,X,£Q) (see 9.3) to within 0(1/eq), there is a matrix (0,(7, £)) such that for all 

£(¿1/2+1/2^ 

ô 
a(j,ô)m6(x) + 0(l/eQ) ^ m7(r(x')) ^ 

ô 

0(7, 5)ms(x) + O(l /£o) . 

Here, all entries of «2(7, 6) are nonnegative integers independent of x except when 

7 = 7o = dA0( /o , r ) or 7 = 7n. If 7 CQ then a(7,Q) = 1 for precisely one 5 C ft. 

Since r is not discrete, «2(7, 0)^1 for at least one 7 C £1 and ô G T, (5 <£_ Vt. So then, 

if Li is large enough. 

mdr(r(x)) ^ mdr(x) + a (7 ,5 )m7(x ) -O( l /e0) ^ md,r{x) -f 
3rr2 

2e 5 

and similarly for mi,r- The Second Version Basic Properties imply that the ma,r 
inequality holds for r' replacing r, with rr2 je replacing 3TT2/2e. • 

18.8. Lemma. — Let (/o,T) 6e discrete Euclidean. Let x G T(r ,£o) ^ ^ ( ^ A Q , ^ ) 7 

x £ T(7, i/) /or 7 C Int(Ao), LX£ ̂  v. Let F(x) ^ «. Let 70 = <9AQ fl dQ. Let k0 be 

as in 17.8. Let 

d(7TaOT,n + 1(x)) , ira o T o o\ o Tn(x)) ^ C1 \ d(7TA O (TL O T,n(x), TVa O r'n ») ^ cp 

for all 0 ^ n ^ 2/c0 arzc? a = A'- or a C <9£1. TTien /or ko ^ k ^ 2ko, if C\ is 
sufficiently large given ko, 

m[7o](r'*''(x)) > mho](X)-

Proof. — By induction on n, assuming C\ is large enough, for n ^ 2/CQ, 

d(7Ta OTn(x),7Ta OT,n(x)) £(¿1/2+1/2^xvvvv 

Then the result follows from that for r in 17.8. 

18.9. Lemma. — Assume that the Second Version properties hold. Let x G T^^(Cse) 
with m2(x) ^ C^m\{x). The following holds for suitable constants C7 depending only 
on C\, C3 and #(Y) and C2 depending only on C7, C\, C3, and #(Y). Let j \ , 
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0 ^ j i ^ + o o ; be defined by: j = j \ is the first index with C^vfi\[r'3(x)) ^ rrii(x). 

Then for 0 ^ j ^ ji, 

m2(r^(x)) ^ C27nl{r'J(x)), 

arid ify = T'^+1(X), 
F(y) ^< K- e-™oM-L2Cl/eo 

Proof. The same method as 18.6 gives, for a suitable A2 G (0, 1), if C4 is large 

enough, 

(i) m2(Tln(x)) < A 
n 
2 m2(x) + 

df 

2 = 0 
C4X»-<mi(TH(x)). 

This gives a bound 011 rri2(rrn(x))/rrii (r,n(x)) if n ^ j i and the quantity 

n 

i=0 

\%-im1{Tfi(x)) 

mi(rfn(x)) 

is bounded. We consider this for n ^ jo , where j = jo (possibly with jo = +00) is the 

first index such that Minimal occurs for y — r/J(;r). We obviously obtain a bound 

(2) m 2 ( r m ( a ; ) ) < C 2 m 1 ( r , n ( x ) ) , n ^ jo 

if C2 is sufficiently large given C4, C5 and A2, and if, as we claim, for 0 ^ i ^ n < jo 

and a constant C5, 

(3) £(¿1/2+1/2^xcxc £(¿1/2+1/2^ 0 ^ z ^ n ^ jo-

We shall show that this is true, for C5 depending only on C\ and # ( Y ) . By the 

Properties of 18.5, for each 0 ^ i ^ n there exists a loop set ( jo , Fi) which is (L i , L2)-

adapted to rn(x) with fixed union Qz. 

Now take 0 < j < jo — A<), where A;0 is as in 17.8. For 1 < £ < q, let ry+£ be 

nondiscrete or discrete Euclidean. If Fj is discrete Euclidean then either, by m,\-

control, 
£(¿1/2+1/2^£(¿1/2+1/2^ с2е-тол)(т'-> (ж)) 

or we can take q ^ ko for ko as in 17.8 with Second Version Euclidean holding for j-\-£, 

0 ^ £ < q. Suppose we have the latter. Then the fixed union ilj+e is increasing for 

0 ^ £ < q. Since il,. t can only strictly increase boundedly finitely often for 0 ^ £ < q, 

we can assume that it is constant. By 17.8, 18.7, 

( 4 ) m.a(T'J+ti(x))>md(TlHx)) + 1 
2 

g l o g 2 . 

We claim that 

5 MI(T'J+i(x)) > Cpmi(Tr>(x)). 

Replacing j by some j + £ if necessary, we can assume that rn\(r'J+£(x)) ^ mi(r/J(x')) 

for 1 ^ £ < q. Then (5) is immediate unless rri[nt(T,J(x)) ^ Clmd(r/J(x)). So now 

assume this. Take any 7 G f j , 7 C Int(fJj). We need to obtain a lower bound on 

mb](T*+<>{x))/mb](T'J(x). We can assume without loss of generality that (3a) of 8.5 

SOCIETE MATHÉMATIQUE DE FRANCE 2003 



264 CHAPTER 18. PUSHING THE PULLBACK MAP 

does not hold for 7 and any j + £, 0 ^ £ ̂  q. For if it does hold for j + l j + £' with 

j+e<j+e' then we have, using 17.10 for the left hand inequality, for £(¿1/2+1/2^ccx 

£(¿1/2+1/2^£(¿1/2+1/2^ ^ F{T'\X)) ^ F(r'j+£(x) < K{0) + e-rnh](T'* + i(x))/Clt 

We can remove all such intervals {i : j + £ $J i ^ j + £'} from consideration. If what 
remains is bounded there is nothing to prove. If an interval have length ^ ko then 
we can assume it is the original interval {? : i ^ i ^ j + q}. So now, given 7, assume 
(3b) of 8.5 holds for all j + £, 0 ^ £ ̂  q. Then by 17.7-8, 18.7, 

mB](T'*+*(x))> £(¿1/2+1/2^xcx 
9-1 

xcc 

^ie-m[7].a(r':, + *(1)) 

:e) 

£(¿1/2+1/2^xcc 
9-1 

€=0 

£(¿1/2+1/2^vvxxvv m[7](r°(x)) - xc 3/2 
c 

So we obtain (5). Note that if we use (4), and (6) for [7'] between 7 and dVt, to obtain 
a better estimate on m[7] ^(r/7+^(x) then we can improve use (6) to obtain 

(7) ™<[7](r 3+q(x) ^ m[7] £(¿1/2+1/2^ C 3/2. 
1 

e-mh-]-o(r/J(:r))> 

This gives (3) in some cases (with i = j and n = j + q). Now we work for (3) in 

general. 

We can assume that F-between does not hold for i ^ j ^ 71, because if F-between 
holds for r'-'(./')• r,£(x), j < £, 

K0(T) + e-cr!m^"W ^F(T«(X))^F(T'J(X)) <Ko(r ) + e-mi(T'J'^/c?3, 

and mi(r/4(a;)) ^ mi (r^ (x))/C 28 
1 

We can assume there is a first index /1 . i ^ ¿1 ^ ti such that (/o,Ttl) is dis
crete noiiEuclidean. Then we can assume that i\ = i by (4). Then mi-control or 
noiidiscrete-Euclidean occurs for all i $J 7 ̂  n. We can assume that 

(8) mintXi(rH(x)) ^m1.r ,(r / ï ( : r) /C1. 

Otherwise take the first i = i2 ^ ?'i for which this happens (if at all). By Second 
Version 77? 1 -control we have, for /'1 ^ j < /2-

£(¿1/2+1/2^£(¿1/2+1/2^ (r"(:r)). 

So now assume (8). We can also assume that Q(T{) C ^(Tj) for i ^ j ^ n. Otherwise 
we can find boundedly finitely many indices i^. with i = ¿2, and $1(1^) C Q(Tj) for 

^ j < ik+i, but n(r,-A.+ 1) strictly smaller than ^ ( r^ . ) . But then by mi-control, 
n)i(rfif' • 1 (:/;)) ^ m\{T,ik(x))/Ci. Now for z ̂  j < n, let r?:j be the set of loops 7 of 
Tj such that 7 C int(n(I\)) such that either nondiscrete/discrete Euclidean or Loop-
F-between or m[7]-increasing of 8.5 occurs for rfk(x), i ^ k ^ j . By the definition, 
Tij is decreasing in j . If 7 G r^n then 

m[7](r/n(x)) ^ m[7]( :^(:r))/Q4 
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We see this as follows. As before, we can bound rn^(r/J (x))/m^(r,i(x)) if i ^ j ^ 
£ ^ n (3a) holds for j and some jf, £ ^ j ' ^ n. So we can assume this never happens 
for 7. By (7), there is little decrease in 777,[7] over a string of nondiscrete/discrete 
Euclidean, and m[7] has a compensating increase at each preceding occurrence of 
777,[7]-increasing. So it remains to show that for each i ^ j ^ n,Tij 7̂  0 and contains 
at least one loop 7 with m{L](T'i(x)) ^ m i f ^ W J / C f for some TV ^ 4#(K) . We 
do this by induction. It is true for j = i with N = 1. We only need to show 
that each time I\J+i is strictly smaller than Tij,it contains a loop of length ^ 
min(rai (T'%(x)), mi (r/J (a;))/C2. We can only have 7 6 T^j \ r ^ + i if m[7] (r/J+1 (#)) + 
m[7] ^(r/J+1 (x)) is small compared to more centrally based loops. In this case, we get 
the required lower bound on m,[7/] (r/j,+1 (x)) for at least one 7' more central than 7. 
So the proof of (3) is completed. 

By the definition of j0, we also have F(y) ^ k(/i) + e~mi^y)/c\ for y = T,J()(X). If 
C2 is sufficiently large given a constant CV, and j = j \ is the first index ^ j i with 
Cjini (T,J (X)) ^ m1 (/y). then we have (2) for 77, = j \ also, because (3) holds for n = j i 
and a suitable constant C5. We also have, for y' = r">(x), 

F(y') <«(/ i) + e-C7mi("')/Cl. 

By 17.7, assuming C7 is large enough, the fixed union for y' is irreducible, (/0. Fjl ) is 
discrete, and non-Euclidean. Then Minimal of 18.5 gives, for y" = r'-M+1(.r), 

F(y") < K,(,/,) -_ e-rno.o{y" ) -L-iC\I so 

18.10. Proof of the Exit Through Plug Property. — The following completes 
the proof of the Exit Through Plug Property of 18.3, assuming that r' satisfies the 
Second Version Properties. It follows from the lemma that for suitable k\. Eq, E\ 
and E2, and if e2, £\ are sufficiently small given £1? e0, and e\ ^ e ^ C\^£2/ log£2. 
the First Version Properties hold. 

Lemma. We continue with the same notation and hypotheses as in 18.9. Let j2 ^ 0 
be minimal with m,\(r'j2 (x)) ^ mi(./;)/(log nil(x))2.Let j% be minimal with T'1 (x) G 
T^/;(ci) for 0 < j < jf'3 and r/j3 + 1(;r) ^ T^^{ei). Then, enlarging C2 if necessary (but 

still depending only on C:- C.;- #(Y)) 

rn2(T,J(x)) ^ C2MI(Tr>(x)) for 0 < j < j;5, 

and for a suitable constant E'Q depending only on #(Y), if £2 is sufficiently small. 

m2(T'Hx)) ^ E'0i J2 < j ^ J3-

Proof By 17.7, for ji < j ^ j3, the fixed union P is irreducible and Tj is discrete. 
Let £j be the length of the longest loop in dP for r'J {x). By induction on jf, and the 

Minimal property, 

£(¿1/2+1/2^£(¿1/2+1/2^ £(¿1/2+1/2^xvcvvv 
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and I ? ( A 0 , / o , r ) has nonEuclidean orbifold. So by 17.4, it follows that {1/ej} is 
essentially decreasing, that is, for an integer k2 depending only on C2 and eq, and 

suitable Cio, 

l/er ^ (l/£j) - 1 for p ^ j ' > j + fc2, l/er ^ (l/sj) + C10 for j ^ j ' <: j + k2. 

Also by 17.6, for all 7, 7' C dP, m7(x), 'm7/(x), m1(r(x)) are the same to within a 
bounded constant. Hence, if 70, exists, ra7' (x) must be bounded. It then follows that 
for suitable X2 G (0, 1) and j i ^ j ^ j'3, if £0/^ is large enough, and for a suitable 
constant EL depending only on = (Y) 

m2(r/J+1W) < Max(£0,A2m2(r^(x)), mi(^'+1(a;))) ^ 1 ( ^ ( 1 ) ) -Cn/e0. 

It follows that if j2 ^ j ^ j,3 then ra2(r^(x)) ^ £0. 

18.11. More définitions. — Let (/o,T) be invariant and let x G T ( r , e ) . Let 7ra 
denote the projection of T, first, to T(Y) and then to T(A(a)). Then for any gap or 
loop a of r with one exception, we define 

Fn(x) = da(7Ta(x),7Ta(r(x))), 

and if a is periodic with orbit [a] (see 17.3) 

F[a](x) = 

sdsd 

Fa>(x). 

The exception is the periodic loop 7 (if it exists, in which case there is at most one) 
such that there is 7' G T such that 7, 7' are nomotopic in C \ Z but not in C \ Y 
and a component of /0_1(7/) is nomotopic to the component of ,/'o_1(7) m H ' UP to 
Z-preserving isotopy. In that case we take A(7, Z) C Z and 7r7,z to be projection to 

T(A(7, Z) and 

F7(x) = d7,z(7r7,z(^),7r7,z(T(^))) 

and jPr7i (x) as above. 
For a periodic or nonperiodic, write [[a]] for the components of U^o/o %OL- This 

set might contain loops if a is a gap. Then we define 

F[[a]](x) -

dsdff 

Fp(x). 

We write a(a,x) for the (/-area of S^a, .T, £0), where q(z)dz2 is the quadratic dif

ferential at x for d(x,r(x)). (See definition in general in 9.4.) If a is periodic with 

orbit CY-; (1 ^ i ^ A;), we write 

a([a],x) = 
d 

df 
a(ai,x). 

For a loop 7, let /^(7), ft0(F) be as m 1^.2. Let ( /o , r ) be discrete and ft0(F) > 0. 
If 5 ( A q , / o , T ) (2.18) is of periodic type (1.9) then the unique loop cycle [7] with 
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«(7) = K0(T) is in d[A0]. If 5 ( A o , / o , r ) is of eventually fixed type (1.9) then there 
is one loop of ^ ( . / c ^ r ) (2.5) separating such a 7 from [AQ]. 

Now let (/0, T) be discrete. Then A0 is adjacent to the fixed union ft, and periodic. 
Then we define a set Q as follows. Note that, by its definition in 17.2, K(A'0) > 0 only 
if ( /o , r ) is Euclidean. If K0(T) < max(/vo(r), K(A'0)) then take 

Q = ÇlU[A'Q]. 

In this case we also write (3Q = A0. If K0(T) ^ max(^o(r), K(A'0) then choose 71 with 
^(71) = ^o(T) and 71 separating v\ from A0 and let j3$ be the gap adjacent to 71 
separated from A0 by 71. Write [3i for the gaps with f3i C /0_1(ft+i) llP to trivial and 
peripheral loops, 0 ^ i ^ n — 2, and /3n-i C /0_1(/?o)- Then let Q be the union of ft, 

the /3j, and all gaps and loops separating 17 from some (33;, 0 ^ j ^ n — 1. 

We define quantities cUj(x,T) (1 $J j ^ 3), u;(#, T) if (/o,T) is (L\, L2, s, z^)-good 
for x. We define this only if (/0, T) is discrete and if max(/^o(T), «(A0), ^o(^) > 0 and 
either max(ft0(r), K(A0)) ^ ^o(T) or m^(x) ^ Ci or the orbit [a] C O adjacent to 

du satisfies 

a) K,(a) = max(tto(r), ft (A(,) ,«^(r)) . 

Define 

o;i (x, T) = 
cji,i(x,r) 
^1,2(2?, r ) 

where 

cji,i(x,r) C -1 1 
e-rn9A)(x) or e-^i(^)/^i5 or C -1 

1 
in the following cases. We use the first possibility if (1) holds and there is no (3 C int(fJ) 

such that (1) holds with /3 replacing a. We use the second possibility if (1) holds and 

there is such a ¡3. We use the third possibility if (1) does not hold, ¡3$ — A0 and we 

define 

LVl(x,F) = 
e-™>d,o(x) 

1 + ra7/ (x) 

We define 
wi,2(z,r) = 1 + m1(x), 

where there are at most three loops in the sum. If /3Q = A0 then the only term in the 

sum is m7'(#). If Po 7̂  A0 then we take the (at most 3) loops which are equal to 70, 

71, or separate j0 and 71. If K(a) < Ko(T) (in which case max(ft0(T), K(A'0) > K>O(T) 

or m1'o(x) ^ Ci), then we replace the numerator in the above expression for uo\(x, T) 
by e~c^v. 

Then we define 

uj2(x, T) = e-mi»t(x)/cio;i(a;,r) or e-c^/uui(x,T), 

o;3(x,r) = e-mint(x)/ci/2o;i(a;,r) or e-ci/2/"a;i(x,r), 

£(¿1/2+1/2^ e-m^(x)/c?a;i(x,r) or e_ci4/î/a;i(x,r), 

depending on whether or not (1) holds. 
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If (/o, T) is minimal, then of course rn[nt(x) — O.As usual, we take my (x) = 0 if 7Q 
(17.3) does not exist. In many cases, of course, my(x) will be bounded. In current 
applications, my(x) and ra7l (x) will be bounded in terms of m\(x). Therefore, the 
above expressions could be slightly simplified. But in Chapter 29 we will need to 
consider cases where m2(x) is not bounded in terms of m\(x). Therefore, we leave 
the expressions as they are. 

Now we describe the Triangle Conditions on x, for x such that LJ(X,T) is defined. 
Now let q(z)dz2 be the quadratic differential at x = [(/?], for a?(x,r(x)), with stretch 
p(z)dz2 at T{X). Let s be the holomorphic branched covering used to define r{x). 
Assume [cp] is normalised so that the components of d(3j are bounded and bounded 
apart. Then the Triangle Conditions are as follows. 

For each component D of C \ f3j disjoint from f2, 

(i) 
y^DDY 

\Res(q-s*p,(p(y))\ £(¿1/2+1/2^xwx 1 ^ j ^ n - 1. 

For any gap or loop (3 c C \ Q or loop (3 C <9Q, 

(2) a{l3,q)^e-c^»a(P3,q), 0 ^ j «S n - 1. 

There is a e Cl/"-dominant area surface U' for q{z)dz2 containing {3n-\ such that 

(3) a(fin-i,q)/a(U ,q) ^ u\(x,T). 

18.12. The Third Version Properties of ai. — We now need to reduce the 
Second Version Properties to more manageable ones. Recall that a = a2 o ct\ . The 
homeomorphisms crl5 (72 are the identity except on the set (described in 17.8) where a 
is not the identity. The horneomorphism o2 is actually the identity except on a much 
smaller set. We shall construct a2 explicitly in 21.13, spelling out its properties in 

19.3. 

Third Version Properties. — Write x' — r(x) and x" = cri(x/). The Second Version 
Basic Properties are as before. 

In addition, whenever (/o,T) is (Li, L2l £, z/)-adapted to x, and F(x) ^ ¿1, either 
Second Version nondiscrete/Euclidean holds, or the following Third version F-between 

or t -small-decrease holds. 

F-between 
/^o(r) + e-ci/2rni((Tl(x)) ^F(ox{x)) ^/^0(r) + £(¿1/2+1/2^xc 

F-small decrease. - If (/o,T) is not minimal, then 

m[nt(o-1(x)) ^ mi(cri(x))/Ci. 

If (/o,T) is minimal the Triangle Conditions hold for a\(x). In addition, in all cases, 
if the triangle conditions do not hold for both x and (7\{x) then 

F(ax(x)) ^F(x) - c^3(cri(x),r). 
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Definition of Ki. — The set Ki consists of x <E U{T^(eo) : ¡1 minimal } such that 

m2(x) ^ E[, \m1(x) — my (x) < E[ for 7, 7' c ÔP, 

where P is the fixed set of ¡1 = (/0, I j , and the Triangle conditions hold for a constant 
C'A replacing C\. In particular, 

{(7i(x) : x G TM(^i), /i minimal, 7712 ( # ) < s a c /Ti 

for a suitable constant E[ > 0. In chapter 19, we shall see that the Third Version 
Properties do imply the Second Version Properties, for a suitable construction of o~2-
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19.1. We need to show that the Third Version Properties of G\ in 18.12, together 
with a suitable construction of o~2, imply the Second Version Properties of r'. To do 
this, we show in 19.2 that the Triangle Conditions often force F-small-decrease.We 
then state the properties of a2 in 19.3. In 19.4 we see that these are sufficient to make 
the Third Version Properties of o\ imply the Second Version properties of r. We shall 
complete the construction of a2 only in 21.13. In the rest of this chapter, we reduce 
the construction of r' further, to the construction of a vector field (of which CT\ is the 
time one map) satisfying the Fourth Version Properties. The following two chapters 
will then be devoted to the construction of this vector field. 

19.2. Lemma. — Given K,, there is a constant C\ such that the following holds, when
ever L\ is sufficiently large. Let (,/n,r) be discrete non-Euclidean and (Li, L2: £, v)-
adapted to x = [p?]. Let F(x) ^ n. Let q(z)dz2 be the quadratic differential for 
d(x,r(x)) at x with stretch p(z)dz2 at r(x) = [p>'}. Let q'{z)dz2 be the quadratic 
differential for d(r{x),T2(x)) at T{X) with stretch pf(z)dz2 at T2(X). Let (1) to (3) 
of the Triangle conditions of 18.11 be satisfied for each of x, r(x) — x' replacing x. 
Let U' be a e~Cl^u-dominant area piece for q'(z)dz2 containing S(/3u-I,T(X),£O) and 
homotopic to ip'(R') for R' C Q, Q as in 18.11. Then 

(1) F(r(x)) < Fix) -
a((3N-UT(x),q'))e-ci/" 

a(U',T(x),q') dsd 

Proof. — Let 5(/5o,^) be as in 9.3. Now we need the concept of an m-approximate 
pole or zero in S((\),v). Let WQ £ C. An in-good annulus at WQ for q is an annulus 
A C .S(•/?(). v) of modulus ^ m round WQ such that A contains no zeros of q nor points 
of <p(Z), and a(A, q) ^ m. Let the disc containing w0 and bounded by A have p poles 
and n zeros. Then WQ as an rn-approximate pole of order p — n or, equivalently 
a zero of order n — p. The sum of orders of poles is always 4, for any quadratic 
differential. 
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Let s be the holomorphic branched covering used to define r(x) from x. Depending 
on ft, we can find a constant K such that an ra-good annulus for any one of q, p, s*q 
gives one for one of the others. Since[cp] G ( T ( Y i ) ) ^ / 2 , if C\ is sufficiently large, then 
there is some m ^ e~Cl^2l/ such that any m-good annulus at a point can be extended 
to a Km-good one, for all the quadratic differentials we are considering. Our aim 
is to show that, if (1) does not hold, then q(z)dz2 on S(f3o:x,v) and s*q(z)dz2 on 
S(pn-i,T(x),iy) have the same number of approximate poles. This is impossible, 
since s is of degree 2 on S(f3n-i,r(x)1i/). Therefore, (1) will hold. 

By the Triangle properties of 18.11, as weakened slightly above, q(z)dz2 and s*p(z) 
are close on S{(3i,x,v) for each 1 ^ i ^ n — 1, as are q\z)dz2 and s*p'{z)dz2 on 
S((3i, r() , v\ 1 $J i ^ n — 1. In fact, the Triangle Condition gives more than this. 
There are two terms in s*p (and similarly for s*p). and one of them (corresponding 
to fo~l{[3i) \/3i-i) is negligible, by the Triangle Condition (2). Therefore, q(z)dz2 has 
the same number of approximate poles on S((3i,x,v) as p(z)dz2 on S((3i-i,r(x),u), 
and therefore the same number as q(z)dz2 on S(f3i-\,x,v), 1 ^ i ^ n — 1. Hence 
q{z)dz2 has the same number of approximate poles on all S(fti,x,is), 0 ^ i ^ n — 1. 
A similar result holds for q'(z)dz2 on all S(PJ,T(X), is). 

The next step is to show that q(z)dz2 has the same number of approximate poles 
on S{(3i,x,v) as q'{z)dz2 on S((3J,T{X),V). If we can do this for one i and j , then 
by the above, we can do it for all. We use the fact that A0 — and hence certainly 
(3Q — has period > 1. This is the hardest point of the proof, in that we have to use 
the Hard Same Shape Theorem. Let U[ be of e~~2C] /^-dominant area for q'\z)dz2, 
and nomotopic to <£>'(#•), where fit C R.[. (Thus, U' = U'n_l.) By the Triangle 
Condition (2) of 18.11. we can choose R[ C Q. Of course, we have R[ = Rj if 
(3j C R'{. Write R' = Rfn_^ U' = U'^. Choose Rt C Q (1 ^ i < n, Ro = Rn) 
with R't C /^(Ri+i). We can choose A(Rt) with v2 e A{Ro), A(R'i) C f0~l (A(Rl+1). 
Write R'[ = f0~1(Ri+i). By simple properties of pullback, 

-lA(Ry)(r{.i:)-r2(j:)) ^ (IMR,., ,(a:,r(x)) ^ F(x). 

Let r,(z)fiz2, r[(z)dz2 be the quadratic differentials for d/\(Rl)(x,r(x)) at x, 
^A(i?/)(T(^')? r2(x)) â  ^ (^ ) - The quadratic differential for dA(R'.')(T(x),r2(x)) at r(x) 
is s*ri+i(z)dz2. By Easy Same Shape 9.5, r'i(z)dz2 has the same number of approxi
mate poles in S(f3i1r(x)1 v) as q'{z)dz2. Trivially, for 0 ^ i ^ n — 2, s*r*i+i (^)<iz2 has 
the same number of approximate poles in S(.:i,. r(.r). v) as rz+i{z)dz2 in S(fii,x,v). 

By Hard Same Shape 16.2, ,s*r;.+i (^cb2 has the same number of approximate poles 
in S(l3l1r(x), jy) as r[(z)dz2, that is, as qf(z)dz2. Also by Hard Same Shape, rl(z)dz2 

has the same number of approximate poles in S{f3i,x,v) as q(z)dz2. For this, we 
use the Triangle Condition (2) of 18.11 for .T, which implies that, although Ut itself 
may not be of dominant area for q(z)dz2, there is at least a dominant area piece for 
q(z)dz2 containing S{[3j,x,v) and not intersecting the component of C \ S(f3j,x1h>) 

disjoint from ip(Q). So, in summary, q\z)dz2 and rf0(z)dz2 in S(j3Q,T{X),V)) and 
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q(z)dz2i ri(z)dz2 in S(/3i,x,v) have the same number of approximate simple poles, 
and hence the same is true for all S(/%, x, z/), ri(z)dz2, q(z)dz2 and S{(3j, r(x), z/), 

£(¿1/2+1/2^xcccc 

Now let [(//] = [x ° V9] where x minimizes distortion up to isotopy constant on 
(p(A(Ro)). The direction of maximum distortion of s'~l o ̂  ° s is the direction of the 
unstable foliation of s*ro(z)dz2,. So applying 8.3 with xi = s/_1o^o5, if #(s*ro,r' n-1 
denotes the angle between the unstable foliations, for a suitable constant L3, 

d^/_i(r(a:),r (x)) < dH0(x,r(x)) - ^ 3 
5(/3rl_!,r(x)^) 

£(¿1/2+1/2^£(¿1/2+1/2^ 

So if (1) does not hold we have 

L3 
S(/3„_1,t(j:),i/) 

£(¿1/2+1/2^£(¿1/2+1/2^ q(/3ra-1,r(x),(?/))e-c'/'-

a(t/',r(x),g') 

£(¿1/2+1/2^£(¿1/2+1/2^vcv 

with the last inequality given by Same Shape 9.5, for a suitable C2 independent of 
Ci, if C\ is sufficiently large. If C\ is sufficiently large, this implies that r'n_1 and 
s*ro(z)dz2 have the same number of approximate simple poles in S(/3n-i, r(x), z/), and 
hence so do q'(z)dz2, and s*q(z)dz2. Then, as we have seen, q{z)dz2 in S(/3o,x,v), 
and s*q(z)dz2 in S(/3n-i, T ( X ) , I/), have the same numbers of approximate poles, which 

is impossible. 

19.3. The construction of a2> — This lemma gives the conditions that a2 will 
satisfy, and ensures that mi-increasing and all the basic properties hold for T ' (X) if 
Triangle or F-small-decrease holds for each of <TI(X), G\ O T O <TI(X). Take (3j (0 ^ j ^ 
n — 1) and uo(x) — cj(X, T) as m 18.11. 

Lemma. — Let ( /o ,T) 6e discrete invariant, (L\, L2,e,v)-adapted to x, and let f2 6e 
reducible. Write x" — o~\(x') — G\ O r o <TI(X). v4 map o"2 can fre constructed such 
that o-2(x".x) = x" except on a set where ( /o ,T) is not minimal, u(x",T) is defined 
(18.11), 

F(x") - F(x) < -u(x",r)/2. 

All the Third Version properties Basic properties hold for CT2(X") replacing o~i(x), x" 
replacing x except that the basic property F(o~i(x)) ^ F{x) is replaced by: 

F{o-2{x",x))<F(x") + u{x,T)/2. 

In addition either Second Version nondiscrete-Euclidean holds or Third Version F-

between holds with a2(x",x) replacing o~i(x) or the following holds if F(x") ^ F{x) — 

uo(x",T). Take any loop 7 <G T, 7 C int(Sl), with m1(x") + m^^d(x") ^ mint(x//) jC\. 
Then 

m1{o-2{x", x)) ^ m7(x;/) + 2Cle~rn~1-d(yX"\ 
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IfK'n(r)>Ko(T), 7 C dQ and 7A exists, then 

mh](a2(x\x)) ^ mb] (x//) + C71m7,(x//) + l. 

This will be proved in 21.13. 

19.4. Corollary. — Assuming that o~2 can be constructed as in 19.3, the Third Version 
Properties of o\ in 18.12 imply the Second Version properties of r' in 18.5. 

Proof. — The basic properties are the same. The map a2 has been chosen so that 
the Basic Properties will hold. So we need to show that if F(x) ^ Si then one of 
Second Version F-decrease Nondiscrete-or-Euclidean, F-between, rai-increasing, or 
minimal, holds, and we need to ensure that F(rf(x)) < F{x) when a2 is not the 
identity. If Third Version jp-between holds for o\{x) or G\ O r o ai(x), then Second 
Version F-between holds for r'{x). So suppose that o~i(x) and o\ O T O cr\(x) satisfy 
Third Version F-small-decrease. Then by the formulation of F-small decrease, and 

the definition of u)(x,Y), we have 

(1) Fiai OTOCTI(X)) ^ F{x) - min(cj3(ai(x), T), CJ3(CTI o r o a i ( x ) , r ) ) 

^ Fix) — uoioi o r o ai (x), r ) 

unless both o~i(x) and r o &\(x) satisfy the Triangle Conditions of 18.11. But then 
by 19.2 and the definition of the Triangle Conditions, we can obtain (1) with F(x), 
F(ai o r o a\{x)) replaced by F(ai(x))1 F(r o cri(x)). So then by 9.3, the Second 
Version Properties will indeed hold for r'{x). 

Finally, we need to check for Second Version minimal. The Third Version Triangle 
Properties (and the definition of LJ(T'(X)) give the required negative upper bound on 
F(T'(X))-F(X), since, as noted in 18.10, ray (x) is bounded. 

19.5. The Product Structure of T{T,e) and a Product Norm. — We now 
describe a decomposition of the tangent space over T(T,e) . Let E denote the set 
of loops and gaps of T. Recall (from 9.1) that T( r , v) is naturally isomorphic to 
a subspace of riae£ T(A(cx)), and that the tangent space of T(A(a)) is naturally 
isomorphic to CA (a\ where A'{a) is A(a) minus three points xaj ya, za, and, if a is 
a loop, then ya and za are in the same component of C \ a. 

Then we identify [if] G T(T,e) with 

(ba]) e 

fgfg 

T(A(a)). 

We normalize so that (pa(xa) =0, (fa{ya) = 1, tpa{Zcx) OC. 
We define a norm || • || on the tangent space of T(A(a)) for all a. If a is a gap, we 

have (from the above) a local identification of T(A(a)) with (C \ {0,1})A (a\ and 
thus of the tangent space at each point with CA ^ . If a is a gap, we simply use the 
standard Euclidean norm on GA ̂ . If a is a loop then we identify T(A(a) with the 
upper half plane as described in 9.1, and use the Euclidean (not Poincaré) norm on 
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the tangent space. Thus an O(l) change in modulus can be achieved by a path of 

length (9(1). 

19.6. Preliminaries to the Fourth Version Properties in terms of the Vector 
Field w. — It is now time to express properties of o\ entirely in terms of the vector 
field w. The map o\ will be the time 1 map of w. In order to describe w, we need 
the notion of a gap independently of a loop set. A gap at x is simply a subsurface of 
C \ Y such that x £ T(da,£o). We shall be interested only in invariant gaps, that 
is, da C r for some invariant (/o,T). Thus, a is a gap of T, and probably of other 
invariant loop sets too. We can then talk of a being periodic, nonperiodic, equal 
to AQ, in the fixed union (for some loop set) and so on. Similarly, we can talk of 
invariant loops, and talk of a loop being in the fixed union (for some invariant loop 

set) and so on. 

Let (/o, L) be discrete and invariant and x £ T(T, e) for some e ^ £Q. Let X be the 
set of loops and gaps of L. Let T' be the largest subset of T such that (/0, T') satisfies 
the Invariance and Levy Conditions. We shall use the notation of 17.5-6, 18.5. 

This is reminiscent of the definitions of 17.5. If 7 £ L, 7 C int(f2) is a loop 
adjacent to a with n(a) maximal, then we define H1 to be a function g(m^(x)) 

where g is C1 with g(t) — —1/ log/; if if t ^ mi(x)/Ci, g(t) = —1/ log£o is constant if 
t ^ to — 2mi(x)/Ci, and g is an increasing function for t < t0. 

The set of decreasable functions for (/o,T) is: 

F, F[W] (a £ E), 
- 1 

log(2 + rnb]{x)) 
( 7 € r \ r ; ) , H1 (7 C da, a C int(^)). 

Here, we include 70 in r \ V if it exists (see 17.3). Note that every decreasable 
function is bounded below and above. The number of decreasable functions at x, 
even if (/o,T) is allowed to vary, is bounded in terms of #(Y). 

The functions rii(a, . ) . — If a is a gap or loop in the full orbit of [3 U d[3 for some 

0 C D( /o , r ) for some invariant ( /o , r ) where ft is the fixed union, and K,{(3) = 

max(«;o(r), ^'o(r), a^(AQ)), define 

ni(a,x) - e-™o<Ax)/c* = n2(x. o ) . n3(a,x) = e-mdn{x)/C^ 

Let a = f3j for some 0 ^ j ^ n — 1 for [33 as in 18.11, and let Q, A3 be as in 18.11. 

Let v be the length of the shortest loop in U?int(^). Let q(z)dz2 be the quadratic 

differential for d(x, r(x)) at .T, with stretch p(z)dz2 at r(x). Let s be the holoinorphic 

branched covering used to define r(x). Then 

ni(a,x) = e C l^max{ | 
£(¿1/ 

Res(q - s*p,<p{y))\ : 

D is a component of C xvcxv disjoint from Q}. 

We define n2(a,x) similarly but with Cj replaced by Cf. 
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For all other gaps, define ni (a ,x) df C72 and ri2(ct,x) — 1. For all loops 7, define 

ni(7,z) = mJx) 1 (log(m7(x)))"2, n2(j,x) = 1 

19.7. Fourth Version Properties in terms of the Vector Field w 

The vector field w is the sum of vector fields wr where ( /o , r ) is discrete and 
r2 ( /o , r ) ^ 0. We have wr(x) = 0 except when (/o,T) is (Z//, L'2f)-adapted to x. We 
take V to be the largest invariant subset of F satisfying the Levy Condition. 

Write wr = wr(x). Let £ be the set of loops and gaps of T for any T as above. 
Let T; be the loop set generated bv To(fn.T). 

Basic Properties. — The most important Basic Bound is 

(1) DF{wT) ^ 0. 

(2) Dm^wr) ^ C^1 if 7 i V. 

(3) Let 7 have length L, £0 and 7 C int(f2( /0, T)), or 7 C £(¿1/2+1/ if 

max(/^0(r), K(A0)) ^ KQ(T). (This may include some loops not in T.) Then 
one of the following holds. 

F-between K,{(3). — For some gap ¡3 with (3 C iif for f2' the fixed union of some loop 
set, and 7 C int(/3), 

(3a) F(x) ^ K{(3) + e-m^(x)/Cl. 

77i[7] non-decreasing 

(3b) Dm[7](îiir) ^ 0. 

(4) 
ffdff 

712(0;, x)a(a, x)||D7ra(7i;r)|| ^ -dDF(wr) ^ C\ 

a6S 

a(a,x)\\D7Ta(wr)\\. 

The lefthand inequality can be strengthened if f33 (as in 18.11) is in a e Cl/^-dominant 
area piece U' homotopic to y>(R) (x = [(/?]) with a(Pj,x) ^ o;i(x, r ^ t / ' , x). In this 

case 

(5) 
dssdd 

\\D7ra(wr)\\a(a, x)/a(U', x)n2(«, x) ^ -dDF(wr). 

If H is a decreasable function, 

(6a) DH(wr) < C r 1 . 

H H = F[a] 

(66) DH(wr) ^ e-m°["i(x)/ci. 

In addition the following hold when (/oT) is (L'i, £2)~aclaPted to x. 
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Decreasable Conditions. Let F(x) ^ Si. Let one of the following Decreasable 
Conditions (7)-(13) hold. Then (15) holds. If none of (7)-(13) holds but (14) holds 
then (16) holds, for ^ ( x . r ) as in 18.11. 
(7) For some nonperiodic loop (3 outside Q, or loop (3 in i}. Fp(x) ^ So-

(8) For some gap (3 outside Q or periodic loop outside Q (hence in a non -Levy cycle) 

Fp{x) > F(x) - 60. 
(9) For some periodic gap /3 with K,(P) < max(ft0(r), K'0(T), K(A'0)), Ff3(x) ^ F(x)-S0-
(10) For some (possibly reducible) periodic gap a C ft with 

K,(a) = max(tto(r), fto(r) £(¿1/2+1/2^ Fa(x) > K{ol) + ri3(a,:r). 

(11) For some periodic gap orbit [a] C Q, and some a, a7 G [a], a(c/, x)/a(a. x) ^ 

[ l - C f S i + cr1]. 
(12) The loop 7Q (17.3) is such that a component of f0 (7^) is homotopic in C \ Z 

to the component of /0"1(7o) in and 

*r7ol(*) > 
1 
d 

log 
m1{)(x) +my(x) 

m1()(x) + 2m7(,,(X) 
+ S0 

where 70 is ol period p. 
(13) We have a(Q,x) ^ C f1 , and there is a gap (3 with J3 C int(Q) with kb= 
max(ft0(r), ft[)(r), ft(Ag)) but no such gap in Vt adjacent to dVt, and m y ^ ( x ) ^ 
mi(x)/C\ for all such 
(14) There is a subsurface U of e_Cl//'y dominant area containing /3n_i, with 
a(/3n_i,x) ^ cJi(x,r)a(c/,jO (as in 18.11) and a(U,x) ^ Cf1 , but the Triangle 
conditions (1) and (2) of 18.11 are not satisfied, with e~Cl//,y replaced by e~c'^lv (a 
stronger condition). 

Decreets able co nsequ en ces 

(15) DH(wr) ^ -Ci. 

(16) DF(wT) ^ -LJ2(X,T). 

19.8 Lemma. — For suitable choice of C\, the time 1 map o~i of w satisfies the Third 

Version Properties. 

Proof. - Write crt for the flow of w. We have ai(x) = x on the set where w = 0. So 
the set where ai(x) 7̂  x is as required by the Basic Properties. We need to show that 
if the Fourth Version properties hold for w(x) and x — r(xi), then the Third Version 
Properties hold for x\ and G\ O T(X\) = cri(x). Consistent numbering (1) to (3) is 
chosen in 19.10 with the properties of 18.5. The connections are clear in each case. 

Now we need to check the other properties of 18.12 (which refer back to the proper
ties of 18.5). So let ( /o , r ) be invariant discrete non-Euclidean and (L1 ,L2)-adapted 
to x. Let T' be the largest subset satisfying the Invariance and Levy Conditions. 
Then the Basic Bounds imply that for 7 G T , 0 $ t ^ 1, m1{crt{x)) ^ C^2mn(x). 
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(jt{x) G T(aA /0(/0,r/),C1/Li) for all t G [0,1]. Then assuming that m^x) is suffi
ciently large, if ( /o , r ) is (Li, /^-adapted to x and L<i is sufficiently large, there is a 
loop set Ti C r which is (Li, L2)-adapted to at(x) for all t G [0, 1], and all loops of 
r \ Ti have length ^ £2^0 at crt{x) for all t G [0, 1]. It suffices to work with Y\. 

Assuming C\ is large enough, there is t < 1 such that no decreasable function 
decreases for at(x). Then we look at dominant area pieces (9.4) for the quadratic 
differential qt(z)dz2 for d(at(x), T O at(x)). If none of the decreasable conditions hold, 
then there can be no dominant area pieces outside Q. Hence a(Q,qt) is bounded 
from 0. Since none of the decreasable conditions hold, for [3 C a((3,x) can only be 
bounded from 0 if ¡3 is a gap with K(/3) — max(fto(r), K(A'0), K,Q(T)) maximal. If there 
is such an (3 but no a C ^ adjacent to di} with n{a) = n{f3) then since neither (13) 
nor (10) holds, we have 

F(x) ^ «(/?) + e-mi(a:)/ci 

and hence by 17.5 we have F-between. We can also assume there is no i1\ with 
Vti C a(Qi,x) ^ C^1 and maQ,(x) ^ m\{x)/C\. For if Vt\ exists then by (11) it is 
a component of f-14A1 up to isotopy, by (9) n{Vti) is maximal and by (10) and 17.5 
we again get F-between. So area must be concentrated in Q \ SI or near dft. In fact 
U must exist as in (14), and the strengthened Triangle Conditions of 18.11 must hold 
for (Jt(x), that is, with e~C]j/l/ replacing e~Cxlv. Then we want to show that 

Fia^x)) ^ F(x) - w 3 ( * , r ) . 

Write U = U{t). Then U(t) is homotopic to <pt(R) for some i? C fl. Then as(x) will 
satisfy (l)-(3) of the Triangle Conditions of 18.11 if there is U(s) homotopic to (ps(R) 
which is e~Cl/^-dominant for d{as(x), r o as(x)) at <Js(x) and all loops in (ps(ftj) have 
length ^ v/C\, and (1) and (2) of the Triangle Condition hold for as(x) with e~c^u 
replacing e~Cllv. Then we need to show that if these conditions do not hold for all 

s G [0, t] then for some s < t, 

(1) F(at(x)) ^F(aJx)) - LJ3(X, r ) 

because Fix) ^ F(as(x)) and F(o~i(x)) ^ F(<Jt(x)). Now 

(2) F(at(x)) ^ Fu(t)(at(x)) + e-c?'"a(0n-1,qt) /a(U(t),qt) 

by (easy) Same Shape 9.5. Of course F(as(x)) ^ Fu^(as(x)). By the bound on 
a(/3n-i,qt)/a(U(t),qt) in (3) of the Triangle Conditions in 18.11, we shall certainly 
obtain the result unless 

(3) F(aAx)) ^ Fu(l)(as(x)) f 2e-c'/"a(/3„-1,gt: /a(U(t),qt). 

Now by 9.8, the quadratic differentials qu{t) f°r djj^((jt(x),T o at{x)) and qu(t),s 
du(t)((Ts(x)iTO(T3(x)) are the same shape so long as all quantities 

(4) a(/i, qu(t))df3(os(x):(Tt(x)) = o(a{3n-i,qu(t\) 
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that is as long as this is true, a(-i. qu(t))/a(ft* Qu(t).s) are boundedly proportional to 1. 
In particular, a(/3n-1, qu(t),.s) *s boundedly proportional to a{fin-\, Qu(t))• So now as 
long as this is true we can assume that U{i) — U(s) is of dominant area for qs. So 
take the smallest possible ,s ^ t so that (4) holds, that is, for small (5, 

u. 

df 
11D 7Tfi (w((7u(x))\\a( ¡3. qu {t)) du = Sa(6n-Uqu{t)). 

We have iu is a sum of vector field such as wr^, for each of which the Basic bound (5) 
of 19.7 holds, but these loop sets differ by loops of length ^ So/L2, which are of very 

— 1/2 
small modulus compared with mi(at(x)) ^ ex (assuming s\ is sufficiently small 
given £o). So we have 

-DF(w(au(x)) > 
flcR 

a(/3,qmt))e-7ll^x^. -max(x)/C1. 

Then 
rt 

-DF(w(aJx))e7n^{x)/c^ du > ôa(Pn-i,qu(t)). 

with the term eni^(x)/c^ replaced by eL'2°^£l) if K0(T) < max(ft(A(/)), K,0(T)). Since 

a(/37l-i,qu(t)) ^ CJI(cr(x(x), T), this gives (1) as required. • 
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C O N S T R U C T I O N OF T H E G O O D V E C T O R FIELD: 

PART 1 

20.1. The Good Vector Field Theorem. - Let ( /o , r ) be invariant discrete non-
Euclidean with r2 ( /o , r ) ^ 0. Then there exists a vector field w satisfying the 
properties of 19.7. 

We devote this chapter and the following one to proving this proposition. 

20.2. Idea of the Proof and some notation. — Let (/o,T) be fixed, as above. 
As usual, we let £ denote the set of loops and gaps a of T. We use the natural product 
structure of T(r ,£o) as described in 9.1, which involves choosing sets A(a) C Y for 
each a G S . If a is a loop then A(a) contains exactly four points. If a is a gap then 
A(a) contains at least 3 points. We fix a decomposition 

4(a) = {xa,y<x:za} UA'(a). 

If a is a loop then yn, za are in the same component of C \ a. We use the norm on 
the tangent space over T{T,sq) described in 19.5. Now we describe, for each a G E, 
a subspace V(a) of the tangent space of T (F ) , which can also be regarded as a space 
of vector fields over T(T,£q). Given a, normalise all [cp] G T(Y) so that tp(xcx) = 0, 
(fil/a) — 1, <p{za) - oo. First, let a be a gap. Then let V(a) denote the set of all 
9 = (0(y)) G CY such that 9{y) — 0([(p])(y) is constant for y in each component of 
C \ a, and 6(y) — 0 for y in the same component of C \ a as a point of A(a) \ A'(a). 
Now let a be a loop. Then we take 6 = (9(y)) where 9(y) = 0 if y is in the same 
component of C \ a as za (and ya) or if y = xa, and 9{y) — X(fa(y) if y ^ xa (that 
is, ipa{y) ^ 0) but y is in the same component of C \ a as xa, for some fixed A. 

We also define V([a]) to be the direct sum of V{a') {a' G [a]) if a is periodic, and 
V([[a]]) to be the direct sum of V(a') for a' G [[a]]. 

Then we have the following. Recall (from 9.1 onwards) that if (3 is a loop, 

£(¿1/2+1/2^£(¿1/2+1/2^ 
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20.3. Lemma. Given rj > 0 there is a constant M depending on e such that the 
following holds. Let 0 G V(a). Then: 

\\Dnfi(0(l<P}))\\ ^ A/||D7rQ(6»(M))||e-A) 

where 

A = 

7 

//n7(M), 

where the sum is over loops 7 separating a and ¡3 if a is a gap, and includes a if a is 
a loop but does not include [3 if (3 is a loop. 

Proof. Fix [if]. First suppose that a is a gap. We can assume without loss of 
generality that #(A(a) ) ^ 4. Let [ijjt 0 ^p] be the image of <p under the time t flow 
of 6 for small t, where we normalise so that 0£ fixes 0, 1, oc. Thus, for y in the same 
component of C \ a as a point w of A'(a), there is a constant cw such that 

£(¿1/2+1/2^£(¿1/2+1/2^ 

We can assume without loss of generality that cw 7^ 0 for a single w G A (a). If (3 
is a gap, ipt translates at most one point of A(/3), or all but at most one. If (3 is a 
loop, '(jjt translates none, two or four of the points of A(/3). Let pt be the Môbius 
transformation such that 

pt o 'i/jt o ipi'Xff) = 0, pt o i/)t o (f(yp) = 1, pt o 'i[)t o if(zp) = OO. 

Then pt o 'ipt moves points of Lpp(A'((3)) by Euclidean distance at most tM\cw\e~A. 
If (3 is a loop, then the Euclidean distance moved by the single point pt o ij;t(A'((3)) is 
at most tM'\cw\e~A~A , where A' = m^Q^]). This means that, regarding ^( [^o^]) 
as an element of the upper half-plane in the usual way (9.1) 717?([0t 0 ^p]) = ^ ( M ) + 
0(tM'e~A). These give the required bounds on ||7r^(#)|| is a is a gap. 

Now suppose that a is a loop. Again, normalise so that <p — tpa on xai ya. za, in 
particular, <p(xn) = 0. Then 0t is of the form 

ipt(ip(y)) = ecttp(y) 

for y hi the same component of C \ a as .ra. 'ilh{^p{y) — ̂ p{'lj) otherwise. Then choose pt 
as above. Then, once again, pt o 0, moves points of (pp(A'{(3)) by a distance of at 
most A/|c|te~A or A/|c|£e-A-A , depending on whether (3 is a gap or a loop, and we 
obtain the same estimates as above. • 

20.4. The Formula for DF{0) if 0 G V(a). — We use the following notation in 
the next few sections. Fix x = [p] G T, r(x) = [if)] and let q(z)dz2 be the quadratic 
differential for F(x) = d(x,r(x)) at x, with stretch p(z)dz2 at r{x). Let s be the 
holomorphic branched covering used to define r(x). We recall (8.11) that 

(DF)x(h) = 27r 

yeY 

Re(Res(<? - s*p, ip{y))h(y)). 
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This, of course, underlies our calculations in this chapter. Given a, let pa be the 
Möbius transformation such that 

£(¿1/2+1/2^cx Pa M l / « ) ) = 1, pn(p(za)) = oc. 

Write 

£(¿1/2+1/2^ 

We define (s*p)Q similarly. As in Chapter 9, we write qa(z)dz2 for the quadratic 

differential for da (^a ( M ),^a ([?/>])) at 7TQ ([</?]). 

Lemma 

(1) Le£ a be a gap. For each y G A7(a) /e£ 7(2/) denote the component of da 
separating y from a. Then for 0 G V(a) , 

£(¿1/2+1/2^ ) = In: 

y E A'(a) £(¿1/2+1/2^ 
0(y)(<f(z)-(s.p)Q(z))dz . 

(2) Let a be a loop. Then if 0 G V(a) and A is the scalar used in the definition 

ofO, 

DF(0) = Im A 
xw 

z(qa(z) - (s.p)a(z))dz 

Proof 

(1) Let a be a gap. Define D(y) to be the set of y' G Y in the same component of 
C \ a as y. Then for 0 G V(a) the Derivative Formula 8.11 gives 

DF{6) = 27rRe 

J/eA'(a) y'ED{y) 

c x v x c v c v c v % ) R e s ( ^ - ( ^ ) - , ^ ) ) 

= Re 

cvvvv 
0(y) 

f{i{y)) 
-i(qa(z)-(s*p)*{z))dz I, 

which, by definition, we write as 

27rRe 

y £ A'(a) 
f)(y)(<'{"> V) - c(a, y)) =2TT Re 

y e A'(a) 

0(y)c(a,y) x 

(2) Now let a be a loop. Let D denote the set of y G Y in the same component of 
C \ a as 00. Then the First Derivative Formula gives 

DF(6) = 27rRe A 
yeD 

rty)(Res(qa-(s*Py\^y)) 

= Re A 
cxcc 

-iz(qa(z)-(s*p)a(z))d2 x 

which, by definition, we write as 

27rRe(A(c(a, q) — c(a, s*p))] = 27rRe(Ac(a)). 
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In future, we shall write C(OJ, q) for the vector (c(cv, q,y)), for any quadratic differ
ential q(z)dz2. 

20.5. A Formula for DF<{9) if 0 e V{a). — Let C e E, x G T(r,e0). Let 5 be 
the holomorphic branched covering used to define r(x). We recall that 

Fc(x) = d c ( x - r ( x ) ) = d(7Rc(x),7rc o r(x)) . 

Let pQ be as in 20.4. If C C /n (a) then we define £(¿1/2+1/2^xxvvv We have the 
following. 

Lemma. — Let 9 G V (a). Le£ x = M G T(T,eq) C\T(da,e) f ì T ( ^ ( , 4 v?a = pa o 
£(¿1/2+1/2^ TTien depending on whether of not a C /0 

(1) £>Fa(6>) = 27rRe 
' y e A'(a) 

9{y) Res(qa - £(¿1/2+1/2^xvvv + 0(e"27r2/e), 

Î2) £>Fa(<9) = 27rRe 

£(¿1/2+1/2^ 

9(y)Res(qaìip0l(y)) ; + 0(e~27r /e). 

£(¿1/2+1/2^£(¿1/2+1/2^, Then 

(3) £>iv (9 = -27rRe 

£(¿1/2+1/2^ 

9(y) Res((sa;C)*pc, <pa(y)) + 0(e-2n /e). 

£(¿1/2+1/2^£(¿1/2+1/2^ 

(4) DFQ{9) = 0(e~2lT /£). 

Proof. ----- The formulae given are all invariant under affine change of coordinates, that 
is, if we replace A'{a) by a different choice A" (a) C A (a) \ {za} and replace (pa by 
a o cp a for a(z) — Xz + p for a o </?a(A(a) \A" (a)) = {0 ,1 , oc} then the formulae 
above hold for qa, A'{a) if and only if they hold for <r*ga, A" (a) (with the appropriate 
changes to sa,a and so on.) So we may assume that 9{y) = 0 for y = v\, i?2, the critical 
values of /0. Now let a C fo~l((3). Then 

(5) £(¿1/2+1/2^£(¿1/2+1/2^ £(¿1/2+1/2^xcv D<*p(PUo(y))). 

If /3 ^ a then we have Dnp{9{y')) = 0(e-27r /£) by 20.4. If /? = a, /0(2/) G D{y') for 

2/' G A (a) and D{y') as in 20.4, then 

(s-6}J(Mfo(y))) Dn0(9(fo(y))) d {s-')'My'))9(y') + 0(e -2^ /£ ) . 

Then by the First Derivative Formula 

DFA(9) = 2TT 

ye/i(a)\{zH} 

R,e(Res(qa^a(y))9(y) - Res(pa cpa<^0y))D(^a o S-1)(9)(y)). 

Then (1) and (2) follow, depending on whether a — (3 or a ^ ¡3. The calculation for 
D(tt^ o s~1)(9) when £ C f0'1(a) is exactly like (5) above, with ( replacing a and a 
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replacing (3. The calculation of D(tt^ O s )(9) when ( C f0 (/3) for (3 ^ a is exactly 

like (5) above with £ replacing a. 

20.6. The Orbit Dominant Area Condition. — We now state the Orbit Dom

inant Area Condition. This is a condition on gaps and loops. As the name suggests, 
it has a resemblance to the Dominant Area Condition of 9.4, but, roughly speak
ing, dominance has to extend over the backward orbit. For technical reasons, our 
orbit dominant area condition for loops is actually weaker, in some respects, than our 
original dominant area condition for loops. 

We fix a discrete (/o,T) with x G T(Y,eq). We use F^] , Fj[a]] of 18.11, ma (from 
9.1 onwards) and a(a, q) as in 9.4. Let Y' C Y be the largest subset such that (/o, Y') 

satisfies the Invariance and Levy Conditions. Let Q be the fixed union. 
We say that a satisfies the Orbit Dominant Area Condition for q(z)dz2 and a 

constant D\ if the following hold. First, let a be a gap or a union of gaps and loops 
containing at least one gap. Then the conditions are simply that 

a(ß) < £>ia(7) 

whenever (3 is a nonperiodic gap or loop in Un>o/o~n(a)' or /3 C Un^>ofQ~n(da), and 
7 C int(a) is any bounded loop. Now let a let any loop in Y which is not a periodic 
loop outside f2, and and suppose that a is not in the periodic orbit of <9AQ. Then the 
conditions are that 

(1) Fa(x) ^ 
1 

Dima(x) 

(2) a{ß) SC Dia{a) 

whenever ß is nonperiodic in Ura>o/0 na or ß € [a] (for a periodic) and 

Fß(x) < 1 
\JTTxrriß(x) ' 

Note that these are automatically satisfied if, for a suitable D2 > 0, 

a(ß) ^ eD2m«(x)a(a) 

whenever (3 is a nonperiodic loop in Un>o/0_n^ or a gap adjacent to Un^of0~na. 

Now let a be in the periodic orbit of <9Ao = 70 • Let the period be n, with orbit 

{li : 0 ^ i ^ n — 1} and a component of /0_1(7o) homotopic in C \ Z to 7n-i-

Let d(xir(x)) = ! log if. The conditions are as above unless a loop 7^ exists such 

that x G T(70,£o)? 7Q is isotopie to 70 in C \ Z but not in C \ Y. In the above, 

we then take dlQ to be a semimetric on T ( Z ) , that is, we are only interested in the 

homotopy class of 70 in C \ Z. So d1{) = d1>^. The conditions for Orbit Dominant 

Area are exactly as above unless a component of /o_1(7o) is homotopic to 7n_i. Then 
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the conditions are that, for £(¿1/2+1/2^£(¿1/2+1/2^ 

£(¿1/2+1/2 (x) >>log mln^x(r(x)) + (VK- 1)A 

m7n„1(r(x)) 

and (2) above, with the same conditions as before. 
Now let a G F be a periodic loop outside ft. Then the conditions are much 

stronger. The loop a is {D\, D^-orbit dominant if there is an annulus homotopic to 
<p(a) (x = [ip]) of modulus ^ (1 — D\ )ma(x), satisfying the Pole Zero Condition (9.4), 
a{P) ^ D~1/2a(a) for all (3 G [a], and a{[3) ^ Dxa(a) whenever (3 G [a] \ [[a]] or the 
maximal annulus homotopic to (p([3) satisfying the Pole Zero Condition has modulus 
^ (l-D'JD^m^x). 

20.7. In what follows, n\(a,x) is as in 19.6. We use the notation of 20.6. Let 
^7,a(z0 be the sum of m^(x) with ( separating a from [7] (£ G F) and including a if 
a is a loop. Note that 

e-^-^imf(ax))-1 < (n1(7,^)))_1-

In fact, if 7 c£ da. 7 7̂  a, 

e-m->-(x)(^i(«^))_1 ^ n;1(7,x) = o( l ) . 

Proposition. Let D\ > 0, D[ > 0 6e given. Let s > 0 be sufficiently small given 
these and x G T(F,s). Then there exists a gap or loop a of D\-orbit dominant area 
for x, and of (Di, D[)-orbit dominant area, if a. is a periodic loop outside the fixed 
union ft. Moreover, for any loop 7 C Int(f2 U f0~1(ft)), with 7 C /0"1(7/)? 

(i) ail) — ofmin (e7ny-1einy^)a(a)n1(a1x)). 

If the only possible such a are periodic gaps with K,(a) maximal, then a is of D'{-
orbit dominant area for D'[ = e~rno<^x^Cl. If in addition there is no irreducible 
gap (3 C ft adjacent to Oft with K((3) maximal then we can find a reducible with 
D'{ = e-rn^.o{*)/Ci _ jj the onjy p0SSlbiHty for SUch a is in a U containing some (33 
with U of e~Cl Iv-dominant area and satisfying Triangle Condition (3) of 18.11, then 
for at least one such U we have a(U,x) ^ 1 /# (^ ) -

Now let a be of D\-orbit dominant area, and o / (Di , D[)-orbit dominant area if a is 

a periodic loop outside ft. Suppose that [a] does not intersect some U with (3n~i C U 

for some U satisfying Triangle Condition (3) of 18.11. If a is periodic irreducible 

with K.(a) maximal, suppose that F(x) > n(a) + D1^20 Then there exists 0 G 

V[[a]]e © V(7) and a decreasable function H such that DH{0) < — C - f " 1 a n d 

0 satisfies all the basic bounds (l)-(6) of 19.7. If a is contained in U as above, and 

Triangle Conditions (l)-(2) of 18.11 are not satisfied, and this is the only possibility 

for a, then there exists 6 G V (̂[[/30]]) ©®7Gr^(7) satisfying all the Basic Bounds and 

DF{6) ^ -e-c^-C^\\e\\a{Pn-{). 
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20.8. Proof of the Good Vector Field Proposition. — To find wr with the 
properties of 19.7, we then take the sum of 0 G ^[[a]] © ®7erV(7) corresponding to 
a of Di-dominant area or (Di, D'^-dominant area, and of 0 G ̂ ([[A)]]) © ©7€rV(7) 
if U exists as in 20.7 with a(U, x) ^ C^1 but only including 6 corresponding to for a 
as above if a(U,x) ^ C^1. The existence of a as in the first paragraph is proved in 
21.12, and therefore the sum will always be nonempty. The existence of 6 is proved 

in 21.2-11. 
The main part of the proof of the Orbit Dominant Area Proposition involves com

paring DF and £)jF][a]], which we proceed to do, in a number of lemmas. From now 
on in this chapter, let x — [if] G T(T.e) and let q(z)dz2 be the quadratic differential 
at x for d(x,r(x)) = F(x), with stretch p(z)dz2 at r{x). 

20.9. Lemma. ----- Let a be a gap or loop. Then 

c(a,q) = 0(a(a ,g)) , c(a,s*p) = O{a{f0 a,p)). 

Proof. -— The second estimate follows from the first, since a(a1 s*p) — O(a(f0~1a1p)) 
by change of variable. For gaps, the result follows immediately from the definition of 
c(q, a), because a(q, a) = a(qa. a) (change of coordinates does not change area), and 
since S(a, [<£a],£o) ig normalised to have diameter bounded and bounded from 0, the 
area is proportional to the maximum of qa on S(a, [ipa].£o). Now let a be a loop. 
Normalise so that S(a,eo) contains, and is homotopic to, {z : 1 ^ \z\ ^ R} for a 
large R. Normalise also so that {z : 1 ^ \z\ ^ 2} has area boundedly proportional to 
a(a,q). This is possible, by the definition of a(a,q). (See 9.4.). Then for a constant 
C ^ Co, some Co depending only on #(Y), we can write 

q(z) = A 
sq 
1=1 

£(¿1/2+1/2^ rf. 
4=1 

(1 - Xiz) 
rn 
• 1=1 

(z - bi) n 
4=1 (1 - ViZ) 

for bounded A \a\ ^ C, \bt\ ^ \ and |A,| ^ C-±#{Y)^ ^ ^ R~i Qf course, fc, £, 
m, n are all ^ #(Y"). Then q(z) = Azk~7n(1 + o(l)) for C2*^ ^ \z\ < 2C2#(y). So 
we can reduce area by moving to arm annulus around {z : \z\ = C2^ ^Y">} iîm — k ^ 3. 
So m — k ^ 2. Then a(g, a) is boundedly proportional to A. To compute c(a,g) we 
need the coefficient of z~2 in the Laurent expansion of q near : \z\ = 1}- Since 
the c\ are all bounded, this is 0(A), as required. • 

20.10. Lemma. Let a be a gap, or connected union containing at least one gap, sat
isfying the Orbit Dominant Area Conditions for D\. Assume without loss of generality 
that D\ ^ e~2n Ie. Then, using the notation of 20.4, 

(i) \\c(a,q) - a(a,q)c(a,qa)\\ = 0(VDia(a)), 

and, if a is periodic with periodic preimage (3, 

(2) ||c(a,s.p) - a((3,q)c(a,(saji)*pf3)\\ = 0(y/Dia(a)). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



288 CHAPTER 20. CONSTRUCTION OF THE GOOD VECTOR FIELD: PART 1 

Proof. — Recall that q(z)dz2 is a quadratic differential at x G T(da, 6$). AS before, 
we write x = [<p], normalising with respect to a as in 20 .2 . Formula ( 1 ) comes directly 
from the last part of the Same Shape Lemma 9.5, and the integral interpretations of 
the vectors c(a,q) in 20.4 . For ( 2 ) , we need to estimate (s"1)(z)/(s-1ab(z) for z on a 
contour for one of the integrals of 20.4 . Fix such a contour. We can normalise so that 
the contour has diameter bounded and bounded from 0. Because x G T(da,£), in 
this normalisation we can assume that each critical value of s is distance 0(e~2n /£) 
from a critical value of sA,/3- It then follows that, on the contours, 

£(¿1/2+1/2^ 
£(¿1/2+1/2^ 

- 1 = 0 ( e - 2 ^ ) . x c x c 

We remark that a(ß,p) = a(ß,q) -f- 0(\/D\a(a)) by the Orbit Dominant Area Con

dition. The result follows. 

20.11. Lemma 
Let log y/K = d(x,r(x)). Let a be a loop with Fa(x) ^ 1 / (Dima(x)). Then there is 

a good boundary annulus (9.4) A homotopic to <p(a) of modulus A > (Di (\/K — 
such that in each component of C \ A, 

#(poles(g)) - #(zeros(g)) = 2, 

and 

2m 
sdq 

zqa(z)dz = (l + 0(e-/x/2)) 
<P(ot) 

\/q^dz 
. 2 

K 

Proof. — Suppose for contradiction that A is the largest possible modulus of such 
an annulus, and that A ^ (D\(y/~K — l ) )"1 . Let [ipa], be the projections of x, 
T(X) to T(A(a)). As in 14.3, let \p)cc(l)\' denote length of the geodesic homotopic 
to (fad) in C \ Lp0i(A(a)) with respect to the Euclidean metric arising from the 
identification of C \ cpa(A(a)) with (C/T)/(z ~ —z) for V ^ C a lattice such that 
C / r has area 2. Define |^a(7)|/ similarly. Then, because T(A(a)) identifies with the 
Teichmuller space of the torus, 

da(M,[0])=SUp{|logfoM7)l ' -log|Va(7)l'l • 7 nontrivial nonperipheral}. 

So 

FJx) ^ 1 
2 log 

™>a(x) — A + s/KA + Q(l) 

ma(x)- A + ( 1 / V K ) A + 0 ( 1 ) 

sd 
\A(^K + VK^-2)+0(\) 

ma(x) 
sd 

( V A - l ) A 

ma(x) 

Our normalization is chosen so that, for some r ^ 1, 

qa(z) = ß 
z2 

n 

3 = 1 

£(¿1/2+1/2^ 
77 

sd 
1 - Si 

z 

-1 

. 
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where Id-1 ^ r for all 7 and Ej = 0(re -A ) . Then cp(a) can be taken as the circle 
{z:\z\=re-A/2}. Then on this circle we have 

Qa(z) = sd 
z2 

(i + O ( E - A / 2 ) ) . 

So 

ip(a) 

zqa(z)dz = 2irifi[ (l + 0(e-A/2)) , 
sdd 

y^dz = 2TTZV7I(1 + 0(e~A/2)), 

as required. 

20.12. Reduced Map Spaces again. — Let a be a periodic gap of period n. In 
20.10, we have seen that if a has orbit dominant area, then the vectors c(a,q) and 
a(a)c(a, qa) and c(a, s*p a(a)c(a, (sn^)*pp) are approximately equal. We need to 
work further with these. 

Write a = CVQ. Inductively, let al+\ be the gap with <r?; C f$l(c^+i). Thus, 
an = CYQ. If V2 is in this cycle of gaps, it is convenient to choose a so that V2 £ OL. We 
have previously (since 2.15) called this gap E2. Corresponding to this cycle of gaps, 
/0 induces a space Ba of branched coverings of a disjoint union of n copies of C with 
marked points, with the spheres cyclically permuted. (This is a slight generalization 
to a union of marked spheres of the definition of Chapter 1.) We can fix a branched 
covering fa G Be which leaves A(a) invariant. Recall that T(Y) has a projection to 
T(A(a)). Then we define 

T(Ba) = 
n-1 

3=0 

£(¿1/2+1/2^ 

Then we can project T to T(BCX) in the natural way. Of course, if a is a homeomorphic 
gap, then T(B(X) is isomorphic to Y\- T(A(cij)). Now we can define a pullback 

ra : T(Ba) T(Ba) 

as in Chapter 6. If a is homeomorphic ther 

ra((to])) = ([<Pj °Xa]), 

where x<* is the isotopy class of homeomorphism of n disjoint copies of C induced 
by /0. If a is nonhomeomorphic then put sa — saj+1,aj on the j ' th sphere. Then by 
abuse of notation 

Ta((\Vi})) = £(¿1/2+1/2^xvv 

20.13. Lemma. — Let a be a periodic gap satisfying the Orbit Dominant Area, Con

dition with D\. Assume without loss of generality that e~2n le = o(Di). Let a3 

(0 ^ j ^ n — 1) denote the periodic orbit with a.Q = an. As usual, write x = [ip\. 

Write Yfj], q3, pj, Sj for [ya], qa paj, sa a Let r1(z)dz2 andtj(z)dz2 denote 
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the quadratic differentials at \(fj], 7ra, (Ta(([(z?7-1))) ford(([cp]),Ta((\<fij]))). Then for 
every periodic cx3- in the orbit of a, 

\\c(<Xjirj) ~ c(<Xj,qj)\\ = 0{y/D[), 

||c(a7-, (Sa )^ j - l ) - c(a3,(s1)^pj-1)\\ £(¿1/2+1/2^ 

Consequently, 

\\(c{aJ1q)-c(a:j,s,p)) -{aia^ciaj^r^-a (aj-ijciaj, (sa)**j-i))ll = 0(>/^a([a])). 

Proof — By 20.10, the third inequality follows from the first two. Also, as in 20.10, 
for all j we have 

dotj ij^Oij ij~a. ( ( [^Pk ] ) ) ? ^CXJ [r({[tpk])))) = O (exp(-27r2/£)). 

Then by 9.8 we have 

\\fi<\j-n) ~ (i<\)-<Ij)\\ = 0(exp(-7r2/e)), 

\\c(n.j-»nJj i) - c(a3, (sj)*Pj-i)\\ = 0 ( e x p ( - ^ ) ) . 

The result follows. 

20.14. Critical Points of G[a]. — We define G[a] on T(B[a]) by 

G\a](x) = 
1 

d 

n-1 

J=0 

^;(bJ],7r^.(r«(([^])))). 

Proposition 

(1) //"a zs homeomorphic then G[a] has no critical points unless x.a is irreducible. 
In this case, the critical points are all minima, on which £qa] takes the value K(OL), 
and, comprise a closed geodesic in the quotient ofT(Ba) by the modular group. If[xa] 
is reducible, then Gqa] takes bounded values only in 

T ( £ Q ) ^ U d 
7er 

n-v, 6) 

where T is a unique maximal Xa~^variant set of disjoint simple loops. 

In both cases, if K(Q) > 0, there is a constant C and an integer k depending only 

on #(Y) such that if ||(DG'rai)x|| ^ 5 for small 5 then 

\G[a]{x) - K(a) <: Co1'2*1'2*. 

Now let a be nonhomeornorphic. 
(2) Let fa be critically finite equivalent to a rational map or of polynomial type. 

Then G[a] has no critical points on the set where G[a] = 0. Given S > 0 there are 
constants Mi and M2 such that G[a] is bounded above by M\ only on 

xcvvv U 
r 

T ( r , M26) 
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where the union is over loop sets T such that (/o, Y) satisfies the Invariance Condition 
but has no subset satisfying the Levy Condition. 

(3) / / fiX is critically finite degree two irreducible not equivalent to a rational map, 
then critical points are all minima on which G[a] takes the value K,(O), and, comprise a 
closed geodesic in the quotient ofT(Ba) by the modular group. There is a constant C 
such that if \\(DG[a])x\\ ^ 5 for small 5 then \G[a](x) — K(CY)\ ̂  C52. 

(4) Let a = A 0 . and let ( [ ^ ] ) e \\T(A(A'J)). Then ([ip3]) is a critical point for 
G[A] restricted to the set where [upo] is constant if and only if all [pj] and [T«([^O])] 

on the same geodesic with [tpj] between [ty^'-i] and [npj+i] if j < n, and with [</?n_i] 
between [(fn-2] and Ta([ipo]). There is an integer k depending only on #(Y) such that 

if\\{DG[a])x\\^5 for small 5 then 

\FlAn(x)-Kl(riX)\ <: Cô1/k. 

Proof. — At a critical point we have 

T j S (x *tj — \ 

for all j . 
(1) Let a be homeomorphic. We deduce that all r3l t3 lie on the same geodesic, 

and that r3 is a stretch of itself. This is impossible if [xa] preserves some simple 
disjoint loop set, that is, if [xa] is reducible. Therefore, [xa] is irreducible. Then 
the stable and unstable measured foliations of r3 are preserved by the pseudo-Anosov 
[Xq], up to multiple, and hence are unique up to multiple [F-L-P]. Hence the geodesic 
determined by the r3 is unique, and there is a unique closed geodesic of minima. 

Now suppose that, for small 

II (Z?G[A] ) * H < <5. 

We may as well assume that sa(zij) — (z,j + 1) (since sa permutes spheres and 
is Möbius in each coordinate). Then the residues of r3 and tj-\ agree within 0(5). 

Write 
G[a](x) = d(x,x • [Xa]) = 

j 

d{y3], y3 o \3\) = 

j 

log Xj. 

Here, t3(z)dz2 is the stretch of r3(z)dz2 by AJ5 that is, unstable foliation leaves of 
r3(z)dz2 are stretched by A;, and stable foliation leaves are contracted by Xj1. Now, 
following the method of 16.12, for closed paths 7 in C \ Y we need to compare 
stable and unstable lengths as defined in 14.8. We write \ipj(j)\j^ and |^j(7)|j.+ for 
the stable and unstable lengths with respect to the quadratic differential r3(z)dz2. 

Let k — max(2, #(Y) — 4). Then any quadratic differential on C \ y{Y) has zeros of 
multiplicity at most k. (Of course, there are no multiple zeros at all unless # (Y) ^ 6.) 
Then we claim that 

(i) £(¿1/2+1/2^xcc <Pj-l (7)1.7-1,+ + £(¿1/2+1/2^ 1 < j < n - 1, 

(2) |<A) °x(7)|o,+ = A| <Po(7)|o,+ + 0(Jl/2+l/2fc)) 
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where \ = Xo ° • • • ° Xn-i and log A = ]T\ l ° g \ r Similar equations hold with | • |Jrf 

replaced by | • and Xj replaced by A"1. This estimate is clear when rj is not close 

to having multiple zeros, or zero residues at points of <Pj(Yj), when we obtain simply 

O(S). An application of Rouché's Theorem 

1 
2m 

sd 
1 r. a ' J 

= # (zeros inside V) 

gives that r3 and tj-i have the same number of zeros inside any contour V on which 
\rj\ ^ MS for M sufficiently large. In particular, there is a pairing of the zeros of rj 
and tj-i (up to multiplicity) such that any pair is 0(51^k) apart. So to obtain (1), 
we need to estimate local path integrals of the form 

(3) r(z)+ 0(5)dz, z-"(r(z)+ 0(o))dz, r z = 
k 

3 = 1 

[Z - Zj) 

over paths where \r(z)\ — 0(8) and \r(z)\ > MS. This is done exactly like the estimate 
of (2) of 16.12. This gives (1), as required. Then (2) follows. But (2) says that A 
is within 0(£1//2+1/2/c) of an eigenvalue (with positive-entry eigenvector) of a certain 
integer-valued matrix, which is one of the matrices defining the piecewise linear action 
of x on the projective space of measured foliations onCxYb (see[F-L-P]). This means 

that 
logA = «(a) + 0((J1/2+1/2fc) 

as claimed. This works equally well, whether or not [Xa] is irreducible. 
(2)-(4). First suppose that DG[Q] = 0 but G[a] ^ 0. We have 

Tj — S Œ*t j — \ *— sa*sarj 

for all j . Now if sa has degree > 1 on the j — l'th sphere (that is, degree two in all 
the cases we are considering) then the terms in the sum 

sa*tj-i(z) = (s1 xy (z)ftJ.l{s^\z)) +^ ( ( ^ 1 ) , W ) % - l ( « 2 1 W ) 

must have the same argument for all z. It follows that 

¿7-1 = s*arj 

for all j . This is impossible in case 2. In case 3, v\, v2 are strictly preperiodic, and we 
have a degree two branched covering of the union of spheres by tori. The map sa lifts 
to a nonbranched degree two covering. Then in the cover the condition rj — sa*^-i 
implies that the rj all lie on a unique geodesic in the Teichmuller space of the torus, 
that is, in the upper half-plane. The bound on G[a] — ft(a) relative to ||DG[a]|| in 
this case holds because the second derivative has co-rank one (which is not true in all 
cases of 1). In case 4, the condition also implies that the r3 (or [<fj]) lie on a geodesic, 
in the order specified. 

In case 2, if DG[a] is close to 0, we must be in T(Ba)(T, M2S) for a maximal 
invariant (fa,T) and T contains no Levy cycles by 2.7. 
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(4) Let n be the period of A0. Write [ipn] = r([(po])- We consider the bound on 
F\A'](X) — Ki(T,x). This essentially uses an inverse of the Triangular Lemma 8.9. 
Extend the geodesic joining [<z?7-l and ta7-+il a distance d([ipe], [<^+i]) to a point 
[i/jj]. Thus, [npn] = [tpn]. By the hypothesis, the quadratic differentials Tj(z)(z)dz2, 
tj-i(z)dz2 at [tpj] for d([ipj], [ipj]) and d([tpj], [ipj-i] are within 0(S). Note that 

(Г, ж) = а{[(ро1 [фп\), F[MfoM] 
n-1 

J=0 
d{[<Pj\AVj+i]) = d([<A)],ty>o]. 

So we need to show that 
d([MfoM) = o(<*1/fc). 

So, for fixed j , we need to show that 
d([^],[^--i]) = 0(51/fe). 

This follows from 16.8. 
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C H A P T E R 21 

C O N S T R U C T I O N OF T H E G O O D V E C T O R FIELD: 
P A R T 2 

21.1. The construction of a good vector field has now been reduced to Proposition 
20.7. There are a number of different cases to consider, which we proceed to do 
in this chapter. Throughout this chapter, we fix a discrete invariant (/o,T) with 
r2(/o,r) 7̂  0, fixed union Q and maximal f C T satisfying the Invariant and Levy 
conditions. We also fix x £ T(T,£o)-

In the next few lemmas, to simplify notation, we write a — [a] if a is non-periodic. 

21.2. Lemma. — Let a be a a gap or loop. Let x £ T{^,e) for all 7 C dp, (3 £ [[«]]• 
Let a be of D\ -orbit dominant area. Let 6\ £ Via] with 

Z ^ C f H ^ I K 1, DF(91) < -2da(a), DF^Ox) ^ -2d. 

Then there exists 60 £ ©/]Pfyi\y^(^) such that 6 — 6\ + O2 satisfies 

\\9\\ H dpiW, DF(0) ^ -da(a), DFla](6) ^ -d, 

DFm(0) de-^'^W for all (3 e [[a]} x [a]. 

Proof. — Take any 9 e V[[a\] = ®Be\\a\\V{P) and write 9 = •ß<=[[c*]]eß Wlth üß G 
V{(3). Then by 20.5, if fi G [[a]} \ [a], then 

DFB(9) = DFf3(00 + 9foW) + 0(e-^2/£\\e\\), 

and 

DF[[a]](9) 
/36 [H] 

£)F/3(6») = £>F[Q](6»1) 
/3€[[a]]̂ [a] 

(DFß(eß+eMß)))+0(e-2* 

and for /3 £ [[a]] \ [a], 

DFLM (в) 
LM (в) 

D F , , ( ^ + W l ) + 0(e-2- /1011). 

By 20.10, 
DF(6>) - DF{0{) 

/3G[[a]]v[a] 
O(a(^) | | f l | | )=Dm) + O(D1||0||a(a)) 

So having chosen 0i a/Grai â', we can define 62 ]a0p, the sum being over 
¡3 £ [[a]] \ [a], by 0̂ / = —0f()(p>) for successive preimages. Then, assuming that Ci is 
large enough ^ Ci||0i|| and we have the required estimates. • 
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21.3. For any gap or loop a, we let ni(a,x) be as in 19.6. Let m7;Q,(x) be the sum 
of rn^(x) with separating a from [7] (£ £ T) and including a if a is a loop. Note 
that 

e-m-,.,v(*)(ni(ajX))-l <; (ni(7,aT)))-l. 

In fact, if 7 ^ <9ce, 7 / ct, 

e-«H.„(x-)(ni(aiX)rl ^ ni(7jX) = o(1)_ 

Lemma. — Let a be a gap or loop. Suppose that for any loop 7 C Int(ft U/0_1(ft)), 
with-y C /o~1(7/); 

a(7) = o(min(em^",em^/-rt)a(a)ni(a,x)). 

Le£ 0i G F [fall 

||0i|| ^ niCa,^)-1, DF(Oi) <: -a(a)||0i||/Ci. 

T/zen £/iere exists 02 = r, 07, 07 G V(7), siic/i £/&a£ if 6 = 61+ 02; 

IIÖJK е-"Ь-.(.х)С ид и < (n,(7iI))-i 
DF(0) ^ -a(a)||0i||/2Ci, Dra[7](0) ^ 0 for all loops 7 C Int(fi). 

Proof. — Take any 0 decomposing as in the statement above, with bounds on ||07|| 
as above. By 20.5, we have ||TT7(0 - 07)|| = 0(e-m^<* ||0i ||) for all loops 7. So 
Dm7(0 - 07) = O(e-m^-||0i||). So we can indeed choose 07 G V(-y) with ||07|| = 
0(e~rn~i<(y ||0i ||) for 7 G r;, 7 C Int((2), and letting 02 be the sum of these, we can 
ensure that 

Dmh](01 + 02) ^ 0 for all 7 G T, 7 C Int(Q). 
If we consider the formula for DF{0\ + 02), we see that we have 

£>F(0i + 0o) = DF(0i ) + 2TT Re 
^(7) 

c1zq{z)dz : 7 C Int(H) 

f 2yrRe 
^(70 

cyzp^cte : 7' G /0 ̂ 7) \ [7], 7 C Int(ft) 

where 
c7 = O(II^H) = 0 ( e — - H o , .11) = 0(e-m-«n1(a,x)-1), 

and if 7' G /n 1(7) then 

cy = O(||07||) = 0(e-™--||^i||) = 0(e-m-"ni(a,x)). 

So the additional terms are 
0(a(7)e-™-|t^| | , 0(o(7')e"m,-"ll«ill 

which are both o{a{a)\\0\ ||/Ci), as required. 

21.4. Lemma. — Let a be nonperiodic. Then there exists 0 G V{a) with 

||0|| < Cl DF(0) <: -a(a)Cu DFa{6) ^ -d. 
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Proof. - - Let a be nonperiodic. Take any 0 G V(a). So by 20.5, 20.10, and the 
definition of D\-orbit dominant area, 

DF(0) = a(a)DFA(0)+O D\a\a) 

We have seen in 20.5 that DFa | V{a) is (in suitable coordinates) the vector 
2iTc(a,qa) = 27r(Res(ga, y>a{y)), which is > Ca(a) for a constant C > 0. So we can 
choose 6 as required. • 

27.5. Lemma. — Let a be a periodic gap. Let x G T(j,e) for 7 C da', af G [a]. Let 
D\ ^ e~2n le. Let k = #(X)- Let a be of D\-orbit dominant area. Let 

GM(x)>K(a) + Dl/20k. 

Then there exists 9 £ Via] with 

\\e\\^D-l/\ DF(6) < -Cia(a), DF[A](0) ^ -Cx. 

Proof. — Write [a] = {a1 : 0 ^ j < n} with a = a0. Write a(a0,q) = a(a3). We 
have seen in 20.5 and 20.13 that DF\a] | Via] and DF \ V[a] are given by the vectors 

x1^(cK-,r7-(5a)*iJ_1)) + 0(e-2-2/-) 

x2 = (a(a7)c(<x,,r7) - a(a7-_i)c(a,-, (sa)*í7-_i)) + 0 Dxa([a]). 

If it is impossible to find 6 then either xx — 0(D\^S) or x2 = 0(Dj//8a([a]) or the 
1 /8 

angle between xx and — ar2 is 0(C\D^ ). Either of the last two gives, for some /i > 0, 
(1) (c(aj,rj) - c(aj, (sa).ij-i)) = -//(//(n, )c(n y. ry ) - a(<\j i)r(n,. (5a).^_i)) 

+ 0(C1D11/8(l + /.a(H)). 

But this implies that 

(1 + /ia(ai))r; = U +Ma(«j-i)(sa)*^--i + 
ve A( Oí-;) 

0(CiDÎ/8(l + /m([a])) 

2 - <£?(2/) 

which gives, by integrating modulus, for all j (replacing j — 1 by n — 1 if j — 0) 

l + /ia(a,) ^ l + z/ai^-O + OiCiD^i l + zzaiIa]))), 

and thus 

(2) iiata,) = Lia(a) + 0(CID!/8(1 + ua(\a]))) for all 7. 

Then from (1) and (2) we obtain either 

(3) c(ai,ri-(saUi.l) = 0(C1D\,K) 

or /xa([a]) > DÎ/16/Ci, in which case 

a(aJ)=a(a)(l+0(Dl/16)), 
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which, when substituted into (1) again gives (3). By 20.14, this is only possible if 
G[a] < K(a) + D\/20k. 

21.6. Lemma. — Let a be a periodic gap. Let x G T(7,e) for all 7 c da!, a' G [a]. 
Write k = #(y). Let C~sk > Dx ^ e"27r2/£7 and Ze* £>i and £ be sufficiently small. 
Let a be of Di-orbit dominant area. Let a(aff)/a(af) — 1 ^ .DJ^afa] for some a!, 
cx" G [a], or let K,(a) be nonmaximal. Then there exists 6 G V[a] with 

D;1/4Cl DF{6) SC ~a([a])C\. 

Proof. — If 0 does not exist then, using the formula of 20.13 as in 21.5, for all j 

a(o,)r(o,. r,) - a(aJ_i)c(»J, (sa)*tj-i) = 0(D{/4a([a])). 

Integrating as in 21.5 we obtain 

a(a,_i) ^a{aJ) + 0{D\/A) 

and hence a(aj) = a(a)(l + 0(1}-/ )) for all j . In particular, all are of (2Di)-orbit 
dominant area. So then, for all j 

c(aj,rj) - C(OLJ-I, (sa)*^-i) = 0(Z)}/4). 

So then by 20.14 (again as in 21.5) 

G[a](x) =K(a)+0(D11/4k). 

So for all j 

Faj (x) = K(a) + 0{D\/A) + 0(e-^2^). 

But OLj is of IDi-dominant area. So by 9.5 

F(x) ^ FAJ (x) + CD, ^ K,(a) + 0(D\/4) + 0(e"27r2/e). 

So n{a) must be maximal. 

21.7. Lemma. — Let a be a loop in Q of Di-orbit dominant area. Write 

m — min{ma/(x) : a' G [a]}. 

Then there exists 6 G Via] with 

DF(0) ^ -a(a)\\6\\/Cu Drma]{0) > (m,Q,(a:))-1 HtfH/d. 
7/m addition da(x,r(x)) ^ |d(x,r(x)); and a (a') = o(a(a)) whenever da> (x,r(x)) = 
o(da(x, T(X)) then 

Dma'(9) ^ Cie rn||0|| for all ma/ maximal, 

DFUe)<-(rnUx)r4o\\/Ci. 
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Proof. — Let a = ao be a periodic loop in the central part, of period n and with 
orbit {cvj : 0 ̂  j ^ n — 1} with a3 nomotopic to a component of / ^ (a j+ i ) : write 
o7_i = cvn_i. For the moment, we assume that [a] ^ [dA0]. Write 

+idj 
q = Cj +idj. 

Take Tj,\ogK = F(x) = d{x,r(x)) and ^\ogK3 = daj(x,r(x)). Then by 20.11 and 
the Orbit Dominant Area Condition we have 

2Tvc{a3,q) = -{2ir)-\c3 + id,)2 + 0(e-1/{2^~1)Dl) a(a)) 
-(2TT)-1(CJ2 - d] + 2ic3d3) + 0(e-l^2^-l^a{a)) 

2nc(a3,s*p) = 27rc(aJ_1,p) + 0(e-1/(2(v^~1)Dl)a(a)) 
-(27T)-1 Kc0-i + idj-i/ K? +0(e-l^2(^^D^a(a)) 

-(2тг)-ЧКс1 ,-di JK + 2¿c„-_i<L_i .0(e-i/(2(V^-i)^)a(a)) 

Similarly let qaj(z)dz2 be the quadratic differential for (x, T(X)) at x and write 
| log Kj = da. (x, r(x)) and 

<P(<Xj) 
Qa, = Cj + . 

Then 
2"r(o;.ryay) - -(2TT)-1(4 +z^)2 0(e-m/2(^-l)m-l)5 

and similarly for s*pCXj. We are required to find Xj with 

(i) 
n-l 

3=0 

Re(AJ) < -Cf1 
n-l 

J=0 
1<М, 

(2) (27T)"1 
n-l 

3=0 
Re(AJ(Kc2_1 - d)_xIK + 2zc,_1^_1 - {c2-d2 + 2ic3d3))) 

f0(e-i/(2(^i)Dl)a(tt)) < -СГ1а(а) n-l 

J=0 

(3) (27T)-1 
n-1 

J=0 
Re(A,(A'с'? , - d'tJK, + 2¿c' ( c ? - d ? + 2 i c ^ ) ) ) 

+ 0((e.-"!/2 к>-1)т-1) < -C7lm-1 
n-l 

3=0 
|Àj I max(i\j — 1), 

i 
Re(Aj) ^ 0 if maj(x) is maximal. 

We can clearly achieve (1) and (2) with Xj = - 1 for all j . More care is needed 
to obtain (l)-(4) simultaneously in the case when da(x,r(x)) ^ ^d(x,r(x)). The 
required lower bound on Dma (6) will then follow from (4) by 20.4. 
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Fix a path 7̂  which is nontrivial nonperipheral in C \ A(a3) and intersects a3 
exactly twice. We can choose the jj so that /^(Tj+i) is homotopic to 7̂  in C\A(a.j), 
/(71(7o) is nontrivial nonperipheral in C \ A(an-i) and has bounded number of 
intersections with 7n-i- Write x = [ip] and r(x) = [ip]. Normalize so that ip(A(a.j)), 
ip(A(aj)) contain 0, 1, oc and one other point close to 0. Let Aj be the modulus 
of the largest annulus satisfying the Pole-Zero Condition (9.4) and homotopic to 
ip{a.j). By the assumption da(x,r(x)) ^ ^d{x,r{x)), Ao is boundedly proportional 
to ma(x), and hence to m. We claim that the (signed) difference between the number 
of crossings of the positive real axis by ^(7j) and ^(ij) is boundedly proportional to 
CjdjAj(Cj + d2j)~l. We see this as follows. Put 92(7̂ ), tpilj) in good position (14.5) 
with respect to the quadratic differentials q(z)dz2, p(z)dz2. Then we need to calculate 
the difference between the number of times that (̂ (7 )̂5 ^P(lj) cross the real axis. It 
is probably easier to calculate with j3 replaced by 7̂  where (p(jj) is approximately 
perpendicular to y>(a.j), that is, for some A > 0 

Then 

<¿>(7Í) 
q{z)dz = X(2c3d3 + i(d2 - c2)) + 0(c) + d2). 

<¿>(7Í) 
q(z)dz = X(2c3d3 + i(d2/K - Kc2)) + 0(c2 + d2). 

Then A is boundedly proportional to Aj. Assuming for the moment that \dj\ ^ \c3\, 
the difference between real axis crossings is boundedly proportional to (dj /Cj)Aj, 
and hence to c3d3A3(e2 + d2)~1. We get the same estimate (with the same sign) if 
M < \dj\. 

So for numbers C3, C'j > 0, bounded and bounded from 0 

Re(^J(M))-Re(7ra,(M)) = (•,<•,<!iAjicj + ,fj) '• = C'/,<!',«,- + o(l) 

But the bound on /0 1(7J) fl 7v+i yields (with j + 1 replaced by 0 if j = n — 1) 

Re(7rQ,(M))-ReKj+1(M)) = 0(l) . 

Therefore 

n-l 

3 = 0 

CiCidiAiic? + cß)-1 
n-l 

3=0 

C'3d3d!3m2 + o(l) = 0(1). 

But cf2jrd'2 is boundedly proportional to m_1. So if |c^ra2 | ^ A for a sufficiently 
large A, this is also true for some other k ^ j , where and c'kd'k have opposite 
signs. Also by our assumptions, for a suitable C > 0, \c'3d'3m2\ ^ A if and only if 
\cjdj\ ^ CAm~l{cl + d§), whenever A/m ^ |d(;c, t(z). Arguing as in 21.5, either we 
can find Xj purely imaginary such that (5) and (6) hold, or there is ¡1 > 0 such that 

ASTÉRISQUE 288 



CHAPTER 21. CONSTRUCTION OF THE GOOD VECTOR FIELD: PART 2 301 

(7) holds: 

(5) 
n-l 

3=0 

Ke(Xj(icjdj — icj-idj-i)) ^ —ô 
n-l 

3-o 
I A, I 

n-l 

3=0 
C3D3 

(6) 
n-l 

3=0 
Re(\j(ic'jdj — icJ_1d,J_1)) ^ —Ô 

n-l 

j-o 
A, I 

n-l 

3=0 

(\j(ic'jdj 

(7) cd- + ßCjdj c^-i^-i +/icJ_i^_i +0(Smax\c'kd'k ~4- i4 - iD-

But and Cjdj have the same sign whenever \Cjdj\ ^ Am-2. So (7) does not hold 
— and (5) and (6) do hold — for small <5, unless \Cjdj\ ^ Am-2 for all j . 

So we can solve (1) to (4) simultaneously unless \c'kd'k\ $C Dim-1 for all A:. So 
now suppose this holds. Then for each k exactly one of ck , d'k ^ D\m~ and the 
other is boundedly proportional to m_1. We can find j such that c'2 ^ D\m~l and 
(i/2i ^ Dim-1, (with j — 1 replaced by n — 1 if j = 0) because 

Im(7raj. (r(x))) = Im(7raj.+1 (x)) + 0(1). 

(We can interpret this suitably if £ > n — 1.) Then for a large A', 

maj. (x) < maj._1 (x) - A7 = maj. (r(x)) - A' + O(l). 

We must have similar inequalities for ĉ -, ê -, c7_i, that is, c2 ^ CDid2 and 
<i2_i ^ CD\Cj_1. Then we can take Â  = 0 for £ ^ j and Xj real and negative 
to solve (1) (3) and (4) simultaneously, and also (2) unless c2-1 + d2 = o(a(a)). If 
ci ~̂  j ~ °(co °̂ o) f°r some k ^ j ^ £ then we can add on smaller nonzero Â , 
Re(A )̂ $C 0 for some £ to solve (1) to (4) simultaneously. 

Now we consider the case [a] = [<9Ao]. Write <9Ao = ao- This is done exactly as 
above, but more care is needed to get the estimate 

2nc(a0, s.p) = 27rc(an_i,p) + Oie-1'^^^0^a(a)) 

= -(27r)-1(c„-1 + id„_02 + 0(e-1/(2(^-i)o1)a(a)). 

This is proved, essentially via 20.11, but using the method of the first part of 20.11 
with r(x) replacing x: if r{x) = [/0], there is a good boundary annulus homotopic to 
^(7n-i) of modulus ^ \m^'Q{[{p\) + D^1 satisfying the Pole-Zero Condition. Then 
an annulus satisfying the Pole-Zero Condition and of modulus > — O(l) maps 
under s to the homotopy class of 70. On this annulus s is of degree 1. So we have the 
same estimates as before. 

21.8. Lemma. — Let a C Q(fo,T) be reducible and of Di-orbit dominant area with 
K(QL) maximal. Let [3 C a adjacent to the outer boundary have n((3) nonmaximal. Let 
( C a be separated from 0 by a single loop 7, and let maximal. Then there exists 
0 e Via] with 

\\D7rp(0)\\ ^ ni(/3,x) 1 for all gaps and loops (3 C a 
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(for some decomposition of a into gaps and loops: see 19.6 for ni(/3,x)) and 

(1) DF(0) ^ 0, Dm{l]{6) ̂  ra[7](x)(logra[7](x))2. 

Proof. ----- As usual, let q(z)dz2 denote the quadratic differential for d(x,r(x)) at x, 
with stretch p(z)dz2 at T(X). In each of the following circumstances, we can find 0 as 
above, given a sufficiently small D\ (depending only on C±). 

1. Some Y £ [7] is of D\-orbit dominant area: in this case 6 £ V[j], 
2. Some 3' £ \3] has Di-dominant area and a(h}) < e-rn^x^c'a(\3}): in this case 

0 = 01+02 with 0i £ VW] and 02 £ VM. 
3. For some C', C" G [C] \a(C)/a((") - 1| ^ D\'b. In this case 0 = 61 + 02 with 

01 G F[C and 02 G F [7]. 
4. \F{x) - K(C)\ > e-m^x)/Cl. 
Case 1 follows from 21.7. By 21.6 we can find 0X with ||0i|| < D1 1 C{ in cases 2 

and 3 with DF{61) < -Cia{[f3]) or DF(02) ^ -Cia([C]). Then assuming case 1 does 
not hold we can add on 02, assuming only that m1(x) is sufficiently large given D\. If 
case 4 holds and none of the previous cases hold, then either £ itself has e-miix)/c^-
orbit dominant area or some other gap or loop 77 C a satisfies the condition of 21.5 
or 21.6, with a([7]) ^ e-m^x)/c1 a^r)])m 

Reduce a if necessary, so that (3 C a is adjacent to the outer boundary. Let 
[a] = {aj : 0 ̂  j < m — 1} with ô - C /0"1(aJ+i) and ceo = OL. Write [pj] = TTQJ(X). 

Let Xj — /0 I &j and write, as usual, 

jU^ + l °. 
m — 1 

j=0 
^ ( [ ^ j U ^ + l °.\;y])-

Let 

[7] = {7j :0^j^n-l} with j3 C /0 1(7j+i) and 7 = 70, 

[/5] = { ^ : 0 ^ j < n - l } with Pj C /0 V^'+i) and po = P-

Thus 7̂  C separates from [£]. Choose ^4(/3^) with £ A((3k) separated from 
Pk by 7fc. Choose the so that = Vi if /̂ fc, A C aj f°r some j . Normalize <pj so 
that (fj(yk) = 00. Otherwise normalise as in 20.2. Let rj(z)dz2 denote the quadratic 
differential at \ipA for daA\(pA, \<fj+i o y7-l), with stretch tAz)dz2 at [</?7-+i o Xi\-

Let 0 G V[7] = e7 [̂7]̂ /(7/) be defined by A = e for each 7' G [7] (20.2). Let 
o~u be the integral flow of this 0. Write an(x) = ([</?u,j]) m analogy with the above. 
Normalize in the same way as for [ifj]. Let ruj(z)dz2 be the quadratic differential for 
daj([<pu,j], [<Pu,j+i 0 Xj]) at [y>u,j], with stretch tu^(z)dz2 at [^,i+i 0 Xj]- BY Hard 
Same Shape 16.2 (where a different scaling was used), 

(4) Res(ruj,(puJ(y)) = Xu(Res(rj,ipj(y)) + o(a((3), rj))) 
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and similarly for tu j(z)dz2 .With similar notation to the above, let 

G[a](u) 
rn — 1 

3=0 
dot Л <¿>U,7 , У?М,7 ° Xi )• 

Let 
H(u) = F(*u(x)). 

Then to complete the proof, it suffices to show that 
H'(0) ^ 0. 

The usual derivative formula, as in 20.4, gives 

G'[Q](u) 
rn — 1 

A:=0 ^U.kilk) 
z(rUik(z) ~ tu,k-i(z))dz 

which, by 16.2 (where a different normalisation was used) gives 

GUu) = e-u 
rn — 1 

k=0 ^U.kilk) 
z(rk(z) - ffc-i (z)) + o(e-"a([/i], '•)) = o(a([(3],ru). 

Also by 16.2 
a(\0\,ru) = e-«a№,r)(l + o(l)). 

By 20.4 and 20.13, however. 

H'(0) 
m — 1 

k=0 ^U.kilk) 
z(rk(z) - tk-!{z)) + 0(y/Dia№). 

Now using 9.5 when /3 has dominant area and 17.5 otherwise, for a suitable constant 
Co >0, 

к(а) +Cñ1e-"a(\0\,r) <: G[a](u) ^ K(a) + C0erua([p],r) 

So for a constant Cq > 0 we must have 
m — 1 

k=0 Vkilk) 
z(rk(z) - tk.Az)) < -C'a([0})-

So then H'(0) ^ 0 as required. 

21.9. Lemma. — Let a G f \ f be periodic of (D±. D\)-orbit dominant area. Let 

m = mm{ma'(x) : a' G [a]}. 
Suppose that \F(x) — ^ D[/D\. Then there exists 6 £ [x] with V[cv] 

DF(0) < -D^C^a^Wl £>mw(0KCie-m||0||, 

3FW(0) < 0 or Ffa](x) < + D[/Di, 

and one of 

DF[A](6) <-I?'1C1-1m0(a;)-1||fl||, DmUO) < ~D\C7l\\9\\. 
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Proof. — Use the notation of 21.7. Write n3 for the degree of /0 I olj-\. Then 

c{a.j,s*p) = n • 1c(a-7-_i,p) + 0(e m//2a(a)) = nJ^Cj-! + zdj_i)2 + Oie-™'2™,-1)). 

The reason for the first equality is that 

rij-l 

k=l 

{(d/dz)(e2lvlk/nJzl/n:>))2 z/^k/nJzl/n3y2 = N-3XZ-2 

Similarly to 21.7, we need Aj solving (1) and (2), (3) whenever F^(x) ^ K(a)+D[/Di, 
and one of (4), (5). Of course, (4) is stronger than (3) and (5) is stronger than (1). 

(i) 
3 

Re(Aj) ^ 0 

(2) 
n-l 

j=0 
JReX.in-^Kc2^ - d2jK + 2ic3-Xd3^) (c2-d2 + 2ic3d3))) 

+ 0(e~m/2m-1) ^ -D[C^a(a) 
n-l 

3=0 
\X3\. 

(3) 
n-l 

3=0 
(Re Xj inJ^K^d*3d'3))) dH.LjK^ + 2*c'3d'3)))) 

-(cf -df + 210^))) <:o 

(4) 
n-l 

.7=0 
(ReXi(nJ1(Ki-icf_ì -d?_JKi-1+2i¿_,d') 

(cf3d'3)))d'2-f 2ic'3d'3))) ^ -DìCf 1m~1 
n-l 

¿=0 
I A, I 

(5) 
x 

Re(A7) ^ DÎCT1 
n-l 

3=0 
x3\ 

Here n — 1 replaces j — 1 if j = 0. Using the method of 21.7, we can solve (1) 
to (4) simultaneously unless c'jd'j = 0(D'1m~1) for all j , and Cjdj = 0(D[a(a)) for 
all j . So now suppose this holds. Arguing similarly to 21.7, we can solve (1) to 
(4) simultaneously unless d!2 — 0(D[m'1) for all j , in which case c'2 is boundedly 
proportional to m-1. (In contrast to 21.7, if c'2 = 0(D[m~1) we would need to take 
Aj real and positive.) So now assume this. Then 

K3-1maj__1(r(x)) = njma.(x)(l + 0{Dl)), 

that is F[a](x-) = hj{o) + 0{D'1). So (3) is satisfied. We only need to satisfy (2) and (5 
simultaneously. We can clearly do this if c2 = o(c2) for some j , k. So now suppose al 
c2 are boundedly proportional to a (a), Again arguing as in 21.7, we can solve (l)-(3^ 
and (5) simultaneously unless for some \i > 0 

nf^Kc2^ -c2 = -n + 0(D[a(a)). 
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Taking the product yields 

3 

rijK'71 = 1 + 0(D[), 

that is, 
F(x) = K(a) + 0(D[), 

as required. 

21.10. Lemma. — Let a G T', a (jL ft, be a periodic loop of (D\, D[)-orbit dominant 
area, D[ < D\. Let m1(x) ^ V^im[a](^) for some 7 ^ [a] with /0"1(7) fl [a] / 0. 
TTien £/iere exists 6 £ V[a] with 

DF{9) <: -D[a(a)\\9\\/Cu 

DF[a]{0) ^-D^OWrrtaix)-1 or F[a](x)^F(x)-D[/D1. 

Proof. — Again, this is very similar to 21.7, 21.9. We use the same notation as in 
21.7, 21.9. As in 21.9, we can find 9 unless either all c'k2 ^ Z^m"1 or all d'k2 ^ D'xm-X. 
Similar inequalities hold for the c&, dk. Suppose all ck ^ Dim-1. Arguing as in 21.5, 
and using the expressions for DF^{9), DF{6) of 21.7, 21.9 we can find 9 with the 
required bounds on DF\a](0), DF(9) unless for some /1 ^ 0 

-df_JnáKá^+df -^-SjrijK + d2) + 0{D'1rn-1). 

This cannot happen because ArijKj) 1 is boundedly < 1 and similarly for 
Wj{njK) 1. So we only need to consider the case d'2 — 0(D[m ) for all j . Then 
as in 21.9 we obtain 

ma. (r(x)) log maj (x) - log maj (r(x)) 
3 

log rtj — C \/ Di 

for C bounded from 0 because for some j 

ma. (r(x)) ^ rnaj_1 (x) + rn1{x) - 0(1). 

Thus 

3 
\og(K3/n3) < -CVD¡. 

Then we can find 9 with the required bounds unless for some /1 ^ 0 

(1) f<3 i/»3-<'? -^Kc^Jnj - c2) + OiD^m-1). 

We have K = K3 + 0(D[) whenever a(a3) ^ a(a)/£>i by the definition of (Di, 
orbit dominant area (and 9.5 which then gives F(x) — Faj(x) + 0(D[)). So (1) 
gives 

K3-i(cf-i + VC)-\)IU3 c'2 + iic2j+0{{D1 +D/1)m-1). 

Then taking the product yields a contradiction as above. 
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21.11. Lemma. — Let Y be (Li , L2, s,v)-adapted to x — [up]. Let U, /3n-i satisfy 
Triangle Condition (3) of 18.11, but suppose that the triangle Conditions (1) and 
(2) of 18.11 do not both hold with e~c^lv replacing e~Cxlv. Let U be homotopic to 
(p(R) Suppose that any dominant area a is periodic with [a] D R 7^ 0 . Then there is 
0 G ®bcrV[P] WITH 

DF(ß) ^ -C^e-^aißn-!). 
In addition, if there is another loop set T\ which is (Li , L2)-adapted to x, possibly 
with loops in lnt(R), then we can ensure that 0 satisfies the basic bounds. 

Proof. — By our assumption there is no dominant area a in [[R]} \ [R]. So Triangle 
Condition (2) of 18.11 holds. So we consider a dominant a C [R]. Then a(/5n_i) = 
0(a(a)) by the properties of U. We can use 21.4-10 if a is a loop or a C Q is a gap with 
K,(a) nonmaximal or n(a) maximal with F(x) ^ n{a)-\-n^{a^x) 01 a{a)/a(a') bounded 
from 1 (some a' G [a]). If none of these hold then in fact a(a)/a(a') G [ C f ^ C i ] for 
all a C [R], a' C [a]. Then if we take 0 G © V{f33) we have 

j 

DF(6) 
n-l 

J=0 
27rRe(c(ß^q - s*p)Q0) + o{e-c^»a(\ßQ]))-

If there is an orbit [7] of T\ in lnt(Ujf3j) satisfying the orbit dominant condition then 
we can include in 0 a component in V[j] and can ensure tha t Dm^(O) ^ 0 or tha t 
the F-between condition holds for 7, tha t is the Basic bounds of 19.7 hold . • 

2 1 . 1 2 . P r o o f of 20 .7 . — We need to produce the dominant area gap or loop of 
20.7. First, let Q = Q(f0,T) be as in 18.11, and let 

a — max{a(a , x), 0(7, x)rn^(x) : a, 7 are gaps and loops outside Q}. 

If the maximum occurs at a loop 7 outside Q, then we can find 7' G [[7]] such tha t 
0(7") ^ D i a ( y ) for all 7" G [[7']] \ {7'}, mY(x)a(Y) ^ K~rD[ for some r ^ *{Y) 
and K = \ l o g F ( x ) . Then Y is of Di-dominant area, and of (Di , D[) dominant area 

3 fr (v) 
if e is sufficiently small given D[. The same is true if m1{x)a(/y) ^ Dx a for some2+ 7̂  (V) 
loop 7 outside Q. If this does not happen, and a{dQ) ^ D i a , then there is a 
of Di-dominant area outside Q with a ( a ) ^ D1 Ja, and a(dQ) ^ Dfa(a). 

So now we assume tha t a(dQ) ^ D ^ ^ ^ a . But ra7(x)a(7) ^ D ^ f o r all 7 
in the backward orbit of dQ. We can assume that no loop of dQ is of Di-dominant 
area. Then rnQQ(x)a{dQ1x) is small, and a is small. Now let 

a' = max{a(a , x), «2(7, x)m1(x) : a, 7 are gaps and loops in O l . 

Then a' ^ 1/2 is bounded from 0, because a is small but the sum a and a' is bounded 
below by approximately 1 (the area of C) . If 0(7) ^ a'e-D.m^x) for 

some loop 
7 C Q then we can find 7' G [[7]] of Di-orbi t dominant area, arguing as before, 
assuming; e is sufficiently small given Di. So now assume tha t «2(7) ^ ^ - ^ ^ ( ^ 
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for all 7 C dQ. If we only have a(a) ^ 1/4#(Y) for a with ma^(x) ^ mint(x)/C7f, 
then either we can find some gap a C ft of Di-dominant area with a(a)/a(o/) ^ 
[1 - c r \ i + C71] for 

some a7 G [a], or we can find U oi e Cl/^-dominant area 
containing some /3n_i (as in 18.11) with a(U) ^ a'/4#(y). If not, then a' is achieved 
at a gap a C 0, with mQ9(a;) ^ mint(a;)/Cf and a(9a) ^ e-"W*)/3#00 and a(/J) ^ e-m9«^^4^^^a(a) for all /3 e [[a]] \ [a]. Adding in extra gaps /3 to a if 
necessary, but all with rriß^x) > ?^mt(^)/Ci\ we can assume a is of D'{ dominant 
area for D'{ = e-rnda(x)/c1 _ jf there is no Di-orbit dominant area periodic ß with 
K>(ß) nonmaximal, then a(ß) ^ e~2M"-ß(yX^a(a) for a with k(cv) maximal and we can 
find an orbit dominant a with k(o) maximal, as required by (1) of 20.7. 

21.13. Proof of 19.3: construction of (72. — If there is no (3 C 0 with n{{3) = 
max(Ko(r), ^o(r), «(AQ)), let Ti be the set of all loops in Q. . Otherwise, let I \ be 
the set of all loops 7 C Int(Q) with 7n1{x") + mlid{x") ^ m\(x")/C2. Let q{z)dz2 
be the quadratic differential for F{x") = d(x",T(X")) at a;" with stretch p(z)dz2 at 
T(X;/). We obtain crofx") by modifuinq the vector field iu to a vector field № = ¿/'2 r r" 
which depends continuously on x and x". We then take (T2(x") to be the time one 
map of W2,x,x"• We define w2(z) by adding in an extra term to w(z). Let 01 be the 
vector field of 20.2 with 1 = e. For 7 C df2 let g(t) be a positive function which is 
t(\og{t))2 for t ^ Cim7(/(a:)), and 0 for £ ^ 2Cim7/(x)). Define 1̂ 2(¿0 to be the sum 
of w(z) and a multiple of 

H-o(z)ö 7( 
C?e-mH-o(z)ö 7(^ ) + 

H-o(z)ö 7( 
C1L1(mJ(z)))ei(z), 

where the multiple of this term is bounded from 0 only when F-between does not 
hold. Let 02,t be the flow of W2. Then 

DF{w2(z)) ^ 
H-o(z)ö 7( 

C?a(7)e-m^'ö(a;) 

H-o(z)ö 7( 

C12m7/)(z)a(7)+JDJF(W(^)), 

or if F-between holds then DF{w2) ^ DF(w). We claim that this implies 

DF(w2(z)) ^u(x,r)/2. 

This will clearly be true so long as 0(7) ^ e-rniut(x)/c* for ^ ^ p1 x gQ ANC[ (2(7) 
e-m7(2)/Ci £or ^ ^ y± n dfl. If one of these does not hold then there is a larger 
negative term in D F ( w ( z ) ) . • 
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C H A P T E R 22 

P R O O F OF D E S C E N D I N G P O I N T S : S T R A T E G Y 

22.1. The next three chapters are devoted to proving the Descending Points Theorem 
of 7.7. The main thrust of the statement of 7.7 is contractibility of components of a 
set Ki(/JL,£) within a set i^+i(/i,e), i = 0, 1. 

The basic strategy is to study the function F(x) = d(x, r(x)) for x G e). We 
shall find that this function essentially depends only on k = and on a projection 
of x. So, roughly speaking, we are able to study a new function $ = $i of (x, k) 
which becomes F (essentially) when k, is restricted to a discrete set of values, and a 
supplementary function $2, which has to be added on for k bounded from 0, to ensure 
compactness. In this chapter, we construct the functions $ 1 and <I>2, and establish 
some of their properties. 

22.2. Projection to the Domain of <I>. — Let (/0,r) be an invariant loop set 
with [/o,r] minimal, with fixed set P. As in 2.13, let [ij)p\ be the isotopy class of 
/0 I P, identifying the components of dP with points. As in 2.10, 2.15, let Ao, AQ to 
be the components of C \ P, C \ (UT) containing v\, v2 and Â  (0 ̂  i $J n — 1) the 
gaps in the orbit of AQ. In 9.1, we defined sets A(a) C Y for gaps and loops of Y, 
and identified T(T,eo) with a subset of a product of spaces T(A(a)). The projection 
of T(r,£o) to T(A(a)) was denoted by 7ra. In the next three chapters, we shall need 
to make use of some somewhat different projections. 

Let 

Ç = U"Tn1A'UP. 

The usual convention on the sets A(a) ensures that each set A(A[) n A(P) consists 
of two points, and A(dA'i) C A{A'i) U A{P). It is therefore natural to choose A{Q) 
to be the union of A{P) and all A{A'i), 0 ^ i ^ n — 1. Now we define, for some 
JC C T(r,£o), a projection 

pp : K T(A(P)) 
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which is slightly differently from the projection 7Tp of 9.1, although it is the same to 
within 0(e_2rr /£) on T(r, e), where defined. Without specifying /C, it is such that we 
can normalise so that for all [<p] in the domain, <p(Y) is bounded, points of ip(A(P)) 
are bounded apart. Then pp([<p]) = [<p'] G A(P), where 

<p'(AinA(P)) = (l/#M(Q)nA?;)) 
yeA(Q)CiAi 

)CiAi 

p>' (y) — <p(y) for any other y G A(P). 

(There is at most one point of A{P) which is not in any A .̂) This definition is inde
pendent of the choice of local coordinates. This type of coordinate is used implicitly 
in Chapters 20 and 21, from 20.2 onwards. 

We also define a projection p% to T{A{A'i))1 which, again, is very slightly different 
from the projection m = 7T/y. • We define p^(M) — Wi] to be the point close to 
TTi([</?]) = with (Pi(y) — (Pi(y) f°r y G Az n Af(A[), and for the single point 
y G A{Af-) \ Ai, pAy) = pAy), for p' as above. Similarly, we can define projections p-
to T(A(A/i U P)) which are close to ix\ — 7rA/.uP7 using p on A(P) \ A .̂ Then it is 
clear that Yli Pi is a homeomorphism on T(A(Q)). 

We also define a projection pQ to {z : Im(z) > 0} which, up to scale, is close, but 
not identical, to 7raA0- As above, write pp([p}) = \p']- Let qp{z)dz2 be the quadratic 
differential for d{[p'\, [<p'] • |/0p]) at pp([pp]). Normalise [<p] so that 

Res(gp,^(A(P)n A0)) = 1. 

Then 
To = T(A(A0)) x {z : Im(z) ^ 4n2/e0} 

Here, we are assuming, as we may do, that v\, v2 G A(A'0). This, of course, only 
defines pa([(p]) UP to addition of an element of 27rZ, but if we make a choice at one 
point, we can extend continuously. It would be possible to define projections PdAt 
similarlv for all i. if we fixed 2 ooints of AiA'A. 

Let 
p = po x pa : K —» T(A(K)) x {z : lm(z) > 0 }. 

The space T(A{A'0)) then identifies with the Teichmuller space T(B(f0, T, A0)) of 
the branched map space B(fo,T, A0), which is defined in 2.18. Recall from 3.7 that 
G(fo,T) is the subgroup of G which leaves T(r,e0) invariant. Then the G(/o, In
action on T(T, £o) descends through p. Because (/, T) is minimal, the G(/o, T)-action 
descends to an action of G(B(f0, T, A0)) x Z, where the action of Z on T(A(<9A0)) = # 
is given by z i—• z + 27m (n G Z). To simplify notation in the following, we define 

To = T(A(A0)) x {z : Im(z) ^ 4n2/e0}, 

remembering that it identifies with most of p(T(r,£0))- Then T0 x R+ is the domain 
of the function <I> than we want to define. 
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22.3. The basic structure of <£. — The basic form of $ = 3>i is as follows. 
Choose a finite set 

Y' = Z' u {v2} = A(A'Q) U A ' c C x dA0 

such that A' n A{A[)) consists of two points {vipwi}. with w\ ^ Ao- Then we shall 
define maps 

x1 : T0 • T(Y'), x" :T() x {t : t > 0} > T(Z'), 

such that for x' = a;'([^], 2), x" = x"(M, 2, u), 

$l([v],z,u) + u = dZ'{xfJx"). 

Moreover, this will be such that 

if {[y],z) = p(x), x G Ki(^e) and u = d{pP(x), pP(x) • [<.'">]). 

F(x)-d(pP(x),pp(x) • [0P]) = *i(p(x),u) + o(e-27r2/£). 

So the next task is to define 2/ and ar". The rough idea is to "paste" ([p], z) and its 
"pullback" into T(Y') and T(Z'). 

22.4. Construction of x\ x". — We use the notation of 22.2-3. Fix a half-geodesic 
{[6] : t > 0} in T(A') with d([£o],[6]) = Let <lt(z)dz2 be the corresponding 
quadratic differential at We can normalise so that 

Ct(vi) = 0, 6 K ) - 00, Reste, 0) = I-

Definition of x'. -— Now let [̂ ] G T (A(A0) ) and 1111(2) ̂  rn. Use the normalisation 
above with t = 0, and take (^(wi) = 00. Then [p'\ — x' — x'([p], z, u) — x'(\p\,z) is 
chosen so that 

a6Aon,4'(A[,) 
^ ' (a )=0, p'(c2)-p'(c\) = e'\ 

p'(a) = Ço (a), a G A' \ A0, Po ([</>']) = [<p], 

where po i« the projection to T(A(AQ)) (defined similarly to 22.2). This defines 
xf([(p],z) modulo composition on the right with a Delm twist round <9Ao- To define 
x' {[p], z) completely, we simply make a choice for some particular ([po], ¿0), and there 
is then a unique continuous extension so that X'(\LP\,Z) is defined and continuous in 
([p],z). This definition is such that x'{[p],z + 2nn) is the composition of xf([p}.z) 
with an integral Delm twist round <9Ao, for all n G Z. We shall sometimes regard 
x/([p},z) — [p'\ as a homeomorphism up to isotopy, that is, the precise scaling of p' 
given above will sometimes be important. Note also that, if P = C \ Ao and pp. po 
are defined similarly to 22.2, 

pe{[<p']) = z, PP{[9'\) = 
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Our definition of x"'([</?], z, u) = [p"} will be in terms of x' (and u). If we change our 
definition of x' by composition with a Dehn twist round <9A0, then the definition of x" 
will change by composition with the same Dehn twist. 

First Preliminary to defining x"': restrictions of homeomorphisms to discs. — Sup
pose that x' — fcp'l = and consider <z/, ih' restricted to each of the discs An, 
C \ A0. We call these restrictions p\, tp[ (for Ao) and <p2, I/j2. Then there is a home-
omorphism a which is the identity on a neighbourhood of p' (Y') such that aoif'x — v[)'x 
on <9Ao and such that c r o^ , ij;^ are isotopic via an isotopy which is constant on dAo, 
and similarly for a o ip'2, ij;2. We fix such ip[, (f2. We can also assume (without 
changing [p'] = [*//]) that (p[(dAo) = p2(dAo) is a union of one stable segment and 
one unstable segment from the foliations for qo(z)dz , close, but not too close, to 
ipf(A(Af0) n Ao). In order to describe x" — [<//'] completely, it suffices to describe it 
up to isotopy restricted to each of the discs A0, C \ A0 modulo isotopies which are 
constant on <9AQ. 
Second preliminary: the branched covering go. - First, we note that the reduced 
branched covering g0 for A0 is defined up to isotopy constant on <9A0. To do this 
we need to choose the isotopy class of /Q | P suitably, where p is the period of A0, 
and assuming without loss of generality that fo(P) — P• Let 'i/j be obtained from a 
pseudo-Anosov on C \ A(P) by blowing up the points of A(P) to discs, such that the 
blowups of singular leaves ending at points of A(P) have endpoints on the components 
of dP. The point is that there is a unique way to choose /Q | P SO that dP is fixed 
pointwise by /Q modulo an isotopy constant on dPso that /Q is isotopic via arj 
isotopy which is constant on DP to y.K 

Third preliminary: the holomorphic branched covering s. — Now let s be a holomor-
phic branched covering with critical values at p''(t'i), ipf(v2) OI the form 

s(z) (z-Zü)2 
z + a 

+ a + 2zo 

for zo, a. The critical points are zo and —zo — 2a. The critical values are a + 2zo and 
— 3a — 2ZQ • Then for z bounded from 0, 

s(z) = (z-z0){l + (a + z0)(z-Zo) x) 1 ^a + 2z0 = z + 0(e"2m) 

Then for z bounded from 0, the branch of s 1 fixing oo also has an expansion 

s-\z) = z + 0(e-2rn). 

Then s 1 o (p[ o g0 maps 8AQ approximately to the union of a stable and unstable 
segment of the foliations for qu{z)dz2 (because of the normalisation). 

Definition of x". — Now we are ready to define x" = [if"} G T(dA0, 2e) C T(Z') . In 
fact, the definition will describe [p"} as an element of T{Z") where 

Z ^ ^ f F ' f i A o l U f A ' x Ao). 
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We are trying to abstract the pullback construction, and p" will be a lift of ip' o g0 
under s. Precisely we choose the isotopy class of p" | A0 close to that of s"1 o p[ o g0, 
mapping <9A0 exactly to the union of stable and unstable segments of qu(z)dz2, and 
so that 

s o p"(a) = p o g0(a), a e A(A'0) H A0, a / v2. 

Now we define p" | C \ AQ up to isotopy. We take 

<p"(a)=£u(a), aeÄ\A0. 

To complete the description, let \u be the map minimizing distortion given by 
qo(z)dz21 qu(z)dz2. Then Xu(p[(dAo)) p"{dAo), but is again a union of stable 
and unstable segment for qu{z)dz2, as shown: 

Natural isotopy. 

We then compose \u on the left by a map which sends the second stable and 
unstable segments to the first, pushing along unstable, stable leaves respectively, and 
this composition completes the description of p" | C \ AQ, as required. 

22.5. Scalar Multiplication and Basic Properties of x', x", $ 

The Lower Bound Property. — An obvious property of — proved like 17.4 — is 
that, for a constant C > 0 

Ф(Ы,г) ^ -Се"1т(2). 
Equivariance. — The maps x', x" are homomorphisms with respect to the natural 
G(£?(/o,r, AQ)) x Z-actions on T0L T(Yf), T(Z'), and $ is invariant with respect to 
the natural action on TQ. 

Scalar multiplication. — Let 0 ^ T c C \ F be a set of simple disjoint loops such 
that all loops of V are in the boundary of a single component P of C \ (UT), and 
let A?;, 0 ^ i ^ p — 1, p ^ 1, be the other (disc) components of C \ (UT). We are 
thinking of Y = A(Q) for Q as in 22.2, or Y = Y' as in 22.3-4. Fix sets A(P), A(At). 
Normalise so that points of p(A(P)) are bounded and the diameter of p(A(P)) is 
bounded from 0. Let \po] G T(A(P)) be close, or equal, to pp(M). Define 

Po(y) = <Po(y') if y, V e Ai. 
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We can choose a representative p0 of [po] so that {po(y)) and (p(y)), as elements of 
—y 
C , are close. Then the element 

[(A)] + \([ip] - [v?0]) = bo + \{p - Po)} = [px} € T(Y) 

makes sense, where [p\} is defined by 

Ч>\(У) = Vo(y) + Ч<Р(У) - <А)Ы) (y e 

and the isotopy class is the natural one, that is, [pi} = [p} and A' 1—> p>\> (A7 G [A, 1]) 
is an isotopy from p\ to p\. This is reminiscent of the use of local coordinates to 
define isotopy classes [p + h] in 8.4 and later. Such a coordinate is also used implicitly 
in Chapters 20 and 21, from 20.2 onwards. 

Scalar multiplication Properties. Then for all all mf ^ 0, the definitions of x' 
and x" are such that 

* ' (M, z + im') = M + e-m'(x'([<p],z) - [&]), 

x"([<p],z + im', u) = [G] + e~m (x"([<p], z, u) - [ e „ ] ) . 

If [^j], [̂ 2] e T ( R . e o ) with 

М Ы ) = М Ы ) + е~т" ' (т«(М - М Ы ) ) 

then 

x'(p([<P2})) = Kol + e - m V ( p ( M ) - Kol). 

and if u = d(pp(^1]),pP(^1]) • [^p])) 

x"(o(\vo]).u) = \fJ +(~7n (x"(o(\^])) - \¿J). 

Our next task is to transfer these scalar multiplication properties to <1>, and also to 
relate $ and F. 

22.6. Formula for D&i. — This is an analogue of the Pullback Derivative Formula 
of 8.11. In some respects this is an easier result, because we are only considering a 
restricted class of pullbacks. But it is different from 8.11, and it is important to get 
the details right. 

Lemma. — Let q(z)dz2 and p{z)dz2 be the quadratic differentials for d(xf, x") at x', x" 
for x' = [p'\ = x'{[p],z,u), x" = [p"\ = x"{[p},z,u). Let lm{z) = m. Then for h 
with h(vj) = wo + {eiU — l)p'(vj), v G R and 

aGA0ny 
h(a) = 0, 
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we have 

D&1([ip]ìz) + hìu) = $l([tp]ìz,u) + 
V'(t)Aü] 

2yrRe(/7(a) Res{q - s*p,<p'{a))) 

V'(t)Aü] 
(vz-iw0)(s*p-p) + O(\\h\\2). 

Remark. The integral term is relatively small, because if we choose the contour of 
integration bounded from 0 then by the estimates on s in 22.4, s*p — p — 0(e~2rn) 
there. 

Proof. — The functions x' and x" are clearly holomorphic in ([p], z), from their defini
tions in 22.4. Since the Teichmuller distance function is C2 by Theorem 12.1, so is <2>i. 
Let ,s be the holomorphic branched covering used to define x,f([p], z, u) — [p"\ from 
x' ([</?], z) = [(//]. Let go be the branched covering fixing An also used to define x"with 
critical points Ci, c'2 and critical values V\. v2. Let s\ be the holomorphic branched 
covering used to define x" {[p + h],mpu) from x/([p + h],rnpu) with h — o(e~rn). 
Then S] is of the form 

s1(z)=ei"8(e-i"(w-w0))+w0. 

Then x/([p + /i], z, u) - \p' + h], x"([£ + h}: z, u) = [p" + where 

^(ci) =^o + (^ + 0(^2))^/(c1), 

ti {a) = wo + ivy" {a) - 1)/(^/(!g0(a)))^/(5r0(a)) 

+ (^1)/(^(r7o(a))(/z(^o(a)) - wo - iv<p'(a)) + 0(\\hf) 

for a G AQ n f, a / ci, v2. Now by 8.4, 

Ф1 (¡LO + 2. V.) = ф, ГЫ. 2. и) 

лсУ'пЛ,, 
2TT Re(/i(a) Resfa, <p'(a)) - ti (a) Res(p, <p"(a))) + 0(||/i||2). 

At this stage there is no contribution from a = v2. We now reinterpret the terms in 
the second sum using the formulae for h''(a): 

лсУ'пЛ,, 
IVp"{a) Res(j9, p"{a)) 1 

2m ip"(dA0) 
ivz{p(z) — s*p(z))dz 

aeA()nY' 
ivp'[a) Res(s*p, p'{a)), 

Wo 
ttfAnny 

Res(p, p"{a)) - wo 
aGY'nAn 

(5-1)'(^(ffo(a))Res(p,9"(a)) 

2 

2rr 
î o Res(s*_p, WQ 

2m лсУ'пЛ,, 
(v — s*v)(z)dz. 

which gives the result. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



316 CHAPTER 22. PROOF OF DESCENDING POINTS: STRATEGY 

22.7. Some Corollaries of the Hard Same Shape Theorem. — (Easy) Same 
Shape 9.5 and the Hard Same Shape results 16.2 and 16.9 yield closeness of residues 
of a number of quadratic differentials, as we now explain. These will be needed to 
relate F and <£. Fix x = [p\] G Ki, x G T^ , v ^ £0/^2, with corresponding 

r(x) = [ip2], u = d(pp(x),pP(x) • [ipp]), x'(ir(x),u) = [p], X"(TT(X),U) = [pff\. 

Let q(z)dz2, p{z)dz2 be as in 22.6. Let qq{z)dz2 be the quadratic differential for 
d(i\Q(x), TTQ o T(X)) at 7Tq(j;), with stretch pq(z)dz2 at TTQ o T(X). Let TTJ denote 
projection of T(Y) to T{A(P U A'-)). Let rj(z)dz2 denote the quadratic differential 

for d(7Tj(x),7Tj o T(X)) at TTJ(X), with stretch tj(z)dz at TTJ o T(X). We assume that 
A(A'J U P) C f0~l(A{A'j+l U P)) for 0 ^ j ^ p - 2. This gives a natural projection 
from T(A(Aj+1UP)) to T(A(A,JU P)). So we can consider elements of T(A(A,J UP)) 
as elements of T(A(A0UP), for all 0 ^ j ^ j ; — 1. Using this identification, let r{z)dz2 
denote the quadratic differential at TTO(X) for d(7To(.x), 7rp_i o t(;t)). 

By Hard Same Shape 16.2, for all y G A(A'3) n AJ5 

Resfa^xfo) = Res(gQ, pi(y)) + <9(e~27r2/£Cl ), 

Resfo,y>2(2/)) =Res(pQ,^2(2/)) + 0(e-2^2/£Cl)-

By the Triangle Conditions 18.11 (since x G Kt) and Easy Same Shape relating 
qn(z)dz2, pq{z)dz2 to the quadratic differentials for d(x,r(x)), 

Kes(gQ - s*pQ, pi(y)) = 0(erc^v\ y G A(A') n A J ; U j ^ - l 

(There is no term a(A/J;), as there was in 18.11, because we have changed the normal
isation.) This gives 

Res(r7 - s*tj-i,<pi(y)) = o(l), ye A(A;.)nAj, U j ^ p - 1 . 

Using the identification of T(A(A/?- U P) with T(A(A0 U P)), and s(z) = z(l + o(l)) 
on ^(A7, z/) this gives 

Res(rj - tj-uipi{y)) = o(l), ye A(A0)nA0, l ^ j ^ p - 1 . 

Then 16.9 gives that 

Res(r0, ̂ (2/)) = Res(r, p(y)) + o(l), ye A(A0)nA0, 

Res(*p_!,e(2/)) = Res(*,e(2/)) + 0(e-27r2/£Cl), 7/G^(A0)nA0. 

But by Hard Same Shape 16.2, for all y G A(Af0) n A0, 

Res(r,^(2/)) - Res(ç,^(2/)) + 0(e"27r2/eCl), 

Res f tWM) = Reste. v"(y)) + Ofe-27r2/eCl ). 

The important deduction from this, for us, is that 

Res(qQlpi(y)) = Res(ç, p (y)) +o(l), 

Res(5*pQ,(^i(2/)) = Res(s*p,(//(?/)) + o(l). 
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Note that the same holomorphic branched covering «s is indeed used to define r(x) 
and x". 

22.8. Formulae for F and <I>. — We use the notation of 22.7. We also write 
^ ' (A;) = A ( A ; ) n A , 

Lemma. -— Let m — 2tt2 / e = Im(z). Let x satisfy all the conditions for being in 
Ki(ii,e), apart from the bound on F(x). Let x' — x'([p\,z), x" = a;" ([<£>], z, u). Then, 
for a suitable C > 0, 

(1) F(x) - d(pP(x),pP(x) • [ipp]) 

a(EA>(A'0) 

27rRe(^i(a) Res(qQ - s*pQ, px(a))) 

+ 0 ( E — ( 1 + 1 / C ) ) ? 

(2) d(x',x")-u = $>i([p},z,u) -
a(EA>(A'0) 

27rRe(v9/(a)Res(g-5^,v9,(a))) + o(e-rn). 

If in addition ([(/?], z) — p{x) and u = d([<pP], [(pP o ipP}), then the two sums are equal 
to within o(e~m). 

Proof — First we consider (1). Write 

Fq(x) = dQ{x,r{x)). 

By (easy) Same Shape 9.5, for x G Ki(p,e), for a suitable C > 0, 

F(x) = FQ(x)+0(e-ni^1^). 

Let s\ be the holomorphic branched covering used to define r([(^A]), and write s = si. 
For 0 < A ̂  1, by the Derivative Formula 8.11, 

{d/d\)(F([<px])) 
p-i 

z=0 a€A'(A'.) 
2nRe((p(a) - (p0(a))Res(qQix (sx)*PQ,\,<p\(a))). 

Here, if b = ip0(a) for a G Ä(A'): 

sx(z) = Xs(z-b/X). 

So s'x(<px(a)) = s'(y>(a)) for a G ^ ( A ^ ) . For i p — 1, we have seen in 22.4 that 

S'A(v?A(a)) = l + 0(e-2'»), a e ,4'(A;). 

By Hard Same Shape 16.2, for a suitable C > 0, 

B,e4QQ,x,Ma)) = Res(riQ, ^(a)) +0(e^1+1/^), a e LU'(A<), 

and similarly for pq,\. Each of these results is actually obtained by 2 (or 3) appli
cations of 16.2: one applies 16.2 to show that qqiX is close on S{A'i, [ip\[,eo) to the 
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quadratic differential for d(7T,i([p\]),7Y,i o r([p\])): and then considers the latter for 
varying A. So we have 

(d/d\)(F([px}) 
p-i 

г = 0 aGA' А') 
27rRe(((p(a) - ipQ(a))Rea(qQ - s*pQ,p(a)) 

+ 0(^^(1+1/0^ 

Also, for i ^ 0 , a G Aj, we have seen that Res(çQ. p(a)) and Res(.5'*pQ, p(a)) are close 
to Res(r7;, <p(a)) and Res(^_i, p(a)) respectively and hence by the Triangle Conditions 

Res(to-Ä.po,v(«)) =0(e-™'/°). 

Moreover, p>o(a) = 0 for a G A'(A0). SO altogether, integrating up, we have (1). 
(2) is proved exactly similarly, using 22.6. but is somewhat simpler because there 

is only one disc AQ to consider. The equality to within o(e_m) of (1) and (2) in the 
stated circumstances follows from the closeness of quadratic differentials established 
in 2 2 . 7 . • 

22.9. Scalar multiplication of — Similar techniques to those in 22.8 establish 
the following. 

Lemma. •• — The following holds for a suitable constant C. If Im(z) = m, m' ^ 0 
and D\ denotes derivative with respect to the first two coordinates, 

D1 [y] Dx^([p],* + m, u) = Dx^([p], z,u) + 0(e-m/c), 

$([p], z + rn . u) - c rn' ($([p], z, u) + O(e:~m( 1 +1 /c))). 

Proof. - Let q(z)dz2, p(z)d,z2 be as above and let q'(z)dz2 p\z)dz2 be the quadratic 
differentials for <3>i([<£?], z + rn/) at ([(,?], z + ra') and j : " ^ ] , z + m' + a). Then the 
residues of g and q', and of p and //, are within 0(e_m/c) by 16.2. Then we apply 
(2) of 22.8. 

22.10. How to compactify: the function <^2- — One problem with the func
tions F, & = $ 1 , is that for u.bounded from 0, r\ > 0, quotients by the natural 
G(B(f0, T, Af0)) x Z-action of the sets 

\x G T(I\ e) : Fix) ^ K(U) - rie~2lv2/e\, 

{([p],z,u) : mi ^ Imz ̂  ra2 : $([(p],z,u) ^ -r/e. Im(»} 

need not be compact, although, as we shall see, compactness does hold if u > 0 is 
sufficiently small. It is therefore necessary to introduce a function 

$ 2 : T0 —>{t : t ^ 0}, 

which we now do, for M suitably large yet to be chosen. Let ([^],z) G %. We take 
Ti = Ti([p}) to be the set of (disjoint) loops in A0 \ Y' such that [p] G T(7,£0) if 
and only if 7 G T\. We include a loop 70 in Int(A0) which is homotopic to <9A0 in 
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C \ Z' but not in C \ V, if such a, 70 exists with [p] G /~(7o, £o)- We do not include 
dA() itself. Let mn([(p\) be defined as usual (9.1 onwards) using a set ^(7) which is 
invariant under the G(B(}'q. F. A0)) X Z-action. This can be done, for example, by 
choosing the points of A(7) to be periodic under go- Let 

*2o(M.z) =e-m£i(m,(M)), 
where 
£1 : R • [0,oo), £1 = 0 on (-oc,M], ^(f) = t-M for f G [71/ + l,oc), AI > l/eih 
and £1 is C1 with derivative bounded independently of 71/. Let 

$2(\<P\,Z,U) 
~/ G Г i 

ф2,7(М.')-

Then ^2 is continuous. 

22.11. Properties of $2- — The following are immediate from the definition. 
Scalar Multiplication 

^2([p},z + wi')=e-fn'^2([p],z). 

Invariance. &2 is invariant with respect to the G(B(fo,T, A'0)) x Z-action. 
Compactness. - For any C > 0, AI' > 0 the quotient by the G(B(f0, T. A'0)) x Z 
action on 

{ (M- ) : 0 ^ Im(z) < M, $2(2) < Ce"1'"^} 
is compact. 
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CHAPTER 23 

PROOF OF DESCENDING POINTS: REDUCTIONS 

23.1. In this chapter we reduce the proof of Descending Points. Two reductions are 
given in 23.2 and 23.4, the second being closely related to the first. The reductions 
are basicallv to results about sets 

{(l<p],z):(*1+S*2)([<p],z,u)^0} 
for varying u. The No Boundary Critical Points result of 23.5 then says that the 
sets for different u (and <5, with certain restrictions) are diffeomorphic, as is explained 
in 23.6. We then state some results about the structure of the set for u near 0 in 
23.8. All these results will be proved in the next chapter, and complete the proof of 
Descending Points. The chapter ends with a construction of a pullback map for the 
function = which is then used to give estimates on <!> in the thin part of 7o-
The estimates are similar to estimates on F obtained in Chapter 17, and proved in a 
similar way. 

We use the notation of Chapter 22. In particular, given ([tp],z,u) we let x' = 
X'{[LP\,Z) and x" — x"{[p], z,u). We let q(z)dz2 be the quadratic differential for 
d{x',x") at x', with stretch p(z)dz2 at x". 

23.2. First Reduction in Descending Points. — We shall see that the proof of 
Descending Points reduces to the following, provided the constants used to define the 
sets Ki are suitably chosen. 

First Reduction in Descending Points. — The following holds for a suitable constant 
Co. Let uo^u>Q,r)>Qbe given. Let S > 0 be sufficiently small given u0, or S ^ 0 
sufficiently small if uo is sufficiently small. Then for if > 0 sufficiently small given 
uo and 5, and, all sufficiently large m > 0, any component of the set 

U\LO\. z) : ТтпЫ > m. (Ф, 4- ЛФ^ГЫ. 7.. ?/.ì < - r ^~ml 

is contractible within 

{([¥>], *) : lm(z) > m , ($1 + <5*2)(M, z, u) < - r / e~m}. 



322 CHAPTER 23. PROOF OF DESCENDING POINTS: REDUCTIONS 

The stabilizer of any component in G(B(fo, F, AQ)) is trivial. There is a natural one-
to-one correspondence between components and lifts to T(B(fo, T, AQ)) = T ( A ( A 0 ) ) 
of polynomials in B(fo,T, A0). 

23.3. Proof of Sufficiency of the First Reduction. — We need to contract 
Ki(ii,e) C T G-equivariantly within A^,+i(/i,t). So we shall construct 

h:Ki(tJL,e) x [0,1] -^Ki+1(p,e) 

such that n,(x,(J) = x, /i(A7;+i (/x, £) x {ljj is a topological line invariant under x I—> 
xr • [ijjp]. We construct /1 by constructing /;'(//(./*. /)) = x'; £ (0 ^ ?' ^ n — 1) and 
7ra(h(x:t)) for all gaps and loops a (jL Q. As a preliminary to constructing the 
p'Ah(x,t)) we construct pp(h(x,t)) = xpj. 

We choose xpt so that: 
(l) (x • [V;p])p,t = xpj • [^p]; 
(2) t i—> d(xp^pxp}t • [V;P]) is decreasing in £ for each x G A^(/i,e); 
(3) for £ ^ | , xpj is constant in t, and {xp.t : x G Kt(p,e)} is the unique 

geodesic on which y i—• d(ypy • [I/j]) and ?y J—> d(y,y • [V;PD take the minimum 
values and pn{p) respectively. 

By 16.11 we can take the paths {xpj '• t G [0, 1]} of small diameter independent 
of x and e. (The best estimate I can achieve is 0(e~2n ^Ce) for some C > 0.) For 
a (jL Q we shall take 7rtt(/i(x\£)) such that 

dMh{x,t))^aoT(}i{x,t))) F{h(x,t)) - E~l 

and 7rCY(h(Ki(p, e)) x {1}) is a point. This, of course, depends on the definition of 
xqj, but can clearly be done. 

As a further preliminary to defining the x'it, we define p(h(x,t)) — xo,t> We 
shall write pQ(h{x,t)) = XQ,t- By the definition of A"*, 22.2 and 22.8, we have, for 
x G Ki(p,e) and u — d(pp(x), pp(x • Ivy,')). 

lm(pd(x)) 2TT2 

s 
4тг2£г, Ф1(р(х),и) -(2Ei)-xe-2^l\ 

and by the definition of <1>2, for a suitable St > 0 given C[, Di, 
($1 +^2)(7r(x),ix) ^ -(AEi)-^-2*2'6. 

So then 
($1 +^2)(7r(x),ix) ^ -(AEi)-^-2*2'6. 

Then by 23.2, for suitable choice of Ei+\, we can choose a?o,t so that #o,t = # f°r 
^ ̂  ^7 p({j;o,i •' # ^ Ki(p,e)}) is a point, and for all x G Ki(p,e), t ^ \ , 

Im(xd,t) 
27V2 

£ 
4ir2Et ($i +5i<&2){x^upK(p)) -2E~l p~2vr2/£ z^+ie 

Then we construct x/0 t from xo,t and <X>P,£ m the same way as xf([p], z) is constructed 
from ([p], z) and [£0], but using A(P U A0) instead of F' . Construct XQ̂  in the same 
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way as x", but using xoj and d(xp,t. xp,t • [ip'p]). As noted before, x")t can be regarded 
as an element of T(Z") where Z" is somewhat larger than 4̂(A0 U P). In fact, using 
f~\ T(A(A/i U P)) can be regarded as a factor of T(Z"). For t ^ ±, x0\t is very close 
to pfp_l(r(x)). For t ^ ^ we take x^t very close to p[(x). For t ^ ^ we take x[t 
close to the geodesic joining xqj. and .FQ , and equally spaced. Then h(x:t) has been 
completely determined and 7Tfp__l(T(x)) *s close to J;Q n zr•(//(./•. /)) is close to So 
the triangle conditions of 18.11 for Kj+i hold for //(.r. f) for all f. Write 

"/ = d(xPJ,xpj • [V;p])-
Let qt(z)dz be the quadratic differential for d(x't,x") at with stretch pf(z)dz2 

at .xf. By 9.5, 
F{h{x,t)) = d(nQ{h(xA))<irQoT(h(xJ.)))+o(e-m) 

and by 22.8 
F(h(xJ))-d{xp.t.xpj • [V'P]) = 

а€ЕЛ'(До) 
Res(g*, <^(a)) + o(e-27r"2/e) 

r / ( . r ; , ^ ) - ^ + ^(e"2"2/5)-

So for t ^ << 1/2. 

F(/x(,U)) < F(x) + o ( c " 2 ^ ) ^ k(ai) - E-+\e-2"2^ 
For f ^ \ , 

F(h(x,t)) - ^(/i) ^ / ^ ( / i ) ) + o(r"27r2/£) 
^ ($1 +^^2)(.iTJ,/^(//)) o(c-'27T'2/£) ^ -Ег,\е-'2п'2/£. 

Then we also have, for C as in 22.5, 

ài<f>2(j-ut) ^ Ce"271 /£, 

which gives the required bound on m-zihfxj)) for t ^ | . if P-+1 is large enough 
given S[. We automatically have this bound for t ^ ^. So h(x.t) G A'/+i(//,. c) for all 
;r G A", (//-5). ^ G [0, 1 ] . " • 

23.4. The Second Reduction. — We can then reduce Descending Points a little 
further. 

Second Reduction in Descending Points. Le£ 0 < 71 ^ uq. Let ô > 0 be sufficiently 
small given */(). or ^ 0 sufficiently small if uo is sufficiently small. Let // 6e ,s////7-
ciently small given uq and S. Let in be sufficiently large given u. Then any component 
of the set 

{([<p],z):Im(z)=m. (&i+s$.2)([<p},z,u)^-ne-rn} 

'¿«5 contractible within itself to a point. There is a natural one-to-one correspondence 
as in the First Reduction. 
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To obtain the First Reduction, since <fr2 ^ 0 recall from 22.5 that 

(*1+ö$2)([<p],z,u) > $i([<p],z,u) Z Ce~lm^\ 

But if -Ce~lm^> < -r;e_m then lm(z) sC in + log(C/r;). So 

{(M,*) :Im(z) ^ m , ($! + S$2)([tp], z, u) ^ -T/e""*} 

C {2; : m ^ Im(z) ^ m -f log(C/r/)} 

C Um^m/^m+log(C/r/){([(/?],2) : Im(2) = m'ì ($i+S<S>2)([p],z,u) ^ -r/e"m }. 

23.5. We now exploit the variable u. The following will be proved in the next 
chapter. 

No Critical Points in Boundary. — Let UQ be given. There are So > 0, C\ > 0 such that 
the following hold. Let 0 < u ^ UQ, and 0 < S ^ So, or 0 ^ S ^ So if UQ is sufficiently 
small. Let m be sufficiently large given UQ. Let Dt denote the derivative tangent to 
the set {(y,z) : lm(z) — m}. Let |(3>i + S§2)(y,z, u)\ ^ r/e_m for rj sufficiently small 
given u and S. Then 

ЦЩФ1 +6Ф2)\\ 2 s4cr\ 

and if u is sufficiently small, 

| | A ( * I +<S$2)|| 5* C f1 . 

Then standard differential topology yields the following. 

23.6. Corollary. Fix UQ > 0. u\ > 0. Let So, be as in 23.5 given UQ. Fix Si > 0 
with So > S\ > 0, or S\ = 0 if uo is sufficiently small. Then for all u\ ^ u ^ uo, 
Si ^ S ^ SQ, 0 ^ ?] ^ rjo/2, if rn is sufficiently large, the sets 

{(y, z) : lm(z) = rn, ( $ 1 + S$>2)(y, z, u) ^ -n< '"} 

are diffeomorphic 

Proof of the Corollary. ••— We shall show that the sets are diffeomorphic for varying 
u: the proof for varying S or 77 is similar. It suffices to prove that, for u' sufficiently 
close to u. for all fixed sufficiently large m the sets 

{(y,z) : lm(z) = rn, ($1 + S^){y,z,u') < -rie'"'} 

are all diffeomorphic. By 22.11, the quotient of any such set by the action of 
G(B(fo,T, A0)) x Z is compact. (This is why <fr2 has to be introduced.) 

Fix u. and rj < r]' ̂  r/o- If u' is sufficiently close to u given 77 and r/, then 

Uy,z.uf) : Imf*) = m, ($1 + (J$2)(?/, u'e) < -r/e"™} 

C {(2/, 2, ?i) : lm(z) = rn, ($1 + S$2){y, z, u) < -rje rn}. 
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By the Implicit Function Theorem, if u' is sufficiently close to 7/, we can construct a 
Cl function i&(y, z,T)"), on an open set containing 

{(y, z, ri") : rj $J rf ^ ?/, Im(2;) m, +OÇ>2){y,z,U') = -r/ 'e-m} 

which is a cliffeomorphism C -close to the identity between the two sets 

{(y,z) : Im(z) = m, ®(y,z,u') = -7/"e~m}, 

{(y,z):Im(z)=m, Sfo, s, u) = -7/'e-'»}, 

Now let t be a C1 function which is 0 on ( — 00, — r/], 1 on [—7/, oc) and strictly increas
ing on (—7/, —77). We can choose t with a bound 0((rf — n)~l) on the first derivative. 
Then if u' — u is sufficiently small, the function 

(y, z) ^ t($(y. z, « ' ) )*(! , , z, ?/") + (1 - + 6*2)(y, 2 , u')))y 

is the required diffeomorphism between the sets 

{(y,z) : I m W = m , ($1 + ö$2)(y, z, v!) ^ - / / r ' " } . 

{(77,2) : Irn(z) = m, ($! + ^ 2 ) ^ , 2 , 7 7 ) ^ -77e_m}. 

Note that it is the identity on the set 

{(y,z):(Q1+ÖQ>2)(y,z,u')^-?1'e-m}. 

23.7. The functions a and /1 — It follows from 23.5 and 23.6 that the Second 
Reduction of Descending Points only needs to be proved for sufficiently small 77 > 0 
and (5 = 0 (and rn sufficiently large given such u). 

Let go be the branched covering, and ,s the holomorphic branched covering, used to 
define [p"} from [p'\ in 22.4. Recall that [p] and r([p]) = [s~l opog0] are the projec
tions of [<£?'], [p/f] to T(A(Ao)). Choose constants a = z) and ft = ft([p], z) so 
that t 1—> .s(n 1 (/ - /3)) fixes <£'(t>i) and p'{ci). Take a = 1 if n A0) = 1 (which 
is true if ip'(vi) — p'(c\)). Then a and ft are uniquely determined. Furthermore, 
(3([<p],\z) = \0([<p].z) 

23.8. Small Parameter Value. — Le£ C > 0 be a sufficiently large constant. Let u > 0 
be sufficiently small and rn sufficiently small given u. 

(1) Any component W of 

{(b ] ,2 ) : Im (2 )=m. z, u) < 0} 

zs contained in 

(M,z) : d(M,r(M)) ^ u, \a{[<p\,z)-\\ ^ C«|log«|, Ite(^(M,z)) > -e-"'<1+1/c>}, 

and ¿6 thus disjoint from its iterates under the G{B{fo, T, AQ)) X 7A-action. 
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(2) For S > 0 sufficiently small independent of u, any singular point in a component 
W as above is contained in 

{([<p],z) : d([<p],T([<p])) ^ u(l-6), \a([<p],z) 1| < Cu, Reß([ip\,z) > C-1Se.-m} 

= W{u.ö,C.m). 

(3) If rn is sufficiently large given (u.ö.C), 

W(u,S,C,rn) C {([¥>],*) : &{[<p],z,u) ^ -C-lSe-'n, Im(z) = rn}. 

(4) The set W(u.ö.C.m) is contractible within W(u,8C~l.C2.m) to 

{(M^):d([9],r([9]))=(),a(M,z) L ß = ß(№, z) e TL, ß^C-'e,-"1}. 

This will be proved in Chapter 24. 

23.9. Corollary. The orbits under the G(B(f0, T, A0)) x Z-action of components of 
{([<p], z) : 3>([(£?], z) ^ 0} are in 1-1 correspondence with polynomials in B(fo.T. A0) = 
B(A(A0), go), and are contractible to points. 

Proof. The components of the set to which W(u, 5, C, rn) contracts are points. If 
[cp] is such a point and sp(0 — s(( — ft) is the rational map such that 

[if] = [Sßl OifO <ry0], 

then has a parabolic fixed point at oc, and a finite critical orbit with the same 
dynamics as vi under CJQ. Such a map is on the boundary of the hyperbolic component 
of a unique polynomial in B(A(A0), go) — B(fo - T, A0) whose Thurston equivalence 
class can be immediately computed from sfj, by joining the infinite-orbit critical point 
of Sfj to its image under by an arc in the parabolic basin at oc. Then we can take 
a flow tyt with vector field w transverse to d\V and to d\V(u, 6. C, in) such that 
£>$(M Z)M < -Cierm\\w\\\\D^(l(,] z)\\ for a constant d > 0. (To get this for C and 

C\ independent of m we can use the scaling properties of Then ^t(Wf) C W 
for all t ^ 0. Let W" be a component of W(u, S,C,m). For small t > 0, we have 
either ^t{dW") C hit (IT") or ^t{DW" n W" = 0, that is, either Vt {W") C W" for 
at least one (and hence all) t > 0 or ^t{dW") D W" = 0 for all t > 0. We must have 
the former, because all singular points of (I> in W are in W", and all positive ^f flow 
orbits in W must pass arbitrarily close to singular points, otherwise <£ decreases by 
arbitrarily much. So there is T such that ^t(W) C W" for all t ^ T. Then by 3 
of 23.8, W" is contractible within W to a point in W". So W is also contractible 
within W to this point. • 

To obtain the Second Reduction from this Corollary, simply apply 23.6. 
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23.10. A pullback for — We recall that the key property of F(x) = d(x,r(x)) 
is F(t(x)) ^ F(x). We want something of this nature to be true for <fr = <3>i. Now 
®i([p}. z. u) = (l(y.x") where x' = x'([<p].z) G T{Y') and x" = x"{[p],z. u) G T(Z'). 
As in 6.7, we can extend x" uniquely to an element of T(Y') by the condition 

dY,(x'.x")=dz,(x'.x"). 

Let the branched covering go of 22.4 be defined to fix C \ An pointwise, and hence 
fix the 3 points of A' \ Ao- This definition is only unique up to a Delm twist, but the 
Dehn twists of go are conjugate to go, as can easily be checked. We have a pullback 
7~i : T{Y') T{ZF) defined using go- See 6.7 for the general definitions of pullbacks. 
but note that we have taken the range as T(Z'), which is simpler than the (currently 
irrelevant) definition with range T(Y'). As usual with pullbacks, we have 

a) dZ> (r, (:)•'), n (:,:")) ^dY>(x',x"). 
Recall that a pullback (which we can think of as T\) was used in 22.4 to define x" 
from x'. Define 

r([p].z. a) = (po x p0){x"{[p].z,u). 
We have the following. 

23.11. Lemma. Iflm(z) = m. 

* i « [ 4 ^ » ) , « K * i ( [ ^ V ' ) + 0 ( e " 2 ' " ) . 

Proof. — The key is (1) above together with the formula for d(x'.x") of 22.8. Write 
x' = b'l. x" = L/'l as usual, and 

.7:' = yA = TAx'). ,-',' = = r t (*"). 
4 = = *'(r(b], 4 ' = Wi\ = x"(T([<p],z,u),u). 

Let s, si, ,s'i,i, S2 be the holoniorphic branched coverings used to define x" from x\ 
x[ from x1', x" from x" and x2 from x'2. (See 22.4 for the first and fourth, and 6.7, if 
necessary, for the second and third.) Thus, 

(Po x Pd){[s 1 op' o go\) = (p0 x pd)([v"\), 

[si 1 °<r>' °9o] ls-\op"ogo] = W^ [*2 1 ° ^2 °9o] = Wi]-
Then ,s, si have the same critical values. So we can take s\ = s. Then 

sTl°v'°9o(a)=<p'(a) + 0(e-2m) 

for a G A' \ Ao. We can choose «si,i so that the corresponding relation holds for p" 
and tsi,i. From the definition of [p2], for some // = 0(e~m) G C, and the fact that 
S] = s. 

(2) p'2(a) + h = < "̂(a) = p\ (a) (a G A0 n Z'), ^2(^2) + /1 = <p"{v2). 
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The h occurs because (p'2(o)) *s defined to be (ip" (a) + h) with 

aeA()ny 
<p2(a) = 0. 

In particular (2) holds for the critical values v\, v2 of go- But p>n(v\), p"^) are 
the critical values of #1,1 and p'2(v\). p2(v2) are the critical values of s2. Then if we 
choose both ,s*i,i and s2 to be within 0{e~2in) of the identity away from 0 (which we 
are bound to do for .s2, at least, by the definitions in 22.4) we have 

s2(z) = s1,1(z + h) -h, 

So then 

(3) ip2'(a) + h = ip"{a), a G Z' n A0. 

We also have 

<p2(a) = •Jia) = <p\ (a) + 0(e.~2m), a G A' x A0. 

VJ2'(«) = v?"(a) = ^'/(a) + 0(e-2"'). « € A' x A0, 

and from the definitions and restrictions on Delm twists, [p[] and [p2] are close, as 
are [p'(] and [v?2]. Let x'2t. x2\t G T(Z ' ) be defined by (2), (3) with h replaced by th, 
and by being continuous. Let q2,t(z)dz2 be the quadratic differential for d(x2t,x2t) 
at x'2 f with stretch p2j(z)dz2 at x2t. Write q2 = #2.0 and p2 = p2,o- By Hard Same 
Shape 16.2, the residues of q2j, p2j are close to those of q2, p2 at all points. Then we 
can apply the Derivative Formula 8.4 to get 

dz,(x'x'{)=dz,{x>x")^ 
• 1 

0 
(d/dt)(dz,(x'.x'.'))dt 

dz>(x',.x'.;)+o(e-"') 
aeA(ìnZ' 

2nRe(hRcs(q2 - (s2)tp2, ^2(a))) 

= dz<(4.*2) + °(e"T") 
because the sums of residues for both q2 and (s2)*p2 are 1 + o(l). 

23.12. Invariant loops sets in A(). — Now we need to consider, for small £0 > 0, 

{( [y], z) : $(M,^,u) ^ 0}n[J{T(7 ,4) = 7 C int(A„)}. 

Given Li > 0 we can find L2 such that the following holds. Given u > 0, take 
any {[p],z) with ($1 + (!)<I>2)([</?], 2:, 7i) < 0. Let Y\ be the possibly empty loop set 
of 22.10. Let go be the branched covering of 22.4. Then we can find e0 ^ eo/L2l 
and T2 C Ti which is invariant under go, such that x! G T(7,£0) for all 7 G T2, 
and such that if 7 ^ T2 then ^ T(7,LI£Q). Let w < u0. Then assuming Li is 

sufficiently large given UQ. T2 contains no Levy cycles. This follows from an analogue 
of 17.5, and is proved in much the same way as 17.5, replacing F(x) = d(x,r(x)) by 
$(TT(X),U) = $([ip],z,u) = d{xf. x"), as we now outline. Let s, [£o], [£u] qo{z)dz2 and 
qu(z)dz2 be as in 22.4. Suppose that T2 contains Levy cycles. Then in the coordinate 
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of 22.4, p{v\), tp(v2) are within o(e~m) of each other. Then the formula in 22.4 shows 
that the branch of s~1 fixing oo is close to the identity except within o(e~ni) of p{v\), 
ip{v2)- Hence p>" (a) is within o(c~'m) of p'(go(a)) for a G Y' n Ao- In analogy to 
17.5, this shows that if T<2 contains Levy cycles then 3>([(/?], 2, u) is bounded below 
by d([£o + h + / / ] , [Cu + li) where /V = 0(\\h\\), Ce~rn ̂  \\h\\ ̂  5 for 6 small and C 
bounded from 0 and h varies over vectors in directions which sum to 0. To do this, 
we need to know that 

d([Ç0 + h'},[Çu + h']) = u + O(\\h'\\2). 
This is true, by the Derivative formula 8.4. because the local coordinates are chosen 
so that Res(go,0) Res(qu,Q). 

We also claim that the gap A[} of T-2 adjacent to OAQ does not have Euclidean 
branched map space. This is proved using analogues of 17.8 and 17.9 and the pullback 
r([ip], z,u) of 23.10. Since u is a continuous variable we have to consider the cases 
K(A0) ^ u - S for small S and K(A0) ^ u - 5. 

Let orbit dominant area be as in 20.G. We can use this concept for gaps of Tz, 
using q(z)dz2. We shall write a(a) for r / (n. r/). 

Let lm(z) = rn. By the same argument as in 17.6, for a constant C > 0, a (OAQ) ^ 
Ce~rn/u. Because of our normalisation, it is possible that there is a large modulus 
annulus nomotopic in C \ pF(Z) to p^dA^) and satisfying the Pole Zero Condition 
9.4 but if it does exist then its diameter is 0(e~m/u). 
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CHAPTER 24 

PROOF OF DESCENDING POINTS: CRITICAL POINTS 

24.1. In this chapter, we prove the No Boundary Critical Points and Small Parameter 
Value results of 23.5, 23.8. This then completes the proof of Descending Points, as 
explained in Chapter 23. We continue to use the notation x' — [p'\ = #'([</?], z), 
x" — \p"\ — x"([(/?], z, u) and q(t)dt2 for the quadratic differential for d(xn,x") at x', 
with stretch p(t)dt2 at x". 

24.2. Lemma. — There is a constant C > 0 such that if e~m/3C ^ u ^ uo, and Dt 
denotes tangential derivative as in 23.5, then the following holds. Let Im(z) = m, 

|| D1 (Q1 q) + d<S>2)({p],z)\\ ^ C and let ($x + 5<£2)([p],z) = -<Z'e-m. Then 

l № i + 6*2)([<p],z)\\ = 0(C + C + /c) 
with respect to natural local coordinates. 

Now let q(t)dt2 be the quadratic differential for d{x' • x") at x' (x' = x'([p],z), 
x" = xff([<p], z. u)) replace the condition (<3>i + J<I>2 )([</?], z) = —Ct,e~'m by the existence 
of an annulus of modulus ^ — 21ogC satisfying the Pole-Zero Condition 9.4 for q{t)dt2 
which intersects {t : \t\ ^ C'_2e~m}. Then 

|| D (Q1 + Q2) z))+ 5$2)(M, *)|| - 0(u + C + C + <-" ' / r ) . 

Proof. We use the local coordinates (ip'(a)) (a £ Yf H Ao), where [ĉ/] = x'Qĉ ], z). 
Then the tangent space of {{[ip],w) : lm(w) = rn} at ([p], z) identifies with the real 
codimension 3 vector space W given by 

{(£(«)) : Eae y n A „ ^(a) = 0, R e ^ ' M - ^M )£(<T) - CM = 0}. 
We are assuming that £>||(3>i + S<&2)(w)\\ ^ CIM| f°r all w e W. But we claim that 
there is a boundedly complementary 3-dimensional subspace on which D(<f>i + S&2) 
is 0(e_m/c) for suitable C. The following (real) vectors are in the kernel of D§2: 

x = (x(a)) with x(a) = 1 (a G F ' n A0), 

2/ = (s/(a)) with i/(a) = i (a £ Yf H A0), 

^ = № ) ) • 
Let £ be any of these vectors, which can also be regarded as a vector field. To see 
that v G Ker(<I>2), we need to consider m1 for 7 G Ti, Ti as in 22.10. Let p't be an 
orbit of the vector field v_, with p'^ = p1. Then one point of p>'t(A(^)) is fixed at 00, 
for v = x the others are all translated to t, for v = y they are translated by ti, and for 
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v — p' they are scaled by el. So in each case, rn1([p't]) is constant and Drn1(y_) — 0. 
So all such v are in Ker(<£>2)-

We claim that 

(i) 
{e-,n/c\\x\\) 

Res(q, ip'(a)) = 1 + 0(u-1/2e~m/2) = 1 + 0(e~m/c) 

for suitable C, and similarly for s*p. From (1) and the formula for Z)3>i in 22.6, 

Dq1 (x) = 0(e_m/c) = 0{e-,n/c\\x\\), D*1(y) = 0(e-m/2) = 0(e-m'c\\y\\). 

We prove (1) as follows. Let , qu be as in 22.4. Then recall that qo, qu were both 
normalised to have residue 1 at 0, and 

ko I df 1. 

By the Same Shape Lemma 9.5, if 0' denotes the angle between go and q, and 6" 
denotes the angle between qu and p, 

(2) u e,2\q0\=O(e-m), u e"2\qu\=0{e-m), 

and hence 

{e-,n/c\\x\\) 
R e s ( g , - Resfao, <A)(4' n A0) 0(tt-1/2e-m/2), 

and similarly for p, gn, and (1) for g and s*p follows, since by 22.4 s l(z) — z — 
0(e~~2rn) away from 0. From (2) we also have 

(3) Res(o,<z/(a)) = Oiu^e'™) = 0(e-2m/c) 

for suitable C, and similarly for p, s*p. 
Now we need to obtain estimates on D&i(p). First, suppose that 

($1 + 6<S>2){[<p],z) = -C'e~m. 

We have, by 22.6 and 22.8, 

-C'e-m = $i(M,2.w) = D*i(vö') + o(e-m). 

In fact, from 16.2 and (3), the o(e_m) term is 0(e-m<1+1/c7 for suitable C > 0. This 
gives 

£>$i(£') = 0((C + e-mlc)e-m) 0((( ' + e-m/C)fc'||), 

because l^'(^i) — p'{^2)\ — e 771 • 
Now suppose that there is an annulus of modulus ^ —21ogC, intersecting 

{t : |t| > C / _ 2 E _ R N } 5 an(i satisfying the Pole-Zero Condition for q. Choose r > 0 such 
that the annulus contains {t : CiC/r ^ |£| ^ (CiC')~lr} for a Ci > 0. Then take 
7 = {t : Itl = r}. Then 

7 
tq (t) dt- (1 + 0(u)) 

7 
tp(t)dt = (l + 0(u) + 0(C')) 

7 
ts*p(t)dt, 
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and hence 
2~2 <f'(a) Res(9 - 8,p, iff {a)) = (0(u) + 0(C'))e~"\ 

aGY'nAo 
that is, 

||D$1([¥.],%'|| = (0(«)+0(C'))||£'||. 
With respect to the standard inner product on Cn, n = #(A(Ao) H Ao), we have 

\\x -W\\ = V^= h - \\<S - W\\ = W{vx) - ip'{v2)\ > Coll^'H, 

for a suitable constant Co > 0. This last follows from 23.12: for u ^ u0 there is e0 > 0 
such that the following holds. If $i([cp], z, u) ^ 0, then by 23.12, there cannot be a 
loop 7 separating v\ and v2 from some other points of Y' n A0 with [p'] G T(j,e'0). 
So then the required bound on ||D(3>i + £3>2)(lOII for all vectors ^ follows from the 
bound on ||A($i +£$2)||. • 

24.J. Lemma. — Let e~3rn/c ^ u ^ uo. Let Li be sufficiently large and Di sufficiently 
small given uo, and So > 0 be sufficiently small given L\. Let S ^ So. Let ([ip],z) 
satisfy either of the hypotheses of 24-2, with u = 0(£') under the second hypothesis, 
with (, (' = o(SA) if S > 0, and (, £' ^ 0 sufficiently small otherwise. Let T2 be the 
(possibly empty) invariant loop set of 23.3 with the stated properties relative to L\. 
Then: 

(1) for all 7 G r2? m7(:r') = 0{S~1^2 log J); 
(2) for a suitable C2 > 0, there are no Di-orbit dominant area gaps a of T2 in 

Int(Ao) with a{a) ^ C2(C + C' + e~m/c)e"m. 

Proof 
1. Let a be a loop or gap of T2. Let V(a) be as in 20.2, and similarly for V[a] 

if a is periodic. As in 20.2, use the norm of 19.8 on V(a), V[a}. Then by 24.2, our 
assumption on D($i + S<f>2) translates to 

(3) |D(*1+5*2)(M,z)(fl)KC0|№-m(C + C'+e-m/C) 
for a suitable constant Co and any 6 G V(a), any loop or gap a. 

Let S > 0. Suppose that a is a periodic loop (not necessarily dominant). Then for 
a constant C3 > 0, either ma(xf) ^ M + 1 or 

C,^1^'" C max |£>$2(0)|/||0|| < C3e~m. 
0eV[OL\ 

But for 6 eV[a\ 

Dq (o) = 0(a(a)||<9||) = 0{e.-mma(x')-1 \\0\\), 
so we obtain ma(xf) = 0(c>_1). We then have a similar bound on ma>(xf) for all 
a' G [a]. In fact we can do better than this, as we shall see. In any event, if 
a (a) ^ ma{x')~2 we have ma(xf) = 0(S~1/2). 
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Now suppose that a is a D\-orbit dominant nonperiodic loop or gap. Let 

m'\x) — rna(x) or m'ix') = min{ra7(V) : 7 C da}, 

depending on whether a is a loop or a gap. Then by 20.4 

(D*2)l[vU)(e)=0(e-me-m'l*''>\\6\\). 

Suppose also that 

a{a) > max(S1/2e-m-'n'{x'\ C2(C + C + e-m/C)e-m). 

Then by the analogue of 21.4 for d(x', x"), for a suitable constant C\, we can choose 
6 € V[o\ with 

D$i(Ö) < -a(a)\\0\\/C\, 

Z?($i + S$2)(0) < -a(a)||0||/2Ci C -C'o(Ç + C + e-m/c)e-m\\6l 

if C2 is large enough given Co and C\, which contradicts (3). 
Now let D[ > 0 be sufficiently small depending only on and let 5 > 0 be 

sufficiently small given D[. Suppose that a is a (D\, D^-orbit dominant periodic loop. 
Note that if 5 is sufficiently small given D[, then by the above estimate on nonperiodic 
loops, this includes all loops a with a(a) ^ ma(x)~2e~m and ma(x) ^ 5~1/2, because 

we already know that mn(x) = 0(S ). Let [a] = {aj : 0 ^ j < n — 1} and 
let 6j e V(a3) as in 20.2 with A = 1. Then Dma>(i03) = 0{e~ni'), for rnf = 
rniiij raa.;(xf). This comes from the asymptotic formula rny([ip]) — — log \ a\ + O(l) + 
O(aloga) mentioned in 17.8, if (̂-¿(7)) = {0,1, 00, a}. So D<S>2(i03) = 0(e"m'). 
So we have 1 (¡0 3) = 0((e~rn _m) for all j , assuming that m is large enough for 
ern = 0(e-'m/c) = 0(e-m') = C^e"1^). As in 21.7, 21.9-10, let 

c3 + id3 
V(«j) 

y/qdz. 

(This coordinate is actually invariant under scaling.) Then as in 21.7 and 21.9-10 we 
can find 0 with both D&i(0) < 0, D$2(0) < 0 unless c3d3 = 0(a(a)ma) for all 
j , and hence unless d2 = O(a(a)mol(x)~1)) for all j , and F(a:) = K(a) + 0(D/1). So 
n{a) must be maximal and a C <9A0. Now let a (a) > rna(x)~~2, ma(x) > £-1/2log£. 
Then 

a(a,-) - O K , . ^ ) - 1 ) - OOS^C-log*)) 

for all Then we have a is (Di, Z^) dominant with = 0(}ogma(x)(ma(x)) xl2). 
In analogy with the formula for DF{6) in 21.9 we have, for 0 = ]P . Aj0j, 

£>$l(0) : 
n-l 

J=0 
Re(AJ(n"1Kc2_1-c2)) OCmaCa:)-1^^!!«!!). 

So we can solve with D<$>2(6) = 0, DQ\(0) ^ -Ca(a)mtt(x))-1 ^ -C64e-m for 
C > 0 bounded from 0, unless nJ1Kc2_1 — c2 — 0(ma(x)~l a(a)) for all j , which 
gives D<S>!(0) = 0(a{a)ma{x)-1\\e\\) for all 9. So for D($i +5<S>2)(6) = O(66e-m\\0\\) 
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for all 0, a(a)(ma(.r))-1 must be ^ dS for d > 0 bounded from 0. So ma{x) ^ £1/2. 
So altogether we have ma(x) = 0(61^2 log6). 

2. Now suppose that a is a periodic iJi-orbit dominant gap with a\a,q) ^ 
C2(C + C + e"m/c)e-m. By the analogue of 21.6 for d{x,x'), there exists 0 G 
with D$>i(0) ^ —e_c<1//eoa(a:)||#|| which again contradicts (1), assuming C2 is large 
enough given C\ and e f 0 . • 

24.4. Corollary. — Take the same hypotheses as in 2^.3. For a constant C\ > 0 
depending only on UQ: 

\s*p\ ^l-C^a(dA0,q) 

Remark. e"m = O(a{dA0,q)). 

Proof. We consider the point wise expression for s*p 

s.p{z) = {^l)'{z)fp{Sl\z)) + {{s^)'{z))2p^\z)), 

where s^1 and s^1 are local branches of By 2 of 24.3, we can take a bounded 
modulus annulus A nomotopic to tp"(dAo) on which C^e~7n ^ \z\ ^ C2em for C2 
bounded and C3 bounded from 0, and such that on A, 

p(z)=z~m+o{\)) 

for j = 1 or 2. We have a similar expression for {{s^1)'[z))2p{s^1 (z)) for suitable 
choice of branch si, using the expression for s from 22.4. Computing with s as in 
22.4, we obtain, for z G A 

sô\z) —a, 
(zo + a)2 

z — a 
-0(e-3rn(z-a)-'2). 

Because the critical points are bounded apart, we have \ZQ + a\ > Cse~ni for some 
C's > 0 bounded from 0. Then on a positive measure proportion of A, if C2 is large 
enough, 

P(S2-1(Z)) 
z — a 

— a(z - a) -f (ZQ + a)2 . 
3 

l + OiCT1) 

and hence 

((^1)'(^))2P(-s2-1^)) 

z — a 
-a(z - a) + (z0 + a)2, 

3 
{zo + a)4(z - ay4(l + 0{C^) + 0(e-m/(z - a))). 

Thus the two terms in s*p are of the same order of magnitude on a positive proportion 
of A (to within 0{C2)) but their arguments differ by a bounded amount. Then 
integrating and using the change of variable formula we obtain, for a constant C[ 
depending only on C2, C3, 

A 
\s*p\ 

s-ЧА) 
b i a - c r 1 ) 
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So then 
Is.pl < \p\ - C^la(dA0, q) = l - Cpa(dA0,q), 

as required. 

24.5. Proof of No Critical Points. — The following lemma completes the proof 
of the No Critical Points result of 23.5, because it gives a contradiction to 24.4 if S is 
sufficiently small, or if are sufficiently small in the case 5 = 0. 

Lemma. Take the same hypotheses as in 24-3. Then, for a constant C\ > 0, in the 
notation of 9.4 and 

\s*p\ \q\ + 0((51/2 logo + C1/2 + C/1/2 + e~m/2C)e-m. 

The term 5XI2 log 5 is omitted if S = 0. 

Proof — Let qo, qu be as in 22.4. We need to examine the relationship between 
qo and q, and between qu and p. Recall that #(Af) = 4, so that qo and qu have a 
particularly simple form. We are assuming that qo and qu have residue 1 at the point 
0 = (fo(vi) = pu{v\), remembering that {v\} = Y' n An. Then for some t ^ 1 and 
bj = 0(e"m) (1 ^ j < £), sl7 £2 = 0(e-m/c) (using 24.2), 

q{z) = zq0(z)(l + ei)r(z), p{z) = zqu{z){\ + e2)r'{z), 

r(z) 
t 

3=1 

Ci 
z - b3 

r'{z) 
t 

3=1 

<J:, 
{e-,n/c\\x\\) 

t 

3 = 1 
C3 

t 

3=1 
{e-,n/c\\x\\) s(b,J)=bJ. 

Write 

c -
t 

3=1 
cjbj. 

Then we claim that 
t 

3=1 
1 u c + 0((C + C' + e'm/c)e-'n). 

The reason is as follows. We use the trick employed in 22.6, in replacing a residue 
sum by an integral, and also use 24.2: 

t 

3=1 
c'b' 

{e-,n/c\\x\\) 
p"{a) Res(p, <p"(a)) + 0(e"m(1+1/c)) 

1 
2TTZ <p"(dA()) 

zp(z)dz + 0(e-rn^^ch 

1 
2wi sô "(ôAo) 

zs*p(z)dz + 0{e~m(l+l/c)) 
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{e-,n/c\\x\\) 
^{a) Res(s*p, tp'(a)) + 0(e-m(1+1/c)) 

aeY'nAo 
y>'(a) Reste, y'(a)) + Ö(e~m(C + C' + e~m/C)) 

t 

3 = 1 
Cjbj +0(e-m(C + C/ + e"m/c)) :c + 0(e"m(C + C/ + e-m/c)). 

For a suitable = 0(C1/2 + C/1/2 + e~m/2C) the following holds. The residues of q 
and s*p at a pole of either in ip'(Ao) are within 0{5'2). Let B be the ball of radius 
e~rn 15f round 0. Then 

B 
x,y 

B 
\q\+0{6'e-m). 

For a bounded constant Cu, we also have qu(z) = qo(z) + Cu + 0(^r xe m) on 5, and 
so, if 5' ^ e~m/3, 

qu 
B 

qv\+0{5'-2e-2rn) 
B 

qo\ + 0(o'e-m)-

Now, on C \ B, and bounded from the points p"(A' \ AQ), 

s*p = (1 + £2W1 + (c + 0(e"m J'))/*) 

Also, from the expression for s of 22.4, the poles of s*p outside <//'(Ao) differ by 
0(e~2m) from those of p, and residues at these points differ by 0(e~2m). So using 
our expression for p, we have 

s*p 
s*p 

s*p 
k J +Rete2) \qu\Re(c/z) + 0(e-mo') 

Similarly, 

s*p 
kl 

s*p ko I + Retei) \qv\Re(c/z) + 0{e-RN6F). 

So to complete the proof of the lemma, it suffices to show that 

Retei - e2) + (ko| - \qu\)Re(c/z) = Ote1/2 logöe-m) + 0(ö'e-m). 

To do this, we use a simple version of some ideas employed in Chapters 10-13, and 
regard y/q(z)dz, yjp(z)dz as elements of H1 (torus). To do this, take any two simple 
isotopicallv distinct nontrivial nonperipheral loops "vi, in C \ (AnUAf), which thus 
generate H\{T) for a torus T. Then by integrating along </?'(7j), yjq(z)dz, can be 
regarded as an element of Hl{T), and similarly for y/p(z)dz, integrating along the 
(f"{^3). Moreover, expanding out, we see that, in i/1(T), we have, for z bounded and 
bounded from 0, 

q(z)dz (l + tex/2)) qo(z)dz c qQ{z)/2z)dz + 0{5'e-m), 

p(z)dz (1 + ^ / 2 ) ) qu{z)dz d qu(z)/2z)dz + 0(ôfe-m). 
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Now as computed in 11.5, in Hl(T), 

rq0~/z)dz = 4TT qo(z) dz + 
<7ol 
z 

dz q(z) dz. 

in H1, and similarly for qu. Identify complex numbers with matrices in the usual way, 
namely 

a + ib I—> a 
b 

b 
a 

Write v! = d(xf, x") = ii + $i([(/?], z, it).Then we also have 

qu(z)dz 
•eu/2 

0 
0 

e-u/2 q0(z) dz. 

p(z) dz 
u'/2 
0 

0 
e-u'/2 J q(z) dz (l + 0(u'-ix)) 

eu/2 
0 

0 
e-u/2 q(z) dz. 

By 24.3, at our singular point we have 

$2 ([<£>],*) 0(e-m(T1/2log(5), 

and hence, since $i + J<3>2 ([<£>], z, u) = —Çe m, 
u — u 0(((51/2log(5 + C/)^m), 

with (y1!2 log,5 omitted if 5 = 0. Combining all these equations, we obtain 

El + C 
so 
z 

4nc 1 
0 

0 
1, 

'e-u/2 
0 

0 
eu/2 £2 + C 

47TC 
2 

47TC 1 
0 

0 
1 

eu/2 
0 

0 
e-ix/2 

0(£1/2 log&T771) + 0((5'e-m). 

An effect of conjugating a matrix A by a diagonal matrix is to leave the diagonal 
entries of A unchanged. So considering the top left entry in the equation above, we 
obtain 

Re £1 +c qo\ 
z 

ATTC Re £2 + C \qu\/z-4irc 0(ö1/2 log^e-m) + 0(^e-m) 

as required. 

24.6. Proof of 1 of 23.8. — Suppose that d(x',x") = 0{u). This will be true, in 
particular, if <Hf(p],z, u) ^ 0, because 

®([tp],z,u) = d(x',x") -u. 

Let go be the branched covering, and s the holomorphic branched covering, used 
to define [p"\ from [p'\ in 22.4. Recall that [p] and r([</?]) = o p o g0] are 
the projections of [p'\, [p"\ to T(A{A0)). So d([p},r([p})) = Q{u). As in 23.7, let 
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a = a{[p\) and p = p\[p>\, z) be such that t i—>• s{a~1(t — p)) hxes p (v\) and </? (c\). bo 
(using 8.7) the set B = p;(Z'n A0) is in an 0(iie"m)-neighbourhood of as~1(B) + (3. 

Now s moves the points of p'(A(A0) H Y') by at most 0(e_rn). So /? = <9(e_m), 
and, as we have seen in 23.7, / ? ( z + c) — elc[3{[p], z). Note also that (3 7̂  0 if u 
is small, because s itself is close to a quadratic rational map for which both critical 
points are attracted to oo (because of the conditions imposed on the expansion of s 
near oc in 22.4). In fact for a constant C > 0, \/3\ ^ Ce~m 

The following lemma, together with the subsequent corollary, prove 1 of 23.8. 

Lemma. — Let z, u) ^ 0. Then 

a([p],z) = 1 + 0(u\ogu) Re(f3([piz)) = 0(e-2m/u). 

Proof. — We deduce this from d([p'}, [pn]) ^ u, as follows. Let Im(z) — rn. Recall 
that [(/?'], [p"\ e T(Y'), and there is a distinguished set A' C Y' with #(A') = 4. 
Recall also from 22.2, 22.4 that there is a projection pp of T(Yr) to T(A') such that 
if pp([p'] = [p[] and pp{[p"] = [pi] then the points p[(a) are within (9(e_m) of the 
points p''(a) for a G Af, and similarly for p>"', and 

u = d(pp{W]),pp{[<p"\)). 

So 
d([v>'], [*>"]) < u < d(b ' ]^ , + Ce-"1, 

where C is bounded. Let 9 denote the angle between the quadratic differential q(z)dz2 
for d([p'}, [p"}) at [p'\ and qA,(z)dz2 for d([(/?V, [<p'V) at [p']A'• Then by 9.5, we 
have 

\e\2\qAI\^cie~m/u. 

The following holds for constants Cj > 0 bounded from 0, 2 ̂  j ^ 5. The annuli of 
maximal modulus homotopic to tp'(dAo), p"(dAo) in C \ (//(Y"'), C \ <p"(Yn), differ 
by at least a boundedly nonzero multiple of \a — 1|. So there must be an annulus 
homotopic to p'(dAo) and satisfying the Pole-Zero Condition (9.4) for q of modulus 
^ O2\OL — l\/u. So 9 is bounded from 0 on this annulus. The inner boundary of 
this annulus has Euclidean diameter r ^ C$e m, and whose outer boundary has 
Euclidean diameter ^ ec3|a-i|/ur> ^ne integral of \9\2 over this annulus is thus 
^ L74eC3la-1l/ue-m. We deduce that \a - 1| ̂  -C5ulogu, which -> 0 as u -> 0. 

Now remembering that t>i G A', let [£0], be as in 8.4. Let £0, £'u be close to £n, 
£u respectively with £¿(̂ 1) = = ^'(^l)- Then by the First Derivative Formula 
8.4 

d([Q,[tu]) = (̂[eo],[en]) + 27rRe(Res(ço-^,^tei)) + 0(e-2m/^) = u + 0(e-2m/u) 

The error term 0(e~2m/u) uses a bound on the second derivative which does indeed 
hold but has never been spelt out. In any case the error term is 0(C(u)e~2rn) for 
a constant C(u) which is bounded when u is bounded from 0. Let qf(z)dz2 be the 
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quadratic differential for <^4'([£o]> [CuD a^ xwith stretch p'{z)dz2 at [£(J. Then 
since y'{vi) = £o(vi) + 0(e-rn), ip"{vi) = £u(vi) + 0(e~m), we deduce from 8.2 (for 
example) that 

Res ( q ' » ! ) ) = l + 0(e'm) = ReS(p,,V,(v1)). 

Then by the first derivative formula 8.4, remembering that v\ £ A! 

dA,([p%[p"]) = d([QAa) - 2nRe(Res(p\p\v1))ß) + 0(e-2rn/u) 

u-27rRe(ß) + 0(e-2rn/u). 

Since d{[pr], [p"}) ^ u we obtain the required result. 

24.7. Corollary. — Any component W of 

{(M,z):lm(z)=m, d([<p],T([<fi])) I u, \a([p]) — 1| ^ Culogu, 

R e ( / 3 ( M ^ ) ) ^ - 0 ( e - 2 ' " / " ) } 

is disjoint from its iterates under the G(B(A(AQ)ì go) x Z-action. 

Proof. — If d([p], r([p}) ^ u then [p] is distance 0{u) from a point [poo] fixed by r. 
This is proved explicitly in 6.15 (and is basically Property 6 of 6.6) using iterated 
pullback. (It is also possible to prove it using the derivative of [p] i—>• d([p],r([p}).) 
Then we have |c*(k?ool) — 11 = 0(ulogu). It follows that the rational map Soo with 
[s^J- o (£>oo o g0] = [Poo] is within O(-ulogu) of a map with a parabolic fixed point. It 
follows that {[p] : {[p], z) £ W} for some z} has diameter 0( —ulogu). Then the set 
of z with ([(/?], 2 ) £ for some [(/?] have Im(z) = m and Re(z) varying in an interval 
of length 7T + O(-ulogu), by the relation P([p], z + c) = ezc/3([(/?], 2 ) . So W is indeed 
disjoint from its iterates under the G(B(A(AQ), go) x Z-action. • 

24.8. Proof of 2 of 23.8. — We use 24.4, 24.5. From these, we deduce that 
if ([p], z) is a point where ||Dt®{[p>], z)\\ = 0((f) for (f small, then d(x'' ,x") = 
d([p'}, [p'f]) ^ u — de~m, and there is no large modulus annulus satisfying the Pole-
Zero Condition (9.4) for q and homotopic to p'(dAo). Hence, for suitable C, arguing 
as in 24.7, |a([(^],?i) — 1| ^ Cu. Since, by 9.5, An is not of Di-dominant area for q 
(for a suitable D\ > 0) by 9.5, for a suitable Ö > 0 independent of u, 

(MMM)) = dA0([<p'}, < d([<p'], [<p"])(l - 5) < (1 - S)u. 

Since d(\ip'\, [p"]) ^ u — 6e m, arguing as in 24.7, we have 

u-6e-m>dA>([<p'],<p"])-- u-2nRe(ß) +0(e-2m/u) 

which gives Re(/3) ^ — C 1Se m, as required 

ASTÉRISQUE 288 



CHAPTER 24. PROOF OF DESCENDING POINTS: CRITICAL POINTS 341 

24.9. Proof of 3 of 23.8. — The following lemma gives 3 of 23.8. 

Lemma. — The following holds for a suitable C2 > 0 given C\. Let Im(z) = m. Let 
d{[p],r([p\)) < u(l - 6). Let \a([p],z) - 1| ^ Cm and Re(/3) ^ -Cf^"771. Then 
<S>([p},z,u) < -C2e~m. 

Proof. — As usual, write x' — x'([(p],z) — [p'\ and x" = x"([p\, z, u) = [<p"\, and let 
q{z)dz2 be the quadratic differential for dzf{x',x") at x'. By 8.2, it suffices to find \ 
with [x ° pf] = [p"\ and 

K(X)\q\^eu -Ce~m 

for a suitable C > 0. We shall find x using a different pair of quadratic differentials. 
Recall that, by definition of p'', 

yeA0nY' 
f'(y) = o. 

For y € Z' n A0 
tp"(y) = <p'(y)-ß + 0(ue-m). 

As in 24.8, we again have \/3\ ̂  C'e~m for a suitable C > 0, because the holomorphic 
map s used to define [p"\ from [</?'] is close to a holomorphic map with an invariant 
orbit close to {pr (gl(vi)) : j > 0}. Recall that A' = {vi} U F ' \ A 0 c r consists 
of 4 points. Let [£o], [£J £ qo(z)dz2, qu(z)dz2 be as in 22.4. Thus [p']a' and 
[y>"]A' are near [£0], [£u], and f0(vi) = = 0. Let [£JJ G T(A') be near [£u] with 

= £u{y) = ¥"{y) for y e V \ A0, and = - /? . By the First Derivative 
Formula 8.4 

d([U O = d([U Ku]) + 2^Re(Res(ç0,0)(-/3)) -o(/5) = w-27rRe(/^)+o(/3). 

Let xi t>e the map minimizing distortion with [xi ° £o] = [4\J- Then for z near 0, 

Xi(z)=z-ß + 0(uz) + 0(zz). 

So for y € An n Z', 

Xi(^(y)) = ^"(y) + 0(«e-m) + 0(e-2m). 

So we can choose %2 which is the identity except in discs D(y) of radius 0(we_rn) 
round the points of xi ° ^'{u), V £ H Ao, with X2 of bounded distortion in these 
discs, and such that [x2 ° Xi ° <fi'\ ~ W\- Suppose that each such disc has q measure 
0(ue~m), that is, a(D(y),q) = 0{ue-™) for each y G Z' H A0. Then 

(1) 
K{x2 o xi)\q\ ^ K(Xi)\q\ + 0{ue-ni) = e*-**W)+oW + 0(ue"m) 

< exp(7i - Coe"™) 

for suitable C2 > 0, as required. It remains to show that a(D(y),q) = 0(ue m) for 
each?/ G Z'nAo- Let D(0,r) = {z : \z\ ^ r}, and let ,4(0, r) = £>(0, r)\L>(0, r/2). For 
this, we need to show that a(Z)(0, Cie~m) ^ C2e~m for C2 sufficiently large given C\. 
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There is no large modulus annulus nomotopic to p'(dAo) satisfying the Pole-Zero 
Condition of 9.4, by the bound on \a — 1|. So it suffices to show (in the notation of 
9.4) that a(dAo,q) ^ Coe~m for some Co- Suppose that this is not true. Then an 
annulus A homotopic to p'(dAo) of modulus 1 with a(A,q) boundedly proportional 
to the minimum possible is distance ^ Cie~m from 0 for C\ arbitrarily large given Co. 
Then D(0, C\e~m) has ^-dominant area, where C2 can be taken arbitrarily large for 
C\ arbitrarily large. Then by 9.5 , for a bounded constant C3 independent of C2, 

d{x',x") ^ dA()(x,,x,,) + C3C2-1d(x,1xff), 

which gives a contradiction if C2 is sufficiently large. 

24.12. Proof of 4 of 23.8. — We need to show that a component W" of 
W(u, 6, C, m) is contractible within W(u, C~l8, C2, m), where 

{{[<p],z) : Im(z) = m, d([p], r([p])) ^ (1 - S)u, \(*([<p], z) - 1| ^ Cu, 

Re(ß([p],z)) ^ -C^ôer™} = W(u,ö,C,m). 

Using the derivative of F([p]) = d([p], T([C^]), since this is bounded from 0 by 2 
of 20 .14 , we can find a vector field w with DF(w) ^ — ||u>||/Ci near W" and off 
{JF([<£?] = 0 } and hence can contract {[up] : ([(£>], z) G W" for some 2} within an 
0(u) neighbourhood TV and within {[p] : F([p}) ^ (1 - S)u} to {[p] : F([p}) = 0 } . 
Then \a([p}) - 1| < CiCu for suitable Ci by the bound on TV. Also Re/3([(p],z) for 
([(/?], z) G VK" is within 0(u) of an interval of length 7r with centre /3Q- Then we can 
choose a homotopy 

h{[(p],z,t) = {hx([<p),z,t),h2{[<p],z,t)) (t € [0,1]) 

with 

h([tp],z,0) = ([<p],z), F (fniM, z, 1)) = 0, d([(p],h1([<p],z,l))=0(u). 

By varying the real part of zt we can ensure that the argument of {3(h{[p>\, z,i) is 
contained in an interval of length 7r+0(u) and f3(h{[p], z, 1)) = fio for all {[p], z) G W". 
Then finally we can choose h([(p],z,t) for t G [1,2] so that /i([</?], 2, 2) is constant 
on W . • 
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C H A P T E R 25 

RESIDENT'S V I E W OF RATIONAL M A P S SPACE: 
OUTLINE PROOF 

25.1. The maps with which the Resident views Rational Maps Space 

The aim of the last few chapters is to prove the Resident's View of Rational Maps 
Space. This theorem was stated in 5.10, and slightly reduced in 7.9. The theorem 
concerns a component V\ of the space of rational maps V C B = B(Y,f0), and V\ 
denotes the universal cover of Vi, which is biholomorphic to the open unit disc D. 
We now know (Injective on 7Ti) that the inclusion V\ <—> B is injective on 7Ti, and, as 
a consequence, that V\ can be regarded as a subspace of T = T(Y). 

We start by extending the definition of p2 — thus recalling the original definition 
in 1.12. We identify V\ with the open unit disc D, and write TT2 : D —>· V\ for the 
covering map. We also identify the universal cover of C \ Z(/o) = C \ Z with D, and 
write TT'2 : D —* C \ Z for the covering map. We assume without loss of generality that 
7T2(0) = V2- The original map p2 was defined on lifts in V\ of certain punctures in V\ 

since these were interpreted as paths from a basepoint fo to punctures in V\, where 
the segment of all paths outside V\ was the same. So we can assume without loss of 
generality that that the basepoint of T(Y(f0)) is x0 = [identity] £ Vi, corresponding 
to the polynomial fo G Vi, and ^ ( 0 ) = fo. Now we shall define a continuous map 
p2 '• T{Y) —> D, so that the map extends continuously to the original definition at 
the lifts of some punctures of Vi. 

So let [cp] G T(Y). Then there is a unique \ minimizing distortion up to isotopy 
constant on Z with [x]z = \^p\z- Then there is a path ¡3 : [0,1] —> C \ Z, with 
/3(0) = t'2, uniquely determined up to homotopies preserving endpoints, such that 

[ip]Y = [xoap]Y 

We then define 

P2(M) = 0a), 

where J3 is the lift of (3 with /3(0) = 0. 
In particular, p2 is defined on Vi = D. We claim that at any lift to a G dD of any 

puncture of Vi which represents a degree two rational map, p2 extends continuously 
to the original definition of p2(a) in 1.12. The reason is that, although this point is on 
the boundary of T(Y), it is only a finite distance in T(Z) from the basepoint. So we 
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can write it in the form [\ o ap] where \ minimizes distortion up to isotopy constant 
on Z, and (3 is a path from i>2 to a point of Z(fo). Then it is clear that p2(a) = B(1) 
coincides with the original definition. The map p2 on T(Y) is not G- in variant. But 
since the definition on lifts of punctures is ^-invariant, any continuous extension to 
dD with be 7Ti (Vi)-invariant. 

The Resident's View of Rational Maps Space (5.10) is given by the following. 

25.2. Theorem: View of V\ via p2 

(1) The map p2 has the following uniform continuity property on D. There is an 
at most countable set A C dD, and for each a G A there is a, connected subset Ua of 
lut(D) whose closure intersects OD only in a, such that the following holds. Given 
e > 0 there is a finite A' C A and S > 0 such that if z, z' G D \ UaeA'Ua and 
\z -zf\<5 then \p2(z) - p2(z')\ < e. 

(2) The set A is precisely the set of lifts of punctures ofV\, together with the end-
points of lifts of closed geodesies in V\, such that a generator ga of the corresponding 
cyclic subgroup of TT\(VI) leaves almost invariant a set T(OP.s), inhere P is the fixed 
set o/(/o ,r) for a minimal isometric or pseudo-Anosov node [/o,r]. 

Proof that the Resident's View of 5.10 follows from this. — We shall use several times 
in this proof the following classical result about pairs of fixed points of the action of 
a cofinite area discrete group of Möbius transformations on dD. The example we 
have in mind is TTI(VI), which acts by Möbius transformations on D U dD when we 
identify D with the universal cover Vi of V\. The result is simply that pairs of fixed 
points of hyperbolic elements of the group of Möbius transformations are dense in 
dD x dD. This result is proved, for example, in [G-H]. 

Let (f : dD —> dD be continuous monotone such that tp~1(x) is a nontrivial interval 
if and only if x is a discontinuity of p2- that is, only if x G A. Let 

X = {cp 1(x) : (f l(x) is a point} = {(f : p2 is continuous at x}. 

Then p2 o (p | X extends continuously to X, by the uniform continuity property of p2-
Then we extend to a continuous map — which we again call p2 ° ¥ — mapping dD 
into D, as follows. If (p~l(x) is singleton, that is, x ^ A, then we take p2o(p((p_1 (x)) = 
p2o(p(d(p~1 (#)), since d(f^1(x) C X. If (f~1(x) is nonsingleton, we take p2 o(p[(p~l (x)) 
to be the geodesic in D joining the endpoints of p2 o Lp(ip~l{x)). This happens only if 
x = a for some a G A. Only finitely many of these geodesies have over a given length 
by the uniform continuity property of p2- So we can make p2 o ip continuous. We 
can define an action of 7ri(Vi) by homeomorphisms on dD so that ip(g • x) = g • if(x) 
for all g G 7Ti(Vi), X G dD, the second action coming from the identification of D 
with V\. Then we also have p2 ° <p{g · x) = g · P2 ° <p{x) f° r a ^ fj € 7ri(Vi), X G dD, 
the action on the range being the restriction of the G-action described in 1.13, 3.15. 
This commutativity follows from 1.13 and continuity of p2 o ip. 
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For any fixed set P, we write C(P) for the union of convex hulls C(/o,r), where 
(/o, r) has fixed set P. All connected components of the union of Levy convex hulls are 
of this form. For a G A corresponding to P, we consider the action of ga G ni (V\) ^ G 
on dD, regarding D as the universal cover of C \ Z. Thus, according to the definition 
of 1.13, the action of ga is a lift of an element of the modular group. Note that, by 3.15, 
ga fixes C(P), but does not fix any other connected convex hull union. In the proof of 
7.10, we saw that, replacing ga by g~l if necessary, for x G dD, apart from one point 
in each component of dD \ C(P) in the pseudo-Anosov case, limn_,_|_00 g[l\x) exists 
and is in dC(P). It can be shown similarly that for x ^ dC(P), lim^^oc g~n(x) 
is the point fixed by ga in the same component of dD \ C(P) as x. This other 
fixed point must be in the boundary of a component of D \ (Up>C(Pf)) adjacent to 
C(P), since each such component boundary does contain a fixed point of ga outside 
dC(P). We can also consider the action of ga on dD obtained from regarding D as 
the universal cover V\ of V\. Then a is a fixed point of ga. Let a' be the other. Then 
p2 o tp(d(tp~l (a))), p2 o tp(d(tp~l («/))) a r e m dC(P) or are fixed points in boundaries 
of adjacent components of D \ (Up^C(P/)). The same is true for all points of A. 
So for any other point a,\ G A \ {a, a'}, p 2 ° p(p-1(a1)) H C(P) = 0. Moreover, 
if p2 o cp(x) G dC(P) then p 2 o (̂ (:r) G p2 ° p(p-1(a1)) u ^^(a / ) ) , because otherwise 
p2 ° ip(gax) — p2 ° <r>(#) for all r? G Z, which contradicts 

lim p 2 o ̂ ( ^ ( x ) ) G p2 o 1 (a)) 
n—>±oc 

U ^ o ^ - H a ' ) ) -

Now we claim that p2 ° (p((p~1(a)) U />2 ° <^(v?_1(a')) lies in the closure of a single 
component of D \ C(P). If this is not true, we can find intervals I\, I>2 C D such that 
p o <£>(/j) lie in different components of D \ C(P). But we can find p G 7Ti(Vi) with 
fixed points aj G / j . j = 1, 2, with corresponding fixed set P ; ^ P. This contradicts 
our previous finding on the positions of p2 o (p(ay) relative to C(P'). So now we know 
that, interchanging a and a! if necessary, p2o(f((p~1 (a) C dC(P) and p2°<£((^~1(a/)) is 
a point in the boundary of an adjacent component of D \ (Up/C(P')). So far, it could 
be in dC(P) also. It now follows that all points of p 2

 0 <p(9D) are in the boundary 
of a single component of D \ (Up/(7(P/)) —• for if not we can find a fixed set P', 
# G 7ri(V"i) with fixed points a\, a2 G <9D such that /52 0 </?(<p-1 (ai)) is separated from 
p2 o LP(LP~1 {(12)) by C(P'), giving a contradiction. 

Now suppose that p2° is not monotone. Since the image is a circle, there must 
be nontrivial disjoint intervals l\, I 2 C <9D such that /92 0 < (̂̂ i) = P2 0 ^(^2)· Then 
we can find # G 7ri(Vi) with attractive fixed point x\ in I\ and repelling fixed point 
x2 in 72- Then p2 o (f(gn(I2)) = P2 o p(gn(Ii)) for all n, hence p 2

 0 p(S1) = Pi 0 <p(#i) 
is constant. This is not true, because p2 is injective restricted to cusp points in dD 
(1.12). So P2 o Lp must be monotone. 
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25.3. The Classical Proof. — One classical case in which a map on the open unit 
disc D extends continuously to the boundary is when the map in question is a quasi-
isometry with respect to the Poincaré metric dp on D. This was used by Mostow 
[Mos] in the proof of his rigidity theorem for most compact symmetric spaces. (Of 
course, for surfaces, there is no rigidity, but the part of the argument in which the 
quasi-isometry extends is valid.) Interestingly, in that case, as here, the map involved 
is a homomorphism for a group action. Our map p<2 : D —>· D is quite far from being 
a quasi-isometry, in all cases, and our proof is not particularly close to the classical 
one, but it is nevertheless worth highlighting some features of the classical proof. 

So let p : D —• D be a If-quasi-isometry, with p(0) = 0. For all x, y £ D, we have 

dp{x,y) 

K 
^ dP(p(x),p(y)) ^ KdP(x,y). 

In particular, 

dP(p(x),0) > 
dp(x.O) 

K 
Using the standard relationship between Poincaré and Euclidean distance, this means 
that 

0 < 1 - \p(x)\ ^ 2e-dp(°*x)/K. 

This implies that p(x) tends to 3D as x tends to 3D, uniformly in the Euclidean 
metric. This is obviously necessary if p is to extend (continuously) to map 3D into 
3D. Now let x, y G D be such that dp(Q,z) ^ dp(0,x) for all z on the geodesic 
segment [x,y\ between x and y. Then dp(Q, p(z)) > dp(0,x)/K for all such 2, and 

\p(x)-p(y)\ < e-dpt*-°VKdP(p(x),p(y)). 

By breaking up [x, y] into segments of bounded length, and adding, we deduce for a 
suitable C that 

\p(x) - p(y)\ ^ Ce-dpWK. 

The continuous extension of p is easily deduced from this inequality, and could clearly 
be deduced from much less. The essential point is that, if p([x, y}) is known to be near 
3D, then many different conditions will force it to have small Euclidean diameter, and 
the relationship between Euclidean and Poincare metrics might well be helpful. 

25.4. The Points of Discontinuity. — We shall formulate the conditions we shall 
use to prove continuity of p2 in the next paragraph. First, we need to determine the 
set in which uniform continuity will be proved. We want to allow a countable set A 
of points of discontinuity on 3D, at which right and left limits wrill exist. At each 
a G A, we shall choose a set Ua, such that Ua fl 3D = {a}. The sets Ua will be of two 
types, which we term Stoltz angles and horoballs. Given a G A C 3D, there is a cyclic 
subgroup in 7Ti(Vi) ^ G which fixes a. We choose a generator ga of the subgroup. 
Thus, a will obviously be in a countable set. As an element of 7Ti(V/i), ga is either 
hyperbolic or parabolic. As an element of G, ga £ G(f, T), where [/, T] is either a 
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pseudo-Anosov or an isometric minimal nonempty node. If P is the fixed set of (/, T), 
then, regarding ga as an element of the modular group MG(C, Y) (which contains G), 
ga is the identity off P and is either a pseudo-Anosov on P (in the pseudo-Anosov 
case) or a Dehn twist round dP (in the isometric case). 

In both cases, hyperbolic and parabolic, for Ma yet to be determined, 

Ua = {x G D : dP(x,ga · x) ^ Ma}. 

If ga is hyperbolic then Ua is a Stoltz angle, and a is an endpoint of a (unique) 
geodesic £a which projects to a closed geodesic in V\. An equivalent description of Ua 

in this case, for M'a depending on Afa, is 

Ua = {z:dP(zJ,a)^M'a}. 

Then Ua is a geodesic-convex set such that dUa meets a in two curves at equal angles 
< 7r/2 with £ a i which is the reason for the term Stoltz angle. 

If a G A is parabolic then Ua is a horoball, and a will lie in one of finitely many 
orbits under 7Ti(Vi), corresponding to punctures in Vi. A horoball at a point a G dD 
is (as usual) a disc contained in D and tangent to D at a. As is well-known, horoballs 
are defined by the following property: points x and x' are on the boundary of some 
horoball if and only if the half-geodesics xt, x't parametrised by length with ideal 
endpoints at a and XQ = x, x'0 = x'', remain a bounded distance apart. In fact, 
d(xt,x't) = 0(e-t). 

We shall choose our horoballs so that Ug.a — g · Ua for g G 7Ti(V). This is enough 
to ensure that, given A/, there is an integer N such that at most TV horoballs Ua 

intersect any set of diameter ^ M, because the horoballs Ua are bounded distance 
neighbourhoods of smaller horoballs which are actually disjoint. We shall call this a 
bounded intersection property. It also ensures that, for some Al, every point in D is 
distance ^ M from some horoball Ua. In fact, large horoballs would cover D. We call 
this the bounded covering property. 

25.5. The following reduces the proof of the Resident's View to proving two key 
conditions. 

Continuity Condition Lemma. — Let D = {z :| z \< 1} and let p2 : D —> D be continu
ous 'with 0 = P2(0). Let A be a countable set of points of dD, with a set {Ua : a G A}, 
where each Ua is a Stoltz angle, or a horoball, such that the horoballs have the bounded 
intersection arid bounded covering property. Then p2 extends continuously to dD \ A, 
with right and left limits existing at a in D \Ua, and the Resident's View will be 
proved, if the following two properties hold. 

(1) Infinity Condition. Given A > 0 there exist A' > 0, and a finite set A' C A 
such that if z G D \ UaeA>Ua and d(z,0) ^ A ;, then d(p2{z),{)) > A. 

(2) Eventually Close Condition. There is a sequence {an} with lirnn_>oc a n = 0 
such that the following holds for any x G D. There is a path [xu : u G [0,T]} in D 
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with XQ = 0, XT = x, such that the Eventually Close Path Property holds for the path. 
The property also holds for any path in dUa (a G A) and any path of diameter ^ M. 
The limits along a path in dUg.a are the images under g of the limits along a path in 
dUa (gemM)). 

(3) The Eventually Close Path Property for a path {xt : t G [0,T]}. Let 

tn = sup{£ : d(0, P2(xt)) = n}. 

Then 

ECPP \p'2{xu) - P2{xt„)\ < an 
for all u ^ tn. 

Proof We need to prove uniform continuity of P2 in the following sense. Given 
e > 0. we need to find A / and finite Af C A such that if z, z' are in the same 
component of 

{z : dP(0,z) > A'} x U Ua, 

then 

(4) \P2(Z) - p*(z')\ < e. 

Let {a7i} be as in the statement of Eventually Close. Fix n, to be chosen later, 
so that an is small enough, depending on e. Then by the Infinity Condition, there 
is a finite A! c A, and A' > 0 such that if d(0,z) ^ A' and z G D \ UaeA'Ua, then 
d(0,p2(z)) >n. 

By taking A / sufficiently large, we can assume that the sets Unn{z : <ip(0, z) > A'}, 
for a G A' and Ua a Stoltz angle, are disjoint. We can also assume that, for all a G A', 

Ua H {z : dP(0,z) ^ A'} 7̂  0. 

By adding extra horoballs if necessary, but keeping the above property, we can en
sure that, for a fixed M independent of A!, every point in {z : dp(Q,z) = A'} is 
distance ^ M from some horoball Ua with a G A'. This is because the horoballs 
in A have the bounded covering property. So then, for M\ depending only on M 
whenever a, a' are adjacent points of A' (that is, adjacent on 3D) we can find a path 
£a,a' C {2 : dp(0,2) = A'} of length <̂  AYi (and possibly of length 0) joining points 
on dUa, dUa'. Now let R be any component of 

{z:dP(Q,z)> A ' } \ U ^a, 
a G A' 

By the Bounded Intersection Property of the horoballs, there is A/i, independent of 
A! and A7, such that OR fi D is a union of < N\ different connected sets, each of 
which is either in some £aMf or in some 0Ua. 

So to prove (4), it suffices to show that, for a suitable integer TV independent of n, 
if z. z' G R, then 

(5.7V) \p2(z) - p2(z')\ <Nan. 
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Given e > 0, we then choose n so that Nan ^ e. It suffices to assume that z' G dRDD, 
since if (5.AT) holds in this case, then (5.27V) will hold for any z' G R. Consider the 
path {xt : t e [0 ,T]} satisfying (ECPP) which joins z to 0, with .xT = 2. Let 

z" — xt where t = sup{.s : xs G OR}. 

Then (5.1) holds with z' replaced by z". So it suffices to prove (5.(TV 1)) with z, 
z' G OR. But (ECPP) holds, and hence (5.1) holds, for each component of OR D dUa 

or dRn£a,a', any a, a! G A. So then (5.7Vi) holds for any z, z' G <9i?, and thus (5.27Vi) 
holds for any z, zr G 7?. 

25.6. Reduction to two theorems. — The Infinity Condition for p2 will be 
deduced from Infinity Condition Theorem. We shall thus deduce the Resident's View 
of Rational Maps Space from the following two results. 

Infinity Condition Theorem. Given M there is M' such that the following hold. Sup
pose that 

dp{0,p2{x)) ^ M. 

Then all but at most length AI' of £ is in T(dP,eo) for a fixed set P of some (/o,T) 
satisfying the Invariance, Levy and Maximal Conditions. 

Eventually Close Theorem. ECPP of the Continuity Lemma holds for our explicit 
choice of p2'. that is, ECPP holds for paths in dUa, for paths of bounded length, and, 
for any x G V\, for at least one path in V\ joining x to 0. 

25.7. Two Very Basic Lemmas. — Our first basic lemma is simply a very obvious 
estimate relating dp, dy and dz — but is worth spelling out. 

First Basic Lemma. For a constant C > 0 depending only on #(V), 

dy(x0.x) - dz(xo:X) < Cdp(0,p2{x)). 

Proof. As before, we have XQ = [identity], and x = [x o ap]y where \ minimizes 
distortion up to isotopy constant on Z, and ¡5 is a path with initial point at V2. Then 

dz(XQ,X) = dy ([ap]Y[x o a(j]y ) . 

dy (XQ ,X) ^ dy{ [identity] y , [vftW) + dy{[ar3]y, [x o ap]Y) 

^Cdp(Oip2(x)) + dz(xo,x). 

The following is fairly obvious, given our present state of knowledge, but it is worth 
spelling out, before we show how to obtain the Infinity Condition from the Infinity 
Condition Theorem. 

Second Basic Lemma. — Given A > 0, there is A' > 0 such that the following holds 
for any x, y G V\. If dp(x.y) ^ A', then dy(x,y) ^ A. 
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Proof. — Suppose the lemma is false. Then there are A and xn and yn with 
d(xn,yn) ^ n but dy(xn,yn) ^ A. Then if one of xn or yn is in (T(Y))<£ for e > 0 
small enough depending on A, they must be in the same component of T(Y))<£>. 
But in such a component, the comparison between dy and dp is straightforward, 
and so dp(xn,yn) would be bounded. So there is s > 0 such that xn, yn G T(Y)^e 

for all n, and there is e' > 0 such that xn, yn G V\ project to (V\)^>£> for all n. Then 
there are M > 0 gn, hn G 7Ti(Vi) and x G V\ such that g" 1 -xn is a distance ^ M from 
some x for all n, and g" 1 · yn is a distance ^ M from /i n · x. Then d(x, hn • x) —> oo 
but dy(x,hn - x) ^ A + 2M for all n. Then there exist n 7̂  m with hn 7̂  / i m but 
dy(hn • x, /zm · x) = 0, contradicting Injective on T\\. 

25.8. Towards the Infinity Condition. — The following is a step towards show
ing that the Infinity Condition Theorem implies the Infinity Condition for p2. To get 
the complete Infinity Condition for p2 we need M' in (1) below replaced by a constant 
Ma which does not depend on M (although it can depend on a). We shall obtain 
that refinement in 27.8. 

Corollary. — Suppose that the Infinity Condition Theorem holds. Let x G D with 

dP(0,p2(x)) < M. 

Then there are M' and a finite A1 c A, both depending on M, such that either 
G?P(0,X) ^ M' or, for ga G 7Ti(Vi) a generator of the subgroup fixing some a G A', 

(1) dP(x,ga · x) ^ M'. 

Proof. — Let £ denote the geodesic segment in T(Y) between XQ and x. By the 
Infinity Condition Theorem, we deduce that all but length at most M\ of £ lies in 
T(dP1So) for the fixed set P of some (/o,T) satisfying the Invariance and Levy, and 
Maximal Conditions. Because T{dP,eo) is entered by time M\ (from XQ), there are 
only finitely many possibilities for dP, depending on M\. In particular, we have a 
bound, depending on Mi, on K(P). Write K, = K(P) if K(P) > 0. If K(P) = 0, let K > 0 
be suitably small. Also, we have a bound on dy(y, r(y)) for y G £\ T(dP, £0) because 
dy (XQ, T(XQ)) = dy(x,r(x) — 0. Let a : [0,1] x [0,1] —* T be a homotopy between £ 
and a path in Vi, with a([0,1] x {0}) C V\, a([0,1] x {1}) C £ and a constant on each 
of the sets {s} x [0,1], s = 0, 1. We apply the level K tool of 7.7 to a, with d equal to 
the complement in <9([0,1] x [01]) of two intervals in [0,1] x {1} containing (0,1) and 
(1,1), whose images under a are bounded with a bound depending only on a given 82, 
and such that a(d D ([0,1] x {1})) C T(<9P, £2). Let a' be the new homotopy given 
by the Level K tool. We can assume without loss of generality that a' is transverse 
to dTr

K(e\). Now consider the restriction of ct to the complement of the component 
of (a,)~1 (T^(ei)) containing <9 H ([0,1] x {1}). The restricted domain is topologically 
a square, and contains all of the original boundary apart from two subintervals of 
[0,1] x {1} containing (0,1) and (1,1). Reparametrise this restricted domain to a 
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square, keeping the three original sides which are in the restricted domain, to obtain 
a new homotopy a" between the original path in Vi, and another path which, apart 
from two sets of diameter ^ M(e 2), is contained in some set ki(µ,E1) (if K(P) > 0) 
or in Vi H T<£1 if K(P) = 0. Write h = a"([0, 1] x { ! } ) . Then 

hr\T{dP,el) С (V)<£1 if K(P) = 0, 
hnT{dP,ei) с С С Κ^μ,ει) 

for some minimal ¡1 with fixed set P if n(P) > 0, and component C of Ki(p,£i). In 
both cases, £± determines a cyclic subgroup of G with a generator g. If n{P) = 0, we 
take g to be the element given by a simple path round the relevant puncture of V 
(not yet of Vi) and if K(P) > 0 then we take g to be the generator of the cyclic 
group (whose existence is given by Descending Points in 7.7) which leaves C almost 
invariant. 

Suppose we have the above situation for xn for a certain number of n, where 
dp(0,xn) > n but dp(Q, p2(xn)) ^ M. Because the intersection of i\ with T(dP,e\) 
starts within a bounded distance of the first point of intersection with T(dP, £1), there 
are only finitely many possibilities for C and g (depending on e 2). So we can assume 
that we have the same g £ G of the form above for all xn. Let £i^n be the path as 
above corresponding to xn, with second endpoint xn. Moving the endpoints of £i,n 

a bounded distance (depending on £2), we can assume that the endpoints are hn · XQ 
and g'"" I>n • x0 — xn for a bounded hn £ G. Then if there are sufficiently many n, we 
can assume after renumbering that hi — ¡12 — h, m\ 7̂  7712- Then we have 

X2 = hgm2-nilh-1 • x\ G 7Ti(Vi) · XI, 

hence hgrn2~rnih~l G 7Ti(^i), which is only possible if hghr1 € 7Ti(Vi), by the To
pographer's View 5.10: the detailed description of the group G = TTI(B) shows that 
if gi e G with g[l e ni(Vi) for some n then gx e 7Ti(Vi). Then let a e 3D = dV\ 
be a fixed point of g. Then for a suitable choice of the horoball or Stoltz angle Ua 

(depending only on M, and hence only on a) we have xn £ Ua for all n. 
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C H A P T E R 26 

REDUCTIONS TO 

THE INFINITY CONDITION THEOREM 

26.1. The most basic estimate. — In the next two chapters, we prove the 
Infinity Condition Theorem of 25.6. This chapter is devoted to reducing what has to 
be proved, to the First and Second Reductions of 26.4, 26.5. The Second Reduction 
will then be proved in the next chapter. 

Throughout this Chapter, x0 = [^?0], x\ — [<fii] are points in V\ C T(Y). as in 
Chapter 25, £ = [XQ, x\] is the geodesic between them in T(Y), and £' is the geodesic in 
T{Z) joining 7VZ(XQ) and 7rz(.Ti). The point XQ is the basepoint used in the definition 
of p2 : V\ —> D (21.1) with p2(xo) = 0. More generally, given x\ = [<pi] G Vi, we can 
define a function 

x P2ÌX,X\) ' Vi D 

with P2(xi) = 0. This function is uniquely determined up to a Mobius transformation 
of D. 

The following is the most basic estimate in converting boundedness of p2 into other 
properties. Mostly, we shall apply it with Condition (1), but we shall use Condition 
(2) to apply it to paths ending a bounded distance from some Ua. 

Lemma. - There is a constant C such that the following hold. Let 

(1) dp(0,p2(xi)) < AL 

or suppose that for some x2 € T(Y) with TXZ{XI) 6 t', 

(2) dp(Q,p2(x2,xi)) ·' M, d.Y(x0.x2) ·• dz(xQ,x2) + M. 

Then 

(3) </z!·<·,:..'·,! = \\('\\z < \\T(1)\\Z ^ dy(x(hXl) = №\\Y <;dz(xo,xi) + Ma 
where \\ · \\z, || · \\Y denote length in T{Z), T(Y) respectively. 

Proof. - To obtain the first two inequalities of (3): for any points x, y we have 

dz(r(x),r(y)) ^dY(x,y), 
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and hence, since the endpoints of r{£) are TTZ{XQ) and 7rz(xi), 

dz(xo,xi) < \\r(e)\\z < (l)Y. 

Now assume that (1) holds. We can write x\ — [y>i]Y — \x\ oo~p oip0]Yl where [xi] 
minimizes distortion up to isotopy constant on Z and (3 : [0,1] —» C \ Z is a path 
with p(0) = <p0(v2), P(l) = Xi1 o iPl(v2) and p2(Xl) = /3(1), where 0 : [0, 1] D is 
the lift with ¡3(0) = 0. Then 

dY(x0,xi) ^ dY([xi o cr̂  o <p0]y, [cr̂  o <p0]y) + dy([cr/3 ° <A)]y, [<A)]r) 

^ dz(xo,xi) + Cdp(0,p 2(^i)), 

which gives the last inequality of (3). If (2) holds, then in a similar way we obtain 

dY(x2,xi) ^ dz{x2,xi) + CiM, 

which gives the last inequality of (3) with C = C\ + 1. 

26.2. Lemma. — Suppose that (1) or (2) of 26.1 holds. Given M > 0, So > 0, there 
is M2 such that the following holds, except for x G £ in a union of ^ M2 segments of 
length ^ M2. Let \i be any segment of I whose endpoints are both within 1 of x. Let y 
be the endpoint of ¡1 separating \i and x% (i = 0 or 1). Then 

(1) (µ) - (µ') < 60 

(2) № ) | | - | | / x l < 5 o , 
(3) dz{x,y) + dz(y,Xi) - dz(x,Xi) <: S0, 
(4) dz(r(x),r(y)) + dz(r{y),Xi) - dz(r(x),Xi) ^ So, 

where p! is the geodesic in T{Z) whose endpoints are the projections of the endpoints 
of fi, and p" is the geodesic in T(Z) tvhose endpoints are the same as those ofr(p). 

Proof — To obtain (1) and (2), note that if /¿1, \i2 are any two adjacent segments 
on £ (or T(£)), with ¡1 — fii U /¿2, and pi!', p!x, p!2 are the segments in T{Z) with 
endpoints the projections of the endpoints of //, /11, /12, then 

N | y -H^l lz^ ( | | / i i | | y - | |A * i lU) + ( IMy- | | / x ' 2 | | z ) . 

Now write £ as a union of segments p of length ^ 3 such that any x G £ is in at most 
three segments, but, apart from length 1 at the endpoints of £, any x lies in at least 
one such segment p\, distance ^ 1 from both endpoints of p\. Then 

EaiHiy- i i^i iz) < 3 ( | | £ | | y - M z X 3 C M , 
μι 

and similarly for the r(/xi), µ1. So for all but 0{M/5Q) of these segments, any 
subsegment ^ and corresponding r(/i) will satisfy (1) and (2). This gives (1) and 
(2) for p within 1 of x, except for x in a union of 0(M/So) segments of total length 
O(M/S0). 

ASTÉRISQUE 288 



CHAPTER 26. REDUCTIONS TO THE INFINITY CONDITION THEOREM 357 

The inequality (3) is really two inequalities, one for each X{. We obtain each one 
except for a finite union of segments, bounded in terms of M, and 5Q. Without loss of 
generality, we consider the inequality for x0. Then we write £ as a union of segments 
as before. Fix any segment µ1 where p\ is divided into segments of length < So/8 
and the successive points are yl: 0 ^ i < n. Then write 

5(μι) = 
n 

E 
i=l 

(dz(xo,yi-i) + dz{yi-i,yi) - dz(xo,yi))-

Then all the terms in each sum S(pi) are ^ 0, and 

E 
Mi 

S(fn) ^ 3CM. 

So for all but ^ 12CM/So segments, we have S(fi) ^ So/4 Then for yp and yq in a 
good /i, p < q, by summing from p + 1 to g, we have 

dz(xo,yP) + dz{yP,yq) - dz{xo,yq) < S0/A. 

Then for any x and y G/i with x to the right of y we have 

dz(xo,y) + dz(y,x) - dz{xo,x) ^ ¿0-

Then (4) is proved in a similar way. 

26.3. Notation for the Reductions. — In what follows, we shall frequently refer 
to gaps without having introduced a loop set. A gap is simply a nonannular subsurface 
/3 of C with dp Pi Y = 0, such that all boundary components are nontrivial and 
nonperipheral. We allow the possibility /3 = C. We shall refer to periodic gaps and 
loops without having introduced an invariant loop set. A gap or loop is periodic with 
orbit [P] if there exists a sequence P%, 1 ̂  i ^ n, with /3 — p\ — /3n+i, Pi H Pj — 0 f° r 

1 ^ i < j ^ n, and Pi is a component of f0~
1(pl+i) up to Z preserving isotopy. We 

then write [p] = {Pi : 1 ̂  i ^ n}, as in 17.3. 
We use the notations mp(x) of 9.1, a(a,q) of 9.4, |v (̂7)|q of 14.5. Having specified 

a geodesic segment £\ C T(Y), we shall write I(p,Ci,e) for the set of ;r = [p] G 
such that, if q(z)dz2 is the quadratic differential at x for riy(xo7^i)7 then 

\p(dP)\q<e, 

a(ß,q) > Ci or a(/3, q) ̂  Ci/m/3(.T), 

depending on whether p is a gap or loop. (We have P = dp is /3 is a loop.) In such 
circumstances (as in the past) we shall write a(P, q) — a(P, x), where it is clear which 
quadratic differential is meant. If P is a gap, then we define /(/?, Ci, £, v) C /(/2, C\,e) 
to be the subset of x such that, in addition, |<p(7)|q ^ ^ for all 7 C Interior(/3). (This is 
an empty condition if p is a loop.) Note that if x G I(p, Ci, £, z/), then a; G T(dp, S), 
where (5 = S(£,Ci,v) —> 0 as e —> 0, for fixed Ci, ^, and x G (T(A(^))^ r / , where 
r/ = ?/(Ci, ^) is bounded from 0 if ^ and Ci are. 

We say that a is workable if 
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(i) a is a periodic loop or gap 
(ii) if a is a loop then it generates a loop set satisfying the Levy Condition; 
(iii) and if a is a gap then v2 ^ a and it is irreducible and homeomorphic pseudo-

Anosov or degree two nonrational. 

26.4. The First Reduction. — There is C[ — C[(M,eo,r}o) > 0 such that the following 
hold. Let £i be connected. Let (1) of 26.1 hold and £\ C £, or let (2) of 26.1 hold and 
xi e T^£o, £1 C [x2,xi] for x2 as in (2) of 26.1. For x e h, let (l)-(4) of 26.2 hold, 
for So sufficiently small given M, so, 7]q. 

Then there is a workable gap or loop a stich that 

h C I(cy,C[,tio). 

Remark. — The precise formulation of the First Reduction is made so as to imply 
the Infinity Condition both for paths for which \\£\\Y — \\£'\\z is large, and for paths 
in a set dUa, for which \\£\\y — \\£'\\z is bounded. From 26.2 it follows that if (1) of 
26.1 holds then all but length ^ M2 of £ is in ^ M2 segments such as £\. We shall 
deduce the Infinity Condition from this in 27.7-8. 

26.5. The Second Reduction. Let the same hypotheses hold for xo, x\, and £\ as 
in the First Reduction. Then there is a function r : (0, oo) —» (0, oo) such that the 
following hold. Let x £ 1(0, C\, r(z/), v) C £\ for v ^ v\ and periodic p. If do 
sufficiently small given A/, C\, v\, then 3 is workable. 

The following two lemmas explain why the Second Reduction implies the First. 

26.6. Lemma. — Let the same hypotheses hold for xo, x\, and £\ as in the First 
Reduction. Let C\ > 0 and a function r : (0, oo) —+ (0, oo) be given. Then if 5o > 0 
is sufficiently small given M, C\, r, there are v\ — vi(M,Ci,eo,r)o,r) > 0, C2 = 
C2(M, C\) > 0 such that £\ is a union of sets I(/3, C2l r{v), v) for periodic ft (including 
[3 = C) and v ^ v\. 

This will be proved in 26.12. It allows us to replace the hypotheses in the First 
Reduction by the hypotheses in the Second. 

26.7. Lemma. Let the same hypotheses hold for xo, X\, and £\ as in the First 
Reduction. The following holds for a suitably chosen r/i given rjo, M, and C[ given 
M and C\. Take any segment £2 of £\ such that £2 is a (connected) union of sets 
I(ß, Ci, 771). Then if So is sufficiently small given M, So, C[, then there is a single 
workable ao such that 

^C / ( a 0 , C i , 7 7 0 ) . 

This will be proved in 26.13. It allows us to replace the conclusion of the Second 
Reduction by the conclusion of the First. 
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26.8. Area in the geodesies £ and £'. — See 14.10 for the definition of d'n. We 
write d'a z when the underlying Teichmuller space is T(Z). The first step in analyzing 
subsurfaces a with x G T(da,eo) D £ and a (a. x) bounded from 0 is the following. 

Lemma. Given M > 0, C\ > 0, v > 0, there is Mi = Mi (M, v, C\) such that the 
following hold. Let XQ, XI and £\ satisfy the hypotheses of the First Reduction. Let 
x G /(oj, Ci, c, i/) C £'i for some e ^ v. Then 

(1) cla:,z(a;,r(.E)) -· \/,. 

(2) '/.'. 7(a:.", a:) dY(xnx) - M1. 

for i = 0 or 1. depending on whether (1) or (2) of 26.1 holds. 

Proof. ----- First, we want to apply 14.2 to tlie geodesic segment £ = [XQ.XI] and a 
point x' on one of the following unions of geodesic segments in T(Y), depending on 
what hypotheses we are using: 

[ z o ^ U ^ a r i ] 

where 

XQ = [<A)]> xo = Ier(i ° <A)]y> xi = [<PI]Y = [Xi ° orp o <^0]y 

where /3 is a path starting at ^o(v) and xi minimizes distortion up to isotopy constant 
on IPQ(Z), or 

[xo,x2] u [x-2-x\i u [x\.x\} 

where 

XQ = [V?0], X2 = [X2 ° CTq: ° ^o], #1 = [Xl ° X2 ° ° ^o], X1 = [<7£ O X! O X'2 O (ja O (f0]. 

Here, [tpo], [\2 ° <fo], [xi ° X2 0 <A)] a r e 0 1 1 the same geodesic in T(Z), and Xi, x 2 

minimize distortion up to isotopies constant on X2 o ip0(Z), ipo(Z) respectively. The 
path (3 is bounded in both cases, giving 

dyUn-Xo) < CM, dY(xux[) <:CM. 

By the definitions, we have, under the first hypothesis 

dy (X'Q , x 1 ) = dz {XQ , x 1 ), 

and under the second hypothesis, 

dY(x0,x2) ^ dz(xo,x2) + M, dY{x2,x\) = dz(x2,xi). 

Then for any x1 G (x0,x1) in case (1) of 26.1, or x' G [.x'2,̂ 1] in case (2) of 26.1, we 
have 

dY(xo,xf) + dY(x',xi) ^ dz(xo,xi) + (1 + 2C)M. 

Given x G ̂  we can choose ,r/ G [.XQ,XI] or x' G [.x'2,^] with 

|dy(>o,^) -dy(xo,x)\ ^ CM. 
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So, since a(a,xf) ^ Ci, we can apply 14.2 to obtain, for suitable A/2, 

(L.y(x'.x) ^ M2. 

Projecting, this gives 
da,z(x',x) ^ M2. 

Then 
(3) d'a,z(x',xo) = d! Y(x',x'0) ^ d'a Y(x, XQ) - M 2 - CM ^ dy (x, .T0) - M 3 

for suitable A/3, under the first hypothesis. The last inequality uses a{a,q) ^ Ci. 
Similarly, under the second hypothesis, if x' G [x'2,2;i] we obtain 

(4) d'a.z(x'ixi) ^ dY(x,xi) - M3. 
It follows that there are 77 = r/(A/, C\, ^ ) , C{ = (M, Ci, zv), and a' with a C a7 

(possibly a' = C) such that 7rz(x') G T(da',r]), irz(xf) € (T(A(c / ) )^ if a' is a gap, 
and a(o/, r) ^ CJ[ or a(o/, r) ^ Ci/ma'(xf), where r(z)dz2 is the quadratic differential 
for dz(xo,x') or dz(x\,x') at a/. These lower bounds on a(a/,r) follow from (3) or 
(4), and XQ G 7^ e o or xi G T>Ex depending on whether the first or second hypothesis 
is used. For let x' — [p'} and let ri{z)dz2 be the stretch of r{z)dz2 at x%. First let a! 
be a gap, and let 7 C mt(a') with \pf(^)\ bounded. Then for i = 0 or 1 (depending 
on which hypothesis we are working under) both \pi{j)\rr and \^Pi(l)\r,•/\(p,(j)\r are 
boundedly proportional to edz^x , X i \ which means that a(af, r) must be bounded 
from 0. If ar is a loop, then af = a, and we argue similarly, but replacing x' by 
x" — \p"\ G (x',xi) such that ip"(cx) has length EQ, and take 7 = a. 

Then we can apply 14.2 to [x/0, x\] C T(Z), or [x2, x[] C TZ with each of irz(x), 
7rz(r(x)) and with a', to obtain 

dQ>,z{x,x') ^ M 4 , ^ , z ( r (x ) ,x ' ) ^ M 4 . 
Then we have (1) and (2) of the statement of this lemma, as required. 

26.9. A good gap is a preimage of a good gap 

Lemma. Take the same hypotheses as in 26.8. Then there are constants v* = 
i/(M, Ci,v),C[= C[(A/, Ci) > 0, e' = e'(M, C1, v, e) which -> 0 as e -» 0, swcA that 
the following holds. There is a' C C \ Y such that a is contained in a component of 
/ o " 1 ^ ' ) and x e l(a'\C[,s>>'). 

Proof. In what follows, we work under the first hypothesis of 26.8. If working 
under the second hypothesis, we replace XQ by xi. By 26.8 we have, for suitable 
Mi = Mi(M,i/,Ci), 

df

aiZ(xo,r(x)) = (d'aiZ(xQ,T(x)) - d^zixo.x)) +df

aZ(x0,x) ^ dY(x0,x) - 2Mi 

If 7 is a loop with x G T(^7g), then r(x) G T ( / 0

_ 1 (7), 4ry) and if a is a gap, then 
/0"1 (7)^Interior(a) = 0, if rj is sufficiently small given 1/, Ci and Ai", because otherwise 
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by 26.8 x G T(/ (

_ 1 (7) , i / ) . So there are v' = z/(Af, Ci, v), a' with a C f0'1(a/)y and 
s' which —> 0 as e —> 0 for fixed M, C\, z/, such that x G /(a', a (a/, g), e', z/). 

It remains to show that a(c/,g) > CJ = C((M, Ci) or a(a/,g) ^ CJ/ma'^), 
depending on whether a' is a gap or a loop. To show that C[ is independent of 1/, 
note that we can subdivide a and hence could assume that v — £0, for some fixed £0· 
We claim that there is a constant A/3 = M${M, C], zv) such that 

(1) d'c*.z(XO>T(X)) ^ ^a,,y(^0,.^) + M3 

We need to consider the definitions. Let SQ, s be the holomorphic branched coverings 
with branchpoints at (fo(vj), <f(vj), .7 = 1, 2. Then, if a is a gap, exp(<î  Z(XO,T(X))) 
is given up to a bounded multiple by the maximum of \s~1(<po(rY))\' (see 14.10) over 
loops 7 C a7 where 1/Di ^ \<p(j)\' ^ £>i for £h = -Di(z/) = D1(M, C\,v). But for a 
constant D2, 

(2) I*" 1 °Vo(7)l' ^ £>2|vo(7)l' -. ο2βΜά'αΆχο,χ))\φ(Ί)\', 

which gives (1) if a is a gap. If a is a loop, then so is a'. Choose x' = [pf] G [x\xo] 
such that y>'{a) has length £q. Then by 26.8, dQ(x,r(x)) is bounded, so ip'(Qf) also 
has length boundedly proportional to 6$. Then we obtain (2) above for 7 = a'. So 
we have, for a suitable M2 — M2{M, Ci, 1/), 

da>,y(x(hx) > dy(xihx) - Af2. 

Then since XQ G 7^£(), arguing as in 26.8, we have a(a',q) ^ C[ or u((\'. q) ^ 
C(/m a/(x) for C[ = C[(M,Ci), as required. 

26.10. Corollary. Take the same hypotheses as in 26.8. Let a function r' : 
(0, 00) —> (0, 00) be given, then the following holds for a, suitable function r. Let 
x G J(a,d,r(z/),zv). Then there are C[ = C{(M,Ci), u[ = v'x(M,Cx,v,r') > 0, 
n ^ 0, k > 0 and OJ (1 ^ i ^ n < n + k) such that 

OL\ = a. an = (\n \ /,· but otherwise ce7; D ay- = 0 for ?' 7̂  j , 

a?; is contained in a component of f0
 1 ( Q ? ; + I ) for 1 ^ ?' < n+/e, and is such a component 

for n ^ i < n + k, and x G /(a*, C[, r'{yi), vi) for some vr ^ z^(Af, Ci, ẑ , r'). 

Proof. Given r', write r' = r^ for a suitable TV ^ # ( ^ ) , and we can construct 
functions Ti (i ̂  N), with 77 chosen given r 2 +i , such that the following holds. We pro
ceed inductively using 26.9, constructing a^+i with x G J(a t +i , C?;+i, ̂ +1(^+1), ^¿+1) 
for Ci+i = C;+i(Af, C?;), ¿̂+1 ̂  z/,-+1(Af, d, VI, r^+i), such that is contained in a 
component of f0"

1(al^-i). We can ensure that 

ri{fi) < VJ for I < j , 

and hence that if fl 0 then = . 
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26.11. Lemma. Let the same hypotheses hold for XQ, X\, and, t\ as in the First 
Reduction. Let C\ > 0 and r/o > 0 be given. Then there is are constants C2 = 
C2(M, C\) and ?/i = 7/1 (M, C\, 6Q, r/o) such that the following holds. Let ft be a periodic 
gap or loop with v2 ^ ft' for ft' £ [ft], and let I (ft, C\, r/o) C £± be sufficiently long. 
Then, for some workable a (see 26. S), 

I(0,Ci,in) C /(a,C72,7/o,r/o). 

Proof. - Write {fti : 1 ̂  i ^ n} = [ft], ft = ftl = / ? n + 1 , ft% C / 0 (A+i)- First, sup
pose that ft is a gap. Write 7ry^(y) = (np-fty)). Then, as in 20.10, if y £ C]tT(dftt, £Q), 

^\ß\(^ß,(r(y)) = T i^ ](^ l.(2/)) + 0 (e - 2 7 r 2 / Ê «) , 

where 

T\ß\ : 

n 
n 
z=l 

T(A(ß,)) 
TI 

n 
'¿=1 

T(A(A)) : ( M ) (^+i o/¿])+i o/ ¿]) 

is either the action of the appropriate element of the modular group or the pullback 
for the appropriate Teichmuller space for a critically finite branched covering on a 
finite disjoint union of spheres. (Compare with Chapter 20.) Here Sj is a holomorphic 
branched covering (of degree one for all but at most two ?', when it is degree two) and 

4\ß\ • {z,i) (fi(z), i+1), 

that is 

4<[ß] : (C x {l---n},Ui(^(a¿) x {%}) (C x j I ···//[. .i.li...) x M i 

is a critically finite branched covering of a union of spheres, which is, again, of degree 
one in all but at most two coordinates. 

By 26.10, if i/0 is sufficiently small given vx, M, Ci, and for C[ = C[(M,d) 
I (ft, Ci, r/o) \ I (ft, C\, r/o, VQ) is a union of sets I (a, C[, v\, v{) for periodic a. By 26.8 
we then have 

da>(x,r(x)) ^AhiM^ud) 

for a' £ [a], which gives a bound on (nyi](x), (t^j(x)))- So d[a] would then 
have to be periodic under V;[/3]7 a n c i a would have to be a union of irreducibles. In 
particular, there are only finitely many possibilities for a. 

We need to show that if *wb| [ft] is reducible then any component of I (ft, C\, r/o, i/Q) 
has length bounded above in terms of C\, M and i/Q. This argument can also be 
applied to any [ft'} C [ft] with similar hypotheses. So let y £ I (ft, Ci,r/o, VQ) and let ft 
be reducible. We have 

F[/3](y) = E 

j 

dßMßiiy^Trß^wwiy))) ^ Afi(Af,c7i). 

By 20.14, F[ß] I I(ft,Ci,rjo) is bounded only in I(ft, C\, r/o, VQ) and the union of sets 
I(ft', C[,v\,vi) for some [ft'] C [ft], [ft'} ^ [ft] periodic under i/j^, and with v\ bounded 
from 0. So if a component of I (ft, C\, 770, VQ) is sufficiently long, we obtain points 
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y = [ip], y' = [ipf] a long way apart with IV̂ L(7T[a]'DI and tv^(t(x) bounded for the 
same [/?']. Then [y, y'] must enter I{f3',C[,vi) for some [/?']. 

It follows that for suitable r/i depending on A/, (7i, r/o, and (w'(G(B))) C2 depending on 
M, Ci, there is an irreducible a with I((3, C\, r/i) c /(a, C2,770). So, applying 
26.8, dai(y,r(y)) ^ Mi(M, ?7o,Ci) for all y £ /(a, 62,770) and all z. Assuming that 

(7i, 770) is long enough, -0[a] cannot be isotopic to an isornetry, because then the 
set of 7T[a](2/) for which d(7T[a] (^ ) , T[A] (7T[a] (?/))) is ^ A/2 is bounded. For the same 
reason Wa cannot be Thurston equivalent to a rational map if it has degree > 1. So 
considering the classification of 0[a] (2.14-18), the degree of W(a) is at most two. For 
all but at most one i, fi : (C,A(ai) —» (C, A(o^+i)) is a homeomeorphism. So Wa is 
either pseudo-Anosov up to isotopy or a critically finite irreducible nonrational degree 
two branched covering up to Thurston equivalence. 

Now suppose that a is a loop. Write /1 = /(a, (72,770). Then each space T{A{al)) 
is the upper half-plane H. If a is not in the full orbit of a Levy cycle then a map 
T[TT] : Hn —̂  Hn is well-defined, such that tv^(t(x) is approximately T[a](7T[a](x)), 
and T^((xi)) — (Ax z +i) where A = | or | , for a suitable identification of T(A(a.j)) 
with H. Then in order to achieve the bound d(jr^ (x), 7T[a] (T(X))) 7" Aii, we must 
have 7rai(x) near the imaginary axis for all i. This contradicts a(a,y) ^ C\ for all 
7/ £ /i, if /i is sufficiently long (that is, if I(fi,Cirji) is sufficiently long), because 
then the two endpoints of 7ra(/i) are far apart in i7. Since these endpoints are both 
in {z : 1 ^ 1111(2:) 7J Ao}, for A 0 = Ao(A/, 7/0, C\), they cannot both be near the 
imaginary axis, giving the required contradiction. 

26.12. Proof of 26.6. — Fix x £ ¿1, and let a function 7*2 be given. We can find 
a gap or loop fii (possibly with j3\ = C) such that x £ I (Pi, l /# (Z), r2{v'), v') for 
v ^ i>2 = z/2(Af, r2). We can assume without loss of generality that r 2(^) 7' r/o for 
all v where the existence of a loop of q — d length < 770 for x implies x £ T<£l) where 
£0 is the Margulis constant. Then we can apply 26.10 to find a periodic loop or gap 
so that x £ I(j3, Ci, r(z/), v) if r2 is suitably chosen given r, with v bounded below in 
terms of v2. 

26.13. Proof of 26.7. — Take any segment £2 of £1 such that £2 is a (connected) 
union of sets I(ß, Ci, r/i). By 26.12, if 7/1 is suitably chosen given rj[, and C[ suitably 
chosen given M and C\. £2 is a connected union of sets /(a, 2C(, 771) for workable a 
(see 26.3). We need to show that for a suitable workable ceo, 

(2 C /(a.r;.,/o) 

Let x £ /(oq, 2(71, 7/1) fl I(a2, 2C[, //1). Let T?; D [cv?:] be equivalent to the invariant 
loop set generated by ai which satisfies the Levy condition, such that every periodic 
gap of Ti is irreducible. Let A([at}) be the component of C \ (u[az]) containing 
v\ and v2. Then either A([a2]) C A([ai]) or A([ai]) C A([a 2]). Assume without 
loss of generality that A([ev2]) C A([oq]). Then T2 can be extended to an invariant 
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loop set containing 9[qi], without changing the gap containing v2. As long as a 
gap boundary remains short along a geodesic, the area enclosed with respect to the 
quadratic differential along the geodesic does not change much. It follows that, for 
/ii, ¡12 are segments of length ^ M\ = M(rji) around the endpoints of the union, 

/(ai,2Ci,»7i)U/(a 2,2Ci^i) \ ( W U № ) C /(ai, 3 ^ / 2 , ^ ) , 

and, if r}[ is small enough given 770, and r/0 is small enough, 
I(<*i, 2C[, T/i) U I(a2, 2C[, r/,) C I{ax, C[, rjo). 

Then we can repeat the argument for adjacent segments to this union, obtaining a 
successively longer segment in I(a[, 3C{/2, r/[) for varying workable a[1 and a slightly 
longer union of segments in I(a[, C[, rjo). The constants rj[, C[ do not deteriorate 
because M(r)[) can be used each time. So finally we obtain, for a suitable workable ao, 

¿2 C I(a0,C[,rio) 

as required. 
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C H A P T E R 27 

PROOF OF THE INFINITY CONDITION THEOREM 

27.1. The aim of this chapter is to complete the proof of the Infinity Condition 
for p2- In 27.6 we prove the Second Reduction of 26.5, which, by 26.6-7, implies the 
First Reduction of 26.4. We deduce the Infinity Condition Theorem from this in 27.7. 
We complete the proof of the Infinity Condition for p2 in 27.8. 

27.2. The angle is small. — Throughout the first part of this chapter, until the 
end of 27.6, we assume the hypotheses of the First and Second Reduction for x0l xi G 
ViCT(Y) and the segment £1 and x G £\- We take x G /(/?, Ci, r ( » , v) C £ i as in the 
Second Reduction, in particular, ¡3 is periodic. In fact, by 26.10, we can assume and 
shall — that x G I((3', Ci, r{v), v) for all [3' G [/?]. By 26.11, we only need to consider 
the case when [3 is a gap and v2 G (3. Our aim is to obtain a contradiction. This will 
complete the proof of the Second Reduction. The method imitates the original proof 
that a pullback r contracts distance [T2], [D-H3] in Thurston's geometrizing theorem 
for critically finite branched coverings: that is, we exploit the fact that a quadratic 
differential cannot be its own pullback — nor even "topologically equivalent" to its 
own pullback except in very special circumstances. 

We fix notation until the end of 27.6. Let q(z)dz2 be the quadratic differential at x 
for dy(x,Xi), and let qo(z)dz2. p(z)dz2 be the quadratic differentials for dz(x,Xi), 
dz(T~(x),Xi) at x, r(x), where i = 0 or 1 depending on whether (1) or (2) of 26.1 
holds. Let s*q(z)dz2 denote the pullback of q(z)dz2 at r(x). 

Lemma. — Let (3X G [/?]. Let S{(3X) = S(f3ux) be as in 9.3. Let 6(z) be the angle 
between q and q$. If SQ is sufficiently small given 5'0, 

S(B1) 
\θ\2Μ<δ'0, 

and similarly for s*q, p. 
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Proof. - Fix y G [x,Xi] with dy(x1y) = 1, and let qp1(z)dz2, q'(z)dz2 be the 
quadratic differentials at x for dpl (x, y) and d(x: y). Let Oi(z), #2(̂ )5 #3(2) be the an
gle at z between qo(z) and q'(z), q(z) and qpx(z), qpx{z) and qf(z) respectively. Then 
by 26.9 there is C0 = C 0(M, Ci, 1/) ^ Ci such that a(f31,q0) ^ Co and a(/? l 5p 0) ^ Co-
By (4), (5) of 26.2 and 8.9, 

(1) \0i\2\qo\=0(60). 

Then if SQ is small enough, by (1), (2) of 26.2 and 8.3, 

(2) \02\2\qp,\ = 0(S3), 

and by 9.5, 

(3) \e3\2\qi)i\ = 0(S3). 

From (2) and (3), we see that zeros of qpx and q in S(f3\) can be paired so that no 
pair is separated by a large modulus annulus, and similarly for zeros of qp1 and q' in 
S(/3i). It follows that, except in discs round the zeros, \q\ = 0(S~1\qg1\) and 

(4) 
S (B') 

\0i\2\q\=O(S2) 

for i = 2, 3. Similarly we obtain (4) fori = 1 from (1). Then since \0\ ^ \011 + |6>2| + |6>3|, 
we get the required result for q and </o, if So is small enough given S'0. The proof of 
s*q and p is similar. 

27.3. Equivalence Classes of Poles. — We are now going to modify the definition 
of pole of q on S(/3f) for ft' G [/3]. The idea is to define an equivalence so that a pole 
equivalence class on {Jp>S{f3') is preserved by i[) o cp"1 and also transforms suitably 
under s~1. The key to this is the boundedness of the homeomorphism ip o up to 
isotopy, at least on 5r(/3/), where r(x) = [ip]. By 26.8, up to homotopy, 'ip o Lp~l maps 
a path 7 in to a path 7' with 

|7'l <e A f ' ( l + M) 
for Mi = Mi (M. ( ' ] . //) (remembering that M, as well as C\ and 1/, features in our 
hypotheses) and I7I, as usual, denotes Poincaré length. 

As usual (see 9.1), given a gap fj' (fjf G [0], in our case) we can choose a set 
A(f3f) C Y consisting of all points in [3 DY and exactly one in each component of 
C \ (3. We say that a point of cp(A(f3f)) is a possible pole of q(z)dz2 on S{(3') (for 
obvious reasons), and we define possible poles of p(z)dz2 and s*q(z)dz2 similarly. 
Now we can define an equivalence relation on the set of possible poles of q(z)dz2 on 
S(f3r), and zeros in S(f3f), and similarly for p(z)dz2 and s*q(z)dz2 with the following 
properties, if So is small enough, and hence 60 of 27.2 is small enough. 

ASTÉRISQUE 288 



CHAPTER 27. PROOF OF THE INFINITY CONDITION THEOREM 367 

Given any constant CQ > 1, there are £4 > 8 s > 82 > 8'n and L2 < L3 < L4 with 

(1) CqS'o < 62, C0S2e2C"M < 63, C0e2M> L2. <•„•'•'h l,j < La, 

(2) L3<C04#(ZV2A/'#(Z), 

(3) δ-2 ^C-**{Z)e-2iM>*(z\ 

and similar inequalities relating ¿3, 84, L3, L4, and the following holds. 
If a and b are zeros or possible poles of q(z)dz2 on S(ft') then either they or 

the components of C \ S(ft') containing them are joined by a path 77 of length 
^ L2 in S([3/) with Ir/ I^ < 82, or there is no path /'joining them of length ^ L4 with 
\£\q.+ < £4, and similarly for p(z)dz2, s*q(z)dz2. 

If the constant Co is large enough, then there is an equivalence relation on the set 
of poles and zeros for q(z)dz2 on U^^S^ / i ' ) defined as follows, and similarly for 
p(z)dz2, s*q(z)dz2. 

1. The possible poles and zeros a and b on S(ft/) are equivalent if they are joined by 
a path 7] in S(B) such that (1) holds for (8, L) = (£2, L2). If they are not equivalent, 
then there is no path 7/ joining them such that (4) holds for (8, L) = (84, L4): 

(4) \nU ^ L, \rj\(h+ < 8. 

Also the following hold, if £0 is small enough. 
2. a and b are equivalent for q(z)dz2 if and only if each point in s~1a is equivalent 

to a point in s~lb for s*q(z)dz2. 
3. a and b are equivalent for p(z)dz2 if and only if they are within 80 of points 

which are equivalent for s*q(z)dz2. Hence each equivalence class for p(z)dz2 is within 
8'Q of a unique equivalence class of s*q(z)dz2, and vice versa. 

4. a and 6 are equivalent for q(z)dz2 if and only if they are within 8'0 of points 
which are equivalent for q0((z)dz2. Hence each equivalence class for q(z)dz2 is within 
8'Q of a unique equivalence class of qo(z)dz2, and vice versa. 

We can define the index N of an equivalence class [a] to be the number of poles 
minus the number of zeros up to multiplicity, where the sum is taken over all poles and 
zeros of a component of C \ S(pr), if such a component is included in the equivalence 
class. The index of [a] can only be strictly positive if [a] contains at least one point 
of (p(Z) fl S(0f) or at least one component of C \ S(/3f) (since q and qo have close 
equivalence classes). A pole equivalence class is one of strictly positive index. 

27.4. Choosing a Loop set. — We now introduce a tool a loop set - which 
will enable us to map pole equivalence classes and others. Write Xi — [^] , i = 0, 1 
depending on whether our hypothesis is that (1) or (2) of 26.1 holds. Our hypotheses 
ensure that x% e T^Eo. We can choose a loop set Tl C C \ Z with the following 
properties for Co — CQ(€Q): 

(1) |^(r.,) | ^ c0. 
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(2) Every component of C \ (Z U (Ul\)) is a topological disc with at most one 
puncture. 

Now let x = [ip] G £· If Co is chosen large enough, the following holds. Let / 
be any segment of contracting foliation leaf of the quadratic differential for dz(xi,x) 
at x of length 8 ̂  Coe~dz^Xi,xK Take P(Ti) in good position (14.5) with respect to 
this quadratic differential. Then the number of intersections of / by p{Ti) is between 
Co8edz^XuX^ and (l/Co)8edz^Xi,x\ The reason is that, by 2, every stable leaf segment 
at x-i (for the quadratic differential for dz(x^x) at Xj) of length Co must intersect 
(fi(Ti) at least once, but, by 1, not more than CQ times. An exactly similar statement 
holds if / is a segment of stable foliation leaf for dz(xi, T(X)) at r(x). We can also 
assume that Co is large enough to act as C of 26.1. Then by 26.1, dz{x%,x) and 
dz(xii T(x)) differ by at most CQM. This will give us an effective way of comparing 
lengths of short segments of the stable foliation. 

27.5. The surface T([a], q, 5, L). — For concreteness, take an equivalence class [a] 
for q(z)dz2, for a a possible pole or zero of q on S{/3') (f3f G [/3]). Note that it can be 
encased in a surface T([a],q, 6, L) C S{(3') of the following type for (8,L) = (82^2) 
or (£3, L3). The boundary d+T([a\. q, 8, L) U d-T([a], q, (5, L) of T([a], q, 8, L) consists 
of finitely many expanding leaf segments <9+ = d+T{[a\,q,8,L) of the expanding 
foliation of q(z)dz2, and finitely many contracting leaf segments cL = <9_T([a], q, 8, L). 
Any point in T([a],q,8, L) can be joined to a pole or zero in [a] by a path rj in 
T([a], q, 8, L) C S{/3', [p\,v) such that (4) of 27.3 holds, and 

\d+\q = 0(L), \d-\q = 0(S). 

Conversely, T([a], a, 8, L) is a union of such paths. Note that our definitions ensure 
that any two surfaces T([a], q, 84, L4) are equal or disjoint. Also, for fixed a, the 
surfaces ^([a], q, 8: L) are isotopic for all 62 ^ 8 ^ 84 and L2 ̂  L ^ L4. 

Lemma. — Let y G A{/3'), S(f3',[<p],i>), 3' G [/3]. Let S2 ^ 8 ^ ¿4 and L2 ^ L ^ 
L4. Then T([a], 4, (5, L) zs homeomorphic to T([?/>(?/)],<5, L) under a homeomorphism 
isotopic to vb o c^ - 1 which preserves stable and unstable segments in the boundaries. 

Remark. - This does not mean that T{[<p>(y)],q,8,L) and T([^){y)],p,8,L) contain 
the same number of zeros: a rectangle in T([ip(y)],q,8, L) bounded by stable and 
unstable leaf segments between poles and zeros of p might be collapsed by tp o p~l, 
and vice versa. However, the number of zeros up to multiplicity will be the same. 

Proof. — We use the loop set I\ constructed in 27.4. We assume that (f(Ti) and 
w(Ti) are in good position (14.5) with respect to q(z)dz2 and p{z)dz2 respectively. 
We take Tf{[p{y)] very close to T([tp(y)],q, 82, L2), but containing it, with <9+ replaced 
by segments of p(Ti) and d- as before. Take any two segments of </?(I\) in Tf([a]) 
whose endpoints are joined by stable segments of length < 82- Consider the images 
under ip o (p"1. The stable segments are mapped to paths of length < CoeMl which 
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are crossed by ^ 52C0e
dz(<x>Xi> ^ C o ^ e C o M + d z ( T ( l ) , I i ) segments of 0(rz) and hence 

have stable length < 83. Also, all lengths in S((3', ^) (/3' £ [ft]) of at least 1 are 
multiplied by at most 0(eMl) by application of 'i/j o Lp~l. So 

V o 99-^T'd^y)]) C r([7/.(y)],p,<53, L3). 

We also see that if two segments in (f(Ti) are close to different unstable components 
of d+T([ip(y)], p. 82, L2) which are not both closed loops, then they have points dis
tance ^ CoeMl apart (from the definition of L2). So they cannot be mapped close to 
the same unstable component in d+T([ip(y)],p, 83, L3). It follows that ip o (p~x can be 
perturbed to a homeomorphism of T([ip(y)],p,82, L2) into T([ip(y)], q, 83, L2) which 
maps across d+T and cLT segments. Closed loops in d+(T) are obviously mapped 
across to closed loops. So vb o tp~1 can be perturbed to homeomorphism of T\ = 
T([ip(y)], q, 5, L) to T2 = T([ip(y)],p1 5, L) mapping d+Ti-segments to d+T2-segments, 
and d-Ti-segments to d_T2-segments, for all S2 ^ 8 ̂  84, and L2 < L ^ L4. 

27.6. Proof of the Second Reduction. — Take 52 sufficiently small given v 
(remembering that v ^ v\ for some v\ depending on M) that 84 < v j A. We also take 
0̂ sufficiently small so that (as in 27.3) CQ80 < S2. We now show that it is impossible 
to have x £ /(/3, Ci, r(v), v) with ¡3 periodic degree 2, unless the gap map [iftp] (2.13) 
is an irreducible critically finite nonrational degree two map. This will complete the 
proof of the second reduction. 

If y £ A(/3'), some ¡3' £ [/3], and <p(vi), <p(v2) tf. [(p(y)] then the index of either 
component [ s _ 1 (ip(y)] is strictly less than that of {(p(y)].The index of any equivalence 
class [a] is ^ 2 by Euler's Theorem: because the index of [tp(y)] is 2\(T) — N where 
T = T([(p(y)],q,82,L2), x(T) is the Euler characteristic and N is the number of 
stable boundary components in N. So by 27.5, these are the same as the indices of 
[•pijj'i)] for the points y% £ f>Q1(y)- If [tp(y)\ has index ^ 1 then any component of 
[s~l((p(y)} has index strictly less than that [(p(y)\. If [(p(y)} has index 2 and contains 
both critical values then the index of [s~1(p(y)] is strictly less than that of [(p(y)}. 
Now let (3 be periodic degree two. The total sum of indices for each A([3') is 4. So 
the only possibilities are that: 

(i) there are just two nontrivial equivalence classes, both of index 2, each containing 
one critical value, and either fixed or of degree two, 

(ii) There are four nontrivial equivalence classes, all of index 1, with the following 
possible dynamics: 

(iia) VpM], [p(v2)\ i-> [(f(fo(vi)] = И / о Ы ] ~ И/о 2 M ] = И / 0

3 Ы Ь 
(iib) Mvi)] - Mfo(vi))} Mf$(vi))] = MUM)] M f S M ) ] = [ M M ) ] , 
(iib) Mv2)} - b(/0

2(t;i))]. 

Now we claim that (i) is impossible. By (2) and (3) of 27.3, if (i) holds, then, £ 
enters /(7, Ci,e~12CoMl). By 26.11, this is impossible. So (ii) must hold. Then v2 
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are rionperiodic. Then from earlier analysis of [i/jp] (2.18), v\ must be eventually fixed. 
So (iia) is discounted, and we must have (iib). Also, y = /o(t'i) is the only element 
of A(p') with p(y) G [^(/(5(v;i)], 0 ^ i ^ 2. We claim that p(v2) i S{p', [ip], v) (any 
P' G [/3]), and thus that [i/jfi] is critically finite. Then each point ip(y) of (p(A(p')\{v2}) 
is the only point of tp(A(Pf) \ {^2}) in its equivalence class (for q). The same is true for 
the points il>(y), y G A(p') \ {v2}, for p. So for each equivalence class for s*q, all poles 
in that equivalence class lie in a disc of radius SQ , where SQ can be taken arbitrarily 
small by choice of that is, by choice of SQ. It follows that, for 5Q sufficiently small, 
(f(v2) ^ S(P', VP]^), as required. 

27.7. Proof of the Infinity Condition except for paths in dUa. — We have 
now proved the First Reduction (which follows from the Second). The Infinity Con
dition Theorem then holds for any ,r 1 G V\ for which [;r0,.xi] D T^ e o has length ^ M2 

for M2 depending only on AI and £ 0. If the sets Ua are suitably chosen (that is, AIa 

is taken large enough for each a), ./'o. .r 1 ] n 7^£ ( ) has length ^ M2 and ciy(xo,.xi) is 
large enough given Af2, then the First Reduction, together with the following lemma, 
completes the proof of the Infinity Condition Theorem. 

Lemma. — The following holds for suitable C, A2 given N ^ 2, ax, M\, A\. Either 
let XQ G T^£q and 

(1) xo G T>£lìì dP{0,p2(xi)) ^ M, 

or for some x2 G T(Y) with nz(x2) on the geodesic in T(Z) between TTZ(XQ) and 
7Tz(xi), Id 
(2) x\ £ ^ e „ , dp(0,p2(x2,xi)) <: M, dY(xihx2) ^ dz(x0,x2) + M. 

Suppose also that [XQ,XI] = £ is a union of N + 1 segments of length ^ Ai and 
N segments in sets I(al: C\, I/Q, ISQ) (in the notation of 26.3) for 1 ^ i ^ N with 
endpoints yi and wt, with a?; 7̂  C and dy(yi,Wi) ^ A2. Then for a suitable C > 0, 

dp(0,p2(xi)) >C 
7V-1 

i=l 

exp dz(y2,,xo)-

Remark. ----- The conclusion of the lemma is in contradiction with (1). Therefore (1) 
cannot hold in conjunction with the other hypotheses (excluding (2)). The alternative 
hypotheses (1) and (2) occur in the First and Second Reductions of Chapter 26. 
Alternative (1) is the hypothesis of the Infinity Condition Theorem 25.6. This is why 
this lemma implies the Infinity Condition Theorem. We shall use this lemma (with 
the hypothesis including (2)) to deduce the Infinity Condition for p2 in 27.8. 

Proof. — We choose аг in its orbit to separate all other components of [аг] from v2. 
We can assume that даг and dat+i have more essential intersections in С \ Y than 
in С \ Z otherwise, they have no essential intersections, and can be combined. 
This is an argument we have used before, in 3.14 and in 1.16 of [R3], and goes as 
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follows. Assume all intersections are essential and replace /0 by /0 0 X = /1 for a 
homeomorphism \ which is isotopic to the identity relative to Z, and so that fi 
preserves each of d[a.j] and <9[Q?;+I] and the invariant loop sets Ti, I^+i that these 
generate. We can even choose f\ to be critically finite. Such a map cannot have 
two transversally intersecting loop sets satisfying the Invariance and Levy conditions. 
This completes the argument. 

Write xi — [<pi], xo — [(fo\. As usual we write /; for the geodesic in T(Y) between 
XQ and xi, and £' for the geodesic in T(Z) between TTZ(XO) and TTZ(XI)- By 14.2, for 
each x! £ £' with x' £ (T(Z))^ £ ( ) , there is a corresponding x £ £ with d(x',x) ^ Mi 

and then by 26.8 we also have d(x\r(x)) ^ AI''. Then we can write 

Pi = XN,N-I 0 o-pN_i o · · · o xi^Q o cr/j() o pih 

Χι = Хг,г-1 О Ο 
XN,N-I 0 o-pN_i o · · · o xi^Q o cr/j() o pih 

where fit is a path with first endpoint at \ t l \ t minimizes distortion up to isotopy 
preserving po(Z)1 Xi+i,i minimizes distortion up to isotopy preserving \ t o p0(Z). 
and w1 is chosen to be a bounded distance (in terms of Ai) from wt and 2/?;+i- So 
[Xi 0 <A)]z are all points on l'. The point [x/ o<p] £ £' is chosen in (T(Z))^ £ ( ) between 
the intersections of £' with T{()\(\, . 1 ]. and T(r)[n,-]. 5 ( ) ) . So |x2 o p(d[al})\ and 
|Xi o (^?(c?[ai-i])| are both bounded in terms of Ai. Also, since d\a.j\ and \\ have 
essential intersections, [3l has at least two essential intersections with ;\? o (^0(<9[o7_i]). 
But the length of intersection of .ij with x% o ^o(.rr>; [}) is bounded in terms of Ai. It 
follows that if A 2 is sufficiently large given Ai then x" 1 , J, has > Diedz{y> 1 AVl~ 1} 

essential intersections with f%-i for a suitable Z>i > 0. It follows that the path 
Pi = XN,N-I 0 o-pN_i o · · · o xi^Q o cr/j() o pih 

satisfies 

|B|>> c 
N-l 
E 

2=1 
exp dz(xo.yi)i 

as required. 

27.8. Proof of the Infinity Condition for paths with one long component 
in the thin part. — Let AI be given and let x\ £ V\ satisfy 

d(0,/o2(*i)) < A/. 
By the Infinity Condition Theorem, and 25.8 there is AI\ depending on M such that 
all but length AI\ of the geodesic I joining x0 and x is in T(dP,eo) for some fixed 
set P of a minimal nonempty [/0, L] corresponding to some a £ A, with corresponding 
# £ 7T 1(1/1) fixing a £ A C OD. It remains to show that for some A depending on A/, 
either d(.r{). x\ ) ^ A or x £ t/0 where Ua - or the constant A/tt defining £/a (see 25.4) 
does not depend on AI. 
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We can also consider g as an element of the modular group acting on T(Y) (as 
usual). In this case, we can write 

Xl = Xl,n = Wn\ = gnx'o = [<p'0oxn], 

where x'0 lies in a subset of V\ C T(Y) whose intersection with T^>£o is compact 
— which does, however, depend on M. Then (replacing g by g~l if necessary), the 
components of [XQ, gnx'o\ \T(dP, So) containing XQ, gnx'0 have lengths ^ T\ — T\(XQ), 

^ T2 = T2(XQ,X0) respectively. This follows from 14.4, because (p'n(dP) = Lp'0{dP), 
and if 7 is a loop with 7 n dP / 0 and |v?0(7)| = O(\<p0(dP)\), then \ip'n(dP)\ = 
0(1^^(7)1). For M2 = M2(XQ, T, x'Q), and for any 7 with 7 n P = 0, we also have 

(1) 
M 7 ) l ' 

M2 
< | ^ ( 7 ) | ' < M2|^o(7)l', 

while if 7 n P ^ 0, then 

(2) 
edz(x1, n,x0) 

M2 
< (pn(Y)) < M2edz(x1,n,x0) 

We claim that we can write 

xi,n = [X2,n 0 o-p27l o x1?n o apl7ì o <£0]y, ^i,n = [Xi,n 0 ^ 1 . , , 0 ^o]y-

where x̂ n and xi,n, x[ n have the following properties: 

(3) I/3i.„! < -U, .U;i.:.r„.r!. 

(4) cfy(x'lin,xi,n) ^ il/4 = M4(x0,r,x'0), 

and xi,n and X2,„ minimize distortion up to isotopies constant on Lpo{Z), Xi,nol^o(Z) 
respectively, and [xi,n ° <Po] is on the geodesic between [ip0] and [\2 ,n 0 Xl,n 0 ^0] in 
T(Z). We use 26.8: we can take x'ln e T(Y)>£() (that is, a = C in 26.8). We can 
achieve (3) by taking (5\;n to be a loop up to intersection with dP, since we have 
already seen that [xo,xi,ri] C T(Y) enters T(<9P, £0) within distance 7\. We achieve 
(4), by using (1). Let qn(z)dz2 be the quadratic differential for dz(x\^n, Xi,n) at #i,n-
Note that (4) implies, in particular, that 

(5) \lh,n\q„ < A/5 = A/5(a;o,r,4), 

To complete the proof it suffices to show that 

lim \,3Un * Xi Jj/32,ri| = +00. 
n —>• OO ' 

Suppose this is not true. Then there is A' such that, for infinitely many n, 

(6) Mi,, *\r!,^2,j ^ a/. 

Take such an n. Then #2,N does not have an essential intersection in C \ Xi,n o ifo(Z) 
with x\,n o cpo(dP) apart from the first endpoint (if [/o,T] is isometric), or does not 
have an essential component of intersection with Xi.n 0 <po(P) with both endpoints 
in Xiji o (fQ^dP) (if [/o?r] is pseudo-Anosov), because the resulting arc would be 

ASTÉRISQUE 288 



CHAPTER 27. PROOF OF THE INFINITY CONDITION THEOREM 373 

expanded by Xi\\. It follows (as in 27.7) that x\^n G T>En for EQ independent of M. 
Therefore x'Q lies in a compact set, and the constants Mz(.7;0, r, x'Q) depend only on M. 

Now we claim that it is enough to obtain, for some X2,n with irz(x2,n) £ 

\nz(xo),nz(xi,n)] C T(Z), 

(7) dY(xo,X2,n) ^ rfz(-^o,^2.n) + M6(.T0,r), 

(8) Û?p(0,p2(x'2,n,̂ l,n)) = 0. 

If these hold, then the First Reduction 26.4 shows that the hypotheses of 27.7 are 
satisfied if Ma is large enough, depending only on x0 not on x'Q. So then we would 
contradict (6) for all but finitely many n, giving the required result. 

In the isometric case, if 02,n is disjoint from Xi^n ° po(dP), then, writing X2jn = 
[°~/32.n ° Xi.n °°~fh.n, 0(*PQ]YI w e obtain (7) and (8), as required, if n is sufficiently large. 
We are using, here, that the Teichmuller distance travelled in T(dP,£o) is, to within 
a bounded constant, the distance travelled in the maximal distance factor T(A(P)). 

Now let [/o,r] be pseudo-Anosov and write 02,n = 0s,n * 04,n where 0^n C Xi,n ° 
tpo(P) and 03}U n x i ? n o ipo(P) = 0. We have the same bound (5) on /fe,n, 04,n as on 
their union 02,n- Given 6 = M^2 > 0, since (as we are assuming) (6) does not hold, 
we must have 

\04.n\qn,- ^ S for all sufficiently large n. 

Then write 

\ 1.n — X\.n ° X'S.n, In = 03,n * X4,n(/̂ 4,n), X2,n = k7n ° X3,n ° 0~(3i.n ° <A)], 

where X3,n? X4,n minimize distortion up to isotopies constant on (p0(Z), xs,n ° ̂ 0(^)5 
[X4,n 0 v?o] is on the geodesic joining [< 0̂] and [xi,n

 0 <£o] in T(Z), and 

!.\J,(-*i.„)U, ^V6 + M5VÔ, 

where p7l(z)dz2 is the quadratic differential at X2.n for dz(x2,m'Xi,n)- Then we again 
obtain (7) and (8), as required, again using that the distance travelled in T(<9P, £0) 
is to within a bounded constant the distance travelled in the maximal distance factor 
T(A(P)). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 





C H A P T E R 28 

REDUCTIONS IN THE PROOF OF 
THE EVENTUALLY CLOSE THEOREM 

28.1. To complete the proof of the Resident's View of Rational Maps Space, we need 
to show that the ECPP of 25.5 holds for paths of a number of different types, for p-2. 
We start with the following, for p2- We use the fact that p2 is defined on all of T(Y). 
We take XQ = [identity] as our basepoint in V\ C T(Y) with p2(x'o) = 0. Then note 
that p2 can be defined on all of T(Y). Then the first step in obtaining ECPP is the 
following, which gives ECPP for some geodesic segments. 

Lemma. The following holds, given M, for all n sufficiently large. Let [x.y] he a 
geodesic segment in T{Y) which is either of length ^ M or [x.y] C [xo.y] such that 

/?. ^ dP{{).p2{z)) for all z G [x.g[. dr(().p2(x)). dp(().p2(y)) ^ n + 

Then. 
\P2(*)-P2(z)\^<r^ for all z e [x. y . 

Proof. Suppose for contradiction that 

(i) \p2(.r)-p2(y)\><'-^. 
We are now going to obtain a contradiction to (1). We write fjUA, for the geodesic 
with endpoints p2{u), p2{v)- Then for some [u,v] C [#,;(/], and suitable constants C,-, 
(1 ^ / ^ 3) we shall show that (2) and (3) hold. We shall then obtain a contradiction. 

(2) dz(xo,u) + dY(u, v) - dz(xo, v) ^ Ci. 
(3) .iUmr has length ^ C^~ln. and apart from a segment in the middle of length 
^ C27/2/'3, any segment of · i„. r of length ^ C;j projects to cut the surface C \ Z 
into (topological) discs or once-punctured discs. 

Note that, by 26.1. and a suitable constant C.j. 

dy(xo.x) - dz(xo-x) ^ C47/, 

and similarly for y. So 
dz(x().x) + dy(x. y) - dz{x{). y) ^ dy(x{). x) + dy(x. y) - dy(xQ, y) + 2C4n ^ 3C477. 
If {x.j : 1 ̂  /' ̂  k} are successive points on [x, y] with xx = x, xk = y, we have 

dz(xo, x) + dY(x, y) - dz(xo,y) = 
k-l 

i=l 
(dZ (XQ , Xi ) + dy (./'/, Xj ; ! ) - dz (XQ , X, ; 1 )) · 
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In particular, for any x' G [x. y). 

dY(x,x') - dz{x,x') ^ C2n. 

So we can choose 0{n) successive points xt in [x,y] so that, for a constant Ci, 

(lz(x().x,) + dY(xl,xljri) - dz{xo,Xi+i)) ^ Ci, 

and, for some ?', 

¡ 7 ^ 2 - p2{Xi+i)\ ^ 
e-vn 

n 
Then (2) holds for any [u,v] C [XJ. xt. \ ). To obtain (3) also, since p2 is continuous 
on [xi.Xi^i], choose [u,v] C [x^^i+i] so that the (Poincaré) geodesic joining 0 and 
p2(u) which is of length ^ n - is such that, apart from the first portion of length 
^ n 2/ 3, every segment of length ^ Cs/2 projects to cut the surface in C \ Z into 
topological discs and once punctured discs. Then (3U.V has the property 3. However, 
from 14.12 and 14.13 we obtain the following. We can write 

u = Vfu] = [Xu 0 o-pj. = [<Pv] ~ [Xr o apr}. 

where xu, xv minimize distortion up to isotopies constant on Z, fiu, (3V are paths 
starting from v2l 

v = [cpv] = [a(Xl o xv,u o ipu], 

where cv\ has the properties of 73 * 72 * 71 in 14.12, with [identity], [ipu]i <fv] replac
ing [ipo], Vfi\i [̂ 2]? Xv,u minimizes distortion up to isotopy constant on cpu(Z) with 
[<Pv\z = [Xv.u 0 ipu]z< and then 

[Xv,u 0 Vu] = [Xv,u 0 Xu 0 cr^J = k 2

 0 Xv ° <Tflu], 

where a2 has the properties of 7,5 * 74 * 73 * 72 * 71 in 14.13, again with [£0], [^U], [v9 ]̂ 
replacing [^ 0], [< î], [^2]- Then 

\r 1 (^2 * « l ) ^ '̂ /.r. 

But by the properties of the paths 7̂  of 14.12, 14.13 leading to properties of the 
paths \ r

 1 (n. 1). x~1(«2) fiu,v cannot have property (3) above. So we obtain the 
required contradiction. 

28.2. ECPP for Paths in dUa. — We now need to check the ECPP for paths 
in dUa {a G A) and p2. We already know that the Infinity Condition holds for such 
paths and for p2, by 27.8. 

Lemma. — ECPP holds for any path £ in dUa and for p2. In fact, if x, y G £ and 
dp(Q, P2(z)) ̂  n for z = x or y, then 

\P2(X)-P2(y)\^e-^. 
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Proof. For M depending only on a, we have 

dy(z.xo) ^ Af + dz(z.x0) 

for all z £ £. Note that £ C T^>£{) for some £0 depending on M. Then by 14.12 we 
have z = [\z o c>7jjy where x~ minimizes distortion up to isotopy constant on Z. 
and \PZ\+ ^ C for C depending on M, where | · | + denotes length with respect to 
the expanding foliation of the quadratic differential for dz(xo,z) at xo- Then the 
geodesic in the unit disc joining p2(x) and p2{y) is (by the definition of p2) nomotopic 
to 71 * 72, where 7l is homotopic to a suitable lift of (3y and 72 to a suitable lift of 
the reverse of f3x. Then the bound on distance follows exactly as in 28.1. that is. (3) 
of 28.1 cannot hold. 

28.3. A path $(£) and a Reduction in ECPP. — Let £ be a geodesic segment 
in T(Y) with endpoints in Vy for a component V\ of V, and with initial endpoint XQ. 
We need to choose a path $(£) C V\ with the same endpoints so t hat ECPP holds 
for &(£). As before, we define 

F(.v) = dz(x,T(x))=<h<x,T(x)). 

We shall choose 
$(x) = lim //,„(>). 

m—>oc 
where yo(x) — x, and ym(x) has the following properties. We shall write ym(x) — y,„ 
where possible, and also y.rn = [pfn]. 

The properties depend on ym: gaps or loops am = am(x). (possibly am = C); 
appropriate long, thick and dominant functions A, r, s (see 15.3) and a suitable 
constant 7710 in the Pole-Zero Condition (9.4, 15.8): closed subsets £m of (i with £rn+ { c 
£7 n and y.m(£m) = ym(£): constants D\ M\. AP{. A 0 with A ( ) sufficiently large given 
D\ and the long thick and dominant parameter functions; v'{) > 0; an integer A'(): a 
function C : (0, oc) —> (0. oc) and constant Ko as in Theorem 15.8. The following 
properties hold for y,n — yrn (./·). x £ £. 

a) For each x £ and each •/?/. either ytn or y,n+i is continuous at ,r, and the left 
and right limits lim.,./_*x-t yni(x') exist for all x £ £ and all m. 

b) dz\ym, ;(/m +i) < DiF(ym) and lim,,, F(yym) = 0. 
c) For f = f (m + 1) ^ A'o 

[̂ m + l]v - [^m+l./]y 

where ['(/4+ 1 < 0]y = [^m]y arid 

•rm 1 1 — [*·'!/, · 1., · 1 ; — is/// · 1. / * 1 0 '·'/// · 1./ · 1 0 <·'/// · i./})' 

where r,„- 1 . 1 minimizes distortion up to isotopy constant on /. J

ln . , ^Z), and 
^v([C//+i,/]5 [identity]) ^ AL2 for all z and in. Moreover for every long ZA-thick and 
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dominant gap or mo-Pole-Zero loop a along a segment of [x*n+1, x^X\\z containing 
some y, there is y' G [:(/m5 2/m+i] such that 

da,z(y,y') < CM or |Re(7TQ,z('«/) -^zW))\ ^ ̂ o , 

depending on whether a is a gap or a loop. 
d) For each rn, one of the following holds for yrn = ynL(x), x G £ r n-
d)(i) This property concerns only the projections of the yrn to T(Z). All distances 

are measured in T(Z), and all geodesic segments are in T(Z). The gap or loop arn is 
long, z/m-thick and dominant for some uni ^ zv0, or satisfies the Pole-Zero Condition, 
if a loop, on a segment centred on y'm G [yrn-i, ;̂ m+i]z- The following hold. 

(1) 
ы,(у ηι ,am_|_ ι , г{Ут,Ут+\) ^ До, а771 Π c*m+i φ 0, 

daTn,z{ym,y'7n) ^ C(^m), or I Re(7Tam,z(2/m) - 7Tam,z(2/m)l ^ KQ 
depending on whether am is a gap or a loop. 

ci)(ii) For all k ^ m, there is an invariant loop set Tk (not necessarily satisfying the 
Levy Condition 2.2, and possibly empty) with y^ G T(I\-, Mi), and with the following 
properties. Let ak denote the fixed set (2.8) of Tk- If Tk does not have a nonempty 
subset satisfying the Levy Condition, let Pk = o^- If r\. does have a nonempty subset 
satisfying the Levy Condition, let Pk be the irreducible fixed component of o^.. For 
all k ^ m, x G £k, d(Xk(yk, T (;(/&)) ^ Mi, and P m C Pk- Moreover, if x G £k, and 
Pù = <̂m is not homeomorphic, then df

P (yrn,yk) ^ A/{. 
Note that Condition 28.3d)(ii) implies that, if Prn ^ Pk for a least k ^ m, then PA. 

is not homeomorphic. Pj is not homeomorphic for all j ^ k and d'P (yk.'ijj) ^ M{ for 
all j ^ k. 

28.4. Proposition. If&, y m have the properties outlined in 28.3, and £ is the geodesic 
in T(Y) between x^, x G V. then &(£) and p2 satisfy ECPP of 25.5, for a suitable 
sequence {an } . 

This will be proved in 28.7 below. First, we need some preliminaries. We use the 
results of Chapters 14 and 15, and the various different notions of length given in 
Chapter 14. 

28.5. Lemma. The following holds for some function C\ : (0. oo) —> (O.oc). and 
Ki > 0 for a suitable choice of long thick and dominant functions. Let 28.3d) (i) hold 
for k replacing m, for all j $C k < rn apart from (1) of 28.3d) (i), which is not needed. 
Then for all j < rn, there is yhm,M G [yj*ym]z such that 

d(U,.x{!Jh- Vj.m.k) ^ CY(uk) or \R(i7Tak..z{yk) - ^nk.x(yj.n,.k)Y < Ki, 

depending on whether ak is a gap or a loop. Also, given new long thick and domi
nant parameter functions and a new Pole-Zero constant, the original long thick and 
dominant parameter functions and Pole-Zero constant can be chosen so that ak is 
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long thick and dominant or satisfies the Pole-Zero Condition with respect to the new 
parameter functions and constant on a segment of [yjpyrn]z centred on yj,m,k-

Proof — Fix m, j and k with j < k < m. The result is about T(Z). For the rest 
of the proof, we regard all points as being in T(Z), distances are measured in T(Z) 
and geodesic segments are in T(Z). We shall obtain the result from the criterion 
(3) of 15.9. The criterion 15.9 has two alternatives, involving a loop 7 C ak such 
that \pk(^)\ is bounded, and two loops 7 ,̂ 7J which both intersect 7 transversally, 
but are mutually disjoint. We either have to prove some condition on yni or on y3. 
First we have to decide which. Let y'k G [yk-i.Vk] be as in 28.3d). Let qk{z)dz2 

be the quadratic differential at y'k = [p'k] for d{yk,yk+i). Then |^(7) |^ . is also 
bounded. Now |</4(7o H c\k)\qk is boundedly proportional to either |</4(7o ̂  ak)\qk,+ 
or |</4(7o H ak)\qk,-. We suppose without loss of generality that it is boundedly 
proportional to |(^(7^ no^)|q,.7+. Then |+4(7i r\ak)\qk is also boundedly proportional 
to I(¿4(71 H Qk,+, using 15.11 (as usual) because otherwise the loops would be 
disjoint. Now take any loop 7' intersecting 7 transversally. Then, using (3) of 15.9 
we need to show that, for a suitable constant M depending only on the choice of long 
thick and dominant parameter functions 

(lm) \φ,η{Ί)\' < Μ\φΜ) 

The line of proof will then follow that of 15.8. We actually need to prove similar 
statements, not only for yk but for y — [p] in a segment around yk in \yk . 1. yk] for 
7 replaced by any loop 7̂  G ak such that \p(^y)\ is bounded. The method will be 
the same. To prove ( l m ) we use an induction. For k ^ £ < m we choose points 
Ve,i £ [2/^-1,2/^+1] and for k < £ < rn — 1 we also choose ye,2 € [yepye+2] with the 
following properties. The point ye,\ is in the middle third segment centred on y[ along 
which a? is long thick and dominant or satisfies the Pole-Zero Condition, nearer ye^i 
than y'(. We can assume that the long thick and dominant functions and Pole-Zero 
constant are sufficiently good for it to be possible to apply 15.8 twice and obtain, for 
C2 : (0, 00) —> (0, 00) and K2 > 0 depending only on the long thick and dominant 
functions and Pole-Zero constant, 

d(U.z(M(.\- ^ C2{vi) or I Re(7ra,.,z(2#,i) - 7To:,,z(^,2)| ^ K2, 

depending on whether 0/ is a gap or a loop, and moreover we can assume the original 
long thick and dominant functions and Pole-Zero constant were sufficiently good that 
at( is also long thick and dominant or satisfies the Pole-Zero Constant along a segment 
of [yi, ye+2] containing ye:2 for (different) specified long thick and dominant parameter 
functions and Pole-Zero Condition which we shall need in a moment. Now write 
yej = [ipe,i\- Then we shall prove by induction on £ that 

(1l,i) |^.»(7)|' < M\<PeM 
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We shall obtain (1^) inductively. First we shall obtain (l/e,i), and (l^i) will always 
imply (1^2) if ^ < rn — 1· Then (1^2) wiU imply (l^+^i) if £ < m — 1, while (lm_i,i) 
will imply (lm,i). 

Let qpii{z)dz2 be the quadratic differential at yp^ for d(yt,i, ye+i)- Let Qi^± denote 
the expanding and contracting foliations of qp^(z)dz2, that is, Ge,i,+ expands when 
moving forward towards yt+i. For £ > k, qp^\{z)dz2 is the stretch of qt-\,i{z)dz2 at 

The idea of the proof of (1^) is to lock each point on ^,1(7) to a point on ^,¿(70)? 
where the locking is along bounded stable foliation segments, and there is a bound on 
the number of points on ^,1(7) locked to any particular point of ^,1(7')· To prove 
the inductive step (1^) we need a larger set of inductive properties, as follows. The 
properties involve an integer TV which is bounded in terms of v^. 

For each k ^ £ < ra, and i = 1, 2 (or just i =- 1 if £ — m — 1) we shall find segments 
Ie,i,t C ̂ ,i(7o) f°r I ^ t ^ Nf ^ N, and maps 

^,i,t : h,i,t ^,i(7)U(U^t/£li,u) 

with the following properties, with respect to a suitable function Ai : (0, 1) —> (1, 00), 
which can be chosen suitably provided that the original long thick and dominant 
functions and Pole Zero function are suitably chosen. 

(2pji) Each It^,t has, at each end a segment Ii^t^v (v = 0 or 1) in S(ap, yp^, Sq) of 
length > Ai( i /^ i ) . 

(3 ,̂i) The map cr ,̂t maps \ (h,i,t,o U It,i,t,i) to ^,¿(7): maps Ĵ t,i,o either 
to (£^¿(7) (case 1) or to Iej,u,i f°r some i/ (case 2), and similarly for Ip^^,i- Each 
point on ^,¿(7) is in cr£,i,t(Iu,t \ (h.i.tA) U /¿,¿,¿,1)) f°r some t. Any points a and 
0̂ ,2,t(a) are joined along a C?^^--segment. For ,r G Ie,i,t,v (v = 0 or 1), this segment 
has length ^ Ai(z^). The map apjj is continuous except possibly at a point a G 
dle,i,t,v H d(Iejj \ lid.t.v), f°r ^ — 0 or 1. At such a point, right and left limits 
07,^(a±) exist. If v = 0, then with cre,i,t{a+) = a\ G ^,¿(7) and ae,i,t(a—) = a2 G 
<97̂ vu n d(It,i,u \cre,i,t{a+) Moreover, cr^iU(a2-) = <r^,t(a+) = ai and C7,2;n(a2 + ) = 

)·cre,i,t{a+) See the diagrams. 

Il,u 
Il,t 

pl(Y) 

Locking: Case 1. 

(4^) Any segment J of Ipjj,v (v = 0 or 1) of length ^ Ai(z^) has |J|^?(+| ^ 
A1(vl)-1(j)ql.i 
The conditions (2^) to (4^) are sufficient to give (1^)· We start by obtain

ing (2fc?i) to (4^5i), using 15.11. Since |<£>k(7o ̂  ak)\qk is boundedly proportional to 
1^(70 ^ /̂e)|t/A,+ ' ^/c,i(7o) contains long segments almost tangent to the unstable fo
liation, if d(yk,i,yk) is large enough, and, again if d(yk,i,yk) is large enough given Ô, 
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a2 a 
Il,j Il,i 

di 
^ ( 7 ) 

Locking: Case 2. 

these long segments come within 5 of every point in S(ak,yk,i,£o), by 15.11. Take 
d(yk,i:Vk) Juŝ  large enough for this, bounded in terms of some integer TV, so that 
\(p'k ¿(7)1 is bounded in terms of TV. Then we can construct segments Ik,i,t C /̂c,i(7o) 
and maps o~k,i with properties (2^,1) to (4/̂ 1) 

Now let £ > k. Suppose inductively that we have (2^-1,2) to (4^-1,2). Then (2^i) 
to (4^,i) also hold. In fact we claim that the estimates are better in some respects. 

In (2^i): the segments of Ie,ij,v (v = 0 or 1) can be of length ^ A2<V )̂ where 
A2(^) can be taken arbitrarily long by suitable the "long" function A with respect 
to which a 1 is long thick and dominant, or similarly if (i£ is a loop. 

In (3^i): the length of the C/^i,--segment joining x and cr^i^(x) for x G Ie,i,t,v can 
be taken of length ^ A2(^)_1. 

In (4^): any segment J of V[X TV (y — 0 or 1) of length ^ Ai(z^) has 

(4J) \J\QEA,„^A1(vey1\J\Q (1). 

So we need to obtain the î i,*, 0 ,̂1,*. Let x be the map minimizing distortion with 
[x 0 №-1,2] = [̂ £,1]· Then 

^,i(7o) = X 0 ^-1,2(70)' ^,1(7) = X 0 ̂ -1,2(7). 

We take Il,i,t,v C x(/̂ -i,2,i,v)5 and then take Il,t,v to be the subset of x(i^-i,2,*) 
which ends in the segments I[ 1 t v. We need the fact that a^_i fl a^i 7̂  0. We then 
take cr̂ i.* = x o <T̂ 2,* 0 X-1- Thus (2^_i,2) to (4^_i,2) imply (2^i) to (4^i). In the 
same way, (2^-1,2) to (4fc_ij2) imply (2^) to (4fc). 

It remains to show that (2 ,̂i) to (4£?i) imply (2^2) to (4^2)- We have a horne-
omorphism \r which is bounded restricted to S(ae, ye,\, £0) hi terms of C{yi) — or 
to a subannulus of this if al is a loop — such that [x' o ipe,i] — [^,2]· We can also 
assume x' is such that x' o (/^1(7), x' o ^,1(70) are in good position. We claim that 
we can obtain /¿,2,*, h,2,t,v with the required properties from x'^i,*), x'№,i,£,t>) by 
moving the endpoints a bounded distance in 5(o^, ¿/̂ ,2, £0)· The paths /¿,1,*, the path 
^£,1(7) and the (5^^--segments between them, give rise to a union of discs, foliated 
by C/̂ i,--segments, although the discs can contain zeros of the foliation and the fo
liation is not wholly tangent, nor wholly transverse to the boundaries of the discs. 
These discs are mapped by x' to discs, which are homotopically trivial in C \ pp^(Z). 
The foliation Ge,i,-, is not, of course, mapped to ^,2,- by \f'. But we still have a 
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foliation of the new discs by G(,,2,--segments. We can obtain the Ie,2,t, T£,2,t,v with 
the required properties, provided that no segment J of x'(Ie,i,t,v) of length ^ Ai(i/^) 
in S(ae, [ip'e J^o) satisfies 

|J|„. 2,+ < Ai(ve,i)~1\J\qe<2-

Suppose that there is such a segment. Remember that we also have (4^i). Then we 
can take such a J whose endpoints in S(at, \p\ ll^o) can be joined by a bounded 
segment not crossing J. to form a closed simple loop pe^iC) and such that 

l^,2(C)l«.2,+ < 2A 1 (^ , 2 ) - 1 |^ , 2 (C)! 9 , , 2 , 

1^,1(01«.!,- < 2A 1 ( I / < > 1 ) - 1 | ¥ ? M (C) | , < . 1 . 

Then the points w = (W) €= [ye-i,ye+i and w £ [̂ ,̂ £+2] at which ^(0? ^'(C) 
achieve the minimum length along these geodesies (to within a bounded distance) are 
such that w is to the left of 3/̂ ,1 and w to the right of yg^ arbitrarily far from 
yi,i, ye,2 by choice of A i ( ^ i ) . This contradicts the bound on dae(yt,i,yt,2) and the 
similar estimates throughout the corresponding segments on which at is long thick 
and dominant, for suitable choice of Ai(z^), if ott is a gap. The case of c\g a loop is 
similar. So the inductive step is completed. 

28.6. The No-cell-cutting Property. — A geodesic segment £ C C \ p(Z) has 
the no-cell-cutting property with respect to a given L 0 > 0 and integer TV if there is 
no set of successive subsegments £% C £ (1 ^ i ^ n) such that each £i has length ^ LQ 
and each component of C \ (p(Z)U£t) is a topological disc with at most one puncture. 
This is a useful concept, because for any given L 0, TV, with L 0 sufficiently long given 
p{Z), if R is sufficiently large, then the set of all geodesic segments of length R in 
C \ ipo(Z) with the no-cell-cutting property, and all with the same starting point, has 
relatively small measure. 

Lemma. — Let 

&k}z = [Xkj °^j]z = \Xk\z 

where Xkj minimizes distortion up to isotopy constant on pj(Z), Xk minimizes dis
tortion up to isotopy constant on Z. Let 

[<PQ]y = [Xo 0 o-(3>]y 

for a path f3' starting from v2. Let LQ he given. Then for suitable choice of long thick 
and dominant functions in 28.3, and for TV depending on L 0 and D\ of 28.3, the 
following holds. 

(1) [PmÌY = [Xm,j ° v.!,,,., ° <Pj]y = [Xm ° O&m ° (?(3']y, 

(2) [<Pj]y = IerP'0, °Xj,o °^o]v 
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such that the geodesies homotopic to Prnj, Pm ma hornotopies preserving endpoints 
have the no cell-cutting property (with respect to N and LQ). SO does the path p0j if 
iji satisfies 28.3(i) for all i ^ j . 

Proof. — We first consider the case of P'Q^- The case of Pmj will be similar. Let TQ 
be a set of loops in po(C \ Z) such that C \ (ur0 U ipo(Z)) is a union of discs with 
at most one puncture. We assume that r0 is in good position with respect to the 
quadratic differential for dz(yo, y?)- We start by choosing a simple path 77 from some 
intersection of two loops of To to (̂ 0(̂ 2) such that the intersection of 7 with S(yo,e) 
has bounded Poincaré length. Then define 

Vi = X.y,oO/), 7/2 = <pj o ip0l(r}). 

Then 
(pjy = (On*n o Xj,0 o P0)|Y. 

Now r/i is isotopic to a geodesic segment in C \ ipj(Z), under isotopy preserving 
endpoints, and hence, since it is simple, clearly has the no-cell-cutting property. But 
there is no reason why this should be true for 7/2, which we now analyse more carefully. 
This proceeds in two steps. We shall write 

[<Pk]Y = [0"a 0 \A-.A· 1 0 tfk-lW 

for a path Ck which has the No-cell-cutting property (for suitable N and LQ) and a 
stronger property, to be specified — and then we shall obtain (2), where 

(3) Pi)j = 00j.1 * · · · * PQJJ 

where p'Q • k has some connection to to be specified. Using the notation of 28.3c), 
and redefining the Ekt if necessary, we can assume either that the gap or loop u>k,i con
taining 'i[)'k ¿(^2) ig the end of a segment of [x -̂1, x\] and is long /y-thick and dominant 
or mo-pole-zero (by 15.14), or dUJk /(xk,xLkTl) is bounded. Then there is a correspond
ing point yk G [yk-i,Vk]z (as an element of T(Z)) such that 

(4) <U,,z(í/¡u4) ^ C i M 

or 

(5) I Re(7rWfc-l.,z(2/i.) - 7TWfc<.,z(A))| ^ K1 

where the functions C\(u) and constant K\ depend only on the function C(y) and 
constant KQ of 15.8 (and the long thick and dominant parameter functions and Pole-
Zero constant) and the integer r0 of 28.3c). We choose y\ as a element of T(Y) so 
that (3) or (4) holds — for possibly larger constants (although we could use the same 
ones) with dUJk^z replaced by dUk z,y and 7TUJK riz replaced by 7r̂A. ?iy. Then we can 
write y'lk = [ip'LK]Y and 

5PK+1)z + (xK+1 O PK)|Z 
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where xk minimises distortion up to isotopy constant on (pl

k(Z). Then by the T(Y) 
versions of (1) and (2), wre can find bounded homeomorphisms 6k such that for all z, A;, 

ШY = Kj.k о Vi i ]У-

So then for 0 O ^ j . 

[Xk ° vVW = Ю ° ξΐ о χ \ . о (0JT1)-1 о φ Ι ι ] γ 

Then take a loop set T (more properly TA^-I) in C \ ^pl

k~l(Z) such that the com
plement of UT in C \ (f\71{Z) is a union of at most once-punctured discs, in good 
position with respect of the quadratic differential for dz(^f\7X ,y\) at y\^k^ and con
sidering the hornotopy between (o k

- 1 ) - 1 ( r ) and the good position of this with respect 
to the quadratic differential for <7z (./'/,"1. x'k) at x l - 1 , we obtain 

[ψi] = Κ , , °Xk°vi Ί 

where 
6k,i = 6k,i * (Oi

k o Ek) (6k,i) 

for bounded paths Sk i and 8k t . Then write 

Pi P i4-l VOJ,k = [̂ 0,;./,·]· [<Po,j,?.}z = [xo,j,e,k ° ^o,j,fc] 
if 0 ^ A; ^ £ ^ j , where Xo,j,e,k minimises distortion up to isotopy constant on 
^o.j.k(Z). and 

(k = xl^iSkj) * · · · * Xk

T ' (Sk.r- I ) * #fc,R-
Then 

[φkW [&çk. ° л/,·./.· ι ° tpk-iW-
Then for fixed k, for any given function £ : (0, oo) —> (0,cx)), assuming d(yk,yk+i) 
is sufficiently large, by choosing i suitably so that dz(ykAUk) i s bounded and much 
smaller than dz(yk, y)^l)i w c c a n write Qk in the form CA;.I * Cfc,2 where \CkM ^ ^2 for 
a suitable constant L2, and \(k,i\qk. k...1,+ < -(^2)5 where qk}k-i(z)dz2 is the quadratic 
differential at yk for dz(yk-i ·, Vk-i), with stable foliation contracted when moving 
towards jjk-i- This property implies that any segment of (j^i intersecting 5(QA-, £0) 
has length bounded from 0. Also the number of self-intersections on Ck is bounded in 
terms of r and AL2. 

Now we apply a similar technique, replacing the points x\, (0 ^ /' ^ r) by the 
points yk (0 < A: < j ) and the points ¿/¿1 by the points yo.j.k — which are as in 28.5. 
This time, the homeomorphism 6k are replaced by homeomorphisms Qo,j,k with 6oj,k 
bounded only on S(ijk, ah,£o)- Then we obtain (2) and (3) with 

Hoj,k=xjACk+i*C'k)*0o,kACk) 

with bounds only on |c .̂ H S(yoj,k, (*k-£o)|, Kl'+i n {̂yo.j.k·, ^k 1 £0)I· But we do also 
have a bound on the number of self-intersections of each fi0 . k . 
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So PQ · K has the no-cell-cutting property for TV depending only on r and M2. To 
show that Pf

Q · does also (for suitable constants) it suffices to show that 

Pbj,i * · · · * P'ojj-i 

has the no-cell-cutting property, for suitable constants. In fact, it is more convenient 
to consider X~l{P^3^i * · · · * P'OJJ-I) where [(//?] = [xf1 o tp3} is a point on [y0, y3] at 
which aj is long thick and dominant or satisfies the Pole-Zero Condition but we 
assume that a3 is a gap. To simplify the notation, we assume that x'? is the identity. 
We also choose a loop 7?; C ax such that ^>i{li) is bounded. 

Suppose for contradiction that TV successive segments of Uk^j-iPbjj^i of total 
length ^ Lo cut Lp'3l{cij) into cells. We can homotope this union of segments, via 
a homotopy preserving Lp3(da3), to a union £ of good position segments, moving 
endpoints of PQJJ in Lp3(a3) along stable segments of the foliation for the quadratic 
differential q3(z)dz2 for dz(yoiVj)- We continue to call the respective images under 
homotopy Pbjj H £, although some of these will now have zero length. 

Now we claim that for each P'Q • k lying entirely in £, # (p'Q . k fl Lp3 (jk)) is bounded, 
with a bound depending only on M2l if dz{yi, Vi+i) 1S big enough, for all i ^ j . For 

# ( / W n ^ ( 7 * ) ) =- #(Xo,j,kj(Pbj,k) n ^0j,fc(7i)). 

Now Xoj,k,j{Pb j k) 1S a u n i ° n °f 3 segments of length bounded by M2 and of segments 
Qo,j,k(Ck,i) for i < T where the ("^ are either bounded or are close to the unstable 
foliation of the quadratic differential for dz(yk-i,Vk) at ijk- The segments Ooj,k(Ck,i) 
which are not bounded then have unstable length bounded from 0 with respect to the 
quadratic differential for dz(yo,j,k,yj) at yo,j,k'- because we can find long segments 
which are a bounded distance from tpojX'y') f° r some loop 7' C ak such that (¿/(7') 
is bounded in the segment along which ak is long thick and dominant but [cpr] is 
nearer f/oj,fc-i than yo,j,k- But if this happens then the contribution of £a;,z to pojtk 
gives length > L 2, assuming only that dz(yj,yo,j,k) is large enough. So Xoj,k,j(Pbj,k) 
is bounded in terms of M2, and #{P0j k H tpji'jk)) is indeed bounded. Since £ cuts 
cp3(aj) into cells, we can choose £\ C ^ ( o ^ ) n £ with endpoints in (p3\da3 U 7 )̂ such 
that £1 is at constant angle to qj(z)dz2, and \£i\q.j:_ ^ C(Lo)Ki|q; for C(LQ) > 0. 
Now any long segment of ^7(7?:) (?' < j ) is almost tangent to the unstable foliation. 
So by 15.11, for A 0 as in 28.3 

(6) # ( ^ n ^ ( 7 ? - i ) ) >n{A0) 

where 
lim ri(Ao) = +00. 

A(j—>-oo This follows from the fact that by 15.14 there must be a very long length of segments 
/(ny.,) between y3 and y0,j-i,i such that a3^ is long thick and dominant or satisfies 
the Pole-zero Condition on £(a3^) and ctj^+i H cu^ / 0. In particular, (6) is true 
for i = j — 1. So there is a segment l1,j-1 C ¿1 with both endpoints on (/?J(7J_1) 
which lies in (^(o^-i), and is not intersected by p/

0jJ_1. Now we take preimages 
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under XOJJJ-I where [(fj]z = [Xjj-i 0(Po,j,j-i\- Eventually we obtain that for some 
k #{fi'Qj k n pjijk)) ^ n(Ao), in contradiction to what was shown before. 

The construction of /? m j - is similar, with ym taking the role of yo. If y% satisfies 
28.3d)(ii) for some i < m then this is also true for all k with i ^ k ^ m. Let i\ be 
the least such orzi=ra. Ifzi<ra then there are in for n ^ r, some r bounded in 
terms of #{Y) such that ir = m, ^mipPi..) is bounded for j ^ m and xRN,ZI (Pm,iuk) 
does not intersect the bounded loop set p7n{dPip) for ie ^ k < ig+i- Hence there 
is Ni depending only on Di, Mi, M[ and Y Xm,n (/3m,n) can D e written up to 
homotopy fixing the endpoints as a union of ^ N\ geodesic segments such that if £ is 
one of these segments, not all components of C \ ((frn(Z) U £) are discs with at most 
one puncture. This property is preserved under homeomorphism (unlike the weaker 
no-cell-cutting property). After extending the endpoints of 077lji1 a bounded amount, 
Pm,j — Bji,i * Xi^jiPrnM) a n ( l hence also has the no-cell-cutting property, possibly for 
some TV bounded in terms of Ci, Mi, M[. So we can allow yl to satisfy 28.3d)(ii) for 
some i. 

Now we want to adapt this argument to obtain similar results for the decomposition 
[</?M] Y — [Xm°o~(3M °o-fj']y. We want to use a similar argument to the above. So we need 
to consider the geodesies [xo,yo], [2/0,2/m] and [xo,yfn] for any given m. Remember 
that XQ — [identity]. Then by 15.8, we can find p < m and w G [xo, yo]z, £ [xo,Vp]z 
(if p < m) such that dap(w,yp) ^ C(z/p), dap+1(w',yp+i) ^ C(i/p+i). If we drop the 
condition ap n ce p +i / 0 then, by inserting extra points yj on [yp-,yp+i] if necessary, 
we can still assume that w, w' exist as above, and that there exists w" G [yp,yp+i]z 
with no long thick and dominants on [w",yp+i] intersecting c*p+i and not equal to 
CKp+i, and similarly for [yp,w"\. Then by 15.14 there is K\ depending on the long 
thick and dominant functions such that d' (yi,w") ^ K1, i = p, p + 1. Now write 

XP+I,P = X2 o x 1 , M™") = [x']> 
where w" = [x1 o cpp], and x', x 1 , x 2 minimize distortion up to isotopies constant on 
Z, <pp(Z), x 1 o (^p(Z). Hence, [xp] - [£x o X J ] Z , [ x P + 1 = [£2 o xJJ, where £1 , £2 are 
bounded on Xo(ap), x j n ( a p + i ) . Now by the same method as at the start of the proof, 

x 1 0 XP = X 0 ^<i, (X2) 1 °XP+I = X °c r

C2 1 ' 
where Ci, C2 have ^ C(Ki) intersections with xP(ap), xP+i(ap+i). For any j, define 
(pj,k) by 

[φ3]γ = [φ^ι ο φ,]γ. 

Therefore 
[ψτη]γ = bm.p+1 ° ° <7δρ+1 

0 XP+I 0 XP+i 0 X2 0 X1 0 ^P,0 0 XO 0 0(3>]Y 

Now apply the method of showing the no-cell-cutting property for j3mj to show 

bo,p°Xp]y = [ X o o ^ l v , 
[<£>m,p+l 0 fp+1 0 CT(5P+1

 0 Xp+l]v = [Xm 0 ^ 4 ] y 5 
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where (3,(4 have the no-cell-cutting property. Then since ipp^ — ip0^ we have 

bm]v = [Xm o (JCi o a<2 ox' 1 o Xf o crCl o <rC3 o yf) 1 O XQ O tT̂ /Jy 
= [Xm ° 0"/3t„ 0 CT/3,]y, 

where /3m = C3 * Ci * C2 * Ci nas the no-cell-cutting property as required. 

28.7. Proof of 28.4. — Let £ = [xo,x] be the geodesic segment in T(Y) between 
XQ and x G Vi, and fix n. We then have a natural ordering on l, with xo ^ t ^ x for 
all t G £ Let 

En=sup{*e^:dp(O,/02(E(*)) <n}. 
Then we need to show that, for suitable an with limr, .-̂  an — 0, for any t, t' > tni 

|ρ2(Φ(ί))-/>2(Φ(ί'))Κ««· 
In order to show this, it suffices to show that the set 

{p2($(t)) : t > tn} 
lies in a union of disjoint balls centred at points of S1, each of Euclidean radius 
^ an. Since the above set is connected, it must then lie in a single ball (if the set is 
nonempty) which contains the point p2{x), since &(x) = x. 

We first claim that, for suitable an ̂  e_v/™, the set 

{p-iUi'-fXn} 
lies in the union of [z : dp(0, z) < n/2} and a union of disjoint balls centred on points 
of S1, each of Euclidean radius ^ an/2, and such that the Euclidean distance between 
any two of these balls is ^ c" -^ . To see this, let 

t'n = suP{* e e : \\f.t\\y - \\et\\z < v 7 ^ } -
Here, £t denotes the geodesic in T(Y) joining XQ and t. Then, by the First Basic 
Lemma of 25.7, if t > t'n, dP(0, p2(t)) ^ v/Togn/C7i, and hence, by 28.1. if t'n < t ^ x, 

\p2(t) -P2(X) I ̂  1 
log n 

However, if t ^ t'n, then by 14.12, t = [i/jt 0 07?, ]y, where [3t is a path based at v2, yji 
minimizes distortion up to Z-preserving isotopy and 

(Bt) +,t < Cevlogn < n1/4. 

Here, I · | + denotes length with respect to the expanding foliation of ipt- We can take 
the paths [3t to be geodesic. Then the lifted geodesic with initial endpoint at 0 is the 
geodesic joining 0 and p2(t). By abuse of notation, we call this [3t also. It follows that 
on the circle {z : dp(0,z) = 2v/n}, there are intervals of Euclidean length 0(e~2v^), 
such that the successive Euclidean distance between any two is e-2Vn+o(n1/4)^ whicn 
are not crossed by any [3t. It follows that the claim is proved with an ^ 4/logn (for 
example). 
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Now we need to consider p2(&(t)) ~ n m m-^OO P2(ym(t)) instead of p2(t). Fix a large 
rn depending on t so that |p2(C(^)) ~ P2(ym(t))\ ^ e~n. Then we only need to consider 
yrn (/) for t G t i n since ym(£) — 2/™(̂ m) and ?/ rn maps components of ^ \ £ m to points. 
By 28.6, we have a geodesic fim = /3in,t, which we can consider either as a geodesic in 
C \ Z , or, by taking lifts, as geodesies in the unit disc, where (377l has initial endpoint 
at p2{t), and final endpoint at p2(ym(t))- We also have the no-cell-cutting property 
(28.6) for fi7n. This means that, similarly to 28.1, for a suitable 6 > 0 determined by 
LQ and TV, regarding ftni as a geodesic in the unit disc, on any circle centred on 0 of 
Euclidean radius 1 — e _ n , there are intervals of (Euclidean) length ^ Se~n intersecting 
every interval on this circle of length ^ S~le~~n, such that /3 m does not cross any of 
these intervals. 

Let BQ be the set of balls centred on points of 5 1 , each of Euclidean radius ^ a n /2 , 
such that 

P2((t„..r\) C UBQ U {Z : d P (0 ,2) < n/2}. 
Let B[ be the balls of BQ with radii enlarged by e 2 v /™. If the geodesic (57Tl^ joining 
p2(t) and P2 (£(£)) does not intersect 

{z : dP(z,Q ^ 3)v/r7}, 

then 
\pz(t) - P2№))\ <e~2^, 

and p2($(t)) is in a ball of B[. If [37n,t does intersect {z : dp(Q, z) ^ 3 ^ n } , then f377l,t 

crosses 
{2 : rfp(O.z) = 4 ^ } . 

and, by the no-cell-cutting property, avoids intervals on this circle of Euclidean diam
eter ^ Ce~ 4 v /™ for C bounded from 0 and such that the distance between any two 
intervals is <9(e~4v/™). It follows that p2((tn.x]) lies in a union of balls of diameter 
< an/2 + er^1 < a7l which are Euclidean distance > c 5 a p a r t , as required. 
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CHUNKS 

29.1. In Chapter 28 (in particular in 28.3) we outlined a programme for moving a 
geodesic segment with endpoints in V to a path in V, in a controlled way. The chief 
difficulty with this programme is dealing with geodesic segments which pass through 
T<£ for a small e > 0 but which do not lie in sets T(T, e) for invariant (/ 0, Y) (because 
the geodesic segments are very long). This chapter is devoted to the study of loop 
sets r and the action on these by /o, where it is not in general true that Y C fo~lY, 
and to the study of long geodesic segments which pass through T<£. In particular, we 
develop the concept of of chunks. 

29.2. Definition of Chunks. — Let a be a homotopically essential nonperipheral 
subsurface of C \ Y and let \ip(da)\ be bounded for some [tp] G T(Y). We shall say, 
somewhat loosely that a is a gap (or a loop if a is an armulus) at [ip]. One problem 
that we have to deal with is that although f0'1(a) is a gap at r(y) whenever a is a gap 
at y, given y, y' G T(Y), there is no obvious relation between gaps on [r('*/), r(y')] and 
gaps on [y,y'\, because [r(y), T(L/)} may be a large distance from r([y,yr\). Because 
if this, we use chunks (of gaps and loops) along segments [y, y'} which are geodesic 
both in C \ Y and C \ Z. 

First we need a preliminary definition. For any z G [y,yr], z' G [z,yf] and any 
long thick and dominant a at z with a D f0~1(a) ^ 0, we define C{a,z,zf) to be 
the convex hull of thick and dominant gaps intersecting a along [z,z'\. The convex 
hull is defined to be the union of the gaps, together with any homotopically trivial or 
peripheral complementary components. Thus a = C(a. z, z) and C(a, z, z') increases 
as z' approaches yf. The finite type surface C(a,z,zf) can obviously only increase 
finitely often. Also if aC\ (3 ^ 0 and a, (3 are at z, z' respectively then C(/3, zf, z") C 
C{a,z.z") for all z" G [z',y']. 

In what follows, when we talk about a long thick and dominant gap or loop, we 
mean with respect to fixed parameter functions A, r, s for gaps and a constant C\ 
for loops (see 15.3). Also, thick will mean zMhick for some v > ^(A, r.s, Ci), where 
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z/(A, r, 5, Ci) is the constant produced in 15.4, such that sufficiently long geodesic seg
ments always contain such long, z/-thick and dominant gaps and loops. The constant 
M = Af(A,r, is given by 15.14. 

A chunk [2/1,2/2] x OL C \y,y'} x C has the following property 1. 
1. The subsurface a is a connected union of gaps and loops at each point of [2/1,2/2]· 
For any long thick and dominant gaps and loops (15.3) ai, a2 C a at points y[, y'2 

in [2/1,2/2] with d'a.(yi,yi) ^ M, i = 1, 2, we have a = C{a1,yf

1,y2) = C(a2,y'2,yi). 
Note that a chunk might contain no long thick and dominant gaps, or it will be the 

convex hull of those it contains. A chunk which does contain long thick and dominant 
gaps is called long thick and dominant. 

We say that [2/1,2/2] x is a partial chunk if we only have C(ai, 2/1,2/2) C a and 
C(a2,yf

2,yi) C a. It follows from 15.14 that, for a constant M depending on the 
parameter functions used to define long thick and dominant, if a is a partial chunk, 

2. [2/1,2/2] С Т(да,М). 

A (partial) chunk system for y, y'\ is a collection £ of disjoint (partial) chunks [2/1,2/1] x 
a such that: 

3. [2/,2//]xC = U{[^by i ]x« : [2/1,2/i] x « G £}. 

29.J. Lemma. — For some r bounded in terms of #(Y), a partial chunk can be parti
tioned into ^ r chunks. Hence, given any y, y' G T(Y), there is a chunk system for 
[2/, y'\ with ^ r elements. Given a partial chunk system £0 with p elements, there is a 
refinement of £0 which is a chunk system with < r' elements where r' is bounded in 
terms of p and #{Y). 

Proof. Let [2/0.2/o] x be a partial chunk which is not a chunk. Choose some a' C 
ao which is a long thick and dominant gap at yQ

f and as near as possible to 2/0 (replacing 
2/o by y'Q if necessary) with C(c*', 2/0,2/o) = C(a',yQ,y'Q) ^ a. Then subdivide [2/0,2/0] 
into segments [zi,zfj] along which C(af ,yo, z) is constant. Then consider the set £1 
of partial chunks [zz, z'j] x C(a',yo, z'{) and \zllz'^\ x (a \ C(af,yo, z[)). Inductively, 
suppose not all elements of £^ are chunks. Then those which are not can be properly 
subdivided to obtain a new system £ y + i of partial chunks such that if [2, z'\ x ft G £j, 
[w, wf] x C e £ J + i with [(r. wf) x ( c [ z , z'\ x ft and [w, w'\ x ( 7̂  [2, z'] x /3 then C ^ ft. 
If £j is not a set of chunks for 0 ^ j ^ s then we have a strictly decreasing sequence 
(ij \ Y of nontrivial nonperipheral subsurfaces of C \ Y. So for some s bounded in 
terms of #(F), £,s must be a set of chunks. Since the number of elements of £¿+1 is 
bounded in terms of j and #(F), the number of elements of £ t S is bounded in terms 
of #(Y). 

The last two statements of the lemma are obtained by applying this to the partial 
chunk [2/, y'\ x C, and to the elements of a partial chunk system £ 0 . 
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29.4. Lemma. Given a sequence {(A n, rri, sTl, Ci,7,.)} of long thick and dominant 
parameter functions and, constants, and given an integer p, and given a partial chunk 
system, we can find a chunk system, E for p successive (An, r n, sn. C\,n), N ^ n ^ 
AT + p — 1 with N bounded in terms of p and #(Y), and #(E) bounded in terms of 
#(Y). 

Proof. — We use exactly the same method of the previous lemma. Assume without 
loss of generality that (A u+i, r n + i , «sn+i, Ci, n+i) is a better set of parameter functions 
and constants than (An, r n, ,s'n, Ci, n). If E n is a chunk system for (An, r n, s r i, Ci, n), 
then it is a partial chunk system for (An4_i, r n+i, sn+ii CI,H+I) and any partial chunk 
[y 1,2/2] x which is not a chunk for the better set can be properly subdivided — 
in particular a is properly subdivided so that it is. But any sequence of proper 
subdivisions is bounded in terms of #(Y). So there is a bound on the number of n 
such that some chunk needs subdividing. 

29.5. r-fold chunks. — We shall say a is an r-fold chunk along [y\,y'\] if we can 
find successive points z\, 0 < i < r with ZQ = y\, zr — ?y2, such that a is a chunk 
along each [zt, z-i+i}. An r-fold chunk system is a chunk system in which every chunk 
is r-fold. 

Lemma. Any partial chunk can be 'written as a disjoint union of ̂  s r-fold chunks, 
where s is bounded in terms of r and #(Y). Hence, any chunk system EQ can be 
refined, to an r-fold chunk system E R ; where the number of elements of E R is bounded 
in terms of # ( F ) . /', and the number of elements O/EQ. 

Proof. - We only need to prove the first statement. The key to this is the fact that 
a chunk [y\, y2] x OL which is a singles long thick and dominant gap is automatically an 
/•-fold chunk: either a is long thick and dominant on each of r disjoint subintervals of 
[yi-V'i] or dn(y\,y2) ^ AI. Let [;(/•. X C*O be a partial chunk. Suppose inductively 
that any partial chunk [z,z'\ x ft with ft C a, ft / a can be written as a disjoint 
union of r + 1-fold chunks, and that [yo.yf

0} x cv can be written as a disjoint union of 
7·-fold chunks. Then we can assume without loss of generality that [//o-/7o] x is an 
/'-fold chunk, with subdivision of [//n,/y0] m t ° [<;,;, zi+ \ ] , 0 ^ /' < r. If [;:,·. .:·,;j j x cvo is 
a 2-fold chunk for at least one /. then [yo. yf

{)} x ao is an r + 1-fold chunk. So suppose 
[z.j, x ao is not a 2-fold chunk for any /. To simplify the notation, take / = 0. Fix 
some arbitrary point z'{) G (~o. z\\. Assume without loss of generality that [ZQ, Z'{)] X (\Q 
is not a chunk. (Otherwise, interchange ZQ and Z[.) If [zf

0. z\] x ao is also not a chunk, 
then each of [z0, z'0] x ao. [z'0. z\] x ao can be divided into chunks [z.z] x ft, always 
with ft / a. and these can be further divided into r -f 1-fold chunks by the inductive 
hypothesis. If [zf

(],zi] x rvo is a chunk, then take the first point z0' to the right of z'{) 

such that one of [ZQ, X ao, [Z0\ Z\] X a 0 is not chunk (since we are assuming that 
[ZQ. Z\\ x c\{) is not a 2-fold chunk). Then the difference is made by the long thick and 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2(103 



392 CHAPTER 29. CHUNKS 

dominant gaps and loops at ZQ. Each of these is an r-f 1-fold chunk along subinterval 
of [ZQ, ZI], giving a decomposition of [20, z\\ x a into sets [2, zf\ x [3 such that either (3 
is an r + 1-fold chunk or ft ^ a is a partial chunk. So, again, we can divide [ZQ. Z\\ X a 
into r + 1-fold chunks. 

As in 29.4, this result extends to work for a finite sequence of parameter functions 
and constants. 

29.6. Chunk systems on adjacent segments 

Lemma. Let Ei, £2 be chunk systems for [yo-,y\], [2/1,2/2]- Then there is a chunk 
system E for' [yo,y2] such that every chunk is contained in a chunk of Ei U E2. The 
number of elements of E is bounded in terms of # (Y) and the number of elements of 
Et UE 2 . 

Proof. By 15.8, if a is long z/-thick and dominant at y G [yo,'!Ji] then dn(y,yf) ^ 
C\(v) for some y' G [1)0-1)2] U [1)1,1)2]- If ?/ G [i/o./y2] then for all 2 G [yo-l)] and 
long thick and dominant [3 at 2 with ¡3 D a =̂  0 •-• that is. C C(a.y.z) — the 
corresponding point 2/ G [/70,1/2] also. Then if [2,2'] x /j is a chunk for Ei and 
yr G [y0-112]- for all /y G [2. 2'] and long thick and dominant a C [3 at /y. we take 
[z. z'\ x /3 to be a chunk in E. If // G [//1, 1)2] for all such /y, a, we do not take [2, z'\ x /i 
to be a chunk of E. If 1/ G [/70,1/2] for some y. a and // G [/71,1/2] for others, then we 
want to subdivide [z. z'\ x [3 into chunks, some of which will be in E and some will not. 
This is the rough idea. We shall carry out a similar procedure for E9. Since every 
long //-thick and dominant C at a point //' G [/70-/72] satisfies d^( ir. ir') ^ Ci(//) for 
some w' G [yo. y\] U [y\. /y2], we shall have the required chunk system E. after possibly 
adding some chunks disjoint from all long thick and dominants. 

So fix [20.21] x /3 G Ei such that for some (y.c\) we have y' G [yo,y2] and for 
some other (y, a) we have y' G [/y 1-/72]· We say that (cv./y) is a catting point if 
y' G [yo,y2]i and for any other (C w) with ¡3 D a ^ 0, \ a 7̂  0, 7/' G [/y,/yi], 
we have the corresponding point w' G [1)1.1)2]· We can choose a set P of cutting 
points (y.a) bounded in terms of # (Y) such that any other cutting point is (uu a) 
for some (/y, cv) G P. Take1 // G [yo. y2] with da{y.y') ^ Ci(^) (where a is ^-thick) 
Consider the convex hulls C(rv. ;</'. 2') for dQ{z.z') ^ d(r/) for 2 G [20.21]. C C # 
77-thick at 2 and £ f] CV 7̂  0. There arc1 boundedly many intervals [w;,;, w; i+i] such 
that C((v,yf, z') is constant for z' G [WJ.. w-i+i]. Then we consider the partial chunks 
C((\.y'. wL) x \ic,. ir-, . 1] and take the union of these over the cutting points (a,y). 
Then by taking intersections and differences, we can obtain a set of disjoint partial 
chunks whose union is the union of all the C(a, y, iCj) x [tr,. IVJ ; 1 j. the size of this set 
being bounded in terms of #(!'"). Then we can refine this to a union of chunks. We 
can assume that each point 1/ arises from a cutting point from [yo,yi] and another 
from [yi. y2\. Since this can l)e done for all chunks of Ei UE2. we obtain the result. 

ASTÉRISQUE 2S8 



CHAPTER 29. CHUNKS 393 

29.7. Pullback of chunks. — If [yo^Uo} x o is a chunk, and Sa is a component 
of f$1a1 then [T(?/O), r(y'0)] x Sa is a partial chunk. We now deal with pullbacks of 
chunk systems. 

Lemma. — Let E be a partial chunk system for [y,y']. Then there is a chunk system 
£' for [r(y), r(y')] such that every chunk ¡3 x [z, z'\ of Y! satisfies /3 C Sa for some 

chunk a x [y0, y 
o. 
i E E and some component Sa of f - l 

o 
a, with # (E) bounded in terms 

of =Y and #(£). 

Proof. — We can assume without loss of generality that there is a decomposition 
[y, y'} = U[~Q [Vii,yi+1] such that the partial chunks of E are all of the form [yi, yi+i] x /3 
for some i, since we can always refine a partial chunk system (although not a chunk 
system) to be of this form. Then we have partial chunks [ r (^ ) , r(i/z+i)] x S0. Then ap
plying the previous lemma repeatedly, we obtain a chunk system En for [r(yo); T(yn)} 
from the chunk system En_i for [T(yo),r(yn-i)] and the partial chunk system con
sisting of the chunks [r(;(/n_i), r(;*/.„.)] x ¡3. Finally we put £ ' = Er_i. • 

It makes sense to describe the chunks of E ; as preirnages of the chunks of E, even 
though E' is not canonically defined from E and although, for [2/1,2/2] x OL G E', a' 
is only a subset of a component of / 0 ~

1 (a) for some [271,2/2] x a G E. Similarly if 2 is 
a bounded distance from [2/, r(y)]we can use a chunk system E for [y,r(y)} to define 
a chunk system E' for [z, r(z)] with chunks of E' in the backward orbit of chunks 
of E. In future we shall often simply write a for a chunk [2/1,2/2] x a and shall write 
a' C ./o" 1 ^. 
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CHAPTER 30 

OUTLINE CONSTRUCTION OF A GOOD SEQUENCE 

30.1. We need to complete the task outlined in Chapter 28. This means that, given 
a geodesic /; in T(Y) with eridpohits in a component V\ of V, we need to construct 
the path &((') of 28.3 in V\ with the same endpoints as /. This means that, given 
,r G (, we need to construct the sequence {ym{.i')} with the properties given in 28.3. 
The rough idea is that this will make the union of geodesic segments [/ym (.?•). /ym + i (./•)] 
in T ( Z ) be as near as possible to a geodesic in T ( Z ) . The hard properties of 28.3 to 
obtain are c) and d). In order to construct yn, + \ from yfn, we find in general that we 
need a supplementary sequence tr j . 

30.2. A sequence {WJ}. — The pulll)ack map r : T(Y) —> T(Y) has the property 

that if a is a gap at /y. then each nontrivial nonperipheral component of / - 1 
o (n) is 

homotopic in C \ Z to a gap c\\ at r(y). By thĉ  definition of r (that is, dz{ìh T(ìj)) = 
<7v(//- T(IJ)) up to homotopy all intersections between n and oj are essential in C \ Z. 

and if a fi n i = 0 up to Z-preserving isotopy then £ - l 
o 

11 U f - 1 
o a = 0 also. The 

same argument does not work if we replace oj by o , . where a} is defined induc
tively by: n-y+i is a gap at Tj+1- (y)which is homotopic in C \ Z to a component 
of /(^'(/Vy). That is. if (\ D av = 0 up to Z-preserving isotopy them this may not 
be true up to K-preserving isotopv. and hence we cannot necessarily deduce that 
f - 1 

1 
a) U f • - 1 

i) 
(o:;i = 0 . For this reason, amontr others, instead of considerimi se-

quences {rl{y)} > 0 we consider a sequence {wj} < 0 C T(Y). Wj — Wj(jj). with 
(/'o = y ail(l chunk systems X 1, 

W 
1 

for [?/>y, r(t/.'y•)], U'1+y //'•/_)_i] and with the following 

properties. We abbreviate "long thick and dominant to ltd. where possible. The Ba
sic property depends on a suitable constant Aj which is chosen just large enough. The 
properties depend on a fixed choice of long thick and dominant parameter functions. 

Basic properties for {//?>•}. Every ltd chunk of Ea is. up to bounded distance, either 

in / ̂  i (5V-i ) or in J •-2 
0 

(E (j-1) (but the latter happens only on a connected union of 

chunks of length ^ AL). For a bounded integer r(), and all j . every ltd chunk of £ 1 
o 

is 

a subset of a chunk in U +ro<i<j W i 
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Here, the term '"up to bounded distance*' for ltd chunks I x C means that for 
all long ^-thick and dominant gaps or loops (3 C C ancl z € I there is z' G V for 

some chunk / x ç on / — r 
0 

(W f/_r), with 3 {z.z') ^ C2(V), for a suitable function 
C2 : (0, oc) —• (0, oo) which depends only on the function C of 15.8. For chunks 
which are not ltd we simply replace C>2(v) by M<2 for a suitable constant A/2 > 0. 

The most important property of the sequence w.j is the following. 

Straightening property. a) The following holds for an integer tq. Take any r ^ r0 
and any q > r. If (3 is long z/-thick and dominant or r^o-Pole-Zero along / C 
[irq ,.. irq)z U [//'„. ~(jt\n and 7I? G / then there is ?// G [?i;q_r, r(u;r/)] such that 

' M « ' . ' « / ) *S C(v) or I R e ( ^ ( ^ ) - TT/,(«/))| *S # o 

depending on whether (3 is a gap or a loop. 
Another way of saying this is that every chunk of E 1 is not a bounded distance 

from any chunk along [ q-r, wq ]. The following part of the Straightening Property 

will not be referred to so frequently, but it will still be used. 
b) Given e > (), the following holds for suitable choice of the long thick and domi

nant parameter functions and Pole-Zero constant. If ¡3 is a loop which is in the convex 
hull of long thick and dominants along both [wo,wq] and [wq,r{wq)\, and wq+\ = [ip], 
then \<p(f1)\ < s. 

Now we list the other properties of the sequence Wj. 
The following is for suitable functions C2, C3 : (0, oc) —• (0. oc), depending on q. 

v<2-tracing property. If ¡3 is long, /v-thick and dominant along segments of [wi, u^+i] 
and [WJ, WJ+L] containing w and w' respectively which are both within a bounded dis
tance of segments of [w0, r(wq)} (z, j ^ q) and dp,z(w, w') ^ C2(v) then df^y(w, w') ^ 
C3(z/). and similarly if ¡3 is a loop satisfying the Pole-Zero Condition along the? seg
ments. 

Note that if this holds for long thick and dominant gaps ad Pole-Zero loops /3, then 
we have a similar result for all gaps and loops 6. with €2(1^) and Cs(i/) replaced by 
suitable constants A/2, A/3. 

The mostly Z property. — The following holds for a constant A/2 and an integer r0. 

For wn — Wo and r ^ ro, 

Wn+l = [Cr- 0 Xr ° • • • 0 FL 0 Xl ° £0 0 W\: 

where, if [ipi] — [^] o \ ,• o £0 o i/;0], X? minimises distortion up to isotopy constant on 
iH-i(Z) and |dy Ei [identity]) ^ A/2 for all i. Moreover if 

w i n+l 
= [C o • • • o xi o Ço o <0]y, 

then for every long v-thick and dominant gap or m()-Pole-Zero loop a along a segment 

of [w 2-1 
+ 1 w ' n+l 

]z containing some w, there is w' G [ wn, wn+1 ] such that 

da,z(w,wf) ^ C(i/) or I Re(7To.z0r) - 7ra,z(?//))| ^ /\q 

for C(^) and A"0 as in 15.8, depending on whether a is a gap or a loop. 
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The mostly Z property will imply the similar property 28.3c) for the yrn. 

F - decreasing property 

F(wi) < F (wi-1). 
Furthermore given £\. there is 7/1 > 0, bounded below in terms of F(ym), E\ such that 
either (i) or (ii) holds. 

(i) dy (wi, t (wi-1)) < E1. 

(Ü) F(wj) ^ F(tVj-i) - 771. 

The next (and last) chapter will be devoted to proving the following. 

30.3. Theorem. Given y, it is possible to construct a sequence {Wj} with WQ — y 

and, the vroverties above. 

30.4. Consequences of the properties. — By 29.4, it is possible to construct 
boundedly finite chunk systems with respect to sets of long thick and dominant pa
rameter functions, one given in terms of the other. If a chunk [¿/1,772] x OT is not long 
thick and dominant, then, for M depending on the long thick and dominant functions, 

d>n(y\*y2) ^ hi. So then for either component c\\ of f -1 
0 

(a). 

dnt(T(m),T(y2)) ^M + C2 

for a suitable constant C2 (see 26.9). If A is a loop we also have 

I RC(TT,M (T(7 / I ) ) - nni (T(T/2)))| < I Re(7r„(?yi) - 7Tn(y2)\ + C2 

It follows that if /1 x fti C f - 1 
0 

(/ x A) is long thick and dominant with respect 
to (Ai, ri. si. tìii) and also with respect to (A2, s2. m2) defined suitably in terms 
of (Ai, 7*1, .si, mi), then A must also be long thick and dominant with respect to 
(A2.r2,s2.m2). 

Write E 
I,q = E i.q,0 for the set of ltd chunks along [wo,r(wq)] which are derived 

from E 1 We could also write E i ,q.k for the set of ltd chunks along [wk,r(wq)] which 
are derived from E 

i 
if k ^ i. But in fact, by the Straightening Property, E = = E ia 

if i — k > 0 is sufficiently large. 

Lemma. - Let Q. x Ir E T,q be part of a sequence of ltd chunks It x Q E Er/_r+?; 

(0 ^ 7 ^ r) with < - 1 C f - 1 
0 

(Ci), with Ir not within distance Ai ofr(wq). 

(1) Then I; x Ci e E q-r+ij for all q — r + i ^ j ^ q. 
(2) All ltd chunks of E q — v + i nearer w q — r + i than 1 

x C xC i are also in E -p+r+i+j for all 

q — r + i ^ j ^ q. and all chunks of E kj-r+i which are nearer Wn than L x 6 are in 
W q-r+ij for all q — r + 7 ̂  j ^ q and k ^ j — r + i. 

All these inclusions are up to bounded distance. 
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Proof 

(1) We prove this by induction on r — /. It is trivially true for r — i = 0. Renaming 
r — / + 1 as r if necessary, assume that / 1 < s' G I r+in j for all q — r + / ^ j ^ q and 

i > 1. Then the inductive* hvpothesis also gives In x Co G E q-r.j for (7 — 7* ^ 7 ^ f/ — 1. 
Now suppose that IQ x CO G E' where E' is the* set of chunks in the chunk system 
for [wo, r(w 

9-1 )], which are a bounded distance from / - I 
o 

cW a ). and hence not in 

the chunk system for \u\). T(U\,)}. Let E" denote the* complement of E' in j - l 
( 

( q-1 
up to bounded distance*. Now chunks from E 

'a must be a bounded distance from 
chunks in j — i 3 - ) or distance ^ A •i from T (ir -1 ) by the Basic Property. So 

f I x C l comes within a bounded distance of / -l 
o 

)= - 1 
(J 

(W -
) -

<1 
(this uses the 

t'2-tracing property), contradicting I l x C l G E (1-r+1.q. 
(2) The first statement is true* for j — q — r-\-i by the straightening property. Then 

use* induction. The second statement is similar. • 

30.5. Periodic Chunks. — The* definition of a periodic chunk is a little involved. 
but. in particular, we say that a ltd chunk along [w r.7 (W 7 —T 

)] is of period r if it is of 

the* form /o x Co and there arc* ltd chunks x C; along [iv 7-r + / . T a <l-r+i } (0 ^ /' ^ /') 
with Ii+1 x 0+] C j - 1 

0 
(Ii x C/) if '/ < r and Co H (r 7̂  0< Miici r is the least integer 

> 0 for which this holds for any choice of I, x Q. i > 0. A chunk of period one is also 

called a fixed chunk. 
But wc* need a more* general definition that this. We want to say that a ltd chunk 

/<) x Co along [//'(j, T(ICU)] which is. up to bounded distance, a subset of a chunk of E, 
for •/ ^ (j — /', is of period r in certain circumstances. even if there may not exist a 
sequence of ltd chunks I, x (/ as above*. For a chunk / x ( on [ir{). r(icq)} which is. up 
to bounded distance, a subset of a chunk of Ey, T(I x ( ) will be* a finite set of chunks 
which are. up to bounded distance* subsets of chunks of U/,.̂ oEy + 1 _/,.. If there* is are 

ltd chunks on [(C(),T(W(/+\)} a bounded distance from each component of j • - 1 
o 

I X C 

then this set of ltd chunks is taken to be T(I x (')• Otherwise we* take the maximal 
ltd chunks which are a bounded distance from chunks in ,/ -1 

o 
(E(J x C <)) where 

E(7 x C- <) denotes the* set of ltd chunks < / x ( hi [IV().T(W )] where J x u; < I x Ç 

if J separates / from u\) and ^ x (' ^ 0 . This relation < is transitive, because if 

12 x <x>2 is between J\ x uj\ and J-j x uj\\ and uj-2 intersects both uj\ and uo^ and 7/. are 

loops in uu; with •^ /{^ : / ) bounele*el at some fixed points [y7] G J, then ^2(71 Hu^) and 

^2(7,3 ncJ2) are approximately stable* and unstable* leaves of the quadratic differential 

foliation and hence intersect bv 15.11. 
Note that if T(/1 x Ci) H T(I2 x Q2) ^ 0 then either I{ x (1 n 72 x (2 ^ 0 or, 

for both /' = 1 and 2. T{I, x Q) is a bounded distance from subsets of chunks of 

- L (£ ( / x C/,<). 
Then we say that / x C is of period p (for [ivn.r(wq)]) if / x ( is derived from E,, 

/ ^ q - p. TP(I x C) H () / 0- We* elo not insist that p is the least integer > 0 for 

which this hotels. 
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30.6. Lemma. Let Jo x U>Q be a ltd period p chunk along [U\),T{W(i)\ winch is con
tained in a chunk of Tii, i ^ (J ~ 2p, and let T 2p (Jo x cjq) n uüQ ^ 0 . Then either a 
bounded refinement of Ey gives no period p chunks within Jo x ujq or Jo x luo contains 
a period p chunk for [wQ,r(wq+i)] up to bounded distance. 

Remark. The condition T -2p ( Jo x cjq) H cjQ ^ 0 is automatically satisfied if there 
is a sequence of ltd chunks Jt x ujt for [wo, T(wq), 0 ^ •/ ^ p with J?+J x ujt+\ a 
bounded distance from a subset of j — i 

u (Jj x Ui), uJp flo/'o 0 and ujp is itself periodic 
of period p which would happen if this sequence J, x ujz was defined for / ^ 2p — 1 
and cc?p n / -l 

o (W2/,-l) / 0 

Proof. — Suppose for contradiction t hat J0 x ujq is contained in Er/+i up to bounded 
distance. Then either the refinement of Jo x uJo given by intersecting with E(/4_i splits 
it into chunks of which none have1 period p, or at least one has period p. We can 
assume that it is contained in ("/+] for a chunk Iq+\ x Çq+\ of Tq+\. Now let J/,- x uj^ 
be the orbit of Jo x luq. that is, J^+i x uJk+\ C j — i o (JA: x ^ . ) . Let I, x Ç, E I with 
lj • i x O+i C ./ ' 0 (Ij x 0 ) up to bounded distance. We have T r (J0 X uJ0) n^'o / 0 . 
and hence, T 7; (Jo x lüq) n C/+1 7̂  0- Then by induction T -p (Jo x w o ) n C/+1-/' 7̂  0 
and cjp_/>_i and Cq+1-l are contained in the images of T -l+1 (J0 xwq), Cq+2-l under 
consistent branches of j - i This uses the ^-tracing property, since all chunks are 
along [wQ,T(wq)]. We deduce that ujq Pi Cq+1-p =^ 0 . and hence Cq+1 ̂  Cy+i-p 7̂  0-
So Iq+\_p x Cq+1-p is period p also, and intersects J0 x ^o- and q + 1 — p > q — p ^ /. 
Similarly using T 2p (Jo x cjq) D cc'o 7^ 0 , we deduce that ( a 4-1 — r? CT (J0 x a;0) / 0-
So Iq+l-p x Q+1_/;it must be in ,/ -1 

u 
(W f/) up to bounded distance. So by the same 

argument as above, either there is a boundedly finite refinement of Ç, +1-p into chunks 
none or which are period ^ /; in which case we can go back and refine J() x uj{) 
or there is / 2 ' /+1 x C E E<7+i which is a bounded distance from 7r/_|_i_p xCq+1-p. 
alter reducing a bit it necessary, and then this chunk also gives rise to a period p 
chunk 1 2 

fl+l-H x C 2 
7+1-p 

which intersects I-q+1-p x Co+i-»- It also intersects J0 x u0 
because Iq+1-p xCq+1-p intersects TP{J{) x c^o). So all ltd chunks between J0 x u;0 
and Iq+1-p x Co+i-z; are a bounded distance from ltd chunks between Jox C/+i and 

f 2 
/+1 x C 2 7+1- We have 

d w, Cq+1-p (J0. /,,+ 1-p) ^ ^ ( f+1, C a 
'/+1 

lq+1.I 2 
9+1 ) + 0 ( l ) 

d' v+1 - p, 4 2 Vf I -P 
(1 V 1 P ' ^ •2 

y+l-p ) + 0( l ) < d 1 
^0,0/+ 1 - p (Jo, Iq+i-p) 

giving the required contradiction. • 

30.7. Corollary. Let J0 xujq be ltd periodp for [w0, r(wq)} and, in TKq. up to bounded 
distance. Let Jj x uj-f be defined for —p < j ^ 0 and Ti+j^q up to bounded distance, 
with Jj+\ x ujj+i a subset of f${{Jj x wj). up to bounded disUmce. Then J p x uj_p 
is period p on ['«?o, r(wr)} for all r ^ q. 
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Proof. — With respect to [wo,r(wq)] we have Tp(J_p x LU-P) D cj_p ^ 0, since 

TP(J_P x w-p) - CJO and T2p(J_p x CJ_P) = TP(J0 x CJ0). 

Then T2p(J-p x (j_p)nw_p / 0, since Jo x o;0 is ltd. By induction on t this remains 
true with respect to [wo,r(wt)] for t ^ q. In fact if there is any change the sets, 
TP(J0 x UOQ) has to change first and move closer to CJO, and they may coalesce in the 
future. So for o + 1 replaced by t + 1 in the previous lemma we deduce from J_„ x UJ_V 
being period p on [wo,r(wt)] that it is also period p on [WQ. r^wt+i)}. • 

30.8. Lemma. - •- For r^, r\ bounded in terms of vv#(Y), the following holds. Every 
chunk IQ x Co in ^%,q either has some period r $C ro or £/iere is no sequence {Ij x Cj} 
defined for 0 ^ ?' ^ ro with 77+i x C-, . i c ,/ • - 1 

o 
(Ij x ("j), ?r/; to bounded distance, and 

Ij x G E i + j, q for 0 ^ j , i + j^q. 

Proof — Suppose that such a sequence I3 x Cj does exist. If all the Cj are nontrivial 
nonperipheral then because they all lie in a finite tye surface, for some j ^ 0 and 
r > 0 both bounded in terms of = Y we must have C 1 C 

i + r 0 -- or if they are 

both loops we might have Cj = (k up to Z-preserving isotopy. If Q is a gap, or a 
loop with (j and Q+r intersecting transversally then, as we have seen, we must have 
Co H Cr 7̂  0 . If Cj and Cj+r are nontrivial nonperipheral loops which are equal up to 
Z-preserving isotopy, then we still deduce that Co is periodic. For if Co is disjoint from 
all Cj for j ^ ro, for some suitable ro depending only on #(Y). and no component of 
dCo coincides up to Z-preserving isotopy with any component of dQ for any j ^ ro, 

then the backward orbit of #Co gives a loop set T with /, -l ) (r) C r and ,/ — n 
0 (r) 

nontrivial nonperipheral for all n ^ 0. If this happens, T — f -l 
) (T), and hence Co 

must be periodic after all. 

30.9. Some special chunks of chunks. — A chunk of chunks along a geodesic is 
a union A of chunks along this geodesic towithin bounded distance, with the following-
properties. 

(1) If Ij x Cj are ltd chunks with 7i x £i, 73 x £3 G A and I2 is between h and /3 

and Ci H C2 ^ 0, Cs H C2 ̂  0, then 72 x (2 G A. 
In such circumstances, we say that I\ x Ci < h x C2, and /2 x C2 < 3̂ x C3- We also 

define C(A) to be the convex hull of all C with I x ( e A and I x ( ltd (for varying £)• 
We also define C(< / x ( , i ) to be the convex hull of all C' with V x Cf G A, 7' x (f 
ltd and I' x C < I x C- Surfaces C(> I x C, A), C(<7 x C,^) , C(> I x£,A) are 
similarly defined. Then the second condition is as follows 

(2) If I x C e A is ltd and such that C is not contained in C(< 7 x C, -4) then C(A) = 
C(> 7 x C, A), and if C is not contained in C(> i x ( , A ) then C(A) = C (< J x ( , A). 

A chunk of chunks A is r-fold if it can be written as a union of r chunks of chunks 

A u l ^ i ^ r with C(A,) = C(A) for all ?;. 
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Lemma. The following holds, given VQ, for some bounded integers r\, t\ depending 
only on #(Y), r*o and AIj depending on the long thick and dominant parameter func
tions. Fix ltd parameter functions and a Pole-zero constant. For i ^ j ^ j + ti ^ q, 

let fi 5j, q be the convex hull of all ltd chunks in U <k<j E, 
fc,q • 

Then given i there is some fi = fiM,J1-(? with 0 ^ i\ — / ^ 7*1, r\ ^ j \ — i\ ^ J'Q 

such that fi C t, - 1 
o (fi) modulo trivial and, peripheral components. Either there is a 

connected component fii of fi with ST21 C / -1 
o 

(a ind J — s . 
0 

(f i i 
) = C such that the 

set E(fM of chunks contributing to fii is a three-fold chunk of chunks, or for some 

s ^ # Y there is A D j f C \ f i which is nonempty and satisfies A = f -l 
3 

(A) modulo 

trivial and peripheral loops with 

d 
A 

(w +t+s,t (wi +T, S )) < M1, 

and for [if] = w i2+t+s, 
\f(0A)\ <: M,. 

Remark. By 30.7, if t is sufficiently large depending only on #(Y) then for I0 x (% G 

fi, k.k.t.q we have IQ x [3Q G EA-.7. for all r ^ q. 

Proof. Choose a sequence (A rj, sj, mj ) of ltd parameter functions for 0 ^ j < oc 

such that if a chunk / x a contains no ltd gaps with respect to (Aj.Tj. s j) and no 
/7?,-Pole-Zero loops then the same is true for components of fo~1(I x a) for j Hh 1 
replacing j . By 29.4 we can find a bounded i\ and (Ay. r.s,. ni j) and E,- such that 
every chunk of Ev is either ltd with respect to all (Aj , rr s.j, m.j)Sor all i\ ^ j ^ ii+ni, 

or none1 of them. To simplify the notation, take i\ = 0. Now define fi I •i + k.j.q.f to be 
the union of all /io with In x /j0 G U •i + k^n^j E -1 so that for £ ^ / there is Il x ßl 
which is ltd with respect to (A/,.. /. /•/,.. /. .s-/,.././///,../) and Ii+1 x Bl+1 C / -1 

o (If. x A ) 
for ( < t. It follows from the properties of the sequence of long thick and dominant 
parameter functions that we can extend the sequence If x fjp to — k ^ i ^ t so that 
J( x .i, is ltd with respect to (A A- • ( • I'k • ( • -S'A- / • fìì k • ( ) for all / > -k. 

Then we have we have fi ' i+k+1,j+1, q+1, t-1 c / - 1 
0 

(f i / : A-../.R/./ ) by the definition. 

We have seen in 30.7 that fi /4- A', j . (/+!./ = fi i + k.j.q.t • So we have £2 +k+1, j+1.q.t c 
f - 1 

0 (fi i + kj.qj ). Also fi ' 
j.q, f c fi j, j", q', t' if i" ^ ^ / ^ j " , (/ < q, t' > t. Now we 

claim that we can find / + k\ j such that the set E (fi / ! k.J.¡1.1 ) of chunks contributing 
to fi 

'l + k.j.q.t 
satisfies condition 2 for being a 9-fold chunk of chunks. It mav not satisfy 

Condition 1 because there may be extra ltd chunks in between chunks of E(fi / / - A\ /.A./ ). 

This is similar to the construction of chunk systems in 29.3-5. For if E(X 
/-k.J. ) 

does not satisfy condition 2 for being; a 9-fold chunk of chunks, choose an interval 
[d.f] C \i I k.j • k) with fi ' 

j', j'. q, t properly contained in fi 1+k, j, q, t and repeat the 

process. If we end with fi.; ' < k.j.q.l = 0 , so much the better, provided j — (i + k) is 

sufficiently large as we can assume. 
So then we have, for iì = Q 

i + k.i.a.t 1 
fi c j -1 

0 
(fi), and fi 

M .i-2.<l.t = fi 
i + k. 7. A. t 

where 
[¿1,72] is about the middle third and E (fi: 

'i I ,i2,qJ satisfies condition 2 for being 3-fold 
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(although possibly not condition 1). We clearly have ii ' 
-, • A- in.I 

C ii i ' />•• 1.(1 for anv 

/ + k ^ j ^ q. But if 7 x Q G Ten is between two chunks 7() x fj{) and 7, o x /" 
u 

which 

contribute to ii k;k;q;t in particular so that Ç intersects the interior of ii. then we 
must have ( C ii. For if not. take [if] G 7 and (p(0ii) in good position with respect 
to the quadratic differential determined by / . If (without loss of generality) the good 
position of ip(dii n (,) contains segments bounded from the unstable manifold, then 
by 15.11 it contains segments intersecting ^ ( o ' H ii). which contains segments close 
to the stable manifold for any ltd gap or Pole -Zero loop c\' C fi ' 

). 
So we obtain ii = ii i.2,q n Oii I 'i + k-J.q.i — 0. So each component of ii / 

't} .t2.<i.t 
is 

a component of ii and similarly if we split into thirds. So if ii' = ii ! 
/1 .¡2.(1.1 has 

a component il\ satisfying il\ C ,/ - 1 
o 

(ii\) then ii\ is also a component of ii. and 
Tj(iii) the set of all ltd chunks in U;, ^A-^/->EA-.7 contributing to ii\ is three-fold. 
If ii' ^ 0 then fns(iif) is a union of components of f\7s(ii) and if ii\ ^ 0 then 

f 8 
0 

[ii\) is a union of components of ,/ 
u 

(ii'). So we can only have / s 
o 

(ii) = c 

it /, o 
o (ili) = C. Otherwise take1 A to be the coniplemeiit of ,/ - .s — / 

0 
(iV) which is 

nonempty, invariant. Suppose that / x ( is a ltd chunk in E /1 +.S + / which intersects A 
and is ltd for (A /, + .s 4- / • ''/')+* 4 / • * /1 4«4 / • n 1 i ] t -s-f / ). Then we can write 7 x (' = 1 2 x V 
with 1 /"4-1 x ./'4-1 C f _ I 

o 
x C ( with I ( x 0 ltd for (A rt, sl.ml ). In particular, 

assuming t is sufficiently large (o is periodic and hence Io x Q} G E i.q So Co ^ ^ ' 
and C G ./; w 

) 
(iV). contradicting ( f l A / 0 . So no chunks in S 1+s+t which are ltd for 

(A M4.s4 / • 'm4.s4 / • 's'/i 4.s W • m/i 4.s 44 ) intersect A and we have 

<7A(//',,4-4 /- r(ir/l i ,+/)) ^ M\. 

and for [y] = ii' a+t+s, 
| y ^ A ) | < M L 

as required. • 

30.10. Lemma. Suppose that ii ; is a fixed component of ii jn+kn.jn.q in the. notation 

of the previous lemma, for j — 1, 2, with ¡2 > M + /•'!• Suppose also that j 0 
ii 

•i. ) is 

the same surface for j = 1, 2. 77/c// /V;r ant/ rj0 in the middle third of ii\ as in 30.9 

and any ii' correspondingly in, the middle third, ofii-2- 4M Y 7̂  0 . 

Proof. Each ii 1 
/„4-A'„,;„.r/./ 

satisfies the second condition for being: 3-fold, from the 

proof of 30.9. Then /i n IT ^ 0 for anv rr in the last third of S2 11+k1, j1,q,t and 

/7' fl ß''' # G for any /i'" in the first third of ii 
/4 • /.-,./-,.,/./ * The only way we can have* 

ih n d 1/ 0 
0 is if .T n \V" - 0 for all ß'' /i". that is. Î22 C / fg 

ds0 (M1)\ iii. But this 

would imply that [¿2 is aperiodic, which is impossible because 111 the proof ot 30.\) we 
have iij = ii 1 

jn.q.t 
and the chunks used to define this are periodic. • 

30.11. Construction of Um 1 ^ ÌÌI • — We now assume the construction of the w-. 

with the required properties. Let w, = Wj(y()). Fix suitable integers q and t. We use 
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the construction of 30.9. Take a sequence of sets s,i, +kj, ij + q for 7'o ^ k.j ^ ri and 
0 < i-j+i — (ij + kj) ^ /"i. From the proof of 30.9, we have 

(i) Oil 11./j ~k ,.i t —({ -D OU J i, 2, ij + kj, ij+ q,t 
where il ' ij./ j ! k j . >. j \ (j.t can be defined using different stronger ltd parameter func
tions and pole-zero constant. But we can choose the ltd parameter functions and 
pole-zero constants defining the Q ij ,ij+kj ,ij+q,t differently for different j so that 

A 4 
s+1+ij+1+k,+1+q,t c Q ' j • kj ./, +q,f 

Whatever parameter functions we choose, we always have (1), and hence, for Wk — Up], 
ij + t + s ^ k ^ /7 + i + t + s, and 7 C dj o A I /',•.'« ; k • i , - q.f 

or, more generally 
7 C df _ 

u 
a ii J, j '• k j .i j • (/1 

|&(Y)| < M1, 
where M\ depends only on #(Y), r\ and the ltd parameter functions and pole-zero 
constant used to define the m,\s, not on the parameter functions used to define the 
different Q ' i, ij + kj, ij + q.t Write 

47Aj = — ,s 
0 

A ' 
-/,./, : k,. i j • (/J 

and A7 for the complement of 11,. Then we have Q,;+i c Mj and A , C A 7 + I . Wre 
also have /, - i 

o (ilj) = Qj and J -1 
o (A .y ) = A j So IK] j = OA; is an invariant loop set 

and exactly one of Ur Aj lias a fixed component. The sets 117 and A7 are defined 
using ltd parameter functions and pole-zero constants which vary with j although, 
as we have seen, their boundaries are independent of these choices. Each component 
of A7 (or Qj) is eventually periodic, and each periodic1 component is mapped either 
homeomorphically or not. We claim that the constant M\ can be chosen, independent 
of j so that if P is a homeomorphic periodic component of A 7 . for any y, then, for all 
k ^ /, -r t -t .s. 

(2) dp(wk,r(wk)) ^ Ml 

In fact, this follows from the Straightening Property, as we shall see. We shall also 
see that we can choose the //•/,- and M\ so that (2) holds when P is periodic nonhome-
omorphic, for k > ij + t + s. It then follows that (2) holds also for all components P 
of Aj , for k ^ ij + 2 s + 1 . for s large enough given #(Y). Note that if A7 has a fixed 
component then so does A/,: for all A' > j , because we then have Aj C Aa-. 

So it remains to choose the y7„ and a,t, so that the properties of 28.3 are satisfied. 
We always choose y.m by modifying y G \wk,r(wk)] for some k = k(m), strictly 
increasing with m, and with F(yni) ^ F(y i i m 

). which gives the /''-decreasing property 
28.3b). We shall also have k(m + I) — kirn) bounded above. We take v,„ = u ' 

•J-rn except 
in two cases. 

Ca.se 1. Aj has a nonhomeomorphic fixed component for / 7 ^ k(m) <C i,} -f k}. 
when ym is chosen to be a modification of y'tn as described in 30.15 below. 
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Case 2. y 4 
O E T ( r , E I 1 ) for some (/o,T) satisfying the Invariance and Levy Condi

tions, and e2 is sufficiently small given Max{JP(x) : x G £}, where the Wj(x) and ym(x) 
are being constructed for x G £, for some geodesic £ in T(Y) with endpoints in V\. 
Then for some e2 < £ I 2 again depending on Max{F(x) : x G £}, and y rn G r r , £ o ) , 
we take yni = a (v. / m ) for a as in Chapters 18-21, and for y' G T(T,e I 2 ,) \ T ( T , s 2 ) we 
use the vector fields involved in the definition of a to define yrn from y 'm • We shall 
later choose e\ < s2 sufficiently small given £. This is similar to how E\ was chosen 
in Chapter 7: small enough given F(x) for x in some set. 

Suppose inductively that yrn G [wk,T(Wk)\ has been chosen, and that ij <k<ij+i. 
Write j = j(m). If Aj(m) has a fixed component then we take arn to be this fixed 
component, and then take //>>, . ,, = №+r> for n > 0 and am+r) to be the fixed compo
nent of A >(m+n) where j ( m + n) *s such that i j(rn + n) < k + n <i •(m + n + 1)- If ft j(rn) 
has a fixed component, then we choose am C ft(j(m)) so that {?/m} x ani is a bounded 
distance from the middle third of the 3-fold chunk of chunks along \w 452, t <im + km )] 
(up to bounded distance), with yrn G L iw <i< •rn+km [wk,r{wk)]> By 30.10, we do then 
have a rn n wm+1 ̂  0 , as required by 28.3d i . By choosing vm at an appropri
ate place, in the middle ot some segment [Wk,T(Wk)\ corresponding to a segment ot 
[w j(m) r(Wi i(m)+«/(m) ] along which am is ltd or satisfies the Pole-zero condition, that 
the rest of 28.3d)(i) is satisfied. We can also ensure that for each x and ra, either 
x' i ^ iim(xf) or x' i—> 'Wrrj-n (a?') is continuous at x, as also required by 28.3. 

The following lemma gives the mostly Z property for { i rn}. and will also give the 
related property 28.3c) of {ym}-

30.12. Lemma. The following holds for a constant M depending only on a choice 
of long thick and dominant parameter functions. Let [up] G T(Y) and let [w,wf]z — 
[Vp\-> [x ° ^p\\z be a geodesic segment in T(Z), with \ minimising distortion up to 
isotopy constant on p[Z). Let x, x' G T(Y) and [x,x'\z be such that there is a chunk 
system for [xpx'\z with chunks a bounded distance from subsets of ltd chunks of a 
chunk system for [w, w'\z • 

Then we can write x — [pr] and x' = [f^ox' £/ o<p']Y where dy ([£], [identity]) ^ M and 

dy {[€'}•> [identity]) ^ M, x' minimises distortion up to isotopy constant on £; op'(Z). 

Proof. By hypothesis, there is a decomposition of p'(C \ Y) into subsurfaces a 

with \p'(da)\ bounded and d(X^y(z,zcx) bounded for some xn G [w.wf]z, if a is a 
gap, or I Re(7r 

a,y 
(x) - 7T a,y (x •y. )| bounded if a is a loop. The quadratic differentials 

qn(z)dz2 at za = [pa]) for dz(za.w'). for varying a, are all stretches, by varying 
factors, of the quadratic differential at w for dz(w,wf). If 7 is a common boundary 
component of adjacent surfaces a and 3 then the good position of pQ.(l) with respect 
to qu(z)dz2 is a stretch of the good position of (¿73(7) with respect to qp(z)dz2. Then 
we can paste these together to obtain a fake quadratic differential on some surface 
C \ p\(Y), and in particular, a fake unstable foliation. If da,z(x. x') is bounded, then 
we may paste in something else: any suitable surface will do. Then take any loop set 
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r C C \ Z such that |p"(T)| is bounded, for [if"] = x' and such that C \ ( r U Z) 
is a union of at most once punctured discs. Then there is a homeomorphism £1 
with dy([t;i): [identity]) bounded, between the good positions of pi(T) with respect 
to the fake quadratic differential, and the good position of <//(T) with respect to the 
quadratic differential p(z)dz2 at x for dz{xpxf). Composing [£1] on the right with 
another bounded homeomorphism if necessary (because x may not be exactly [pi]) 
we have that dy([x' o£ ' °Y'], x') is bounded. So we can find [£] with dy ([£], [identity]) 
bounded with x/ = \^x' ° °E' ^p']- as required. • 

This lemma gives the mostly Z Property for {wn}: because by the Basic Property 
there is a chunk system for \tr„. WU+I]Y which is, for ltd chunks up to bounded distance 
a subset of a chunk system for U < ro [w. r -j T(W 

" -j )]. So we obtain, for wn,o = wn, 
irn , i = wn,r. irnJ. w 

n, t 
(1 ^ i < r) with dy(w 71, i 1 W I n, % ) bounded and w ni, w / i+1 

T{wn-i), (wn-i) having the properties ol x, x , tv, w m the lemma, for 0 ^ i < r. 
The lemma also gives similar properties to the mostly Z property for y G [wn, Wn+i] 

and if G [wn+p, 't/;n+p+i], for r (in the mostly Z Property) bounded in terms of p, and 
hence gives property 28.3c) of //m+i in terms of yrn. 

So to complete the construction of the ym< it suffices to prove (2) for homeomorphic 
periodic components of A3. and show that we can ensure (2) for periodic nonhomeo-
morphic components of A ; , and deal with exceptional indices. 

30.13. The homeomorphic periodic components of Aj. — At this stage, we 
can forget about the precise definition of A 7 , but the set AJ is increasing with j 
and therefore changes only boundedly finitely often, with bound given by #(Y). So 
now suppose that P is a (not necessarily connected) set with fo(P) = P and fo \ P 
homeomorphic. and suppose that for [p] G ['Wk,r(wk)] for 7i\ < k < r?,2, 

(i) \<p{dP)\ < A/ ] . 

Suppose also that 

dp(wni,r(wn,)) ^ Mi. 

Then we shall show that the Straightening Property implies that for a suitable con
stant A/2, and all n\ ^ A; ̂  n2, 

(2) (//•/,. r(irk) ^ M2. 

This will complete what we need for homeomorphic periodic components of the A ̂ , as 
stated in 30.13. Recall that dp is actually Max; dp. where Pt are the components of P 

and dptThe Teichmiiller distance in T(A(Pl)), where A(Pt) C Y is chosen relative to Pt 

(see 9.1). Then we write T{P) = UtT(A(P2)) as a set of isotopy classes [p] where 
p is a homeomorphism defined on a disjoint union of sets (C,A(Pt)). Then T(Y) 

projects naturally to T (P) . We define [p] • [xp] = [ ^ ° X p ] for all p] G T(P) , and this 
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also defines a map from T(Y) to T(P). Then for M[ depending only on M\ in (1), 
[<p] e [wklr(wk)} for m ^ k ^ n2, 

dP(T(&}),&]-ixp])^M I 
1-

So in order to show (2) it suffices to show that for a suitable M ' 
2 

for all m ^ k ^ ri2, 

(3) dP('Wk,wk • [XP]) ^ Ai 2' 
just from the Straightening Property. We can assume that the Straightening Prop
erty is stated for T(WJ) replaced by TCP(WJ) • [xp], that is, there are chunk systems 
for [7rp(wrii),7rp(wk)} and [np(wk), np(ii)k) • [XP]] such that every chunk is, up to 
bounded distance, a union of chunks for a chunk system for[rp[wn1, X. 7Tj>(irk) • [xp]], 
for ri\ + no ^ k ^ ri2. (Here, no is bounded in terms of #(!") .) Now itp(wk+\) 
and [7rp('iyfe+i),7Tp('ü;fc+i) • [xp]] are obtained from [7TP(wk) • [ x p I ^ p K ) • [x 2 p ]] by 
removing chunks. Since XP is a homeomorphism, every ltd chunk is periodic not 
just eventually periodic, as happens with r. If an orbit of chunks is going to need 
removing it will happen for // j ^ k ^ ri\ + n ' 

n for some n o bounded in terms of 
the topological type of P (and hence in terms of # ( y ) ) . So there is n o such that 
for rii + n 0 ^ k ^ 77,2, 7Tp(w;a + i) = Kp(wk) • [xp], up to bounded distance. So for 
ni + n / o ^ k < n<2. every segment of 

[7rp(w/e),7Tp(u'A;) • [x,p]] U [7Tp(wk) • f \ / ' | •"/>(//'/,• ) • 2 
P ]] 

along which some gap is ltd, or some loop is Pole-zero, is a bounded distance from 
another such segment on [7ip(wk), 7Tp(wk) • [x 2 

p ]]. This can only be true if 7Tp(wk) is a 
bounded distance from trie set on which dp(w. w • [XP\) 18 within a bounded distance 
of the minimum or infimum possible. If [XP] is a pseudo-Anosov class then this means 
that TTp(iUk) must be a bounded distance from the geodesic along which the minimum 
of d(w.w • [xp]) is achieved. If [XP] is an isometric isotopy class then 7Tp(wk) must 
be a bounded distance from the set on which d(u\ ir • [xp]) takes the value 0. If [XP] 
is a reducible isotopy class then for any 7 in the loop set T of loops in P which is left 
invariant by [xp], and of which complementary components are irreducible, t hen for 
wk = [<p], 1^(7) is bounded, the projections tt- (irk) are such that <7~. (irk. "'/•• • [XP]) 
are bounded. Also for any periodic orbit Q of P \ (UT), 7TQ(wk) satisfies similar 
conditions to the above for rp(wk), depending on whether [XQ] is pseudo-Anosov or 
isometric. Altogether, this gives a bound 

dp(wk:wk • [xp]) < Kp 

where Kp depends only on the isotopy class [xp]? which gives (3). 

30.14. A nonhomeomorphic fixed component of A j3 — Let P be a nonhome-
omorDhic fixed component of A 1 • Again, we can forget the precise definition of A 7 • 
We simply assume that for some integers ri\ < ri2, 

dp(wni,T(wril )) ^ M i , 
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CHAPTER 30. OUTLINE CONSTRUCTION OF A GOOD SEQUENCE 407 

and for //'/,- = [y ]̂. any n \ ^ k ^ d2. 

\<p(dP)\ ^ Mi. 

Now we want to show that if wk can be chosen to satisfy all the properties of 30.2 
then it can also be chosen to satisfy 

dp(wk,r(wk)) <: M2. 

for a constant M2 depending only on M\ and #(Y) and all m ^ A; ̂  n2. In order to 
do this we shall show that given a constant Mi. for A'o depending only on # (Y) and 
some 0 < '/ ^ A'o, 

(1) d(w+i, T(wk+i)) <d(wk, T(wk)) - M4. 
We obtain (1) as follows. As in Chapter 27. we basically need to use the argument 
of 6.6, where the key fact used is: given a quadratic differential at a point in T(Y), 
the pullback under a holomorphic map of sufficiently high degree is not a quadratic 
differential at any point in T(Y). 

Now /••_) and V\ are not both in the same complementary component of P. Then 

F(r(wk)) < 
N-l 

7=0 

dz(r{irk/l). T{ick/l . , )) 

and F( //'/,- • i ) is not much bigger. If 

(2) F(wk) - F(r(«.-A.)) > 2A/., 

then we already have the required bound on F(wk+\) — F(wk). In general, to obtain 
(1). we only need, for some j < A'o, 

(3) F(T +1 (wk)) - F (T j (Wk)) > 2A/4 

Now we fix long thick and dominant parameter functions (r. A, s) and a pole-zero 
constant C and v\ = v\ (r. A, .s) such that ltd loops or long v-thick and dominant 
gaps always exist on sufficiently long geodesic segments for some // ^ v\ (r, A. S) (see 
15.4), and so that, for all v, A(v) is sufficiently large (in a way specified below) given 
M4. We break [wk.r(wk)]z — [wk. r(wk)]y into segments [U>AV, Wk.j+i.} (0 < / ^ TV, 
some N depending on F(wk)) of length between A0/2 and A(), for a suitable Ao so 
that each [wk^. wkj+i] is sufficiently long to contain a segment along which some gap 
or loop is ltd or pole-zero for (A. r, s,C). 

Now for any sequence iika (1 < 0 ̂  AT — 1) of gaps and loops such that 6ka is ltd 

or pole-zero along a segment [zkjA. zk,u2] of [//'/,•.,• irk.i \ \\. define 

S(Zk,Q,li zkX):2 • • • £ A:, AT-1,2? fik.Q* • • • « ftk,N-l) 

= d w.0, Bk-1 
(wk,i, zk,0,1) + 

N-l 

•¡ = 0 

(d 
PA-./ 

(ZkAA,Zka:2) + 6 i 
i,i,Bk,i+1 ( -7>\/.2 • 'A-./' : l.J )) 

+0 ' 
JPh.N - 1 ,Pk.N 

zk, N-1,2, wk, N). 
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where d 
B, C 

is as in 14.10. Now for a suitable constant C\1 

Max{£(2fc,o,i>^fc,o,2 • • • Zk,N-\,2,ßk$, • • • ,ßk,N-i) ~ N C i = < d(wk,r(wk)) 

^ M a x { 5 ( zk,0,l, Zk.,0,2 • ' ' zk,N-l,2, 3. fc,0? • • • , e 7c,/V-l ) +ATCi. 

We have (2) unless, for any choice of sequence (3k,i, f°r all 

d 
f -1 
g f i 

(r(zk,i,i,r(zk,i:2)) ^ d.3h.Jzk.iA.zk.i:2) - 2M4 

and there are components fik,i,i of ./ -l 
o 

Bk,i with # k,i,l n /3 fc,?;+i,i 7̂  0 which are 

1 l 
k,i -thick (for suitable numbers L (1) 

k,i 
) or pole-zero along all but bounded distance of 

[R-(>/c,z,iXr(^,2)j and df B, i, Z-iistance < C1 (Vk,i+1,1) 1 (̂ fc ¿+1 i) from a similar 

segment on [r{zka,i j , r{zk^i,2 JJ,[T(zk,i-1,1) j , ^(^, , ,2 jj, or similarly it /4,; is a loop. 
Then by 28.5, each segment [T(zk^^),r(zk^^2)] is also a bounded dph ,A ^-distance 
from a similar segment along [wk, r(wk)}. Now similarly, we have for some j , either 

F(t 7 + 1 (Wk)) < F (T i (wk))-2M4 

or for 1 ^ £ ^ j + 1 there are -ik.ij C ,/ -l 
u 

{ßk,i,e-i) (with /^,,,0 = ßk,i) and 

[T ' zk, i, T ' (zk, i)] 

IS CL; 
A-. i,. /' 

•distance ^ c ' 
1 1 l 

0 
k from a similar segment on [r l (^,z,l), 7 l (zk/li2)}, or simi

larly if ßk/i £ is a loop and 

dB1k, i,l ' (zk, i, l l >Ar,i,2)) > '/ Bk, i, l - 1 .£-1 (^•,z+),7- 1 (zk, i, 2)) - 2 M4. 

But if this happens for all £ $C fc0 for a suitable A~o depending only on # (F), we obtain 
a contradiction. We use the concept of pole equivalence class of 27.3. By the same 
arommpiit as; in 27 4 - F » thn miadratir diffprpntia.ls at nnints of 

ABk,i,l( f (zk, i, l) T ' t-A-.,.2)j riT((i.4.,/.f(1)) 

must have pole equivalence classes of the same types as at points of 

T Bk, i, l l ( K ; , i ! ^ , 2 ] ) n T ( a C i , £ O ) ) -

This is impossible, for £ sufficiently large depending only on # (Y). because the degree 

of /0 increases strictly at regular intervals, since >ik/,j (IP — 0 and v\ and v2 are not 

in the same component of the complement of P and hence the same is true for 

ftk,i,e, f°r some £ ^ A:q. 

30.15. Exceptional Indices. — Now as in the proof of the Level /s-tool in Chapters 

18-21, we modify the definition of yrn for a sequence of exceptional indices m,j. We 

write K[ (in decreasing order) for the possible (discrete set of) values taken by ft(./'o5 T) 

which are ^ max{F(x') : x G £}. We choose e\ so that E1/(1— Ei) < e2 for i = 0, 1 2 

where £2 is as in 30.13, and the constants Ex are as in 7.7 for ¿ = 0,1,2. Suppose that 

rrij and yrflj(x) have been chosen for j ^ i — l.We choose rrii > m?;_i sufficiently large 

that if 2/m(x) E T ( R , £ i / ( 1 — EjEi)) for ^ ( / o , R ) = k?) and j = 0, 1 or 2 and m < mi 

then ym(x) <G Kj(n,6i) where ^ is minimal nonempty with fi ^ [/0, T] (see 7.7 for the 

notation). Then we define yrrii(x) — ym._i(x) except when yrn_i_i(x) G K1 ([/0, T], e\), 

when we take ^/m,t(x) £ A^d/o , T], ^ 1 ) , as in 7.8. 
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CHAPTER 31 

STRAIGHTENING 

31.1. Canonical Straightening. — We now give a canonical construction of wq+\ 

satisfying the Basic, Straightening and ^-tracing properties, under the assumptions 
that, for i ^ q, W{ satisfies the Basic, Straightening and t>2-tracing properties. The 
mostly Z property then follows from 30.12. In fact, if we obtain wq+i satisfying the 
Basic and Straightening properties, which only concern the projection to T(Z), we 
can satisfy the V2-tracing property also. In order to do this we construct ic>i+i,fc for 
0 ^ k ^ min(7V, q + l) for some TV bounded in terms of # (Y) and take wq+\ = ivq , i ..v. 
where wq+i.k satisfies the Basic property and the Straightening Property with respect 
to [wq+i-k,T(iuq+i,k)} rather than [w0,T(wq+i,k)]- We start with irqvlA) = r(wq). 

Having constructed wq+\^ we fix a chunk system X w+1+k for \trq . !./,•• T(U\J , ,./,)] and 

let E td 
?+i,fc denote the ltd chunks in E, 1+1 A- Inductively we shall choose E a+lM+l 

so that each chunk of E ltd 
q+lM+l is a subset of a chunk of E ltd 

q+i-A ' 
We start from 

1+1,0 = / 
- 1 

u 
Wq (We already have a tan my ot chunk systems ẑ n.m with n ^ ///. 

with ZJ, 1.71 = 2-f This is consistent with what we want to do now because for some 
TV ^ q + 1 we shall define Eq+1= £f/-fi,/v, once we have defined Eg+i^/v.) For 
0 ^ i ^ k, we then fix a chunk system E 7 /'.'/ • 1.Â-for which each chunk is a subset of 
E, (/ /.(/ i i ./,• i i f / < k - i, or of >: 

7-A-+l.<3 if i = A;, and such that 

[-hcJ,- 1 E(/ ,.<r 1 ./,• U £qr+.l,A: 

is a chunk system for [wq+i - a.- > t ( w<? +1, fc ) ] • We define w^/. differently for A; ^ TV — 1 
and for k = N. 

So now suppose that irq } j ./,.. E Q+1.Â; and E q — i,q+lA have been constructed for /' ^ At. 
We can assume after refinement of £g+i,A; if necessary that every chunk of Eg+i,A- is 
either a bounded distance from a subset of some chunk of T,q-k,q or has no subset 
which is a bounded distance from a subset of any such chunk. Then let fti be the set 
of ltd chunks Eg+i^ a bounded distance from a subset of some chunk of Eq_AV7, with 
ft2 the corresponding set of ltd chunks in a refinement of Eg_fc,g. Let ftt3 be the set of 
ltd chunks Ik+i x Ck+i in a chunk system for [wq+i^, T('Ww+i,k)} for which there exists 
a sequence I3 x (3 with TJ+1 x ("J+1 C Tj x Q3 up to bounded distance, To x Co G ft2 
and Tj x ("j G Eq_^+j5(? for j ^ A:. If fti fi fts = 0 then we define 

dtd 
Jq+l,k+l 

a 
9+1,/e 

\ (fti u ft3) 
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If 0 i fi O3 7̂  0 then we need to be more careful. 

Lemma. - We can find fi4 C fii such that, if fis and fi(j are defined relative to 

fi4 in the same way as fi2; fis, respectively relative to fii, then fii C fi4 U fi^ and 

fi4 n fi6 = 0 . 

Proof Let fii (21) be a chunk system which is a refinement of fii | [wq+i^., z\], for 
any z\ G [wq+i^.,, T(wq+\ia-)]- Let fi2(w) and fi.^zi) be defined in the same way as 
fi«2 and fia but relative to fii(zi). Of course, fii (u^+i^.) H fi3(7i'q+i,A:) = 0- Take 
the first z\ for which the intersection is nonempty. Then fii (z\) U Qs(z\) divides at 
least one ltd chunk of E^+i^. Then define fi(^i,22) to be a refinement of fii | [z\, Z2] 
for any z<2 G [z\, r(w,-/+i,/,.)], and let fi2(^i < 2̂) and fi;}(2:1, 2:2) be similarly defined to 
before but looking only at ltd chunks in E^+i,/,: \ (fii (21.) U i\(z\)) Take the first 
z<2 such that Qi(zu z2) H ih(z-[,z2)r\ 7̂  0 . Similarly define <_>/,(.:,. :y . 1 ) for A' = 1, 2, 
3, and j < rn, where rn is the first integer such that 

fii C fii (zi) U (U •n-l 
/=1 

fiiC-,.;,. 1 )) ufi3(^i)u ( l 7/1-1 
/=1 

0:^,~~J + i ) ) . 

Then we take 

fij - fii(zi) U (U -1 
1 = 1 

ih(zhzi+l)) .. = «;s(2i)U (U m - 1 
=1 « 3 ( ^ + 1 ) ) . • 

Havinp- clone this we then define 

ld 
7 • 1 ./•• • 1 = ltd 

(7+l.A-
x (fi4Ufi6). 

Then l̂ui 
'cjf+l,A:+l 

is a subset of C/+1.A- which is a chunk system for some [z.zr], not 

necessarily with z — r(z). But this can fail only if A; + 1 > 1 and z is in the boundary 
of a boundary chunk / x £ of fir, with C flr> ^ 0 or if z is a bounded distance from 
the boundary of a boundary chunk I x ( of fii such that 2/ x a intersects a chunk 
derived from / x 

To ensure that z' = r(z) and to define the non-ltd chunks of Eg+i,fc+i we consider 
the chunks of Uo^a-^-T^+eA: nearer wq+\^. on [wq-k,+i,wq+i,k] than the chunks of 
fi5, which are all ltd. Because the Straightening Property holds for wq+i,k relative to 

[wq-k/,.. 1, r(wq+1,/,:)], these chunks are not ltd. Now take any chunk / x C of fi4 \ f i e , and 

write J x ( = J,/+1 x Cy+i with /,+i x Q+i C ./ -1 
0 (1, x Q) and , x c(/ ,• G E q — i,q-\-l,k • 

Then C/ H C /+1 = 0 for q — k < i ^ q+ 1, because / , x C, has to be ltd, and for any ltd 
chunk J XUJ G Ey.(/. 1./, for j > «7 — A', u;nC/+i = 0- Also if C/+i *H a loop, Cj / C7+1 llP 
to Z-preserving isotopy. So pulling back we have Q D Q — 0 for — k < i < j ^ q + 1 
or q — k ^ i < j ^ q, where this includes, for such i and j , (7 / Cj UP to ^-preserving 
isotopy. This puts a bound on A; in terms of # (Y), if fi4 7̂  0, because there is a 
bound depending only on # ( F ) on the number of disjoint nontrivial nonperiheral 

gasp and loops C;. But / x ( is also a bounded distance from a chunk 1 1 
q-k X Co-A: 

of fi5. Write C, 
q-k = Cq-k- So pulling back under j 3~i 

0 
which is permissible under 

the r2-t racing property we have C 1 Ç.j = 0 for any q — k ^ i < j ^ q, for any 

ASTÉRISQUE 288 



CHAPTER 31. STRAIGHTENING 411 

sequence 1 i 
f i x < ' +1 

C f — 1 
o a 1 x C ' 

i 
. In particular, ( a 

% 
1 C = 0- that is, C / 

7 
U C 2 

i = 0 

tor q — k < i ^ q Pulling back hirther, note that this implies C 2 
2i U C 7 

a 
= <7) for 

q — k ^ i < j ^ q or g — A; < i < j; $J q + 1. This puts a bound on k in terms of # (F), 
if 4̂ 7̂  0 - and if Q4 = 0 , 5̂ = f26 — 0 . For there is a bound on the number of 
disjoint surfaces C ' 

>i unless some ( 1 
y l 

is loop with C r 
i = C a 

J 
up to Z-preservine' isotopy. 

Then we can choose non-ltd chunks J1 x ( -1 a to replace the chunks ![ x ( 
r 

and we take 

E, 'o+l. k+l to be the chunk system with these replacements. Then I \a+i.k+i is indeed 
a chunk system for [1 rq : \.k : 1 • T( ;^q+l,fc4-l )] for some w q+1,A:+1 • 

If 1̂ 4 = 0 then 0,5 = M6 = 0- We have seen that t here is a bound on the k for which 

f24 7̂  0 . So there is a least N, bounded in terms of # (Y) such that I Mq+1,j = e '7+l,AT 
for all j ^ N. We then define 1 72+1 =W 74-1 and u l.N = u n+1 • 

37.2. Corollary. — The following holds for an integer r\ depending only on #(Y) and 

a constant M\ depending only on the long thick and dominant parameter functions 
and the constant in the v<2 tracing property. Suppose the wt are defined using canonical 
straightening. Then 

(1) d\(u\r (C(/ , ! ) ^ 
i-i 

j = i-ri 

F (wj) + M1. 

Proof. This is immediate from 31.1: (1) follows because length can be computed 

usine; just the ltd chunks and in canonical straightening every ltd chunk of E ' +1 IS 
derived from a chunk of E q-k for some k ^ v\, for a suitable r\. 

31.3. Construction of wn via successive geodesies: [r'j and [£*]. — Suppose 
that w„ _i has been constructed. We shall define wn by constructing a sequence [tp'1] in 
T(Y) for 0 ^ /' ^ N. for some N bounded in terms of #(Y) and taking wn = [ij-'N]. 
We take [V'°] = r(wn-i). For all / we define [&] = T([^1}) e T(Y)- remembering 
that, from the definition of r, dy([ij:1]. [£']) = <fe([V;/']? [£'])• For all we either choose 
[V* 'j C [[4>% [C})z = [[ip1], [C]]Y with dz([r'). [C]) just sufficiently large (where what 
"sufficiently large" means is yet to be determined), or we choose [Yi+1] so that the ltd 
chunks of chunk system for [[Yi],[£*+L]]z arê  UP to hounded distance, ltd chunks 
of some chunk system for [[Yi],[£*]]. It will be chosen using Canonical Straightening 
30.11, and with the ^-tracing property in mind. In fact, for i > 2, the ltd chunks 
of chunk system for [[Yi+1], [Ei+1]]z axe, up to bounded distance, precisely all the ltd 
chunks of some chunk system for [[Yi],. [£*]], and only the nonltd chunks are changed. 
The first case will occur for i — 1 and for at least every other i. For [Yi+1] as in the 
first case we shall have F([07+1]) ^ F([ih1}). For [Yi+ 1 ] as in the second case we shall 
have 

(i) F ( [ ' 0 i + 1 ] ) < F ( [ ^ - 1 ] ) . 
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These two cases will give 

F(wn) = F([WN N ]) < F(w»„_i). 

We shall obtain the stronger F-decreasing property by stronger estimates on 

F ({4, + ) - F [W .1 ); F ([ w ! + l })-F(H i-1 ). To obtain F([y. ¿+1 ]) ^ F ([ 0 ,1 ]) in the first 

case of [0*+1]: 

F([# + l ]) < dz( [^ + l ] , [?]) + dzdci ie+l}) = <1у({ф'+1}, lev + а2(т{т)м[Фг+1})) 
< dY(W'i+1}. ICD + dylWl fri) = dyíWA [fi) = F(W}). 

We shall concentrate on the construction of [02] from [W1] — assuming that [ip2] is 
as in the second case, which is usually so — and [0°]. Let q2(z)dz2 be the quadratic 
differential for dy([02], [£2]) at [02] with stretchp2(z)dz2 at [£2]. Write [£2] = [y2o02]. 
Of course, y2 is only defined up to isotopy constant on ip2(Y). Let #2(2) denote the 

angle between the direction of maximal distortion of y — 2 at z and the stable foliation 

of p2(z)dz2. We shall show that, for a suitable choice of x , f°r L as in 8.3: 

(2) i<(x2y -1 |p2Kexp(2F([V; 0 ) ) ( ! + 1 
2 

L 6 ,9 
2 Im I) 

Then by 8.3 we have (1) as required for 1 = 1 . We shall proceed in the same way for 
[0*+2], [r' ; 1 j . [0/] replacing [V;2], [c1 j . [0°]< if [0Z+2] is defined as in the second case 
from [wi+1] that is, so that the ltd chunks of chunk system for [['0Z+2L [C+2]]^ are, 

up to bounded distance, ltd chunks of some chunk system for [[0Z+1], [Ei+1] with W\ 
replacing [0°] in (2). 

31.4. Definition of [-0 ]: the rough idea. — Largely for ease of notation, we 
concentrate on the construction of [02]. In fact, as we shall see, the construction of 
[0Z+1] from [W1] is somewhat simpler for i ^ 2, when the ltd chunks for [p0*+1],[Ei+1]] 
are the same as those for [['0'']- [£*]] (up to bounded distance). It is possible that this 
might also be true for 7 = 1, but in general it is not. It is only some non-ltd chunks 
which change. We defined [01], E1 in 31.2. We also write 

T (Wn-1) = [Eo] = [x ti .1 o ih .1 ] 

where x ¿1,1 minimizes distortion up to isotopy constant on vljl(Y) and t\ = 

ау{[Ф1}, [С0]). W e wr i t e 

r(m) = ix to + t, M .1 o X ¿,,1 o 1 ] = [x /•>-/, ,1 
o ,1 J 

where y /2./1.1 minimizes distortion up to isotopy constant on Y1(Z) and 

rfz(r(M),T([^1])=Í2. 
The reason for this notation is that we shall write |y t.i o 1 .1 ] for the point distance t 

along [[01], [£°]]y if 0 ^ t ^ ti, and for the point distance t -t2 along [r([0]), r([0!]]z 
if ti ^ t ^ ti + t2. Here y''1 minimizes distortion modulo isotopy constant on '\pl(Z) 
if / ^ / j . and y*'*1'1 minimizes distortion modulo isotopy constant on y*1,1 o 0 ( Z ) if 
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t ^ t\. (This notation is reasonably consistent with that used in 28.6.) In general, we 
define 

X t.uA = X ¿,1 o (x u.l ) \-1 

for u ^ t, which is consistent with the above. So then 

X t.uA o X u.l = X 
,t,l 

for u ^ t. 
We have already said that [ip2] is defined up to bounded distortion to be the 

canonical straightening on non-ltd chunks. To define [I/J2] pointwise, we should like 
to define 

w 2 (z) = X 
t(z).l 

o w i (z) 

where t(z) is piecewise constant but obviously there is some work needed to make 
sense of this, because 'UJ2 needs to be continuous. We want to do this in such a way 
that T(\W2}) = \e2 where 

£2 = V o x u(z)A 
w 

.1 (z) 

for some u{z) — t(z) ^ t\ and some homeomorphism rj of bounded distortion. If // is 

the identity near a oomt then or course the corresponding local distortion is < t 2tl 
The map rj is not globally the identity, but we shall be able to compensate this by 

using 8.3: the factor to which x i(z)Mz)A is not the best distortion. 

31.5. Pointwise definitions. — Now we define precisely the surface C \ r2(V) 
and a homeomorphism x2 with [<f2] = [x2 ° V;2]- To define the surface we use the 
quadratic differential qt^(z)dz2 at [\fA o 01] for dz{\psil], [xul ° c1 ]) (if t < t\) and 
for dz([xtlA °Y1], [xtA ° V;1]) (if ti < t ^ ti + t2). The Canonical Straightening 
of wn-\ gives a chunk system E for [['02], [C2]] whose ltd chunks are a subset of a 
chunk system for [wn-i, r(wn-\)] and hence the ltd chunks are a subset of a chunk 
system for [ [ / . ' ' [ £ ' ] ; . up to bounded distance. For the moment we say that a ltd 
chunk I x UJ e E is semiminirnal if u is not contained in the union of surfaces £ with 
J x C, < I XUJ, that is, with J to the left of I in [[r ' j . [f1]] and J x ( G E. As usual we 
say that J x UJ is minimal if a; n £ = 0 for all such J x ( . For a semiminirnal chunk 
the visible lower boundary is the complement in UJ of the union of all the £ with J x £ 
ltd and J x ( < I x UJ. The visible boundary gives a decomposition of the surface 
C \ 02(F). The surfaces has not yet been defined precisely, but will be built up using 
the decomposition. So take any I x UJ such that UJ contributes to the visible lower 
boundary. We can choose ipl(duj) so that \/J o ijjl(duj) is in good position relative to 
qt,i(z)dz2 for all 0 ^ t < t\. If I x UJ is ltd then \M o'01 (du) is embedded. If I x UJ is 
not ltd then we choose a small perturbation of the good position so that x*'1 oy^(duj) 
is embedded for all t < t\. So now we form the surface C \ 02(1^) by gluing together 
surfaces v*1 u'Kl o i^{uj) for minimal I x UJ and surfaces 

X (w), 1 
O W 1 (UJ) x (Ux •S i (C).i (0) 
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for semiminimal I x UJ. Any loop v .tA o a 1 (did) has a natural identification with 

X tA 0 w A (duo) for any t ^ ?/ < ¿1, using y w = X l O (X ;,1 ) ,-1 . This enables us to 
glue surfaces together. For the ltd chunks, we do simply glue the surfaces together. 

For some of the other chunks, we shall glue in something slightly different. For the 

moment wre leave that aside, and consider the visible upper boundary for E, which is 

defined in the same way as the visible lower boundary. Gluing: together is not Quite 

so simple because there is a discontinuity in the map t i—• \ i,l o lb i [diu) at t = U. 

When gluing together \ .tA o w I (duj) and ) yu A 1 (duo) for t < t\ and u > t\ we simply 

use length parametrisation. In this way we get a surface which is C \ £ (Y) up tc 

bounded distortion only, which will coincide with C\^2{Y) on any part of the surface 
of the form y +t2, I o w 1 f — j 

(j 
UJ) for which 'ih (UJ) is part of the surface C \ ijriY). On 

other parts of the surface, we have to compose with a bounded distortion n to get to 

K2] = r(№2]). 
As for the remaining non-ltd chunks, where the surfaces for C \ ijj (Y) have not 

been glued in: the chunk system given by Canonical Straightening tells us what surface 
we would like to glue in up to bounded distortion, but at this point we may not be 
able to get all the projections right in one step, if we want to keep F([^2}) ^F5[Y°]) 
and it is for this reason only that we may need [(.''] for i ^ 2. We would like to 
define TTr.Th/;2!) differently from 7Tr.([V'°l) for 0 ^ i € R. where C, + I C fnUd) and 
To x Co comes within a bounded distance of chunks on \u: n-r-l • w 71 — V 1. But we may 
be constrained to define just some, not all of the 7r^y(['0 ]) differently from VT^.(['0 ]), 
and then define some TTC-; ( \y ' 1 2J) differently from TT̂  ([<•'']) for /' ^ N — 2 until all the 
nCj W'N]) are correct. There is also another choice, for TTQ^ ([V'2]) and 7r^; ([</V]). We 
leave this choice open for the moment to be specified in 31.6 but it will give use 
the property F([i/i'l~*~2]) < F(h//1}) which we need. 

As for the t'2-tracing property: we have so far defined [-02] only as an element 
of T ( Z ) , using these surfaces. We choose [ij>2] so that for any gap ¡3 at [i//2] if 
<T/lz([V'2]- w) ^ A/i for some w G [//'/. w, . i • within a bounded distance of [U)QAWQ-I] 

or w G [wq-i, r(wq-i)] then </ IA-(\(.'2\. w) ^ Mz- We do not need to modify y2 for the 
/^-tracing property, however, because [02] is chosen so that the Straightening Prop
erty holds, that is. \\c2]. [£2]] and [WQ. [V;2]] do not come within a bounded distance 
of each other on ltd chunks or equivalently (as we saw in Canonical Straightening) 
[[ip2], [£2]] and \<rn ,.. [V'2]] do not come within a bounded distance of each other on 
ltd chunks, for some (or equivalently any) sufficiently large r. 

31.6. The F-decrease property. — We now need to show the F-decrease prop

erty, that is, as suggested in 31.2, we need to show that 

(i) A X Y 2 r > 2 K e x p ( 2 F ( [ 0 ° ] ) ( l + 1 
2 
L 0 2 

2 P2 0 

where L is as in 8.3. which, by 8.3, then implies that 

F([rp2}) ^ F([-00]) = R. 
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The F-decreasing property is actually a negative upper bound on F([V>2]) — F([ij)°]) 
and we shall actually obtain this. So we need to examine the set of z on which we do 
not have K((x2)~l)(z)< exp 2F(['0°]). This is obviously contained in the set where 
?/ is not the identity. From 31.5, this set is the union of two subsets U\ and U2-

The subset U\ is contained in the union of sets S\(UJ\) which are bounded neigh
bourhoods of S(UJ\,E{)) where u x uj\ is part of the visible upper boundary for £ with 
u < 11 + t-2- and in fact we shall then have u <t\. 

The subset U2 is contained in the union of sets S\(uii) which are bounded neigh
bourhoods of S(u;i,eo) for uq = Q f°r some 1 ^ j ^ r, for some r ^ 2, where r 
and the (j are as in 31.6. Again, in this case, we shall want to estimate 62 on a 
larger set, and to choose the modulus of annuli at [4)2\, [£2] homotopic to 4j2(dQ), 
£2(d(j) appropriately but in some cases, as we shall see, we might have to leave 
modifications until jr'j for some /' > 2. 

In the case of both U\ and U2* we shall show that for any of the sets S](uq) 
contributing to U\ or U2, there is a larger set T(oj\) such that 

(2) 
7 (w1) 

A'(A 2 ) — J p2 < oxp(2/?) 
( 

-1/2 L 6 2 
2 » 1 

) 

To do this, we shall choose T(UJ\) containing Si (aq ) such that the /.^-measure 
a(T(uq),_p2) i« much larger than a (Si (ooi),p2), such that either K(x'2) exp(—2F([V'0]) 
is bounded from 1 on a positive proportion of T(uj\), or 02 is bounded from 0 on a 
positive proportion of T(uq). Let qt, ,_,i (z)dz2 and qt] ,+,\(z)dz2 denote the quadratic 
differentials at [E°] for dz{\rv\. [£0]) and dz([^}- [d1]) respectively, which extends the 
earlier notation qt^(z)dz2. 

So now we consider S(UJ\) C U\. If uq is dominant at [£2] for p2{z)dz2. then we can 

change \ 2 on a positive />2-mea.sure-proportion to reduce the distortion substantially 
as follows. By 15.8. we can find points [\ l, 1 o 4' 1 ] arid j \ '•2,1 o w A' ]. with .sq < t)\ 
and t\ < .s'2 < 1̂ + t-2. such that (if uq is a gap) uq is long //-thick and dominant at 

llx ..So, 1 o 0 1 I for q».,.i(z)dz'2 and long 1/-thick and dominant at [\ •s 1 , 1 w 1 ] for q '.S ! . 1 (z)dz 2 

and with 
dw1 ([X s-, ,1 

O C 
1 • 
My x, 1 o w ,1 ) < C (v), 

but with ,s'2 — 'S'i much larger than C(v)< and much larger than (t \ + t2) — -s'2- Then 

we can replace ( \ • 1,8, l Y - 1 on a positive proportion of (\ 1+t1, s2, l - 1 (Si (^ i ) ) . to 

get distortion 0(C(v)), thereby changing the definition of \2 and much reducing 
distortion and obtaining 

(3) 
S (w1) 

K((x2rl)\P2\<r2R. 

The case when UJI is a loop is similar. If aq is dominant for either of these quadratic 
differentials at [R°] = r(wn-i), we can employ a similar argument, finding ,sq and .s2 
as above, using them to change the definition of \2 although this time t\ + t-2 — s2 is 
not necessarily small in comparison to .s2 — .sq. So we again obtain (3). 
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If LU\ is not dominant for qu + Az)dz2 at [E°] or P2(z)dz2 at [<£21 then for \ib°] — 

r{wn-i)i \x t,i ( ^ i ) i , 
Qt, l 

= 0(e |t1-t| |^°(aa;i)L)forg = 9 1, s and t > t\. Then we take 

2 > 0 = (X f i+t2,ti,i ) So where So is a bounded neighbourhood of the good position 
of 'i/j°(duji) with respect to ptu+,i(z)dz2. Then T(UJ{) has much larger diameter than 

S-i (CJI) and hence also much larger Do-measure, since UJI is not dominant for vo. Then 

on 7\, either 02 is bounded from 0 or K{{\ • tl+t2,l ) ° > -ti,i r 1 is boundedly less than 

K ((X [+¿2,1 ) -1 ) # ( ( * ¿1 .1 ) ) , because the angle between the unstable foliations of 
qt]+t2,i(z)dz2 and p2(z)dz2 is bounded from 0 on a good proportion of T(uj\). 

Now we consider U2. and consider sets S(Q) for 1 ^ j ^ r for some r ^ 2 and sets 

Cj as in 31.5. Once we have chosen |£2(<9Co)| and |-02(dCr)l> w^ choose a function # of 
the form 

g(t) = C e x p ( | í - í 0 | ) 

such that for points ¿3 < ¿4 with £4 — £3 = (7- — 1)(£2 — ¿1), 

.9(*3) = ll2OCo)|, 

</(*4) = |V2(aCr)|. 

For each j we would like to define 

U'2(dQ)\ = \e(OCJ+i)\ = f l ( < 3 + j ( * 2 - * i ) ) , 

and to define 7Tc,([V;2]) as dictated by Canonical Straightening. This is possible if 

(4) 1 ^ 0 ) 1 = 0 ( 1 ^ ( 9 0 ) 1 ) , 

which is what will give 02 bounded from 0 on a set T(ui\) of much bigger £>2-nieasure 
that Si(ui). This is certainly true if K ^ C o ) ! = o(|£°<9Co|). We do obtain (4) for 
j = 0, if Co is n°t dominant for qtl, + j (z)dz2. We can then make 7r̂ 0 ([V^2]) and ^Ci ([£2]) 
different from 7i>,, (T^1!) and 7iv,([E1]) and keep the increased distortion below 

Le 2F([V/']) 

T(Ci) 
92\n2\. 

If Co is dominant for qt^jr_\(z)dz2 then we do not attempt any change on this but 
take [I/j2] to be defined using just the changes made elsewhere, choose [ijj3] £ [["</;2]i [£2]] 
with dz([il>'2],,[Y3]) Just large enough, and for [ylj3] either Co is not dominant for the 
corresponding quadratic differential or Ci is dominant along a stretch of [[^3], [£3]] 
and Si(Ci) has moved into the Ui-set. So in finitely many steps we reach [I/jn}, which 
is a canonical straightening. 
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