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ANOSOV GEODESIC FLOWS FOR EMBEDDED SURFACES 

by 

Victor J. Donnay & Charles C. Pugh 

Abstract. — In this paper we embed a high genus surface in RA so that its géodésie 
flow h as no conjugale points and is Anosov, despite the fact that its curvature cannot 
be everywhere négative. 

1. Introduction 

At the International Conférence on Dynamical Systems held in Rio de Janeiro in 
July, 2000, Michael Hernian asked whether the géodésie flow for an enibedded surface 
in R'] can be uniformly hyperbolic, i.e., Anosov. Using techniques from our paper [5] 
and a suggestion of John Franks and Clark Robinson, we answer Hermairs question 
affirmatively. The enibedded surface looks like a spherical shell with niany holes 
drilled through it. See Figures 1 and 2. 

The Lobachevsky-Hadamard Theoreni states that if a Riemann nianifold lias nég­
ative sectional curvature tlien its géodésie flow is Anosov. The célébrated thesis of 
Anosov [1] shows that this implies ergodicity, in fact the Bernoulli property, a stronger 
form of ergodicity. 

In [2], Biirns and Donnay showed that every surface M embeds in R'̂  so that 
its géodésie flow is Bernoulli; liowever, this cannot be a conséquence of M having 
négative curvature. For a compact surface M C R** necessarily lias régions of positive 
curvature, the standard explanation being that there is a smallest sphère S which 
contains M, and there are points at which S is tangent to M. At thèse points the 
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62 V.J. DONNAY & C.C. PUGH 

FIGURE 1. An embedded surface formed by Connecting two concentric 
sphères with many tubes. 

FIGURE 2. The radiolarian Aulonia hexagona, a marine micro-organism, 
as it appears through an électron microscope, by S.A. Kling. 

curvature of M is positive. By continuity, the curvature of M is positive at nearby 
points too. The Bernoulli géodésie flows constructed by Burns and Donnay employ 
"focusing caps" to control the positive curvature. However, the caps are bounded 
by closed geodesics on which the curvature is zéro, preventing uniform hyperbolicity. 
If the caps are perturbed to destroy thèse parabolic orbits the System can become 
non-ergodic [3, 4]. 

Instead of using caps, we use tubes of négative curvature together with the notion 
of a finite horizon geometry, which we introduced in [5], and are thereby able to show 

Theorem A. — There exist embedded surfaces in for which the géodésie flows are 
Anosov. 

As an extension of Theorem A we discuss the immersed case, which has interest 
when the surface is not orientable. 

Theorem B. - There exist immersed non-orientable surfaces in RA for which the 
géodésie flows are Anosov. 

The basic ingrédient in our construction is illustrated in Figure 3; connect two flat 
tori (they are not embedded in R,]) via a tube of négative curvature. The géodésie 
flow for this genus two surface is Bernoulli but not uniformly hyperbolic - since there 
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FIGURE 3. Two flat tori joined by a negatively curved tube. 

are periodic geodesics lying completely in a flat région. If we now connect the two 
tori by enough tubes to produce a finite horizon pattern (see Section 2), i.e. every 
géodésie enters a tube in a bounded time, then the géodésie flow for this high genus 
surface is Anosov. To make an embedded Anosov example, we follow the suggestion 
of Franks and Robinson: reproduce the construction using very large and nearly flat 
concentric sphères instead of tori, again in a finite horizon pattern of tubes. 

Remark. — Theorems A and B give the existence of high genus surfaces in R3 with 
Anosov géodésie flows, but we do not know a good lower bound on the genus. In [6], 
Wilhelm Klingenberg shows that no surface whose Riemann structure has conjugate 
points, which are produced by a surfeit of positive curvature, can have an Anosov 
géodésie flow. Hence our construction also provides examples of embedded surfaces 
without conjugate points. By Klingenberg's resuit, the sphère and torus never have 
Riemann structures whose géodésie flows are Anosov. So in particular, thèse surfaces 
cannot embed in R3 in such a way that their géodésie flows are Anosov. But what 
about the bitorus? Can it embed in R3 so that its géodésie flow is Anosov? Is it at 
least possible to embed the bitorus so that its metric has no conjugate points? 

2. Finite Horizon 

Let M be a surface equipped with a Riemann structure. A family C of curves 
Ci , . . . , Ck in Al gives Al <fi-finite horizon if every unit length géodésie crosses at least 
one curve in C at an angle ^ <p. In [5] we show in détail how to choose C that gives 
Al finite horizon, when Al is a surface embedded in R3 and its Riemann structure is 
the one it inherits from the embedding. Here is an outline of the construction. 

We first construct a fine, smooth triangulation of M whose triangles have uniformly 
bounded eccentricity and nearly géodésie edges. (The eccentricity of a triangle is the 
reciprocal of its smallest vertex angle.) We then draw small géodésie dises at the 
vertices of the triangulation, and a string of N "pearl dises" along each edge of the 
triangulation outside the vertex dises. Finally, we draw 2N + 2 "wing dises" parallel 
to the string of pearl dises. Altogether this gives 9(N -f 1) dises per triangle. The 
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pearl and wing dises have radius r, which is much less than the radius R of the vertex 
dises, and this makes the pearl and wing dises along one edge of a triangle disjoint 
from those along a différent edge. 

Technically, once we have a bound on the eccentricity of the triangles that appear 
in our triangulations, we choose R and N. We then keep R and N fixed, while we 
dilate the surface by a factor of 2n, n —> oc, making ever finer triangulations of the 
dilated surface that have nearly linear triangles of roughly unit size. The radii r of 
the pearl and wing disks vary depending on the length of the edge of the triangle but 
lie in a compact interval. 

With respect to the flat Riemann structure, the dise pattern for a triangle is shown 
in Figure 4. Every unit segment starting inside the flat triangle must cross the bound-

FlGURE 4. The pattern of dises for a linear triangle that gives the finite 
horizon property. 

ary circles of thèse dises at some positive angle. By compaetness, they cross at some 
uniformly positive angle (/>, a fact that remains true under small perturbations. For 
example, if we shrink ail the dises by a factor \x < 1, where 1 — /JL is small, they still give 
the finite horizon property for unit segments. Similarly, the finite horizon property 
still holds if the flat metric is replaced by a nearly flat metric. 

Dénote by 2nM the surface gotten by dilating M by a factor 2n. The Riemann 
structure of 2nM restricted to a nearly linear triangle T of roughly unit size is nearly 
flat. Thus, the géodésie dises of radius jir and /JLR laid down in the pattern of Figure 4 
are disjoint and give the finite horizon property for unit geodesics on 2nM when n is 
large. 

We then flatten thèse disjoint géodésie dises by pushing each into the tangent plane 
at its center. Slightly smaller round dises lie in the flattened géodésie dises, and they 
still give the finite horizon property. The net effect is that the given surface M is 
replaced by a new one, 2" M. with diameter roughly 2n, and having a great number 
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of disjoint, flat plateau dises such that any unit géodésie crosses the boundary of at 
least one plateau dise at an angle ^ (p > 0 for n large. 

3 . Dispersing Tubes 

In [5] we glue ufocusing caps" in place of the plateau dises above to niake the 
géodésie fiow non-uniformly hyperbolic. Here we glue tubes between pairs of plateau 
dises to niake it Anosov. 

Définition. — A dispersing tube T is a surface of révolution 

T = {Mz):r = h(z)} 

such that h : [-1,1] (0.1] satisfies 
(a) h(z) = h(-z). 
(b) h(±l) = 1. 
(c) If |~| < 1 tlien h is smooth and h" {z) > 0. 
(d) The graph of h is infinitely tangent to the lines z = ±1. In particular 

lim~_,±i /?'(-) = ±oc. 

Thus. T is a catenoid-hke surface with its ends niade planar. It lias négative 
curvature. See Figure 3. The geodesics on a dispersing tube are simple to describe. 
There is the closed géodésie T around the "waist" of the tube, and there are geodesics 
asymptotic to it. Every other géodésie either enters and exits T without meeting T, 
or it crosses F once on its way from one end of T to the other. The entry and exit 
angles are equal because the tube is symmetric. 

Note that independent linear scalings of z and r })reserve the properties of T: it 
lias négative curvature. it is infinitely tangent to the planes contammg its bomidary 
circles, and it contains a unique, closed waist géodésie T. Thus, we can niake T long 
and thin, or short and broad. To avoid bending T, whicli may introduce positive 
curvature. we must be sure to kee}) its bomidary circles in parallel planes. 

4 . The Perforated Sphère 

Here is the proof of Theorem A. Take a sphère in R'* and make the finite horizon 
construction described in Section 2. (Any surface could be used instead of the sphère.) 
This gives a séquence of spheroids Sn of radius 2" that contain many disjoint plateau 
dises of roughly unit radius. Each plateau dise lies in the plane normal to the radius 
vector from the origin. Then take a concentric copy of Sfl. say S'n, which is Sn 
shrunk by the factor 1 — 1/2". The spheroids have radii that differ by 1. As n oc. 
this niakes the plateau dises nearly equal in radius and parallel in pairs. Replace 
each pair of parallel plateau dises by a dispersing tube. The bomidary circles of the 
dispersing tubes have radius equal to the plateau dise in which is slightly less 
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than the corresponding radius in Sn. But as n —» oo, the différence tends to 0, and 
consequently the slightly smaller dises on the outer spheroid continue to give the finite 
horizon property there. The dispersing tubes are roughly of unit size, so they ail have 
roughly the saine effect on geodesics passing through them. 

The spheroids Sn, 5^, with plateau dise pairs replaced by dispersing tubes is the 
perforated sphère M = Mn. There are three types of geodesics on M. The closed 
géodésie T around the waist of each tube, the geodesics that are asymptotic to thèse 
closed geodesics, and the geodesics that regularly enter and exit dispersing tubes at 
an angle ^ <p. 

Let (p be the géodésie flow for M. Its phase space is the unit tangent bundle SM. 
To show that is Anosov we consider the normal bundle N to the flow direction X. 
Then T(SM) = N 0 X is a T(/>invariant splitting. The normal bundle is given by 
TV = H © V , where H is the horizontal subspace and V is the vertical subspace. For 
x G S M , let P(x) be the standard, closed positive cone that consists of lines through 
the origin of N(x) lying in the first and third quadrants with respect to N = H (&V. 
We claim that the positive cone field P is contracted uniformly into itself by the time 
one map T(p\. 

For ^ G iVx, Ç ^ 0, let u(t) dénote the slope of the vector T(pt(Ç) with respect to 
the splitting N = H ®V &t ipt(x). Then u solves the Riccati équation 

u' = -K(t)-u2. 

The vertical edge of the cone field is easily seen to be mapped inside the positive 
cone by a uniform amount under the time one map. Thus we need only examine the 
horizontal edge of the cone which corresponds to solutions of the Riccati équation with 
initial condition u(0) = 0. Henceforth, we restrict our attention to Riccati solutions 
with tins initial condition. 

Every unit géodésie has the following life. It expériences strictly négative curvature 
K ^ vo < 0 for at least a fixed time to > 0 because it enters at least one tube at an 
angle ^ 0, and it expériences curvature K ^ K(J for the rest of the time, where K,Q 
is the maximum of the curvature on the surface. The positive curvature bound K,Q 
becomes uniformly small when we take n large enough, while the négative bound Z/Q 
stays fixed, and the time bound to stays fixed. 

First, let us assume that the curvature on the surface is non-positive, so that 
tt0 = 0. Then we can make the estimate that u' = —K — u2 ^ 0 — u2 which implies 
that u(t = 1) > UQ > 0 for u{t) any solution of the the Riccati solution along a 
géodésie on the surface M. The bound uo equals the value of the solution at t — 1 of 
the pieeewise constant Riccati équation with K(t) = vo for t G [0,to] and K(t) = 0, 
for t G (t0, 1]. 

By continuous dependence on parameters, if K0 > 0 is sufficiently small (Le., if n 
is large), then u(t = 1) > uo/2 > 0. Hence, the bottom edge of the cone is mapped 
into the cone by a uniform amount. We conclude that P is uniformly contracted into 
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itself by the time one map XV?i. This implies that 
oo 

x » Eu{x) = pl T<pn(P(ip-nx)) 
71=1 

is a line field, and the restriction of T<pi to Eu is a uniform expansion. Symmetry 
implies that Tp-i contracts the négative cone field, and that it contains a line field 
Es which is contracted by Tipi. Thus, T(SM) = Eu ©X© Es is an Anosov splitting 
for T(p, which complètes the proof of Theorem A. 

As a conséquence of Theorem A we get the following stability resuit. 

Corollary. — There is a high genus surface M such that the set 8 of embeddings 
M —» M3 for which the géodésie flow is Anosov is non-empty and open. In particular 
there exist such embeddings of M that are analytic. 

Remark. — The earlier examples of ergodic géodésie flows for embedded surfaces [2], 
[5] are not stably ergodic as one can perturb the focusing cap to produce a "light-
bulb" shaped cap which traps a positive measure set of trajectories and hence prevents 
ergodicity [3]. (Stable ergodicity means that the System and ail small pertrurbations 
of it are ergodic.) Thus, our Anosov example above is the first géodésie flow for an 
embedded surface known to be stably ergodic. 

Proof. — Theorem A asserts that £ ^ 0. Uniform hyperbolicity is an open condition, 
so S is open with respect to the C3 topology. The proof is completed by recalling 
that embeddings are open in the space of mappings, and analytic mappings are dense 
in the C°° topology. • 

5. Non-orientable Surfaces 

Here we show out how to construct a non-orientable immersed surface in E3 whose 
géodésie flow is Anosov, thereby proving Theorem B. 

The simplest idea is to attach a Klein bottle or a Klein handle to the surface M 
constructed in Section 4. Doing so produces a certain amount of positive curvature, 
and it becomes unclear whether négative curvature continues to dominate. 

A second idea is this. Take the previous pair of spheroids with the tubes joining 
them and select a pair of points p, q such that p is on the outer spheroid, q is on the 
inner spheroid, the points p, q are not near any of the tubes (they lie in the unused, 
middle portions of the triangles), and the segment [p, q] passes through the origin. 
Then make plateaus at p and q and draw a long thin tube X of négative curvature 
from one plateau to the other, as shown in Figure 5. This causes the new surface to be 
non-orientable. (With just one perforation and the long tube, the surface is ambiently 
diffeomorphic to the standard immersion of the Klein bottle.) Every géodésie has the 
same type of behavior as before, except now it may spend a fair portion of its time 
in the flank of X where the curvature is barely négative. As n —> oo, the negativity 
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Perforations 

T 

FIGURE 5. A long thin dispersing tube joining plateaus at p and q, shown 
in cross-section. 

in T is on the order of l/2n, which is the same as the worst positivity on the surface. 
Thus, it is not clear that negativity outweighs positivity enough to make the géodésie 
flow Anosov. More care may in fact validâte this construction. 

Here is what we do instead. 
Choose a pair of adjacent triangles on the spheroid Sn constructed in Section 4. 

For m plateaus at their two centers based on a common plane, rather than différent 
tangent planes at each center. Arbitrarily choose one of the two tangent planes to 
use. Do the same on the parallel spheroid S'ri. Hence ail four plateaus are based on 
parallel planes. Make the tube connections between Sn and S'n at ail but thèse four 
new plateaus, and call the resulting surface M\. Take a copy of Mi, say M2, and 
rotate it to line up the four new unconnected plateaus from each surface, in parallel. 
Then draw tubes from one plateau dise to the other as shown in Figure 6. 

FIGURE 6. Cross-sectional view of Connecting plateaus with tubes to make 
an immersed non-orientable surface whose géodésie flow is Anosov. 

The resulting surface is non-orientable and the tubes ail have roughly the same 
size. By the same sort of estimâtes as in the orientable case, negativity continues to 
dominate positivity and the géodésie flow remains Anosov. 
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