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ON THE DIVERGENCE OF GEODESIC RAYS IN
MANIFOLDS WITHOUT CONJUGATE POINTS, DYNAMICS
OF THE GEODESIC FLOW AND GLOBAL GEOMETRY

by

Rafael Oswaldo Ruggiero

Dedicated to J. Palis, on his 60th. birthday

Abstract. — Let (M, g) be a compact Riemannian manifold without conjugate points.
Suppose that the horospheres in (1\7,9) depend continuously on their normal direc-
tions. Then we show that geodesic rays diverge uniformly in the universal covering
(ﬁ, g). We give some applications of this result to the study of the dynamics of the
geodesic flow and the global geometry of manifolds without conjugate points.

Introduction

The problem of the divergence of geodesic rays in manifolds without conjugate
points is one of the most natural, yet unsolved, questions of the theory. Recall
that a C*° Riemannian, n-dimensional manifold (M, g) has no conjugate points if
the exponential map is nonsingular at every point. The universal covering M of a
manifold (M, g) is diffeomorphic to R™, and the metric spheres in (]W g) — the uni-
versal covering endowed with the pullbd,ck of g — are diffeomor phl(‘ to the standard
sphere in R". Given a point p € M' and two geodesics «v, 3 in (]\[ g) parametrized
by arclength such that p = ~(0) = £(0), we say that these geodesics diverge if
lim¢— 400 d(7(t), B(t)) = oo. Although two different geodesic rays starting from a
point in M diverge in all well-known examples of manifolds without conjugate points
(e.g., nonpositive curvature, no focal points, bounded asymptote), there is no gen-
eral proof of this fact so far. The problem has been already considered by L. Green
[11] in the late 50’s, where Green deals with the divergence of radial Jacobi fields.
Later, P. Eberlein [6] proves that radial Jacobi fields diverge along any geodesic in
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232 R.O. RUGGIERO

(M, g), but observes that the divergence might not be uniform, it could depend on
the geodesic (in the same work [6], Eberlein points out a gap in Green’s paper). The
divergence of rays and Jacobi fields is related with many important geometric prop-
erties of manifolds without conjugate points, like the continuity of the horospherical
foliations and Green bundles, and the existence of good compactifications of M. This
motivated somehow the introduction of some categories of manifolds without conju-
gate points in the literature (see for instance [5], [6], [8], for the so-called bounded
asymptote condition, [16] for the Axiom of asymptoticity, [14] for the proof of the
superlinear divergence of radial Jacobi fields in manifolds with bounded asymptote).
The usual approach to the proofs of the continuity of horospheres, Green bundles,
and divergence of rays, relies on strong assumptions on the asymptotic behaviour of
geodesics and Jacobi fields (e.g., convexity in the case of nonpositive curvature; uni-
formly bounded asymptotic behaviour of Green Jacobi fields in the case of manifolds
without focal points and manifolds with bounded asymptote). We shall present in
this paper a more topological approach to the problem of the divergence of rays, based
on simple variational properties of horospheres. Given 6 = (p,v) in the unit tangent
bundle Tlﬂ of M , we shall denote by v (t) the geodesic parametrized by arclength
whose initial conditions are v5(0) = p, v,(0) = v. We shall denote by Hy(t) the horo-
sphere of the geodesic y¢ containing the point vg(t). We say that the map 6 — Hg(())
is continuous (in the compact open topology) if given a compact ball B,.(¢) C M of
radius r, and € > 0, there exists 0 = d(r,q,£) such that if || € — o ||< 0 then the
Hausdorff distance dy between the sets

dH([’[()(O) N B.(q), H(r(o) N BT((I)) <e.

The introduction of this notion is motivated by the works of Pesin [16], Eschenburg
[8], and Ballmann, Brin, and Burns [1]. Observe that, if A/ is compact, the number
6 above does not depend on the point ¢, since every horosphere has an isometric
image that meets a compact fundamental domain of M (horospheres are preserved by
isometries of (M ,g)). In all known examples of manifolds without conjugate points
the map 6 — Hy(0) is continuous. Moreover, the assumption of the continuity of
horospheres does not carry (a priori) any restrictions on either the convexity of the
metric or the behaviour of Jacobi fields. The main result of the paper is the following:

Theorem 1. — Let (M, g) be a compact, C> Riemannian manifold without conjugate
points. Assume that the map 6 — Hg(0) is continuous in TyM. Then, every two
different geodesics v(t), B(t) with v(0) = 5(0) in M diverge.

The proof of Theorem 1 is done in Sections 1 and 2, where we also study some gen-
eral problems concerning asymptoticity properties of geodesics which were introduced
by Croke and Schroeder in [4]. Namely, consider the relation R between geodesics in
M defined by: v R 3 if and only if v is a Busemann asymptote of 3. We show in
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ON THE DIVERGENCE OF GEODESIC RAYS 233

Section 1 that, under our continuity hvpothesis. this relation is an equivalence rela-
tion. In the remaining sections we give some applications of Theorem 1. The results
in Section 3 are inspired in the following classical result of Eberlein: Let (M. g) be a
compact, (" Riemannian manifold without conjugate points. Assume that the Green
subbundles E¥(0), E*(6) are lincarly independent at every point § € Ty Al. Then the
geodesic flow of (M. g) is Anosov. Recall that the geodesic flow ¢, : Ty M — T\ M is
defined by ¢¢(0) = (y9(t). 74 (t)). We obtain in Section 3 a sort of topological version
of Eberlein’s result. Recall that (117,_(]) is a Gromouv hyperbolic space if there exists
0 > 0 such that every geodesic triangle formed by the union of three geodesic seg-
ments [xg. 1], [x1..02]. [r2. 2p] satisfies the following property: the distance from any
p € [ri,aip1] to [xip1. 2i42]) U lwip2. 2;] is bounded above by ¢ (the indices are taken
mod. 3). The main Theorem of Section 3 is the following.

Theorem 2. Let (M.g) be a compact Riemannian manifold without conjugate
points. Suppose that the map 6 — Hy(0) is continuous in the compact open topology
in M. Then, if H, .,(0) 0 H, ., (0) = {p} for every (p.v) € TyM. the universal

covering (M., g) is a Gromov hyperbolic space.

Using some results in [18] we shall show that Theorem 2 is equivalent to the
following result:

Theorem 3. Let (M.g) be a compact Riemannian manifold without conjugate
points.  Suppose that the canonical liftings in TiM of the submanifolds I, ,(0).
H, —)(0) give rise to continuous foliations H*, H" having a local product structure.

Then (M. g) is a Gromouv hyperbolic space.

For the definition of the canonical liftings of the horospheres we refer to Section 3.
A pair of ¢s-invariant foliations Fy, Fy in Ty M has a local product structure if there
exists an atlas {®; : U; € TyM — R?"~'} of Ty M such that

(1) Every ®; is continuous.

(2) Each local chart is of the form &, = (2/,y',t), t € (—¢.¢), where the level

sets ' = constant. y' = constant are connected components of the foliations Fy, Fy
respectively.
In virtue of Theorems 2 and 3, we can say that the topological transversality (meaning
local product structure) of the horospherical foliations in T3 M implies that M is a
Gromov hyperbolic space. Notice that Theorem 1 is true for manifolds of nonpositive
curvature, because the hypotheses in the Theorem imply that there are no flat planes
in A ([5]). It also holds for manifolds without focal points, but if we allow focal
points many key facts of the theory (convexity. bounded asymptotic behaviour of
Jacobi fields and geodesics, ete.) might not hold.

In Section 4 we get some results concerning the boundary of a Gromov hyperbolic
group that covers a compact manifold without conjugate points. Suppose that the
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234 R.O. RUGGIERO

map 6 — Hy(0) is continuous. Then we show that, if the fundamental group of M is
Gromov hyperbolic, its ideal boundary is a sphere. This fact is well known for compact
manifolds of nonpositive curvature whose fundamental group is Gromov hyperbolic.
However, if we drop the assumption on the curvature it is not clear whether the ideal
boundary of the fundamental group is a sphere.

Finally, in Section 5, we apply the results of Sections 1, 2 to manifolds satisfying the
so-called Axiom of Asymptoticity, introduced by Pesin [16]. This notion is perhaps
the first one in the literature of the research about continuity of horospheres which
does not consider any assumptions on the C? features of the metric (convexity, Jacobi
fields).

1. Horospheres and Busemann flows in M

Throughout the paper, (M, g) will be a C°°, compact Riemannian manifold without
conjugate points. All the geodesics will be parametrized by arc length. We shall often
call by [p, g} the geodesic segment joining two points in M. A very special property
of manifolds with no Comugdte points is the existence of the so- called Busemann
functions: given 6§ = (p,v) € T1]\[ the Busemann function b9 : M — R associated to
0 is defined by

o (x) = lim (d(x,7(t)) ~ 1)

The level sets of b’ are the horospheres Hgy(t) where the parameter ¢ means that
vo(t) € Hy(t). Notice that v4(t) intersects each level set of b perpendicularly at only
one point in Hy(t), and that b?(Hy(t)) = —t for every t € R. Next, we list some
basic properties of horospheres and Busemann functions that will be needed in the
forthcoming sections (see [16], [4] for instance, for details).

Lemma 1.1

(1) % is a C* function for every 6.

(2) The gradient Vb° has norm equal to one at every point.

(3) Ewvery horosphere is a C'TX | embedded submanifold of dimension n—1 (C*T¥
means K -Lipschitz normal vector field), where K is a constant depending on curvature
bounds.

(4) The orbits of the integral flow of — -Vl pf M — M are geodesics which are
everywhere perpendicular to the horospheres Hy. In particular, the geodesic o is an
orbit of this flow and we have that

Uf (Hy(s)) = Ho(s + 1)
for every t,s € R.

A geodesic 3 is asymptotic to a geodesic y in M if there exists a constant C' > 0 such
that d(3(t),v(t)) < C for every ¢t > 0. We shall denote by Busemann asymptotes of vy
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ON THE DIVERGENCE OF GEODESIC RAYS 235

the orbits of the flow ¥¢. Busemann asymptotes of 79 might not be asymptotic to g,
so the relation between geodesics v R (3 if and only if “y is a Busemann asymptote
of 3”7 might not be an equivalence relation. Observe that in all known examples of
manifolds without conjugate points (nonpositive curvature, no focal points, metrics
on surfaces without conjugate points [1]), the relation R is an equivalence relation.
Lemma 1.1, item 4, implies that the horospheres Hy(t) are equidistant, i.e., given any
point p € Hy(s), then the distance d(p, Hy(t)) is equal to |t — s|. The canonical lifting
in Tlﬁ of Hy(t) is the set ﬁ()(f) = {(p.—V,b").p € Hp(t)}. Another way of defining
the horosphere Hy(0) is

Hy(0) = liIJP Sy (ve(r)),

where S,.(p) is the sphere of radius r centered at p, and the limit is uniform on compact
subsets of A7. In other words, given D > 0, q € H, and < > 0, there exists T > 0 such
that the Haussdorf distance between the restrictions of Hyp(0) and S, (ye(r)) to the
ball Bp(q) of radius D centered at g is less than e for every » > T. We shall denote
by dy the Haussdorf distance between subsets in M. Actually, given 6 € TIJW , the
spheres S, (74(r)) converge to Hy(0) in the C'* topology uniformly of compact subsets
(see [16]) as a consequence of the bounded geometry of M. The notion of continuity
of 6 — Hy(0) given in the introduction is equivalent to the following: let 6,, converge
to 6, then Hy, (0) converges to Hy(0) uniformly on compact subsets of M. Although
it is clear that Hy(t) depends continuously on t € R, it is not known whether Hy(0)
depends continuously on 6. The continuity of § — Hy is equivalent to the continuity
in the C'! topology of the map 6 — b’ uniformly on compact subsets of M. For the
purposes of this section, it will be more convenient to state our results in terms of
Busemann functions instead of using horospheres, in general the notation becomes
simpler. Let %4 (p) = d(p.y9(t)) —t. s0 b’ (p) = lim,_ .~ b7 (p). for every p € M. We
shall denote by d, ar(-, -) the Sasaki metric in 71 M. The following result tells us that
the continuity of 6 — Hy(0) implies that horospheres can be uniformly approached
by large spheres.

Lemma 1.2. — Let (M, g) be a compact manifold without conjugate points, such that
the map 0 — b? is continuous. Then, given D > 0, ¢ > 0, there exists T > 0 such
that for every 6 = (pg,vg) € T1M, and every ball Bp of radius D containing py. we
have

b (p) = "' (p)] <.
for everyp € Bp andt > T.
Proof. — Let us first recall that the family of functions b%! converges monotonically
to b?, i.e., the difference b?(p) — b%*(p) decreases with respect to t for every p. This is

due to the fact that the spheres S;(74(t)) converge monotonically to Hy(0), i.e., the
Hausdorff distance between the restrictions of Si(y9(t)) and Hy(0) to compact sets
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236 R.O. RUGGIERO

decreases to 0 as t goes to +00. Since b?(p) = lim;— 4y~ b”(p), there exists Ty, . > 0
such that

b (p) = 0" (p) < &
for every t > Ty, ..

Claim 1. — The number Ty, . can be made independent of p in Bp. Moreover, it
depends on 6, D, ¢.

Indeed, this is a straighforward application of Dini’s Lemma about uniform con-
vergence of monotone sequences of functions: the family of functions

fi:Bp — R, fi(p) = b"(p) = 0" (p)|
converges monotonically to zero at each point p € Bp; so by Dini’s Lemma the family
converges uniformly to zero in the compact set Bp.
Next, we would like to relate Ty .- and T, p. for a close to 6. At this point we
need the continuity of horospheres, we have not used this hypothesis so far. Recall
that

6 () = 5 ()| = [d(p.30(8)) = d(p. 70 ()] < d(0(E). 70 (),

By hypothesis, 8 — b? depends continuously on 6 uniformly on compact subsets, so
there exists 0 > 0 such that if d . 57 (0. @) < 4 then |b?(p)—b™(p)| < < for every p € Bp.
On the other hand, by continuity of geodesics with respect to initial conditions, given

€ > 0 there exists 0 = ¢'(0,¢) > 0 such that if d;, ;(0.«) < ¢’ then

674 (p) = b™ " (P)] < d(va(1). 7 (1)) <.

for every 0 < t < Ty p.-, and every p € Bp. This implies that

b (p) — b T ()] < ™ (p) = 0° ()| + 17 (p) = 6" ()] + 10" (p) = ™" (p)]|
Let+e+e=3¢,

for every dTl 57(0,a) <min{d,0"}, for T' = Ty p ., and every p € Bp. Therefore, by the
monotonicity of the limit b*(p) = lim;_, ~ b*!(p) we have that [b*(p) — b (p)| < 3¢

for every t > T =Ty p.s and d,l,l a0, @) < g9 = min{e, e’} This means that

To.pse <Th.pe.

for every d7‘1 A\[(O,(v) < g9. Now, take a compact fundamental domain M, of the
manifold M, let K = {0 = (x,w),x € My, w € 7’1]\7}, and let us cover K by open
neighborhoods V-, (0) where § € K. Take a finite covering U, V., (6;) of K by
these neighborhoods. Let T = max;=12. {7y, ps}. and assume without loss of
generality that the ball Bp contains the fundamental domain Afy. Then we get that
b (p) — b'(p)| < 36 for every p € Bp. « € K, and every t > T. Since balls,
horospheres, and Busemann functions are preserved by isometries in M , we deduce
that |b*(p) — b*!(p)] < 3¢ for every a = (q.w) € TyM, t > T, and p in every ball of
radius D containing ¢, as we wished to show. O
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ON THE DIVERGENCE OF GEODESIC RAYS 237

Corollary 1.1. — Let M be a compact Riemannian manifold without conjugate points,
and assume that the map 6 — Hg(0) is continuous. Then, if ¢ € Hy(0), and a =
(q,—V,b?%), we have that b* = b%. In particular, H,(0) = Hy(0) and the relation R
is an equivalence relation between geodesics in Tlﬂ .

Proof. — Let v, be the Busemann asymptote of § through a. Let us denote by [z, y]
the geodesic segment joining the points z,y in M. By definition, the geodesic v, is
the limit of the geodesic segments [g,vg(t)], where t — +o00. Let v,, be the geodesic
containing the segment [q, ¢ (t)], with v, (0) = g and 74, (1) = vs(t) for some positive
ry. Then, lim;_,, - @ = «, and by the continuity hypothesis, lim;_. 4 b = b*, this
limit being uniform on compact subsets of M. Let 6 = (po, o), and consider a compact
ball B containing the foot points py and q of the vectors 8 and « respectively. By
Lemma 1.2, the functions b7, b, b*t, t > 0, can be uniformly approached by radial
functions b7, b7 b7 in the compact ball B. Namely, given ¢ > 0 there exists
T. > 0 such that for every T' > T, every p € B, we have that

b (p) =" () <o 0 (p) =T () < e [0 (p) = 07T (p)] < e

for every t > 0. Since the functions b** converge uniformly in B to the function b%,
there exists S. > 0 such that

b (p) — b (p)] <,
for every p € B and t > S.. Recall that the number r, is defined by v, (1) = Yo (t).
Claim 1. — lil’ll,f_._|,,)C |7’,{ — f’ =0.

This follows easily by definition: 7 = d(va,(0),v9(t)) = d(q,vs(t)); which implies
that
re —t=d(q.y(t) =t =b""(q).
And, since ¢ € Hp(0) = (b°)71(0), we get

00y — 1 080 N — Vi |,
0=0%(g) = lim b"(g) = lim [re—t].
Claim 2. — baeri(p) = b9 (p) +t — 1y for every p € M.

Just check the definitions:

b " (p) = d(p, Yo, (re)) — 1
d(psve(t)) — 1t
= b‘“(p) +t—ry.

Il

Hence, if t,r; > sup{T.,S:} we obtain,
b (p) — b%(p)| < [b*(p) — b (p)] + |6 (p) — b7 (p)]
1D () = 6 )]+ 87 (0) — )|
g 3€+ |f't - l‘/|7
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238 R.O. RUGGIERO

for every p € B. Since £ and B are arbitrary, and by Claim 2, lim;_, o |ry — t| = 0,
we deduce that b*(p) = b?(p) for every p € M. Since the level sets of Busemann
functions are horospheres, then the horospheres of vy are the same horospheres of v,.
It is clear that the relation v R g if and only if « is a Busemann asymptote of 3 is
an equivalence relation: their horospherical foliations will be the same, and therefore,
their Busemann flows will coincide. O

We would like to point out that Croke and Schroeder in [4] posed the question
of whether the relation R is an equivalence relation in the universal covering of a
compact manifold without conjugate points. They show in fact that, if M is analytic,
then b (p) — b%(p) is constant if vy, v, are axes of the same deck transformation in
m1(M). Corollary 1.1 asserts that, under the assumption of continuity of horospheres,
b*(p) — b’ (p) is constant whenever 7, is a Busemann asymptote of ~g.

2. The divergence of geodesic rays
The main result of the section is the following:

Theorem 2.1. — Let (M, g) be a compact manifold without conjugate points such that
the map 6 — Hy(0) is continuous. Then the geodesic rays diverge uniformly in H,
namely, given € > 0, L > 0, there exists sc., > 0 such that any two geodesic rays
Yipw)s Vipaw), where p € M and v,w form an angle Z(v,w) > €, satisfy

d(’)/(p,'u) (f)a V(p.w) (t)) z L

for every t > s- 1.
We begin by recalling the first variation formula.

Lemma 2.1. — Let v(t) be a geodesic of (M,g) parametrized by arclength. Let f :
[a,b] x (—e,e) — M be a differentiable variation of v[a,b], i.e., f(t,0) = ~v(t). Then,
the length L(x) of the curve f,(t) = f(t,z) satisfies

20 = (Xit.0)0)

b

a

Now, let vg, 7o be two geodesics in M with 76(0) = 74 (0) = p. Assume that 6 # a.
Take s < 0, and let f: [s,0] x (—a,a) — M be the variation of yg[s, 0] defined by

— f(t,0) = yy(t) for every t € [s,0].

— fo(t) = f(t,x) is the geodesic segment joining 7g(s) and v, (z) for each |z| < a
(observe that t might not be the arclength parameter of the geodesic f,(t)).
If |s| and a are small enough, the geodesic segments f,(¢) are unique and minimizing.
Hence, the variation f is differentiable because of the smooth dependence of small
geodesic segments with respect to initial conditions. Notice that Qﬁ(s x) = 0 for
every x € (—a,a). Also, we have that %Ii(()l) =~/ (z), and ﬂ(f 0) = v,(t).
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ON THE DIVERGENCE OF GEODESIC RAYS 239

Corollary 2.1. — Let € = Z(74(0),7,(0)) =|| 6 — & ||, 57 Then, there exist so > 0,
Ko = Ko(|| K ||), such that for every variation f : [s,0] x (—a,a) — M as above,
with |s| < so. |a] < s; there exists 0 = 0(=, s, || K ||). such that for every x € (—4,0)
we have

|L(z) — (L(0) + L'(0)z)| < Koa?,

where || K || is the supremum of the sectional curvatures of (M, g).

The proof of Corollary 2.1 is straightforward from the first and second variation
formulas and the compactness of M. Corollary 2.1 can be viewed as a shortcut
lemma, and we shall use it to give a sort of lower estimate of the distance between
the horospheres Hy(t), H,(t) when vy, 7, are two different geodesic rays starting at
the same point.

Lemma 2.2. — Let v, v be two geodesic rays with v9(0) = v4(0) = p. Let 6 = (p,v),
p =0 —«a|. Then, for every p > 0 there exists 01 = o1(p, || K ||~) > 0, such that
for every t, t', satisfying va(t') = Yo N H, —v)(—t) we have that

[t —t] = 6 (1 — cos(p)).

Proof. — Let sq, 69 = 0(c. 50, || K ||~), Ko be the numbers defined in Corollary 2.1.
We know that ¢’ > ¢, because

th = d(7a(0),va(t )) = d(76(0), Vrl(t/))
d(’Y(p -U)(O)va —u) ( f))
= d(79(0),79(t)) =

where we used that vo(t) = 7, —»)(—t) is the geodesic that realizes the distance
between p = 7y, —)(0) and H, _,y(—t). Thus, so +t' > so +t. By Corollary 2.1,

d(v0(=50).70(0)) + (70 (0). 70 (¥')) = d(v0(~50),76(0)) + d cos(p) + O(6*) +t' = §
= 50 +dcos(p) +t' — &+ O(5?),

for every |0| < dp; which implies that
so+t=d(ve(=50),70(t)) < so+ dcos(p) +t' — 5+ O(5?).

for every |d] < &y (see figure 1).
So we get, by Corollary 2.1,

t'—t >3~ dcos(p) + O(6%) = 6(1 — cos(p)) + O(6?),

for every |o| < dg. On thg other hand, there exists 0 < d; = d;(p, Ky) < dp such that
61(1 = cos(p)) + O(87) > % (1 — cos(p)), therefore t' — ¢ > %L(l —cos(p)) as we wished
to show. [l
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ol —s |70 (t)
v(—s0) R B 7R ;
t'+s0>t+ sy =d y9(—=50),79(t) r
FIGURE 1
Proof of Theorem 2.1. — Let (M, g) be a compact manifold without conjugate points

such that the map 6 — Hy(0) is continuous. Let C' > 0, and consider two geodesic
rays vg, Yo with v9(0) = 7,(0) = p. Let us define

Too.c =sup{t > 0,d(vs(t),v4(t)) < C}.

We are going to show that there exists T'(|| § — « [|,C) > 0 such that Th9c <
T(| 0 —«a |,C) for every a,6 in Ty\M with the same foot point p. In particular,
T(]| 6 =« ||,C) depends on C' and on the angle between 6 and «. So let t > 0 be such
that d(ve(t),7.(t)) < C.

Claim 1. — There exists a number t' such that
’Y”(t/) = Yo n H(;)Aﬁ’u)(_t + C)

In fact, recalling that b =) is the Busemann function of Y(p.—v)> the hypotheses
on 7,(t) implies that
t—C< b(“’_“)(’y{,(t)) <t+C,

which is easy to check by the definition of the Busemann function (recall that v,(t) =
Y(p.—v)(—t)). On the other hand, observe that H, _,)(—t) = (b™~*))~!(t), and since
Ya(0) = 79(0) € Hy,.—)(0) we have that b =" (v, (0)) = 0, bP =) (y,(t)) > t - C.
Since the function g(t) = b”~V)(y,(t)) is continuous, it assumes all the values in the
interval [0,t — C]. Hence, there exists ¢’ such that g(t') = t — C. Or equivalently,
Yo(t') € (Bt — C) = Hy, _y(—t + C). It is clear that t' > t — C, because
t — C is the distance between p = v, _)(0) and H, _,)(—t + C).

We can assume without loss of generality, by changing t by t — C, that v, intersects
H.,,(t). In this case we have t’ > t, and we can assume that

t" =inf{s > t,7a(s) € H(, —p)(—t)}.
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Claim 2. — Given ¢ > 0, there exists T = T(e,C) > 0 such that |t — t'| < e for every
t>T.

This follows from Lemma 1.2. Indeed, since v4(0) = ~v,(0) = p, the points
~Yo(t),va(t) belong to the sphere S;(p) for every t. Let ¢ : Tl]Tf — Tlﬁ be the
geodesic flow of M. Let 8= ¢_, (p. —v). The geodesic v is a reparametrization of gy
satisfying v4(0) = vo(t), and y4(t) = 79(0) = p. By the choice of t', we have that the
ball Bsc(v3(0)) contains v, (t) and ~,(t'). Moreover, the points v4(t) = v3(0) and
~a(t) belong to the sphere S;(p) = Si(v3(t)). Thus, by Lemina 1.2, for D = 3C and
¢ > 0, there exists T" > 0 such that

dp (Hy(0) N Bp(1e(t)), Se(p) N Bp(ve(t))) < &,

for every t > T. In particular, the point v,(t), that belongs to Si(p) N Bp(ye(t)), is
within a distance ¢ from Hz(0) (see figure 2).

p=7(0) Y0

Si(p)

FIGURE 2

Hence, choosing ¢ small enough, the first time s = ' > t where occurs a transversal
intersection between 7, (s) and H;(0) = H, _(—t) satisfies

d3a(t) A (0) = ' 1] < =,
for every t > T. This finishes the proof of the Claim.
Applying Lemma 2.2 and Claim 2 to the geodesics vy, 7., we have that for every
t=>T(e.C).
s> |t —t| = d1(1 —cos(p)),
where p is the angle between 6 and «. Therefore, if p > 0, the number ¢, =
d1(1 — cos(p)) is strictly greater than 0. Hence, the above inequality holds only if
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€ > €,, and therefore, t has to be smaller than T'(¢,/2, C) for instance. This implies
that Ty .0 < T'(g,/2,C), as we wished to prove.

3. Topological transversality of horospheres and expansiveness
are equivalent

The goal of this section is to combine the divergence of geodesic rays with some
ideas connecting topological dynamics and global geometry. We shall obtain a sort
of topological version of Eberlein’s theorem about the characterization of Anosov
geodesic flows by the transversality of the Green bundles. We begin by showing one
of the main consequences of the divergence of geodesic rays.

Lemma 3.1. — Let M be a compact manifold without conjugate points. such that the
map 0 — Hy(0) is continuous. If a geodesic 3 is asymptotic to a geodesic v in M,
then B is a Busemann asymptote of p.

Proof. Let us assume that d(vy(t), 5(¢)) < C for every t > 0. Consider the geodesic
segments [3(0).ve(t)] (using the notation of Corollary 1.1), where ¢t > 0. Let 3; be
the geodesic defined by 3,(0) = £(0), £:(Ty) = ~s(t) for some positive T;. Since
d(B(Ty). B(t)) < C for every t > 0, letting t — +o0c we have, by the uniform diver-
gence of geodesic rays. that
fllglx By =0,

uniformly on compact sets. This implies that 3 is a Busemann asymptote of v by
definition. O

Lemma 3.2. — Let M be a compact manifold without conjugate points, such that the
map 0 +— Hy(0) is continuous. Then, if v, and v, are bi-asymptotic, we have that,
up to a reparametrization of yo. Yo (0) € H, ) (0) N H, — 0y (0).

Proof. Let o = (q,w). Since 7, is bi-asymptotic to ¥(,.), then, according to
Lemma 3.1 and Corollary 1.1, v, is Busemann asymptotic to y(,.), and v(q,—w) 18
Busemann asymptotic to 7, ). Let us assume that ¢ = 7,(0) = 7o N H(,.(0). In
this case, we have b”(7,(0)) = 0. b*")(7,(0)) = 0, and by Corollary 1.1, b* = b(P:*),
If we also had that b7 —®) = p(P-=) then Lemma 3.2 would hold.

Claim. ’7”(0) =4 € H(I'-f”)(o)'

In fact, let ty be such that v, (to) = 7o N H(,—)(0). Since —ty = bP) (v (t0)),
and H, ,)(0) is in the region (P =10, +00). we have that t, < 0. Let ¢ be the

geodesic flow of M. Notice that

b-1,(q. —w) = (a(to), =74 (t0)).
so we have, by Corollary 1.1, that 6%~ (=) = pP=*) as long as Y4 (ty) € H(, —0(0).

Hence, ’(/ﬂﬁp"') = /w,(y("“y), 1,/‘),(”‘_”) = L/’y,("‘_w) for every t € R — where ¢? is the Busemann
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flow of # — and the foliations {H(, _,(t),t € R}, {H(, _)(t),t € R}, coincide. We
get, by the choice of ty, that
H(q.—w)<_t()) = H(b_[()(q«—uv)(o) = H(p4~n)(0)’
But
Hig.—w)(=t0) = 05" (Hig—0)(0)),

(see figure 3) which implies that

w@t:(,_W)(H((/‘Aur)(o)) = w(—Pf})_“)(H(m—’w)(())) = H(p.,—'n)(o)'

\
\

H(q‘_“')(it()) - H(IL‘“)(O) H(q\—u')(()) = H(1A~t')([())

\\\ = - . RURD)

’)’(qzur) (t(l) |

¥ ' Yipo)

Hip) (0) = Higau(0)

FIGURE 3

Therefore, we get
H(q,-w)(()) = 'l/’{((],)“’”)(H(p‘—u)(0)) = H(p.——n)(t())~
Since H(, _,)(0) is in the region (b{))=10,+0c) = (bP))71[0,+00), and
Yipo) (—t0) = V(p.—v)(to) € Hyp —py(to), we have that
b(p.”)(’y(p.z')(_t())) =ty > 0.
Since ty was already nonpositive, we conclude that ty = 0, thus proving the Claim

and the Lemma. O

Lemmas 3.1, 3.2 are concerned with one basic question of the theory of manifolds
without conjugate points: Are the geodesics asymptotic to v Busemann asymptotic
to 4?7 In all known examples of manifolds without conjugate points the answer to
this question is affirmative. However, there is no proof of this fact, as far as I know,
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without strong assumptions on either the curvature, the convexity of the metric, or
on the asymptotic behaviour of Jacobi fields.

Next, let us recall a notion that appears very often in topological dynamics. Given a
(> Riemannian manifold (N, g). a differentiable flow f; : N — N without singulari-
ties is said to be ezpansive if there exists ¢ > 0 such that the following holds: let p € N.
and suppose that there exist ¢ € N, and a continuous, surjective reparametrization
p: R — R, with p(0) = 0, of the orbit of ¢ such that d(fi(p). f,)(q)) < ¢ for every
t € R: then ¢ belongs to the orbit of p. The following results are proved in [17], [18].

Theorem 3.1. — Let M be a compact manifold without conjugate points. If the
geodesic flow is expansive, the universal covering of M endowed with the pullback of
the metric of M is a Gromouv hyperbolic space.

Lemma 3.3. — Let (M,g) be a compact Riemannian manifold without conjugate
points. Then the geodesic flow is expansive if and only if for every pair of geodesics
~v. 3 in (M, g) with d(~v,3) < D we have that v = /3.

So expansiveness of the geodesic flow is equivalent to the nonexistence of bi-
asymptotic geodesics. Hence, to show Theorem 2 it is enough to show the following:

Lemma 3.4. — Let (M, g) be a compact manifold without conjugate points such that
0 +— Hy(0) is continuous. If H, ,\(0)NH, _,(0) = {p} for every (p.v) € T1 M. then

there are no bi-asymptotic geodesics in M.

The proof of Lemma 3.4 is immediate from Lemma 3.2: bi-asymptotic geodesics
are Busemann bi-asymptotic, and there is an injection between geodesics which are
bi-asymptotic to v, and the set H, ,,(0) N H, _.,(0).

For the proof of Theorem 3, we shall need some other definitions. The stable
horosphere H*(p,v) of (p,v) in T M is defined by the following canonical lift:

H*(p,v) =1{(q,w).q € H.(0),w = —V,,b(’;""')}.
where IT : Ty M — Ty M is the canonical projection, and II(p. ©) = (p,v). The unstable
horosphere of (p,v) is defined by

H"(p,v) =l{(q.w).q € H —(0). w = v, by,

When the geodesic flow is Anosov, these sets coincide with the dynamical stable and
unstable sets of (p,v). The collection of the stable horospheres is denoted by H*, and
the collection of unstable horospheres is denoted by H".

Lemma 3.5. Let M be a compact manifold without conjugate points such that the
collections H®, H" are continuous foliations of Ty M having a local product structure
(as defined in the introduction). Then the geodesic flow is expansive.
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Proof. — The definition of local product structure includes the continuity of the map
0 — Hp(0), so our hypothesis implies that geodesic rays diverge in M. Observe also
that the local product structure provides a number r > 0, such that for each (p.v) in
T1 M there exists an open ball V(p,v) of radius r where

Vip.o)n H(p,v) N H"(p,—v) = {(p,v)}.

The number r > 0 is uniform in 77 M by the compactness of M and the continuity of
the invariant foliations. Thus, the natural projection of the nelghb(nhoo(l V(p,v) in
M, lifted to J\[ gives us an open neighborhood W (p) of a lift p of p in M where

W(p) N H oy (0) VHi; —0)(0) = {p}.

Moreover, W (p) contains an open ball Bs(p) centered at p, and 6 does not depend
on p. Let us prove that this local transversality implies expansiveness. Arguing
by contradiction, suppose that the geodesic flow is not expansive. Then, given any
¢ > 0 there would exist a pair of different geodesics vg.. v5. in T1A[ such that
d(vo. (1), vs. (p(1))) < e, for every t € R, where p : R — R is a reparametrization of
v, satisfying the conditions in the definition of expansiveness. It is clear that for ¢
small enough, we can lift the above geodesics to M and get a pair of geodesics ;]55, '7/75
such that dyy (35 .75 ) < . Denote (p..v-) = .. By Lemma 3.2 and Corollary 1.1,
%E and ﬁg would be Busemann bi-asymptotic to each other and hence, the set

H, ()N Hp. —0)(0)

Peve)

would contain a point within a very small distance from (p.,v.) = 6.. This clearly
contradicts the existence of the neighborhood Bs(p-). O

4. Visibility and the ideal boundary of (M)

N

Recall that M is a visibility manifold if given p € A?, s > 0, there exists L =
L(p,e) > 0 such that if the distance from every point of a geodesic segment [z, y]

in M to p is greater than L, then the angle formed by the geodesic segments [p, z
and [p,y] at the point p is less than . When L does not depend on p, M is said
to be a uniform visibility manifold. Visibility manifolds were introduced by Eberlein
[6], and their geometric properties were extensively studied by Eberlein and O'Neill
in the 70’s (see [7] for instance). Visibility manifolds of nonpositive curvature enjoy
many properties of negatively curved manifolds. In fact, if A is compact and has
nonpositive curvature, then Mis a visibility manifold if and only if M is a Gromov
hvpml)oll( space. In [17] is stated that if M is compact and has no conjugate points.
then M is a visi bility manifold if and only if M is a Gromov hyperbolic space. It is
first shown that the visibility property implies Gromov hyperbolicity, however, the
proof of the converse statement has a gap based precisely in the (implicit) assumption

SOCIETE MATHEMATIQUE DE FRANCE 2003



246 R.O. RUGGIERO

of the divergence of geodesic rays. In the light of the results in Section 2, what we
have is the following:

Lemma 4.1. — Let M be a compact mamfold without conjugate points. Assume that
the map 0 — Hy(0) is continuous. If M is Gromov hyperbolic then M is a vistbility
manifold.

Proof. — We just make a sketch of the proof pointing out the role of the divergence
of geodesic rays in the argument. We want to show that the Gromov hyperbolicity
of M implies visibility. Let § > 0 be such that every geodesic triangle in M is 5-
thin. It is easy to see that there exists D = D(J) such that in every geodesic triangle
[0, z1]U[x1, 22]U[x2, 2] there exists three points y; € [x;, z;41] (indices taken mod. 3)
with d(yi, yi4+1) < D (see figure 4).

| €T

i
Yo

Y2

Z0 o ) N '

R

FIGURE 4

Let us suppose that the distance between x( and every point in [z, x2] is greater
than L > 0. By the triangle inequality, we have that

inf{d(xg,y0),d(x0.y2)} > L — D.
So we have two geodesic rays o, 72 starting at (xo = v(0) = v2(0), namely, the
geodesic rays containing the geodesic segments [xq, 1], [, z2] respectively, having
points yo € Y0, Y2 € Y2, such that
(1) d(~:(0),y;) > L — D, fori=0,2.
(2) d(yo,y2) < D.
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The continuity of 8 — Hy(0) implies the uniform divergence of rays in M. So given
e > 0, there exists T' > such that if L — D > T, the angle formed by 7y and - at ¢
is less than . This clearly implies Lemma 4.1. O

Once we have that M is a visibility manifold, the theory of Eberlein and O’Neil
[7] grants the existence of a well defined compactification of M, similar to the com-
pactification of the universal covering of negatively curved manifolds. The boundary
of the compactification, called the ideal boundary, is homeomorphic to a sphere of
dimension n — 1, if n is the dimension of M. The action of 7 (M) extends to the
boundary and the complexity of the dynamics of the action is comparable with the
complexity of the actions of Kleinian groups in the sphere. A similar theory is made
for Gromov hyperbolic groups. For the definitions and proofs of statements we refer
to [12], [10]. Indeed, the group m (M) has a compactification as a metric space, via
its Cayley graph endowed with the word metric on a finite set of generators. There
is an ideal boundary for this compactification, and action of 71 (M) induces an ac-
tion in this ideal boundary. The point is that these two boundaries, the first one of
geometric nature and the second one of algebraic nature, are homeomorphic. This is
a straightforward consequence of the following fact: the Cayley graph endowed with
the word metric and M are quasi-isometric spaces. Therefore, we have proven the
following:

Lemma 4.2. — Let M be a compact manifold without conjugate points such that the
map 0 — Hy(0) is continuous. If w1 (M) is Gromov hyperbolic, then its ideal boundary
1s homeomorphic to a sphere.

We would expect that Lemma 4.2 holds for every compact manifold without con-
jugate points, with no extra assumptions on the manifold. It is not known if the
n — 1 sphere is the ideal boundary of a Gromov hyperbolic group covering a compact,
n-dimensional manifold, for n > 3 (a good survey of results and conjectures can be
found in [13]).

5. Is the divergence of geodesic rays equivalent to the continuity
of horospheres?

We would like to finish with some remarks about a class of manifolds without
conjugate points introduced by Pesin in [16]. We say that a manifold M without
conjugate points satisfies the so-called Axiom of Asymptoticity, if given any 6 = (p, v)
in T} M , & point ¢q € M , sequences 6,, — 0, q, — ¢, and t,, — 400, then the sequence
of geodesics [qn, Yo, (tn)] converges to a geodesic 3 that is asymptotic to 75. Pesin in
[16] claimed that if M is a compact manifold without conjugate points satisfying the
Axiom of Asymptoticity, then the map 6 — Hy(0) is continuous in the sense defined in
Section 1. However, the argument is based in Green’s result [11] about the divergence
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of geodesic rays in manifolds without conjugate points which has a gap in its proof,
as we already mentioned in the introduction. Therefore, what is actually proved in
[16] is the following:

Lemma 5.1. — Let M be a compact manifold without conjugate points such that
geodesic rays diverge in M. If M satisfies the Axiom of Asymptoticity, then the map
0 — Hp(0) is continuous.

According to the results in Section 2 we have,

Corollary 5.1. — Let M be a compact manifold without conjugate points such that M
satisfies the Axiom of Asymptoticity. Then, geodesic rays diverge in M if and only if
the map 0 — Hg(0) is continuous.

It is natural to expect that the divergence of geodesic rays implies the continuity
of the horospheres. Straighforward generalizations of the proofs of Lemmas 3.1 and
3.2 apply to manifolds satisfying the Axiom of Asymptoticity.

Corollary 5.2. — Let M be a compact manifold without conjugate points such that the
map 0 — Hy(0) is continuous. If M satisfies the Aziom of Asymptoticity then

(1) The relation between geodesics defined by v R 3 if and only if 3 is a Busemann
asymptote of v, is an equivalence relation.

(2) If 74 is asymptotic to va, then b? — b™ is constant.

(3) A geodesic 3 is bi-asymptotic to g if and only if, up to a reparametrization of
B, B(0) € H,,.,y(0) N H, ) (0).
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