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ON SOME APPROXIMATIONS OF THE
QUASI-GEOSTROPHIC EQUATION

by

Efim [ Dinaburg, Vladimir 5. Posvyanskii & Yakov G. Sinai

Abstract. — For two-dimensional quasi-geostrophic equation in Fourier space. we
propose a new type approximation representing itself some quasi-linear equation.
Natural finite dimensional approximations of this equation are Investigated in the
article.

1. Introduction

The main difficulty in the proof of existence and unigqueness of solutions of hydro-
dyuamical equations is the lack of understanding of the role plaved by non-linear,
or Fulerian, terms. In Fourier space these terms deseribe the expansion of initial
excitations of Fourier modes but the way how this process goes is in general unclear.

In this paper we propose an approach which leads to some simplifications of the
original cquations with the helief that the processes of expansion remain the same.
Our equations have natural finite-dimensional approximations swhich are systeins of
ODF and are casier to tackle,

We restrict ourselves to the two-dimensional quasi-geostrophic equation (QGE) for
an unkuown fmction w(k. ).k = (k. k) € B? which in Fourier space has the foru

{see [1]. [2])

w Julk £) [ (G F— ) .
(1) Hf(()if) = /R” %u(k". Hulk — K Odh — v |k u(k 1)

Here (b = (B3 4+ 4372 bt = (—hu b)), v 2 0 s the viscosity and we are interested in

even solutions w(—A.#) = w(d. ). It s well-known that the mathematical difficuliies
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24 E.I. DINABURG, V.5, POSVYANSKIL & YA.(L HSINAT

related to (1) are in many respects similar to the well-kunown difficulties {om- the 370-
Navier-Stokes systenr.

The main case is o = 1. For 0 < o < 1 we obtain the so-called generalized QGE.
which we also consider in this paper.

We are interested in solutions whiclh are sinooth in & and decay at infinity rather
slowly, Our main asswnpltion savs that for such solutions the main contribution to
the integral in (1) comes from (A7 < |b] ov [k — & < |E]L For [M] < k] we can write

(k=0 ]
S = ()

where dots wean terms of a smaller order of magnitude. Thus for |&'] < [k] we keep
tle tern

[ (W) ) (i - (Vi.,k’)) Wl Ol 1) — (Valh, 0K ) el
Jie |&] A

= / Mu(lﬁ’.f)sr(!.‘.f)(.’l."—'u(k.t) / (R IV — ! K YKL R
J i

] Jie K

—/' M(Vu(k.f).!r’)u.(_lf"f)df\"+/l (VS Y Tl 1) R Y (b
J e Je

7] 7]
The frst and the last integrals are zero because the integrands are odd functions of
.o For [k =K< bput b — k= Thew

g . ‘f" J_ " o ” :
/ Mu(k = kothulh t)dk
S L

Eﬁﬂ%ﬂ(,l(g-,f) (Tl ) K Vol 0dk 1

: Iy g . Ly r o ”
= / Mu(k. f)r.'.(l.'ﬂ.f)dkn - / M(v““ ).k ,)“('r" M)l 4
we IR ' oyE K

S
)

Again dots mean terms of a smadler order of magnitnde. The first integral is zero by
the sae reasons as ahove, Le. the parity of the integrand. Thns our approxiating
cquation takes the form

(k.
()f

(2)

= —u(k.t) / 3R Ayu (R0
172 IH
/ () (.L", Y (A N ulk, 0) di
= “-| '

f/ M (R ) (Vb ) db = v kP u (ko )
Jre M|
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ON SOME APPROXIMATIOGNS OF THE QUAST-GEOSTRODHIC EQUATION 21

The equation (2) does not satisfy the energy estimate but apparently remains
dissipalive because of viscosity, Let us rewrite (2} as follows:
dulk.t)
at

(3 = —u{k. i) /]2((1‘ )t A)(V‘;| EYalk D)dk!

' 1 1 . .

- / (k') k) [m + W] ulk ) (K Vb O) dk — vk ulk, 0)
HE

The eguation (3) is a tirst order quasi-linear equation whose coefficients are global

Bnctions of w. Take the first term in (3):

L) = LW )L )(\"IT k ) (K )k

1 A ks
llf', < = "'I\'-’:. ll\" . V— = (_ ) 1., PYERE v -- BV ) -
( ) ( RARLN ) ‘H ('l‘l— + 'I‘E ).;;2 (LIZ + A:)’)S 2

We have

Therefore
Ry b !
Ity = /(’L o = Kok %m’; ) k!
) 12
= |M‘ /A }«,H(}\ )u’f.-’+ |A‘l /A A)H(n(. -}{ﬂ\‘!
kvhs . X I
T [ = Gy a
Denote

a(ty = /‘A"fw(/n'.f)(iﬁ.': ax(t) = /lk'fu(k.f)n'k: ay(t) = /‘A‘]A'Q'U-(A.’.f)(”\'l

Then

R
Jop) = ST
I(- ) ”‘.|.£

ISy
g — |;"j (a) — )

Clonsider

/( LB mu(!. R N ulko))dk’

We have

" A'-’)]\"‘ Y A O } .
L) = /dk’% e )(Aff*fﬂw 2 H,du(fz 0,
- : ¢ i

~dulk.t) kq
T [ 7 /l- Khulk' ) db +IM/ n’A]

ulh.t) Fy KRN, K ke NN o
T { (!\2) wlk' $)dk + m/ By kSulE 1) dl

- du{k.f) A ke Ak, 1) Ky ks
- [ A ‘% el IS TCRRTE
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22 E.I. DINABURG, V.5, POSVYANSKII & YA.G. SINAL

The last term

R R L Oulk,t) , Bulk,t)
() _[w**lk" ulh0) (K750
ks -

)
_ 8’&-(1@',” o kiklz (k ) ! N
= ( : P u(k', )dk’ + ks [ \R’| u{k’, )dk)

k.
dulk, ) " (k) , o
+ 5 (—h] o u(k', 1k +A2/ o w0k

ot = [ St ar a0 = [ GERuoae. b = [

u(k’, t)dk’,

O ki k
h()(k1t) = [ zlk,l:; la‘f + |;|5

(a1 — ap) — I/|k2”] ,

ky . .
Ikl Ly — ma] + klb;g — A.2b1:| .

? k:
hz(k‘.t) - — [E—kl—ltLQ — ﬁa;; + k;bg — kgb.5:| .

Then the equation (3) takes its final form:

du(k,ty  Oulk,t) dulk,t)
: — Ik, t ———ha(k,t) = halk,t
o T o kT e ha(k D) = ha(k B
or
efulk,t)
4 = heolk. 1 1
(4) T holk, Dulk. 1)
where
1k
AL T
= di
{5
(Hﬁ,‘z / (k ]")
— = holk,
dt :
However, we should not forget that the coeflicients a,, b; are also functions of uu-
knowns & and w. {5} are the equations for characteristics of our guasi-linear equation.

We can think about them as curves along which the non-linearity spreads. Denote by
512 the family of shifts along solutions of (5). Then

1y
(6) wlk.ta) = wlk(ty). Hy ) exp (] Folk{T). T))dT).
[
where k(7) = §"7k{t; ).
Corellary 1. The sign of u is preserved along the characteristics of (5).

Proof. — Follows immediately from (6). 0l
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(N SOME APPROXIMATIONS OF THE QUASI-CEQSTROPHIC EQUATION 23

This property is special for our approximation. Presumably it is not true in a

gencral case.
Corollary 2. - Ifu(—k,t} = w{k.t) then hi(—k.?) = —hy(k.t), ha(—k.1) = —ha(k. t).

This property has an important interpretation. Consider Ay (k. 1), ho(k, £) as the
components of our vector field {5). These components are odd funuctions of k. There-
fore the trajectories of the symmetric {with respect to the origin) points are symmetric.

A gimilar approximation can be constructed for the Navier-Stokes system. Tt will
be discussed in another paper.

2. Finite-dimensional Approximations

Assume that u(%.0) is non-zero only for finitely many &, i.e. u(k'9,0) = u!’ for

i=1,2,..., [ Then u(k, t) is non-zero at I points k(). Tn this case
T
ar = ax(t) = (k") k™ 1)
=1
a2 = a( Z(W G
i=1
!
ay = (,33([) = Zkgﬂ.)kéf.)u(k(l)lt)
=1
and
! i3y2
— ('l" ) e
hl(t)mgl ") wlk 1)
i {idya
N (k) (i)
1)2(!)—; | w(kY )
ARG
by A -
. i)
ba(t) = g Ik(’}l w(k', 1)

The system of equations of dynamies of the points U takes the form

i’ [ k) o
|

2
k“)\m 0

y + kb A-g")bl}

T
(7) 1 ) (¢}
(H‘E ntnl kz 4 k EJ A(i)b
= — | ——ay — M
ar TG 2
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24 E. I DINABURG, V.5 POSVYANSKIL & YA SINAI

Let F =1, Then

) = (]s:(l“)zw(.l.'m.t). ty = {k?f(z”)zu(k:“). £y, g = kfmk.mu(}a'm.f).
(
2

L1y (1)
k ) H,(A‘“},t). b;-; - fi A

K.
) u( )

We immediately see that by = hy = 0, i.e. the point stays fixed and w(k7, 1) — 0 as
t— x.

157 =2 and &% = =& w(k3) = w(kM) then in view of the symmetry (see
Corollary 2) both points stay fixed. The first nou-trivial case arises for an arbitrary
configuration of two points. According to the Corollary 2 it is equivalent to the case
of four points consisting of two symmetric pairs. Denote u) = a(A7) wy = (k2.

We come to the tollowing remarkable systemn of ODE:

dk‘;” o 1 i (1),.02) i(1),12)
'—(Et— = “U.')}\‘-l {}‘“ | + “‘ & |:| (Al A:Z —}\f.-) nlu'l )

”{‘“) 3 1 i ) N
b u-zAag'){ XTE + ](k{ll)k;ﬂkél)kiz))

ot A 2]
) (M’; =il + gy (747 - )

di’%h = why L;}n ™ ,g:(lz}d (AE”LE o ’Au))

T = [ (A ) () e

d{% _ Lkgl: (A(UA“) — ! Hmz) (A DA n,}.gm) _ VM.(:)%} iy

2

Lemmal. — 5 = A'EHA'.EE) — A‘éljk'g“] is Lhe first infegral of (8).
Proof. - - Direct checking, O

[t is not difficult to see that

it SO Ry L]
i [0 W”‘ m'
(9) k] g SRR
. i e (e
Ak ey ) () 1__ |
g = S (R e ‘) R i)
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ON SOMNE ADPPROXIMATIONS OF THE QUASGEOSTRODIC BBOQUATION 25

In view of (9) the last two equations of the system (8) can be rewritten in the form

dnfuy| 2o
ar (fr \L“ wl w’>| _”I' |

(1'111|r.'3|7
At i |4 U\ .“’|

Lemma2. - The function Fu k) = Iu (L‘I]HH-A (In*_'lﬁul + ‘ﬁ)) is o Lyepunov
Sfunction of the system (8).

(10}

o r/,if',(Z) |2u

Proof. -~ With the help of a simple transformation we obtain from({ 1) that along

any trajectory of the svstem (8) the derivative of F(f) is less than O

. L1020 A2y 20
S = (WO ) 0

Corellary. For S #0 andt =0

g {1 u){)|( L, )
[RE(E)] R )

1 1 "
< oy (D) u2(0)] (Iﬂ"”(”)l + |A‘(2)(“)|)(\p 2| 5.
Proof - The statement follows fromn the ineguality:
A:(H r 20y + }‘ ey > 2'1‘ (1 ) ,(Eﬁ(ﬂ A I B
I

The systemn (8) has an invariant four-dimensional wanifold
o= {0 s by = 00y = 0}

which is locallyv stable. Owr next result shows that this manifold is also globally stable.

Theorem I. For any solution of (8
Hm g (7)) = lim o wa(t) =00 lim 1\. Ei”
P—x ! —x PRV .

) L., () . . . .
where A'E' ave limiting values of k' (0) whick certainly depend on the initial conditions.
A priori there can be solutions whicli escape to infinity in finite thne. Le. A';’] —
as 1=t which means soine blow up. The theorem shows that thiy does not happen
in our case and each solution approaches soue point of T'.

Froof. For 5 = 0 the statement of the theorem is obvious. Therefore. we can
restrict ourselves to the case § 2 0. 1t is suflicient to consider positive 5, because
the case of negative 5 can be reduced to positive S by changing the order of points.
First. we prove the theorem for o = 1 and in the Appendix we sketeh the main steps
for o < 1.
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Put

1 n 1
KO R0

L) = |uy (thuat)] ( ) and  L{t) = sgn{uy (0)ua(0))L(1).

Using these notations we can write wy(t) in the following way:

= {_~/ﬁu S{:((”—W(A (). PXI)( [ ()P ds)dt—Hf (t(,)}
X eXp (—r/ /: i.'“)(,s)|2d5)

e S‘Ik()\ Ay g
_[ me()“{(l) HSGIEEE ()l)(k (7). K3 ()

T t
exp (u [ ,l.'(l)(,s»)fd,-,-) dr + ul(m)] X OXp (—r/ / ,l‘f(l)(,s»)|2d.s).
St <t

Using the relations

Lir) = Lim) exp (_V ]'Tuw(s)\z 4 k-f‘”(s)ﬁ)ds).
ty

(11) ORI ()] 4 (6 ( N> WD ()] = 8.
\(L:(')(T).L'(E) I < |A‘” )i|k(2)(7)|

we obtain from the previous expressions that

wi (1) — ui{to ex;)(u/ 135 r/s)
( (to) / ) e (V/ [ ) rfs)rfr) oxp(—u/ 1R )1%)
fn
g!/lﬂ(fg))(l ox])( / |]\l (h’))(xp(—l)/ |A'(])(T}2dr)_
<o iy

In the same way ws(t) satisfies the inequality

walt) — ua(ln) oxp (—1// |25 2 ds)
.t
T(fu)( — exp (1/ [ |k (1’1’)) exp (—I/ / |AT(2)(T)2(ITT).

(12)
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ON SOME APPROXIMATIONS OF THE QUAS-GEOQSTROPHIC EQUATION 27

It is not diffieult to verify that lor the functions vy () = w (1) /[ ()] and va(t) =
w2 (1)/ |k ()] the following inequalities hold:

(13)

1) = onto) exp (—v j k:<“(s)|2ds) ‘
es(8) = walto) exp (—v_ / ) s
< (2VE) Lty (1—(4\(])(_,/.[: |A-(“(T)|2flr)) U(p(v[ 2 |{1T)

The inequalities (13) can be obtained from the system of differential equations for

e (1) and va(t):
n ta(t)S () o
% = (1) ( 5 (|1,(1) ;|_>A H) - V“'m(f)[z)

v — i (F)S (R oy
%—wz(r)( S,q'l](z}((;) 2(0) _yg-mu}ﬁ).

with the help of the above mentioned arguments for o, (£} and w1}, The system (14)

(14)

follows directly from (8).

At least one of the two integrals ]f: |FD (7)) ?dr and I,: ) Pdr diverges be-
cause their sum diverges, Assume for example that the first one diverges. Then from
{12} it follows that limy_— o w{/) = 0 because lim, . L) = 0. If [f: |A'(2J(T)F()'T
also diverges then liny . wp(t) = 0.

In the case of convergence of the last integral linyg o 13{/) exists and s nonzero.
Indeed, for any given £ = 0 find such {y that ¢~ "L{4) < /3 and then choose 1{{y) w0
that for fy =4, >

oy
walto) exp ( - u/ |A'(2)(T)jzrlr) — usity) exp ( - v / [ ()2 (h)
o s

We Linve
o
ws(fa) — walta) exp ( —v / R () (fT)‘
Ji,

1

wp () — u{fy) exp ( - u] |2 (Y2 u’r)‘
tn
Fa 'ty

s (ty) exp ( - r// A'(“J)(T)Vd.;') < ara(ty) exp ( V/ |R:[2)(T)12(1T)‘
» Ji,

<ALty 4 /3 < e

<2/

fra(fa) — wa{iy)] <

+

_I_

This gives the existence ol the desirved linit.
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28 ET. DINABLURG, V.5 POSVYANSKID & YA G SINAI

The same statement is true for i, ea(l) (see (13) and {14}). Thus [F2 (1)
tewds o a positive number or to +9¢ when { — 2. This contradicts the convergence
of f;: [y 2dr, Qe limy Lo ua(t) = 0.

Now we shall study the behavior of the vectors &Y (#), i = 1.2, for { — x. The
first cquality in (11) implics that there exist positive constanrs (', s and sulfiently

large £, depending on the inital data tor which

(15)

-+ 9]
" exp ( —v / |A‘(')(T)!2(fT> < u; ()] < Cyexp ( — / {A'{’)(T)er). i
<y i

Substitwting {(15) in {11) we obtain after siinple caleulations thart

1 1
16 A A
(16) | < T + ey < A

for some positive A; depending on the initial data.

il
)

From (15) and from the system (8) for components of the vectors AU (6. L121{#)
one can conclude that A'E,"](t).'i.j = 1.2 have finite limits when ¢ tends — . Let us
chieck this for A'E”(f}:

-t
- (1} Wy o ) 1 ] B
(]u’) ,l,j (f)*nlut (f“)—*b'/" 1.'.2(.‘)1\1 (T)(A(I}(TN + A‘(Z}(T”)d!

The integral in the right-liand side converges becanse its abselute value is less than

* IR 1 1
/ (T ) (Ek‘“(ﬂi y A-M(Tn) i

Theoron 1 is proven for a = 1. |

the integral

whicl is finite,

3. Numerical experiments: results and discussion

In the previous scction we considered the Anite dimeusional systems for 1 = 1. 2.
For I > 2 we do not have rigorous results but did only some numerical experiments
to understand the behavior of selutions in soine cases. Several results are represent ed
in Fignres 1-11.

In Figures 1-8 solutious for 7 = 1 arve shown. and in Figures 9-11 for J = 64. The
initial data [or £ = 4 were taken as [ollows:

P 0.01 0.0 100.0
20.0 0.2200.0
30.020.3 =500
100405 -1.0

Here in the table the first column represents the number of a point. the second {third)
column represents the first (second) coordinate of the point. the forth is w, (0).
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ON SOME APPROXIMATIONS OF TIE QUASI-GEOSTROPHIC EQUATION 31

Figures 1, 2, 3, and 4 demonsrate the graphs of the function kgl)(t). phase portrait
kgl)(k'gl)), functions us(#) and uq(#), respectively, for v = 1. Figures 5 and 6 show
kgl)(t) and uy(t), respectively, for o = (0.5, Figures 7 and 8 demonstrate graphs of the
same functions for & = 0.1. At last on Figures 9, 10 and 11 & hj‘)( t), kgﬂ)(kiﬁ:ﬂ) and
uga(t) respectively are shown. For I = 64 initial data were choosen in the following
way. Points were distributed uniformely in the square [0.1.2] x [0.1.2] and ,;(0) =
C + Ch mn(dki’]) + 4 sin(ﬂ,fk'.g')), where (7 = —100; Cy = 50: Cy = 200 : 3 = 5
~ = 6. We carried out several hundreds of numerical experiments with different initial
data. In all cases the behavior of solutions was similar. Namely, u,(f) — 0, k‘g.”(t)
converge to limiting values as ¢ — oc.

Appendix. Sketch of the proof of Theorem 1 for o < 1

w;(t) = exp( /|A |“*d ) (i=1.2)

and after simple transformations rewrite the last two equations in (8) in the following

Put

form:

, diy _ LEOSEY AR RIRTIPa
(13) A RRGE R f T

dwy  TOSHED, A(Z)WI S
o= REIHEENE (xp \k T dr

It is not difficult to see that

duwy " - . "

(19) v \( (2o (= |A-<“(r)|**df))
fu

die [ to) k! ()P d ’
pm L{to)| kP exp { — v \

Integrating both parts of the inequalities (19) fr()m ty to L we obtain:

i
[ M dr < {L(t)))" (o) (l — exp ( - ‘”’/ K () de ))
1o dT ty
+ i . o
[ b (1) dr < (L{t () (1 (ﬂ(p((‘kl)/ ‘A |2n ))
to dr

Sinee Ly, — . L{fg) = 0 the norms in the L™({. ~0) of the functions % tendd to zero
in the space L ({y. x) when fy — 2.

In the same way. ove can show that the norms in the space L™%(tg.2c) of the
derivatives of functions w;(£)/[k(#}] also tend to zero when ¢, — .

As o the case o = 1, previous arguments give that limy o w, () = 0.0 = 1.2,
Hence all statments of Theoroin 1 follow easily.
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