Astérisque

ARTUR O. LOPES PHILIPPE THIEULLEN Sub-actions for Anosov diffeomorphisms

Astérisque, tome 287 (2003), p. 135-146 <http://www.numdam.org/item?id=AST 2003 287 135 0>

© Société mathématique de France, 2003, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUB-ACTIONS FOR ANOSOV DIFFEOMORPHISMS

by

Artur O. Lopes & Philippe Thieullen

Dedicated to Jacob Palis

Abstract. — We show a positive Livsic type theorem for C^2 Anosov diffeomorphisms f on a compact boundaryless manifold M and Hölder observables A. Given $A: M \to \mathbb{R}$, α -Hölder, we show there exist $V: M \to \mathbb{R}$, β -Hölder, $\beta < \alpha$, and a probability measure μ , f-invariant such that

$$A \leqslant V \circ f - V + \int A \, d\mu.$$

We apply this inequality to prove the existence of an open set \mathcal{G}_{β} of β -Hölder functions, β small, which admit a unique maximizing measure supported on a periodic orbit. Moreover the closure of \mathcal{G}_{β} , in the β -Hölder topology, contains all α -Hölder functions, α close to one.

1. Introduction

We consider a compact riemannian manifold M of dimension $d \ge 2$ without boundary and a C^2 transitive Anosov diffeomorphism $f: M \to M$. The tangent bundle TMadmits a continuous Tf-invariant splitting $TM = E^u \bigoplus E^s$ of expanding and contracting tangent vectors. We assume M is equiped with a riemannian metric and there exists a constant C(M), depending only on M and the metric and constants depending on f

$$0 < \Lambda_s < \lambda_s < 1 < \lambda_u < \Lambda_u$$

such that for all $n \in \mathbb{Z}$

$$\begin{cases} C(M)^{-1}\lambda_u^n \leqslant \|T_x f^n \cdot v\| \leqslant C(M)\Lambda_u^n & \text{for all } v \text{ in } E_x^u, \\ C(M)^{-1}\Lambda_s^n \leqslant \|T_x f^n \cdot v\| \leqslant C(M)\lambda_s^n & \text{for all } v \text{ in } E_x^s. \end{cases}$$

2000 Mathematics Subject Classification. — 37D20.

Key words and phrases. — Anosov diffeomorphisms, minimizing measures.

Ph.T.: Partially supported by CNRS URA 1169.

A.L.: Partially supported by PRONEX-CNPq - Sistemas Dinâmicas and Institute of Millenium - IMPA.

Livsic theorem [5] asserts that, if $A: M \to M$ is a given Hölder function and satisfies $\int A d\mu = 0$ for all *f*-invariant probability measure μ , then A is equal to a coboundary V (which is Hölder too), that is:

$$A = V \circ f - V.$$

What happens if we only assume $\int A d\mu \ge 0$ for all *f*-invariant probability measure μ ? We denote by $\mathcal{M}(f)$, the set of *f*-invariant probability measures and $m(A, f) = \sup \{ \int A d\mu \mid \mu \in \mathcal{M}(f) \}.$

For a β -Holder function V

$$\operatorname{H\"old}_{\beta}(V) = \sup_{0 < d(x,y)} \left\{ \frac{|V(x) - V(y)|}{d(x,y)^{\beta}} \right\}.$$

We prove the following:

Theorem 1. — Let $f: M \to M$ be a C^2 transitive Anosov diffeomorphism on a compact manifold M without boundary. For any given α -Hölder function $A: M \to \mathbb{R}$, there exists a β -Hölder function $V: M \to \mathbb{R}$, that we call sub-action, such that:

$$A \leqslant V \circ f - V + m(A, f),$$

and

$$\beta = \alpha \frac{\ln(1/\lambda_s)}{\ln(\Lambda_u/\lambda_s)}, \quad \text{H\"old}_{\beta}(V) \leqslant \frac{C(M)}{\min(1 - \lambda_u^{-\alpha}, 1 - \lambda_s^{\alpha})^2} \text{H\"old}_{\alpha}(A)$$

where C(M) is some constant depending only on M and the metric.

By analogy with Hamiltonian mechanics and the way we define V from A, we may interpret A as a lagrangian and V as a sub-action. This result extends a similar one we obtained in [4] for expanding maps of the circle (see [2] [6] for related results). The same techniques of [4] also apply for the one-directional shift as it is mentioned in [4].

The proof we give here is for bijective smooth systems, and we obtain V continuous in all M. Our result can not be derived (via Markov partition) directly from an analogous result for the bi-directional shift.

Corollary 2. — The hypothesis are the same as in theorem 1. The following statements are equivalent:

- (i) $A \ge V \circ f V$ for some bounded measurable function V,
- (ii) $\int A d\mu \ge 0$ for all f-invariant probability measure μ ,
- (iii) $\sum_{k=0}^{p-1} A \circ f^k(x) \ge 0$ for all $p \ge 1$ and point x periodic of period p,
- (iv) $A \ge V \circ f V$ for some Hölder function V.

The proof of that corollary is straightforward and uses (for (iii) \Rightarrow (ii)) the fact that the convex hull of periodic measures is dense in the set of all *f*-invariant probability measures for topological dynamical systems satisfying the shadowing lemma (see Lemma 5). F. Labourie suggested to us the following corollary:

Corollary 3. — The hypothesis are the same as in theorem 1. If A satisfies $\int A d\mu \ge 0$ for all $\mu \in \mathcal{M}(f)$ and $\sum_{k=0}^{p-1} A \circ f^k(x) > 0$ for at least one periodic orbit x of period p then $\int A d\lambda > 0$ for all probability measure λ giving positive mass to any open set.

Again the proof is straitforward: $R = A - V \circ f + V \ge 0$ for some continuous V and $\int R d\lambda = 0$ for such a measure λ implies R = 0 everywhere and in particular $\sum_{k=0}^{p-1} A \circ f(x) = 0$ for all periodic orbit x.

Any measure μ satisfying $\int A d\mu = m(A, f)$ is called a maximizing measure and since A is continuous, such a measure always exists. It is then natural to ask the following two questions: For which A, the set of maximizing measures is reduced to a single measure? In the case there exists a unique maximizing measure, to what kind of compact set, the support of this measure looks like ?

The following theorem gives a partial answer for "generic" functions A.

Theorem 4. — Let $f : M \to M$ be a C^2 transitive Anosov diffeomorphism and $\beta < \ln(1/\lambda_s)/\ln(\Lambda_u/\lambda_s)$. Then there exists an open set \mathcal{G}_β of β -Hölder functions (open in the C^β -topology) such that:

(i) any A in \mathcal{G}_{β} admits a unique maximizing measure μ_A ;

(ii) the support of μ_A is equal to a periodic orbit and is locally constant with respect to $A \in \mathcal{G}_{\beta}$;

(iii) any α -Hölder function with $\alpha > \beta \ln(\Lambda_u/\lambda_s)/\ln(1/\lambda_s)$ is contained in the closure of \mathcal{G}_{β} (the closure is taken with respect to the \mathcal{C}^{β} -topology).

The proof of Theorem 4 is a simplification of what we gave in [4] in the onedimensional setting. The existence of sub-actions is in both cases the main ingredient of the proof.

Now we will concentrate in one of our main results, namely, Theorem 1; the basic idea is the following: given a finite covering of M by open sets $\{U_1, \ldots, U_l\}$ with sufficiently small diameter, we construct a Markov covering (and not a Markov partition) $\{R_1, \ldots, R_l\}$ of rectangles: each R_i contains U_i and satisfies

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow f(W^s(x, R_i)) \subset W^s(f(x), R_j),$$

where $W^s(x, R_i)$ denotes the local stable leaf through x restricted to R_i . We then associate to each R_i a local sub-action V_i , defined on R_i by:

$$V_i(x) = \sup \left\{ S_n(A-m) \circ f^{-n}(y) + \Delta^s(y,x) \mid n \ge 0, \ y \in W^s(x,R_i) \right\}$$

where $\Delta^{s}(y, x)$ is a kind of cocycle along the stable leaf $W^{s}(x)$:

$$\Delta^{s}(y,x) = \sum_{n \ge 0} (A \circ f^{n}(y) - A \circ f^{n}(x)),$$

and where $S_n(A - m) = \sum_{k=0}^{n-1} (A - m) \circ f^k$.

This family $\{V_1, \ldots, V_l\}$ of local sub-actions satisfies the inequality:

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow V_i(x) + A(x) - m \leqslant V_j \circ f(x)$$

and enable us to construct a global sub-action V:

$$V(x) = \sum_{i=1}^{l} \theta_i(x) V_i(x)$$

where $\{\theta_1, \ldots, \theta_l\}$ is a smooth partition of unity associated to the covering $\{U_1, \ldots, U_l\}$. The main difficulty is to prove that each V_i is Hölder on R_i .

2. Existence of sub-actions

We continue our description of the dynamics of transitive Anosov diffeomorphisms (for details information, see Bowen's monography [3]). All the results we are going to use depend on a small constant of expansiveness $\varepsilon^* > 0$ (by definition this constant says that any pseudo-orbit can be followed by true orbits) depending on f and M in the following way:

$$\varepsilon^* = C(M)^{-1} \min\left(\frac{\lambda_u - 1}{\|D^2 f\|_{\infty}}, \frac{1 - \lambda_s}{\|D^2 f\|_{\infty}}\right)$$

where $C(M) \ge 1$ is a constant depending only on M and the riemannian metric. At each point x, one can define its local stable manifold $W^s_{\varepsilon}(x)$ for every $\varepsilon < \varepsilon^*$:

$$W^s_{\varepsilon}(x) = \left\{ y \in M \mid d(f^n(x), f^n(y)) \leqslant \varepsilon \; \forall \, n \ge 0 \right\}$$

which are C^2 embedde closed disks of dimension $d^s = \dim E_x^s$ and tangent to E_x^s . In the same manner, $W_{\varepsilon}^u(x)$ is defined replacing f by f^{-1} . If two points x, y are close enough, $d(x, y) < \delta$, then $W_{\varepsilon}^s(x)$ and $W_{\varepsilon}^u(y)$ have a unique point in common, called [x, y]:

$$[x,y] = W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) = W^s_{\varepsilon^*}(x) \cap W^u_{\varepsilon^*}(y),$$

where $\varepsilon = K^* \delta$ and K^* is again a large constant depending on M and f:

$$K^* = \frac{C(M)}{\min(1 - \lambda_u^{-1}, 1 - \lambda_s)}$$

This estimate is in fact a particular case of Bowen's shadowing lemma:

Lemma 5 (Bowen). — If δ is small enough, $\delta < \varepsilon^*/K^*$, if $(x_n)_{n \in \mathbb{Z}}$ is a bi-infinite δ -pseudo-orbit, that is, $d(f(x_n), x_{n+1}) < \delta$ for all $n \in \mathbb{Z}$, then there exists a unique true orbit $\{f^n(x)\}_{n \in \mathbb{Z}}$ which ε -shadow $(x_n)_{n \in \mathbb{Z}}$, that is $d(f^n(x), x_n) < \varepsilon$ for all $n \in \mathbb{Z}$ with $\varepsilon = K^* \delta$.

This lemma (see [3]) for proof) is the main ingredient for constructing (dynamical) rectangles. A rectangle R is a closed set of diameter less than ε^*/K^* satisfying:

$$x, y \in R \Longrightarrow [x, y] \in R.$$

We will not use the notion of proper rectangles but will use instead the notion of Markov covering. **Definition 6.** — Let $\mathcal{U} = \{U_1, \ldots, U_l\}$ be a covering of M by open sets of diameter less than $\varepsilon^*/(K^*)^2$. We call a Markov covering associated to \mathcal{U} , a finite set $\mathcal{R} = \{R_1, \ldots, R_l\}$ of rectangles of diameter less than ε^*/K^* satisfying:

$$U_i \subset R_i$$

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow f(W^s(x, R_i)) \subset W^s(f(x), R_j)$$

$$y \in f(U_i) \cap U_j \Longrightarrow f^{-1}(W^u(y, R_j)) \subset W^u(f^{-1}(y), R_i)$$

$$\forall j, \exists i, f(U_i) \cap U_j \neq \emptyset$$

where $W^s(x, R_i) = W^s_{\varepsilon^*}(x) \cap R_i$ and $W^u(y, R_j) = W^u_{\varepsilon^*}(y) \cap R_j$.

An easy consequence of the shadowing lemma shows there always exist such Markov coverings:

Proposition 7. — For every covering \mathcal{U} of M by open sets such that the diameter of each U_i is less than $\varepsilon^*/(K^*)^2$, there exists a Markov covering \mathcal{R} by rectangles of diameter less than ε^*/K^* .

Proof. — Given $\mathcal{U} = \{U_1, \ldots, U_l\}$ such a covering, we define the following compact space of $\varepsilon^*/(K^*)^2$ pseudo-orbits:

$$\Sigma = \{ \omega = (\dots, \omega_{-2}, \omega_{-1} \mid \omega_0, \omega_1, \dots) \quad \text{s.t.} \quad U_{\omega_n} \cap f^{-1}(U_{\omega_{n+1}}) \neq \emptyset \}.$$

Here ω is a sequence of indices in $\{1, \ldots, l\}$ and Σ is a subshift of finite type where $i \to j$ is a possible transition iff $U_i \cap f^{-1}(U_j)$ is not empty. Given such $\omega \in \Sigma$, we choose for all $n \in \mathbb{Z}$, $x_n \in U_{\omega_n}$ so that $f(x_n) \in U_{\omega_{n+1}}$. Then $(x_n)_{n \in \mathbb{Z}}$ is a $\varepsilon^*/(K^*)^2$ pseudo-orbit which corresponds to a unique true orbit $(f^n(x))_{n \in \mathbb{Z}}$ satisfying:

$$d(f^n(x), U_{\omega_n}) < \varepsilon^* / K^* \quad \forall n \in \mathbb{Z}.$$

Since ε^* is a constant of expansiveness, there can exists at most one point x satisfying the previous inequality for all n. We call that point $\pi(\omega)$ and notice that the map

$$\pi:\Sigma\to M$$

is surjective (for \mathcal{U} is a covering), commutes with the left shift σ , $f \circ \pi = \pi \circ \sigma$, is continuous by expansiveness (in fact Hölder if Σ is equiped with the standard metric). Also notice that π may not be finite-to-one. We first construct a Markov cover on Σ as usual by the braket

$$[\omega, \omega'] = (\dots, \omega'_{-2}, \omega'_{-1} \mid \omega_0, \omega_1, \dots)$$

where $\omega = (\omega_n)_{n \in \mathbb{Z}}$, $\omega' = (\omega'_n)_{n \in \mathbb{Z}}$ and $\omega'_0 = \omega_0$. By uniqueness in the construction of $\pi(\omega)$, we get

$$\begin{aligned} \pi([\omega, \omega']) &= [\pi(\omega), \pi(\omega')] \\ \pi([i]) &= R_i \text{ is a rectangle of } M \text{ containing } U_i \\ \pi(W^s(\omega, [i])) &= W^s(\pi(\omega), R_i) \quad \text{whenever } \omega_0 = i \end{aligned}$$

where [i], i = 1, ..., l, is the cylinder $\{\omega \in \Sigma \mid \omega_0 = i\}$ and $W^s(\omega, [i])$ is the symbolic stable set $\{\omega' \in \Sigma \mid \omega'_n = \omega_n \ \forall n \ge 0\}$. (For the proof of the last equality, we just notice: if $x = \pi(\omega), y \in W^s(x, R_i)$ and $y = \pi(\omega')$ then $\pi([\omega, \omega']) = y$ and $[\omega, \omega'] \in W^s(\omega, [i])$.) To finish the proof we only show

$$x \in U_i \cap f^{-1}(U_j) \Longrightarrow f(W^s(x, R_i)) \subset W^s(f(x), R_j).$$

Indeed, $x = \pi(\omega)$ for some $\omega = (\cdots, \omega_{-1} \mid i, j, \omega_2, \cdots)$ and

$$\sigma(W^s(\omega, [i]) \subset W^s(\sigma(\omega), [j]).$$

To conclude, we apply π on both sides.

Definition 8. — Let $\mathcal{R} = \{R_1, \ldots, R_l\}$ be a Markov covering of M associated to some open covering $\mathcal{U} = \{U_1, \ldots, U_l\}$. We define a local sub-action by

$$V_i(x) = \sup\{ S_n(A - m) \circ f^{-n}(y) + \Delta^s(y, x) \mid n \ge 0, \ y \in W^s(x, R_i), \}$$

for $x \in U_i$, and where $S_n B = \sum_{k=0}^{n-1} B \circ f^k$, $\Delta^s(y, x) = \sum_{k \ge 0} (A \circ f^k(y) - A \circ f^k(x))$ and the supremum is taken over all $n \ge 0$ and points $y \in W^s(x, R_i)$.

Before showing V_i is a (finite!) Hölder function on each R_i , let's conclude the proof of Theorem 1:

Proof of Theorem 1. — Let $\mathcal{U} = \{U_1, \ldots, U_l\}$ be an open covering of M, $\{R_1, \ldots, R_l\}$ a Markov covering associated to \mathcal{U} and $\{\theta_1, \ldots, \theta_l\}$ a partition of unity adapted to \mathcal{U} . Let $\{V_1, \ldots, V_l\}$ constructed as above and

$$V = \sum_{i} \theta_i V_i.$$

Suppose we have proved that $x \in U_i \cap f^{-1}(U_i)$ implies

$$V_i(x) + (A - m)(x) \leq V_j \circ f(x)$$

Multiplying this inequality by $\theta_i(x)\theta_j \circ f(x)$ and summing over *i* and *j* (whether or not $i \to j$ is a possible transition), we get

$$V(x) + (A - m)(x) \leq V \circ f(x) \quad (\forall x \in M).$$

We now prove the local sub-cohomological equation: if $x \in U_i \cap f^{-1}(U_j)$ and $y \in W^s(x, R_i)$, then $f(y) \in W^s(f(x), R_j)$ and

$$S_n(A-m) \circ f^{-n}(y) + \Delta^s(y,x) + (A-m)(x)$$

= $S_{n+1}(A-m) \circ f^{-(n+1)} \circ f(y) + \Delta^s(f(y), f(x)) \leq V_j \circ f(x).$

Taking the supremum over all $n \ge 0$ and all $y \in W^s(x, R_i)$, we get indeed

$$V_i(x) + (A - m)(x) \leq V_j \circ f(x).$$

That finishes the proof of theorem 1.

140

We now come to our main technical lemma. We notice that, even in the case where A is Lipschitz, we only obtain a Hölder sub-action.

Lemma 9. — If A is α -Hölder on M, R is a rectangle and V is defined as in Definition 8, then V is β -Hölder on R with exponent

$$\beta = \alpha \frac{|\ln \lambda_s|}{\ln \Lambda_u + |\ln \lambda_s|} < \alpha.$$

Proof. — We divide the proof into four steps:

Step one. — If $d(x, x') < \varepsilon^*$ and x, x' are on the same stable leaf, then

$$\Delta^{s}(x,x') \leqslant \sum_{n \ge 0} |A \circ f^{n}(x) - A \circ f^{n}(x')| \leqslant C(M) \frac{\operatorname{H\ddot{o}ld}_{\alpha}(A)}{1 - \lambda_{s}^{\alpha}} d(x,x')^{\alpha},$$

for some constant C(M) depending only on M and the metric.

Indeed, it follows from the contraction $d(f^k(x), f^k(x')) \leq C(M)\lambda_s^k d(x, x')$ for $k \geq 0$ and the fact that A is α -Hölder.

Step two. — For every $n \ge 1$, $x, x' \in M$ such that $d(f^k(x), f^k(x')) < \varepsilon^*/K^*$ for all $0 \le k \le n$, then

$$\sum_{k=0}^{n-1} |A \circ f^k(x) - A \circ f^k(x')| \leqslant K(M, f) \max(d(x, x')^{\alpha}, d(f^n(x), f^n(x'))^{\alpha}),$$

where $K(M, f) = C(M) \frac{\operatorname{H\"old}_{\alpha}(A)}{\min(1 - \lambda_u^{-\alpha}, 1 - \lambda_s^{\alpha})^2}.$

Indeed, one can build w = [x, x']; then on the one hand, $d(x, w) \leq \varepsilon^*$ and x, w are on the same stable leaf; on the other hand, $d(f^n(w), f^n(x')) \leq \varepsilon^*$ and $f^n(w)$ and $f^n(x')$ are on the same unstable leaf. We conclude by applying step one and the estimates:

$$d(x,w) \leqslant K^* d(x,x'), \quad d(f^n(w), f^n(x')) \leqslant K^* d(f^n(x), f^n(x')).$$

Step three. — We show that V(x) is finite for every $x \in R$. It is precisely here that the choice of the normalizing constant m(A, f) is important.

Indeed, since a transitive Anosov diffeomorphism is mixing (see [3]), there exists an integer $\tau^* \ge 1$ such that, for every finite orbit $\{f^{-n}(y), \ldots, f^{-1}(y), y\}$, *n* arbitrary, $f^{\tau^*}(B(y, \varepsilon^*/K^*))$ contains $f^{-n}(y)$. Thanks to the shadowing lemma, there exists a periodic orbit *z*, of period $n + \tau^*$, satisfying

$$d(f^{-k}(z), f^{-k}(y)) \leqslant \varepsilon^* \qquad (\forall k = 0, 1, \dots, n).$$

Using step two, $\sum_{k=1}^{n} (A \circ f^{-k}(y) - A \circ f^{-k}(z))$ is uniformly bounded in n by some constant C(M, f). As any periodic orbit is associated to an invariant probability, then, $\sum_{k=1}^{n+\tau^*} (A \circ f^{-k}(z) - m(A, f)) \leq 0$.

Without lost of generality we can assume m(A, f) = 0. Therefore, we get

$$\sum_{k=1}^{n} A \circ f^{-k}(y) \leqslant C(M, f) + \sum_{k=1}^{n+\tau^{*}} A \circ f^{-k}(z) + \tau^{*} \|A\|_{\infty}$$
$$\leqslant C(M, f) + \tau^{*} \|A\|_{\infty}.$$

Step four. — We finally prove that V is Hölder on R. Let $n \ge 0$, $x, x' \in R$, $y \in W^s(x, R)$ and define y' = [x', y] belonging to R since R is a rectangle and to the same local unstable manifold as y. Then for some N we are going to choose soon: let B = A - m(A, f),

$$S_{n}B \circ f^{-n}(y) + \Delta^{s}(y,x) \leq S_{n}B \circ f^{-n}(y') + \Delta^{s}(y',x') + \sum_{k=-n}^{N-1} |A \circ f^{k}(y) - A \circ f^{k}(y')| \qquad (=\Sigma_{1}) + \sum_{k=0}^{N-1} |A \circ f^{k}(x) - A \circ f^{k}(x')| \qquad (=\Sigma_{2})$$

$$+ \left| \Delta^{s}(f^{N}(y), f^{N}(x)) \right| \qquad (= \Sigma_{3})$$

$$+ |\Delta^{s}(f^{N}(y'), f^{N}(x'))| \qquad (= \Sigma_{4})$$

We now bound from above each Σ_i with respect to d(x, x'):

$$\begin{split} \Sigma_1 &\leqslant C(M) \frac{\text{H\"old}_{\alpha}(A)}{1 - \lambda_u^{-\alpha}} d(f^N(y), f^N(y'))^{\alpha}, \\ \Sigma_2 &\leqslant C(M) \frac{\text{H\"old}_{\alpha}(A)}{\min(1 - \lambda_u^{-\alpha}, 1 - \lambda_s^{\alpha})^2} \max(d(x, x')^{\alpha}, d(f^N(x), f^N(x'))^{\alpha}), \\ \Sigma_3 &\leqslant C(M) \frac{\text{H\"old}_{\alpha}(A)}{1 - \lambda_s^{\alpha}} d(f^N(y), f^N(x)), \\ \Sigma_4 &\leqslant C(M) \frac{\text{H\"old}_{\alpha}(A)}{1 - \lambda_s^{\alpha}} d(f^N(y'), f^N(x'))^{\alpha}. \end{split}$$

We now choose N = N(x, x') by $\lambda_s^t \varepsilon^* = \Lambda_u^t d(x, x')$, N = [t] + 1 and then choose $\widetilde{\varepsilon} \ge \varepsilon^*$ so that $\lambda_s^N \widetilde{\varepsilon} = \Lambda_u^N d(x, x')$. Then

$$d(f^{N}(x), f^{N}(x')) \leqslant C(M)\Lambda_{u}^{N}d(x, x') \leqslant C(M)\lambda_{s}^{N}\widetilde{\varepsilon},$$

$$d(f^{N}(y), f^{N}(x)) \text{ or } (f^{N}(y'), f^{N}(x')) \leqslant C(M)\lambda_{s}^{N}\varepsilon^{*} \leqslant C(M)\lambda_{s}^{N}\widetilde{\varepsilon}.$$

In particular, we get first $d(f^N(y), f^N(y')) \leq 3C(M)\lambda_s^N \tilde{\varepsilon}$ and next:

$$\Sigma_1 + \dots + \Sigma_4 \leqslant 6C(M) \frac{\text{H\"old}_{\alpha}(A)}{\min(1 - \lambda_u^{-\alpha}, 1 - \lambda_s^{\alpha})^2} (\lambda_s^N \widetilde{\varepsilon})^{\alpha} = K(M, f) (\lambda_s^N \widetilde{\varepsilon})^{\alpha},$$

$$S_n B \circ f^{-n}(y) + \Delta^s(y, x) \leqslant S_n B \circ f^{-n}(y') + \Delta^s(y', x') + K(M, f) (\lambda_s^N \widetilde{\varepsilon})^{\alpha},$$

$$V(x) \leqslant V(x') + K(M, f) (\lambda_s^N \widetilde{\varepsilon})^{\alpha}.$$

ASTÉRISQUE 287

But

$$\lambda_s^N \widetilde{\varepsilon} = d(x, x')^{\ln(1/\lambda_s)/\ln(\Lambda_u/\lambda_s)}.$$

Remark 10. — We have not used explicitly the fact that the stable foliation W^s is Hölder but our proof (step four) is close to showing W^s is Hölder of exponent $\gamma = \ln(\lambda_u/\lambda_s)/\ln(\Lambda_u/\lambda_s)$.

Proof. — We show that if $\varepsilon < \varepsilon^*/K^*$, $d(x, x') \leq \varepsilon$, $y \in W^s_{\varepsilon}(x)$, $y' \in W^s_{\varepsilon}(x')$ and $y \in W^u_{\varepsilon^*}(y')$ then

$$d(y, y') \leq 3C(M)^2 d(x, x')^{\gamma}$$

where $\gamma = \ln(\lambda_u/\lambda_s)/\ln(\Lambda_u/\lambda_s)$.

Indeed we choose t > 0 real such that $\lambda_s^t \varepsilon = \Lambda_u^t d(x, x')$, N = [t] + 1, and $\tilde{\varepsilon}$ close to ε so that $\lambda_s^N \tilde{\varepsilon} = \Lambda_u^N d(x, x')$ where $\tilde{\varepsilon}/\varepsilon$ varies between 1 and Λ_u/λ_s . Then

$$\begin{aligned} d(f^{N}(x), f^{N}(y)) & \text{or } d(f^{N}(x'), f^{N}(y')) \text{ or } d(f^{N}(x), f^{N}(x')) \leqslant C(M)\lambda_{s}^{N}\widetilde{\varepsilon}, \\ d(f^{N}(y), f^{N}(y')) \leqslant 3C(M)\lambda_{s}^{N}\widetilde{\varepsilon}, \\ d(y, y') \leqslant 3C(M)^{2}(\lambda_{s}/\lambda_{u})^{N}\widetilde{\varepsilon} = 3C(M)^{2}d(x, x')^{\gamma}. \end{aligned}$$

3. Maximizing periodic measures

The proof of Theorem 4 requires two ingredients: the first one is the notion of subactions we have already studied, the second is the notion of strongly non-wandering points we are going to explain.

Definition 11. — Given $A \in C^{\beta}(M)$ and m = m(A, f), a point $x \in M$ is said to be strongly non-wandering with respect to A, if for any $\varepsilon > 0$, there exist $n \ge 1$ and $y \in M$ such that

$$y \in B(x,\varepsilon), \quad f^n(y) \in B(x,\varepsilon) \quad \text{and} \quad \Big|\sum_{k=0}^{n-1} (A-m) \circ f^k(y)\Big| < \varepsilon$$

where $B(x,\varepsilon)$ denotes the ball centered at x and radius ε . We call $\Omega(A, f)$ the set of strongly non-wandering points.

The first non-trivial but easy observation is that $\Omega(A, f)$ is non-empty; more precisely:

Lemma 12. — The set $\Omega(A, f)$ is compact forward and backward f-invariant and contains the support of any maximizing measure.

Proof. — If μ is maximizing, by Atkinson's theorem [1], for almost μ -point x, the Birkhoff's sums $\sum_{k=0}^{n-1} (A-m) \circ f^k$ are recurrent (in the sense of random walk theory)

to $\int (A-m) d\mu = 0$: that is, for any Borel set B of positive μ -measure and for any $\varepsilon > 0$, the set

$$\left\{ x \in B \mid \exists n \ge 1 \ f^n(x) \in B \text{ and } \left| \sum_{k=0}^{n-1} (A-m) \circ f^k(x) \right| < \varepsilon \right\}$$

has positive μ -measure. Since by definition of the support of a measure, any ball $B(x,\varepsilon)$ has positive μ -measure, we have proved that $\operatorname{supp}(\mu)$ is included in $\Omega(A, f)$.

The second observation is that any Hölder function A is cohomologuous to m(A, f)on $\Omega(A, f)$, more precisely:

Lemma 13. — Let A be a C^0 -function and assume A admits a C^0 sub-action V, then $\Omega(A, f) \subseteq \Sigma_V(A, f) = \{x \in M \mid A - m = V \circ f - V\}$

and any f-invariant measure μ whose support in contained in $\Omega(A, f)$ is maximizing.

The set $\Sigma_V(A, f)$ will play an important role later and it is convenient to to give it a name:

Definition 14. — Let A be a \mathcal{C}^0 -function and V be a sub-action of A.

(i) We call the set $\Sigma_V(A, f) = \{x \in M \mid A - m = V \circ f - V\}$, the V-action-set of A.

(ii) Two points x, y of the V-action-set are said to be V-connected and we shall write $x \xrightarrow{V} y$, if for every $\varepsilon > 0$, there exist $n \ge 1$ and $z \in M$ (not necessarily in $\Sigma_V(A, f)$) such that

$$x \in B(z,\varepsilon), \quad y \in B(f^n(z),\varepsilon), \quad |S_N(A-m)(z) - (V(y) - V(x))| < \varepsilon.$$

Notice that, if V is β -Hölder for some $\beta > 0$, using the shadowing lemma, one can prove that $x \xrightarrow{V} y$ and $y \xrightarrow{V} u$ imply $x \xrightarrow{V} u$. This is so, because if z_x and n_x are the ones for $x \xrightarrow{V} y$ in (ii) above, and if z_y and n_y are the ones for $y \xrightarrow{V} u$ in (ii) above, then considering the pseudo-orbit $z_x, \ldots, f^{n_x}(z_x), z_y, \ldots, f^{n_y}(z_y)$, we can find by shadowing the z for $x \xrightarrow{V} u$ in (ii) above.

Proof of Lemma 13. — Define $R = V \circ f - V - A + m$ and choose $x \in \Omega(A, f)$. Then $\sum_{k=0}^{n_i-1} (A - m) \circ f^k(y_i)$ converges to 0 for a sequence of points y_i and a sequence of integers n_i such that y_i converges to x, n_i converges to $+\infty$ and $f^{n_i}(y_i)$ converges to x. Since R is non-negative,

$$0 \leqslant R(y_i) \leqslant \sum_{k=0}^{n_i-1} R \circ f^k(y_i) = V \circ f^{n_i}(y_i) - V(y_i) - \sum_{k=0}^{n_i-1} (A - m) \circ f^k(y_i)$$

converges to 0 and by continuity of R: R(x) = 0.

Definition 15. — For any $\beta > 0$, define

$$\mathcal{G}_{\beta} = \{A \in \mathcal{C}^{\beta}(M) \mid \Omega(A, f) \text{ is a periodic orbit}\}.$$

Our next goal is to show that \mathcal{G}_{β} is open in the \mathcal{C}^{β} topology. We could have choosen a bigger set: the set of A in $\mathcal{C}^{\beta}(M)$ such that $\Omega(A, f)$ is minimal and is dynamically isolated (i.e. there exists U, open, containing $\Omega(A, f)$ as the only f-invariant compact set inside U) and the proof below would again be the same.

Lemma 16. — For any $\beta > 0$, \mathcal{G}_{β} is open in the \mathcal{C}^{β} topology and $\Omega(A, f)$ is locally constant as a function of A in \mathcal{G}_{β} .

Proof. — Let $A \in \mathcal{G}_{\beta}$. We want to show that $\Omega(A, f) = \Omega(B, f)$ whenever B is sufficiently close to A in the \mathcal{C}^{β} topology. By contradiction: let U be an isolating open set of the periodic orbit $\Omega(A, f) = \operatorname{orb}(p)$ and $\{A_n\}$ be a sequence of β -Hölder observables converging to A in the \mathcal{C}^{β} topology such that $\Omega(A, f)$ is not included in Ufor each n.

Each A_n admits (Theorem 1) a γ -Hölder subaction V_n with γ -Hölder norm uniformly bounded and $\gamma = \beta \ln(1/\lambda_s) / \ln(\Lambda_u/\lambda_s)$. By Ascoli, $\{V_n\}$ admits a subsequence converging in the C^0 topology to some γ -Hölder function V. Since the set of non-empty compact sets is compact with respect to the Hausdorff topology, we may assume that $\{\Omega(A_n, f)\}$ has a sub-sequence converging to some compact invariant set K. Each A_n satisfies:

$$A_n - m(A_n, f) \leq V_n \circ f - V_n \qquad (\forall x \in M),$$

$$A_n - m(A_n, f) = V_n \circ f - V_n \qquad (\forall x \in \Omega(A_n, f)).$$

By continuity of m(A, f) with respect to A (for the \mathcal{C}^0 topology),

$$A - m(A, f) \leq V \circ f - V \qquad (\forall x \in M)$$
$$A - m(A, f) = V \circ f - V \qquad (\forall x \in K).$$

We have assumed that each $\Omega(A_n, f) \setminus U$ is not empty, then $K \setminus U$ is not empty too. Let $x_0 \in K \setminus U$, the ω -limit set $\omega(x_0)$ and the α -limit set $\alpha(x_0)$ of x_0 are compact invariant sets included in $\Omega(A, f)$, necessarily:

$$\omega(x_0) = \alpha(x_0) = \operatorname{orb}(p) \subset \overline{\operatorname{orb}(x_0)} \subset \Sigma_V(A, f).$$

Since p is V-connected to x_0 and x_0 is V-connected to p, x_0 is V-connected to itself which is equivalent to $x_0 \in \Omega(A, f)$. We just have obtained a contradiction.

Proof of Theorem 4. — Let β given and A, α -Hölder with:

$$\beta < \widetilde{\beta} = \alpha \frac{\ln(1/\lambda_s)}{\ln(\Lambda_u/\lambda_s)}.$$

According to Theorem 1, there exists $V, \tilde{\beta}$ -Hölder, satisfying:

$$A - m \leqslant V \circ f - V \qquad (\forall x \in M).$$

Define $R = V \circ f - V - A + m$, $\phi_n = \min(R, 1/n)$ and $B_n = A + \phi_n$. Then ϕ_n is $\widetilde{\beta}$ -Hölder with Höld_{$\widetilde{\beta}$} $(\phi_n) \leq$ Höld_{$\widetilde{\beta}$}(R) and

$$A - m \leqslant B_n - m \leqslant V \circ f - V \qquad (\forall x \in M)$$
$$B_n - m = V \circ f - V \qquad (\forall x \in \{R < 1/n\}).$$

In particular $m(B_n, f) = m(A, f)$ and the V-action set of B_n contains a neighborhood $\{R < 1/n\}$ of $\Omega(A, f)$. Using the shadowing lemma, we construct a periodic orbit orb(p) inside $\{R < 1/n\}$ and we just have proved a perturbation B_n of A satisfies

$$\operatorname{orb}(p) \cup \Omega(A, f) \subset \Omega(B_n, f).$$

Let ψ_n be any β -Hölder function with small β -Hölder norm satisfying:

$$\psi_n(x) = 0 \qquad (\forall x \in \operatorname{orb}(p))$$

$$\psi_n(x) > 0 \qquad (\forall x \in M \setminus \operatorname{orb}(p)).$$

Then $A_n = B_n - \psi_n = A + \phi_n - \psi_n$ is such that the minimizing measure has support on orb(p), and A_n has small \mathcal{C}^0 norm and (possibly large) uniform $\tilde{\beta}$ -Hölder norm. Therefore (A_n) converges to A in the \mathcal{C}^β -topology and each A_n has a unique maximizing measure which is supported on a periodic orbit.

References

- G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc., (2), 13 (1976) 486–488.
- [2] Th. Bousch. Le Poisson n'a pas d'arêtes, Ann. Inst. Henri Poincaré, 36 (2000), 489-508.
- [3] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, *Lecture Notes in Mathematics*, vol. **470**. Springer Verlag, Berlin, Heidelberg, New York, (1975).
- [4] G. Contreras, A.O. Lopes, Ph. Thieullen. Lyapunov minimizing measures for expanding maps of the circle, *Ergod. Th. & and Dynam. Sys.*, 21, (2001), 1379–1409.
- [5] A. Livsic. Some homology properties of Y-systems. Mathematical Notes of the USSR Academy of Sciences, 10 (1971), 758–763.
- [6] S.V. Savchenko. Cohomological inequalities for finite topological Markov chains. Funct. Anal. and its Appl., 33(3), 236–238 (1999)

A.O. LOPES, Instituto de Matemática, UFRGS, Porto Alegre 91501-970, Brasil *E-mail* : alopes@mat.ufrgs.br

PH. THIEULLEN, Département de Mathématiques, Université Paris-Sud, 91405 Orsay cedex, France *E-mail* : Philippe.Thieullen@math.u-psud.fr