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G E O M E T R I C M E T H O D S IN DYNAMICS (I) 

VOLUME IN HONOR OF JACOB PALIS 

ed i t ed by W e l i n g t o n de Me lo , M a r c e l o V i a n a , 
J e a n - C h r i s t o p h e Yoccoz 

Abstract. — This is the first of two volumes collecting original research articles, on 
several aspects of dynamics, mostly by participants in the International Conference 
on Dynamical Systems held at IMPA (Rio de Janeiro), in July 2000, to celebrate 
Jacob Palis' 60th birthday. 

Résumé (Méthodes géométriques en dynamique (I). Volume en l'honneur de Jacob 
Palis) 

Ceci est le premier de deux volumes regroupant des articles originaux de recherche 
concernant des aspects variés de la théorie des systèmes dynamiques, écrits par cer­
tains des participants à la Conférence Internationale sur les Systèmes Dynamiques 
qui s'est tenue à l'IMPA (Rio de Janeiro), en juillet 2000 pour commémorer le 60e 
anniversaire de Jacob Palis. 
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ABSTRACTS 

On the Mathematical Contributions of Jacob Palis 
SHELDON NEWHOUSE 1 

A Conference on Dynamical Systems celebrating the 60th birthday of Jacob 
Palis was held at IMPA (Instituto de Matemâtica Pura e Aplicada) in Rio de 
Janeiro from July 19-28, 2000. This article is a revised and expanded version 
of a lecture I gave at the Conference. Many additions, including the list of 
references and the entire sections below on Homoclinic Bifurcations, Cantor 
Sets and Fractal Invariants, Non-Hyperbolic Systems, and A Unifying View of 
Dynamics, were made later by Marcelo Viana. It was decided to preserve the 
flavor of the lecture by keeping the narrative in the first person. I am grateful 
to Marcelo for his contributions to this paper. In my opinion, they greatly 
improved the presentation of the mathematical scope and influence of Jacob 
Palis. 

Random perturbations of nonuniformly expanding maps 
JOSÉ FERREIRA ALVES & VITOR ARAIJJO 25 

We give both sufficient conditions and necessary conditions for the stochas­
tic stability of nonuniformly expanding maps either with or without critical sets. 
We also show that the number of probability measures describing the statisti­
cal asymptotic behaviour of random orbits is bounded by the number of SRB 
measures if the noise level is small enough. As an application of these results 
we prove the stochastic stability of certain classes of nonuniformly expanding 
maps introduced in [Vil] and [ABV]. 

The minimal entropy problem for 3-manifolds with zero simplicial volume 
JAMES W. ANDERSON & GABRIEL P . PATERNAIN 63 

In this note, we consider the minimal entropy problem, namely the question 
of whether there exists a smooth metric of minimal (topological) entropy, for 
certain classes of closed 3-manifolds. Specifically, we prove the following two 
results. 
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Theorem A. Let M be a closed orientable irreducible 3-manifold whose fun­
damental group contains a Z 0 Z subgroup. The following are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem 
for M can be solved: 
(2) M admits a geometric structure modelled on E3 or Nil; 
(3) M admits a smooth metric g with ht0p(#) = 0. 
Theorem B. Let M be a closed orientable geornetrizable 3-manifold. The fol­
lowing are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem 
for M can be solved; 
(2) M admits a geometric structure modelled on S3, S2 x M, E3, or Nil; 
(3) M admits a smooth metric g with htop(g) = 0. 

Statistical properties of unimodal maps: smooth families with negative Schwarzian 
derivative 
ARTUR AVILA & CARLOS GUSTAVO MOREIRA 81 

We prove that there is a residual set of families of smooth or analytic uni­
modal maps with quadratic critical point and negative Schwarzian derivative 
such that almost every non-regular parameter is Collet-Eckmann with subexpo-
nential recurrence of the critical orbit. Those conditions lead to a detailed and 
robust statistical description of the dynamics. This proves the Palis conjecture 
in this setting. 

Geometry of Multi-dimensional Dispersing Billiards 
PÉTER BÂLINT, NIKOLAI CHERNOV, DOMOKOS SZÂSZ SZ IMRE PÉTER TÔTH 119 

Geometric properties of multi-dimensional dispersing billiards are studied 
in this paper. On the one hand, non-smooth behaviour in the singularity sub-
manifolds of the system is discovered (this discovery applies to the more general 
class of semi-dispersing billiards as well). On the other hand, a self-contained 
geometric description for unstable manifolds is given, together with the proof of 
important regularity properties. All these issues are highly relevant to studying 
the ergodic and statistical behaviour of the dynamics. 

Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with 
two degrees of freedom 
PATRICK BERNARD, CLODOALDO GROTTA RAGAZZO & PEDRO A. SANTORO 
SALOMÂO 151 

We study a class of Hamiltonian systems on a 4 dimensional symplectic 
manifold which have a saddle-center fixed point and satisfy the following prop­
erty: All the periodic orbits in the center manifold of the fixed point have an 
orbit homoclinic to them, although the fixed point itself does not. In addition, 
we prove that these systems have a chaotic behavior in the neighborhood of 
the energy shell of the fixed point. 
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ABSTRACTS xv 

On the scaling structure for period doubling 
GARRETT BIRKHOFF, MARCO MARTENS & CHARLES TRESSER 167 

We describe an order on the set of scaling ratios of the generic universal 
smooth period doubling Cantor set and prove that this set of ratios forms itself 
a Cantor set, a Conjecture formulated by Coullet and Tresser in 1977. This 
result establishes explicitly the geometrical complexity of the universal period 
doubling Cantor set. We also show a convergence result for the two period 
doubling renormalization operators, acting on the codimension one space of 
period doubling maps. In particular they form an iterated function system 
whose limit set contains a Cantor set. 

Robustly transitive sets and heterodimensional cycles 
CHRISTIAN BONATTI, LORENZO J . DIAZ, ENRIQUE R. PUJALS & JORGE 
ROCHA 187 

It is known that all non-hyperbolic robustly transitive sets have a domi­
nated splitting and, generically, contain periodic points of different indices. We 
show that, for a C1 -dense open subset of diffeomorphisms (p, the indices of pe­
riodic points in a robust transitive set A^ form an interval in N. We also prove 
that the homoclinic classes of two periodic points in A^ are robustly equal. 
Finally, we describe what sort of homoclinic tangencies may appear in A^ by 
studying its dominated splittings. 

Coupled H opf-bifurcations: Persistent examples of n-qiiasiperiodicity determined 
by families of 3-jets 
HENK BROER 223 

In this note examples are presented of vector fields depending on param­
eters and determined by the 3-jet, which display persistent occurrence of n-
quasiperiodicity. In the parameter space this occurrence has relatively large 
measure. A leading example consists of weakly coupled Hopf bifurcations. 
This example, however, is extended to full generality in the space of all 3-jets. 

Walks in rigid environments: symmetry and dynamics 
LEONID A. BUNIMOVICH 231 

We study dynamical systems generated by a motion of a particle in an array 
of scatterers distributed in a lattice. Such deterministic cellular automata are 
called Lorentz-type lattice gases or walks in rigid environments. It is shown 
that these models can be completely solved in the one-dimensional case. The 
corresponding regimes of motion can serve as the simple dynamical examples 
of diffusion, sub- and super-diffusion. 

Perverse solutions of the planar n-body problem 
ALAIN CHENCINER 249 

The perverse solutions of the n-body problem are the solutions which satisfy 
the equations of motion for at least two distinct systems of masses. I contribute 
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with some simple remarks concerning their existence, a question which curiously 
seems to be new. 

Chaos versus renormalization at quadratic S-unimodal Misiurewicz bifurcations 
EDUARDO COLLI & VILTON PINHEIRO 257 

We study C3 families of unimodal maps of the interval with negative 
Schwarzian derivative and quadratic critical point, transversally unfolding Mi­
siurewicz bifurcations, and for these families we prove that existence of an 
absolutely continuous invariant probability measure ("chaos") and existence of 
a renormalization are prevalent in measure along the parameter. Moreover, 
the method also shows that existence of a renormalization is dense and chaos 
occurs with positive measure. 
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RÉSUMÉS DES ARTICLES 

On the Mathematical Contributions of Jacob Palis 
SHELDON NEWHOUSE 1 

Une conférence sur les systèmes dynamiques s'est tenue à l'IMPA (Insti­
tute* de Matemâtica Pura e Aplicada) à Rio de Janeiro, à l'occasion du 60E 
anniversaire de Jacob Palis, du 19 au 28 juillet 2000. Cet article est une ver­
sion révisée et élargie d'un exposé que j'ai donné lors de la conférence. Plusieurs 
ajouts, incluant une liste de références et les paragraphes intitulés Homoclinic 
Bifurcations, Cantor Sets and Fractal Invariants, Non-Hyperbolic Systems et 
A Unifying View of Dynamics, ont été introduits plus tard par Marcelo Viana. 
Il a été décidé de préserver l'ambiance de l'exposé en conservant une narration 
à la première personne. Je remercie Marcelo pour ses contributions à cet arti­
cle. A mon avis, celles-ci ont beaucoup amélioré la présentation de l'envergure 
mathématique et de l'influence de Jacob Palis. 

Random perturbations of nonuniformly expanding maps 
JOSÉ FERREIRA ALVES & VITOR ARAÛJO 25 

Nous donnons des conditions suffisantes et des conditions nécessaires pour 
la stabilité stochastique de transformations non uniformément dilatantes, avec 
ou sans ensembles critiques. Nous prouvons aussi que le nombre de mesures 
de probabilité qui décrit le comportement statistique asymptotique des orbites 
aléatoires est borné par le nombre de mesures de SRB si le niveau de bruit 
est assez petit. Comme application de ces résultats nous prouvons la stabilité 
stochastique de certaines classes de transformations non uniformément dila­
tantes présentées dans [Vil] et [ABV]. 

The minimal entropy problem for 3-manifolds with zero simplicial volume 
JAMES W . ANDERSON & GABRIEL P. PATERNAIN 63 

Dans cet article, nous considérons le problème de Ventropie minimale, c'est-
à-dire la question de l'existence d'une métrique lisse d'entropie (topologique) 



xviii RÉSUMÉS DES ARTICLES 

minimale, pour certaines classes de variétés fermées de dimension 3. Précisé­
ment, nous montrons les deux résultats suivants. 
Théorème A. Soit M une variété fermée de dimension 3, orientable et 
irréductible, dont le groupe fondamental contient un sous-groupe 7L ® Z. Les 
propriétés suivantes sont équivalentes: 
(1) le volume simplicial \\M\\ de M est nul et le problème de Ventropie mini­
male pour M peut être résolu; 
(2) M admet une structure géométrique modelée sur E'* ou Nil; 
(3) M admet une métrique lisse g avec htop(g) = 0. 
Théorème B. Soit M une variété fermée de dimension 3, orientable et 
géométrisable. Les propriétés suivantes sont équivalentes: 
(1) le volume simplicial \\M\\ de M est nul et le problème de Ventropie mini­
male pour M peut être résolu; 
(2) M admet une structure géométrique modelée sur S'K S2 x M, E'3, ou Nil; 
(3) M admet une métrique lisse g avec htop(g) = 0. 

Statistical properties of unimodal maps: smooth families with negative Schwarzian 
derivative 
ARTUR AVILA & CARLOS GUSTAVO MOREIRA 81 

Nous montrons que l'ensemble des familles d'applications unimodales telles 
que presque tout paramètre non régulier est Collet-Eckmann avec récurrence 
sous-exponentielle de l'orbite critique est résiduel. Ceci nous amène à donner 
une description statistique détaillée et robuste de la dynamique. Nos résultats 
démontrent la conjecture de Palis dans ce contexte. 

Geometry of Multi-dimensional Dispersing Billiards 
PÉTER BÂLINT, NIKOLAI CHERNOV, DOMOKOS SZÂSZ & IMRE PÉTER TÔTH 119 

Dans cet article, on étudie les propriétés géométriques des billards dispersifs 
multi-dimensionnels. D'une part, on découvre un comportement non régulier 
dans les variétés singulières du système (cette découverte concerne aussi la caté­
gorie plus générale des billards semi-dispersifs). D'autre part, on donne une de­
scription géométrique cohérente pour les variétés instables, puis on démontre 
d'importantes propriétés de régularité. Toutes ces questions sont particulière­
ment en rapport avec l'étude du comportement ergodique et statistique de la 
dynamique. 

Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with 
two degrees of freedom 
PATRICK BERNARD, CLODOALDO GROTTA RAGAZZO & PEDRO A. SANTORO 
SALOMÂO 151 

On étudie une classe de systèmes hamiltoniens sur une variété symplectique 
de dimension 4 qui admettent un point fixe de type selle-centre et vérifient la 
propriété suivante: chaque orbite périodique de la variété centrale du point fixe 
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RÉSUMÉS DES ARTICLES xix 

a une orbite homocline, mais le point fixe lui-même n'a pas d'orbite homo-
cline. On montre de plus que ces systèmes ont un comportement chaotique au 
voisinage de la surface d'énergie du point fixe. 

On the scaling structure for period doubling 
GARRETT BIRKHOFF, MARCO MARTENS & CHARLES TRESSER 167 

Nous décrivons un ordre sur l'ensemble des rapports d'échelle de l'ensemble 
de Cantor du doublement de période générique universel lisse, et montrons que 
cet ensemble de rapports forme lui-même un ensemble de Cantor, ce qui est 
une conjecture formulée par Coullet et Tresser en 1977. Ce résultat établit ex­
plicitement la complexité géométrique de l'ensemble de Cantor du doublement 
de période universel. Nous montrons aussi un résultat de convergence pour 
les deux opérateurs de renormalisation du doublement de période, agissant sur 
l'espace de codimension 1 des applications de doublement de période. 

Robustly transitive sets and heterodimensional cycles 
CHRISTIAN BONATTI, LORENZO J. DIAZ, ENRIQUE R. PUJALS & JORGE 
ROCHA 187 

On sait que les ensembles robustement transitifs non hyperboliques possè­
dent une décomposition dominée et contiennent génériquement des points péri­
odiques de différents indices. Nous montrons que, sur une partie Cl-ouverte et 
dense de difféomorphismes 92, les indices des points périodiques d'un ensemble 

robustement transitif forment un intervalle dans N. Nous montrons aussi 
que les classes homoclines de deux points périodiques de A^ sont robustement 
égales. Finalement, nous décrivons les types de tangences homoclines qui peu­
vent apparaître dans A^, en analysant les différentes décompositions dominées 
de A^. 

Coupled H opf-bifurcations: Persistent examples of n-quasi/periodicity determined 
by families of 3-jets 
HENK BROER 223 

Dans cet article, on présente des exemples de champs de vecteurs dépen­
dant de paramètres et déterminés par leur 3-jet, qui présentent une n-quasi-
périodicité persistante. Dans l'espace des paramètres, ce phénomène apparaît 
sur un ensemble de mesure relativement grande. Les bifurcations de Hopf cou­
plées en sont l'exemple principal. On étend cet exemple en toute généralité à 
l'espace de tous les 3-jets. 

Walks in rigid environments: symmetry and dynamics 
LEONID A. BUNIMOVICH 231 

Nous étudions des systèmes dynamiques engendrés par le mouvement d'une 
particule sur un ensemble de dispersions distribuées dans un réseau. Ces au­
tomates cellulaires déterministes sont appelés gaz de réseau de type Lorentz 
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ou marches en environnements rigides. Nous démontrons que ces modèles peu­
vent être complètement résolus en dimension 1. Les régimes de mouvement 
peuvent servir d'exemples dynamiques simples de diffusion, sous-diffusion et 
supra-diffusion. 

Perverse solutions of the planar n-body problem 
ALAIN CHENCINER 249 

Les solutions perverses du problème des n corps sont celles qui satisfont aux 
équations du mouvement pour au moins deux systèmes distincts de masses. Je 
fais quelques remarques simples sur la question de leur existence, question qui 
curieusement semble nouvelle. 

Chaos versus renormalization at quadratic S-unimodal Misiurewicz bifurcations 
EDUARDO COLLI & VILTON PINHEIRO 257 

Nous étudions des familles C3 d'applications unimodales de l'intervalle avec 
une dérivée de Schwarz négative et un point critique quadratique, qui déploient 
transversalement une bifurcation de Misiurewicz, et nous démontrons, pour ces 
familles, que l'existence d'une mesure de probabilité invariante absolument con­
tinue ("chaos") et l'existence d'une renormalisation sont prévalentes en mesure 
dans l'espace des paramètres. D'autre part, la méthode montre aussi que 
l'existence d'une renormalisation est dense et le chaos a lieu avec une mesure 
positive. 
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PREFACE 

These two volumes collect original research articles submitted by participants of 
the International Conference on Dynamical Systems held at IMPA, Rio de Janeiro, 
in July 19-28, 2000 to commemorate the 60th birthday of Jacob Palis. 

These articles cover a wide range of subjects in Dynamics, reflecting the Confer­
ence's broad scope, itself a tribute to the diversity and influence of Jacob's contribu­
tions to the mathematical community worldwide, and most notably in Latin America, 
through his scientific work, his role as an educator of young researchers, his respon­
sibilities in international scientific bodies, and the efforts he has always devoted to 
fostering the development of Mathematics in all regions of the globe. 

His own mathematical work, which extends for more than 80 publications, is de­
scribed in Sheldon Newhouse's opening article. It is, perhaps, best summarized by 
the following quotation from Jacob's recent nomination for the French Academy of 
Sciences: "sa vision, en constante évolution, a considérablement élargi le sujet". 

As Jacob does not seem willing to slow down, we should expect much more from 
him in the years to come... 

Rio de Janeiro and Paris, 
May 20, 2003 

Welington de Melo, Marcelo Viana, Jean-Christophe Yoccoz 
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ON THE MATHEMATICAL CONTRIBUTIONS OF 
JACOB PALIS 

by 

Sheldon Newhouse 

Abstract. — A Conference on Dynamical Systems celebrating the 60th birthday of 
Jacob Palis was held at IMPA (Instituto de Matemática Pura e Aplicada) in Rio 
de Janeiro from July 19-28, 2000. This article is a revised and expanded version of 
a lecture I gave at the Conference. Many additions, including the list of references 
and the entire sections below on Homoclinic Bifurcations, Cantor Sets and Fractal 
Invariants, Non-Hyperbolic Systems, and A Unifying View of Dynamics, were made 
later by Marcelo Viana. It wras decided to preserve the flavor of the lecture by keeping 
the narrative in the first person. I am grateful to Marcelo for his contributions to this 
paper. In my opinion, they greatly improved the presentation of the mathematical 
scope and influence of Jacob Palis. 

Introduction 

Let me begin just by saying that Jacob has made many, many contributions to 
Mathematics. I will not talk about all of them because, in fact, in one hour it's 
impossible to discuss in any detail all of them. I pick some of what I consider to be 
the main contributions, and there will be relatively little that is new for experts, but 
I hope you will be reminded of many experiences during the last thirty or some years 
of the development of Dynamical Systems. 

First, to my mind his primary mathematical contributions fit into three categories: 
- global stability related to the concepts of structural stability and ^-stability; 
- bifurcation theory, which is how systems depending on parameters change, how 

their structure changes. 
- formulation of some general ideas and conjectures, that motivated several very 

interesting recent results in this field. 
I will talk about these aspects of his work a little bit later. Besides these types of 
subjects there are many other ancillary results, many interesting kinds of things. 

2000 Mathematics Subject Classification. — 37Dxx. 
Key words and phrases. — Hyperbolic, Morse-Smale, structural stability, Axiom A, bifurcation theory, 
homoclinic tangency, tubular families, Q-stability, stability conjecture. 
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2 S. NEWHOUSE 

But, together with the mathematical contributions that he has been making, one 
has to appreciate and understand the overview and direction of research that Jacob 
is responsible for. At the present time he is at 

- 35 graduate students, and some 30 grand-students, originating from 10 different 
countries mainly in Latin America, as you can see in his academic tree (attached to 
this paper). 
Some of these students have become main figures in the whole theory of Dynamical 
Systems, in fact in the world of Mathematics. You know who they are as well as I do, 
I don't need to mention names. It's a testimony to his vision, his generosity, and 
the freedom of ideas that he's encouraged, that he is such an inspiration to so many 
people. 

In addition, I think it's really fair to say that in our time Jacob Palis has been 
one of the main figures responsible for the development of Mathematics and Science, 
primarily in Latin America(1) and, in fact, in many other places, through his 

organization of meetings, symposia, workshops, and the support of sciences and 
Mathematics in developing countries, most notably, that I'm familiar with, in Trieste. 
He has facilitated the contacts between scientists who have had great difficulty in 
traveling to the west for political or other reasons. They were able to establish contacts 
with western mathematicians in the settings of meetings, workshops, and schools 
where one can get to meet many people. I myself met a number of people from 
mainland China in Trieste, at a time when it was extremely difficult for them to travel 
to Western Europe. Jacob has been one of the primary organizers and supporters of 
such occasions. 

Moreover, he has been responsible, in great measure, for 
- the tremendous growth of IMPA, this wonderful institute, as a researcher and, 

more recently, also as the Director. 
I think it's fair to say that IMPA has become the principal center for Mathematics in 
Latin America and, certainly, one of the world centers for Dynamical Systems. In no 
small measure is this due to his efforts and, again, his vision. 

I want to go now toward some of the mathematical developments Jacob has ac­
companied in his many years of activity. 

Structural Stability 

Let me go back to 1960. Let M be a compact connected smooth manifold without 
boundary, and let us consider the space Vr(M) of Cr diffeomorphisms on M, and the 

(^The impact of Jacob Palis's work throughout Latin America was the subject of another lecture at 
the Conference, by Alberto Verjovsky. 
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space XR(M) of C vector fields on M, as well as certain distinguished well-known 
subsets of these 

Vrss(M) — set of C1 structurally stable diffeomorphisms on A/, 
A's's ( AI ) = set of C1 structurally stable vector fields on M. 

This notion of structural stability means that under any small C1 perturbation, the 
entire orbit structure persists after a global continuous coordinate change. As far as 
I know, it was first presented by Andronov and Pontrjagin in 1937. They introduced 
these systems, that they called rough systems, or coarse systems, and the primary part 
of the paper [2] was to characterize them among vector fields in the two dimensional 
disk which were nowhere tangent to the boundary. And what they described in that 
paper was that a vector field X is structurally stable if and only if 

(a) X has only finitely many critical elements (singular points and periodic orbits), 
all hyperbolic, 

(b) and there are no saddle connections. 
The next principal result connected to structural stability we will mention was 

due to Maurfcio Peixoto in a paper [53] that was published in 1959. There, he 
studied various general properties of structurally stable systems and proved that the 
Andronov-Pontrjagin systems formed an open and dense subset of the set of all vector 
fields on the two dimensional disk which were nowhere tangent to the boundary. Later, 
in [54], in a somewhat surprising way, he proved the following theorem: on a compact 
oriented surface A/2, 

the structurally stable vector fields AJS(A/2) form a dense open set in the space 
XR(M2) and 

- they are completely characterized by the Andronov-Pontrjagin conditions (a) 
and (b), and the additional condition that the a- and cj-limit sets of every point x 
are critical elements. 

As far as I know, originally this paper was thought to prove that the result is true 
for all surfaces (not necessarily orientable), but that's still not known, except in the 
case of genus two, where Carlos Gutierrez [18] proved the general result, and in the 
Cl topology, where it is a consequence of Pugh's closing-lemma [56]. 

This led to two main questions at the time: 
- Is A^S(M) non-empty, that is, do structurally stable systems exist on any mani­

fold? 
Is A^S(A/) always dense in the space XR{M) of all vector fields? 

Also the analogous questions for Cr diffeomorphisms on compact manifolds. 
Well, to some people's disappointment, the second question, the density, has a 

negative answer. That was discovered by Smale around 1964 or 65. He found out 
that on any manifold in dimension bigger than or equal to 4 there were open sets 
of vector fields which were not structurally stable. That dimension was then made 
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optimal by Bob Williams in the end of the 60's [68]: he found more detailed versions 
of Smale's theorem, and a counter-example in dimension 3. 

Around the same time, in the 60's, in the Soviet Union, Anosov studied other kinds 
of structurally stable systems. The systems that he called C-diffeomorphisms [3], 
where the entire space had a splitting into two continuous distributions invariant by 
the derivative, one of which was exponentially expanded and the other exponentially 
contracted under iterates. These systems, now well known, were coined the name 
Anosov diffeomorphisms by Smale in his 1967 paper [65] in the Bulletin of the AMS. 
What Anosov was able to to prove for these systems was that 

- they formed an open subset of the set of all C1 diffeomorphisms on a manifold 
- and they were structurally stable systems. 

The methods were related (I don't know, in fact, in which order) to his celebrated 
result that geodesic flows on manifolds with negative curvature were structurally 
stable and had the flow version of these Anosov conditions. 

At this time, in the mid 60's, what was then the status of this kind of mathemat­
ics? We had high dimensional examples of structurally stable systems. They exhibited 
very complicated recurrence, and they were only known in special manifolds. In fact, 
for the Anosov systems the existence of the invariant bundles of course brings with it 
topological obstructions. So, for example on surfaces, Anosov diffeomorphisms only 
exist on the torus. And in higher dimensions, also only on very special manifolds. In 
fact, for a while it was felt that the only manifolds that admitted Anosov diffeomor­
phisms were the tori, of any dimension. Smale found examples using other kinds of 
Lie groups, non-Abelian Lie groups, but still they were very special in the kinds of 
manifolds that can exhibit them. 

What about simple recurrence, that is, systems that don't have complicated recur­
rent orbits? Motivated by gradient systems, which Smale sort of used for going back 
and forward between dynamical systems and topology, a special class of dynamical 
systems, which we now call Morse-Smale systems, was defined. In the diffeomorphism 
case, these are systems where the non-wandering set consists of a finite number of 
hyperbolic periodic orbits, and if you have two such orbits their stable and unstable 
manifolds are transverse. Analogous definitions were given for vector fields, where 
the non-wandering set consists of finitely many critical points and periodic orbits all 
hyperbolic, and with the transversality conditions. 

Smale was able to prove that there was a residual set of gradient systems (a residual 
set of functions) on any compact manifold that were Morse-Smale, and their time-one 
maps were Morse-Smale diffeomorphisms. The easy part of this is to realize that a 
Morse function has only hyperbolic critical points as its non-wandering set. But it's 
not so obvious to get the transversality condition: that is a consequence of a general 
approximation theorem, the Kupka-Smale theorem, which was done in those days. 
And Smale conjectured that, 
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- Morse-Smale systems form an open set in the space of all dynamical systems, 
both Vr(M) and Xr(M) 

- and every Morse-Smale system is structurally stable. 
And then, in a remarkable result in 1967, in his thesis [38] Jacob Palis proved that 
the first statement, the openness statement, held in general. And he proved the 
second statement, that Morse-Smale systems were structurally stable, for any systems, 
diffeomorphisms and vector fields, in dimension less or equal to 3. 

A Geometric Approach 

To indicate some of the difficulties which Jacob had to overcome in proving this 
theorem, let's take a simple example of a Morse-Smale diffeomorphism on the 2-sphere 
as indicated in Figure 1, where we have six fixed points as the non-wondering set. The 

FIGURE 1. Tubular famili 

Pi P2\\ 

circles represent sources and sinks, and we have two saddle points, I denote pi and p2, 
such that the unstable manifold of p\ has some transverse intersection, a heteroclinic 
saddle connection, with the stable manifold of p2-

Well, it was known earlier that there was a local stability phenomenon for hyper­
bolic fixed or periodic points, the Grobman-Hartman theorem. Locally, the system 
can be topologically linearized, that is, on a neighborhood of each periodic point the 
map is topologically conjugate to its derivative at the periodic point. But you need 
to do much more to get a global conjugacy, of course, you have to preserve stable and 
unstable manifolds globally. And orbits near the saddle points in the past go near the 
sources, and in the future go near the sinks. So, to have some conjugacy between a 
system like this and its perturbation it's not enough to look at local pictures, you have 
to glue them together in a special way. And the gluing is not obvious at all, because 
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the local linearizations are very special, so how you glue this in some compatible way 
was a major problem. 

And here there was the first major development that Palis came up with, which 
were the so-called tubular families, or invariant foliations, that I'll describe in some 
detail. They turned out to be very important for many later developments, as we'll see. 
These were invariant foliations defined in a neighborhood of each periodic point, one 
family for the stable direction and another for the unstable direction, and they were 
compatible: if two leaves from diffèrent periodic points intersect, then one contains 
the other. The construction of this is not at all obvious, it's still technically quite 
difficult — a very intricate geometric construction. The tubular families have different 
dimensions, in general. And the intricacies of this construction is what forced the 
restriction to dimension 3 in Jacob's thesis, the higher dimension analogue only came 
later. 

In particular, initially it was thought that topological questions would arise in this 
connection, since one has to extend maps defined on certain subsets to bigger sets. It 
was thought that the annulus conjecture, a major unsolved problem at the time, was 
related to the higher dimension analogue of this tubular families method. Well, I'm 
not sure about the exact details of how these problems were overcome, but together 
with Smale in 1968 or 69, the general construction of tubular families was given, and 
the general structural stability of Morse-Smale systems in any dimension was proved 
[42]. 

It's important to notice that there is a lot of freedom in the construction of these 
tubular families. The conjugacies are not unique. The existence of invariant manifolds 
covering the whole manifold was crucial to Anosov in his treatment of structural 
stability. Those invariant manifolds are unique, and so the conjugacies, if they are 
near the identity, are unique for Anosov systems. Here they are highly non-unique, 
and in fact the flexibility of the choice is very much related to the freedom one has 
in the construction of tubular families. So this was a major breakthrough at the time 
and still is, in my opinion, a major contribution, that came quite early in his career. 

This had two main corollaries. The first one was that 

- an open dense subset of the set of gradient systems on any manifold consists of 
structurally stable vector fields; 

Even more, the time-one maps of such vector fields are structurally stable diffeomor­
phisms. That's much stronger. Indeed, as we know, the usual equivalence relation 
for vector fields is homeomorphisms taking orbits to orbits. A stronger equivalence 
relation is conjugacy, actual one parameter group conjugacy. And structural stabil­
ity for the time-one maps gives stability under this stronger equivalence relation, for 
gradient flows. So, as an extension of this, the problem of the existence of structural 
stability was solved in a very positive way: 

- every manifold has structurally stable vector fields and diffeomorphisms. 
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The Stability Conjectures 
Around this time, in the late 60's, having proved that structurally stable systems 

are not dense, Smale was looking for a more general kind of system, that would still 
have some good structure and have the chance to form a dense subset in the space of 
all dynamical systems. And so he formulated what was called the ^-stability theorem. 

Our system is Q-stable if when you take a C1 perturbation of it you have a con-
jugacy from the non-wandering set of the first system to the non-wandering set of 
the second one (not a global conjugacy on the whole manifold, as in the definition 
of structural stability). He studied special systems, the so-called Axiom A diffeomor­
phisms, where the non-wandering sets are hyperbolic sets, and the periodic points are 
dense in the non-wandering set. He also assumed an additional property, the no-cycle 
property, that gives the ability to construct so-called filtrations for the system, that 
is, to isolate the recurrent orbits in individual indecomposable pieces. And he proved 
the theorem that Axiom A and the no-cycle property implied that the diffeomorphism 
was ^-stable. 

Around the same time, Jacob proved that if you have an Axiom A system and it 
has a cycle, then it is not ^-stable. And that led to the Stability Conjectures, which 
were also present in the Palis and Smale paper of 1969 [42]: 

(1) a diffeomorphism / G Vr{M) is structurally stable if and only if it satisfies 
the Axiom A and the so-called strong transversality condition: stable and unstable 
manifolds are in general position at each point wherever they meet; 

(2) and / G Vr(M) is ^-stable if and only if it satisfies the Axiom A and the 
no-cycle property. 
And they made analogous conjectures for flows. 

Let me mention a little personal anecdote in connection with this theorem and the 
formulation of these conjectures. For those who were around that time, you remember 
that the first formulation of the ^-stability theorem had another stronger condition, 
called Axiom B. Axiom B said that if you have two basic sets and the unstable 
manifold of one accumulates on the other, then there is a periodic point in the first 
whose unstable manifold has a transversal intersection with the stable manifold of the 
other. And the first formulation of the 0,-stability theorem, in fact the formulation 
that is in the Bulletin paper [65], says: Axiom A plus Axiom B implies ^-stability, 
or something to that effect. 

I remember Smale giving a lecture in the seminar in Berkeley in 1966 or maybe 
1967. I was a new graduate student just sort of going to this seminar from time 
to time, but it was a very active and energetic seminar, many questions, comments, 
discussions. I remember Charles Pugh was there, and Mike Shub, Morris Hirsch, 
Jacob Palis. As a young graduate student we look around at all those famous people 
in the room, and just watch what they were doing. Well, Terry Wall had just come 
in from England and was interested, so he went to the seminar. In fact, he was 
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under jet-lag so he was asleep in a large part of the talk. So, Smale was doing the 
construction of the local conjugacy of the fî-stability for the basic sets. Then, with 
Axiom B, he constructed this partial order on the basic sets, and hence a filtration 
to isolate each piece, so that one can get the global conjugacy. And, suddenly, Terry 
woke up and looked and said, quietly: "Is all you need, the partial order relation, in 
order to get the stability?" This was an agitated seminar with many people. Steve 
turned and said: "Well, maybe, I'm not sure about that, I'm not sure." 

At that instant, I didn't know who Jacob Palis was, but he became very animated 
and said: "That's right, that's it, that is all you need!" And the next day, as I recall, 
he proved that if you had a cycle then you had ^-explosions, and so, in fact, this 
no-cycle condition was necessary for stability. Later on, in the paper that actually 
appears in the proceedings of the symposium [42], you see Axiom A and no-cycle 
condition, not Axiom A and Axiom B, Axiom B disappeared. So, as part of this 
discussion, Jacob had a significant part in the formulation of the Q-stability theorem 
as it now sits. 

From Hyperbolicity to Stability 
How does one go beyond toward more general stability theorems and proving these 

conjectures? What did people know at that time? They knew that the Morse-Smale 
systems were structurally stable. They knew that Axiom A and no-cycle property 
implies Sl-stability. How does one to get more general structurally stable systems? 
One idea at the time was to take Jacob's tubular family construction and extend 
it to Axiom A systems. That is, to get an invariant foliation on neighborhoods 
of complicated hyperbolic sets. It turned out to be quite a complicated thing to 
do and, in fact, this is still not known in general, it's not known how to do that 
for high dimensional systems. But that program did succeed for two-dimensional 
diffeomorphisms, with the thesis of Welington de Melo in 1971. 

The next progress came in what might seem a curious way. Jiirgen Moser gave 
a second proof of the stability of Anosov systems, using the so-called infinitesimal 
methods. His idea was the following: you want to solve the equation ho f = g o h for 
a homeomorphism h. You rewrite this as 

f-1 oho f = f~l ogoh. 

Then you take a Riemannian metric on your manifold, and try to find h as the 
exponential of some continuous vector field v, which should be C°-small so that the 
homeomorphism is close to the identity. So, writing h = exp(i>), and also f~~1og = 
exp(w) for a C1-small vector field w, you get 

f~l o exp(i;) o / = exp(w) o exp(v). 
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Linearizing this equation (or using infinitesimal methods, which is the term I use), 
you get 

exp(D/_1 o v o f) = exp(w + v), 

up to a small error. So, taking exp-1 in the previous relation, it becomes 

Df~l ovof + s(v, w) — w + v, 

where s(v,w) is small. Denoting Fv = Df~l o v o / , this may be rewritten as 

(I — F)v = v — Df-1 o v o f = s(v, w) — w. 

So, we know w, which is a C1-small vector field, and we are looking for v, a small 
continuous vector field. Moser realized that if you could invert this operator (I — F) 
on the space of continuous vector fields, then you could solve this functional relation 
for v, using the contraction mapping theorem. And, in fact, the Anosov condition 
was precisely the condition you need to make (I — F) invertible. 

So, he was able to give a new proof of the stability of Anosov systems using vector 
field methods, infinitesimal methods, whereas Anosov's proof made strong use of the 
existence of integral manifolds for the expanding and contracting distributions, the 
stable and unstable manifolds. Well, at the time this was interesting because it made 
Anosov's proof understandable to people in the West, there was no published English 
version of it. And also I think it was thought of as a useful addition, a curious new 
proof of a known result. One thing that came out of it is that you get unique solutions 
near the the identity, which you can also prove by other methods. 

There is an other development that I should mention. In the group of people 
who were in Berkeley and in the West at the time, the way that Moser's methods 
became known was through an implicit function theorem argument that John Mather 
produced. It turned out that, in detail, Mather's argument was actually incorrect, 
because differentiability assumptions were not satisfied. What the method gave you 
was a continuous solution to the functional equation, it didn't prove that the solution 
was a homeomorphism. But the arguments could be fixed up. I think it was Mike 
S hub who observed, and was well-known in the Soviet Union as well, that Anosov 
systems were expansive, and you can use that to show that solutions which are C°-
close to the identity actually have to be one-to-one. So you got the proof anyway, 
even if the implicit function theorem didn't work. 

Far away, in the middle of the United States, Joel Robbin was learning about those 
things, and I think he shocked everybody by announcing that he could prove that, in 
the C2 case, Axiom A diffeomorphisms satisfying the strong transversality condition 
are structurally stable. Well, how did he do it? He used infinitesimal adaptations of 
the tubular families constructions. Basically, the conjugacies were not unique, they 
involved choices, and he used the fact that Moser's transformation (I — F) had a 
continuous right inverse. You can see Jacob's influence again, even at that level: at 
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the end of the paper [60] there's a ratio that says 

(Moser) : (Anosov) = (Robbin) : (Palis - Smale). 

The idea being that Moser produced an infinitesimal proof of the structural stability, 
removing the necessity of integrating the invariant subbundles for the construction, 
and Robbin produced an infinitesimal proof for Axiom A systems, removing the ne­
cessity of tubular families. 

For technical reasons Robbin needed the C2 assumption, not for the perturba­
tions, but for the original diffeomorphisms. That was ultimately improved by Clark 
Robinson, who proved the general structural stability theorem, that Axiom A C1 
diffeomorphisms satisfying the strong transversality condition are structurally stable 
[62], and he also proved it for the vector field case [61]. Concerning fJ-stability, in 
Smale's paper [65] where he proves his ^-stability theorem, he makes the statement 
that, presumably, similar methods can be used for flows. It was a highly non-trivial 
extension required to do it for flows, and it was carried out by Charles Pugh and Mike 
Shub [57]. So, at this stage, which I suppose is the mid-70's, we had general sufficient 
conditions for structural stability and ^-stability, both for diffeomorphisms and for 
flows. 

From Stability Back to Hyperbolicity 

Remember the stability conjecture had a converse as well. So there was a lot of 
activity focussed on the converse. The initial efforts involved changing the definition 
of stability, to include conditions about dependence of the solution on the perturbation 
(whether it is continuous, whether is Lipschitz), and a number of people contributed 
with interesting works in that direction. John Franks [14] had a notion of time-
dependent stability, with which he was able to characterize Axiom A and strong 
transversality systems. John Guckenheimer [16] had a notion of absolute stability, 
and so on. And then the full problem itself was treated in some special cases in low 
dimensions, by Liao [21], Mane [23, 24], Pliss [55], and Sannami [64]. 

But the major breakthrough came in 1986, when Ricardo Mane, one of Jacob's 
early graduate students, completely solved the problem! He proved what was the main 
remaining part, that is, that structurally stable systems had to satisfy the Axiom A 
[25]. 

Curiously enough, although this is a substantial result which uses much information 
about the non-wandering set, Ricardo was not able to prove the fl-stability converse, 
he only proved the structural stability statement. It took some other intricate knowl­
edge, and a fair amount of effort, for Jacob to prove that converse, and so complete 
the ^-stability conjecture for diffeomorphisms, again around 1986. For the flow case, 
neither of the statements was known at the time, they were resolved only recently, by 
Shuhei Hayashi [19] in 1994. 
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So, in the development of this very important concept and theory, a period of 
almost 25 years was needed to accomplish what is now one of the crown jewels in 
the field of Dynamical Systems, the complete characterization of structurally stable 
systems. And as you saw, Jacob Palis played a very central role in that. 

That's what I wanted to say about stability, the global stability issue. Now I want 
to go toward bifurcation theory. 

Bifurcation Theory 

In 1970 or so, I had the privilege to come to IMPA for two years, and to begin 
our program in bifurcation theory with Jacob. We started to work on the problem of 
understanding the structure of how hyperbolicity breaks down when you start with a 
Morse-Smale system. Basically, what we wanted to study was the so-called accessible 
part of the boundary of the Morse-Smale systems. The idea is the following. Let 
{4>}M ^e an arc (a curve) °f diffeomorphisms starting at a Morse-Smale system £0-
See Figure 2. You look at the first value /i = b of the parameter where the system 

M-S 
x+d1d 

So 

d+dr 

FIGURE 2. Bifurcations along parametrized families 

fails to be structurally stable, the so-called first bifurcation point, and you want to 
describe the structure of such systems 

Some ideas and problems were motivated by work done by Jorge Sotomayor [66] 
for one-parameter families of vector fields on surfaces, and also by a general periodic 
point description for one-parameter families of diffeomorphisms, which was obtained 
by Pavel Brunovsky [6]. In addition, there were mathematicians in the Soviet Union 
studying similar problems, Gavrilov and Shilnikov [15], although we didn't know that 
at the time, we only became aware of their work somewhat later. 

During that period I wrote two papers with Jacob, [35] and [36], in which we 
basically proved the following. Assuming that at the first bifurcation point the limit 
set (the closure of the a- and o;-limit sets of the system) consists of a finite number 
of orbits, we completely described the structure at the bifurcation for generic arcs of 
diffeomorphisms. We also studied other issues related to stability as you move along 
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the parameter, that I'll talk a bit more about later. But the main contents of the first 
paper [35] was this description at the bifurcation in the case when the limit set has 
finitely many orbits. 

In the second paper [36] we considered systems where at the bifurcation point 
the limit set was actually hyperbolic, it stayed hyperbolic, but structural stability or 
Q-stability failed all the same, because of the creation of a cycle. We studied the 
situation where the cycle was equidimensional, that is, the stable manifolds of all the 
periodic points in the cycle have the same dimension. We were able to prove that in 
that situation the bifurcation map £5 was accumulated by Axiom A, non Morse-Smale 
diffeomorphisms. That is, 

- there existed parameter values \i\ > [12 > • • • > l^i > * • • converging to the first 
bifurcation point 6, such that the diffeomorphisms t\Ul satisfied the Axiom A and the 
strong transversality condition, and the non-wandering sets were infinite. 
Moreover, the non-wandering sets were all topologically distinct, so that £Mi could not 
be ^-conjugate to each other. In fact, we proved that £M satisfies the Axiom A and 
the strong transversality condition for most parameters \i > b near 6, in the sense that 
such parameters are a fraction close to 1, in measure, of small intervals (/z, /z + e). 

Later, in a paper with Floris Takens and Jacob [37], we completely characterized 
the so-called stable arcs of diffeomorphisms, under the assumption that the limit set 
have finitely many orbits for each parameter value. An arc {^j/x of diffeomorphisms 
is called stable if, given any perturbation {r]^}fl, as represented in Figure 2, then 

(1) every diffeomorphism £fl in the arc is conjugate to a diffeomorphism 77̂  in the 
perturbed one, with a nearby parameter v, 

(2) and the conjugacy varies continuously with the parameter. 
That's the condition of stability for arcs of diffeomorphisms. In [37] we character­
ized this condition and, as part of that work, a number of new concepts and ideas 
were introduced. In particular, a notion of rotation interval for circle endomorphisms 
was introduced. Strong rigidity for saddle-node bifurcations also came up in this 
work. One consequence of this strong rigidity phenomenon for saddle-node bifurca­
tions is that the strong-stable and strong-unstable manifolds have to be preserved 
under conjugacy that varies continuously with the parameter (in general, topological 
conjugacies don't preserve strong-stable and strong-unstable manifolds). 

Then these works were extended in a very significant way by Palis and Takens [43], 
who proved in 1983 that 

- an open dense set of one-parameter families of gradients systems on any manifold 
were stable in the sense I've just described (continuous variation of the conjugacy with 
the parameter). 

And somewhat later, in 1990, Mario Jorge Dias Carneiro and Jacob [8] proved that 
one can extend that to two-parameter families: an open and dense subset of families 
of gradient systems depending on two parameters are stable. 
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One might have hoped, in fact the hope around that time and earlier was that 
/c-parameter families of gradient systems in a dense open set would be stable. That 
was shown to be false by Takens, who proved that for 8 or more parameters the stable 
families of gradient systems are not dense. I don't know how far down one has got 
yet, I think the conjecture still is that for k less than or equal to 4 the stable families 
should form an open and dense subset in the space of gradient systems. 

In these constructions, the geometric freedom of tubular families and how you bring 
them up is, again, of fundamental importance. It's interesting to point out that at 
the time people discussed whether infinitesimal maps could be used for this theorems, 
but, as far as I know, they never managed to work. So far, infinitesimal methods have 
only been useful for the general structural stability theorem. 

Homoclinic Bifurcations 

Bifurcation theory continued to be one of Jacob's major projects during the 80's 
and afterwards. Initially, the goal was to extend some of these results, especially from 
[36], to the case where the limit set may have infinitely many orbits. In particular, 
now you want to consider more general arcs of systems starting inside the Axiom A, 
not just the Morse-Smale systems. But this also led to some very interesting new 
problems and ideas related, for instance, to fractal dimensions. 

To explain this, let me consider a situation as described in Figure 3, a surface dif­
feomorphism with a non-transverse intersection between the stable and the unstable 

d+d1dd1d+ 

vrd 

\w«(p) 

H 

W»(p) 

d+x21b 

FIGURE 3. Homoclinic tangency associated to a hyperbolic set 

maniiold oi a periodic saddle point p. We call that intersection a homoclinic tangency. 
And the periodic point p is contained in an infinite hyperbolic set H of the diffeomor­
phism, a horseshoe. This means that the homoclinic tangency is accumulated by a 
pair of laminations, or partial foliations, formed by the stable and unstable manifolds 
of all the points in H. 

A diffeomorphism like this may be obtained as a first bifurcation of an arc 
starting at an Axiom A system. The map itself is not Axiom A, the homoclinic 
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tangency implies that the non-wandering set is not hyperbolic. Then, as you increase 
the parameter, the stable and the unstable laminations move with respect to each 
other and, whenever there is a tangency between a leaf of one and a leaf of the other, 
the diffeomorphism can not be Axiom A. 

Since these are just laminations, not full foliations of open sets, you might expect 
that such tangencies should be easy to avoid, taking advantage of the gaps between 
the leaves. However, I showed in my thesis [32] that it is not true in general. In fact, 

if the laminations are transversely thick, that is, if the gaps are relatively small, 
it is impossible to avoid tangencies between leaves of the two laminations, they exist 
for a whole open set of diffeomorphisms. 

I'll call this phenomenon persistent homoclinic tangencies. Later, in [34], I proved that 
this phenomenon occurs near any surface diffeomorphism with a homoclinic tangency: 

- there always exist open sets in the parameter space arbitrarily close to the bifur­
cation, that correspond to persistent tangencies. 

And then Clark Robinson [63] deduced a version of this result for arcs of diffeomor­
phisms. 

Palis and Takens wanted to understand this issue in more detail, and they came to 
establish a deep connection between homoclinic bifurcations and fractal dimensions 
of hyperbolic sets. Let me explain this. 

In the paper [36], that I mentioned before, Jacob and I had shown that tangencies 
between the stable and the unstable laminations were, essentially, the only thing one 
has to worry about. We showed that if there were no tangencies and, in fact, the map 
was not too close to having a tangency, then the non-wandering set was hyperbolic. 
So this was a kind of converse to the fact that tangencies are an obstruction to 
hyperbolicity. 

In the setting we were dealing with the limit set was finite, and we were able to 
show that parameters for which the map is too close to a tangency have small rela­
tive measure near the bifurcation. That's how we proved that hyperbolicity (Axiom 
A and strong transversality) prevails near these homoclinic tangencies, in terms of 
measure in parameter space. And the arguments suggested that it might be possible 
to avoid tangencies for most parameter values in more general situations, provided 
the laminations were not too thick. 

Now, Palis and Takens realized that this should be formulated in terms of the 
transverse fractal dimensions of the laminations. The condition they required was 
that the sum of the transverse Hausdorff dimensions of the stable and unstable lam­
inations should be less than 1. By definition, the transverse Hausdorff dimension is 
the Hausdorff dimension of the intersection of the lamination with some cross-section. 
It can be shown, in this context, that the definition doesn't depend on the choice of 
the cross-section. 
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It turns out that the sum of these transverse Hausdorff dimensions is equal to the 
Hausdorff dimension of the hyperbolic set H. So, their theorem, proved around 1984, 
has a very elegant statement [45]: 

- if the Hausdorff dimension HD{H) of the hyperbolic set involved in the tangency 
is less than 1, then £/A is hyperbolic (Axiom A and strong transversality) for most 
nearby parameters /i > b: 

(1) lim -m ({fi G (6, b + e) : £„ is hyperbolic }) = 1, 

where ra(-) is Lebesgue measure. 

At about the same time they proved a similar result for the heteroclinic case [44], 
where the tangency is between stable and unstable manifolds of different periodic 
points. Actually, in those papers they used another notion of dimension, called limit 
capacity, or box dimension, instead of Hausdorff dimension. But then it became 
clear that the two notions of fractal dimension coincide for hyperbolic sets of surface 
diffeomorphisms. This is discussed in their book [46, Chapters 4-5], where they also 
explain why (1) can always be stated with the full limit, initially in the heteroclinic 
case they only had a lim sup. 

Then, in a paper [51] that was published in 1994, Jacob and Jean-Christophe 
Yoccoz proved that the condition in the previous theorem is, in fact, optimal: 

if the Hausdorff dimension of H is larger than 1, then the conclusion (1) above 
no longer holds. 

This statement and, to some extent, the proof itself were inspired on a result of John 
Marstrand [26] about arithmetic differences 

Ki — XK'2 = {a\ — \a>2 '• ai ^ Kl and a-2 G K2} 

of Cantor sets in the real line: if the sum HD(Ki) + HD{K2) is larger than 1 then 
the difference has positive Lebesgue measure, for almost every A. So, at this point it 
was already clear that there was an important relation between this part of Dynamics 
and other topics, like Geometric Theory of Dimension and Harmonic Analysis. 

Cantor sets and Fractal Invariants 

Motivated by this, Jacob started asking several questions about arithmetic differ­
ences of Cantor sets, with an eye on their applications to Dynamical Systems and 
other areas. In particular, he conjectured that for generic regular Cantor sets K\ 
and K2 , the arithmetic difference either has zero Lebesgue measure or contains some 
interval. A Cantor set is called regular if it is generated by a smooth expanding 
map. The set of such Cantor sets comes with a natural topology, inherited from the 
corresponding maps. 
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Well, this conjecture was proved by Carlos Gustavo Moreira and Yoccoz [30], 
around the beginning of 1995. Actually, they proved a rather strong version of the 
conjecture. Their result applied to an open and dense set of regular Cantor sets that 
has "full probability", in some natural sense. Moreover, they get stable intersections, 
which is much stronger than just having an interval contained in the arithmetic dif­
ference. Then, they proved the following substantial extension of the previous results 
about homoclinic tangencies [31]: for generic arcs of diffeomorphisms {^}u with a 
homoclinic tangency at \i = b, 

- for most parameters /x > b close to 6, in the sense of (1), either Çu is hyperbolic 
or /x is in some interval with persistent homoclinic tangencies. 

In other words, if PT + AT is the union of all the intervals of persistent tangen­
cies with those parameters for which the map satisfies the Axiom A and the strong 
transversality condition, then 

lim -m(PT + AT n (6, b + e)) = 1. 

The theorem of Palis and Takens says that if the Hausdorff dimension of the horseshoe 
H is less than 1 then we have the same result already for the set of parameters 
corresponding to hyperbolic maps. So, the main novelty of this result is when the 
Hausdorff dimension is larger than 1. 

There is a very natural question that arises, which is, what can we say about 
the dynamics when it's not hyperbolic. Well, Jacob has some recent joint work with 
Yoccoz [52] about this, that Yoccoz will talk about later in this Conference, so I won't 
discuss in any d e t a i l . B u t the point is that they define so-called non-uniformly 
hyperbolic sets, or non-uniformly hyperbolic horseshoes, that are an extension of the 
hyperbolic sets that still have several nice properties. And they were able to show 
that if the Hausdorff dimension of the original hyperbolic set H is not much larger 
than 1 (they have a precise technical condition), then the diffeomorphisms £M are 
non-uniformly hyperbolic for most parameters /x > b near b. That is, if NUH is the 
set of parameters such that the non-wandering set is a non-uniformly hyperbolic set, 
then 

lim -m(NUH D (b, b + e)) = 1, 

as long as the Hausdorff dimension is not much larger than 1. 
Now let me say a few words about the higher dimensional case. Most of this 

has been proved for surface diffeomorphisms, and there are several serious difficulties 
that appear in higher dimensions. The main reason is that the stable and unstable 
laminations need not be transversely smooth. So, in general, it's not even known 
whether the transverse Hausdorff dimension is well defined. In fact, the geometry of 
hyperbolic sets in high dimensions is much less understood than in the surface case. 

(2) Abstracts of talks given at the Conference are available at www.impa.br/~dsconf/. 
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In general, the Hausdorff dimension and the limit capacity are not equal, and they 
do not vary continuously with the dynamical system. 

However, and this is a development near my heart, Jacob and Marcelo Viana 
were able to overcome some of these difficulties and, around 1989, prove the higher 
dimensional extension of the result about persistent homoclinic tangencies. The result 
was published in [47]. 

And they have very recent results together with Moreira, as we heard in Moreira's 
talk in this Conference, which show that the relation between fractal dimensions and 
abundance of hyperbolicity in parameter space stays valid for families of diffeomor­
phisms in arbitrary dimension. 

Non-Hyperbolic Systems 

The study of bifurcations, and these results that I mentioned, are part of an effort 
to go beyond the hyperbolic systems and understand very general dynamical systems. 
I think that, from the beginning, Jacob was convinced that bifurcation theory was the 
right way to do that or, at least, an essential part of trying to understand systems that 
are not hyperbolic, that are not structurally stable. And as the theory of homoclinic 
bifurcations developed, he became more and more convinced that they should play a 
key role in this. 

By 1989 there was a paper of Benedicks and Carleson [4] where they proved that 
non-uniformly hyperbolic dynamics is frequent in the so-called Hénon family of plane 
maps 

h(x, y) — (1 — ax2 -h y, bx). 

That is, for a set of values of the parameters a and b with positive Lebesgue measure, 
the maps have a non-uniformly hyperbolic attractor. This was a striking extension of 
a very important pioneering work of Jakobson [20], back in the late seventies, where 
he had obtained a similar result for the family of quadratic real maps q{x) = 1 — ax2. 

Even before their paper appeared, Palis suggested that this result should be true, 
more generally, for generic arcs of surface diffeomorphisms with a homoclinic 
tangency. You see, it was known that returns maps of £M to certain regions near 
the tangency look like the Hénon model, so that was the idea. So, he proposed this 
problem to two of his students at the time, Leonardo Mora and Marcelo Viana. And 
Mora and Viana [27] were able to show that the approach of Benedicks and Carleson 
extended to more general dissipative systems, that are called Hénon-like maps, and 
from this they could prove Jacob's conjecture, in 1990. 

These kinds of results, there are many others, relating homoclinic tangencies to 
other types of complicated dynamics, convinced Jacob that homoclinic tangencies 
might be some sort of unifying notion for understanding non-hyperbolic systems, at 
least in low dimensions. So he made the following conjecture: 
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- the union of Axiom A diffeomorphisms with those that have a homoclinic tan­
gency is dense in Vr{M), if M is a surface. 

In other words, every Cr surface diffeomorphism that is not in the closure of the 
Axiom A systems is approximated by other diffeomorphisms that have homoclinic 
tangencies. 

As you probably know, this conjecture was proved a couple of years ago by two 
other former students of Jacob, Enrique Pujals and Martin Sambarino, in the case 
r = 1. Their paper has just appeared [58], In fact, the result had been announced by 
Araujo and Marié in the early 90's, but they never provided a proof. As a consequence 
of their methods, Pujals and Sambarino also got another most interesting result [59]: 

- any arc of surface diffeomorphisms such that the topological entropy is not con­
stant on it must contain a homoclinic tangency. 

There is a version of the previous conjecture for high dimensions, that says that 
the union of Axiom A diffeomorphisms with those that have a homoclinic tangency 
or a heterodimensional cycle should be dense in Vr(M). A cycle is called heterodi­
mensional if the stable manifolds of the periodic points involved in the cycle are not 
all of the same dimension. It seems that several groups of people have made progress 
in the direction of this high dimensional conjecture, indeed there will be a couple of 
talks on this subject in this Conference, but a complete proof is not yet available. 

Back in the late eighties, Jacob suggested the study of heterodimensional cycles to 
Lorenzo Diaz, as his thesis problem. The idea was to complement our own results in 
[36], as I said before, we studied the equidimensional case. Now, Diaz found out that 
the conclusions are quite different for heterodimensional cycles: most of the times the 
bifurcating diffeomorphism <̂  is not accumulated by hyperbolic ones, in fact, there is 
a whole interval (6, b -f e) such that £M is not hyperbolic, not structurally stable, for 
any parameter \i in this interval. These results appeared in his thesis [11] and were 
much developed in a series of joint papers with Jorge Rocha, another former student 
of Jacob. See for instance [13]. 

And, sometime later, it became clear that heterodimensional cycles also have an im­
portant connection with the phenomenon of robust non-hyperbolic attractors, which 
I'll mention again in a little while. 

A Unifying View of Dynamics 

By 1995, Jacob had put several ideas and conjectures together to form a coherent 
picture of what might be the typical kinds of behavior of non-hyperbolic systems. This 
appeared in a preprint that was published in Douady's volume of Astérisque [41]. The 
main point is a conjecture that every system can be approximated by another having 
only finitely many attractors, whose basins of attraction contain almost all points. In 
fact these systems should have large probability in parameter space, in some natural 
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sense. And the attractors should have nice properties, such as the existence of so-
called Sinai-Ruelle-Bowen measures. 

It is interesting to observe that the idea that most dynamical systems should have 
a finite number of attractors goes back to René Thorn, in the sixties, although he 
didn't make precise what "most" was supposed to mean. Certainly, he was motivated 
by Smale's ideas in hyperbolic theory at the time^, where the point of view was, 
primarily, topological. Maybe because of this, it was widely understood that Thorn 
had in mind a residual (second category of Baire) subset of all dynamical systems 
and, in this form, the finiteness statement turned out to be false [33]. So, Jacob's 
conjecture is a very interesting revival of this classical idea, in a new and more proba­
bilistic framework. A key novelty in Palis' approach is to allow the existence of cycles 
occupying a small volume in the dynamical space. Indeed, cycles have been a main 
obstruction to the realization of previous global scenarios for Dynamics. 

So far, it is known that this conjecture holds for quadratic maps of interval, as a 
consequence of work done by Lyubich, Martens, and Nowicki. See [22]. And both 
Misha Lyubich and Artur de Melo will speak in this conference about their recent 
work with Welington de Melo, where they extended this to general analytic families 
of unimodal maps. 

In higher dimensions, there have been some very interesting results that, I believe, 
were at least partially motivated by Jacob's questions and conjectures. 

There is the work of Diaz, Pujals. Ures, and Bonatti [12, 5] where they character­
ized the robust sets of diffeomorphisms in any dimension. An invariant set is robust if 
it is transitive and remains transitive under any Cl small perturbation of the system. 
They proved that robust sets must have a so-called dominated splitting, which is a 
decomposition of the tangent space into two continuous distributions such that one 
is more expanding than the other at every point, by a definite factor. In dimension 3 
at least one of the distribution is hyperbolic, either expanding or contracting. This is 
called partial hyperbolicity. 

Moreover, Alves, Bonatti, and Viana proved existence and finiteness of ergodic 
attractors, or Sinai-Riielle-Bowen measures, for certain types of partially hyperbolic 
systems, in a paper [1] that has just appeared. 

And there is also very important work of Carlos Morales, Maria José Pacifico, 
and Enrique Pujals [28, 29], characterizing the robust sets of arbitrary flows in 3 
dimensions. Robust sets containing only regular orbits must be hyperbolic, so the 
more interesting case is when the set contains some singularity. They proved that any 
robust set that contains a singularity is a Lorenz-like attractor, or repeller, meaning 
that it has all the main features of the geometric Lorenz models of Guckenheimer-
Williams [17]. 

('̂ "Toutefois, selon certaines idées récentes de S. S maie, si la variété est compacte, presque tout 
champ X présenterait un nombre fini d'attracteurs isolément structurellement stables" [67, p. 56] 
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Many Other Results 
There are many other important contributions that Palis has done. For instance, 

there is his work on moduli invariants, that is, characterizing systems with the prop­
erty that the number of topological types of perturbations depends on a finite number 
of real parameters. In [40], he discovered a smooth invariant for topological conjugacy 

A 

Pi o-i A2 
<e-

P2 

0-2 

FIGURE 4. Moduli of conjugacy in saddle-connections 

between flows with a saddle connection as in Figure 4. In fact, two such flows are 
conjugated if and only if they have the same ratio of eigenvalues 

Ai 
0~2 

And, together with Welington de Melo and Sebastian van Strien [9, 10], he obtained a 
characterization of such systems with mild recurrence, in a wide variety of situations. 

As a part of the development of moduli theory there was a description of typical 
holomorphic vectors fields, the topological types of linear holomorphic vector fields in 
CP7\ which was done by César Camacho, Nicolaas Kuiper, and Jacob in [7]. 

I should also mention his series of papers with Yoccoz, where they study rigidity of 
centralizers of diffeomorphisms, that are the sets of diffeomorphisms which commute 
with a given diffeomorphism. In a series of papers [48, 49, 50], they prove that, 
generically, the centralizer is trivial for a hyperbolic diffeomorphism, it just contains 
the iterates of the map. 

Actually, even back in his thesis, Jacob had been interested in a related problem: 
how frequently diffeomorphisms embed in flows. He observed that there were open 
sets of diffeomorphisms where the natural topological conditions that you would need 
to embed in a flow were not sufficient: there were open sets of such diffeomorphisms 
that did not embed in flows. And, somewhat later, in [39], he was able to prove that, 
C1 generically, diffeomorphisms do not embed in flows. 

If you look at Jacob's list of scientific works attached to this paper, you'll see that I 
could still go on for a long time. So, let me just conclude with some personal remarks. 
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Conclusion 

It's interesting to note that up to 1993 Jacob had 16 graduate students, whose 
theses appeared up to that year. He's been Director of ²IMPA since around 1993, and 
as of 2000 he has 35 graduate students. So one might conclude that administration 
is not so bad for someone with the talents of Jacob Palis... 

In any event, he has exhibited leadership, as I indicated, direction and scope in 
formulating conjectures and stimulating many people throughout the world. The 
scope has increased dramatically as we get evidence of collaboration with Yoccoz, 
with Viana, with many other people, and of much activity, many interesting results, 
going deeply into the study of dynamical systems. 

So, on the occasion of his 60th birthday, we all look forward to continued develop­
ment for many, many years. 
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Abstract. — We give both sufficient conditions and necessary conditions for the 
stochastic stability of nonuniformly expanding maps either with or without critical 
sets. We also show that the number of probability measures describing the statistical 
asymptotic behaviour of random orbits is bounded by the number of SRB measures 
if the noise level is small enough. As an application of these results we prove the 
stochastic stability of certain classes of nonuniformly expanding maps introduced in 
[Vil] and [ABV]. 

1. Introduction 
Dynamical systems theory has, among its main goals, the description of the typical 

behaviour of orbits as time goes to infinity, and understanding how this behaviour is 
modified under small perturbations of the system. This work refers to the study of 
the latter problem from a probabilistic point of view. 

Given a map / from a manifold M into itself, let (xn)n^i be the orbit of a given 
point XQ G M, that is #n+i — f(xn) for every n ^ 1. Consider the sequence of time 
averages of Dirac measures 5X, along the orbit of XQ from time 0 to n. A special 
interest lies on the study of the convergence of such time averages for a "large" set of 
points XQ G M and the properties of their limit measures. In this direction, we refer 
the work of Sinai [Si] for Anosov diffeomorphisms, later extended by Ruelle and Bowen 
[BR, Ru] for Axiom A diffeomorphisms and flows. In the context of systems with 
no uniform hyperbolic structure Jakobson [Ja] proved the existence of such measures 
for certain quadratic transformations of the interval exhibiting chaotic behaviour. 
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Another important contribution on this subject was given by Benedicks and Young 
[BY1], based on the previous work of Benedicks and Carleson [BC1, BC2], where 
this kind of measures were constructed for Hénon two dimensional maps exhibiting 
strange attractors. The recent work of Alves, Bonatti and Viana [ABV] shows that 
such measures exist in great generality for systems exhibiting some nonuniformly 
expanding behaviour. 

The notion of stability that most concerns us can be formulated in the following 
way. Assume that, instead of time averages of Dirac measures supported on the 
iterates of XQ G A/, we consider time averages of Dirac measures ôXj, where at each 
iteration we take Xj+i close to f(x3) with a controlled error. One is interested in 
studying the existence of limit measures for these time averages and their relation 
to the analogous ones for unperturbed orbits, that is, the stochastic stability of the 
initial system. 

Systems with some uniformly hyperbolic structure are quite well understood and 
stability results have been established in general by Kifer and Young; see [Kil, Ki2] 
and [Yo]. The knowledge of the stochastic behaviour of systems that do not exhibit 
such uniform expansion/contraction is still very incomplete. Important results on this 
subject were obtained by Katok, Kifer [KK], Benedicks, Young [BY1], Baladi and 
Viana [BV] for certain quadratic maps of the interval. Another important contribu­
tion is the announced work of Benedicks and Viana for Hénon-like strange attractors. 
As far as we know these are the only results of this type for systems with no uniform 
expanding behaviour. 

In this work we present both sufficient conditions and necessary conditions for the 
stochastic stability of nonuniformly expanding dynamical systems. As an application 
of these results we prove that the classes of nonuniformly expanding maps introduced 
in [Vil] and [ABV] are stochastically stable. 

1.1. Statement of results. — Let / : AI —> 71/ be a smooth map defined on a 
compact riemannian manifold AI. We fix some normalized riemannian volume form 
m on AI that we call Lebesgue measure. 

Given an /-invariant Borel probability measure on 71/, we say that \i is an SRB 
measure if, for a positive Lebesgue measure set of points x G 71/, the averaged sequence 
of Dirac measures along the orbit {fn(x))n^o converges in the weak* topology to /i, 
that is, 

+d1 lim 
d+d1d 

d+d1d 

.7=0 
Af"(x)) = ^ du 

for every continuous map (f : AI —» M. We define the basin of \x as the set of those 
points x in AI for which (1) holds for all continuous <p. The maps to be considered 
in this work will only have a finite number of SRB measures whose basins cover the 
whole manifold 71/, up to a set of zero Lebesgue measure. 
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We are interested in studying random perturbations of the map / . For that, we 
take a continuous map 

$ : T -
t ^ ft 

C2{ALAI) 

from a metric space T into the space of C2 maps from AI to AI, with / = //* for 
some fixed t* G T. Given x G AI we call the sequence (//'(;r))n>1 a random orbit of 
x, where t denotes an element (ti, t>2, £:*,...) in the product space TN and 

//'' = /*„ ° ' • • ° fh lor n>,\. 

We also take a family (6£)£>Q of probability measures on T such that (supp#£)£>o is 
a nested family of connected compact sets and supp^ —» {t*} when £ —> 0. We will 
also assume some quite general nondegeneracy conditions on 3> and (0£)£>o (see the 
beginning of Section 3) and refer to {<!>, (9£)£>o} as a random perturbation of / . 

In the context of random perturbations of a map we say that a Borel probabil­
ity measure /r on M is physical if for a positive Lebesgue measure set of points 
x G AI, the averaged sequence of Dirac probability measures along random 
orbits (/R(X)).„>() converges in the weak* topology to jie for 6^ almost every f G TN. 
That is, 

(2) 11 TTl 
n — t x 77, 

1-1d 

.7=0 
'' = /*„ ° ' • • ° (f dfi for all continuous </? : A/ —• IR 

and 0^ almost every t G TN. We denote the set of points x G M for which (2) holds 
by B(fxE) and call it the basin of / / . The map / : M —> A/ is said to be stochastically 
stable if the weak* accumulation points (when £ > 0 goes to zero) of the physical 
probability measures of /' are convex linear combinations of the (finitely many) SRB 
measures of / . 

1.1.1. Local diffeomorphisms. Let / : M —> Al be a C2 local diffeomorphism of 
the manifold AI. We say that / is nonuniformly expanding if there is some constant 
c > 0 for which 

(3) lim sup 
><w< 

1ss+1 

.7=0 

og||JD/(/-'(.r))-1|| *S -c<0 

for Lebesgue almost every x G AI. It was proved in [ABV] that for a nonuniformly 
expanding local diffeomorphism / the following holds: 

(P) There is a finite number of ergodic absolutely continuous (SRB) f-invariant 
probability measures /ii,...,//p whose basins cover a full Lebesgue measure subset 
of AI. Moreover, every absolutely continuous f-invariant probability measure /i may 
be written as a convex linear combination of fi\,..., /xp: there are real numbers 
ivi,..., wp > 0 with w\ + • • • + Wp = 1 for which /x = wj \i\ + • • • + WP/J,P. 
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The proof of the previous result was based on the existence of a-hyperbolic times for 
the points in M : given 0 < a < 1, we say that n G Z+ is a a-hyperbolic time for the 
point x G M if 

(4) 
n-1 

j — n-k 
\\Df(f\x))-l\\ <: ak for every l^k^n. 

The existence of (a positive frequency of) a-hyperbolic times for points x G M is a 
consequence of the hypothesis of nonuniform expansion of the map / and permits us 
to define a map h : M —> Z+ giving the first hyperbolic time for m almost every 
x G M. 

In the context of random perturbations of a nonuniformly expanding map we are 
also able to prove a result on the finitness of physical measures. 

Theorem A. — Let f : M —> M be a C2 nonuniformly expanding local diffeomorphism. 
If e > 0 is sufficiently small, then there are physical measures /if,... ,/xf (with £ not 
depending on e) such that: 

(1) for each x G M and 0^ almost every t G TN, the average of Dirac measures 
àfll{x) converges in the weak* topology to some [if with 1 ̂  i ^ £; 

(2) for each 1 ̂  i ^ £ we have 

/4 = w*- lim 
n—^oo 

1 
n 

-l 

7=0 J 

(fl)^m\\B(^))dO^(t), 

where m\\B(/j,f) is the normalization of the Lebesgue measure restricted to B(/x£t); 
(3) if f is topologically transitive, then £ = 1. 

We say that the map / is nonuniformly expanding for random orbits if there is 
some constant c > 0 such that for e > 0 small enough 

(5) lim sup 
1 

n 

-1.-1 

vr 
log | |D/ (^ ' (x ) ) -1 |K-c<0 , 

for 0^ x m almost every (t, x) G TN x M. Similarly to the deterministic situation, 
condition (5) permits us to introduce a notion of a-hyperbolic times for points in 
TN x M and define a map 

h£:TNx M —> Z+ 

by taking h£(t,x) the first a-hyperbolic time for the point (£, x) G TN x M (see 
Section 2). Assuming that h£ is integrable with respect to 0^ x ra, then 

(6) IIMi = 
fc=0 

oc 

k(0? xm)(\(t,x): hJt,x) =k}) 

We say that the family (h£)£>o has uniform L1-tail, if the series in (6) converges 
uniformly to \\h£\\i (as a series of functions of the variable e). 
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Theorem B. — Let f' : M —> M be a nonuniformly expanding C2 local diffeomorphism. 

(1) If f is stochastically stable, then f is nonuniformly expanding for random orbits. 
(2) If f is nonuniformly expanding for random orbits and (h£)£ has uniform L1-

tail, then f is stochastically stable. 

We should emphasize that we do not know if condition (2) in Theorem B is really 
necessary. No example of a stochastically stable map which does not satisfy the 
uniform Lx-tail property is known. 

1.1.2. Maps with critical sets. — Similar results to those presented for random per­
turbations of local diffeomorphisms will also be obtained for maps with critical sets 
in the sense of [ABV]. We start by describing the class of maps that we are going to 
consider. Let / : M —> M be a continuous map of the compact manifold M that fails 
to be a C2 local diffeomorphism on a critical set C C M with zero Lebesgue measure. 
We assume that / behaves like a power of the distance close to the critical set C: there 
are constants B > 1 and (5 > 0 for which 

(SI) 1 
B 

list(x,C)a s= 
\Df(x)v\ 

NI 
< £dist(.T,C)-/3; 

(S2) I l og l lD /M- l - log lp / a , ) -1 ! ! 
dist(x, y) 

dist(x,C)0' 

(S3) I log I det Df{x)~l\ - log I det Df{y)-1 \ sssccse dist(#, y) 
dist(x,C)0' 

for every x,y G M \ C with dist(x,y) < dist(x,C)/2 and v G TXM. Given ô > 0 we 
define the Ô-truncated distance from x G M to C 

dist^(x,C) = 1 if dist(x,C) > (J, 
dist(x,C) otherwise. 

Assume that / is a nonuniformly expanding map, in the sense that there is c > 0 
such that the limit in (3) holds for Lebesgue almost every x G M (recall that we are 
taking C with zero Lebesgue measure) and, moreover, suppose that the orbits of / 
have slow approximation to the critical set: given small 7 > 0 there is ô > 0 such that 

(7) lim sup 
n—> + oo 

1 

n 

n-l 

.7=0 
•logdist*(/''(z),CK7 

for Lebesgue almost every x G M. The results in [ABV] show that in this situation 
we obtain the same conclusion on the finiteness of SRB measures for such an / , also 
holding property (P). 

In order to prove the stochastic stability of maps with critical sets we need to 
restrict the class of perturbations we are going to consider: we take maps ft with the 
same critical set C and impose that 

(8) Dftix) = Df(x) for every x e M \ C and t e T. 
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This may be implemented, for instance, in parallelizable manifolds (with an additive 
group structure, e.g. tori Td or cylinders Td~~k x by considering 

-logdist5(//(x),C) < +1xw+s1 

for some SQ > 0, 0£ the normalized Lebesgue measure on the ball of radius e ^ £o, 
and taking ft — / -ft; that is, adding at each step a random noise to the unperturbed 
dynamics. 

For the case of maps with critical sets we also need to impose an analog of con­
dition (7) for random orbits; we assume slow approximation of random orbits to the 
critical set: given any small 7 > 0 there is ô > 0 such that 

(9) lim sup 
n —» + oc 

n — 1 
l 
n 7=0 

-logdist5(//(x),C) < 7 

for 6^ x m almost every (t,x) G TN x M and small £ > 0. Results similar to those 
presented for local diffeomorphisms on the finiteness of physical measures can also be 
obtained in this case. 

Theorem C. — Let f : M —* AI be a C2 nonuniformly expanding map behaving like a 
power of the distance close to the critical setC, and whose orbits have slow approxima­
tion to C. If f is nonuniformly expanding for random orbits and random orbits have 
slow approximation to C, then we arrive at the same conclusions as in Theorem A. 

The property of nonuniform expansion for random orbits, together with the slow 
approximation of random orbits to the critical set permit us to introduce a notion of 
(a, (5)-hyperbolic times for points in (t, x) G TN x AI and define a map 

K: Tn x AI —> Z+, 

by taking h£(t,x) the first (a, 5)-hyperbolic time for the point (t, x) G TN x M, see 
Section 2. Assuming that h£ is integrable with respect to 6£ x m, then we obtain an 
analog to (6), which enables us to define a notion of uniform Ll-tail exactly in the 
same way as before. 

Due to the fact that log ||D/_1|| is not a continuous map (it is not even everywhere 
defined) we are not able to present in this setting a result similar to Theorem B in 
all its strength. However, we obtain the same kind of conclusion of the second item 
of Theorem B. 

Theorem D. — Let /: AI —» AI be nonuniformly expanding C2 map behaving like a 
power of the distance close to its critical set C and whose orbits have slow approxima­
tion to C. Assume that f is nonuniformly expanding for random orbits and random 
orbits have slow approximation to C. If (h£)£ has uniform Ll-taih then f is stochas­
tically stable. 

ASTÉRISQUE 286 



RANDOM PERTURBATIONS OF NONUNIFORMLY EXPANDING MAPS 31 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 

As a major application of the previous theorem we are thinking of a class of maps 
on the cylinder S1 x R introduced in [Vil]. Subsequent works [Al] and [AV] showed 
that such systems are topologically mixing (thus transitive) and have a unique SRB 
measure. The work [AV] also shows that these SRB measures vary continuously with 
the map, which means that time averages of continuous functions are only slightly 
affected when the system is perturbed. Although this points in a direction of statistical 
stability, this does not imply the stochastic stability of such systems as we defined 
above. 

The class of nonuniformly expanding maps (with critical sets) introduced by 
M. Viana can be described as follows. Let ao € (1,2) be such that the critical point 
x — 0 is pre-periodic for the quadratic map Q(x) = CLQ — x2. Let S1 = R/Z and 
b : S1 —> R be a Morse function, for instance, b(s) = sin(27rs). For fixed small a > 0, 
consider the map 

f:S1xR—> SxxR 
(s,x) '—> {g(s),q(s,x)) 

where g is the uniformly expanding map of the circle defined by g(s) = ds (mod Z) 
for some d ^ 16, and q(s,x) = a(s) — x2 with a(s) = ao + ab(s). It is easy to check 
that for a > 0 small enough there is an interval I C ( — 2,2) for which f(S1 x I) is 
contained in the interior of S1 x I. Thus, any map / sufficiently close to / in the C° 
topology has S1 x / as a forward invariant region. We consider from here on these 
maps / close to / restricted to S1 x /. Taking into account the expression of / it is 
not difficult to check that / (and any map / close to / in the C2 topology) behaves 
like a power of the distance close to the critical set. 

Theorem E. — If f is sufficiently close to f in the C3 topology then f is nonuniformly 
expanding and its orbits have slow approximation to the critical set. Moreover, if the 
noise level of a random perturbation of f is sufficiently small, then 

(1) / is nonuniformly expanding for random orbits; 
(2) random orbits have slow approximation to the critical set; 
(3) the family of hyperbolic time maps (h£)£ has uniform L1-tail. 

As an immediate consequence of Theorems C, D and E we have that Viana maps 
are stochastically stable. An application of Theorems A and B will also be given in 
Section 6 for an open class of local diffeomorphisms introduced in [ABV, Appendix A]. 

2. Distortion bounds 

In this section we generalize some of the results in [Al] and [ABV] for the setting 
of stochastic perturbations of a nonuniformly expanding map. These results will be 
proved in the setting of maps with critical sets. Then everything follows in the same 
way for local diffeomorphisms if we think of C as being equal to the empty set, with 
the only exception of a particular point that we clarify in Remark 2.4 below (due to 
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the fact that we are not assuming condition (8) for maps with no critical sets). For 
the next definition we take 0 < b < min{l/2,1/(2/?)}. 

Definition 2.1. — Given 0 < a < 1 and ô > 0, we say that n G Z+ is a (a,S)-
hyperbolic time for (£, x) G TN x M if 

n-l 

j = n-k 
Dfti+dftWr'W < <** and dist*(/rfc(:c),C) > abfc 

for every 1 ̂  /c ̂  n. 

The following lemma, due to Pliss [PI], provides the main tool in the proof of the 
existence of hyperbolic times for points with nonuniform expansion on random orbits. 

Lemma2.2. — Let H > C2 > c\ > 0 and ( = (c2 — c\)/(H — c\). Given real numbers 
• • •, Q>N satisfying 

N 

3 = 1 
a j ^ C2N and a3 ^ H for all 1 ̂  j ^ N. 

there are H > (N and 1 < n\ < • • • < ng ̂  N such that 

Hi 

j=n+l 
On ^ CI • (rij — n) for each 0 ^ n < N ? , i = 1,... 

Proof. — See [ABV, Lemma 3.1]. 

Proposition 2.3. — There are a > 0 and ô > 0 /or which 0^ x m almost every (t, x) G 
TN x M has some {a, 8)-hyperbolic time. 

Proof. — Let (t,x) G TN x M be a point satisfying (5). For large A we have 

N-

3=0 

log \Df(fHx))-1 -logdist5(//( 

by definition of nonuniform expansion on random orbits. Fixing p > (5 we see that 
condition (SI) implies 

(10) h o g l l D / O r r l U o|logdist(i,C)| 

for every i in a neighborhood V of C. Now we take 71 > 0 so that p7i < c/10 and 
let 61 > 0 be small enough to get 

(H) 
N-l 

3=0 
logdist5l(//(x),S) ^ 71 iV for large TV, 
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which is possible after property (7) of slow approximation to C. Moreover, fixing 
H ^ p\ log 51 sufficiently large in order that it be also an upper bound for for the set 
{-\og\\Df~l\\ :t£T, x £ M \ V"}, then the set 

E = {1 ^ j < N : - log \\DfUr\X))'11| > H} 

is such that / / (X) G V for all j G E and 

p log&st Ut\x),C) > - l o g DfUrl{x))-1 >H>p\\og5\ 

i.e., dist (f[~L(X),C) < Su in particular distSl(FT (X),C) = dist(// (X)X) < ÔI FOR 

all 7 G E. Hence, defining 

a j = 
-log Df{fr\x))-1 if ? <£ E 

0 ifi 

it holds cij ^ # for 1 ̂  j ^ TV, and (10) and (11) imply 

q+q1 

]iog\\Df(frI(X)ri ^P 
3EE 

logdist(/rX(x),C) ^ P 7 i ^ 

Since /r/i < c/10 we deduce 

ND 

3 = 1 

CLJ 
N 

7 = 1 

-log DflftHx))-1 \ 
3EE 

-log Dftfi-^x))-1 2 
5 

V. 

By the previous arguments we may apply Lemma 2.2 to the sequence CTJ with ci = c/5 
and C2 = 2c/5 (we may suppose H > c\ too by increasing H if needed). Thus there 
are Ci > 0 and ^i > C i ^ times 1 < qx < • • • < q£l < N such that 

(12) 
re 

J=N+L 
-log Dfur\x)r vr 

vrd+41 

d+d1rs 

vr+d1r c 
2 

far - n) 

for every 0 ^ n < q7, i = 1,... ,£\. We observe that (12) is just the first part of the 
requirements on (a, £)-hyperbolic times for (t,X) if a = exp(c/5). 

Now we apply again Lemma 2.2, this time to the sequence CTJ = log dist̂ 2 (//~~ (X),C) 
where 62 > 0 is small enough so that for 72 > 0 with 272(be)"1 < £i we have by 
assumption (7) 

N-L 

3=U 

logdist*2(//(x),C) > -j2N for large N. 

Defining; c-\ — bel2, CO = —72, H = 0 and 

(2 = 
C2 ~ CI 

H - ci 
= 1 272 

6c 
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Lemma 2.2 ensures that there are £2 ^ (2N times 1 ̂  ri < • • • < r̂ 2 ^ TV satisfying 

(13) 
vrd 

J = N+L 

logdist,2(# + i(x),C) ^ 
6c 

2 
(R2 - n) 

for every 0 ^ n < r?:, i = 1,. . . , £2. Let us note that the condition on 72 assures 
Ci + C2 > 1. So if C = Ci + C2 - 1, then there must be £ = (£x + £2 - N) ^ (N and 
1 ^ m < • • • < n£ ^ TV for which (12) and (13) both hold. This means that for 
1 ^ i ^ £ and 1 ^ k ^ nt we have 

n i 

j=ni—k 
Df(fj(.r)y-[ ^ak and d\stÔ2(f^~k(x)X) ^ abk\ 

and hence these n?, are (a, J)-hyperbolic times for (£, x), with ô = ô2 and a = exp(c/5). 
It follows that for O^xm almost every (t, x) G TN x M there are (positive frequency 
of) times n e Z + for which 

(14) 
N-L 

j = n-k 
\\Df(fl{x)rl\\ < afc and .MM,-I/," ''i.n.c'ï ^ afcfc 

for every 1 ^ /c ^ n. Now the conclusion of the lemma is a direct consequence of 
assumption (8). • 

Remark 2.4. — In the setting of random perturbations of a local diffeomorphism / we 
may also derive from the first part of (14) the existence of hyperbolic times for 6^ xm 
almost every (t,x) G TN x M without assuming condition (8). Actually, let (U x) be 
a point in TN x M for which the first part of (14) holds. Taking the perturbations ft 
in a sufficiently small C1-neighborhood of / , then 

WDftivr'w < 
1 

vrd 
Df(y)-l\\ 

for every y G M, which together with (14) gives 

N-L 

j-n-k 
\\Dft(ft{X)r'\\^ 

N-L 

j=n-k 

1 
vr 

\\Df(f!(x))-l\\£ak/2. 

In the context of maps with no critical sets this n may be defined as a v^-Irype-rbolic 
time for (t, x) and all the results that we present below hold with y^a-hyperbolic times 
replacing (a, <5)-hyperbolic times for maps with critical sets. 

Proposition 2.3 allows us to introduce a map 

h£:TN xM— 

by taking h£(t,x) as the first (a, £)-hyperbolic time for (£, x) G TN x M. We assume 
henceforth that the family (h£)£>o has uniform L1-tail. For the next lemma we fix 
6\ > 0 in such a way that 45i < min{5, 5@\ loga|}. 
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Lemma 2.5. — Given any 1 ^ j ^ n, we have 

WDfiyr1]] ^ a-l/2\\Df(f^(x)rl\\ 

for every y in the ball of radias 26 \a-^2 around f"'~J(x). 

Proof. — We are assuming dist^/"'-"7 (#), C) ^ aJ since n is a (a, 5)-hyperbolic time 
for (t,x). This means that 

dist{fll-j(x),C) = dmts(ffl-j(x),C) > abj or else dist(/tn"J'(x),C) > (5. 

Either way it holds dist(y, ft~j(x)) ^ dist(/"~j(x),C)/2 because 6 < 1/2 and £i < 
ô/A < 1/4 for all y in the ball of radius 2£IQJ//2 around ftl~J (x). Therefore condition 
(S2) implies 

log \\Df(y)-l\ 

\\DHfrj(x))^\ 
^ B 

dist ( / r / ( . r ) . / y ) 

dist(fr\x)xr 
<: B 2(W/2 

min{a^> j}" 

But a, 5 < 1 and 6/3 < 1/2 so a-7'/2 < ab^J and thus the right hand side of the last 
expression is bounded from above by 2B8\5~P. The assumptions on S\ assure this 
last bound to be smaller than log a-1/2, which implies the statement. • 

Proposition 2.6. — There is Ô\ > 0 such that if n is (a, 6)-hyperbolic time for (t,x) G 
TN x M, then there is a neighborhood Vn(t,x) of x in M such that 

(1) f'f1 maps Vn(t,x) diffeomorphically onto the ball of radius 5\ around ftn(x); 
(2) for every 1 ̂  k ^ n and y,z G Vk(t, x) 

• l i s " / , " '•!//>. f?~k(z)) • «A/2dist(/f(y), f»(z)). 

Proof. — The proof will be by induction on j ^ 1. First we show that there is a well 
defined branch of f~J on a ball of small enough radius around / / (x). Now we observe 
that Lemma 2.5 gives for j — 1 

\\Df(y)-l\\ ^ a - ^ l l D / U r 1 ^ ) ) - 1 ! ! < «1/2, 

because n is a (a, 5)-hyperbolic time for (£, ic). This means that / is a a~1//2-dilation in 
the ball of radius 28\a1^2 around f[,~1(x). Consequently there is some neighborhood 
Vi(t, x) of frtl~l(x) inside the ball of radius 2&\a1/2 that is diffeomorphic to the ball of 
radius 5\ around ft\x) through ftn, when / is a map with critical set satisfying (8). 

For j ^ 1 let us suppose that we have obtained a neighborhood Vj(t,x) of ft~3(x) 
such that ftn o • • • o ftn_j+1 \ V3(Ux) is a diffeomorphism onto the ball of radius 5\ 
around fll(x) with 

(15) l!W(A„.J+,+1o---o/t , i^1(2))"^<a-V2| |Z)/(/»-^+i(;c))^| | 
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for all z G V3(t,x) and 0 ^ i < j . Then, by Lemma 2.5 and under the assumption 
that n is a (a, <S)-hyperbolic time for x, 

U>(f,.. ••/,.. (//)) * -logdist5(//(x),C) <+s1x+xx+x1x+xx1x+ 
i=0 

< 
j 

i=0 

a-1/2\\Dft„ ^Af?~3+l~Hx))-l\\ 

-logdist5(//(x),C) < +skjs+sjns 

for every y on the ball of radius 28\a^+l^2 around fJl~J~1(x) whose image ftn_j(y) 
is in Vj(t, x) (above we convention ftn_J+t_1 ° • • • ° ftn-j {y) — V for i = 0). 

This shows that the derivative of /tn o • • • o /t is a a_^+1^2-dilation on the 
intersection of (Vj(t, x)) with the ball of radius 2ôia^J~^1^2 around f^i~J~1(x)J 
and hence there is an inverse branch of ftn o • • • o ftn_J defined on the ball of radius 
8\ around ft'(x). Thus we may define Vj+i(£ ,x) as the image of the ball of radius 
8\ around f™(x) under this inverse branch, and recover the induction hypothesis for 
j + 1. In this manner we get neighborhoods Vj(t,x) of fTtl~J(x) as above for all 
1<j<n 

Corollary 2.7. — There is a constant C\ > 0 such that if t G TN; n is a (a, £)-
hyperbolic time for x G M and y,z G Vn(t, x), then 

1 \ det Df?(y)\ 
Ci ^ | det Dfn (sz))) 

vrd 

Proof — For 1 ^ k < n the distance between fk(x) and either fk{y) ord++d+d+d1d+is 
smaller than a(n_fc)/2 which is smaller than ab(n_fc) ^ dist(/tfc(x),C). So, by (S3) we 
have 

log 
det DflHy)\ 

\det Df£(z)\ 

n-l 

k=0 
dv 

det Dftk(ftk(y))\ 

I det D/tfc+1 (/*(*)) 

vrd 
n-l 

k=l 
log 

det Df(fl(y))\ 

det Df(ftk(z))\ 

n-l 
vrd 

k=0 
2BC-

Jn-k)/2 
ab(3(n-k) • 

and it is enough to take C\ ^ exp (XSi 2Ba(1/2_6i3)i), recalling that 6/3 < 1/2 and 
also (8). 
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3. Stationary measures 

As mentioned before, we will assume the random perturbations of the nonuniformly 
expanding map / satisfy some nondegeneracy conditions: there exists 0 < so < 1 such 
that for every 0 < e < £o we may take no = no(e) G N for which the following holds: 

(1) there is f = Ç(e) > 0 such that £:TN^ M £:TN^ M t G (supp(9e)N j contains the ball of 
radius £ around fn(x) for all x G M and n ^ no; 

(2) (f2)*0® < m for all x G M and n ^ n0. 

Here (/£).0? is the push-forward of to M via f £ : T N ^ M, defined as fx(t) = 
ft(x). Condition (1) means that perturbed iterates cover a full neighborhood of the 
unperturbed ones after a threshold for all sufficiently small noise levels. Condition (2) 
means that sets of perturbation vectors of positive 6f measure must send any point 
x G M onto subsets of M with positive Lebesgue measure after a finite number of 
iterates. 

In [Ar, Examples 1 & 2] it was shown that given any smooth map f : M —» M 
of a compact manifold we can always construct a random perturbation satisfying the 
nondegeneracy conditions (1) and (2), if we take T = Ep, t* = 0 and 0£ is equal to the 
normalized restriction of the Lebesgue measure to the ball of radius e around 0, for a 
sufficiently big number p G N of parameters. For parallelizable manifolds the random 
perturbations which consist in adding at each step a random noise to the unperturbed 
dynamics, as described in the Introduction, clearly satisfy nondegeneracy conditions 
(1) and (2) for n0 = 1. 

In the context of random perturbations of a map, we say that a set A C M is 
invariant if ft{A) C A, at least for t G supp((9e) with s > 0 small. The usual invariance 
of a measure with respect to a transformation is replaced by the following one: a 
probability measure \i is said to be stationary, if for every continuous : M —> R it 
holds 

(16) Lp dfi = <p(ft(x))dn(x)M£(t). 

Remark 3.1. — If (/i£)e>o is a family of stationary measures having UQ as a weak* 
accumulation point when e goes to 0, then it follows from (16) and the convergence 
of supp(#£) to {£*} that fiQ must be invariant by / = ft*. 

It is not difficult to see (cf. fArl) that a stationary measure a satisfies 

x G suppf/i) => ft(x) G suppf/i) for all t G supp(^) 

just by continuity of This means that if fi is a stationary measure, then supp(/x) 
is an invariant set. Nondegeneracy condition (1) ensures that the interior of supp(u) 
is nonempty. 

Let us write supp(/x) as a disjoint union \Jz C% of connected components and 
consider only those C{ for which m (Ci) > 0 — this collection is nonempty since 
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supp(/x) contains open sets. Moreover each ft must permute these components for 
t G supp(#e), because ft (Ci) is connected by continuity, ft (Ci) C supp(/x) by invari­
ance, and m(ft(Ci)) > 0 since we have (ft)*m <C m. 

The connectedness of CL and continuity of 3> guarantee that the above-mentioned 
perturbation of the components Ct induced by ft does not depend on t G supp(0e). 
Indeed, supposing that t,t' G supp(^) are such that 

MCJcCj and ft>(Ci)cCj>, 

then fixing some z G CL we have that {ft(z)\ t G supp(#£)} is a connected set inter­
secting both Cj and Cy inside supp(/i), and so C3 — Cy. 

We will show that these connected components are periodic under the action in­
duced by ft with t G supp(#e). After this, we may use nondegeneracy condition (1) 
to conclude that each component contains a ball of uniform radius and thus that each 
component satisfies m(C,) > const > 0. Hence there existing only a finite number of 
such components. 

At this point it is useful to introduce the skew-product map 

F : TN x M —> TN x M 
(Lz) (a(t)Jtl(z)) 

where a is the left shift on sequences t = (ti,^2,---) G TN. It is easy to check 
that the product measure 0^ x \x is F-invariant, as so is the set supp(0]? x \i) — 
supp(^£)N x supp(/x). 

Lemma 3.2. — The support of a stationary measure /i contains a finite number of 
connected components arranged in cycles permuted by the action of ft fort G supp(#e). 

Proof. — Is is enough to obtain that each connected component C\ is periodic under 
the action of ft for t G supp(^), in the sense that ft (Ci) C Cj for some p G N and 
all t G supp(éÇ). There are components Ct with nonempty interior, since the interior 
of supp(/i) is nonempty. So we may take a component Ct that contains some ball B. 
Then we have m(B) > 0 and so (0^ x /i)(supp(0^) x B) > 0. Poincaré Recurrence 
Theorem now guarantees there is (t x) G supp(^) x B such that the F-orbit of (t, x) 
has the same (t,x) as an accumulation point. We see that there must exist some 
p G N such that ff(x) G B C C(. In view of the independence of the permutation on 
the choice of £, we conclude that Ci is sent inside itself by /f for all t G supp(^). • 

It is clear that the cycles obtained above are invariant sets. We are now ready to 
decompose /i into some simpler measures. For that we need the following result. 

Lemma 3.3. — The normalized restriction of a stationary measure to an invariant set 
is a stationary measure. 

Proof — See [Ar, Lemma 8.2]. • 
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We define an invariant domain in M as a finite collection (UQ, ..., Up-i) of pairwise 
separated open sets, that is, U% D Uj — 0 if i 7̂  j , such that ft(Ui) C U(k+i) mod P f°r 
all k ^ 1, z = 0,... ,p - 1 and t G supp(0f ). 

In order to get the separation of the connected components in a cycle, we may unite 
those components Ci and C7 such that C?nC7- ^ 0 and observe that the permutation 
now induced in the new sets by ft also does not depend on the choice of £ £ supp(#£). 
In this manner we construct invariant domains inside the support of any stationary 
probability measure. 

The next step is to look for minimal invariant domains with respect to the natural 
order relation of inclusion of sets. Let D = (UQ, . . . , Up-i) and D' = (WQ,..., WQ-\) 
be invariant domains. On the one hand, D = D' if there are i, j G N such that 
U(i+k) modp — (̂j+A,) mod q f°r aU k ^ 1, which implies p — q because the open sets 
that form each invariant domain are pairwise disjoint. On the other hand, we say D ^< 
D' if there are i,j G N such that U% mod p Ç W3 mod Q and i7(./+fe) mod p C ILr(j+A:) mod g 
for all k ^ 1. 

Lemma 3.4. — In the partially ordered family of all invariant domains in M, with 
respect to the relation the number of -<-minimal domains is finite. Moreover, 
every invariant domain contains at least one minimal domain. 

Proof — The proof relies in showing that Zorn's Lemma can be applied to this par­
tially ordered set and that minimal domains are pairwise separated. See [Ar, Sec­
tion 3]. • 

Let us now fix x G M and consider 

(17) Unix) : 
1 ^ 

n 3=0 

dd+d1r 

Since this is a sequence of probability measures on the compact manifold M, then it 
has weak* accumulation points. 

Lemma 3.5. — Every weak* accumulation point of (fin(x))^ is stationary and abso­
lutely continuous with respect to the Lebesgue measure. 

Proof. — Let \i be a weak* accumulation point of (/in(x))_. We may write 

ip(Mx))du{x)dee{t) = lim 
d+d12r 

nk-l 1 

3=0 

r(ft(fiU))) d0^(t)d0£(t) 

for each continuous tp : M —> M. Moreover dominated convergence ensures that we 
may exchange the limit and the outer integral sign and, by definition of fj(x), we get 

lim 
fc—>oo rik 

1 nk-l 

3=0 ' 

^(//+1(x))d9?m = </? du, 
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according to the definition of /i. Thus (16) must hold and fi is stationary. 
Noting that C°(M,R) is dense in L1(M,fi) with the L1 norm, we see that (16) 

holds for all /x-integrable functions Lp : M —» R. In particular, if F C M is such that 
m{E) = 0, then 

Is du = / / lE(ft(x))du(x)dOe(t) 

/ / l£;( / t (x))dee(t)d/z(x) 

// / lE{ft(fs(x)))dO£(t)d[i(x)dO£(s) 

= // lE{fHx))d^(t)dfJL{x) 

= (f2x)^(E)d^x). 

This process may be iterated to yield 

KE)= (fT)*0e{E)dv(x) 

and, since (fx°)*@e <C m by nondegeneracy condition 2, we must have /x(E) = 0 . • 

Clearly if x G M belongs to some set of an invariant domain (Uo, • • •, ̂ p-i), then 
/jLn(x) have supports contained in [/Q U • • • U t/p-i for all n ^ 1 and any weak* 
accumlation point /x of (fin(x))n is a stationary measure with supp(/i) C Uo U • • • U 
Up-i. We will now see these measures are physical. 

Lemma 3.6. — If {Uo,..., Up-i) is a minimal invariant domain, then there is a unique 
absolutely continuous stationary measure v such that supp(^) C Uo U ••• U Uv-\. 
Moreover, this v is a physical measure and supp(^) — UQ U • • • U Uv-\. 

Proof. — Let us assume no = 1 for simplicity (see [Ar, Section 7] for the general 
case) and let us consider a stationary absolutely continuous probability measure v 
with supp(z/) C Uo U • • • U Up-i. We first show the ergodicity of z/, in the sense that 
0^ x v is F-ergodic. It turns out that to be F-ergodic it suffices that either v{G) = 0 
or v{G) — 1 for every Borel set G C M satisfying 

(18) 1G(X) = / lG(ft(x)) d0M) 

for v almost every x (cf. [Ar] and [Vi2]). So let us take G such that v(G) > 0 and 
G satisfies the left hand side of (18). Then it must be rn(G) > 0 because v <C m and 
there is a closed set J C G such that m(G \ J) = 0 and also v(G \ J) = 0. Hence J 
also satisfies the left hand side of (18) because of nondegeneracy condition (2) (with 
no = 1), since 

/ lE(ft(x))d6Jt) = (fx).6"(E). 
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This means that when x G J we have ft(x) G J for 9£ almost all t G supp(<9£). Since 
a set of 0£ measure 1 is dense in supp(0e) (we are supposing 0£ to be positive on open 
sets) and ft(x) varies continuously with £, we see that ft(x) G J for all t G supp(#e) 
because J is closed. We then have that the interior of J is nonempty by condition 
(1) on random perturbations and we may apply the methods of decomposition into 
connected components as before (Lemma 3.2). In this manner we construct an in­
variant domain inside J which, in turn, is inside a minimal invariant domain. This 
contradicts minimality and so we conclude that J must contain UQ U • • • UUP-\. Thus 
we have v(G) = v(J) = 1 proving 6^ x v to be F-ergodic. 

Now, given p : M —> R continuous we consider the map x/; = p o n from TN x M 
to M, where TT : TN x M —> M is the natural projection. The Ergodic Theorem then 
ensures 

lim 
d+d1r+ 

1d 

j=0 
ip{Fj{Lx)) = / i/,d(0? x i/) 

for ^ xi/ almost all (f, x), which is just the same as 

(19) lim 
n—>- + oo n 

1 n-l 

d 

£:TN^ M (p dv 

for 9^ x i/ almost all (t, x). Finally considering the ergodic basin B(y), defined as the 
set of points x G M for which 

lim 
n—> + oo n 

1 71 — 1 

vr 
£:TN^ Mx <pdv 

for all (p G C°(M,E) and ^ almost every t G TN, it is easy to see that B(y) satisfies 
(18) in the place of G and we must have as before B(y) Z> UQ U • • • U UP-\. 

This shows that if another stationary absolutely continuous probability measure v 
is such that supp(P) C (7oU- • •U/7p_l5 then the basins of v and must have nonempty 
intersection. Thus these measures must be equal. Moreover v{B{y^) — 1 and so, by 
absolute continuity, m(B(v)) > 0 and thus v is a physical probability. • 

4. The number of physical measures 

In this section we will prove that the number £ of physical measures is bounded 
by the number p of SRB measures. Moreover we will present examples of dynamical 
systems for which £ = p and £ < p. 

Let / i i , . . . , m be the physical measures supported on the minimal invariant do­
mains in M, which exist by Lemmas 3.2 and 3.4 through 3.6. If \i is an absolutely 
continuous stationary measure, its restrictions to the minimal invariant domains of 
A/, normalized when not equal to the constant zero measure, are absolutely continu­
ous stationary measures by Lemma 3.3. After Lemma 3.6 these restrictions must 
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be the physical measures (*.........µ2) of the minimal domains. Hence /i must de­
compose into a linear combination of physical measures. Moreover, the union of 
supp(/ii),...,supp(^) must contain supp(/i), except possibly for a \i null set. In 
fact, if the following set function 

/I-/X(supp(/XI))/XI /I(supp(/X£))^ 

were nonzero, then its normalization \J! would be an absolutely continuous stationary 
measure, and the above decomposition could be applied to //, thus giving another 
minimal domain inside supp(/i). Clearly this cannot happen. We then have a convex 
linear decomposition 

(20) /i = ai/iiH YoLtiii 

where a% = /x(supp(/ij) > 0 and aqH Vac, = 1. We will see that this decomposition 
is uniquely defined. 

We remark that so far we did not use more than the continuity of the map / . For 
the next result we assume that / : M —> M is a C2 nonuniformly expanding map 
whose orbits have slow approximation to the critical C (possibly the emptyset) with 
m(C) = 0. This result contains the assertions of the first two items of Theorem A 
(if we think of C = 0) and Theorem C. 

Proposition 4.1. — If e > 0 is small enough, then there exist physical measures 
...,\x\ (with £ not depending on e) such that 

(1) for x G M there is a 0^ mod 0 partition T\(x),... ,T^(x) of TN such that 

IIE. — 7/j* - lim 
1—>OG TI 

1 ^ 

.7 = 1 
sm*) if and only if t G T?(x): 

(2) for each i = 1,. . . , £ we have 

ae: — w* - lim 
vr+d1r 

dv+r1 

3=0 

(fi)Am\B{ti))df%(t) 

where m \ B(/j£t) is the normalized restriction of Lebesgue measure to B(/xf). 

Proof — Take x G M and let /i be a weak* accumulation point of the sequence 
(/in(x))n defined in (17). We will prove that this is the only accumulation point 
of (17) by showing that the values of the a\,..., in decomposition (20) depend 
only on x and not on the subsequence that converges to /I. The definition of the 
average in (17) implies that there is a subset of parameter vectors t G supp(^) with 
positive 0^ measure for which there is j ^ 1 such that f3t(x) G supp(/i?). We define 
for z = ! , . . . ,£ 

Ti(x) = \ t G supp(6^) : ft(x) G supp(^) for some j ^ 1 \ 
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We clearly have 

T,{x) = U, - 7 > ! where Tf(x) = {te supp(^) : f[(x) G supp(^)} 

and TJ(x) C T/+1(x) for all i,j ^ 1, since the supports of stationary measures are 
themselves invariant. In addition, since \i is a regular (Borel) probability measure, we 
may find for each 77 > 0 an open set U and a closed set K such that K C supp(/x/) C U 
with ji(U \ K) < 7] and /x(dU) = ji{dK) = 0. In fact, there is an at most countable 
number of ^-neighborhoods of supp(/i7) whose boundaries have positive \i measure, 
and likewise for the compacts coinciding with the complement of the (5-neighborhood 
of M \ supp(/i?). Then, taking a,,, = /i(supp(/i./)) we have 

OL-i + 77 > u(U) = lim 
<+<1w<+ 

w+<1w 

.7=0 

9^{teTN:fi(x)eU] 

^ lim sup 
A:-+ + oo nA; 

1 nfc-l 

.7=0 
<+<1<w+<1+< 

for some sequence of integers ri\ < 712 < ft 3 < • • •, and likewise for 

a-, — // ^ u(K) lim 
A- -4- x. ///,. 

1 wq 

wq 
0?UeTN •..f(x) €K\ 

<C lim inf 
A:-̂  + oc 71) 

w<w<+ 

.7=0 

£:TN^ M 

where 77 > 0 is arbitrary. This shows 

a-i — Mfsuppf/i;)) = lim -
dd+d<+ 

-1 nfc-l 

.7 = 0 

£:TN^ M 

We also have 

^fr,(a;)) = lim O^MCx)) 
w 

lim 
<+1<w+ 

1<<<<< 

w 

f ( 7 y ( x ) ) = a . 

which shows that the a7, depend only on the random orbits of x and not on the 
particular sequence (rik)k- Thus we see that the sequence of measures in (17) converges 
in the weak* topology. Moreover the sets Xi(x),..., T^(x) are pairwise disjoint by 
definition and their total 0^ measure equals or H VOL^ = 1, thus forming a 0^ modulo 
zero partition of TN. We observe that if t G T^(x), then fjl(x) G supp(/x?) C B(fii) for 
some n ^ 1 and i = 1,.. . , £. This means this 9^ modulo zero partition of TN satisfies 
the first item of the proposition. 

Now fixing i — 1, ...,£, for all x G B{ni) (the ergodic basin of uz) it holds that 

lim 
q+1<00 

! »-1 

i=0 

£:TN^ M (p d/jii 
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for 6^ almost every t G TN. Recall that m(B(ui)) > 0 by the definition of physi­
cal measure. Using dominated convergence and integrating both sides of the above 
equality twice, first with respect to the Lebesgue measure m, and then with respect 
to #f, we arrive at the statement of item 2. 

Recall that up until now the noise level e > 0 was kept fixed. For small enough 
e > 0 the measures \i% — /if depend on the noise level, but we will see that the number 
of physical measures is constant. 

Fixing i G {1 , . . . , £} we let x in the interior of supp(/if) be such that the orbit 
F(( x) has infinitely many hyperbolic times. Recall that / = ft* is nonuniformly 
expanding (possibly with criticalities). Then there is a big enough hyperbolic time n 
so that Vn(t*,x) C supp(/if), by Proposition 2.6, where we take t* = (£*,£*,£*,... ). 
Since t* G supp(0e) and supp(/xf) is invariant under ft for all t G supp(#e), we must 
have 

m: fil (Vn(t*,x)) = Bffjt (x), Si) C supp(^), 

where ôi > 0 is the constant given by Proposition 2.6 and B(f™* (x), ô\) is the ball of 
radius Si around ft*(x). 

On the one hand, we deduce that the number £ = £(e) is bounded from above 
by some uniform constant TV since M is compact. On the other hand, since each 
invariant set must contain some physical measure (by Lemma 3.4), we see that for 
0 < e' < e there must be some physical measure p£ with supp(/i£ ) C supp(/i£). In 
fact supp(//) is invariant under ft for every t G supp(#£/) C supp(#£). This means 
the number £(e) of physical measures is a nonincreasing function of e > 0. Thus we 
conclude that there must be £Q > 0 such that £ — £(e) is constant for 0 < e < £o, 
ending the proof of the proposition. • 

Remark 4.2. — Let us point out that from (21) one easily deduces that the Lesbesgue 
measure of the basin of each physical measure is uniformly bounded from below, since 
the support of such a measure is always contained in its basin. 

Remark 4.3. — Observe that if the map / : M —> M is topologically transitive, then 
every stationary measure must be supported on the whole of M, since the support is 
invariant and has nonempty interior. According to the discussion above, there must 
be only one such stationary measure, which must be physical. 

We note that the number £ of physical measures for small £ > 0 and the number p 
of SRB measures for / are obtained by different existential arguments. It is natural 
to ask if there is any relation between £ and p. 

Proposition 4.4. — If p ^ 1 is the number of SRB measures of f and £ ^ 1 is the 
number of physical measures of the random perturbation of f, then for £ > 0 small 
enough we have £ ̂  p. 
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Proof. — We observe that supp(/ie) is forward invariant under f = ft* and, moreover, 
condition (3) holds for Lebesgue almost every x in supp(/x£) because holds almost 
everywhere in M (by assumption) and supp(//£) has nonempty interior. Thus from 
[ABV, Theorem C] we assure the existence of at least one SRB measure \i with 
supp(/i) C supp(/r). 

We have seen that each support of a physical measure fi£ must contain at least the 
support of one SRB measure for the unperturbed map / . Since the number of SRB 
measures is finite we have £ ̂  p, where p is the number of those measures. • 

The reverse inequality does not hold in general, as the following examples show: it 
is possible for two distinct SRB measures to have intersecting supports and, in this 
circumstance, the random perturbations will mix their basins and there will be some 
physical measure whose support overlaps the supports of both SRB measures. 

1 

0.5 

0 

-0.5 

-1 

-E5 

-2 

-2.5 

-3 -3 -2.5 -2 -E5 -1 -0.5 0 0.5 1 

FIGURE 1. Map for which 1 = £ < p = 2 

The first example is the map / : [—3,1 ]—3,1 ] whose graph is figure 1: 

/(*) = 
l-2ir2 i f - l ^ x ^ l 
2(x + 2)2 - 3 i f -3 ^ x <: - 1 

The dynamics of / on [—1,1] and [—3, —1] is conjugated to the tent map T(x) = 
1 — 2\x\ on [—1,1]. Thus understanding / as a circle map through the identifica­
tion S1 — [—3, l]/{—3,1}, this is a nonuniformly expanding map with a critical 
set satisfying conditions (SI)-(S3) and there are two ergodic absolutely continuous 
(thus SRB) invariant measures /xi,/i2 whose supports are [—3,-1] and [—1,1] re­
spectively. Moreover defining &(t) — Rt o /, where Rt : Sl —• Sl is the rotation 
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of angle t and 0£ = (2e)~l(m \ [-e,e\) for small e > 0, we have that {<£, (0£)£>o} 
is a random perturbation satisfying nondegeneracy conditions (1) and (2). Since 
supp(/ii) H supp(//2) = {-1} we have that for e > 0 small enough there must be a 
single physical measure if. Indeed, by property (P) any weak* accumulation point 
of a family of physical measures must have —1 in its support. 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 
7 -6 -5 - 4 - 3 - 2 - 1 0 1 2 

ces+q 

ss 

F IGURE 2. Map for which £ — p — 2 

The second example is defined on the interval / = [—7,2]. We take the map 
Qa(x) = a — x2 on [—2, 2] for some parameter a G (1,2) satisfying Benedicks-Carleson 
conditions (see [BC1] and [BC2]), and the "same" map on [—7,-3] conveniently 
conjugated: pa(x) = (x + 5)2 — 5 — a. Then the two pieces of graph are glued together 
in such a wray that we obtain a smooth map / : / — > / sending / into its interior, 
as figure 2 shows. The intervals Iq = [q2(0), qa(0)} and Ip = [pa( — 5),p^( — 5)] are 
forward invariant for / , and then we can find slightly larger intervals I\ 2> Ip and 
I2 D Iq that become trapping regions for / . So, taking $(t) = f + t, and 0£ as in 
the previous example with 0 < e < c() for some eo > 0 small enough, then {$, (0£)£\ 
is a random perturbation of / leaving the intervals I\ and 12 invariant by each &(t). 
Moreover, Lebesgue almost every x G / eventually arrives at one of these intervals. 
Then by [BC1] and [BY1] the map / is nonuniformly expanding and has two SRB 
measures with supports contained in each trapping region. Finally / admits two 
distinct physical measures whose supports are contained in I\ and I2 respectively, for 
SQ > 0 small enough. Moreover, these SRB measures are stochastically stable; see 
[BVl. 
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5. Stochastic stability 

In this section we will prove the first item of Theorem B and Theorem D. The 
second item of Theorem B may be obtained in the same way as Theorem D, if we 
think of C as being equal to the empty set and take into account Remark 2.4. 

We start by proving the first item of Theorem B. Assume that / is a stochastically 
stable nonuniformly expanding local diffeomorphism. We know from Proposition 4.1 
that there is a finite number of physical measures /if,... p^ and for each x G M there 
is a 6f mod 0 partition Ti(x),..., Tf{x) of TN for which 

iâ — w*- lim 
>+<1<< 

1 n-l 

7 = 1 
s+c1e for each teTt(x). 

Furthermore, since we are taking / a local diffeomorphism, then log\\(Df) 1\\ is a 
continuous map. Thus, we have for each x G M and 0^ almost every t G TN 

lim 
f.->oc n 

1 n-l 

.7=0 

logWDfifKx))'1^ logiKD/)-1!!^ 

for some physical measure \i\ with 1 ^ i ^ £. Hence, for proving the nonuniform 
expansion of / on random orbits it suffices to show that there is Co > 0 such that if 
if = ii£ for some 1 ̂  i ^ £ then 

log \\{Df)-l\\dtie < c() for small e > 0. 

Lemma 5.1. — Let p: M —> R be a continuous map. Given ô > 0 there is So > 0 such 
that if £ ^ £o? then 

I pd/j£ — / pd\iE < 

for some absolutely continuous f -invariant probability measure \xE. 

Proof. — We will use the following auxiliary result: Let X be a compact metric space, 
K C X a closed (compact) subset and (xt )/ >() a curve in X (not necessarily contin­
uous) such that all its accumulation points (as t —» 0+) lie in K. Then for every 
open neighborhood U of K there is to > 0 such that xf G U for every 0 < t < to. 
Indeed, supposing not, there is a sequence (tn).fl with tn —* 0+ when n —> oo such 
that xtn ^ U. Since X is compact this means that (xt)t>o has some accumulation 
point in X \ U, thus outside K, contrary to the assumption. 

Now, the space X — P(M) of all probability measures in M is a compact metric 
space with the weak* topology, and the convex hull K of the (finitely many) SRB 
measures of / is closed. Hence, considering the curve (//)£ in P(M), we are in the 
context of the above result, since we are supposing / to be stochastically stable. 
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A metric on X topologically equivalent to the weak* topology may be given by 

dP(/i,i/) = 
oo 

K= 1 

1 

2n 
ipn dp - (fn du 

where /i, v G P(M) and (</?n)n î is a dense sequence of functions in C°(M,M), 
see [Ma]. 

Let ip : M —> M continuous be given and let us fix some J > 0. There must be 
n G N such that \\p — (/?n||o < 5/3 and, by the auxiliary result in the beginning of 
the proof, there exists, for some £o > 0 and every 0 < e < a probability measure 
u£ G P(M) for which dp(/ie,/ie) < 5(3 • 2n)_1. This in particular means that 

1 
2n (pn dp£ - q+q1qs+q Ô 

^ 3 • 2n ' 
by the definition of the distance dp, which implies 

' <pn da£ - ipn da£ Ô 
^ 3' 

Hence we get 

(fdp£ — / (fdp£ ^ 

^ / if dfl£ - (fndp£ + / (fn dp6 - I ifn dp£ + / (fn d[le - if dp£ 

< 
S S ô 

3 3 3 
= 8, 

which completes the proof of the lemma. 

Now we take p = log ||(D/)_1|| and ô = c/2 in the previous lemma, where c > 0 
is the constant given by the nonuniform expansion of / (recall (3)). For each e ^ £n 
let \I£ be the measure given by Lemma 5.1. Since property (P) holds, there are 
real numbers W\[e\ . . . , Wp(e) ^ 0 with W\(e) + -f Wp(è) — 1 for which \IE = 
wi(e)fi\ + - • • + wp(e)iJLp. Since each ui is an SRB measure for 1 ̂  i ^ p, we have for 
Lebesgue almost every x G B(pi) 

lozWiDf^Wdui = lim 
n—> + oo TL 

1 "-1 

J=0 

logWDfifix))-1]] < - c < 0 . 

This implies 

logUOD/)-1!!^^-c, 

and so, by Lemma 5.1 and the choice of <5, 

logiK/?/)-1!!^ < -c/2. 

This completes the proof of the first item of Theorem B. 
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Now we go into the proof of Theorem D. In order to prove that / is stochastically 
stable, and taking into account property (P), it suffices to prove that the weak* 
accumulation points of any family (/ie)£>o, where each \i£ is a physical measure of 
level £, are absolutely continuous with respect to the Lebesgue measure. Let \ie be a 
physical measure of level e for some small e > 0 and define for each n ^ 1 

Mn = 
1 

n 

n-l 1 
m(B(iie)) 

(fi)*(m\Bfa£))d£(t). 

We know from Proposition 4.1 that each [f is the weak* limit of the sequence (/in)n-
We will prove Theorem D by providing some useful estimates on the densities of the 
measures ixen. Define for each t G TN and n ^ 1 

Hn(t) = B(ii£)\ n is a (a, <5)-hyperbolic time for (£,#)}, 

and 

H*(t) B(/j,£): n is the first (a, £)-hyperbolic time for (£,#)}. 

H*(t) is precisely the set of those points x G B(iie) for which h£(t,x) = n (recall the 
definition of the map h£). For n,k > 1 we also define Rn,k{t) &s the set of those points 
x G M for which n is a (a, 5)-hyperbolic time and n + /c is the first (a, J)-hyperbolic 
time after n, i.e. 

i ^ U ) = e ffn(£): /tn(x) G #£((7nÉ)}: 

where cr: TN —» TN is the shift map <r(£i, £2,... ) — (̂ 2^3? • ••)• Considering the 
measures 

s+s1s (/fn).(m|Hn(t))dfl?(«) 

and 

+1<+<1<+ 
00 fc—1 

k=2j=l-

(f^)4m\Rnjk(t))d6^t), 

we may write 

/4 
1 
72 

n-l 

j=0 

1 
m(5(/i-)) 

£:TN^ M 

Proposition 5.2. — There is a constant C2 > 0 snc/i £/ia£ for every n ^ 0 and £ G TN 

wq 

dm 
[f?)*{m\Hn(t)) ^C2. 

Proof — Take 6\ > 0 given by Proposition 2.6. It is sufficient to prove that there is 
some uniform constant C > 0 such that if A is a Borel set in M with diameter smaller 
than ôi/2 then 

m(ft~n(A)DHn(t)) ^Cm(A). 
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Let A be a Borel set in M with diameter smaller than 6i/2 and B an open ball of 
radius 5\/2 containing A. We may write 

ft-"(B) = 

k^l 
dvrd 

where (Bk)k^i is a (possibly finite) family of two-by-two disjoint open sets in M. 
Discarding those Bk that do not intersect Hn(t), we choose for each k ^ 1 a point 
Xk G Hn(t) H Bk- For k ^ 1 let Vn(t,Xk) be the neighborhood of Xk in 71/ given 
by Proposition 2.6. Since B is contained in B(fp(xk),ôi), the ball of radius #i 
around (f (x)x and //l is a diffeomorphism from Vr„( /. .r/,) onto B(fll(xk), Si), we 
must have C V,, (/. .r//) (recall that by our choice of Bk we have frtl(Bk) C 5). 
As a consequence of this and Corollary 2.7, we have for every k that the map f" \ 
Bk : Bk B is a diffeomorphism with bounded distortion: 

1 
Ci 

|detA/r(2/)i 
|detA#(*) | 

^ CI 

for all y, z G J3fc. This finally gives 

m(ft-n(A)nHn(t)) ^ 
A: 

m ( r ( i n 5 ) n / 5 , ) 

vrd 

A-

vr m(A n £) 

rn(B) 
m(Bk) 

^ C2m(A), 

where C2 > 0 is a constant only depending on Ci, on the volume of the ball B of 
radius <5i/2, and on the volume of M. • 

It follows from Proposition 5.2 that 

(22) 
d+d 

dm 
^c2 

for every 77 ^ 0 and small £ > 0. Our goal now is to control the density of the 
measures rfn in such a way that we may assure the absolute continuity of the weak* 
accumulation points of the measures \ie when e goes to zero. 

Proposition 5.3. — Given C > 0, there is C:\(Q > 0 such that for every n ^ 0 and 
e > 0 we may bound ifn by the sum of two non-negative measures, 7fn ^ uo e + pE, with 

duj£ 

dm 
C C3(() and p£(M)<C 
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Proof. — Let A be some Borel set in AI. We have for each n > 0 

nRnAi))M 
oo k 1 

A;=2 j = l ' 

m(frn-HA)nRnAi))M™(t) 

xdx oc A--1 

k=2 ,7 = 1 

m(f[n(fMA) N H£(a"t)) N Hv(t))d^(t) 

xx 
TO A:-l 

k=2 j = l 
C-2 m,(frJ(A)nHt(t))d(ff(t). 

(in this last inequality we used Proposition 5.2 and the fact that 9^ is a-invariant). 
Let now Ç > 0 be some fixed small number. Since we are assuming (h£)£ with uniform 
L1-tail, then there is some integer TV = N(C) for which 

oc 

j = N 
k m{HZit))M?(t) < 

ssc 
c2 

We take 

UJ~~ — C'2 
N-l k-l 

A=2 ;j=l ' 
(fl),(m\Hm)M"(t) 

and 

fr =C2 
x k-l 

k = N y = l '7 
(fl),{m\Hm)M™(t)-

For this last measure we have 

W3 < C3 
oc A:-l 

k=N .7 = 1 

;;/{ //.' ' / \) till il ;• < Co 
cs 

k=N 
k m(H*k(t))d0?(t)<C 

On the other hand, it follows from the definition of (a, <5)-hyperbolic times that there 
is some constant a = a(N) > 0 such that dist (Hk(t)X) ^ a for 1 ̂  k ^ N. Defining 
A C AI as the set of those points in AI whose distance to C is greater than a, we have 

nRnAi))M 
N-l k-l 

A: = 2 .7 = 1 
(/ /) .(m| A) 

and this last measure has density bounded by some uniform constant, as long as we 
take the maps ft in a sufficiently small neighborhood of / in the C1 topology. • 

It follows from Remark 4.2, Proposition 5.3 and (22) that the weak* accumulation 
points of \ie when e —» 0 cannot have singular part, thus being absolutely continuous 
with respect to the Lebesgue measure. Moreover, the weak* accumulation points of a 
family of stationary measures are always /-invariant measures, cf. Remark 3.1. This 
together with (P) gives the stochastic stability of / . 
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6. Applications 

In this section we will apply Theorems B and D to certain classes of nonuniformly 
expanding maps. Before we describe the examples we have in mind let us give a 
practical criterion for proving that the family of hyperbolic time maps (h£)£ has 
uniform L1-tail. 

If we look at the proof of Proposition 2.3 we see that what we did was fixing some 
positive number CO smaller than c, and then, for 6^ xm almost every (T, x) G TN x M, 
we took a positive integer N£ — N£(t,x) for which 

Ne-l 

3=0 

logWDfifKx)dssddd)-1^-^ and 
Ne-l 

3=0 
-logdistsifdddd (x)X)^lN£, 

for suitable choices of ô > 0 and 7 > 0. This permits us to introduce a map 

N£ : TN x M —> Z+ 

whose existence provides a first hyperbolic time map 

h£ : TN x M —> Z+ with h£ ̂  N£ 

(recall the proof of Proposition 2.3). Thus, the integrability of the map h£ is implied 
by the integrability of the map N£, which is in practice easier to handle. 

Remark 6.1. — In the examples we are going to study below we will show that there 
is a sequence of positive real numbers (al)k for which 

(0* x m) {{{t,x) e TN x M: N£{t,x) > k}) ^ a% and 
00 

k=l 
kal < 0 0 , 

This gives the integrability of h£ with respect to the measure x m. The fact the 
family (h£)£ has uniform ^-tsil can be proved by showing that the sequence (a£k)k 
may be chosen not depending on e > 0. 

Now we are ready for the applications of Theorems B and D. We will describe first 
a class of local diffeomorphisms introduced in [ABV, Appendix A] that satisfies the 
hypotheses of Theorem B, and then a class of maps (with critical sets) introduced in 
[Vil] satisfying the hypotheses of Theorem D. 

6.1. Local diffeomorphisms. — Now we follow [ABV, Appendix A] and describe 
robust classes of maps (open in the C2 topology) that are nonuniformly expanding 
local diffeomorphisms and stochastically stable. Let M be a compact Riemannian 
manifold and consider 

$ : T —> C2(M,M) 
nRnAi))M 

a continuous family of C2 maps, where T is a metric space. We begin with an 
essentially combinatorial lemma. 
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Lemma 6.2. — Let p,q ^ 1 be integers and a > q a real number. Assume M admits 
a measurable cover {B\,..., Bp, Bp+\,..., Bp+q} such that for all t G T it holds 

(1) I detDft(x)\ ^ a for all x G Bp+1 U • • • U Bp+q; 
(2) (ft I Bi) is mjective for all i = 1,... ,p. 

Then there is ( > 0 such that for every Borel probability 6 on T we have 

(23) #{0 < j < n : f[(x) G Bx U • • • U Bp} > (n 

for 0N x m almost all (t,x) G TN x M and large enough n ^ 1. Moreover the set 
In of points (t, x) G TN x M whose orbits do not spend a fraction ( of the time in 
B\ U • • • U Bp up to iterate n is such that (0N x m)(In) ^ rn for some 0 < r < 1 and 
for large n ^ 1. 

Proof. — Let us fix n ^ 1 and t<ETN. For a sequence 

i = (io, • • • ,?n-i) £ {l , . . . ,p + g}n 

we write 
[z] = Bi0 n (//)-](jb,:1) n • • • n ( /r1)-1 ) 

and define g(i) = #{0 ^ j < n : i3 ^ p}. 
We start by observing that for ( > 0 the number of sequences i such that g(i) < (n 

is bounded by 

k<Çn 

d 
v 

d+d1r+d 

d+d1d 

f n 
vr 

fnqn. 

Using Stirling's formula (cf. [BV, Section 6.3]) the expression on the right hand side 
is bounded by (e1pc>q)n, where 7 > 0 depends only on £ and 7(C) ^ 0 when ( —> 0. 

Assumptions (1) and (2) ensure m ([i]) < a-^-On (recaii that m(M) = 1). Hence 
the measure of the union In(t) of all the sets [i] with p(i) < is bounded by 

<7-(1-c)n(eV?)n. 

Since a > q we may choose £ so small that eJp^q < cr^1-^. Then m(In(t)) ^ rn with 
r = e7+^_1 • • g < 1 for big enough n ^ AT. Note that r and TV do not depend on 
t. Setting 

In=\JteT»{{t}xIn(t)) 

we also have (0 x m)(In) ^ rn for all big n ^ N and for every Borel probability 6 on 
T, by Fubini's Theorem. Since J2n(^N x m)(^n) < o° then Borel-Cantelli's Lemma 
implies 

(^Nxm) ( a , ,U, .,./*) " 

and this means that 0N x m almost every (t,x) G TN x M satisfies (23). 

Lemma 6.3. — Let {B\,..., Bp+\,...,nRnAi))M6e a measurable cover of M satisfy­
ing conditions (1) and (2) 0/ Lemma 6.2. For 0 < A < 1 there are rj > 0 and Co > 0 
sz/c/z that, if ft also satisfies for all t G T 
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(3) WDMx)-1sss^ s\< ddd\for x£Bu...,Bp; 
(4) \\Dft{x)-l\\ • 1 • ,,/,„•.,•• />•,., /,',...,; 

then we have for f = ft*, where t* is some given point in T, 

(24) lim sup 
II—• + X 

! liZ.1 

x+1dr 
log \\Df(f[(x))-11| < -c0 

/or 0N x m almost all (t, x) G TN x M, where 0 is any Borel probability measure on 
T. Moreover the first hyperbolic time map h : TN x M -> Z+ satisfies 

(0N x m){(£,a;) e TN x 71/ : /;.(£, x) > k} < ofc and 
dr 

A:=l 
nRnAi))M 

with (cik)k independent of the choice of 6. 

Proof — Let ( > 0 be the constant provided by Lemma 6.2. We fix 7/ > 0 sufficiently 
small so that A^(l + 77) ^ e~Cl) holds for some CQ > 0 and take (t,x) satisfying (23). 
Conditions (3) and (4) now imply 

(25) 
77.-1 

3=0 
\Df(fi(x))-l\\ < X<"(l + nY1-^" < e-r«n. 

for large enough n. This means (25) holds for 0N x m almost every (Lx) G TN x M. 
We observe that if h(t,x) = h, then 1 ^ n < k cannot be hyperbolic times for 

(t, x). Hence (£, x) G Ln for all n = 1,. . . , A: — 1. In particular 

(0N x m){(£,x) G TN x A/ : /,(/. .r) = A*} ^ (0N x ///)(/,,.. 1) = a*. 

and J2k hah ^ krk 1 < oo. 

Now we will show that families of 6" maps satisfying conditions (1) through (4) 
of Lemmas 6.2 and 6.3 contain open sets of families in the C2 topology. Let M be a 
n-dimensional torus Tn and Jo : M —+ M a uniformly expanding map: there exists 
0 < A < 1 such that \\Df(){x)v\\ ^ A"1 H for all x G M and v G T,M. Let also W 
be some small compact domain in 71/ where /0 | W is injective. Observe that fo is a 
volume expanding local diffeomorphism due to the uniform expansion. 

Modifying Jo by an isotopy inside W we may obtain a map f\ which coincides with 
/o outside W, is volume expanding in M, i.e., | det Dfi(x)\ > 1 for all x G M, and has 
bounded contraction on W near 1: ||D/i(.x)-11| ^ 1+7/ for every x G W and some 
77 > 0 small. This new map f\ may be taken C1 close to fo and we may consider a 
C2 map f<2 arbitrarily Cl close to j \ . 

Now any map / in a small enough C2 neighborhood of f'2 admits a > 1 such that 
1 det Df(x)\ ^ a for all x G M and, for x outside W, we have \\Df(x)-l\\ <: A. If the 
C2 neighborhood is taken sufficiently small then we maintain \\Df(x)~~1\\ ^ 1 + 7/ for 
x G W and for some small 77 > 0. Let us take B\,..., BP1 Bp+1 = W a partition of M 
into measurable sets where the restriction / | Bt is injective for i = 1,... ,79+ 1. Then 
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any continuous family of C2 maps <I> : T —>• C2(M, M) together with a family (9£)£>o 
of Borel probability measures in the metric space T, satisfying supp((9£) —» {£*} when 
e ^ O and ft* = / , for some t* G T, is such that / is nonuniformly expanding for 
random orbits and (h£)£>o has uniform L1-tail — by Lemma 6.3 with q = 1 and 
T = supp(0£) for small enough e > 0. Theorem B then shows 

Corollary 6.4. — There are open sets U C C2(M,M) such that every f G U is a 
stochastically stable nonuniformly expanding local diffeomorphism. 

6.2. Viana maps. — In what follows we study the class of nonuniformly expanding 
maps with critical sets introduced by M. Viana and prove Theorem E. 

6.2.1. Nonuniform expansion. — Let / be defined as in Subsection 1.1.2. The results 
in [Vil] show that if the map / is sufficiently close to / in the C3 topology then / 
has two positive Lyapunov exponents almost everywhere: there is a constant A > 0 
for which 

lim inl 
I) j X 

1 
n 

log \\Df"(s, x)v\\ > A 

for Lebesgue almost every (>s,x) G S1 x / and every non-zero v G T ( i S x /) . 
As mentioned in [ABV], this does not necessarily imply that / is nonuniformly ex­
panding. However a slight modification in Viana's arguments enables us to prove the 
nonuniform expansion of / . 

For the sake of clearness, we start by assuming that / has the special form 

(26) f(s,x) = (g(s),q(s1x)), with dxq{s,x) = 0 if and only if x = 0, 

and describe how the conclusions in [Vil] are obtained for each C2 map / satisfying 

(27) | | / - / H c * ^ « on Slxl. 

Then we explain how these conclusions extend to the general case, using the existence 
of a central invariant foliation, and we show how the results in [Vil] give the nonuni­
form expansion and slow approximation of orbits to the critical set for each map / as 
in (27). 

The estimates on the derivative rely on a statistical analysis of the returns of orbits 
to the neighborhood S1 x {—\fâ, y/a) of the critical set C = : x — 0}. We set 

J(0) = / \ (-y7», v7») and J(r) = {x G I : \x\ < e~r} for r ^ 0. 

From here on we only consider points G S1 x I whose orbit does not hit the 
critical set C. This constitues no restriction in our results, since the set of those points 
has full Lebesgue measure. 

For each integer j ^ 0 we define (,sy. .r, ) = fJ(s,x) and 

rj(s, x) — min {r ^ 0 : Xj G J(r)} . 
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Consider, for some small constant 0 < rj < 1/4, 

G = < 0 ^ j < n : r3(s,x) ^ | 
2 

- 277 log 1 

a J 
Fix some integer n > 1 sufficiently large (only depending on a > 0). The results in 
[Vil] show that if we take 

B2(n) = {(s,x) : there is 1 ̂  j < n with x3 G J([y/n\) } , 

where [y/n\ is the integer part of yfn, then we have 

(28) m(B2(n)) ^ const e_v^/4 

and, for every small c > 0 (only depending on the quadratic map Q), 

(29) log 
n-l 

J=0 

|9x(7(s7,x7)| ^ 2cn -
jeG 

r3(s,x) for (s,x) £ ^ ( n ) , 

see [Vil, pp. 75 & 76]. Moreover, if we define for 7 > 0 

B1(n) = {(s,x)<£B2{n): 

d+d14 

rAs,x) ^ 7/1 

then, for small 7 > 0, there is a constant £ > 0 for which 

(30) m(B1(n)) < e"*n, 

see [Vil, p. 77]. Taking into account the definitions of J(r) and r3l this shows that if 
we take 5 = (1/2 — 2r/) log(l/a), then 

n-l 

3=0 
logdist5(/J(x),C) ^771 for ( s , z ) £ #1(n) U B2(n) . 

This in particular gives that almost all orbits have slow approximation to C. 
On the other hand, we have for («s, x) G S1 x / 

(31) nRnAi))Mx+x1 1 
dxq(s,x)dsg(s) 

drq(s,x) 0 
-dsq(s,x) dsg(s) 

Since all the norms are equivalent in finite dimensional Banach spaces, it is no re­
striction for our purposes to take the norm of (Df(s,x)) as the maximum of the 
absolute values of its entries. From (26) and (27) we deduce that for small a 

\dsg\^d-a, \dsq\ ^ a\b'\ + a <: Sa and \dxq\ ^ \2x\ + a ^ 4, 

which together with (31) gives 

| | ( D / ( s , * ) r l H ^ ( s , * ) r \ 

as long as a > 0 is taken sufficiently small. This implies 

(32) 
n-l 

3=0 
\log\\Df(s3,x3))-l\\ = -\ 

n-l 

3=0 

loz\dxq(si,Xi)\ 
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for every (s, x) G S1 x I. If we choose 7 < c, then we have 

(33) 
n-l 

.7=0 

iog|axg(s7,x?)| = log 
n-l 

7=0 
\dxq(sj,Xj)\ > cn 

for every (s,x) £ Bi(n)UB2(n) (recall (29) and the definition of Bi(n)). We conclude 
from (32) and (33) that 

n-l 

j=0 

loglID/fSj.a;,-))-1!! < -en for (s,x) <É BAn) U B2(n), 

which, in view of the estimates on the Lebesgue measure of B\(ri) and B2(n), proves 
that / is a nonuniformly expanding map. 

Now we describe how in [Vil] the same conclusions are obtained without assuming 
(26). Since / is strongly expanding in the horizontal direction, it follows from the 
methods of [HPS] that any map / sufficiently close to / admits a unique invariant 
central foliation Tc of S1 x / by smooth curves uniformly close to vertical segments, 
see [Vil, Section 2.5]. Actually, Tc is obtained as the set of integral curves of a vector 
field (£c, 1) in S1 x / with £c uniformly close to zero. The previous analysis can then 
be carried out in terms of the expansion of / along this central foliation Tc. More 
precisely, \dxq(s,x)\ is replaced by 

\dcq(s,x)\ = \Df(s,x)vc(s,x)\, 

where vc(s,x) is a unit vector tangent to the foliation at (s,x). The previous obser­
vations imply that vc is uniformly close to (0,1) if / is close to / . Moreover, cf. [Vil, 
Section 2.5], it is no restriction to suppose \dcq(s,0)\ = 0, so that dcq(s,x) œ \x\, as 
in the unperturbed case. Indeed, if we define the critical set of / by 

C = Us,x) G S1 x I : dcq(s,x) = 0}. 

by an easy implicit function argument it is shown in [Vil, Section 2.5] that C is the 
graph of some C2 map 77 : S*1 —> / arbitrarily C2-close to zero if a is small. This 
means that up to a change of coordinates C2-close to the identity we may suppose 
that 77 = 0 and, hence, write for a > 0 small 

dcq(s, x) = xip(s, x) with \yj -f 2| close to zero. 

This provides an analog to the second part of assumption (26). At this point, the 
arguments apply with dxq(s,x) replaced by <9cg(s,x), to show that orbits have slow 
approximation to the critical set C and n"=o \9cQ(si,Xi)\ grows exponentially fast for 
Lebesgue almost every (s, x) G S1 x /. A matrix formula for (KDfn(s, x)) 1 similar to 
that in (31) can be obtained if we replace the vector (0,1) in the canonical basis of the 
space tangent to S1 x / at (s, x) by TJC(S, X), and consider the matrix of (Dfn(s, x)) 1 
with respect to the new basis. 
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For future reference, let us make some considerations on the way the sets B\{n) 
and B2(n) are obtained. Let X : S1 —* / be a smooth map whose graph in S1 x I is 
nearly horizontal (see the notion of admissible curve in [Vil, Section 2] for a precise 
definition). Denote Xn(s) = fn (s, X(s)) for n ^ 0 and s G S1. Take some leaf L0 
of the foliation Tc. Letting Ln — /n(Lo) for n ^ 1, we define a sequence of Markov 
partitions (Vn)n of S1 in the following way: 

Vn = (s-, s'') 0s Vs") is a connected component of X'1^1 x I) \ Ln) | . 

It is easy to check that Pn+i refines Pn for each n ^ 1 and 

(d + const a)~n ^ |a;| ^ (d - const a)~n 

for each uo G Vn. Due to the large expansion of / in the horizontal direction, we have 
that if J C / is an interval with \J\ ^ a, then for each uo G Vn 

(34) m({s euo: X:j(s) G x J} ) <C const x/jjjm(a;) 

see [Vil, Corollary 2.3]. The estimate (28) on the Lebesgue measure of £?2(n) is 
now an easy consequence of (34). For that we only have to compute the Lebesgue 
measure of #2 (ft) on each horizontal line of S1 x I and integrate. The estimate (28) on 
the Lebesgue measure of B\ (n) is obtained by means of a large deviations argument 
applied to the horizontal curves in S1 x I; see [Vil, pp.76 & 77 ]. 

Remark 6.5. — The choice of the constants c, £, 7 and S only depends on the quadratic 
map Q and a > 0. In particular the decay estimates on the Lebesgue measure of Bi(n) 
and B'2(n) only depend 011 the quadratic map Q and a > 0. 

6.2.2. Random perturbations. -— Let / be close to / in the C3 topology. As we have 
seen before, it is no restriction to assume that C = {(s,x) G S1 x I: x = 0} is the 
critical set of / . Fix {<£>, (0£)£} a random perturbation of / for which (8) holds. Our 
goal now is to prove that any such / satisfies the hypotheses of Theorems C and D 
for e > 0 sufficiently small, and thus conclude that / is stochastically stable. So, we 
want to show that if e > 0 is small enough then 

- / is nonuniformly expanding for random orbits; 
random orbits have slow approximation to the critical set C; 

- the family of hyperbolic time maps (h£)£ has uniform L1-tail. 

We remark that in the estimates we have obtained for \og\\(Df(sj,Xj))~l\\ and 
logdist̂ (TT7-,C) over the orbit of a given point (s,x) G S1 x / , we can easily replace 
the iterates (.sy. ,ry) by random iterates (sj ..rj) = //(,s,x). Actually, the methods 
used for obtaining estimate (29) rely on a delicate decomposition of the orbit of a 
given point (5, x) from time 0 until time n into finite pieces according to its returns 
to the neighborhood S1 x ( — ̂ fa.^fa) of the critical set. The main tools are [Vil, 
Lemma 2.4] and [Vil, Lemma 2.5] whose proofs may easily be mimicked for random 
orbits. Indeed, the important fact in the proof of the referred lemmas is that orbits 
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of points in the central direction stay close to orbits of the quadratic map Q for long 
periods, as long as a > 0 is taken sufficiently small. Hence, such results can easily be 
obtained for random orbits as long as we take e > 0 with e <C a and perturbation 
vectors t G supp(#£). 

Thus, the procedure of [Vil] described in Subsection 6.2.1 applies to this situation, 
and we are able to prove that there is c > 0, and for 7 > 0 there is S > 0, such that 

n-l 

vr 

[og||D/(4,x^))-1|| ^ -en and 
n-l 

j=0 

logdist^(x^,C) ^ 77?. 

for (s,x) £ B\(ri) U B2(n)1 where B\{n) and B2{n) are subsets S1 x 7 with 

m(Bi(7i)) ^ ( <n and m(B2(n)) ^ const e 

for some constant £ > 0 only depending on 7. This gives the nonuniform expansion 
and slow approximation to the critical set for random orbits. Moreover, the arguments 
show that we may take the map N£ with 

(0* x //;) ({(tx) G TN x M : Ne(t,x) > //}) ^ const c ^n/ \ 

thus giving that the family of first hyperbolic time maps has uniform L1-tail; cf. 
Remark 6.1. 

For the sake of completeness, an explanation is required on the way the Markov 
partitions Vn of Sl can be defined in this case, in order to obtain the estimates on 
the Lebesgue measure of B\{n) and B2(n). We consider M = S1 x I and define the 
skew-product map 

F : TN x M —> TN x M, 
(Lz) (*U),ftl(z)) 

where a is the left shift map. Writing ft(z) = (gt(z), qt(z)) for z = (s,x) G S1 x 7, 
we have that qt(s, •) is a unimodal map close to q for all s G S1 and t G supp(#£) with 
e > 0 small. 

Proposition 6.6. — Given t G TN there is a C1 foliation T{ of M such that if Lf_(z) is 
the leaf of T({ through a point z G AI, then 

(1) Lfjyz) is a C1 submanifold of M close to a vertical line in the C1 topology; 
(2) ftl(LL(z)) is contained in Laf_(ftl(z)). 

Proof. — This will be obtained as a consequence of the fact that the set of vertical 
lines constitutes a normally expanding invariant foliation for / . Let H be the space 
of continuous maps £ : TN x AI —> [—1,1] endowed with the sup norm, and define the 
map A:H->Hby 

nRnAi))M 
dxqtl(z)gF(t,z))-dxgtl(z) 

-dsqtl(z)aF(t,z)) + dHgtl(z] 
t = (ti,t2,...) eTN and z G AI. 
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Note that A is well-defined, since 

\AÇ(t,z)\ ^ 
(4 + Q + g ) + Q + g 

-(const a + e) + (d — a — e) 
< 1 

for small a > 0 and e > 0. Moreover, A is a contraction on H: given G W and 
(£, z) G TN x M then 

i ^ a , z ) - ^ c a ^ ) i 

d |detD/tl(z)|.|m,2;)-Ctt^)l 
| (- dsqtl (^)Ç(F(i, z)) + 3 ^ W) • ( - d8qtl (z)aF(t, z)) + dsgtl (z)) \ 

d 
(d + a + £)(4 + a + e) + o + s) • 1̂ (72, z) - C(L^)| 

(d — consto — 
This last quantity can be made smaller than z) — r)(t,z)\/2, as long as a and e 
are chosen sufficiently small. This shows that A is a contraction on the Banach space 
W, and so it has a unique fixed point £c G H. 

It is no restriction for our purposes if we think of T as being equal to supp(#e) for 
some small s. Note that the map A depends continuously on F and for e > 0 small 
enough the fixed point of A is close to the zero constant map. This holds because 
we are choosing supp(#e) close to {£*}, ft* = f and / close to / . Then, for e > 0 
small enough, we have £c(y;, •) uniformly close to £c(t*, •) and it is not hard to check 
that £g = £c(£*, •) is precisely the map whose integral leaves of the vector field (̂ "g, 1) 
give the invariant foliation Tc associated to ft* = f. Since this foliation depends 
continuously on the dynamics and for f — f we have £g = 0 (see [Vil, Section 2.5]), 
we finally deduce that £c(t, •) is uniformly close to zero for small s > 0. 

We have defined A in such a way that if we take Ec(t, z) = span{(£c(/;, z), 1)}, then 
for every t G TN and z G S1 x I 

(35) Dftl{z)Ec(t,z)cEc(F(t,z)). 

Now, for fixed t G T , we take to be the set of integral curves of the vector field 
z i—> (£c(/:, z), 1) defined on S1 x /. Since the vector field is taken of class (7°, it does 
not follow immediately that through each point m S1 x I passes only one integral 
curve. We will prove uniqueness of solutions by using the fact that the map / has a 
big expansion in the horizontal direction. 

Assume, by contradiction, that there are two distinct integral curves Y, Z G J-[ 
with a common point. So we may take three distinct nearby points zo, zi, Z2 G S*1 x / 
such that zo G Y H Z, z\ G Y, z>2 G Z and zi, Z2 have the same x-coordinate. Let X 
be the horizontal curve joining z\ to z^. If we consider Xn = TÏ2 O Fn(t, X) for n ^ 1, 
where 1x2 is the projection from TN x S1 x I onto S4 x /, we have that the curves 
Xn are nearly horizontal and grow in the horizontal direction (when n increases) by a 
factor close to d for small a and e, see [Vil, Section 2.1]. Hence, for large n, Xn wraps 
many times around the cylinder S1 x L On the other hand, since Yn = 112° Fn(t, Y) 
and Zn = 7T2 O Fn(t,Z) are always tangent to the vector field z 1—» (£c(o~nt, z), l) 
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on S1 x /, it follows that all the iterates of Yn and Zn have small amplitude in the 
s-direction. This gives a contradiction, since the closed curve made by Y, Z and X is 
homotopic to zero in S1 x I and the closed curve made by Yn, Zn and Xn cannot be 
homotopic to zero for large n. Thus, for fixed t G TN we have uniqueness of solutions 
of the vector field z —» (£c(t, z), 1), and from (35) it follows that is an F-invariant 
foliation of M by nearly vertical leaves. • 

Now, using the foliations given by the previous proposition we are also able to 
define the Markov partitions of S1 in this setting. Given any smooth map X : S1 —> / 
whose graph is nearly horizontal, denote X?(s) = f™(s,X(s)) for n ^ 0 and 5 G S1. 
Take some leaf of the foliation T^. Letting — f?(Lt) for n ^ 1, we define the 
sequence of Markov partitions (VI1)n of 51 as 

V? = {[s', s") : (s, s") is a connected component of (X}1)'1 ((S1 x I) \ L?)} . 

It is easy to check that 7>"+1 refines V[l for each n ^ 1 and, taking e <C a, 

(d + const a)~n ^ |a;| ^ (d - const cv)~n 

for each a; G Pf. This permits to obtain estimates (28) and (30) for the Lebesgue 
measure of the sets B\(n) and B2(n) exactly in the same way as in Subsection 6.2.1, 
also with the constants only depending on the quadratic map Q (cf. Remark 6.5). 
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Dedicated to Jacob Palis on his sixtieth birthday 
Abstract. — In this note, we consider the minimal entropy problem, namely the 
question of whether there exists a smooth metric of minimal (topological) entropy, 
for certain classes of closed 3-manifolds. Specifically, we prove the following two 
results. 
Theorem A. Let AI be a closed orientable irreducible 3-manifold whose fundamental 
group contains a Z © Z subgroup. The following are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for M 
can be solved; 
(2) M admits a geometric structure modelled on E3 or Nil: 
(3) M admits a smooth metric g with htopCg) — 0. 
Theorem B. Let AI be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 
(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for M 
can be solved; 
(2) M admits a geometric structure modelled on S3, S 2 X R, E3, or Nil; 
(3) AI admits a smooth metric g with htop(.g) — 0. 

1. Introduction and statement of results 

Let Mn be a closed orientable n-dimensional manifold. For a smooth Riemannian 
metric g on M, let Vol(M, g) denote the volume of M calculated with respect to g. 

Let htop(g) be the topological entropy of the geodesic flow of g, as defined in Sec­
tion 2.6. Set the minimal entropy of M to be 

h(M) := inf{ht0p(#) | 9 is a smooth metric on M with Vol (A/, g) = 1}. 

A smooth metric g0 with Vol(Af, go) = 1 is entropy minimizing if 

htopteo) = h ( M ) . 
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The minimal entropy problem for M is whether or not there exists an entropy 
minimizing metric on M. Say that the minimal entropy problem can be solved for 
M if there exists an entropy minimizing metric on M. Smooth manifolds are hence 
naturally divided into two classes: those for which the minimal entropy problem can 
be solved and those for which it cannot. 

There are a number of classes of manifolds for which the minimal entropy problem 
can be solved. For instance, the minimal entropy problem can always be solved for a 
closed orientable surface M. For the 2-sphere and the 2-torus, this follows from the 
fact that both a metric with constant positive curvature and a flat metric have zero 
topological entropy. For surfaces of higher genus, A. Katok [11] proved that each 
metric of constant negative curvature minimizes topological entropy, and conversely 
that any metric that minimizes topological entropy has constant negative curvature. 

This result of Katok has been generalized to higher dimensions by Besson, Courtois, 
and Gallot [1], as follows. Suppose that Mn (n ^ 3) admits a locally symmetric metric 
go of negative curvature, normalized so that Vol(M, go) = 1. Then go is the unique 
entropy minimizing metric up to isometry. Unlike the case of a surface, a locally 
symmetric metric of negative curvature on a closed orientable n-manifold (n ^ 3) is 
unique up to isometry, by the rigidity theorem of Mostow [18]. 

The result of Besson, Courtois, and Gallot [1] has itself been generalized by Connell 
and Farb [4] to n-manifolds that admit a complete, finite-volume metric which is 
locally isometric to a product of negatively curved (rank 1) symmetric spaces of 
dimension at least 3. 

A positive solution to the minimal entropy problem appears to single out manifolds 
that have either a high degree of symmetry or a low topological complexity. What this 
means in the context of 3-manifolds will become apparent below. A similar phenomena 
is observed for closed simply connected manifolds of dimensions 4 and 5: there are 
essentially only nine manifolds for which the minimal entropy problem can be solved 
and they can be explicitly listed. These nine manifolds share the property that their 
loop space homology grows polynomially for any coefficient field, see Paternain and 
Petean [21]. 

The goal of this note is to classify those closed orientable geometrizable 3-manifolds 
with zero simplicial volume for which the minimal entropy problem can be solved. 
Specifically, in Section 4, we prove: 

Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental 
group contains aTL^dlj subgroup. The following are equivalent: 

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on E3 or Nil; 
(3) M admits a smooth metric g with htop(g) = 0. 
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In Section 5 we prove: 

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 

(1) the simplicial volume ||A/|| of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on §'\ S2 x R, E3, or Nil; 
(3) Af admits a smooth metric g with h.top(g) = 0. 

Recall that the simplicial volume of a closed orientable manifold Af is defined as 
the infimum of Ylt \ri\ where the rl are the coefficients of a real cycle that repre­
sents the fundamental class of Af. For 3-manifolds, the positivity of the simplicial 
volume (which is a homotopy invariant) is closely related to the existence of compact 
hyperbolizable submanifolds in Af. This is described in more detail in Section 2.5. 

We close the introduction by describing some of the elements of the proofs of 
Theorems A and B, and by describing a conjectural picture. We will see in Section 2 
that a closed orientable geometrizable 3-manifold Af has zero simplicial volume if and 
only if Af has zero minimal entropy. Therefore, the minimal entropy problem can 
be solved if and only if Af admits a smooth metric with zero topological entropy. 
This in turn forces the fundamental group of Af to have subexponential growth. 
We end up showing that this can occur only if Af admits one of the four geometric 
structures listed in the statement of Theorem B. On the other hand, it is a calculation 
that the manifolds in the statement of Theorem B carry a metric of zero entropy. 
The proof of Theorem A follows a similar line, and makes use of the remarkable 
theorem, due essentially to Thurston, that a manifold satisfying the hypothesis of 
the theorem is geometrizable. The precise definition of geometrizable manifold is 
given in Subsection 2.4. Thurston's geometrization conjecture states that every closed 
orientable 3-manifold is geometrizable. 

From this discussion and the above mentioned result of Besson, Courtois and Gallot 
it seems quite reasonable to speculate that the following statement holds: 

Let AI be a closed orientable geometrizable 3-manifold. Then, the minimal entropy 
problem for M can be solved if and only if Af admits a geometric structure modelled 
on S3, S2 x R, E3, Nil, ortf.(1) 

Indeed, suppose that the simplicial volume of Af were not zero. This would imply that 
Af contains a disjoint collection Hi,..., Hp of compact submanifolds whose interiors 
each admit a complete hyperbolic structure of finite volume. In particular, it should be 
that the minimal entropy of Af is the maximum of the minimal entropies of the H A . It 

(̂ Note added in proof: J. Souto (Geometric structures on 3-manifolds and their deformations. 
Dissertation, Rheinische Friedrich-Wilhelms-Universitât Bonn 2001) has proven this conjecture for 
all geometrizable prime 3-manifolds 
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would then seem reasonable that an entropy minimizing metric on M would try to be 
as hyperbolic as possible on the interiors of the Hk and would try as much as possible 
to be one of the other seven standard 3-dimensional geometries on the components 
of M — (Hi U • • • U Hp). However, it would seem that the minimizer would have to 
be singular along the dH^, and so there should be no metric of minimal entropy. 
Unfortunately, we do not yet know how to make this argument rigorous. 

We would like to thank the referees for their careful reading of this note. 

2. Preliminaries 

The purpose of this Section is to present some of the basic material from 3-manifold 
theory that we will need. We refer the interested reader to Hempel [8] for a more 
detailed introduction to 3-manifold topology. For a more detailed description of Seifert 
fibered spaces, and of the torus decomposition and the geometrization of 3-manifolds, 
we also refer the interested reader to the survey articles of Scott [26] and Bonahon 
[2], and the references contained therein. 

2.1. 3-manifold basics. — We begin with some basic definitions. A 3-manifold is 
closed if it is compact with empty boundary. 

An embedded 2-sphere §2 in a 3-manifold M is essential if M does not bound a 
closed 3-ball in AI. A 3-manifold is irreducible if it contains no essential 2-sphere. 

A 3-manifold is prime if it cannot be decomposed as a non-trivial connected sum. 
That is, M is prime if for every decomposition M = Mi#M2 of M as a connected sum, 
one of Mi or AI2 is homeomorphic to the standard 3-sphere §'*. Every irreducible 3-
manifold is prime, but the converse does not hold. However, the only closed orientable 
3-manifold that is prime but not irreducible is S2 x S1. 

We note here that if the closed orientable 3-manifold M contains a non-separating 
essential 2-sphere, then AI can be expressed as the connected sum AI = P#(S2 x S1) 
for some 3-manifold P. Hence, in what follows, we need only consider separating 
essential 2-spheres in 3-manifolds. 

There is an inverse to the operation of connected sum for 3-manifolds, called the 
prime decomposition. The following statement is adapted from Bonahon [2], and 
follows from work of Kneser [12] and Milnor [16]. 

Let AI be a closed orientable 3-manifold. Then, there exists a compact 2-
submanifold E of M, unique up to isotopy, so that two conditions hold. First, each 
component of E is an embedded essential separating 2-sphere, and the 2-spheres 
in E are pairwise non-parallel, in that no two 2-spheres in E bound an embedded 
S2 x [0,1] in AI. Second, if AIQ, Afi,..., AIp are the closures of the components of 
AI — E, then Mo is homeomorphic to the 3-sphere S3 minus finitely many disjoint 
open 3-balls; while for k ^ 1, each M^ contains a unique component of E, and every 
separating essential 2-sphere in AIk is parallel to BAIk-
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The prime decomposition of AI is the collection of 3-manifolds that results by 
taking the complements of the 2-submanifold E in AI as just described, and filling 
in each 2-sphere boundary component of A/(), A/i,..., AIV with a 3-ball. Each of the 
resulting 3-manifolds is then prime. (Note that both §'* and S2 x S1 have trivial 
prime decompositions, as they do not contain a separating essential 2-sphere.) The 
prime decomposition is one of two standard decompositions of a closed orientable 
3-manifold, the other being the torus decomposition, which is discussed in detail in 
Section 2.3. 

In general, a closed orientable embedded surface S in a 3-manifold AI is 2-sided if 
there exists an embedding / of S x [—1,1] into AI so that f(S x {0}) = S. A closed 
orientable embedded surface S in a 3-manifold AI is incompressible if the fundamental 
group of S is infinite and if the inclusion S AI induces an injection on fundamental 
groups. An incompressible surface S is essential if S is not homotopic into OAI. 

A compact orientable irreducible 3-manifold M is sufficiently large if it contains a 
2-sided incompressible surface. Sufficiently large 3-manifolds are also known as Haken 
3-manifolds. 

2.2. Seifert fibered spaces. — A Seifert fibration of a 3-manifold AI is a decom­
position of AI into disjoint simple closed curves, called the fibers of the fibration, so 
that each fiber c has a neighborhood U in 71/ of the following form: U is diffeomorphic 
to the quotient of S1 x B2 by the free action of a finite group respecting the product 
structure, where the fibers of the fibration correspond to the curves {x} x B2 for 
x G S1. (In this note, we only consider Seifert fibrations of closed 3-manifolds and of 
3-manifolds without boundary that are homeomorphic to the interior of a compact 
3-manifold with 2-torus boundary components.) 

Since we are considering only orientable 3-manifolds in this note, the group of 
covering transformations of S1 x B2 in the above definition is generated by rJKq for 
some pair (p, q) of relatively prime integers, where 

V,7 (e 'Ve*) = 'j(<p + 2Tr/p) rJ(e + 2nq/p)\ 

A fiber is a regular fiber if it has a neighborhood diffeomorphic to S1 x B2, and is 
a singular fiber otherwise. Note that the singular fibers of a Seifert fibration are 
necessarily isolated. 

Let S be the space of fibers of a Seifert fibration of a 3-manifold Ai", equipped with 
the quotient topology coming from the projection map p : AI —>• S. We often refer 
to S as the 6a.se orbifold of the Seifert fibered space M. Using the neighborhoods of 
the fibers in AL we see that S is an orientable surface with one cone point for each 
singular fiber. 

Let pi , . . . ,p,s be the cone points on 5, and let n3 be the order at the cone point pv 
so that a neighbhorhood of pj is diffeomorphic to the quotient B2/Z7,., where Z.„. 
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acts by rotation. The orbifold Euler characteristic x(S) °f S is the quantity 

X(S) - 2 - 2 genusfSO -
dvr 

1 - 1 
vrd 

(This discussion is also valid in the case that M is a 3-manifold without boundary 
that is homeomorphic to the interior of a compact 3-manifold with 2-torus boundary 
components. In this case, the base orbifold has punctures as well as cone points, and 
we view each puncture as a cone point of infinite order.) 

There are two cases of particular interest. In the case that x{&) < 0? $ nas a 
hyperbolic structure, so that we can express S as the quotient S — H2/F, where H2 is 
the hyperbolic plane and V is a discrete subgroup of Isom(IHI2), where the fixed points 
of the action of non-trivial elements of V descend to the cone points on S. We refer 
to T as the orbifold fundamental group of S. In this case, we have that F contains a 
free subgroup of rank 2, and in particular T contains an element of infinite order. 

In the case that x(S) = 0, S has a Euclidean structure, so that we can express S as 
the quotient S = E2/F, where E2 is the Euclidean plane and T is a discrete subgroup 
of Isom(E2), where the fixed points of the action of non-trivial elements of T descend 
to the cone points on S. As above, we refer to T as the orbifold fundamental group 
of S. In this case, we have that F contains an element of infinite order, but not a free 
subgroup of rank two. 

In both of these cases, the orbifold fundamental group of the base orbifold S of 
the Seifert fibered space M is a subgroup of TTI(M). In fact, there is a short exact 
sequence 

1 > Z > 7Ti(M) > 7Ti(5) > 1, 
where 7Ti(S) is the orbifold fundamental group of S and where Z is generated by any 
regular fiber of the Seifert fibration. 

The following follows immediately from this discussion. 

Lemma 2.1. — Let M be a Seifert fibered space as above with base orbifold S. If 
x(S) ^ 0? then n\{M) contains a Z 0 Z subgroup. 

Proof. — The proof of Lemma 2.1 is standard, but we sketch it here for the sake of 
completeness. Let p : M —» S be the quotient map. Since x(S) ^ 0, there is a closed 
curve c, not necessarily simple, on S that represents an infinite order element of the 
orbifold fundamental group of S. Let T = p~l (c) in M be the subset of M that consists 
of all the fibers in M corresponding to points of c. Then, T is an incompressible 2-
torus in AI, though not necessarily embedded. However, this is sufficient to guarantee 
that there exists a Z0Z subgroup of TTI(A/), namely the fundamental group of T. • 

2.3. The torus decomposition. — Let M be a closed orientable irreducible 3-
manifold with infinite fundamental group. There is then a canonical decomposition of 
Af along embedded essential 2-tori, due to Jaco and Shalen [9] and Johannson [10]. 
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(Note that the restriction to irreducible 3-manifolds causes no loss of generality, as 
we may first apply the prime decomposition to Af, as described in Section 2.1. Also, 
we tend to not take the torus decomposition of S2 x S1.) The statement given below 
is adapted from Theorem 3.4 of Bonahon [2]. 

Theorem 2.2 ([2]). — Let M be a closed orientable irreducible 3-manifold. Then, up 
to isotopy, there is a unique compact 2-subrnanifold T of M such that: 

(1) every component of T is a 2-sided essential 2-torus; 
(2) every component of M — T either contains no essential embedded 2-torus or 

Klein bottle, or else admits a Seifert fibration (or possibly both); 
(3) property (2) fails when any component of T is removed. 

We refer to this 2-submanifold T as the torus decomposition of Af. Note that 
condition (3) implies that no two of the 2-tori in the torus decomposition are isotopic. 

Let Af be a compact orientable 3-manifold, and let Afo, M\,..., MP be the compo­
nents of its prime decomposition. Let Tk be the torus decomposition of Af̂ . Say that 
Af is a graph manifold if, for each 1 ^ k ^ p, every component of M\~ — Tk admits 
a Seifert fibration. Clearly, every Seifert fibered space is trivially a graph manifold. 
Also, every 2-torus bundle over S1 is a graph manifold. 

Theorem 2.2 is a small part of the machinary of the characteristic submanifold of a 
3-manifold developed by Jaco and Shalen and by Johannson. Note that this discussion 
includes the possibility that the torus decomposition T is empty, even though TI\(M) 
may contain a Z 0 Z subgroup. 

A closely related result is the following torus theorem. For a discussion and proof 
of this result, see Scott [27]. 

Theorem 2.3 ([27]). — Let M be a closed orientable irreducible 3-manifold whose fun­
damental group contains a Z(&Z subgroup. Then, either M contains an incompressible 
embedded 2-torus or Af is a Seifert fibered space. 

2.4. Geometric structures and geometrization. — A 3-dimensional geome­
try is a pair (X, G), where X is a simply connected Riemannian 3-manifold with a 
complete homogeneous metric and G is a maximal transitive group of orientation-
preserving isometries of X, with the proviso that there exists a subgroup H oî G 
with compact quotient X/H. Note that since G is a maximal group of isometries, it 
suffices to specify X and set G = Isom(AT). 

It is a result of Thurston that there exist exactly eight 3-dimensional geometries, 
namely E3, S3, HI3, S2 x 1, I2 x M, SL2, Nil, and Sol, with their respective groups of 
(orientation preserving) isometries. (A proof of this result, and a detailed description 
of the eight geometries, is given in Scott [26].) 

Let Af be an orientable 3-manifold that is homeomorphic to the interior of a com­
pact 3-manifold with 2-torus boundary components. (This includes the possibility 
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that AI is closed.) Say that AI admits a geometric structure modelled on X if M is 
diffeomorphic to the quotient X/T, where X is one of the eight 3-dimensional geome­
tries and T is a fixed point free subgroup of Isom(X). It is known that if a 3-manifold 
admits a geometric structure, then it admits a unique geometric structure. 

More generally, let AI be a closed orientable irreducible 3-manifold with torus 
decomposition T. Say that M is geometrizable if each component of AI — T admits a 
geometric structure. (Note that we do not require that different components of AI — T 
admit the same geometric structure.) 

Finally, say that a closed orientable 3-manifold is geometrizable if every component 
of its prime decomposition is geometrizable. (This causes no difficulties, as S2 xS1, 
which may arise as a component of the prime decomposition but is not irreducible, 
admits a geometric structure modelled on S2 x E.) 

Thurston's geometrization conjecture states that every closed orientable 3-manifold 
is geometrizable. For a more complete discussion of the geometrization conjecture, 
see Scott [26], Bonahon [2], or Thurston [30]. 

There are a number of manifolds for which the geometrization conjecture is known 
to be true. If M is a closed orientable irreducible sufficiently large 3-manifold, then 
M is geometrizable; this is Thurston's geometrization theorem; see Morgan [17] or 
Otal [19] for a discussion of this theorem. 

In particular, if M has a non-empty torus decomposition, then it is geometrizable. 
In this case, each component of the complement of the torus decomposition of AI 
either is a Seifert fibered space or admits a hyperbolic structure, that is the geometric 
structure modelled on HI3. We encode in the following theorem the parts of this 
discussion we make the most use of. 

Theorem 2.4. — Let AI be a closed orientable irreducible sufficiently large 3-manifold. 
Then, M admits a torus decomposition T. Moreover, each component of AI — T either 
is a Seifert fibered space or admits a hyperbolic structure. 

Additionally, the geometrization of Seifert fibered spaces, and in fact of irreducible 
graph manifolds, is completely understood. 

Theorem 2.5 ([26, Theorem 5.3]). — Let AI be a closed orientable 3-manifold. Then, 
(1) AI possesses a geometric structure modelled on Sol if and only if AI is finitely 

covered by a 2-torus bundle over S1 with hyperbolic glueing map; 
(2) AI possesses a geometric structure modelled on one ofS3, E3, S2 x R, H2 x R, 

SL>2? or Nil if and only if AI is a Seifert fibered space. 

We note here that the two unresolved cases of the geometrization conjecture are 
that the fundamental group of AI is finite, in which case AI should admit a geometric 
structure modelled on S3 [the Poincaré conjecture and the spherical space form prob­
lem], and that the fundamental group of AI is infinite, does not contain Z 0 Z, and 
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does not contain a normal cyclic subgroup, in which case M should admit a geometric 
structure modelled on H3 [the hyperbolization conjecture]. 

2.5. Simplicial volume. — Let M be a closed manifold. Denote by C* the real 
chain complex of M : a chain c G C* is a finite linear combination ^ • r%0{ of singular 
simplices al in M with real coefficients rt. Define the simplicial £l-norm in C* by set­
ting \c\ — \ri\. This norm gives rise to a pseudo-norm on the homology H*(M,M) 
by setting 

Ifall - inf{|z| : z G C* and \z] = \a}\. 

When M is orientable, define the simplicial volume of M, denoted ||M||, to be the sim­
plicial norm of the fundamental class. The simplicial volume is also called Gromov1 s 
invariant, since it was first introduced by Gromov [7]. 

The following lower bound on ||M|| is due to Thurston [29]. 

Theorem 2.6 ([29, Theorem 6.5.5]). — Suppose that M is a closed orientable 3-manifold 
and that H C M is a 3-dimensional submanifold whose interior admits a complete 
hyperbolic structure of finite volume. Suppose further that H is embedded in M and 
that dH is incompressible in M. Then, 

\\M\\ > Vol (H) 
V3 

> o, 

where v% is the volume of the regular ideal tetrahedron in H3. 

The next theorem follows immediately from Theorems 2.6, 2.4, and 2.5. 

Theorem 2.7. — Let AI be a closed orientable geometrizable 3-manifold. Suppose that 
||M|| = 0. Then M is a graph manifold. 

Proof. — The proof of Theorem 2.7 is essentially contained in Soma [28]; we include 
it here solely for the sake of completeness. 

We begin by considering the prime decomposition of AI. That is, write M as the 
connected sum M — Afo# * * • #AIp, where each Mi is a prime 3-manifold. (Note that 
we are including in this discussion the case that M is itself prime, and so has trivial 
prime decomposition.) 

Since simplicial volume behaves additively with respect to connected sums 
(cf. Gromov [7]), the hypothesis that M has zero simplicial volume implies that each 
Mi has zero simplicial volume as well. Since the connected sum of graph manifolds 
is again a graph manifold (cf. Soma [28]), it suffices to show that each AIj is a graph 
manifold. Since each Mt is prime, it is either irreducible or diffeomorphic to §2 xS1, 
which is a Seifert fibered space. So, we may assume without loss of generality that 
M is irreducible. 

Let T be the torus decomposition of M. Recall that M is assumed to be geometriz­
able. If T is empty, then M admits a geometric structure other than the one modelled 
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on H3 (which is excluded by the assumption on the simplicial volume of M), and so 
M is a graph manifold, by Theorem 2.5. 

If T is non-empty, then M is sufficiently large, and so Thurston's geometrization 
conjecture holds for M. Since ||M|| =0 , each component of M — T is a Seifert fibered 
space, as no piece can be hyperbolic, by Theorem 2.6. It follows that M must be a 
graph manifold. • 

2.6. Topological entropy. — We recall in this subsection the definition of the 
topological entropy of the geodesic flow of a smooth Riemannian metric ^ona closed 
manifold M. For a more detailed discussion, we refer the interested reader to Pater-
nain [20]. 

The geodesic flow of g is a flow qbt that acts on SM, the unit sphere bundle of M, 
which is a closed hypersurface of the tangent bundle of M. Let d be any distance 
function compatible with the topology of SM. For each T > 0 we define a new 
distance function 

OIT(X,V) := max d(ô+(x),(bt(v)). 
<<<+<1< 

Since S M is compact, we can consider the minimal number of balls of radius s > 0 in 
the metric dr that are necessary to cover SM. Let us denote this number by N(e,T). 
We define 

h(0, e) := lim sup 
T-+OG 

1 
T 

logTV(^r). 

Observe now that the function e i—» h(0, e) is monotone decreasing and therefore the 
following limit exists: 

nRnAi))M+ 1+x1x+xoslo 
The number htop(g) thus defined is the topological entropy of the geodesic flow of g. 
Intuitively, this number is a measure of the orbit complexity of the flow. The positivity 
of ntop((/)) indicates complexity or 'chaos' of some kind in the dynamics of (fit-

There is a formula, known as Mane's formula, that gives a nice alternative descrip­
tion of htop(p). Given points p and q in M and T > 0, define nr{p,q) to be the 
number of geodesic arcs joining p and q with length ^ T. Mane [14] showed that 

htoP(#) = lim 
T—>oo 

1 
T log 

JMxM 
TIT(p, q) dpdq. 

Finally we note that entropy behaves well under scaling of the metric. Namely, if 
c is any positive constant, then htop(cg) = htop(g)/\/c. 

2.7. Minimal volume and collapsing. — The minimal volume MinVol(M) of a 
Riemannian manifold M is defined to be the infimum of Vol(M, g) over all smooth 
metrics g such that the sectional curvature Kg of g satisfies \Kg\ ̂  1. This differential 
invariant was introduced by M. Gromov in [7]. 

We shall need the following result, see Cheeger and Gromov [3, Example 0.2 and 
Theorem 3.1] and Rong [23]. 
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Proposition 2.8. — Let M be a closed orientable 3-manifold. If M is a graph manifold, 
then M admits a polarized F-structure, and hence MinVol(Af ) = 0. 

We will not give here the precise definition of a polarized F-structure, because it 
is too technical. Instead we give an informal description, and we refer the interested 
reader to Cheeger and Gromov [3] for a more detailed discussion. 

An F-structure on a manifold Af is a natural generalization of a torus action on Af. 
Different tori, possibly of different dimensions, act on subsets of Af in such a way that 
Af is partioned into disjoint orbits. The F-structure is said to be polarized if the local 
actions are locally free. 

Consider the following example of a polarized F-structure on a graph manifold. 
Take a compact surface S with non-empty connected boundary, and consider two 
copies of S x S1, each of which has a 2-torus boundary. Fixing an identification of dS 
with S1, glue the boundaries of two copies of S x S1 by a map that interchanges the 
S1 factors, so that (x,z) G dS x S1 on one copy is glued to (z,x) G dS x S1 on the 
other copy. 

The resulting manifold admits a free circle action on each copy of int(S') x S1, but 
at their common boundary the actions do not agree. However, they do generate a 2-
torus action which acts locally near their common boundary, thus defining a polarized 
F-structure on the whole manifold. 

2.8. An important chain of inequalities. — Let M be a closed Riemannian 
manifold with smooth metric g, and let Af be its universal covering endowed with the 
induced metric. For each x G Af, let V(x,r) be the volume of the ball with center x 
and radius r. Set 

X(q) := lim 
r—>-\-oc 

1 
r 

log V(x, r). 

Manning [13] showed that this limit exists and is independent of x. 
Set 

A(Af) :— inf{À(<?) | g is a smooth metric on Af with Vol(Af, g) = 1}. 
It is well known, see Milnor [15], that \{g) is positive if and only if 7Ti(Af) has 

exponential growth. Manning's inequality [13] asserts that for any metric g, 

(1) M a) ^ htoo(a). 

In particular, it follows that if 7Ti(Af) has exponential growth, then htop(g) is positive 
for any metric g. (This fact was first observed by Dinaburg [5]). Gromov [7] showed 
that if Vol(Af, q) = 1, then 

(2) 1 
Cn n\ ' \M\\ ^ [\{g)T, 

where 
cn = r i TV 

^ 2 ; 
d+d1r 'n + l\ 

2 
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Finally it was observed by Paternain [20] that 

(3) [h(M)]n ^ (n - l)nMinVol(Af ). 

Combining equations (1), (2), and (3), we obtain the following chain of inequalities: 

(4) 
1 

Cnn 
||M|| ^ [A(M)]n ^ [h(M)]n ^ (n- l)nMinVol(Af ). 

We note here that the only known 3-manifolds with h(M) > 0 are those with 
||M|| 0. In fact it follows from Theorem 2.7, Proposition 2.8, and the chain of 
inequalities (4) that if M is a closed orientable geometrizable 3-manifold, then the 
vanishing of the simplicial volume implies that h(AI) = 0. 

We encode this information in the following theorem. 

Theorem 2.9. — Let M a closed orientable geometrizable 3-manifold. Then the fol­
lowing are equivalent: 

(1) the minimal volume MinVol(M) of M vanishes; 
(2) the minimal entropy h(M) of M vanishes; 
(3) the simplicial volume \\M\\ of M vanishes; 
(4) M is a graph manifold. 

3. Geometric structures and the minimal entropy problem 

In this section, we consider the minimal entropy problem for those 3-manifolds that 
admit a single geometric structure. Namely, we prove the following. 

Proposition 3.1. — Let M be a closed orientable 3-manifold. Suppose that M admits 
a geometric structure. Then, the minimal entropy problem for M can be solved if 
and only if M admits a geometric structure modelled on S3, E3, S2 x R, Nil, or H3. 
Moreover, if M admits a geometric structure modelled on S3, E3, S2 x R, or Nil, then 
M admMs a smooth metric g with htop(g) = 0. 

Proof. — We start by showing that if M admits a geometric structure modelled on 
one of these 5 geometries, then the minimal entropy problem for M can be solved. 
Observe first that if M admits a geometric structure modelled on H3, then the minimal 
entropy problem can be solved by the results of Besson, Courtois and Gallot [1]. 

It follows immediately from Theorem 2.5 that if M admits a geometric stucture 
modelled on one of the seven geometries S3, E3, S2 x R, H2 x R, SL2, Nil, or Sol, then 
M is a graph manifold. Hence by Proposition 2.8 and the chain of inequalities (4), 
we have that for such an M, the minimal entropy satisfies h(M) = 0. 

We now show that if M admits a geometric structure modelled on one of S3, E3, 
S2 x R, or Nil, then the minimal entropy problem for M can be solved. To do this, 
we need to show that M admits a smooth metric g with htop(g) — 0. 
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(1) S3, E3, S2 x E: All the Jacobi fields in these geometries grow at most linearly 
(in the case of S3 they are actually bounded), and hence all the Liapunov exponents 
of every geodesic in M are zero. It follows from Ruelle's inequality [24] that all 
the measure entropies are zero. Hence, by the variational principle, the topological 
entropy of the geodesic flow of M must be zero. 

(2) Nil: This geometry can be described as M3 with the metric 

ds2 = dx2 + dy2 + (dz - xdy)2. 

Here, not all the Jacobi fields grow linearly, but they certainly grow polynomially. 
Again this implies that all the Liapunov exponents of every geodesic in M are zero 
and hence the topological entropy of the geodesic flow of M must be zero. 

Since we have assumed that M admits a geometric structure, we complete the 
proof by showing that if 71/ admits a geometric structure modelled on one of the 
remaining geometries, namely H2 x R, SL2, and Sol, then M cannot admit a metric 
of zero topological entropy. To do this, we use the next lemma, together with the fact 
described in Subsection 2.8, that if TTI(M) grows exponentially, then htop(g) > 0 for 
any smooth metric g on AI. 

Lemma 3.2. — Let M be a closed orientable 3-manifold, and suppose that M admits 
a geometric structure modelled on one of M2 x M, SL2, or Sol. Then TTI(M) grows 
exponentially. 

Proof. — In the case that M admits a geometric structure modelled on H2 x M or 
SL2, we start by recalling from Theorem 2.5 that M is then a Seifert fibered space. 
The base orbifold of the Seifert fiber space admits a hyperbolic structure, and so the 
orbifold fundamental group of the base orbifold contains a free subgroup of rank 2, 
and hence so does 7Ti(A/). Hence, 7Ti(A/) grows exponentially. 

In the case that M admits a geometric structure modelled on Sol, we have that M 
is finitely covered by the mapping torus N of a hyperbolic automorphism of a 2-torus. 
Note that a hyperbolic automorphism of a 2-torus is an Anosov diffeomorphism, and 
so the suspension flow on TV is an Anosov flow. It is known that the fundamental 
group of a 3-manifold with an Anosov flow has exponential growth (see for example 
Plante and Thurston [22]). • 

This completes the proof of Proposition 3.1. • 

4. Proof of Theorem A 

Up to this point, we have been considering the minimal entropy problem for closed 
3-manifolds that admit a single geometric structure. In this section, we consider a 
more general geometrizable 3-manifold. 
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Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental 
group contains a Z ® Z subgroup. The following are equivalent: 

(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for 
M can be solved; 

(2) M admits a geometric structure modelled on E3 or Nil; 
(3) M admits a smooth metric g with htop(g) = 0. 

Proof — Let us show that item 1 implies item 2. Suppose then that M has zero 
simplicial volume and that the minimal entropy problem for M can be solved. We 
show that M must then admit a geometric structure modelled on either E3 or Nil. 
Since the fundamental group of M contains a Z © Z subgroup, Theorem 2.3 ensures 
that either M contains an incompressible embedded 2-torus or M is a Seifert fibered 
space. We now split the proof into two cases: 

- Suppose first that M contains an incompressible embedded 2-torus, and so is 
sufficiently large. Since we have assumed that \\M|| =0 , Theorem 2.7 yields that M 
is a graph manifold. Hence, by Theorem 2.9, we have that h(M) = 0. 

However, using work of Evans and Moser [6], specifically Theorem 4.2 and Corollary 
4.10 in [6], we see that either n\(M) contains a free subgroup of rank 2 or M is finitely 
covered by a 2-torus bundle over S1. In the former case, JTI(M) grows exponentially 
and therefore the minimal entropy problem cannot be solved for M. 

In the latter case, M admits a geometric structure modelled on one of E3, Nil, or 
Sol (cf. Theorem 5.5 of Scott [26]). However, in the case that M admits a geometric 
structure modelled on Sol, we know from Proposition 3.1 that the minimal entropy 
problem cannot be solved for M. 

Hence, if the minimal entropy problem can be solved for M and if M contains an 
incompressible embedded 2-torus, then M admits a geometric structure modelled on 
either E3 or Nil. 

- The other case is that M is a Seifert fibered space. Here, Theorem 2.5 ensures 
that M possesses a geometric structure modelled on one of S3, E3, S2 x R, H2 x R, 
SL2 or Nil. 

Since the fundamental group of M admits a Z®Z subgroup, the geometric structure 
on M cannot be modelled on §3 or S2 x R. Since we have assumed that the minimal 
entropy problem can be solved for M, Proposition 3.1 yields that M must admit a 
geometric structure modelled on either E3 or Nil, as desired. 

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits a 
geometric structure modelled on E3 or Nil, then M admits a smooth metric g with 
htop(flO = °-

Finally to prove that item 3 implies item 1, observe that if M admits a smooth 
metric g with ht0p(g) = 0 it then follows from inequalities (1) and (2) that M has 
zero simplicial volume. 

This completes the proof of Theorem A. • 
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5. Proof of Theorem B 
We are now ready to consider the minimal entropy problem for a general geometriz­

able 3-manifold with zero simplicial volume. 

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following 
are equivalent: 

(1) the simplicial volume \\M\\ of M is zero and the minimal entropy problem for 
M can be solved; 

(2) Af admits a geometric structure modelled on S3; S2 x IR, E3, or Nil; 
(3) Af admits a smooth metric g with ht0p(#) = 0. 

Proof. — Let us prove that item 1 implies item 2. Suppose that Af has zero simplicial 
volume and that the minimal entropy problem for Af can be solved. Since Af is 
geometrizable and its simplicial volume vanishes, Theorem 2.7 tells us that Af is a 
graph manifold. Hence, by Theorem 2.9, Af has zero minimal entropy. 

Since we are assuming that the minimal entropy problem can be solved for Af, the 
fact that Af has zero minimal entropy in turn implies there exists a smooth metric on 
Af with zero topological entropy. This in turn implies, by the discussion in Section 2.8, 
that 7Ti(M) does not have exponential growth. 

However, it is a fact from combinatorial group theory (which follows immediately 
from the existence of normal forms for free products, for instance) that if A and B are 
two finitely generated groups, then the free product A * B contains a free subgroup 
of rank two unless A is trivial or B is trivial, or A and B are both of order two. Since 
the fundamental group of a connected sum is the free product of the fundamental 
groups of the summands. we conclude that either the prime decomposition is trivial 
or there are only two summands both of which have fundamental group Z2. 

In the former case, it follows that Af must be either irreducible or S2 x S1, while 
in the latter case Af must be P3#P3, where P3 is the 3-dimensional real projective 
space. Since S2 x S1 and P3#P3 both admit a geometric structure modelled on S2xIR, 
we may assume from now on that Af is irreducible. 

There are now several cases, depending on TT\(M). Suppose first that 7T\(M) is 
finite. Since Af is geometrizable, we have that Af admits a geometric structure mod­
elled on §3. 

In the case that TTI(M) is infinite and contains a Z 0 Z subgroup, the assumption 
that the simplicial volume of Af is zero, together with the fact that the minimal 
entropy problem can be solved for AI, allows us to apply Theorem A to see that AI 
admits a geometric structure modelled on E3 or Nil. 

The remaining case is that 7Ti (Af ) is infinite and does not contain a Z0Z subgroup. 
Since Af is geometrizable, either Af admits a hyperbolic structure or Af is Seifert 
fibered. (Since TT\ (Af ) does not contain a Z0Z subgroup, Af cannot admit a geometric 
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structure modelled on Sol, as Sol manifolds are finitely covered by 2-torus bundles 
over the circle.) However, since ||A/|| = 0, M cannot admit a hyperbolic structure. 

Note though that M cannot admit a geometric structure modelled on H2 x M, E3, 
SL2, or Nil, as such manifolds always have a Z ® Z in their fundamental groups, by 
Lemma 2.1. Hence, the only possibilities remaining are that M admits a geometric 
structure modelled on either x l or §3, as desired. 

To see that item 2 implies item 3, recall from Proposition 3.1 that if 71/ admits 
a geometric structure modelled on S3. S2 x R, E3, or Nil, then M admits a smooth 
metric g with htop(g) = 0. 

Finally to prove that item 3 implies item 1. observe that if M admits a smooth 
metric g with htop(g) = 0, it then follows from inequalities (1) and (2) that M has 
zero simplicial volume. 

This completes the proof of Theorem B. • 
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by 
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Abstract. — We prove that there is a residual set of families of smooth or analytic 
unimodal maps with quadratic critical point and negative Schwarzian derivative such 
that almost every non-regular parameter is Collet-Eckmann with subexponential re­
currence of the critical orbit. Those conditions lead to a detailed and robust statistical 
description of the dynamics. This proves the Palis conjecture in this setting. 

1. Introduction 

'The main strategy of the study of all mathematical models is, according to 
Poincaré, the consideration of each model as a point of a space of different but similar 
admissible systems' (V.Arnold in [Ar]). One of the main concerns of dynamical 
systems is to establish properties valid for typical systems. Since the space of such 
systems is usually infinite dimensional, there are of course many concepts of 'typical'. 
According to [Ar] again, 'The most physical genericity notion is defined by Kol-
mogorov (1954), who suggested to call a property of dynamical systems exceptional, 
if it holds only on Lebesgue measure zero set of values of the parameters in every 
(topologically) generic family of systems, depending on sufficiently many parameters'. 

In the last decade Palis [Pa] described a general program for (dissipative) dy­
namical systems in any dimension. He conjectured that a typical dynamical system 
has a finite number of attractors described by physical measures, the union of their 
basins has full Lebesgue measure, and those physical measures are stochastically sta­
ble. Typical was to be interpreted in the Kolmogorov sense: full measure in generic 
families. Our aim here is to give a proof of this conjecture for an important class of 
one-dimensional dynamical systems. 

Here we consider unimodal maps, that is, continuous maps from an interval to itself 
which have a unique turning point. More specifically, we consider S'-unimodal maps, 
that is, we assume that the map is CA with negative Schwarzian derivative and that 
the critical point is non-degenerate. 
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1.1. The quadratic family. — The basic model for unimodal maps is the 
quadratic family, qa{x) = a - x2, where - l / 4 ^ a ^ 2 i s a parameter. Despite its 
simple appearance, the dynamics of those maps presents many remarkable phenom­
ena. Restricting to the probabilistic point of viewT, its richness first became apparent 
with the work of Jakobson [J], where it was shown that a positive measure set of 
parameters corresponds to quadratic maps with stochastic behavior. More precisely, 
those parameters possess an absolutely continuous invariant measure (the physical 
measure) with positive Lyapunov exponent. On the other hand, it was later shown 
by Lyubich [L2] and Graczyk-Swiatek [GS] that regular parameters (with a periodic 
hyperbolic attractor) are (open and) dense. So at least two kinds of very distinct 
observable behavior are present on the quadratic family, and they alternate in a 
complicate way. 

Besides regular and stochastic behavior, different behavior was shown to exist, 
including examples with bad statistics, like absence of a physical measure or a physical 
measure concentrated on a hyperbolic repeller. Those pathologies were shown to be 
non-observable in [L3] and [MNj. Finally in [L4] it was proved that almost every 
real quadratic map is either regular or stochastic. 

Among stochastic maps, a specific class grabbed lots of attention in the 90V. Collet-
Eckmann maps. They are characterized by a positive Lyapunov exponent for the 
critical value, and gradually they were shown to have 'best possible' near hyperbolic 
properties: exponential decay of correlations, validity of central limit and large devi­
ations theorems, good spectral properties and zeta functions ([KN], [Y]). Let us call 
attention to the robustness of the statistical description, with a good understanding 
of stochastic perturbations: strong stochastic stability ([BV]). rates of convergence 
to equilibrium ([BBM]). 

In [AMI] the regular or stochastic dichotomy was extended by showing that almost 
every stochastic map is actually Collet-Eckmann and has polynomial recurrence of its 
critical point, in particular implying the validity of the above mentioned results. 

The position of the quadratic family in the borderline of real and complex dynamics 
made it a meeting point of many different techniques: most of the deeper results 
depend on this interaction. It gradually became clear however that studying the 
quadratic family allows one to obtain results on more general unimodal maps. 

1.2. Universality. — Starting with the works of Milnor-Thurston, and also 
through the discoveries of Feigenbaum and Coullet-Tresser, the quadratic family 
was shown to be a prototype for other families of unimodal maps which presents 
universal combinatorial and geometric features. More recently, the result of density 
of hyperbolicity among unimodal maps was obtained in [K] exploiting the validity of 
this result for quadratic maps. 

In [ALM], a general method was developed to transfer information from the 
quadratic family to real analytic families of unimodal maps. It was shown that 
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the decomposition of spaces of analytic unimodal maps according to combinatorial 
behavior is essentially a codimension-one lamination. 

Thinking of two analytic families as transversals to this lamination, one may try to 
compare the parameter space of both families via the holonomy map. A straightfor­
ward application of this method allows one to conclude that the bifurcation pattern 
of a general analytic family is locally the same as in the quadratic family from the 
topological point of view (outside of countably many 'bad parameters'). 

The " holonomy ' method was then successfully applied to extend the regular or 
stochastic dichotomy from the quadratic family to a general analytic family. The 
probabilistic point of view presents new difficulties however. First, the statistical 
properties of two topologically conjugate maps need not correspond by the (generally 
not absolutely continuous) conjugacy. Fortunately many properties are preserved, in 
particular the criteria used by Lyubich in his result. 

The second difficulty is that the holonomy map is usually not absolutely continuous, 
so typical combinatorics for the quadratic family may not be typical for other families: 
it has to be shown that the class of regular or stochastic maps is still typical after 
application of the holonomy map. 

1.3. Results and outline of the proof. — Let us call a /.'-parameter family good if 
almost every non-regular parameter is Collet-Eckmann (and satisfies some additional 
technical conditions). Our goal will be to prove that good families are generic. This 
question naturally makes sense in different spaces of unimodal maps (corresponding 
to different degrees of smoothness). We only deal with the last steps of this problem 
(going from the quadratic family to analytic and then smooth categories), basing 
ourselves on the building blocks [L3], [L4], [ALM], and [AMI]. 

We start by describing how the holonomy method of [ALM] can be applied to 
generalize the results of [AMI] to general analytic families (to put together those 
two papers we need to do a non-trivial strengthening of [AMI]). As a consequence 
we conclude that essentially all analytic families are good. 

To get to the smooth setting (at least C'\ since we are assuming negative 
Schwarzian derivative), our strategy is different: we show a certain robustness of 
good families, which together with their denseness (due to the analytic case) will 
yield genericity. Our main tool is one of the nice properties of Collet-Eckmann maps: 
persistence of the Collet-Eckmann condition under generic unfolding (a result of 
[Tl]). By means of some general argument, we reduce the global result to this local 
one. 

Let us mention that the results of this paper are still valid without the negative 
Schwarzian derivative assumption (also allowing one to get to C2 smoothness), see 
[A], [AM4]. The techniques are very different however, since we replace the global 
holonomy method we use here by a local holonomy analysis based on a "macroscopic" 
version of the infinitesimal perturbation method of [ALM]. For analytic maps this 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



84 A. AVILA & C.G. MOREIRA 

also allowed us to obtain better asymptotic estimates which have interesting conse­
quences, for instance pathological measure-theoretical behavior of the lamination by 
combinatorial classes (see [AM2]). 
Acknowledgements. — We thank Viviane Baladi, Mikhail Lyubich, and Marcelo 
Viana for helpful discussions and suggestions. 

2. General definitions 

2.1. Notation. — Let I = [-1,1] and let Bk be the closed unit ball in Rk (we 
will use the notation I for the dynamical interval, while B1 will be reserved for the 
one-dimensional parameter space). We will consider Bk endowed with the Lebesgue 
measure normalized so that \Bk\ = 1. Let Cr(I) denote the space of Cr maps / : 
/ —> R. 

By a unim,odal map we will mean a smooth (at least C2) symmetric (even) map 
/ : / —> I with a unique critical point at 0 such that / ( — 1) = —1, Df( — 1) ^ 1, and 
if Df( — 1) — 1 then D2f( — 1) < 0. If / is C'\ we define the Schwarzian derivative on 
/ \ {0} as 

Sf = D3f 
Vf 

3 fD2f\2 
D Df 

For a > 0, let fta C C denote an a neighborhood /. 
Let Aa denote the space of holomorphic maps on Qa which have a continuous 

extension to dQa, satisfying qo(z) — 4>( — z), qo( — 1) = (f)(1) = —1 and 0'(O) = 0. 
Notice that Aa is a closed affine subspace of the Banach space of bounded holo­

morphic maps of Qa. We endow it with the induced metric and affine structure. 
We define A^ C Aa the space of maps which are real symmetric. 

2.2. More on unimodal maps. — A C3 unimodal map such that Sf < 0 on 
/ \ {0} and such that its critical point is non-degenerate (that is, D2f / 0) will be 
called a S -unimodal map. 

We say that x is a periodic orbit (of period n) for / if fn(x) = x and n ^ 1 is 
minimal with this property. In this case we define Dfn(x) as the multiplier of x. 
Notice that this definition depends only on the orbit of x. We say that x is hyperbolic 
if \Df"(x)\ jtl. 

A unimodal map is called regular (or hyperbolic) if all periodic orbits are hyperbolic 
and the iterates of the critical point converge to an attracting periodic orbit. This 
condition is C2-open, moreover a 5-unimodal map is regular if and only if it has a 
hyperbolic periodic attractor (see [MvS]). 

A k-parameter family of unimodal maps is a map F : Bk x / —> I such that for 
p G Bk\ fp(x) = F(p, x) is a unimodal map. Such a family is said to be Cn or analytic, 
according to F being Cn or analytic. We introduce the natural topology in spaces of 
smooth families (Cn with n. = 2 , . . . , oo), but do not introduce any topology in the 
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space of analytic families (however, we will refer from time to time to induced Cn 
topologies). 

An analytic family of S-unimodal maps F will be called non-trivial if there exists 
a regular parameter. Notice that this condition is C3-open. 

A unimodal map / is called Collet-Eckmann (CE) if there exists constants C > 0, 
À > 1 such that for every n > 0, 

|£>/n(/(0))| > C\". 

This means that the map is strongly hyperbolic along the critical orbit. It is also 
useful to study the hyperbolicity of backward iterates of the critical point, so we say 
that / is Backwards Collet-Eckmann (BCE) if there exists C > 0, A > 1 such that for 
any n > 0 and any x with fn(x) = 0, we have 

\Df"(x)\ > CX". 

By a result of Nowicki (see [MvS]), for 5-unimodal maps CE implies BCE, so we 
will mostly discuss the Collet-Eckmann condition (except for the last section where 
we consider C2 unimodal maps as well). 

Very often it is useful to estimate how fast is the recurrence of the critical orbit. 
We will be mainly interested in two kinds of control: Polynomial Recurrence (P) if 
there exists a > 0 such that 

I/" (0)| >n-" 

for big enough n and Subexponential Recurrence (SE) if for all a > 0, 

I/" (0)| > e~'m 

for n big enough. 
We will say that / is Weakly Regular (WR) if 

lim lim inf 
(S •() N • x 

1 

n L<K<N 

ln|D/(/fc(0))|=0. 

fk(o)e{-s,s) 

This condition is used in proofs of stochastic stability for C2 maps, see [T2]. 
We will consider spaces of 5-unimodal maps: we define Uv C Cr(I) the set of 

5-unimodal maps. Spaces of analytic unimodal maps are now easily defined: Ua — 
U ( N Ae e 

2.3. The quadratic family. — The quadratic family is the most studied family 
of unimodal maps. It is usually parametrized by 

qt(x) = t-x2, 

so that for —1/4 ^ t ^ 2, there exists a unique symmetric interval It = [—f3ufit] such 
that qt(It) C It and qt(-pt) = —fit, so qt can be seen as a unimodal map of It (which 
depends on t). Moreover Sqt(x) < 0 if x ^ 0. 
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By an affine reparanietrization of the parameter t and of each interval If, we obtain 
a canonical one-parameter family of 5-unimodal maps in the interval L which we 
denote pu t G B1, which will be called the quadratic family as well. 

2.4. Quasisymmetric maps. — Let 7 ^ 1 be given. We say that a homeomor-
phism / : IR —» R is quasisymmetric (qs) if there exists a constant k > 1 such that for 
all x G IR and any ft > 0 

1 . f{x + ft) - fix) 
k " fix) - fix - ft ^ k. 

A homeomorphism ft is quasisymmetric if and only if it admits a real-symmetric 
extension to a quasiconformal map ft, : C —> C (Ahlfors-Beurling). We wrill say that 
h is 7-qs (or that 7 is a qs constant for ft) if the dilatation of ft is bounded by 7. 
This definition of the quasisymmetric constant is convenient since the composition 
of quasisymmetric maps g and / is readily seen to be quasisymmetric and the qs 
constant of g o f is bounded by the product of the qs constants of g and / . 

If X C IR and ft : X —> IR has a 7-quasisymmetric extension to IR we will also say 
that h is 7-qs. 

3. Statement of the results 

3.1. A dichotomy for generic families of 5-unimodal maps. — We would like 
to classify the typical behavior in generic families of unimodal maps. This classifica­
tion should reveal refined information on the stochastic description of the dynamics 
of those typical parameters. 

We will therefore consider a smooth enough family of unimodal maps F. The 
techniques of the present paper will need the fact that F is a family of 5-unimodal 
maps. This includes two main restrictions: the negative Schwarzian derivative and 
the quadratic critical point. The first one is serious, since this condition is not dense, 
but can be removed with more refined techniques (see [A]). The second one (which 
is not present in the usual definition of 5-unimodal map, but is rather a convention 
in this paper) is no serious loss of generality, since quadratic critical point is certainly 
typical among unimodal maps. 

Remark 3.1. — Families of unimodal maps with a fixed critical exponent different 
from 2 have also been subject of much study. This theory has many similarities, but 
also some important differences and new features, and is not nearly as complete as 
the case of criticality 2. It is however widely expected that the Palis conjecture (and 
indeed our Theorems A, B and C) still holds in this setting. 

We first consider the analytic case. 
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Theorem A. — Let F be a non-trivial k-parameter analytic family of S-unimodal 
maps. Then for almost every non-regular parameter p G Bk, fp satisfies the Collet-
Eckmann and Polynomial Recurrence conditions. 

Notice that the set of non-trivial analytic families is indeed generic in any meaning­
ful sense: its complement has "infinite codimension", see Proposition 4.3. Moreover, 
if an analytic family is non-trivial, it is possible to verify the non-triviality in finite 
time (with an infinite precision computer ^ ) . 

Our second result about non-trivial analytic families is the robustness of a slightly 
weaker dichotomy under C2 perturbations of the family. 

Theorem B. - Let F be a non-trivial k-parameter analytic family of S-unimodal 
maps. Let be a sequence of C2 families such that —-> F in the C2 topol­
ogy. For each n, let Xn be the set of parameters p G Bk where F^ is either reg­
ular or has only repelling periodic orbits and satisfies simultaneously the Backwards 
Collet-Eckmann, Collet-Eckmann, Subexponential Recurrence and Weak Regularity 
conditions. Then \Xn\ 1. In particular, almost every parameter of F is Weakly 
Regular. 

As a consequence, we can use a Baire argument to conclude that the dichotomy 
is still valid among topologically generic smooth families (that is, belonging to some 
residual set), obtaining the following corollary of Theorems A and B. 

Theorem C (Smooth Dichotomy). In topologically generic k-parameter Cr, r = 
3, 4 , . . . , oc families of S-unimodal maps, almost every non-regular parameter satisfies 
the Backwards Collet-Eckmann. Collet-Eckmann, Subexponential Recurrence and 
Weak Regularity conditions. 

It is good to recall that both types of behavior described by the dichotomy are 
indeed observable for open sets of families of unimodal maps ([J], [BC]). 

Remark 3.2. — The space of S-unimodal maps is easy to describe and easier to work 
with but has some disadvantages. One of them is that it is not an intrinsic condition, in 
particular it is not invariant by analytic change of coordinates. A more natural class 
to work with is the space of quasiquadratic unimodal maps as defined by [ALM]. 
A unimodal map / is called quasiquadratic if there exists a C3-neighborhood of / 
where all maps are topologically conjugate to some quadratic map. The results of this 
paper are still valid in spaces of quasiquadratic unimodal maps (which includes S-
unimodal maps). The proofs are unchanged, since the results we need from [ALM] are 
stated and proved for quasiquadratic maps. We remark further that the description of 
quasiquadratic unimodal maps can be used to describe all unimodal maps: it is proved 

'!'Since regular parameters form an open set (non-empty if the family is non-trivial), and any regular 
parameter one can be also checked in finite time (by locating the attracting hyperbolic periodic orbit). 
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in [A], [AM4] that (Kolmogorov) typical (analytic or smooth) unimodal maps have 
either a quasiquadratic renormalization or a quasiquadratic unimodal restriction. 

3.2. Ergodic consequences. — The importance of the above dichotomy is the 
fact that each of the two possibilities has very well defined stochastic properties. We 
quickly recall those (we assume that maps are 5-unimodal). 

Regular maps have a periodic attractor whose basin is big both topologically (open 
and dense set) as in the measure-theoretical sense (full measure). Moreover the at­
tractor and its basin are stable under C1 perturbations. The dynamics of such maps 
can be described in deterministic terms. 

Maps satisfying CE and SE have non-deterministic dynamics. They can be however 
described through their stochastic properties, and it turns out that such maps have 
the main good properties usually found in hyperbolic maps. First, there is a physi­
cal measure, that is an invariant probability which describes asymptotic behavior of 
orbits: for almost every x and for every continuous (ft : / —> M, 

lim 1 
n 

N-L 

A;=0 
4>(fk(x)) = (ftdfi. 

This physical measure has a positive Lyapunov exponent and is indeed absolutely 
continuous and supported on a cycle of intervals, so the asymptotic behavior is non-
deterministic. The convergence to the asymptotic stochastic model is exponential, 
see the results on decay of correlations and convergence to equilibrium ([KN], [Y]). 
Those properties are beautifully related to a spectral gap of a transfer operator and 
to zeta functions, see [KN]. Notice finally that exponential decay of correlations is 
actually equivalent to the Collet-Eckmann condition (see [NS]). 

W7hile the dynamics is highly unstable under deterministic perturbations (nearby 
maps can be regular for instance), the stochastic description given by the physical 
measure \i is robust under stochastic perturbations: the perturbed system has a 
stationary measure which is close to /x in the sense of the L1 distance between their 
densities ([BV]). For studies of decay of correlations for the perturbed systems, see 
[BBM]. 

4. Analytic families 
4.1. Hybrid classes and holonomy maps. — Two 5-unimodal maps /, / are 
said to be hybrid equivalent if they are topologically conjugate and, in case they are 
regular, their attracting periodic orbits have the same multiplier. 

The set of all maps which are hybrid equivalent to some / is called the hybrid class 
of / . The partition of 5-unimodal maps into hybrid classes is thus a refinement of 
the partition in topological conjugacy classes. 
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It follows from a result of Guckenheimer (see [MvS]) that any 5-unimodal map / is 
topologically conjugate to some quadratic map. It turns out that if / has a hyperbolic 
attractor, we can select the quadratic map with a hyperbolic attractor with the same 
multiplier^2). In particular, each hybrid class intersects the quadratic family in at 
least one point. 

The problem of uniqueness is much harder. The following result is due to Lyubich 
[L2] and Graczyk-Swiatek [GS], and is a consequence of (the proof of) the equivalent 
rigidity result for quadratic maps: 

Theorem 4.1. — Let h be a topological conjugacy between two analytic S-unimodal 
maps f and f which have all periodic orbits repelling. Then h is quasisymmetric. 

Remark 4.1. — Although we won't use it here, a similar theorem still holds for maps 
with non-repelling periodic orbits: if / and / are two topologically conjugate 5-
unimodal maps and have non-repelling periodic orbits then we can select a topological 
conjugacy which is quasisymmetric (the choice of the topological conjugacy is not 
unique). This result is considerably easier than the case where all periodic orbits are 
repelling, and does not use analyticity. 

This rigidity result has a remarkable consequence for quadratic maps: each hybrid 
class intersects the quadratic family at a unique parameter. Thus, any 5-unimodal 
map / is hybrid equivalent to a unique quadratic map x{f). The map \ is called the 
straightening ^\ 

Lemma 4.2. — Let f be an analytic S-unimodal map. Then x(f) is regular/CE/P if 
and only if f also satisfies the corresponding property. 

Proof. — The property of being regular is clearly invariant under hybrid equivalence, 
so we only have to analyze invariance of the conditions CE and P. 

By [NP2], the Collet-Eckmann condition is topologically invariant, so it is pre­
served under hybrid equivalence. 

To check invariance of polynomial recurrence of the critical orbit, first assume 
that / has some non-repelling periodic point p. In this case, the the orbit of p must 
attract the critical point. In particular, the critical point is either non-recurrent (in 

(2)This follows for instance from Milnor-Thurston kneading theory and the fact that the quadratic 
family is a full family. Another way to see this is to notice that in each "hyperbolic window" of 
quadratic maps (a maximal parameter interval (a, b) such that pt is hyperbolic for t G (a, 6)), the 
multiplier of the hyperbolic attractor induces a homeomorphism from (a, 6) to ( — 1,1) (this is a 
consequence for instance of the work of Douady-Hubbard on the complex quadratic family). 
('̂ We should point out that there is also a notion of hybrid class in complex dynamics. In that 
context, the fact that each hybrid class (of quadratic-like maps with connected Julia set) contains 
exactly one quadratic polynomial is a consequence of the Straightening Theorem of Douady-Hubbard. 
Our definition of hybrid class is motivated precisely by the possibility of defining an analogous 
straightening map (whose existence is proved by quite different methods). 
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which case both / and \(f) satisfy P in a trivial way) or periodic (in which case / 
and x(f) do not satisfy P also in a trivial way). 

If / has all periodic orbits repelling, by Theorem 4.1, the conjugacy between / and 
\{f) is quasisymmetric, and in particular Holder. It is easy to see that P is invariant 
by Holder conjugacy. • 

Remark 4.2. — By [NP1], two 5-unimodal Collet-Eckmann maps which are topolog­
ically conjugate are Holder conjugate, so using [NP2] we see that the joint conditions 
CE and P are topologically invariant. This joint invariance of CE and P is all that 
will be used in the further arguments. Notice that [NP1] and [NP2] do not assume 
analyticity, and are more elementary than Theorem 4.1. 

4.2. Hybrid laminations. — It is natural to study the hybrid class of some map / . 
This is what is done in Theorem A of [ALM] in the analytic setting, where it is shown 
that in Ua, every hybrid class is a codimension-one analytic submanifold. Moreover, 
different hybrid class fit together in some nice structure, called hybrid lamination. 

Remark 4.3. — It is not known if the hybrid lamination is really a lamination every­
where. In [ALM], it is shown that the hybrid lamination is a lamination (in the usual 
sense) "almost everywhere'1 (more precisely, if restricted to an open set containing the 
complement of coimtably many classes corresponding to existence of neutral periodic 
orbits), which is enough for our purposes. 

A fc-parameter analytic family of .S-unimodal maps can be thought as an analytic 
map from Bk to some Ua. As a consequence, the structure of the hybrid lamination 
implies that non-trivial analytic families are indeed quite frequent. 

Lemma 4.3 (Most analytic families are non-trivial). If a k-parameter analytic fam­
ily of S-unimodal maps is not contained in some non-regular hybrid class then it is 
non-trivial. In particular, non-trivial analytic families are dense in the space of C" 
families of S-unimodal maps, n = 3 , . . . . oc. 

Proof Let us consider an analytic family of 5-unimodal maps F. By the theory 
of Milnor-Thurston, see [MvS], either all parameters have the same non-periodic 
kneading sequence, or there exists a parameter with periodic critical point. In the 
latter case, the family is of course non-trivial, so let us consider the former case. Two 
5-unimodal maps with the same kneading sequence are either topologically conjugate, 
or one of them possess a neutral periodic orbit (see Corollary, Chapter 2, page 157 of 
[MvS]). and it follows that the other is necessarily regular. Thus, if the family F does 
not have regular parameters, all maps are non-regular and topologically conjugate, 
that is, F is contained in a non-regular hybrid class. 

For the denseness result, given a Cr family F, approximate it by an analytic fam­
ily F. If such an analytic family is contained in a hybrid class, we can perturb it further 
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in order to intersect two hybrid classes, since each hybrid class is a codimension-one 
submanifold. • 

Let us consider the case where F is a one-parameter analytic family of S'-unimodal 
maps, that is, an analytic curve in some Ua. A consequence of the nice structure of 
the hybrid lamination is the following result: 

Lemma 4.4 (see the proof of Theorem C of [ALM1). — // F is a one-parameter ana­
lytic family of S-uni/modal maps which is not contained in some hybrid class then 
there is an open set of parameters, with countable complement, where F is transverse 
to the hybrid lamination. 

Define the map \p on Bl by \ F ( 0 = xift)- m [ALM] the map \F is considered 
as the holonomy map from F to the quadratic family along the hybrid lamination in 
some Ua. Using this interpretation, they obtain the following result: 

Theorem 4.5 (Theorem C of [ALM]). — Let F be a one-parameter family of unimodal 
maps which is not contained in some hybrid class. Then there is an open set U C B1 
with countable complement such that the straightening \F is quasisymrnetric in any 
compact interval J C U. 

4.3. Dichotomy in the quadratic family. — The main result of [AMI] is that 
almost every parameter in the quadratic family is either regular or Collet-Eckmann 
with a polynomial recurrence of the critical orbit. To obtain the same result for a 
non-trivial analytic family using Theorem 4.5, we will need a stronger estimate, since 
quasisymrnetric maps are not in general absolutely continuous. 

Let us say that a set X C Bx has total qs-probability if the image of B{ \ X by 
any quasisymrnetric map h : B1 —> Bl has zero Lebesgue measure. 

By an improvement of the proofs in [AMI] (see appendix), it is possible to obtain 
the following result: 

Theorem 4.6. The set of quadratic maps which are either regular or simultaneously 
CE and P has total qs-probability. 

Remark 4.4. — In [AMI] a better result than polynomial recurrence is obtained in the 
quadratic family. Namely it is shown that the asymptotic exponent of the recurrence 

lim sup 
s+<<+< 

-In IP (0)1 
Inn 

is exactly 1 for almost every non-regular map. However, for a set of total qs-
probability, we are only able to show that the asymptotic exponent is bounded. 
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4.4. Proof of Theorem A. — Let F be a non-trivial analytic family. If all pa­
rameters are regular, there is nothing to prove, so assume that there is a non-regular 
parameter. 

First assume F is one-parameter. By Theorems 4.6 and 4.5, for almost every 
t G Bl, XF(£) is either regular or satisfies C E and P. By Lemma 4.2, this implies that 
ft is either regular or C E and P. 

Assume now that F is a ^-parameter family. Let p G Bk be a regular parameter. 
Let L : B1 Bk be an affine map such p G L(B1). Let FL be the one-parameter 
family defined by /fL = fm). Then FL is a non-trivial one-parameter analytic family 
and hence for almost every t, ftL is either regular or C E and P. The result follows by 
application of Fubini's Theorem. 

5. Robustness of the dichotomy 

To obtain the robustness claimed on Theorem B our approach will be to exploit an 
important result of Tsujii, whose core is a strong generalization of Benedicks-Carleson 
result and techniques. This result establishes that the CE and SE conditions are 
infinitesimally persistent in one-parameter families unfolding generically: they are 
density points of CE and SE parameters. The connection with our robustness result, 
which has a global nature, is done using some general argument. 

5.1. Tsujii's theorem. — Let F be a C2 ^-parameter family of unimodal maps. 
Assume that p0 is a parameter such that fPo satisfies CE, BCE, SE, has a quadratic 
critical point and all periodic orbits repelling. Tsujii's Theorem considers the case 
where F is a generic unfolding at po. For one-parameter families, generic unfolding 
means oreciselv 

(5.1) 
OC 

.7=0 

nRnAi))M 
nRnAi))M 

dre+d where v = 
d 
dp ' p 

I P=PO 
This transversality condition will be called Tsujii transversality. 

If F is a one-parameter family, we will say that (F,po) satisfies the Tsujii conditions 
if all above requirements are satisfied. 

The following is an immediate consequence of the main theorem of Tsujii in [Tl]. 

Theorem 5.1. — Let F be a C2 one-parameter family of unimodal maps. Assume 
(F, to) satisfies the Tsujii conditions. Then to is a density point of parameters t for 
which (F. t) satisfies the Tsujii conditions and for which ft is WR. 

5.2. A higher dimensional version. — In order to pass from one-parameter to 
fc-parameters, we will need the following easy proposition. Let us say that p G Bk is 
a density point of a set X along a line / through p if p is a density point of l n X in / 
(endowed with the linear Lebesgue measure). 
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Proposition 5.2. — J/pG Bk is a density point of X along almost every line, then p 
is a density point of X in Bk. 

Proof. — Let E be the characteristic function of X. For each line I through p, let 
Ai : M —>• I be an isometric parametrization of I taking 0 into p. Let pk~l be the 
space of such lines with the natural probability measure (obtained by identification 
with the k — 1 dimensional projective space). Let 

Pe(l) = 
•1 

- 1 
r\E(Ai(er))dr 

Assuming that p is a density point of X along almost every I we have, for almost 
every / 

lim pF(l) — 1. 
£->0 

Using polar coordinates, the relative measure of X in an e ball around p is given by 

I PK-L 
p£(l)dl 

By the Lebesgue Convergence Theorem, 

lim £^0 
pM)dl = lim pM)dl 

•i ) 
= 1. 

This shows that p is a density point of X. 

We say that a fc-parameter F satisfies the Tsujii transversality at po if there exists 
a line through po along which the one-parameter Tsujii transversality condition is 
satisfied. In other words, there exists an affine map L : B1 —> Bk such that L(to) = po 
for some to G int J51 and such that the induced one-parameter family FL defined by 
FT = FL(T) 18 Tsujii transverse at the parameter to. 

By linearity of (5.1) with respect to c, if (F,po) is Tsujii transverse then all 
lines passing through po are Tsujii transverse except the lines parallel to a certain 
codimension-one space of IRA;. 

Lemma 5.3. — Let F be a C2 k-parameter family of unimodal maps. Assume (F,po) 
satisfies the Tsujii conditions. Then po is a density point of parameters p for which 
(F,p) satisfies the Tsujii conditions and for which fp is WR. 

Proof. — If F is Tsujii transverse at po then it is Tsujii transverse along almost every 
line through po. Along such a line it is a density point of parameters satisfying the 
Tsujii conditions and WR. The result follows from Proposition 5.2. • 
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5.2.1. Tsujii trans v ers ality and hybrid lamination. — Let us take a closer look at the 
Tsujii transversality for an analytic F. Let fp = /. 

Assuming the summability condition, 

ASTÉRISQUE 28G 

(5.2) 
d+d1 

A:=0 

1 
\Dfk(W))\ 

C oo 

(in particular if / is CE), let 

Uflv) = 
dd 

k=() 

v(fk(0)) 

D/fc(/(0)) 
= v(0) • 

DC 

k=l 

v(fk(0)) 
Dfk(f(0)) 

be a functional defined on continuous vector fields v on the interval. 

Lemma 5.4. — If f satisfies the summability condition then there exists an even poly­
nomial vector field v, with v( — l) = v(l) = 0 and such that Vf(v) / 0. 

Proof. — Let S = £ \Dfk{f(0))\~l. Let e be so small that 

A:>0 
d<+<+<1<+ 

1 
IAP(/(0))| 

< 1/3. 

Let v be an even polynomial vector field satisfying v( — l)=v(l)=0, 

\v(x)\ < 2, for x e J, 

v(x) > 1, for x G (-£/2,e/2), 

nRnAi))M 
1 

105 ^ 
for x £ I \ (—e, e). 

Then z/f(i;) > 1 - 2/3 - 1/10 > 0. 

Lemma 5.5. - The kernel of Vf intersected with TA^j is the tangent space to the 
hybrid class of f. 

Proof. — By the previous lemma, Uf is non-trivial over TA^, so the above intersection 
is a closed codimension-one subspace of TAfL. So it is enough to show that if v is 
tangent then Vf(v) = 0. Assuming that v is tangent, consider an analytic family ft 
contained in the hybrid class of / , such that fo = / and 

d 
-i dtJ Uo 

= V. 

It is remarked in [ALM] that 

q„+I = D/"(/(0)) 
n 

k=0 

v(fk(0)) 
Dfk(f(0)) 

= Df"(f(0))vf(v) 

is precisely 
d 
dt 

ftn+1(o) 
\t=o 
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Moreover, t i—>• f™+l(0) are holomorphic functions of the complex parameter t, taking 
values in Qa, and whose domain is some definite neighborhood of 0. It follows by 
Cauchy estimates on the derivative that this sequence is bounded independently of 
n. By the summability condition (5.2), \Dfn(f(0))\ —* oo, so we have necessarily 
uf(v)=0. • 

Remark 5.1. — It is shown in [ALM] that the sequence an is not only bounded (for 
tangent vector fields v), but that the vector field defined on the orbit of the critical 
value by w(fk(0)) = a^, k > 0, extends to a quasiconformal vector field on C. 

So Tsujii transversality can be interpreted for such a map (satisfying the summa­
bility condition (5.2)) as transversality of the family to the hybrid class of fp. 

Since for maps with negative Schwarzian derivative CE implies the BCE and that 
all periodic orbits are repelling, we can conclude from Theorem A, Lemma 4.4 and 
this discussion the following result: 

Lemma 5.6. — If F is a non-trivial k-parameter analytic family of S-unimodal maps 
then almost every parameter is regular or satisfies the Tsujii conditions. 

5.3. Estimates of density in perturbed families. — Let K be the space of C2 
fc-parameter families of unimodal maps (without, naturally, the hypothesis of negative 
Schwarzian derivative). 

Let X C K x Bk be the set of such that either fp is regular or satisfies the 
Tsujii conditions and WR. For F e K, let XF = {p G Bk\(F,p) G X}. 

Let Y C Bk he measurable with \Y\ > 0. We define the density of X along F on Y 
a« 

d(F,Y) = YnxF 
dg+d1d 

Instead of defining the classical infinitesimal density: 

lim mfd(F<BF(v)) 
£->0 

we will need to consider the stability of the density with respect to perturbations of F 
With this in mind we introduce two parameters. Let 

D (F,p) — liminf liminf d(F, B£(p)), 
<9+<1<+<1 
FP = FP 

D+(F,v) = lim inf lim inf d(F< BJv)). 
+<1>+>>1<w 

Remark 5.2. — Notice that in the definition of D~(F,p) we only consider families 
through a fixed map, while in the definition of D+(F,p) we do not make this restric­
tion. 

Theorem A and Tsujii's result give a direct way to estimate D~: 
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Lemma 5.7'. — Let F be a non-trivial analytic family of S-unimodal maps. Then for 
almost every p G Bk, D~(F,p) = 1. 

Proof. — Indeed, by Lemma 5.6, almost every parameter is either regular or satisfies 
the Tsujii conditions. Since the set of regular maps is C2 open, D~(F,p) = 1 at any 
regular parameter p. 

Let us show that this still holds for parameters p satisfying the Tsujii conditions. 
Since Tsujii transversality through a fixed CE map is clearly an open condition, if F 
is any C2 family near F with fp = fp then (F,p) also satisfies the Tsujii conditions. 
Bv Lemma 5.3. 

\hnd(F,B£(p)) = l. 

Thus D-(F,p) = 1. 

However, for measure estimates in perturbed families, D+(F,p) is more relevant. 
We proceed to discuss the effect of the interchange of limits in the definitions of 
D~{F,p) and D+(F,p). 

Lemma 5.8. — In this setting, 

D+(F,p) > D~(F,p) 

Proof. — The idea is to construct, arbitrarily near F, a family F with fp — fp and 

lim d(F,BEi(p)) = D+(F,p), 

for some sequence e3 —• 0, which implies D~*~(F,p) ^ D~{F,p). To construct F, 
we will interpolate F with a certain sequence F^ which realizes the limit in the 
definition of D+(F,p). 

Let e1•—•» 0 be a sequence such that 

lim liminf d(F,B£Ap)) = D+(F,p). 
i^oc re­

passing to a subsequence, we may assume that 

lim 
7— 

S3 + l 
qqx 

= 0. 

Let Kj C B£j(p) \ B£j+1(p) be compact sets such that 

(5.3) lim 
<+<1 

int K1 I 

\BeM 
= 1. 

Let (pj : Rk —> R be a C°° function supported in B£j(p) \ B£j+1(p) such that 

</>j\Kj = 1 
For a sequence p(n) Fj iet us define F : Bk x I -> I by 

<+<1<+<1< 
oc 

x+<1 
<PM(f(qJ) - f«)-
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It is easy to see that for every ô > 0 there exists a sequence Sn > 0, n ^ 1, such that, 
if ||F(n) -F||C2 < Sn then ||F-F||C2 < ô (and in particular F is C2). In other words, 
if p{n) p sufficiently fast then F is C2 and close to F in the C2 topology. 

Notice that F interpolates F and the sequence F^ in such a way that inside each 
B£n(p), fp = fpn^ for p in inti\~n. Thus, 

(5.4) XlhnKn = XFin) nKn. 

Fix S > 0 and select F^ such that 

(5.5) lim d(F{n\B£n(p)) = F>+(F(0),p) 

and moreover - F||C2 < Sn, so that ||F - F||C2 < S. By (5.3), (5.4), and (5.5), 

liminfd(F,Be(p)) sc lim d(F,BsJ= lim d(F("\B£„) = D+(F,p). 

Making (5 —>• 0, F converges to F and we obtain D+(F,p) ^ D~(F,p). • 

5.4. Proof of Theorem B. — Let F be a non-trivial analytic family of 5-unimodal 
maps. Then almost every parameter satisfies D~{F,p) — 1. Hence, for almost every p 
we have D+(F,p) = 1. 

Fix e > 0. Let p G J3fc be such that F>+(F,p) = 1. By definition of F>+ there 
exists a sequence of balls Un(p) centered at p and converging to p, and neighborhoods 
Vn(p) C K of F such that if F G Vn(p) then 

d(F,Un(p)) > l-e/2. 

By Vitali's Lemma, there exist sequences pj, nj such that Urij{p3) are disjoint and 
I U F''-'(p,)| = 1. Let m be such that U^i^nj (Pj) > 1 - e/2. Let V = rV/L, V"'(py). 
Then if F G V, d(F, £A:) ^ 1 - If F ^ -+ F in the C2 topology then F(n> G V for 
n large enough and the set of parameters for F^ which are either regular or satisfy 
the Tsujii conditions and Weak Regularity have measure at least 1 — 5, as required. 

Moreover, considering the sequence F^ = F, we conclude that almost every 
parameter for F is Weakly Regular, hence the last claim of Theorem B. 

5.5. Proof of Theorem C (Smooth Dichotomy). — By Proposition 4.3 non-
trivial analytic families are dense among Cn families of 5-unimodal maps, n — 
3 , . . . , oo. Theorem B implies that for all e the set De of Cn families of 5-unimodal 
maps for which the set of bad parameters (not regular or BCE, CE, SE and WR) has 
measure less then £, contains a neighborhood of all non-trivial analytic families, that 
is, an open and dense set. Therefore nF^/2™ is a residual set. Clearly any family in 
C]Dif2n satisfies the stated dichotomy. 
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Appendix 
Quasisymmetric robustness of Collet-Eckmann 

and polynomial recurrence 

The aim of this Appendix is to sketch a proof of Theorem 4.6. This proof is 
similar in strategy to the one of the main results of [AMI], however non-trivial 
modifications are needed. To avoid too much intersection, this will be a concise 
exposition concentrated mainly on the new steps needed for this improvement: the 
reader can find a full proof of this result in [AM3]. 

A.l. Quasisymmetric maps 
A. 1.1. Quasisymmetric reparametrization. — Let now H be an arbitrary but fixed 
7-quasisymmetric map from B1 to the parameter space of the quadratic family. To 
prove Theorem 4.6, it will be enough to show that almost every t G B1 correspond 
under H to a parameter of the quadratic family which is either regular or satisfies the 
Collet-Eckmann and Polynomial Recurrence conditions. 

From now on, all mentions to parameter space will (unless explicitly stated other­
wise) refer to the above reparametrization. 

A. 1.2. Quasisymmetric capacities. — The 7-capacity of a set X c M in an interval / 
is defined as follows: 

Pi(X\I) = sup \h(xni)\ 
\h(I)\ 

where the supremum is taken over all 7-qs maps h : E —> R. 
Notice that if IJ are disjoint subintervals of / and X C UP then 

Pl(X\I) ^p7(U,P | / )supp7(X|P) . 

A.2. Sequence of first return maps. — The statistical analysis of [AMI] con­
cerns mainly the following objects: we are given a unimodal map (which we will 
assume finitely renormalizable and with a recurrent critical point) / : / — > / and 
a sequence of nested intervals In C /. The inductive relation between the In is as 
follows: the domain of the first return map Rn to In consists of count ably many in­
tervals {Ifyjçz, with the convention that 0 G I® (the central component), and we let 
I0 = In+ 1 

The special sequence of intervals In that we consider is called the principal nest, 
see [L2]. Since we assume / to be finitely renormalizable, there exists a smallest 
symmetric interval T C I which is periodic (say, of period m). For the principal nest, 
lx — [—p,p], where p is the orientation reversing fixed point of fm : T —• T. A level n 
of the principal nest is called central if Rn(0) G 7n+i- Let us say that / is a simple 
map if its principal nest has at most finitely many central levels. 

Each non-central branch of Rn is a diffeomorphism onto In. Let us introduce some 
convenient notation related to the iteration of the non-central branches of Rn. Let Q 
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be the set of finite sequences of non-zero integers (the empty sequence is included), 
an element of Q is denoted d— ( j i , . . . ,jm)- If d G £1 has length \d\ = m, we denote 
Rfi the branch of R.,f with combinatorics d, that is, the domain of RVJ is the set 

I%={xeI\Rt\x)eIdddddJnk,l^k^m}. 

Wele tC^=(^) -1( I ,+1) . 
Let us denote by Ln the first landing map from /„. to In+i. This map relates easily 

to Rn using the above description: the domain of Ln is UCn, and Ln\Cn — Rn. The 
reader should think of Ln as a high iterate of Rn. This leads to the following inductive 
relation between return maps: + i = Ln o Rn\I„-\- 1 • 

The return time of a point x belonging to an interval In is denoted by rn(x) (or 
rn(j), since it does not depend on x G I3n), that is, Rn\ll. = f'r'n^K The landing time is 
denoted by ln(x) = ln(j)- The combinatorics at level n of a point x is denoted (fn\x), 
so that x G Cfl){x). Let (s d k + be such that x G r!Î"'(r). We let rn = j(n)(flw(0)), 
so that Rn(0) G • The return time of the critical point is denoted vn = rn(0). Let 
S„ = \en)(Rn(0))\-

Notice that In+\ = R^^C^^) for some d. The interval Jn+i = Cfl){x) c 
is a big neighborhood of In+\ which will be useful later. This choice of neighborhood 
is particularly good for simple maps, and it turns out that in this case In+i is still 
much smaller than In for big n. 

A.2.1. Phase-parameter relation. — The starting point of [AMI] are two theorems of 
Lyubich describing the (unreparametrized) parameter space of the quadratic family: 
infinitely renormalizable maps have zero Lebesgue measure [L4] and almost every 
finitely renormalizable non-regular map is simple [L3]. We will need the following 
remark of [ALM]: Lyubich's proof actually allows one to conclude that the set of 
regular or simple maps lias full measure after any quasisymrnetric repararnetrization. 

In view of those results, Theorem 4.6 is reduced to proving that the set of param­
eters which are Collet-Eckmann and polynomially recurrent have full measure (after 
repararnetrization by H) among simple maps. From now on we exclude non-simple 
maps from measure-theoretic considerations, and we will use "with total probability'1 
to refer to a set of parameters with full measure (after repararnetrization by H) among 
simple maps. 

To estimate the probability in the parameter corresponding to a certain behavior 
of the n-th stage of the principal nest, we make use of the Phase-Parameter Lemmas 
of [AMI]. They describe how the partition of the phase space induced by return 
and landing maps Rn and Ln induce parameter partitions of certain parameter win­
dows Jn. 

The topological part of the phase-parameter relation is described in the following: 

Theorem A.l. — For each non-renormahzable quadratic map f with a recurrent crit­
ical point, there exists a sequence of parameter intervals {Jn} such that: 
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(1) Jn is the maximal interval containing f such that for all g G Jn, there exists 
a continuation In+i[g] of In+i with the "same combinatoricsv in the following sense. 
There exists a continuous family of homeomorphisms hn[g] : I —> I', g G Jn which is 
equivariant with respect to the actions of g\(I \ 7n+1[g]) and / | ( / \ ^n+i); so that if 
x G I \ /n+i[/] then g o hn[g](x) = hn[g] o /(x). 

(2) There exists a homeomorphism En : 7n —• Jn sî c/i £/&a£ £n(Cn) ^ £/&e set of all 
g G Jn such that Rn[g](0) G hn[g}(Cn). 

This result follows immediately from the Topological Phase-Parameter relation 
for the unreparametrized quadratic family (Theorem 2.2 of [AMI]), since the 
reparametrization is a homeomorphism. 

In words, the sequence Jn in Theorem A.l denotes the maximal interval contain­
ing / where we can consider a continuation of In (recall that the boundary of In is 
preperiodic), and such that the first return map to this continuation does not change 
combinatorics, so that its domain changes continuously. When we change the map g 
inside the interval Jn, the critical value of Rn[g] varies inside the interval In[g] "prop­
erly", that is, moves from one boundary point to the other. In doing so, it goes 
through the partition induced by the Cn in a well behaved ("monotonie") way: it goes 
through each member of the partition exactly once, and thus defines a partition in 
the parameter interval Jn, corresponding topologically to the partition in the phase 
interval In. Theorem A.l thus establishes that the "diagonal" motion of the critical 
value and the "horizontal" motion of the partition of the phase space are "transversal". 
This is indeed how the proof of Lyubich goes (using complex analysis). This result 
can also be established using the Milnor-Thurston's combinatorial theory of unimodal 
maps together with the monotonicity property of the quadratic family. 

The next component of the phase-parameter relation is a quantitative estimate 
on the regularity of the phase-parameter homeomorphisms En. While the topological 
part is based on a very general transversality argument, the quantitative part depends 
on the delicate geometric estimates of Lyubich. 

We let J£n — En(IJ}n). The correspondence En is uniquely defined if restricted to 
Kn = In \ UCn • More importantly, it is quasisyrnmetric if restricted to certain subsets 
of Kn. To make this precise, let KTn = Kn D I^11 (forgetting information outside I^n) 
and Kn = In \ (U/r{ U /n+i) (forgetting information inside each IJn and also inside 

In+l). 

Theorem A.2. — Let f be a simple map. Then, for all 7 = (1 + ô)j > 7, there exist 
no > 0 such that for all n > no, 

PhPal: En\K^ is j-qs; 
PhPa2: En\Kn is ^-qs; 
PhPhl: hn[g]\Kn isl + 5-qs for all g G ; 
PhPh2: hn[g]\Kn is 1 + S-qs for all g G Jn. 
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This theorem is a straightforward consequence of the Phase-Parameter relation for 
the unreparametrized quadratic family (Theorem 2.3 of [AMI]). While in [AMI] 
the quasisymmetric constants in PhPal and PhPa2 could be taken arbitrarily close 
to 1 (the unreparametrized case corresponds to taking H — id, that is, 7 = 1) for 
deeper levels of the principal nest, this does not hold here due to introduction of 
reparametrization, which multiply all phase-parameter constants by 7 (notice that 
PhPhl and PhPh2 are estimates which do not depend on reparametrization, so we 
can still choose constants close to 1). This will be the source of many difficulties 
addressed in this Appendix. 

A.3. The statistical argument. — For the remaining of this Appendix we fix 
some constant 7 > 7, and we will start our consideration with levels of the principal 
nest where the reparametrized phase-parameter relation is already 7-qs. We will also 
need some very large constants b < b which depend only on 7 (the relation can be 
computed explicitly following the proof, in particular, b should be at least so big that 
b~l is a lower bound on the Holder constant of 7-qs maps). We let a = b~l and 
a = b~l. 

From now on we will always estimate the 7-capacity of bad sets in the phase space. 
To conclude results for the parameter we will use the following variation of the Borel-
Cantelli Lemma (this is Lemma 3.1 of [AMI]). 

Lemma A3. — Let X C M be a measurable set such that for each x G X there is a 
sequence Dn(x) of nested intervals converging to x such that for all xi,X2 G X and 
any n, Dn(x\) is either equal or disjoint to Dn(x2). Let Qn be measurable subsets 
ofM. and qn(x) = \Qn fl Dn(x)\/\Dn(x)\. Let Y be the set of x in X which belong to 
finitely many Qn. If^2qn(%) îS finite for almost any x G X then \Y\ = \X\. 

In practice, the Dn will be the parameter windows defined before (either Jn or Jr^n), 
and Qn will be certain subsets of Jn or JJTn corresponding (under the phase-parameter 
map) to branches of the return map (in the case of Jn) or landings (in the case of 
Jr^n), whose behavior we want to avoid. We will then show that such bad events have 
summable 7-capacity in the phase space, which will yield the conclusion for Lebesgue 
measure of the parameter using PhPal (for landings) or PhPa2 (for returns). 

A.S.I. A simple application: torrential decay of geometry. — We will now illustrate 
the use of Lemma A.3 and the phase-parameter relation with an estimate on the decay 
of geometry. More precisely, we will consider the scaling factor 

_ |/n+ll  
71 ' \In\ • 

The scaling factor is a particularly important parameter in the subsequent analysis: 
all statistical estimates that follow will be related to cn. 
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One initial information on the scaling factors is provided by the following result of 
Lyubich: 

Theorem A.4 (see [LI]). — If f is simple than there exists C > 0, A < 1 such that 
Cn <C\". 

We will now show that, with total probability, the decay of cn is much faster than 
exponential. To express this decay, let us consider the tower function defined by 
recursion T(l) = 2, T(n + 1) = 2T("\ We will show that, with total probability, the 
cn decrease torrentially to 0, that is, there exists k > 0 such that c~l > T(n — k) for 
n big enough. More precisely, we will show that c~)rl behaves as an exponential of 
(a bounded power of) c"1. 

This very fast decay implies that the landing map to In+\ is essentially a very high 
iterate of the return map to In (since it takes a long time to hit a very small interval). 
This very high iteration time will allow us to conclude that the characteristics (say, 
return time) of each level tend to be better behaved than in the previous one due to 
fast convergence to some average (some kind of Law of Large Numbers). The fact 
that we must deal with qs-capacity instead of Lebesgue measure will essentially reflect 
in the presence of errors terms (whose size depend on 7) in certain exponents in the 
above description. 

In order to estimate cn, we first consider the related quantity sn = \Sn\Rn(0))\, 
which denotes the number of times the critical orbit visits In before hitting In+\. 

If the critical orbit behaved as a sequence of random points (uniformly distributed 
with respect to Lebesgue), the expectation of this first hitting time should be c~l. 
More relevant for us, the distribution of the first hitting time (for the random model) 
should be concentrated about c~l: with large probability (say, less than 2~n), the first 
hitting time is in some "neighborhood" of c~l (say, [4r1lc~l,Anc~1]). The correspond­
ing statement for our actual dynamical system is that the distribution of \Sn\x)\, 
with respect to Lebesgue measure on x G In is concentrated around c"1, which can 
be easily checked by the reader: the estimates are not significantly affected in the 
non-random case. 

However, due to the nature of the phase-parameter relation, we must estimate the 
distribution of \Sn\x)\ in terms of capacities. This will affect drastically the esti­
mates. To understand why, keep in mind that 7-qs maps are only Holder (with some 
constant bounded from below by b~l), so they can potentially distort the logarithm 
of the ratio between In+i and In by such a constant. Aside from this problem, the 
information we need can be computed quite easily and is summarized below. 

Lemma A.5. — With total probability, for all n sufficiently big we have 

(i) 

(2) 

P27(|d(n)(*)l 0 | J „ ) < * C 
P2j(\én)(x)\^k\In)<e-k<. 
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We also have 

(3) W|d(n)(*)| O l / , ? 1 ) < fcc«, 

(4) P2y(\én)(x)\>k\IÏ)<e-k<-». 

This lemma corresponds to Lemma 4.2 of [AMI]. 
The phase-parameter lemmas (specially PhPal) allow us to transfer the last pair of 

estimates to the parameter space: for n sufficiently big, (Lebesgue) most parameters 
in J„n satisfy 

c7:a/2 < st) < c~2b. 

Here 'most' means that the complement has probability bounded by c"/3. But cn 
(and thus c"/3) decays exponentially for every simple map (by Theorem A.4). So 

Cn* < oo and we are able to apply Lemma A.3 to obtain the following: 

Lemma A.6. — With total probability, for n sufficiently big we have 

-a/2 < < -2b 

This lemma corresponds to Lemma 4.3 of [AMI]. 

Remark A. 1. — This result implies easily torrential decay of cn: lnc"^ can be easily 
bounded from below by Ksn for some universal K > 0, and thus for big n, 

- 1 ^ r 
Cn+1 > 6 N • 

A.4. Derivatives. — We proceed to estimate derivatives of branches of the return 
map. All lemmas in this section can be proved using the same argument as in [AMI]. 

The first step is to exclude the possibility of a 'too recurrent' or 'too low' return. 
It is analogous to Lemma 4.8 of [AMI], being a simple application of PhPa2. 

Lemma AJ. — With total probability, the distance between Rn(0) and dlv U {0} is at 
least \In\n~b. In particular Rn(0) £ Iv + i for all n large enough. 

Recall that the distortion of a diffeomorphism 6 on an interval T is defined by 

DistfrMT) 
3upT \Dd>\ 
infr \Dè\ ' 

Lemma A.7 allows us to start estimating the distortion of iterates of / . The 
following estimate corresponds to Lemma 4.9 of [AMI]. It is based on the fact that 
the distortion of branches of return maps is due to the position of the branch with 
respect to the critical point. Using PhPal, we are able to give polynomial lower bounds 
on the distance between the critical point with respect to non-central branches, which 
are valid with total probability. 

Lemma A.8. — With total probability, for n big enough and j ^ 0 

Dist(/|//,) ^ nb. 
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The following estimate is analogous to Lemma 4.10 of [AMI]. It is based on the 
previous one and the observation that return branches are torrentially expansive in 
average (from the decay of geometry). 

Lemma A.9. — With total probability, for n big enough and for all d€ £1 

Dist(#£) ^ nb. 

In particular, for n big enough, \DRn(x)\ > 2 if x G Uj^odn. 

Lemma A.9 gives estimates of derivatives under iterates of Rn. To obtain estimates 
of derivatives under iterates of / , we will need the following very general result of 
Guckenheimer which shows that quadratic maps are hyperbolic away from critical 
points and parabolic points (this actually generalizes to very general one-dimensional 
systems by a result of Mane), see [MvS]. We state just a consequence adapted to our 
particular setting. 

Theorem A.10. — Let f be a quadratic map without non-repelling periodic orbits (in 
particular if f is a simple map). For every e > 0, there exists C > 0, X > 1 such that 
if \fk(%)\ >e forO^k^m then Dfrn+l(x) > CX7n. 

With this information we are now able to give a lower bound on the derivative of 
iterates of / . The next lemma is identical to Lemma 4.11 of [AMI], and is based on 
the idea that full returns to sufficiently deep levels cause expansion (from the previous 
lemma), while the dynamics outside a definite neighborhood of the critical point is 
hyperbolic (by Theorem A. 10). 

Lemma A.ll. — With total probability, if n is sufficiently big and if x G LJn, j / 0; 
and Rn\In = fr, then forl^k^r, \Dfk(x)\ > \x\cl_x. 

A.5. How to deal with hyperbolicity. — Keeping in mind that our analysis of 
the statistical properties of the dynamics of / is made in terms of the induced return 
maps Rni we see that in order to estimate the hyperbolicity along the critical orbit 
(to obtain the Collet-Eckmann condition) we must have a convenient way to quantify 
the hyperbolicity of (for instance) non-central return branches. To do so, for j ^ 0, 
we define the quantity 

XJj) = inf 
xeiJr 

ln\DRn(x)\ 
q+q1q+q1 

We let An = inf^o An(j). 
To analyze the behavior of An, we start with the general information provided by 

Theorem A. 10. Coupled with exponential upper bounds on distortion for returns 
(which competes with torrential expansion of each non-central branch from the decay 
of cn), the hyperbolicity of / in the complement of 7„ + i immediately implies the 
following estimate (identical to Lemma 7.9 of [AMI]). 

Lemma A.12. — With total probability, for all n sufficiently big, Xn > 0. 
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The "minimum hyperbolicity" lim inf An of the parameters we will obtain will in 
fact be positive, as it follows from one of the properties of Collet-Eckmann parameters 
(uniform hyperbolicity on periodic orbits), together with our estimates on distortion. 

Our strategy however is not to show that the minimum hyperbolicity is positive, 
but that the typical value of Xn(j) stays big as n grows (and is in fact bigger than 
Ano/2 for n > no big). In this sense, it is convenient to think of \n(j) as a random 
variable whose distribution we are interested in. 

There is an inductive relation between the random variables Xn(j) for different 
values of n: this is related to the fact that if Rn(In+l) C Cn, d = ( j i , . . . , jm), we 
have i?n+i|/^+1 = Ln\Cn ° Rn\In+i- The hyperbolicity of the "landing part" Ln\Cn 
is essentially a weighted sum 

(A.l) YïlLi K{3i)rn{3i) 
EZLl rn(ji) 

So if the "return part" Rn\In+1 does not carry a big weight on the computation of 
An+i(j) (outside a set of branches with small 7-qs capacity), we can think of An+i(j) 
as distributed according to the weighted sum (A.l). This turns out to be the case 
as the return part does not affect much the denominator (time) and does not have 
a bad effect on the numerator (derivative). Indeed, in the next section we will see 
that the return time of Rn\I3n+l (given by vn) is much smaller (of order c"^) than 
the total return time Rn+i\I3nJrl (of order c"1). Moreover, if 7n+1 is outside a small 
neighborhood of 0, \DRn\IJn+1\ is bigger than 1. 

Since we also have to estimate the hyperbolicity of truncated branches (as the 
Collet-Eckmann condition is a condition along the full critical orbit, and not only at 
full returns), it will not be enough to just obtain that the distribution of Xn(j) 18 
concentrated around some value bigger than Ar?0/2. In order to state exactly what 
kind of hyperbolicity estimate we need, it is convenient to introduce a certain class of 
branches: good returns. 

We define the set of good returns G(no,n) CZ \ {0}, no, n G N, n ^ no as the set 
of all j such that 

Gl: (hyperbolic return) 

Xn{j) > An( 
1 + 2no_n 

2 
G2: (hyperbolicity in truncated return) for r-3/(n-l) ^ k ^ Tnij) we have 

inf 
ce 

In ID/*I 

sdr 
^ Ann 

\ _L 2no-n+l/2 

2ses 
2/(n-l) 

<+1<+1 
Of course we still have to show that the set of returns which fail to be good has 

small 7-qs capacity. In order to do so, we will construct explicitly a class of branches 
whose complement has small 7-qs capacity and then show that this class of branches 
is contained in good branches (see Lemma A.20). Before doing so, we must first 
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estimate the distribution of return times, since they have an important role in the 
computation of An(j). 

A.6. Distribution of return and landing times. — To estimate the distribution 
of return and landing times, it is convenient to also think of rn(j) and ln(j) as "random 
variables" which are related by some simple rules: if d = (ji, • • • ,jm) then ln(d) = 
zLl=i rn(ji) and rn+i(j) = vn + ln(d) where Rn(IJn+i) C Cn. In particular, since the 
distribution of \d^\ is concentrated around c~l which is torrentially big, the random 
variable ln behaves like a very large sum of random variables distributed as rn. On 
the other hand, rn+i should have distribution approximately like ln itself, once we 
show that vn does not make an important contribution. 

The main tool to do the actual analysis is to prove first a Large Deviation Estimate 
for rn using only the torrential decay of cn, and then show that such estimate leads 
to much more precise control of the subsequent levels. 

Since the transition between different levels introduces some distortion (although 
torrentially small), we are forced to deal with a sequence of quasisymmetric constants 
in our estimates: instead of just estimating 7-qs capacities for some fixed 7, we must 
consider a sequence jn = 7(71 + l)/n and 7,,. = j(2n -f 3)/(2n + 1). The basic idea 
is that control of the distribution of rn with respect to 7n-capacities will provide 
control of the distribution of ln with respect to jn capacities which in turn will allow 
to estimate the distribution of rn+i with respect to 7n+i capacities. Notice that 
inf 7n = inf 7n = 7. (This ideas are introduced in §5 of [AMI].) 

Although very technical, this part is very similar to the analysis made on (the 
several lemmas of) §6 of [AMI] (differing only by change of constants), so we will 
only state the final estimate which summarizes the results of that section and provide 
a short outline of the argument. 

Lemma A.13. — With total probability, for all n sufficiently large we have 

(1) pyn{ln{x) < C~S\In) < C"" * < <%~S, With S > 0, 
(2) Pjn(ln(x) < c~s\I^) < c£--s, with s>0, 
(3) p7yn(ln(x) > c~s\In) < ë~c™ s, with s > b, 
(4) p^n(ln(x) > c~s\Inn) < e~c"~\ with s > b, 
(5) pln(rn(x) < c'l^In) < cf_7 < c^Z.slf with s>0, 

(6) pln(rn(x) > cn^1|/n) < e c'n~1 < e c'n-1 with s > b. 

(7) C f l ) { x ) c - ^ K r M K c - ^ . 
(8)Cfl){x)< vn < c-^. 

(9) c-'\ <Hcddddd-l)<c~tl. 

A.6.1. Outline of the proof of Lemma A.13. — The estimates from below are rela­
tively easy. Estimates (1) and (2) follow directly from ln(d) > |d| and Lemma A.5. 
Estimate (5) follows from (1) using the relation between rn+i and ln. The estimate 
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from below in (8) follows from (2) and PhPal, and the estimate from below in (7) fol­
lows from (5) and PhPa2. The estimate from below on (9) was computed on Remark 
A.l. 

The estimates from above are much more delicate. In what follows we will ignore 
the difference between In and , since it is not substantial for the argument. The 
key estimate is (6), which says that the tail pln(rn(x) > k) decays exponentially fast 
(in k) with some specific rate (polynomial in cn_i). On the other hand, decay with 
some rate is easy: / is hyperbolic outside In+\ (see Theorem A. 10), so there exists 
some (small) an > 0 with pln(rn(x) > kci^1) < e~k for k ^ 1. This exponential 
decay implies that it is very unlikely that a large sequence d = (j i , . . . , jm) will have 
a landing time ln(d) = ]C"=i rn(ji) much bigger than mo"1. 

From this relation between rn and Zn, we see that there exists some j3n with 
p^n(ln(x) > k(5~l) < e~k\ and moreover we can estimate [3n in terms of an and 
the size of a typical Sn>) (which is given by a polynomial on c"1): /J"1 is bounded 
by a polynomial (this polynomial error is related to 7) on <\'n'lcn 1. From the relation 
between ln and rn+i we obtain an estimate on an+i in terms of vn and /3n, which we 
can rewrite in terms of vn, cn and c\n:Cfl){x)— vn is bounded by some polynomial on 

•11 n 
Since p^n (lTl(x) > Pnlc~l) is summable (by definition of /3n), it follows that vn+\ — 

vn is bounded by a polynomial on a~1c~1 with total probability (use PhPal), in 
particular, for n big we can bound cn+i with a polynomial on a~lc~l. 

In particular, if o^1 > c"1, o:"^ is bounded by a polynomial in o,̂ "1. Although 
initially we did not have any control on the value of an, we know that c~̂ x behaves 
as an exponential on c"1 (torrential growth), so eventually it catches up with ol~1'. 
for n big, c~l > cx~l. 

So for n big o"1 can be bounded exclusively by a polynomial on c~\1 as stated in 
(6). This automatically implies the estimate from above in (7) using PhPa2. Since 
(3~l and vn+\ are bounded by a polynomial on a~lc~l we obtain (3) and (4) and the 
estimate from above in (8). 

Since fVl1 expands 7n+i to an interval of size at least 2-n|I„.|, and the derivative 
of / is bounded by 4, we have 2nc~1 < 4''", so the estimate from above on (9) follows 
from the estimate from above in (8). 

A.7. Constructing hyperbolic branches. — In this section we show by an in­
ductive process that the great majority of branches are reasonably hyperbolic (good 
branches). In order to do that, in the following subsection, we define some classes of 
branches with 'very good' distribution of times and which are not too close to the 
critical point. The definition of 'very good' distribution of times has an inductive 
component: they are composition of many 'very good' branches of the previous level. 
The fact that most branches are 'very good' is related to the validity of some kind of 
Law of Large Numbers estimate. The inductive definition will guarantee that the 'very 
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good' distribution of times holds in all scales and allows us to preserve hyperbolicity 
from one step to the other: very good branches are good. 

Remark A.2. — The several classes of branches that we will define do not correspond 
exactly to the same classes in [AMI], although classes with the same name have 
essentially the same function in the proof. There are some non-trivial steps to make 
this adaptation work, since the previous proof uses strongly small quasisymrnetric 
constants. This will lead to consideration of extra classes below (bad returns and fast 
landings). 

Remark A3. — This section contains the main modifications with respect to [AMI] 
(precisely the introduction of bad returns and fast landings). The role of those mod­
ifications is explained in Remark A.4. 

A.7.1. Standard landings. — Let us define the set of standard landings at time n, 
LS(n) C Q as the set of all d= (j\,..., jrn) satisfying the following: 

LSI: (m is not too small or large) Cn^2 < m < c~2l\ 
LS2: (No very large times) rn(jt) < c~t\ for all i. 
LS3: (Short times are sparse in large enough initial segments) For c~l\ ^ k ^ m 

#{1 ^ i < k, ru(ji) < C } < (6 • 2n)c"/_f1k 
We also define the set of fast landings at time n, LF(n) C Q by the following 

conditions 
LF1: (m is small) m < cTla^2. 
LS2: (No very large times) rn(jt) < c~t\ for all i. 
It is easy to convince oneself that most landings are standard. Indeed, the dis­

tribution of \d('n\x)\ is concentrated around c~l as requested by LSI. Moreover, 
branches with very large times (larger than c~*\) are so few that even a long se­
quence (j i , . . . ,jrn) with m < c^2\ is not likely to contain such an event, as required 
by LS2. Finally, the Law of Large Numbers indicates that a long sequence (ji,..., jrn) 
will seldom contain a proportion of short times much bigger than their frequency as 
given by Lemma A. 13, as required by LS3. 

Since fast landings are not standard, they must be few. However, they correspond 
to most of the branches which are not standard. The reason for this comes from 
the requirements of LSI, which imposes two conditions (an upper and a lower bound 
on m). The upper bound condition is much more rarely violated (by one exponential 
order of magnitude) than the lower bound (just check Lemma A.5). Fast landings 
essentially capture the violations of the lower bound (LF1). 

The actual estimates for the frequency of standard and fast landings are provided 
below. They can be obtained from the estimates of distribution of return times 
(contained in Lemma A. 13) following the general lines of Lemma 7.1 of [AMI]. This 
step is purely dynamical (no further parameter exclusion is made). 
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Lemma A.14. — With total probability, for all n sufficiently big, 
(1) P^(d{n)(x) i LS(n)\In) < ciP/2, 
(2) PrJd(n)(x) i LS(n)uLF(n)\In) < cf /2, 

(3) p,„(rf(n)(x)^L5(n)|/.-")<4/3/2. 
(4) Pî,Xén\x) i LS(n) U LF(n)\I?) < c f /2 . 

A.1.2. Very good returns, bad returns and excellent landings. — Define the set of 
very good returns, VG(no,ri) C Z \ {0}, no $C n G N and the set of bad returns, 
B(riQ,n) C Z \ {0}, no ^ ri G N, by induction as follows. We let V G (no, no) = 
Z \ {0}, B(no*no) = 0 and supposing VG(no,n) and B(rio,n) defined, define the set 
of excellent landings LE(rio,n) C LS(n) satisfying the following extra assumptions. 

LEI: (Not very good moments are sparse in large enough initial segments) For all 
cn~i <k^m 

#{1 ^ k, ji i VG(n0,n)} < (6 • 2n)<L1fc, 

LE2: (Bad moments are sparse in large enough initial segments) For all cn < 
k ^ m 

#{1 ^ / ^ k, j , £ B(no.v)} < (6 • TK^k, 

We define VG(rio, n-hl) as the set of j such that Rn(In+l) = Cn with d G LE (no, n) 
and the extra condition: 

VG: (distant from 0) The distance of In+1 to 0 is bigger than c"h 

And we define B(no, n +1) as the set of j ^ VG(n0, n+1) such that Rn(Ln+i) = C/f 
with d ^ LF(n). 

Very good returns are designed to carry hyperbolicity from level to level: since 
they are composed of many very good returns of the previous level (LEI), and are 
not too close to 0 (VG), they should keep most of the hyperbolicity of level no (given 
by Ano > 0). For this to work, we must control the distribution of return times of 
the previous level inside a very good branch. The risky situation is the presence of 
not very good branches which have a large return time: those are contained in the 
bad branches defined above. It turns out that they can not spoil the hyperbolicity 
because they are too few (LE2). This basic idea will be carried out in detail through 
a series of lemmas. 

Very good and bad returns can be estimated in an inductive fashion analogously 
to the estimate of Lemmas 7.2 and 7.3 of [AMI]: initially all branches are very 
good and no branches are bad, and as n grows the Law of Large Numbers indicates 
that conditions LEI and LE2 should be rarely violated so that very good branches 
should continue to be frequent and bad branches rare. This estimate is again purely 
dynamical. 

Lemma A.15. — With total probability, for all no sufficiently big, 

(1) P7„0'(")(a0 t VG(n0,n)\In) < < U , 
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(2)p7„(j(n)(a:)GB(no,n)|/„)<2^'I1, 
(3) Pr„(én}(x) i LE(n0,n)\I„) < c*'/5, 
(4) Pr„(én)(x) i LE(nihn) U LF(n)\In) < c'/,". 
(5) p:ldddddAén\x)£LE(n{).n)\IJ;')<iï/\ 

This translates immediately using PhPa2 to a parameter estimate analogous to 
Lemma 7.4 of [AMI]: 

Lemma A.16. — With total probability, for all no big enough, for all n big enough 
(depending on no), rn G VG(iiQ,n). 

Before going on we will need two simple estimates: one is for the return time of 
very good branches and another is for the return time of branches which are neither 
very good or bad. The first of those estimates is analogous to Lemma 7.5 of [AMI], 
and follows directly from the definitions of very good and bad branches. 

Lemma A.17. —~ With total probability, for all no big enough and for all n ^ no, if 
j G VG(nihn + 1) then 

m < n, + iO') < "icnU\> 

where, as usual, rn is such that Rn (L'n ; , ) = Cfi and d = (ji,.. . ,jin). 

Lemma A. 18. - With total probability for all no sufficiently big, if n > JIQ, if j ^ 
VG(niUn) U B(n(hn) then r,(j) < ^l{2c~\ 

Proof. Indeed, if j £ VG(n{un) U B{n{),ii) then Rn-i{IJ) C C(^_1 with d G 

LF(n — 1). By definition of fast landing, ln-i{d) < cr,"(2c~^2' SO 

/•„ (j ) = v„ _!+/„_, (d) < C f c ; f 2 + c-^• • 

At this stage we have most of the tools to show that almost every parameter is 
"Collet-Eckmann at first returns", that is. \Dfkn(f(0))\ is exponentially big for the 
sequence kn of first landings of /(0) in In. To obtain the full Collet-Eckmann condition 
(exponential growth for all /c), we will need to analyze truncations of branches or 
landings, that is, we will consider iterates of the type fk\Lf[ (or fk\Cn) for k less then 
the return time rn(j) (or ln(d)). 

We now show that very good branches are well behaved when truncated at a 
reasonably big time. Here "well behaved'1 means "spending most of the time in very 
good branches of the previous level'*. So if we are able to control the hyperbolicity 
of very good branches in some level we will have a good possibility of controlling 
truncated very good branches in the next level. This lemma corresponds to Lemma 
7.6 of [AMI], but the proof must be modified, with the use of bad returns and fast 
landings. 
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Lemma A.19. — With total probability, for all no big enough and for all n ^ no, the 
following holds. 

Let j <E VG(no,n + 1), as usual let Rn(In+1) C C | and d= ( j i , . . . , j,n). Let rrik 
be biqqest possible with 

Vn -f 
ddv 

3 = 1 
rn(ji) ^ k 

(the amount of full returns to level n before time k) and let 
Br. = 

d+d21d 
jieVGino.n) 

d+d1r+d 

(the total time spent in full returns to level n which are very good before time k) Then 
l-0k/k<cddddddf/* ifk>c?ln. 

Proof. — Let us estimate first the time %k which is not spent on non-critical full 
returns: 

ii. — k — 
d 

.7 = 1 
rn(ji). 

This corresponds exactly to vn plus some incomplete part of the return jm.h+i. This 
part can be bounded by c~h_l + en M\ (use the estimate of vn and LS2 to estimate the 
incomplete part). 

Using LS2 we conclude now that 

» ' k > ( i - C A > ' , ; , / " 
so m.k is not too small. 

Let us now estimate the contribution hk from bad full returns jt. The number of 
such returns must be less than c"'J^{mk by LE2 and the estimate on m/,. By LS2 their 
total time is at most c\"l^ M)rnk. < m/,.. 

The non very good full returns on the other hand can be estimated by LEI (given 
the estimate on m/,), they are at most c"_1n^:- So we can estimate the total time h-
of non very good or bad full returns (with time less then c~"{2''c~̂ 2 DY Lemma A. 18) 
bv 

a2 -a/2 -4/; 
c//„1cr/_i cn_2mk, while /j/,. can be estimated from below by 
/i (I/4 \ —<i/4 

It is easy to see then that ik/i~)k <C c"_j, hk/ftk <. c",/-\- We also have 

% 
< 2r"2/2 

So (tk + hk + lk)//Jk is less then c"J'f. Since ik + hk + lk + jjk = k we have 1 - ;3k/k < 
in+ hi +lk)à/d1 
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Remark A.4. — This lemma illustrates the main reason why the original argument of 
[AMI] must be changed in order to deal with big quasisymmetric constants. Indeed, 
in [AMI], we do not need to split the branches which are not very good in bad 
branches and otherwise (fast). The reason is that in [AMI] the distribution of rn(j) 
is concentrated in a much narrower window around c~^1 (say, {c~]_\2e, c~]_\2e)). In 
particular, in a large sequence {ji,-••,jk) (which should be thought as an initial 
segment of an excellent landing), we can estimate the proportion of the total return 
time due to very good branches essentially by considering the proportion of very good 
branches in the sequence. 

In this Appendix, the distribution of rn(j) is located in a much larger window 
(cn-i> cn-i)- The risky situation is to have a large sequence (jq,..., jk) with a large 
proportion of very good branches, but whose return time is near the bottom of the 
window (c"^), while the not very good branches in the sequence have all return time 
near the top (c"^). In this case, the proportion of the total time due to very good 
branches could be very small. 

The solution given in this Appendix is based on the idea that the not very good 
branches with large time (bad branches) are really very few: most of the not very 
good branches are indeed fast. Paying attention to this asymmetry, we can indeed 
prove that in such a sequence ( j i , . . . , jk), most of the total time is due to very good 
branches. 

This argument (most branches with atypical time are fast) is based implicitly in the 
following asymmetry which appeared already in our first statistical estimate, Lemma 
A.5. when we showed that the distribution of \d{n)(x)\ is concentrated around a, : 
there is a big difference (one extra exponential) in the estimates on the upper tail (7-qs 
capacity of {|d(n)(x)| > c~kb}) and the lower tail (7-qs capacity of {\én\x) < c~ka}). 

(Essentially the same problem, with the same solution, appears in Lemma A.22.) 

Now we conclude that very good (that is, most) branches are good, justifying our 
previous hints. 

LemmaA.20. — With total probability, for UQ big enough and for all n > no, 
VG(riQ,ri) C G(n0,n). 

The proof is the same as for Lemma 7.10 of [AMI], the two main features of 
very good branches exploited here are their good distribution of return times and 
the condition VG which allows us to avoid drastic losses of derivative due to starting 
very close to the critical point. The argument is by induction: first, all very good 
branches of level no satisfy condition Gl of a good branch, that is, a full return is 
very hyperbolic (this follows from the definition of Ano). Then, supposing that all 
very good branches of level n satisfy Gl, we conclude that very good branches of 
level n + 1 have enough hyperbolic branches in its composition (even if truncated) to 
satisfy both conditions Gl and G2. 
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A.7.3. Cool landings. — As we hinted in the last section, very good branches play 
the role of building blocks of hyperbolicity. We must now show that the critical point 
spends most of its time in very good branches. To do so, we will define a class of 
landings which are composed by many very good branches, but which are controlled 
to an ever greater detail than excellent landings. Their design will allow to estimate 
their hyperbolicity if truncated outside a relatively small initial segment. 

We define the set of cool landings LC(no,n) C ft, no,n G N, n ) no as the set of 
all d= ( j i , . . . ,jm) in LE(no, n) satisfying 

LCI: (Starts very good) jL G VG(no,n), 1 ̂  i ^ c °_J2. 
LC2: (Not very good moments are sparse in large enough initial segments) For all 

cn_i < k 

#{1 <C i < k, rn(ji) < c~a_{2} < (6 • 2n)c?/_31fc, 

LC3: (Bad moments are sparse in large enough initial segments) For cn_/l ^ k ^ m 

#{1 ^ i ^ k, j-i e B(rkhn)} < (6 • 2n)cnJ\k, 

LC4: (Starts with no bad moments) jt £ B(n0ln), 1 ̂  i ^ cn-{2. 

As in Lemma 7.7 of [AMI], cool landings are frequent and we get the following 
parameter estimate analogous to Lemma 7.8 of [AMI]. The ideas of this estimate 
are quite similar to the case of standard landings. 

Lemma A.21. — With total probability, for all no big enough, for all n big enough we 
have Rn(0) G LC(no,n). 

Let us now show that cool landings inherit hyperbolicity from very good returns. 
This result corresponds to Lemma 7.11 of [AMI], but the proof of this fact needs 
adjustments for big quasisymmetric constants, so we provide it here. 

Lemma A.22. — With total probability, if no is sufficiently big, for all n sufficiently 
big, if d G L(7(n0,n) then for all cn '{\{" ̂  < k ^ ln(d), 

inf 
C77 

lnlD/A:l 
k 

An0 
d2 

Proof. — Fix such d G LC(rio, n), and let d = ( j i , . . . , jrn). 
Let 

a A; = inf 
ci 

\n\Dfk\ 
k 

Analogously to Lemma A. 19, we define mk as the number of full returns before k, 
that is, the biggest integer such that 

d+d1r 

•i. = l 

TnUi) < k. 
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We define 

0k. = 
><< 

jieVG{n0,n+l) 

rn(ji), 

(counting the time up to k spent in complete very good returns) and 

ik = k-
d 

v 
rn(ji)-

(counting the time in the incomplete return at k). 
Let us then consider two cases: small ra^ (^k < c~l/2) and otherwise. 
Case 1 (rrik < cnl/'2). The idea of the first case is that all full returns are very 

good by LCI, and the incomplete time is also part of a very good return. 
Since full very good returns are very hyperbolic by Gl and very good returns are 

good, we just have to worry about possibly losing hyperbolicity in the incomplete 
time. To control this, we introduce the queue (or tail) qk = mîcd In\Dflk o fk~n'\. 
We have —q^ < — In(c,1/^^^ ) by VG and Lemma A. 11. Let us split again in two 
cases: ik big or otherwise. 

Subcase la (ik > c~t{^n l^). If the incomplete time is big, we can use G2 to 
estimate the hyperbolicity of the incomplete time (which is part of a very good return). 
The reader can easily check the estimate in this case. 

Subcase lb (ik < cn-^T1 ^ ) . If the incomplete time is not big, we can not use G2 
to estimate qk, but in this case ik is much less than k: since k > c~t!i"~l\ at least 
one return was completed {nik ^ 1). and since it must be very good we conclude that 
k > c~"{2 by LSI, so 

dd1d+d1r 
(1 + 2n,)-") 

2 
k - //, 

k 
-Qk An̂  

k 2 * 
— 2 I'2 

Case 2 (nik > c„"/ ). For an incomplete time we still have —q^ < — ln(cr7c,̂ _1), 
so -({k/k < cn ;, . 

Arguing as in Lemma A. 19, we split k — dk — ik (time of full returns which are 
not very good) in part relative to bad returns hk and in part relative to returns that 
are not very good or bad (which must be fast) //,-. Using LC3 and LC4 to bound the 
number of bad returns and LS2 to bound their time, we get 

_{2c;ib2(6-2")cti+x 

and using LCI and LC2 we have 

lk<c:a_{2c;ib2(6-2")ctimk, 
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By LCI and LC2 again, using LSI to estimate the time of a very good return by 
c~N-'I , we have that (3k > C~"Ç2RRIK/2, thus we get 

(A.2) hk + lk 
th 

/ a2/2 

which is very small. 

On the other hand, (3k > -a/2 -a2 12 
-•N-L CV-1 2 by hypothesis on m/,.. Let us split in three 

cases according to the behavior of ik.. 
Subcase 2a (ik not very good or bad). In this case, ik -a 12 -M) , so ih l3k is very 

small, and we actually have 1 — (3k (k a2/IX) 
N-L Since very good returns are good and 

even not very good returns have derivative at least 1, 

(A.3) _{2c;ib2(6-2")cti 
1 + 2 

2 
0k 
k 

-Qk 
k 

Ar/„ 
2 

Subcase 2b (ik very good). If ik is very good and ik > <"n-i • we can reason as 
in Subcase la that G2 can be used for the estimate of qk so that we have 

Ok > A„0 
1 + 2n<)-" 

2 
A- , Ù: An() A.„0 
k k 2 2 

by (A.2). 
If ù- ^ c~t^n~l\ tlien ù/A- is very small and so 1 — {%jk < c'n/l(\ and we obtain 

(as in Subcase 2a) estimate (A.3). 
Subcase 2c (ik bad). If ik is bad, by LC4 we have that m/, > c.~"'{2, but ik < C'C'^ 

by LS2, so ik/f3k is very small again and we have 1 — (3k/k < cani\{\ so estimate (A.3) 
applies and we are done. • 

A.8. Collet-Eckmann. — Since the critical point always falls in cool landings (see 
Lemma A.21), the Collet-Eckmann condition follows easily from Lemma A.22 (which 
guarantees gain of derivative after large truncations), together with Lemma A. 11, 
which controls loss of derivative at small truncations. This argument is identical to 
the one in §8.1 of [AMI], but we reproduce it here for the convenience of the reader. 

Lat 

ak = 
ln|ZV*(/(0))) 

k 
and en = a1!n_i. 

It is easy to see that if no is big enough such that both Lemmas A.21 and A.22 we 
obtain for n big enough that 

_{2c;ib2(6-2" d+d1d 
VN+I - 1 

, An vn^i — vn 
2 VN+I - 1 

and so 

(A.4) lim inf e.n 
N—+oc< 

v 

2 
Let now vn - Kk < vn+1 - 1. Define qk = In\Dfk-Vn(fVn(0))\. 
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Assume first that k < vn Hh cn^l\l *\ From LCI we know that rn is very good, 
so by LSI we have rn(rn) > cn^{2, so k is in the middle of this branch (that is, 
vn ^ k ^ vn + rn{rn) - 1). Using that \Rn(0)\ > \ln\/2n (by Lemma A.7), we get by 
Lemma A.11 that —qk < — ln(2~ncn_ic^_1). We then get from vn > c~^1 that 

(A.5) w+w1w w+w12w 
k 

-Qk ^ 
kd 1 -

using Lemma A.22 we get Iik>vn + c-t{in-1) 

_{2c;ib2(< V„ — 1 A„M k — VTI + 1 
k 2 k 

(A.6) 

Estimates (A.4), (A.5), and (A.6) imply that lim inf ak > Ano/2 and so / is Collet-
Eckmann. 

A.9. Recurrence. — To show that the critical point is polynomially recurrent, 
we can follow the same lines from [AMI]. First we look at the essentially Markov 
process Rn\(In \ 7n+i), which shows that with total probability, most (in the 7-qs 
sense) points in In approach 0 with a polynomial rate (the exponent must be chosen 
according to 7) until the first time they fall in Jn+i. More precisely, we show (after 
transferring to the parameter) the following estimate (analogous to Corollary 8.3 of 
[AMI]). 

Lemma A.23. — With total probability, for n big enough and for 1 ^ i ^ sri, 

In K ( 0 ) | 
In c,,._i) 

:b2 1 + ln(i) 
l n ( C ) 

To obtain the polynomial recurrence for / we relate the return times in terms of Rn 
to return times in terms of / . In other words, letting k, be such that R!n(0) = /A;'(0), 
we must relate k, and i. It is enough to do the estimate for a cool landing and we 
obtain the following estimate (as in Corollary 8.5 of [AMI]). 

Lemma A.24. — With total probability, for n big enough and for 1 ̂  i ^ sn, 

în(fci) 
in(c:M 

> a/3 1 + Hi) 
ln(c,7ii 

Let now v„ ^ k < v„+1. If |/*:(0)| < k~:ilji we have /A:(0) G /„ and so k = A:, for 
some i. It follows from Lemmas A.23 and A.24 tha t 

|/FC'(0)|>fc-3" . 

This concludes the proof of polynomial recurrence. We notice that polynomial lower 
bounds are easily obtained: considering |it!„.(0)| = |/?'n(0)| < cn-i and using vn < 
cn-i we S'et 

lim sup 
7)—>OC 

in i r^roii 
Inn 

^ a. 

ces 
1 

On * 
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GEOMETRY OF 
MULTI-DIMENSIONAL DISPERSING BILLIARDS 

by 

Péter Bálint, Nikolai Chernov, Domokos Szász & Imre Péter Tóth 

Abstract. — Geometric properties of multi-dimensional dispersing billiards are studied 
in this paper. On the one hand, non-smooth behaviour in the singularity subman­
ifolds of the system is discovered (this discovery applies to the more general class 
of semi-dispersing billiards as well). On the other hand, a self-contained geometric 
description for unstable manifolds is given, together with the proof of important reg­
ularity properties. All these issues are highly relevant to studying the ergodic and 
statistical behaviour of the dynamics. 

1. Introduction 
Let Q be an open connected domain in Wl or on the eZ-dimensional torus T(i. 

Assume that the boundary dQ consists of a finite number of Ck smooth (k ^ 3) 
compact hypersurfaces (possibly, with boundary). Now let a pointwise particle move 
freely (along a geodesic line with constant velocity) in Q and reflect elastically at the 
boundary ÔQ (by the classical rule "t he angle of incidence is equal to the angle of 
reflection'*). This is what is commonly refered to as a billiard dynamical system. 

Billiards make an important class in the modern theory of dynamical systems. 
Many classical and quantum models in physics belong to this class, most notably, 
the Lorentz gas [Si] and hard ball gases studied as early as the XIX century by 
L. Boltzmann [Bo]. 

The periodic Lorentz process is obtained by fixing a finite number of disjoint convex 
bodies B\, Bs C Td with smooth boundary and putting the moving particle in 
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the exterior domain Q = Td \ (UBlt). This system models the motion of an electron 
among a periodic array of molecules in a metal, as it was introduced by H. Lorentz 
in 1905. 

Mathematical studies of billiards have begun long ago. Ya. Sinai in his seminal 
paper of 1970 [Si] described the first large class of billiards with truly chaotic behavior 
— with nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing, 
and (as was later discovered by G. Gallavotti and D. Ornstein [GO]) the Bernoulli 
property. Sinai billiards are defined in two dimensions (d — 2), i.e. for Q C t2 or 
Q c T 2 , and the boundary of Q must be concave (i.e., convex inward Q), similarly to 
the Lorentz process (where the bodies BL are convex). Due to the geometric concavity, 
the boundary dQ scatters or disperses bundles of geodesic lines falling upon it, see 
Fig. 1. For this reason, Sinai billiards are said to be dispersing. 

FIGURE 1. Scattering effect 

Lorentz processes in two dimension have been studied very thoroughly since 1970. 
Many fine ergodic and statistical properties have been established by various re­
searchers, including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann, 
G. Gallavotti, A. Krâmli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simanyi, Ya. Sinai, 
D. Szâsz, and others (see the references). The latest major result for this model (the 
exponential decay of correlations) was obtained by L.-S. Young [Yl]. The success in 
these studies had significant impact on modern statistical mechanics. The methods 
and ideas originally developed for the planar Lorentz process were applied to many 
other classes of physical models — see recent reviews by Cohen, Gallavotti, Ruelle 
and Young [GC, Ru, Y2]. 

On the other hand, the progress in the study of the multidimensional Lorentz 
process (where d > 2) has been much slower and somewhat controversial. Relatively 
few papers were published covering specifically the case d > 2, especially in contrast 
to the big number of works on the 2-D case. Furthermore, the arguments in the 
published articles were usually rather sketchy, as in Chernov's paper [Chi]. It was 
commonly assumed that the geometric properties of the multidimensional Lorentz 
process were essentially similar to those of the 2-D system, and so the basic methods 
of study should be extended from 2-D to any dimension at little cost. Thus, the 
authors rarely elaborated on details. 
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Recent discoveries proved that spatial dispersing billiards are very much different 
from planar ones. Bunimovich and Rehâcek studies of astigmatism [BR], in the 
somewhat different context of focusing billiards, emphasized the known fact that 
the billiard trajectories may focus very rapidly in one plane and very slowly in the 
orthogonal planes. Astigmatism is unique to 3-D (and higher dimensional) billiards, 
it cannot occur on a plane. It plays an improtant role in higher dimensional focusing 
billiards as investigated in [BR]. 

In this paper we consider multidimensional dispersing billiards. We show that 
multi-dimensionality has great effect on the dynamics in the dispersing case as well 
— the system requires much more elaborated study than the 2D process. What is 
worse (cf. section 3), the singularity manifolds in the phase space of a spatial Lorentz 
process have pathologies — points exist where the sectional curvature is unbounded 
(blows up). Actually, singularity manifolds are in these pathologies — which form 
two-codimensional submanifolds of them — not even differentiable. Indeed, as it 
will be shown in section 3, the unit normal vector to the singularity manifold has 
different directional limits at the pathological points — the geometry is pretty much 
like the classical Whitney umbrella x2z — y2 in ]Rl*. This phenomenon is again unique 
to billiards in dimension d ^ 3. All these facts call for a revision of some earlier 
arguments and results on the multidimensional Lorentz process. This is much the 
more important since the studies of physically relevant multiparticle systems will 
require the same methods as those used for the high-dimensional Lorentz process. 

Throughout the paper we conduct a systematic study of the geometry of the Lorentz 
process in any dimension d > 2, aiming at the future investigation of its ergodic and 
statistical properties (in particular, the decay of correlations). First we describe our 
recent discovery — pathological behavior of singularity manifolds — and show exactly 
where it occurs (in order to "localize the pathology"). Then we develop tools for the 
study of basic geometric properties of the dynamics — operator techniques in the 
Poincaré section of the phase space. By applying these geometric tools we provide 
rigorous proofs of important properties for unstable manifolds: we show absolute 
continuity, distorsion bounds, curvature bounds and alignment. All these facts are 
absolutely important for the studies of ergodic and statistical properties of the Lorentz 
gas, but strangely enough, their proofs (in the case of dimension d > 2) have never 
been published before. Lastly, we show how our results can be used in the study of 
the decay of correlations, which will be done in a separate paper. 

2. Preliminaries 

There are two ways of considering billiard dynamics, the motion of a point particle 
in a connected, compact domain Q C Td = W1 /Ul, d ^ 2 with a piecewise (73-smooth 
boundary. The phase space of the flow can be identified with the unit tangent bundle 
over Q — the configuration space is Q while the phase space is M :— Q x §ri_1 
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(Sfi_1 is the surface of the unit d-ball). In other words, every phase point x is of the 
form (g, v) where q G Q and v G Sd_1. We denote the flow by S* : —oo < t < oo. 

On the other hand there is a naturally defined cross-section for this flow. The 
phase space of the Poincaré section map (or simply, of the billiard map) is M : = 
dQ x §!fr\ where + means that we only take into account the hemisphere of the 
outgoing velocities (for a more precise definition of the phase space, see subsection 4.1). 
For any x G M we set t+(x) := inf{£ > 0 | Sfx G M}, and T+x := St+^x (of course, 
T+ : A4 —» A-/). Then the Poincaré section map T : M —> M is defined as follows: 
Tx := T+x for x G Af. 

We require the following properties from the system to be studied: 

- Our billiard is dispersing (a Sinai-billiard): each 0Qt is strictly convex (had we 
required convexity only, our billiard would be semi-dispersing). 

~ The scat terers B, are disjoint. This ensures the C^-smoothness of the boundary 
dQ, i.e. that there are no corner points. 

- The condition that the horizon is finite says exactly that t+(x) < oc for any 
x G M. 

Finally, some more notation. Let n(q) be the unit normal vector of the boundary 
component 0Qt at q G dQr directed inwards Q. Then the invariant Liouville-measure 
of the discretized map is 

(2.1) dfi(q, v) := const. (n(q). v) dq dv 

where dq is the induced Riemannian measure on DQ whereas dv is the Lebesgue-
measure on 1. 

Throughout the paper, unless otherwise emphasized, we are considering this dis­
cretized dynamics. 

2.1. Fronts. — In billiard theory, several basic constructions and concepts are 
based on the notion of a local orthogonal manifold, which - for simplicity - we will 
call front. A front W is defined in the whole phase space rather than in the Poincaré 
section. Take a smooth 1-codim submanifold E of the whole configuration space, and 
add the unit normal vector v(r) of this submanifold at every point r as a velocity, 
continuously. Consequently, at every point the velocity points to the same side of the 
submanifold E. Then 

W = {(r.c(r)) \ reE}cM, 
where v : E —> §r/_1 is continuous (smooth) and v _L E at every point of E. The 
derivative of this function c, called B plays a crucial role: dv = Bdr for tangent 
vectors (dr,dv) of the front. B acts on the tangent plane TrE of E, and takes its 
values from the tangent plane J — Tvrr)^>d~l of the velocity sphere. These are both 
naturally embedded in the configuration space Q, and can be identified through this 
embedding. So we just write B : J J. B is nothing else than the curvature 
operator of the submanifold E. Yet we will prefer to call it second fundamental 
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form (s.f.f.), in order to avoid confusion with other curvatures that are coming up. 
Obviously, B is symmetric. 

Notice that fronts remain fronts during time evolution - at least locally, and apart 
from some singularity lines. 

When we talk about a front, we sometimes think of it as the part of the (whole) 
phase space just described (for example, when we talk about time evolution under 
the flow), but sometimes just as the submanifold E (for example, when we talk about 
the tangent space or the curvature of the front). This should cause no confusion. 

2.2. Evolution of fronts. — The evolution of a front during free propagation (that 
is, from one collision to the other) is described by the formula 

(2.2) B~ = ({B+yl +Tld)~l 
where r is the length of the free run between the two collisions, B+ is the s.f.f. of the 
front just after the first collision, and B^ is the s.f.f. just before the next one. 

For this formula — and the next one — to make sense, we need to identify the 
tangent planes of the front at different moments of time. Let T — TrdQ be the 
tangent plane of the scatterer at a collision point r. Just like J\ T is viewed together 
with its natural embedding into Q. The identification of different J\ is done in the 
usual way (cf. [SCh], [KSSz]): 

- by translation parallel to v from one collision to the other. 
- by reflection with respect to T (or, equivalently, by projection parallel to n) from 

pre-collision to post-collision moments. 
Notation for the unitary operator that executes this identification is U. however, 

for brevity, we will often omit U if it causes no confusion. 
At a moment of collision the curvature of the front changes lioii-coiitiiiuously (the 

front is "scat tered"): 
(2.3) B+ = B~ + 29 = B~ + 2(n, v)V*KV 
where(1) 

- B : J' —> J is the s.f.f. just before collision, 
- B+ :/T —> J is the s.f.f. iust after collision, 
- V : J —* T is the projection parallel to v: Vdv = dv [dvji) r 

dd.+d1 
G T for dv G J , 

- F* : T —> J (the adjoint of V) is the projection parallel to n: V*dq = dq — 
d+d1d (sssn.v) n e J for dq G T, 

K : T —> T is the s.f.f. of the scatterer at the collision point, 
- {n,v) = cos(/;, where 0 G [0, | ] is the so-called collision angle, 
- and the operator 9 : J —» J\ 9 = (n,v)V*KV is the so-called collision term. 

(^This convention on the collision term (0 = (n, v)V*K) will be useful in the geometric description 
of the phase space, see section 4. 
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2.3. Singularities . —- As it can be easily seen the billiard map T is discontin­
uous at pre-images of tangential reflections. Indeed, consider the set of tangential 
reflections: 

So :=dM = {(q,v) \ (v,n(q)) = 0} 

(which is nothing else than the boundary of the phase space). Its pre-images are: 

Sk=T-kS0 (k > 0). 

(From section 4 on it will be useful to introduce the notation for the set of all 
singularities up to /c, i.e. = Uk=lSt.) The map T is discontinuous precisely at the 
points of <Si(= S^). Furthermore — related to the smallness of the term (n, v) — the 
derivative DT is unbounded near «Si. As a consequence, to get a well-behaved dynam­
ics, the phase space is partitioned into homogeneity layers by introducing secondary 
singularities (for a detailed discussion see [BSC2] or subsection 4.1). 

To consider higher iterates of the dynamics — the maps Tk (k > 1) — the sets Sk­
ene to be investigated. We view all these sets as (finite unioins of) topologically em­
bedded one codimensional compact submanifolds with boundary. They have smooth 
manifold structure in the interior, however, in the multi-dimensional case (as it is 
demonstrated in subsection 3.1) the behaviour at the boundary is irregular (the cur­
vature diverges). This behaviour is related to the fact that in the multi-dimensional 
case, in addition to unbounded derivatives, the dynamics is highly non-isotropic near 
singularities. 

3. Geometry of singularities 

In several papers that appeared, singularities were assumed — either explicitely or 
implicitely — to consist of smooth 1-codim submanifolds of the phase space. Often, 
even a uniform bound on the curvature was assumed, independent of the order of 
the singularity. This is true in 2-dimensional billiards. However, it is not true in 
higher dimensions. In this section we present a counter-example in a 3-dimensional 
dispersing billiard. In correspondence with the notations introduced in subsection 2.3, 
we will use the notation S\ and S2 for the set of those phase points the trajectories of 
which have tangential first and second collisions, respectively. We will demonstrate 
that already the curvature of £2 has no upper bound, i.e. the curvature blows up near 
a point where the singularity manifold is not even differentiable. 

To avoid confusion let us make one further remark. As already mentioned, billiard 
dynamics has singularities: points where the billiard map is not continuous. These 
singularities occur on one codimensional submanifolds of the phase space. The de­
velopment of the theory is based on considering connected and essentially smooth 
components of the singularity manifolds. The recently discovered phenomenon de­
scribed below shows that these components are, indeed, only essentially smooth. On 
certain two-codimensional submanifolds of them pathologies occur: singularities in 
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lim lim 
y-^0vy^0 ax 

d 
r(x,y,vx,Vy)\x=v-o. 

(we will see that it is important to fix x = vx = 0). 
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the sense of algebraic singularity theory. To avoid confusion we will refer to these sin­
gular two-codimensional submanifolds as pathologies (in contrast to the singularities, 
the singularity manifolds of the dynamics themselves). 

3.1. Counter-example for bounded curvature . — In this section we prove that 
even in a 3D dispersing billiard, already the two-step singularities have no bounded 
curvature. The proof is rather implicit. We start with the indirect assumption that 
the curvature is bounded, and find that the two-step singularity intersects the one-
step singularity tangentially at every point of their intersection, except for a one-
codimensional degeneracy, where the intersection is not tangent. However — as a 
consequence of bounded curvature — our indirect asumption implies that the unit 
normal vector of S2 is a continuously differentiate function of its base point. Thus 
the set of those points where the two singularity manifolds intersect non-tangentially 
is open in S\ fl S2- This way we get a contradiction. 

Consider the situation demonstrated on Figure 2. To perform as transparent an 
argument as possible 

- the parameters on the figure and in the calculations below are different, 
- the first scatterer, the surface where the trajectories start out is a plane — thus 

it is not strictly convex. 
Nevertheless the reader can easily see that these modifications have no real signif­
icance. We are in 3 dimensions, so take a standard 3D Cartesian coordinate sys­
tem. Let the first 'scatterer' be the {z — 0} plane. Let the second scatterer be 
the sphere with centre 0\ = (0,-1,1) and radius R — 1. Let the third scatterer 
be the sphere with centre O2 = (1,0,2) and radius R — 1. We look at the com­
ponent of the phase space corresponding to the first scatterer, near the phase point 
(xo = 0,2/0 = 0,vxo = 0,1^0 — 0). Of course, vzo = 1, and the trajectory is the 
z axis. We are interested in the singularity manifold belonging to a tangent second 
collision. To describe this, let D G M4 be the set of those points (x,y,vx,vy) the 
trajectories of which hit the first sphere. Let r : D —> R be the distance of the 
trajectory and O2. That is, the singularity manifold we are looking at is the set 
S2 = {(x,y,vx,vy) G D I r(x,y,vx,vy) = 1}. So, if we want to construct the normal 
vector of the singularity manifold, we just need to calculate the gradient of r. We will 
directly calculate the partial derivatives. Since (xo,yo,VxQ,vyo) = (0,0,0,0) is on the 
boundary of D, we can only hope to find one-side partial derivatives. What is even 
worse: (x,y,vx,vy) = (x, 0,0,0) G D only if x — 0, so we cannot differentiate with 
respect to x. The same is true for vx. What we can do is take these partial derivatives 
at the points (0,y,0,vy) and than the limits 
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plane 

ni 

sphere i 
n2 sphere2 

FIGURE 2. The studied billiard configuration 

We start with the indirect assumption that S2 has bounded curvature. This implies 
that the unit normal vector of S2 is a continuously differentiate function of its base 
point with bounded derivative. In this way it makes sense to define the normal vector 
of £2 on the boundary points of S2 as the limit of (unit) normal vectors on the interior. 
For 11s the indirect Rssnrrmtion will mpa.n that the limit 

eradrfO, 0.0.0) : = lim 
_{2c;ib

2(6-2")cti+kswksw 

gradrfx, y, vr, vu) 

exists. 
The closer a reflection is to tangential, the less effect it has on the "neutral" di­

rection. In our case, the reflection on the first sphere causes "no scattering" in the 
x direction. That is, let (v'x,vf ,vfz) be the velocity after the first collision. The "rr" 
direction being the "neutral" direction means that 

lim -
dvd 

d 
vrd 

i/.(0,y,0,0) = l 

which implies that 

lim 
2/—0 c 

d_ 
9vx 

(0,y,0,0) = -2 

Similarly, 

lim 
3/-C 

d_ 
9 * * 

0,^,0,0) = 0 

which imnlies that 

lim 
d 

y-+0 0VX 
•r(0,y,0,0) = - 1 . 

ASTÉRISQUE 286 



GEOMETRY OF MULTI-DIMENSIONAL DISPERSING BILLIARDS 127 

According to our indirect assumption, this means that 
d 

dx 
( 0 , 0 , 0 , 0 ) = - ! and d 

dvx 
0,0.0,0) = -2 . 

For the other two components, fix x — vx = 0. So the trajectory is in the {x = 0} 
plane, the scattering is just a 2D problem. We will calculate the one-side partial 
derivatives ^ r ( 0 , 0,0,0) and ^ r ( 0 , 0 ,0 ,0 ) . 

To find out about v', let cp be the angle of the first sphere's radius at the first 
collision point and the (0,1,0) vector. If vy — 0, then 1 — cos0 = —y (y < 0, of 
course), which, in leading order, gives 0 = ^/—2y. It can be seen that after the 
reflection v'y = sin 20. That is, the trajectory is far from being a line. However, it is 
diverted in the very direction which - in the first order - does not affect its distance 
from 0'2- Instead, in leading terms, r2 = 1 + (v'y)2. 

Putting these together, we get r = y/1 — 8y, that is, 
d 
8y v 

- (0 .0 .0 .01 = -4 . 

If we fix y = 0, the exact same consideration gives r = yjl — Svy, that is, 
d 

ÔVy 
(0,0,0,0) = -4 

as well. All together, we get 

gradr(0, 0,0,0) = ( -1 , -4 , -2 , -4 ) . 
This is (the limit of) the normal vector of the singularity at the point (x — 0, y — 0, 
Vx = 0, vy = 0). 

It is easy to see that the singularity corresponding to a tangent reflection on the 
first sphere has the normal vector 

grcxdr0(x'y,vx,vv) = (0,-1,0,-1). 

That is, the two singularities are not tangent at this point. 
The previous consideration for grad r also shows that this behaviour is exceptional. 

It is the result of the fact that in the first order r was unaffected by v'. If the 
radii at the reflection points (x,y,z) — (0,0,1) and (x,y,z) = (0,0,2) had not been 
orthogonal, the result would have been 

dr 
dy 

= oo. dr 
dd = oo, 

corresponding to a normal vector (0,1,0,1), meaning that the two singularities are 
tangent. Non-tangentiallity of the two singularities is a one-codimensional degeneracy. 

As we have pointed out at the beginning of the subsection, this contradicts our 
indirect assumption on the boundedness of the curvature. In this way we have only 
proven that the assumption was false. However, we believe that the picture of the 
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singularity suggested above is correct, the singularities are tangent almost everywhere, 
and their curvature only blows up near the pathological points described. 

3.2. Discussion. -— For a rigorous proof of some finer properties (such as correla­
tion decay) of multi-dimensional dispersing billiards it seems essential to characterize 
singularities in a systematic way. Such a characterization should be subject to future 
research (some possible ideas related to this question are discussed in [BChSzT]). 
In this subsection we do not plan to give rigorous proofs; we would like to point 
out some analogies to and emphasize some interesting features of the irregularities 
demonstrated above. 

The Whitney-umbrella. — Consider the one-codimensional set in R3 defined by the 
polynomial equation: 

fel/,2)Gddddl3|A = 2/2}, 
the Whitney-umbrella (for more details see [AGV]). 'One half of this set (its inter­
section with the quadrants xy ^ 0) is shown on Figure 3. For simplicity we use the 
notations: W2 for this 'half-umbrella' and W\ for the {z = 0} plane. Clearly 

- W2 terminates on W\ (in the points of the x-axis), thus W\ n W2 = dW2-
- at every point of the x-axis where x 7̂  0 the intersection of W2 and W\ is 

tangential. 
- W2 has smooth manifold structure in its interior; nevertheless, near the origin its 

curvature is unbounded as the normal vector changes rapidly (actually, the normal 
vector does not even have a well-defined limit at the origin). 

FIGURE 3. The Whitney Umbrella 

By these properties the geometry of singularities described in subsection 3.1 is 
analogous to Figure 3.̂ 2̂  W\ corresponds to Si, W2 corresponds to c>2 while the 

(2)To be precise, the situation on Figure 3. has one dimension less — in contrast to W2 the singu­
larities are 3-dimensional manifolds — but this has little significance to the analogy. 
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origin corresponds to the set of those doubly tangential reflections where the two 
radii are orthogonal (this set is one-codimensional in S\ Pi £2). 

Generalization I. — First let us consider the first-step singularity S\. By the nota­
tions of the previous subsection we may characterize the points of (x, y, vx, vy) belong­
ing to S\ easily. These are precisely those for which d(x, y, vx,vy) = 1, where .,.,.) 
is the distance of the point 0\ = (0, —1,1) from the line that passes through the point 
(x, y, 0) and has direction specified by the velocity components vx,vy. As d is a smooth 
function of its variables there is no curvature blow-up for S\ — and, for first-step sin­
gularities in general. Thus £2 is a pre-image of a smooth one-codimensional compact 
submanifold, however, the map under which the pre-image is taken has unbounded 
derivatives and is highly an-isotropic. Curvature blow-up occurs only at those points 
of £2 (near its intersection with <Si) where the map behaves irregularly. 

In correspondence with the above observation we conjecture that curvature blow­
up is not a peculiar feature of £2 , it is present in the pre-images of one-codimensional 
smooth submanifolds in general. Consider for example two-step secondary singulari­
ties T2 — those phase points for which at the second iterate instead of tangentiality 
the collision angle ((n,v)) is a given constant (see section 4 for more detail). In the 
specific example of subsection 3.1 such secondary singular trajectories are precisely 
those that touch tangentially a sphere of radius Rf (Rf < 1) at the second iterate. It 
is clear that the geometry of T2 is completely analogous to 52-

Generalization II. — Our calculations in subsection 3.1 do not use any speciality 
of the explicitly given billiard configuration. Doubly tangential reflections for which 
the normal vectors of the scatterers at the consecutive collisions are orthogonal can 
be found in any multi-dimensional semi-dispersing billiard. Near such trajectories a 
similar calculation can be performed. 

Generalization III. — All in all, the discovered pathology is general. In addition, the 
higher step singularities Sk] (k ^ 3) may show even wilder behaviour near their inter­
sections. Nevertheless, we strongly conjecture that a nice geometric characterization 
— suggested by the analogy with the Whitney-umbrella in the case of — can be 
performed. This question is subject to future research. 

4. Geometric properties of u-manifolds 

Throughout sections 4 and 5 we investigate u-manifolds (their counterparts, s-
manifolds can be treated similarly), u-manifolds are d — 1-dimensional submanifolds 
of the phase space with tangent planes in the (appropriately defined) unstable cone. 
Possibly the most important tools in studying ergodic and statistical properties, local 
unstable manifolds (or LUMs for short) are suitable limits of u-manifolds (for details 
see [ Y l , Ch2, Ch3]). In contrast to the 2d — 3-dimensional (one-codimensional) 
singularity manifolds, u-manifolds behave in a uniformly regular way. In section 4 
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we introduce a natural geometrical description that turns out to be very useful for 
studying multi-dimensional dispersing billiards. Proofs for some basic properties of 
u-manifolds are also included. More involved technicalities — that play a crucial role 
in investigating the statistical behaviour of a billiard system (cf. [Yl, Ch2, Ch3]) 
— are discussed in section 5. 

4.1. The phase space. — We shall work with the discrete time (collision to col­
lision) dynamical system, thus our phase space — which we denote by M — is the 
Poincaré phase space, the collection of possible collision points supplied with outgoing 
velocities. Mathematically this space is a bundle over the scatterers <9Q, the fibers of 
which consist of the possible outgoing velocities. At every base point q the fiber is the 
(d — l)-dimensional hemisphere with boundary which we shall denote by S+-1. Note 
that this bundle can be viewed as a subbundle (of vectors of unit length) in the direct 
sum of the tangent and normal bundles over the scatterers. Thus, by the Riemannian 
structure of <9Q, there is a naturally defined parallel translation on our bundle (see 
the description of the tangent plane below). Local coordinates on our phase space will 
be denoted x — (q,v). Additionally we shall use all the notations for local quantities 
introduced in the previous section(s) (eg. n(q), qo). 

Some conventions. — Throughout the paper the superscripts and ' — ' denote post-
and precollisional values, respectively, for certain functions, operators, hyperplanes 
etc. (e.g. v+ and v~). The dynamics and its derivative are denoted by T and DT, 
respectively. In correspondence with x\ — Tx (ôx\ — DTSx), the subscript T' means 
the value of a certain quantity at the first iterate. We shall usually prime the points, 
trajectories, operators etc. infinitesimally close to a reference point or trajectory. 

The tangent plane. — At any point x — (q, v) the tangent plane has a natural splitting 
TXM = TqdQ+TvSd~l = T+J. The two planes J and T are related by the projection 
operator V : J —> T and its adjoint V* (for their description see the section 2). 

For two points x = (q,v) and x' — (q'' ,v') infinitesimally close, the tangent vector 
pointing from x to x' is 

Sx = (ôq, Sv) ôq = q — qôv — Q0~1v/ — v 

where Qo is the rotator that takes T to T'. Up to first order: 

(4.1) Q0u = u - (u,dn)n + (u,n)dn for u G Rd; 

(4.2) Q0~1u = u + (u,dn)n - (u,n)dn for u G Rd 

and thus: 
Sv — dv — (v,n)V*dn 

Here dv = v' — v and dn = n' — n. These formulas execute (up to first order) the 
parallel translation of the bundle M. 
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4.2. Important submanifolds 
Singularity manifolds. — The dynamics T is discontinuous, the singularity manifold 
is <S(1) = Si = T_1«So where S0 = dM = {(q,v) \ (v,n) = 0} is just the boundary of 
the phase space. However, as already mentioned, to get a well-behaved dynamics we 
should partition the original phase space into homogeneity layers: 

h = {(q,v) e M I (fc + l)"2 < (v,n(q)) < k~2} and 

(4.3) I0 = {(q,v)eM\(v,n(q))>kô2} 

Here the integer constant ko is arbitrary. The boundary of this partitioned phase 
space, M is 

T0 = dM = ur=ko{(q,v)\(v,n)=k-2} 
Correspondingly, the count ably many manifolds in the set = T~1To are the so 
called secondary singularities. For a higher iterate of the dynamics, Tn, the primary 
and secondary singularities are, respectively: 

g(n) _ £(1) y rp-lg(l) y . . . j.-n+l£(l). p(n) _ p(l) y j--lp(l) y . . . j—n + lpO^ 

Fronts. — As introduced in section 2, (d — l)-dimensional submanifolds in Q, the 
configurational space of the flow, everywhere orthogonal to the flow direction will 
be referred to as fronts. When supplied with their normal vectors v (the velocities), 
fronts can be viewed as submanifolds of the flow phase space A4. Vectors (in the 
tangent bundle over Ai) tangent to fronts are denoted by (dr,dv) = (dr,Bdr) where 
B is the second fundamental form (s.f.f.) of our submanifold in Q (here, of course, 
dr _L v). 

Let us consider a front directly after (before) collision. It leaves a trace of velocities 
on the scatterer which can be viewed either as a (unit) vector field over <9Q or as a 
(d — 1)- dimensional submanifold in the Poincaré phase space. Direct calculations 
show that for a vector (dr, dv) = (dr, B+dr), tangent to the post-collisional front, the 
corresponding vector in the Poincaré phase space is Sx — (ôq, Ôv) where: 

Sq = Vdr; 

Sv — dv — (v,n)V*dn — dv — (v,n)V* KSq 

(4.4) = [B+Vl - (v, n)V*K)ôq - Fôq. 

The operator F : T •—• J plays an important role, it describes the tangent plane of 
our (d — l)-dimensional manifold in the Poincaré phase space. 

A front will be called convex/diverging whenever B+ is positive semi-definite 
(B+ ^ 0). Convex fronts remain convex under time evolution. The convex cone 
consists of those tangent vectors ôx that are tangent to some convex front. 

Lemma 4.1. — There are constants mo € N and 4>o < TT/2 that depend only on the 
billiard domain itself such that out of mo consecutive reflections at least for one of 
them for the collison angle qt> we have: ab < (J)Q. 
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Proof. — Let us assume the contrary: there is a sequence xn of phase points which 
have trajectories with n consecutive collisions, all with collision angle 0 > TT/2 — 1/n. 
By compactness there is a limit phase point with infinitely many consecutive tangen­
tial reflections. This, however, contradicts the finite horizon assumption. • 

u-manifolds and homogeneous u-mamfolds. — We shall consider the mo-image of 
the convex cone as our unstable cone. A manifold is a u-manifold if it has all tangent 
vectors in C%> u-manifolds remain u-manifolds as C% is invariant under the positive 
powers of T. 

A u-manifold is said to be homogeneous if it is contained in one homogeneity layer. 
There will be two metrics used on u-manifolds. Before their introduction we men­

tion that for any vector dz in T or in J \\dz\\ is the notation for the Euclidean length 
and for oprators O acting on these spaces ||0|| denotes the naturally induced norm. 

The p-metric 
\\Sx\\p=\\dr\\ 

measures distances on the corresponding front while the Euclidean metric 

\\ôx\\e = ^ôq2 + ôv2 

in the Poincaré phase space. A priori the p-metric seems to be degenerate but as 
we shall see it is a good metric on the cone C7̂ . Time evolution in the p-metric is 
given by: 

(4.5) H&ciHp = ||dn|| = \\dr + Tdv\\ = \\(I + TB+)dr\\ 
Some further notation. — For any u-manifold W: the quantities J^(x) and J^y(x) 
are the Jacobians of the dynamics in the p- and e-metrics, respectively. 

Remark. — All the above introduced concepts have their natural counterparts (with 
the corresponding nice properties) for the reversed dynamics: concave/convergent 
fronts, s-manifolds etc. 

4.3. Properties of F and equivalence of metrics 
Some conventions. — Constants that depend only on the billiard table itself (like 
7~mim 0o---) will be called global constants. 

For an invertible operator O the meaning of the relations c -< O -< C is that there 
are two positive global constants C\ and C<2 that bound the norms of the operator 
and its inverse: 

\\0\\<CX; lio-1!! < ^2-
Note that the operator O is not necessarily symmetric, even more, it need not be an 
automorphism. The values of the constants C\ and C2 are usually irrelevant. 

Two quantities / and g defined on the unstable cones will be called equivalent 
(/ ~ g) if there are some global constants C\ and C2 such that C\f ^ g ^ C2/. 
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Throughout this subsection we restrict our considerations on the vectors of the 
unstable cone. 

Sublemma 4.2. — Let us consider any u-front with incoming and outgoing s.f.f.-s B~ 
and , respectively. Then c -< B+ and c -< B~ -< C. 

Proof. — By the collision equations the operator f?+ — B~ is always positive semi-
definite, thus it is enough to prove c -< B~ -< C as it implies c -< B+. The upper 
bound is trivial by (2.2) and the lack of corner points (there is a lower bound on the 
free path: r ^ rm-m). Thus it remains to prove c B~, what is an easy consequence 
of Lemma 4.1. Indeed, our submanifold is an mo-iterate of a convex front . By 
the lemma out of these mo reflections there is definitely at least one with collision 
angle smaller than 0o- We shall denote the collision term that corresponds to this 
particular reflection by Go- Of course, c Oo as the spectrum of Bo is bounded below 
by &min cos 0o (here km-in is the lower bound on the spectrum of K — the curvature 
operator of the scatterers <9Q). Now let us consider any dr G J. By the evolution 
equations (2.2) and (2.3): 

{dr.B'dr) ^ (dr, ((Bo)"1 + m0rm^I)~'1dr) ^ ((/cmin cos 0O)_1 + m0rmax)_1 (dr, dr). 

Thus we have the desired lower bound. • 

Now we can formulate our most important technical lemma. 

Lemma 4.3. — Assume K' : T —• T and B' : J —> J are both symmetric, positive 
definite and c -< B'\K' -< C'. Then: 

c<B'V-x + (v,n)V*K' <C. 

Proof — The upper bound is obvious since \\V 1\\ = 1 and (i;, n)||F*|| = 1. 
By the definition of V, we have 

Vu — u - (u, n) 
(v,n) 

-v for u G J 

and 
V lu — u — (u, v)v for u G T 

Similarly, 

(4.6) V*u = u-
(u. v) 
(v, n) 

\ for u G T 

and 
(V*) 1u = u—(u,n)n for u£j 

It is then easy to arrive at 

(V*) 1V 1u — u — (u, v)v + (u, v)(v, n)n 

and 
(v, n)2VV*u = (v, n)2u + (u, v)v — (u, v)(v, n)n 
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Adding the two equations above yields 

(4.7) (F*)-1!/-1 + (v,n)2VV* - (1 + (v,n)2)I 

where / is the identity operator in T. 
Another useful observation: Since IK^')-1!! ^ C and IK^')"1!! ^ C for a global 

constant C > 0, all the eigenvalues of B' and K' are bounded below by c' = 1/C. 
Hence 

(4.8) (B'u,u) > c\\uf for a G J 

and 

(4.9) (Kfu,u) > c'\\u\\2 for M G 7 

Now, let u G T, \\u\\ = 1. Then HF-1^ < 1, and 

{B'V~lu+ {v,n)V*K'u,V-lu) = {B'V~lu, V~lu) + {v,n){K'u,u) 

Here all three scalar products are positive, hence 

(4.10) \\B'V-lu+ (v, n)V*K 'u\\ ^ c'\\V-lu\\ 

due to (4.8). Next, we have (v, n)\\V*u\\ ^ 1, and 

{B'V~lu + (v, n)V*Kfu, (v, n)V*u) = (B'V-lu, (v, n)V*u) + (K'u, (v, n)2VV*u) 

Substitution of (4.7) and using (4.9) gives 

WB'V^u + (v,n)V*K'u\\ ^ c\\u\\2 - c'WV^uW = c' - c " ^ - 1 ^ 

for some global constant c" > 0. Combining this with (4.10) yields 

\\B'V-lu+ {v,n)V*K'u\\ > c 

with c — c'/{1 + c"/c'). The lower bound is proved. • 

Corollary 4.4. — There are global constants c and C such that for any u-front c -< 
F -< C'. As a consequence, for all vectors of the unstable cone, ôx G C% the norm 
\\Sx\\e is uniformly equivalent to both \\Sq\\ and \\ôv\\. Furthermore, the p-metric is 
non-degenerate on the cone Cxl (nonzero vectors in Cx have nonzero p-length). 

Proof. — This is an easy application of Lemma 4.3 with B1 = B~ and K' = K (see 
also formula (4.4)). • 

Corollary 4.5. — The p-metric and the e-metric are equivalent in a 'dynamical' sense: 
for any Sx G Q ; \\DT6x\\p ~ ||<fa||e. 

Proof — Indeed, by the evolution equation (4.5): 

\\DTSx\\p = ||(J + TB+)dr\\ = + rJB+)y~1<5(?||. 
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Now we may apply Lemma 4.3 with K' = 2K and B' = I + rB~ (remember that the 
free path r is uniformly bounded from below and above). Together with Corollary 4.4 
we get: 

\\{I + TB+)V-Hq\\~\\8q\\~\\8x\\e. 
The two equations together give Corollary 4.5. • 

Before going into further details we would like to make an important remark. 

Remark 4.6. — From the next section on we turn to a closer investigation of u-
manifolds. We will see that — as long as the properties discussed in the rest of 
the paper are concerned — u-manifolds are no less regular in multi-dimensional bil­
liards than in the planar ones. This can be easily checked if our results are compared 
to those proved in the literature for the two-dimensional case, see especially [Ch2], 
Section 6 and the references cited there. 

Nevertheless, there are important differences from planar billiards in the way how 
u-manifolds are actually described. Anisotropy of the geometry is reflected in the 
use of linear operators. It is of course much more difficult to handle operators than 
numbers, thus the proof of the very same regularity properties becomes more technical 
as one switches from dimension two to three. 

4.4. Geometry and hyperbolicity of u-manifolds. — Now we would like to 
turn to the hyperbolic and geometric properties of the unstable cone. Unless otherwise 
stated, any vector Ox mentioned is an element of the u-cone C%-

Uniform hyperbolicity in the p-metric is guaranteed by the uniform bound r > Tm-in 
and Sublemma 4.2. Indeed: 

\\DT6x\\p = \\{Id + rB+)dr\\ > A\\ôx\\p. 

Here A > 1 is a global constant. On the other hand, by Sublemma 4.2 again (together 
with the evolution equations) for the (d— 1) eigenvalues of the symmetric operator B+: 

Ai-(cos0)_1; Xi ~ 1, z = 2 , . . . , d - l . 

As a consequence, for an arbitrary u-manifold W the Jacobian in the p-metric behaves 
as 

^ - ( c o s M ) - 1 . 
In the e-m,etric we have by Corollary 4.5: 

(4.11) \\DTn6x\\e > \\DTnSx\\p > A"_1||L>Tfe||p > CA"||fe||e. 

This implies that for a .sufficiently high fixed power of the dynamics, T\ = Tmi: 

(4.12) \\DTi6xWe > Ai\\Sx\\e with Ai > 1 global. 
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To calculate J^y(x) for any u-manifold W consider the operator G : T —> TXW 
that acts by the rule ôq (ôq,F(Sq)) = Sx. Then one can easily check that in our 
notation 

DT\w (x) = Gi o Vi o Ui o (I + TB+) O V"1 o G~l 
in correspondence with equation (4.5) that describes evolution in the p-metric. Now 
we may get a formula for the Jacobian in the e-metric: 

(4.13) J^(x) =detGi det V1 J^(x) (det V f 1 (det G)"1. 

We observe that 

(4.14) (det G)2 = det(J + FT) 

Indeed, there is an orthonormal basis in T and an orthonormal basis in J such that 
F : T J is represented, in those bases, by a diagonal matrix (this follows from the 
singular value decomposition theorem in linear algebra). For a diagonal matrix F, 
the relation (4.14) is easily verified by direct inspection. 

Now it is easy to see that there are global constants c and C such that: c < det G < 
G for the operator G at any u-manifold. Direct calculation gives: 

(4.15) Jew{x) ~ det(Vi) ~ (cos^i))"1. 

Let us consider a further restriction of DT onto a subspace R C TXW of the tangent 
plane. Applying the above argument for the restriction DT \R we get: 

(4.16) det(Dr|*)~det(Vi \w) 

where R' = (Vf1 o G^1 o DT)(R). 

Now we turn to some geometric properties of our submanifolds. Transversality 
— the property that the stable and unstable cones are uniformly transversal — is 
justified by the following theorem: 

Theorem 4.7. — The u-manifolds and s-manifolds in M are uniformly transversal. 
Precisely, there is a global constant Co > 0 such that for any u-manifold Wu and any 
s-manifold Ws at any point of intersection x G Wu Pi Ws the angle between Wu and 
Ws is greater than CQ. 

Proof. — We use the subscripts u and s to denote various quantities and operators 
related to the submanifolds Wu and WSl respectively. According to (4.4), 

Fu = UB-U-lV~l + (v,n)V*K 

and 
F8 =BfV~l - (^,n)V*K 

Note that the operator — Bf is symmetric, positive definite and satisfies c -< —Bf -< C 
(this is the counterpart of the previously established property c -< B~ -< C). Hence, 
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the operator B' := UBUU 1 — B+ is symmetric, positive definite and satisfies c -< 
B' < C. Now Lemma 4.3 implies 

(4.17) c<Fu-FS^C 

Next assume that Theorem 4.7 is false. Then, by using Corollary 4.4, one can easily 
conclude that for any e > 0 there are a u-manifold Wu, an s-manifold Ws intersecting 
Wu at some point x = (</, v), and a nonzero vector ôq G T such that 

\\Fu(ôq)-Fs(ôq)\\<e\\ôq\\ 

This clearly contradicts (4.17). Theorem 4.7 is proved. • 

Remark. — Observe that the above proof goes through even if instead of the s-
manifold Ws we have just an arbitrary convergent front Wo- Indeed, for the crucial 
equation (4.17) it is enough to have the upper bound — BQ -< C (which trivially holds 
for any convergent front Wo), the lower bound c -< —B+ — which is only true for 
s-manifolds — is, however, not essential. 

As a consequence we are able to prove the so-called alignment property. 

Corollary 4.8. — The u-manifolds are uniformly transversal to all the singularity man­
ifolds S C S^ and S C T^n\ n ^ 1. Precisely, there is a global constant Co > 0 such 
that for any u-manifold Wu intersecting any manifold S C S^ or S C at a point 
x there is a (d — 1)-dimensional submanifold S' C S through x such that the angle 
between Wu and S' is greater than c$. 

Proof. — We have S — T~kSo for some 1 ^ k ^ n and a domain So C So (or 
So C To). Let XQ = (qoiVo) = Tkx G So- Define a small (d — l)-dimensional 
submanifold S0 C So through XQ by S0 = {y = (r, v) G M \ v — QoVo}, where Qo is 
the rotator of Rd taking n(q0) to n(q), as defined by (4.1). 

First let us discuss the primary singularities (i.e. the case So C <So). We claim that 
S' = T~kSf0 is a limit, in C° metric, of a sequence of convergent fronts. Indeed, we 
first approximate S0 by a sequence of (d — l)-dimensional manifolds defined as 
follows. Pick a sequence of vectors G Sd~l such that —> vo as i —> oo and 
(vtf\n(q0)) > 0 for all i. Then we put = {y = (q, v) G M \ v = Qov(0l)}. For each 
submanifold SQ \ the tangent plane at every point (q,v) G is characterized by 
Sv = 0, hence F = 0 in our notation. According to (4.4), we now have UB~U~l = 
— {v,n)V*KV~l, which is a negative definite operator. So, the trajectories of SQ\ 
as they flow backward in time, make a convergent front. Therefore, T~kS^ is a 
convergent front for every i. As i —>• oo, these fronts converge to S; = T_/cS0, as we 
claimed. Now, Theorem 4.7 (in view of the remark above) completes the proof for 
the case of primary singularities. 
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In the secondary case (i.e. S C r^n^) the (d — l)-dimensional manifold S' = 
T~kS0 is a convergent front itself. Thus we may refer to the theorem and the remark 
directly. • 

Remark. — Recall that singularity manifolds are 2d — 3-dimensional. The above 
Corollary roughly states that there is a d — 1-dimensional subbundle in their tan­
gent bundle that lies in the stable cone field. However, the tangent space may behave 
wildly in the further d — 2 directions, in correspondence with the curvature blow-up 
discussed in section 3. 

5. Technical bounds on u-manifolds 
After introducing the basic structures and tools now we would like to turn to the 

discussion of some more complicated technical properties. Unless otherwise stated, 
all calculations refer to the unstable cone (field) and we use all other conven­
tions from the previous section as well (e.g. quantities corresponding to a trajectory 
infinitesimally close to a reference one are primed). 

Our main reference will be Lemma 4.3. Before discussing the important specific 
properties in the subsections, we record a few immediate consequences of this Lemma. 
For every u-manifold W, at every reflection we have 

(5.1; c -< B+V~l •< C. 

This bound has its adjoint version 

(5.2) c -< {v*y1B+ -< c. 

Let r be the time between the current and the next reflections (or, more generally, 
any number satisfying TM;N/10 < T ^ rmax). Then 

(5.3) (I + TB+W'1 -< C 

and we also have an adjoint version of (5.3) 

(5.4) c < (V*)~Hl + TB+) -< c. 

Note that if c -< A -< C for any operator A, then also c < A 1 -< C. Hence, all the 
above inequalities remain true for the inverse operators as well. For example, we have 

(5.5) (I + TB+)~1V* •< C and V(I + rB^)'1 < C. 

5.1. Curvature bounds on u-manifolds. — In this subsection we would like to 
prove that there is a uniform bound on the curvature of u-manifolds. More precisely 
we prove that the tangent plane of a u-manifold is a Lipschitz function of the base 
point, with a uniform (global) Lipschitz constant. The tangent plane is described by 
the operator F, thus we should prove that F depends smoothly enough on the base 
point. 
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First we will get the relevant curvature bounds in the phase space of the flow; in 
other words, we investigate the smoothness of the dependence for s.f.f.-s B that de­
scribe any front corresponding to some u-manifold (which we refer to as u-fronts for 
short). Let W be any such u-front and x = (r, v) G W. Let x' = (r1\v') G W be 
infinitesimally close to x, and dr = r' — r, dv — v' — v the infinitesimal displacement 
vectors in Q and Sd_1, respectively. Clearly, dr,dv G J and dv = [Byv(x)](dr). Con­
sider the evolution of the displacement vector (drt,dvt) = St(dr1dv). If no collisions 
occur on an interval (£, t + At), then dvt+At — dvt and 

(5.6) drt+At = drt + Atdvt = [7 + A*£t](drt) 

where Bt = T ^ ^ ) . By Sublemma 4.2 we know that (Btu,u) ^ &min|M|2 for all 
u e J. Therefore 

(5.7) \\drt+At\\ > (1 +At6min)||drt|| 

hence 

(5.8) ||(7 + AtB^W ^ (1 + AJ^nin)-1. 

Now consider a moment of reflection. The tangent vector dxt — (drt,dvt) changes 
discontinuously, in correspondence with (2.3): dr = <ir+ = Udr~ and dv — dv^ — 
U(dv~) + 0(<7r+). The two trajectories reflect at the points q,q' G dQ in the time 
moments t, t' , respectively. For the infinitesimal differences we use the notations 
dt G R, 5q G T and dn = n(q') — n(q) = Kôq G T. As to their relations: 

(5.9) ||dr+||< IÎ H; |di| < 2||<5ç||; ||dn|K dddd d and ||du|| < C\\Sq\\. 

Indeed, these bounds are straight consequences of the formulas (2.3) and (4.4), the 
boundedness of K, the triangle inequality \dt\ $C \\dq\\ + ||<ir+|| and our crucial 
Lemma 4.3. 

We need to compare the operators O and O' taken at the points (q,v) and (q1, t/), 
respectively. They act in the hyperplanes J and J' orthogonal to v and v', respec­
tively. Consider the operators V*,K, V entering (2.3) at the reference point (q,v) 
and their counterparts (V'Y, 7C, V at the nearby point (q'', v'). Let Q — Qv,v> be the 
rotation in Rd taking v to v' and leaving invariant all the vectors perpendicular to v 
and v'. Then Q takes J to J'. More specifically, Q acts by the rule 

(5.10) Qu = u — (u, dv)v for for u G J 

and its inverse acts by 

(5.11) Q~lu = u + (u,dv)v for îoruej' 

where the terms of the second order in dv are dropped. Furthermore we shall use 
another rotator, Qo, that takes T to T'\ this later one we have already introduced at 
the description of the parallel translation of the tangent bundle (see (4.1), (4.2)). 
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Instead of V and V*, it is now more convenient to work with more "tame" operators 
V = (v,n)V and V* = {v,n)V*. They act by the rules 

(5.12) Vu = (v,n)u — (u,n)v for uej 

and 

(5.13) V*u — (v,ri)u — (u,v)n for ueT 

Similar formulas hold for V and (V1)*, where v' ,n' are substituted for v,n. 
Put Al/ = Q^V'Q - V, AV* = Q^ÇV'YQo - V* and AK = Qô1K'Q0 - K. 

Direct calculations based on (5.12), (5.10) and (4.2) yield 

[AV](w) = {(dv, n) + (v, dn))u -f ((v, dn) — (u, n)(v, dn))n — (u, dn)v — (u, n)dv 

hence 

(5.14) ||AF|| ^2||<fo||+4||dri|| 

Note that AV* is the adjoint of AV, hence 

(5.15) ||AV*|| = \\AV\\ ^2| |dv| |+4| |dn| | 

Now, because <9Q is C3 smooth we have 

(5.16) \\AK\\ < C\\Sq\\ 

for some global constant C > 0. 

Sublemma 5.1. — There is a global constant C > 0 SIAC/I THAT FOR /or any r G 
(̂ min/10, Tmax) 

||(/ + rB+)-1(Q-1e'Q - e ) ( j + TS+)-1!! ^ c\\sq\\ 

Proof. — Recall that 

9 = 2(v,n)V*KV = 2(v,n)~1V*KV 

and similar formulas hold for 0'. We have, to the first order of \\Sq\\, 

Q~lQ'Q - 0 = 2((v',nf) - (v,n))V*KV 
(5.17) +2(v, n)-l(AV*KV + V*AKV + r ^ A V ) 

Note that (v* ,n') — (v,n) = ((dv,n) + (v,dn)), to the first order in \\Sq\\. Thus we can 
rewrite (5.17) in this way: 

Q-le'Q - 0 = 2((dv, n) + (v, dn))l/*iv V + 2(AV*KV + V*AKV + 1/*KAT/) 

Now we apply (5.5) and then (5.14)-(5.16) with (5.9). This completes the proof of 
the sublemma. • 
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After so much preparation we are ready to discuss curvature bounds for the flow, 
i.e. for u-fronts W. 

We need to estimate the 'derivative' of the second fundamental form Bw(x) with 
respect to x G W. The operator Bw(x) acts in the hyperplane J that also depends 
on x. For points x' = (r',vf) G W infinitesimally close to x, let Q = Qvy be the 
rotator in Rd that takes J to J' as defined by (5.10). Then the 'increment' of B is 
defined by Q~lB'Q — B, where B = B^{x) and B' = B^{x'). Now consider 

Dw{x) := max WQ^B'Q - B||/||dr|| 
dr^O 

where the maximum is taken over all nonzero infinitesimal displacement vectors dr = 
r' — r. 

Lemma 5.2 (Curvature bounds -1). — There is a constant Dmax such that for any di­
vergent wave front W and x G W there is a to — £o(W,x) such that for all t > to 
we have the following: if no collisions occur in the interval (t — rm-ul/2,t), then 
DWt(xt) max • 

Proof — For short, we put Dt = Dwt(xt). First we show that Dt decreases during 
free runs between collisions. 

Sublemma 5.3. — If there are no collisions in a time interval (t,t + At), then 

Dt+At <: (1 +A*6min)-3A 

Proof — For short, we put B = Bwt(xt) and B\ = %+At(xt+At)- Similarly, we 
define B' and B[ at the points x't and xft+At. Now, if A\ and A2 are two invertible 
linear operators acting in the same space, then obviously 

(5.18) Al-A2 = -A^Aî1 - A2:l)A2 

Applying this trick twice and using (2.2) yields 

Q-lB[Q - £1 = Q-\I + At B')~lQ [Q~lB'Q -£](/ + At B)~l 

Now the sublemma easily follows, with the help of (5.7) and (5.8). • 

Sublemma 5.4. — If there is a collision in a time interval [t,t + rmin/4), then 

A + W 2 <Dt + D 

where D > 0 is a global constant. 

Proof — Let s = t + rmin/2. Note that there are no collisions in the interval 
(t + "̂min/4, s). For short, we put B — Bws(xs) and B' = Bws(x's). Denote by 
t\ and t\ the moments of reflection of the trajectories of the points xt and x't, re­
spectively, that occur in the interval (£, t + rmin/4). Put dt = t[ — t\, r — s — t\ and 
T' = s — t[. Note that r > rmin/4 and r' > rm-m/A. Put B+ — Bwti+Q{xtl+o) and 
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B'+ = Byyt, (avi+o). -̂ et Q be the rotation of Rd that takes i; = vs to i/ = t^. It 
acts on J — JXs by the rule (5.10). Applying the trick (5.18) twice yields 

Q~lB'Q - B = -Q-lB'Q(dtI)B 

(5.19) +Q~\I + T'B'+^Q [Q-LB'+Q - B+] {I + rB+)'1 

Note that ||jE?|| ^ 1/r ^ 4/rmin, and likewise \\B'\\ ^ 4/rmin. Hence, 

|| -Q-lB'Q(dtI)B\\ <: C|rft| 

for a global constant C > 0. Next, we have B+ = UB-\J-X + 8 by (2.3), and, 
similarly J5/+ = U'B'~U'~l -f O'. Then we can further decompose the last term in 
(5.19): 

WQ^B'Q - B\\ < C\dt\ + \\Q-lU'B'-U'-yQ - UB'U^W 

+ \\Q-\I + T'B'+)-1Q \Q-LQ'Q - 9] (/ + TB+Y1 || 

Using Sublemma 5.1 (and its notation) gives, up to the first order in ||<5g||, 

\\Q-\I + T'B'+)-1Q [Q-'G'Q - 0] (/ + rB+y1 ii 

= ||(/ + rB+)-1[Q"1e 'Q-e] (I + rB+r^l^CWôqW 

Note that 

(5.20) \\Q~lU'B'-U'-lQ - UB~U-l\\ = \\Q^1B'-Ql - B~\\ 

where Qi = U'~1QU is the rotator that takes the hyperplane J~ = JXt 0 to J'~ = 
Jxit . We apply the trick (5.18) twice and act as in (5.19) and easily obtain 

'i_0 
(5.21) WQ^B'-Q, - £ T K \\B'~\\ \dt\ \\B~\\ + \\Q?B[Qi - B1\\ 

where B\ = B\^t(xt) and B[ = Bwt(x't). 
Combining the above estimates gives 

\\Q~lB'Q - B\\ <: C\dt\ + C\\6q\\ + \\Q^1B[Q1 - B^ 

for some global constant C > 0. Note that drs = (I + rB+)drJr = (I + TS+JV-1^ , 
and due to (5.3) we have ^ C||drs||. Lastly, |cfc| ^ 2\\Sq\\ by (5.9) and ||dr4|| < 
||drs||, which easily follows from (5.7). Therefore, 

\\Q~lB'Q - B\\l\\dra\\ H Q r ^ i Q i " Bi\\/\\drt\\ 

where D is a global constant, which proves the sublemma. • 

We now complete the proof of Lemma 5.2. Let t > 0 satisfy the condition of the 
Lemma, and n be the number of collisions on the interval (0,t). Then combining 
Sublemmas 5.3 and 5.4 gives 

Dt ^ ÀnA) + (l + A + --- + Àn)D 

where A = (1 + Tmin6miri/4)~3 < 1. Since D is a global constant, the Lemma follows. 
• 
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In all that follows we will only consider u-fronts W for which Dw(x) ^ £)max for all 
x G W provided the trajectory StxJ —rm[n/2 < t < 0, does not collide with dQ. As we 
are mainly interested in those u-manifolds that approximate LUM-s, this convention 
is justified by Lemma 5.2. Indeed, if the front W corresponds to a LUM, than S-tW 
is a divergent front for any t > 0. 

Remark. — A useful estimate (5.21) obtained in the proof of Sublemma 5.4 can now 
be restated. Recall that \dt\ ̂  2||<fy||,(q'\v')•(q'\v')^ l/r?nin (a global bound) and 

HQr^ iQi -Bi l l ^ Anax||drt|| 

by the above convention. Also note that \\drt\\ ^ IMr~|| = ( q ' \ v ' ) = ( q ' \ v ' ) ^ ll&zll-
Hence, 

(5.22) IIQ^B'-Qi-B-H ^ C\\dr\\ 

with a global constant C > 0. 

Finally we should prove the curvature bounds on u-manifolds W in the Poincaré 
phase space, in other words, that the 'derivative' of F along u-manifolds is uniformly 
bounded. 

We will denote by dist\v(x,y) the distance between x, y G W in the Euclidean 
metric on W. Let x = (q,v) and x' — (q'\v') be two infinitesimally close points of 
a u-manifold W, and F and F' the corresponding operators at x and x'. Using our 
previous notation, we consider the increment of F defined by Q~1F/QQ — F. Here 
again Qo is the rotator taking n = n(q) to n' = n(q') and Q is the rotator taking v 
to v'. 

Theorem 5.5 (Curvature bounds - II). — There is a global constant C > 0 such that 

\\Q-iF'Q0-F\\^C\\ôq\\ 

Proof — Using the second formula in (4.4) and our earlier notation V* = (v,n)V* 
gives 

WQ-'F'Qo - F\\ < \\Q-1V"QoQû1K"Q0 - V*K\\ 

+ \\Q-1U'B'-U'-1QQ-1V'-lQ0 - UB~U-lV-l\\ 

The first, term is bounded by C \\6q\\ for some global constant C > 0, according to 
our earlier estimates (5.15) and (5.16). To bound the second term we need two more 
estimates. One is 

(5.23) \\Q-lV'-lQ{)- V-l\\^±\\dv\\+2\\dn\\^C\\5q\\ 

which is proved just like (5.14) and (5.15), we omit the details. The other is 

(5.24) \\Q-lU'B'-U'-lQ - UB^U~l\\ <i C\\5q\\ 
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for a global constant C > 0. In the proof of Sublemma 5.4 we introduced the rotator 
Qi = Uf~lQU that takes the hyperplane J~ to J'~~. With this, (5.24) is simply 
equivalent to our early estimate (5.22). Theorem 5.5 is now proved. • 

5.2. Distorsion bounds. — This subsection is devoted to the question, how 
smoothly the volume expansion rates vary at nearby points on the same u-manifold 
(distorsion bounds) and at different u-manifolds joint by holonomy maps along 
s-manifolds (absolute continuity). Actually, the reason for introducing homogeneity 
strips and secondary singularities (see (4.3)) is that we would like to control these 
distorsions. Let us consider the evolution under Tn of a u-manifold W. Due to (4.11) 
distances grow exponentially in n, and the same is true for the (d — l)-dimensional 
volume of TnW. However, at almost grazing reflections, when (v,n) ~ 0, the 
expansion of u-manifolds is highly nonuniform, and so distortions are unbounded. 
Nevertheless, as we shall prove in Theorem 5.7, the situation is much better with 
homogeneous u-manifolds. 

Throughout the subsection all metric quantities (norms, distances, volume ele­
ments, Jacobians) are understood in the e-metric, thus we often drop the sub- or 
superscripts e. 

Sublemma 5.6. — If W is a homogeneous u-manifold, then for any two points x — 
(q, v) and x = (q, v) of W we have 

\(v, n) — (v, n)\ ^ C (v, n) distw(x,x 
1/3 

where n = n(q) and C > 0 is a global constant. 

Proof. — Let W D Ik ^ 0 for some k. Then 
(5.25) \{v,n) - (v,n)\ <Ci (fc + 1)-3 

with a global constant Ci, according to our construction of Ik- Next, for any point 
x' — (q',v;) infinitesimally close to x, we have, up to the first order in ||&E||(= ||(5x||e), 
(5.26) \{v',n') - {v,n)\ = \(dv,n) + (v,dn)\ ^ C2\\Sq\\ ^ C3\\Sx\\ 
with some global constants C<2,Cz, see (5.9) and Corollary 4.4. Integrating (5.26) 
from x to x yields 

(5.27) \(v,n) — (v,n)\ ^ C3dist(x,x) 

Now (5.25) and (5.27) give 

\(v,n) - (v,n)f ^ C?C3 (k + 1)~6 dist(x, x) 
Lastly, recall that (v,n) ^ (k + 1) 2 if k > 0 and (v,n) ^ k0 2 if k = 0, hence 
(v,n) ^ kâ2(k + l)-2 for any k. Therefore, 

\{v,n) - {v,n)\3 <: ClCzkl (v, nf dist(x, x) 
This proves the sublemma. 
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Let W be a u-manifold, x G W and Tn continuous at x. Denote by Jw,n(%) the 
expansion factor of the (d — l)-dimensional volume of the manifold W under Tn at 
the point x, i.e. Jw,n(%) '•— \ detDTn \w (x)\. 

Theorem 5.7 (Distorsion bounds). — Let W be a small u-manifold on which Tn is con­
tinuous. Assume that Wi := TlW is a homogeneous u-manifold for each 0 ^ i ^ n. 
Then for all x, x G W 

I In JM/N (x) - ln JWjn (x) | < C • dist wn (Tnx, Tnx) 

for a global constant C > 0. 

Proof. — Note that Jw,n(%) — 117=0 Jwt)\(Tlx). Hence, it is enough to prove the 
lemma for n — 1, because dist(T?x, Tlx) grows uniformly exponentially in i due to 
(4.11). So we put n = 1. 

Denote x\ — Tx and x\ — Tx. We will also use a variable point x' G W infinites­
imally close to x, and put x[ = Tx'. For convenience, we will use the subscript 1 to 
denote quantities (including operators, hyperplanes, etc.) related to the points x\,x\ 
and x[. In a similar way, bars are used to denote quantities related to the points x and 
xi, and primes are used for quantities related to x' and x[. For example, we denote 
by B+, B and B,+ the second fundamental forms of the wave front (corresponding 
to the u-manifold W) at the points x, x, and x7, respectively. Similarly, F, F, and F' 
denote the F operator (4.4) taken at x, x and x;, respectively. In a similar way, F\, 
Fand F[ are the F operators taken at xi, x\ and x[, respectively, etc. 

Note that the basic quantity, Jw,i(%) was already calculated as J^(x) in the previ­
ous section (formula (4.13)) where we also introduced the operator G. In view of this 
formula, to prove Theorem 5.7 with n = 1, it is now enough to prove three claims: 

— r i1/3 
Claim 1. — | l n d e t l / - IndetFl < C • distVy(x,x) . 
Claim 2. — I ln det G - ln det G\ ^ C • distvy (x, x) 

Claim 3. — I lndet(7 + r ^ + ) - l n d e t ( / + r,B+) | ^ C- distTu/(^i,^i) 1/3 

By C we denote some global constants. Indeed, the bounds in Claims 1 and 2 will 
also hold at the points x\ and Xi, because TW is a homogeneous u-manifold, and 
Theorem 5.7 will then easily follow. 

Proof of Claim 1. — Since det V — (v,n)~1, the claim is a direct consequence of 
Sublemma 5.6. 

Our proofs of Claims 2 and 3 use the following 
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Sublemma 5.8. — Let A be an invertible linear operator in an m-dimensional space, 
and A A an infinitesimal operator. Then, up to the first order of ||A^4||, 

|lndet(A + AA) - lndet,4 | = Itr^"1 • AA)\ ^ mWA'1 • AA\\ 

Proof — We have lndet (A + A A) = lndet A + lndet (7 + A~l • AA), and the rest is 
straightforward. • 

Proof of Claim 2. — It is enough to prove 

(5.28) I lndet G' - lndet G\ < C \\8x\\ 

for infinitesimally close points x,x' G W, then the integration from x to x will give 
the bound in Claim 2. 

As to the value of detG, we refer to formula (4.14). Now, by Sublemma 5.8, we 
have 

I ln det G' - lndet G| ^ | ln det(7 + F'*F') -det(7 + F*F)| 

= I lndet(7 + Q^F'+F'Qo) - det(7 + F*F)| 

< (d - 1) ||(7 + F*F)~1(Q0~1F/*F/Q0 - F*F)\\ 

(the introduction of Qo defined by (4.1) was necessary to ensure that both operators 
act in the same space). It is obvious that ||(7 + F*F)_11| < 1, and by Corollary 4.4 
and Theorem 5.5 we have 

\\QûlF'*F'Q0-F*F\\^C\\dr\\ 

This proves (5.28), and so Claim 2 is proved. 

Proof of Claim 3. — To shorten some formulas, we put R = I + TB+ (and, respec­
tively, define R and R' at the points x and x'). It will be enough to prove that 

(5.29) | lndet#' - lndetfl| < C|(i/,n) - (v,n)\{v,n)~l + C \\5x\\ + C || 

for infinitesimally close points x,x' G W. Note that \\ôx\\ ^ C||o\xi|| by (4.11). Then 
the integration of (5.29) from x to x (and, respectively, from xi to x\) will give 

| lndet ï ï - lndet i î | ^ C\(v,ïî) - (v,n)\ (iKn)"1 + C |dist7W(zi,âi) 

After that Claim 3 will follow by Sublemma 5.6. 
Wre now prove (5.29). By Sublemma 5.8 we have, to the first order in 

ln det R' - ln det R = ln det Q~LR'Q - ln det R 

(5.30) = tr [R-1{T'Q-1B'+Q - rB+)\ 

(the introduction of Q defined by (5.10) was necessary to ensure that both operators 
act in the same space). Note that ||F_1|| ^ C by (5.8). Next, we have, again to the 
first order in ||fe||, 

r'Q-lB,+Q - r/3+ = dr B+ + r{Q-lU'B'~U'-lQ - UB-IJ-1) 

(5.31) +r(Q-1B/Q-B) 
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Observe that 

(5.32) ll^/T1!! ^ C and \\R~lV*\\ < C 

according to (5.3) and (5.4). Using (2.3) now yields 

(5.33) \\R~lB+\\ ^ \\R~l\\ \\B~\\ + 2 ||iTlV*KV\\ ^ C 

Now recall that \dr\ ^ 2\\5q\\ + 2||<fyi|| by (5.9). Hence we have, by (5.33), 

I tr (dr R-lB+) | < (d - 1) |dr| IliT^+H < C(\\Sq\\ + ||^i||) 

so the first term in the right hand side of (5.31) is properly taken care of. 
Denote AB~ = Q^U'B'-U'^Q - UB'U'1. We then have, using (5.20) and 

(5.22), 

\ti-iTR~1 AB~)\ ^ (d-1) |T | H/n1 AB-| | 
SfcWHiT1!! WQ^B'-Qr-B-W 
<C\\Sq\\ 

which takes care of the second term in (5.31). 
Lastly, we use (5.17) to handle the third term in (5.31): 

I tr (R-\Q-l<d'Q - 0 ) ) K 2 \(v', n) - (v, n)| | tr (RTlV*KV)\ 
+2 I tr (fT1 AV*KV)\ + 2 I tr (R~lV* AKV)\ 

(5.34) +2\tr{R-lV*KAV)\ 

We note that 

tv{R-lAV*KV) = tr{AV* KVR~l) = tr (R'W^KAV) 

where the first equation follows from a general formula tr(AB) = tr(BA) in linear 
algebra, and the second is due to the fact that the operators AV*KVR~l and 
R~lV*KAV are adjoint to each other. Using this observation, we can rewrite 
(5.34) as 

I ti{R'\Q~l&Q - 9)) I ̂ C\{v',ri) - (v,n)\ {v,n)-1 \\R~lV*KV\\ 
+C WAV^KVR^W + C \\R-lV*AKV\\ 

We now apply (5.32) and (5.15)-(5.16) with (5.9) and obtain 

I tr (R-\Q-le'Q - O)) K C\(v',ri) - (v, n)\ (v, n)'1 + C \\5x\\ 

This completes the proof of (5.29) and hence Claim 3. Theorem 5.7 is now proved. • 

After proving that the expansion factors vary nicely between nearby points on the 
same u-manifold, we now investigate their behaviour at points of different u-manifolds 
that lie on the same s-manifold. This is the absolute continuity property. Just like it 
was with the distorsion bounds, it is important to consider homogeneous manifolds. 
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Theorem 5.9 (Absolute continuity). — Let Ws be a small s-manifold, x,x G Ws, and 
WU,WU two u-manifolds crossing Ws at x and x, respectively. Assume that Tk is 
continuous on Ws and TlWs is a homogeneous s-manifold for each 0 ^ i ^ k. Then 

\\nJWu,k(x) ~ lnJWu,k(Ë)\ < c 
where C is a global constant. 

Proof. — For any z G WS1 let Jws,k(z) be the volume expansion factor of Ws under 
Tk at the point z, i.e. JWSM(Z) — I det DTk \ws (z)\. By the analogue of Theorem 5.7 
for homogeneous s-manifolds, we have 

(5.35) \hiJWs,k(x)-lnJWs.k(x)\ ^ C 
for a global constant C. 

Let \DTk(x)\ denote the Jacobian of Tk at a point x — (q, v) G M with respect 
to the Lebesgue measure SqSv on M in our local coordinates (q,v). Note that the 
T-invariant measure is dv = (v,ri) ôqôv. Hence, \DTk(x)\ — (v, n)/(vk, rik) where 
Xk = (qk,Vk) — Tkx and nk = n(qk). Similarly, \DTh{x)\ = (v,n)/(v~k,nk), where the 
notation is quite clear. Since both Ws and TkWs are small homogeneous s-manifolds, 
Sublemma 5.6 implies that the quantity (v,n) does not vary much over either Ws 
or TkWs. In fact, c < (v,n)/(v,n) < C and c < (i^,nk)/(vk,nk) < C for global 
constants C > c > 0. Hence, 

(5.36) 0 < c < \DTk(x)\/\DTk{x)\ < C < oc-
for some global constants c and C. Now Theorem 5.9 follows easily from (5.35), (5.36), 
and Theorem 4.7. • 

6. Outlook 
The results of this paper can be summarized as follows. We have some bad news 

(non-smooth behaviour) related to the singularity submanifolds in multi-dimensional 
hyperbolic billiards. On the other hand, there are important good news related to 
the u-manifolds in the multi-dimensional dispersing case. It is proved that practically 
all important regularity properties (uniform hyperbolicity, alignment, curvature and 
distorsion bounds) are just as valid as they are in the multi-dimensional case (cf. 
Remark 4.6). 

In billiard theory one is mainly interested in the ergodic and statistical properties 
of the dynamical system. We emphasize that the above results are highly relevant 
to these issues. As to the ergodic properties, a major breakthrough was achieved 
with the proof of the Fundamental (or Local Ergodicity) Theorem ([SCh, KSSz]). 
However, for some measure theoretic estimates, the original arguments in these papers 
implicitly assumed uniform curvature bounds on the singularities. Thus these proofs 
have to be checked. In a separate paper ([BChSzT]) we will show that — at least, 
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for billiards with algebraic scatterers — the original proofs of local ergodicity remain 
valid if some suitable modifications are performed. 

Much less is known about statistical properties. As to the multi-dimensional dis­
persing case, no optimal result (exponential decay of correlations) has been achieved 
so far. Nevertheless, we conjecture that the rate of mixing is, indeed, exponential. 
The recently developed method of Markov-returns ([Yl]) turned out to be especially 
powerful in the study of decay rates for planar billiards ([Ch2, Ch3]). It is the 
growth of unstable manifolds that is to be investigated for Young's method to work. 
Essentially all important features of unstable manifolds have been checked in sec­
tions 4 and 5 to control growth of LUMs, the only thing we do not know yet how to 
handle is the irregular behaviour of singularities. We conjecture that, given a system­
atic geometric characterization of singularities, exponential decay of correlations for 
multi-dimensional dispersing billiards could be proved. 
Acknowledgements. — The authors express their sincere gratitude to Nândor Simanyi 
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HOMOCLINIC ORBITS NEAR SADDLE-CENTER 
FIXED POINTS OF HAMILTONIAN SYSTEMS WITH 

TWO DEGREES OF FREEDOM 

by 

Patrick Bernard, Clodoaldo Grotta Ragazzo & Pedro A. Santoro Salom$o 

To Jacob Palis for his 60th Birthday 
Abstract. — We study a class of Hamiltonian systems on a 4 dimensional symplectic 
manifold which have a saddle-center fixed point and satisfy the following property: All 
the periodic orbits in the center manifold of the fixed point have an orbit homoclinic 
to them, although the fixed point itself does not. In addition, we prove that these 
systems have a chaotic behavior in the neighborhood of the energy shell of the fixed 
point. 

Introduction 
A fixed point of a Hamiltonian system with two degrees of freedom is called a 

Saddle-Center if the linearized vector field has one pair of purely imaginary eigenvalues 
and one pair of non zero real eigenvalues. A saddle-center fixed point is surrounded 
by a two-dimensional invariant manifold, the center manifold, filled by closed orbits. 
A saddle-center fixed point has also a one-dimensional stable manifold and a one-
dimensional unstable manifold; the periodic orbits in the center manifold have two-
dimensional stable and unstable manifolds. If a point belongs to the intersection of 
the stable and unstable manifold of the fixed point (resp. of one periodic orbit) then 
its orbit is biasymptotic to the fixed point (resp. the periodic orbit). We call such an 
orbit homoclinic. 

Some consequences of the existence of an orbit homoclinic to the fixed point have 
been investigated in [5], [9], [7], [8], [11], [18] (specially section 7.2) and other papers. 
It should be noted, however, that the existence of such a homoclinic is exceptional, 
in contrast to the case of hyperbolic fixed points. Dimensional considerations show 
that orbits homoclinic to the periodic motions of the center manifold are more likely 
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to exist. The existence of such homoclinics has been studied in [4], [14] (see also [11], 
[9], [10], [7], [12]) by perturbation methods, and in [2] by global methods. In these 
papers, orbits homoclinic to periodic orbits sufficiently far away from the fixed point 
are found. 

In the present work, we study analytic perturbations of an integrable system with 
a homoclinic loop. We prove the following interesting behavior : Given any periodic 
orbit sufficiently close to the equilibrium in the center manifold, there exists an orbit 
homoclinic to it, although in general there does not exist any orbit homoclinic to the 
fixed point. This illustrates a question asked in [2]. 

In addition, topological entropy near the energy shell of the fixed point is obtained 
as a consequence of the presence of these homoclinics. More precisely, we prove that 
every neighborhood of the energy shell of the fixed point contains an energy shell with 
chaotic behavior on it. A similar result for reversible Hamiltonian systems is claimed, 
with no proof, in [14] pg 116. Other results in this direction under the hypothesis of 
the system being far from integrable can be found in [9], [7], [13]. 

Our method is semi-global and heavily relies on the low dimension: We first use the 
perturbative setting to prove the existence of quasiperiodic invariant tori confining 
the system in a neighborhood of the unperturbed homoclinic loop. We then reduce 
the problem to an area preservation argument on appropriate Poincaré return maps. 
It would of course be very interesting to obtain similar results by global methods 
and in higher dimension, in the spirit of [2], and to understand to what extent the 
phenomenon described here is general. 

This paper emanated from a discussion between the authors after a talk of one of 
them at the international conference on dynamical systems dedicated to Jacob Palis. 
The authors would like to thank the organizers of that conference, who made that 
encounter possible. The first author learned a lot during his numerous conversations 
with Michel Herman, and was moved a lot by his sudden death. 

1. N o t a t i o n s and resul t s 

1.1. Let M be a four-dimensional analytic manifold, endowed with a symplectic form 
and let 

H : M x I —> R, 
<k<k<k<k< klwkw wkw,w wk 

be an analytic one-parameter family of Hamiltonians, where I is some interval con­
taining 0 in its interior. In all this paper, we shall assume that the Hamiltonian 
system Hu has a saddle-center fixed point r ; i for all /i G /, and that H^(r^) = 0. It 
is by now classical (see [15], [17], [5], [14], [7]), that the system Ha is integrable in 
the neighborhood of the saddle-center ra. More precisely, there exist a neighborhood 
U of 0 in R 4 and an analytic mapping ah : U x I —» M such that ah^ is a symplectic 
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embedding for each /i, (/>M(0) = rM, and 

HtÀo^fl(q1,p1,q2,p2) = /i(/i,/2,/i), 

where 
h=Piqi, I2 = (p22-Tq22)/2, 

and the function /i is analytic (one may have to reduce /) . Furthermore, one can be 
reduced via a change in time-scale and a canonical transformation to the case where 

a7lft(0,0,/i) = - 1 and <9/2/i(0,0,/i) = cj(/i) > 0. 

The functions I\ and I2 are preserved by the flow restricted to the local chart, this 
flow is determined by the equations 

Pi = -di^hihitiPi P'2ssss= -di2h(h,I2,ii)q2 

qi= dhh(IiJ2^)qidd dd di2h(IiJ2,fJ>)p2-

It follows that the center manifold of rM has equation I\ = 0, its stable manifold has 
equation I2 = 0, p\ = 0 and its unstable manifold I2 = 0, q\ = 0. In the following, 
we will call PE,\± the periodic orbit of at energy E, which in local coordinates is 
the circle p\ = q\ = 0, I2 = E. 

1.2. We shall also suppose that HQ is integrable (namely, its associated Hamiltonian 
vector field has an additional real analytic first integral J such that dHo(x) and dJ(x) 
are independent for almost every x) and that the vector field associated to HQ has 
an orbit homoclinic to rn which connects the branch p\ > 0 of the unstable manifold 
to the branch q\ > 0 of the stable manifold. Integrable systems with a saddle-center 
and an orbit doubly asymptotic to it have been studied in [9], where it is explained 
that there exist two different kinds of homoclinics. For comparison, let us mention 
that we are here in case (A) of [9]. 

1.3. Theorem. — Let us consider an analytic one-parameter family H(1 of Hamiltonian 
systems satisfying the above hypotheses. There exists a positive number e such that 
for all E G ]0,s[ and all \i G ] — £,s[c I, there exists an orbit of homoclinic to 
the periodic orbit PE.^L- In fact, there even exist infinitely many geometrically distinct 
orbits homoclinic to PE4I-

1.4. Theorem. — Let us fix \i G ] — e,e[. For each E G }0,s[, either the stable and 
unstable manifolds of PE^I coincide, or the flow of on the energy shell — E 
has positive topological entropy. 

1.5. Theorem. — Let us fix a value of /1 satisfying the hypothesis of theorem 1.3. As­
sume in addition that the stable and unstable manifolds of the fixed point rfl do not 
coincide. Then there exists a sequence EN > 0 converging to 0 and such that the stable 
and unstable manifolds of PEu4L do not coincide. It follows that, for each n, the flow 
of Hfj restricted to the energy surface — EN has positive topological entropy. 
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1.6. The main result of the present paper is Theorem 1.3. It is proved in section 3. 
Theorem 1.4 may be considered classical. However we include a proof in section 4 
because we could not find any reference matching precisely our needs. Theorem 1.5 
is a simple but, we believe, interesting consequence. It is proved in section 5. The 
main notations and tools that will be used throughout the paper are introduced in 
section 2 

7.7. Remark. — In order to apply Theorem 1.5, one has to be able to decide whether 
there exists an orbit homoclinic to the fixed point. Let us mention a result in that 
direction. Under an additional hypothesis of reversibility of the family of Hamiltonian 
systems (see [7]) it is possible to prove that the set of values of \i for which a 
homoclinic orbit to the equilibrium point rfl occurs is either a whole interval or it 
is countable ([7], section 6). The same result may hold for the non reversible case 
considered here but this is an open question. 

2. Local sections and invariant curves 

We analyze the orbit structure near the homoclinic loop in a rather usual way (see 
[5], [9], [14],...), via Poincaré sections. More details in these papers. The existence of 
invariant curves was already obtained in [8]. 

2.1. Let us define the two Poincaré sections given in local coordinates by 

Si = {qi = £}, S2 = {pi = £}, 

where ô is a small positive number. Since di1h = —1, the equation h(Ii,l2,p>) = E 
can be solved in I\ for sufficiently small I2, E and /1 i.e. there exists an analytic 
function v defined in a neighborhood of 0 in R3 and such that 

h(I\, J2, p) = E I\ = v(l2,E, n). 

As a consequence, for sufficiently small E and \i, the intersection Ey;(£\/i) of E7; with 
the energy shell — E is a graph over the (p2, g2)-plane. More precisely, the analytic 
mappings af41 : R2 —> R4 given by 

0-f ,/A(P2,<?2) = <7I(P2,22,#,A0 = (v(l2(p2,q2),E,fl)/Ô, (5, p2, 

°24L{P2,(l2) = V2(V2,q2,E,ll) = (<5, v(l2(p2,q2),E,v)lo', V2, Ç2) 

are symplectic charts of Ey(i?,/x). In the following, we note y = (^2,^2) and take it 
as coordinates of Ey(i?,/i). 

2.2. The intersection between the stable manifold of PE,^ and Si, as well as the 
intersection between the unstable manifold and E2, are the circles h(y) = Ic{E,/i) 
in coordinates, where Ic{E,n) is the solution of the equation 

/i(0, Ie(E, p),p) = E ^ i<r(£,/x),£,/i) = 0. 
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The orbits starting in Y,I(E,/JL) outside of this circle hit £2(i?,/i) after a time 

T(y,E,u) = t(I2(yYE,u) = 
1 

d^h^ihiy), E, /i), h{y),v) 
log 

v(I2(y),E^) 

S2 

Notice in the previous expression that v{l2(y), E, fi) is positive it and only it y lies 
outside of the stable circle. The local transition map IE}U 'E DL (DLD)fi {p\ > 0} —> 
E2(£,^) is defined outside of the stable circle and can be computed in local coordi­
nates 

IEAV) = %> E, n) = R(6{h{y), E, M)) y 

where R(0) is the matrix of the rotation of angle 0, and 

0(I2,E, ii) = t(I2) dl2h(v(I2,E, /i), J2, lA • 

The outer transition map gE^ '• ^2{E,p) —• Ei(£',/x) is defined by following the flow 
along the homoclinic loop. 

2.3. The following estimate will be useful (see [7]): 

0(I2,E,fjL) = -uj(fi)log\I2 - Jc(£,/i)| + A^( /2) , I2 > Ic(E,fi) 

where 
q+q1q+q1q+q E 

qx><< 
0(E2) 

and where the function I2 \—> ^E^iih) is analytic around Ic(E,/j,) for each E and 
//. To see this, just write v(I2l E, p) = (I2 — IC(E, p))w(I2l E, //), where w is analytic 
and w(Ic, E, p) ^ 0. 

2.4. The local transition maps IE,V seen m coordinates as mappings of E2 preserve 
the circles centered at the origin. Since the unperturbed Hamiltonian Ho is assumed 
to be integrable, the outer transition map go.o also preserves these circles, hence this 
symplectic map can be written 

g0Ay) = R(Ah(y)))y, 

where yj is a real map analytic in a neighborhood of 0. Let us now define the mapping 

FE41 — 9E,fi ° IE,II, 

we have 
FQfl = R(lpoI2+0oI2). 

In view of the estimates of 2.3, it is possible to choose positive numbers I~ < 7+ 
such that Fo.o is an integrable analytic twist area preserving diffeomorphism of the 
annulus A — {y s.t. I~ ^ h{y) ^ /+} . For sufficiently small E and /i, FE4I is a 
two-parameter analytic family of exact area preserving diffeomorphisms between A 
and its image in R2. Here exact means that there exists a rotational Jordan curve C 
in the annulus A with the following property : The image FE^(C) is also a rotational 
Jordan curve in A and the area of the domain between {I2 — I~} and FE41(C) is 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



156 P. BERNARD, C. GROTTA RAGAZZO & P.A. SANTORO SALOMÂO 

equal to the area of the domain between {I2 — I } and C. A direct application of 
KAM theorem now proves the following proposition. 

2.5. Proposition. — There exist positive numbers e and I such that, for all E G ]0,£[ 
and //£]—£,£[, there exists an analytic rotational Jordan curve C(E,p) contained 
in {y s.t. 1/2 ^ h{y) ^ 7} and invariant under FE^- Let us denote C'{E^p) = 
lE4l{C(E^))=g-El4XC{E^)). 

3. Homoclinic orbits and multiplicity 

We now prove Theorem 1.3. We have to study the dynamics of the flow of on 
the energy surface {Hfl = E}, where E and \i satisfy the hypotheses of Proposition 
2.5. We will not mention any more the parameters E and /x. 

3.1. The map F = g o I has an invariant circle C. Let S be the intersection between 
the stable manifold and Si, and Sf be the intersection between the unstable manifold 
and E2. Both S and S' are the circle {hiy) — Ie] in coordinates. The local transition 
map / is defined in the open annulus A in £1 enclosed between S and C, and takes 
values in the annulus A! of £2 enclosed between S' and C. The outer transition map 
g is defined and analytic in D1the open disk enclosed in C7, and takes values in D, 
the open disk enclosed in C. We call B the closed disk bounded by S and B' the 
closed disk bounded by S'. Both / and g preserve area (see figure 1). 

Si £2 

I: A ' A' 

c B 

A 

A' 
B' 

sss 

9 Df —> D 

FIGURE 1. The mappings 

3.2. The existence of a homoclinic is a consequence of the facts recalled above, as 
we shall see now. If g(S') intersects S, then these intersection points are homoclinic 
points, since S is contained in the stable manifold on one hand, and Sf/, hence g(Sf), 
are contained in the unstable manifold on the other hand. We call such intersections 
1-bump homoclinic points. If g(Sf) does not intersect 5, then g(B') (g~1(B)) is 
contained in A {A') since it can't be contained in B (Bf), by area preservation. It 
follows that there exists a neighborhood U of B' such that F o g is well defined in U. 
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3.3. Lemma. — Suppose that for each n < TV — 2 the map Fn o g is well defined in a 
neighborhood of B' and satisfies Fn o g(S') Pi S = 0. Then F1 o g(B;)nF^ o g(Bf) = 0, 
for allO ^ i < j ^ N - 2. 

Proof — The hypothesis Fn o g(Sf) H S = 0 and the area preservation property of 
F and g imply that Fn o(q'\v')n B = 0 for all n ^ iV - 2. We also have that 
Fn o g{B') n(q'\v')= 0 for all 1 < n ^ JV - 2. To prove this, we observe that the 
image Im(F) of the map F is g(ïm(l)) = g(A'). Since A' is disjoint from B'', the 
image of F is disjoint from g(B'). Let us now take 0^i<j^N — 2, we have 
F* o cK-B7) H o g(B') = F'l(g(B') n F ^ o g(B')) = Fl{0) = 0 . ( q ' \ v ' ) • 

3.4. Proposition. — There exists an integer N ^ 1 satisfying the hypotheses of Lemma 
3.3 and such that 

FN-1og(Sf)nS^0. 

The intersection points seen as points o/£i, are homoclinic points, we call them N-
bump homoclinic points. We have the following alternative: Either FN~1 o g(S') = S 
and there are infinitely many N-bumps homoclinics, or FN~X o g{S') (£_ S and there 
are infinitely many 2N-bumps homoclinics. 

Proof. — Since the annulus A has bounded area, and since all the domains Fn og(B') 
have the same positive area, only finitely many of them can be disjoint, hence the 
existence of TV. It is quite clear that there exist infinitely many N-bumps homoclinic 
orbits in the case where FN~l og(S') — S. We shall now see that there exist infinitely 
many 2A -̂bumps homoclinic points in the second case, i.e. if 

FN~l o g(S') S. 

3.5. Definition (see [1]). — Let A be a compact topological disk in R2. We say that a 
continuous curve S C R2 — A has the obstruction property with respect to A if any 
continuous curve 7 containing a point in A and a point outside A intersects the curve 
S. It follows that any such curve 7 must intersect ô infinitely many times. 

Let us note G = F^-1 o g. In view of the estimates 2.3, and since G(Sf) is not 
contained in B, the curve 

5 = l(G(S')nA) 

has the obstruction property with respect to Bf. It follows that the curve G(ô D 
dom(C7)) has the obstruction property with respect to G(B,)J where dom(G) is the 
domain of definition of G. We have supposed that G(Sf) intersects S (and thus B), 
and that G(S') is not 5, hence is not contained in B, by area preservation. It follows 
from the obstruction property that G(S) has to intersect S infinitely many times. We 
have proved that the set G o I o G(Sf) = F2N~l o g{S') has infinitely many points of 
intersection with S. These points clearly represent geometrically distinct 2Ar-bumps 
homoclinics. • 
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4. Bernoulli shift 
In order to prove Theorem 1.4, we are now going to build a Bernoulli shift. Our 

construction is quite similar to the one described in [16], chapter III, for the Sitnikov 
map. However, we only look for a semiconjugacy, instead of a conjugacy in [16]. This 
avoids many calculations and allows weaker hypotheses. 

4.1. We use the notations of 3.1. The mapping G — FN~1 o g is defined in a 
neighborhood of B'. We suppose that G{S') and S are neither disjoint nor equal 
i.e. that there exists an N-bump homoclinic to the periodic orbit under interest, but 
that its stable and unstable manifolds do not coincide. The local transition map / is 
defined outside of B and satisfies the estimate of 2.3. 

4.2. Under the hypotheses recalled in 4.1, the mapping FN = Gol has the Bernoulli 
shift as a topological factor. As a consequence, the mapping F has positive topological 
entropy, and there exist infinitely many kTV-bump homoclinic orbits for all k > 2. 

In order to be more explicit, let us consider the set N = N U {oo}, endowed with 
the following topology : A subset U C N is open if and only if either it does not 
contain oo, or it contains the subset {n G N, s.t. n ^ Af} for some N ^ 1. This is 
the classical compactification of N. Let us consider the set A of the sequences s G N 
of the form 

. . . , OO, OO, S_RN, . . . , «S0, . . . , SN, OO, OO, . . . 

with oo ^ ra > — 1, oo ^ n ^ 0, and st < oo for all — m ^ i ^ n. It has to be 
understood that m = — 1 and n — 0 in the above expression stand for the sequence 
. . . , oo, oo,.. . . The set A is a compact subset of N containing 

A - Nz. 

In addition, A is dense in A, which justifies the notations. The map À : A —> A is 
defined by X(s)i = s^-i. Note that the continuous extension A of À to N does not 
preserve A. 

We shall prove that there exist a compact set AT C A , an invariant set X contained 
in X and dense in it, and a surjective continuous mapping r : X —+ A satisfying 
T(X) — A and such that the diagram 

X 
dvr X 

T T 

A A A 
commutes, where r is the restriction of r to X. In addition, the points of r 1(s) are 
/cAf-bump homoclinic points when s is a sequence 

. . , OC, OO, S_m, . . . , S0, • • • Sn, OO, 00, . . . 
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with oc > rn ^ 0, oo > n ^ 0, k = rn + n + 2 and ^ < oc for all — m ^ i ^ n. To finish 
this description, the preimage r~~1(..., oo, oo,... ) consists of AT-bump homoclinic 
points. 

4.3. In order to prove the statements of 4.2, we shall introduce the notion of vertical 
and horizontal strips, following [16] for the main lines. However, as we already men­
tioned, we work under weaker hypotheses, and we will need more topological notions, 
in the spirit of works of Conley, Easton and McGehee, see for example [6]. See also 
[3] for related work. Let us consider the square Q as drawn in figure 2, where VQ is 
the right edge, Uo is the lower edge, and Uoo are the left and upper edges, and P 
is the vertex H Uoo • We shall also note Q any domain of the plane homeomorphic 

P 

ssc 

Uoo 

Vo 

Uo 

FIGURE 2. The square 

to this square, and define the following distinguished subsets: 

Definition. — A vertical strip is a compact subset V of Q such that V U UQ U C/QO is 
connected. A horizontal strip is a compact subset U of Q such that U U Vo U is 
connected. 

Lemma. — IfVj is a decreasing sequence of vertical strips, the intersection C\lVl is a 
vertical strip. The same holds for horizontal strips. A vertical strip and a horizontal 
strip have non empty intersection. 

Proposition. — There exists a square Q in Hi such that Uoo C G(Sf), Voo C S (hence 
P C G(S') nS) and int(Q) fl (G(B') U B) = 0, where int(Q) is the interior ofQ. In 
this square Q, there exists a sequence U{, i G N of disjoint horizontal strips, and a 
sequence VL, i G N of disjoint vertical strips such that 

FN{Vt) = Ui. 
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The strip Ui+i is above U% in Q and Ut is converging to Uoo for the Hausdorff metric. 
Seemingly, the strips Vt are ordered from the right to the left and converge to Voo. In 
addition, we have the following property: 
If V is a vertical strip, then each of the sets F~N (V) D Vi contains a vertical strip. 
If U is a horizontal strip, then each FN(U) fl Ui contains a horizontal strip. 

4.4. The structure described in 4.3 implies the existence of a Bernoulli shift as defined 
in 4.2. We shall prove this fact now, and delay the proof of Proposition 4.3 up to 4.5. 
We closely follow the presentation of [16], which may be consulted for more details. 
Let us consider a sequence s?; E A, and define the sets 

VSoS_1...s_n — 
jf 

i=0 
F'iN(VsX 

where j = n if s_n < oo, and j — min{/e ^ n, s.t. s-k = oo} otherwise. These sets 
are vertical strips, as can be proved by induction using Proposition 4.3 and noticing 
that 

vao,_1...a_n=vao3_1...a.=vaonF-»(vs_1...3_i). 
In the same way, we define the horizontal strips 

Uai-s„ = 
j 

i=l 
FlN(U^), 

where j — n if sn < oo, and j = min{/c ^ n, s.t. Sk — oo} otherwise. It follows from 
Lemma 4.3 that 

V(s) = 
dv 

n=0 
VSnS_, •••S_R, 

is a vertical strip, and that 

U(s) = 
OO 

n=l 
USl...Sr 

is a horizontal strip. The set V(s) Pi U(s) is thus a non empty compact set. If 5 G A, 
we have 

V(s) n U(s) = {peQ s.t. F~lN(p) G VSi}. 
We can now define the invariant set 

X = 
.sGA 

v(s)nu(s). 

the compact set 
X = v(s)nu(s) 

se A 
and the mapping r which, to each point of V(s)C\U(s), associates the sequence s G A. 
This mapping is well defined since the sets V(s)DU(s) and V(sf)DU(sf) are obviously 
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disjoint for different sequences s and s'. It is straightforward with these definitions 
to check the statements of 4.2. 

£2 Si 

5' S 

G~\P) 
G~HQ) 

G~\S) 

G(S') 

P 

Q 

FIGURE 3. Construction of Q 

4.5. In order to prove Proposition 4.3, we shall first build the square Q. Let us 
choose a point P of G(Sf) D .5. There are two cases. 

i. The curves G(Sf) and S are outer tangent, i.e. G(B') DB C S and we can take 
any point P e G(S') n 5. 

ii. The curves G(S') and S are crossing each other. In this case, we choose P such 
that the curves G(S') and S locally cross each other at P. 

In both cases, P is isolated in G(S') fl S since both curves are analytic. Let us 
consider the action-angle coordinates (I2,6) on £2, defined by the relations 

P2 = v 2/2 cos 6, q2 = v 2/2 sin 6>. 

There exists a positive integer a, a positive real number 5 and an analytic function 
h : [Jc, 7C + (J] -> M such that the curve (h, h((I2-Ic)1/a)), h € [Jc, ĉ + #] is contained 
in fl A. Recall that the circle S' has the equation I2 = Ic. In the case where 
P is a point of transversal intersection, we can take a = 1. It is possible to choose P, 
(5 and /i in such a way that the open set 

{le <h< h + 5, h((I2 - Icfla) < 0 < h((I2 - Ic)^a) + S} 

is disjoint from G"1(*S'). We then set 

Q = G({IC ^h^Ic-rS, h((I2 - Ic)^a) < 0 ^ h((I2 - h)1'") + 8}). 

We orient the curves 5, S 1 a n d G,_1(5) positively, and give /7o and [/oo the 
induced orientation. In order to prove that Proposition 4.3 holds with this square Q, 
it is enough to prove the following proposition. 
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Proposition. — Any sufficiently small neighborhood ofUoo in Q contains a horizontal 
strip U which is the image by FN of a vertical strip V of Q, and satisfies the following 
property : If V is a vertical strip of Q, then F~N(VV\U) C V contains a vertical strip 
of Q, and if U is a horizontal strip of Q, then FN (U D V) C U contains a horizontal 
strip. 

Proof. — We need a Lemma. 

Lemma. — Let c : [0,1] —> A, be an analytic curve such that c(]0,1]) C A and 
c(0) G S. Then for e small enough, the curve FN o c : ]0, e] —> A is an analytic 
spiral that accumulates on G(Sf) and that crosses Q infinitely many times. More­
over, every connected component of FN o c(]0,£]) fl Q crosses Q from VQ to (the 
orientation of FN o c is that defined by the parameterization). 

To prove this lemma we first write FN ocasGo/oc. Then using estimate 2.3 and 
recalling that / is explicitly given by (see 2.2) 

IEAV) = E> M) = R(0(h(y),E, fi)) y 

we conclude that l o c is an infinite spiral turning monotonically around S and accu­
mulating on S. In addition, easy explicit estimates show that, when e is small enough, 
each connected component of /(c(]0,£])) fl G~L{Q) is crossing G~1(Q) from G~1{VQ) 

to G~1(VOQ). The lemma follows from the fact that G is a local diffeomorphism in a 
neighborhood of P (see figure 4). 

1(c) 

d+d1d 

d+d1d 

d6+ds1d 

G~l{S) 
B 

S 

G{B>) 

G{S>) 
Gol(c) = FN(c) 

FIGURE 4. Spirals 

This lemma implies that the set FN(Q) D Q has infinitely many connected compo­
nents which are horizontal strips accumulating on UQQ . Each of these strips is bounded 
by two horizontal arcs, a lower and an upper one, which are contained in FN(Uoo) 
and FN(Uo), respectively, and two small sub-arcs of Vb and VQQ. Let U be one of 
these horizontal strips, sufficiently close to Uoo. Using that: F~~N(U) is connected, 
F~N(U) H Uoc + 0 and F~N(U) H U0 ̂  0, we conclude that F~N(U) = V is a 
vertical strip. In addition, we see that the vertical strip V is a topological square 
bounded on one side by a connected component of F~N(VQ) D Q crossing Q, and on 
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the other side by a connected component of F N (Voo) fl Q. To finish the proof of the 
proposition we need another lemma 

Lemma. — Let us consider a compact curve 7 in Q connecting Uo and UOQ. There 
exist connected components of 7 DU intersecting both FN (Uo) and F7V(LT00). 

Proof. — To prove this fact, let us orient 7 from Uoo to [To, and consider the last 
point of intersection of 7 with FN(Uo) fl U. Just after this last intersection, 7 lies 
inside U, hence has to leave U through FN(U^). This proves the lemma. • 

Let V be a vertical strip. It intersects U, by lemma 4.3. We are going to prove 
that F~N(V fl U) is a vertical strip. Assume that this is not true. In this case, the 
compact set V fl U is disconnected, and is the union of two disjoint compact sets K\ 
and K2, where K\ is the union of the connected components of V fl U which intersect 
FN(Uo), and K2 the union of those which intersect FN(U<DO). We can find two disjoint 
open sets of Q, Cti and ^2, containing respectively K\ and K2. In addition, since 
FN(Uo) H U and FN(U^) fl U are compact, we can choose Qi and ft2 such that 
Qi does not intersect FN(Uoo) n U and ^2 does not intersect FN(Uo) fl U. The sets 
£/ — (f̂ i UQ2) and V are compact and disjoint. It follows that one can find a connected 
open neighborhood Q of V such that Q fl U C fii U ^2- The open set Q contains a 
curve 7 connecting L70 and U^. Each connected component of 7 D C/ is contained 
either in or in ^2, which is in contradiction with the conclusion of the lemma. 
The intersection between V and horizontal strips can be studied exactly in the same 
way. • 

5. Chaos near the energy shell of the fixed point 

5.1. In this section, we fix a value of the parameter \i and work with a fixed Hamil-
tonian H. We suppose that the conditions of existence of invariant curves (see Propo­
sition 2.5) is satisfied, hence there exists a critical energy 77 > 0 such that, for all 
E G ]0,?7[, there exists a homoclinic orbit to the periodic orbit PE of energy E con­
tained in the center manifold. We also suppose that the stable and unstable manifolds 
of the fixed point do not coincide. 

5.2. Theorem. — Under the hypotheses recalled above, there exists a sequence En —» 0 
of positive numbers such that, for each n, the stable manifold of PEu and its unstable 
manifold do not coincide. 

5.3. In order to prove this theorem, let us define the function N(E) which, to each 
value of energy E G ]0,r/[, associates the minimal number of bumps of an orbit 
homoclinic to PE 

N(E) = min{n G N s.t. i^T1 o gE(S'E) nSE^ 0}, 

which is finite in view of Theorem 1.3. See 3.1 for the definition of SE-
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Lemma. — The function ]0,7/[ 3 E \—> N(E) is lower semi-continuous and con­
tinuous at each point EQ such that f^E°">~1 0 gEo(SE()) = SEo. In addition, 
lim^^o N(E) = oo. 

This lemma implies the desired result. Assume by contradiction that the stable 
and unstable manifolds of PE coincide for all energies E in an interval ]0,e[. By 
the lemma the function Â  would be continuous, hence constant on this interval, and 
TV would have a finite limit in 0, which is in contradiction with the last part of the 
lemma. There remains to prove the lemma: 

Proof of the lemma. — Let us fix a value EQ of the energy, and consider a sequence 
En —> EQ such that N(En) — N is constant. We have 

Fl;logEn{s'En)c\sEn^0. 

for each n. This clearly implies that 

Fg-1o9Eo(s'Eo)nsEo^0. 

hence N(EQ) ^ N. This proves lower semi-continuity of AT. If the stable and unstable 
manifolds of PEo coincide, there holds 

< ( £ 0 ) " 1 O ^ 0 ( ^ 0 ) = ^ 0 -

It is then clear, by area preservation, that 

F^Ea)-1o9E(s'E)nSB^0 

for E sufficiently close to EQ, hence N(E) ^ N(Eo). As a consequence, E0 is a point 
of upper semi-continuity of AT, hence a point of continuity. To end the proof, we note 
that if there existed a sequence En —» 0 with N(En) bounded, there would exist a 
homoclinic orbit to the fixed point. This can be checked by a compactness argument 
similar to the proof of lower semi-continuity above. • 
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ON THE SCALING STRUCTURE FOR PERIOD DOUBLING 

by 

Garrett Birkhoff, Marco Martens & Charles Tresser 

Abstract. — We describe an order on the set of scaling ratios of the generic uni­
versal smooth period doubling Cantor set and prove that this set of ratios forms 
itself a Cantor set, a Conjecture formulated by Coullet and Tresser in 1977. This 
result establishes explicitly the geometrical complexity of the universal period dou­
bling Cantor set. We also show a convergence result for the two period doubling 
renormalization operators, acting on the codimension one space of period doubling 
maps. In particular they form an iterated function system whose limit set contains a 
Cantor set. 

1. Definitions and Statement of the Results 
A unimodal map with critical exponent a > 1 is an interval map that can be written 

in the form / = 0o^o0, where 'i/j and <fi are orientation preserving CA diffeomorphisms 
of [0,1], and qt : [0,1] —» [0,1] with t G (0, | ] is the standard folding map (with critical 
exponent a > 1) defined by 

Qt(x) = 1 -
\x~t\a 

dx +d1r+ 
that "folds" the interval at its unique critical point t, qt(t) = 1 and qf(t) = 0. 

The space of orientation preserving diffeomorphisms of the interval [0,1] with fixed 
smoothness is denoted by DiffA'([0,1]). The space of unimodal maps with fixed critical 
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exponent a > 1 and fixed smoothness can be represented by 
U = DiffA ([0,1]) x (0, \] x Difffc([0,1]). 

It carries what we call Ck-distances dk, k ^ 3, which combines the two Ck distances 
on each of the two diffeomorphisms vb and qb with the distance between the parameters 
t of the folding parts. Notice that in general, the critical point of / is Cf = <t)~l{t) ^ t. 
Let pf be the unique fixed point of / G U. A map on the interval is renormalizable 
if it exchanges some number N\ of subintervals. The return map on one of these 
subintervals can again be renormalizable, exchanging this time N2 intervals. If the 
process continues forever, one says the map is infinitely renormalizable. For precise 
definitions and an account of the theory, see for instance [dMvS]. Except otherwise 
specified when we say renormalizable, we mean renormalizable in the sense of period 
doubling, i.e., the map exchanges two intervals. We will only consider infinitely 
renormalizable maps with N\ = N2 = • • • = 2. 

Fix a critical exponent a > 1. We consider the set W of maps / : [0,1] —> [0,1] 
with f(cf) = 1 and /( l) = 0 which are infinitely renormalizable. The critical point 
defines two invariant intervals 

Uf = [f2(cf)J4(cf)] and Vf = [f(cf),f(cf)}. 
To these two intervals correspond two renormalization operators RQ : W —* W and 
R1 : W -> W defined by: 

R*f=[f2\Vf], and Rif = [f2\Uf], 
where [•] means affine resettling to obtain a unimodal map on [0,1] that sends its 
critical point to 1 and 1 to 0. 

Observe, both operators preserve W and R \ is the critical point period doubling 
renormalization operator which has been most studied in the literature (see in par­
ticular [La], [Ly], [Mc], [dMvS], [S2], and references therein for the case when a is 
an even integer, and [El], [E2] and [Ma2] for arbitrary a > 1). 

Let Tn be the set of all words of length n over the alphabet {0,1}. Wre denote by T 
the set of all infinite words of the form wl°° over the alphabet {0,1}, and by T the set 
of all infinite words over the alphabet {0,1}, equipped with the usual metric. Notice 
that each Tn naturally embeds into T. For any word r G T, we will write r^ny G Tn 
for the initial segment of length n of r. We are going to consider the iterated function 
system generated by RQ and R\. To this end, we define: 

Rr{n} = Rr(l) O • • • O RT{n) : W —+ W, 
and we will prove the following convergence result for this iterated function system. 

Theorem 1.1. — For any fixed point fo of RQ, there is a Holder-continuous map h 
T —> W such that for any r G T 

lim Rr, , fn = h(r). 
n —> oc 
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Moreover, the convergence of the sequence {RT{n}fo} is exponential in the C2-metric. 
A similar statement holds for any fixed point f\ of R\. 

Remark 1.2. — For any a > 1, the existence of a fixed point f\ of R\ is proven in 
[El, E2] and [Ma2]. We will show (see Lemma 2.4) that the existence of a fixed point 
fi for Ri is equivalent to the existence of a fixed point fo for R0. The uniqueness of 
fi in the case when a is an even integer was proven in [S2]. In the sequel we will fix 
fo and fi to be fixed points of respectively Ro and Ri. 

Remark 1.3. — The set h(T) of limits limn_̂ oo RT{n} fo is denoted by A C W. Here 
the notation A represents the fact that we believe, but do not prove, that the set A 
is indeed the attractor of the iterated function system generated by Ro and Ri, and 
in particular does not depend on the initial point, chosen here to be fo-

The second Main result, Theorem 1.10, describes the structure of the set A in the 
case when a = 2. It relies on convexity properties of fo and Ri(fo)-

Convexity Conditions 1.4. — We assume that: 
CI /o|[(/o)3(c/0), 1) is strictly convex, 
C2 Ri(fo)\[{Ri{fo)f{cRlUo)), 1] is strictly convex. 

Remark 1.5. — In section 4 we will show that CI actually holds true in the case when 
successive Ri renormalizations of a convex function converge to fi'. this is known to 
be the case when a is an even integer. Furthermore, as we will explain, one can check 
that both CI and C2 hold true in the most important case of generic (quadratic) 
critical points, a = 2. 

Recall that a Cantor set is a perfect and totally disconnected compact metric space. 

Proposition 1.6. — If the Convexity Conditions CI and C2 hold true, then the limit 
set A of orbits of fo under the interated function system defined by Ro and Ri is a 
Cantor set. 

For completeness and to fix notations and definitions, we include some basic dis­
cussion of the scaling function, whose origin is rather diffuse: first conjectures about a 
form of it appeared in [CT], the name and a form of it come from [F], while what was 
arguably the first theorem about it was in a never circulated work by Feigenbaum and 
Sullivan cited in [SI]. The literature on scaling functions is extensive and discusses 
scaling functions beyond the context of dynamics. In particular, in [KSV] a relation 
with the thermodynamic formalism appeared. 

Let A be the invariant Cantor set of fo- In the sequel we will remind the dynamical 
construction of covers of A by finitely many intervals. These covers, called cycles, 
form a refining nest of covers of this Cantor set. The scaling function contains the 
infinitesimal geometrical information on how these covers refine. It will be shown that 
the Cantor set A is, from a geometrical point of view, very different from the well 
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known middle third Cantor set, in which each refinement is done everywhere in the 
same manner. 

Although, the Cantor set A is the invariant set of a non expanding map, it is also the 
invariant Cantor set of an expanding interval map, the so-called presentation function 
[R], [SI], a great remark that Rand attributes to Misiurewicz. As we next recall, this 
directly follows from fo being a renormalization fixed point that is expanding to the 
right of pfo. 

Let U = Ufo and V = Vfo = [1 - v, 1]. The affine (scaling) map s : [0,1] -» [0,1] 
defined by s : x \—> v - (x — 1) + 1 is a homeomorphism from A to AnV. This is a 
direct consequence of the fact that s conjugates /o = Ro(fo) = s_1o/02os to f§. Also 
the restriction, 

fo\V: Anv—> An/7, 

is a homeomorphism so that the map g : [0,1] —> U defined by g = (fo\V) o s is a 
homeomorphism from A to A D U. Let F : [0,1] —> [0,1] be the multivalued function 
defined by the two branches 

F0 = s: [0,1] —+[0,1] and FX = g : [0,1] —+ [0,1]. 

The branch FQ = s is affine, contracting, and orientation preserving while the branch 
Fi = g is orientation reversing. Furthermore, the absolute value of the derivative of 
Fi strictly increases as a consequence of the Convexity Condition CI, so that Fi is 
also contracting (as pf0 is an expanding fixed point). It follows that the invariant set 
of the iterated function system F = {F0, Fi} is A, the invariant Cantor set of /Q. 

The cover {[/, V} of A is called the cycle of the first generation. The two intervals 
of this cycle are permuted by the map fo. The Cantor set A is the intersection of a 
decreasing sequence of covers we call respectively the cycles of generation n: the cycle 
of generation n is the cover of A consisting of 2n intervals which are permuted by fo. 
The intervals that form the nth cycle can be described as follows. 

The construction of the cycles is made by using the iterated function system gen­
erated by Fo and F\. We will use a notation for the words describing sequences of 
compositions of these maps that will be different from the one we used in the defini­
tion of the iterated function system generated by RQ and R\. Namely, we write £n 
for the set of words w = w(l)w{2)... w(n) of length \w\ = n over the alphabet {0,1}, 
and E for the set of infinite sequences over the alphabet {0,1} with the usual metric. 
Let 

Iw = Fw(n) ° - - - ° ^ ( l ) ( [ 0 , l ] ) . 

The nth cycle consists of the intervals Iw with w a word of length n. 

Lemma 1.7. — The way fo permutes these intervals is described by addition mod 2n 
on the words indexing the intervals. In particular, if c is the critical point of fo then 
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c G I\n and fo(c) G Ion. Moreover, f{I\n) = Ion and 

4/i = ^i(^) = /o ° 
a diffeomorphism for each word not equal to ln, n ^ 1. 

Proof. — Let w be a word of length n — 1. Then 

4 / i = ^ i ( ^ ) = /o ° = fo(Iwo), 

which proves that fo permutes the intervals as stated. 

The orientation of an interval Iw is defined to be the number 

o(w) = ( - l ) # ( w ) , 

where #(w) is the number of I s in w. Ihe shut of a word w — w{l)w{2)... w[n) is 
defined as 

a(w) — w(2)w(S)... w(n). 
Observe, that 

Iw C Ia(w) • 
In particular, the nth cycle has two intervals in each interval of the (n — l)th cycle: 

1-Qw I J-iw C! I iw 
The scaling function qn : w i—> (0,1) assigns to each word w of length n the ratio 

Qn{w) = I \u 
xx+x1x 

The a priori bounds on the possible values of qn, as presented in [Mai] for example 
imply 

4/i = ^i(^) = /o ° 
for some fixed p < 1. From this and the smoothness of fo it follows that the sequence 
qn converges to a Holder function q : E = {0,1}N —» (0,1). This function q is what 
we call the scaling function, in minor departure from some previous authors. 

The next proposition describes properties of the scaling function. To formulate this 
proposition we need an order on E: with w standing for the maximal word such that 
w\ = ww1 and w2 = ww2, we say that W\ is strictly smaller than w2 (or w\ -< w2)if 
and onlv if 

4/i = ^i(^) = /o °4/i = ^i(^) = /o ° 

Proposition 1.8. — If the Convexity Conditions hold true then q is strictly monotone. 
Furthermore, under the same hypothesis, there exists constants C > 0 and r < 1 

such that if w-i -< w2 and wi (k) — w2(k) whenever k < n then 

q(w2) > q(w!) + Crn 
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Remark 1.9. — If the Convexity Conditions Cl and C2 hold true, Proposition 1.8 
confirms the 1977 Conjecture in [CT] that the limit set of the ratios qn(w) defining 
the period doubling Cantor set is itself a Cantor set. 

In particular, we thus have the following 

Theorem 1.10. — In the case of quadratic critical point, a = 2, we have the following. 
- The Convexity Conditions holds true. 
- The universal period doubling scaling function q is strictly monotone and the 

range forms a Cantor set. 
- The limit set A of orbits of fo under the interated function system defined by Ro 

and R\ is a Cantor set. 

This Theorem establishes explicitly the geometrical complexity of the universal 
period doubling Cantor set: for related matters, see [GT] and [T]. 

Acknowledgements. — H. Epstein and O.E. Lanford discovered a relation between the 
fixed points of Ro and R\. Roughly speaking this relation states that if f(x) — h(x2) 
represents the fixed point of R\ then g(x) = (h(x))2 represents the fixed point of Ro-
This result was not published. However, it was the main inspiration for Section 2. In 
particular, Lemma 2.4 contains this result. 

2. Decompositions and Convergence 

The notion of decomposition, introduced in [Ma2], is a tool to describe the com­
binatorial aspects of universality. In this section, after some background on decom­
positions, we prove the convergence properties stated in Theorem 1.1. 

The set Tn is ordered by the embedding into the natural numbers defined by 

T(1)T(2) ...rin) v-
n 

2=1 
r(i)'2n-\ 

Consider also the embedding jn : Tn —> Tn+i defined by 

jn'T\ > rl. 
This embedding preserves the order. Observe that T inherites an order from the orders 
on the sets Tn, which extends to the order on T such that r1 < r2 iff ^sssdd r2n^ for 
all n ^ 1. The elements of T are called decomposition times. 

For the order <, the successor in Tn of ln G Tn is 0n G Tn and the predecessor 
in Tn of 0n G Tn is ln. The successor of r G T in Tn is denoted by rn+ and the 
predecessor is denoted by rn_. 

The nonlinearity of an orientation preserving diffeomorphism <p G Diff2([0,1]) is 

770 = D l n D 0 G C ° ( [ O , l ] ) . 
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A decomposed unimodal map is a map 
/ :T^Diff3 ( [0 , i ] )u(o ,±] 

with the following properties 
-fxd d dd the folding part of / represents an element qt of the standard folding 

family, so we have fx d = t G (0, | ] , 
- j(r) G Diff3([0,1]) for r ^ 1°°, (the diffeomorphic parts of / ) . 

]Ct6T\{1°°} l^/(r)lo < 00 ' 
- Er€Tx{loc} \Drlf(r)\0 < OO. 
The set U of decomposed unimodal maps carries the metric d defined by 

d(f,g) = 
4/i = ^i(^) lwlw 

i ^ » - ^ ( r ) i i + i/a00)-^!00)!-

The two summability conditions for decomposed unimodal maps allow to define 
what we call compositions associated to decomposed unimodal maps. Namely, if one 
considers a finite set Tn of decomposition times, the composition associated to / and 
Tn is defined as 

0(f, n) = fiV'-'O) o • • • o /(O""1!) o / ( 0 « ) o q?nnv 
otherwise speaking, the folding part followed by the diffeomorphic parts in the order 
of the decomposition times (so that the end result of the composition is a unimodal 
map). In [Ma2] it is shown that this composition, when defined for decomposed 
unimodal maps over the sets Tn, extends to a composition operator still denoted O: 

O : U —>U 
where U is equipped with the C2 metric, which is a Lipschitz map. This composition 
operator is based on a choice. Namely, the composition starts with the folding part 
Qj(Viy We could as well start at any decomposition time r G T/v, N ^ 1 and consider 
for each n ^ N the compositions defined by 
0(r, / , n) = / ( r"") o • • • o /(O""1!) o /(O") o q} o / ( l ' ^O) o • • • o /(r"+) o /(r) . 

The same proof which was used in [Ma2] to construct O(f) shows the pointwise 
convergence of the sequence 0( r , / ,n ) as n —> oo, thus defining a map denoted O 
again: 

0:TxU —>U. 
Observe that 0(1°°,/) is the operator studied in [Ma2]. 

This construction can be generalized even more. Fix / G U and choose r2 > T\ in 
TN. For each n ^ N define the diffeomorphism 

0?(f,n) = f(r2n~) o • • • o / ( T " + ) O / ( T ) O • • • O f(r"+) o /(Tl). 
It follows from [Ma2] that these maps converge, and we set 

OVt(f) = lim OlHf,n). 
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Moreover, there is a constant Kj such that 

]()%(/)-id\2^Kf 

{rGT|r2>r^ri} 
to/(T)lo. 

Lemma 2.1. — The operator O extends continuously to an operator 

0:TxU —>U. 

In particular, for each f G U there exists a constant Kj > 0 such that for any pair 

72,n G T with r2 ^ n, 

d2(0(r2J),0(T1J))^K? 

{reT|T2>r̂ Ti} 
4/i = ^i(^) 

Moreover for each r>\ > r2 > T\ G T and f G U 

0?(f) = 0%(f)oO?(f). 

Proof. — Fix f EU and choose r2 > T\ in T/v- Let h = 0^ ( / ) . The construction of 
h implies directly 

fcoOfr,, f) = 0(ro, f)oh. 

This construction can be done for every pair of T[,T'2 G [r2, ri] H T. Hence, there is a 
constant which only depends on f such that 

d2(0(T.^f),0(Tif)) < Const • 
{tET\t2>t>Ti} 

\Vf(T)\o. 

From this we get the continuous extension of O to T x L7, together with the estimate 
stated in the Lemma. The composition rule clearly holds for the operators 0^ ( / ,n ) 
and hence for the continuous extension of O. • 

We will also write Or(-) for 0(r, •). Let UQ be the set of renormalizable unimodal 
maps and Uo = {Oi^)~1(UQ). A renormalization operator R : UQ —» U is constructed 
in [Ma2] such that 

Oloc O R = RX O O\oa 

A decomposed unimodal map / G C/Q is said to be n times renormalizable iff / = 
0( / ) G U is n times renormalizable: we then set f = (/) o qt with £ G (0, | ] . This 
means there are pairwise disjoint intervals //,n, r G Tn, forming the nth cycle of / , 
such that 

4/i = ^i(^) 

- / : i"/,n —• 7̂ ;r+ is a diffeomorpishm, whenever r ^ ln, 

/ : ip\n —» /grf is onto. 

Let g : / —> J be an endormorphism which has either one or zero critical point. 
Then [g] : [0,1] —> [0,1] is a either a unimodal map or an orientation preserving 
diffeomorphism obtained by affine scaling of the domain and image of g. 
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Lemma 2.2. — Let f G U be n times renormalizable and 0(f) = / = 4>o qt G ZYo with 
t G (0, ±1. For n ^ 1 and r G Tn C T 

- Of+(Rnf) = [f\lfin], 
- Or°~(Rnf) = [qt\lt>% 
- o;n;0oo(fln/) = M(7tW'n)]. 

The reader is refered to [Ma2] for the precise definition of the renormalization 
operator R : Uo —» U, from which the Lemma immediately follows. This lemma 
indeed captures all the properties of the renormalization operator R that we will 
need. 

Proposition 2.3. — For every r G Tn C T 

OT o Rn — RT o O\oo, and Oro°o o Rn = RT o Oo°°. 

Proof. — Let / G C/ be n ^ 1 times renormalizable and 

0(f) = OMf) = f = <l>oqt£ltQ 

with £ G (0, | ] . As in the proof of Lemma 3.1 shows that for every n > 1 and 
r G Tn C T 

RT(f) = [fl\IfTn] 

Let ri = r, r*,. = r̂ _15 for k = 2, 3 , . . . , 2n. The composition rule for the operators 
OrT\ and Lemma 2.2 imply 

Ot o R"(f) = C £ n (Rnf) o • • • o O ^ J T / ) o 0£(iT7) 

= [/ l^, ' ! ]o---°[/ l^"]°[/ l^"1 

= [/2'V/;"] 

= ^ n ( / ) 

= RrOO^if). 

The second equation is proved similarly. • 

Lemma 2.4. — The operators i?o and R \ have fixed points. Furthermore, for any even 
integer a, both operators RQ and R \ have a unique fixed point. 

Proof. — It was shown in [Ma2] that the operator R has a fixed point. The previous 
proposition implies that a fixed point / <E Uo of R produces fixed points of RQ and 
R\. Namely, 

Ri(Oi~(f)) = Oioo(f) and RJOoooif)) = 0„~(/). 

Claim 2.5. — For each fixed point f G U of R\ (or Ro) there exists a unique fixed 
point of R, say f G U such that O i ° o ( / ) — f (or 0o°°(/) = f)-
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Proof. — Let f = 4>oqteUbea, fixed point of R \ (the case of a fixed point for RQ 
can be treated the similarly). Choose / G U such that 

Oi~(/) = /-

For example, consider f G U defined by 

4/i = ^i(^) = /o °xx 

- /(01°°) - 0, 
- fir) = id for r ± l00^!00. 

The definition of f and the fact that Oioo oi? = ft 0O100, implies 

Oiccfi?"/) = / , n > 1. 

We will show 

lim Rnf=fe U. 
71—>00 

with 

Rf = f<md Oioc(/) = /. 

Let n ^ 1 and T3 > T2 > Ti G Tn+i three consecutive decomposition times in Tn+i 
with T3,TI G Tn. Observe, that T3 and ri are consecutive points in Tn. From Lemma 
2.2 we get 

0 £ ( J T + 7 ) = 0%(Rn+1f)oO?(Rn+1f) 

= \f\ikn+l]o\f\ifT:n+x] 

= lf\H:n+1} 

= [fi//:ni, 

where we used that / is a fixed point of R\. Again from Lemma 2.2 we get fl tms =— 
0TJ(Rnf). Hence. 

OVHRn+1f) = OlHRnf)-

This should be interpreted as Rn+l f being a refinement of Rn f. In [AMM] it has 
been shown that there is a constant K > 0 and p < 1 such that 

rieTn 

|(OL3(^+1/)-id)|2^iv -p". 

This implies that limn^oo i?n/ = f G U. In particular, this implies that / is a fixed 
point of R which projects by O\oo to / . This concludes the existence part of the 
Claim. 

ASTÉRISQUE 286 



ON THE SCALING STRUCTURE FOR PERIOD DOUBLING 177 

We can use Lemma 2.2 to identify /(r) , r G T/v- Namely, 

ffr) = lim Rnf(r) 
sscd 

= lim o:"+0°°fi?nn 
ri—>oo 

= lim \qt\n>n\ 
n—*oo 

= \<k\m 
where we used that / is a fixed point of R\ to obtain the last equality. This implies 
the uniqueness part of the Claim. • 

It has been shown in [S2] that the operator R\ has a unique fixed point when 
a is an even integer. Now the uniqueness part of Lemma 2.4 follows by using the 
Claim. • 

Proof of Theorem 1.1. — Let fo be a fixed point of Ro and fo £ U the unique fixed 
of R with Oo- (fQ) = f0. Let h : T W be defined by 

h(T)=0T(fQ). 

For any Ti,T2 G T let \r2 — T\\ be the maximal length for which initial segments of 
the word T\ and r2 of that length agree. In [AMM] it has been shown that there is 
a constant K > 0 and p < 1 such that 

r2 > r > n 

4/i = ^i(^) = /o °xx 

Recall that T{n} is the word consisting of the first n symbols of a word r G T. From 
Lemma 2.1 we get 

d2(h(T{n}0™),h(T))^K-p" 
Theorem 1.1 follows from Proposition 2.3. Namely, 

Rr{n}fo — Rr{n} ° OQOO fo 

s+s1s+s1ss1sc 

= Or{n}o°°/o 
- h(TM0~) h(r), 

where the convergence is exponential. 

3. The monotonicity of the scaling function 

The monotonicity of the scaling function q, as formulated in Proposition 1.8 is based 
on the following combinatorial Lemmas. First we will concentrate on these Lemmas 
and prove Proposition 1.8. Secondly, Proposition 1.8 is used to prove Proposition 1.6. 

Although decomposition times and the words used to define the intervals Iw are 
conceptually different, the following Lemma shows that they are strongly related. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



178 G. BIRKHOFF, M. MARTENS & G TRESSER 

Lemma 3.1. — For every word w of length n 

4/i = ^i(^) = /o °w 

Proof. — The proof is by induction in n. For n = 1 the Lemma restates the def­
inition of Ro and R\. Assume the Lemma holds for some n ^ 1. Choose a word 
w of length n and consider the two intervals IQW and I\w. These intervals are con­
tained in Iw and each contains a boundary point of Iw. Using the induction hypoth­
esis Rw(fo) = [f§n\Iw] and the fact that f§n\Iw permutes IQW and Iiw we get that 
Row(fo) = Ro(Rw(fo)) and Riw(f0) = Ri(Rw(fo)) correspond to either of f2n+1\I0w 
or f2n+1\Ilw. 

It is left to identify which of the two intervals corresponds to £7#u,(/0) (resp. to 
VRU.(/O))- The maP fo Permutes the intervals Iw> with \w'\ — n + 1 according to 
addition mod.2N on the words indexing the intervals, as described in Lemma 1.7. 
Observe that 

lw = 0w + 2n -1. 
This means that f§l\Iow is monotone because OK; + k • 1, k < 2n never equals the 
word ln+1 and /o|An+1 1S the only place where monotonicity of fo fails. Hence, 

* M / o ) = Ro([ff\Iw]) = [(/o2")2|/o»] 
and 

Riw(fo) = Ri([ff\Iw}) = [(ff)2\hw}. 

In the sequel we will identify Rw(fo) with fT\Iw. 

\emma 3.2. — For every pair of words w and w°, the map 

Rw°(fo) : IwOw0 > Iwlw°, 

is monotone and onto. 

Proof. — Let \w°\ = n. The action of fo on the intervals of length \w\ + 1 + \uP\ is 
described by addition mod.2N on the words indexing the intervals (see Lemma 1.7). 
In particular, 

wlw° =wOw° + 2n -1. 

Hence 

fo (IwOw0) — Iwlw0-
By construction we have 

Iwlw° ^ IwOw0 C Iwo. 
Now the Lemma follows from Rwo(fo) — [fon\Iw°]i which we know from Lemma 3.1. 

Lemma 3.3. — If the Convexity Condition holds then there exist constants C > 0 and 
r G ( 0 , 1 ) with the following property. Let w be a word of with \w\ = n. 

If o(w) = + 1 then 
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- wQ < wl and wOO < wOl < wll < wlO 
- qn+1(wO) < qn+i(wl) 
- gn+2(w00) < gn+2(w01) < çn+2(^ll) < gn+2(wl0) 
- qn+2{wll) > qn+2(w01) + Crn 
If o(w) = — 1 then 
- wl < wO and wlO < wll < wOl < wOO 
- qn+1{wl) < qn+i(wO) 
- qn+2(wlQ) < qn+2(wll) < gn+2(w01) < çn+2(wOO) 
~~ yn+2 (wOl) > qn+2(wll) + Crn 

Proof — The construction of the intervals Iw imply immediately the following. If 
o(w) = 4-1 then the interval Iw contains the right boundary point of 1^). And if 
o(w) = -1 then Iw contains the left boundary point of Ia(w). Using this, the convexity 
of Fi and the fact that Fo is affine we get 

Claim 3.4. — o(w) • gn+i(wO) < o(w) • qn+\(w\), for every word w with \w\ = n. 

The case when o(w) = —1 of the Lemma can be proved similarly as the first case. 
We will only present the proof in the case o(w) — +1. The first statement is merely 
the definition of the order on the symbol space. The second follows directly from 
Claim 3.4. This Claim also implies 

tfn+2(w00) < gn+2(iu01), and qn+2{wll) < gn+2(wlO). 

To study the middle inequality, observe that 

Ia(w)01 LI I(T(IU)11 C I\. 
First observe that o(w01) = — 1 (and o(wll) = 1). In particular the negatively ori­
ented interval IWQ\ contains the left boundary point of the interval Ia(w)oi- Moreover, 

I<r{w)oi C loi C [0,/o(c/o)], 

where 0 G I\ is the left boundary point of I\. 
By Lemma 3.2 we have 

Rl(fo) '• I<j(w)Ol > Icr{w)l\-

The Convexity Condition states that the absolute value of the derivative of this map 
decreases strictly on the interval [0, /Q (C/0)]. NOW using 

4,01 C I(r(w)Qi C [0,/o(C/o)] 

and that the interval IWQI C Ia(w)oi contains the left boundary point of Ia(w)oii we 
get 

Hn+2 (wOl) < qn+2(wll). 
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From the a priori bounds described for example in [Mai], we know that there are 
constants C > 0 and r E (OA) such that 

\Iw\>CrM 
for all words w. This implies the final estimate of Lemma 3.3. 

Let w be a word with \w\ = k. Then define the interval 

Jw = fafc+l(wO),Çfc + i(wl)l. 
Proof of Proposition 1.8. — The proposition 1.8 is reformulated in 

Claim 3.5. — Let w be a word with \w\ = k and \wh\ = n. Then 

qn{wh) E Jw. 
In particular, 

Jiv h ^ J\w 
Moreover, if w1 and w2 are distinct words of length k then J(wl) and J(w2) are 
disjoint and the distance between them is larger than Crk. 

Proof. — The proof of the first part of the Claim is by induction in n. For n = 2 
the statement follows from the Lemma 3.3. Assume the Claim holds for all words wh 
with \wh\ ^ n. 

Consider a word wh = whhlh2 with \wh\ = n + 1 and = \h2\ = 1. Then 
Lemma 3.3 implies that for every pair of symbol x, y 

qn+i(whxy) e \qn+i{whlO), qn+i(wh00)]. 
In particular, 

qn+i(wh) G [qn+i(whlO),qn+i(whOO)\ 
= \qn(whl),qn(whO)\ 

d+d1dd+dr1 
The above equality follows from the fact that qn+i(whlO) = qn(wh\) because the 
interval Iwjll0 is obtained from Iw~hl by applying the affine branch F$. The other 
boundary is treated similarly. The last inclusion follows from the induction hypothesis. 

The proof of the second part of the Claim is by induction in k = For k = 1 the 
Claim considering the distance between Jo and J\ is a reformulation of the previous 
Lemma. Assume, the Claim is proved up to some k ^ 1. Let w1 and w2 be two words 
of length k + 1, say w1 — wlx and iv2 — w2y with \wl\ = \w2\ = k. 

If wl differs from w2 then the Claim follows because 

Jw1 C Jin1 i Jw2 ^ Jw'2 
and the induction hypothesis. So we may assume that 

w1 = wO. w2 = wl. 
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Apply Lemma 3.3 again to conclude that Jwi and Jwi are disjoint with the appropriate 
distance between them. • 

Proof of Proposition 1.6. — The proof of Proposition 1.6 relies on the relation be­
tween the two iterated function systems generated by respectively {RQ,R\} and 
{ F o , F i } as formulated in Lemma 3.1 . Notice, the only difference between E and 
T is that they carry different orders. The order does not play any role in the proof of 
Proposition 1.6. We will use the symbol w for words which are in E = T. In Section 2 
we constructed the continuous map h : E —> A (see Remark 1.3). Namely, for w G E , 
let 

h(w) = lim Rw (f0). 

In particular, this map is onto. It is left to show that h is injective. 
Observe that every word w with \w\ = n 

Pow(fo) — Ro(Rw(fo))' 

In particular, 
qn+i(0w) = |VRUI(/O)|. 

Recall that for w G E we denote the word consisting of the first n symbols of w G E 
by W{n}- Let wl,w2 G E be such that h(wl) = h(w2). Then 

|ç(0V) - q(0w2)\ = Imi^ Iqn^Ow}^) - qn+1(0w2{n})\ 

= lim \\VR (/o)| - \VR (/o)|| 
n-*oo «{n} 

^ Const lim dist(iO (f0),Rw2 (fo)) 
fl—>OC> {n} {n} 

= Const • dist(/z(w;1), h(w2)) = 0. 
The strict monotonicity of the scaling function, Proposition 1.8, implies w1 = w2. 
This proves that h : E —* A is a homeomorphism. 

4. The Convexity Condition 

In this section the Convexity Condition will be studied. 

Lemma 4.1. — Let f : ( - 1 , 1 ) ( - 1 , 1 ) be C2. If 
- / ( 0 ) = 0, 
- Df(0) < -L 
- D2fW < 0 

then 
D2(f)(0) < 0. 
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Proof. — The chain rule applied to f2 gives 

D2(f)(x) = D2f(f(x)) • (Df(x))2 + Df(f(x)) • D2f(x). 

Using the properties of / in x = 0 we get 

Z?2(/2)(0) = D2f(0) • Df(0) • [Df(0) + 1] < 0. • 

Lemma 4.2. — Let C C W consisting of unimodal maps f G W, with negative 
Schwarzian derivative (see [dMvS] for the definition), and the following property: 
/|[0,c] is convex, where c is the critical point of f, and /|[c, 1] is strictly convex (The 
derivative of f is decreasing over [0,1] but strictly decreasing on [c, 1]). Then 

Ro{C) C C. 

Proof — Let / G C with critical point c G [0,1] and let pj be its fixed point. Let 
Vf = P U Q , where P, Q are the two intervals on which Rof is monotone. Choose 
Q C Vf such that f(Q) C [0,c]. The convexity property of / implies directly the 
strict convexity of Ro(f)\Q. 

The Schwarzian derivative of / is negative. This implies that pf is an expand­
ing fixed point, otherwise it would attract the critical point (see [dMvS]). Hence, 
Df(pf) < — 1. The convexity condition of / allows us to apply the previous Lemma: 

D2Mf)(Pf) < 0, 
i.e. the derivative of f2 is decreasing in pf. Now, the Minimum Principle for maps with 
negative Schwarzian derivative (again see [dMvS]), implies that Df2 is decreasing 
monotonically to zero on the interval [pf: P], hence Rof G C. • 

Lemma 4.3. — The convexity condition CI holds true for any even critical exponent 
a, the map fo\[pf0i 1] is strictly convex. 

Proof. — Let qt G W be a standard folding map. Clearly, qt G C. From [S2] we have 

lim RZqt=fi. 

Let / be the unique fixed point of R (with O i o o ( / ) = fi). As in the proof of Claim 
2.5 we get for every / G U with 0^ (/) = qt that 

lim Rnf = l 

Hence, 
lim Rr0lqt - lim 00ooRnf 

= Oo~(/) 
= /o, 

where fo is the fixed point of RQ. This implies that the derivative of fo is decreasing 
because of the previous Lemma . The renormalization fixed point fo is real analytic. 
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Hence, the set E C [0,1] consisting of the flat points of /o, points where D2 fo vanishes, 
is finite. 

The map /0 is the fixed point of RQ. Hence, s(E), the map s is the affine scaling 
of the interval [0,1] to V/0, is the set of flat points of R0f0(= f0). Let Q C Vf0 be the 
maximal interval such that fo(Q) C [0, c]. Any non-flat point x G Q will be a non-flat 
point of Rofo, this follows from the convexity, maybe not strict, of fo. Hence 

s(E)DQ c E. 

Assume, E fl [c, 1) 0 and let x G E D [c, 1) be the rightmost point. The fact that 
fo is a renormalization fixed point implies that s(c) is the left boundary point of Q. 
In particular we get 

x < s(x) G s(E) H s([c, 1]) C E fl Q, 

contradicting the fact that x was chosen to be the right most point in ED [c, 1). This 
proves that fo does not have flat points in [p/0,1) C [c, 1). • 

Lemma 4.4. — 27ie convexity condition C2 /io/cfe £nze /or a = 2. 

Proof. — In the case a = 2, an approximation of f\ can be found in [La]. We will 
use the notation of [La]. The fixed point f\ is represented as g(z) = h(z2) where 
\z\2 ^ 1.5. Actually, the map h defined on the disk Do = {z\\z\ ^ 1.5} where it is 
analytic. The map h is approximated by a polynomial of degree 40. 

h0(z) = 1 + 
40 

n=l 

w+w1s 

where 
) G s(E) H s([+w1w 

It is also shown in [La] that 

\h(z) - ho(z)\ ^ 1.5-lu"23, z G D0. 

From Lemma 2.4 we get that the map f(z) = (h(z))2, z G Do represents the fixed 
point fo of Ro, the maps are equal up to an affine scaling. The map P(z) = (ho(z))2, 
z G Do, approximates this fixed point. For both maps the dynamically relevant 
interval is [0,1]: /([0,1]) = [0,1] and P([0,1]) = [0,1]. 

To prove the convexity condition C2 it suffices to show the strict convexity of f2 
restricted to the interval [/6(cj), 1]. 

Claim 4.5. — The derivative of of ho restricted to DQ satisfies 

\Dho(z)\ < 14.0 

This estimate follows from the bounds on the coefficients of the polynomial ho. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



184 G. BIRKHOFF, M. MARTENS & C. TRESSER 

Claim 4.6. — For z e D0 
|P (2)- / (z )Ki .o- icr2C 

and the derivative of P restricted to the disk DQ satisfies 
\DP{z)\ ^ 700. 

The bound on the coefficients of the polynomial ho imply that /io({2:||z| ^ 1-5}) is 
contained in a disk of radius 23 around 0. The bounds on the distance between h and 
ho and the fact that the derivative of the map z > z2 is bounded by 50 on the disk 
of radius 23 around 0, finishes the proof of this Claim. 

Let D be the 1 /1500neighborhood of the interval [0,1]. 

Claim 4.7. — The map f2 is defined on D (and is analytic). Moreover 
\f2(z) -P2(z)\ <: 10~17, zeD. 

The fact that f2 is well defined on D follows from the fact that P maps D well 
inside the disk of radius DQ and that P and / are close on Do- The estimate on the 
distance between f2 and P2 on D follows from the bound on the derivative of P and 
the very small distance between / and P. 

Claim 4.8. — For every z G [0,1] 
\D2P2(z)-D2f2(z)\ ^ 1.0-10-7 

and 
\D3P2{z) - D3f2(z)\ <: 1.0 • HT4 

These bounds follow by applying the Cauchy integral formula for derivatives. Let 
z0 e [0,1]. Then 

\D2P2(z)-D2f2(z)\<: 1 
2tt JdD 

\P2(z) - f2(z)\ 
|*-*0|3 

dz 

sce 1 
2tt 

. lQ-20 1 
0.0013 ' 2tt(1.5) ^ 1.0- 10~10. 

The third derivative is treated similarlv. 
It is left to find a lower bound for \D2P2(z)\ larger than 10~9. We will use tra­

ditional cross ratio technology [dMvS] to reduce this question to a calculation in 
finitely many points. Let h : T —+ h(T) be a diffeomorphism of the interval T to its 
image and suppose it has negative Schwarzian derivative. Let M C T be a subinterval 
and let L, R C T \ M be the two connected components of T \ M. Let 

T = mii: \h(L)\ \h(R)\ 
\h(M)\'\h(M)\. 

Then 
\Dh(x)\ ^ 1 + r \h(M)\ 

r ' \M\ ' x e M. 
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The nonlinearity of h is rj = D ln Dh = D2h/Dh. We have the following estimate 

\V(x)\ < 2-
(l+r)|ft(M)| 

T2|M|2 x e M. 

The third inequality we will use is 

D3h ^ 
ss1ed+se1 
2y Dh ' ?-Dh 

in the case when Dh is negative. 
We will apply these three estimates to the map f2 restricted to the interval [c/, 1] 

with M = [/6(c/), 1]. The period two point of / and the position of f4(cf) can be 
precisely estimated with the help of P. Using estimates for these two points gives the 
following estimates 

r ^ 0.2 and \M\ ^ 0.1, \f2(M)\ ^ 0.6. 

This implies 
\D(D2P2)(x)\ ^ -2.2 • 108, x e M. 

Claim 4.9. — For every z G [f6(cf ), 1] 

\D2P2(z)\ ^ 0.5, 

This is shown by numerical analysis. The second derivative of P2 is calculated in 
a sequence of points with increment 10-9 over the interval [/6(c/), 1]. In these point 
the second derivative of P2 is smaller than —1. The derivative estimate of D2P2 leads 
to the lower bound as stated in the Claim. • 

The quadratic case, a = 2, as described in Theorem 1.10 follows from propositions 
1.6 and 1.8, and lemmas 4.3 and 4.4. 
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Abstract. — It is known that all non-hyperbolic robustly transitive sets have a 
dominated splitting and, generically, contain periodic points of different indices. We 
show that, for a C1 -dense open subset of diffeomorphisms the indices of periodic-
points in a robust transitive set Â  form an interval in N. We also prove that the 
homoclinic classes of two periodic points in Â  are robustly equal. Finally, we describe 
what sort of homoclinic tangencies may appear in Â  by studying its dominated 
splittings. 

1. Introduction 
When a diffeomorphism (/) is hyperbolic, i.e., it verifies the Axiom A, the Spectral 

Decomposition Theorem of Smale says that its limit set (set of non-wandering points) 
is the union of finitely many basic pieces satisfying nice properties, each piece is invari­
ant, compact, transitive (i.e., it contains an orbit which is a dense subset), pairwise 
disjoint and isolated (each piece is the maximal invariant set in a neighborhood of 
itself). Moreover, by construction, a basic piece is the homoclinic class of a hyper­
bolic periodic point, i.e., the closure of the transverse intersections of its invariant 
manifolds. 

Even if the dynamics is non-hyperbolic, the homoclinic classes of hyperbolic pe­
riodic points seem to be the natural elementary pieces of the dynamics, satisfying 
many of the properties of the basic sets of the Smale's theorem: invariance, compact­
ness, transitivity and density of hyperbolic periodic points. Recent results in [BD2], 
[Ar] and [CMP] show that, for C1-generic diffeomorphisms (i.e., those belonging to 
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a residual subset of Diff1 (M)) two homoclinic classes are either disjoint or equal and 
they are maximal transitive sets (i.e., every transitive set intersecting a homoclinic 
class is contained in it). Notice that, in general, the homoclinic classes fail to be 
hyperbolic, isolated and pairwise disjoint. 

In [BDP] it is shown that, for C1 -generic diffeomorphisms, a homoclinic class 
is either contained in the closure of an infinite set of sinks or sources, or satisfies 
some weak form of hyperbolicity (partial hyperbolicity or, at least, existence of a 
dominated splitting). The first situation (called the Newhouse phenomenon) can be 
locally generic, in the residual sense: there exist open sets in DifF(M) where the 
diffeomorphisms with infinitely many sinks or sources are (locally) residual for the 
Cr-topology. The case r ^ 2 for surface diffeomorphisms can be found in [N], see [PV] 
for the case r ^ 2 in higher dimensions, and [BDi] for r = 1 in dimensions greater 
than or equal to 3. Certainly, the Newhouse phenomenon exhibits very wild behavior 
and it is conjectured that (in some sense) diffeomorphisms satisfying this phenomenon 
are very rare (for instance, for generic parametrized families of diffeomorphisms, the 
Lebesgue measure of the parameters corresponding to diffeomorphisms satisfying the 
Newhouse phenomenon is zero), see [Pa]. 

We focus here on the opposite behavior. More precisely, we restrict our attentions 
to the so-called robustly transitive sets introduced in [DPU] as a non-hyperbolic 
generalization of the basic sets of the Spectral Decomposition of Smale. A robustly 
transitive set A of a diffeomorphism eb is a transitive set which is locally maximal 
in some neighbourhood U of it and such that, for every C1 -perturbation yj of the 
diffeomorphism 0, the maximal invariant set of in U is transitive. From the results in 
[M2], [DPU] and [BDP] every robustly transitive set A admits a dominated splitting, 
say TA M = E\ 0 • • • 0 Ek, and by [BD2], C1 -generically, it is a homoclinic class. An 
invariant set may admit more than one dominated splitting, since one can always 
sum up some bundles of the original dominated splitting, obtaining a new dominated 
splitting with less bundles, or, conversely, split some bundle of the splitting in a 
dominated way. So it is natural to consider the finest dominated splitting of the set 
A (i.e., the one that does not admit any dominated sub-splitting). 

In this paper we study the interrelation between the dominated splittings (es­
pecially the finest one) of a robustly transitive set A and its dynamics, answering 
questions about the indices (dimension of the stable manifold) of the periodic points 
of A, the possible bifurcations (saddle-node and homoclinic tangencies) occurring in 
this set as well as its dynamical structure. 

Let us recall some definitions, necessary for what follows. 

In what follows, M denotes a compact, closed Riemannian manifold and Diff1(M) 
the space of C1 -diffeomorphisms of M endowed with the usual topology. 

Let A be a compact invariant set of a diffeomorphism eb. A cj>*-invariant splitting 
TA M = E 0 F over A is said to be dominated if the fibers of E and F have constant 
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dimension and there exists k G N such that, for every x G A, one has 

\\^\E(x)\\-\\^k\F(^(X))\\ < \ 

that is, the vectors in F are uniformly more expanded than the vectors in E by the 
action of If it occurs we say that F dominates E and write E -< F. 

An invariant bundle E over A is uniformly contracting if there exists k such that, 
for every x G A, one has: 

110. k*)II < \ . 
An invariant bundle E over A is uniformly expanding if it is uniformly contracting for 
Q-1 

Let T\M = Ei 0 E2 0 • • • 0 Em be a 0*-invariant splitting over A such that the 
fibers of the bundles Ei have constant dimension. Denote by E\ — @^ Ek the direct 
sum of ..., Ej. Note that ~l 0 E7kn is a splitting of TAM for all k G {2,... , m}. 
We say that Fi 0 E2 0 • • • 0 Em is the finest dominated splitting of A if _1 0 2£™ 
is a dominated splitting for each k G {2,.. . , m} and every Ek is indecomposable (i.e., 
it does not admit any nontrivial dominated splitting). See [BDP] for the existence 
and uniqueness of the finest dominated splitting. 

Consider a set V C M and a diffeomorphism ip: M —> M. We denote by A^(V) the 
maximal invariant set of </? in V, i.e., Av?(Vr) = fiiez ^(^0- Given an open set U C M 
the set A^{U) is robustly transitive if A^(U) is equal to A^(U) and is transitive for 
all I/j in a C1-neighbourhood of We say that a ^-invariant closed set if is transitive 
if there exists some x G if having a positive orbit which is dense in K. 

If a robustly transitive set A^U) is not (uniformly) hyperbolic then, by a C1-small 
perturbation of 0, one can create non-hyperbolic periodic points, and thus hyperbolic 
periodic points with different indices in A<f,(U) (see [M2]). Our first two results 
describe the possible indices of the periodic points of A^(i7), in terms of the finest 
dominated splitting of A<f,(U): 

Theorem A. — Let U be an open set of M and M(U) a Cl-open subset of Diff1(M) 
such that A^(U) is robustly transitive for every if G Ai(U). Then there is a dense 
open subset xV(U) of Ai(U) such that, for every <p G M(U), the set of indices of 
the hyperbolic periodic points of A^(U) is an interval of integers (i.e., if P and Q 
are hyperbolic periodic points of indices p and q, p ^ q, of A^(U), Lp G M(U), and 
j £ [QIP]I then A^U) has a hyperbolic periodic point of index j). 

In the next result, we use the arguments in [M2] to relate the uniform contraction 
or expansion of the extremal bundles of the finest dominated splitting of a robustly 
transitive set with the indices of the periodic points of this set. 

Theorem B. — Consider an open subset U of a compact manifold M and an integer 
q G N*. LetU be a Cl-open subset o/Diff1(M) such that for every <j) eU the maximal 
invariant set A^(U) satisfies the following properties: 
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(1) the set A(j)(U) is contained in U and admits a dominated splitting 0 F^, 
E<p ~< Fff,, with dimE^{x) — q, 

(2) the set A^ifJ) has no periodic points of index k < q. 

Then the bundle E^ is uniformly contracting for every <fi GW. 

We can summarize the two results above, in order to get a characterization of the 
set of indices of the periodic points of the set A^(or), as follows. 

Let U C M be open and <p a diffeomorphism such that A^(U) is robustly transitive 
with a finest dominated splitting of the form T^(u)M = E\ 0 • • -^Ek^y E{ -< Ei+\. 
Denote by Es the sum of all uniformly contracting bundles of this splitting and let 
Ea be the first non-uniformly contracting bundle, i.e., Es = E\ 0 • • • 0 Ea-\. In the 
same way, denote by Eu the sum of all uniformly expanding bundles of the splitting 
and let Ep be the last non-uniformly expanding bundle, i.e., Eu — Ep+i 0 • • • 0 Ek^y 
Let U be a (^-neighborhood of (p such that, for every ip G U, the set A^ifJ) has the 
same properties as A¥?(C7) (i.e., robustly transitive and the number k(yj) of bundles of 
the finest dominated splitting is equal to k((p)) and the dimensions of bundles Es(ip), 
Ea(ip), Ep(ip) and Eu(yb), defined in the obvious way, are constant in U and equal to 
corresponding bundles for (j). 

Corollary C. — With the notation above, there exist a Cl-open and dense subset V of 
U and locally constant functions i, j : V —» N* such that 

i{yb) G [dim(£s),dim(£s) + dim(Ea)] flN*, 
j(yb) G [dim(£:n),dim(£;w) + àim{Ep)\ nN*, 

and, for every yb G V, the set of indices of the hyperbolic periodic points of A^(U) is 
the interval [i(^), dim(M) - j(ip)\ fl N*. 

The first known examples of non-hyperbolic robustly transitive sets had a one-
dimensional central direction, see [Mi] and [Sh]. As a consequence, these examples do 
not present homoclinic tangencies (non-transverse homoclinic intersections between 
the invariant manifolds of some periodic point). Observe that if a periodic point has 
a homoclinic tangency then, after a perturbation of the diffeomorphism, one create 
a Hopf bifurcation (a periodic point whose derivative has a pair of conjugate nonreal 
eigenvalues of modulus one), see [YA] and [R], hence points whose central direction 
has dimension at least two. Currently examples of robustly transitive sets having 
a central direction of dimension two or more are known, see [BDi], [B] and [BV]. 
Moreover, in some cases these sets exhibit homoclinic tangencies, see [B] and [BV]. 
Our next result explains what sort of dominated splitting of a robustly transitive set 
prevents homoclinic bifurcations. 

We say that a robustly transitive set A^(U) is C1 -far from homoclinic tangencies 
if there are no homoclinic tangencies in A^(U), for all ip in a ^-neighbourhood of if. 
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Theorem D. — Given an open set U of M let V(U) C Diff1(M) be an open set of 
diffeomorphisms Lp such that: 

(1) The set A^(U) is robustly transitive and the minimum and the maximum of 
the indices of the hyperbolic periodic points of A^(U) are constant in V(U). Denote 
these numbers by is and ic, respectively. 

(2) The set A^(U) is Cl-far from homoclinic tangencies. 

Then there is an open and dense subset 0(U) ofV(U) such that, for every Lp £ 0(U), 
the set A (̂Z7) has a dominated splitting TA (£/) = Es 0 E\ 0 • • • 0 Er 0 Eu, such that 

- Es is uniformly contracting and has dimension is ^ 1, 
- Eu is uniformly expanding and has dimension dim(M) — ic ^ 1, 
- r = ic — is and the bundle Ei has dimension one and it is not uniformly hyperbolic 

for every i = 1,. . . , r. 

In fact, from the proof of this theorem, we get more: given any robustly transitive 
set K^U), for diffeomorphisms in a C1 -neighbourhood of qt>, the dimensions of the 
non-hyperbolic bundles of its finest dominated splitting determine the ranks of the 
homoclinic tangencies (that is, the indices of the periodic points exhibiting the tan­
gency) that can occur in A^(U). The precise statement of this result is in Section 6, 
see Theorem F. 

Finally, for robustly transitive sets which are far from homoclinic tangencies, we 
prove that the (relative) homoclinic classes of two periodic points of this set are 
equal in a C1-robust way. More precisely, let P^ be a hyperbolic periodic point of 
a diffeomorphism p>. We denote by Hp the set of transverse intersections of the 
invariant manifolds of P^. Observe that the homoclinic class of P^ is the closure 
of Hp^. Given an open set U, the relative homoclinic class of P^ in U is the closure 
of the set Hp^(U) of transverse homoclinic points of Pr whose orbits are contained 
in U. 

Theorem E. — Let U be an open subset of M and S(U) C Diff1(Af) an open set of 
diffeomorphisms ip such that 

- the set A^U) is robustly transitive, and 
- there are no homoclinic tangencies (in the whole manifold) associated to periodic 

points of Ay(U). 

Consider any pair of hyperbolic periodic points P^ and of A^(U) with indices p 
and q whose continuations are defined for every yj in S(U). Then there is an open 
and dense subset V(U) of S(U) such that 

HJJÛ) = Hc^JÛ) 

for every vb in T>(U). 
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Unfortunately, in the theorem above we cannot ensure that the relative homoclinic 
classes of P^ and are equal to A^(f/), although by the results in [BD2] this is 
true for a residual subset of S(U). 

Let us now say a few words about the proofs of our results. One of the main tools 
is the notion of heterodimensional cycle. Given a diffeomorphism qb with two hyper­
bolic periodic points P$ and with different indices, say index(P^) > index((3c/>), 
we say that qb has a heterodimensional cycle associated to P^ and Q<p, denoted by 
r(0, P^, Q</>), if Ws(P(p) and Wu(Q(p) have a (nontrivial) transverse intersection and 
Wu(P(f)) and Ws(Q(j)) have a quasi-transverse intersection along the orbit of some 
point x, i.e., TxWu(P(f)) + TxWs(Q(f)) is a direct sum. Notice that, in this case, 
dim(M)-dim(TxWu{P4)) + TxWs(Q4))) is equal to index(P0)- index(Q0), this num­
ber being the codimension of the cycle. 

The proof of Theorem A has two main ingredients. The first is Theorem 3.1, which 
implies that, by unfolding a heterodimensional cycle associated to points of indices q 
and p as above, one gets hyperbolic periodic points of some index in between q and 
p (a priori, we do not know the index of such a point). The second ingredient of the 
proof is the Connecting Lemma of Hayashi (see Theorem 2.1 and [H]) which allows 
us to create (after a C1-perturbation) heterodimensional cycles associated to any pair 
of periodic points of a robustly transitive set. 

Two other important tools are the constructions in [M2] and in [BDP] (specially 
the periodic linear systems with transitions). In this paper we need to introduce tran­
sitions between points of different indices in the same homoclinic class, generalizing 
the construction in [BDP], in which only transitions between points with the same 
index were considered. 

Finally, to prove Theorem E, the main ingredient, besides the Connecting Lemma, 
is the proposition below concerning the structure of the homoclinic classes of hyper­
bolic points having a heterodimensional cycle. 

We say that a hyperbolic periodic point is Cl-far from tangencies if there is 
a ^-neighbourhood W of qb in Diff1(M) such that every yb G W has no homoclinic 
tangencies associated to R^. A heterodimensional cycle T(qb, P^^Q^) is Cl-far from 
homoclinic tangencies if the points P^ and in the cycle are C1-far from homoclinic 
tangencies. 

Finally, we say that two points x and y are transitively related by qb if there exists 
a transitive set of qb containing x and y. The points x and y are transitively related 
in an open set U if there exists a transitive set of qb contained in U that contains x 
and y. 

Proposition 1.1. — Let U be an open set, a diffeomorphism, and P^ and a pair 
of hyperbolic periodic points of of indices p and q — p — I, respectively. Consider a 
neighbourhood W of qb in Diff1(M) such that, for all yj G W, 

- the continuations P^ and are defined and C1 -far from tangencies, 

ASTÉRISQUE 286 



ROBUSTLY TRANSITIVE SETS AND HETERODIMENSIONAL CYCLES 193 

- the points P^ and are transitively related in U. 
Then there is a Cl-open subset ofW, with <p G W, such that the relative homoclinic 
classes of P^ and in U are equal for every ip G W^. 

[DR, Theorem A] asserts that, given any heterodimensional cycle r(0, P^, Q</>) of 
codimension one, far from homoclinic tangencies, there exists a Cx-open set, whose 
closure contains 0, of diffeomorphisms p> such that P^ and are transitively related. 
Thus, for any diffeomorphism (j) with a heterodimensional cycle which is far from 
homoclinic tangencies, there are diffeomorphisms <p arbitrarily close to (j) satisfying 
the hypotheses of the proposition. The proof of Proposition 1.1 follows from the 
results in [DR] and the Connecting Lemma of Hayashi. 

This paper is organized as follows. In Section 2 we get some results concerning 
heterodimensional cycles, robustly transitive sets and homoclinic classes using the 
Hayashi's Connecting Lemma. In Section 3 we prove Theorem A. For that, we study 
the creation of periodic points in the unfolding of heterodimensional cycles (of any 
codimension). In Section 4 we prove Theorem B, for that we recall some folklore 
results concerning dominated splittings and reformulate some results in [MJ. In 
Sections 5 and 6, we study the relationship between the finest dominated splitting 
of a robustly transitive set and the creation of homoclinic tangencies inside this set. 
Finally, in Section 7 we prove the results concerning (relative) homoclinic classes. 
Acknowledgements. — We acknowledge Bianca Santoro for her comments that helped 
us to make the english redaction compatible with the high standards of one of the 
referees. 

2. Transitively related points 

We begin the proofs of our results by recalling the Hayashi's Connecting Lemma 
and deducing some consequences from it. 

2.1. Connecting lemma and transitively related points 
Theorem 2.1 (Hayashi's Connecting Lemma, [H]). — Let P^ and be a pair of hy­
perbolic periodic points of a C1 -diffeomorphism ip such that there are sequences of 
points xn and of natural numbers kn such that the sequences xn and tpkn (xn) accu­
mulate on Wfc^Pp) and on W[oc{Q^)? respectively. 

Then there is a diffeomorphism vb arbitrarily C1 -close to <p such that WU(P^) and 
WS(Q^) have a nonempty intersection. 

Remark 2.2. — Every pair of hyperbolic periodic points P^ and which are transi­
tively related satisfy the hypotheses of the Connecting Lemma (Theorem 2.1). 
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Proof of the remark. — Consider a transitive set A containing P^ and and a point 
x of A whose positive orbit is dense in A. Then there are sequences of natural numbers 
mn and rn, ran, rn —> oo as n —» oo, such that ?̂mn(x) —• and cprn(x) —• Q^. 
Then it is immediate to get new sequences m'n and r'n, with m'n, r'n —» oo, such that 
(/?m™ (x) and (/?r™ (x) converge to some point of W^^P^) and of Wfoc(Q<p), respectively. 
Taking subsequences, if necessary, we can assume that r'n = m'n + kn for some kn > 0. 
Now it suffices to take xn = (/?m™(x) and consider the sequences xn and /cn. • 

2.2. Homoclinic relative classes and robustly transitive sets. — By [BD2, 
Theorem B], there is a residual subset of Diff1(M) consisting of diffeomorphisms such 
that the homoclinic classes of any two transitively related hyperbolic periodic points 
are the same. The proof of this result is based on the Hayashi's Connecting Lemma. 
Using the relative version of the connecting lemma, we get a relative version of [BD2, 
Theorem B] whose proof is here omitted. 

Theorem 2.3 (Relative version of [BD2, Theorem B]). — Given an open subset U of M, 
there exists a residual set G(U) C Diff1(M) such that, for every (p G G(U), two 
hyperbolic periodic points P^ and of tp are transitively related in U if and only if 
the relative homoclinic class in U of P^ and are equal, i.e., Hp^(U) = HQ^(U). 

Let A(U) C Diff1(AI) be an open set such that A (̂C/) is robustly transitive for all 
ip G A(U). By Pugh closing lemma (see [Pu]) and a Kupka-Smale argument, there is 
a residual subset TZ(U) of A(U) of diffeomorphisms if such that, for all <p G 7£(C/), the 
hyperbolic periodic points form a dense subset of K^U). Taking T(U) = G(U)n7Z(U)1 
where G{U) and 1Z(U) are as above, we get the following: 

Proposition 2.4. — Let U C M and A(U) C Diff^M) be open sets such that Av?(/7) 
is robustly transitive for all if G A(U). Then there exists a residual subset T^(U) of 
A(U) such that 

injU) = K(u) 

for every (p G TA(U) and every hyperbolic periodic point P^ G A^(I7). 

2.3. Heterodimensional cycles. — We will use the following lemma, which fol­
lows from the Connecting Lemma and an argument of transversality: 

Lemma 2.5. — Let P^ and be hyperbolic periodic points of a diffeomorphism ip of 
indices p and q, p ^ q. Suppose that P^ and are transitively related for every yb 
in a C1 -neighbourhood V of (p. Then there is a dense subset W of V such that every 
cf)inW has a heterodimensional cycle T(0, P^, Q^) of codimension (p — q). 

Proof. — Let yj G V. Since P^ and are transitively related, by Remark 2.2, we 
can apply Theorem 2.1 to get £ arbitrarily close to yb (hence £ is in V) such that 

ASTÉRISQUE 286 



ROBUSTLY TRANSITIVE SETS AND HETERODIMENSIONAL CYCLES 195 

Ws(Pz) n r ( Q ^ 0 . Since 

dim(Ws(P^)) + dim(Wu(Q^)) = p + (dim(M) - q) ^ dim(M), 

we can assume that WS(P^) and Wu(Qç) intersect transverselly. 
Since £ belongs to V, the points P^ and are transitively related. Thus, again by 

Remark 2.2, we can apply Theorem 2.1 to get <p arbitrarily close to £ ((f) in V) such 
that Ws(P(p) and Wu(Qc/)) have (non empty) transverse intersection and Wu(P<p) Pi 
W ŝ(Q(/>) 7̂  ^- After a new perturbation, if necessary, we can assume that the last 
intersection is quasi-transverse, obtaining a heterodimensional cycle r(0, P^, Q^) of 
codimension (p — q), finishing the proof of the lemma. • 

Let us state two remarks about the proof above that will be used in Section 7. 

Remark 2.6. — Let P^ and be hyperbolic periodic points of a diffeomorphism ip 
of indices p and q, p ^ q. Suppose that P^ and are transitively related for every 
yb in a neighbourhood V of (p. Then there is an open and dense subset V of V such 
that WS(P^) and WU(Q^}) have a nontrivial transverse intersection, for every yj in V. 

If in Theorem 2.3 we assume that the points P^ and have the same index, we 
get the following stronger version of it: 

Remark 2.7. — Let P^ and be hyperbolic periodic points of the same index of a 
diffeomorphism ip and U an open set containing the orbits of P^ and Q^. Suppose 
that Ptp and are transitively related for every yb in a neighbourhood V of (p. Then, 
there exists an open dense subset O of V such that, for every yb in (9, the relative 
homoclinic classes of Py and in U are equal. 

3. Proof of Theorem A: unfolding heterodimensional cycles 

3.1. Transitions for heterodimensional cycles. — We begin this section by 
stating a technical result, which introduces the concept of transition between periodic 
points of different indices. 

Theorem 3.1. — Let P and Q be two hyperbolic periodic points of a diffeomorphism 
(p of indices p and q, p > q, and periods n(P) and n(Q), respectively. Denote by Mp 
and MQ the linear maps 

ipl{P) (P) : TPM —> TPM and ^{Q) (Q) : TQ —• TQM. 

Assume that there exist dominated splittings 

TPM = EX{P) 0 E2(P) 0 E3(P) and TQM = EX{Q) 0 E2(Q) 0 E3(Q), 

with dim(£i(P)) = dim(£i(Q)) = q and dim (£3 CP)) = dim(E3(Q)) = dim(M) - p, 
which are invariant by Mp and MQ, respectively. Assume, in addition, that there is 
a heterodimensional cycle T(ip, P, Q) in some open subset U of M. 
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Then, for any fixed e > 0, there are matrices TQ and T\ and S > 0 such that, for 
every n and m ^ 07 and every family of matrices i = 0, . . . , (n + m) + 2, 6-close 
to identity, there exists a diffeomorphism yj e-C1 -close to (p having a periodic orbit R 
of period n(R) such that the linear map MR = tp*^ is conjugate to 

4+m+2°Tl0ln+m+i0MQ0/n+m0- • •o/n+2oMQo^n+l°Î0o/noAfpo/n_1O- • -O^OMPOIQ. 

Moreover, n(R) = ti+t2 + n-n(P) + m'n(Q), where t\ andt2 are constants depending 
only on TQ and T\. 

WU(Q) 

Q 
WU(Pw 

E2(Q) 

Es(Q) 

WS(Q) 

AVU(P) 

WU(P) 

E2(P) 
Ei(P). 

Es(Q) 

P 

WS(P) 

FIGURE 1. A heterodimensional cycle 

The maps To and T\ are called transitions (from P to Q and from Q to P, respec­
tively). These maps are a generalization of the transitions introduced in [BDP] for 
hyperbolic periodic points which are homoclinically related. 

Theorem 3.1 is the main step for the proof of Theorem A. Taking appropriate n 
and m, and assuming that index(P) > index(Q) + 1, we get, using the theorem, that 
the index of R is between the indices of P and Q, see Corollary 3.6. This construction 
will also allow us to get points R corresponding to saddle-node bifurcations. 

Proof — For simplicity, assume that P and Q are fixed points. Notice that E\(Q) 
is the stable direction of Q, E\(P) is the strong stable direction of P, E%(Q) is the 
strong unstable direction of Q and E%(P) is the unstable direction of P. 

We now make a C1 -perturbation of the diffeomorphism (p to get appropriate lin­
earizing coordinates of the cycle. The properties of this linearization are summarized 
in the next lemma: 
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Lemma 3.2. — Let p be a diffeomorphism satisfying the hypotheses of Theorem 3.1. 
Then, there exists cb, arbitrarily C1 -close to cp, with a heterodimensional cycle 
T((j),U,P,Q) such that: 

(1) There are smooth linearizing charts 

Up, UQ ~ [-1, l}q X [-1, I]?"* X [-1, l]dim(A/)-p 

(defined on neighbourhoods of P and Q), where qb is a linear map such that, for every 
x G Up H 4>~1(Up) or x G UQD (J)~1(UQ), we have: 

(a) In these charts, both P and Q correspond to {0}dim(M) and 0*(P) = 
(p*(P) and 0*(Q) = <£*(Q), 

(b) The foliation by q-planes parallel to [-1, l]q x {0}p~q x {o}dim(A/)-P (called 
the strong stable foliation, Ts ) is locally invariant and corresponds to the small­
est (in modulus) eigenvalues of the linear maps induced by (j) in Up and UQ. 

(c) The foliation by (p-q)-planes parallel to {0}q x [ - 1 , 1 ] ^ x {o}dim(A/)-P 
(called the central foliation, Tc) is locally invariant. 

(d) The foliation by (dim(M) - p)-planes parallel to {0}q x {0}p~q x 
[— 1, i]dim(A/)-p (called the strong unstable foliation, Tu) is locally invariant 
and corresponds to the biggest (in modulus) eigenvalues of the linear m,aps 
induced by qb in Up and UQ. 

(2) There exist points X0 G (WU(Q) rh IVS(P)) n UQ and Y0 = (pk°(X{)) G UP, 
k0 > 0, such that, in these coordinates, X0 G {0}q x [-l,l]p~q x {o}dim(A/)"P (the 
central leaf through Q) and Y0 G {0}q x [-1, l]p~q x {o}dim(A/)-̂  (the central leaf 
through P). 

(3) There exist points Xx G {WS(Q) fl WU(P)) fl UP and Yx = ^{X^ G UQ, 
ki > 0, such that, in these coordinates, Xi G {0}q x {0}p-(i x [-1, i]dim(A/)-P (the 
local unstable manifold of P, W;'nr(P)) and Y1 G [-1, l]q x {0}^ x {0}ciim(ji/)-P (the 
local stable manifold Wfoc(Q) of Q). 

(4) There exist small cubes Co C UQ and C\ C Up centered at Xo and X\, respec­
tively, such that 

(a) e^(Co) C Up and ^(C^ C UQ, 
(b) the restrictions TQ = (/>k°\c0 and T\ = <fikl\ci are affine maps which 

preserve the strong stable, central and strong unstable foliations above. 

Proof. — We first consider a heteroclinic point X G WU(Q) iti W*(P). After an 
arbitrarily small perturbation of <p, we can assume that X does not belong to the 
strong unstable manifold of Q nor in the strong stable manifold of P. After a new 
perturbation, we can assume that (p is linear in small neighbourhoods Up of P and 
UQ of Q. So, we now consider the foliations Tp, Tlp and Tp (resp. TQ, TQ and TQ) 
defined in these linearizing chart Up (resp. UQ) as in the item (1) in the lemma. 

Considering a heteroclinic point X as above and, using the domination, we have 
that the backward orbit of X approaches the central leaf through Q. Similarly, the 
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forward iterates of X approach the central leaf through P. We will make a C1-
perturbation of ip in such a way that, after a sufficiently large number of backward 
(resp. forward) iterations, the orbit of X is in the central leaf of Q (resp. P), 
that is, in coordinates, these points are in {0}q x [ - 1 , 1 ] ^ x {o}dim(A/)-*\ To get 
this perturbation for the backward orbit, first observe that, due to the domination, 
the distance between two consecutive iterates of (p~n(X) and p)~n~1(X), big n, is 
larger than their distances to the central leaf through Q. More precisely, the ratio 
between these two distances goes to infinite. So, taking a large i > 0, there is a 
diffeomorphism 9, C1 -close to the identity, coinciding with the identity outside a small 
neighbourhood U of (p~l(X) intersecting the orbit of X only at (p~1,(X), and such 
that 0((p-[(X)) belongs to the central leaf through Q. Then x/j = (ip o 0~l) is a C1-
perturbation of (p such that ijj~n(X) belongs to the central leaf through Q, for every 
n big enough. Moreover, the forward orbit of X is not modified. We now repeat the 
previous construction for the forward orbit of X obtaining the announced perturbation 
(already denoted by p)). Observe that we can perform all the previous perturbations 
without breaking the cycle (i.e., preserving the non-transverse intersection between 
IVs(Q) and WU(P)). 

Now, there exist some backward iterate XQ of X in the central leaf through Q 
and ko > 0 such that Fo = ipk°(Xo) belongs to the central leaf through P. Observe 
now that the points X\ and Y\ = p>kl(Xi) in the lemma are directly given by the 
intersection WS(Q) n WU{P). 

Recall that p) was constructed to be linear in small neighbourhoods of P and of Q. 
By a new small C1-perturbation, we can assume that (pk° and <pkl are both affine in 
small neighbourhoods of XQ and X\. 

The only thing that remains to do in order to prove the lemma is to notice that 
(after new perturbations, if necessary) these affine maps can be chosen preserving 
the foliations (strong stable, central and strong unstable). The proof of this fact 
follows from a similar argument, actually, it follows as in the proof of [BDP, Lemma 
4.13] using the domination. More precisely, in our linearizing charts Up and UQ, we 
consider the center-stable foliations Tps and TQ (resp., center-unstable foliations Tpu 
and J-QL) tangent to the sum E\ 0 E2 of the stable and central directions (resp., the 
sum E2 0 E% of the central and unstable directions). By genericity, we can assume 
that the images by ipk° of the foliations TQ, TQ, TQ, TQ and TQ are in general 
position with respect to the foliations Tp, Tp, Tp, Tps and Tpu in a neighbourhood 
of YQ. NOW, the forward iterates of the images by p)k° of the leaves of TQ become 
closer to the center-unstable leaves in Up. Replacing the initial ko by ko + £, for some I 
large enough, and making a small perturbation, one gets an invariant center-unstable 
foliation. More precisely, as above, we compose p> with a small (^-perturbation of 
the identity supported on a small neighbourhood of (p£(Yo) mapping the foliation 
^pko+((TCQ) into Tpu. Moreover, we choose this perturbation of the identity in order 
to fix the point tp£(Yo). We now replace p> by the resulting composition, ko by ko + £ 
and Y0 by ^(Y0). 
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To get the invariance of the strong stable foliation we consider negative iterates of 
the foliations in the neighbourhood of YQ. By the previous construction, the center-
unstable foliation is preserved by negative iterations. So the negative iterates of 
the strong stable foliation are transverse to the center-unstable one. As above, the 
backward iterates of the strong stable leaves approach the leaves of the strong stable 
foliation in UQ. SO we can replace X0 by some (large) negative iterate of it, say — £', 
and perform a small perturbation (preserving the center-unstable foliation) such that 
the transition map (pk°+f+e from a neighbourhood of X0 to a neighbourhood of YQ 
preserves the strong stable and center-unstable foliations. 

To get the invariance of the strong unstable and center foliations (keeping the invari­
ance of the strong stable), we repeat all the arguments above inside the center-unstable 
foliation. We omit the details of this construction. This gives the transition T0. 

The transition T\ is obtained using the same arguments. The proof of the lemma 
is now complete. • 

Definition 3.1. — Consider a dim(M)-cube C — Is x Ie x P\ where Is is a g-cube, 
Ie a (p — ç)-cube and Iu a (dim(M) — p)-cube. In these cubes we define coordinates 
(xs, xl\ xu) as above. 

A subset A of C is s-complete if, for every Z = (zs,zc,zu) G A, the horizontal 
q-cube Is x {(zc,zu)} is contained in A. Similarly, a subset A of C is {/-complete if, 
for every point Z G A, the vertical (dim(M) — p)-cube {zs, zc) x Iu is contained in A. 

By shrinking, if necessary, the size of the neighbourhood UQ in the strong unstable 
direction and taking an appropriate cube C\ around X i , we can assume that the 
image by X\ of any u-complete disk A of C\ (contained in a leaf of the strong unstable 
foliation) is a u-complete disk of UQ. 

For simplicity, let us denote A and B the restrictions of 0 to UQ and Up, respec­
tively. 

Lemma 3.3. — There exists a natural number £Q ^ 0 satisfying the following condi­
tions: 

(1) Consider any Z G Wfc^Q) and any s-complete disk A8 of Co (contained in 
a leaf of the strong stable foliation) containing Z. Then the connected component of 
A~N(AS) n UQ containing A~n(Z) is a s-complete disk in UQ for all n ^ £o-

(2) Consider any u-complete disk AU of Co (in a leaf of the strong unstable folia­
tion). Then the intersection between AU and TQ1(W1SOC(P)) is a unique point W. Let 
A'L7LN be the connected component of (BM oTo(A'"))C\Up containing BMOTQ(W). Then 
Â n fl C\ is a complete u-disk (in C\) for every m ^ 

Proof. — Recall that both foliations are invariant by the action of A and B. So, the 
proof follows, since A~~L expands the s-direction and B expands the ^-direction. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



200 CH. BONATTI, L.J. Di'AZ, E.R. PUJALS & J. ROCHA 

We are now ready to finish the proof of Theorem 3.1. Given e > 0, there is an 
^/2-perturbation qb of (p satisfying Lemmas 3.2 and 3.3. We will now obtain the final 
diffeomorphism considering a perturbation of qb obtained by composing the transition 
T\ with a small translation Tv generated by a vector v, parallel to the central direction 
(in UQ). Let us now go through the details of this construction. 

WU(Q) 
Anr 

X, 

W8(Q 

<t>kl 

rhk° 

Q/ 
s+s 

ATm 

Am. 
f+f12 

WU(P) 

Y1 
4 -

7WS(P) 

Tv 

tvan ces 

FIGURE 2. A periodic orbit 

In our coordinates, XQ = (0s ,xc0:,0u). Consider now the su-disk 

A = ([ -1 , l}q X {XC0} X [-1, l]dim(A/)-7A n c ^ 

With the terminology above, the disk A is u and s-complete in Co-
Given n and m bigger than to (£Q as in Lemma 3.3), let A_m and A[j be the 

connected components of A~"rn(A)nUQ containing A~rn(X0) and of (BnoT0(A))nUP 
containing Bn(T0{X0)), respectively. Let Ar/ = Afj nCi . Write An = Ti(A^). By 
Lemma 3.3 and the observation before, A_m and An are s-complete and ^-complete 
disks in UQ and Ci, respectively. 

Observe that there is a unique vector v, parallel to the central direction, such 
that the intersection between Tv(An) and A~m is non-empty. Moreover, since these 
sets are both six-disks of UQ, such an intersection is a sub-rectangle R intersecting 
completely A"m in the ^/-direction and An in the s-direction. Here by a complete 
intersection in the u-direction we mean that, for every Z G R, the leaf FU(Z) of 
the strong unstable foliation containing Z is such that the connected components of 
FU(Z) fl R and of A-m fl FU(Z) containing Z are equal. The definition of complete 
intersection in the s-direction is totally analogous (considering strong stable leaves). 
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Now a classical argument of hyperbolicity implies that the map T = Tv o T\ o Bn o 
T0 o Am has a fixed point W in A_m. Observe that the derivative of T at W is 
Ti o Bn o T0 o A771 (where T; is the linear part of the affine map T). 

So it remains to check that the size of the translation Tv can be chosen to be smaller 
than e/2. For that, first observe that the disks A~m and An can be taken arbitrarily 
close to the heteroclinic intersection Y\ (it is enough to take n and m large enough). 
Thus, there exists no G Z such that the distance between A_m and An is less than 
e/2, for every n and m greater than no. Fixing this no and replacing T0 by T0 o An° 
and Ti by T\ o Bn°, we get that, for every positive n and m, there exists a translation 
Tv, v — v(n, rn), such that the modulus of v is less than e/2. 

The diffeomorphism yb in the statement of the theorem is obtained from qb by 
composing T\ with Tv. By construction, ip has a periodic point R of period np — 
to + £1 + n + m, where to = fco + and £1 = /ci + ni, such that 

VBnr (R) =T ioBnof0o4m. 

Notice that to and ^ depend exclusively on the transitions To and T\. The theorem 
now follows from the definition of A and B and the lemma below, that allows us to 
perform any small perturbation of the derivative of a diffeomorphism along the orbit 
of a periodic point in a dynamical way. 

Lemma 3.4 ([F], [M2]). — Consider a Cl-diffeomorphism <p and a (p-invariant finite 
set E. Let A be an e-perturbation of p* along E (i.e., the linear maps A(x) and 
ip*(x) are e-close for all x G T,). Then, for every neighbourhood U of E, there is a 
diffeomorphism qb, Cl -e-close to (p, such that 

- p{x) = qb{x) if x G E or if x 0 U, and 
- qb*(x) = A(x) for all x G E. 

The proof of Theorem 3.1 is now complete. • 

We end this subsection by stating a lemma that follows from the proof of [BDP, 
Lemma 4.13]: 

Lemma 3.5. — Let Alp and MQ be linear maps as in the statement of Theorem 3.1. 
Suppose that Mp and MQ preserve the dominated splittings TpM = Ep © • • • 0 EP 
and TQM = EQ(&- • - (BEQ, where dim(Ep) = dim (.Eg) for every i. Then the matrices 
To and T\ in Theorem 3.1 can be chosen in such a way that: 

To(Ep) = ElQ and T^E'Q) = ElP, for every i G {1 , . . . , k}. 

3.2. Periodic points in the unfolding of heterodimensional cycles. — Using 
Lemma 3.4 we get the following two corollaries of Theorem 3.1. First we use the 
notation T(p, U, P, Q) to localize a cycle, that is, if we are only concerned with the 
intersection between the invariant manifolds of P and Q whose orbit is contained 
in U. 
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Corollary 3.6. — Consider a heterodimensional cycle T(<p, U, P, Q) associated to the 
hyperbolic periodic points P and Q of indices p and q, where p > q, having positive 
real eigenvalues of multiplicity one. Then, for every integer £ G [q,p], there is a 
diffeomorphism <f> arbitrarily close to p> with a hyperbolic periodic point of index £ in 
Nq(U) 

Proof. — This corollary is trivial when £ = p or q. So let us fix some £ E](/,p[. 
Define the matrices Mp and Mg as in the statement of Theorem 3.1 and denote 
by Ap, • • • , \^m(M) the eigenvalues of Mp, where 0 < Xp < • • • < Apim^M\ and by 
Ag, • • • , Agim(M) the eigenvalues of Mg, where 0 < Ag < • • • < Agim^M\ 

For each i G {1 , . . . , dim(M)}, let El(P) and El(Q) be the eigenspaces correspond­
ing to Ap and Ag, respectively. We now consider the invariant splittings (of Mp and 
Mg) given by 

EX(P) = El(P) 0 • • • 0 Ee-l(P), E2(P) = EHP), 
EX(Q) = E\Q) 0 • • • 0 E?-\Q), E2(Q) = Ee(Q), 

E3(P) = E^l(P) 0 • • • 0 £dim(AfWpN 

Es(Q) = E^l(Q) 0 • • • 0 Edh^MHQ). 

Observe that, by the hypotheses on the eigenvalues of P and Q, the splittings 
Ei(R), E2(R) and E3(R), R — P,Q, are dominated (for Mp and MQ), therefore they 
satisfy the hypotheses of Theorem 3.1. 

Since q < £ < p, we have that Ap < 1 < Ag. Thus, there are constants C and C', 
0 < C < 1 < C, and arbitrarily large natural numbers no and mo such that 

(Ap_1)n° (Ag_1)rn° < C < (XP)n° (A )̂mo < C < (A£p+1)no (A^+1)mo. 

Applying Theorem 3.1 to the matrices Mp and MQ, n = no, m = mo, and the 
matrices IQ, . . . , /n+m+2 equal to the identity, we get transitions To and Xi and a 
diffeomorphism et> close to (f having a periodic point R G ^(U) of period n(R) ~ 

+ mo such that 0* ̂  is conjugate to 

Afp = XioM™0oX0oM£0. 

By Lemma 3.5, we can suppose that X0 and T\ preserve the splittings E\ 0 E2 0 P3. 
Hence, the ^-eigenvalue Ap of Mp is such that 

C 
dd :\XR\<k2C, 

where k\ is the product of the norms of X0_1 and T^1, and k2 is the product of the 
norms of To and T\. Observe that, a priori, we cannot guarantee that this eigenvalue 
is positive (we do not know if the transitions preserve the orientation). Thus, taking 
no and mo large enough, we can assume that | log(Ap)|/(no + mo) is arbitrarily close 
to zero. 
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Applying now Lemma 3.4 to the derivative of cj) along the orbit of R , we can assume 
that the eigenvalues A^,..., A(iim̂ A/) of ^R\R) satisfy 

(i) 0 < \X\\ < ••• < | A ^ | < 1 = |A<*| < \XeR+1\ <••< \4'"{M)\-
After a final perturbation, we have that R has index L: finishing the proof of the 
corollary. • 

Finally, a minor modification of the proof of Corollary 3.6 gives the following: 

Corollary 3.7. — Consider a heterodimensional cycle T((p,U, P,Q) satisfying the 
hypothesis of Theorem 3.1. Moreover, suppose that there is a dominated splitting 
F\ 0 • • • 0 Fj. 0 • • • (B Fk over A^(U) such that the moduli of the Jacobians of p> 
restricted to Fj along the orbits of Q and P are strictly bigger and less than one, 
respectively. 

Then, there exists a diffeomorphism (j), arbitrarily C1 -close to (p, with a hyperbolic 
periodic point R G A^U) such that the modulus of the Jacobian of (pn^ over F, at 
R is equal to one. 

Proof. — Consider the dominated splittings 

Ei = Fi 0 • • • 0 Fi-u E2 = F,, E3 = Fi+1 0 • • • 0 Fk. 
Just observe that by Lemma 3.5 we can choose the transitions Tt preserving the 
dominated splitting E\ 0 E2 0 E3. The result follows from a similar argument we 
gave in Corollary 3.6. • 

3.3. End of the proof of Theorem A. — We need the following lemma: 

Lemma 3.8 ([BDP, Lemma 5.4]). — Let V be an open subset of M and R^ a hyperbolic 
periodic point of a diffeomorphism p), such that its relative homoclinic class m V. 
HR (V), is non trivial. Then there is a diffeomorphism qt> arbitrarily C1 -close to p> 
such that HR^(V) contains a hyperbolic periodic point of the same index of R^, whose 
eigenvalues are all real, positive and of multiplicity one. 

Under the hypothesis of Theorem A, this lemma allows us to assume that, after 
perturbing the original diffeomorphism and replacing the initial points P^ and 
by other points of A^(U) of the same index, we can assume that the points P^ 
and of A^(U) have real positive eigenvalues of multiplicity one. To check this 
just notice that, by Theorem 2.3, after a C1-perturbation of (/?, we can assume that 
Hp^(U) = HQ^(U) C A^(U). Therefore, these two relative homoclinic classes are 
non-trivial. Hence, we can now apply Lemma 3.8 to such homoclinic classes to get 
the periodic points (of indices p and q) in A^(U) with real positive eigenvalues of 
multiplicity one. So there is no loss of generality if we assume that the points P^ and 

in Theorem A have real positive eigenvalues of multiplicity one. Using Lemma 2.5 
and Corollary 3.6 one gets: 
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Lemma 3.9. — Given p > q and £ €]q,p] let ip G M(U) be a diffeomorphism with two 
hyperbolic periodic points P^ and in A^([/) (of indices p and q), having positive 
real eigenvalues of multiplicity one. Then there is qb G M(U) arbitrarily Cl-close to 
(p having a hyperbolic periodic point of index £ in A^U). 

Proof. — By hypothesis, the continuations P^ and of P^ and are transitively 
related for every 0 in a neighbourhood of (p in M(U) (just observe that set A^U) is 
robustly transitive and P^ and belong to A^(C/)). Hence we can apply Lemma 2.5 
to P^ and to create a heterodimensional cycle T(yb, (7, P^,Q^) for some 0 arbitrar­
ily close to (p. Corollary 3.6 now gives qb close to yb (thus close to (p) with a periodic 
point of index £ in A^U), finishing the proof of the lemma. • 

Given (p G M.(U), consider a neighbourhood hi^ of (p in M(U) such that every 
yb G has hyperbolic periodic points of indices q and p. Let Ti3 be the set of 
diffeomorphisms yb G having some hyperbolic periodic point of index j in A^(U). 
Applying Lemma 3.9 finitely many times, one gets that the sets Hj, j G are 
dense in U^. 

Theorem A now follows by observing that, for every j , the set TL3 is open. Now it 
is enough to consider the set n'qHj, which is a dense open subset of U^. So, we have 
just finished the proof of Theorem A. 

4. Hyperbolicity of the extremal bundles 

In this section, we will prove Theorem B. For that, as in the hypotheses of this 
theorem, consider an open subset U of a compact manifold M and q G N*. Let U be 
a C1-open set of Diff1(Af) such that, for every diffeomorphism qb EU, the set A^U) 
has a dominated splitting 0 F^ with dim(I^(x)) = q for all x G A^U). Suppose 
that every qb G hi has no periodic points of index r < q. Then we prove that the 
bundle E<p is uniformly contracting for every qb G U. 

The proof of this result follows using the arguments in [M2] after some small 
technical modifications. Therefore, we will just sketch this proof, emphasizing the 
main modifications that we need to introduce. 

The results in [M2] are formulated in terms of families of periodic sequences of 
linear maps. It is considered the family obtained by taking all the diffeomorphism qb in 
an open set of Diff1 (M) and the restrictions of the derivatives of these diffeomorphisms 
to their periodic orbits. It is considered perturbations of this system of linear maps 
without paying attention if such perturbations come from perturbations of the initial 
diffeomorphism. However, a Lemma of Franks' (see Lemma 3.4 above) allows one to 
perform dynamically the perturbation of the derivative: given a diffeomorphism (p and 
a periodic point x of (p, to each perturbation A of the derivative ip* throughout the 
orbit of x corresponds a diffeomorphism yb C1 -close to tp which preserves the cp-orbit 
of x and such that A(z) = yb*(z) for all z in the (p-orbit of x. 
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We begin by recalling some results about dominated splittings, see next section. 
In Section 4.2 we recall the terminology about families of periodic linear systems and 
some results in [M2]. Finally, in Section 4.3 we prove Theorem B. 

4.1. Remarks on dominated splittings. — In this subsection, we state pre­
cisely some folklore results on dominated splittings. Before that, let us observe that, 
if A^(U) is robustly transitive, then, by definition, it is a (^-invariant compact subset 
of U which is the maximal (^-invariant set of U. This implies that, for any neigh­
bourhood V oï A^(U) and every diffeomorphism qb close to the set A<f>(U) coincides 
with A^U) and is contained in V. Thus A^U) depends lower-semi-continuously on 
qb. We say that A^U) is the continuation of A^(U) for qb. 

Lemma 4.1. — Let p be a diffeomorphism and U an open subset of AI such that A^(U) 
coincides with A^(U) and admits a dominated splitting (t/)M = E 0 F, E -< F. 
Then, for every diffeomorphism ijj close enough to p, there is a unique dominated 
splitting E.^ 0 E^jj -< F^,, defined on A^U), such that dim(E^) = dim(E). 

The splitting E^ 0 F(j, above is the continuation of E 0 F. Moreover, the contin­
uations E^ and Ftj, depend continuously on t/\ This lemma also holds for dominated 
splittings with an arbitrary number of bundles. 

Proof. — Let us just sketch the proof of the lemma. By the definition of domination, 
there is a strictly (^-invariant continuous cone field C+ defined over A^(U) such that 
the bundle F is obtained as the intersection of the forward p*-iterates of the cones 
of C+. Similarly, there is a strictly (p''1 )-invariant continuous cone field C~ defined 
over A<~({7) such that the intersections of the backward iterates of C~ define E. These 
cone fields can be extended continuously to invariant cone fields and CQ defined 
on a compact neighbourhood V of A^(L/). 

Observe that every i)) close to p leaves invariant the cone fields CQ and CQ and 
recall that A.</,(£/) C V. We now define the bundles E.^, and F^ as the intersection 
of the (backward and forward, respectively) iterates by 0* of the cones of CQ and 
CQ", respectively. By construction, the splitting E.^ 0 F^, is dominated and satisfies 
dim Ey = dim E. 

For the continuous dependence of the bundles E^ and F^ on the diffeomorphism 
•\p we refer the reader to [BDP, Lemma 1.4], for instance. This ends the sketch of the 
proof. • 

Lemma 4.2 ([BDP, Lemma 1.4]). Let qb be a diffeomorphism and E a qb-invariant 
set having a dominated splitting E 0 F. Then this splitting can be extended (in a 
dominated way) to the closure ofE. 

Remark 4.3. — Let p be a diffeomorphism, K a transitive (^-invariant compact set, 
TKM = E\ 0 E2 0 • • • 0 Em the finest dominated splitting of p over K, and E C K 
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a (^-invariant dense subset of K. Then the finest dominated splitting of <p over E is 
given by the restriction to E of the bundles ET. 

Proof of the remark. — We argue by contradiction. Suppose that there is a domi­
nated splitting over E which refines the splitting given by the restrictions to E of the 
bundles EL. Then, by Lemma 4.2, such a splitting can be extended to the whole A', 
contradicting that the splitting E\ ® • • • (B Em is the finest one. • 

Let us state a final result, whose proof is here omitted. 

Remark 4.4. Let ip be a diffeomorphism and E a (p*-invariant bundle defined on a 
(^-invariant compact set K\. Consider any ^-invariant dense subset K2 of K\. Then, 

the bundle E is uniformly hyperbolic over K\ if and only if its restriction to K2 
is uniformly hyperbolic, 

- the diffeomorphism (p contracts (resp. expands) uniformly the volume in E over 
A'i if and only if it contracts uniformly (resp. expands) the volume in E over K2. 

4.2. Families of periodic sequences of linear maps and dominated split­
tings. — We begin this section by recalling some definitions in [M2]. 

Definition 4.1 
(1) A periodic sequence of linear maps is a periodic map £: Z —•> GL(N, R), n i—> £„.. 

We denote this family by {£„.}• 
(2) A periodic sequence of linear maps {£„} of period n is called contracting if the 

product £r,._i o • • • o£o is an uniform contraction, i.e., all its eigenvalues have modulus 
strictly less than 1. 

(3) Consider a family E = {£° = (Ç!,l)nez}<*eA 01 periodic sequences of linear 
maps, such that the norms anfl ll(£?7)_1|l are uniformly bounded (independently 
of n and a). The family 3 is robustly contracting^1^ if there is s > 0 such that any 
family B = {0(*}(yeA having the same period function n(a) and t-close to E (i.e., 
Il̂ u — C7II < s f°r a^ a ^ A and n G Z) is contracting. 

The example of family of periodic sequence of linear maps that will be play a key 
role in the proof of Theorem B is obtained as follows. Let à G U, U as in Theorem B, 
and è» > 0 such that every diffeomorphism 0 which is 26-C1 -close to 0 belongs to U. 
Now let Acp be the set of pairs a = (:r. such that 0 is J-close to cj) and the 0-orbit 
of x is contained in U and periodic. Consider now some trivialization of the bundles 
Etj, (as in Theorem B) over the set of periodic points (by choosing an orthonormal 
basis of Etp(x)) and, for each a — (x.yj) G A<$>, define £a as being the restrictions of 
the differential 0* to { /:',.( r'(.r))}/( We now have that E^ = {(° }ncA.:, is a family 
of periodic sequences of linear maps. 

(^This notion is called uniformly contracting in [M2], but we rename it to avoid ambiguity with the 
now usually accepted notion of uniform hyperbolicity or uniform contraction. 
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Lemma 4.5. The family defined above is robustly contracting. 

Proof. — The proof is by contradiction. Otherwise, there exist (./;, -ip) G A^ and a 
linear map v corresponding to a perturbation of the restriction of the differential of 
tp to Ejfj along the periodic 0-orbit of x, having an eigenvalue of modulus bigger or 
equal than one, i.e., 

/^(r"(')-1(.r))o..-o /,(.r): E^(x) ^ E^(x) 

has an eigenvalue À such that |A| ^ 1, where n{x) is the 0-period of x. 
Using Lemma 3.4, we get a diffeomorphism Ç close to -ip, thus in U, such that x is 

a periodic point of A^(U) and 

C{x)(x) = C*(Cn(x)_1) o • • • C.W - v($n{x)-\x)) ° • • • ° "(x)-

Therefore, the restriction of Ç"^J'\x) to E^(x) has at most (q — 1) eigenvalues of 
modulus (strictly) less than one. On the other hand, by the domination E^ -< 
the eigenvalues of the restriction of ("^'\x) to F^(x) are all strictly bigger than one 
in modulus. This implies that there is a periodic point x in Aç(U) of index (strictly) 
less than q, contradicting the definition of U. This contradiction finishes the proof of 
the lemma. • 

We now borrow the following lemma from [M2]. 

Lemma 4.6 ([M2, Lemma II.7]). Let , o G A} be a robustly contracting family 
of periodic sequences of isomorphisms of WN. Then, there exist K > 0, 0 < À < 1 
and m G N* such that: 

a) if m G A and, £fV has minimum period, n ^ m, then 

À--1 D+D+D 

j=() II /•=() 

vr+d ^ KXk. 

where k is the integer part ofn/m: 
b) for all a G A 

lim sup 
dvrd 

dd+1 

n .7=0 
log 

\\m-l 

vrd 

A") < 0. 

Applying Lemma 4.6 to the family ^ defined above, wre get the next proposition, 
which is a reformulation of [M2. Proposition II. 1]: 

Proposition 4.7. --- Let (p Gif (U as in Theorem B). Then, there exist a neighborhood 
V of <p and constants K > 0, m G N* and 0 < À < 1 such that, for every g G V and 
every periodic point x of */> whose orbit is contained in U, 
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a) If x has minimum period n ^ m then 

k-1 

1=0 
|(V/"%(V'mî(x))|.,(v,.,,(.E)) ^KXk, 

where k is the integer part of n/m. 
b) Moreover, 

lim sup 
r—•-foc 

1+>1<+ 

I-Q 

log(||(Vm).(^(a:))|Ew,(^(œ))l|) <0. 

Theorem B will be a consequence of Proposition 4.7 and the Mane's Ergodic Closing 
Lemma, that we now recall, for completeness: 

Theorem 4.8 (Ergodic Closing Lemma, [M2, Theorem A]). — Consider a diffeomor­
phism qb defined on a compact manifold. Then there is a ̂ -invariant set XI(0) (named 
set of well closable points of qb) such that: 

(1) The set S(0) has total measure (i.e. u(X(0)) = 1 for every qb-invariant proba­
bility measure \i). 

(2) For every x G £(</>) and e > 0 there is a diffeomorphism ip, which is s-close to qb 
in the C1 -topology, such that x is periodic for yb and the distance dist(0?(x), yb'(x)) < e 
for all i G [0, n(x, ?/?)], where n(x,yb) is the period of x for yb. 

4.3. End of the proof of Theorem B. — The proof of the theorem now follows 
through the same lines as the proof of [M2, Theorem B], see pages 520-524. We will 
recall the main steps of this proof and point out the changes we need to introduce. 

Proof. — Let qb G U. By compactness of the set A^(L7), as in [M2] to get the uniform 
contraction of the bundle E^, it is enough to check that 

lim inf \Wl\r.l(^\\ = 0. 
w+w1<w 

We argue by contradiction. If qb* is not uniformly contracting on E^ over A $(11) then 
there exist a constant n > 0, a point x G A^(L7) and no G N such that 

ll&'kwll > « > o 

for every N > NO. We now choose a sequence JN, JN —• +00, such that the sequence 
of probabilities \XN defined by 

s+s1s+s1e 
1 ^ 

Jn 
1 = 0 

ô(ômi(x)) 

converges (in the weak topology) to a probability /1, where o(z) is the Dirac measure 
at the point z and m is as in Proposition 4.7. 

Let ip^ = log IE4>\I• By Lemma 4.1 the bundle E<f> is continuous on A^U), so 
ip^ is continuous on A^(U). By the choice of x, one has J d/xn ^ 0 for every n 
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sufficiently large. So J p^ dp, ^ 0. Using Birkhoff's Theorem and the Ergodic Closing 
Lemma, we get a point p G A^U) fl E(0) such that 

lim 
71—> + OC 

1 ^ 

Jn 
7 = 0 

2 log 110:" iw,.(ï))) 11^0. 

By item (b) of Proposition 4.7, the point p is not periodic. Now, by Theorem 4.8, 
there is ip arbitrarily Cx-close to ah (so yj G V C U, V as in Proposition 4.7) such that 
p is a periodic point of ^ of period n{p) and the distance dist(0' (p), V;/(p)) is less than 
an arbitrarily small £• > 0, for every i G [0, n(p)]. Observe that since p is not periodic 
for c/>, the period n(p) goes to infinity as e goes to zero, i.e., V; tends to qb. 

Since the fibers E^(y) vary continuously with (y, V?) (recall Lemma 4.1), the func­
tion 

T'"(y) = log||VCI£v,(;,)ll 

is continuous. Now for A as in Proposition 4.7 take Ay and no G N* such that 
À < An < 1 and for every n ^ n0 one has 

1 

n • 

n-1 

7-0 
T0(0'">)) > - log(A0) 

We can also assume that KXn < A(", for every n ^ n0. So, if 0 is close enough to qb,, 
then 

| ïv ' (^(p))- ï*(0f(p)) | < blog(A„)| 

for every i G [0,n(p)]. Moreover, the integer part k of n(p)/m is greater than n0. 
Therefore, 

1 
s 

k-l 

7=0 

T'Yc^'f/;)') > lopfAn) > -WKAA:V 

contradicting item (a) of Proposition 4.7. This contradiction finishes the proof of 
Theorem B. • 

5. Proof of Theorem D 

5.1. Perturbation of the derivative at periodic points. — In this section, we 
recall some results from [BDP]. These results are formulated in terms of families of 
periodic linear systems, that is, considering the differential of the diffeomorphism as an 
abstract linear cocycle over the set A^(U) and perturbations of this cocycle, without 
taking in consideration if such perturbations come from perturbations of the diffeo­
morphism. However, as in Section 4, Lemma 3.4 allows us to perform dynamically 
the final abstract cocycle. Let us explain these results in detail. 

Given a diffeomorphism <p and a hyperbolic periodic point of p of index p, denote 
by £p„ the subset of Hp„ (U) of hyperbolic periodic points R of index p homoclinically 
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related to P^, i.e., WS(R) ftl Wu(Pip) ^ 0 and WU(R) ft] WS(P^) ^ 0. Observe that, 
in our setting, we can assume that Ep^ is not trivial (different to the orbit of P^). 

As above, given x G ^ , denote by AIX the matrix Mx = ç"(r)(x) : TXAI -> TXM, 
where n(x) is the period of x. The first important property formalized in [BDP] 
is that the matrices AIX corresponding to different points of Ep (the derivatives of 
ifn^ at these points x) can be multiplied essentially how many times as one wants, 
and the resulting product corresponds to a matrix of the system at some different 
point. More precisely, 

Lemma 5.1. — Let be a diffeomorphism and P^ a hyperbolic periodic point of (p. 
Consider any pair of periodic points of x and y of p> in Ep^ and e > 0. Suppose that 
Mx and AIy preserve invariant dominated splittings 

TXM = Elx®> • -eP^:, Ei{x) •< P,+ i(x), and TyM = P*0- • -©P,J:, Et{y) -< El+l{y), 

such that dim(P?c) = dim(P') for every i. Then there is 6 G]0,£[ satisfying the 
following property: 

Given any pair of 8-perturbations AIX and AIy of AIX and My, respectively, 
AIX: TXAI —> TXAI and AIy: TyAI —» TyAI, there exist linear maps 

Tx : TXAI —> TyAI and T2 : TyAI —> TXAI 

preserving the dominated splittings above (i.e., T\{Elx) = El and T2{E'}y) = Ex for 
every i) and such that, for any n > 0 and rn ^ 0, there exist a periodic point z G Ep„ 
and an E-perturbation of cp* along the orbit of z, 

A' : Tvi{z)M T!Ç,+Hz)M. i II n(z) - 1, 

such that 

AIZ = An{z)~l o • • • o A0 : TZAI —> TZAI 

is conjugate to the product T2 o A l'ff o T\ o APf. 

Remark5.2. — In fact, in [BDP], it is shown that Lemma 5.1 holds for any finite 
number of orbits #i,. . . , of Ep„. This allows us to get linear maps X; : TX>AI 
TXi+1Al preserving a dominated splitting such that, for every n i , . . . , n/,;, there exist 
a point z G Ep„ and perturbations A' of the derivative of <p* at p)1' (z) such that 
ALZ = A71^'1 o--.oA° is conjugate to Tk o AI^ o • • • o X2 o Al'fj oTxo AI^. 

The maps Tt correspond to the transitions, recall also Theorem 3.1. The fact that 
the transitions can be chosen preserving a dominated splitting has been proved in 
[BDP, Lemma 4.13]. This property is the basis of the proof of the following result: 

Lemma 5.3. — Let E\ 0 • • • 0 Eni, E\ -< Py+i. be the finest dominated splitting ofTAI 
over Ep^ of p>*. Then, for every e > 0, there exist a dense subset E£ o/Sp^ and an 
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£-perturbation A£ of preserving the splitting E\ 9 • • • © Em. such that, for every 
R G E., the restriction of the linear maps 

MAl(R) = W ^ " 1 (*)) o • • • o Ae(<p{x)) o As(x) 

to Ei(R) is a hornothety. 
Moreover, if there exist i G {1 , . . . , m} and Q G Ep such that the modulus of the 

Jacobian of the restriction of (p*^ to Et(Q) is one, then R can be chosen in such a 
way that the restriction of M A (If) to Ej(R) is the identity map. 

This lemma is a consequence of [BDP, Propositions 2.4 and 2.5]. To see that these 
propositions can be applied in our context, we just need to observe that the restriction 
of p>* to each bundle Et (over Ep^J defines a periodic linear system with transitions. 
For that, it is enough to recall that the transitions of ip* can be chosen preserving the 
bundles Ej of the dominated splitting (see [BDP, Section 4]). 

Given a hyperbolic linear map A of an Euclidean space (i.e., without eigenvalues 
of modulus equal to 1) the index of A is the number of eigenvalues of A of modulus 
less than 1, counted with multiplicity. 

Lemma 5.4 (1BDP, Lemma 4.16]). — Given e > 0 there exist x G Ep̂ o and an e-
perturbation of p)* along the orbit of x such that the corresponding matrix Mx has 
index p, p = index(P^), and all the eigenvalues of Mr are real, positive and with 
multiplicity 1. 

5.2. Tangencies and codimension one heterodimensional cycles. — The ex­
istence of non-real eigenvalues in the central direction of the saddles in a (codimension 
one) heterodimensional cycle produces homoclinic tangencies. That is formalized in 
the following result we export from [DR]. 

Let A be a linear map of an //-dimensional Euclidean space E, we say that a non-
real eigenvalue À G (C \ M) of A has rank £ if there are (£ — 1) eigenvalues (counted 
with multiplicity) of A of modulus strictly less than |A| and (n — P — 1) eigenvalues 
of modulus strictly bigger than |A|. A periodic point P of a diffeomorphism p> has a 
non-real eigenvalue of rank £ if its derivative } sssss(P) has a non-real eigenvalue of 
rank £. 

Lemma 5.5. — Let T(çb.U, R1^. R'^) be a codimension one heterodimensional cycle as­
sociated to hyperbolic periodic points of indices (r + 1) and r. Suppose that Rl0 (resp. 
R'fJ has a non-real eigenvalue of rank r (resp. r + 1). Then, there is yj arbitrarily 
close to (j), with a homoclinic la agency associated to Li^ (resp. R1^) in A^(U). 

Proof — Just observe that, if R.^ has a non-real eigenvalue of rank r. then the unsta­
ble manifold of R'2c() spirals around Wu{Rl(j)). Now, unfolding the cycle T(0, U, R^, i?* ), 
we get a homoclinic tangency associated to the continuation of R2^. See [DR, Section 
8.1] for details. • 
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5.3. Proof of Theorem D. — Consider (p G V(U) and its finest dominated split­
ting Ei(<p) 0 • • • 0 E,m^((p) over A^(U). By Lemma 4.1, the continuation of this 
splitting over A<f>(U) is uniquely defined for every (j) close to (p. Denote such a contin­
uation by E\ (qb) 0 • • • 0 E.m^ (qb). By Lemma 4.1, the number m((p) of bundles of the 
finest dominated splitting of A^(U) is lower semi-continuous, thus locally constant in 
an open and dense subset V\(U) of V(U). Moreover, the dimensions of the bundles 
of the finest dominated splitting are also locally constant in V\(U). So there is an 
open and dense subset 0(U) oïV(U) where m(<p) and the dimensions of the bundles 
of the finest dominated splitting are continuous functions. This set O(U) is the open 
and dense subset oïV(U) announced in Theorem D. 

Observe that it is enough to prove the theorem for a connected component of 
0(U). So, from now on, we restrict our attention to a fixed connected component Oo 
oîO(U). 

Given ip G Oo, consider the finest dominated splitting of A^(U), s a y ( q ' \ v ' ) = 
Ei(^p) 0 E2(tp) 0 • • • 0 Em(^((p). Since the dimensions and the number of bundles of 
the splitting do not depend on <p G Oo, from now on we will omit such dependence 
on p>. 

Let us now introduce some notations. For simplicity, write p = ic and q = is (the 
maximum and minimum indices of the hyperbolic periodic points of A^(U)). Given i 
and j in {1, . . . , m}, with i < j , let 

Ej = Ei 0 Ei+i 0 • • • 0 Ej. 

Denote by dt and d\ the dimensions of E-,. and Ej, respectively (thus, dj — Yli=i 
We define iq and ip by the relations 

d< q ^ d'i and d!{~1 <p^ d!?. 

To prove Theorem D it is enough to check the following: 
(A) <4* = q and d'/j^ , = dim(AJ) - p, 
(B) dj — 1 and the bundle E} is not uniformly hyperbolic for all j G {zfy + l , . . . , ip}. 
(C) E[q and E7^+1 are uniformly contracting and expanding, respectively. 

The proof of the items will be given in Lemmas 5.6, 5.7 and 5.8. 

Lemma 5.6 (Proof of (A)). —• d!{1 = q and d-j+l — dim(A/) - p. 

Proof. Let us prove the first part of the lemma. The proof is by contradiction. 
Assume that d'y > q. Then, by definition of d'^, one has 

d'^'} <q<q+l<: d\q = d\i~l + dtq, 

hence, 

(2) diq > 2. 

By Proposition 2.4 and the definition of Oo, there is a diffeomorphism (p G Oo 
with a hyperbolic periodic point of index q such that Eq^ is dense in A^(U). By 
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Remark 4.3, the finest dominated splitting of <p over EQ̂ o is the restriction to EQ^ of 
the bundles Et. 

By equation (2), Elq is indecomposable and has dimension dtq greater than or equal 
to 2. Applying Lemma 5.3 to the set EQ^ and the bundle E.lq, we get G of 
period n(R^) and a perturbation A of throughout the i^-orbit of R^ such that 

MA{R<p)) = A(ipn^-\R,P)) o • • • o ( q ' \ v ' ) o A(R^) 

is a homothety in Elq (R^). We observe that the perturbation A of can be obtained 
(and that is what is done here) such that its restrictions to the bundles Ek(R^), k ^ iq, 
coincide with Thus, since all points of EQ^ have index q, we have that, for every 
T^ G EQ^, the bundles Ej{T^), j > iq, correspond to expanding eigenvalues of p^1^. 
Hence, the number of contracting eigenvalues of M,\(R^) is at most d[q. 

First, if the ratio of this homothety (the restriction of AIA{R^) to Etq(R^)) is 
bigger or equal than one, using Lemma 3.4, one gets cp close to if (cp G On) with a 
hyperbolic periodic point R^ G Acp(U) having at most d± contracting eigenvalues. 
By hypothesis, d'^1 < q, thus the index of R^ is strictly less than q, contradicting 
the definition of q (minimality of the index of the points of A^U), (p G V(U)). 

So, we can assume that the ratio of the homothety Aly\(R^)\Ej^R^ is less than 

one. As the restriction of Rif) to each Ei(R^), i > iq, has expanding eigenvalues, 
the index of R^ is exactly d\q. Now, the definition of p implies that d'{ ^ p. 

Write £ = d[q ^ p. Since all the eigenvalues of the restriction of (p^R^ = MA(R^) 

to E.j (Rcj,) are equal and dim(£'/(/(i?^)) ^ 2, using again Lemma 3.4, one gets a dif­
feomorphism v (close to (j)) such that Rv has index £ and V"^R,'\RV) has a contracting 
non-real eigenvalue of rank (£ — 1). 

By Theorem A, since q < £ — 1, there is a diffeomorphism £ (close to /?) with a 
periodic point Sç G Aç(U) of index (£ — 1). Using Lemma 2.5, we obtain 77 close to 
( with a codimension one heterodimensional cycle in U associated to R7] and Srr say 
r(?/, LV, R,r Sn). Since q can be taken arbitrarily close to v, we can assume that R.tj 
has index £ and a non-real eigenvalue of rank £ — 1 and that Sr) has index (£ — 1). 
Finally, by Lemma 5.5. there is a diffeomorphism £ G arbitrarily close to 77 with a 
homoclinic tangency in A^(U) associated to the point of index (£ — 1), contradicting 
the definition of V(U). This finishes the proof of the first assertion in the lemma. 

Using the same arguments, we get that + i = (dim(M) — p), so we omit this 
proof. • 

Lemma 5.7 (Proof of (B)). The bundle Ej is one dimensional and non-uniformly 
hyperbolic for all i G {iq + 1,. . ., ip}. 

Proof Given k G {iq + l,--- let £ = d\ = dim Observe that by. 
Lemma 5.6, q < £ ̂  p. 
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The bundle Ek is not uniformly hyperbolic. — We argue by contradiction. Otherwise, 
since Ek is indecomposable, it would be either uniformly contracting or expanding. 
In the first case, using the domination of the splitting, one has that every periodic 
point of A (̂(7) has index bigger or equal than £ > q, contradicting the definition of 
q. In the second case, again by the domination of the splitting, every periodic point 
of A (̂(7) has index strictly less than £ ̂  p, contradicting the definition of p. 

The bundle Ek is one-dimensional. — The proof is by contradiction, assuming that 
dim(Ek) = dk ^ 2. By Theorem A and Proposition 2.4, there exists (p G Oo with a 
hyperbolic periodic point G A (̂(7) of index £ such that £/? is dense in A^(U). 
By Lemma 5.3, there exist a perturbation A of p>* and a point G such that 
the restriction of MA(S^) to Ek(S^) is a homothety. Moreover, as before, we can take 
A such that its restrictions to the bundles Ej(S^), i / k: coincide with the one of 

Suppose, for instance, that the ratio of such a homothety is bigger than one. From 
G and the definition of , the restrictions of ip*' ^ to the bundles E^S^), 

i > k, have only expanding eigenvalues. Thus, the matrix MA{S^) has exactly r = 
d^1 contracting eigenvalues, where 

q ^ d';1 <: d\~l = r ^ dl{~1 < d!{ = p and r < r + dk ^ r + 2 ^ p. 

Using Lemma 3.4, we get </; G (9o with a hyperbolic periodic point S<f> G A (̂C/) of index 
r such that the restriction of 0* to EkiS^) is equal to A After a new perturbation, 
if necessary, we can assume that 0*^^ (£</>) has a expanding non-real eigenvalue of 
rank (r + 1). 

As in the proof of Lemma 5.6, by Theorem A and Lemma 2.5, there is 0 G Oo close 
to (p with a periodic point T^ G K^U) of index (r -f- 1) < p and a heterodimensional 
cycle r(V'. LLJ\ir, S^,), where has index r and a (expanding) non-real eigenvalue of 
rank (r + 1). Finally, by Lemma 5.5, there is £ G Oo close to V; with a homoclinic 
tangency associated to T ,̂ contradicting the definition of Oo- This finishes the proof 
of the lemma in this case. If the homothety given by the restriction of MA{S^) to Ek 
has ratio less than one the proof follows similarly. • 

Lemma 5.8 (Proof of (C)). --- The bundles E'({ and E]"+1 are uniformly volume con­
tracting and volume expanding, respectively. 

Proof. — This lemma follows from Theorem B. To check that E = E± is uniformly 
contracting, observe that the set Oo and the dominated splitting E[q © satisfy 

the hypotheses of Theorem B (recall that, by Lemma 5.6, q = d''{1 = dim(£,j'/)). 
The uniform expansion of E-" ( , follows analogously. This completes the proof of 

the lemma and of the theorem. • 
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6. Homoclinic tangencies 

We now analyze the dimensions of the bundles of finest dominated splitting of a 
robust transitive set to deduce the different types of homoclinic bifurcations that this 
set may exhibit. 

We consider an open subset U of M and N(U) C Diff1(M) an open set such that, 
for every po G J\f(U), the set A^(c7) is robustly transitive and 

- the maximum and the minimum of the indices of the periodic points of A^{U) 
are constant, equal to p and q, respectively, 

- the dimensions of the bundles of the finest dominated splitting of A^(L7) do not 
depend on p> G N(U). 

Notice that, in this section, it is not assumed that there are no homoclinic tangencies 
in A^(L7), as in the previous section. 

We use the notation introduced in Section 5.3 for the dimensions of the bundles 
of the finest dominated splitting. Recall that, with this notation and by definition, 
q ^ d'i and p ^ d{. 

We say that a robustly transitive set A^(U) has a homoclinic tangency of rank r 
if there is a periodic point G A^(L7) of index r having a homoclinic tangency and 
such a point of tangency belongs to A^(U). 

Theorem F. — Let U, f\f(U), p and q as before. Consider any po G J\f(U). 

- If d'i > q, then there is (p arbitrarily close to p) such that A^U) has a homoclinic 
tangency of rank (d^1 — 1). 

- If dl{ > p. then there is è arbitrarily close to po such that A^U) has a homoclinic 
tangency of rank (d'{ 1 + 1). 

If dj ^ 2 for some j G {iq + 1,... , ip}, then, for every k G [d{~1 + 1, d\ ). there 
is 0 arbitrarily close to p> such that A(p(U) has a homoclinic tangency of rank k. 

This theorem is a generalization of the result [DPU, Corollary G] for three dimen­
sional robustly transitive sets, which says that the existence of an indecomposable 
bundle of dimension strictly greater than one leads to the creation of homoclinic 
tangencies in a (non-hyperbolic) robustly transitive set. 

The proof of Theorem F follows from a small modification of the the proofs of 
Lemmas 5.6 and 5.7 and involves heterodimensional cycles. 

Denote by %(U), k = 1,.. . , dim(M) - 1, the subset of Af{U) of diffeomorphisms cj) 
such that A^U) has a homoclinic tangency of rank k. Theorem F now follows from 
the next two lemmas. 

Lemma 6.1. — Under the hypothesis of Theorem F, we have the following 

- Ifd\q > q, then T,q_(U) is dense inM{U). 

-- Ifcî{ > p, then Tdip-i + l{U) is dense inAf(U). 
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Proof. — First, observe that, by definition, if d!{1 > q (resp. dt{ > p) then dl( > 1 
(resp. dlp > 1). 

To prove the first part of the lemma, it is enough to check that if (p G M(U) and 
d'l1 > q then there is v arbitrarily close to ip such that AV(U) has a homoclinic tangency 
of rank (d1^ — 1). Recall that, in the proof of Lemma 5.6, under the assumption that 
£ — d'l1 > q, we got v close to p) having a hyperbolic periodic point Rv G AV(U) of 
index £ with a non-real eigenvalue of rank (£ — 1). 

Since q ^ £ — 1 < p, by Theorem A and Lemma 2.5, after a C1 -perturbation of v, 
we can assume that v has a periodic point Sv of index (£—1) and a (codimension one) 
heterodimensional cycle T(v,U, Rv, Sv) (Rv of index £ with a non-real eigenvalue of 
rank (£ — 1)). By Lemma 5.5, there is £ close to v with a homoclinic tangency 
associated to S^. This finishes the first part of the lemma. 

The second part of the lemma follows similarly. • 

Lemma 6.2. — Under the hypotheses of Theorem F, suppose that dj ^ 2, j G 
{iq + l,...,ip — 1}. Then, for every k G(q'\v')+(q'\v')the set %(U) is dense in 
M{U). 

Proof. — As in the previous lemma, given any (p G M(U) with dj ^ 2 and k G 
[(ip1 + 1, d{) we will obtain 0 arbitrarily close to (p such that A^(U) has a homoclinic 
tangency or rank k. By Theorem A, and since 

q ^ d}~1 < d[ < d^'1 <p, 

after perturbing </?, we can assume that p) has a pair of hyperbolic periodic points 
S^,T^ G A^(U) of indices d\ and d[~l, respectively. 

By Lemma 2.5, there is 0 close to tp with a heterodimensional cycle T('0, [/, ^S ,̂ T^). 
Observe that the modulus of the restriction of the Jacobian of *̂̂ Tv̂  to Ej(T^) is 
greater than one and the modulus of the restriction of the Jacobian of i/7*'^^ to 
Ej(S^jj) is less than one. By Corollary 3.7, unfolding this cycle, we get 0 close to (p 
with a hyperbolic periodic point R^ G A^U) with index r, r G ( q ' \ v ' ) s u c h that 
the modulus of the Jacobian of (p'^R<^ to EJ(R(p) is exactly one. 

By Proposition 2.4, after a perturbation of 0, we can assume that E .̂0(0) is dense 
in A<f)(U). Since E^R^) is indecomposable and has dimension equal to or greater 
than 2, arguing exactly as in the proof of Lemma 5.7, but now applying the final part 
of Lemma 5.3, we get £ (arbitrarily close to 0) with a periodic point Ac G A^(U) such 
that the restriction of ^ to E.j(Aç) is the identity. 

Take now any k G [d{~1 + 1, d[). After a perturbation of £ we can assume that the 
index of Ac is A,* — 1, and that Ç"'^A*\AÇ) has an expanding non-real eigenvalue of rank 
k. Again, by Theorem A, we can assume there is a periodic point G A^(U) of index 
/c, where k > q. Finally, by Lemma 2.5, there is // close to £ with a codimension one 
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cycle T(TJM1 BV, A7/), AV of index (k — 1) and with an expanding non-real eigenvalue 
of rank k and BN of index k. Now the lemma follows from Lemma 5.5. • 

7. Proof of Theorem E 

As we have mentioned in the introduction, Theorem E follows from Proposition 1.1. 
So, before proving the proposition let us deduce the theorem from it. 

Recall that U and S(U) are open subsets of M and DifF1(M) such that, for every 
diffeomorphism p G S(U), the set A<̂ (J7) is robustly transitive and has no homoclinic 
tangencies (in the whole manifold). By Theorem D, there is an open and dense subset 
X(U) of <S(Z7), sucn that if f belongs to X(U) and A^(U) contains periodic points of 
indices q and p, q < p, then A^(U) contains points of every index between q and p. 
So it is enough to prove the theorem for the subset X(U) of S(U). 

Consider the maps z+, i~ : X(U) —> N* that associate to each p G X(U) the max­
imum and the minimum of the indices of the hyperbolic periodic points of A^(f/), 
respectively. These two functions are semi-continuous, so they are continuous in an 
open and dense subset Xo(U) of X(U). Now it is enough to fix a connected component 
2Q ofX(U) where i+ and i~ are both constant and to prove the theorem for this set. 
Suppose that i+{<p) = p and i~(p) = q for all p G Z0, q ^ p. 

Assume that q < p (the case q = p follows from Remark 2.7, so we omit it). Let 
Q^P and P^ be points of indices q and p of K^(U). For notational simplicity, let us 
assume that their continuations are defined in the whole Jo. Since and are 
transitively related in To, by Remark 2.6, there is an open and dense subset X\ of 2o 
such that IVs(P^) and Wu(Q(p) have nonempty transverse intersection for all (j) G X\. 
So it is enough to prove the theorem for X\. 

For each j ^ 0 with q + j ^ p, let A(j) be the subset of X\ of diffeomorphisms 0 
such that A(p(U) contains hyperbolic periodic points R®}, . . . , such that 

index (R1:,,) = q + i, 
- HRo (U) = HRi (U) = - • • = Hn.j (U) for every p in a neighbourhood of 

To finish the proof of Theorem E, it is enough to check the following. 

Lemma 7.1. — The set A(j) is open and dense in X\ for every j G (0, r], r = p — q. 

Before proving this lemma, let us assume it and prove the theorem. 
Observe that, by Lemma 7.1, Air) is open and dense in Zi, and for every ijj in 

A(r), there exist hyperbolic periodic points R{^ and R1^ of A</;([/) of indices q and 
a + r = v such that 

HRr (U) = HRn (U). 
As before, for notational simplicity, assume that the continuations of R^ and R1'^ 

are defined in the whole A(r). The points and R^ have index q and are transitively 
related in A{r). Thus, by Remark 2.7, there is an open and dense subset V\ of A(r) 
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of diffeomorphisms ( such that the relative homoclinic classes of and R®} in U ai 
equal. Similarly, there is an open and dense subset V2 of A(r) of diffeomorphisms 
such that the relative homoclinic classes of P^ and R^ in U are equal. Thus, for 8 
C G V\ fl Vo, one has that 

HPc(U) = HRr(U) = HMU) = HQi(U). 

Since T>\ fl V2 is open and dense in A(r), thus in Xi, and the result is proved. 

Proof of the lemma. — We will argue by induction. To see that -4(1) is open and 
dense in Xi, it suffices to prove that, given any qb G Xi, there is an open subset A^ of 
Xi such that 

- (j) belongs to the closure of A^, 
~ for every 0 G A^, there exists a hyperbolic periodic point R^ G A0(17) of index 

(q + 1) such that HQiiXU) = HRi(U) (here we take #° = Q0). 

Since <f> is in Xi there is a periodic point R^ G A^(L7) of index (q + 1). Observe 
that and it^ are transitively related and index(Qv,) + 1 = 'mdex(R^). Thus, by 
Lemma 2.5, after a perturbation of e/>, we can assume that GO has a (codimension one) 
cycle r(4>,U, R^Qcj)). By hypothesis, this cycle is far from homoclinic tangencies. 
Thus, by Proposition 1.1, there is an open set S^, whose closure contains (/>, such that 
HQ(.(U) = HRi(U) for all £ G % The first inductive step follows taking .40 = B^nJi. 

Suppose now defined inductively the open and dense subsets -4(1), -4(2),.. . , A(j — 1). 
a 4- 7 ̂  v, of Xi satisfying the properties above. Then the set 

A'{j-i) = A{i)ndddddd--nA{j-i) 

is open and dense in Z\. Nowr it is enough to get an open and dense subset A(j) < 
A'{j — 1) with the announced properties. For that we argue exactly as in the ste 
3 = i-

Consider any et> G A'{j — 1). Since <fi G X\ the set A^U) contains a hyperbolic per 
odic point R^ of index {q + j). As in the first step of the induction, using Lemma 2. 
we can assume (after a perturbation of 0) that cb has a (codimension one) eye 
F(0, [/, i?;̂ , i?.̂ '"1), where i?^-1 is the point of index (q + j — 1) in the inductive ste 
(j — 1). By hypothesis, this cycle is far from homoclinic tangencies. Thus, by Prop* 
sition 1.1, there is an open set B<p C Af(j — 1) containing <f> in its closure such that 

HRJrl(U) = HRI{U) 

for all C G Bcj). Since £>0 C -4'(j — 1), we have 

HRo(U) = HRI(U) = HRJ-,(U) = HRl{U) 

for all ( G B(f), finishing the proof of the lemma. 
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7.1. Proof of Proposition 1.1. — Suppose now that (as in the hypotheses of 
Proposition 1.1) the indices of and are p and q with p = (q -f 1). By [BDP, 
Lemma 5.4], we can assume that the robustly transitive set A^(U) contains a pair 
of hyperbolic periodic points of indices q and p -f 1 having only real eigenvalues with 
multiplicity one and different moduli. For notational simplicity, assume that 
and P^ verify these hypotheses. In particular, these points verify the hypotheses of 
Corollary 3.6. By (1) in the proof of the corollary, after a small perturbation, we can 
assume that <p has a saddle-node periodic point (a point with an eigenvalue equal to 
one) with q contracting eigenvalues and (dim(M) — q— 1) expanding eigenvalues. After 
a new perturbation, by unfolding the saddle-node, we can assume that <p has a pair of 
periodic points and of indices p and q, respectively, such that there is a curve 7 
whose extremes are A^ and B^ and whose interior is contained in Wft(A<p) iti WU(B^). 
By Remark 2.7, we can assume that there is an open subset V of Diff1 (AI) containing 
p in its closure such that HPJU) = HAIR{U) and HQIL,(U) = HBLJL(U) for all </; in V. 

By Remark 2.6, there is a sequence of diffeomorphisms ^A-, fk —> f in 
the C1 -topology, such that pk has a codimension one heterodimensional cycle 
r(<p/,., [/, Alfk,Bipk). By construction, these cycles are connected, i.e., Ws{Aifk ) rh 
Wll(B^k) has a periodic connected component whose extremes are contained in the 
orbits of A^k and B^k (here the connected component is the continuation of the 
curve 7 above). 

The proposition now follows directly from [DR]. For completeness let us state 
these results. 

Lemma 7.2. — Let C be a Cl-diffeomorphism with a codimension one connected het­
erodimensional cycle T(Ç,U, Aç, Bç) as above. Then given any C]-neighbourhood A 
of C, there exists a Cl-open subset U(Ç) of A such that II.\,(P ) = ///>>,.(/ ' ) for every 
v c u (C) 

By the lemma, for each ipj,. as before, there is an open set U(pk) C V containing 
pk in its closure, such that, for every V' £ U(<pk), we have HA.,„(U) = # # ( [ / ) . Since 
yj G V, we have that IL\,.(P) = HpIR(U) and HQ.,(U) = HDIR(U). Proposition 1.1 
now follows taking = UA-^(^A-)-

Proof of the lemma. — Observe that the cycle F((M. Aç, Bç) is connected and far 
from homoclinic tangencies. In [DR], see the comments after Theorem A, it is proved 
that, given any neighbourhood U of Ç there is an open subset Uo of U such that every 
•0 G Uo has a transitive set A,. containing A^ and B, - such that A(/, C H{B^). The 
main step to prove this result is the fact we state below. 

First, observe that, by construction, there is a multiplicity one contracting eigen­
value Ac; G R of the derivative of £ at Ac such that 1 > |AC| > |A| for every contracting 
eigenvalue A of .4^ different from Ac (see condition (CE) in [DR, Section 3.1]). Thus, 
for every 0 close to (, the (codimension one) strong stable foliation JF* of IVs (A is 
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FIGURE 3. Homoclinic points 

defined. Similarly, we have that the (codimension one) strong unstable foliation T{f} 
of Wu(A.lj,) is defined. Now the lemma will follow from the following fact. 

Fact. — Let A be as in Lemma 7.2. 
Let a — (dim(M) — p) be the dimension of the unstable bundle of A^. There is an 

open subset Ao of A of diffeomorphisms 0 such that WS(BV)) intersects transversely 
every (u -f I)-disk E transverse to Ts^. 

- Let s be the dimension of the stable bundle of Ac. There is an open subset Ao of 
A of diffeomorphisms ip such that WV(AV,) intersects transversely every (s + l)-disk 
E transverse to T]l. 

This fact is a non-technical reformulation of [DR, Proposition 3.6 (b)]. Notice that 
(due to the context) in [DR] this proposition is stated for parametrized families of 
diffeomorphisms unfolding a connected cycle corresponding to a first bifurcation. But, 
as mentioned in [DR, Section 6], it holds in a much more general setting (including 
the case under consideration). 

To see, for instance, that HA^XU) is contained in HBI:XU), we use the first part of 
the fact. Take any x in HAVXU)- By the cycle configuration, W"(AR) is contained in 
the closure of W'^B.^), thus there is a sequence xn —» x with xn G Ws(A,p) fh WU(B^) 
for all n. Associated to each xn, we have a (u + l)-disk En of diameter less than 1/n 
which is contained in Wu(B.lj)) and transverse to Wfi(A.lj}) at xn (see figure). The fact 
implies that, for each ??, there is zn G U's(/i,.) rh EA?. By construction zn G (in 
fact one can take zn G HB^U)) and \imzn = lim.x*n = x. 
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The inclusion HB^(U) C HB^,(U) follows similarly using the second part of the 
fact. This finishes the sketch of the proof of the lemma. • 
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COUPLED HOPF-BIFURCATIONS: 
PERSISTENT EXAMPLES OF n-QUASIPERIODICITY 

DETERMINED BY FAMILIES OF 3-JETS 

by 

Henk Broer 

Abstract. — In this note examples are presented of vector fields depending on pa­
rameters and determined by the 3-jet, which display persistent occurrence of n-
quasiperiodicity. In the parameter space this occurrence has relatively large mea­
sure. A leading example consists of weakly coupled Hopf bifurcations. This example, 
however, is extended to full generality in the space of all 3-jets. 

1. Introduction 
In the theory of coupled reaction diffusion equations the following is of interest, 

see Polâcik et al [12, 19]. The problem is whether persistent examples exist of 
(parameter dependent) dynamical systems with the following properties: 

(1) Occurrence of n-quasiperiodicity in a measure theoretically significant way. 
(2) The system is local, and the property is determined by a low order jet. 
(3) Preferably parameters are only needed in the linear part. 

Below we present a solution to this problem by means of coupled Hopf families. To 
fix thoughts, we start with an example. 

Example 1 (Weakly coupled Hopf bifurcations). — Consider a C^-system of n weakly 
coupled Hopf bifurcations, near the origin of E2n given by 

(i) 
' Xi 
w 

xwq 
'a, -fij 
3i a:i 

x.i 
vr 

WU(P+xx1 xw 
x 

+ 0(r4), 

1 ^ j ^ n, where r2 = X^Li^y + v])- The lower order part (the 3-jet) consists of 
n completely decoupled Hopf bifurcations, as already considered in [15]. Presently, 
however, we include the coupling term 0(r4). Moreover, we include 2n parameters 

2000 Mathematics Subject Classification. — 37L10, 70K43. 
Key words and phrases. — Coupled Hopf bifurcations, center manifold reduction, quasiperiodic tori, 
quasiperiodic bifurcation. 
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(o, L3) = (a i , . . . , an, . . . , /3n), where a G M!}: is small and where /3 varies over any 
compact disc L C M". In multi-polar coordinates x7 = rj cos (p3, y j — rj sin (pj the 
decoupled lower order part reads 

w+w1ws 

(2) 2 = X^Li^y + v])+x1x 

1 ^ j ^ Clearly for > 0, system (2) has an n-torus attractor r3 — ^/cJJ, where 
the dynamics is parallel given by (fij = (3j, 1 ̂  j ^ n. Our interest is with the fate of 
this dynamical phenomenon upon addition of the higher order perturbation 0(r4). 

Below we generalize the setting of Example 1, raising a similar problem. To solve 
this we apply both Center Manifold Theory [14] and KAM Theory in the dissipative 
setting [17, 2, 6, 3, 7]. We summarize the results of our investigation. First, for small 
|o|, the family of n-tori is (7£-persistent for such perturbations, where the bound on 
\a\ depends on L Second, the continuum of parallel dynamics persists as a Whitney 
smooth family of quasiperiodic attractors, foliated over a Cantor set. Projected to the 
(a, /^-parameter space, this Cantor foliation has positive measure, expressed in terms 
of a Lebesgue density point of quasiperiodicity corresponding to a = 0. Notably, the 
dynamics in between generically break up due to internal resonance: upon variation 
of parameters the dynamics can be asymptotically periodic (e.g., phase locked) or 
chaotic (n ^ 3), [20, 18, 21, 23]. 

Let us briefly outline the contents of this paper. We start by generalizing the setting 
of Example 1, and developing an appropriate perturbation model for the application of 
Center Manifold and KAM Theory. We end by a general discussion, pointing towards 
some interesting problems regarding quasiperiodic Hopf bifurcation that occur in a 
subordinate way. 

2. Coupled Hopf-bifurcations 

2.1. Setting of the problem. — Instead of weakly coupled case (1) wre here con­
sider the more general system 

(3) 
qq 

ww 
ww 'a, -Pi 

Pi ot ; 
\ 

wsq 
w+w1 

which will be subject to suitable (73-open conditions. As in Example 1 we include 
dependence on the parameter vector (o, j3) G x R^. We apply a standard normal 
form procedure to system (3), e.g. compare [22, 4, 24, 11]. Note that the linear part 
of (3) has a Tr;-symmetry. Strong resonances are excluded by requiring that 

(4) 
n 

.7 = 1 

d.ikn ^ 0 whenever 0 < 
n 

3 = 1 

u < 4 
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which amounts to the first open condition. Granted (4), by near identity, polynomial 
changes of variables this Tn-symmetry can be pushed over the whole 3-jet, which then 
in appropriate multi-polar coordinates reads 

(5) 

ToJ=[3J-fJ(rl...1rl) + 0(r4) 

r3 = r3(a3 - g3(r\,..., r2)) + 0(r4), 

1 ^ J ^ n. As in Example 1, we truncate the 0(r4) term, so arriving at the present 
generalization of (2), which we explore for invariant n-tori. Therefore we expand 

fj = fjirï + ' ' • + fjnrï 

9j = 9jirl + '- + 9jnrl, 

with f j , . (} )i constants, i,j = l ,2, . . . ,n. Invariant n-tori then are determined by n 
equations 

(6) 2 = X^Li^y + v])+xùmx+ 

1 ^ j ^ n. Consider the 'action-space' = {r2,... ,r2}, where the equations (6) 
determine n hyperplanes. Considering the n x n-matrix 

2 = X^Li^y + v]) 

we impose further C3-open conditions 

(?) det G ^ 0 while G~l(a) G W^. 

By c2 := G 1(a) denote the unique (transversal) intersection point of the hyperplanes. 
Then the equations (6) have the unique solution 

(8) î'i = c2.. . . , r2 = c2, with c2 = c2(o). 

1 ^ j ^ n, which determines our invariant n-torus, carrying parallel dynamics. 

Remark. — The open conditions (7) are trivially satisfied in Example 1, where G = 
Idn. One easily detects other concrete examples that are C7'3-nearby (1). 

As announced in Example 1, the problem is to study the effect of the higher order 
perturbaton 0(r4) on this family of tori. As said before, to answer this we shall 
apply both Center Manifold Theory [14] and KAM Theory in the dissipative setting 
[6, 3, 7]. 

2.2. An appropriate perturbative setting. — We formulate a perturbation 
problem suitable for our purposes. Introducing the small parameter e and putting 
L — r.j — c,, we scale 

a, = s'2(\ ; II; • 6,: 
r, = sr. tp, = </?•, 
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also writing L = si j, 1 ̂  7 ^ n. This gives the estimates 

Tp,= l3i+eO(I) 

Ij = -2e2âjlj + e2IjO(y^I), 

1 ^ j ^ n, which are uniform for (a, (3) £ K x L, for any given compact subsets 
K, LÇR^ . A further scaling 

I = e"I, 

for a fixed q > 1, leads to the following perturbation problem: 

ip,= 01+O(el+«) 

(9) Ij = -2£%I]+O(e2+0), 

1 ^ j ^ again with uniform estimates. Since q > 1, the form (9) is suitable 
for application of the Center Manifold Theorem [14], Thm. 4.1, implying the C£-
persistence of the invariant n-torus for small values of e. 

To further investigate persistence of the quasiperiodic dynamics we apply dissipa-
tive KAM Theory as developed in [6] §§4 and 8. In the unperturbed case 

2 = X^Li^y + v]) 

I, = -26%!^ 

1 ^ J ^ n, we single out parameter vectors (3 G L such that for all k G Zn x {0} 
Diophantine conditions 

(10) \(k,0)\2- 1 
\kV 

hold. Here r > n — 1 is a constant, while we choose 7 = csq, for an appropriate (suf­
ficiently small) constant c, depending on K and L. These conditions define a Cantor 
foliation C£;C Ç K x L for the unperturbed system. The complement (K x L) \ C£,C 
has measure 0(£9) as e | 0. The main result of the present paper is: 

Theorem 2 (Perturbation Theorem). — Consider system (9), with parameter vectors 
(a, (3) <E K x L, for given compact subsets K,L Ç . zl/so Ze£ £ G N 6e sufficiently 
large. Then, for s > 0 and sufficiently small the (9) has the following properties: 

(1) TTie unperturbed n-torus family 1 = 0 persists as a unique C£-family of hyper­
bolic n-torus attractors T£, also depending Cl on e. 

(2) For parameter values (c7, (3) G C£x: as described above, with c sufficiently small 
the unperturbed tori persist as quasiperiodic tori inside T£. 

(3) The union of tori inside T£ with non-quasiperiodic dynamics has Lebesgue mea­
sure 0(eq), as e I 0, 1 ̂  j ^ n, uniformly in (â, (3) G K x L. 
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Proof (sketch). — For simplicity we perform the KAM Theory inside the center man­
ifold, see [6], the Appendix. This means that for some £' < £, there exists a C£ -
reparametrization &£ : K x L —> R" x R" , extending to a Ce -diffeomorphism 

ty£ : Tn x {0} x K x L —> R2n x R^ x Rn 

such that for (57, ,6) G Ce, the map ^£ is a conjugacy from the unperturbed system to 
the full (perturbed) system (9).^ The dependence of the map ty£ on e is smooth. 

This implies that (9) has a subsystem consisting of a Whitney smooth foliation of 
quasiperiodic n-tori. Morover, in the Ce -topology \ty£ — Ici| = o{e) as e I 0, which 
implies that the the image &(C£) has positive (almost full) measure as e j 0. • 

Returning to the context of system (3) we conclude 

Corollary 3. — Consider system (3), with parameter vectors o7 G K, and f3 G L, for 
any given compact sets K,L C R™ with L not containing any strong resonances (4)-
Also let £ G N be sufficiently large. Then, up to condition (7), for e > 0, sufficiently 
small the system, (3) has the properties 1., 2. and 3. of Theorem 2. Moreover, the 
behaviour described above is persistent under sufficiently C3-small perturbations. 

The 7^-dynamics in between the Cantor foliation generically break up due to in­
ternal resonance. Finally notice that the weakly coupled case of Example 1 also is 
fully covered by the Corollary. 

2.3. Conclusive remarks, towards quasiperiodic Hopf bifurcation. — Con­
cerning the asymptotics of the measure estimate, we note that the KAM Theorem 
[6, 7] may well be applied in the C00-setting, keeping track of the normal linear part. 
This does not lead to contradictions, since the quasiperiodic tori by parallellity are 
of class (7°% since they are £ normally hyperbolic for any £. A further (quasiperi­
odic) normalizing and reparametrizing (see, e.g., [3]) leads to sharper estimates on 
the complement of quasiperiodicity, which become of arbitrary large order in £, as 
£ j 0, compare [7], §5.2. Assuming real analyticity, even exponentially small esti­
mates can be obtained for the complement of quasiperiodicity. Compare [7, 16] and 
further references given there. 

Next we point out a relationship with quasiperiodic bifurcation theory. Until now 
we restricted a to compact subsets K of the open cone R" , thereby only covering 
interior points. Consider the ô-regime near the boundary of this cone. In the un­
perturbed system (2) of Example 1, this gives normally elliptic subtori, and clearly 
the perturbâtive cases involve subordinate quasiperiodic Hopf bifurcations, compare 
[3, 7, 8, 5, 25, 9, 10, 23]. In the present, general case the theory will be even 
more interesting, compare [13, 26], for general reference also see [1]. Investigation of 

(̂ To be precise, K x L has to be shrunk at its boundary by a layer of thickness 0(eq). 
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this will require further research, as is also indicated by the following example, kindly 
provided by Florian Wagener. 

Example 4 (Two weakly coupled Hopf families). — Consider the 'integrable' system 

0 i = Pi 

0 2 = 02 
h = - r\) - r\ 

r2 = r2(a2 - rh. 

A brief calculation reveals that the non-hyperbolic tori occur for 

27'a\ = 4a'i n = -jry/âï r2 = y/âl, 

a'2 = 0 ri = .VôTT r2 = 0. 
The problem is to study the effects of integrable and non-integrable higher order terms. 
Notice that the hyperplanes in parameter space where subordinate quasiperiodic Hopf 
bifurcations take place, have shifted somewhat. However, by the scaling all interior 
points of the cone are drawn within the regime with invariant n-tori. 

Observe that this program is reminiscent to the Hamiltonian case of elliptic subtori, 
[6, 3, 7, 16]. 

Acknowledgements. — Helpful discussions are acknowledged with Peter Polâcik, Flo­
rian Wagener, Carles Simo, Floris Takens and Bernold Fiedler. Also thanks is due 
to the Universitat de Barcelona for hospitality during part of the preparation of this 
paper. 
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WALKS IN RIGID ENVIRONMENTS: 
SYMMETRY A N D DYNAMICS 

by 

Leonid A. Bunimovich 

Abstract. — We study dynamical systems generated by a motion of a particle in an 
array of scatterers distributed in a lattice. Such deterministic cellular automata are 
called Lorentz-type lattice gases or walks in rigid environments. It is shown that these 
models can be completely solved in the one-dimensional case. The corresponding 
regimes of motion can serve as the simple dynamical examples of diffusion, sub- and 
super-diffusion. 

1. Introduction 

Deterministic (dynamical systems) or stochastic (random processes) models are 
the ones which were used traditionally to model real phenomena and processes. The 
theory of these two types of models, purely deterministic and purely stochastic ones, 
is very rich and therefore the intuition on evolution of such systems is well developed. 
The intuition means a right expectation of what should happen in the course of 
evolution of some concrete system even though the rigorous mathematical analysis is 
usually lacking. 

Such intuition is based on some explicitly solvable simple (but nontrivial) and vis­
ible examples, i.e., on the comprehensive mathematical analysis of the corresponding 
models. These fundamental models in the theory of stochastic processes include se­
quences of identically distributed independent random variables (Bernoulli shifts), a 
random walk, etc. In dynamical systems such fundamental models include a rotation 
of a circle, an algebraic toral automorphism, some billiard models, etc. Certainly, this 
class of completely solvable models is growing, and our intuition is essentially growing 
with it. I cannot resist to mention the quadratic family which now finally belongs to 
this class as well [14]. 
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terers, diffusion, sub-diffusion, super-diffusion. 
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However, dynamics of many (and actually of a majority) of real systems is neither 
purely stochastic nor purely deterministic but it rather has both these components. 
Certainly, it is the well known fact and traditional attempts to account for that is to 
study e.g., small random perturbations of dynamical systems or to add a small deter­
ministic flow term (advection) to a diffusion process. Such small perturbations, while 
being very important to study, do not address the question on the behavior of hybrid 
systems with (nonsmall) deterministic and stochastic features in their evolution. In 
fact, in applications almost always models were chosen as stochastic ones (instead of 
hybrid ones) with the standard argument that each real phenomenon or process has 
infinitely many features neglected by any model and therefore it is, in fact, a random 
process. 

There are large areas like e.g., operations research, logistics, etc., which still com­
pletely belong to the probability theory while already the first applications of the 
dynamical systems methods allowed to achieve very encouraging results by essentially 
increasing production rates of certain production lines [2]. 

Another class of hybrid systems goes back to the classical Lorentz gas. Recall that 
in the Lorentz gas (light) point, noninteracting between themselves, particles move 
by inertia in an array of immovable scatterers and collide with scatterers elastically. 
It is a dynamical system which can be reduced to Sinai billiard. This system has 
been comprehensively studied and until now it is the only one nontrivial system for 
which time irreversible macroscopic dynamics (governed by the diffusion equation) 
has been rigorously derived from the time reversible microscopic dynamics (governed 
by Newton equations). It is transparent that this result has been obtained only for 
periodic configurations of scatterers (under the condition that a free path of the point 
particle is bounded, see details in [6]). 

The very interesting mathematically and important problem for various applica­
tions is to study this system in case when the scatterers are distributed randomly. It 
seems, at the first sight, that this problem should follow from the one with periodic 
distribution of scatterers because of some additional "self-averaging" generated by a 
random distribution of scatterers. Indeed, it seems that such "self-averaging" should 
just improve stochastic properties of the corresponding dynamical system with peri­
odically placed scatterers. However, this idea is totally wrong. In fact, in the Lorentz 
gas with randomly distributed scatterers we encounter a hybrid system, which has 
both deterministic and stochastic features. (Certainly, the Lorentz gas with ran­
domly distributed scatterers can be described as purely deterministic (dynamical) 
system. However, it does not make this system to be deterministic, as well as the 
representation of a stationary random process a shift in the space of its realizations 
does not transform this stochastic process into a deterministic one.) 

If an interesting and important system does not allow a comprehensive analysis then 
it is natural to consider some simpler model which retains (some) principal features 
of this system. Such simplified Lorentz gas model has been introduced in [18]. In this 

ASTÉRISQUE 286 



WALKS IN RIGID ENVIRONMENTS: SYMMETRY AND DYNAMICS 233 

model scatterers (usually of two different types, e.g., left and right mirrors aligned 
along the diagonals of the square lattice) are randomly distributed on vertices of 
the square lattice. The point particle moves with unit speed along the bonds of this 
lattice and get reflected by the scatterers. These systems were naturally called Lorentz 
Lattice Gases (LLG). It is worthwhile to mention that this model is the generalization 
of another classical model in nonequilibrium statistical mechanics, which is called the 
(Ehrenfests') Wind-Tree model. In the Wind-Tree model a (light) point particle moves 
in an array of randomly distributed scatterers, which are identical rhombuses with 
parallel diagonals. The particle moves parallel to one of the diagonals of rhombuses 
and therefore after (elastic) reflection from the boundary of some scatterer, its velocity 
becomes parallel to another diagonal of the rhombuses and so on. 

The Lorentz Lattice Gases belong to the class of systems which can be naturally 
called Deterministic Walks in Random Environments (DWRE). Indeed the dynamics 
of these systems is generated by deterministic motion of the particle, where both the 
free motion and reflections from the boundary of scatterers are deterministic, while 
distribution of scatterers is random. 

It occurred that the Lorentz Lattice Gases were studied (without using this name) 
in lots of applications, e.g., in material science, superconductivity, chemical kinetics, 
information transmission and especially in the theoretical computer science. All these 
studies were exclusively numerical and these systems were included in the class of 
systems which are conventionally called "complex systems" (and are often discussed 
in the journal with the same name). 

In fact, in many applications there were considered so called flipping LLG, where 
the moving particle has impact on an environment as well. Formally dynamics of 
such models is defined by the rule that after reflection of the moving particle from a 
scatterer this scatterer instantly changes its type. Therefore in flipping LLG there is 
also a dynamics of an environment formed by the configuration of scatterers. Hence for 
such models it makes sense to consider dynamics of many particles moving along the 
bonds of a lattice rather than of a single one. Indeed, even though the moving particles 
do not interact directly they do, in fact, interact via changing the environment to each 
other. It allows to account for an "information exchange" between particles (signals, 
etc.) and environment (neurons, etc.), see. e.g., [1, 7, 9, 10, 12]. 

From the mathematical point of view all these models are dynamical systems. In 
fact, they belong to the class of deterministic cellular automata. However, this formal 
observation does not help much in studying these systems. In fact, it occurred that 
the much more productive approach is to consider all these models as Deterministic 
Walks in Random Environments. (To make clear distinction with purely stochastic 
models of this kind we mention that in the last ones a scatterer after colliding with 
particle "flips a coin" to decide whether it should change its type.) 

In the studies of DWRE the important role is played both by the structure of 
a lattice where particles move (which could be e.g., the square, triangular, cubic, 
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random, etc. lattice) and by the types of scatterers considered (e.g., there are 44 
types of scatterers in a square lattice). It is not surprising, of course, because a lattice 
defines a configuration space and the types of scatterers (together with a lattice) 
define the dynamics (equations of motion). 

The great majority of papers on DWRE are numerical. There are as well quite 
a few mathematical results on dynamics of DWRE. They usually use some specific 
features of the given model, which allow sometimes to come up with complete solution. 
For instance, it is possible to reduce a (purely deterministic) problem to a (purely 
probabilistic) percolation problem on some graph [4]. (It is worthwhile to mention 
that such graph is defined not only by the lattice but by the types of scatterers as 
well.) Sometimes it was possible to completely solve the problem by constructing 
some peculiar class of solutions and by proving that no other solutions exist (see 
e.g., [5]). However, in most cases the results were rather counterintuitive. Actually, 
in almost all cases when dealing with the hybrid (neither purely deterministic, nor 
purely stochastic) systems the authors confessed that they obtained results different 
from what they expected. 

This situation clearly calls for some kind of a general view at these systems, es­
pecially the one which would allow to integrate the studies of DWRE in fixed and 
in evolving (e.g., flipping) environments. The corresponding approach has been de­
veloped in [3] where these two classes of DWRE, were integrated into one class of 
dynamical systems called Walks in Rigid Environments (WRE). (Observe that R in 
DWRE refers to "random,1' while in WRE it refers to "rigid"). 

WRE is also a dynamical system generated by motion of point particles in some 
graph (e.g., in a lattice). For the sake of simplicity we will consider here only one-
particle systems. Some scatterers are randomly distributed along the vertices of this 
graph. (Again for the sake of simplicity we assume that the scatterers are distributed 
independently, even though one may assume that they interact via some potential.) 

The crucial feature of WRE is the new parameter r which is called a rigidity of an 
environment. The rigidity determines how many times the particle must collide with 
the given scatterer in order to change its type. In the other words, the scatterer at 
a given site changes its type at the moment after the rth visit of the moving particle 
to this site. It is easy to see that the LLGs with fixed environment correspond to the 
case r = oo, while the LLGs with flipping environment correspond to the case r — 1. 
Thus the twro studied so far classes of LLG form, in fact, two extreme sub-classes of 
WRE. 

Besides the introduction of Walks in Rigid Environments allowed to move rigorous 
studies of LLG to another level and to address the central problem of the theory of 
such systems which is the diffusion problem. Until [3] the mathematical papers on De­
terministic Walks in Random Environments usually addressed the problem whether 
a typical path of a particle is bounded or unbounded. However, the most important 
question which one can ask about evolution of a system generated by a motion of some 

ASTÉRISQUE 286 



WALKS IN RIGID ENVIRONMENTS: SYMMETRY AND DYNAMICS 235 

object (particle, signal, etc.) is where this object is going to be at a sufficiently large 
moment of time t. The quantity of interest is the mean square displacement Ez2(t) 
(or, in other words, the expectation, taken with respect to the distribution of envi­
ronments, of a (squared) position z(t) of the particle at time t). One distinguishes 
diffusive, subdiffusive and superdiffusive behavior which correspond to the linear, 
slower than linear and to faster than linear growth of Ez2(t) respectively. 

It has been shown in [3] that the asymptotic behavior of the particles' position is 
determined by an interplay between the symmetries of the lattice and symmetries of 
scatterers. 

The present paper deals with WRE where the problem of the particle's diffusion 
can be solved completely. We give the examples of all three situations, i.e., diffusion, 
sub- and super-diffusion. Moreover, in these examples it was possible to completely 
"separate" stochastic and deterministic elements of the evolution of these models. 

Qualitatively the situation is the following one. Stochastic evolution of the system 
takes place when the particle visits some site of the lattice at the first time, while 
between two consecutive visits to the new (nonvisited before) sites the particle under­
goes a deterministic evolution. This deterministic evolution is completely defined by 
the types of the scatterers allowed in the model under study and by their symmetries. 
It is exactly this deterministic evolution defines the speed of growth of visited (exited) 
domain. 

Such separation of the evolution into random events and intermediate deterministic 
motion allowed to describe in one-dimensional case all three types of behavior in the 
same way. 

It occurred that the evolution of the particle can be broken into the qualitatively 
similar stages. Each such stage is characterized by deterministic motion of the particle 
in some box of a random size. In cases of diffusion and of subdiffusion the sizes of 
these boxes are growing in time, while in case of super-diffusion the sizes of these 
boxes fluctuate and the boxes are moving along the lattice in one direction, which is 
defined by the initial distribution of scatterers near the origin. 

Actually the analysis of all these three models is rather straight-forward and they 
could be used in the first courses of dynamical systems and/or random processes as 
completely solvable models which are neither purely deterministic nor purely stochas­
tic to develop intuition on systems with such mixed type of behavior. 

The structure of the paper is the following. In Sect. 2 we give the necessary 
definitions and formulate the results. The proofs are given in Sect. 3. The last Sect. 4 
contains some concluding remarks. 

2. Définitions and main results 

Consider an one-dimensional regular lattice which, without any loss of generality, 
could be identified with the set of integers Z. We assume that at each site z G Z there 
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is a scatterer of some type. A particle moves with the unit speed along the lattice Z, 
i.e., v(t) = 1 or v(t) = — 1 at each moment of time t. Denote by z(t) position of the 
particle at time t. Then the position of the particle at the next moment of time is 
determined by v(t) and by the type of scatterer located at the site z(t). Certainly it is 
enough to consider a discrete time. To distinguish between two moments of time when 
the particle reached some site of the lattice but had not yet reflected by a scatterer 
at this site and the one when it was just reflected by a scatterer we will denote these 
moments by t and t+ respectively. Hence v(t) is the velocity with which the particle 
approaches a site z(t) and v(t+) is the velocity with which the particle leaves this site. 

It is clear that in dimension one there are 22 possible scatterers (or local scattering 
rules), which we will denote by BS, FS, LS and RS. Here BS is the backward 
scatterer, which changes the velocity of the particle to the opposite one. In other 
words, if BS is located at a site z(t) G Z then v(t+) = —v(t). F S is the trivial, or 
forward scatterer which does not change the velocity of the particle, i.e., v(t+) = v(t) 
if at the site z(t) was the forward scatterer. The last two types of scatterers, LS and 
RS, which we will refer to as the left and the right scatterer respectively, are the semi-
transparent ones. Namely LS (RS) sends all scattered particles to the left (right), i.e., 
if a LS (RS) is located at a site z(t) G Z then z(t + 1) = z(t) - l(z(t + 1) = z(t) + 1). 

Now we will define the dynamics of our system. In order to do it we introduce an 
integer r, 1 ̂  r $C oo, which we will refer to as a rigidity of an environment. Let S be 
a space of all possible scatterers on a lattice under consideration. (Recall that in this 
paper we discuss only WRE in one-dimensional lattice Z, i.e., S — {BS, FS, LS, RS}.) 

WRE is defined by three objects: 

(1) A subspace S C S of scatterers, which we will call a space of allowed scatterers. 
(2) An integer r > 0 (rigidity). 
(3) A function e : S S. 

Let Sr = S x {0,1, . . . , r — 1} and TT : Sr —>• S is the natural projection. Denote a 
function a : Sr —>• Sr as 

(i) a(S, i) = • (5,2 + 1), i f 0 ^ i < r - l 
(e(s),0), if i = r- 1, 

where s G S. We will call i an index of the corresponding scatterer. 
We will denote by s(z) a type of scatterer which is located at the site z G Z. The 

type of scatterer at z may change in the course of dynamics (if r < oo). By (s(z))t 
we denote the type of a scatterer located at a site z G Z at a moment of time t. The 
notation s(z(t)) will be referred to a type of scatterer located at a moment t at the 
site where the particle sits at this moment. 

The configuration space of our system W = Sf x Z, where Sf is a configuration of 
scatterers (together with a number of visits occurred to a site z G Z while a scatterer 
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of some fixed type was located there) and the second factor Z corresponds to the 
position of the particle. The phase space Q = W x { — 1,1}. 

Now we are able to write the equations governing the dynamics 

(2) 

v(t+l)=g(v(t),a(z(t))), 
z(t + l) = z(t) + v(t+l), 

«s(z))t+1,i) = ((s{z))t,i) iiz?z(t) 
((s(z(t),i) = a(s(z(t)),i) if z = z(t). 

The function g(v(t), s(z(t))) in (2) is completely defined by the type of scatterer 
s(z(t)). (The formal expressions for an abstract scatterer are rather cumbersome. It 
would become simple though when we consider concrete models of WRE.) 

We will introduce two such models. In the first model we will take semi-transparent 
scatterers LS and RS as the set S of admissible scatterers. The second model corre­
sponds to S = {BS, FS}. 

We describe now the dynamics of these two models informally (but precisely and 
in more visible way than it is formally defined by the relations (2)). 

Each of the models under consideration deals with two types of scatterers. The 
particle moves with unit velocity along the lattice Z. At each integer moment of time 
t it comes to some vertex z(t) G Z and gets scattered by the scatterer located at 
this moment at z(i). (A function #(•,•) is immediately specified by the type of this 
scatterer.) If the particle was scattered r consecutive times by this scatterer located 
at z(t) (i.e., if particle returned to this site with this very scatterer r times) then this 
scatterer gets changed to another type. 

Now we need to specify initial conditions for our dynamical system. Without any 
loss of generality we can always assume that the particle starts at the origin with the 
initial velocity v(0) = 1. We take Bernoulli measure on space of scatterers' initial 
configurations, i.e., the types of scatterers at different sites are chosen independently 
and have the same distributions. 

Two models under consideration have quite different symmetry properties. The 
only nontrivial symmetry of the lattice Z is the reflection with respect to the origin. 
(Indeed the probability distributions on initial configurations of scatterers are trans-
lationally invariant.) Observe now that LS and RS do respect this symmetry, while 
BS and F S do not. It is the key point why dynamical properties of these models are 
quite different as we will see later. 

It is easy to see that an orbit of any WRE is completely defined by the initial 
configurations of scatterers. We will use sometimes the same notation u to denote 
an orbit of a dynamical system and the corresponding configuration of scatterers. 
Another remark is that initially (at t = 0) all scatterers have indices zero. 

For the sake of brevity we will refer to the model with S = {LS, RS} as to the 
model with oriented scatterers (OS-model) and to the model with S = {BS,FS} as 
to NOS-model (the model with non-oriented scatterers). 
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We start with the formulation of the results on the qualitative behavior of the OS-
and NOS-models and then turn to their quantitative behavior. 

The first simple remark is that the dynamics of both models is trivial (and similar) 
in case when the environment does not change in time (r = oo). Indeed the particle 
will with probability one oscillate between two closest to the origin BS (for the NOS-
model) with positive and non-positive coordinate respectively, or between the closest 
to the origin LS with positive coordinate and the closest to the origin RS with non-
positive coordinate in the OS-model. 

It is the characteristic feature of hybrid systems (intermediate ones betwreen purely 
deterministic and purely stochastic) that an exceptional set of orbits of measure zero 
can often be completely characterized. For instance, if r = oo this set consists of 
initial configurations of scatterers where all scatterers with positive coordinates are 
RS (for the OS-model) or FS (for the NOS-model) or/and all scatterers with non-
positive coordinates are LS (for the OS-model) or F S (for the NOS-model). The 
dynamics of the OS-model is characterized qualitatively by the following statement. 

Theorem 1. — In the OS-model for any value of rigidity r < oo the particle will almost 
surely visit each site of the lattice Z infinitely many times. Moreover, for almost 
every point UJ G Q of the phase space there exists a sequence of moments of time rn 
i = 0 ,1 , . . . , To — 0, r.j. < T7.+1, T; —> oo as i —» oc and a corresponding sequence 
of closed intervals BJ(UJ) = [a,t(UJ), bj(uj)} C Z, i = 1,2,..., at(uj) ^ 0, bt(uj) > 0, 
Bt(uj) C Bi+1 (uo), B.j(UJ) —• ( — 00,00), as i —» 00, such that within a time interval 
Ti-i < t < Ti, i = 1,2,... , the particle stays inside the interval Bt(uj) and visits the 
origin z = 0 2r times. 

Thus Theorem 1 shows that in the OS-model for any finite value of rigidity the 
particle will oscillate about origin with an increasing amplitude. We will say that a 
point UJ G Q has a positive (negative) tail of scatterers of some type if there exists 
z+ > 0 (z- ^ 0) such that all scatterers at the sites z ^ z+ (z ^ Z-) are of one and 
the same type. 

Corollary 1. — The exceptional set of measure zero in Theorem 1 consists of such 
points UJ EQ, where the corresponding configurations of scatterers contains a positive 
tail of RS or/and a negative tail of LS. 

Denote by zmilx(t) and znnU(t) the sites with the maximal and the minimal coordi­
nates respectively visited by the particle to a moment t. The next theorem describes 
quantitative features of the dynamics of the OS-model. Namely, it says that the size 
of the region visited by the particle to a moment t grows diffusively. 

Theorem 2. — In OS-m,odel Ez^^t), Ez2nhl(t) and Ez2(t) grow linearly in t. 
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In the NOS-model the scatterers are invariant with respect to reflections. This 
is the reason why the dynamics of this model is quite different from the one of the 
OS-model. 

Theorem 3. — In the NOS the particle visits almost surely all sites of the lattice Z 
infinitely many times if the rigidity r is an even number. Besides for almost every 
LV G Q there exist sequences of moments of time rt, i = 0,1,2,..., and of closed 
intervals BI{UJ), i = 1,2,..., with properties analogous to the ones in Theorem 2. // 
the rigidity r is an odd number then for alleu G the particle visits all sites in [0, oo), 
[—1, oc), or ( — oo,l] and only these sites. Besides the particle visits each of these sites 
no more than 3r times. Moreover in this case there exist sequences of moments of 
time ?i(uj), i — 0,1, 2, . . . , and of closed intervals Bt(u)) = [av(u), bt(uj)}, i = 1,2,... 
such that TQ(LJ) — 0, Tt(iu) < TA+I(CJ), at(uj) < ay+i(cj) < bj(uj). at(io) - ^ 0 0 as i —•» 00 
or bj(uj) —> — 00 as i —» 00 and the particle stays inside BJ(UJ), within the time interval 
[TV.M,fi+i(u;)]. 

We recall that the particle always starts at the origin with positive velocity. This 
explains why in Theorem 3 the semi-interval ( — 00, 0) does not show up. 

By comparison of Theorems 1 and 3 one can immediately see that a parity of 
rigidity does not play any role in the OS-model wmile in the NOS-model it completely 
defines its qualitative behavior. 

Remark. — Observe that in case of odd rigidity Theorem 3 refers to the behavior of 
all (rather than of almost all) orbits. 

Corollary 2. — Let in the NOS-model the rigidity be even. Then the exceptional set of 
measure zero orbits in Theorem 3 corresponds to the configuration of scatterers with 
a positive tail of F S or/and with a negative tail of FS. 

The next statement immediately follows from Theorem 3. 

Corollary 3. - Let the rigidity r be an odd number. Then vn the NOS-model the 
particle will for all u G Q propagate in one direction with a random velocity. 

Indeed the particle at any moment of time is confined to some segment (box) B^cu) 
where it goes back and forth. These boxes move in one direction and the particle 
eventually propagates with them. At each first visit to any site of Z the particle 
can be scattered backward or forward according to a random initial distribution of 
scatterers. Therefore the particle propagates with a random speed. 

The next theorem gives the quantitative description of the dynamics of NOS-model. 

Theorem 4. — In NOS-model Ez2{t) groivs as const t2 if r is an odd number. Other­
wise, if r is an even number, Ez2(t) grows as const log t. 
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Because of the deterministic evolution of WRE it is possible to give much more 
detailed description of the motion of the particle within random boxes in each of the 
models under study. On the other hand transition from one box where the particle 
gets confined for some time to the next such box is a random event. 

We describe now a geometric nature of typical orbits in the OS- and NOS-models. 
At first we introduce some notions and notations. 

We will denote by f̂ i and Vt2 the phase spaces of the OS-model and of the NOS-
model respectively. It is convenient to introduce the reduced phase spaces Q\ = 
{LS, RS}Z and ft2 = {BS, FS}Z. Thus Qi and Q2 refer just to a type of scatterer at 
any site of Z, without taking into account how many times the particle has already 
been reflected by this scatterer. Dynamics of the OS-model (NOS-model) we will 
define by f\ : Vt\ —> Vl\ (f2 : Q2 —> Q2). Let TT[ : —> Q\, TT2 : Q2 —» ̂ 2, 
TT'I : Q\ —-> { — 1,1}, TX'2' : ̂ 2 ~̂  {— 1,1} are the natural projections. 

For x,y G Çli (x,y G Q2) we define the distance d(x,y) as d(x,y) = 2~n if x} = yi 
for \i\ < n and xt 7̂  yl for i = nor i = —n, i.e., if configurations of scatterers restricted 
to (—n,n) coincide for x and y. 

Lemma 5. — In the OS-model for almost every point eu G fli there exists an infinite 
sequence of moments of time 77. = Tk(uj), k = 1, 2 , . . . , 00 as k —» oc, such that 

« <(/^(W)) = i 
(ii) (n[(f?(w)))i = (RS,0) ifO^i^k 
(iii) (7ri(/rfcM)). = (LS,0) if-k ^i<0. 

In other words, Lemma 5 states that a typical orbit of the OS-model returns into 
the smaller and smaller neighborhoods of the orbit, for which at t — 0 at all positive 
sites of Z were right scatterers with zero indices while at all nonpositive sites of the 
lattice were left scatterers with zero indices. 

Lemma 6. — Let the rigidity r be an even number. Then in the NOS-model for almost 
every point ou £ Q2 there exists an infinite sequence of moments of time = Tk(uo), 
k = 1, 2,..., TA < Tfc+i, Tk —>• 00 as k —> oc, such that 

(i) < ( / 2 ^ M ) = i 
(ii) <(/2TtM). = (£S,0)/Or | i | < * . 

Lemma 7. — Consider the NOS-model. Let the rigidity r be an odd number. Then 
for any point uo G ^2 and any z G Z there exist a moment of time r = r[uu,z) such 
that: 

(i) The type of scatterer at z never changes after the moment T(UU,Z). 

(ii) The type of scatterer located at z after the moment r(uu, z) is BS if at the next 
site of Z in the direction of propagation, it was initially FS, or F S if the next site of 
Z in the direction of propagation was initially occupied by BS. 
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Lemma 7 states that the initial configuration of scatterers gets flipped (each FS 
becomes BS and vice versa) and shifted on one site in the direction opposite to the 
eventual direction of the particle's propagation. 

3. Proofs 

We have already mentioned that a WRE in a fixed environment (r = oo) Z is 
always trivial, i.e., the particle will be moving forever back and forth in a segment 
between two closest BS (in NOS-model) or LS with a positive coordinate and RS 
with a negative coordinate (in OS-model). 

Denote by 77(z, i) a number of visits of the particle to a site z G Z, which occurred 
between the last moment of time r = r(z,t), 0 < r(z1t) < t, when a scatterer at z 
flipped and t. It is easy to see that rj(z,t) equals the index of the scatterer at the site 
z at time t. Thus, to make the scatterer at the site z flip requires another r — 77(2, i) 
visit of the particle to this site. 

Proof of Theorem 1. — Recall that we always assume that the particle starts at the 
origin z = 0 with velocity v = 1. Therefore the initial segment of any orbit is the 
motion of the particle with the unit speed until it will get to the closest to the origin 
site z = b\ > 0 with LS. At such site z (at the moment t = h\) the particle will turn, 
i.e., its velocity becomes v = — 1. 

Now (if r > 1) for some time the particle will be confined between the sites z = b\ — 1 
and z = h\. Indeed, both indices 77(61 — 1, 61) and 7/(61,61) equal 1. Then (if r > 1) 
there is RS at the site b\ — 1 and at the moment t = b\ + 1 the particle gets reflected 
back and hits again LS at 61 at the moment b\ -f 2 and so on. 

It is easy to see that those oscillations between z — b\ — 1 and z — h\ will be over at 
the moment t = 61 + 2r — 1. In fact at the moment b\ + 2r the particle will be in the 
site z = b\ — 2 and 77(61, (61 + 2r — 1)) = 77(61 — 1, 61 + 2r — 1) = 0, i.e., the scatterers 
at the sites 61 — 1 and 61 changed their type. (If r = 1 then the particle makes no 
oscillations in its way between z = b\ — 1 and z = b\. Instead the particle after the 
reflection at z — b\ goes back and passes at the next step the site z = 61 — 1.) 

Therefore at the moment t = b\ + (2r — 1) (61 — 1) -f 1 the particle will return back to 
the origin z = 0. If there was at t = 0 RS at the origin then at the moment t = 2rb\ 
it will start its travel from z = 0 into the positive semiaxis. In this case we set a\ = 0. 
Otherwise, the particle starts to move from the origin into the negative semiaxis. The 
same consideration can obviously apply to this piece of trajectory, where one only 
needs to change LS into RS and vice versa and to change v = 1 into v = — 1. Denote 
the site where the particle meets its first RS by z = a\ < 0. 

Observe now that at the moment of time when the particle goes through the origin 
with the velocity v = — 1 (i.e., at this moment there is LS at the origin) all scatterers 
at the sites z = 1,2,..., 61 are RS. Analogously, when the particle will cross the 
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origin next time with the velocity v = 1 at all sites z = 0, — 1, — 2, . . . , a\ + 1, a\ there 
will be LS. 

Therefore, at the moment of time t = 2r(b\ — a\) the particle will be again (as 
at t — 0) at the origin with the velocity v = 1. Besides at this moment all sites 
z = 1, 2 , . . . , bi will be occupied again by RS with the indices equal zero. Therefore, 
now the particle will travel into the positive semiaxis Z+ at least b\ + 1 consecutive 
steps, i.e., it will penetrate into Z+ farther than at its first excursion to Z+ when it 
was backscattered by LS at the site Z = b\. Denote the closest (at this moment of 
time) to the origin (positive) site with LS by z — b2 > b\ and the closest to z = 0 
negative site by z = a2 < a\. Then the same arguments as before are applied. 

It is easy to see that in the same way we can construct segments Bt = [aM6?], 
i = 1,2,..., with the properties satisfying to Theorem 1. Obviously these intervals 
as wrell as the corresponding intervals of time r2], i = 1, 2 . . . , when the particle 
is confined within Bz are completely defined by the initial distribution of scatterers 
UJ, i.e., rt = Ti(uj) and ax — ai(uj), hi = bl(uj). • 

Proof of Corollary 1. — It follows from the proof of Theorem 1 that the only case 
when there is no infinite sequence of closed intervals B1+\(UJ) D B7/(UJ) occurs when 
bk(uo) = oo or ak(uo) = — oo for some integer k > 0. But it means that the configuration 
of scatterers UJ has a positive tail (where z+ = bk(uj)) or it has a negative tail (where 
z_ = ak(uj)). • 

Proof of Theorem 2. — It follows from the proof of Theorem 1 that for almost every 
initial configuration of scatterers there exists a sequence T%{UJ) such that within the 
interval [T%(UJ), T1+I (UJ)}, i = 0,1,2,..., the particle moves (starting at the origin) 
inside the interval B-I+I(UJ) = [at+i(UJ), (UJ)]. Besides it follows from the proof of 
Theorem 1 that the length of the interval [TL(UJ), n+\(UJ)} equals 

ATHI = 2r(b,+i(uj) - a.i+i(u)). 

Moreover we know exactly how the particle moves in this interval. Indeed, the particle 
visits within the interval Arz+i each site in Bi+i(uj) exactly 2r times. 

Hence to prove Theorem 2 we need to evaluate expected length of an interval 
BL(UJ) — [ai(uj),bi(<jj)]. Let us note first that now it would be more convenient to 
use the probabilistic approach and language. Indeed, b\(uj), bt+i(uj) — bj(uj) and 
—ai(uj), at(uj) — at+i(uj), i — 1,2,..., are sequences of independent identically dis­
tributed random variables. These random variables are the ones we need to analyze 
because the proof of Theorem 1 provided us with the complete description of the 
deterministic motion of the particle inside the (random) intervals BI(UJ). 

Let q ((1 — q)) be a probability that LS (RS) is located at any given site of the lattice 
Z. Recall that according to our assumptions the scatterers were placed independently 
at the different sites. Therefore both 6?;+1(u;) — b-L(uj) and at(uj) — ai+\(uj) have the 
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geometric probability distribution, i.e., for any i — 0, 1, 2, . . . , 

(3) Prob{6i+1(w) - 6 ,M = *;} = ( ! - q)k'lq 

and 

(4) Prob(q'\v') - di+iiLj) = k} = r / ' -^ l - q) 

where k ^ 1 is an integer and ao(u) = b{)(uj) = 0. 
Denote by f(t, z) probability that the particle will visit a site z > 0 at the first 

time at some moment t. Then one can write the following recurrence equation 

(5) f{z,t) = (ssssss\-q)f{z-\,t-\) 

+ (l-q)q 
OC 

k=l 
qk~l f(z-ht-l- \b(t - 1) - ait - 1) + k]2r) 

where b(t) and a(t) are the maximal, and the minimal coordinates of sites visited by 
the particle to the moment t. It is easy to see that b(t — 1) in our case equals z — 1 
and therefore we can rewrite (5) as 

(6) f(z,t) = s s s s s ( l - q ) f ( z - l , t - l ) 

+ (1 - q)q 
DC 

A:=l 
qk-lf{z-l,t-[z-a{t-lssssss) + k]2r) 

Similar equations can be written for 2 ^ 0 . Certainly b(t) = b(t,uj) and a(t) = a(t,cj), 
i.e.. both these quantities depend upon the initial configuration of scatterers UJ. 

Let m+(t,uj) be a number of LS located between the origin and b(t — 1) in a 
configuration UJ. Then there are two possibilities. Either a number m-(t,u) of 
RS located between 0 (including the origin itself) and a(t — 1) equals m + (t,uj) or 
m+(t,uj) — in ( / . = 1. Because we assumed that z > 0 the second possibility 
holds. 

It follows from Theorem 1 that at each moment of time r the particle almost surely 
is confined in some segment B{T.UJ) — [a(r, UJ), 6(r, UJ)]. 

We will now compute the expected values of a(r) and 6(r). It is enough to do it for 
b(r) because the procedure of computing a(r) is completely similar. One can write 

(7) 6(r,u) = b1(uj) + {b2(uj) - bi(u)) + • • • + {brn+{T^)(uj) - 6m+(r^)_1(u;)). 

The probability distributions of the terms in this sum are given by (3). Therefore we 
just need to find the expected value of m+(r,uj). 

It follows from Theorem 1 and Corollary 1 that for almost every orbit UJ of OS-
model there exist infinite sequences of moments of time (UJ) (r~ (UJ)), i = 1,2,..., 
such that at the moment (rA7) the orbit visits at the first time the right (left) end 
bk(uj) (ak(uj)) of the interval B^iuj). 
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We restrict the consideration to the set of orbits Q[ c Q\ of measure one described 
in Corollary 1. Then for any configuration uo G Q,\ and for any moment of time r > 0 
one can write the following identity 

(8) T = 2r 
m+ (T,UJ) — 1 

z=l 
(bi(u) - a.i(u))) + 7(r,o;), 

where 7(r, w) is the length of the interval of time between the moment when the 
particle returned to the origin with v = 1 after visiting 2r times all sites in the 
interval Bm+(T^)-i(w) and the moment r. 

Indeed, it follows from the proof of Theorem 1 that any orbit LU G Q[ has the 
following structure. First, it visits 2r times all sites in the interval B\(UJ) and occurs 
at the origin after that with the positive velocity, then it visits 2r times all sites in 
the interval B2(UJ) and returns to z = 0 with v = 1 and so on. 

Therefore we have 

(9) E1(T,uj)^2rE(b,n+{ +sz!ms+s 

Hence, we need to find Eb.m+(T^) and Ea17l+^T^). By making use of (3), (4) it is easy 
to compute 

(10) 
2 = X^Li^y + v]) 1 

vr Em+{T, uj) 

X^Li^y + v]) 1 
I- a' 

Ein+fr, UJ). 

Indeed, (3) and (4) imply that 

(H) 
Eb1(u)=E(bi.+l(u;)-bi(uj)) 1 

ss 
E(-di{oj)) = E(ai(uj) -a.,-+i(u;)) = 1 

1 - a 

where i = 1, 2 , . . . . 
Recall now, that b\(uj), (bl+i(uo) — bj(oj)), and — ai(uu), (a7(cj) — a/+i(^)), i — 

1,2,..., are two sequences of independent identically distributed random variables. 
It follows from (8) that 

(12) 2r 
m4. (T.UJ) — 1 

i=l 
(ra+(r,a;) - i) [(6/(a;) -2 = X^Li^y + v])+ (a7_i(cj) - at(uj))} ^ r 

^ 2r 
(r,aj) 

sssc 
(ra+(r,u;) - i + 1) [0*M - bi-i(u)) + (a*_i(u;) - a./(a;))] 

where again ao(cj) = 6Q(U;) — 0. 
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The relations (10)-(12) imply 

(13) 1 1 
q i-qj 

Em AT, UJ){ Em AT, LU) — 1) 
2 

ss+s 

ss 
Em+(T,u)(Em+(T,u) + 1) 

2 
1 1 

\q i-qj 
Therefore there exist such positive constants C\ and C2 that 

(14) G i t 1 / 2 ^ EmM,uo) ^ C2t1/2 

for sufficiently large t. 
It follows from (14) that there exist positive constants C[, C2, C", C'2' such that for 

sufficiently large t one has 

(15) 
C[t^EzLjt)^C't. 
C"t ^ Ezlhl(t) < Cit. 

It remains to prove that Ez2(t) has the same asymptotics. This fact immediately 
follows from (15) and Theorem 1. Indeed, it has been shown in the proof of Theorem 1 
that within the interval of time rt(uo) ^ t ^ T.;+I(Q;), i = 0,1,2,... the particle for 
any uo G Vt'i spends the same amount of time (equal 2r) at each site of the interval 
B>{u). 

Therefore, position of the particle is uniformly distributed within Bl+i(uo) in the 
time interval [rt(uo). r/ + i (a;)], and the last statement of Theorem 2 follows. • 

Proof of Theorem S. — Theorem 3 follows from Theorem 1 and Theorem 2 in [3]. 
Therefore we just outline the proof. 

Let us consider the NOS-model and assume first that the rigidity r is an odd 
number. Then the particle will travel from the origin till the closest to z — 0 site 
h\ — bi(uo) > 0 where in the configuration uo there is a back-scatterer BS. At 2 = 6, 
the particle will turn back and travel now in the negative direction until it readies 
the closest to z = b\ site z = Si (uo) with FS. Observe that if the rigidity r = 1 
then ai(co) = b\(uo) — 1, unless b\(uo) — 1 and a F S is located at the origin in the 
configuration uo. In this case the scatterer at the origin becomes BS after the particle 
pass z — 0 in the negative direction. Therefore, it is enough for r = 1 to consider only 
such cases when there was a BS at the origin at t = 0. 

We return now to the general case of an odd rigidity. According to the dynamics 
the particle will move back and forth in the segment B\(uo) = [a\(uo), b\(uo)} until it 
hits the BS located at the site z = b\ at the (L^)th time. Denote this moment by 
T\(UJ). Observe that to this moment of time the particle will visit all internal sites 
of B\(uo) exactly r times. Recall that initially at all these sites were located forward 
scatterers. Therefore to t — r\ all of those got substituted by BS. 

It is easy to see that at the moment t — T\(UO) the BS located at the site z = b\(uo) 
has the index (r + l)/2 while the BS at z = b\(uo) has the index zero. Therefore 
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the particle will move now for (r + 1) moments of time between z = b\ (UJ) and 
z = b\(uj) — 1. Finally, at the moment = T\(UJ) + (r + 1) the particle will pass the 
site z = b\(uj) with positive velocity and travel until the closest site z = b2(UJ) with a 
backward scatterer. At the moment t — T{ the BS located at z = h\(uj) — 1 will have 
the index equal (r -f l)/2. 

Therefore, after the moment £ = rx* the particle will move back and forth between 
the sites z = b\(uj) — 1 and z = b2(UJ) until the moment t = T2(UJ). when it will pass 
the site z = b2(uj) with the positive velocity. We denote a2(UJ) = b\(uj) — 1. 

In the same manner one can construct intervals Bt(uj) — [a.;(a;), bt(uj)} and the 
corresponding sequence of times rt(uj). i = 1, 2,. ... 

Let now the rigidity r is an even number. Then again the first segment of any orbit 
will travel till the closest to z = 0 site z = b\(uj) with a backward scatterer. Then 
the particle will travel from z — b\(uj) in the negative direction till the closest site 
z — (I\(UJ) ^ 0 with BS. After it reaches z — O\(UJ) the particle continues to move 
back and forth within the segment B\(UJ) = \a\(uj), bi(uj)}. 

The crucial difference with the case of odd rigidity is that at all internal sites of 
BI(UJ) will appear BS (with index 0) at the moment TI(U;), when the particle will 
return to the origin at the rth time. At t = T\(UJ) the indices of BSs at z — a\(uj) 
and z = b\(uj) equal r/2. 

Therefore it will take now a very long time for the particle to get out of the segment 
BI(UJ). Indeed, all scatterers located in the internal sites of this segment must change 
their type before that back to FS. 

At the moment T[(UJ) when it happens the particle will start again to move back 
and forth in B\(UJ) from its left end (1\(UJ) till its right end b\(uj). It is easy to see that 
at the rth visit of the particle to the origin z — 0 in the process of these consecutive 
trespassing of B\(UJ) at all internal sites of B\(UJ) will be BS with the index 0 while 
at z = a\(uj) and z = b\(uj) will be F S with the index 0. 

Therefore after the next repetition of the same process of turning all BS at the 
internal sites of B\(UJ) into F S the particle will get out of B\(UJ) and will become 
confined to some interval B2(UJ) = [a2(uj), b2(uj)}, where the similar process will take 
place. Here z — a2(uj) (z = b2(UJ)) is the closest to a\(uj) (bi(uj)) site with negative 
(positive) coordinate where there is a BS. In the same way one can construct a 
sequence of closed segments Bt(uj), i = 1,2,..., with the required properties. The 
corresponding sequence rh(uj), i — 1,2,..., is naturally defined by the condition that 
the particle remains confined to Bt(uj) until the moment t = rt(uj) + 1, when it leaves 
this segment at the first time. • 

Proof of Corollary 2. — Consider the NOS-model with an even rigidity. Then it fol­
lows from the proof of Theorem 3 that the particle will visit the origin infinitely many 
times unless at(uj) = — oo or/and bj(uj) = oo for some positive integers i, j . • 

Proof of Theorem 4- — The case of an odd rigidity r has been considered in [3]. 
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Let the rigidity r is an even number. Consider any site z G Z, z > 0. Denote by rz 
the moment of time when the particle visits the site z at the first time in such state 
that there is a forward scatterer at z. In other words rz = TZ(UJ) is the moment of 
the first visit of the particle to the site z if there was a F S at t = 0 at this site, or it 
is the moment of the first visit of the particle to the site z after a BS at this site has 
been changed to a FS. 

It has been shown in [3] that the expectation of the random variable TZ(UJ) equals 
(16) Erz = 2r + 1 + (z - 1)[(1 - q) + r(l + 4q + qz)] + q(r~l - z) 
The analogous formula holds for z ^ 0. The statement of Theorem 4 for even rigidity 
immediately follows from Theorem 3 and (16). • 

Lemma 5 is the immediate corollary of Theorem 1. 
Lemma 6 is the immediate corollary of Theorem 3. 
Lemma 7 follows from the proof of Theorem 3. 

4. Concluding remarks 

One may get the impression that the phenomena discussed and results obtained 
in this paper are essentially restricted to the one-dimensional case. It is, certainly, 
the simplest possible situation, when one studies walks in Z and, perhaps, it is not 
feasible to hope that the same type of comprehensive analysis would be possible for 
deterministic walks on some sufficiently general class of graphs. 

However, various regimes of anomalous diffusion were observed in computer ex­
periments with WRE (see e.g., [8]). For instance, the phenomenon of propagation 
in a random environment has been proven to exist [13] in the triangular lattice as 
well. It is worthwhile to mention that this propagation reminds very much the famous 
gliders in the Conway's Game of Life [9]. Observe though that the glider is just a 
particular solution to this dynamical system, while propagation in WRE takes place 
for any orbit of a certain deterministic walk in the triangular lattice. Moreover, this 
propagation occurs with random velocity, while in the Game of Life gliders always 
move with one and the same velocity. This and other features of WRE are currently 
explored in the theoretical computer sciences (see e.g., [11]). 

We believe that the rigorous theory of Walks in Rigid Environments could be devel­
oped much farther. Although these dynamical systems demonstrate various features 
of stochastic (chaotic) behavior, their behavior is quite different from the one which 
we encounter in familiar classes of chaotic dynamical systems. For instance, these 
systems are nonexpansive [5]. 

On the other hand WRE provide clearer models than probabilistic models of various 
types of random walks and they do not require detailed assumptions about probability 
distributions involved on contrary to the purely probabilistic models (see e.g., [15, 
16, 17]). 
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PERVERSE SOLUTIONS OF 
THE PLANAR n-BODY PROBLEM 

by 

Alain Chenciner 

To Jacob, some questions for his 60th anniversary 
Abstract. — The perverse solutions of the n-body problem are the solutions which 
satisfy the equations of motion for at least two distinct systems of masses. I contribute 
with some simple remarks concerning their existence, a question which curiously 
seems to be new. 

Let X(t) = (ri(t),r2(t),... ,rn(t)) be a solution of the n-body problem with new-
tonian potential and masses mi, ra2,..., mn. We ask the following questions: 

Question 1. — Does there exist another system of masses, (rn[, m'2, • •., m'n), for 
which X(t) is still a solution ? 

Question 2. — Same as question 1 but insisting that the sum M = X^Li7711 °f ^e 
masses and the center of mass fa = (1/^0 J2i=i m'i?> do not change. 

Definition. — // the answer to the first (resp. second) question is yes, we shall say 
X(t) is a perverse (resp. truly perverse) solution and the allowed systems of masses 
will be called admissible. 

Remark. — If the inverse problem raised by Question 1 may seem very natural, Ques­
tion 2 needs some motivation. The possible existence of choreographies whose masses 
are not all equal is at the origin of the notion of perverse solution. Recall that a planar 
choreography is a periodic solution C(t) = (g(t+T/n),... , q(t + (n — l)T/n), q(t + T) = 
q(t)) of the n-body problem such that all n bodies follow the same closed plane curve 
q(t) with equal time spacing ([SI, S2, CGMS]). It is noticed in [C] that if a chore­
ography exists whose masses are not all equal, it is a truly perverse choreography: by 
replacing each mass by the mean mass M jn we obtain new admissible masses, while 
keeping the center of mass and total mass unchanged. 

2000 Mathematics Subject Classification. — 70F10. 
Key words and phrases. — n-body problem, homographie solutions. 
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In the sequel, we shall consider only the planar problem. We shall identify the 
plane of motion with the complex plane C, hence the positions f c , ^ , i = 1,... ,n, 
with complex numbers zq, zn i = 1,. . ., n, and X(t) with an element of Cn. We shall 
use the following notations (we always assume that z% ^ z3): 

Zjj — Zj Zj, (1 ; Zi i 
d+d1rd 

if i j . a-u =0 , m = (mi, 777,2, • .., mn), 

ww1w+2 = X^Li^y + v 2 = X^Li^y + v])w 
We shall identify a matrix as Ao or A with a linear map from Cn to Cn. This will 
allow it to act on the vector m. The definition of the center of mass may be rewritten 

n 

j = l 
mjzij=M(zi-zG), M 

d 

vrd 
dv 

that is 
Mt)m = M{X(t)-zG(t)(h...,l)), 

and the equations of motion in a galilean frame are 

V*,Vi, Zi{t) = 

drd 

dv Zi - z. 
l*-*i l3 

that is A(t)m = -X(t). 

Hence, if another set mi,m2, • . • ,in'n of masses admits the same solution X(t), the 
difference 

/j = 777, - m' = (/ii, /i22 = X^Li^y + v])/ir» ) £ ^ 

is a real non-zero vector in the kernel of any of the complex matrices A(t). If, moreover, 
M and za(t) are the same for the two sets of masses, \i is also in the kernel of any of the 
matrices Ao{i). It will be important to remember that Ao and A are antisymmetric 
(fAo = — Ao, fA = — 4̂). This will cause the parity of n to play a role. We start with 
the obvious 

Proposition 1. — If n = 2, no solution is perverse. In other words, any planar solution 
of the 2-body problem determines the masses. 

Proof. If n = 2, the matrix A(t) is of maximal rank whenever it is defined, that is 
provided zi2(t) / 0. • 

As soon as n ^ 3, perverse solutions do exist, as shown by the following "trivial" 
examples (thanks to Reinhart Schâfke for proposing immediately the example of an 
equilateral triangle rotating around a fourth body): 

Example 1. — X(t) = reIUJ\ re'^1^^1 2 = X^Li^y + v]) 01 is a relative pnnilib-

rium solution with n masses (mi, mi , . . . , mi, mo) if and only if the following "Kepler-
like" condition is satisfied: 

l iu — Un 
In 

: m0 + 
m i 

n - 1 
2 = X^Li^y + 

1 
d+d1r 
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In the above formula, 

Un = ///!///()(// - 1) + mi 
l<Cj<A:̂ n-l 

1 
ww 

and I,, = mi in — 1) 

stand respectively for the potential and the moment of inertia with respect to the 
center of mass, of the configuration normalized by |zm| = 1 if 1 ̂  i ^ n — 1. This 
leaves a one parameter family of admissible sets of masses. Moreover, for the regular 
(n — l)-gon inscribed in the unit circle, we have 

L^J<K^N-L 

1 
x+d1 

n - 1 
2 

1 1 1 
2 sin -^r 2 sin 2x -d x-1 " r, • (n-2)7r 

2 sm - f-
= (n-lY(ôn^ + l), 

where we have set 

<L = - 1 + 
1 iiz.1 
In 
xx 

x+x 
1 

Hence, 
r;V2 = m0 + (n - l)mi(J„._i + 1) = A/ + (n - l)rai($7l_i. 

Provided o\,_i is different from 0, the right hand side of the above formula is a linear 
form in the masses which is linearly independent of the total mass M — mo+m i(n —1). 

But ôn-i is strictly negative if n — 1 ̂  472 and strictly positive if n — 1 ̂  473 (see 
[MS]; the first occurence of the magic number 472 seems to be in [M]). It follows 
that M may be chosen as a natural parameter of the set of admissible masses. In 
particular, these examples are perverse but not truly perverse. 

Remark. For non-newtonian potentials of the form l/r2/j. (3 ^ 1/2, the analogue 
of S-r, becomes 

On = - 1 + 1 
•2(S+LRI 

7» - 1 

1 = 1 V 

1 
(sin^)2^' 

and may become zero for some value of [3 (see [BCS]). 

Example 2. -— Similar to Examine 1 are the relative equilibrium solutions whose con­
figuration is made of one central mass mo and A: regular nomothetic n-gons, the masses 
in the j-th polygon being all equal to m ,̂ for j = 1,... , k. In this case, the equations 
insuring relative equilibrium motion may be put in the form (see [BE] or [BCS]): 

pfu)2 = ra0 -
A: 

,s=l 
msHn(ps/'pj), j = l,...,fc, 

where p3 is the radius of the j—th polygon and 

Hft(x) = 
n*(x) 

1 = 1 

1 - x cos ^ 
(l + x-2-2xcos^)3/2 ' 

n*(x) = n i f x ^ l , 
n - l ifx = l. 
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In the "generic" case, such solutions will be perverse and not truly perverse. But, 
as soon as k ^ 3, one gets truly perverse solutions for special choices of the radii p3 
and the integer n (see the last section). 

When n = 3, the situation is still easy to deal with, thanks to Albouy and Moeckel 
[AM]. 

Proposition 2. — The perverse solutions of the planar 3-body problem are exactly the 
collinear homographie solutions. The center of mass is the same for all admissible 
sets of masses, but not the total mass, which is a natural parameter for such sets. In 
particular, truly perverse solutions do not exist. 

Proof. ----- If n = 3, the matrix A(t) is of rank 2 as soon as the configuration is not a 
triple collision. The existence of a fixed non-zero real vector /i in the kernel of A(t) 
implies immediately that the three bodies stay collinear, with a fixed configuration 
up to similarity. This implies that the motion is homographie. Moreover, the center 
of mass is dynamically defined as the unique common focus of the similar conies 
described by the bodies in a galilean frame where the center of mass corresponding 
to one admissible choice of masses is fixed. 

Conversely, each collinear homographie solution of the 3-body problem is perverse: 
this is a direct consequence of Theorem 2 and Proposition 4 of [AM] which, together, 
say that the set of masses for which a given configuration of three bodies is central is 
of dimension 2 and may be parametrized by the "multiplier" À (which is determined 
by the equation X = — XX as soon as the homographie solution X is given) and the 
total mass AI. To finish the proof, it remains to recall that the center of mass of such 
a 3-body configuration does not depend on the choice of masses for which it is central 
(see [AM] where this observation is attributed to C. Marchai). • 

The case n = 4. — The determinant of the antisymmetric 4 x 4 matrix A is equal 
to the square of the Pfaffian (if we extend the notation K± of [AM] to the complex 
domain, P = K4/2) 

P(Z\, Z>2, Z3, Z4) — ai20*34 — O13O24 + 0-140-23. 

Hence, if a solution of the 4-body problem admits two different sets of masses, its 
configuration must satisfy P(zi(t), z<2(t), z\\(t), 24(f)) = 0 at each instant t. As in 
[AM], but in the complex setting, let us use the following notations : 

A = Z\2ZM, P> = zi:]Z24< C = 214223-

The above condition becomes 

P = A 
UP 

B C 
B3 ssssss (C) 

= 0. 
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On the other hand, as AQ represents the bivector (1,1,1,1) A (2:1,^2,^3,-4), it is of 
rank 2, that is 

A- B + C = 0. 

Together, the two identities above imply that A,B,C cannot be R-dependent, i.e. 
that the three vectors in R2 represented by the complex numbers A,B,C can never 
be collinear; indeed, if mi, m,2, m^, 1714 lie in this order on a line, A, B, C are real and 
positive; then B = A^-C and B~2 = A~2 + C~2, which is impossible. But then A -B 
and A/\A\3 — B/\B\:\ being respectively equal to —C and — C/\C\3, must be collinear 
and this can happen only if \A\ = \B\, which implies immediately that |̂ 4| = \B\ = \C\ 
(this remark has already been used in [V] and [AM]). We have proved the 

Lemma 1. — For any perverse solution of the planar A-body problem, the configuration 
is such that at any time 

(*) |Z12||Z34| = |213||224| = |Z14||Z23|. 

Configurations which satisfy (*) do exist — for example, an equilateral triangle 
with the fourth mass at the center, a rhombus with small angle 7r/6, an isosceles 
triangle with two angles equal to TT/6 and fourth mass at the middle point of the base 
— but, as we have just seen, they cannot be collinear. 

Definition. — A A-body configuration is called stricly convex (resp. strictly non-
convex ) if none of the bodies (resp. if one of the bodies) belongs to the interior of the 
convex hull of the three others. 

A planar 4-body configuration is either strictly convex, or stricly non-convex, or 
partially collinear (i.e. such that at least three bodies are collinear). 

If, for a given t, the configuration (<u(£), z2(t), ^3(^)5 z^)) 13 strictly convex (resp. 
strictly non-convex) and the real vector (/xi, /12, 1x4) belongs to the kernel of A(t), 
each ni is different from zero. This is because if, for example, jii =0, \i$ / 0, /14 ^ 0, 
the bodies 2,3,4 are such that ^(^(t) + 1x4024^) — 0 and hence collinear. And if only 
one of the jij is different from zero, say 114, then all a 14 must be zero, which means 
total collision. Moreover, strict convexity is equivalent to three \ih being of the same 
sign and strict non-convexity to only two \ii being of the same sign. For example, 1 
lies in the interior of the triangle defined by 2,3,4 if and only if /i2,M3 and (14 are of 
the same sign. As the \ih are independent of t, the nature (strictly convex, strictly 
non-convex, or partially collinear) of the configuration of a perverse solution does not 
change along the motion. The possibility of collinear it ies is exluded by the following 
lemma. 

Lemma 2. — In a perverse solution of the planar A-body problem, three of the bodies 
can never become collinear. In other words, either the configuration stays strictly 
convex for all t, or it stays strictly non-convex for all t. 
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Proof. — Let us suppose now that, for example, 2,3,4 are collinear at some instant t. 
Then \i\ = 0, otherwise one would deduce from the equation 0,21/ii +023/̂ 3 + 024/14 = ^ 
that all four bodies are collinear at this instant and we have already excluded this pos­
sibility. This implies that (/i2, M3, PA) belong, for any t to the kernel of the antisymmet­
ric matrix (ar); (f))2^?;,y^4, which means that it is proportional to (0,34^), 042(f), 023(f)). 
As in the proof for the case n = 3, one concludes that the configuration of the three 
last bodies remains similar to a given collinear configuration. This in turn implies 
that the whole configuration remains self-similar: indeed, the relations 

1213 I 1243 I 1213 I 1223 I 
|2l2| 12421 ' |2i4| 12241 

say that the the fourth body lies at the intersection of two circles centered on the line 
which contains the three first. 

Finally, the solution should be homographie, but this is impossible because it fol­
lows immediately from Dziobek's equations in terms of triangle areas [D] that a con­
figuration of four bodies with three bodies collinear is never a central configuration 
(thanks to Alain Albouy for reminding me of this fact). This proves the lemma. • 

There exists at least one perverse — but not truly perverse — solution with non-
convex configuration: it is our "trivial" example of three equal masses in an equilateral 
triangle uniformly rotating around the fourth, located at their center of mass. This 
is the sole homographie perverse solution because in [MB], McMillan and Bartky 
prove that this is the only configuration which is central for more than one set of 
(non-homothetic) masses. No other example, in particular no convex example, is 
known. 

Question. — Is the MacMillan and Bartky example the only perverse solution of the 
planar A-body problem,? In other words, do non-homographic perverse solutions of the 
planar A-body problem exist? 

As a consolation for this disappointing situation, we now prove the 

Proposition 3. — If n ^ 4, the planar n-body problem does not possess any truly per­
verse solution. 

Proof. — If (mi, . . . , mn) and (m[,..., m'n) are admissible masses for a truly perverse 
solution X(t), their differences p = (pi,..., pn) G Wl belong, at any time, to the 
kernel of both matrices Ao(t) and A(t), that is 

M2212 + /i.3̂ 13 + M4̂ 14 = 0, V>2 2l2 
|212P + M: 213 

l*13|3 
+ ^4 214 

l*14l3 
= 0, etc. 
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As none of the real numbers nr,^2,M3,/M is equal to zero (because three bodies are 
never collinear) this implies, in the same way as above, that 

I212I = Z2l = \zi*l 
\Z2l \ = 1̂ 231 = \Z24 
1-311 = 1̂321 = 1̂ 341, 
1̂ 411 = 1̂42 | = 1̂ 431 

Hence, the configuration should be a regular tetrahedron. As it is planar, this is 
impossible. • 

What about 5 bodies?— The homographie perverse solutions include on the one 
hand all the collinear ones (same reasoning as in the case of three bodies, using [AM]), 
on the other hand the "trivial" example of four equal masses on a square uniformly 
rotating around the fifth one located at the center of mass. None of these is truly 
perverse. 

Only in the case of choreographies — whose definition was recalled at the beginning 
of the paper — are we able to say more. 

Proposition 4 (see [C]). — For n ^ 5, the planar n-body problem does not possess any 
perverse choreography. 

This is done by intervening the roles of the z-,,j (resp. the 0, y ) and the masses, that 
is replacing the equations Aom = 0 (resp. Am = 0) by equations which involve the 
circulant n x n matrix defined by the n masses. One then uses the spectral structure 
of such matrices. 

More bodies: truly perverse solutions of the planar n-body problem do 
exist. — It is shown in [BCS] that relative equilibria of a central mass and at least 
three nomothetic regular n-gons, with equal masses on each of them, may be truly 
perverse if n is well chosen. The simplest such example seems to be 3 regular 456-gons, 
that is 1369 bodies. Finally, we ask the 

Question. — Do non-homographic perverse solutions of the planar n-body problem 
exist ? 

This is probably a difficult question, as are all the questions where one is asked to 
understand the structure of the solutions of the n-body problem whose configuration 
remains all the time in a given subset of the configuration space. A famous example 
of such a question is the Saari conjecture which states that a solution with constant 
moment of inertia with respect to the center of mass should be rigid (and hence a 
relative equilibrium by [AC]). The only available method seems to be taking enough 
time derivatives of the constraints and hoping for some new exploitable constraints 
to emerge. 
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CHAOS VERSUS RENORMALIZATION AT QUADRATIC 
5-UNIMODAL MISIUREWICZ BIFURCATIONS 

by 

Eduardo Colli & Vilton Pinheiro 

Abstract. — We study C3 families of unimodal maps of the interval with nega­
tive Schwarzian derivative and quadratic critical point, transversally unfolding Misi-
urewicz bifurcations, and for these families we prove that existence of an absolutely 
continuous invariant probability measure ("chaos") and existence of a renormalization 
are prevalent in measure along the parameter. Moreover, the method also shows that 
existence of a renormalization is dense and chaos occurs with positive measure. 

1. Introduction 
The quadratic family 

fa : [0,1] [0,1] 
x i—> Aax(l — x) 

a G [0,1], 

is the simplest model that shows the complexity arising in nonlinear dynamical sys­
tems. For a fixed value of the parameter a, supposed to vary along the interval [0,1], 
one is interested to follow the behavior of iterates x0, x\ = /a(#odddddd), ̂ 2 = • • • ? 
in othpr words of orbits 

O(x0)={f"(x0)}n>0 
starting at a point x$. The set UJ(XQ) of accumulation points of O(XQ) gives a clue of 
the asymptotic behavior of the orbit of and is called the uo-limit set of XQ. It turns 
out ([7]) that "typical" starting points xo G [0,1] have equal cj-limit sets. This could 
be stated as follows: for each a G [0,1], there is a set A = Aa such that UJ(XQ) = A for 
Lebesgue almost every XQ G [0,1]. Moreover, there are only three types of sets which 
Aa could be: (i) a periodic orbit, i.e. a set {po,pii • • • ,Pk-\} such that fa{'Pi)) = Pi, 
fa(pi) = P2, • • • 7 fa(Pk-i) = Po'i (ii) a periodic collection of pairwise disjoint intervals 

2000 Mathematics Subject Classification. — 37E05, 26A18, 37E20. 
Key words and phrases. — Unimodal maps, chaos, absolutely continuous invariant measure, renormal­
ization, generalized renormalization, bifurcation. 
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{IoJu.. -Jk-i} where /tt(J0) = h, fa(h) = h, • • •, fa(h) = h; or (hi) a Cantor 
set (i.e. a perfect and totally disconnected compact set) of zero Lebesgue measure. 

The striking alternation of behavior of fa has been revealed and proved along the 
last three decades. Among others, we know that: parameters for which the typical 
cj-limit set is a periodic orbit are dense (and contain intervals, implying also positive 
Lebesgue measure) ([3], [8]); parameters for which the typical u-limit set is a collection 
of intervals have positive measure (following [4]); and parameters for which the typical 
cj-limit set is a Cantor set have zero Lebesgue measure ([10]). 

Among parameters with a cycle of intervals as its typical cj-limit set, with total 
Lebesgue measure ([9], [12]) we find those for which there is an absolutely continuous 
(with respect to Lebesgue) /^-invariant probability measure. In this case fa is said to 
be chaotic, although more intuitive and not exactly equivalent definitions of "chaos" 
are available. This definition supplies at least some statistical properties for the 
mean growth of derivatives along orbits and imply some dynamical structure on the 
configuration space. 

On the other hand, parameters where the typical cj-limit set is a non-hyperbolic 
periodic orbit are rare in measure. In other words, hyperbolicity is prevalent in 
measure for these parameters. Putting things altogether, we conclude that for almost 
all a € [0,1], the dynamics of fa is either hyperbolic or chaotic. 

A largely used concept in one-dimensional dynamics is the idea of renormalization. 
We say that fa is renormalizable if there is a collection of pairwise disjoint intervals 
{Io,Ii,. .. ,Ik-i} properly contained in [0,1] such that (i) the critical point \ of fa 
belongs to, say, Ik^i] (ii) fa(Ik-i) C I0 and fa{dlk~\) C dl0; (iii) /„ : -> I m is 
a diffeomorphism for all i — 0,.. ., k — 2. In particular, if we call / = h--i, then the 
function f£\I resembles in many ways the general aspect of a quadratic function in 
[0,1], since f^(I) C /, f^(dl) C dl and f£\I has a single (quadratic) critical point 
(equal to | ) . By an affine rescaling a new function g : [0,1] —» [0, 1] could be defined, 
but in general we may not expect g to be quadratic. 

Renormalization is a kind of reduction tool. For example, the behavior of typical 
orbits is completely determined by the restriction f^\I, since we know (see [13] and 
references therein) that for Lebesgue almost every x G [0,1] there is n = n(x) such 
that fa(x) G /. All subsequent iterates must remain inside the cycle from this iterate 
on, because of the invariance properties stated above. This suggests that no complete 
knowledge of the quadratic family could be achieved without the understanding of a 
larger class of functions which contains in particular the ones generated via renormal­
ization. For this class, it would be desirable some qualitative dynamical similarity with 
quadratic functions, not only for technical reasons (proves with recursive arguments) 
but also for the sake of some universality in the conclusions. 

In [3] and [8] (denseness of hyperbolicity), [9] joint with [12] (measure prevalence 
of chaos) and [10] (rareness of Cantor cj-limit sets), this larger class of functions to 
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which the quadratic functions belong (and which is invariant under renormalization) 
is composed by all analytic functions / which are holomorphically extendible to a 
neighborhood U of [0,1] in the complex plane, such that f(U) contains the closure of 
U and / is a double branched covering between U and f(U). Recently ([1]) there have 
been considered the case of real analytic functions, but even so some main arguments 
are based on constructions developed in the complex plane. 

Among the results mentioned for the quadratic family, the positive measure of 
chaotic parameters, proved for the first time in [4], is the only one which has been 
stated for C2 families (see for example [16] or [13] and references therein). The present 
work is an attempt to provide techniques restricted to the real setting, weakening 
smoothness considerably, in order to state results that go in the same direction as the 
ones of the previous paragraph. Unfortunately the extent of the conclusions cannot 
be as complete as the ones already proved for the quadratic family. The main reason 
is that our statements are of a local nature, that is, they are valid only for parameters 
in small intervals around some bifurcation values. This does not allow us to go beyond 
the first renormalization, where full families appear. 

Here we deal with C'] unimodal interval maps / , that is those with a single turning 
point c, with the (classical) additional hypothesis that the Schwarzian derivative 

w+w1w+w w+w1 
w+w1w 

3 (f(x)\2 
2 V f'(x) J 

defined for all x ^ c, is non-positive. These functions will be called S-unimodal. From 
this hypothesis some a prion conclusions can be derived. For example, there is at 
most one periodic attractor and if it does exist then it must attract the critical orbit 
0(c) ([15]). Moreover, distortion of derivatives for powers of / can be uniformly con­
trolled (see statements in [13]). This comes from two facts: first, if a diffeomorphism 
defined in an interval / has non-positive Schwarzian derivative, the ratio between its 
derivatives evaluated at two points can be bounded by a constant which depends only 
on the proportion between their mutual distance and their distance to the bound­
ary of /, but not on the diffeomorphism. Second, powers of / have also non-positive 
Schwarzian derivatives, hence distortion bounds may be obtained whenever fn\I is a 
diffeomorphism for some /, independently of n. 

To make clear the results we want to state below, it is convenient to relate renor­
malization with the classification of functions into three types we have made above, 
which are still valid for the larger class we are considering now (see [7]). First, we 
observe that if / is renormalizable then there is an interval v̂ 1) containing the critical 
point and a number k\ such that fkl\I^ is a unimodal function. It may be that 
this function is also renormalizable, and in this case we say that / is (at least) twice 
renormalizable. We can take the maximum chain of renormalization intervals ordered 
by (proper) inclusion 

fO,ll = /(0) D/(1) D/(2).. 
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If this chain has size N + 1 then we say that / is N times renormalizable, and if its 
size is not finite (N = oo) then we say that / is infinitely renormalizable. The case 
where the size is equal to 1 is called non-renormalizable. 

It turns out that / is infinitely renormalizable if and only if typical points have a 
Cantor set as its c -̂limit set ([13]). If f is N times renormalizable, its typical cj-limit 
set is determined by the N-th renormalization g = fk"\l(N). If g has an attracting 
fixed point, the cj-limit set is a periodic orbit, otherwise a collection of intervals. Here 
we are using the fact that if g had an attracting point of period greater or equal than 
two then g would be renormalizable, characterizing a contradiction. 

We say that / is Misiurewicz if the critical point c is not recurrent, i.e. c £ UJ(C). 

It may happen that OJ(C) is an attracting periodic orbit. If not, then f(c) belongs 
to a hyperbolic invariant compact set A — A/. From hyperbolic theory, we know 
that for g sufficiently near / (in the C1 topology), there is a ^-hyperbolic invariant 
compact set Ag such that / |A/ and g\Ag are conjugated by hg : A —• Ag. The function 
g i—» Ag is in fact C1 and is called the hyperbolic continuation of A. Now we embed 
/ in a Cs family (/a)„, where fo — / , and call w the point belonging to A such that 
w = f(c). As a varies, w has its continuation wa = hfa(w) and the critical point c 
has its continuation ca, which is well defined by the Implicit Function Theorem, using 
that c is quadratic. We will say that (fa)a iy transversal at a = 0 if 

d 
da 

fa(Ca) - Wa) ^ 0. 

Without loss of generality, we assume ca = c and d 

da 
fa(c) -Wa) > 0. 

Theorem 1.1. — Let f : [0,1] —> [0,1] be a CA S-unimodal non-renormalizable Misi­
urewicz function, without periodic attractors. Let (fa)a be a CA family with fo = f, 
transversal at a = 0. Then there is e > 0 such that 

(1) for almost all a G [—£,£], /«, is chaotic or renormalizable; 
(2) parameters for which fa is renormalizable constitute a countable union of closed 

intervals which is dense in [—e,e\; 
(3) parameters for which fa is at the same time non-renormalizable and Misi­

urewicz have zero Lebesgue measure in [—s,e]. 

All items of Theorem 1.1 are new for non-analytic families (the third item is anal­
ogous to the statements in [14]) 

As a corollary of the method, we are also able to show that parameters for which 
fa is chaotic have positive Lebesgue measure in [—£,£], assertion which has already 
been proved, even in more generality, for C2 families (see [16] and [13], Chap.V, 
Section 6; in fact, they prove that the relative measure goes to one at the bifurcation 
value). The techniques, however, go in a totally different direction, since they work 
with exclusion of "bad" parameters (which in general include everyone for which there 
is a renormalization), showing then that the remaining ones have positive measure 
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and reasonably good expansion properties (an absolutely continuous invariant proba­
bility measure, for instance). These methods however may exclude also some positive 
measure set of "good" parameters, for which one could also prove the existence of 
stochastic dynamics. Here, on the other hand, we show that chaos is prevalent in 
non-renormalizable dynamics and non-renormalizable dynamics occurs with positive 
measure in the parameter. 

Our methods could also be useful to obtain precise estimates of the measure of 
chaotic parameters and even an upper bound for the Hausdorff dimension of non-
renormalizable non-chaotic parameters, provided enough control was achieved in con­
figuration space (see [5], for attempts in this direction for C2 families). 

After suitable changes in the conclusion, we could drop the assumption that the 
bifurcating map is "non-renormalizable" in Theorem 1.1 by writing, instead, that / 
is finitely renormalizable. In this case, / would be TV times renormalizable (TV ̂  1), 
Misiurewicz and without periodic attractors. Then for the transversal family (fa)a 
we would have two possibilities: (i) fa is at least TV times renormalizable for all 
a G [—£,£], for e > 0 small; (ii) fa is at least TV times renormalizable for a G [—£,0] 
and at least TV — 1 times renormalizable for a G (0,^]. The first statement might be 
rephrased, respectively, into: (i) almost every a G [—£,£"] is chaotic or TV + 1 times 
renormalizable; (ii) almost all a G [—£, 0] is chaotic and TV -f 1 times renormalizable 
and almost all a G [0,c] is chaotic or TV times renormalizable. The proof would run 
on in the same way, with minor adaptations. 

The proof of Theorem 1.1 uses a result proved in [2]. Some "starting conditions" 
must be satisfied for the functions fai a G [—£,c], allowing an inductive argument to 
work. This will be better explained in the next section. 

2. Mounting the proof 

Let / : [0,1] —• [0,1] be an 5-unimodal CA function and c its critical point. Assume 
that / is Misiurewicz, i.e. the critical point c is not recurrent, and / does not have a 
periodic attractor. The following definitions and Proposition 2.2 can be found in [11] 
(in fact without the Misiurewicz hypothesis). 

Let x G [0,1] and T(X) ^ x be such that 

f(x) = f(r(x)), 

and let Vx = (x,r(x)). 

Definition 2.1. — A point x G [0,1] is nice if fn(x) 0 Vx for all n ^ 1. In this case Vx 
is a nice interval. 

For example, every periodic orbit contains a nice point, for instance the one maxi­
mizing the value of / . Moreover, as / does not have a periodic attractor then there 
are periodic points arbitrarily near c, assuring arbitrarily small nice intervals. 
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Let Ux C [0,1] be the set of points that visit Vx at least once (including the points 
of Vx ), and 

A, - [0,1] \ Ux 
The following Proposition is proved in [11]. 

Proposition 2.2 
(1) If I is a connected component of Ux then there is n such that fn : / —• Vx is 

monotone and onto. This function is called the transfer map from I to Vx. 
(2) In this case, the intervals of the collection 

{/,/(/),...,/"(/) = VX} 

are pairwise disjoint. 
(3) The set Ax is invariant and hyperbolic (hence with zero measure), and if w G A./; 

is such that fn(w) 0 Vx, Vn ^ I, then Ax accumulates from both sides on w (for 
short, w G A;r \ dAx, where dAx denotes the set of points of Ax which belong to the 
boundary of a connected component of (0,1) \ Ax). 

Proof. — See [11]. 

As / is Misiurewicz, there is a neighbourhood V of c such that fn(c) 0 V, Vn ^ 1. 
Take a hyperbolic periodic nice point y in V (all periodic points must be hyperbolic 
under the hypotheses, since Sf ^ 0 implies that nonhyperbolic periodic points must 
be attractors). Then V y C V and, as fn(c) 0 Vy, Vn ^ 1, it follows from Proposition 
2.2 that f(c) G Ay \ dAy. In other words, f(c) is accumulated from both sides by 
arbitrarily small connected components of Uy. 

Now we define a new nice point as follows. Take z G Vy Pi [0, c) such that f(z) G dl 
for some connected component I oîUy. As /(c) G Ay\dAy, z can be chosen arbitrarily 
near c, so that 

\VZ\ 
IK I 

can be as small as desired. With a minor modification in context, the following 
Proposition is also stated in [11]. 

Proposition 2.3. — Let I be a connected component ofUz and, by Proposition 2.2, let 
n be such that fn : I —> Vz is monotone and onto. Then there is I D I such that 
fn : I —> Vy is monotone and onto. 

Proof. — Let T be the maximal interval containing / such that fn\T is monotone and 
fn(T) C Vy. It is easy to see by Proposition 2.2, item 2, that I C int(T). Supposing 
by contradiction that fn(T) ^ Vy, there is at least one connected component L of T\I 
such that fn(L) C Vy. By the maximality of T, there is j < n such that c G dfJ(L). 
Again by Proposition 2.2, p (I) H Vz = 0, hence z G ft(L) (or r(z) G fJ(L)). But 
fn(L) C Vy implies fn~j(z) G Vu. contradiction, since f(z) G A.„. • 
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Let (fa)a be a CA family of 5-imimodal functions with fo = f\ transversal at a = 0, 
where a varies in the range [—£,£:], for some e > 0. As y is a hyperbolic periodic point, 
it has a continuation ya defined for small values of a. Also z has a continuation z(l, 
since it is a preimage of y. Moreover the hyperbolic sets Ay and Az have continuations 
AyM. and AZJl and the whole "hyperbolic structure" is preserved. This could be stated 
as follows: for each sufficiently small a there is a homeomorphism 

ha : [0,1] x Vz [0,1] \ VZA 

such that 
f:;°ha{x) = haof»(x), 

whenever {x, fo(x),..., fo(x)} c 1] \ Vz- In particular, Proposition 2.3 remains 
valid (if adapted to the continuations) for a G [—s, s}. 

Lemma 2.4. -— Let f" : I —> VZti be the transfer map of some preimage I of VZa, and 
let ,//; : 7 — Vya be its extension. If I fl [fa{za), 1] ^ 0 then I C [/„(s„), !]• 

Proof — Otherwise fa(za) G int(J) and f'al(fa(za)) G VVn, contradiction, since by the 
choice of z the orbit of za never intersects VVa. • 

Now we fix some notation, which the reader can follow with the help of Figure 1 (de­
picted for a > 0). Let w > w be a point of Ayi for a = 0, and ira its continuation. Since 

dr 

dv 

u) \ id] 

dd52d 

fn(Ua) 

fa 

V. 

d+dr 

FIGURE 1. Mounting the proof 

A/; accumulates from both sides in tv. we may suppose that \wa — wa| <C \wa — fa(za)\-
By requiring e > 0 small enough we also beg that fa(c) < wa: for all a G [—s. s}. 
Let W = W(l be the collection of preimages of VZa intersecting [fa(za). wa]. For each 
UJ — \jJ G W let \V : UJ Vz be its transfer map, and let UJ — UJ,, be its extension 
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domain relative to VVn. Although hidden in the notation, we look at W as a function 
of both parameter and space, defined in the domain 

Ua,x) ; x G u(na G [-£,£]}. 

We will adopt capital letters to indicate two-variable dependence in other situations. 
For example, we write F(a,x) = fa(x), so that partial derivatives are denoted by 
Fa, Fx, /\,.r. Fxa, etc. In this notation, compositions are denoted with respect to 
the second variable (configuration space), for example W o F means the function 
(W o F)(a,x) — W(a, F(a,x)). The powers Fk are inductively defined as Fk\a.x) — 
F(a, Fk~l(a,x)) and we write Fk. Fk, etc, for their derivatives. The notation (Fx)k\ 
in turn, means the k-th power of the .x-derivative of F. We sometimes treat these 
functions as functions of one-variable (the x-variable), writing expressions as F(x), 
meaning /•"(//. ./•). or F\I, meaning f(l\F where / is an interval, whenever it is clear 
that the parameter is fixed. 

In Section 5 wre will show that the transversality of the family (fa)a at a = 0 implies 
that the critical value fa (c) transversally crosses the hyperbolic set AZti not only at 
w(l, for a = 0, but also at nearby points for small parameter values. In particular, if 
we fix some preimage OJQ of VZ(I, whose continuation is cuo.a, the set of parameters 

Jo = {a G [-c.s] : fa(c) G UJ()M} 

is an interval, for e small (see Figure 2, where J() occurs for a < 0). Moreover, we will 

fa(c) 

dd+r 

dd+ d+dr 0 4-- a 

dr+d 

FIGURE 2. Evolution of the critical value 

show that the set 
r = { a e f - M : /„(r)e A-,} 

has zero Lebesgue measure. Hence all of our assertions will be made for a fixed 
preimage CJQ to which the critical value belongs, for parameters in the corresponding 
interval Jo. 
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We now focus our attention on the first return map <1> = $r/ of VZ(i, for parameters 
a G Jo, for a fixed CJQ = uoo,a (see Figure 3). The connected component of dom(<F) 
containing the critical point c is called the central interval and will be denoted by 
7o = 7o,a (note that ^(djo) C dVZa). The restriction 

if = $|7o = W()oF|7o 
s called the central branch, where Wo : UJQ —» I7u is the transfer map associated to UOQ. 
The remaining connected components of dom(<3>), together with the central interval, 
:over VZa up to measure zero. They form a collection which will be denoted by V, 
where for each TT G V we have F (re) = uo, for some uo G W. In other words, 

P = <T>|TT = IT o F|TT : TT —> 

is a diffeomorphism, where W : uo —> 17 ; is the transfer map associated to uo. Each 
7T G 7-Ms called a regular interval. 

dv 

drd 

F 

7o TT 
dd 

vd 

dv 

H 

P 

<< To 7T 

d sd dvf 

/3 <w VZi, 

Vz.r 
H(a.c) 

70a 

< 

Jo a 

FIGURE 3. Return functions 

A further refinement is made, obtaining from $ a new map <f>o, defined in VZa (up 
to measure zero). This map coincides with «F in the central interval, and outside it 
corresponds to the first entry map into 70. The domain of $0 is composed by the 
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central image together with a collection B of intervals called the preimages of the 
central interval. To each preimage ft G B we define the diffeomorphism B = $o|/3 : 
ft —> 7o, assigning 7Ti, 7r2,..., 7rn such that /3 C TTI. PI(/3) C 7T2, . . ., (Pmo- • •oP1)(ft) c 
7Ttn+i, . . . , (Pn o • • • o P\)(ft) = 7o, where Pm : 7rm —> is the restriction of $ to 7rm, 
m = 1,. . . , n. We also define 

W(/3) = (P„o.--oP1)"1(U1), 

which in particular coincides with 71*1 in the case n = 1. 
Of course all definitions above depend on the parameter a, which is allowed to vary 

in the interval JQ. Capital letters again are used to denote two-variable functions. 
The interval 70 = 70,« is continuously defined for all a G Jo- The same is true for 
each 7T G V and ft G B. Figure 3 shows what should be the evolution of the connected 
components of dom$o with respect to the parameter, along the interval JQ. Among 
others, we will show that H (a, c) transversally crosses these components. 

A number of requirements for the map $0, which we call starting conditions, must 
be satisfied, in order to start an induction procedure, developed in [2], that proves 
Theorem 1.1. We separate these requirements into three parts, listed below. We are 
implicitly assuming non-positive Schwarzian derivative. 

Geometry. — There is 77 > 0 small such that 

l7o,«| 
\y,,\ 

< m 
s+dr5 

dist(/ia.7o.a) 
< V: 

d+rd 
dist(pa,dVZa) C r/, 

for all a G Jo and ft G B. Moreover, for each ft G B, the diffeomorphism B : ft —> 70 
is extendible to a 77"11/̂ -neighborhood of ft. for all a G JQ. 

These conditions are uniform in the parameter and have been considered in previous 
works (see [6] and [7], for example). 

Central branch. — Hxx ^ 0, Ha / 0 and there is 6o > 0 small such that the quotients 

|7(.| 
/ / , , , I 
//,,. bol 

Hax I 
dd |./0| 

Haa 1 
dv 

vrd H-rj-a I 
H,, 

are smaller than £0, for all x G 70,a and a G Jo. 
In particular, these conditions imply small distortion of Hxx and Ha along x G 70.a 

and a G JQ. 

Preimages of the central branch. \BX\ ^ 2. for all ft G S, x G i,. a G JQ. For each 
i G B. let 

J(ft) = {a G Jo ; ImHnU(ft) ^ 0 or \ImH\ ^ h\VZa\}. 
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Let V be the mean value of Ha(a,c) along a G Jo- Then there is Si > 0 small such 
that the ouotients 

B„ 
BXV 

|7()I • 
Bxx 

(B,.)2 1701 
Bx„ 

(BXYV\ 

|7()| ' 
B„a 

(BX)2V2 
l7o|2 

II,.,., 

dd+dr l7o|2 
dd1r 

dr+dr1e 

are smaller than S\, for all x G A,., a G J(/3) and (3 e B. The first quotient implies 
that preimages are transversally crossed by the critical value of H, and the second 
implies small distortion of derivatives of the functions £?:/?—> 70. 

The following Theorem is proved in [2], when <I>o is C00 • In Appendix A we show 
that in fact C3 is enough. 

Theorem 2.5 (Colli). — If $0 satisfies the starting conditions Geometry, Central 
Branch and Preimages of the Central Branch, for sufficiently small rj > 0. So > 0 
and S\ > 0 then 

(1) for almost all a G Jo, fa ls chaotic or renormalizable; 
(2) parameters for which fa is renormalizable constitute a countable union of closed 

intervals which is dense in Jo; 
(3) parameters for which fa is chaotic have positive Lebesgue measure in Jo; 
(4) parameters for which fa is non-renormalizable and Misiurewicz have zero 

Lebesgue measure tn Jo-

Therefore we are left to prove that, given 77 > 0, So > 0 and Si, there is a choice of 
Vz and e > 0 such that for every map <I>o as above, constructed for a G Jo, Jo C [—£, e], 
the starting conditions are satisfied with the constants 77, So and S\. 

In the proof we rely mostly on expansion estimates which comes from the Misi­
urewicz hypothesis. It is known that distortion of derivatives can be obtained using 
expansion along iterates, and the same will be true for the quotients mentioned above, 
related to distortion involving both the parameter and the configuration space. The 
estimates are, however, more delicate, and recovering of bad derivatives must be 
achieved in unusual manners, mainly when parameter is involved. We call circular 
recovering the ensemble of these techniques, which are developed in Section 4, and 
their first applications appear already in Section 5, where the first derivative with 
respect to the parameter appears. 

In addition to expansion obtained from the proximity of a Misiurewicz bifurcation, 
the techniques exposed in Section 4 use also the geometry generated by the dynamics 
and a priori distortion coming from the hypothesis on the Schwarzian derivative. 

We believe that this result could be stated without the Misiurewicz hypothesis, 
but some obstacles should be bypassed. First, a transversality condition should be 
formulated for germs of families unfolding a general non-renormalizable map. Second, 
some features of the geometry should be adapted. And third, some expansion would 
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be desirable, unless a completely different approach could control the quotients without 
expansion (more or less like the Schwarzian derivative controls distortion even if little 
of the dynamics is known). 

The Sections are organized as follows. In Section 3 we briefly discuss constants 
and their hierarchy, and state immediate consequences of non-positiveness of the 
Schwarzian derivative. The main one is Corollary 3.4, proving the Starting Conditions 
called "Geometry". We are left to obtain the remaining Starting Conditions, a task 
which is achieved step by step. In Section 4 we develop the techniques mentioned 
above which we call "circular recovering". There we deal with the expansion rates of 
the transfer maps W : UJ —> VZa, for UJ G W. In fact, more than simply estimating Wx, 
we also look at derivatives of intermediate iterates, like F'\UJ if i < k and W — Fk\uj. 
Moreover, we are able to recover not only "bad derivatives" but also "the square of bad 
derivatives", which is essential to Section 6. In Section 5 we explore the transversality 
assumption on the bifurcation and control the quotient Wa/Wx (and also intermediate 
iterations). This quotient is related with the way pre-images UJ of VZA are crossed by 
the critical value. We also prove that the set of parameters T where the critical value 
does not belong to any of these pre-images has zero Lebesgue measure. In Section 6 
the remaining quotients for the transfer maps W are controlled. 

In Section 7 we obtain the Starting Conditions called "Central Branch". Estimates 
of Sections 5 and 6 are used, since the central branch H : 70 —•» VZa is the composition 
Wo o F|7o (recalling that Wo is the transfer map of the pre-image UJO of VZu to which 
the critical value belongs). 

In Section 8 we work with regular branches P : TT —• VZA and their compositions, 
which form the maps B : [3 —-> 70. Recall that P is the composition W OF\TT, for some 
W '. UJ —> VZa, UJ G W. The goal is to control expansion of compositions, since there 
are also bad derivatives for some of the P's. But bad derivatives may be recovered as 
in Section 4, with ideas resembling "circular recovering". 

In Section 9 we study the first derivative with respect to the parameter for com­
positions of regular branches and we achieve control on the first quotient BA/BX of 
the Starting Conditions "Pre-images of the central branch". The remaining quotients 
are obtained in Section 10. 

Everywhere we have to work with mixed derivatives of compositions, using the 
formula stated in Appendix B. In Appendix A, as we said above, a key lemma in [2] 
is stated for CA families, instead of (7°°. The same approach could be useful whenever 
one has to deal with saddle-nodes and parameter distortion at the same time. 

3. Conventions, distortion and geometry 

We adopt the following convention on constants. We denote by Co a constant 
greater than 0 which is bigger than any constant used from now on which depends 
only on functions belonging to a CA small neighborhood of fo. This includes universal 
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constants which do not depend even on these functions. Next, we adopt Cy as the 
constant which depends also on the choice of y, and Cz as the constant depending 
on the choice of z. There will be some abuse of notation when we calculate things 
as "3CQ" and after all say that it is smaller than Co- This means that if in some 
previous Lemma we have estimated something with Co and now we are obtaining 
another estimate Co = 3Co then Co is greater than both Co and Co-

The Greek letter ô will be used as an auxiliary quantifier, appearing always as 
"given ô > 0 there is...". We will choose S sufficiently small such that the Starting 
Conditions are satisfied for given 77, ÔQ and S\. 

Remark that we have the freedom to choose Vz (independently of Vy) in such a way 
that the ratio |Vz|/|V^| is small. After the choice of Vz we can also choose £ small. 
For example, we define 

r = r(z) = 2 
\VZ\ 
\Vy\ 

and choose e small so that 
dd+d1r 

IK„| 
< Hz) 

for all a G [—£,£]. Moreover, the constant e has to be chosen small to validate the 
constants Co, Cy and Cz. 

To be more precise, we will be interested not only on the ratio |V2a|/|V^a|, but 
on the size of VZa compared with both connected components of VVa \ VZ(l. But the 
involution function r = ra is Lipschitz with constant Co, for a G [—£,£], so that r(z) 
small also implies that VZu is uniformly small compared with its adjacent components 
oîVya \ VZa. 

Below we introduce the small constant 9 > 0, which will be related to the ex-
tendibility of iterations of the map. It will directly depend on r = r(z). 

Other constants, a = a(y) > 1 and À = y/b~ will depend only on the choice of Vy 
(with s small, of course), and will be related to the rate of expansion outside VVa. 

Finally, we use the symbols "~", " < " and " > ", in the following sense. For some 
fixed small constant £ > 0, say £ = 10"3, C < D whenever D > 0 and C ^ (1 + £)D. 
Then C > D if and only if D < C and C ~ D if and only if C < D and D < C. 

Non-positive Schwarzian derivative has its main consequence in the Koebe principle, 
which is restated in the following form. 

Lemma 3.1. — Given 6 > 0, there is q > 0 such that if f : I —> f(I) is a diffeo­
morphism, Sf(x) ^ 0 for all x e I, I C I is another interval and f(I) is smaller 
than q times the size of each connected component of f(I) \ f(L) then there is a 
6~1\I\-neighborhood I of I in I such that the derivative of f has small distortion in I, 
that is 

d+d1re 

f'(y) 
- 1 . 
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Proof. — See [13] for a detailed account. • 

Lemma 3.1 has the following important Corollaries, which prove the Geometry of 
the Starting Conditions. They will be used in many points of this work. 

Corollary 3.2. — Given 0 > 0, if r — r(z) is sufficiently small then \uo\ is 0 times 
smaller than the two connected components of uo \ uo. 

Proof. — The transfer map W : uo —* VZ(I is extendible to W : uo —>• VVa. But W 
has non-positive Schwarzian derivative, since it is a power of fa and the sign of the 
Schwarzian derivative is preserved by compositions. Then the Koebe principle can be 
applied to W. • 

Corollary 3.3. — Given 0 > 0, if r — r(z) is sufficiently small then 

M 
dist(7r,av2j 

s+se 

for all TT G V. 

Proof. — By Lemma 2.4, uo C [F(za),l], Vuo G W. Combining with Corollary 3.2, 
uo is as small as we want compared with dist(cj, F{za)), provided r(z) is small. But 
for every TT G V, F(TT) = uo, for some uo G W. The Lemma follows, since F is 
approximately quadratic on VZa. • 

Corollary 3.4. — Given rj > 0, if r = r(z) and e are sufficiently small then 

l7ol 
IK J ' 

s+ss 
s+s 

dist(/3,7o) 
ss 

s+s 
dist(/3,av;j 

s+se 

for all (3 G B. Moreover, for each (3 G B, the diffeomorphism B : (3 —• 70 is extendible 
to a r]~1\[3\-neighborhood of (3. 

Proof. — The first inequality can be obtained with e small. The intervals uo = uoa 
accumulate (uniformly on a) in w — wa. If e is small then UOQ must be small for 
every Jo C [—£,£] and 70 will be small as well, compared with VZa, whose size is ap­
proximately constant. Moreover 70 is small compared with each one of the connected 
components of VZn \ 70-

To prove the remaining assertions, observe that U{(3) is into the connected compo­
nent of VZa \ 70 to which [3 belongs, and B : (3 —» 70 is extendible to B :U((3) —>• VZa. 
By Lemma 3.1, if £ is small then there is an r/~1 \(3\-neighborhood of [3 in U(f3). In par­
ticular the other inequalities are valid and B is extendible to this neighborhood. • 
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4. Circular recovering 

In this Section we deal with expansion of derivatives along the iterates which send 
an interval UJ G W onto VZ(I. We use Proposition 4.1 below, proved for example in 
[13], which assures some expansion of derivatives provided some simple information 
is given about the orbit. In the proof of this Proposition, a loss in expansion at a 
given iterate is compensated by the iterates following it. wdiich is a kind of forward 
recovering of the derivative. Lemma 4.5 below says that the last loss of expansion 
in the derivative could also be recovered by the first iterates. This could be called a 
backward recovering. We call circular recovering the combined use of these techniques. 
The same ideas appear in Sections 8 and 9, in a slightly different context. They are 
in the core of this work and deserve a careful attention. 

Proposition 4.1. — There is Cy > 0, a = a(y) > 1 and s > 0 such that if a G [—e,e] 
then F — F (a, •) has the following properties. 

(1) Ifx,.. .,Fk'-l{x) 0 VUa then \Fk{a.x)\ ^ C~lak. 
(2) Ifx,.. .,Fk-l(x) VZ(, and Fh'(x) G VVa then \Fk(a.x)\ ^ Cylcrk. 
(3) Ifx,...,Fh-l(x)£VZa then \Fk(a,x)\^ C"VA; inf/=() k^ '\Fx{a, F'(a, x))\. 

This constant a = a(y) > 1 will be fixed from now on. The first consequence is 
bounded distortion for iterates outside Vlhi. 

Lemma 4.2. -- Suppose e > 0 small and a G [—£,£]. There is Cy > 0 such that if T 
is an interval satisfying F' (T) n VVa = 0 for all i = 0,. . . , j — 1 then 

F'(a) 

F;.(v) 
2 = X^f 

for all u, v G T. 

Proof. — Write 

\og\Fi(u)\-\og\Fi(v)\ = 
.7-1 

I /=() 
log|Fi;(F'u)|-log|Fc(F'7.0| 

which is smaller than 
.7-1 

x+x1 
i=() 

IF'u-F'vl, 

where Cy = max{|^: log\Fx(a, x)\\ ; x 0 VyJ, remarking that Fx(F'a) and Fx(F'v) 
have the same sign for i = 0 . j — 1. But Proposition 4.1 implies 

1 ^ \Fju - FJv\ >, C-l(jJ-'\F'u - Fjv\, 

proving the Lemma. 
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Now we fix some UJ G W and x G UJ, and suppose a G [—5, s], for £ small. We write 
W : UJ —• 14a as PF = Ffc|u;. The next Lemma says that when the orbit visits the 
interval VVa the square of the derivative can be recovered by the next iterates until 
the next visit of the orbit to VVa. 

Lemma 4.3. — There is Cy > 0 such that if u = Flx G VVa \ VZ(i and j ^ 2 is the 
first integer such that FJu G VVa then 

\Ft\Fu)\-\Fx(u)\sss2>C7\ 

Proof. — Let T — [Fu,wa]. As F is approximately quadratic and e is small then 

\T\ <: C0\F,.(u)f. 

Hence the Lemma will be proved if we show that 

\Frl(Fu)\-\T\^C~\ 

This in turn follows from \Fx\Fu)\ • \T\ ^ C 1, where i is the first integer such that 
F'{T) H Vya + 0, since 1 ^ j - 1 and I F / 1 ' '(F' //)| ^ C'1^-1-1. Now F'(T) is 
an interval intersecting VVa, but with a point, say F'l(wa), outside a neighborhood V 
containing the closure of VVa (see definitions of V and VVa in Section 2). This implies 
that there is d > 0 such that |F7(T)| ^ d. 

By Lemma 4.2, 

\F'(T)\^CUSSSSSS\F;XFU)\-XI 

proving the Lemma. 

The following Lemma is a corollary of the proof of Lemma 4.3. It says that the 
square of a bad derivative Fx(u), u = Flx, may also be recovered by the first iterates 
of the orbit of x. 

Lemma 4.4. — Let i\ ^ 1 be the first integer such that F'llx G VVa. There is Cy > 0 
such that if u = Flx, I < k, is such that u G Vy<i \ VZa then 

iF^ixM-lFJuMsss^C-1. 

Proof. — As in the proof of Lemma 4.3, let T = [Fu,wa]. We want to show that 
|F;.'(.r)| • \T\ ^ C'1. If i is the first integer such that Fl(T) n VVa ^ 0 then 1 ^ ix 
(since T D UJ). Hence it suffices to show that \F'x(x)\ • \T\ ^ C~l. But by the 
bounded distortion of the derivative of Fl\T and since x G T we have d ^ |Fy(T)| $J 
C/y|F,*(a;)| • |T|, for some fixed d > 0, and the Lemma follows. • 

If the square of a bad derivative is recovered by the first iterates then the same 
happens with the derivative itself. This is the content of the following Corollary. Let 
A = X(y) = yfcr(y), where a is given by Proposition 4.1. 
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Corollary 4.5. — Let i\ ^ 1 be the first integer such that Fllx G VVa. There is Cy > 0 
such that if u = Flx, I ^ k, is such that u G VVa \ VZa then 

\F^(x)\-\Fx(u)\ >CZlX\ 

Proof. — By Lemma 4.4, 

\FlHx)\1/2 • \FJu)\ >C71/2. 

On the other hand, x, Fx,..., Fn lx ^ VVa, hence by Proposition 4.1 

2 = X^Li^y + v])+sms+s 

The Corollary is proved if we multiply both sides of the first inequality by \Fxl (x)|1//2 
and then use the second inequality. • 

The following two Corollaries will be directly applied in the following Sections. 

Corollary 4.6. — There are Cy > 0 and X = X(y) > 1 such that the following holds. 
For all x G LU, LU G W with transfer m,ap W = Fk\uu : LU —• VZa and u = Flx, for 
0 ^ / ^ k — 1, we have: 

(l) \Ftl(u)\ZCyl\k-1. 
(2) If u £ Vya then ^-^(Fu^ • \Fx(a)\2 > C'lXk-1. 
(3) Ifu G Vya then |F/A'~/"1 (F//)| • \Fx(u)\2 ^ C~lXs, where 

s = #{/ + l ^ z < / c ; F'xeVyJ. 

Proof. — The first inequality comes directly from Proposition 4.1. It is valid also for 
A since X < a. The second inequality follows if we use the first and observe that if 
u 0 Vya then \Fx(u)\ ^ Co"1!^! ^ Cy1 - For the last inequality we use Lemma 4.3 to 
assure that the square of the bad derivative is recuperated until the next visit of the 
orbit to VVa. From this moment on we use the expansion given by the first inequality, 
with unknown number of iterates surely greater or equal than s. • 

Corollary 4.7. — There are C„ > 0 and X — X(y) > 1 such that 

\Fi(x)\ Z C-lX^ 

for all x G LU, LU G W with transfer map W = Fk : LU —> VZa and 1 ̂  j ^ k. 

Proof. — Let I ^ j be the last iterate such that Flx G VVa and 1 ^ i\ ^ / be the 
first iterate such that Fllx G VVa. If j = I then Proposition 4.1 implies the Corollary. 
Otherwise we write 

\Fi(x)\ = I F j - ' - 1 ^ 1 * ) ! ' \Fx(Flx)\• \Fx-'HF^x)\ • \F^(x)\. 

As Fl+1x, Fl+2x,..., F^x $L Vy , by Proposition 4.1 we have 
2 = X^Li^y + v])+s2 = X^Li^y + v]) 
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In addition, F^},..., F1 1x 0 VZa and Flx G Vya, hence again by Proposition 4.1 
we have IF'-*1 (Fllx)\ ^ C^X1'11. Finally, by Corollary 4.5, |Fx(Fzx)| • iF^fx)! ^ 

d+d1r+d1x 

5. Exploring transversality 

In this Section we combine the estimates of Section 4 with the transversality as­
sumption. For uo G W with transfer map W = Fk\uo : uo —» we may define 
Xco = x^^ = W~l(c) as the "center" of uo — uoa. 

Using the Glossary (at the end of this work), we obtain 

d 

da uj,a 
Wa 

dd 
{&i Xu>,a) 

A; 

7 = 1 

FaoF'-1 

dd+d 
(tt,^,a)-

We want in fact to give estimates on Wa/Wx for every x G uo and even estimates on 
Fi/Fi., for every x G uo and j = 1,. . . , k, as in the following Lemma. 

Lemma 5.1. — There is CY > 0 such that 

I FJ I 
a Fi 

d+d45r+d 

/or even/ x G CJ, CJ G W wit/i transfer map W — Fk\uo : a; —> 14a ana7 j = 1,. . . , k. 

Proof. — By the Glossary, 

FJ 
a dv 

3 

7 = 1 

FaoF1-1 
F>. 

But Fa is bounded by C0 and | i^ | ^ C 'A', by Corollary 4.7. 

Lemma 5.2. — Given ô > 0, there are an integer k = k(ô,y) ^ 1 and pi — (i(ô) > 0 
such that if uo\,uo2 G W have transfer maps Ws = Fks\uos, s = 1,2 wz£/i /ei,/c2 ^ A: 
ana7 moreover xs G u;,s, s — 1,2, satisfy \x\ — x2\ < \x then 

WUl 

\whx 
xi) -

w2jl 

W-2, 
< s. 

Proof. — Let CY > 0 and À = X(y) be as in Corollary 4.7 and let 

CQ > max{|FA| : a G [-£,£:], x G [0,1]}. 

Let k = k(ô,y) be such that 

Write 

CVCQ-
dvr 

1-A-1 
. 6 

4" 

dvr 

Ws r 
dd 

A;, 

7=1 

FaOF*-1 

vfd 
(a,xs) 
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for s = 1,2. If ks > k then 

A-s 

i=k+l 

Fn O F'*"1 

d+d 
dd+d ^ CyCo 

ddv 

1 - A"1 

ô 

• 47 

for s — 1, 2, using Corollary 4.7 and the choice of k. Then we are left to proving that 
k 

U=l 

F„ o f " 1 . 
c+d1 a,xi -

A; 

7 = 1 

d+d1r+d 

d+d1 
d+dr dv 

2' 

But this is true if \xi — x2| < for sufficiently small u > 0. 

Let us see what are the consequences of Lemma 5.2. Let {UJN}N be a sequence 
converging to w at a = 0. In particular the centers xyv = xUN converge to w and 
their continuations a i—• .T/v,a converge in the (7° topology to a i—• wa, for a G [—£,£], 
£ > 0 small. This is easy to be proved since the rates of expansion outside VZa are 
uniform. By Lemma 5.2, {a i—> xN_a}N also converges in the C1 topology. This leads 

to a formulae on 
d 
da 

-wa: 

d 
da 

d+d1r 
oc 

7=1 

FaOF'-1 

Fx 
-(a,wa). 

Now let v > 0 be such that 

Fa(0,C)-
d 

da 
"a dv+d 

la=0 
by the transversality condition. This implies that if Vz is chosen sufficiently small, in 
order that every UJ G W is forced to be near w, and a G [—e: e], for e > 0 small, then 

Wa 
vrd 

[a,x) ^ i /-FA(0,c) , 

for every x G = uoai UJ G W and a G [—s, s]. 
Moreover, if e > 0 is small then for every point x G AZo in [fo(z), w], its continuation 

xa = ha(x) has velocity smaller than J^,/a(c) — This implies two things: (i) to each 
x G Az corresponds (at most) a single point a = a(x) G [—s, e] in the parameter space 
such that /«(c) = xa and (ii) for every UJ G W the set {a G [ — ; /a(c) <E UJ = UJ(1} 
is an interval. 

Define 
r = {aG[-e.cl ; / 0 ( c ) e A , , l 

which is totally disconnected. We will prove below that Leb(r) = 0. Each gap of T 
corresponds to the parameters for which fa(c) belongs to some UJ = UJ(1 G W. The 
collection of gaps in the complement of T will be called j7o, and from the next Section 
on we shall restrict our attention to a particular element Jo of this collection, as 
alreadv described in Section 2. 

Lemma 5.3. — Leb(F) = 0. 
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Proof. — Without loss of generality and for simplicity we will consider in this proof 
only the negative range [—£,0] and will assume the following: for a = —e, fa{c) 
belongs to the leftmost boundary point of some uj\ = uj\^a G W, with transfer map 
W\ = Fni|o;i : UJ\ —* VZu, and any other UJ = uja G W between UJIM and wa has 
transfer map W — Fn\uj : UJ —>• VZa with n > n\. 

For each interval family / = (Ia)a let 

J ( J ) = {a G {-£,e} ; /„(c) G/„}. 

Let T1 = (T^)a be the family of intervals with boundary points <9+T̂  = wa and d-T}x 
the rightmost point of oJi,a. It is not difficult to see that the following reasoning is 
independent of a, so we omit the subindex. Let n2 ^ 1 be the first integer such that 
fn'2(Tl) intersects Vz. Then n2 > n\ and /n2(T1) must contain Vz (in fact Vy), since 
P(d+Tl) Vy, Vi ^ 0, and /* (cLT1) <£ Vy, Vi ^ m -f 1 (by the definition of 14 
and l/,y)- Therefore there is UJ2 G W, ĉ2 C T1, with transfer map W2 — Fn'2\uj2 : 
UJ2 —» Vz. Moreover, any other UJ G W between uj\ and UJ2 or else between UJ2 and 
has transfer map W = Fk\uj : CJ —> Vz with n > n2. 

By Proposition 4.1, the expansion outside VZ is uniform, up to a constant which 
depends only on the choice of z. Therefore, analogously to Lemma 4.2, we have 
bounded distortion for iterates outside 14, this time with a constant Cz. In this 
particular case, this means that 

F-Hx) 
d+d1r * cz 

for every x, 'ty G T1. Hence 
d+d1r 

d+dr 
> c-l\vz\. 

It is easy to see, because of the bounds on velocities, that 
\J(UJ,)\ 

d+d1r 
^ CÛ1C-1\VZ\ = c~l. 

The interval J(UJ2) is in the complement of T. Hence at this stage Leb(r) ^ 
(1 — C~1)\J(T1)\. The argument continues by induction in the remaining connected 
components of J(Tl) \ J(oJ2.), and so on, in order that at every stage a definite z-
dependent fraction of parameters not belonging to V is suppressed from the remaining 
ones. This proves the Lemma. • 

6. Transfer maps 

Let UJ G W and W = Fk\uj : UJ —> 14 n its transfer map. We have already established 
bounds on Wa/Wx in Section 5. In this Section we control the quotients 

W,, Wxa Wxxx Waa Wxxa 
{W,)2' (H4)2' (W4;)'v (Wx)2' (Wx)*' 
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Once more we suppose that Vy is already chosen, and then take Vz sufficiently small. 
We always assume uo G W as above and a G [—£,£], for e > 0 sufficiently small, but 
constants are independent of these choices. In the Lemmas we omit the argument of 
functions. It is implicit that they are calculated for a G [—£,£] and x G uo. If we write 
Fx o F*-1, for example, it means Fx(a,Fl~l(a,x)). In this notation, \F'1 — c| is the 
distance from the critical point to the i-th iterate of F. 

We start by proving a technical Lemma which is a direct consequence of Corollary 
4.6. The goal is to bound the sum 

Sj = 
dv 

•1=1 
2 = X^Li^y + v])+xsls+s 

where j ^ /c, which appears in all Lemmas of this Section. 

Lemma 6.1. — There is Cy > 0 such that Sj ^ Cy, for all j ^ k. 

Proof. — This follows from Corollary 4.6. Separate the sum Sj into two sums: the 
first, containing only those 2 ^ i ^ j such that F'~L G VVa, is bounded by a y-
dependent geometric series, following the third item of the Corollary, and the second, 
containing only those 1 ^ i ^ j such that Fl~~l 0 V{Jal is also bounded by a y-
dependent geometric series, following the second item of the Corollary. • 

Lemma 6.2. — Given 6 > 0, if Vz is sufficiently small then 

\vZa\-
d+d1r 
ds+d1r 

< s 

for all x 6 w, u G W . Moreover, if as above W = Fk\ui then 

IVU 
\FX~~J oF->\ 

F:j 
x :r.:r: (Ff:)2 

< s, 

for all x G uo and j = 1,. . ., k — 1. 

Proof. — - Write 

1 
d+d1rd+dx 

dv 

(Fir 

j 

1=1 

F,.,. o Fl~l 
[Fk-' oF>)(FxoF>-lY' 

for 1 ̂  j ^ k. As \FXX \ is bounded by Co, the sum is bounded by CqSj, where Sj was 
given above, hence by (\)(\,. by Lemma 6.1. The Lemma is proved if we multiply by 
\VZ I and take VZ sufficiently small. • 

Lemma 6.3. — Given Ô > 0, if VZ is small enough then 

ivy2-
wxxx I 
(wxr 

< 6, 

for all x G u) and UJ G W. 
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Proof. — Write 
s+s1es 
(Wx)z 

= Si + 3S2, 

where 

Si = 
k 

1=1 ' 

FxxxoF>^ 
(FrioFi )2(Fr o f -1 )3 

and 

$2 = 
k 

i=z 

Frr o P'-[ 
(Fx~% o Fl)(Fx o f - i ) 2 

1 
d+d1r2 = X^Li^y + v]) 

X X'X' 

We start by estimating \VZ(i \2S'2- By Lemma 6.2, 

s+s1e 
s+s2 = X^Li^y + v]) 

s+w 

is smaller than 8, for every i = 2, . . . , k, provided Vz is small. Using Lemma 6.1 as in 
Lemma 6.2 we have 

|VU2|S2| ^ \VZa\CQCv5, 
which is smaller than Ô/6 if Vz is sufficiently small. 

Similarly, using the first item of Corollary 4.6, we bound \VZa \2S\ by 

C0Cy\VZ(f 
A: 

1=1 
K F ^ o F ^ ^ o F " 1 ) 2 ! - 1 

which is smaller than (5/2, if Vz is sufficiently small, by Lemma 6.1. 

Let k = k(uo) be the transfer time from UJ to VZa, for UJ G W. Let 

TV = min{/e(cj) ; o; G W}. 

By the definition of W, if is small then any UJ G W must be near ica, hence N 
is big. In the following Lemma we use the fact that N/XN is as small as we wish, 
provided Vz is sufficiently small. 

Lemma 6.4. -— Given 6>Q,ifVz is sufficiently small then 

\v,a\-
v 
vrdd+d 

< ô 

for all x G u), UJ <G W . Moreover 

\VZ„\ 
d+d1r+dr 

e+e1e 
(Fx)2 

dv 

for all j < k, where k = k(uj), 

ASTÉRISQUE 286 



CHAOS VERSUS RENORMALIZATION 279 

Proof. — Write 

1 
d+d1r+d1 

FJ 
xa (Fi)2 

J 

1=1 

d+d1r+d 

Wx(FxoF'^) 
+ 

j 

1=2 

Fxx o /•' 1 pi-1 * a 
{FÏ~l o F>){FX o F^Y Ft1' 

We have \Fxa\ < C0, \WX\ >C-X\k and \FX o Fl~l\ > Ct\VzJ, therefore 

dd12dr 
3 

i = l 

FxaoF1'1 
Wx(FxoF'~") 

< CçCy 
k 

dd1+ 

which is smaller than (5/2 if the choice of Vz implies N sufficiently big. 
Moreover, by Lemma 5.1 

I Fl~l I 
d+d1r 

^Cy 

But Lemma 6.1 implies that 

Cy\VZn\-
j 

1=2 

FrrOF'-1 
( ^ o F ' ) ( F x o F - i ) 2 

d+r1 
< 2 

if Vz is sufficiently small. 

Lemma 6.5. — Given Ô > 0, if Vz is sufficiently small then 

IVLI 
Waa 

(wxy 
< 5. 

for every x G LU, LU G W. 

Proof. — Write 
Waa 

(Wx)2 " 
= S, + 2So. + Su, 

where 

d+d1r 
k 

1=1 

F o Fl~l 
1 aa u 1 WxFi 

S2 = 
d+d1r 

i=2 

F,f/oF'- ' F'' 1 
WxFi Fl~l 

and 

S:i = 
k 

t=2 

db+d1rd 

(Ft'o F')(FX o F'^y 
'F;t\2 

Fx-1 

The proof follows as in Lemma 6.4. Note that here denominators are slightly better, 
and \Fi\ can be estimated using Corollary 4.7. • 

Lemma 6.6. — Given 6 > 0, if Vz is sufficiently small then 

ik... i2 if,,., 
d+d1rd 

< 6, 

for all x € UJ, LU G W. 
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Proof. — Write 
Wxxa 
{Wxf 

= Si + S2 + S3 + 2S4 + 2Sb, 

where 

Si = 
k 

1=1 

F o Fi_1 
1 xxa w 1 I R , : ( F F ' o P ) ( F > P - ' F ' 

s2 = 
k 

i=2 

F , , o F ' - 1 ) ( F , o F - , l F;, 1 
(Fx~' o F')'2(F,: o F'-1)4 F r 1 

53 = 
d 

i=2 

oF'-1)(F,oF 
d+d1 

1 
oF'-1)(F,oF 

pi-l 
± XX (Ft1)2 

S4 = 
k 

i=2 

FxxoF^ 2 pi-l 
xa (FTfc-'oF')(FToF'-i)2 Fr~'+1 o F'-1 (Fr1)2 

and 

5K = 
fc 

d+r 

2 = X^Li^y + v]) 
(F*-* o F*)(FX o F*-1)* 

pi-i 
d+1+ 

1 
F,A'"M 1 o F' 1 

pi-l 
d+d1r 

The only "new" term to pay attention is 
oF'-1 s )(F,oF 
Fti+1 (Fr1)2' 

but it can be bounded using Lemma 6.4. 

7. Central branch 

Now we fix Jq, the parameter interval such that the critical value belongs to UJQ G 
W. Therefore the central branch H : 70 —> 14 fi of the first return map to VZa may be 
written as H == Wo o F, where Wo : CJO —> Vza is the transfer map associated to UJO-

All the Lemmas below depend on the fact that Vz and e are sufficiently small, so 
we omit it in the statements. 

The following Lemma shows in particular that Ha(a, x) is nonzero for every x G 70, 
a G Jo and its sign is determined by the sign of Wo,x. 

Lemma 7.1 
HJa,x) 

W0,,(a,F(a,x)) 
v 
2J 

for every x G 70 and a G Jq. 

Proof. — Write 

Ha(a,x) = W0,a(a,F(a,x)) + W0jX(a,F(a,x))Fa(a,x). 
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If Vz and £ are small then Fa(a,x) is very near F(0,c). But in Section 5 we have 
shown that 

Wn , 
s+s1es+ 

£ i/-Fa(0,c), 

and the estimate follows. 

An analogous statement is valid for Hxx. 

Lemma 7.2 
Hxx(a,x) 

W(hx(a.F(a.x)) ' 
• Fxx{().e) < 0. 

for all x G 70 and a G Jo. 

Proof — As the critical point is quadratic, (Fx(a.x))2 < Co\u>o\ for every x G 70. 
Moreover, the function 11 0 • ^0 —» V ,̂ has small distortion, by Lemma 3.1 and 
Proposition 2.3, implying that 

\Wnx\ 2 s+s1e 
M) I 

Also, by continuity, Fxx(a. x) ~ F(.,.((). r). We have 

s+s1e 
Ho.,;(a.F) ~ 

(Fr)2ILo.,.(a.F) Uo.,-, o F 

(W(Kx o F)2 
f Fxx, 

hence the Lemma is proved if we show that 

Co I V U 
Hi..,, 

(W.>..r)2 
is small for points in UOQ. But this is true by Lemma 6.2, choosing Vz small with 
respect to Vv. • 

At this point we are ready to prove the four starting conditions relative to the 
central branch. For simplicity, we write from now on U = Wo to designate the 
transfer map of OJQ. 

Lemma 7.3. - Given 5 > 0. Vz is sufficiently small then 

|7()| 
/ / , , , I 
s+s 

ss 

for all x G 70 and a G Jo. 

Proof. As H = W o F we have 

Hxxx = (IL,, o F)/•:,,,.,. + (Wxxx o F)(Fr)3 + 3(ir,,r o F)FrF,,r. 

We analyze these three terms, each one divided by Hxx and multiplied by |7o|. By 
Lemma 7.2, 

Hxx ~ (̂)(HU: o F), 
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where SQ = Frx.(0,c). Hence 

|7(»I 
I (Wx o F)FXXX 

Hxx 
„ 2C0 

so 
7o |, 

which is smaller than 5/3 if Vz is small (since |7o| <C |K„|)- The second term can be 
written as 

ho\(Fxy Wx o F) 
Hxx 

I I , , , o F 
{WxoFf 

But |F,f < C0|7o|3, 
\WxoF\ ~ \V„,\ 

Wn 
and |7o|2 < Co|wo|, hence the second term is bounded by 

2Ci 
\s«\ 

s+s1s i r , , , o F 
{WxoF)*\ 

which, according to Lemma 6.3, can be smaller than 6/3 if Vz is sufficiently small. 
Similarly, the last term is bounded by 

6QÎ 
dvr \vZa\ Wxx o F 

(Wx o F)2 
which can be made smaller than Ô/3 by the choice of Vz, according to Lemma 6.2. • 

Lemma 7.4. — Given 6>0,ifVz is sufficiently small then 

l7ol 
I H ax 
d 

< Ô 

for all x G 70 and a G Jo • 

Proof. — Writing H = W o F we obtain 
H,a = (W, o F)Fxa + (Wxa o F)FX + (Wxx o F)FxFa 

and then analyze each term when multiplied by |7o| -\Ha\ 1. By Lemma 7.1 we have 

so that 
\Ha(a,x)\ > v 

2' 
WT O Fl, 

l7o|-
Wx o F I 

d \Fxa\ 2C0 
v 

|7()| , 

which is smaller than (5/3 \iVz (and hence 70) is sufficiently small. Also, 

I 7 0 H F J 
d+d1r 

d+d 
2 < 

d 
7 o | - | ^ | - | W ^ o F | -

Wxa o F 
(WX o FY 

As in the proof of the previous Lemma, \FX\ < Co |7o|, \WX o F\ ~ |VzJ/|u;o| and 
|7o|2/|w0| < Co, so that |7„| • \FX\• \WX oF\ ^ 2C,2|VJ. Then Lemma 6.4 implies that 

4C2 
V |v;„| 

I WxaoF I 
(Wx o F)2 

S 
3' 

provided Vz is small enough. 

ASTÉRISQUE 28<> 



CHAOS VERSUS RENORMALIZATION 283 

The same argument combined with Lemma 6.2 is applied to the last term, proving 
the Lemma. • 

Lemma 7.5. — Given Ô > 0, if Vz is sufficiently small then 

\Jo\ Haa 
d < Ô 

for all x e 70 and a G Jo-

Proof. — First observe that | Jn| ^ Co|wo| and 

\Ha\ * 
V 

2 1 
\WxoF\ - v 

2 
ivu 
NI 

Then write 
Haa = (Wx o F)Faa + WaaoF + (Wxa o F)Fa + (Wxx o F)(Fa)2 

and oroceed as in the previous Lemmas, usiner also Lemma 6.5. 

Lemma 7.6. — Given ô > 0, if Vz is sufficiently small, then 

\Jo\- ffxxa 6, Hxx 
for all x G 7n and a G Jn. 

Proof. — The proof is similar to the previous Lemmas, after writing 

//,,„ = (Wx o F)Fxxa + ill',,., o F)(FX)2 
+ (Wxxx o F)Fa(Fxf + (Wxx o /•')i 2/••,„/;, + A;,/-',,.) + (Wxa o F)FXX. • 

8. Expansion of regular branch compositions 

We aim at proving the starting conditions for preimages of the central branch. To 
any preimage (3 G B is assigned a sequence of regular branches 

{-̂ m • TTrn * Vza }rn = l,...,n 
such that B : f3 70 is written as B = Pn, o • • • o Px \[3. Each Pm in turn is written as 
Pm — Wm o F|7rm, where Wm : ujin —+ VZa is the transfer map of ujm G W, OJ7U 7̂  CJQ, 
rn — 1,. . . , n. 

This Section is devoted to estimate the expansion of regular branches and their 
compositions. The ideas involved here are very similar to the concept of forward 
recovering, mentioned in Section 4. A kind of backward recovering appears in Section 
9, when dealing with the first parameter derivative. 

The first estimates give absolute lower bounds for derivatives of regular branches. 
We will see that expansion may be not sure in some cases. Next we show that every 
time there is a loss of derivative for some Pm there is an immediate recuperation for 
PrnA-\ • 
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From now on we choose a constant 0 > 0, and take Vz small so that Corollaries 3.2 
and 3.3 are satisfied. This constant will be chosen sufficiently small, according to the 
needing of various Lemmas until the end of the work. It is implicitly assumed that 
assertions are valid for every (3 G 8 and constants do not depend on (3. 

Accordingly to Section 2, the intervals u;n,^i, • • • ->un have extension domains cDo, 
a?i,..., Qn which are mapped onto VVa. Take uj17l1 for some m = 1,. . . , n. We will say 
that uJm is subordinated to LOQ if urn C So, that UJQ is subordinated to um if UJQ C cDm 
and that UJQ and ujrn are independent otherwise. By construction it turns out that 
one and only one of these situations occurs. In particular, this implies by Corollary 
3.2 that in the first and third cases 

dist(a;m,u;o) ^ 0 X|u;m|, 

and in the second case 
dist(cjm,u0) ^ 0 1\UJQ\. 

Lemma 8.1. — If u)m is subordinated to UJQ, or else ujm and UJQ are independent, then 

oF'-1)(F,oFx+xx1d 

for all x € 7r,„. 

Proof. — Write Pm = WmoF\irm, hence \Pm,x\ = \Wm,xoF\-\Fx\. As Wm : wm VZa 
is extendible to Wm : ovi —• VVa, and is chosen small, then by Lemma 3.1 

\Wm,xoF\ ~ \V, I 
km I ' 

But the hypotheses imply that 

IF*I > Cn-Vdist(o;m)a;o) > C^l0-1/2\cum\^2. 

Therefore 
\pm,A^Câle-li- \v, I 

luU1/2" 
On the other hand, if e is small then |tDm| < 2| Im ,F| V-,t [, hence 

UJ1/2 ^ V2e^2\lmF\Vz„\^2 < CQ91/2\Vz\, 

and the Lemma follows. 

Lemma 8.2. — If wo is subordinated to iom, then 

\pmAx)\>crle-*/2- +q1q+zs 
\vZa\ 

for all x G 7rm. 

ASTÉRISQUE 286 



CHAOS VERSUS RENORMALIZATION 285 

Proof. — As in the proof of the previous Lemma, 

oF'-1)(F,oF I V U 
d 

oF'-1)(F,oF 

On the other hand, also as in the previous Lemma, 

knl <Co6\VZa\\ 

and the Lemma follows. 

These two Lemmas suggest that a bad derivative may occur if UJQ is subordinated 
to ujrn, as depicted in Figure 4. The problem is overcome with forward recuperation, 

ssc 
s+s 

s+s1e 

s+s1e 

/dd+d1e Bm-i X?1 

C 

FIGURE 4. Possible bad derivative in the ra-th iterate 

which we describe now. Let 

Brn = Pmo...oP1|/3, 

hence B — Bn. Let Bni denote the point Brn(x)1 as we did before in other situations, 
when it is clear that there is no possibility of confusion. In this notation, Bm-i G 7rm, 
and F(Brn-i) G ujrni see Figure 4. We call xj1 and x^, respectively, the innermost 
and the outermost boundary points of 7rm, with respect to the critical point c. 

Define 

Pm = Pm(x) = 
\F(xf) - F{Bm.{)\ 

km I 
By the small distortion property of Win : ujm —* Vz , if pm < 1/3 then 

d\st(Bm,dVZa) 
\vZn\ - Pm-

We state two technical Lemmas to be used in the sequel. 

Lemma8.3. — |Pm,* (zg ) | £ \P™Av)\> e ^ 

Proof. — As Wm has small distortion, the distortion of Pm is mostly due to F\7rm. 
But \FX \ increases as the distance from the critical point increases, since Fxx ^ 0. • 
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Lemma 8.4. — \Bm-l ~ C\ 
\x% - c\ 

> C-lol/2 

Proof. — Since Vz is small and next to c the function F is nearly quadratic. • 

As 
1 

Km I J-jrn 
\Pm,x(y)\dy = 

\vZa\ 
km I 

and VZa is at least 0~ times greater than 7rm, according to Corollary 3.3, it is expected 
that |Pm,x| is big for some points in 7rrn. In particular, by Lemma 8.3, |Pm,x(^)| > 
\0~~l. The following Lemma gives a lower bound for \Pm,x{Bm-\)\ as a function of 
Pm-

Lemma 8.5. — \PmABm-i)\ > C^O^pll2. 

Proof. — By the remark above \Pm, X{%F)\ > \® 1 •> hence 

\Pm,,x(Bm,— l) I — |i:>m?x(x )̂| \PmABm-i)\ 
\Prn,x(x7E)\ 

3„_i 
4 

\WnhX(F(Bm^))\ lfa(gm-!) 
\Wm,x(F(x%))\ \Fx(x%)\ 

But Wm x is almost constant in u>m and 

\Fx(Bm-i)\ |Bm_i-c | 
\Fx(x%)\ | x £ - c | • 

and the Lemma follows using Lemma 8.4. 

Corollary 8.6. — |Pn,x(Bn-i)| > C^Q~\ 

Proof. — As F(Bn-i) G W~1(/yo) then pn ~ 1/2. 

Corollary 8.7. — If pm ^ \ then |Pm,.c(Pm-i)| > C^O"1 

Proof. — Directly from Lemma 8.5. 

The following Lemma is the central assertion for forward recovering. 

Lemma 8.8. — If Pm < \ then 

\{Pm+loPm)x{Brn-l)\^CQ-lO-2. 

Proof. — First notice that Bm = PTn(Bm-i) G 7rm+i, and |7rm+i| < 0dist(7rm+i, dVZa) 
by Corollary 3.3. Moreover dist(jBm, dVZa) ~ Pm|V72a|, hence 

dist(v,ôK ) 

\V*a\ 
— Pm t 

for all y G 7rm+i. This also implies |7rm+i| ^ Opm\VZa\. On the other hand, since 
pm. < 1/3, |7rm+i| <C dist(7rm+i,7o), therefore the distortion of Pm+i must be small. 
Then 

\Pm-\-l,x\ — 
IUJ 

Km+ll 
oF'-1)(q 

ASTÉRISQUE 286 



CHAOS VERSUS RENORMALIZATION 287 

Combining with Lemma 8.5 we get 

|(Pm + l O Pm)x(Brn^)\ > C0-Vm1/2<T2. 

proving the Lemma. 

We obtain some useful Corollaries, but first we introduce the following notation. 
For mo ^ mi, let 

^mo.mi — A rn o,mi(^) 
dr 

711 = 1 TlQ 

Pm,x(Bin-i)\ 

which is equal to |(Pmi o • o Prno)x(Brno-i)\, by the Chain Rule. For example, with 
this notation, 

\BX\ = Ai,n. 

Let also Amo,mi = 1 if mo > mi. 

Corollary 8.9. — > ( C ^ 1 ^ 1 ) " > 1. Jn/aci , Amo,n > (C^O71-™0*1* /or a// 
mo = 1,.. . , n. 

Proof. — We prove by (decreasing) induction on mo, starting from mo = n. For 
mo = n we use Corollary 8.6. Suppose now that AniJl > (Co~10_1)n_m+1, for all 
m = m0 + l , . . . ,n . We want to prove that Amo,n > (Co~10~1)n~mo+1. But if 
Pmo ^ ^ tnen 

Amo?n — |Pm(hX(£>mo_i)| • Amo + l,n > (CQ lQ 1)n m° + 15 

by induction and Corollary 8.7. Otherwise pniQ < | , then 

Aroo,n = |(Pmo+1 o P ^ W f U - O I • A,no+2j- > ( C o - ^ - 1 ) " " ' " ^ 1 , 

by induction and Lemma 8.8. 

Corollary 8.10. - If |Pmi,*(£mi_i)| > Co"1*"1 tften Amo,mi >ssssss (C^Q-1)^-^1, 
for all mo = 1,..., m,\. 

Proof. — As in the proof of Corollary 8.9, but now induction starts at mi. 

Corollary 8.11. — In general, 

A „ , > (CN-10DDDDDDDDD-1)ROI-,"O+1 
dd1rd+ 

IK J 

/or every 1 ̂  mo ^ mi < n. 

Proof. — First we notice that 

k>l1/2 
\Vza\ 

< Co01/2 < 1, 

by Corollary 3.2 and Lemma 2.4, supposing also 6 sufficiently small. 
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Suppose m0 < m\. If pmi_i < 1/3, then 

\(Pmi oPmi_i)x(Bmi_2)| > (Co"1^1)2, 
by Lemma 8.8, and by induction, as in the preceding Corollaries, 

Amo,mi > (cN-I0-ir»-mn+i. 

Otherwise pmi_i ^ 1 / 3 , implying, by Corollaries 8.7 and 8.10 that 

A -, > f(7_1rMmi"m° 

Then we write 
r̂no,m i — I Pm i,.7; (Brn 1 — 1 ) I ' ^mo.m 1 — 1 

and use Lemmas 8.1 and 8.2. These Lemmas are directly applied in the case mo — 
m i. 

9. Parameter dependence of regular branches 

As remarked in Section 2, for each ft G B the function B : ft —>• 70 is extendible to 
J? : —» 14n. By Corollary 3.4, as |7o|/|V^a | < 77, provided Vz and e are sufficiently 
small, we choose rj > 0 so that, by Lemma 3.1, contains a 6~l|/3|-neighborhood 
of ft, for some small 0 > 0, where the derivative of B has small distortion. Moreover, 
lA(ft) is completely inside one of the connected components of VZu \ 70. 

We have also defined the parameter interval 

J(ft) = {a G Jo ; ImH (MA{(3) / 0 or \ lmH\ > -\VZa\). 

Observe that, according to the notation of the previous Section, ft C lA(ft) C 7TI, so 
that ImH nU(ft) ^ 0 implies ImH n TTI ^ 0. On the other hand, |ImiJ| > \\VZa\ 
implies | ImF HCJOI ^ ||^o|5 by the small distortion of Wo : ĉ o —> Ka-

We now define F = Y (a, ft), for a G Jo, as the distance between F (ft) and F(c) 
(see Figure 5). As ft G TTI then F {ft) G o;i. We also define Z = Z(a) = | ImF|V;j , 
X = X(a, ft) = Z - Y and r = X/Z. 

The underlining idea in this Section is to better control the derivative of P\ : 717 —> 
T4„ • As Pi,.x. = (IFL;x- oF)Fx, expansion depends on the relative position of F (ft) with 
respect to the critical value, controlled by r. 

Roughly speaking, we deal with the following situations. Fixing ft and taking 
a G J(ft) we may have \lmH D \4J ^ yl^J- In this case, since | ImF D coo\ is 
relatively large with respect to \coo\ the derivative of F outside 70 is always bounded 
by something of the order of |u;o|1//2, which will be enough to our purposes. Otherwise 
a G J(ft) implies ImiJ (MA(ft) ^ 0. In this case we may have r small or not. If r is 
small it means that ft is near dVZa, and the derivative of F is not so small. But if r 
is near 1 this means that ft (and also 717), is near the critical point. The consequence 
is that Im H occupies approximately one half of VZa, which in turn implies that Im F 
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Y d+d1r F 

7Ti : 

.M) 

drd+ Z 

dd+r 7o fl 
F(z„)/-

! 

(. Illl II 1 

FIGURE 5. Placement of F (fi) with respect to the critical value 

occupies approximately one half of UJQ. Once again derivatives outside 70 must be at 
least of the order of |CJ0|1//2-

The next two Lemmas quantify these arguments. 

Lemma 9.1. — If a G J(p) then |7o| > C{]~1T1/2\UJO\1/2. 

Proof. — If I Imi/ | > ±\VZa\ then |ImFncj0| > ^ o | , hence |7o| > CJ"1 |ĉ 011/2 - Now 
it is enough to verify the inequality when ImH DU\j3) ^ 0 but | lmH\ < j\VZa\. By 
Lemma 2.4 and Corollary 3.2 < OX, and also dist(^i, F(za)) ~ r |ImF|T4j. As 
\FX\ < C0\VZA \ in VZA then 

(1) dist(7ri,^V;j ^ Cûl\VZa\-lr\lmF\Vz<i\. 

The assumption Im HnU([3) ^ 0 implies | ImH\ > dist(7Ti, dVZa ), hence by the small 
distortion of WQ : CJQ —» V~a 

bol ^ c,;1 dist(7ri,ôI4„.) 
U N 1 / 2 

IU,I 

Using Equation (1) we obtain the Lemma, taking into account that 

|ImF|VzJ1/2 
\VZa\ 

> c-1 

Lemma9.2. — If dist(7r1,7()) > \\VZA\ then \PHX\ ^ C^T^O'1. 

Proof. — We write = \W\/X oF\ • \FX\. By small distortion properties, \W\a-\ ~ 
\VZa\/\uJi\. Moreover 

bil <C()TO\VZ\\ 

since |a;i| ^ OX = rOZ and Z = |ImF|V;j ^ C0|KJ2. On the other hand, 
dist(7Ti,7o) ^ \\VZa \ implies ^ C^^I/.J, and the Lemma follows. • 
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The goal of this Section is to show that 

Bm. n 
d+d1rd+ 

is as small as desired, for all a G J{(3) and x G (3, provided Vz and e are sufficiently 
small. Here Bm. = Prn o Pm-i o • • • o Px and Ha is the mean value of H(a,x), for 
x G 7o and a G Jo, based on the statements of Section 7. For m = n this gives the 
first quotient of the starting conditions Preimages of the central branch. The cases 
rn < n will be used for the other quotients. We write 

Prn, a 

£>m,x 

rn 

t = l 

PtaOBri 
BUx 

therefore 

(2) 
B ni ,a 

B,n,.rHa 
Pl.a 

Pl.,Ha 

m 

t = 2 

1 

Bt-i... 
Pt.a°Bt-l 

(Pt.xoBt-i)Ha 

This last equation motivates the following Lemmas. 

Lemma 9.3. — For m — 1,. . . , n, 

Pm.a ° B7n — j 
(Prn^°Bm^)Ha 

<Cy ee 
\vzJ 

i 
\Brn-l ~ C\ ' 

Proof. — Write 

PWJl o Bnh-i _ Fa o Brn-i 

Pm.x O Bm.-l Fx O Bin-i 

1 

Fx o Bm-i 
W1riia ° F o Bm-i 
Wm,: O F O J57„_i ' 

We know that \Fa\ ^ C0, \FxoBrn^\ > C^l\Brn^~c\ and |Wm,a|/|W^m,x| ^ Cy (by 
Lemma 5.1). The Lemma follows usine; Lemma 7.1. • 

Lemma 9.4. — 7/dist(7Ti,70) ^ \\VZ(l\ then 

dxrd 

^ xHn 
< cve. 

Proof. — The quotient is evaluated at Bo — BQ(X) = x. By the hypothesis, 
\Bo ~ c\ > \\VZa\. By Lemma 9.3, 

Pl.a 
Pl.xHa 

<cv- dvrd 
\VZ„ 12 

<CyO. 

Lemma 9.5. — If dist(7Ti, 70) < -7 IK I and a G J(f3) then 

Prn.a ° Bm_i 
{Pm.x ° Brn-i)Ha 

<Cy l7ol 

/or all m = 1,.. . , n. 
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Proof. — If a G J(f3) then \ lmH\ ^ \\VZa\ or ImH ^U((3) ^ 0. In the latter case, 
Imi7~ri7ri / 0 and, by the hypotheses, | Im# | > ||VZa|. In any case, | I m i 7 | ^ ylV^J? 
therefore |ImFno;o| > ||^o|- This implies |Bm_i — c| > C^1 \UJQ\1/2, for all m — 
1,..., n. By Lemma 9.3 the quotient of the statement is bounded by Cy\ujQ\1/2 /\VZa\. 
By Lemma 9.1 and the hypothesis, implying r bounded away from zero by CQ-1, it 
follows 

K|1/2<C0|7o| 

and the Lemma. 

The next Lemma is somehow analogous to the idea of backward recovering of 
Section 4. 

Lemma9.6. — If a G J{(3) and dist^i, 70) ^ \\VZa\ then 

d+d1r oF'-1)(F,oF 
(Prn,x m,xHacd  

<cve ko|1/2 
\VZa\ 

for all m — 1,..., n. 

Proof. — By Lemma 9.1, |£m_i - c\ > C0 1T1/2\UJ{)\1/2 . Putting into Lemma 9.3 and 
using Lemma 9.2 the Lemma follows. Observe also that r ^ 1. • 

Lemma 9.7. — Given ô > 0, if Vz and £ are sufficiently small then 

P m .a 

I Bm,xHa I 
q+q1 

for all (3 G B, x G [3, a G J(/3) and m = 1,..., n, where B = Pn o • • • o Px\(3 : (3 —> 70 
and Bra = Pm o • • • o P1 \(3. The value Ha indicates the mean value of H(a,x) for 
x G 70 and a G Jn • 

Proof. — We evaluate term by term the R.H.S of Equation (2) supposing always that 
a G J{(3). We have to consider two separate cases: A) dist (7^,70) ^ | |^4J and B) 
dist(7Ti,7o) < \\VZ I. The first term, 

Pl.a 
dd+d1rd+ 

is bounded by Cy6 if dist(7Ti,7o) ^ l l ^ j i by Lemma 9.4, and bounded by 
Cy|7o|/|I4„I if dist(7Ti,7o) < ||VZfJ, by Lemma 9.5. In both cases the first term is 
bounded by 8/2, provided 6 is small, and this is guaranteed if Vz is small enough. 
We are left with the remaining terms, from t = 2 to t = rn. 

In Case B, where dist(-7Ti,7o) < jIV^J, Lemma 9.5 implies 

Pt.a 
Pt.xHa <Cy-

co|1/2 

\VZa\ 
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On the other hand, 

\Bt-l,x\ 1 =dd dd d* +s4s+s4e \VZ\ 
NI1/2' 

by Corollary 8.11. Hence we are left with 

Cy 
m 

t=2 
(Cooy-1 

which is smaller than 6/2 if 0 is sufficiently small. 
In Case A, where dist(71-1,70) ^ ^IVzJ? we bound the t-th term by 

oF'-1)(F,oF Pt,aOBt-l 
{PtjXoBt^)Ha\ 

which is smaller than CyO(CoOY 2, by Corollary 8.11 and Lemma 9.6. Therefore the 
sum is smaller than Ô/2 if 0 is small enough. • 

10. Other derivatives 

We keep the same notation introduced in the preceding Sections. The goal is to 
bound derivatives of P : tt —• VZa, for all tt G V, and take their compositions to bound 
derivatives of B : (5 —> 70, for all /3 E B. This will complete the proof of the starting 
conditions Preimages of the central branch. 

Lemma 10.1. — LfVz is small then 

dd+dre Pxx 
{P.,;)2 

|70| 
\VZa\ -ColPxl"1 

Proof. — Write P = W o F and 

Pxx Fxx . vVxx 
[i',)J /',/•:, (ir,i--

We have 

l7o| ir,,. 
d+d5r 

, ItoI 
d+d45r 

for 14 sufficiently small, by Lemma 6.2. This controls the second term. For the first, 
we have \FXX\ < Co and 

Wot 
FJ <C0. 

Lemma 10.2. — If Vz is small then 

l7o| • 
Bjn/xx 
B )2 

Wol 
d+dr h Co 

m 

t = l 
d+rd 

for all m — 1,. . . , n. 
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Proof. — Write 

Byn,xx 
d+dr+dr 

m 

t=l 

1 

(Pm o • • • o Pt+i)x o Bt 

Pt.xx ° Bt-\ 
(PUxoBt^Y' 

Then 

ItoI 
Bm,xx 

dd+dr 

m 

t=l 
d "4+1,m 

l7o| 
\VZa\ 

oF'-1)(F,oF+xwd 

by Lemma 10.1. In the statement we separate the term Am\ x rn = 1. 

Lemma 10.3. — Given ô > 0; if Vz is sufficiently small then 

l7o| 
BXx 

(Bx)2\ 
< S, 

for all x & [3, (3 £ B and a G Jo-

Proof. — Put rn = n in Lemma 10.2. Then 

Ar+i ,„ ^ (Co0)n-\ < (CO0)N-T+1, 

by Corollary 8.9. As Vz small implies 0 small and |7o|/|Kj small, then the Lemma 
follows. • 

Lemma 10.4. — If Vz is sufficiently small then 

l7o|2 
1 XXX 

d+dr1d 
l7o|2 

< 
\V,J< 

+ \Px\-\ 

for all x G TT, TT G V and a G Jo-

Proof. — Write P = IT o F and 

Pxxx 
(Px)3 

Fxxx 

[l',r\Y:l\ 
Wxxx 
(Wx)* 

oF'-1)(F,oF 

oF'-1)(F,oF 

where Wx, Wxx, etc, mean Wx. o F, ITrx. o F, etc. The second term, multiplied by 
|7o|2, is smaller than |7o|2/|Krt|2, by Lemma 6.3, if Vz is small. For the first term, 
|7o|2/(Fr)2 < Co and \WX\ >̂ Co (by the choice of Vz) implies that it is bounded by 
^\Px\~l. For the third term, we have |7o|/|Fr| < CQ and 

l7o| 
Wxx 

(wxy 
re) l7o| 

IK I 
«C0l 

by Lemma 6.2, hence it is bounded by \\PX\ \ and the Lemma follows. 

Lemma 10.5. — Given ô > 0, ifVz is sufficiently small then 

l7ol2 
I HXXX 
(pxr 

dr 

for all x G fi, fi G B and a G JQ. 
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Proof. — We write 

where 

Bxxx 
(Sx)3 " 

= Si+3S2, 

Si = 
n 

s 

Pt.xxx 
{Pn.x • • • Pt+l,x)2(Pt,x)3 

and 

S2 = 
71 

t=2 

Pt,xx 
Pn.x • • • Pt+l,x{Pt,x)2 Pn.x • • • Pt,x (Bt-l,x)2 

1 Bt-l-xx 

For simplicity, we are omitting arguments, writing Pt,x instead of PtiX o Bt-i, etc. 
Using Lemma 10.4 and An+i n E 1 we obtain 

l7o|2|S!| < l7ol2 
~ H4,12 

\PnA~1 
n-l 

t=l 

A - 2 4-
n-l 

t=l 
4+1,71^,71* 

which is smaller than 5/2 if 0 is sufficiently small, by Corollary 8.9. On the other 
hand ^oPl^l is bounded by 

n 

t=2 
^ l . n A ^ C l + ColPt.xl"1)- 1 + Co 

t-i 

,s=l 

XFG +d 

using Lemmas 10.1 and 10.2 and |70| <C |V2fJ. It is straightforward to see that this 
sum is smaller than 5/6, if 6 is small, using Corollary 8.9. • 

Lemma 10.6. — IfVz is sufficiently small then 

l7o|- -, 
x xa 

(Px)2Ha 
< \PA~l-

d+rd 

d+rd 
for all x E TT, IT £ V and a e JQ. 

Proof. — Write P = W o F and 

Rxa _ I':; , 1 H ,„. Wxx K 
(-Pi;) CP, FX(WX)2 (Wxf Fx 

We analyze each term multiplied by |70|/|PTa|, which is smaller than Cb|7o|/|Wo,x|-
As |7o|/|Px| < Co, the first term can be bounded by 

Co 
\Wo.x\ \Px\-1 < \Px\-\ 

if Vz is small. For the second term we still use that 

dvr wxa 
(Wx)2 

is much smaller than Co, by Lemma 6.4, and |Wo,x| — I^J/l^ol- The same in the 
third term, but now using Lemma 6.2. • 
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Lemma 10.7. — IfVz is sufficiently small then 

hoi • 
d+dr+d 

d+d4dr+d 
- <mA, i, + C0 

M 1 / 2 

\vZl,\ 

in 

t=2 

A-1 

for all m = 1,..., n, x G /?, /? G S and a G J(/3). 

Proof. — Write 
Pm.xa 

(Bm.,y2 
= Si + 5-2 

where 

5 i = 
m. 

t = l 

Pt,xa 
Pf,j -Bm.x 

and 

S2 = 
in 

t = 2 
Pjn,x • • • Pt + l,x 

1 Pt.xx Bt-l.a 
oF'-1)(F,oF+x4 

Then, by Lemma 10.6, 

hoi, 
\Ha\ 

5,1 < 
m 

^=1 

Pt.r 
Bm.v 

\Pt.,\-1 1̂ 0 I 
K , r . 

which is smaller than 

mA,L + ko I 
v,„ i2 

•tn 

t=l 

A"1 A"1 -Af+l,mAAl.£-l 

Using Corollary 8.11, we simplify 

i i m 

\vz\2 
t=l 

^t + l,m^li-l 
^ U|1/2 

1 ,̂1 

dv 

£=2 
vrdd 

On the other hand, as in Lemma 10.2, 

l7ol 

l-H«l 
|52| ^ 

l7o| 
\VZJ 

Co' 
771 

d 

\7l 

using Lemmas 10.1 and 9.7. 

Lemma 10.8. — Given ô > 0, ifVz is sufficiently small then 

l7o|-
Bxa 

(Bx)2Ha < 5, 

for all x G /i, (3 G B and a G J(/3). 

Proof. — It is enough to apply Corollary 8.9 in Lemma 10.7, with 0 small. 

Lemma 10.9. — If Vz is sufficiently small then 

l7o|2 
1 xx a 

il', I'll., 
dvrd 
114.. I2 

+ \P,\-1 

for all x G n, TT G P and a G JQ. 
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Proof. — We have 
p 
1 xxa dd+d1f 

= Qi + Q-2 + Qi + QA + 4Qr, + 2Q0, 

where 

Qi = 
L xxa 

oF'-1)(F,oF 
Q-2 = 

wxxa 
dd+dr+ Q.3 = 

WXXX FA 

d+dr1d+d1r 

QA = 
1 WXA FXX 

PX(\VX)2(F,)2 
x+xd 1 U ,, F,(, 

oF'-1)(F,oF+xd+x4 
x+d4sx 

1 WXX FXX FA 

' WX(Wxf (F,)2FT' 
We multiply each of these terms by |70|2/|I/H|, which is smaller than Coho|2|wol/l V,, |, 
by Lemma 7.1, using then the following estimates, which are valid for Vz sufficiently 
small: \FXXA\, |F„ | , |Fa|, \FXI,\ < C„, hol < C\>\FX\, CIW,!"1 < 1, C M < \VZJ, 
C0I70I < \VZa I and Lemmas 6.2, 6.4, 6.6. 6.3, with 5 = Qf1 or S = 1. • 

Lemma 10.10. — Given 5 > 0, ifVz is sufficiently small then 

|7(,|2 Bxxa 
I (BxfHa 

< ô, 

for all x e ii, [3 & B and a £ J(/i). 

Proof. — Write 

|7o|2 />',,., 
dd1rd+d1 

< |5i| + |52| +15^,1+4|54| + 2|55|, 

where 

S\ = 
n 

t=l 
K+i,All-i-ho\2-, 

Pt.XXd 
D.'rll. 

S2 : 
1) 

t=2 
-^t+l.n l7o|2-

d+d4r 
'Pi.sY 

Bt-i.u 
Ii, .,11.,' 

d+d4d 
d 

t = 2 
KIA7+1,, - hoi 

Pf.xa 
(Pt.x)2Ha 

l7o| 
d+d4r+d 

oF'-1)(F,oF 

d+f54d 
n 

t = 2 
'\ + l.,At.n • ho 

d+d4r 
d+d4r 

hol 
Bt-i,x„ 

ill. h,!'//., 

dr 
d+d4r 

f=2 

drd ddd dA-1 • l7o| 
d+dr 

{Pt.x)'2 
•hol 

B*-i,M 
(-Bf-i..,-)2 

Bt-l,a 
/'< l.ill,, 

By Lemma 10.9, 

\Si\^ 
n 

t = l 

\-ddd2 A-ddl kddddo I 
d+d4r+d +- \Pt,rl) 

which is smaller than 5/b if 0 is small, by Corollaries 8.9 and 8.11. With the other 
sums we proceed in the same way, using the same Corollaries and also Lemmas 9.7, 
10.2. 10.7, 10.4, 10.6 and 10.1. • 
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Lemma 10.11. — IfVz ls sufficiently small then 

bob -
P 
1 a a P,)2(Ha)2\ <c»ïï 

U l 2 , 
V U 2 

PA-1-
N l 2 , 
l v u : î 

l a r - d " 1 

/or ail x £ n, 7T G P tmei a G JQ. 

Proof — Write 

P 
a a dd+d4r 

-1 a a 
xfrd 

d+d1r 

(^)2(W^): 
2F„IT:„ 

(F,:)2(T,)2 
fF„\2 
dvre 

Wxx 

(Wx)2 

Then we use |7o| < C0\FX\, \FX\-1 < CQ\x - c\'1, {H,,}'1 < C()\u0\/\VZn | and Lemmas 
6.5, 6.4 and 6.2, with <5 = C U . • 

Lemma 10.12. — Given 6 > 0, if Vz is sufficiently small then 

l7o| 
Baa 

dd+d4r+d 
< s. 

for all x e ft, ft € B and a € J(/i). 

Proof. — Write 
K.»!2 Baa 
H2 {Bx)2 

< | S i | + 2 |52 | + | 5 . , | , 

where 

S i = 
n 

t = l 
^r .2 -A+i .„ • bo i 

Pf.aa 
(Pt,)2(Ha)2-

S2 = 
n 

t = 2 
oF'-1)(F,oF s+s Pf.xa 

iP.rY'll., Bt-[ xHa 
B,-lM 

dd 
dv 

t = 2 
.̂+i.7, • bol 

i),x 
A.,)2 

B,-l.a V 
d+doF'-1)(F, 

Using Lemma 10.6, Lemma 9.7 (with 6 = 1) and Corollaries 8.9 and 8.11 we get 

| S ' 2 K ( n - l ) ( C W - u i 1 / 2 
I V U 

[n-lxcoey-1 

which is smaller than Ô/6 if 0 is small. It is also easy to see that \S%\ is smaller than 
S/3 if 0 is small, using Lemma 10.1 and Corollary 8.9. The difficult part is contained 
in S\. By Lemma 10.11 we have 

d+d4r dd 

t-l 
^ î . f - i ^ f + i . » Co M 2 , 

K , | 2 
p,xr 

\tOo\2 . 
\vz F 

d+d4r++d 

If we separate into two sums, the first one is bounded by 

Mil2 
I V U 2 

dv 
n 

*=1 

d+d4r 
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where it is implicit that A1<0 = 1. By Corollary 8.11, A~1T_1 ^ 2\VZa\/\u)0\1/2, 
so that the first sum is bounded by 

ko I 
ko 11/2 
d+dr 

d+dr 

which is smaller than 5/6 if 0 is small. For the second sum, 

5* = M 2 
v, •* 

d 

d+dr 
Ar .L iAr+Vn- i^ -1 -c r1 , 

we use the ideas of Section 9. 
We have two cases: A) dist(71-1,70) ^ \\VZA\ and B) dist(7Ti,7o) < \\VZA\. In Case 

B, |7o| > CQ1 ICJOI1/2 (see Lemma 9.5, for example), which implies, by Corollaries 8.9 
and 8.11, 

S ^ C0 ko I 
dvr + 

dv+r 
6' 

if is sufficiently small. In Case A we have 
\Elt-! - cl"1 < 2I70I-1 < COT-V^LJOI-1'2, 

for alH = 1,... ,n, by Lemma 9.1, \B0 - c|_1 < 5\VZA I"1 by hypothesis and P1-d 
by Lemma 9.2, hence  

S < ko I2 
d+d+d 

.̂.-rl/2/31,., ,.1-1/2 d 

* = 2 
Ar.LiAr+Vn-i^-1-criAr+Vn-i^-1-cr1, 

which is smaller than 

vxx Ul2 
IV- I4 

d+d1rd6+ k>|1/2 
iv;„i 

71 

t = 2 
{Cod)"-*.. 

by Corollaries 8.9 and 8.11. If VZ is small the Lemma is proved. 

A. Appendix 

As remarked at the end of Section 2, Theorem 2.5 is proved in [2] assuming C°° 
differentiability. This hypothesis is used only for estimates of derivatives near saddle-
node bifurcations, where a map is considered as a time-one map of a flow. Here we are 
able to reduce the needed differentiability to 3, obtaining the same bounds (Lemmas 
S.7 and S.8 of [2]) without any embedding into a flow. In addition, as the arguments 
are direct, they allow much more control on constants. 

The proof of Theorem 2 is made in [2] by induction, starting from the map <3>o 
defined in Section 2. The central interval 70 together with the preimages of the 
central branch (3 belonging to the collection Bo form the set of connected components 
of the domain of $0, contained in 7_i = VZA. 

The central branch H0 = $o|7o is unimodal and i70(^7o) C d^-\. We also have the 
diffeomorphic branches B = &o\ft P 7o- The map $n+i, for n ^ 0, is defined by 
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induction with domain in 7n, with a central branch Hn+\ = 3>n+i|7n+i : 7n+i —• 7n, 
Hn+i(djn+i) C (?7n and with difFeomorphic branches B = 3>n+i|/3 : /? —* 7?,.+i, for (5 
in the collection Z3n+i. The map iin+i is the critical component of the <3>n-first entry 
map into 7n a/ter escaping from this same 7n (and not the -first return map to 7n, 
as usual). The maps B : (3 —+ 7n+i are the branches of the $n-first entry map into 
7n+l-

At all stages of the induction, the maps 3>n are shown to satisfy the same three 
sets of conditions Geometry, Central Branch and Preimages of the Central Branch of 
Section 2, with small and uniform constants n > 0, ÔQ > 0 and S\ > 0. One of the 
main steps in the proof is the analysis of ifn-iterates near the creation of a saddle-node 
fixed point for Hn. In [2], this analysis is resumed in Lemmas S.7 and S.8. 

The function Hn is a two-variable function Hn = Hn(a,x), defined for x G 7.,,. = 
7?,.,a and a G J, where J is some interval. As a varies along J, Hn(a,c) crosses 
7n_i = 7n_i,a. For simplicity we assume c = 0 and ifn(0,0) = 0. The starting 
conditions named Central Branch imply that there are non-zero constants Sn and Vn 
such that 

1 - 2&) ^ i/„..r.r("--0 
2Sn 

^ l + 2(5(), 1 - 2<S0 ^ Hn,a(a,x) 
Vn ^ l + 250, 

for all x G 7n.« and a G J, if Oo is sufficiently small. 
The sign of Sn • is always the same as the sign of So • Vo, which we suppose to be 

negative, without loss of generality. If we do a linear coordinate change x > —Snx, 
a H-» —SnVna we normalize Hn so that 

\Hn.xx{a,x) + 2| < 4<Jo, |//„.,,(«..r) - 1| ^ 250. 

The starting conditions Central Branch are kept unaffected by linear changes of co­
ordinates. Integrating these two last inequalities we have 

\HnJa,x) + 2x\ ^ASnlxl 

\Hn(a,x) - (Hn(a,0) - x2)\ <: 260x2 
and 

\Hn{a,0)-a\ ^2S0\a\. 
In fact, we are only concerned here with negative values of the parameter, where the 
saddle-node appears. Let as be the least (and unique) value for which there is a 
(unique) solution for the equation 

Hn(a, x) = x 

and let xs be such that Hn(aS/xs). 
By solving the equation Hrux(xs) = 1 we get 

1 1 
2 1 - 2ôo 

d < ss 1 1 
2 1 + 2*0 ' 
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On the other hand, as G [a], a2], where a\ and a2 are, respectively, the first parameter 
values for which (1 — 2ôo)(a — x2) = x and (1 + 2ôo)(a — x2) = x have a solution. 
Hence 

1 1 
4 (1 - 2S0)2 

^ a.s ^ 
1 1 
4(1 + 2<S0)2 

These values are very near a = — \ and x = — \, which are the bifurcation values for 
(a,x) i—» a — x2. Now we normalize iJn again by linear changes of coordinates both 
in a and x so that as = — \ and xs — — \. The values of HnM and Hna:x do change, 
but are still very near 1 and —2, if 8Q is sufficiently small. 

For the sake of simplicity, we write H = Hn, in these coordinates. For every such 
H the starting conditions Central Branch are satisfied, Hxx is near —2, Ha is near 1, 
and the values of the saddle-node bifurcation are given by (as,xs) = ( — \,—\)- The 
constant ÔQ regulates the proximity to the function (a, x) a — x2. We call 7i = Hs0 
the set of functions satisfying these conditions. Since here we are only interested in a 
bounded region of the plane and the parameter space near the saddle-node bifurcation, 
we can fix the domain of each H G 7ï as 

{(a,x) ; (a,x) G [-10,10] x [-10,10]}. 

Every constant appearing in the estimates will be uniform among the functions H G 
Tt, provided So is sufficiently small. 

Let ao < a.s be such that \H(a,0)\ ^ 2 for every a ^ ao. This is the lowest 
parameter value we are interested in, since all iterates outside the critical region 
Jr7_1([i:/2(0), H(0)]) have some expansion (approximately greater or equal than 4) 
and can be treated by other methods. For H (a, x) = a — x2, we have ao = —2 and in 
the remaining cases there is an error of the order of ÔQ about —2. 

For a > ao we are concerned with iterates x, Hx,..., HJx, where \x\ < 2, x 0 
iJ-1([i^2(0),H(0)]) and \HJ(x)\ ^ 2. For each a we associate the number / = 1(a) 
which gives the maximal j . In other words, 

/ - 1(a) = mm{j ^ 1 ; \Hj(H(0))\ ^ 2}. 

Now for x G (-2, 2) \ H-l([H2(0), H(0)]) and j as above we denote 

Fs(a, x) = HJ(a, x) 

We aim at proving the following Lemma (corresponding to Lemma S.8 in [2]). 

Lemma A.l 
There is C > 0 such that for all H G H, x G (-2,2) \ H-l([H2(Q), H({))]) and 

ao < a < as — — \, we have 

\FsJ-\ 
FS,,r 1 

(Fs.,ï2 
Fs..,,,,c I 
(FS,:)3 

dd+rd 

I^.S',,|, 
FS.:r, 
Fs,, 

< Cl2, 
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\FS,a\, 
Fs.xn 
Fs.r 

FS. XX a 
(Fs.x)2 | 

d+d4r 

\Fs.aJ < Cl\ 

where l = 1(a) as above. Moreover, if x G \H (0),H(0)\ then 
Ar.LiAr+V 

and 
\FSiœl s\FS.xx\ ^ C. 

This Lemma will be proved in the following way. We will fix a\ < as and define 

/n = max max 1(a). 
+qq6+q1q 

Also we let x\ < — \ < xr be such that x\ > — 2, xr < H(0) and some conditions 
stated below are satisfied. The order of choice is this one: first x\ and xr, then a\ 
and finally 60. If So is sufficiently small then the constant C will be uniform for all 
H en. 

Iterates done for ao ^ a ^ a\ and outside [xi,xr] for a > a\ are in (uniformly) 
finite number, so that they contribute only with constants to the Lemma. The main 
problem lies on the "unbounded" part [ai,a6.] x [x/,x>], which is solved if we prove 
the following Lemma (Lemma S.7 in [2]). 

Lemma A.2. — There is C > 0 such that for a > a\ 

(1) C'1 ^ I/-/•/:I ^ Cl2, for all x G [xhxr]; 
(2) C~l ^ \HX\ <: C. for all x G [Hxr,xr]; 
(3) \Wa \ < Cî\ for all x G \x,.xr}: 
(4) \Wa \ ̂  C"1/3, for all x G [Hxr,xr]; 
(5) \HÏa\^Cl«, for all x G [xh xr}; 
(6) \IIf,.\<:C\H:>\2. for all x G [xhxr]; 
(7) \dddHfl:x\^C\Hxf,forallxe\xhxr}; 
(8) |//;/„| ^ C\H-[.\F. for all x G [xhxr]; 
(9) \Hixa\ ^ C\IL>\21\ for all x G [xhxr]. 

Establishing the relation between a and I is one of the main steps in the proof of 
Lemma A.2. We change coordinates again by x »—• x + \ and a i-» a + | , so that 
now the saddle-node occurs for (a, x) = (0, 0). We also regard ao, ai, xr in the new 
coordinates. Then we suppose that x\ and xr are chosen so that 

2 
3 

>+41> 
3 
2' 

for all x G [H xi,xr]. Moreover we take a\ such that if a ^ a\ and HJ(a,xr) < x\ 
then j ^ 10 (actually these choices are somewhat arbitrary). 

The following Lemma compares H with purely quadratic functions. It is a direct 
consequence of the assumed proximity to (a, x) i—> a — x2. 
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Lemma A.3. — If H e H, So is sufficiently small, ai ^ a < 0 and x G [H2xi,xr] then 
5 
4 

a — x2) ^ H(a, x) — x ^ 3 
4V (a-x2) 

A fundamental domain for is any interval of the form [Hx,x\. The smaller 
fundamental domain in [xi, xr] has size equal to min \H(a, x) — x|, which is greater or 
equal than |a , by Lemma A.3. 

Consider now a fundamental domain [Ht+1xr,H'lxr\, i ^ 0. Let m be the first 
integer such that Hmxr < x\ (m differs from / by a finite amount). The power 
Hm-1 maps [/// + 1.rr.//'.rr] diffeomorphically onto [Hm + 1xr, Hmxr}. Note that H™'1 
is extendible to the adjacent fundamental domains, so that the image extends to 
[Hin+2xr, Hm~~lxr]. As the Schwarzian derivative of H is non-positive, the distortion 
of the power map derivative is bounded. In other words, there is C\ > 0 such that 

s+s14e+s 
s+sf44e+s 

s+s5e 

for every X\,X2 G [Ht+lxr, Hlxr] and 0 ^ i ^ m — 1. In particular, by the Mean 
Value Theorem and the estimate on the least size of a fundamental domain, there is 
C > 0 such that 

C'1 < \HJj < Ca'1. 
for all x G [x/,x>], where j here is the first integer such that HJx < x\. 

Another consequence is that if x G [Hxr.xr] then \HX\ < C. This proves the first 
two items of Lemma A.2, provided we have Lemma A.7 below, relating a and /. To 
prove this Lemma, however, we need three others. 

LemmaA.4. - If i$ is such that \Hx — x\ is not monotone in {HtoJrlxr,HH)xr] then 

\H'U ' '.rr - //'*'.r,.| 25 
X -a. 

Proof. — Let xc be the unique point where min \ Hx — x\ is attained. Then xc belongs 
to [Hl^lxriH^xr] and, by Lemma A.3, \Hxc - xc\ ^ fa. But [HiQ + lxr, Hioxr] C 
\Hxc,H~lxc], hence 

|ir°+1xr - Hioxr \ ̂  \Hxc - xc\ + \H-lxc - xc\. 

By the choice of x\ and xr. 

\H~lxc.-xc\ 3 
2 

Hxc — xc\. 

and the Lemma is proved. 

Lemma A.5. —- If\Hx — x\ is monotone in [H'+lxr, Hlxr] then 

2 
3 

H'xr 

s+s4e 
1 

\Hx — x\ 
dx 3 

2' 
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Proof. — By the Mean Value Theorem, there is xt in \Hl+lxr, Hlxr] such that 

+s4s+s 

s+s4e 

1 
\Hx - x\ 

dx = |//' + 1.rr - H'xr\ 
\Hxi - Xi\ 

As the maximum and the minimum values of \Hx — x\ are attained at the boundary 
of [H'l,+1xr, Hlxr], we compare them with \Hl+lxr — H'xr\ using the supposition 
I ^ \HX\ ^ ^, and the Lemma is proved. • 

Lemma A.6. — If IQ IS such that \Hx — x\ is not monotone in [HH)+1xr, H'll)xr] then 

s+s45e 

H>o + lxr 
1 

\Hx-x\ 
dx <: 5. 

Proof. — This is a consequence of Lemma A.4, since 

s+s4e 

s+s4e 
1 

\Hx-x\ dx ^ \HH)+1xr -Hl°xr\umx\Hx - x\~x 25 
8 

4 _1 

Lemma AJ. — There is C > 0 s^c/i 

C-^"1/'2 < 1(a) < Ca"1/2. 

/or all CLQ ^ a < 0. 

Proof. — It is enough to prove the same statement for m instead of I and for a ^ a\. 
By Lemmas A.5 and A.6, we have 

2 
3 ' 

s 
sc 

1 
\Hx - x\ 

dx - 5 ^ m - 1 < 3 
2 

sc 

sc 
1 

\Hx - a;I s 

Applying Lemma A.3 to the left inequality, we get 

rn ^ -4 + 2 4 
3 5 

fXr 

scs 

1 
lal + x2 

-dx 

> -4 + 
1, 
21 lal-1/2 arctan ce 

v/ai 
— arctan -xi 

d+dr 
s+s4ed+s4se+s 

where C is fixed after the choice of x/, xr and ai. On the other hand, 

sces 

J H"lx, 
1 

\Hx-x\ 
dx ^ 

ces 

ces 

1 
|f/x — x| dx C 1, 
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since the maximum of \Hx — x\ 1 in [Hxi,xi] is attained in x\. Then 

m 
5 
2 

3 
2 t 

dvc 

vrd 
1 

\Hx - x\ 
dx 

vfr 3 4 
2 3 

|a |"1/2 arctan vd 
d+dr 

- arctan xi 
d++d5r 

dv 5 
2 

-h27r|a|-1/2 ^C|a|-1/2. 

Now we are able to prove the remaining assertions of Lemma A.2. 

Lemma A.S. — \H{\ ^ CT\ for all x G [xhxr]. 

Proof. — For x G [,t/,xy], write 

d+d4r+d .7 

v.= l 

HaoH'-' 
Hx ^ 2 

j 

i = l 
\m-' OH}\. 

But this last sum is bounded by C7/2 ^ C73. 

Lemma A.9. — If x E [Hxr,xr] then \ W0\ ^ C"1/3. 

Proof. — As in the previous Lemma. 

zz+ze 3 
4 dvr 

3 dd4r 

since ifa ~ 1. By bounded distortion, 

Ar.LiAr+Vn-i^-1-cr1,dd+d1r+ 

hence, similarly to the proof of Lemma A.7, 

d+d4r+d4 
RN 

d 

|//'fl.rr - H'xJ 
|//'"» './> - H'xr\2 

d+d4g dv 
I*, 

1 
( | a | + x 2 ) 2 

Ar.LiAr+Vn-i^-1-cr1, 

Lemma A.10. — |//:/,.| <: C|///.|2. for all x G \x,.xr}. 

Proof. Writing 

d+d4 
(Hi:)2 

dv 
J 

1=1 

HxxoH>-1 
(Hi-'+1 oH^){Hx 0W-1) 

we get 

\HU < C(Hl)2 
J 

i=l 

1 
\Hti+1 oH'-l\ 
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Using bounded distortion, 
iHt^l'1 < C\H'x- H'l~lxl 

for i — 1,. . . , j . As the sum of the sizes of the fundamental domains is bounded, the 
Lemma follows. • 

Lemma A.ll. — \H?ia\ ^ Cl(\ for all x G \xhxr}. 

Proof — Write 
d+d14r 

d+r4 
= Si + 2S2 + 5A, 

where 

5, = 
d+d4b+d4r dv 

i=l 
d+d4r 

So. = 
.7 

i=2 

H^oH1'1 Hjr1 
H^oH1'1 Hjr1 

d+d4r j 

i = 2 

il,, il 1 
(Hi~'+l oH'-v)(H,oH'~i) 

dd+d41r+ 

d+dss4r 
Then, as in Lemma A.8, 

d+d4f+d4r+d 
JD 

d+dr4 
Ar.LiAr+Vn-i 

In addition, 

( i # ) 2 | S 2 | < C 
/ / - I 

/ = 2 t = l 
\Hj-f oHf\ CY1. 

as in the proof of Lemma A.8. Finally, 

(Hif\S,\ < C 
dv 

y-2 

Ar.LiAr+Vn-i^-1 dv 

T=l 
d+dr+d1az+s 

2 

^ Cl6 
J 

i = 2 

;//•; 1 o/r'-1!"1 ^ C7(i, 

where the last inequality is similar to the proof of Lemma A. 10. 

LemmaA.12. \Hfrr \ <: C|//:/.|:i. for all x e [xhxr]. 

Proof — Similar to Lemma A. 10. It is enough to bound Hxxx/(Hx)'] by 

C 
vr 

vr 
Ar.LiAr+Vn-i^-1-cr1, 

2 

Lemma A A3. — \H-j.a\ ^ C\Hi\l:i. for all x e [xhx7]. 
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Proof. — Write Hxa/Hx = Si + S2, where 

Si = 
x 

4=1 

/ilSi + So + 5, //' ' 
d+d4r+d 

and 

52 = H^ 
.7 

7=2 

d+d1rd1d+ ^ r 1 
Ar.LiAr+Vn-i^-1-cr1, +Vn-i^-1-cr1, 

The techniques employed in the previous Lemmas lead to |5i| ^ CI and IS2I ^ 

CF. 
LemmaA.14. — |7^xa| <: C\Wr\2l:\ for all x e [xhxr]. 
Proof. — Write 

XX a 
d+d4r 

= HilSi + So + 5, + AS, + 255), 

where 

Si = 
1 

Hi 

j 

i=l 

dd+d41<+4q+ 
•://,' // : ;•://, //' !: 

S2 = 
d 

i=2 

HxxxoW-1 
://•/ " ' //' 1 rill, IV : • 

Ht1 
ir, 

s, = 
1=2 

H,.„oHj-1 
m hi 

1 

//' '•' //- 1 
Hi-1 
XJ-xx ; ^ r1 )2 ' 

s4 --
w 

1=2 

//,, IV 1 
H^oH1'1 Hjr1 q qq qsss 

dd+r4 
( A T 1 ) 2 ' 

dvr 
j 

i=2 

II,. II 1 
ill' " ' • //' 1 fill, W • i 

^ r 1 
d+d4r 

dwx 
(-HT1)2 

then proceed as in the previous Lemmas. 

B. Glossary 

The formula below appear in many places of this work. They give mixed deriva­
tives of compositions of parameter dependent diffeomorphisms. Let {i^}i=i....,j, 
Ft — Ft(a,x), be a sequence of diffeomorphisms and G — G3 its composition 
Gj = F-j• o • • • o Fi. Consider also the partial compositions Gr = F,o • • • o F\ and 
Qi = Fjo • • • o Fj,. To simplify the notation, we omit the points where the functions 
are evaluated. 

(3) G a 
GX 

j 

(=1 

Fi.a 
G,.x 
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(4) 
Gxx 

(Gxy 
dv 

dd 

F: „„. 
Ql+i.x(F,,)2 

(5) GXa 
d+d4r 

3 

i=l 

F 
t l.xGj.X 

3 

i=2 

F 
-1 l.XX Q..+ UÂF,,:)2 

s+s45s 
G,-l.x 

(6) Gaa 
(G,)2 

3 

7-1 

F 
L i,aa f 2 

3 

d+d 

F 
1 i,xa F,..VG h.v 

Gi-\,a 
Gi-i,x 

3 

i=2 

F 
L l. XX Qi+iAFi.*)2 

d+d45r+d 
KG,-i,J 

(7) 
GXXX 
G, V 

3 

i=l 

Fi^xxxFi^x 
(Q.+ l,x)2(Fi,x)4 

+ 31 
3 

i=2 

F 
1 t, x X Qt+i.x(F,A2 

i 
Q..x {Gi~\,x) 

Gi-i^xx 

(8) G xxa 
(Gxr 

3 

i=l 

F'i^xxa 
ilSi + So + 5, d++d1dr 

3 
+ 

i=2 

Fi 'XXXFi,x 
(Q,;+i.,)2(F,,,)4 

Gi-l^a 
Gj.-i,x 

3 

i=2 

F 
L i/xa Fi.xG j.x 

1 Gi-l.xx 
ilSi + So + 5, +wx 

+ 2 
d 

i=2 

F,.xx 
Q,+iAF,A2 

2 Gj-i.xa , GL-\M 1 Gt-i.xx 
.Qi,x (Gi-i.x)2 G. >, Q,.x (G,_i,x)2J 
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