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GEOMETRIC METHODS IN DYNAMICS (I)

VOLUME IN HONOR OF JACOB PALIS

edited by Welington de Melo, Marcelo Viana,
Jean-Christophe Yoccoz

Abstract. — This is the first of two volumes collecting original research articles, on
several aspects of dynamics, mostly by participants in the International Conference
on Dynamical Systems held at IMPA (Rio de Janeiro), in July 2000, to celebrate
Jacob Palis’ 60th birthday.

Résumé (Méthodes géométriques en dynamique (I). Volume en I’honneur de Jacob
Palis)

Ceci est le premier de deux volumes regroupant des articles originaux de recherche
concernant des aspects variés de la théorie des systémes dynamiques, écrits par cer-
tains des participants & la Conférence Internationale sur les Systémes Dynamiques
qui s’est tenue & 'IMPA (Rio de Janeiro), en juillet 2000 pour commémorer le 60°
anniversaire de Jacob Palis.

© Astérisque 286, SMF 2003
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ABSTRACTS

On the Mathematical Contributions of Jacob Palis
SHELDON NEWHOUSE .\ttt ettt et ettt ettt e e et e ettt 1
A Conference on Dynamical Systems celebrating the 60th birthday of Jacob
Palis was held at IMPA (Instituto de Matemédtica Pura e Aplicada) in Rio de
Janeiro from July 19-28, 2000. This article is a revised and expanded version
of a lecture I gave at the Conference. Many additions, including the list of
references and the entire sections below on Homoclinic Bifurcations, Cantor
Sets and Fractal Invariants, Non-Hyperbolic Systems, and A Unifying View of
Dynamics, were made later by Marcelo Viana. It was decided to preserve the
flavor of the lecture by keeping the narrative in the first person. I am grateful
to Marcelo for his contributions to this paper. In my opinion, they greatly
improved the presentation of the mathematical scope and influence of Jacob
Palis.

Random perturbations of nonuniformly expanding maps
JOSE FERREIRA ALVES & VITOR ARAUJO ..ttt 25
We give both sufficient conditions and necessary conditions for the stochas-
tic stability of nonuniformly expanding maps either with or without critical sets.
We also show that the number of probability measures describing the statisti-
cal asymptotic behaviour of random orbits is bounded by the number of SRB
measures if the noise level is small enough. As an application of these results
we prove the stochastic stability of certain classes of nonuniformly expanding
maps introduced in [Vil] and [ABV].

The minimal entropy problem for 3-manifolds with zero simplicial volume
JAMES W. ANDERSON & GABRIEL P. PATERNAIN ..., 63

In this note, we consider the minimal entropy problem, namely the question
of whether there exists a smooth metric of minimal (topological) entropy, for
certain classes of closed 3-manifolds. Specifically, we prove the following two
results.



xiv ABSTRACTS

Theorem A. Let M be a closed orientable irreducible 3-manifold whose fun-
damental group contains a Z & Z subgroup. The following are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem
for M can be solved;

(2) M admits a geometric structure modelled on E® or Nil;

(3) M admits a smooth metric g with hy,,(g) = 0.

Theorem B. Let M be a closed orientable geometrizable 3-manifold. The fol-
lowing are equivalent:
(1) the simplicial volume
for M can be solved;

(2) M admits a geometric structure modelled on S*, S* x R, E*, or Nil;
(3) M admits a smooth metric g with hy,,(g) = 0.

[M|| of M is zero and the minimal entropy problem

Statistical properties of unimodal maps: smooth families with negative Schwarzian
derivative
ARTUR AVILA & CARLOS GUSTAVO MOREIRA ....uitiiiiiii ... 81

We prove that there is a residual set of families of smooth or analytic uni-
modal maps with quadratic critical point and negative Schwarzian derivative
such that almost every non-regular parameter is Collet-Eckmann with subexpo-
nential recurrence of the critical orbit. Those conditions lead to a detailed and
robust statistical description of the dynamics. This proves the Palis conjecture
in this setting.

Geometry of Multi-dimensional Dispersing Billiards
PETER BALINT, NIKOLAT CHERNOV, DOMOKOS SzZAsz & IMRE PETER TOTH 119

Geometric properties of multi-dimensional dispersing billiards are studied
in this paper. On the one hand, non-smooth behaviour in the singularity sub-
manifolds of the system is discovered (this discovery applies to the more general
class of semi-dispersing billiards as well). On the other hand, a self-contained
geometric description for unstable manifolds is given, together with the proof of
important regularity properties. All these issues are highly relevant to studying
the ergodic and statistical behaviour of the dynamics.

Homoclinic orbits near saddle-center fized points of Hamiltonian systems with
two degrees of freedom

PATRICK BERNARD, CLODOALDO GROTTA RAGAZZO & PEDRO A. SANTORO
SALOMAO ittt e et e e e 151

We study a class of Hamiltonian systems on a 4 dimensional symplectic
manifold which have a saddle-center fixed point and satisty the following prop-
erty: All the periodic orbits in the center manifold of the fixed point have an
orbit homoclinic to them, although the fixed point itself does not. In addition,
we prove that these systems have a chaotic behavior in the neighborhood of
the energy shell of the fixed point.
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ABSTRACTS XV

On the scaling structure for period doubling
GARRETT BIRKHOFF, MARCO MARTENS & CHARLES TRESSER ............... 167
We describe an order on the set of scaling ratios of the generic universal
smooth period doubling Cantor set and prove that this set of ratios forms itself
a Cantor set, a Conjecture formulated by Coullet and Tresser in 1977. This
result establishes explicitly the geometrical complexity of the universal period
doubling Cantor set. We also show a convergence result for the two period
doubling renormalization operators, acting on the codimension one space of
period doubling maps. In particular they form an iterated function system
whose limit set contains a Cantor set.

Robustly transitive sets and heterodimensional cycles
CHRISTIAN BonaTTI, LORENZO J. Diaz, ENRIQUE R. PujaLs & JORGE
ROCH A 187

It is known that all non-hyperbolic robustly transitive sets A, have a domi-
nated splitting and, generically, contain periodic points of different indices. We
show that, for a C'-dense open subset of diffeomorphisms ¢. the indices of pe-
riodic points in a robust transitive set A, form an interval in N. We also prove
that the homoclinic classes of two periodic points in A, are robustly equal.
Finally. we describe what sort of homoclinic tangencies may appear in A, by
studying its dominated splittings.

Coupled Hopf-bifurcations: Persistent examples of n-quasiperiodicity determined
by families of 3-jets
HENK BROER .o e 22
In this note examples are presented of vector fields depending on paramn-
eters and determined by the 3-jet, which display persistent occurrence of n-
(uasiperiodicity. In the parameter space this occurrence has relatively large
measure. A leading example consists of weakly coupled Hopf bifurcations.
This example, however, is extended to full generality in the space of all 3-jets.

Walks in rigid environments: symmetry and dynamics
LEONID A. BUNIMOVICH ..ttt e 231
We study dynamical systems generated by a motion of a particle in an array
of scatterers distributed in a lattice. Such deterministic cellular automata are
called Lorentz-type lattice gases or walks in rigid environments. It is shown
that these models can be completely solved in the one-dimensional case. The
corresponding regimes of motion can serve as the simple dynamical examples
of diffusion, sub- and super-diffusion.

Perverse solutions of the planar n-body problem
ALAIN CHENCINER © ottt ettt et e e e e 249

The perverse solutions of the n-body problem are the solutions which satisfy
the equations of motion for at least two distinct systems of masses. I contribute

SOCIETE MATHEMATIQUE DE FRANCE 2003



xvi ABSTRACTS

with some simple remarks concerning their existence, a question which curiously
seems to be new.

Chaos versus renormalization at quadratic S-unimodal Misiurewicz bifurcations
EDUARDO COLLI & VILTON PINHEIRO .....iuitiiiiiiiaiiieaiaaiann., 257

We study C® families of unimodal maps of the interval with negative
Schwarzian derivative and quadratic critical point, transversally unfolding Mi-
siurewicz bifurcations, and for these families we prove that existence of an
absolutely continuous invariant probability measure (“chaos”) and existence of
a renormalization are prevalent in measure along the parameter. Moreover,
the method also shows that existence of a renormalization is dense and chaos
occurs with positive measure.
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RESUMES DES ARTICLES

On the Mathematical Contributions of Jacob Palis
SHELDON NEWHOUSE .\ttt et e e e 1
Une conférence sur les systémes dynamiques s’est tenue & 'IMPA (Insti-
tuto de Matematica Pura e Aplicada) & Rio de Janeiro, a 'occasion du 60°
anniversaire de Jacob Palis, du 19 au 28 juillet 2000. Cet article est une ver-
sion révisée et élargie d'un exposé que j’ai donné lors de la conférence. Plusieurs
ajouts, incluant une liste de références et les paragraphes intitulés Homoclinic
Bifurcations, Cantor Sets and Fractal Invariants, Non-Hyperbolic Systems et
A Unifying View of Dynamics, ont été introduits plus tard par Marcelo Viana.
Il a été décidé de préserver 'ambiance de 'exposé en conservant une narration
a la premiere personne. Je remercie Marcelo pour ses contributions a cet arti-
cle. A mon avis, celles-ci ont beaucoup amélioré la présentation de 'envergure
mathématique et de l'influence de Jacob Palis.

Random perturbations of nonuniformly expanding maps
JOSE FERREIRA ALVES & VITOR ARAUJO ..ottt 25
Nous donnons des conditions suffisantes et des conditions nécessaires pour
la stabilité stochastique de transformations non uniformément dilatantes, avec
ou sans ensembles critiques. Nous prouvons aussi que le nombre de mesures
de probabilité qui décrit le comportement statistique asymptotique des orbites
aléatoires est borné par le nombre de mesures de SRB si le niveau de bruit
est assez petit. Comme application de ces résultats nous prouvons la stabilité
stochastique de certaines classes de transformations non uniformément dila-
tantes présentées dans [Vil] et [ABV].

The minimal entropy problem for 3-manifolds with zero simplicial volume
JAMES W. ANDERSON & GABRIEL P. PATERNAIN ......... ..., 63
Dans cet article, nous considérons le probléeme de ’entropie minimale, ¢’est-
a-dire la question de P'existence d’une métrique lisse d’entropie (topologique)



xviii RESUMES DES ARTICLES

minimale, pour certaines classes de variétés fermées de dimension 3. Précisé-
ment, nous montrons les deux résultats suivants.

Théoréme A. Soit M une variété fermée de dimension 3, orientable et
wrréductible, dont le groupe fondamental contient un sous-groupe Z & Z. Les
propriétés sutvantes sont équivalentes:

(1) le volume simplicial ||M|| de M est nul et le probléme de Uentropie mini-
male pour M peut étre résolu;

(2) M admet une structure géométrique modelée sur E* ou Nil;

(3) M admet une métrique lisse g avec hyop(g) = 0.

Théoréme B. Soit M wune variété fermée de dimension 3, orientable et
géométrisable. Les proprictés suivantes sont équivalentes:

(1) le volume simplicial |M]| de M est nul et le probléme de Uentropie mini-
male pour M peut étre résolu;

(2) M admet une structure géométrique modelée sur S*, S* x R, E*, ou Nil;
(3) M admet une métrique lisse g avec hop(g) = 0.

Statistical properties of unimodal maps: smooth families with negative Schwarzian
derivative
ARTUR AVILA & CARLOS GUSTAVO MOREIRA ..o, 81

Nous montrons que I'ensemble des familles d’applications unimodales telles
que presque tout parametre non régulier est Collet-Eckmann avec récurrence
sous-exponentielle de I'orbite critique est résiduel. Ceci nous amene a donner
une description statistique détaillée et robuste de la dynamique. Nos résultats
démontrent la conjecture de Palis dans ce contexte.

Geometry of Multi-dimensional Dispersing Billiards
PETER BALINT. NIKOLAI CHERNOV, DOMOKOS SzAsz & IMRE PETER TOTH 119

Dans cet article, on étudie les propriétés géométriques des billards dispersifs
multi-dimensionnels. D'une part, on découvre un comportement non régulier
dans les variétés singulieres du systeme (cette découverte concerne aussi la caté-
gorie plus générale des billards semi-dispersifs). D’autre part, on donne une de-
scription géométrique cohérente pour les variétés instables, puis on démontre
d’importantes propriétés de régularité. Toutes ces questions sont particuliere-
ment en rapport avec 1'étude du comportement ergodique et statistique de la
dynamique.

Homoclinic orbits near saddle-center fixed points of Hamiltonian systems with
two degrees of freedom

PATRICK BERNARD, CLODOALDO GROTTA RAGAZZO & PEDRO A. SANTORO
SALOMAO ottt e e e e 151

On étudie une classe de systemes hamiltoniens sur une variété symplectique
de dimension 4 qui admettent un point fixe de type selle-centre et vérifient la
propriété suivante: chaque orbite périodique de la variété centrale du point fixe
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RESUMES DES ARTICLES xix

a une orbite homocline, mais le point fixe lui-méme n’a pas d’orbite homo-
cline. On montre de plus que ces systemes ont un comportement chaotique au
voisinage de la surface d’énergie du point fixe.

On the scaling structure for period doubling
GARRETT BIRKHOFF, MARCO MARTENS & CHARLES TRESSER ............... 167

Nous décrivons un ordre sur 'ensemble des rapports d’échelle de I’ensemble
de Cantor du doublement de période générique universel lisse, et montrons que
cet ensemble de rapports forme lui-méme un ensemble de Cantor, ce qui est
une conjecture formulée par Coullet et Tresser en 1977. Ce résultat établit ex-
plicitement la complexité géométrique de 'ensemble de Cantor du doublement
de période universel. Nous montrons aussi un résultat de convergence pour
les deux opérateurs de renormalisation du doublement de période, agissant sur
I'espace de codimension 1 des applications de doublement de période.

Robustly transitive sets and heterodimensional cycles
CHRISTIAN BonaTTI, LORENZO J. Diaz. ENRIQUE R. PujALs & JORGE
ROCHA 187

On sait que les ensembles robustement transitifs non hyperboliques posse-
dent une décomposition dominée et contiennent génériquement des points péri-
odiques de différents indices. Nous montrons que, sur une partie C''-ouverte et
dense de difféomorphismes ¢, les indices des points périodiques d'un ensemble
A, robustement transitif forment un intervalle dans N. Nous montrons aussi
que les classes homoclines de deux points périodiques de A, sont robustement
égales. Finalement, nous décrivons les types de tangences homoclines qui peu-
vent apparaitre dans A, en analysant les différentes décompositions dominées

de A.

Coupled Hopf-bifurcations: Persistent examples of n-quasiperiodicity determined

by families of 3-jets

HENK BROER ... 223

Dans cet article, on présente des exemples de champs de vecteurs dépen-

dant de parametres et déterminés par leur 3-jet, qui présentent une n-quasi-
périodicité persistante. Dans l'espace des parametres, ce phénomene apparait
sur un ensemble de mesure relativement grande. Les bifurcations de Hopf cou-
plées en sont 'exemple principal. On étend cet exemple en toute généralité a
Pespace de tous les 3-jets.

Walks in rigid environments: symmetry and dynamics
LEONID A. BUNIMOVICH ...ttt ittt ittt ettt 231

Nous étudions des systemes dynamiques engendrés par le mouvement d'une
particule sur un ensemble de dispersions distribuées dans un réseau. Ces au-
tomates cellulaires déterministes sont appelés gaz de réseau de type Lorentz
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ou marches en environnements rigides. Nous démontrons que ces modeles peu-
vent étre completement résolus en dimension 1. Les régimes de mouvement
peuvent servir d’exemples dynamiques simples de diffusion, sous-diffusion et
supra-diffusion.

Perverse solutions of the planar n-body problem
ALAIN CHENCINER. .« .ttt ettt ettt ettt e ettt 249

Les solutions perverses du probleme des n corps sont celles qui satisfont aux
équations du mouvement pour au moins deux systemes distincts de masses. Je
fais quelques remarques simples sur la question de leur existence, question qui
curieusement semble nouvelle.

Chaos versus renormalization at quadratic S-unimodal Misiurewicz bifurcations
EDUARDO COLLI & VILTON PINHEIRO .........oiuiiiiiiiiiiiiiiiiiiiiiann... 257

Nous étudions des familles C* d’applications unimodales de I'intervalle avec
une dérivée de Schwarz négative et un point critique quadratique, qui déploient
transversalement une bifurcation de Misiurewicz, et nous démontrons, pour ces
familles, que I'existence d’une mesure de probabilité invariante absolument con-
tinue (“chaos”) et I'existence d’'une renormalisation sont prévalentes en mesure
dans l'espace des parametres. D’autre part, la méthode montre aussi que
Pexistence d’une renormalisation est dense et le chaos a lieu avec une mesure
positive.

ASTERISQUE 286



PREFACE

These two volumes collect original research articles submitted by participants of
the International Conference on Dynamical Systems held at IMPA, Rio de Janeiro,
in July 19-28, 2000 to commemorate the 60th birthday of Jacob Palis.

These articles cover a wide range of subjects in Dynamics, reflecting the Confer-
ence’s broad scope, itself a tribute to the diversity and influence of Jacob’s contribu-
tions to the mathematical community worldwide, and most notably in Latin America,
through his scientific work, his role as an educator of young researchers, his respon-
sibilities in international scientific bodies, and the efforts he has always devoted to
fostering the development of Mathematics in all regions of the globe.

His own mathematical work, which extends for more than 80 publications, is de-
scribed in Sheldon Newhouse’s opening article. It is, perhaps, best summarized by
the following quotation from Jacob’s recent nomination for the French Academy of
Sciences: “sa vision, en constante évolution, a considérablement élargi le sujet”.

As Jacob does not seem willing to slow down, we should expect much more from
him in the years to come...

Rio de Janeiro and Paris,
May 20, 2003
Welington de Melo, Marcelo Viana, Jean-Christophe Yoccoz
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ON THE MATHEMATICAL CONTRIBUTIONS OF
JACOB PALIS

by

Sheldon Newhouse

Abstract. — A Conference on Dynamical Systems celebrating the 60th birthday of
Jacob Palis was held at IMPA (Instituto de Matematica Pura e Aplicada) in Rio
de Janeiro from July 19-28, 2000. This article is a revised and expanded version of
a lecture I gave at the Conference. Many additions, including the list of references
and the entire sections below on Homoclinic Bifurcations, Cantor Sets and Fractal
Invariants, Non-Hyperbolic Systems, and A Unifying View of Dynamics, were made
later by Marcelo Viana. It was decided to preserve the flavor of the lecture by keeping
the narrative in the first person. I am grateful to Marcelo for his contributions to this
paper. In my opinion, they greatly improved the presentation of the mathematical
scope and influence of Jacob Palis.

Introduction

Let me begin just by saying that Jacob has made many, many contributions to
Mathematics. T will not talk about all of them because, in fact, in one hour it’s
impossible to discuss in any detail all of them. I pick some of what I consider to be
the main contributions, and there will be relatively little that is new for experts, but
I hope you will be reminded of many experiences during the last thirty or some years
of the development of Dynamical Systems.

First, to my mind his primary mathematical contributions fit into three categories:
global stability related to the concepts of structural stability and Q-stability;
bifurcation theory, which is how systems depending on parameters change, how

their structure changes.
formulation of some general ideas and conjectures, that motivated several very
interesting recent results in this field.

I will talk about these aspects of his work a little bit later. Besides these types of
subjects there are many other ancillary results, many interesting kinds of things.

2000 Mathematics Subject Classification. — 37Dxx.
Key words and phrases. — Hyperbolic, Morse-Smale, structural stability, Axiom A, bifurcation theory,
homoclinic tangency, tubular families, {2-stability, stability conjecture.
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2 S. NEWHOUSE

But, together with the mathematical contributions that he has been making, one
has to appreciate and understand the overview and direction of research that Jacob
is responsible for. At the present time he is at

- 35 graduate students, and some 30 grand-students, originating from 10 different

countries mainly in Latin America, as you can see in his academic tree (attached to
this paper).
Some of these students have become main figures in the whole theory of Dynamical
Systems, in fact in the world of Mathematics. You know who they are as well as I do,
I don’t need to mention names. It’s a testimony to his vision, his generosity, and
the freedom of ideas that he’s encouraged, that he is such an inspiration to so many
people.

In addition, I think it’s really fair to say that in our time Jacob Palis has been
one of the main figures responsible for the development of Mathematics and Science,
primarily in Latin America'’) and, in fact, in many other places, through his

organization of meetings, symposia, workshops, and the support of sciences and
Mathematics in developing countries, most notably, that I'm familiar with, in Trieste.
He has facilitated the contacts between scientists who have had great difficulty in
traveling to the west for political or other reasons. They were able to establish contacts
with western mathematicians in the settings of meetings, workshops, and schools
where one can get to meet many people. I myself met a number of people from
mainland China in Trieste, at a time when it was extremely difficult for them to travel
to Western Europe. Jacob has been one of the primary organizers and supporters of
such occasions.

Moreover, he has been responsible, in great measure, for

- the tremendous growth of IMPA, this wonderful institute, as a researcher and,
more recently, also as the Director.

I think it’s fair to say that IMPA has become the principal center for Mathematics in
Latin America and, certainly, one of the world centers for Dynamical Systems. In no
small measure is this due to his efforts and, again, his vision.

1 want to go now toward some of the mathematical developments Jacob has ac-
companied in his many years of activity.

Structural Stability

Let me go back to 1960. Let M be a compact connected smooth manifold without
boundary, and let us consider the space D" (M) of C" diffeomorphisms on M, and the

(D The impact of Jacob Palis’s work throughout Latin America was the subject of another lecture at
the Conference, by Alberto Verjovsky.
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ON THE MATHEMATICAL CONTRIBUTIONS OF JACOB PALIS 3

space X"(Al) of €' vector fields on M. as well as certain distinguished well-known
subsets of these

Dr (M) = set of C'! structurally stable diffeomorphisms on M,

X! (M) = set of C! structurally stable vector fields on M.

This notion of structural stability means that under any small C'* perturbation, the
entire orbit structure persists after a global continuous coordinate change. As far as
I know, it was first presented by Andronov and Pontrjagin in 1937. They introduced
these systems, that they called rough systems, or coarse systems, and the primary part
of the paper [2] was to characterize them among vector fields in the two dimensional
disk which were nowhere tangent to the boundary. And what they described in that
paper was that a vector field X is structurally stable if and only if

(a) X has only finitely many critical elements (singular points and periodic orbits),
all hyperbolic,

(b) and there are no saddle connections.

The next principal result connected to structural stability we will mention was
due to Mauricio Peixoto in a paper [53] that was published in 1959. There, he
studied various general properties of structurally stable systems and proved that the
Andronov-Pontrjagin systems formed an open and dense subset of the set of all vector
fields on the two dimensional disk which were nowhere tangent to the boundary. Later,
in [54], in a somewhat surprising way, he proved the following theorem: on a compact
oriented surface M2,

the structurally stable vector fields X7, (M?) form a dense open set in the space
X" (M?) and

- they are completely characterized by the Andronov-Pontrjagin conditions (a)
and (b), and the additional condition that the a- and w-limit sets of every point a
are critical elements.

As far as I know, originally this paper was thought to prove that the result is true
for all surfaces (not necessarily orientable), but that’s still not known, except in the
case of genus two, where Carlos Gutierrez [18] proved the general result, and in the
C'! topology, where it is a consequence of Pugh’s closing-lemma [56].

This led to two main questions at the time:

— Is X7 (M) non-empty, that is, do structurally stable systems exist on any mani-
fold?

- Is X, (M) always dense in the space X'"(M) of all vector fields?

Also the analogous questions for C" diffeomorphisms on compact manifolds.

Well, to some people’s disappointment, the second question, the density, has a
negative answer. That was discovered by Smale around 1964 or 65. He found out
that on any manifold in dimension bigger than or equal to 4 there were open sets
of vector fields which were not structurally stable. That dimension was then made
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optimal by Bob Williams in the end of the 60’s [68]: he found more detailed versions
of Smale’s theorem, and a counter-example in dimension 3.

Around the same time, in the 60’s, in the Soviet Union, Anosov studied other kinds
of structurally stable systems. The systems that he called C-diffeomorphisms (3],
where the entire space had a splitting into two continuous distributions invariant by
the derivative, one of which was exponentially expanded and the other exponentially
contracted under iterates. These systems, now well known, were coined the name
Anosov diffeomorphisms by Smale in his 1967 paper [65] in the Bulletin of the AMS.
What Anosov was able to to prove for these systems was that

— they formed an open subset of the set of all C! diffeomorphisms on a manifold
- and they were structurally stable systems.

The methods were related (I don’t know, in fact, in which order) to his celebrated
result that geodesic flows on manifolds with negative curvature were structurally
stable and had the flow version of these Anosov conditions.

At this time, in the mid 60’s, what was then the status of this kind of mathemat-
ics? We had high dimensional examples of structurally stable systems. They exhibited
very complicated recurrence, and they were only known in special manifolds. In fact,
for the Anosov systems the existence of the invariant bundles of course brings with it
topological obstructions. So, for example on surfaces, Anosov diffeomorphisms only
exist on the torus. And in higher dimensions, also only on very special manifolds. In
fact, for a while it was felt that the only manifolds that admitted Anosov diffeomor-
phisms were the tori, of any dimension. Smale found examples using other kinds of
Lie groups, non-Abelian Lie groups, but still they were very special in the kinds of
manifolds that can exhibit them.

What about simple recurrence, that is, systems that don’t have complicated recur-
rent orbits? Motivated by gradient systems, which Smale sort of used for going back
and forward between dynamical systems and topology, a special class of dynamical
systems, which we now call Morse-Smale systems, was defined. In the diffeomorphism
case, these are systems where the non-wandering set consists of a finite number of
hyperbolic periodic orbits, and if you have two such orbits their stable and unstable
manifolds are transverse. Analogous definitions were given for vector fields, where
the non-wandering set consists of finitely many critical points and periodic orbits all
hyperbolic, and with the transversality conditions.

Smale was able to prove that there was a residual set of gradient systems (a residual
set of functions) on any compact manifold that were Morse-Smale, and their time-one
maps were Morse-Smale diffeomorphisms. The easy part of this is to realize that a
Morse function has only hyperbolic critical points as its non-wandering set. But it’s
not so obvious to get the transversality condition: that is a consequence of a general
approximation theorem, the Kupka-Smale theorem, which was done in those days.
And Smale conjectured that,
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— Morse-Smale systems form an open set in the space of all dynamical systems,
both D"(M) and X" (M)
and every Morse-Smale system is structurally stable.
And then, in a remarkable result in 1967, in his thesis [38] Jacob Palis proved that
the first statement, the openness statement, held in general. And he proved the
second statement, that Morse-Smale systems were structurally stable, for any systems,
diffeomorphisms and vector fields, in dimension less or equal to 3.

A Geometric Approach

To indicate some of the difficulties which Jacob had to overcome in proving this
theorem, let’s take a simple example of a Morse-Smale diffeomorphism on the 2-sphere
as indicated in Figure 1, where we have six fixed points as the non-wondering set. The

Ficure 1. Tubular families

circles represent sources and sinks, and we have two saddle points, I denote p; and p,
such that the unstable manifold of p; has some transverse intersection, a heteroclinic
saddle connection, with the stable manifold of p».

Well, it was known earlier that there was a local stability phenomenon for hyper-
bolic fixed or periodic points, the Grobman-Hartman theorem. Locally, the system
can be topologically linearized, that is, on a neighborhood of each periodic point the
map is topologically conjugate to its derivative at the periodic point. But you need
to do much more to get a global conjugacy, of course, you have to preserve stable and
unstable manifolds globally. And orbits near the saddle points in the past go near the
sources, and in the future go near the sinks. So, to have some conjugacy between a
system like this and its perturbation it’s not enough to look at local pictures, you have
to glue them together in a special way. And the gluing is not obvious at all, because
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the local linearizations are very special, so how you glue this in some compatible way
was a major problem.

And here there was the first major development that Palis came up with, which
were the so-called tubular families, or invariant foliations, that I'll describe in some
detail. They turned out to be very important for many later developments. as we'll see.
These were invariant foliations defined in a neighborhood of each periodic point, one
family for the stable direction and another for the unstable direction, and they were
compatible: if two leaves from different periodic points intersect, then one contains
the other. The construction of this is not at all obvious, it's still technically quite
difficult — a very intricate geometric construction. The tubular families have different
dimensions, in general. And the intricacies of this construction is what forced the
restriction to dimension 3 in Jacob's thesis. the higher dimension analogue only came
later.

In particular, initially it was thought that topological questions would arise in this
connection, since one has to extend maps defined on certain subsets to bigger sets. It
was thought that the annulus conjecture, a major unsolved problem at the time, was
related to the higher dimension analogue of this tubular families method. Well, T'm
not sure about the exact details of how these problems were overcome, but together
with Smale in 1968 or 69. the general construction of tubular families was given, and
the general structural stability of Morse-Smale systems in any dimension was proved
[42].

It’s important to notice that there is a lot of freedom in the construction of these
tubular families. The conjugacies are not unique. The existence of invariant manifolds
covering the whole manifold was crucial to Anosov in his treatment of structural
stability. Those invariant manifolds are unique, and so the conjugacies, if they are
near the identity, are unique for Anosov systems. Here they are highly non-unique,
and in fact the flexibility of the choice is very much related to the freedom one has
in the construction of tubular families. So this was a major breakthrough at the time
and still is, in my opinion, a major contribution, that came quite early in his career.

This had two main corollaries. The first one was that

- an open dense subset of the set of gradient systems on any manifold consists of
structurally stable vector fields;

Even more, the time-one maps of such vector fields are structurally stable diffeomor-
phisms. That’s much stronger. Indeed, as we know, the usual equivalence relation
for vector fields is homeomorphisms taking orbits to orbits. A stronger equivalence
relation is conjugacy, actual one parameter group conjugacy. And structural stabil-
ity for the time-one maps gives stability under this stronger equivalence relation, for
gradient flows. So, as an extension of this, the problem of the existence of structural
stability was solved in a very positive way:

— every manifold has structurally stable vector fields and diffeomorphisms.
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The Stability Conjectures

Around this time, in the late 60’s, having proved that structurally stable systems
are not dense, Smale was looking for a more general kind of system, that would still
have some good structure and have the chance to form a dense subset in the space of
all dynamical systems. And so he formulated what was called the Q2-stability theorem.

Our system is Q-stable if when you take a C'! perturbation of it you have a con-
jugacy from the non-wandering set of the first system to the non-wandering set of
the second one (not a global conjugacy on the whole manifold, as in the definition
of structural stability). He studied special systems, the so-called Axiom A diffeomor-
phisms, where the non-wandering sets are hyperbolic sets, and the periodic points are
dense in the non-wandering set. He also assumed an additional property, the no-cycle
property, that gives the ability to construct so-called filtrations for the system, that
is, to isolate the recurrent orbits in individual indecomposable pieces. And he proved
the theorem that Axiom A and the no-cycle property implied that the diffeomorphism
was (2-stable.

Around the same time, Jacob proved that if you have an Axiom A system and it
has a cycle, then it is not Q-stable. And that led to the Stability Conjectures, which
were also present in the Palis and Smale paper of 1969 [42]:

(1) a diffeomorphism f € D"(M) is structurally stable if and only if it satisfies
the Axiom A and the so-called strong transversality condition: stable and unstable
manifolds are in general position at each point wherever they meet;

(2) and f € D"(M) is Q-stable if and only if it satisfies the Axiom A and the
no-cycle property.

And they made analogous conjectures for flows.

Let me mention a little personal anecdote in connection with this theorem and the
formulation of these conjectures. For those who were around that time, you remember
that the first formulation of the Q-stability theorem had another stronger condition,
called Axiom B. Axiom B said that if you have two basic sets and the unstable
manifold of one accumulates on the other, then there is a periodic point in the first
whose unstable manifold has a transversal intersection with the stable manifold of the
other. And the first formulation of the Q-stability theorem, in fact the formulation
that is in the Bulletin paper [65], says: Axiom A plus Axiom B implies Q-stability,
or something to that effect.

I remember Smale giving a lecture in the seminar in Berkeley in 1966 or maybe
1967. T was a new graduate student just sort of going to this seminar from time
to time, but it was a very active and energetic seminar, many questions, comments,
discussions. I remember Charles Pugh was there, and Mike Shub, Morris Hirsch,
Jacob Palis. As a young graduate student we look around at all those famous people
in the room, and just watch what they were doing. Well, Terry Wall had just come
in from England and was interested, so he went to the seminar. In fact, he was
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under jet-lag so he was asleep in a large part of the talk. So, Smale was doing the
construction of the local conjugacy of the Q2-stability for the basic sets. Then, with
Axiom B, he constructed this partial order on the basic sets, and hence a filtration
to isolate each piece, so that one can get the global conjugacy. And, suddenly, Terry
woke up and looked and said, quietly: “Is all you need, the partial order relation, in
order to get the stability?” This was an agitated seminar with many people. Steve
turned and said: “Well, maybe, I'm not sure about that, I'm not sure.”

At that instant, I didn’t know who Jacob Palis was, but he became very animated
and said: “That’s right, that’s it, that is all you need!” And the next day, as I recall,
he proved that if you had a cycle then you had Q-explosions, and so, in fact, this
no-cycle condition was necessary for stability. Later on, in the paper that actually
appears in the proceedings of the symposium [42], you see Axiom A and no-cycle
condition, not Axiom A and Axiom B, Axiom B disappeared. So, as part of this
discussion, Jacob had a significant part in the formulation of the 2-stability theorem
as it now sits.

From Hyperbolicity to Stability

How does one go beyond toward more general stability theorems and proving these
conjectures? What did people know at that time? They knew that the Morse-Smale
systems were structurally stable. They knew that Axiom A and no-cycle property
implies Q-stability. How does one to get more general structurally stable systems?
One idea at the time was to take Jacob’s tubular family construction and extend
it to Axiom A systems. That is, to get an invariant foliation on neighborhoods
of complicated hyperbolic sets. It turned out to be quite a complicated thing to
do and, in fact, this is still not known in general, it’s not known how to do that
for high dimensional systems. But that program did succeed for two-dimensional
diffeomorphisms, with the thesis of Welington de Melo in 1971.

The next progress came in what might seem a curious way. Jiirgen Moser gave
a second proof of the stability of Anosov systems, using the so-called infinitesimal
methods. His idea was the following: you want to solve the equation ho f = goh for
a homeomorphism h. You rewrite this as

f_lohof:f'logoh.

Then you take a Riemannian metric on your manifold, and try to find h as the
exponential of some continuous vector field v, which should be C%-small so that the
homeomorphism is close to the identity. So, writing h = exp(v), and also f~1og =
exp(w) for a C''-small vector field w, you get

™V oexp(v) o f = exp(w) o exp(v).
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Linearizing this equation (or using infinitesimal methods, which is the term I use),
you get

exp(Df ' ovo f) = exp(w + v),

1

up to a small error. So, taking exp™" in the previous relation, it becomes

Df 'ovo f+s(v,w) =w+v,
where s(v,w) is small. Denoting Fv = Df~!owvo f, this may be rewritten as
(I-Fyv=v—-Df tovof=sv,w)—w.

So, we know w, which is a C'-small vector field, and we are looking for v, a small
continuous vector field. Moser realized that if you could invert this operator (I — F')
on the space of continuous vector fields, then you could solve this functional relation
for v, using the contraction mapping theorem. And, in fact, the Anosov condition
was precisely the condition you need to make (I — F') invertible.

So, he was able to give a new proof of the stability of Anosov systems using vector
field methods, infinitesimal methods, whereas Anosov’s proof made strong use of the
existence of integral manifolds for the expanding and contracting distributions, the
stable and unstable manifolds. Well, at the time this was interesting because it made
Anosov’s proof understandable to people in the West, there was no published English
version of it. And also I think it was thought of as a useful addition, a curious new
proof of a known result. One thing that came out of it is that you get unique solutions
near the the identity, which you can also prove by other methods.

There is an other development that I should mention. In the group of people
who were in Berkeley and in the West at the time, the way that Moser’s methods
became known was through an implicit function theorem argument that John Mather
produced. It turned out that, in detail, Mather’s argument was actually incorrect,
because differentiability assumptions were not satisfied. What the method gave you
was a continuous solution to the functional equation, it didn’t prove that the solution
was a homeomorphism. But the arguments could be fixed up. 1 think it was Mike
Shub who observed, and was well-known in the Soviet Union as well, that Anosov
systems were expansive, and you can use that to show that solutions which are C?-
close to the identity actually have to be one-to-one. So you got the proof anyway,
even if the implicit function theorem didn’t work.

Far away, in the middle of the United States, Joel Robbin was learning about those
things, and I think he shocked everybody by announcing that he could prove that, in
the C? case, Axiom A diffeomorphisms satisfying the strong transversality condition
are structurally stable. Well, how did he do it? He used infinitesimal adaptations of
the tubular families constructions. Basically, the conjugacies were not unique, they
involved choices, and he used the fact that Moser’s transformation (I — F) had a
continuous right inverse. You can see Jacob’s influence again, even at that level: at
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the end of the paper [60] there’s a ratio that says
(Moser) : (Anosov) = (Robbin) : (Palis — Smale).

The idea being that Moser produced an infinitesimal proof of the structural stability,
removing the necessity of integrating the invariant subbundles for the construction,
and Robbin produced an infinitesimal proof for Axiom A systems, removing the ne-
cessity of tubular families.

For technical reasons Robbin needed the C? assumption, not for the perturba-
tions, but for the original diffeomorphisms. That was ultimately improved by Clark
Robinson, who proved the general structural stability theorem, that Axiom A C!
diffeomorphisms satisfying the strong transversality condition are structurally stable
[62], and he also proved it for the vector field case [61]. Concerning Q-stability, in
Smale’s paper [65] where he proves his Q-stability theorem, he makes the statement
that, presumably, similar methods can be used for flows. It was a highly non-trivial
extension required to do it for lows, and it was carried out by Charles Pugh and Mike
Shub [57]. So, at this stage, which I suppose is the mid-70’s, we had general sufficient
conditions for structural stability and Q-stability, both for diffeomorphisms and for
flows.

From Stability Back to Hyperbolicity

Remember the stability conjecture had a converse as well. So there was a lot of
activity focussed on the converse. The initial efforts involved changing the definition
of stability, to include conditions about dependence of the solution on the perturbation
(whether it is continuous, whether is Lipschitz), and a number of people contributed
with interesting works in that direction. John Franks [14] had a notion of time-
dependent stability, with which he was able to characterize Axiom A and strong
transversality systems. John Guckenheimer [16] had a notion of absolute stability,
and so on. And then the full problem itself was treated in some special cases in low
dimensions, by Liao [21], Mané [23, 24], Pliss [55], and Sannami [64].

But the major breakthrough came in 1986, when Ricardo Mané, one of Jacob’s
early graduate students, completely solved the problem! He proved what was the main
remaining part, that is, that structurally stable systems had to satisfy the Axiom A
[25].

Curiously enough, although this is a substantial result which uses much information
about the non-wandering set, Ricardo was not able to prove the Q-stability converse,
he only proved the structural stability statement. It took some other intricate knowl-
edge, and a fair amount of effort, for Jacob to prove that converse, and so complete
the Q-stability conjecture for diffeomorphisms, again around 1986. For the flow case,
neither of the statements was known at the time, they were resolved only recently, by
Shuhei Hayashi [19] in 1994.
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So, in the development of this very important concept and theory, a period of
almost 25 years was needed to accomplish what is now one of the crown jewels in
the field of Dynamical Systems, the complete characterization of structurally stable
systems. And as you saw, Jacob Palis played a very central role in that.

That’s what I wanted to say about stability, the global stability issue. Now I want
to go toward bifurcation theory.

Bifurcation Theory

In 1970 or so, I had the privilege to come to IMPA for two years, and to begin
our program in bifurcation theory with Jacob. We started to work on the problem of
understanding the structure of how hyperbolicity breaks down when you start with a
Morse-Smale system. Basically, what we wanted to study was the so-called accessible
part of the boundary of the Morse-Smale systems. The idea is the following. Let
{&.}, be an arc (a curve) of diffeomorphisms starting at a Morse-Smale system &.
See Figure 2. You look at the first value p = b of the parameter where the system

M-S
&’h

To

Ficure 2. Bifurcations along parametrized families

fails to be structurally stable, the so-called first bifurcation point, and you want to
describe the structure of such systems &,.

Some ideas and problems were motivated by work done by Jorge Sotomayor [66]
for one-parameter families of vector fields on surfaces, and also by a general periodic
point description for one-parameter families of diffeomorphisms, which was obtained
by Pavel Brunovsky [6]. In addition, there were mathematicians in the Soviet, Union
studying similar problems, Gavrilov and Shilnikov [15], although we didn’t know that
at the time, we only became aware of their work somewhat later.

During that period I wrote two papers with Jacob, [35] and [36], in which we
basically proved the following. Assuming that at the first bifurcation point the limit
set (the closure of the a- and w-limit sets of the system) consists of a finite number
of orbits, we completely described the structure at the bifurcation for generic arcs of
diffeomorphisms. We also studied other issues related to stability as you move along
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the parameter, that I'll talk a bit more about later. But the main contents of the first
paper [35] was this description at the bifurcation in the case when the limit set has
finitely many orbits.

In the second paper [36] we considered systems where at the bifurcation point
the limit set was actually hyperbolic, it stayed hyperbolic, but structural stability or
Q-stability failed all the same, because of the creation of a cycle. We studied the
situation where the cycle was equidimensional, that is, the stable manifolds of all the
periodic points in the cycle have the same dimension. We were able to prove that in
that situation the bifurcation map &, was accumulated by Axiom A, non Morse-Smale
diffeomorphisms. That is,

— there existed parameter values pi; > po > -+ > p; > - -+ converging to the first
bifurcation point b, such that the diffeomorphisms §,,, satisfied the Axiom A and the
strong transversality condition, and the non-wandering sets (,,,) were infinite.

Moreover, the non-wandering sets were all topologically distinct, so that £, could not
be Q-conjugate to each other. In fact, we proved that £, satisfies the Axiom A and
the strong transversality condition for most parameters p > b near b, in the sense that
such parameters are a fraction close to 1, in measure, of small intervals (g, u + €).

Later, in a paper with Floris Takens and Jacob [37], we completely characterized
the so-called stable arcs of diffeomorphisms, under the assumption that the limit set
have finitely many orbits for each parameter value. An arc {{,},, of diffeomorphisms
is called stable if, given any perturbation {n,}, , as represented in Figure 2, then

(1) every diffeomorphism §,, in the arc is conjugate to a diffeomorphism 7, in the
perturbed one, with a nearby parameter v,

(2) and the conjugacy varies continuously with the parameter.
That’s the condition of stability for arcs of diffeomorphisms. In [37] we character-
ized this condition and, as part of that work, a number of new concepts and ideas
were introduced. In particular, a notion of rotation interval for circle endomorphisms
was introduced. Strong rigidity for saddle-node bifurcations also came up in this
work. One consequence of this strong rigidity phenomenon for saddle-node bifurca-
tions is that the strong-stable and strong-unstable manifolds have to be preserved
under conjugacy that varies continuously with the parameter (in general, topological
conjugacies don’t preserve strong-stable and strong-unstable manifolds).

Then these works were extended in a very significant way by Palis and Takens [43],
who proved in 1983 that

— an open dense set of one-parameter families of gradients systems on any manifold
were stable in the sense I've just described (continuous variation of the conjugacy with
the parameter).
And somewhat later, in 1990, Mario Jorge Dias Carneiro and Jacob (8] proved that
one can extend that to two-parameter families: an open and dense subset of families
of gradient systems depending on two parameters are stable.
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One might have hoped, in fact the hope around that time and earlier was that
k-parameter families of gradient systems in a dense open set would be stable. That
was shown to be false by Takens, who proved that for 8 or more parameters the stable
families of gradient systems are not dense. I don’t know how far down one has got
yet, I think the conjecture still is that for k less than or equal to 4 the stable families
should form an open and dense subset in the space of gradient systems.

In these constructions, the geometric freedom of tubular families and how you bring
them up is, again, of fundamental importance. It’s interesting to point out that at
the time people discussed whether infinitesimal maps could be used for this theorems,
but, as far as I know, they never managed to work. So far, infinitesimal methods have
only been useful for the general structural stability theorem.

Homoclinic Bifurcations

Bifurcation theory continued to be one of Jacob’s major projects during the 80’s
and afterwards. Initially, the goal was to extend some of these results, especially from
[36], to the case where the limit set may have infinitely many orbits. In particular,
now you want to consider more general arcs of systems starting inside the Axiom A,
not just the Morse-Smale systems. But this also led to some very interesting new
problems and ideas related, for instance, to fractal dimensions.

To explain this, let me consider a situation as described in Figure 3, a surface dif-
feomorphism with a non-transverse intersection between the stable and the unstable

W (})m
\{Tn

\
Pl TN |

Ficure 3. Homoclinic tangency associated to a hyperbolic set

manifold of a periodic saddle point p. We call that intersection a homoclinic tangency.
And the periodic point p is contained in an infinite hyperbolic set H of the diffeomor-
phism, a horseshoe. This means that the homoclinic tangency is accumulated by a
pair of laminations, or partial foliations, formed by the stable and unstable manifolds
of all the points in H.

A diffeomorphism like this may be obtained as a first bifurcation &, of an arc {¢,}
starting at an Axiom A system. The map &, itself is not Axiom A, the homoclinic
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tangency implies that the non-wandering set is not hyperbolic. Then, as you increase
the parameter, the stable and the unstable laminations move with respect to each
other and, whenever there is a tangency between a leaf of one and a leaf of the other,
the diffeomorphism can not be Axiom A.

Since these are just laminations, not full foliations of open sets, you might expect
that such tangencies should be easy to avoid, taking advantage of the gaps between
the leaves. However, I showed in my thesis [32] that it is not true in general. In fact,

if the laminations are transversely thick. that is, if the gaps are relatively small,
it is impossible to avoid tangencies between leaves of the two laminations, they exist
for a whole open set of diffeomorphisms.

I'll call this phenomenon persistent homoclinic tangencies. Later, in [34], T proved that
this phenomenon occurs near any surface diffeomorphisin with a homoclinic tangency:

- there always exist open sets in the parameter space arbitrarily close to the bifur-
cation, that correspond to persistent tangencies.

And then Clark Robinson [63] deduced a version of this result for arcs of diffeomor-
phisms.

Palis and Takens wanted to understand this issue in more detail, and they came to
establish a deep connection between homoclinic bifurcations and fractal dimensions
of hyperbolic sets. Let me explain this.

In the paper [36], that I mentioned before, Jacob and I had shown that tangencies
between the stable and the unstable laminations were, essentially, the only thing one
has to worry about. We showed that if there were no tangencies and, in fact, the map
was not too close to having a tangency, then the non-wandering set was hyperbolic.
So this was a kind of converse to the fact that tangencies are an obstruction to
hyperbolicity.

In the setting we were dealing with the limit set was finite. and we were able to
show that parameters for which the map is too close to a tangency have small rela-
tive measure near the bifurcation. That’s how we proved that hyperbolicity (Axiom
A and strong transversality) prevails near these homoclinic tangencies, in terms of
measure in parameter space. And the arguments suggested that it might be possible
to avoid tangencies for most parameter values in more general situations, provided
the laminations were not too thick.

Now, Palis and Takens realized that this should be formulated in terms of the
transverse fractal dimensions of the laminations. The condition they required was
that the sum of the transverse Hausdorff dimensions of the stable and unstable lam-
inations should be less than 1. By definition, the transverse Hausdorfl dimension is
the Hausdorft dimension of the intersection of the lamination with some cross-section.
It can be shown, in this context, that the definition doesn’t depend on the choice of
the cross-section.
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It turns out that the sum of these transverse Hausdorff dimensions is equal to the
Hausdorff dimension of the hyperbolic set H. So, their theorem, proved around 1984,
has a very elegant statement [45]:

— if the Hausdorff dimension H D(H ) of the hyperbolic set involved in the tangency
is less than 1, then &, is hyperbolic (Axiom A and strong transversality) for most
nearby parameters p > b:

1
(1) liII(l) —m ({p € (b,b+ <) : &, is hyperbolic }) = 1.

where m(-) is Lebesgue measure.
At about the same time they proved a similar result for the heteroclinic case [44],
where the tangency is between stable and unstable manifolds of different periodic
points. Actually, in those papers they used another notion of dimension, called limit
capacity, or box dimension, instead of Hausdorff dimension. But then it became
clear that the two notions of fractal dimension coincide for hyperbolic sets of surface
diffeomorphisms. This is discussed in their book [46, Chapters 4-5], where they also
explain why (1) can always be stated with the full limit, initially in the heteroclinic
case they only had a limsup.

Then, in a paper [51] that was published in 1994, Jacob and Jean-Christophe
Yoccoz proved that the condition in the previous theorem is, in fact, optimal:

if the Hausdorff dimension of H is larger than 1, then the conclusion (1) above
no longer holds.

This statement and, to some extent, the proof itself were inspired on a result of John
Marstrand [26] about arithmetic differences

K| — AK> = {a; —XNay :a; € Ky and as € K}

of Cantor sets in the real line: if the sum HD(K,) + HD(K>3) is larger than 1 then
the difference has positive Lebesgue measure, for alimost every A. So, at this point it
was already clear that there was an important relation between this part of Dynamics
and other topics, like Geometric Theory of Dimension and Harmonic Analysis.

Cantor sets and Fractal Invariants

Motivated by this, Jacob started asking several questions about arithmetic differ-
ences of Cantor sets, with an eye on their applications to Dynamical Systems and
other areas. In particular, he conjectured that for generic regular Cantor sets K
and Ky, the arithmetic difference either has zero Lebesgue measure or contains some
interval. A Cantor set is called regular if it is generated by a smooth expanding
map. The set of such Cantor sets comes with a natural topology, inherited from the
corresponding maps.

SOCIETE MATHEMATIQUE DE FRANCE 2003



16 S. NEWHOUSE

Well, this conjecture was proved by Carlos Gustavo Moreira and Yoccoz [30],
around the beginning of 1995. Actually, they proved a rather strong version of the
conjecture. Their result applied to an open and dense set of regular Cantor sets that
has “full probability”, in some natural sense. Moreover, they get stable intersections,
which is much stronger than just having an interval contained in the arithmetic dif-
ference. Then, they proved the following substantial extension of the previous results
about homoclinic tangencies [31]: for generic arcs of diffeomorphisms {¢,}, with a
homoclinic tangency at p = b,

— for most parameters p > b close to b, in the sense of (1), either £, is hyperbolic
or 4 is in some interval with persistent homoclinic tangencies.

In other words, if PT + AT is the union of all the intervals of persistent tangen-
cies with those parameters for which the map satisfies the Axiom A and the strong
transversality condition, then

1iII(1) 1m(PT + AT N (bb+¢)) = 1.
e—0¢

The theorem of Palis and Takens says that if the Hausdorff dimension of the horseshoe
H is less than 1 then we have the same result already for the set of parameters
corresponding to hyperbolic maps. So, the main novelty of this result is when the
Hausdorff dimension is larger than 1.

There is a very natural question that arises, which is, what can we say about
the dynamics when it’s not hyperbolic. Well, Jacob has some recent joint work with
Yoccoz [52] about this, that Yoccoz will talk about later in this Conference, so I won’t
discuss in any detail.(¥) But the point is that they define so-called non-uniformly
hyperbolic sets, or non-uniformly hyperbolic horseshoes, that are an extension of the
hyperbolic sets that still have several nice properties. And they were able to show
that if the Hausdorff dimension of the original hyperbolic set H is not much larger
than 1 (they have a precise technical condition), then the diffeomorphisms &, are
non-uniformly hyperbolic for most parameters p > b near b. That is, if NUH is the
set of parameters such that the non-wandering set is a non-uniformly hyperbolic set,
then

lim lm(NUHn (bb+e)) =1,

e—0¢
as long as the Hausdorff dimension is not much larger than 1.

Now let me say a few words about the higher dimensional case. Most of this
has been proved for surface diffeomorphisms, and there are several serious difficulties
that appear in higher dimensions. The main reason is that the stable and unstable
laminations need not be transversely smooth. So, in general, it’s not even known
whether the transverse Hausdorff dimension is well defined. In fact, the geometry of
hyperbolic sets in high dimensions is much less understood than in the surface case.

(2) Abstracts of talks given at the Conference are available at www.impa.br/~dsconf/.
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In general, the Hausdorff dimension and the limit capacity are not equal, and they
do not vary continuously with the dynamical system.

However, and this is a development near my heart, Jacob and Marcelo Viana
were able to overcome some of these difficulties and, around 1989, prove the higher
dimensional extension of the result about persistent homoclinic tangencies. The result
was published in [47].

And they have very recent results together with Moreira, as we heard in Moreira’s
talk in this Conference, which show that the relation between fractal dimensions and
abundance of hyperbolicity in parameter space stays valid for families of diffeomor-
phisms in arbitrary dimension.

Non-Hyperbolic Systems

The study of bifurcations, and these results that I mentioned, are part of an effort
to go beyond the hyperbolic systems and understand very general dynamical systems.
I think that, from the beginning, Jacob was convinced that bifurcation theory was the
right way to do that or, at least, an essential part of trying to understand systems that
are not hyperbolic, that are not structurally stable. And as the theory of homoclinic
bifurcations developed, he became more and more convinced that they should play a
key role in this.

By 1989 there was a paper of Benedicks and Carleson [4] where they proved that
non-uniformly hyperbolic dynamics is frequent in the so-called Hénon family of plane
maps

h(x,y) = (1 — ax® + y, bx).
That is, for a set of values of the parameters a and b with positive Lebesgue measure,
the maps have a non-uniformly hyperbolic attractor. This was a striking extension of
a very important pioneering work of Jakobson [20], back in the late seventies, where
he had obtained a similar result for the family of quadratic real maps q(x) = 1 — az?.

Even before their paper appeared, Palis suggested that this result should be true,
more generally, for generic arcs {§,} of surface diffeomorphisms with a homoclinic
tangency. You see, it was known that returns maps of &, to certain regions near
the tangency look like the Hénon model, so that was the idea. So, he proposed this
problem to two of his students at the time, Leonardo Mora and Marcelo Viana. And
Mora and Viana [27] were able to show that the approach of Benedicks and Carleson
extended to more general dissipative systems, that are called Hénon-like maps, and
from this they could prove Jacob’s conjecture, in 1990.

These kinds of results, there are many others, relating homoclinic tangencies to
other types of complicated dynamics, convinced Jacob that homoclinic tangencies
might be some sort of unifying notion for understanding non-hyperbolic systems, at
least in low dimensions. So he made the following conjecture:
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- the union of Axiom A diffeomorphisms with those that have a homoclinic tan-
gency is dense in D" (M), if M is a surface.

In other words, every C” surface diffeomorphism that is not in the closure of the
Axiom A systems is approximated by other diffeomorphisms that have homoclinic
tangencies.

As you probably know, this conjecture was proved a couple of years ago by two
other former students of Jacob, Enrique Pujals and Martin Sambarino, in the case
= 1. Their paper has just appeared [58]. In fact, the result had been announced by
Aratijo and Mané in the early 90’s, but they never provided a proof. As a consequence
of their methods, Pujals and Sambarino also got another most interesting result [59):

-~ any arc of surface diffeomorphisms such that the topological entropy is not con-
stant on it must contain a homoclinic tangency.

There is a version of the previous conjecture for high dimensions, that says that
the union of Axiom A diffeomorphisms with those that have a homoclinic tangency
or a heterodimensional cycle should be dense in D" (M). A cycle is called heterodi-
mensional if the stable manifolds of the periodic points involved in the cycle are not
all of the same dimension. It seems that several groups of people have made progress
in the direction of this high dimensional conjecture. indeed there will be a couple of
talks on this subject in this Conference, but a complete proof is not yet available.

Back in the late eighties, Jacob suggested the study of heterodimensional cycles to
Lorenzo Diaz, as his thesis problem. The idea was to complement our own results in
[36], as I said before, we studied the equidimensional case. Now, Diaz found out that
the conclusions are quite different for heterodimensional cycles: most of the times the
bifurcating diffeomorphism &, is not accumulated by hyperbolic ones, in fact, there is
a whole interval (b,b + <) such that &, is not hyperbolic, not structurally stable, for
any parameter g in this interval. These results appeared in his thesis [11] and were
much developed in a series of joint papers with Jorge Rocha, another former student
of Jacob. See for instance [13].

And, sometime later, it became clear that heterodimensional cycles also have an im-
portant connection with the phenomenon of robust non-hyperbolic attractors, which
I'll mention again in a little while.

A Unifying View of Dynamics

By 1995, Jacob had put several ideas and conjectures together to form a coherent
picture of what might be the typical kinds of behavior of non-hyperbolic systems. This
appeared in a preprint that was published in Douady’s volume of Astérisque [41]. The
main point is a conjecture that every system can be approximated by another having
only finitely many attractors, whose basins of attraction contain almost all points. In
fact these systems should have large probability in parameter space, in some natural
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sense. And the attractors should have nice properties, such as the existence of so-
called Sinai-Ruelle-Bowen measures.

It is interesting to observe that the idea that most dynamical systems should have
a finite nunber of attractors goes back to René Thom, in the sixties, although he
didn’t make precise what “most” was supposed to mean. Certainly, he was motivated
by Smale’s ideas in hyperbolic theory at the time™, where the point of view was,
primarily, topological. Maybe because of this, it was widely understood that Thom
had in mind a residual (second category of Baire) subset of all dynamical systems
and, in this form. the finiteness statement turned out to be false [33]. So, Jacob’s
conjecture is a very interesting revival of this classical idea, in a new and more proba-
bilistic framework. A key novelty in Palis’ approach is to allow the existence of cycles
occupying a small volume in the dynamical space. Indeed, cycles have been a main
obstruction to the realization of previous global scenarios for Dynamics.

So far. it is known that this conjecture holds for quadratic maps of interval, as a
consequence of work done by Lyubich, Martens, and Nowicki. See [22]. And both
Misha Lyubich and Artur de Melo will speak in this conference about their recent
work with Welington de Melo. where they extended this to general analytic families
of unimodal maps.

In higher dimensions, there have been some very interesting results that, I believe,
were at least partially motivated by Jacob’s questions and conjectures.

There is the work of Diaz, Pujals, Ures, and Bonatti [12, 5] where they character-
ized the robust sets of diffeomorphisms in any dimension. An invariant set is robust if
it is transitive and remains transitive under any C'' small perturbation of the system.
They proved that robust sets must have a so-called dominated splitting, which is a
decomposition of the tangent space into two continuous distributions such that one
is more expanding than the other at every point, by a definite factor. In dimension 3
at least one of the distribution is hyperbolic, either expanding or contracting. This is
called partial hyperbolicity.

Moreover, Alves, Bonatti, and Viana proved existence and finiteness of ergodic
attractors, or Sinai-Ruelle-Bowen measures, for certain types of partially hyperbolic
systems, in a paper [1] that has just appeared.

Aund there is also very important work of Carlos Morales, Maria José Pacifico,
and Enrique Pujals [28, 29|, characterizing the robust sets of arbitrary flows in 3
dimensions. Robust sets containing only regular orbits must be hyperbolic, so the
more interesting case is when the set contains some singularity. They proved that any
robust set that contains a singularity is a Lorenz-like attractor, or repeller, meaning
that it has all the main features of the geometric Lorenz models of Guckenheimer-
Williams [17].

(«Toutefois, selon certaines idées récentes de S. Smale, si la varieté est compacte, presque tout
champ X présenterait un nombre fini d’attracteurs isolément structurellement stables” [67, p. 56]
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Many Other Results

There are many other important contributions that Palis has done. For instance,
there is his work on moduli invariants, that is, characterizing systems with the prop-
erty that the number of topological types of perturbations depends on a finite number
of real parameters. In [40], he discovered a smooth invariant for topological conjugacy

)\1 a2

P1 (o5 Ao Po

FIGURE 4. Moduli of conjugacy in saddle-connections

between flows with a saddle connection as in Figure 4. In fact, two such flows are
conjugated if and only if they have the same ratio of eigenvalues

Ay
a2

And, together with Welington de Melo and Sebastian van Strien [9, 10], he obtained a
characterization of such systems with mild recurrence, in a wide variety of situations.

As a part of the development of moduli theory there was a description of typical
holomorphic vectors fields, the topological types of linear holomorphic vector fields in
CP", which was done by César Camacho, Nicolaas Kuiper, and Jacob in [7].

I should also mention his series of papers with Yoccoz, where they study rigidity of
centralizers of diffeomorphisms, that are the sets of diffeomorphisms which commute
with a given diffeomorphism. In a series of papers [48, 49, 50], they prove that,
generically, the centralizer is trivial for a hyperbolic diffeomorphism, it just contains
the iterates of the map.

Actually, even back in his thesis, Jacob had been interested in a related problem:
how frequently diffeomorphisms embed in flows. He observed that there were open
sets of diffeomorphisms where the natural topological conditions that you would need
to embed in a flow were not sufficient: there were open sets of such diffeomorphisms
that did not embed in flows. And, somewhat later, in [39], he was able to prove that,
C' generically, diffeomorphisms do not embed in flows.

If you look at Jacob’s list of scientific works attached to this paper, you'll see that [
could still go on for a long time. So, let me just conclude with some personal remarks.
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Conclusion

It’s interesting to note that up to 1993 Jacob had 16 graduate students, whose
theses appeared up to that year. He’s been Director of IMPA since around 1993, and
as of 2000 he has 35 graduate students. So one might conclude that administration
is not so bad for someone with the talents of Jacob Palis...

In any event, he has exhibited leadership, as I indicated, direction and scope in
formulating conjectures and stimulating many people throughout the world. The
scope has increased dramatically as we get evidence of collaboration with Yoccoz,
with Viana, with many other people, and of much activity, many interesting results,
going deeply into the study of dynamical systems.

So, on the occasion of his 60th birthday, we all look forward to continued develop-
ment for many, many years.
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Abstract. — We give both sufficient conditions and necessary conditions for the
stochastic stability of nonuniformly expanding maps either with or without critical
sets. We also show that the number of probability measures describing the statistical
asymptotic behaviour of random orbits is bounded by the number of SRB measures
if the noise level is small enough. As an application of these results we prove the

stochastic stability of certain classes of nonuniformly expanding maps introduced in
[Vil] and [ABV].

1. Introduction

Dynamical systems theory has, among its main goals, the description of the typical
behaviour of orbits as time goes to infinity, and understanding how this behaviour is
modified under small perturbations of the system. This work refers to the study of
the latter problem from a probabilistic point of view.

Given a map f from a manifold M into itself, let (z,,),>1 be the orbit of a given
point xg € M, that is x,,+1 = f(x,,) for every n > 1. Consider the sequence of time
averages of Dirac measures J,, along the orbit of x¢ from time 0 to n. A special
interest lies on the study of the convergence of such time averages for a “large” set of
points zg € M and the properties of their limit measures. In this direction, we refer
the work of Sinai [Si] for Anosov diffeomorphisms, later extended by Ruelle and Bowen
[BR, Ru] for Axiom A diffeomorphisms and flows. In the context of systems with
no uniform hyperbolic structure Jakobson [Ja] proved the existence of such measures
for certain quadratic transformations of the interval exhibiting chaotic behaviour.
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Another important contribution on this subject was given by Benedicks and Young
[BY1], based on the previous work of Benedicks and Carleson [BC1, BC2], where
this kind of measures were constructed for Hénon two dimensional maps exhibiting
strange attractors. The recent work of Alves, Bonatti and Viana [ABV] shows that
such measures exist in great generality for systems exhibiting some nonuniformly
expanding behaviour.

The notion of stability that most concerns us can be formulated in the following
way. Assume that, instead of time averages of Dirac measures supported on the
iterates of xy € M, we consider time averages of Dirac measures (54,,J., where at each
iteration we take x;;1 close to f(x;) with a controlled error. One is interested in
studying the existence of limit measures for these time averages and their relation
to the analogous ones for unperturbed orbits, that is, the stochastic stability of the
initial system.

Systems with some uniformly hyperbolic structure are quite well understood and
stability results have been established in general by Kifer and Young; see [Kil, Ki2]
and [Yo]. The knowledge of the stochastic behaviour of systems that do not exhibit
such uniform expansion/contraction is still very incomplete. Important results on this
subject were obtained by Katok, Kifer [KK], Benedicks, Young [BY1], Baladi and
Viana [BV] for certain quadratic maps of the interval. Another important contribu-
tion is the announced work of Benedicks and Viana for Hénon-like strange attractors.
As far as we know these are the only results of this type for systems with no uniform
expanding behaviour.

In this work we present both sufficient conditions and necessary conditions for the
stochastic stability of nonuniformly expanding dynamical systems. As an application
of these results we prove that the classes of nonuniformly expanding maps introduced
in [Vil] and [ABV] are stochastically stable.

1.1. Statement of results. — Let f : Al — Al be a smooth map defined on a
compact riemannian manifold M. We fix some normalized riemannian volume form
m on M that we call Lebesque measure.

Given g an f-invariant Borel probability measure on M, we say that p is an SRB
measure if, for a positive Lebesgue measure set of points x € M, the averaged sequence
of Dirac measures along the orbit (f”(x)),>0 converges in the weak® topology to u,
that is,

n—1

. 1 " '
(1) i~ ; e(f"(x) = / v dp
for every continuous map ¢ : M — R. We define the basin of p as the set of those
points « in M for which (1) holds for all continuous ¢. The maps to be considered
in this work will only have a finite number of SRB measures whose basins cover the
whole manifold A, up to a set of zero Lebesgue measure.

ASTERISQUE 286



RANDOM PERTURBATIONS OF NONUNIFORMLY EXPANDING MAPS 27

We are interested in studying random perturbations of the map f. For that, we
take a continuous map
O T — C?(M. M)
t — fi
from a metric space T into the space of C? maps from A to A, with f = f- for
tn

some fixed t* € T. Given x € M we call the sequence T a random orbit of
JL nzl

x, where t denotes an element (t1,t,,t3,...) in the product space TV and
I =f,oofy fornz=1

We also take a family (0.). of probability measures on T" such that (supp 6. ).~ is
a nested family of connected compact sets and supp . — {t*} when ¢ — 0. We will
also assume some quite general nondegeneracy conditions on ® and (6.)-~¢ (see the
beginning of Section 3) and refer to {®.(0-):>0} as a random perturbation of f.

In the context of random perturbations of a map we say that a Borel probabil-
ity measure p© on M is physical if for a positive Lebesgue measure set of points
x € M, the averaged sequence of Dirac probability measures dy»(,) along random
orbits (fL” (;1:))”2“ converges in the weak™ topology to p° for 61 almost every t € .
That is,

n—1

2 lim — o(f'(x)) = [ odp  for all conti sp: M —R
(2) i~ ;y('i () / wdp©  for all continuous ¢
J=

and 01" almost every t € T". We denote the set of points v € M for which (2) holds
by B(p®) and call it the basin of 1. The map f: M — A is said to be stochastically
stable if the weak* accumulation points (when ¢ > 0 goes to zero) of the physical
probability measures of [ are convex lincar combinations of the (finitely many) SRB
measures of f.

1.1.1. Local diffeomorphisms. Let f: M — M be a C? local diffeomorphism of

the manifold M. We say that f is nonuniformly expanding if there is some constant
¢ > 0 for which

n—1
1 v
(3) lim sup — Z log |[Df(f/(x) 1 < —c <0
n—+-~> N =0

for Lebesgue almost every @ € M. It was proved in [ABV] that for a nonuniformly
expanding local diffeomorphism f the following holds:

(P) There is a finite number of ergodic absolutely continuous (SRB) f-invariant
probability measures jiy. ..., j, whose basins cover a full Lebesque measure subset
of M. Moreover, every absolutely continuous f-invariant probability measure p may
be written as a convex linear combination of pi,...,p,: there are real numbers
Wiy .o, wy 2 0 with wy + - +wy, =1 for which = wip + -+ wpy by,
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The proof of the previous result was based on the existence of a-hyperbolic times for
the points in M: given 0 < a < 1, we say that n € Z% is a a-hyperbolic time for the
point z € M if
n—1
(4) I IDf(F @) <ok forevery 1<k <n.
Jj=n—k

The existence of (a positive frequency of) a-hyperbolic times for points x € M is a
consequence of the hypothesis of nonuniform expansion of the map f and permits us
to define a map h : M — Z* giving the first hyperbolic time for m almost every
e M.

In the context of random perturbations of a nonuniformly expanding map we are
also able to prove a result on the finitness of physical measures.

Theorem A. — Let f: M — M be a C? nonuniformly expanding local diffeomorphism.
If € > 0 is sufficiently small, then there are physical measures pi3, ..., u5 (with ¢ not
depending on <) such that:

(1) for each x € M and 6~ almost every t € TV, the average of Dirac measures
dyr(x) converges in the weak™ topology to some pi with 1 < i < ¢;

(2) for each 1 < i < € we have

n—1

S [ ). m i) aet o,

=0

.1

w; = w*- lim —

n—oc n

where m||B(p5) is the normalization of the Lebesgue measure restricted to B(us):
(3) if f is topologically transitive, then ¢ = 1.

We say that the map f is nonuniformly expanding for random orbits if there is
some constant ¢ > 0 such that for e > 0 small enough

n—1

(5) lim sup 1 Z log ||Df(f}_f’v(:l7))‘1 | < —c<0,

~ N
n-——+40o0 =0

for OY x m almost every (t,x) € TV x M. Similarly to the deterministic situation,
condition (5) permits us to introduce a notion of a-hyperbolic times for points in
TN x M and define a map

he: TN x M — 7T
by taking h.(t,z) the first a-hyperbolic time for the point (¢,z) € T x M (see
Section 2). Assuming that h. is integrable with respect to 6 x m, then

(6) Ihell = S kO xm)({(t2): he(t.a) = k}) < .

k=0

We say that the family (h.).>o has uniform L'-tail, if the series in (6) converges
uniformly to ||h:||1 (as a series of functions of the variable ¢).
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Theorem B. — Let f: M — M be a nonuniformly expanding C? local diffeomorphism.

(1) If f is stochastically stable, then f is nonuniformly expanding for random orbits.
(2) If f is nonuniformly expanding for random orbits and (he). has uniform L'-
tail, then f is stochastically stable.

We should emphasize that we do not know if condition (2) in Theorem B is really
necessary. No example of a stochastically stable map which does not satisfy the
uniform L!-tail property is known.

1.1.2. Maps with critical sets. — Similar results to those presented for random per-
turbations of local diffeomorphisms will also be obtained for maps with critical sets
in the sense of [ABV]. We start by describing the class of maps that we are going to
consider. Let f: M — M be a continuous map of the compact manifold M that fails
to be a C? local diffeomorphism on a critical set C C M with zero Lebesgue measure.
We assume that f behaves like a power of the distance close to the critical set C: there
are constants B > 1 and § > 0 for which

(S1) édist(;r,C)“ <Pyl Bdist(z,C) "

il

(S2) |log||Df(z)~ || —log |IDf ()"l | < B dist(z,y)

dist(z,C)?’
_ _ dist(z, y)

: t Df(x) "' —log|det Df(y) ' | < B——F+—22
(59) flog| det D (a)! |~ log| et Df ()| < B
for every x,y € M ~ C with dist(z,y) < dist(x,C)/2 and v € T, M. Given § > 0 we
define the d-truncated distance from x € M to C
1 if dist(x,C) > 0,
dist(x, C) otherwise.

dists(z,C) = {

Assume that f is a nonuniformly expanding map, in the sense that there is ¢ > 0
such that the limit in (3) holds for Lebesgue almost every x € M (recall that we are
taking C with zero Lebesgue measure) and, moreover, suppose that the orbits of f
have slow approzimation to the critical set: given small v > 0 there is § > 0 such that

n—1

1 J
(7) lim sup — Z —logdists(f7(x),C) < v
n—-+oc 1 i=0

for Lebesgue almost every x € M. The results in [ABV] show that in this situation
we obtain the same conclusion on the finiteness of SRB measures for such an f, also
holding property (P).

In order to prove the stochastic stability of maps with critical sets we need to
restrict the class of perturbations we are going to consider: we take maps f; with the
same critical set C and impose that

(8) Dfi(x)=Df(x) foreveryxe M~CandteT.
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This may be implemented, for instance, in parallelizable manifolds (with an additive
group structure, e.g. tori T or cylinders T¢* x R¥) by considering

T = {t S ]Rdl ||f|| < E()}

for some g9 > 0, 6. the normalized Lebesgue measure on the ball of radius ¢ < &g,
and taking f; = f+t; that is, adding at each step a random noise to the unperturbed
dynamics.

For the case of maps with critical sets we also need to impose an analog of con-
dition (7) for random orbits; we assume slow approzimation of random orbits to the
critical set: given any small v > 0 there is 9 > 0 such that

n—1
(9) lim sup — Z —logdists(f} (x).C) < v
n—+o0 M ATH B

for 08 x m almost every (¢t,z) € TV x M and small ¢ > 0. Results similar to those
presented for local diffeomorphisms on the finiteness of physical measures can also be
obtained in this case.

Theorem C. — Let f: M — M be a C? nonuniformly expanding map behaving like a
power of the distance close to the critical set C, and whose orbits have slow approrima-
tion to C. If f is nonuniformly expanding for random orbits and random orbits have
slow approximation to C, then we arrive at the same conclusions as in Theorem A.

The property of nonuniform expansion for random orbits, together with the slow
approximation of random orbits to the critical set permit us to introduce a notion of
(v, 0)-hyperbolic times for points in (¢t.x) € TV x M and define a map

he: TV x M — 7%,

by taking h.(t,z) the first (o, §)-hyperbolic time for the point (¢,x) € TN x M, see
Section 2. Assuming that h. is integrable with respect to #. x m, then we obtain an
analog to (6), which enables us to define a notion of uniform L!-tail exactly in the
same way as before.

Due to the fact that log ||[Df~!|| is not a continuous map (it is not even everywhere
defined) we are not able to present in this setting a result similar to Theorem B in
all its strength. However, we obtain the same kind of conclusion of the second item
of Theorem B.

Theorem D. — Let f: M — M be nonuniformly expanding C* map behaving like a
power of the distance close to its critical set C and whose orbits have slow approzima-
tion to C. Assume that f is nonuniformly expanding for random orbits and random
orbits have slow approzimation to C. If (h.)- has uniform L'-tail, then f is stochas-
tically stable.
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As a major application of the previous theorem we are thinking of a class of maps
on the cylinder S! x R introduced in [Vil]. Subsequent works [Al] and [AV] showed
that such systems are topologically mixing (thus transitive) and have a unique SRB
measure. The work [AV] also shows that these SRB measures vary continuously with
the map, which means that time averages of continuous functions are only slightly
affected when the system is perturbed. Although this points in a direction of statistical
stability, this does not imply the stochastic stability of such systems as we defined
above.

The class of nonuniformly expanding maps (with critical sets) introduced by
M. Viana can be described as follows. Let ag € (1,2) be such that the critical point
x = 0 is pre-periodic for the quadratic map Q(r) = ap — 2%. Let S' = R/Z and
b:S! — R be a Morse function, for instance, b(s) = sin(27s). For fixed small o > 0,
consider the map

~

f:S'xR— S'xR
(s,2) — (9(s),q(s, 2))

where g is the uniformly expanding map of the circle defined by g(s) = ds (mod Z)
for some d > 16, and (s, z) = a(s) — 2% with a(s) = ag + ab(s). It is easy to check
that for o > 0 small enough there is an interval I C (—2,2) for which f(Sl x I) is
contained in the interior of S' x I. Thus, any map f sufficiently close to )‘A in the CY
topology has S x I as a forward invariant region. We consider from here on these
maps f close to f restricted to S! x I. Taking into account the expression of f it is
not difficult to check that f (and any map f close to jA in the C? topology) behaves
like a power of the distance close to the critical set.

Theorem E. — If f is sufficiently close to f in the C topology then f is nonuniformly
expanding and its orbits have slow approrimation to the critical set. Moreover, if the
noise level of a random perturbation of f is sufficiently small. then

(1) f is nonuniformly expanding for random orbits;

(2) random orbits have slow approximation to the critical set;

(3) the family of hyperbolic time maps (h.). has uniform L'-tail.

As an immediate consequence of Theorems C, D and E we have that Viana maps
are stochastically stable. An application of Theorems A and B will also be given in
Section 6 for an open class of local diffeomorphisms introduced in [ABV, Appendix A].

2. Distortion bounds

In this section we generalize some of the results in [Al] and [ABV] for the setting
of stochastic perturbations of a nonuniformly expanding map. These results will be
proved in the setting of maps with critical sets. Then everything follows in the same
way for local diffeomorphisms if we think of C as being equal to the empty set, with
the only exception of a particular point that we clarify in Remark 2.4 below (due to
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the fact that we are not assuming condition (8) for maps with no critical sets). For
the next definition we take 0 < b < min{1/2,1/(23)}.

Definition 2.1. — Given 0 < o < 1 and § > 0, we say that n € ZT is a (o, 6)-
hyperbolic time for (¢, z) € TV x M if

n—1

[T 1Df (fl@) M <ob and dists(f;*(2),C) = o™

Jj=n—k

for every 1 < k < n.

The following lemma, due to Pliss [Pl], provides the main tool in the proof of the
existence of hyperbolic times for points with nonuniform expansion on random orbits.

Lemma2.2. — Let H > cy > c¢1 >0 and ( = (ca — ¢1)/(H — ¢1). Given real numbers
ai,...,ayn satisfying

Z(lj 2N and a; < H forall 1<j<N,
there are £ > (N and 1 <nj < --- <ny < N such that

Z a; zc1-(n;—n) foreach 0 <n<n; i=1,...,¢

Proof. — See [ABV, Lemma 3.1]. O

Proposition 2.3. — There are a > 0 and § > 0 for which 6% x m almost every (t,x) €
TN x M has some («,d)-hyperbolic time.

Proof. — Let (t,z) € TN x M be a point satisfying (5). For large N we have

—ZlogHDf (fi(a H N >0,

7=0
by definition of nonuniform expansion on random orbits. Fixing p > 8 we see that
condition (S1) implies
(10) |log [[Df ()~ !|| < pllog dist (z,C)|
for every x in a neighborhood V of C. Now we take v; > 0 so that py; < ¢/10 and
let 61 > 0 be small enough to get

N-1

(11) — Z logdistgl(fg(:c),S) <y N for large N,
j=0

ASTERISQUE 286



RANDOM PERTURBATIONS OF NONUNIFORMLY EXPANDING MAPS 33

which is possible after property (7) of slow approximation to C. Moreover, fixing
H > p|logé| sufficiently large in order that it be also an upper bound for for the set
{—log|Df; || :t €T, x € M\ V}, then the set

E={1<j<N:—log||Df(fl "(x))""| > H}
is such that fij_l(x) €V for all j € E and
p [log dist (£~ l(m),C)‘ > —logHDf( g—l(x)rlH > H > pllog 4|

ie., dist (j}j_ (2),C) < &y, in particular dl%tm(f’ Yz),0) = dist(f/ I=1(2),C) < 6, for
all j € E. Hence, defining

_[ree|pru @ uie e
J 0 fier
it holds a; < H for 1 < j < N, and (10) and (11) imply

=Y tog|| D @)Y < 0 X Pogdisi(? T (@).0) < puN.
JEE

JEE

Since pvy1 < ¢/10 we deduce

Z%—Z(

7__

Di @) > e

e ) -3 (s

By the previous arguments we may apply Lemma 2.2 to the sequence a; with ¢; = ¢/5
and ¢ = 2¢/5 (we may suppose H > ¢; too by increasing H if needed). Thus there
are (; >0 and ¢; > ;N times 1 < ¢; < --- < g, < N such that

qi

I () ¢
(12) };lmpw‘ HJ;ﬁ/ﬂzm
for every 0 < n < ¢;, i = 1,...,¢;. We observe that (12) is just the first part of the
requirements on (a, ())-hyperbohc times for (¢, z) if o = exp(c/5).
Now we apply again Lemma 2.2, this time to the sequence a; = log dists, (f,j_1 (2),C),
where 6 > 0 is small enough so that for 75 > 0 with 2v2(bc)™! < (4 we have by
assumption (7)

N-1

Z log dist(;z(jz(:ﬁ),C) > —v N for large N.
Jj=0

Defining ¢; = bc/2, ¢a = —7y2, H =0 and

Co — C1 2’}/2
= = 1 _ -,
C2 H — C1 be
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Lemma 2.2 ensures that there are fo > (o N times 1 <7 < -+ < ry, < N satisfying

(13) Z logdist(sz(fzﬂ(x),C) >
j=nt1

for every 0 < n < 1, ¢ = 1,...,¢5. Let us note that the condition on 7, assures

G+ ¢ >1 Soif ¢ = + ¢ — 1, then there must be £ = (¢; + ¢35 — N) > (N and

1 <np < <ng <N for which (12) and (13) both hold. This means that for

1<i<fland 1 <k < n; wehave

n,

“Df fi (1))"1“ <aof and dists, (fi" M(x),C) = ¥,
Jj=n;—k
and hence these n; are (a, d)-hyperbolic times for (¢, z), with ¢ = d2 and a = exp(c/5).
It follows that for 6% x m almost every (t,2) € TV x M there are (positive frequency
of) times n € Z* for which

n—1

(14) H ||Df(f£](1))”] | <o and dists (f;'~ M(2),C) = ab*

j=n—k

for every 1 < k < n. Now the conclusion of the lemma is a direct consequence of
assumption (8). O

Remark 2.4. — In the setting of random perturbations of a local diffeomorphism f we
may also derive from the first part of (14) the existence of hyperbolic times for % x m
almost every (t,x) € TV x M without assuming condition (8). Actually, let (¢, z) be
a point in TN x M for which the first part of (14) holds. Taking the perturbations f;
in a sufficiently small C'-neighborhood of f, then

D) < %IIDf(y)‘lll

for every y € M, which together with (14) gives

n—1 n—1

IT 1onie) < TT Z=Is() <o

j=n—k Jj=n—k
In the context of maps with no critical sets this n may be defined as a /a-hyperbolic
time for (£, z) and all the results that we present below hold with \/a-hyperbolic times
replacing («, d)-hyperbolic times for maps with critical sets.
Proposition 2.3 allows us to introduce a map
he: TV x M — 77T,
by taking h.(t,r) as the first («,d)-hyperbolic time for (¢,z) € TN x M. We assume

henceforth that the family (h:).~o has uniform L!-tail. For the next lemma we fix
81 > 0 in such a way that 46; < min{d,5°|log a|}.
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Lemma 2.5. — Given any 1 < j < n. we have
IDf@) M < a 2D S @) 7]
for every y in the ball of radius 26,07/% around fi"‘j(:r).
Proof. — We are assuming distg(,fg'_"‘(:zr), C) > o since n is a («, 6)-hyperbolic time
for (t,x). This means that
dist(f;"~ I(x),C) = dists (f/'~ I(x),C) = ¥ orelse (,lth(ff_‘j(:IT),C) > 4.

Either way it holds dist(y, f"_’(.,)) dist(f""7(2).C)/2 because b < 1/2 and 8, <
0/4 < 1/4 for all y in the ball of radius 2(51(1’/2 around fi (; ). Therefore condition
(S2) implies
Df(y)~! dist(f" ™ (x),1 281 00/2
N 177 o I <",<>;)g 200
IDfCf (@)~ dist(f;"™’ (). C)" min{a®?, 67}

But a8 < 1 and b3 < 1/2 so o//? < "% and thus the right hand side of the last
expression is bounded from above by 2B8;077. The assumptions on §; assure this

—1/2

last bound to be smaller than log « , which implies the statement. O

Proposition 2.6. — There is §; > 0 such that if n is («, d)-hyperbolic time for (t,z) €
TN x M, then there is a neighborhood V,,(t,x) of x in M such that

(1) fi* maps V,,(t.x) diffeomorphically onto the ball of radius 61 around f' (z);
(2) for every 1 < k <n and y,z € Vi(t,x)

dist(f/"~ Ry, le_k(z)) < (vk'/z(list(_fif"(y),. /'(2)).

Proof. — The proof will be by induction on j > 1. First we show that there is a well
defined branch of f~/ on a ball of small enough radius around )‘, (z). Now we observe
that Lemma 2.5 gives for j =1

IDf) ™ < o™ PIDFE @) < ot

~1/2_{dilation in

because n is a («, §)-hyperbolic time for (¢, 2). This means that f is a o
the ball of radius 26,a'/? around fi”"l (). Consequently there is some neighborhood
Vi(t, @) of f'~ ! () inside the ball of radius 26;a'/? that is diffeomorphic to the ball of
radius 0, around f/'(x) through f; , when f is a map with critical set satisfying (8).

n?

For j > 1 let us suppose that we have obtained a neighborhood Vj(t.x) of f;'~ I(x)

such that f; o---o fi . | Vj(t,x) is a diffeomorphism onto the ball of radius d;
around f{'(z) with
(15) DS (fru s 00 fru (DT <@ 2IDFCf T @) 7
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for all z € Vj(t,z) and 0 < i < j. Then, by Lemma 2.5 and under the assumption
that n is a (o, d)-hyperbolic time for =,

ID(fen 00 fun, ()™ HHfo,. o (fouspis oo fo ) 7|
1=0
<Ha‘”21|fo” (T @) )
1=0

< (a7 V2L gitl = g U+1)/2

for every y on the ball of radius 25la(j+')/2 around f;' /"' (z) whose image f,, (y)
is in Vj(t,x) (above we convention f;, .., _, o fr,_,(y) =y fori=0).

This shows that the derivative of f; o---o fr,l_J is a a~*+D/2_dilation on the
intersection of f;! (Vj(t,z)) with the ball of radius 26,a+1/2 around f;"~'"*(x),
and hence there is an inverse branch of f; o---o f, . defined on the ball of radius
1 around fi*(x). Thus we may define Vj,(t,z) as the image of the ball of radius
41 around f' '() under this inverse branch, and recover the induction hypothesis for
J+ 1. In this manner we get neighborhoods V;(t,x) of f;'~ I(x) as above for all
1< < O

Corollary 2.7. — There is a constant C; > 0 such that if t € TV, n is a (o, 0)-
hyperbolic time for x € M and y, 2 € V,,(t,z), then

let D f}
1 <|(e fl(y)l< .
1 |det Df}'(2)]

Proof. — For 1 < k < n the distance between ft (z) and either f, (y) or f, (2) is
smaller than a("~ k)/z which is smaller than ("% < dlbt(f, (z),C). So, by (S3) we
have

fE W)l
fE(2))]

i | det ngn(ll)' o nil | det Dfik+1(
% Tdet D (2)] ~ & ®Jdet Df,, (.
. |det Df( ff(y))|

s Z % Tdet DS (FF())]

n—1 (y(” k)/2

Z 2B ab[i(rz k)’

k=0

and it is enough to take Cy < exp (3=, 2Bat/27P9") recalling that b3 < 1/2 and
also (8). a
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3. Stationary measures

As mentioned before, we will assume the random perturbations of the nonuniformly
expanding map f satisfy some nondegeneracy conditions: there exists 0 < g9 < 1 such
that for every 0 < £ < g9 we may take ng = ng(e) € N for which the following holds:

(1) there is & = £(¢) > 0 such that { L"(.L‘) t € (supp GE)N} contains the ball of
radius ¢ around f"(z) for all z € M and n > no;

(2) (fM).6Y < m for all x € M and n > ny.

Here (f7).6" is the push-forward of 6 to M via f7 : TN — M, defined as fI'(t) =
f'(z). Condition (1) means that perturbed iterates cover a full neighborhood of the
unperturbed ones after a threshold for all sufficiently small noise levels. Condition (2)
means that sets of perturbation vectors of positive 0€N measure must send any point
x € M onto subsets of M with positive Lebesgue measure after a finite number of
iterates.

In [Ar, Examples 1 & 2] it was shown that given any smooth map f: M — M
of a compact manifold we can always construct a random perturbation satisfying the
nondegeneracy conditions (1) and (2), if we take T = R?, t* = 0 and 6. is equal to the
normalized restriction of the Lebesgue measure to the ball of radius ¢ around 0, for a
sufficiently big number p € N of parameters. For parallelizable manifolds the random
perturbations which consist in adding at each step a random noise to the unperturbed
dynamics, as described in the Introduction, clearly satisfy nondegeneracy conditions
(1) and (2) for ng = 1.

In the context of random perturbations of a map, we say that a set A C M is
invariant if fi(A) C A, at least for t € supp(f:) with ¢ > 0 small. The usual invariance
of a measure with respect to a transformation is replaced by the following one: a
probability measure p is said to be stationary, if for every continuous ¢ : M — R it
holds

(16) [odi= [ [ o(5ia)) dute) do. o)

Remark 3.1. — If (u%)c»0 is a family of stationary measures having uy as a weak*
accumulation point when ¢ goes to 0, then it follows from (16) and the convergence
of supp(6.) to {t*} that po must be invariant by f = fi«.

It is not difficult to see (cf. [Ar]) that a stationary measure yu satisfies

x € supp(pn) = fi(x) € supp(p) for all ¢t € supp(b.)

just by continuity of ®. This means that if y is a stationary measure, then supp(u)
is an invariant set. Nondegeneracy condition (1) ensures that the interior of supp(u)
is nonempty.

Let us write supp(p) as a disjoint union |J;, C; of connected components and
consider only those C; for which m(C;) > 0 — this collection is nonempty since
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supp(p) contains open sets. Moreover each f; must permute these components for
t € supp(6:), because f;(C;) is connected by continuity, fi(C;) C supp(p) by invari-
ance, and m(f;(C;)) > 0 since we have (f;).m < m.

The connectedness of C; and continuity of ® guarantee that the above-mentioned
perturbation of the components C; induced by f; does not depend on t € supp(6.).
Indeed, supposing that ¢, ¢ € supp(6.) are such that

fi(Cy) C ¢y and  fu (C) C Cyr,

then fixing some z € C; we have that {f,(2): t € supp(f:)} is a connected set inter-
secting both C; and C}j inside supp(p), and so Cj = Cy.

We will show that these connected components are periodic under the action in-
duced by f; with ¢t € supp(6.). After this, we may use nondegeneracy condition (1)
to conclude that each component contains a ball of uniform radius and thus that each
component satisfies m(C;) > const > 0. Hence there existing only a finite number of
such components.

At this point it is useful to introduce the skew-product map

F:TVNx M — TVxM
(Laz) La— (U(E)ffl(z))

where o is the left shift on sequences t = (t,,ts,...) € TN, It is easy to check
that the product measure 0 x p is F-invariant, as so is the set supp(0Y x u) =
supp(6:)" x supp(p).

Lemma 3.2. — The support of a stationary measure p contains a finite number of
connected components arranged in cycles permuted by the action of fi fort € supp(6:).

Proof. — Is is enough to obtain that each connected component C; is periodic under
the action of f; for ¢t € supp(f.), in the sense that f7(C;) C C; for some p € N and
all t € supp(6Y). There are components C; with none-mpty interior, since the interior
of supp(p) is nonempty. So we may take a component C; that contains some ball B.
Then we have m(B) > 0 and so (6 x p)(supp(6Y) x B) > 0. Poincaré Recurrence
Theorem now guarantees there is (£, x) € supp(6Y') x B such that the F-orbit of (¢, z)
has the same (¢, x) as an accumulation point. We see that there must exist some
p € N such that fF(z) € B C C;. In view of the independence of the permutation on
the choice of ¢, we conclude that C; is sent inside itself by fF for all t € supp(6Y). O

It is clear that the cycles obtained above are invariant sets. We are now ready to
decompose p into some simpler measures. For that we need the following result.

Lemma 3.3. — The normalized restriction of a stationary measure to an invariant set
s a stationary measure.

Proof. — See [Ar, Lemma 8.2]. O
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We define an invariant domain in M as a finite collection (Uy, ..., U,_1) of pairwise
separated open sets, that is, U, NU; = @ if i # j, such that fi’"(U,;) C Uk4i) mod p for
allk >1,i=0,...,p—1and t € supp(6Y).

In order to get the separation of the connected components in a cycle, we may unite
those components C; and C; such that C; ﬂa, # @& and observe that the permutation
now induced in the new sets by f; also does not depend on the choice of t € supp(6.).
In this manner we construct invariant domains inside the support of any stationary
probability measure.

The next step is to look for minimal invariant domains with respect to the natural
order relation of inclusion of sets. Let D = (Up,...,Uy—1) and D" = (Wy,... , W,_y)
be invariant domains. On the one hand, D = D’ if there are i,j € N such that
Uity mod p = W(j+k) mod ¢ for all & > 1, which implies p = ¢ because the open sets
that form each invariant domain are pairwise disjoint. On the other hand, we say D <
D' if there are 7, j € N such that U; mod p © Wjmod ¢ and U(i4x) mod p € W(i4k) mod g
forall k > 1

Lemma 3.4. — In the partially ordered family of all invariant domains in M, with
respect to the relation <, the number of <-minimal domains is finite. Moreover,
every imvariant domain contains at least one minimal domain.

Proof. — The proof relies in showing that Zorn’s Lemma can be applied to this par-
tially ordered set and that minimal domains are pairwise separated. See [Ar, Sec-
tion 3. O
Let us now fix x € M and consider
n—1
(17) i (: Z(ff )08
J =0

Since this is a sequence of probability measures on the compact manifold M, then it
has weak™ accumulation points.

Lemma 3.5. — FEvery weak™ accumulation point of (/1,7,,(1'))" s stationary and abso-
lutely continuous with respect to the Lebesque measure.

Proof. — Let pu be a weak® accumulation point of (/L,, (1)) . We may write

J[ ettt dutaydoe) = [ 1im —"k / Fi( (@) ) ot (1) o (1)

k—+o00 N

for each continuous ¢ : M — R. Moreover dominated convergence ensures that we
may exchange the limit and the outer integral sign and, by definition of ft (x), we get

nk

_ J+1 N
Alglalo g / ) do: (1) = /ng/l'”

SOCIETE MATHEMATIQUE DE FRANCE 2003



40 J.F. ALVES & V. ARAUJO

according to the definition of . Thus (16) must hold and p is stationary.

Noting that C°(M,R) is dense in L'(M,u) with the L' norm, we see that (16)
holds for all u-integrable functions ¢ : M — R. In particular, if £ C M is such that
m(E) = 0, then

J1edu= [ [ 1e(s@) duto) a0
= // 1 (fu()) d0. (1) du(x)
- / / / 1o (fulfo(@))) 9. (8) dia() dO. (5)
— [[ 1e(s2@) a8 (0 duto)
= [(2088) duo)

This process may be iterated to yield

W(E) = [(720).6.(8) duo)
and, since (f).0. < m by nondegeneracy condition 2, we must have u(E) =0. O

Clearly if x € M belongs to some set of an invariant domain (Up,...,U,_1), then
in(z) have supports contained in UpgU - U Up_l for all n > 1 and any weak*
accumlation point p of (j1,(2)), is a stationary measure with supp(u) C Ug U -+ U

U,—1. We will now see these measures are physical.

Lemma 3.6. — If (Uy,...,U,_1) is a minimal invariant domain, then there is a unique
absolutely continuous stationary measure v such that supp(v) € Ug U --- U Up_l.
Moreover, this v is a physical measure and supp(v) = UgU - - U Up,l‘

Proof. — Let us assume ny = 1 for simplicity (see [Ar, Section 7] for the general
case) and let us consider a stationary absolutely continuous probability measure v
with supp(v) C UgU---UU,_;. We first show the ergodicity of v, in the sense that
0N x v is F-ergodic. It turns out that to be F-ergodic it suffices that either v(G) =0
or v(G) =1 for every Borel set G C A satistying

(18) L) = / Lo (fi() do-(1)

for v almost every = (cf. [Ar] and [Vi2]). So let us take G such that v(G) > 0 and
G satisfies the left hand side of (18). Then it must be m(G) > 0 because v < m and
there is a closed set J C G such that m(G ~ J) = 0 and also v(G ~ J) = 0. Hence J
also satisfies the left hand side of (18) because of nondegeneracy condition (2) (with
ng = 1), since

/ Li(folw)) dO-(t) = (£.)-67(E).
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This means that when = € J we have f;(z) € J for 6, almost all ¢ € supp(é.). Since
a set of . measure 1 is dense in supp(f.) (we are supposing . to be positive on open
sets) and fi(z) varies continuously with ¢, we see that fi(x) € J for all ¢ € supp(6e)
because J is closed. We then have that the interior of J is nonempty by condition
(1) on random perturbations and we may apply the methods of decomposition into
connected components as before (Lemma 3.2). In this manner we construct an in-
variant domain inside .J which, in turn, is inside a minimal invariant domain. This
contradicts minimality and so we conclude that J must contain UyU-- 'Ul_/,,_lA Thus
we have v(G) = v(J) = 1 proving 6 x v to be F-ergodic.

Now, given ¢ : M — R continuous we consider the map 1 = ¢ o 7 from TV x M
to R, where 7 : TN x M — M is the natural projection. The Ergodic Theorem then

ensures
n—1
1 i
im - J(t ) — N
s S o) [ vt v
J=

for 6 x v almost all (¢, ), which is just the same as

1 n—1 )
(19) Jim 23 e ) = e

Jj=(

for Y x v almost all (¢, z). Finally considering the ergodic basin B(v), defined as the
set of points x € M for which

n—1
. 1 Z j
7=0

for all ¢ € C*(M,R) and 6% almost every t € TN it is easy to see that B(v) satisfies
(18) in the place of G and we must have as before B(v) D Uy U---UU,_;.

This shows that if another stationary absolutely continuous probability measure v
is such that supp(v) C UyU- - ‘UU—,,_ 1, then the basins of v and v must have nonempty
intersection. Thus these measures must be equal. Moreover z/(B(z/)) =1 and so, by
absolute continuity, m(B(z/)) > 0 and thus v is a physical probability. O

4. The number of physical measures

In this section we will prove that the number ¢ of physical measures is bounded
by the number p of SRB measures. Moreover we will present examples of dynamical
systems for which ¢ = p and ¢ < p.

Let p1,..., e be the physical measures supported on the minimal invariant do-
mains in M, which exist by Lemmas 3.2 and 3.4 through 3.6. If i is an absolutely
continuous stationary measure, its restrictions to the minimal invariant domains of
M, normalized when not equal to the constant zero measure, are absolutely continu-
ous stationary measures by Lemma 3.3. After Lemma 3.6 these restrictions must
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be the physical measures pq,..., e of the minimal domains. Hence p must de-
compose into a linear combination of physical measures. Moreover, the union of
supp(e1)s - - -, supp(pee) must contain supp(u), except possibly for a p null set. In
fact, if the following set function

= p(supp(pn)) ey — -+ — p(supp(pee)) pue

were nonzero, then its normalization p’ would be an absolutely continuous stationary
measure, and the above decomposition could be applied to p/, thus giving another
minimal domain inside supp(yu). Clearly this cannot happen. We then have a convex
linear decomposition

(20) =y o+ e

where «; = p(supp(pi)) =2 0and ay+- - -+ap = 1. We will see that this decomposition
is uniquely defined.

We remark that so far we did not use more than the continuity of the map f. For
the next result we assume that f : M — M is a C? nonuniformly expanding map
whose orbits have slow approximation to the critical C (possibly the emptyset) with
m(C) = 0. This result contains the assertions of the first two items of Theorem A
(if we think of C = @) and Theorem C.

Proposition 4.1. — If ¢ > 0 is small enough, then there exist physical measures
WSy 15 (with € not depending on €) such that
(1) for x € M there is a 6~ mod O partition Ty(z),...,Te(x) of TV such that
n—1

1 . . .
i =w*- lim — Z Ofﬁ("ﬁ if and only if t € Ti(x);
j=1

n—onc N

(2) for each i =1,...,¢ we have

T

S [ Bl ot

J=0

1
= w*- lim —
n—oc N

where m | B(p$) is the normalized restriction of Lebesgue measure to B(us).

Proof. Take x € M and let u be a weak® accumulation point of the sequence
(ptn(2))y defined in (17). We will prove that this is the only accumulation point
of (17) by showing that the values of the ay,...,ay in decomposition (20) depend
only on z and not on the subsequence that converges to p. The definition of the
average in (17) implies that there is a subset of parameter vectors t € supp(6l) with
positive 6 measure for which there is j > 1 such that fg (z) € supp(p;). We define
fori=1,...,¢

Ti(x) = {t € supp(Y) : fg(r) € supp(p;) for some j > 1}.
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We clearly have
T;(x) = Ul.>lT:/(;1:) where TY(x) = {t € supp(6) : )‘,_’(1) € supp(p;)}

and T/ (x) ¢ T/ (x) for all i,j > 1, since the supports of stationary measures are
themselves invariant. In addition, since p is a regular (Borel) probability measure, we
may find for each > 0 an open set U and a closed set K such that K C supp(p;) C U
with p(U N K) < nand p(0U) = p(0K) = 0. In fact, there is an at most countable
number of §-neighborhoods of supp(u;) whose boundaries have positive p measure,
and likewise for the compacts coinciding with the complement of the d-neighborhood
of M ~ supp(u;). Then, taking o, = /L(Sl,lp[)(,u,;)) we have

g —

a;+n=>pU)= lim Z oMt e T ff( ) e U}

k—4oc Il;,

'n;,,—l

> lim sup L Z 0 (T (x))

e N £
k—doo TR 520

for some sequence of integers n; < ny < ng < ---, and likewise for

ny—1

a; —n < pu(K) = /\EI-fI—lX, ﬂl]\ Z Nt e T fi(a (x) € K}
< liminf L ”LZ_I o" (T?j(.’lf)),
k—+oc Ny, = e
where 7 > 0 is arbitrary. This shows
;= u(supp(p)) = lim L ”LZ_ZI o (th(/z'))
Kooy, Lt (T (x)).
We also have
02 (Ti(0) = Jim 62(T](2)) = lim l ZGN (T/(x) = a
j=

which shows that the «; depend only on the random orbits of & and not on the
particular sequence (ny)r. Thus we see that the sequence of measures in (17) converges
in the weak™ topology. Moreover the sets T1(x),...,Ty(z) are pairwise disjoint by
definition and their total 9'5 measure equals oy +- - -4+« = 1, thus forming a (Jlj modulo
zero partition of TV. We observe that if t € T;(z), then f'(x) € supp(u;) C B(yu;) for
somen > 1andi=1,...,¢ This means this 6 modulo zero partition of TV satisfies
the first item of the ploposition.
Now fixing i = 1,...,¢, for all © € B(yu;) (the ergodic basin of y;) it holds that

n—1
1 j
NI AL [win
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for O almost every t € T". Recall that m(B(j;)) > 0 by the definition of physi-
cal measure. Using dominated convergence and integrating both sides of the above
equality twice, first with respect to the Lebesgue measure m, and then with respect
to O, we arrive at the statement of item 2.

Recall that up until now the noise level ¢ > 0 was kept fixed. For small enough
¢ > 0 the measures p; = p5 depend on the noise level, but we will see that the number
of physical measures is constant.

Fixing ¢ € {1,...,¢} we let  in the interior of supp(u5) be such that the orbit
(f7(z)); has infinitely many hyperbolic times. Recall that f = f- is nonuniformly
expanding (possibly with criticalities). Then there is a big enough hyperbolic time n
so that V,,(t*,x) C supp(u$), by Proposition 2.6, where we take t* = (¢t*,t*,t*,...).
Since t* € supp(f:) and supp(s) is invariant under f; for all ¢ € supp(d.), we must
have

(21) i (Va(t",2)) = B(f}(x),01) C supp(ys5),

where §; > 0 is the constant given by Proposition 2.6 and B(f(z),d1) is the ball of
radius 0; around f}(z).

On the one hand, we deduce that the number ¢ = ¢(¢) is bounded from above
by some uniform constant N since M is compact. On the other hand, since each
invariant set must contain some physical measure (by Lemma 3.4), we see that for
0 < & < e there must be some physical measure pf with supp(p) C supp(pf). In
fact supp(p®) is invariant under f; for every ¢ € supp(f./) C supp(f:). This means
the number £(g) of physical measures is a nonincreasing function of € > 0. Thus we
conclude that there must be £y > 0 such that ¢ = £(g) is constant for 0 < ¢ < g,
ending the proof of the proposition. O

Remark 4.2. — Let us point out that from (21) one easily deduces that the Lesbesgue
measure of the basin of each physical measure is uniformly bounded from below, since
the support of such a measure is always contained in its basin.

Remark 4.3. — Observe that if the map f : M — M is topologically transitive, then
every stationary measure must be supported on the whole of M, since the support is
invariant and has nonempty interior. According to the discussion above, there must
be only one such stationary measure, which must be physical.

We note that the number ¢ of physical measures for small € > 0 and the number p
of SRB measures for f are obtained by different existential arguments. It is natural
to ask if there is any relation between ¢ and p.

Proposition4.4. — If p > 1 is the number of SRB measures of f and € > 1 is the
number of physical measures of the random perturbation of f, then for € > 0 small
enough we have ¢ < p.
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Proof. — We observe that supp(u©) is forward invariant under f = f;- and, moreover,
condition (3) holds for Lebesgue almost every x in supp(u®) because holds almost
everywhere in M (by assumption) and supp(u®) has nonempty interior. Thus from
[ABV, Theorem C] we assure the existence of at least one SRB measure p with
supp(p) C supp(u©).

We have seen that each support of a physical measure u° must contain at least the
support of one SRB measure for the unperturbed map f. Since the number of SRB
measures is finite we have ¢ < p, where p is the number of those measures. O

The reverse inequality does not hold in general, as the following examples show: it
is possible for two distinct SRB measures to have intersecting supports and, in this
circumstance, the random perturbations will mix their basins and there will be some
physical measure whose support overlaps the supports of both SRB measures.

1 T T T
0.5

0

F1GURE 1. Map for which 1 =¢<p=2

The first example is the map f : [-3,1] — [—3, 1] whose graph is figure 1:

1 — 222 ift-1<2<1
flx) = {2(x+2)2—3if—3<a:< 1
The dynamics of f on [—1,1] and [—3, —1] is conjugated to the tent map T(x) =
1 — 2|x|] on [—1,1]. Thus understanding f as a circle map through the identifica-
tion S! = [-3,1]/{=3,1}, this is a nonuniformly expanding map with a critical
set satisfying conditions (S1)-(S3) and there are two ergodic absolutely continuous
(thus SRB) invariant measures pui, pe whose supports are [—3,—1] and [—1,1] re-
spectively. Moreover defining ®(t) = R; o f, where R; : S! — S! is the rotation
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of angle t and 6. = (2¢) " '(m | [—<,¢]) for small £ > 0, we have that {®,(0.)c~0}
is a random perturbation satisfying nondegeneracy conditions (1) and (2). Since
supp(e1) Nsupp(p2) = {—1} we have that for £ > 0 small enough there must be a
single physical measure . Indeed, by property (P) any weak* accumulation point
of a family of physical measures must have —1 in its support.

FrGure 2. Map for which ¢ =p =2

The second example is defined on the interval I = [-7,2]. We take the map
qu(r) = a — 2% on [—2,2] for some parameter a € (1,2) satisfying Benedicks-Carleson
conditions (see [BC1] and [BC2]). and the “same” map on [-7, —3] conveniently
conjugated: p,(2) = (r+5)? —5—a. Then the two pieces of graph are glued together
in such a way that we obtain a smooth map f : I — [ sending [ into its interior,
as figure 2 shows. The intervals 1, = [¢2(0).q.(0)] and I, = [p.(=5),p2(=5)] are
forward invariant for f, and then we can find slightly larger intervals I, D I, and
I, D I, that become trapping regions for f. So, taking ®(t) = f + ¢, and 6. as in
the previous example with 0 < & < g for some £y > 0 small enough, then {®, (6.).}
is a random perturbation of f leaving the intervals I, and Iy invariant by each ®(t).
Moreover, Lebesgue almost every @ € I eventually arrives at one of these intervals.
Then by [BC1] and [BY1] the map [ is nonuniformly expanding and has two SRB
measures with supports contained in each trapping region. Finally f admits two
distinct physical measures whose supports are contained in I; and I, respectively, for
g9 > 0 small enough. Moreover, these SRB measures are stochastically stable; see
(BV].
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5. Stochastic stability

In this section we will prove the first item of Theorem B and Theorem D. The
second item of Theorem B may be obtained in the same way as Theorem D, if we
think of C as being equal to the empty set and take into account Remark 2.4.

We start by proving the first item of Theorem B. Assume that f is a stochastically
stable nonuniformly expanding local diffeomorphism. We know from Proposition 4.1
that there is a finite number of physical measures uf, ... pu; and for each @ € M there
is a 0 mod 0 partition 7' (z),..., Ty(x) of T" for which

n—1
£k : - N e N AN
w; =w ',,h_{li - E O.f';_’(~'=) for each t e T;(x).
Jj=

Furthermore, since we are taking f a local diffeomorphism, then log [[(Df)~ ! is a
continuous map. Thus, we have for each x € M and 6" almost every t € T"

1 n—1 ) . .
lim ;Zl()g IDf(f(x) |l = / log (D f)~"||dps

n—ox -
J=0

for some physical measure 5 with 1 < ¢ < ¢. Hence, for proving the nonuniform
0 1

expansion of f on random orbits it suffices to show that there is ¢y > 0 such that if

p1& = s for some 1 <4 < ¢ then

/ log (D f)~Hdp® < ¢y for small & > 0.

Lemma 5.1. — Let o: M — R be a continuous map. Given 6 > 0 there is ey > 0 such

that if € < gq, then
/@(I/f — / odjie

for some absolutely continuous f-invariant probability measure ji..

<0,

Proof. We will use the following auxiliary result: Let X be a compact metric space,
K C X a closed (compact) subset and (x¢)r=0 a curve in X (not necessarily contin-
wous) such that all its accumulation points (as t — 0%) lic in K. Then for every
open neighborhood U of K there is ty > 0 such that xy € U for every 0 < t < t.
Indeed, supposing not, there is a sequence (t,,), with t, — 07 when n — oo such
that x;, ¢ U. Since X is compact this means that (1)~ has some accumulation
point in X ~ U, thus outside I, contrary to the assumption.

Now, the space X = P(A[) of all probability measures in M is a compact metric
space with the weak® topology, and the convex hull A" of the (finitely many) SRB
measures of f is closed. Hence, considering the curve (u®). in P(A), we are in the
context of the above result, since we are supposing f to be stochastically stable.
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A metric on X topologically equivalent to the weak* topology may be given by

= 1
d]p(/.l,,l/) = Z % /Qa'n, d,u - /So'n, dv
k=1

where p,v € P(M) and (pn)n>1 is a dense sequence of functions in C°(M,R),
see [Ma].

Let ¢ : M — R continuous be given and let us fix some § > 0. There must be
n € N such that ||¢ — pnllo < §/3 and, by the auxiliary result in the beginning of
the proof, there exists, for some g5 > 0 and every 0 < € < gg, a probability measure
pe € P(M) for which dp(p, ) < 8(3-2")~1. This in particular means that

1 . '
on /ﬁpndu "/Lp'nd/‘s < 3 g0
by the definition of the distance dp, which implies
)
/Qpn dp® _/‘Pn dpe| < 3

Hence we get

/sod/f ~/¢>due

<

+ l/tpn du® —/% dpe| + V@n dyte —/wdue

which completes the proof of the lemma. O

Now we take ¢ = log||(Df)™!|| and § = ¢/2 in the previous lemma, where ¢ > 0
is the constant given by the nonuniform expansion of f (recall (3)). For each £ < g¢
let pe be the measure given by Lemma 5.1. Since property (P)
real numbers wy(e),...,wy(e) = 0 with wi(e) + -+ + wp(e) = 1
wy(e)py + -+ wp(e)up‘ Since each p; is an SRB measure for 1 < i < p, we have for

holds, there are
for which p. =

Lebesgue almost every x € B(u;)

n—1
[ 10805 s = tim Y log DS ()] < e <0
This implies
[ros (D) e < .
and so, by Lemma 5.1 and thé choice of 9,

/ log (D)~ ld® < —c/2.

This completes the proof of the first item of Theorem B.
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Now we go into the proof of Theorem D. In order to prove that f is stochastically
stable, and taking into account property (P), it suffices to prove that the weak*
accumulation points of any family (u®)es0, where each p® is a physical measure of
level e, are absolutely continuous with respect to the Lebesgue measure. Let p be a
physical measure of level ¢ for some small € > 0 and define for each n > 1

1 e 1 J B(us)) dov
m—nﬁgﬁmﬁﬁmmM<m>au
We know from Proposition 4.1 that each u® is the weak* limit of the sequence (us,),,.
We will prove Theorem D by providing some useful estimates on the densities of the
measures f5,. Define for each t € TV and n > 1

H,(t) = {z € B(u*): nisa (a,d)-hyperbolic time for (¢,z)},
and
H(t) = {x € B(p*): nis the first («,d)-hyperbolic time for (¢,z)}.
H?(t) is precisely the set of those points @ € B(u®) for which h(t, z) = n (recall the
definition of the map h.). For n,k > 1 we also define R, 1 (t) as the set of those points

xz € M for which n is a («, §)-hyperbolic time and n + & is the first («, §)-hyperbolic
time after n, i.e.

R'n k = {i S H,L< ): £'(ZL’) - f{z{(()’"i)}7

where o: TN — TN is the shift map o(t1,t2,...) = (t2,t3,...). Considering the
g

measures

vi= [ | Ha0)asl (0
and

oo k—1

M= 3 [ (| Ros(0) sl 0

k=2 j=1

we may write
n—1

1 1
Ho < = ZW( +15).

Proposition 5.2. — There is a constant Cy > 0 such that for everyn >0 and t € TV
d
- —(ft )*(m | H,(t )) < Chy.

Proof. — Take §; > 0 given by Proposition 2.6. It is sufficient to prove that there is
some uniform constant C' > 0 such that if A is a Borel set in M with diameter smaller
than 61/2 then

m(f;"(A) N H, (1)) < Cm(A).
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Let A be a Borel set in M with diameter smaller than d;/2 and B an open ball of
radius 41 /2 containing A. We may write

= U By..

k21

where (By)r>1 is a (possibly finite) family of two-by-two disjoint open sets in Af.
Discarding those By, that do not intersect H,,(t), we choose for each k > 1 a point
xx € H,(t) N By. For k > 1 let V,,(¢,zx) be the neighborhood of z in M given
by Proposition 2.6. Since B is contained in B(, /'(zx).01), the ball of radius &,
around f/'(zy), and f/ is a diffeomorphism from v, (t, 1) onto B(f{'(xx).01). we
must have By C V,, (t,zx) (recall that by our choice of By we have f}"(By) C B).
As a consequence of this and Corollary 2.7, we have for every k that the map f' |

By.: By — B is a diffeomorphism with bounded distortion:
1 |det Dfi'(y)|

Ci ~ |det Df}'(z) !

for all y, 2z € By. This finally gives

m(f7 " (A) N H, (L) < Z m(f;"(ANB)N By)

(AN
< Z , m( B),”’(Bk)

III

< Cqm(A),

where C; > 0 is a constant only depending on '}, on the volume of the ball B of
radius d; /2, and on the volume of M. O

It follows from Proposition 5.2 that

dve
- L0y

(22) dm

for every n > 0 and small ¢ > 0. Our goal now is to control the density of the
measures 7;, in such a way that we may assure the absolute continuity of the weak”
accumulation points of the measures p© when ¢ goes to zero.

Proposition 5.3. — Given ¢ > 0, there is C'4(¢) > 0 such that for every n > 0 and
e > 0 we may bound 75, by the sum of two non-negative measures, 1;, < w4+ p*, with

dw *© -
dm

C3(¢) and p=(M) < C.
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Proof. — Let A be some Borel set in M. We have for each n > 0
> h—1
mA) =Y / m(f7" A N R, () dON (1)

k=2 j=1

>x k=1,

<N [l (A O i) 0 (0) e )
k=2 j=1

>x h—1

<Y o / m(f, 7 (A) N H(1)doM (1),

k=2 j=1

(in this last inequality we used Proposition 5.2 and the fact that 0" is o-invariant).
Let now ¢ > 0 be some fixed small number. Since we are assuming (h.). with uniform
L'-tail, then there is some integer N = N(¢) for which

;} A~'/.771(f];(§))(]0§(1) - (i'

2

We take
N—1hk-1

Z Z / )‘, (m | H(t ))d(}N ()
h=2 j=I1
and
x k-1
ZZ/ (f ) (m | Hyi(1))d02 (1),
k=N j=I

For this last measure we have

x h—1

M) =Co Y Z/m H(1))do" (1) < O ZA/m Hi(1))do"(t) < .

k=N j=1 k=N
On the other hand. it follows from the definition of («, d)-hyperbolic times that there
is some constant @ = a(N) > 0 such that dist(Hy(1).C) > a for 1 <k < N. Defining
A C M as the set of those points in M whose distance to C is greater than a, we have
—1 k-1
S [t ) o),
k=2 j=1
and this last measure has density bounded by some uniform constant, as long as we
take the maps f; in a sufficiently small neighborhood of f in the C'! topology. O

It follows from Remark 4.2, Proposition 5.3 and (22) that the weak® accumulation
points of p when ¢ — 0 cannot have singular part, thus being absolutely continuous
with respect to the Lebesgue measure. Moreover, the weak™ accumulation points of a
family of stationary measures are always f-invariant measures, c¢f. Remark 3.1. This
together with (P) gives the stochastic stability of f.
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6. Applications

In this section we will apply Theorems B and D to certain classes of nonuniformly
expanding maps. Before we describe the examples we have in mind let us give a
practical criterion for proving that the family of hyperbolic time maps (he). has
uniform L!'-tail.

If we look at the proof of Proposition 2.3 we see that what we did was fixing some
positive number ¢y smaller than ¢, and then, for 95 x m almost every (t,z) € TN x M,
we took a positive integer N = N.(¢,z) for which

Ne—1 Ne-1
Z log “Df(j'i’(m))_lH < —cgN: and Z —log dists(f{ (x),C) <N,
j=0 =0

for suitable choices of § > 0 and v > 0. This permits us to introduce a map
No:TVNx M — 277"
whose existence provides a first hyperbolic time map
he: TV x M — Z%  with  h. < N.

(recall the proof of Proposition 2.3). Thus, the integrability of the map h. is implied
by the integrability of the map N., which is in practice easier to handle.

Remark 6.1. — In the examples we are going to study below we will show that there
is a sequence of positive real numbers (af ) for which

o
(0 < m) ({(t,z) € T" x M: N.(t,2) > k}) <a; and Z kaj, < oo,
k=1
This gives the integrability of h. with respect to the measure 6 x m. The fact the
family (he). has uniform L'-tail can be proved by showing that the sequence (a5.)y
may be chosen not depending on ¢ > 0.

Now we are ready for the applications of Theorems B and D. We will describe first
a class of local diffeomorphisms introduced in [ABV, Appendix A] that satisfies the
hypotheses of Theorem B, and then a class of maps (with critical sets) introduced in
[Vil] satisfying the hypotheses of Theorem D.

6.1. Local diffeomorphisms. — Now we follow [ABV, Appendix A] and describe
robust classes of maps (open in the C? topology) that are nonuniformly expanding
local diffeomorphisms and stochastically stable. Let M be a compact Riemannian
manifold and consider
O:T — C*(M, M)
t— fi

a continuous family of C? maps, where T is a metric space. We begin with an
essentially combinatorial lemma.
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Lemma 6.2. — Let p,q > 1 be integers and o > q a real number. Assume M admits
a measurable cover {By, ..., By, Bpt1, ..., Bpyq} such that for allt € T it holds

(1) |det Dfi(2)| > o for all 2 € Byyy U+ U By pg;

(2) (ft| Bi) is ingective for all i =1,...,p.
Then there is ¢ > 0 such that for every Borel probability 0 on T we have
(23) #0<j<n:fl(x) €BU---UB,} >(n

for N x m almost all (t,x) € TN x M and large enough n > 1. Moreover the set
I,, of points (t,x) € TV x M whose orbits do not spend a fraction ¢ of the time in
By U---U B, up to iterate n is such that (0N x m)(I,,) < 1" for some 0 < 7 < 1 and
for large n > 1.

Proof. — Let usfixn>1andt € TN, For a sequence
L:(i(l7"‘7lll 1)6{1 ~~~~~ ])+(I}“
we write
[]'— o 1)_1(B'i|)m"'m( Zl—l)A](B’in—l)

and define g(i) = #{0 < j <n:i; <p}.
We start by observing that for ¢ > 0 the number of sequences 7 such that ¢(i) < (n

Z (A>[)I\qn k < Z <A>p(1' n
k<Cn

k<¢n
Using Stirling’s formula (cf. [BV, Section 6.3]) the expression on the right hand side
is bounded by (e7pSq)", where v > 0 depends only on ¢ and v(¢) — 0 when ¢ — 0.
Assumptions (1) and (2) ensure m([i]) < o=(1=9" (recall that m(M) = 1). Hence
the measure of the union I,,(t) of all the sets [i] with g(i) < {n is bounded by

U—(I—C)nr(evqu)n.

is bounded by

Since o > ¢ we may choose ¢ so small that e7pSq < ¢!~ Then m(I,,(t)) < 7" with
7 =71 pC g < 1 for big enough n > N. Note that 7 and N do not depend on
t. Setting

I, = ULeT”({E} x I (i))
we also have (0N x m)(1,,) < 7" for all big n > N and for every Borel probability 6 on
T, by Fubini’s Theorem. Since Y. (6™ x m)(1,,) < oo then Borel-Cantelli’s Lemma
implies

(0" xm) (Nys1UpsIr) =0

and this means that 0 x m almost every (t,x) € TV x M satisfies (23). d

Lemma 6.3. — Let {B, ..., By, Bpt1, -, Bpyg} be a measurable cover of M satisfy-
ing conditions (1) and (2) of Lemma 6.2. For 0 < A <1 there are n > 0 and co > 0
such that, if fi also satisfies for allt € T
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) Hfo )_]H A< f()l NS Bl B
(4) 1DS) ] < L4 for 2 € Byr. . Byyy:

then we have for f = fi-. where t* is some given point in T,
. g ye )

n—1
1
(24) lnnsup~ E log [|Df( f, < =y
n—+4>x N
Jj=0

for O x m almost all (t,x) € TV x M, where 0 is any Borel probability measure on
T. Moreover the first hyperbolic time map h : TV x M — Z7F satisfies

(0" < m){(t.x) € TV x M : h(t,x) > k} < aj  and ZA(IA < 0
k=1
with (ax )y tndependent of the choice of 6.

Proof. Let ¢ > 0 be the constant provided by Lemma 6.2. We fix 7 > 0 sufficiently
small so that AS(1 + 1) < e~ holds for some ¢y > 0 and take (£, 2) satisfying (23).
Conditions (3) and (4) now imply
n—1 )
(25) L IDs G )~ < X (1 ptmem < e,
j=0
for large enough n. This means (25) holds for #" x m almost every (t.2) € T x M.
We observe that if h(t,2) = k, then 1 < n < k cannot be hyperbolic times for
(t,x). Hence (t,x) € I, for all n = 1...., k — 1. In particular
O < m){(t,x) € TV x M h(t.x) =k} < (0" x m)(Iy_y) = ax
and Y, kay < 3, kTH T < . O
Now we will show that families of C? maps satisfying conditions (1) through (4)
of Lemmas 6.2 and 6.3 contain open sets of families in the €2 topology. Let M be a
n-dimensional torus T" and fy : M — A a uniformly expanding map: there exists

0 < A < 1such that | Dfo(a)v|| = A7 Yv|| for all 2 € M and v € T, M. Let also W
be some small compact domain in M where f, | W is injective. Observe that fj is a

volume expanding local diffeomorphism due to the uniform expansion.

Modifying fi by an isotopy inside W we may obtain a map f; which coincides with
fo outside W, is volume expanding in M, i.e., |det D f(x)] > 1 for all x € M, and has
bounded contraction on W near 1: |[Df ()~ < 14 n for every 2 € W and some
7 > 0 small. This new map f; may be taken C'! close to f; and we may consider a
C? map fy arbitrarily C'! close to f.

Now any map f in a small enough € neighborhood of fy admits ¢ > 1 such that
[det Df(x)| = o for all € M and, for x outside W, we have || D f(x)~'|| < A. If the
C? neighborhood is taken sufficiently small then we maintain ||Df(2)7!| < 1+ 7 for
x € W and for some small 17 > 0. Let us take By...., B, B,41 = W a partition of A/
into measurable sets where the restriction f | B; is injective for i = 1,...,p+1. Then
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any continuous family of C? maps ® : T — C?(M, M) together with a family (6;).~0
of Borel probability measures in the metric space T', satisfying supp(f:) — {t*} when
¢ — 0 and f;- = f, for some t* € T, is such that f is nonuniformly expanding for
random orbits and (h:).-¢ has uniform L!-tail — by Lemma 6.3 with ¢ = 1 and
T = supp(be) for small enough € > 0. Theorem B then shows

Corollary 6.4. — There are open sets U C C?(M, M) such that every f € U is a
stochastically stable nonuniformly expanding local diffeomorphism.

6.2. Viana maps. — In what follows we study the class of nonuniformly expanding
maps with critical sets introduced by M. Viana and prove Theorem E.

6.2.1. Nonuniform expansion. — Let fbo defined as in Subsection 1.1.2. The results
in [Vil] show that if the map f is sufficiently close to /A in the C* topology then f
has two positive Lyapunov exponents almost everywhere: there is a constant A > 0
for which

1 .
liminf — log ||Df"(s,2)v]| = A
n—-+oc 1

for Lebesgue almost every (s,z) € S' x I and every non-zero v € Tis ,(S' x I).
) . J (s.x)
As mentioned in [ABV], this does not necessarily imply that f is nonuniformly ex-
panding. However a slight modification in Viana’s arguments enables us to prove the
nonuniform expansion of f.
For the sake of clearness, we start by assuming that f has the special form

(26) f(s,x) =(g(s),q(s.x)), with 0,q(s,z) =0 ifandonlyif x =0,
and describe how the conclusions in [Vil] are obtained for each C? map f satisfying
(27) If = flle2 <o on S'x 1.

Then we explain how these conclusions extend to the general case, using the existence
of a central invariant foliation, and we show how the results in [Vil] give the nonuni-
form expansion and slow approximation of orbits to the critical set for each map f as
in (27).

The estimates on the derivative rely on a statistical analysis of the returns of orbits
to the neighborhood S' x (—\/a, /&) of the critical set C = {(s,2) : v = 0}. We set

JO) =TI~ (=Va.Va) and J(r)={recl:|z|<e "} forr=0.

From here on we only consider points (s,2) € S! x I whose orbit does not hit the
critical set C. This constitues no restriction in our results, since the set of those points
has full Lebesgue measure.

For each integer j > 0 we define (sj,x;) = f/(s,x) and

"’J'(SHE) = lllin{r 20:x;€ J(r)}.

SOCIETE MATHEMATIQUE DE FRANCE 2003



56 J.F. ALVES & V. ARAUJO

Consider, for some small constant 0 < n < 1/4,

G = {0 <j<n:iri(s,z) > (% - 27]) log-;—}.
Fix some integer n > 1 sufficiently large (only depending on « > 0). The results in
[Vil] show that if we take
By(n) = {(s,x) : thereis 1 < j < n with z; € J([\/n]) },
where [y/n] is the integer part of \/n, then we have

(28) m(By(n)) < const e™V/4

and, for every small ¢ > 0 (only depending on the quadratic map @),
n—1

(29) log H |02q(sj,x)| = 2en — Zr.,-(s,a:) for (s,x) ¢ Ba(n),
j=0 JjEG

see [Vil, pp.75 & 76]. Moreover, if we define for v > 0
i) = { (50) € Bal): Y- ry(s.0) > m .
jea
then, for small v > 0, there is a constant £ > 0 for which
(30) m(By(n)) < e ¢,

see [Vil, p.77]. Taking into account the definitions of J(r) and r;, this shows that if
we take § = (1/2 — 2n)log(1/«), then

n—1

Z —logdists(f7(x),C) <yn for (s,x) ¢ Bi(n)U Ba(n).

j=0
This in particular gives that almost all orbits have slow approximation to C.
On the other hand, we have for (s,z) € Stx 1T

-1 1 O.q(s,2) 0
31 Df(s,: = ; .
(31) ( fis T)) 0:q(s,x)059(s) <—(r)sq(3,:r) 0s9(8)
Since all the norms are equivalent in finite dimensional Banach spaces, it is no re-

striction for our purposes to take the norm of (D f(s,x))_l as the maximum of the
absolute values of its entries. From (26) and (27) we deduce that for small «

|0sg] = d—a, |0sq] <alb/|+a <8 and |0.q| < 22|+ o < 4,
which together with (31) gives
-1 . —
[(Df(s.) || = 10za(s, )|,

as long as « > 0 is taken sufficiently small. This implies

n—1 n—1
(32) D log|[Df(sj )t == log|deg(s, z))]
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for every (s,x) € S' x I. If we choose v < ¢, then we have

n—1 n—1
(33) Z log |02q(s;, ;)| = log H 102q(s;, ;)] = en
Jj=0 Jj=0

for every (s,x) ¢ By1(n)UBz(n) (recall (29) and the definition of B;(n)). We conclude
from (32) and (33) that

n—1

Zlog |Df(sj,2;)) 7 < —en for (s,x) ¢ Bi(n)U Ba(n),

J=0
which, in view of the estimates on the Lebesgue measure of Bj(n) and Ba(n), proves
that f is a nonuniformly expanding map.

Now we describe how in [Vil] the same conclusions are obtained without assuming
(26). Since f is strongly expanding in the horizontal direction, it follows from the
methods of [HPS] that any map f sufficiently close to f admits a unique invariant
central foliation F¢ of S' x I by smooth curves uniformly close to vertical segments,
see [Vil, Section 2.5]. Actually, F¢ is obtained as the set of integral curves of a vector
field (€°,1) in St x I with £¢ uniformly close to zero. The previous analysis can then
be carried out in terms of the expansion of f along this central foliation F¢. More
precisely, |0.q(s,z)| is replaced by

[0cq(s, )| = [Df(s,x)ve(s, )|,

where v.(s, ) is a unit vector tangent to the foliation at (s,z). The previous obser-
vations imply that v, is uniformly close to (0, 1) if f is close to f Moreover, cf. [Vil,
Section 2.5], it is no restriction to suppose |0.q(s,0)] = 0, so that 0.q(s,z) = |z, as
in the unperturbed case. Indeed, if we define the critical set of f by

C={(s,x) € 8" x I : dq(s,x) = 0}.

by an easy implicit function argument it is shown in [Vil, Section 2.5] that C is the
graph of some C? map n : S' — I arbitrarily C?-close to zero if a is small. This
means that up to a change of coordinates C2-close to the identity we may suppose
that 7 = 0 and, hence, write for & > 0 small

0cq(s,x) = xp(s,x) with |y + 2| close to zero.

This provides an analog to the second part of assumption (26). At this point, the
arguments apply with 0,q(s, z) replaced by d.q(s,z), to show that orbits have slow
approximation to the critical set C and H;I:_Ul |0cq(si, z;)| grows exponentially fast for
Lebesgue almost every (s,x) € S x I. A matrix formula for (D f"(s, 1’))‘l similar to
that in (31) can be obtained if we replace the vector (0,1) in the canonical basis of the
space tangent to S' x I at (s, z) by v.(s, ), and consider the matrix of (D f"(s, z)) -
with respect to the new basis.
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For future reference, let us make some considerations on the way the sets Bj(n)
and Bs(n) are obtained. Let X : S' — I be a smooth map whose graph in S x I is
nearly horizontal (see the notion of admissible curve in [Vil, Section 2] for a precise
definition). Denote X n(8) = f"(s,X(s)) forn > 0 and s € S'. Take some leaf Ly
of the foliation F¢. Letting L, = f"(Ly) for n > 1, we define a sequence of Markov
partitions (P,), of S! in the following way:

P, = {[3', §"): (s',s") is a connected component of X7 (S x I) ~ L,,)} .
It is easy to check that P, refines P, for each n > 1 and
(d + const ) ™" < |w| < (d — const ) ™"

for each w € P,,. Due to the large expansion of f in the horizontal direction, we have
that if J C I is an interval with |J| < «, then for each w € P,

(34) m({s € w: X,(s) € St x J}) < const /] J|m(w)

see [Vil, Corollary 2.3]. The estimate (28) on the Lebesgue measure of Ba(n) is
now an easy consequence of (34). For that we only have to compute the Lebesgue
measure of Bo(n) on each horizontal line of S' x I and integrate. The estimate (28) on
the Lebesgue measure of By(n) is obtained by means of a large deviations argument
applied to the horizontal curves in S x I; see [Vil, pp.76 & 77 ].

Remark 6.5. — The choice of the constants ¢, £, v and § only depends on the quadratic
map Q and o > 0. In particular the decay estimates on the Lebesgue measure of By(n)
and By(n) only depend on the quadratic map @ and a > 0.

0.2.2. Random perturbations. -— Let f be close to )‘A in the C? topology. As we have
seen before, it is no restriction to assume that C = {(s,2) € S x I: 2 = 0} is the
critical set of f. Fix {®.(0.).} a random perturbation of f for which (8) holds. Our
goal now is to prove that any such f satisfies the hypotheses of Theorems C and D
for ¢ > 0 sufficiently small, and thus conclude that f is stochastically stable. So, we

want to show that if ¢ > 0 is small enough then

— f is nonuniformly expanding for random orbits;
— random orbits have slow approximation to the critical set C;
~ the family of hyperbolic time maps (h.). has uniform L'-tail.

We remark that in the estimates we have obtained for log||(Df(s;,x;))" | and
log dists(;.C) over the orbit of a given point (s.x) € S !'x I, we can easily replace
the iterates (s;,a;) by random iterates (s.a]) = f/(s,x). Actually, the methods
used for obtaining estimate (29) rely on a delicate (iecomposit,ion of the orbit of a
given point (s,z) from time O until time n into finite pieces according to its returns
to the neighborhood S' x (—/a, /@) of the critical set. The main tools are [Vil,
Lemma 2.4] and [Vil, Lemma 2.5] whose proofs may easily be mimicked for random

orbits. Indeed, the important fact in the proof of the referred lemmas is that orbits
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of points in the central direction stay close to orbits of the quadratic map @ for long
periods, as long as « > 0 is taken sufficiently small. Hence, such results can easily be
obtained for random orbits as long as we take ¢ > 0 with ¢ < « and perturbation
vectors t € supp(6:).

Thus, the procedure of [Vil] described in Subsection 6.2.1 applies to this situation,
and we are able to prove that there is ¢ > 0, and for v > 0 there is § > 0, such that

n—1 n—1
Z log ||Df(s£,;ri))’1 | < —cn and Z —log distg(:zrz.C) <An
Jj=0 J=0

for (s,z) ¢ Bi(n) U Ba(n), where Bj(n) and Ba(n) are subsets S x [ with
m(Bi(n)) < e ¢ and  m(Ba(n)) < conste V4

for some constant & > 0 only depending on ~y. This gives the nonuniform expansion
and slow approximation to the critical set for random orbits. Moreover, the arguments
show that we may take the map N. with

(02 < m) ({(t.x) € T" x M: No(t,x) > n}) < const eV

thus giving that the family of first hyperbolic time maps has uniform L'-tail; cf.
Remark 6.1.

For the sake of completeness, an explanation is required on the way the Markov
partitions P, of S' can be defined in this case, in order to obtain the estimates on
the Lebesgue measure of By(n) and Ba(n). We consider M = S! x I and define the
skew-product map

F TV < M — T x M,
(t.2) v (o). fr,(2))
where o is the left shift map. Writing fi(z) = (g:(2). @i (2)) for = = (s,2) € S' x I,
we have that ¢ (s, ) is a unimodal map close to ¢ for all s € S' and t € supp(f.) with
g > 0 small.

Proposition 6.6. — Given t € T" there is a C'' foliation Fi of M such that if Li(z) is
the leaf of Fi through a point = € M. then

(1) Li(2) is a C' submanifold of M close to a vertical line in the C'' topology:
(2) fi,(Li(2)) is contained in Loy (f1,(2)).

Proof. — This will be obtained as a consequence of the fact that the set of vertical
lines constitutes a normally expanding invariant foliation for jA Let H be the space
of continuous maps & : TV x Al — [~1,1] endowed with the sup norm, and define the
map A:'H — H by

00 (RSP 2)) = Drgiy (2)
Al(t.2) = —Ouqr, (2)E(F (L, 2)) + Dogr, (2

t=(ti ty,...) €T and =ze M.

3
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Note that A is well-defined, since

|AE(L, 2)| <

for small @ > 0 and € > 0. Moreover, A is a contraction on H: given £,( € H and
(t,2) € TN x M then

Ad+a+e)ta+e

<1
—(const a+¢) + (d—a —¢)

|detD fe, (2)[ - [§(¢, 2) — C(t, 2)]
\ Fsqe, (2)E(F (L, 2)) + D591, (2)) - (= Dsqu, (2)C(F (L, 2)) + Dsgr, (2))]
(d+a+a4+a+d+a+d‘KLz—(Lﬂ
(d — consta — €)?2

This last quantity can be made smaller than |£(t, z) — n(t, z)|/2, as long as a and ¢
are chosen sufficiently small. This shows that A is a contraction on the Banach space
‘H, and so it has a unique fixed point £° € H.

It is no restriction for our purposes if we think of 7" as being equal to supp(6.) for
some small €. Note that the map A depends continuously on F and for € > 0 small
enough the fixed point of A is close to the zero constant map. This holds because
we are choosing supp(é.) close to {t*}, fi- = f and f close to f. Then, for £ > 0
small enough, we have £°(t, ) uniformly close to £°(¢*,-) and it is not hard to check
that £§ = £°(¢t*, ) is precisely the map whose integral leaves of the vector field (£§,1)
give the invariant foliation F¢ associated to f;- = f. Since this foliation depends
continuously on the dynamics and for f = f we have £§ = 0 (see [Vil, Section 2.5]),
we finally deduce that £°(¢,-) is uniformly close to zero for small € > 0.

We have defined A in such a way that if we take E“(t, z) = span{(£°(¢, z), 1)}, then
for every t € TN and z € S' x I

(35) Dfi, (2)E°(t,2) C E(F(L2)).

Now, for fixed t € TV, we take F¢ to be the set of integral curves of the vector field
2 (€°(t, 2),1) defined on S' x I. Since the vector field is taken of class C°, it does
not follow immediately that through each point in S! x I passes only one integral
curve. We will prove uniqueness of solutions by using the fact that the map f has a
big expansion in the horizontal direction.

Assume, by contradiction, that there are two distinct integral curves Y, Z € Fy
with a common point. So we may take three distinct nearby points zg, 21, 22 € S x I
such that zo € YNZ, 21 €Y, 20 € Z and z;, 2o have the same z-coordinate. Let X
be the horizontal curve joining z; to zo. If we consider X,, =m0 F"(t, X) for n > 1,
where 75 is the projection from TV x S' x I onto S' x I, we have that the curves
X, are nearly horizontal and grow in the horizontal direction (when n increases) by a
factor close to d for small o and ¢, see [Vil, Section 2.1]. Hence, for large n, X,, wraps
many times around the cylinder S! x I. On the other hand, since Y,, = w0 F"(¢,Y)
and Z, = my o F"(t,Z) are always tangent to the vector field z (5(( "t, z), )
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on S! x I, it follows that all the iterates of Y,, and Z, have small amplitude in the
s-direction. This gives a contradiction, since the closed curve made by Y, Z and X is
homotopic to zero in S* x I and the closed curve made by Y,,, Z, and X,, cannot be
homotopic to zero for large n. Thus, for fixed ¢t € TV we have uniqueness of solutions
of the vector field z — (£°(t, 2), 1), and from (35) it follows that F{ is an F-invariant
foliation of M by nearly vertical leaves. O

Now, using the foliations given by the previous proposition we are also able to
define the Markov partitions of St in this setting. Given any smooth map X : S1 — T
whose graph is nearly horizontal, denote )A(t"(s) = f'(s,X(s)) forn > 0and s € S*.
Take some leaf L) of the foliation F¢. Letting L = fI(L,) for n > 1, we define the

sequence of Markov partitions (Pg’)n_ of St as
PP = {[s’, s"): (s',8") is a connected component of ()A(,'_,")_1 (' xI)~ LZ)} :
It is easy to check that 79;_"*1 refines Py for each n > 1 and, taking ¢ < a,

(d+ consta)™ < |w| < (d — consta)™"

for each w € P/’. This permits to obtain estimates (28) and (30) for the Lebesgue
measure of the sets By(n) and By(n) exactly in the same way as in Subsection 6.2.1,
also with the constants only depending on the quadratic map @ (cf. Remark 6.5).
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THE MINIMAL ENTROPY PROBLEM FOR 3-MANIFOLDS
WITH ZERO SIMPLICIAL VOLUME

by

James W. Anderson & Gabriel P. Paternain

Dedicated to Jacob Palis on his siztieth birthday

Abstract. — In this note, we consider the minimal entropy problem, namely the
question of whether there exists a smooth metric of minimal (topological) entropy,
for certain classes of closed 3-manifolds. Specifically, we prove the following two
results.

Theorem A. Let M be a closed orientable irreducible 3-manifold whose fundamental
group contains a Z & 7 subgroup. The following are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for M
can be solved;

(2) M admits a geometric structure modelled on E® or Nil;

(3) M admits a smooth metric g with hiop(g) = 0.

Theorem B. Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for M
can be solved;

(2) M admits a geometric structure modelled on S3, 82 x R, E3, or Nil;

(3) M admits a smooth metric g with hiop(g) = 0.

1. Introduction and statement of results

Let M™ be a closed orientable n-dimensional manifold. For a smooth Riemannian
metric g on M, let Vol(M, g) denote the volume of M calculated with respect to g.

Let heop(g) be the topological entropy of the geodesic flow of g, as defined in Sec-
tion 2.6. Set the minimal entropy of M to be

h(M) := inf{h¢o,(9) | g is a smooth metric on A with Vol(M, g) = 1}.
A smooth metric gy with Vol(M, gy) = 1 is entropy minimizing if

htup(g()) = h(]\[)
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The minimal entropy problem for M is whether or not there exists an entropy
minimizing metric on M. Say that the minimal entropy problem can be solved for
M if there exists an entropy minimizing metric on M. Smooth manifolds are hence
naturally divided into two classes: those for which the minimal entropy problem can
be solved and those for which it cannot.

There are a number of classes of manifolds for which the minimal entropy problem
can be solved. For instance, the minimal entropy problem can always be solved for a
closed orientable surface M. For the 2-sphere and the 2-torus, this follows from the
fact that both a metric with constant positive curvature and a flat metric have zero
topological entropy. For surfaces of higher genus, A. Katok [11] proved that each
metric of constant negative curvature minimizes topological entropy, and conversely
that any metric that minimizes topological entropy has constant negative curvature.

This result of Katok has been generalized to higher dimensions by Besson, Courtois,
and Gallot [1], as follows. Suppose that M™ (n > 3) admits a locally symmetric metric
go of negative curvature, normalized so that Vol(M, gg) = 1. Then go is the unique
entropy minimizing metric up to isometry. Unlike the case of a surface, a locally
symmetric metric of negative curvature on a closed orientable n-manifold (n > 3) is
unique up to isometry, by the rigidity theorem of Mostow [18].

The result of Besson, Courtois, and Gallot [1] has itself been generalized by Connell
and Farb [4] to n-manifolds that admit a complete, finite-volume metric which is
locally isometric to a product of negatively curved (rank 1) symmetric spaces of
dimension at least 3.

A positive solution to the minimal entropy problem appears to single out manifolds
that have either a high degree of symmetry or a low topological complexity. What this
means in the context of 3-manifolds will become apparent below. A similar phenomena
is observed for closed simply connected manifolds of dimensions 4 and 5: there are
essentially only nine manifolds for which the minimal entropy problem can be solved
and they can be explicitly listed. These nine manifolds share the property that their
loop space homology grows polynomially for any coefficient field, see Paternain and
Petean [21].

The goal of this note is to classify those closed orientable geometrizable 3-manifolds
with zero simplicial volume for which the minimal entropy problem can be solved.
Specifically, in Section 4, we prove:

Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental
group contains a Z & Z subgroup. The following are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on E* or Nil;

(3) M admits a smooth metric g with hyop(g) = 0.
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In Section 5 we prove:

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on S?, S? x R, E?, or Nil;

(3) M admits a smooth metric g with hop(g) = 0.

Recall that the simplicial volume of a closed orientable manifold M is defined as
the infimum of ), |r;| where the r; are the coefficients of a real cycle that repre-
sents the fundamental class of M. For 3-manifolds, the positivity of the simplicial
volume (which is a homotopy invariant) is closely related to the existence of compact
hyperbolizable submanifolds in M. This is described in more detail in Section 2.5.

We close the introduction by describing some of the elements of the proofs of
Theorems A and B, and by describing a conjectural picture. We will see in Section 2
that a closed orientable geometrizable 3-manifold M has zero simplicial volume if and
only if M has zero minimal entropy. Therefore, the minimal entropy problem can
be solved if and only if M admits a smooth metric with zero topological entropy.
This in turn forces the fundamental group of M to have subexponential growth.
We end up showing that this can occur only if M admits one of the four geometric
structures listed in the statement of Theorem B. On the other hand, it is a calculation
that the manifolds in the statement of Theorem B carry a metric of zero entropy.
The proof of Theorem A follows a similar line, and makes use of the remarkable
theorem, due essentially to Thurston, that a manifold satisfying the hypothesis of
the theorem is geometrizable. The precise definition of geometrizable manifold is
given in Subsection 2.4. Thurston’s geometrization conjecture states that every closed
orientable 3-manifold is geometrizable.

From this discussion and the above mentioned result of Besson, Courtois and Gallot
it seems quite reasonable to speculate that the following statement holds:

Let M be a closed orientable geometrizable 3-manifold. Then, the minimal entropy
problem for M can be solved if and only if M admits a geometric structure modelled
on S*, $? x R, E*. Nil, or H?.(D

Indeed, suppose that the simplicial volume of M were not zero. This would imply that
M contains a disjoint collection Hy,. .., H, of compact submanifolds whose interiors
each admit a complete hyperbolic structure of finite volume. In particular, it should be
that the minimal entropy of M is the maximum of the minimal entropies of the Hy. It

(I Note added in proof: J. Souto (Geometric structures on 3-manifolds and their deformations.
Dissertation, Rheinische Friedrich-Wilhelms-Universitit Bonn 2001) has proven this conjecture for
all geometrizable prime 3-manifolds
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would then seem reasonable that an entropy minimizing metric on M would try to be
as hyperbolic as possible on the interiors of the Hj and would try as much as possible
to be one of the other seven standard 3-dimensional geometries on the components
of M — (H;U---UH,). However, it would seem that the minimizer would have to
be singular along the 0H;, and so there should be no metric of minimal entropy.
Unfortunately, we do not yet know how to make this argument rigorous.

We would like to thank the referees for their careful reading of this note.

2. Preliminaries

The purpose of this Section is to present some of the basic material from 3-manifold
theory that we will need. We refer the interested reader to Hempel [8] for a more
detailed introduction to 3-manifold topology. For a more detailed description of Seifert
fibered spaces, and of the torus decomposition and the geometrization of 3-manifolds,
we also refer the interested reader to the survey articles of Scott [26] and Bonahon
[2], and the references contained therein.

2.1. 3-manifold basics. — We begin with some basic definitions. A 3-manifold is
closed if it is compact with empty boundary.

An embedded 2-sphere S? in a 3-manifold A is essential if M does not bound a
closed 3-ball in Af. A 3-manifold is irreducible if it contains no essential 2-sphere.

A 3-manifold is prime if it cannot be decomposed as a non-trivial connected sum.
That is, M is prime if for every decomposition M = M;# M, of M as a connected sum,
one of My or My is homeomorphic to the standard 3-sphere S®. Every irreducible 3-
manifold is prime, but the converse does not hold. However, the only closed orientable
3-manifold that is prime but not irreducible is §? x S'.

We note here that if the closed orientable 3-manifold M contains a non-separating
essential 2-sphere, then M can be expressed as the connected sum M = P#(S? x S')
for some 3-manifold P. Hence, in what follows, we need only consider separating
essential 2-spheres in 3-manifolds.

There is an inverse to the operation of connected sum for 3-manifolds, called the
prime decomposition. The following statement is adapted from Bonahon (2], and
follows from work of Kneser [12] and Milnor [16].

Let A be a closed orientable 3-manifold. Then, there exists a compact 2-
submanifold ¥ of M, unique up to isotopy, so that two conditions hold. First, each
component of ¥ is an embedded essential separating 2-sphere, and the 2-spheres
in ¥ are pairwise non-parallel, in that no two 2-spheres in ¥ bound an embedded
S? x [0,1] in AL, Second, if My, My, .... A, are the closures of the components of
M — ¥, then M, is homeomorphic to the 3-sphere S* minus finitely many disjoint
open 3-balls; while for £ > 1, each M} contains a unique component of 3, and every
separating essential 2-sphere in M}, is parallel to OM.
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The prime decomposition of Al is the collection of 3-manifolds that results by
taking the complements of the 2-submanifold ¥ in M as just described, and filling
in each 2-sphere boundary component of My, My, ..., M, with a 3-ball. Each of the
resulting 3-manifolds is then prime. (Note that both S* and S§? x §' have trivial
prime decompositions, as they do not contain a separating essential 2-sphere.) The
prime decomposition is one of two standard decompositions of a closed orientable
3-manifold, the other being the torus decomposition, which is discussed in detail in
Section 2.3.

In general, a closed orientable embedded surface S in a 3-manifold M is 2-sided if
there exists an embedding f of S x [—1,1] into M so that f(S x {0}) =S. A closed
orientable embedded surface S in a 3-manifold A is incompressible if the fundamental
group of S is infinite and if the inclusion S — M induces an injection on fundamental
groups. An incompressible surface S is essential if S is not homotopic into dAL.

A compact orientable irreducible 3-manifold M is sufficiently large if it contains a
2-sided incompressible surface. Sufficiently large 3-manifolds are also known as Haken

3-manifolds.

2.2. Seifert fibered spaces. — A Seifert fibration of a 3-manifold M is a decom-
position of Al into disjoint simple closed curves, called the fibers of the fibration, so
that each fiber ¢ has a neighborhood U in A of the following form: U is diffeomorphic
to the quotient of S' x B? by the free action of a finite group respecting the product
structure, where the fibers of the fibration correspond to the curves {x} x B? for
r € S'. (In this note, we only consider Seifert fibrations of closed 3-manifolds and of
3-manifolds without boundary that are homeomorphic to the interior of a compact
3-manifold with 2-torus boundary components.)

Since we are cousidering only orientable 3-manifolds in this note, the group of
covering transformations of S' x B? in the above definition is generated by 7, for
some pair (p, q) of relatively prime integers, where

- . . . ) I
Tp (RIY‘,’}(,IH) — (FI(Q+27T/[))§ 7,(,1(H+_7rq/1))) )

A fiber is a regular fiber if it has a neighborhood diffeomorphic to S' x B2, and is
a singular fiber otherwise. Note that the singular fibers of a Seifert fibration are
necessarily isolated.

Let S be the space of fibers of a Seifert fibration of a 3-manifold M, equipped with
the quotient topology coming from the projection map p : M — S. We often refer
to S as the base orbifold of the Seifert fibered space M. Using the neighborhoods of
the fibers in M, we see that S is an orientable surface with one cone point for each
singular fiber.

Let py,....ps be the cone points on S, and let n; be the order at the cone point p;,
so that a neighbhorhood of p; is diffeomorphic to the quotient B2/ Zy,, where Z,,
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acts by rotation. The orbifold Euler characteristic x(S) of S is the quantity

) . 1
X(S) = 2 — 2 genus(S) ; <1 nj) .

(This discussion is also valid in the case that M is a 3-manifold without boundary
that is homeomorphic to the interior of a compact 3-manifold with 2-torus boundary
components. In this case, the base orbifold has punctures as well as cone points, and
we view each puncture as a cone point of infinite order.)

There are two cases of particular interest. In the case that x(S) < 0, S has a
hyperbolic structure, so that we can express S as the quotient S = H? /T, where H? is
the hyperbolic plane and T is a discrete subgroup of Isom(H?), where the fixed points
of the action of non-trivial elements of I" descend to the cone points on S. We refer
to I' as the orbifold fundamental group of S. In this case, we have that I" contains a
free subgroup of rank 2, and in particular I' contains an element of infinite order.

In the case that x(S) = 0, S has a Euclidean structure, so that we can express S as
the quotient S = E?/T", where E? is the Euclidean plane and T is a discrete subgroup
of Isom(IE?), where the fixed points of the action of non-trivial elements of I descend
to the cone points on S. As above, we refer to I' as the orbifold fundamental group
of S. In this case, we have that I" contains an element of infinite order, but not a free
subgroup of rank two.

In both of these cases, the orbifold fundamental group of the base orbifold S of
the Seifert fibered space M is a subgroup of m(M). In fact, there is a short exact
sequence

1 —7Z— m (M) — m(S) — 1,
where 7(5) is the orbifold fundamental group of S and where Z is generated by any
regular fiber of the Seifert fibration.

The following follows immediately from this discussion.

Lemma 2.1. Let M be a Seifert fibered space as above with base orbifold S. If
x(S) €0, then m (M) contains a Z & Z subgroup.

Proof. — The proof of Lemma 2.1 is standard, but we sketch it here for the sake of
completeness. Let p: M — S be the quotient map. Since x(S) < 0, there is a closed
curve ¢, not necessarily simple, on S that represents an infinite order element of the
orbifold fundamental group of S. Let T = p~!(¢) in M be the subset of M that consists
of all the fibers in M corresponding to points of ¢. Then, T is an incompressible 2-
torus in M, though not necessarily embedded. However, this is sufficient to guarantee
that there exists a Z@® Z subgroup of my (M), namely the fundamental group of T. O

2.3. The torus decomposition. — Let M be a closed orientable irreducible 3-
manifold with infinite fundamental group. There is then a canonical decomposition of
M along embedded essential 2-tori, due to Jaco and Shalen [9] and Johannson [10].
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(Note that the restriction to irreducible 3-manifolds causes no loss of generality, as
we may first apply the prime decomposition to M, as described in Section 2.1. Also,
we tend to not take the torus decomposition of S x S!.) The statement given below
is adapted from Theorem 3.4 of Bonahon [2].

Theorem 2.2 ([2]). — Let M be a closed orientable irreducible 3-manifold. Then, up
to isotopy, there is a unique compact 2-submanifold T' of M such that:

(1) every component of T is a 2-sided essential 2-torus:

(2) every component of M — T either contains no essential embedded 2-torus or
Klein bottle, or else admits a Seifert fibration (or possibly both);

(3) property (2) fails when any component of T is removed.

We refer to this 2-submanifold T as the torus decomposition of M. Note that
condition (3) implies that no two of the 2-tori in the torus decomposition are isotopic.

Let M be a compact orientable 3-manifold, and let My, My, ..., M, be the compo-
nents of its prime decomposition. Let T} be the torus decomposition of Ay. Say that
M is a graph manifold if, for each 1 < k < p, every component of M — T} admits
a Seifert fibration. Clearly, every Seifert fibered space is trivially a graph manifold.
Also, every 2-torus bundle over S! is a graph manifold.

Theorem 2.2 is a small part of the machinary of the characteristic submanifold of a
3-manifold developed by Jaco and Shalen and by Johannson. Note that this discussion
includes the possibility that the torus decomposition T is empty, even though 1 (M)
may contain a Z ¢ Z subgroup.

A closely related result is the following torus theorem. For a discussion and proof
of this result, see Scott [27].

Theorem 2.3 ([27]). — Let M be a closed orientable irreducible 3-manifold whose fun-
damental group contains a ZHZ subgroup. Then, either M contains an incompressible
embedded 2-torus or M is a Seifert fibered space.

2.4. Geometric structures and geometrization. — A 3-dimensional geome-
try is a pair (X, G), where X is a simply connected Riemannian 3-manifold with a
complete homogeneous metric and G is a maximal transitive group of orientation-
preserving isometries of X, with the proviso that there exists a subgroup H of G
with compact quotient X/H. Note that since G is a maximal group of isometries, it
suffices to specify X and set G = Isom(X).

It is a result of Thurston that there exist exactly eight 3-dimensional geometries,
namely E*, S?, H?, §? x R, H? x R, §E2, Nil, and Sol, with their respective groups of
(orientation preserving) isometries. (A proof of this result, and a detailed description
of the eight geometries, is given in Scott [26].)

Let M be an orientable 3-manifold that is homeomorphic to the interior of a com-
pact 3-manifold with 2-torus boundary components. (This includes the possibility
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that M is closed.) Say that M admits a geometric structure modelled on X if M is
diffeomorphic to the quotient X/I", where X is one of the eight 3-dimensional geome-
tries and I is a fixed point free subgroup of Isom(X). It is known that if a 3-manifold
admits a geometric structure, then it admits a unique geometric structure.

More generally, let A be a closed orientable irreducible 3-manifold with torus
decomposition T. Say that M is geometrizable if each component of M — T admits a
geometric structure. (Note that we do not require that different components of M —T
admit the same geometric structure.)

Finally, say that a closed orientable 3-manifold is geometrizable if every component
of its prime decomposition is geometrizable. (This causes no difficulties, as S? x S!,
which may arise as a component of the prime decomposition but is not irreducible,
admits a geometric structure modelled on S? x R.)

Thurston’s geometrization conjecture states that every closed orientable 3-manifold
is geometrizable. For a more complete discussion of the geometrization conjecture,
see Scott [26], Bonahon [2], or Thurston [30].

There are a number of manifolds for which the geometrization conjecture is known
to be true. If M is a closed orientable irreducible sufficiently large 3-manifold, then
M is geometrizable; this is Thurston’s geometrization theorem; see Morgan [17] or
Otal [19] for a discussion of this theorem.

In particular, if M has a non-empty torus decomposition, then it is geometrizable.
In this case, each component of the complement of the torus decomposition of M
either is a Seifert fibered space or admits a hyperbolic structure, that is the geometric
structure modelled on H?. We encode in the following theorem the parts of this
discussion we make the most use of.

Theorem 2.4. — Let M be a closed orientable irreducible sufficiently large 3-manifold.
Then. M admits a torus decomposition T'. Moreover, each component of M —T either
18 a Seifert fibered space or admits a hyperbolic structure.

Additionally, the geometrization of Seifert fibered spaces, and in fact of irreducible
graph manifolds, is completely understood.

Theorem 2.5 (|26, Theorem 5.3]). — Let M be a closed orientable 3-manifold. Then,

(1) M possesses a geometric structure modelled on Sol if and only if M is finitely
covered by a 2-torus bundle over S* with hyperbolic glueing map;

(2) M possesses a geometric structure modelled on one of S*, E*, §? x R, H* x R,
§I/42, or Nil if and only if M is a Seifert fibered space.

We note here that the two unresolved cases of the geometrization conjecture are
that the fundamental group of M is finite, in which case M should admit a geometric
structure modelled on S§? [the Poincaré conjecture and the spherical space form prob-
lem], and that the fundamental group of M is infinite, does not contain Z & Z, and
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does not contain a normal cyclic subgroup, in which case M should admit a geometric
structure modelled on H? [the hyperbolization conjecture].

2.5. Simplicial volume. — Let M be a closed manifold. Denote by C, the real
chain complex of M: a chain ¢ € C, is a finite linear combination »_, r;0; of singular
simplices o; in M with real coefficients r;. Define the simplicial £'-norm in C, by set-
ting |c| = >_, |r;|. This norm gives rise to a pseudo-norm on the homology H,(M,R)
by setting
[[a]| = inf{|z] : z € C\ and [z] = [a]}.
When M is orientable, define the simplicial volume of M, denoted || M|, to be the sim-
plicial norm of the fundamental class. The simplicial volume is also called Gromouv’s
invariant, since it was first introduced by Gromov [7].
The following lower bound on ||M]] is due to Thurston [29].

Theorem 2.6 ([29, Theorem 6.5.5]). — Suppose that M is a closed orientable 3-manifold
and that H C M is a 3-dimensional submanifold whose interior admits a complete
hyperbolic structure of finite volume. Suppose further that H is embedded in M and
that OH is incompressible in M. Then,

Vol(H)

| M| >

>0,

where vy is the volume of the reqular ideal tetrahedron in H?.
The next theorem follows immediately from Theorems 2.6, 2.4, and 2.5.

Theorem 2.7. — Let M be a closed orientable geometrizable 3-manifold. Suppose that
[M|| =0. Then M is a graph manifold.

Proof. — The proof of Theorem 2.7 is essentially contained in Soma [28]; we include
it here solely for the sake of completeness.

We begin by considering the prime decomposition of M. That is, write M as the
connected sum M = My# --- #M,, where each M; is a prime 3-manifold. (Note that
we are including in this discussion the case that M is itself prime, and so has trivial
prime decomposition.)

Since simplicial volume behaves additively with respect to connected sums
(cf. Gromov [7]), the hypothesis that M has zero simplicial volume implies that each
M; has zero simplicial volume as well. Since the connected sum of graph manifolds
is again a graph manifold (cf. Soma [28]), it suffices to show that each M; is a graph
manifold. Since each M, is prime, it is either irreducible or diffeomorphic to S? x S!,
which is a Seifert fibered space. So, we may assume without loss of generality that
M is irreducible.

Let T be the torus decomposition of M. Recall that M is assumed to be geometriz-
able. If T'is empty, then M admits a geometric structure other than the one modelled
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on H? (which is excluded by the assumption on the simplicial volume of M), and so
M is a graph manifold, by Theorem 2.5.

If T is non-empty, then M is sufficiently large, and so Thurston’s geometrization
conjecture holds for M. Since || M| = 0, each component of M — T is a Seifert fibered
space, as no piece can be hyperbolic, by Theorem 2.6. It follows that M must be a
graph manifold. O

2.6. Topological entropy. — We recall in this subsection the definition of the
topological entropy of the geodesic flow of a smooth Riemannian metric g on a closed
manifold M. For a more detailed discussion, we refer the interested reader to Pater-
nain [20).

The geodesic flow of g is a flow ¢, that acts on SM, the unit sphere bundle of M,
which is a closed hypersurface of the tangent bundle of M. Let d be any distance
function compatible with the topology of SM. For each T' > 0 we define a new
distance function

dr(w,y) = max d(¢(z), ¢ (y))-

Since SM is compact, we can consider the minimal number of balls of radius € > 0 in
the metric dr that are necessary to cover SM. Let us denote this number by N(e,T).
We define

h(¢,e) := limsup 1 log N(e,T).
Tooo T
Observe now that the function ¢ — h(¢, ¢) is monotone decreasing and therefore the
following limit exists:
Biop(g) := lim h(¢, €).

The number hyop(g) thus defined is the topological entropy of the geodesic flow of g.
Intuitively, this number is a measure of the orbit complexity of the flow. The positivity
of hyop(¢p) indicates complexity or ‘chaos’ of some kind in the dynamics of ¢;.

There is a formula, known as Mané’s formula, that gives a nice alternative descrip-
tion of hiyp(g). Given points p and ¢ in M and T' > 0, define np(p,q) to be the
number of geodesic arcs joining p and ¢ with length < T'. Mafié [14] showed that

. 1
ht,op(g) lim T lOg / n7'(]7, Q) dp dQ'
JMx M

o T—00

Finally we note that entropy behaves well under scaling of the metric. Namely, if
c is any positive constant, then hiop(cg) = hiop(g)/ Ve

2.7. Minimal volume and collapsing. — The minimal volume MinVol(M) of a
Riemannian manifold M is defined to be the infimum of Vol(M, g) over all smooth
metrics g such that the sectional curvature K, of g satisfies K| < 1. This differential
invariant was introduced by M. Gromov in [7].

We shall need the following result, see Cheeger and Gromov [3, Example 0.2 and
Theorem 3.1] and Rong [23].
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Proposition 2.8. — Let M be a closed orientable 3-manifold. If M s a graph manifold,
then M admits a polarized F-structure, and hence MinVol(M) = 0.

We will not give here the precise definition of a polarized F-structure, because it
is too technical. Instead we give an informal description, and we refer the interested
reader to Cheeger and Gromov [3] for a more detailed discussion.

An F-structure on a manifold M is a natural generalization of a torus action on M.
Different tori, possibly of different dimensions, act on subsets of M in such a way that
M is partioned into disjoint orbits. The F-structure is said to be polarized if the local
actions are locally free.

Consider the following example of a polarized F-structure on a graph manifold.
Take a compact surface S with non-empty connected boundary, and consider two
copies of S x S, each of which has a 2-torus boundary. Fixing an identification of 9S
with S', glue the boundaries of two copies of S x S! by a map that interchanges the
S! factors. so that (x,z) € S x S' on one copy is glued to (z,z) € S x S! on the
other copy.

The resulting manifold admits a free circle action on each copy of int(S) x S*, but
at their common boundary the actions do not agree. However, they do generate a 2-
torus action which acts locally near their common boundary, thus defining a polarized
F-structure on the whole manifold.

2.8. An important chain of inequalities. — Let M be a closed Riemannian
manifold with smooth metric g, and let M be its universal covering endowed with the
induced metric. For each z € M , let V(z,7) be the volume of the ball with center x
and radius r. Set .
Ag) = rEIJPoo . log V(x,7r).
Manning [13] showed that this limit exists and is independent of x.
Set

A(M) := inf{A(g) | g is a smooth metric on M with Vol(M,g) = 1}.

It is well known, see Milnor [15], that A(g) is positive if and only if 7y (M) has
exponential growth. Manning’s inequality [13] asserts that for any metric g,

(1) A(9) < hiop(9)-

In particular, it follows that if 7 (A7) has exponential growth, then hop,(g) is positive
for any metric g. (This fact was first observed by Dinaburg [5]). Gromov [7] showed
that if Vol(M,g) = 1, then

1

@) Sl < )

co=r(3) var ().

where
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Finally it was observed by Paternain [20] that
(3) [h(M)]™ < (n — 1)"MinVol(M).

Combining equations (1), (2), and (3), we obtain the following chain of inequalities:

1
4
4) Cpn!

We note here that the only known 3-manifolds with h(A) > 0 are those with
[IML]] # 0. In fact it follows from Theorem 2.7, Proposition 2.8, and the chain of
inequalities (4) that if M is a closed orientable geometrizable 3-manifold, then the
vanishing of the simplicial volume implies that h(A) = 0.

| ML) < MM < [W(AD)]™ < (n— 1)"MinVol(M).

We encode this information in the following theorem.

Theorem 2.9. —— Let M a closed orientable geometrizable 3-manifold. Then the fol-
lowing are equivalent:

(1) the minimal volume MinVol(Al) of M wvanishes;
(2)
(3) the simplicial volume ||M|| of M wvanishes;
(4)

the minimal entropy h(M) of M wvanishes;

M is a graph manifold.

3. Geometric structures and the minimal entropy problem

In this section, we consider the minimal entropy problem for those 3-manifolds that
admit a single geometric structure. Namely, we prove the following.

Proposition 3.1. — Let M be a closed orientable 3-manifold. Suppose that M admits
a geometric structure. Then, the minimal entropy problem for M can be solved if
and only if M admits a geometric structure modelled on S*, E?, §? x R, Nil, or H?®.
Moreover, if M admits a geometric structure modelled on S?, E?, S2 x R, or Nil, then
M admits o smooth metric g with hy,,(g) = 0.

Proof. — We start by showing that if A admits a geometric structure modelled on
one of these 5 geometries, then the minimal entropy problem for M can be solved.
Observe first that if A/ admits a geometric structure modelled on H?, then the minimal
entropy problem can be solved by the results of Besson, Courtois and Gallot [1].

It follows immediately from Theorem 2.5 that if M admits a geometric stucture
modelled on one of the seven geometries S*, E?, S? x R, H? x R, ST@, Nil, or Sol, then
M is a graph manifold. Hence by Proposition 2.8 and the chain of inequalities (4),
we have that for such an M, the minimal entropy satisfies h(Af) = 0.

We now show that if M admits a geometric structure modelled on one of S, E?,
S? x R, or Nil, then the minimal entropy problem for Al can be solved. To do this,
we need to show that A/ admits a smooth metric g with ho,(g) = 0.
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(1) S, E3, §? x R: All the Jacobi fields in these geometries grow at most linearly
(in the case of S* they are actually bounded), and hence all the Liapunov exponents
of every geodesic in M are zero. It follows from Ruelle’s inequality [24] that all
the measure entropies are zero. Hence, by the variational principle, the topological
entropy of the geodesic flow of Al must be zero.

(2) Nil: This geometry can be described as R? with the metric

ds? = da® + dy® + (dz — xdy)?

Here, not all the Jacobi fields grow linearly, but they certainly grow polynomially.
Again this implies that all the Liapunov exponents of every geodesic in M are zero
and hence the topological entropy of the geodesic flow of A/ must be zero.

Since we have assumed that A/ admits a geometric structure, we complete the
proof by showing that if Al admits a geometric structure modelled on one of the
remaining geometries, namely H? x R, SLZ and Sol. then M cannot admit a metric
of zero topological entropy. To do this, we use the next lemma, together with the fact
described in Subsection 2.8, that if m (M) grows exponentially, then h,,(g) > 0 for
any smooth metric g on M.

Lemma 3.2. Let M be a closed orientable 3-manifold. and suppose that M admits
a geometric structure modelled on one of H? x R, SLy. or Sol. Then m (M) grows
exponentially.

Proof. In the case that M admits a geometric structure modelled on H? x R or
S~142. we start by recalling from Theorem 2.5 that A is then a Seifert fibered space.
The base orbifold of the Seifert fiber space admits a hyperbolic structure, and so the
orbifold fundamental group of the base orbifold contains a free subgroup of rank 2,
and hence so does m (M ). Hence, m (M) grows exponentially.

In the case that M admits a geometric structure modelled on Sol, we have that A
is finitely covered by the mapping torus N of a hyperbolic automorphism of a 2-torus.
Note that a hyperbolic automorphism of a 2-torus is an Anosov diffeomorphism, and
so the suspension flow on N is an Anosov flow. It is known that the fundamental
group of a 3-manifold with an Anosov flow has exponential growth (see for example
Plante and Thurston [22]). O

This completes the proof of Proposition 3.1. |

4. Proof of Theorem A

Up to this point, we have been considering the minimal entropy problem for closed
3-manifolds that admit a single geometric structure. In this section, we consider a
more general geometrizable 3-manifold.
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Theorem A. — Let M be a closed orientable irreducible 3-manifold whose fundamental
group contains a Z & 7 subgroup. The following are equivalent:

(1) the simplicial volume ||M|| of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on E* or Nil;

(3) M admits a smooth metric g with hy,p(g) = 0.

Proof. — Let us show that item 1 implies item 2. Suppose then that M has zero
simplicial volume and that the minimal entropy problem for M can be solved. We
show that M must then admit a geometric structure modelled on either E? or Nil.
Since the fundamental group of M contains a Z & Z subgroup, Theorem 2.3 ensures
that either M contains an incompressible embedded 2-torus or M is a Seifert fibered
space. We now split the proof into two cases:

— Suppose first that M contains an incompressible embedded 2-torus, and so is
sufficiently large. Since we have assumed that ||M]| = 0, Theorem 2.7 yields that Af
is a graph manifold. Hence, by Theorem 2.9, we have that h(M) = 0.

However, using work of Evans and Moser [6], specifically Theorem 4.2 and Corollary
4.10 in [6], we see that either 1 (M) contains a free subgroup of rank 2 or M is finitely
covered by a 2-torus bundle over S'. In the former case, 71 (M) grows exponentially
and therefore the minimal entropy problem cannot be solved for M.

In the latter case, M admits a geometric structure modelled on one of E3, Nil, or
Sol (cf. Theorem 5.5 of Scott [26]). However, in the case that M admits a geometric
structure modelled on Sol, we know from Proposition 3.1 that the minimal entropy
problem cannot be solved for M.

Hence, if the minimal entropy problem can be solved for M and if M contains an
incompressible embedded 2-torus, then M admits a geometric structure modelled on
either E* or Nil.

— The other case is that M is a Seifert fibered space. Here, Theorem 2.5 ensures
that M possesses a geometric structure modelled on one of S*, E3, §? x R, H? x R,
SLy or Nil.

Since the fundamental group of M admits a Z&7Z subgroup, the geometric structure
on M cannot be modelled on S? or §? x R. Since we have assumed that the minimal
entropy problem can be solved for M, Proposition 3.1 yields that M must admit a
geometric structure modelled on either E? or Nil, as desired.

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits a
geometric structure modelled on E* or Nil, then M admits a smooth metric g with
heop(g) = 0.

Finally to prove that item 3 implies item 1, observe that if M admits a smooth
metric g with hop(g) = 0 it then follows from inequalities (1) and (2) that M has
zero simplicial volume.

This completes the proof of Theorem A. O
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5. Proof of Theorem B

We are now ready to consider the minimal entropy problem for a general geometriz-
able 3-manifold with zero simplicial volume.

Theorem B. — Let M be a closed orientable geometrizable 3-manifold. The following
are equivalent:

(1) the simplicial volume ||M || of M is zero and the minimal entropy problem for
M can be solved;

(2) M admits a geometric structure modelled on S*, §* x R, E*, or Nil;

(3) M admits a smooth metric g with hyop(g) = 0.

Proof. — Let us prove that item 1 implies item 2. Suppose that M has zero simplicial
volume and that the minimal entropy problem for A can be solved. Since M is
geometrizable and its simplicial volume vanishes, Theorem 2.7 tells us that M is a
graph manifold. Hence, by Theorem 2.9, M has zero minimal entropy.

Since we are assuming that the minimal entropy problem can be solved for A, the
fact that M has zero minimal entropy in turn implies there exists a smooth metric on
M with zero topological entropy. This in turn implies, by the discussion in Section 2.8,
that m (M) does not have exponential growth.

However, it is a fact from combinatorial group theory (which follows immediately
from the existence of normal forms for free products, for instance) that if A and B are
two finitely generated groups, then the free product A * B contains a free subgroup
of rank two unless A is trivial or B is trivial, or A and B are both of order two. Since
the fundamental group of a connected sum is the free product of the fundamental
groups of the summands. we conclude that either the prime decomposition is trivial
or there are only two summands both of which have fundamental group Zs.

In the former case. it follows that M must be either irreducible or §2 x S', while
in the latter case A must be P3#P3, where P? is the 3-dimensional real projective
space. Since S xS! and P3#P? both admit a geometric structure modelled on §? x R,
we may assume from now on that A is irreducible.

There are now several cases, depending on m1(M). Suppose first that 7 (M) is
finite. Since M is geometrizable, we have that A admits a geometric structure mod-
elled on S?.

In the case that 7, (Af) is infinite and contains a Z ¢ Z subgroup, the assumption
that the simplicial volume of M is zero, together with the fact that the minimal
entropy problem can be solved for M, allows us to apply Theorem A to see that M
admits a geometric structure modelled on E* or Nil.

The remaining case is that 7 (M) is infinite and does not contain a Z&7Z subgroup.
Since M is geometrizable, either M admits a hyperbolic structure or M is Seifert
fibered. (Since (M) does not contain a Z&7Z subgroup, M cannot admit a geometric
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structure modelled on Sol, as Sol manifolds are finitely covered by 2-torus bundles
over the circle.) However, since

M| =0, M cannot admit a hyperbolic structure.

Note though that A cannot admit a geometric structure modelled on H? x R, E?,
SLz, or Nil, as such manifolds always have a Z <) Z in their fundamental groups, by
Lemma 2.1. Hence, the only possibilities remaining are that A admits a geometric
structure modelled on either §% x R or §?, as desired.

To see that item 2 implies item 3, recall from Proposition 3.1 that if M admits
a geometric structure modelled on §?, 2 x R. E?, or Nil, then M admits a smooth
metric g with hy,,(g) = 0.

Finally to prove that item 3 implies item 1. observe that if M admits a smooth
metric g with hyop(g) = 0, it then follows from inequalities (1) and (2) that M has
zero simplicial volumne.

This completes the proof of Theorem B. O
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STATISTICAL PROPERTIES OF UNIMODAL MAPS:
SMOOTH FAMILIES WITH NEGATIVE
SCHWARZIAN DERIVATIVE

by

Artur Avila & Carlos Gustavo Moreira

Abstract. — We prove that there is a residual set of families of smooth or analytic
unimodal maps with quadratic critical point and negative Schwarzian derivative such
that almost every non-regular parameter is Collet-Eckmann with subexponential re-
currence of the critical orbit. Those conditions lead to a detailed and robust statistical
description of the dynamics. This proves the Palis conjecture in this setting.

1. Introduction

‘The main strategy of the study of all mathematical models is, according to
Poincaré, the consideration of each model as a point of a space of different but similar
admissible systems’ (V.Arnold in [Ar]). One of the main concerns of dynamical
systems is to establish properties valid for typical systems. Since the space of such
systems is usually infinite dimensional, there are of course many concepts of ‘typical’.
According to [Ar] again, ‘The most physical genericity notion is defined by Kol-
mogorov (1954), who suggested to call a property of dynamical systems exceptional,
if it holds only on Lebesgue measure zero set of values of the parameters in every
(topologically) generic family of systems, depending on sufficiently many parameters’.

In the last decade Palis [Pa] described a general program for (dissipative) dy-
namical systems in any dimension. He conjectured that a typical dynamical system
has a finite number of attractors described by physical measures, the union of their
basins has full Lebesgue measure, and those physical measures are stochastically sta-
ble. Typical was to be interpreted in the Kolmogorov sense: full measure in generic
families. Our aim here is to give a proof of this conjecture for an important class of
one-dimensional dynamical systems.

Here we consider unimodal maps, that is, continuous maps from an interval to itself
which have a unique turning point. More specifically, we consider S-unimodal maps,
that is, we assume that the map is C* with negative Schwarzian derivative and that
the critical point is non-degenerate.

2000 Mathematics Subject Classification. — 37EQ05, 37C40, 37A25.
Key words and phrases. — Unimodal maps, decay of correlations, stochastic stability.

Partially supported by Faperj and CNPq, Brazil.
© Astérisque 286, SMF 2003



82 A. AVILA & C.G. MOREIRA

1.1. The quadratic family. — The basic model for unimodal maps is the
quadratic family, q,(z) = a — 22, where —1/4 < a < 2 is a parameter. Despite its
simple appearance, the dynamics of those maps presents many remarkable phenom-
ena. Restricting to the probabilistic point of view, its richness first became apparent
with the work of Jakobson [J], where it was shown that a positive measure set of
parameters corresponds to quadratic maps with stochastic behavior. More precisely,
those parameters possess an absolutely continuous invariant measure (the physical
measure) with positive Lyapunov exponent. On the other hand, it was later shown
by Lyubich [L2] and Graczyk-Swiatek [GS] that regular parameters (with a periodic
hyperbolic attractor) are (open and) dense. So at least two kinds of very distinct
observable behavior are present on the quadratic family, and they alternate in a
complicate way.

Besides regular and stochastic behavior. different behavior was shown to exist,
including examples with bad statistics, like absence of a physical measure or a physical
measure concentrated on a hyperbolic repeller. Those pathologies were shown to be
non-observable in [L3] and [MN]. Finally in [L4] it was proved that almost every
real quadratic map is either regular or stochastic.

Among stochastic maps, a specific class grabbed lots of attention in the 90’s: Collet-
Eckmann maps. They are characterized by a positive Lyapunov exponent for the
critical value, and gradually they were shown to have ‘best possible’ near hyperbolic
properties: exponential decay of correlations, validity of central limit and large devi-
ations theorems, good spectral properties and zeta functions ([KN]. [Y]). Let us call
attention to the robustness of the statistical description, with a good understanding
of stochastic perturbations: strong stochastic stability ([BV]). rates of convergence
to equilibrium ([BBM]).

In [AM1] the regular or stochastic dichotomy was extended by showing that almost
every stochastic map is actually Collet-Eckmann and has polynomial recurrence of its
critical point, in particular implying the validity of the above mentioned results.

The position of the quadratic family in the borderline of real and complex dynamics
made it a meeting point of many different techniques: most of the deeper results
depend on this interaction. It gradually became clear however that studying the
quadratic family allows one to obtain results on more general unimodal maps.

1.2. Universality. — Starting with the works of Milnor-Thurston, and also
through the discoveries of Feigenbaum and Coullet-Tresser, the quadratic family
was shown to be a prototype for other families of unimodal maps which presents
universal combinatorial and geometric features. More recently, the result of density
of hyperbolicity among unimodal maps was obtained in [K] exploiting the validity of
this result for quadratic maps.

In [ALM], a general method was developed to transfer information from the
quadratic family to real analytic families of unimodal maps. It was shown that
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the decomposition of spaces of analytic unimodal maps according to combinatorial
behavior is essentially a codimension-one lamination.

Thinking of two analytic families as transversals to this lamination, one may try to
compare the parameter space of both families via the holonomy map. A straightfor-
ward application of this method allows one to conclude that the bifurcation pattern
of a general analytic family is locally the same as in the quadratic family from the
topological point of view (outside of countably many ‘bad parameters’).

The “holonomy’ method was then successfully applied to extend the regular or
stochastic dichotomy from the quadratic family to a general analytic family. The
probabilistic point of view presents new difficulties however. First, the statistical
properties of two topologically conjugate maps need not correspond by the (generally
not absolutely continuous) conjugacy. Fortunately many properties are preserved. in
particular the criteria used by Lyubich in his result.

The second difficulty is that the holonomy map is usually not absolutely continuous,
so typical combinatorics for the quadratic family may not be typical for other families:
it has to be shown that the class of regular or stochastic maps is still typical after
application of the holonomy map.

1.3. Results and outline of the proof. — Let us call a k-parameter family good if
almost every non-regular parameter is Collet-Eckmann (and satisfies some additional
technical conditions). Our goal will be to prove that good families are generic. This
question naturally makes sense in different spaces of unimodal maps (corresponding
to different degrees of smoothness). We only deal with the last steps of this problem
(going from the quadratic family to analytic and then smooth categories). basing
ourselves on the building blocks [L3], [L4], [ALM], and [AM1].

We start by describing how the holonomy method of [ALM] can be applied to
generalize the results of [AM1] to general analytic families (to put together those
two papers we need to do a non-trivial strengthening of [AM1]). As a consequence
we conclude that essentially all analytic families are good.

To get to the smooth setting (at least %, since we are assuming negative
Schwarzian derivative), our strategy is different: we show a certain robustness of
good families, which together with their denseness (due to the analytic case) will
yield genericity. Our main tool is one of the nice properties of Collet-Eckmann maps:
persistence of the Collet-Eckmann condition under generic unfolding (a result of
[T1]). By means of some general argument, we reduce the global result to this local
one.

Let us mention that the results of this paper are still valid without the negative
Schwarzian derivative assumption (also allowing one to get to C? smoothness), see
[A], [AM4]. The techniques are very different however, since we replace the global
holonomy method we use here by a local holonomy analysis based on a “macroscopic”
version of the infinitesimal perturbation method of [ALM]. For analytic maps this
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also allowed us to obtain better asymptotic estimates which have interesting conse-
quences, for instance pathological measure-theoretical behavior of the lamination by
combinatorial classes (see [AMZ2]).

Acknowledgements. — We thank Viviane Baladi, Mikhail Lyubich, and Marcelo
Viana for helpful discussions and suggestions.

2. General definitions

2.1. Notation. — Let [ = [—1,1] and let B* be the closed unit ball in R* (we
will use the notation I for the dynamical interval, while B! will be reserved for the
one-dimensional parameter space). We will consider B* endowed with the Lebesgue
measure normalized so that |[B¥| = 1. Let C"(I) denote the space of C™ maps [ :
I — R

By a unimodal map we will mean a smooth (at least C?) symmetric (even) map
f I — I with a unique critical point at 0 such that f(—1) = —1, Df(—1) > 1, and
if Df(—1) =1 then D?f(—1) < 0. If fis C*, we define the Schwarzian derivative on

I~ {0} as
3 . 20\ 2
s D f_g(D .f> |

Df 2\ Df
For a > 0, let , C C denote an a neighborhood 1.
Let A, denote the space of holomorphic maps on Q, which have a continuous
extension to d€,, satistying ¢(z) = ¢(—z), ¢(—1) = ¢(1) = =1 and ¢'(0) = 0.
Notice that A, is a closed affine subspace of the Banach space of bounded holo-
morphic maps of Q,. We endow it with the induced metric and affine structure.
We define A% C A, the space of maps which are real symmetric.

2.2. More on unimodal maps. — A C* unimodal map such that Sf < 0 on
I~ {0} and such that its critical point is non-degenerate (that is, D?f # 0) will be
called a S-unimodal map.

We say that @ is a periodic orbit (of period n) for fif f"(z) = x and n > 1 is
minimal with this property. In this case we define Df"(x) as the multiplier of x.
Notice that this definition depends only on the orbit of 2. We say that a is hyperbolic
it |IDf"(x)] # 1.

A unimodal map is called regular (or hyperbolic) if all periodic orbits are hyperbolic
and the iterates of the critical point converge to an attracting periodic orbit. This
condition is C'?-open, moreover a S-unimodal map is regular if and only if it has a
hyperbolic periodic attractor (see [MvS]).

A k-parameter family of unimodal maps is a map F : B¥ x I — [ such that for
p € B*, f,(x) = F(p,x) is a unimodal map. Such a family is said to be C" or analytic,
according to F' being C" or analytic. We introduce the natural topology in spaces of
smooth families (C" with n = 2,...,0¢), but do not introduce any topology in the
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space of analytic families (however, we will refer from time to time to induced C™
topologies).

An analytic family of S-unimodal maps F' will be called non-trivial if there exists
a regular parameter. Notice that this condition is C*-open.

A unimodal map f is called Collet-Eckmann (CE) if there exists constants C' > 0,
A > 1 such that for every n > 0,

D" (f(0)] > CA".

This means that the map is strongly hyperbolic along the critical orbit. It is also
useful to study the hyperbolicity of backward iterates of the critical point, so we say
that f is Backwards Collet-Eckmann (BCE) if there exists C' > 0, A > 1 such that for
any n > 0 and any x with f"(2) = 0, we have

IDf"(x)] > CA™.

By a result of Nowicki (see [MvS]), for S-unimodal maps CE implies BCE, so we
will mostly discuss the Collet-Eckmann condition (except for the last section where
we consider C2 unimodal maps as well).

Very often it is useful to estimate how fast is the recurrence of the critical orbit.
We will be mainly interested in two kinds of control: Polynomial Recurrence (P) if
there exists o > 0 such that

Lf(0)] > n="
for big enough n and Subezponential Recurrence (SE) if for all o > 0,
LF1(0)] > em "

for n big enough.
We will say that f is Weakly Regular (WR) if
1 .
lim lim inf — Z In|[Df(f*(0))] = 0.

d—0 n—>xx n .
1<h<n

JH0)E(=6.9)
This condition is used in proofs of stochastic stability for €2 maps, see [T2].
We will consider spaces of S-unimodal maps: we define U C C"(I) the set of
S-unimodal maps. Spaces of analytic unimodal maps are now easily defined: U, =

Usn A%

2.3. The quadratic family. — The quadratic family is the most studied family
of unimodal maps. Tt is usually parametrized by

q(x) =t — 2,

so that for —1/4 <t < 2, there exists a unique symmetric interval I; = [—3;. B3] such
that ¢,(1;) C Iy and ¢:(—3) = —/, s0 q; can be seen as a unimodal map of I; (which
depends on t). Moreover Sq;(x) < 0 if 2 # 0.
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By an affine reparametrization of the parameter ¢ and of each interval I;, we obtain
a canonical one-parameter family of S-unimodal maps in the interval I, which we
denote p;, t € B!, which will be called the quadratic family as well.

2.4. Quasisymmetric maps. — Let v > 1 be given. We say that a homeomor-
phism f: R — R is quasisymmetric (qs) if there exists a constant k& > 1 such that for
all v € R and any h > 0

1 fle+h)—= f(x)
- = <k
k= f(x) = f(x—h)

A homeomorphism h is quasisymmetric if and only if it admits a real-symmetric
extension to a quasiconformal map h : C — C (Ahlfors-Beurling). We will say that
h is v-gs (or that v is a s constant for h) if the dilatation of h is bounded by 7.

=4 I A
This definition of the quasisymimetric constant is convenient since the composition
of quasisymunetric maps g and f is readily seen to be quasisymmetric and the ¢s
constant of g o f is bounded by the product of the s constants of g and f.

If X CRand A : X — R has a y-quasisymmetric extension to R we will also say
that h is v-gs.

3. Statement of the results

3.1. A dichotomy for generic families of S-unimodal maps. — We would like
to classify the typical behavior in generic families of unimodal maps. This classifica-
tion should reveal refined information on the stochastic description of the dynamics
of those typical parameters.

We will therefore consider a smooth enough family of unimodal maps F. The
techniques of the present paper will need the fact that F is a family of S-unimodal
maps. This includes two main restrictions: the negative Schwarzian derivative and
the quadratic critical point. The first one is serious, since this condition is not dense,
but can be removed with more refined techniques (see [A]). The second one (which
is not present in the usual definition of S-unimodal map, but is rather a convention
in this paper) is 10 serious loss of generality, since quadratic critical point is certainly
typical among unimodal maps.

Remark 3.1. Families of unimodal maps with a fixed critical exponent different
from 2 have also been subject of much study. This theory has many similarities, but
also some important differences and new features, and is not nearly as complete as
the case of criticality 2. It is however widely expected that the Palis conjecture (and
indeed our Theorems A, B and C) still holds in this setting.

We first consider the analytic case.
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Theorem A. — Let F be a non-trivial k-parameter analytic family of S-unimodal
maps. Then for almost every non-reqular parameter p € B, f, satisfies the Collet-
Eckmann and Polynomial Recurrence conditions.

Notice that the set of non-trivial analytic families is indeed generic in any meaning-
ful sense: its complement has “infinite codimension”, see Proposition 4.3. Moreover,
if an analytic family is non-trivial, it is possible to verify the non-triviality in finite
time (with an infinite precision computer (V).

Our second result about non-trivial analytic families is the robustness of a slightly
weaker dichotomy under C? perturbations of the family.

Theorem B. —— Let I’ be a non-trivial k-parameter analytic family of S-unimodal
maps. Let FU be a sequence of C? families such that FU — F in the C* topol-
ogy. For each n. let X, be the set of parameters p € BY where ") is either reg-
ular or has only repelling periodic orbits and satisfies simultaneously the Backwards
Collet-Eckmann, Collet-Eckmann. Subexponential Recurrence and Weak Regularity
conditions. Then |X,| — 1. In particular, almost every parameter of F is Weakly

Regular.

As a consequence, we can use a Baire argument to conclude that the dichotomy
is still valid among topologically generic smooth families (that is, belonging to some
residual set), obtaining the following corollary of Theorems A and B.

Theorem C (Smooth Dichotomy). In topologically generic k-parameter C", r =
3.4, ....00 families of S-unimodal maps. almost every non-regular parameter satisfies
the Backwards Collet-Eckmann. Collet-Eckmann, Subexponential Recurrence and
Weak Regularity conditions.

It is good to recall that both types of behavior described by the dichotomy are
indeed observable for open sets of families of unimodal maps ([J], [BC]).

Remark 3.2. The space of S-unimodal maps is easy to describe and easier to work
with but has some disadvantages. One of them is that it is not an intrinsic condition, in
particular it is not invariant by analytic change of coordinates. A more natural class
to work with is the space of quasiquadratic unimodal maps as defined by [ALM].
A unimodal map [ is called quasiquadratic if there exists a ("-neighborhood of f
where all maps are topologically conjugate to some quadratic map. The results of this
paper are still valid in spaces of quasiquadratic unimodal maps (which includes S-
unimodal maps). The proofs are unchanged, since the results we need from [ALM] are
stated and proved for quasiquadratic maps. We remark further that the description of
quasiquadratic unimodal maps can be used to describe all unimodal maps: it is proved

(DSince regular parameters form an open set (non-empty if the family is non-trivial), and any regular
parameter one can be also checked in finite time (by locating the attracting hyperbolic periodic orbit).
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in [A], [AM4] that (Kolmogorov) typical (analytic or smooth) unimodal maps have
either a quasiquadratic renormalization or a quasiquadratic unimodal restriction.

3.2. Ergodic consequences. — The importance of the above dichotomy is the
fact that each of the two possibilities has very well defined stochastic properties. We
quickly recall those (we assume that maps are S-unimodal).

Regular maps have a periodic attractor whose basin is big both topologically (open
and dense set) as in the measure-theoretical sense (full measure). Moreover the at-
tractor and its basin are stable under C'!' perturbations. The dynamics of such maps
can be described in deterministic terms.

Maps satisfying CE and SE have non-deterministic dynamics. They can be however
described through their stochastic properties, and it turns out that such maps have
the main good properties usually found in hyperbolic maps. First, there is a physi-
cal measure, that is an invariant probability which describes asymptotic behavior of
orbits: for almost every = and for every continuous ¢ : I — R,

n—1

lim 1 Z o(fF(x)) = /(bd/zu
n k=0
This physical measure has a positive Lyapunov exponent and is indeed absolutely
continuous and supported on a cycle of intervals, so the asymptotic behavior is non-
deterministic. The convergence to the asymptotic stochastic model is exponential,
see the results on decay of correlations and convergence to equilibrium ([KIN], [Y]).
Those properties are beautifully related to a spectral gap of a transfer operator and
to zeta functions, see [KN]. Notice finally that exponential decay of correlations is
actually equivalent to the Collet-Eckmann condition (see [NS]).

While the dynamics is highly unstable under deterministic perturbations (nearby
maps can be regular for instance), the stochastic description given by the physical
measure g is robust under stochastic perturbations: the perturbed system has a
stationary measure which is close to g in the sense of the L! distance between their
densities ([BV]). For studies of decay of correlations for the perturbed systems, see
[BBM].

4. Analytic families

4.1. Hybrid classes and holonomy maps. — Two S-unimodal maps f,f are
said to be hybrid equivalent if they are topologically conjugate and, in case they are
regular, their attracting periodic orbits have the same multiplier.

The set of all maps which are hybrid equivalent to some f is called the hybrid class
of f. The partition of S-unimodal maps into hybrid classes is thus a refinement of
the partition in topological conjugacy classes.

ASTERISQUE 286



STATISTICAL PROPERTIES IN SMOOTH FAMILIES OF UNIMODAL MAPS 89

It follows from a result of Guckenheimer (see [MvS]) that any S-unimodal map f is
topologically conjugate to some quadratic map. It turns out that if f has a hyperbolic
attractor, we can select the quadratic map with a hyperbolic attractor with the same
multiplier®. In particular, each hybrid class intersects the quadratic family in at
least one point.

The problem of uniqueness is much harder. The following result is due to Lyubich
[L2] and Graczyk-Swiatek [GS], and is a consequence of (the proof of) the equivalent
rigidity result for quadratic maps:

Theorem 4.1. — Let h be a topological conjugacy between two analytic S-unimodal
maps [ and f which have all periodic orbits repelling. Then h is quasisymmetric.

Remark 4.1. — Although we won’t use it here, a similar theorem still holds for maps
with non-repelling periodic orbits: if f and ]? are two topologically conjugate S-
unimodal maps and have non-repelling periodic orbits then we can select a topological
conjugacy which is quasisymmetric (the choice of the topological conjugacy is not
unique). This result is considerably easier than the case where all periodic orbits are
repelling, and does not use analyticity.

This rigidity result has a remarkable consequence for quadratic maps: each hybrid
class intersects the quadratic family at a unique parameter. Thus, any S-unimodal
map [ is hybrid equivalent to a unique quadratic map x(f). The map x is called the
straightening (3.

Lemma 4.2. — Let f be an analytic S-unimodal map. Then x(f) is reqular/CE/P if
and only if f also satisfies the corresponding property.

Proof. — The property of being regular is clearly invariant under hybrid equivalence,
so we only have to analyze invariance of the conditions CE and P.

By [NP2], the Collet-Eckmann condition is topologically invariant, so it is pre-
served under hybrid equivalence.

To check invariance of polynomial recurrence of the critical orbit, first assume
that f has some non-repelling periodic point p. In this case, the the orbit of p must
attract the critical point. In particular, the critical point is either non-recurrent (in

(2)This follows for instance from Milnor-Thurston kneading theory and the fact that the quadratic
family is a full family. Another way to see this is to notice that in each “hyperbolic window” of
quadratic maps (a maximal parameter interval (a,b) such that p; is hyperbolic for t € (a,b)), the
multiplier of the hyperbolic attractor induces a homeomorphism from (a,b) to (—1,1) (this is a
consequence for instance of the work of Douady-Hubbard on the complex quadratic family).

(3)We should point out that there is also a notion of hybrid class in complex dynamics. In that
context, the fact that each hybrid class (of quadratic-like maps with connected Julia set) contains
exactly one quadratic polynomial is a consequence of the Straightening Theorem of Douady-Hubbard.
Our definition of hybrid class is motivated precisely by the possibility of defining an analogous
straightening map (whose existence is proved by quite different methods).
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which case both f and x(f) satisfy P in a trivial way) or periodic (in which case f
and x(f) do not satisfy P also in a trivial way).

If f has all periodic orbits repelling, by Theorem 4.1, the conjugacy between f and
x(f) is quasisymmetric, and in particular Holder. It is easy to see that P is invariant
by Holder conjugacy. O

Remark 4.2. — By [NP1], two S-unimodal Collet-Eckmann maps which are topolog-
ically conjugate are Holder conjugate, so using [NP2] we see that the joint conditions
CE and P are topologically invariant. This joint invariance of CE and P is all that
will be used in the further arguments. Notice that [NP1] and [NP2] do not assume
analyticity, and are more elementary than Theorem 4.1.

4.2. Hybrid laminations. — It is natural to study the hybrid class of some map f.
This is what is done in Theorem A of [ALM] in the analytic setting, where it is shown
that in U, every hybrid class is a codimension-one analytic submanifold. Moreover,
different hybrid class fit together in some nice structure, called hybrid lamination.

Remark 4.3. It is not known if the hybrid lamination is really a lamination every-
where. In [ALM], it is shown that the hybrid lamination is a lamination (in the usual
sense) “almost everywhere” (more precisely, if restricted to an open set containing the
complement of countably many classes corresponding to existence of neutral periodic
orbits), which is enough for our purposes.

A k-parameter analytic family of S-unimodal maps can be thought as an analytic
map from B¥ to some U,. As a consequence, the structure of the hybrid lamination
implies that non-trivial analytic families are indeed quite frequent.

Lemma 4.3 (Most analytic families are non-trivial). — If a k-parameter analytic fam-
iy of S-unimodal maps is not contained in some non-reqular hybrid class then it is
non-trivial. In particular. non-trivial analytic families are dense in the space of C'"
families of S-unimodal maps. n = 3..... .

Proof. — Let us consider an analytic family of S-unimodal maps F'. By the theory
of Milnor-Thurston, see [MvS], either all parameters have the same non-periodic
kneading sequence, or there exists a parameter with periodic critical point. In the
latter case, the family is of course non-trivial, so let us consider the former case. Two
S-unimodal maps with the same kneading sequence are either topologically conjugate,
or one of them possess a neutral periodic orbit (see Corollary, Chapter 2, page 157 of
[MvS]). and it follows that the other is necessarily regular. Thus, if the family F does
not have regular parameters, all maps are non-regular and topologically conjugate,
that is, /' is contained in a non-regular hybrid class.

For the denseness result, given a C" family F', approximate it by an analytic fam-
ily F. If such an analytic family is contained in a hybrid class, we can perturb it further
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in order to intersect two hybrid classes, since each hybrid class is a codimension-one
submanifold. O

Let us consider the case where F' is a one-parameter analytic family of S-unimodal
maps, that is, an analytic curve in some U,. A consequence of the nice structure of
the hybrid lamination is the following result:

Lemma 4.4 (see the proof of Theorem C of [ALM]). -—— If F' is a one-parameter ana-
lytic family of S-unimodal maps which is not contained in some hybrid class then
there is an open set of parameters. with countable complement. where F is transverse
to the hybrid lamination.

Define the map \ - on B' by \p(t) = x(fi). In [ALM] the map \p is considered
as the holonomy map from F' to the quadratic family along the hybrid lamination in
some U,. Using this interpretation, they obtain the following result:

Theorem 4.5 (Theorem C of [ALM]). Let F' be a one-parameter family of unimodal
maps which is not contained in some hybrid class. Then there is an open set U C B*
with countable complement such that the straightening x p is quasisymmetric in any
compact interval J C U.

4.3. Dichotomy in the quadratic family. — The main result of [AM1] is that
almost every parameter in the quadratic family is either regular or Collet-Eckmann
with a polynomial recurrence of the critical orbit. To obtain the same result for a
non-trivial analytic family using Theorem 4.5, we will need a stronger estimate, since
quasisymmetric maps are not in general absolutely continuous.

Let us say that a set X C B! has total gs-probability if the image of B' ~. X by
any quasisymmetric map h: B! — B! has zero Lebesgue measure.

By an improvement of the proofs in [AM1] (sce appendix). it is possible to obtain
the following result:

Theorem 4.6. - The set of quadratic maps which are either reqular or simultancously
CE and P has total qs-probability.

Remark 4.4. In [AM1] a better result than polynomial recurrence is obtained in the
quadratic family. Namely it is shown that the asymptotic exponent of the recurrence

_1 n (
lim sup —ln|f(0)]
n—oc Inn

is exactly 1 for almost every non-regular map. However, for a set of total qs-
probability, we are only able to show that the asymptotic exponent is bounded.
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4.4. Proof of Theorem A. — Let F be a non-trivial analytic family. If all pa-
rameters are regular, there is nothing to prove, so assume that there is a non-regular
parameter.

First assume F' is one-parameter. By Theorems 4.6 and 4.5, for almost every
t € B', xp(t) is either regular or satisfies CE and P. By Lemma 4.2, this implies that
ft is either regular or CE and P.

Assume now that F' is a k-parameter family. Let p € B* be a regular parameter.
Let L : B! — B* be an affine map such p € L(B'). Let F© be the one-parameter
family defined by fF = fr(y- Then F° L is a non-trivial one-parameter analytic family
and hence for almost every t, fl is either regular or CE and P. The result follows by
application of Fubini’s Theorem.

5. Robustness of the dichotomy

To obtain the robustness claimed on Theorem B our approach will be to exploit an
important result of Tsujii, whose core is a strong generalization of Benedicks-Carleson
result and techniques. This result establishes that the CE and SE conditions are
infinitesimally persistent in one-parameter families unfolding generically: they are
density points of CE and SE parameters. The connection with our robustness result,
which has a global nature, is done using some general argument.

5.1. Tsujii’s theorem. — Let F be a C? k-parameter family of unimodal maps.
Assume that pg is a parameter such that f, satisfies CE, BCE, SE, has a quadratic
critical point and all periodic orbits repelling. Tsujii’s Theorem considers the case
where F'is a generic unfolding at py. For one-parameter families, generic unfolding
means precisely

~ .
(5.1) Z M #0, where v= (—1,)‘,) )
=0 Dfiit\(f’pn (0)) dp pP=po
This transversality condition will be called Tsujii transversality.
If F'is a one-parameter family, we will say that (F, py) satisfies the Tsujii conditions
if all above requirements are satisfied.
The following is an immediate consequence of the main theorem of Tsujii in [T1].

Theorem 5.1. Let F be a C? one-parameter family of unimodal maps. Assume
(F.ty) satisfies the Tsujii conditions. Then ty is a density point of parameters t for
which (F.t) satisfies the Tsujii conditions and for which f; is WR.

5.2. A higher dimensional version. — In order to pass from one-parameter to
k-parameters, we will need the following easy proposition. Let us say that p € B* is
a density point of a set X along a line [ through p if p is a density point of [N X in [
(endowed with the linear Lebesgue measure).
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Proposition 5.2. — If p € B is a density point of X along almost every line, then p
is a density point of X in B*.

Proof. — Let E be the characteristic function of X. For each line [ through p, let
A; : R — [ be an isometric parametrization of [ taking 0 into p. Let P*~! be the
space of such lines with the natural probability measure (obtained by identification
with the k¥ — 1 dimensional projective space). Let

pe(l) = /11 |r

Assuming that p is a density point of X along almost every [ we have, for almost

E(A(er))dr.

every [

lim p-(1) = 1.

e—0)

Using polar coordinates, the relative measure of X in an ¢ ball around p is given by

/; pe(l)dl.

By the Lebesgue Convergence Theorem,

lim / p-(D)dl = / 1in(1)/)€(l)dl =1.
. . £—

e—0

This shows that p is a density point of X. O

We say that a k-parameter F' satisfies the Tsujii transversality at pg if there exists
a line through py along which the one-parameter Tsujii transversality condition is
satisfied. In other words, there exists an affine map L : B' — B* such that L(ty) = po
for some t, € int B! and such that the induced one-parameter family F'* defined by
fl=f r(1y 1s Tsujii transverse at the parameter o.

By linearity of (5.1) with respect to v, if (F,pg) is Tsujii transverse then all
lines passing through py are Tsujii transverse except the lines parallel to a certain
codimension-one space of R¥.

Lemma 5.3. — Let I be a C? k-parameter family of unimodal maps. Assume (F,po)
satisfies the Tsujii conditions. Then py is a density point of parameters p for which
(F,p) satisfies the Tsujii conditions and for which f, is WR.

Proof. — If F is Tsujii transverse at py then it is Tsujii transverse along almost every

line through py. Along such a line it is a density point of parameters satisfying the
Tsujii conditions and WR. The result follows from Proposition 5.2. O
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5.2.1. Tsujie transversality and hybrid lamination. Let us take a closer look at the
Tsujii transversality for an analytic F. Let f, = f.
Assuming the summability condition.

(5.2) Z |ka )

k=0
(in particular if f is CE), let
IR A (). X o(f5(0))
Vi) = AZ(,Df H(F(0)) "(OH; Df¥(f(0))

be a functional defined on continuous vector fields v on the interval.

Lemma 5.4. If f satisfies the summability condition then there exists an even poly-
nomial vector field v, with v(—1) = v(1) = 0 and such that v;(v) # 0.

Proof. — Let S =" |Df*(f(0))]~'. Let ¢ be so small that

1
2 ooy <Y
TR0)E(—¢.€)
Let v be an even polynomial vector field satisfying v(—1) = v(1) = 0,
lo(x)] <2, for xe€l,
v(x) > 1, for x€(-¢/2,2/2),

lv(x)] < 105"
Then vy(v) >1-2/3—-1/10 > 0. O

for x e~ (—¢.e).

Lemma 5.5. —- The kernel of vy intersected with TA® is the tangent space to the
hybrid class of f.

Proof. — By the previous lemma, v is non-trivial over T A%, so the above intersection
is a closed codimension-one subspace of TA®. So it is enough to show that if v is
tangent then v¢(v) = 0. Assuming that v is tangent, consider an analytic family f;

contained in the hybrid class of f, such that f, = f and

= .
t=0

d |
alt

It is remarked in [ALM] that

= D) S SO = fk () = DI (v)

i DI
is precisely

d n
ik *1(0)

t=0
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Moreover, t +— f[’“ (0) are holomorphic functions of the complex parameter t, taking

values in Q,, and whose domain is some definite neighborhood of 0. It follows by
Cauchy estimates on the derivative that this sequence is bounded independently of
n. By the summability condition (5.2), |Df"(f(0))| — oo, so we have necessarily
I/f(l’) =0. O

Remark 5.1. — Tt is shown in [ALM] that the sequence «,, is not only bounded (for
tangent vector fields v), but that the vector field defined on the orbit of the critical
value by w(f*(0)) = ay, k > 0, extends to a quasiconformal vector field on C.

So Tsujii transversality can be interpreted for such a map (satisfying the summa-
bility condition (5.2)) as transversality of the family to the hybrid class of f,,.

Since for maps with negative Schwarzian derivative CE implies the BCE and that
all periodic orbits are repelling, we can conclude from Theorem A, Lemma 4.4 and
this discussion the following result:

Lemma 5.6. If F is a non-trivial k-parameter analytic family of S-unimodal maps
then almost every parameter is reqular or satisfies the Tsujii conditions.

5.3. Estimates of density in perturbed families. — Let K be the space of C?
k-parameter families of unimodal maps (without, naturally, the hypothesis of negative
Schwarzian derivative).

Let X C K x B* be the set of (F,p) such that either f, is regular or satisfies the
Tsujii conditions and WR. For F € K, let Xp = {p € B¥|(F.p) € X}.

Let Y ¢ B* be measurable with |Y| > 0. We define the density of X along F on Y
as

. YﬂXF‘|

Instead of defining the classical infinitesimal density:
lim i(l)lf d(F, B:(p))
E—

we will need to consider the stability of the density with respect to perturbations of F'.
With this in mind we introduce two parameters. Let

D™ (F,p) = liminf lim i(l)lf d( F.B. (p)),

FoF =7
fo=Ffp

D (F, p) = liminf lim inf d(ﬁ, B:(p)).
=0 pop

Remark 5.2. — Notice that in the definition of D~ (F,p) we only consider families
through a fixed map, while in the definition of D (F, p) we do not make this restric-
tion.

Theorem A and Tsujii’s result give a direct way to estimate D™ :
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Lemma 5.7. — Let F be a non-trivial analytic family of S-unimodal maps. Then for
almost every p € B¥, D= (F,p) = 1.

Proof. — Indeed, by Lemma 5.6, almost every parameter is either regular or satisfies
the Tsujii conditions. Since the set of regular maps is C? open, D~ (F,p) = 1 at any
regular parameter p.

Let us show that this still holds for parameters p satisfying the Tsujii conditions.
Since Tsujii transversality fhmuqh a fired CE map is clearly an open condition, if F
is any C? family near F with f,, = f, then (F p) also satisfies the Tsujii conditions.
By Lemma 5.3,

lim d(F, B. (p)) = L.

e—0

Thus D~ (F,p) = 1. a

However, for measure estimates in perturbed families, Dt (F,p) is more relevant.
We proceed to discuss the effect of the interchange of limits in the definitions of
D= (F,p) and D (F,p).

Lemma 5.8. — In this setting,
DY(F,p) = D (F,p).
Proof. The idea is to construct, arbitrarily near F', a family F with j~'p = f, and

lim d(F, B.,(p)) = D*(F.p),
j—no '

for some sequence £; — 0, which implies Dt (F,p) > D~ (F,p). To construct F,
we will interpolate F' with a certain sequence F(") which realizes the limit in the
definition of DT (F.p).
Let €; — 0 be a sequence such that
lim liminf d(F, B. ,(p))=D*(F,p).
J—=>x PR
Passing to a subsequence, we may assume that
lim —*!

Jjooo €5

=0.

Let K; C B:,(p) ~ B,,,(p) be compact sets such that
(5.3) lim e T
Let ¢; : R¥ — R be a C*> function supported in B, (p) ~ Bejﬂ( ) such that
b5 = 1. ~
For a sequence F(") — F_let us define F': B¥ x I — I by

fo=Fo+ > 0@ = £,).
j=1

ASTERISQUE 286



STATISTICAL PROPERTIES IN SMOOTH FAMILIES OF UNIMODAL MAPS 97

It is easy to see that for every § > 0 there exists a sequence 9,, > 0, n > 1, such that,
if || F"™) — F||¢2 < 6, then | F— F||¢2 < d (and in particular F is C?). In other words,
if F(") — F sufficiently fast then F is €2 and close to F in the C? topology.

Notice that F interpolates F' and the sequence F(") in such a way that inside each
Be, (p), fp = fy()") for p in int K. Thus,

(5.4) XpNKy =Xpm NK,.
Fix § > 0 and select F™ such that

(5.5) lim d(F™,B. (p)) =D (F® p)

n—0oC

and moreover ||F(") — F|lc2 < §,, so that ||ﬁ’ — Fllc2 < 9. By (5.3), (5.4), and (5.5),

lim iglf d(F,B:(p)) < lim d(F,B.,) = lim d(F") B. )= D"(F,p).

E— n-—00 n—oc

Making § — 0, F' converges to F and we obtain Dt (F,p) > D~ (F.p). O
5.4. Proof of Theorem B. — Let F' be a non-trivial analytic family of S-unimodal

maps. Then almost every parameter satisfies D™ (F,p) = 1. Hence, for almost every p
we have DT (F,p) = 1.

Fix ¢ > 0. Let p € B* be such that D*(F,p) = 1. By definition of DT there
exists a sequence of balls U™ (p) centered at p and converging to p, and neighborhoods
V(p) C K of F such that if F' € V" (p) then

d(F,U"(p)) >1—¢/2.

By Vitali’s Lemma, there exist sequences p;, n; such that U (p;) are disjoint and
Jjuu™ ([)~/)| = 1. Iipt m be such that UL, U™ (p;) > 1 —¢/2. Let V = N7 V" (p;).
Then if F € V, d(F,B*) > 1 —¢. If F'') — F in the C? topology then F(") € V for
n large enough and the set of parameters for F(") which are either regular or satisfy
the Tsujii conditions and Weak Regularity have measure at least 1 — £, as required.

Moreover, considering the sequence F") = F. we conclude that almost every
parameter for F'is Weakly Regular, hence the last claim of Theorem B.

5.5. Proof of Theorem C (Smooth Dichotomy). — By Proposition 4.3 non-
trivial analytic families are dense among C" families of S-unimodal maps, n =
3,...,00. Theorem B implies that for all ¢ the set D. of C"™ families of S-unimodal
maps for which the set of bad parameters (not regular or BCE, CE, SE and WR) has
measure less then ¢, contains a neighborhood of all non-trivial analytic families, that
is, an open and dense set. Therefore ND; yn is a residual set. Clearly any family in
NDy/9n satisfies the stated dichotomy.
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Appendix

Quasisymmetric robustness of Collet-Eckmann
and polynomial recurrence

The aim of this Appendix is to sketch a proof of Theorem 4.6. This proof is
similar in strategy to the one of the main results of [AM1], however non-trivial
modifications are needed. To avoid too much intersection, this will be a concise
exposition concentrated mainly on the new steps needed for this improvement: the
reader can find a full proof of this result in [AMS3].

A.1. Quasisymmetric maps

A.1.1. Quasisymmetric reparametrization. — Let now H be an arbitrary but fixed
J-quasisymmetric map from B! to the parameter space of the quadratic family. To
prove Theorem 4.6, it will be enough to show that almost every ¢t € B! correspond
under H to a parameter of the quadratic family which is either regular or satisfies the
Collet-Eckmann and Polynomial Recurrence conditions.

From now on, all mentions to parameter space will (unless explicitly stated other-
wise) refer to the above reparametrization.

A.1.2. Quasisymmetric capacities. — The y-capacity of a set X C R in an interval [
is defined as follows: (X A 1))
il N
p(X|I) = sup —————
k [h (1)

where the supremum is taken over all v-gs maps h : R — R.
Notice that if I/ are disjoint subintervals of I and X C UI’ then

P (XIT) < py (U P |1) sup p, (X |17).
J

A.2. Sequence of first return maps. — The statistical analysis of [AM1] con-
cerns mainly the following objects: we are given a unimodal map (which we will
assume finitely renormalizable and with a recurrent critical point) f : I — I and
a sequence of nested intervals I, C I. The inductive relation between the I, is as
follows: the domain of the first return map R,, to I,, consists of countably many in-
tervals {1/} ,cz, with the convention that 0 € I} (the central component), and we let
I,(,) = In+1-

The special sequence of intervals I,, that we consider is called the principal nest,
see [L2]. Since we assume f to be finitely renormalizable, there exists a smallest
symmetric interval T' C T which is periodic (say, of period m). For the principal nest,
I, = [—p, p], where p is the orientation reversing fixed point of f : T — T. A level n
of the principal nest is called central if R, (0) € I,,;1. Let us say that f is a simple
map if its principal nest has at most finitely many central levels.

Each non-central branch of R, is a diffeomorphism onto I,,. Let us introduce some
convenient notation related to the iteration of the non-central branches of R,,. Let Q2
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be the set of finite sequences of non-zero integers (the empty sequence is included),
an element of Q is denoted d = (ji.....jm). If d € Q has length |d| = m, we denote
R,, the branch of Rl !l with combinatorics d, that is, the domain of R% is the set

14 ={z e I|RF"Y () € I )1 <k <m).

s
We let C% = (R "1 (I,,41).

Let us denote by L,, the first landing map from I,, to I ,,H This map relates easily
to R, using the above description: the domain of L, is ucy w, and L,,IC,, = % The
reader should think of L,, as a high iterate of R,,. This leads to the following inductive
relation between return maps: Ry, 1 = Ly o Ry|ln41-

The return time of a point . belonging to an interval I} is denoted by r, (z) (or

(), since it does not depend on x € I}), that is, R, |I} = f"! (). The landing time is

denoted by /,,(;1') = /,,( i). The combinatorics at level n 0[ a pomt ris denoted d" ().
(n

so that = € (7# . Let jU(x) be such that x € 7" We let 7, = j"(R,(0)).

so that R, (0) € 1’“. The return time of the critical point is denoted v,, = r,(0). Let

= |d" (R,,(0))].
N()tl( e that I, = R,,*l(
is a big neighborhood of I, 4 which will be useful later. This choice of neighborhood

,1 . . > - i
1) for some d. The interval [, = R,,i]( c ) cl,

is particularly good for simple maps, and it turns out that in this case 1,4 is still
much smaller than I, for big n.

A.2.1. Phase-parameter relation. — The starting point of [AM1] are two theorems of
Lyubich describing the (unreparametrized) parameter space of the quadratic family:
infinitely renormalizable maps have zero Lebesgue measure [L4] and almost every
finitely renormalizable non-regular map is simple [L3]. We will need the following
remark of [ALM]: Lyubich’s proof actually allows one to conclude that the set of
regular or simple maps has full measure after any quasisyminetric reparametrization.

In view of those results, Theorem 4.6 is reduced to proving that the set of param-
eters which are Collet-Eckmann and polynomially recurrent have full measure (after
reparametrization by H) among simple maps. From now on we exclude non-simple
maps from measure-theoretic considerations, and we will use “with total probability”
to refer to a set of parameters with full measure (after reparametrization by H) among
simple maps.

To estimate the probability in the parameter corresponding to a certain behavior
of the n-th stage of the principal nest, we make use of the Phase-Parameter Lemmas
of [AM1]. They describe how the partition of the phase space induced by return
and landing maps R,, and L, induce parameter partitions of certain parameter win-
dows J,,.

The topological part of the phase-parameter relation is described in the following:

Theorem A.1. — For each non-renormalizable quadratic map f with a recurrent crit-
ical point, there exists a sequence of parameter intervals {J,} such that:
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(1) J, is the mazimal interval containing f such that for all g € J,, there exists
a continuation I,41[g] of 1,41 with the “same combinatorics” in the following sense.
There exists a continuous family of homeomorphisms hyplg] : I — I, g € J,, which is
equivariant with respect to the actions of g|(I ~ L,41]g]) and f|(I ~ In41), so that if
2 € I~ Lopalf] then g0 halg)(x) = halg]o f(2).

(2) There exists a homeomorphism =, : I,, — J,, such that E,,(C’%) is the set of all
g € J, such that R,[g)(0) € h,[g](CD).

This result follows immediately from the Topological Phase-Parameter relation
for the unreparametrized quadratic family (Theorem 2.2 of [AM1]), since the
reparametrization is a homeomorphism.

In words, the sequence J,, in Theorem A.1 denotes the maximal interval contain-
ing f where we can consider a continuation of I,, (recall that the boundary of I,, is
preperiodic), and such that the first return map to this continuation does not change
combinatorics, so that its domain changes continuously. When we change the map g
inside the interval .J,,, the critical value of R,,[g] varies inside the interval I,[g] “prop-
erly”, that is, moves from one boundary point to the other. In doing so, it goes
through the partition induced by the 2 in a well behaved (“monotonic”) way: it goes
through each member of the partition exactly once, and thus defines a partition in
the parameter interval .J,,, corresponding topologically to the partition in the phase
interval I,,. Theorem A.1 thus establishes that the “diagonal” motion of the critical
value and the “horizontal” motion of the partition of the phase space are “transversal”.
This is indeed how the proof of Lyubich goes (using complex analysis). This result
can also be established using the Milnor-Thurston’s combinatorial theory of unimodal
maps together with the monotonicity property of the quadratic family.

The next component of the phase-parameter relation is a quantitative estimate
on the regularity of the phase-parameter homeomorphisms =,,. While the topological
part is based on a very general transversality argument, the quantitative part depends
on the delicate geometric estimates of Lyubich.

We let J7m = E,,(I7"). The correspondence =, is uniquely defined if restricted to
K, =1, \UC%. More importantly, it is quasisymmetric if restricted to certain subsets
of K. To make this precise, let K7 = K, NI (forgetting information outside 17")
and IA';’,,, =1, (Ullu N,,,,+ 1) (forgetting information inside each I and also inside
[n+l)'

Theorem A.2. — Let [ be a simple map. Then, for all v = (1 + 0)y > 7, there exist
ng > 0 such that for all n > ny,

PhPal: =, | K] is y-¢s:

PhPa2: =,|K, is v-g¢s;

PhPhl: h,[g]|K, is 1 4+ d-gs for all g € J7";

PhPh2: h, [g]|[§'n is 14 d-gs for all g € J,,.
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This theorem is a straightforward consequence of the Phase-Parameter relation for
the unreparametrized quadratic family (Theorem 2.3 of [AM1]). While in [AM1]
the quasisymmetric constants in PhPal and PhPa2 could be taken arbitrarily close
to 1 (the unreparametrized case corresponds to taking H = id, that is, ¥ = 1) for
deeper levels of the principal nest, this does not hold here due to introduction of
reparametrization, which multiply all phase-parameter constants by 7 (notice that
PhPhl and PhPh2 are estimates which do not depend on reparametrization, so we
can still choose constants close to 1). This will be the source of many difficulties
addressed in this Appendix.

A.3. The statistical argument. — For the remaining of this Appendix we fix
some constant v > 7, and we will start our consideration with levels of the principal
nest where the reparametrized phase-parameter relation is already v-gs. We will also
need some very large constants b < b which depend only on 7 (the relation can be
computed explicitly following the proof, in particular, b should be at least so big that
b=! is a lower bound on the Hélder constant of v-qs maps). We let a = b~! and
a=0b""

From now on we will always estimate the y-capacity of bad sets in the phase space.
To conclude results for the parameter we will use the following variation of the Borel-
Cantelli Lemma (this is Lemma 3.1 of [AM1]).

Lemma A.3. — Let X C R be a measurable set such that for each x € X there is a
sequence D, (x) of nested intervals converging to x such that for all T1,z2 € X and
any n, D, (x1) is either equal or disjoint to D, (x2). Let Q, be measurable subsets
of R and ¢, () = |Q, N D, (z)|/|D,(x)]. Let'Y be the set of v in X which belong to
finitely many Q... If > qn(x) is finite for almost any x € X then |Y| = | X]|.

In practice, the D,, will be the parameter windows defined before (either J,, or J™),
and Q,, will be certain subsets of J,, or J7» corresponding (under the phase-parameter
map) to branches of the return map (in the case of J,,) or landings (in the case of
J7), whose behavior we want to avoid. We will then show that such bad events have
summable ~y-capacity in the phase space, which will yield the conclusion for Lebesgue
measure of the parameter using PhPal (for landings) or PhPa2 (for returns).

A.8.1. A simple application: torrential decay of geometry. — We will now illustrate
the use of Lemma A.3 and the phase-parameter relation with an estimate on the decay
of geometry. More precisely, we will consider the scaling factor

|['nr+1|
Cp = ———.
A

The scaling factor is a particularly important parameter in the subsequent analysis:
all statistical estimates that follow will be related to ¢,,.
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One initial information on the scaling factors is provided by the following result of
Lyubich:

Theorem A.4 (see [L1]). — If f is simple than there exists C' > 0, A\ < 1 such that
Cp < CA".

We will now show that, with total probability, the decay of ¢, is much faster than
exponential. To express this decay, let us consider the tower function defined by
recursion T'(1) = 2, T'(n 4+ 1) = 270 We will show that, with total probability, the
¢, decrease torrentially to 0, that is, there exists & > 0 such that ¢;;! > T'(n — k) for
n big enough. More precisely, we will show that (';}rl behaves as an exponential of
(a bounded power of) ¢, L.

This very fast decay implies that the landing map to I, is essentially a very high
iterate of the return map to I, (since it takes a long time to hit a very small interval).
This very high iteration time will allow us to conclude that the characteristics (say.
return time) of each level tend to be better behaved than in the previous one due to
fast convergence to some average (some kind of Law of Large Numbers). The fact
that we must deal with gs-capacity instead of Lebesgue measure will essentially reflect
in the presence of errors terms (whose size depend on 7) in certain exponents in the
above description.

In order to estimate ¢,,, we first consider the related quantity s, = |(_[( ”')(R,, (0))],
which denotes the number of times the critical orbit visits I,, before hitting 1,4 ;.

If the critical orbit behaved as a sequence of random points (uniformly distributed
with respect to Lebesgue), the expectation of this first hitting time should be ¢!
More relevant for us, the distribution of the first hitting time (for the random model)
should be concentrated about ¢;, ' with large probability (say, less than 27"), the first
hitting time is in some “neighborhood” of ¢;;! (say, [4 "¢, 1, 4"¢c; ']). The correspond-
ing statement for our actual dynamical system is that the distribution of |d"™(z)].
with respect to Lebesgue measure on x € I, is concentrated around c;; !, which can
be easily checked by the reader: the estimates are not significantly affected in the
non-random case.

However, due to the nature of the phase-parameter relation, we must estimate the
distribution of |d"(z)| in terms of capacities. This will affect drastically the esti-
mates. To understand why, keep in mind that y-gs maps are only Holder (with some
constant bounded from below by 5_1), so they can potentially distort the logarithm
of the ratio between I, 11 and I,, by such a constant. Aside from this problem, the
information we need can be computed quite easily and is summarized below.

Lemma A.5. — With total probability, for all n sufficiently big we have

(1) o, (1d") ()] < k|I,) < ke,
(2) por (1™ ()] = k|1,) < e7*en,
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We also have

) par (47 (8)] < KIT") < kel
(4) p2v(|d(n)($)| k| < e_]‘"‘lz’r.

This lemma corresponds to Lemma 4.2 of [AM1].

The phase-parameter lemmas (specially PhPal) allow us to transfer the last pair of
estimates to the parameter space: for n sufficiently big, (Lebesgue) most parameters
in J satisfy

,_”/2 <s, <¢,

Here ‘most’ Ineans that the complement has probdbility bounded by ci’;/:‘. But ¢,
(and thus (,, ) decays exponentially for every simple map (by Theorem A.4). So
> 4% < 50 and we are able to apply Lemma A.3 to obtain the following:

Lemma A.6. With total probability, for n sufficiently big we have

(1/2 >b

< sp < ¢,
This lemma corresponds to Lemma 4.3 of [AM1].

Remark A.1. — This result implies easily torrential decay of ¢,: Inc,, Jrl can be easily
bounded from below by Ks,, for some universal K > 0, and thus for big n,
_1 . —a/3
n+1 2 (

A.4. Derivatives. — We proceed to estimate derivatives of branches of the return
map. All lemmas in this section can be proved using the same argument as in [AM1].

The first step is to exclude the possibility of a ‘too recurrent’ or ‘too low’ return.
It is analogous to Lemma 4.8 of [AM1], being a simple application of PhPa2.

Lemma A. 7 — With total probabzln‘y, the distance between R, (0) and 91, U {0} is at
least |I,,|n=". In particular R, (0) ¢ [,,H for all n large enough.

Recall that the distortion of a diffeomorphism ¢ on an interval T is defined by
supy [Dg|
infr|Do|
Lemma A.7 allows us to start estimating the distortion of iterates of f. The
following estimate corresponds to Lemma 4.9 of [AM1]. It is based on the fact that
the distortion of branches of return maps is due to the position of the branch with

Dist(p|T') =

respect to the critical point. Using PhPal, we are able to give polynomial lower bounds
on the distance between the critical point with respect to non-central branches, which
are valid with total probability.

Lemma A.8. — With total probability, for n big enough and j # 0
Dist(f|17) < n”
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The following estimate is analogous to Lemma 4.10 of [AM1]. Tt is based on the
previous one and the observation that return branches are torrentially expansive in
average (from the decay of geometry).

Lemma A.9. — With total probability, for n big enough and for all d € Q
Dist(RZ) < nb.
In particular, for n big enough, |DR,,(z)| > 2 if 2 € Ujxol].

Lemma A.9 gives estimates of derivatives under iterates of R,,. To obtain estimates
of derivatives under iterates of f, we will need the following very general result of
Guckenheimer which shows that quadratic maps are hyperbolic away from critical
points and parabolic points (this actually generalizes to very general one-dimensional
systems by a result of Mané), see [MvS]. We state just a consequence adapted to our
particular setting.

Theorem A.10. — Let f be a quadratic map without non-repelling periodic orbits (in
particular if f is a simple map). For every ¢ > 0, there exists C > 0, A > 1 such that
if |f¥(2)| > € for 0 < k <m then DfmH(x) > CA™.

With this information we are now able to give a lower bound on the derivative of
iterates of f. The next lemma is identical to Lemma 4.11 of [AM1], and is based on
the idea that full returns to sufficiently deep levels cause expansion (from the previous
lemma), while the dynamics outside a definite neighborhood of the critical point is
hyperbolic (by Theorem A.10).

Lemma A.11. With total probability, if n is sufficiently big and if x € IJ, j # 0,
and R,|I} = f", then for 1 <k <r, |Df¥(x)| > |z|c}_,.

A.5. How to deal with hyperbolicity. — Keeping in mind that our analysis of
the statistical properties of the dynamics of f is made in terms of the induced return
maps R,,, we see that in order to estimate the hyperbolicity along the critical orbit
(to obtain the Collet-Eckmann condition) we must have a convenient way to quantify
the hyperbolicity of (for instance) non-central return branches. To do so, for j # 0,

we define the quantity
n(j) = inf lnlDR,,',('J:)|.
zel;, ()
We let )\" = inf]';,g() /\n (])

To analyze the behavior of A,, we start with the general information provided by
Theorem A.10. Coupled with exponential upper bounds on distortion for returns
(which competes with torrential expansion of each non-central branch from the decay
of ¢,), the hyperbolicity of f in the complement of I,4; immediately implies the

following estimate (identical to Lemma 7.9 of [AM1]).

Lemma A.12. — With total probability, for all n sufficiently big, A\, > 0.
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The “minimum hyperbolicity” liminf A,, of the parameters we will obtain will in
fact be positive, as it follows from one of the properties of Collet-Eckmann parameters
(uniform hyperbolicity on periodic orbits), together with our estimates on distortion.

Our strategy however is not to show that the minimum hyperbolicity is positive,
but that the typical value of A, (j) stays big as n grows (and is in fact bigger than
Any /2 for n > ng big). In this sense, it is convenient to think of A, (j) as a random
variable whose distribution we are interested in.

There is an inductive relation between the random variables A, (j) for different
values of n: this is related to the fact that if R, (I}, ) C C’%, d = (J1,---,Jm), we
have R, 11 II;’; +1 = Ln |C‘% o R,,,|I,,{ +1- The hyperbolicity of the “landing part” L, |C’%
is essentially a weighted sum
2511 A (Ji)rn (i)

Z:n:l (i)

So if the “return part” R,,,II;]IZ +1 does not carry a big weight on the computation of
Ant1(J) (outside a set of branches with small y-gs capacity), we can think of A, 11(j)
as distributed according to the weighted sum (A.1). This turns out to be the case
as the return part does not affect much the denominator (time) and does not have
a bad effect on the numerator (derivative). Indeed, in the next section we will see
that the return time of R, |I:,’; +1 (given by v, ) is much smaller (of order (?;ll) than

(A1)

the total return time R, 1 ’17/1 41 (of order ¢, b). Moreover, if I;’;y +1 is outside a small
neighborhood of 0, |DR,,,|I;{+]| is bigger than 1.

Since we also have to estimate the hyperbolicity of truncated branches (as the
Collet-Eckmann condition is a condition along the full critical orbit, and not only at
full returns), it will not be enough to just obtain that the distribution of A, (j) is
concentrated around some value bigger than A, /2. In order to state exactly what
kind of hyperbolicity estimate we need, it is convenient to introduce a certain class of
branches: good returns.

We define the set of good returns G(ng,n) C Z~ {0}, ng,n € N, n > ng as the set
of all j such that

G1: (hyperbolic return)

14 2m0=n

5

G2: (hyperbolicity in truncated return) for ¢, "™ < k < r, (j) we have
D L2t

inf > c
I,J;, k' 0 2 n-—1

/\77 (7) 2 /\”u

Of course we still have to show that the set of returns which fail to be good has
small y-gs capacity. In order to do so, we will construct explicitly a class of branches
whose complement has small y-gs capacity and then show that this class of branches
is contained in good branches (see Lemma A.20). Before doing so, we must first
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estimate the distribution of return times, since they have an important role in the
computation of A, (5).

A.6. Distribution of return and landing times. — To estimate the distribution
of return and landing times, it is convenient to also think of r,,(j) and 1,,(j) as “random
variables” which are related by some simple rules: if d = (j1,..., ) then [, (d) =
S ra(Gi) and 7,40 (5) = v + 1, (d) where R,,,(I;{H) cC m particular, since the
distribution of |d"
variable [,, behaves like a very large sum of random variables distributed as r,,. On

~ 1 which is torrentially big, the random

the other hand, r,; should have distribution approximately like [, itself, once we
show that v,, does not make an important contribution.

The main tool to do the actual analysis is to prove first a Large Deviation Estimate
for r,, using only the torrential decay of ¢,, and then show that such estimate leads
to much more precise control of the subsequent levels.

Since the transition between different levels introduces some distortion (although
torrentially small), we are forced to deal with a sequence of quasisymmetric constants
in our estimates: instead of just estimating y-gs capacities for some fixed 7, we must
consider a sequence v, = v(n + 1)/n and 7,, = v(2n + 3)/(2n + 1). The basic idea
is that control of the distribution of r, with respect to v,-capacities will provide
control of the distribution of [,, with respect to 7,, capacities which in turn will allow
to estimate the distribution of r,,; with respect to ~,,1 capacities. Notice that
inf v, = inf4, = . (This ideas are introduced in §5 of [AM1].)

Although very technical, this part is very similar to the analysis made on (the
several lemmas of) §6 of [AM1] (differing only by change of constants), so we will
only state the final estimate which summarizes the results of that section and provide
a short outline of the argument.

Lemma A.13. — With total pmbab'il'il"z/, for all n sufficiently large we have
(1) ps, (l,,(l) <) < 78 <175 with s > 0,

(2) ps, (L(x) < e[ 7m) < &, with s > 0,
(3) Py, (In(x) > 5% |1,) < e~ ", with s > b,
(4) ps, (Ln(z) > e, 5| 7)< e“’zﬂ, with s > b,
(5) Py (rn(x) <24 1n) < (7,_1 < TS, with s >0,
(6) Py, (r(x) > ¢, % |1,) < e~ < o= with s > b,
(7) c;ﬁl < 1(m0) < el
(8) ¢, 1 <, < (’,,_1
9) ¢, <In(c,!) < el
A.6.1. Outline of the proof of Lemma A.13. — The estimates from below are rela-

tively easy. Estimates (1) and (2) follow directly from [,,(d) > |d| and Lemma A.5.
Estimate (5) follows from (1) using the relation between r, 11 and [,,. The estimate
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from below in (8) follows from (2) and PhPal, and the estimate from below in (7) fol-
lows from (5) and PhPa2. The estimate from below on (9) was computed on Remark
Al

The estimates from above are much more delicate. In what follows we will ignore
the difference between [,, and I, since it is not substantial for the argument. The
key estimate is (6), which says that the tail p,, (r,(z) > k) decays exponentially fast
(in k) with some specific rate (polynomial in ¢,,—1). On the other hand, decay with
some rate is easy: f is hyperbolic outside I, 1 (see Theorem A.10), so there exists
some (small) a,, > 0 with p,, (r,(2) > ka, ') < e ¥ for k > 1. This exponential
decay implies that it is very unlikely that a large sequence d = (ji,....j,,) will have
a landing time [, (d) = ./ r,,(j;) much bigger than ma, .

From this relation between 7, and [,,, we see that there exists some (3, with
pa, (L () > kB;') < e *, and moreover we can estimate 3, in terms of «, and
the size of a typical d") (which is given by a polynomial on ¢;): ' is bounded

1

by a polynomial (this polynomial error is related to v) on «;, 'e;, !, From the relation

between [, and r,,41 we obtain an estimate on «,, 1 in terms of v,, and /3,, which we

. . . 1 . .
can rewrite in terms of v,. ¢, and a,: o, — v, is bounded by some polynomial on
~1,.~1
n C n -

Since ps, (L, (x) > 3, e, ') is summable (by definition of 3, ), it follows that v, 41 —

v, is bounded by a polynomial on «a; e, ! with total probability (use PhPal), in
1,1

&3

particular, for n big we can bound v, 41 with a polynomial on o, *¢;;
. P _ —-1 . . . _
In particular, if ;' > ¢!, a,, is bounded by a polynomial in ', Although

initially we did not have any control on the value of «,,, we know that (';}rl behaves
—1

n

as an exponential on ¢! (torrential growth), so eventually it catches up with o'
o i ] —1
for n big, ¢, " >« .

So for n big ;! can be bounded exclusively by a polynomial on (’,7-1-1 as stated in
(6). This automatically implies the estimate from above in (7) using PhPa2. Since
L= we obtain (3) and (4) and the

n

8,71 and v,41 are bounded by a polynomial on «;;
estimate from above in (8).

Since fY expands [,,+1 to an interval of size at least 27"|I,|, and the derivative
of f is bounded by 4, we have 2"¢;;! < 4", so the estimate from above on (9) follows

from the estimate from above in (8).

A.7. Constructing hyperbolic branches. — In this section we show by an in-
ductive process that the great majority of branches are reasonably hyperbolic (good
branches). In order to do that, in the following subsection, we define some classes of
branches with ‘very good’ distribution of times and which are not too close to the
critical point. The definition of ‘very good’ distribution of times has an inductive
component: they are composition of many ‘very good’ branches of the previous level.
The fact that most branches are ‘very good’ is related to the validity of some kind of
Law of Large Numbers estimate. The inductive definition will guarantee that the ‘very
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good’ distribution of times holds in all scales and allows us to preserve hyperbolicity
from one step to the other: very good branches are good.

Remark A.2. — The several classes of branches that we will define do not correspond
exactly to the same classes in [AM1], although classes with the same name have
essentially the same function in the proof. There are some non-trivial steps to make
this adaptation work, since the previous proof uses strongly small quasisymmetric
constants. This will lead to consideration of extra classes below (bad returns and fast
landings).

Remark A.3. — This section contains the main modifications with respect to [AM1]
(precisely the introduction of bad returns and fast landings). The role of those mod-
ifications is explained in Remark A.4.

A.7.1. Standard landings. — Let us define the set of standard landings at time n,
LS(n) C Q as the set of all d = (ji,...,Jm) satisfying the following:
/

LS1: (m is not too small or large) ¢, * Zom< e 2
LS2: (No very large times) r, (j;) < ¢

n—1
LS3: (Short times are sparse in large enough initial segments) For c;f’i <k<<m

for all 7.

. o —a/2 ny a/2 g,
#{1<i<k, (i) <c }<(6-2")¢, k.

n—1

We also define the set of fast landings at time n, LF(n) C Q by the following
conditions

LF1: (m is small) m < enl?.

LS2: (No very large times) r,(j;) < ¢, for all i.

It is easy to convince oneself that most landings are standard. Indeed, the dis-
tribution of [d™ (z)| is concentrated around ¢! as requested by LS1. Moreover,

branches with very large times (larger than ¢ 2%) are so few that even a long se-

‘n—1
quence (J1,...,7m) with m < c;fl] is not, likely to contain such an event, as required
by LS2. Finally, the Law of Large Numbers indicates that a long sequence (j1, ..., jm)

will seldom contain a proportion of short times much bigger than their frequency as
given by Lemma A.13, as required by LS3.

Since fast landings are not standard, they must be few. However, they correspond
to most of the branches which are not standard. The reason for this comes from
the requirements of LS1, which imposes two conditions (an upper and a lower bound
on m). The upper bound condition is much more rarely violated (by one exponential
order of magnitude) than the lower bound (just check Lemma A.5). Fast landings
essentially capture the violations of the lower bound (LF1).

The actual estimates for the frequency of standard and fast landings are provided
below. They can be obtained from the estimates of distribution of return times
(contained in Lemma A.13) following the general lines of Lemma 7.1 of [AM1]. This
step is purely dynamical (no further parameter exclusion is made).
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Lemma A.14. — With total probability, for all n sufficiently big,
(1) 3, (d")(x) ¢ LS)II,) < e’ /2,
(2) p%(d (x) ¢ LS(n)U LF(n)|I,) < (‘" /2,
(3) ps, (" (x) & LS()|17) < /2,
(4) s, (") (@) & LS(n) U LEM)|I) < e’ /2.

A.7.2. Very good returns, bad returns and excellent landings. — Define the set of
very good returns, VG(ng,n) C Z ~ {0}, ny < n € N and the set of bad returns,
B(ng,n) C Z ~ {0}, no < n € N, by induction as follows. We let VG(ng.ny) =
Z~ {0}, B(ng.ny) = @ and supposing VG (ng,n) and B(ng,n) defined, define the set
of excellent landings LFE(ng,n) C LS(n) satisfying the following extra assumptions.
LE1L: (Not very good moments are sparse in large enough initial segments) For all

—2b

o) <k<m
#{1<i<k, ji g VG(ng,n)} < (6-2")c ‘,’,_]A
LE2: (Bad moments are sparse in large enough initial segments) For all ¢, Sum <
k<m
#{1 < i<k, ji & Blno,n)} < (6-2")ell_ K,
We define VG(ng, n+1) as the set of j such that R,,([‘,’;H) = L with d € LE(ng,n)
and the extra condition:

VG: (distant from 0) The distance of [:,";+‘, to 0 is bigger than (?jjz [T, 41)-

And we define B(ng,n+1) as the set of j ¢ VG(ny,n+1) such that R, (]:,’;H) =cd

with d ¢ LF(n).

Very good returns are designed to carry hyperbolicity from level to level: since
they are composed of many very good returns of the previous level (LE1). and are
not too close to 0 (VG), they should keep most of the hyperbolicity of level ngy (given
by A,, > 0). For this to work, we must control the distribution of return times of
the previous level inside a very good branch. The risky situation is the presence of
not very good branches which have a large return time: those are contained in the
bad branches defined above. It turns out that they can not spoil the hyperbolicity
because they are too few (LEZ2). This basic idea will be carried out in detail through
a series of lemmas.

Very good and bad returns can be estimated in an inductive fashion analogously
to the estimate of Lemmas 7.2 and 7.3 of [AM1]: initially all branches are very
good and no branches are bad, and as n grows the Law of Large Numbers indicates
that conditions LE1 and LE2 should be rarely violated so that very good branches
should continue to be frequent and bad branches rare. This estimate is again purely
dynamical.

Lemma A.15. — With total probability, for all ny sufficiently big,
(1) pa, (G () & VGlno,m)|L) < co”y,
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r) € B(ng.n)|l,) < 22" .
J(w) ¢ LE(no.n)|L,) < &'’”,

x) ¢ LE(ng,n)U LF(n)|1,) < ¢,
) )

¢ LE(ng.n)|I7) < < 20

This translates immediately using PhPa2 to a parameter estimate analogous to
Lemma 7.4 of [AM1]:

Lemma A.16. With total probability, for all ny big enough, for all n big enough
(depending on ny), 7, € VG(ng,n).

Before going on we will need two simple estimates: one is for the return time of
very good branches and another is for the return time of branches which are neither
very good or bad. The first of those estimates is analogous to Lemma 7.5 of [AM1],
and follows directly from the definitions of very good and bad branches.

Lemma A.17. - With total probability. for all ny big enough and for all n > ng, if
jeVGng,n+1) then

m < r,1(j) < me, ”’1.

where, as usual, m is such that R, (I, ) = 4 and d=(J1,-- . Jm)-

Lemma A.18. With total probability for all ny sufficiently big. if n > ng. if j &
VG(ng.n)U B(ng,n) then r,(j) < T2

n—1 "n-—-2-

Proof. Indeed, if j ¢ VG(ng.n) U B(ng.n) then R, _(I]) C C':‘Ll with d €
LEF(n —1). By definition of fast landing, {,,_1(d) < ¢ ”4'( =3 S0

n—20°

() = tnor + Ly (d) < e, e+ eb 0

n—2

At this stage we have most of the tools to show that almost every parameter is
“Collet-Eckmann at first returns”, that is. |[Df* (f(0))| is exponentially big for the
sequence k,, of first landings of f(0) in 1,,. To obtain the full Collet-Eckmann condition
(exponential growth for all k), we will need to analyze truncations of branches or
k (‘%) for k less then

landings, that is, we will consider iterates of the type f*
the return time 7, (j) (or ,(d)).

We now show that very good branches are well behaved when truncated at a
reasonably big time. Here “well behaved™ means “spending most of the time in very
good branches of the previous level”. So if we are able to control the hyperbolicity
of very good branches in some level we will have a good possibility of controlling
truncated very good branches in the next level. This lemma corresponds to Lemma
7.6 of [AM1], but the proof must be modified, with the use of bad returns and fast
landings.
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Lemma A.19. — With total probability, for all ny big enough and for all n = ng, the
following holds.

Let j € VG(no,n + 1), as usual let R,,(I:,";H) c ctand d= (J1. - Jm). Let my
be biggest possible with

my
v, + Z’rn (Ji) <k
J=1
(the amount of full returns to level n before time k) and let

Br = Z o (Ji)-

1<i<my.
JieVG(ng.n)

(the total time spent in full returns to level n which are very good before time k) Then

23 -2
L= Bk </ if k> e/,
Proof. Let us estimate first the time 4, which is not spent on non-critical full
returns:
my
il\' =k- § I'n (1/)
J=1

This corresponds exactly to v, plus some incomplete part of the return j,,, . This
-3

n—

_ 1 . . .
part can be bounded by (',,f, + ¢, 7 (use the estimate of v, and LS2 to estimate the

incomplete part).
Using LS2 we conclude now that

my > (/\ . (A—h )(,‘&I» > (f;l/l'

n—1/"n—1
SO 1y, is not too small.

Let us now estimate the contribution hy from bad full returns j;. The number of
/2

n
such returns must be less than ¢,
(n/2)=3b 3
] my < my..

The non very good full returns on the other hand can be estimated by LE1 (given
Joo J O

ymy by LE2 and the estimate on my.. By LS2 their

total time is at most ¢

2
1

the estimate on nzk). they are at most M. So we can estimate the total time [},

. . . . —a/2 .
of non very good or bad full returns (with time less then (’,,L'/l (‘,,f’é by Lemma A.18)
by

a? —a/2 A

)
Cp—1Cp—1 € —2Mp,

while ;. can be estimated from below by

(1 B ()(1/4 )(‘—11/2’

n—1/"n-1

It is easy to see then that iy /i3, < ((,',/_)1 hi /e < (7‘,']/_51. We also have
[A‘ . {12/2
E <2c,’].

So (i + hy + 1)/ Bk 1s less then (',',7/1s Since iy 4 hy + I + 51 = k we have 1 — 3, /k <
(ig + g+ 1)/ O ]
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Remark A.4. — This lemma illustrates the main reason why the original argument of
[AM1] must be changed in order to deal with big quasisymmetric constants. Indeed,
in [AM1], we do not need to split the branches which are not very good in bad
branches and otherwise (fast). The reason is that in [AM1] the distribution of r,,(j)
is concentrated in a much narrower window around ¢, ', (say, (c; 1%, ¢, '7%)). In
particular, in a large sequence (ji,...,Jjx) (which should be thought as an initial
segment of an excellent landing), we can estimate the proportion of the total return
time due to very good branches essentially by considering the proportion of very good
branches in the sequence.

In this Appendix, the distribution of 7,(j) is located in a much larger window
(e, 2y, c,;fl). The risky situation is to have a large sequence (ji,...,Jjr) with a large
proportion of very good branches, but whose return time is near the bottom of the
window (¢, “;), while the not very good branches in the sequence have all return time
near the top ((‘;fl) In this case, the proportion of the total time due to very good
branches could be very small.

The solution given in this Appendix is based on the idea that the not very good
branches with large time (bad branches) are really very few: most of the not very
good branches are indeed fast. Paying attention to this asymmetry, we can indeed
prove that in such a sequence (ji, ..., k), most of the total time is due to very good
branches.

This argument (most branches with atypical time are fast) is based implicitly in the
following asymmetry which appeared already in our first statistical estimate, Lemma
A.5. when we showed that the distribution of [d™ (x)| is concentrated around ¢ ':
there is a big difference (one extra exponential) in the estimates on the upper tail (v-gs
capacity of {|d"(z)| > c;"’;’ }) and the lower tail (y-qs capacity of {|d"™) (z) < ¢ k}).

(Essentially the same problem, with the same solution, appears in Lemma A.22.)

Now we conclude that very good (that is, most) branches are good, justifying our
previous hints.

Lemma A.20. — With total probability, for ng big enough and for all n > ny,
VG(ng,n) C G(ng,n).

The proof is the same as for Lemma 7.10 of [AM1], the two main features of
very good branches exploited here are their good distribution of return times and
the condition VG which allows us to avoid drastic losses of derivative due to starting
very close to the critical point. The argument is by induction: first, all very good
branches of level ng satisfy condition G1 of a good branch, that is, a full return is
very hyperbolic (this follows from the definition of A,,). Then, supposing that all
very good branches of level n satisfy G1, we conclude that very good branches of
level n + 1 have enough hyperbolic branches in its composition (even if truncated) to
satisfy both conditions G1 and G2.
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A.7.3. Cool landings. — As we hinted in the last section, very good branches play
the role of building blocks of hyperbolicity. We must now show that the critical point
spends most of its time in very good branches. To do so, we will define a class of
landings which are composed by many very good branches, but which are controlled
to an ever greater detail than excellent landings. Their design will allow to estimate
their hyperbolicity if truncated outside a relatively small initial segment.

We define the set of cool landings LC(ng,n) C Q, ng,n € N, n > ng as the set of
all d = (j1,...,Jm) in LE(ng,n) satisfying

LC1: (Starts very good) j; € VG(no,n), 1 <i< 0;21/2

LC2: (Not very good moments are sparse in large enough initial segments) For all
2
/4 <k<m

n—1

#{1< i < k(i) < P < (6227,

. . . 3
LC3: (Bad moments are sparse in large enough initial segments) For (‘",i'{ <k<m

#{1 <i <k, ji € B(ng,n)} < (6-2")c"/" k,

LC4: (Starts with no bad moments) j; ¢ B(no,n), 1 <i < (If{z

As in Lemma 7.7 of [AM1], cool landings are frequent and we get the following
parameter estimate analogous to Lemma 7.8 of [AM1]. The ideas of this estimate
are quite similar to the case of standard landings.

Lemma A.21. — With total probability, for all ny big enough, for all n big enough we
have R, (0) € LC(ng,n).

Let us now show that cool landings inherit hyperbolicity from very good returns.
This result corresponds to Lemma 7.11 of [AM1], but the proof of this fact needs
adjustments for big quasisymmetric constants, so we provide it here.

Lemma A.22. With total probability, if ny is sufficiently big, for all n sufficiently
big, if d € LC(ny.n) then for all (',Tf/l(”*l) < k <1,(d).

I\,
wf In[Df > Ay
ot k 2
Proof. — Fix such d € LC(ny,n), and let d = (ji,..., Jm)-
Let
. In|DfF|
ap = inf ———.
cd K

Analogously to Lemma A.19, we define m; as the number of full returns before k,
that is, the biggest integer such that

my

Z T'n (]:) < k.
=1

SOCIETE MATHEMATIQUE DE FRANCE 2003



114 A. AVILA & C.G. MOREIRA

We define

/31\‘ - Z Tn (.71 ) s

1<i<my.
Ji€VG(nyn+1)

(counting the time up to k spent in complete very good returns) and

my

=k - Z ro(Fi)-

=1

(counting the time in the incomplete return at k).
. ~a?/2 .
Let us then consider two cases: small my, (my < (:,,Z 1/ ) and otherwise.

Case 1 (my, < (*“_'1/ ). The idea of the first case is that all full returns are very
good by LC1, and the incomplete time is also part of a very good return.

Since full very good returns are very hyperbolic by G1 and very good returns are
good. we just have to worry about possibly losing hyperbolicity in the incomplete
time. To control this, we introduce the queue (or tail) ¢, = inf(/,% In|Dfix o fh=ix|.

We have —q, < —In(c ”/71(,‘,_,) by VG and Lemma A.11. Let us split again in two

cases: 15 big or otherwise.
Subcase la (i) > c, 1/ ) If the incomplete time is big, we can use G2 to
estimate the hyperbollrlty of the incomplete time (which is part of a very good return).
The reader can easily check the estimate in this case.
Subcase 1b (iy < ¢ A=

- ). If the incomplete time is not big, we can not use G2
—1/(n—1)

to estimate ¢y, but in this case iy is much less than &: since & > ¢, 7 . at least

one return was completed (my, > 1). and since it must be very good we conclude that
—a/2
k> e by LS1, so

n—1

(l + 2!1()*”) l, — [’]‘ — /\Iln
> A ' B -
ay, 2 k k 2

Case 2 (my, > ¢, ik ). For an incomplete time we still have —q, < —1In(e, ¢} ),

(l/i

i
so —qr/k < ¢,

Arguing as in Lemma A.19. we split k& — 3y — iy (time of full returns which are
not very good) in part relative to bad returns hy and in part relative to returns that
are not very good or bad (which must be fast) {;. Using LC3 and LC4 to bound the
number of bad returns and LS2 to bound their time, we get

3b o n/7
hy < e, e, Zymy.

and using LC1 and LC2 we have

2 2
[l\ <(,”ﬁ{ c 1?)(6 2::) a M

n
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By LC1 and LC2 again, using LS1 to estimate the time of a very good return by
—a/2
n—1

(A.2)

Sy /2, thus we get

n—

, we have that 3, > ¢
. (1. 2 e
_—}7%/;}: b < ("7} _/ 12 s
which is very small.
On the other hand, 3, > ¢
cases according to the behavior of 7.

—a/2 —a?/2 . o

“ﬂ ;”ﬁl/ /2 by hypothesis on my.. Let us split in three
—a/2
n—1

Subcase 2a (i not very good or bad). In this case, iy < ¢ (';,"‘_”;. SO i1/ 3 is very
2
/10

w1 - Since very good returns are good and

small, and we actually have 1 — 3, /k < ¢
even not very good returns have derivative at least 1,

1+ 2= 3, — (g A
A3 ap >Ny ———— = —— >
(4-3) b koK 2
—4/(n—1)

n—1 . We can reason as

Subcase 20 (i) very good). If i) is very good and iy > ¢
in Subcase la that G2 can be used for the estimate of ¢, so that we have
L +2m07" /7)1« (" )\Hu < )\m)

WA T ey Ty
by (A.2).

iy <oV then ir/ B is very small and so 1 — 3. /k < ¢

n—1

a?/10

w1 - and we obtain

(as in Subcase 2a) estimate (A.3).
v P . .. . — 2 . —
Subcase 2¢ (iy bad). 1f i) is bad. by LC4 we have that my > (f”_if{ Cbut iy < e

] . . g 2/10 . .
by LS2, s0 i) /3 is very small again and we have 1 — 3, /k < (','l _/1 . 80 estimate (A.3)

applies and we are done. O

A.8. Collet-Eckmann. — Since the critical point always falls in cool landings (see
Lemma A.21), the Collet-Eckmann condition follows easily from Lemma A.22 (which
guarantees gain of derivative after large truncations), together with Lemma A.11,
which controls loss of derivative at small truncations. This argument is identical to
the one in §8.1 of [AM1], but we reproduce it here for the convenience of the reader.

Let o
_ In|Df*(f(0)))
Qp = ———F———
I\,
and e, = a,, —1-
It is easy to see that if ng is big enough such that both Lemmas A.21 and A.22 we
obtain for n big enough that

v, —1 A v v
€n41 = e'n”— + "“’ CUntl T U
Un+1 — 1 2 Upy1 — 1
and so
(A4) liminfe, > —2.
n—oo 2
Let now v, — 1 < k < v,41 — 1. Define g = In |D f*=v (= (0))|.
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Assume first that k < v, + ¢, f/l("'—l). From LC1 we know that 7, is very good,

so by LS1 we have r,(7,) > (:;2/12, so k is in the middle of this branch (that is,
Uy < k< vy, +7,(70) — 1). Using that | R, (0)] > |1,,]/2" (by Lemma A.7), we get by

Lemma A.11 that —qx < —In(27"¢,—1¢)_,). We then get from v, > ¢, ?, that

n—1
vy — 1 —q 1 1
(AS) ag 2 €n - L - T > <1 — g) €pn — ?
If k > v, + c;f/l("'_” using Lemma A.22 we get

k 2 k
Estimates (A.4), (A.5), and (A.6) imply that liminfay > A, /2 and so f is Collet-
Eckmann.

(A.6) an > ept Ly Evatl
. = bn :

A.9. Recurrence. — To show that the critical point is polynomially recurrent,
we can follow the same lines from [AM1]. First we look at the essentially Markov
process R,|(L, ~ I,+1), which shows that with total probability, most (in the v-gs
sense) points in I, approach 0 with a polynomial rate (the exponent must be chosen
according to ) until the first time they fall in I, ;. More precisely, we show (after
transferring to the parameter) the following estimate (analogous to Corollary 8.3 of
[AM1]).

Lemma A.23. With total probability, for n big enough and for 1 <1i < s,,

M,R{,(O)i<bg 14 In(7)
In(e,-1) In(e; ') )

To obtain the polynomial recurrence for f we relate the return times in terms of R,
to return times in terms of f. In other words, letting k; be such that R’ (0) = f*1(0),
we must relate k; and 7. It is enough to do the estimate for a cool landing and we
obtain the following estimate (as in Corollary 8.5 of [AM1]).

Lemma A.24. With total probability, for n big enough and for 1 <i < s,

In(k; In(i
k) (1 )
hl(("n—] ) ]I] ((',,,, 1 )
Let now v, < k < v,41. If |f¥(0)] < E=3Y we have ¥(0) € I, and so k = k; for
some ¢. It follows from Lemmas A.23 and A.24 that

)] > B

This concludes the proof of polynomial recurrence. We notice that polynomial lower

bounds are easily obtained: considering [R, (0)| = |f"(0)] < ¢,-1 and using v, <
c;fl we get
. _ ln mn 0
lim sup i(——)' > a.
N Inn
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GEOMETRY OF
MULTI-DIMENSIONAL DISPERSING BILLIARDS
by

Péter Balint, Nikolai Chernov, Domokos Szasz & Imre Péter Téth

Abstract. — (Geometric properties of multi-dimensional dispersing billiards are studied
in this paper. On the one hand, non-smooth behaviour in the singularity subman-
ifolds of the system is discovered (this discovery applies to the more general class
of semi-dispersing billiards as well). On the other hand, a self-contained geometric
description for unstable manifolds is given. together with the proof of important reg-
ularity properties. All these issues are highly relevant to studying the ergodic and
statistical behaviour of the dynamics.

1. Introduction

Let @ be an open connected domain in R? or on the d-dimensional torus T¢.
Assume that the boundary dQ consists of a finite number of C* smooth (k > 3)
compact hypersurfaces (possibly. with boundary). Now let a pointwise particle move
freely (along a geodesic line with constant velocity) in Q and reflect elastically at the
boundary dQ (by the classical rule “the angle of incidence is equal to the angle of
reflection™). This is what is commonly refered to as a billiard dynamical system.

Billiards make an important class in the modern theory of dynamical systems.
Many classical and quantum models in physics belong to this class, most notably,
the Lorentz gas [Si] and hard ball gases studied as early as the XIX century by
L. Boltzmann [Bo].

The periodic Lorentz process is obtained by fixing a finite number of disjoint convex
bodies B.....B, C T with smooth boundary and putting the moving particle in
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the exterior domain Q = T¢ ~ (UB;). This system models the motion of an electron
among a periodic array of molecules in a metal, as it was introduced by H. Lorentz
in 1905.

Mathematical studies of billiards have begun long ago. Ya. Sinai in his seminal
paper of 1970 [Si] described the first large class of billiards with truly chaotic behavior
— with nonzero Lyapunov exponents, positive entropy, enjoying ergodicity, mixing,
and (as was later discovered by G. Gallavotti and D. Ornstein [GO]) the Bernoulli
property. Sinai billiards are defined in two dimensions (d = 2), i.e. for Q C R? or
Q C T?, and the boundary of Q@ must be concave (i.e., convex inward Q), similarly to
the Lorentz process (where the bodies B; are convex). Due to the geometric concavity,
the boundary 0Q scatters or disperses bundles of geodesic lines falling upon it, see
Fig. 1. For this reason, Sinai billiards are said to be dispersing.

FIGURE 1. Scattering effect

Lorentz processes in two dimension have been studied very thoroughly since 1970.
Many fine ergodic and statistical properties have been established by various re-
searchers, including P. Bleher, L. Bunimovich, N. Chernov, J. Conze, C. Dettmann,
G. Gallavotti, A. Kramli, J. Lebowitz, D. Ornstein, K. Schmidt, N. Simanyi, Ya. Sinai,
D. Szdsz, and others (see the references). The latest major result for this model (the
exponential decay of correlations) was obtained by L.-S. Young [Y1]. The success in
these studies had significant impact on modern statistical mechanics. The methods
and ideas originally developed for the planar Lorentz process were applied to many
other classes of physical models —— see recent reviews by Cohen, Gallavotti, Ruelle
and Young [GC, Ru, Y2|.

On the other hand, the progress in the study of the multidimensional Lorentz
process (where d > 2) has been much slower and somewhat controversial. Relatively
few papers were published covering specifically the case d > 2, especially in contrast
to the big number of works on the 2-D case. Furthermore, the arguments in the
published articles were usually rather sketchy, as in Chernov’s paper [Chl]. It was
commonly assumed that the geometric properties of the multidimensional Lorentz
process were essentially similar to those of the 2-D system, and so the basic methods
of study should be extended from 2-D to any dimension at little cost. Thus, the
authors rarely elaborated on details.
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Recent discoveries proved that spatial dispersing billiards are very much different
from planar ones. Bunimovich and Rehdcek studies of astigmatism [BR], in the
somewhat different context of focusing billiards, emphasized the known fact that
the billiard trajectories may focus very rapidly in one plane and very slowly in the
orthogonal planes. Astigmatism is unique to 3-D (and higher dimensional) billiards,
it cannot occur on a plane. It plays an improtant role in higher dimensional focusing
billiards as investigated in [BR].

In this paper we consider multidimensional dispersing billiards. We show that
multi-dimensionality has great effect on the dynamics in the dispersing case as well
— the system requires much more elaborated study than the 2D process. What is
worse (cf. section 3), the singularity manifolds in the phase space of a spatial Lorentz
process have pathologies — points exist where the sectional curvature is unbounded
(blows up). Actually, singularity manifolds are in these pathologies — which form
two-codimensional submanifolds of them — not even differentiable. Indeed, as it
will be shown in section 3, the unit normal vector to the singularity manifold has
different directional limits at the pathological points -— the geometry is pretty much
like the classical Whitney umbrella 222 = y? in R*®. This phenomenon is again unique
to billiards in dimension d > 3. All these facts call for a revision of some earlier
arguments and results on the multidimensional Lorentz process. This is much the
more important since the studies of physically relevant multiparticle systems will
require the same methods as those used for the high-dimensional Lorentz process.

Throughout the paper we conduct a systematic study of the geometry of the Lorentz
process in any dimension d > 2, aiming at the future investigation of its ergodic and
statistical properties (in particular, the decay of correlations). First we describe our
recent discovery — pathological behavior of singularity manifolds — and show exactly
where it occurs (in order to “localize the pathology”). Then we develop tools for the
study of basic geometric properties of the dynamics — operator techniques in the
Poincaré section of the phase space. By applying these geometric tools we provide
rigorous proofs of important properties for unstable manifolds: we show absolute
continuity, distorsion bounds, curvature bounds and alignment. All these facts are
absolutely important for the studies of ergodic and statistical properties of the Lorentz
gas, but strangely enough, their proofs (in the case of dimension d > 2) have never
been published before. Lastly, we show how our results can be used in the study of
the decay of correlations, which will be done in a separate paper.

2. Preliminaries

There are two ways of considering billiard dynamics, the motion of a point particle
in a connected, compact domain Q ¢ T¢ = R?Y/Z", d > 2 with a piecewise C*-smooth
boundary. The phase space of the flow can be identified with the unit tangent bundle
over Q — the configuration space is Q while the phase space is M = Q x S¢~!
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(S?=1 is the surface of the unit d-ball). In other words, every phase point x is of the
form (q,v) where ¢ € Q and v € S*"!. We denote the flow by S?: —o0 < t < .

On the other hand there is a naturally defined cross-section for this flow. The
phase space of the Poincaré section map (or simply, of the billiard map) is M :=
0Q x S‘fl, where + means that we only take into account the hemisphere of the
outgoing velocities (for a more precise definition of the phase space, see subsection 4.1).
For any © € M weset t(x) := inf{t > 0| Stz € M}, and Tt := S )z (of course,
T% : M — M). Then the Poincaré section map T : M — M is defined as follows:
Ta:=T%x for v € M.

We require the following properties from the system to be studied:

Our billiard is dispersing (a Sinai-billiard): each 0Q; is strictly convex (had we
required convexity only, our billiard would be semi-dispersing).

— The scatterers B; are disjoint. This ensures the C'*-smoothness of the boundary
0Q, i.e. that there are no corner points.

- The condition that the horizon is finite says exactly that t*(r) < oc for any
xr e M.

Finally, some more notation. Let n(q) be the unit normal vector of the boundary
component JQ; at ¢ € JQ; directed inwards Q. Then the invariant Liouville-measure
of the discretized map is

(2.1) du(q.v) = const. (n(q).v) dq dv

where dq is the induced Riemannian measure on JQ whereas dv is the Lebesgue-
measure on S‘f "

Throughout the paper, unless otherwise emphasized, we are considering this dis-
cretized dynamics.

2.1. Fronts. — In billiard theory, several basic constructions and concepts are
based on the notion of a local orthogonal manifold. which - for simplicity - we will
call front. A front W is defined in the whole phase space rather than in the Poincaré
section. Take a smooth 1-codim submanifold E of the whole configuration space, and
add the unit normal vector v(r) of this submanifold at every point r as a velocity,
continuously. Consequently, at every point the velocity points to the same side of the
submanifold E. Then
W= {(r.o(r)) | re E} C M,

where v : £ — S~ is continuous (smooth) and © L E at every point of E. The
derivative of this function v, called B plays a crucial role: dv = Bdr for tangent
vectors (dr.dv) of the front. B acts on the tangent plane 7, F of E., and takes its
values from the tangent plane J = T,.(,.)S’l‘l of the velocity sphere. These are both
naturally embedded in the configuration space Q, and can be identified through this
embedding. So we just write B : J — J. B is nothing else than the curvature
operator of the submanifold E. Yet we will prefer to call it second fundamental
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form (s.f.f.), in order to avoid confusion with other curvatures that are coming up.
Obviously, B is symmetric.

Notice that fronts remain fronts during time evolution - at least locally, and apart
from some singularity lines.

When we talk about a front, we sometimes think of it as the part of the (whole)
phase space just described (for example, when we talk about time evolution under
the flow), but sometimes just as the submanifold E (for example. when we talk about
the tangent space or the curvature of the front). This should cause no confusion.

2.2. Evolution of fronts. — The evolution of a front during free propagation (that
is, from one collision to the other) is described by the formula

(2.2) By =((BY) ' +r1d)!

where 7 is the length of the free run between the two collisions, BT is the s.f.f. of the
front just after the first collision, and By is the s.f.f. just before the next one.

For this formula and the next one to make sense, we need to identify the
tangent planes of the front at different moments of time. Let 7 = 7,0Q be the
tangent plane of the scatterer at a collision point r. Just like J. 7 is viewed together
with its natural embedding into Q. The identification of different J's is done in the
usual way (cf. [SCh]. [KSSz)):

by translation parallel to v from one collision to the other.
by reflection with respect to 7 (or, equivalently, by projection parallel to n) from
pre-collision to post-collision moments.

Notation for the unitary operator that executes this identification is U, however,
for brevity, we will often omit U if it causes no confusion.

At a moment of collision the curvature of the front changes non-continuously (the
front is “scattered™):

(2.3) BT =B +20=DB" +2n,0)V*KV
where(!)

- B7 :J — J is the s.f.f. just before collision,

- BT J — Jis the s.£.f. just after collision,

-V J — T is the projection parallel to v: Vdv = dv — %%1' €T for dv e J,

- V* . T — J (the adjoint of V') is the projection parallel to n: V*dg = dq —
%71 € J fordgeT,

- K 1T — T is the s.f.f. of the scatterer at the collision point,

= (n,v) = cos ¢, where ¢ € [0, 5] is the so-called collision angle,

- and the operator © : J — J: © = (n,v)V*KV is the so-called collision term.

(D This convention on the collision term (@ = (n, v)V*K) will be useful in the geometric description
of the phase space, see section 4.
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2.3. Singularities . — As it can be easily seen the billiard map T is discontin-
uous at pre-images of tangential reflections. Indeed, consider the set of tangential
reflections:

So :=0M = {(q,v) | (v,n(q)) =0}
(which is nothing else than the boundary of the phase space). Its pre-images are:

S =T7"Sy (k>0).

(From section 4 on it will be useful to introduce the notation S*) for the set of all
singularities up to k, i.e. S® = U*_|S;.) The map T is discontinuous precisely at the
points of S; (= SM). Furthermore — related to the smallness of the term (n,v) — the
derivative DT is unbounded near S;. As a consequence, to get a well-behaved dynam-
ics, the phase space is partitioned into homogeneity layers by introducing secondary
singularities (for a detailed discussion see [BSC2] or subsection 4.1).

To consider higher iterates of the dynamics —— the maps T% (k > 1) - the sets Sy,
are to be investigated. We view all these sets as (finite unioins of) topologically em-
bedded one codimensional compact submanifolds with boundary. They have smooth
manifold structure in the interior, however, in the multi-dimensional case (as it is
demonstrated in subsection 3.1) the behaviour at the boundary is irregular (the cur-
vature diverges). This behaviour is related to the fact that in the multi-dimensional
case, in addition to unbounded derivatives, the dynamics is highly non-isotropic near
singularities.

3. Geometry of singularities

In several papers that appeared, singularities were assumed —— either explicitely or
implicitely — to consist of smooth 1-codim submanifolds of the phase space. Often,
even a uniform bound on the curvature was assumed, independent of the order of
the singularity. This is true in 2-dimensional billiards. However, it is not true in
higher dimensions. In this section we present a counter-example in a 3-dimensional
dispersing billiard. In correspondence with the notations introduced in subsection 2.3,
we will use the notation §; and S, for the set of those phase points the trajectories of
which have tangential first and second collisions, respectively. We will demonstrate
that already the curvature of S, has no upper bound, i.e. the curvature blows up near
a point where the singularity manifold is not even differentiable.

To avoid confusion let us make one further remark. As already mentioned, billiard
dynamics has singularities: points where the billiard map is not continuous. These
singularities occur on one codimensional submanifolds of the phase space. The de-
velopment of the theory is based on considering connected and essentially smooth
components of the singularity manifolds. The recently discovered phenomenon de-
scribed below shows that these components are, indeed, only essentially smooth. On
certain two-codimensional submanifolds of them pathologies occur: singularities in
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the sense of algebraic singularity theory. To avoid confusion we will refer to these sin-
gular two-codimensional submanifolds as pathologies (in contrast to the singularities,
the singularity manifolds of the dynamics themselves).

3.1. Counter-example for bounded curvature . — In this section we prove that
even in a 3D dispersing billiard, already the two-step singularities have no bounded
curvature. The proof is rather implicit. We start with the indirect assumption that
the curvature is bounded, and find that the two-step singularity intersects the one-
step singularity tangentially at every point of their intersection, except for a one-
codimensional degeneracy, where the intersection is not tangent. However -— as a
consequence of bounded curvature — our indirect asumption implies that the unit
normal vector of Sy is a continuously differentiable function of its base point. Thus
the set of those points where the two singularity manifolds intersect non-tangentially
is open in & N'Se. This way we get a contradiction.

Consider the situation demonstrated on Figure 2. To perform as transparent an
argument as possible

- the parameters on the figure and in the calculations below are different,

the first scatterer, the surface where the trajectories start out is a plane — thus
it is not strictly convex.
Nevertheless the reader can easily see that these modifications have no real signif-
icance. We are in 3 dimensions, so take a standard 3D Cartesian coordinate sys-
tem. Let the first ’scatterer’ be the {z = 0} plane. Let the second scatterer be
the sphere with centre O; = (0,—1,1) and radius R = 1. Let the third scatterer
be the sphere with centre Oy = (1,0,2) and radius R = 1. We look at the com-
ponent of the phase space corresponding to the first scatterer, near the phase point
(xo = 0,90 = 0,v,0 = 0,vy0 = 0). Of course, v,9 = 1, and the trajectory is the
z axis. We are interested in the singularity manifold belonging to a tangent second
collision. To describe this, let D € R? be the set of those points (x,y,vs,vy) the
trajectories of which hit the first sphere. Let r : D — R be the distance of the
trajectory and O,. That is, the singularity manifold we are looking at is the set
So = {(z,y,v.,vy) € D | r(x,y,ve,vy) = 1}. So, if we want to construct the normal
vector of the singularity manifold, we just need to calculate the gradient of r. We will
directly calculate the partial derivatives. Since (xo, yo, V.0, vy0) = (0,0,0,0) is on the
boundary of D, we can only hope to find one-side partial derivatives. What is even
worse: (z,y,v,,0y) = (2,0,0,0) € D only if z = 0, so we cannot differentiate with
respect to x. The same is true for v,. What we can do is take these partial derivatives
at the points (0,y,0,v,) and than the limits

0
lim lim —r(z,y, vy, vy)|emuv, =0-
2000 O ( y Y Uy y)IJ: v, =0

(we will see that it is important to fix x = v, = 0).

SOCIETE MATHEMATIQUE DE FRANCE 2003



126 P. BALINT, N. CHERNOV, D. SZASZ & 1.P. TOTH

plane

spheres
sphere;

FIGURE 2. The studied billiard configuration

We start with the indirect assumption that S; has bounded curvature. This implies
that the unit normal vector of Sy is a continuously differentiable function of its base
point with bounded derivative. In this way it makes sense to define the normal vector
of Sy on the boundary points of Sy as the limit of (unit) normal vectors on the interior.
For us the indirect assumption will mean that the limit

gradr(0,0,0,0) := lim gradr(z, y. v,,vy)
(i, y.v,p0y)—(0.0.0,0) )

exists.

The closer a reflection is to tangential, the less effect it has on the “neutral” di-
rection. In our case, the reflection on the first sphere causes “no scattering” in the
x direction. That is, let (v}, v, v]) be the velocity after the first collision. The “z”

direction being the “neutral” direction means that
.0
lim —2’.(0,4,0,0) =1
y—0 (O3 v

which implies that
J

513%) v, r(0..0.0) = =2
Similarly,
.0,
ill% E)?EUJ:(O’ y. 0, 0) =0
which implies that
7]
lim r(0.y.0.0) = —~1.

y—0 v,
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According to our indirect assumption, this means that
0 7]
—7(0,0,0,0) = -1 and ——r(0,0.0,0) = —-2.
(‘).7:7( 0) . v, ( )

For the other two components, fix * = v, = 0. So the trajectory is in the {z = 0}
plane, the scattering is just a 2D problem. We will calculate the one-side partial
derivatives 5—)7'(0,0,0,0) and %—T((),0,0,0).

™

1
To find 01it about vy,
collision point and the (0,1,0) vector. If v, = 0, then 1 —cos¢ = —y (y < 0, of
course), which, in leading order, gives ¢ = /=2y. It can be seen that after the
reflection vy, = sin2¢. That is, the trajectory is far from being a line. However, it is
diverted in the very direction which - in the first order - does not affect its distance
from O,. Instead, in leading terms, r* = 1+ (v})*
Putting these together, we get r = /1 — 8y, that is,

let ¢ be the angle of the first sphere’s radius at the first

P

0
—7(0,0,0,0) = —4.
Ay
If we fix y = 0, the exact same consideration gives r = /1 — 8v,,, that is,
0
)—7'((),(),()7()) = —4

vy

as well. All together, we get
gradr(0,0,0,0) = (-1, -4, -2, —4).

This is (the limit of) the normal vector of the singularity at the point (x = 0, y = 0,
v, =0, v, =0).

It is easy to see that the singularity corresponding to a tangent reflection on the
first sphere has the normal vector

gradro(x, y, v, vy) = (0,—1,0,—1).

That is, the two singularities are not tangent at this point.

The previous consideration for grad r also shows that this behaviour is exceptional.
It is the result of the fact that in the first order r was unaffected by vj. If the
radii at the reflection points (z.y,z) = (0,0,1) and (x,y, z) = (0,0,2) had not been
orthogonal, the result would have been

or or

()_I/ = 00, EE = 00,
corresponding to a normal vector (0,1,0,1), meaning that the two singularities are
tangent. Non-tangentiallity of the two singularities is a one-codimensional degeneracy.
As we have pointed out at the beginning of the subsection, this contradicts our
indirect assumption on the boundedness of the curvature. In this way we have only
proven that the assumption was false. However, we believe that the picture of the
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singularity suggested above is correct, the singularities are tangent almost everywhere,
and their curvature only blows up near the pathological points described.

3.2. Discussion. — For a rigorous proof of some finer properties (such as correla-
tion decay) of multi-dimensional dispersing billiards it seems essential to characterize
singularities in a systematic way. Such a characterization should be subject to future
research (some possible ideas related to this question are discussed in [BChSzT]).
In this subsection we do not plan to give rigorous proofs; we would like to point
out some analogies to and emphasize some interesting features of the irregularities
demonstrated above.

The Whitney-umbrella. — Consider the one-codimensional set in R? defined by the
polynomial equation:
{(z,y.2) eR? | 2®z =y},

the Whitney-umbrella (for more details see [AGV]). ‘One half’ of this set (its inter-
section with the quadrants xzy > 0) is shown on Figure 3. For simplicity we use the
notations: Ws for this "half-umbrella’ and W; for the {z = 0} plane. Clearly

— Wy terminates on W; (in the points of the z-axis), thus Wi N Wy = dWs.

- at every point of the z-axis where & # 0 the intersection of W5 and W, is
tangential.

—~ Ws has smooth manifold structure in its interior; nevertheless, near the origin its
curvature is unbounded as the normal vector changes rapidly (actually, the normal
vector does not even have a well-defined limit at the origin).

FIGURE 3. The Whitney Umbrella

By these properties the geometry of singularities described in subsection 3.1 is
analogous to Figure 3.12) W, corresponds to S;, Wy corresponds to Sy while the

(2)To be precise, the situation on Figure 3. has one dimension less — in contrast to Wy the singu-
larities are 3-dimensional manifolds — but this has little significance to the analogy.
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origin corresponds to the set of those doubly tangential reflections where the two
radii are orthogonal (this set is one-codimensional in S; N Sz).

Generalization I. — First let us consider the first-step singularity S;. By the nota-
tions of the previous subsection we may characterize the points of (z,y, v, v,) belong-
ing to S; easily. These are precisely those for which d(z, y, v,, vy) = 1, where d(., ., .,.)
is the distance of the point O; = (0, —1, 1) from the line that passes through the point
(z,y,0) and has direction specified by the velocity components v,, v,. Asd is a smooth
function of its variables there is no curvature blow-up for §; — and, for first-step sin-
gularities in general. Thus S, is a pre-image of a smooth one-codimensional compact
submanifold, however, the map under which the pre-image is taken has unbounded
derivatives and is highly an-isotropic. Curvature blow-up occurs only at those points
of S, (near its intersection with &) where the map behaves irregularly.

In correspondence with the above observation we conjecture that curvature blow-
up is not a peculiar feature of Sa, it is present in the pre-images of one-codimensional
smooth submanifolds in general. Consider for example two-step secondary singulari-
ties I'y — those phase points for which at the second iterate instead of tangentiality
the collision angle ((n,v)) is a given constant (see section 4 for more detail). In the
specific example of subsection 3.1 such secondary singular trajectories are precisely
those that touch tangentially a sphere of radius R’ (R’ < 1) at the second iterate. It
is clear that the geometry of I's is completely analogous to Ss.

Generalization I1. Our calculations in subsection 3.1 do not use any speciality
of the explicitly given billiard configuration. Doubly tangential reflections for which
the normal vectors of the scatterers at the consecutive collisions are orthogonal can
be found in any multi-dimensional semi-dispersing billiard. Near such trajectories a
similar calculation can be performed.

Generalization I11. — All in all, the discovered pathology is general. In addition, the
higher step singularities S; (k > 3) may show even wilder behaviour near their inter-
sections. Nevertheless, we strongly conjecture that a nice geometric characterization
— suggested by the analogy with the Whitney-umbrella in the case of S(2) — can be
performed. This question is subject to future research.

4. Geometric properties of u-manifolds

Throughout sections 4 and 5 we investigate u-manifolds (their counterparts, s-
manifolds can be treated similarly). u-manifolds are d — 1-dimensional submanifolds
of the phase space with tangent planes in the (appropriately defined) unstable cone.
Possibly the most important tools in studying ergodic and statistical properties, local
unstable manifolds (or LUMs for short) are suitable limits of u-manifolds (for details
see [Y1, Ch2, Ch3]). In contrast to the 2d — 3-dimensional (one-codimensional)
singularity manifolds, u-manifolds behave in a uniformly regular way. In section 4
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we introduce a natural geometrical description that turns out to be very useful for
studying multi-dimensional dispersing billiards. Proofs for some basic properties of
u-manifolds are also included. More involved technicalities — that play a crucial role
in investigating the statistical behaviour of a billiard system (cf. [Y1, Ch2, Ch3])
— are discussed in section 5.

4.1. The phase space. — We shall work with the discrete time (collision to col-
lision) dynamical system, thus our phase space — which we denote by M — is the
Poincaré phase space, the collection of possible collision points supplied with outgoing
velocities. Mathematically this space is a bundle over the scatterers JQ, the fibers of
which consist of the possible outgoing velocities. At every base point ¢ the fiber is the
(d — 1)-dimensional hemisphere with boundary which we shall denote by Si_l. Note
that this bundle can be viewed as a subbundle (of vectors of unit length) in the direct
sum of the tangent and normal bundles over the scatterers. Thus, by the Riemannian
structure of dQ, there is a naturally defined parallel translation on our bundle (see
the description of the tangent plane below). Local coordinates on our phase space will
be denoted x = (¢, v). Additionally we shall use all the notations for local quantities
introduced in the previous section(s) (eg. n(q), ¢).

Some conventions. — Throughout the paper the superscripts '+’ and '—’ denote post-
and precollisional values, respectively, for certain functions, operators, hyperplanes
etc. (e.g. vT and v7). The dynamics and its derivative are denoted by T and DT,
respectively. In correspondence with x; = Tz (0x; = DTdx), the subscript '1" means
the value of a certain quantity at the first iterate. We shall usually prime the points,
trajectories, operators etc. infinitesimally close to a reference point or trajectory.

The tangent plane. — At any point 2 = (¢, v) the tangent plane has a natural splitting
T.M = 7:18(@—%’7,,81_1 = T+J. The two planes 7 and 7 are related by the projection
operator V : 7 — T and its adjoint V* (for their description see the section 2).

For two points ¢ = (¢,v) and 2’ = (¢’,v’) infinitesimally close, the tangent vector
pointing from z to a’ is

dx = (dq, év) Sqg=q—¢: ov=Q;" —v

where @y is the rotator that takes 7 to 7’. Up to first order:

(4.1) Qou=u — (u,dn)n + (u,n)dn  for u € R%
(4.2) Qptu =u+ (u,dn)n — (u,n)dn for ue R
and thus:

dv=dv—{v,n)V*dn

Here dv = v' — v and dn = n’ — n. These formulas execute (up to first order) the
parallel translation of the bundle M.
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4.2. Important submanifolds

Singularity manifolds. — The dynamics T is discontinuous, the singularity manifold
is S =8 = T~1S, where Sy = OM = {(q,v) | (v,n) = 0} is just the boundary of
the phase space. However, as already mentioned, to get a well-behaved dynamics we
should partition the original phase space into homogeneity layers:

I ={(q.v)e M| (k+1)7% < (v.n(q)) < k™?} and
(43) To = {(g,v) € M | (v,n(a)) > K2}

Here the integer constant ko is arbitrary. The boundary of this partitioned phase
space, M is

[y =0M=uU;2, {(qg.v) ] (v,n) = k2
Correspondingly, the countably many manifolds in the set TV = T-1T; are the so
called secondary singularities. For a higher iterate of the dynamics, T", the primary
and secondary singularities are, respectively:

s =sWyrtstuy...rrHts® T =Wy rTIr®Wy. LT

Fronts. As introduced in section 2, (d — 1)-dimensional submanifolds in Q, the
configurational space of the flow, everywhere orthogonal to the flow direction will
be referred to as fronts. When supplied with their normal vectors v (the velocities),
fronts can be viewed as submanifolds of the flow phase space M. Vectors (in the
tangent bundle over M) tangent to fronts are denoted by (dr, dv) = (dr, Bdr) where
B is the second fundamental form (s.f.f.) of our submanifold in Q (here, of course,
dr L v).

Let us consider a front directly after (before) collision. It leaves a trace of velocities
on the scatterer which can be viewed either as a (unit) vector field over dQ or as a
(d — 1)- dimensional submanifold in the Poincaré phase space. Direct calculations
show that for a vector (dr,dv) = (dr, B*dr), tangent to the post-collisional front, the
corresponding vector in the Poincaré phase space is dx = (dq, dv) where:

oq = Vdr;
v =dv— (v.n)V*dn = dv — (v,n)V*Kdq
(4.4) = (BYV™! — (0,n)V*K)dq = Féq.

The operator F': T — J plays an important role, it describes the tangent plane of
our (d — 1)-dimensional manifold in the Poincaré phase space.

A front will be called convex/diverging whenever BT is positive semi-definite
(BJr > 0). Convex fronts remain convex under time evolution. The convex cone
consists of those tangent vectors dx that are tangent to some convex front.

Lemma 4.1. — There are constants my € N and ¢y < 7/2 that depend only on the
billiard domain itself such that out of mgy consecutive reflections at least for one of
them for the collison angle ¢ we have: ¢ < ¢q.
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Proof. — Let us assume the contrary: there is a sequence x,, of phase points which
have trajectories with n consecutive collisions, all with collision angle ¢ > 7/2 — 1/n.
By compactness there is a limit phase point with infinitely many consecutive tangen-
tial reflections. This, however, contradicts the finite horizon assumption. O

u-manifolds and homogeneous u-manifolds. — We shall consider C'¥, the mg-image of
the convex cone as our unstable cone. A manifold is a u-manifold if it has all tangent
vectors in C'Y. u-manifolds remain u-manifolds as C¥ is invariant under the positive
powers of T

A u-manifold is said to be homogeneous if it is contained in one homogeneity layer.

There will be two metrics used on u-manifolds. Before their introduction we men-
tion that for any vector dz in 7 or in J ||dz| is the notation for the Euclidean length
and for oprators O acting on these spaces ||O|| denotes the naturally induced norm.

The p-metric

6z, = lldr|

measures distances on the corresponding front while the Fuclidean metric

ozl = V/dq? + dv?

in the Poincaré phase space. A priori the p-metric seems to be degenerate but as
we shall see it is a good metric on the cone C¥. Time evolution in the p-metric is
given by:

(4.5) 16211l = drill = lldr + 7dv]| = (I + 7B )dr]|

Some further notation. — For any u-manifold W; the quantities Ji, (z) and Ji, ()
are the Jacobians of the dynamics in the p- and e-metrics, respectively.

Remark. — All the above introduced concepts have their natural counterparts (with
the corresponding nice properties) for the reversed dynamics: concave/convergent
fronts, s-manifolds etc.

4.3. Properties of F and equivalence of metrics

Some conventions. — Constants that depend only on the billiard table itself (like
Tinin, Po-..) will be called global constants.

For an invertible operator O the meaning of the relations ¢ < O < C' is that there
are two positive global constants C; and C9 that bound the norms of the operator
and its inverse:

[0l <Ci; o7 < Co.

Note that the operator O is not necessarily symmetric, even more, it need not be an
automorphism. The values of the constants Cy and C are usually irrelevant.

Two quantities f and g defined on the unstable cones will be called equivalent
(f ~ g) if there are some global constants C and Cy such that C;f < g < Caf.
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Throughout this subsection we restrict our considerations on the vectors of the
unstable cone.

Sublemma 4.2. — Let us consider any u-front with incoming and outgoing s.f.f.-s B~
and BY, respectively. Then ¢ < BY and ¢ < B~ < C.

Proof. — By the collision equations the operator BT — B~ is always positive semi-
definite, thus it is enough to prove ¢ < B~ < C as it implies ¢ < B*. The upper
bound is trivial by (2.2) and the lack of corner points (there is a lower bound on the
free path: 7 > 7yin). Thus it remains to prove ¢ < B~ what is an easy consequence
of Lemma 4.1. Indeed, our submanifold is an mg-iterate of a convex front . By
the lemma out of these m reflections there is definitely at least one with collision
angle smaller than ¢y. We shall denote the collision term that corresponds to this
particular reflection by ©. Of course, ¢ < ©q as the spectrum of © is bounded below
by kumin cos ¢g (here kpnin is the lower bound on the spectrum of K —— the curvature
operator of the scatterers 0Q). Now let us consider any dr € J. By the evolution
equations (2.2) and (2.3):

(dr, B=dr) = (dr,((00) ™" + moTmax]) " dr) = ((kmin €08 ¢0) ™ + moTimax) ~{dr, dr).
Thus we have the desired lower bound. O
Now we can formulate our most important technical lemma.

Lemma 4.3. — Assume K' : T — T and B’ : J — J are both symmetric, positive
definite and ¢ < B', K' < C'. Then:

c=< BV 4 (v,n)V*K' < C.

Proof. — The upper bound is obvious since ||V 7! = 1 and (v, n)||V*] = 1.
By the definition of V', we have
Vu=u-— {u, n) v for ue J
(v, n)
and
Vilu=u—(uvjv for ueT
Similarly,
(4.6) Viu=u-— <u’U>n for ueT
(v,n)
and

(VY 'u=u—(un)n for ueJ
It is then easy to arrive at
(VW = u — (u,v)o + (u,v) (v, n)n

and
(0, N2 VV*u = (v,n)%u + (u, v)v — (u,v)(v,n)n
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Adding the two equations above yields
(4.7) (VW 4 (0, n)2V V= (1 + (v,n)?)]

where [ is the identity operator in 7.

Another useful observation: Since [[(B')7!]| < C and ||(K')~!|| < C for a global
constant C' > 0, all the eigenvalues of B’ and K’ are bounded below by ¢/ = 1/C.
Hence

(4.8) (B'u,u) > |lul|*  for ue J
and
(4.9) (K'u,u) > ul|*>  for ueT

Now, let u € T,

ull = 1. Then |V ~1ul| < 1, and
(B'V Yu+ (0,n)V*K'u, V" u) = (B'V ™ u, Vo lu) + (v, n) (K u, u)
Here all three scalar products are positive, hence
(4.10) 1BV u+ (v, n) VK ul| = ||V |
due to (4.8). Next, we have (v,n)||[V*u| < 1, and
(B'V= Y+ (0,n)V*K'u, (v,n)V*u) = (B'V " u, (v,n)V*u) + (K'u, (v,n)?VV*u)
Substitution of (4.7) and using (4.9) gives
1BV tu+ (v,n) VK ul| = |ul)® = ||V | = = |V
for some global constant ¢’ > 0. Combining this with (4.10) yields
|B'V " u+ (v, n)V K ul| > ¢
with ¢ = ¢//(1 4 ¢”/¢’). The lower bound is proved. |

Corollary 4.4. — There are global constants ¢ and C such that for any u-front ¢ <
F < C. As a consequence, for all vectors of the unstable cone, dx € C} the norm
I6||e is uniformly equivalent to both ||dq|| and ||dv||. Furthermore, the p-metric is
non-degenerate on the cone C* (nonzero vectors in C have nonzero p-length).

Proof. — This is an easy application of Lemma 4.3 with B’ = B~ and K’ = K (see
also formula (4.4)). O

Corollary 4.5. — The p-metric and the e-metric are equivalent in a ‘dynamical’ sense:
for any éx € C¥: ||DT x|, ~ ||ox]|..

Proof. — Indeed, by the evolution equation (4.5):
IDT6el, = (I + 7B )drl| = (1 + 7BV ~"4q].
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Now we may apply Lemma 4.3 with K/ = 2K and B’ = I + 7B~ (remember that the
free path 7 is uniformly bounded from below and above). Together with Corollary 4.4
we get:

I(1 +7B*)V~"5q|| ~ [|dqll ~ [|ox].

The two equations together give Corollary 4.5. O
Before going into further details we would like to make an important remark.

Remark 4.6. — From the next section on we turn to a closer investigation of u-
manifolds. We will see that — as long as the properties discussed in the rest of
the paper are concerned — u-manifolds are no less regular in multi-dimensional bil-
liards than in the planar ones. This can be easily checked if our results are compared
to those proved in the literature for the two-dimensional case, see especially [Ch2],
Section 6 and the references cited there.

Nevertheless, there are important differences from planar billiards in the way how
u-manifolds are actually described. Anisotropy of the geometry is reflected in the
use of linear operators. It is of course much more difficult to handle operators than
numbers, thus the proof of the very same regularity properties becomes more technical
as one switches from dimension two to three.

4.4. Geometry and hyperbolicity of u-manifolds. — Now we would like to
turn to the hyperbolic and geometric properties of the unstable cone. Unless otherwise
stated, any vector dx mentioned is an element of the u-cone C¥.

Uniform hyperbolicity in the p-metric is guaranteed by the uniform bound 7 > 7y,
and Sublemma 4.2. Indeed:

IDToxll, = |(Id + 7B F)dr|| > Aljox|l,.

Here A > 1 is a global constant. On the other hand, by Sublemma 4.2 again (together
with the evolution equations) for the (d—1) eigenvalues of the symmetric operator B*:

A~ (cos )™ Ni~1, 1=2,...,d—1.

As a consequence, for an arbitrary u-manifold W the Jacobian in the p-metric behaves
Ty (@) ~ (cos(@)) .

In the e-metric we have by Corollary 4.5:
(4.11) | DTSz, = ||DT" 6z, > A" Y| DTéx|, > CA™||dz|..
This implies that for a sufficiently high fixed power of the dynamics, T} = T™1:
(4.12) |IDTv ozl > Ar]|dze with A; > 1 global.
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To calculate Jjj, (z) for any u-manifold W consider the operator G : T — T,W
that acts by the rule dg — (dq, F'(6q)) = éx. Then one can easily check that in our
notation

DT |w () =GioVioUjo(I+7BT) oV oG}

in correspondence with equation (4.5) that describes evolution in the p-metric. Now
we may get a formula for the Jacobian in the e-metric:

(4.13) Jiy(z) = det Gy det Vi Jh, () (det V) ! (det G) 1.
We observe that
(4.14) (det G)? = det(I + F*F)

Indeed, there is an orthonormal basis in 7 and an orthonormal basis in 7 such that
F: 7 — J is represented, in those bases, by a diagonal matrix (this follows from the
singular value decomposition theorem in linear algebra). For a diagonal matrix F,
the relation (4.14) is easily verified by direct inspection.

Now it is easy to see that there are global constants ¢ and C' such that: ¢ < det G <
C for the operator G at any u-manifold. Direct calculation gives:

(4.15) Gy (x) ~ det(Vy) ~ (cos(p1)) L.

Let us consider a further restriction of DT onto a subspace R C T, W of the tangent
plane. Applying the above argument for the restriction DT |g we get:

(4.16) det(DT |r) ~ det(Vy |rr)
where R’ = (V; ' o G o DT)(R).
Now we turn to some geometric properties of our submanifolds. Transversality

-— the property that the stable and unstable cones are uniformly transversal — is
justified by the following theorem:

Theorem 4.7. — The u-manifolds and s-manifolds in M are uniformly transversal.
Precisely, there is a global constant co > 0 such that for any u-manifold W,, and any
s-manifold W at any point of intersection x € W,, N W the angle between W,, and
W s greater than cg.

Proof. — We use the subscripts u and s to denote various quantities and operators
related to the submanifolds W, and Wy, respectively. According to (4.4),
F,=UB, U 'V 4+ (v,n)V*K
and
F, =BV - (v,n)V*K
Note that the operator — B is symmetric, positive definite and satisfies ¢ < =B} < C
(this is the counterpart of the previously established property ¢ < B, < C). Hence,
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the operator B’ := UB,; U~! — B is symmetric, positive definite and satisfies ¢ <
B’ < C. Now Lemma 4.3 implies

(4.17) c<F,—F;,<C

Next assume that Theorem 4.7 is false. Then, by using Corollary 4.4, one can easily
conclude that for any € > 0 there are a u-manifold W,,, an s-manifold Wy intersecting
W, at some point = (q,v), and a nonzero vector dq € 7 such that

1Fu(8q) — Fs(6q)l| < elldq]|

This clearly contradicts (4.17). Theorem 4.7 is proved. a

Remark. — Observe that the above proof goes through even if instead of the s-
manifold Wy we have just an arbitrary convergent front Wy. Indeed, for the crucial
equation (4.17) it is enough to have the upper bound —B{" < C (which trivially holds
for any convergent front Wy), the lower bound ¢ < —BF — which is only true for
s-manifolds — is, however, not essential.

As a consequence we are able to prove the so-called alignment property.

Corollary 4.8. — The u-manifolds are uniformly transversal to all the singularity man-
ifolds S € 8™ and S ¢ '™, n > 1. Precisely, there is a global constant co > 0 such
that for any u-manifold W, intersecting any manifold S C S or S ¢ T'™ at a point
x there is a (d — 1)-dimensional submanifold S’ C S through x such that the angle
between W, and S’ is greater than cg.

Proof. — We have S = TS, for some 1 < k < n and a domain Sy C So (or
So C To). Let xg = (qo,v0) = TFx € Sy. Define a small (d — 1)-dimensional
submanifold Sj C Sy through z¢ by Sy = {y = (r,v) € M | v = Qovo}, where Qy is
the rotator of R? taking n(qo) to n(q), as defined by (4.1).

First let us discuss the primary singularities (i.e. the case Sy C Sp). We claim that
S = T~kS} is a limit, in C° metric, of a sequence of convergent fronts. Indeed, we
first approximate S| by a sequence of (d — 1)-dimensional manifolds S(()i') defined as
follows. Pick a sequence of vectors v((]i) € 5971 such that 'u(()i) — vp as 1 — oo and
<1,)((}i),71/(q())) > 0 for all . Then we put S(()i) ={y=(qv)eM|v= Qov(()i)}. For each
submanifold S(()i), the tangent plane at every point (q,v) € S((,j’) is characterized by
dv = 0, hence F' = 0 in our notation. According to (4.4), we now have UB~U~! =
—(v,n)V*KV~! which is a negative definite operator. So, the trajectories of S(()j'),
as they flow backward in time, make a convergent front. Therefore, T"“S(()i) is a
convergent front for every i. As i — oo, these fronts converge to S’ = T=*S], as we
claimed. Now, Theorem 4.7 (in view of the remark above) completes the proof for
the case of primary singularities.
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In the secondary case (i.e. S C I'™) the (d — 1)-dimensional manifold S’ =
T~FS} is a convergent front itself. Thus we may refer to the theorem and the remark
directly. O

Remark. — Recall that singularity manifolds are 2d — 3-dimensional. The above
Corollary roughly states that there is a d — 1-dimensional subbundle in their tan-
gent bundle that lies in the stable cone field. However, the tangent space may behave
wildly in the further d — 2 directions, in correspondence with the curvature blow-up
discussed in section 3.

5. Technical bounds on u-manifolds

After introducing the basic structures and tools now we would like to turn to the
discussion of some more complicated technical properties. Unless otherwise stated,
all calculations refer to the unstable cone (field) CY and we use all other conven-
tions from the previous section as well (e.g. quantities corresponding to a trajectory
infinitesimally close to a reference one are primed).

Our main reference will be Lemma 4.3. Before discussing the important specific
properties in the subsections, we record a few immediate consequences of this Lemma.
For every u-manifold W, at every reflection we have

(5.1) c< BTV <C.

This bound has its adjoint version

(5.2) c=< (V9 iBt <C.

Let 7 be the time between the current and the next reflections (or, more generally,
any number satisfying 7min/10 < 7 < Timax). Then

(5.3) c<(I+7mBHV ' <C

and we also have an adjoint version of (5.3)

(5.4) c=<(VH N I+7BY) < C.

Note that if ¢ < A < C for any operator A, then also ¢ < A~! < (. Hence, all the
above inequalities remain true for the inverse operators as well. For example, we have

(5.5) (I+7BYH)"'v*<C and V(I +7BY)!<C.

5.1. Curvature bounds on u-manifolds. — In this subsection we would like to
prove that there is a uniform bound on the curvature of u-manifolds. More precisely
we prove that the tangent plane of a u-manifold is a Lipschitz function of the base
point, with a uniform (global) Lipschitz constant. The tangent plane is described by
the operator F', thus we should prove that F' depends smoothly enough on the base
point.
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First we will get the relevant curvature bounds in the phase space of the flow; in
other words, we investigate the smoothness of the dependence for s.f.f.-s B that de-
scribe any front corresponding to some u-manifold (which we refer to as u-fronts for
short). Let W be any such u-front and z = (r,v) € W. Let 2’ = (+',v') € W be
infinitesimally close to z, and dr = r’ —r, dv = v’ — v the infinitesimal displacement
vectors in Q and S?~1, respectively. Clearly, dr,dv € J and dv = [By(x)](dr). Con-
sider the evolution of the displacement vector (dre,dv,) = S*(dr,dv). If no collisions
occur on an interval (t,t + At), then dviyar = dvy and

(56) d’I“H_A[, = d’f'f + At d’Ut = [I + At Bt](th)

where B; = By, (z;). By Sublemma 4.2 we know that (Byu,u) = by,|lul|? for all
uw € J. Therefore

(5.7) ldriyadll = (14 At buin) ||dr||
hence
(5.8) (I + At Bt)‘l I < (14 At bmm)_l‘

Now consider a moment of reflection. The tangent vector dz; = (dr, dv) changes
discontinuously, in correspondence with (2.3): dr = dr* = Udr~ and dv = dv" =
U(dv™) + O(drt). The two trajectories reflect at the points ¢,q’ € 9Q in the time
moments t,t , respectively. For the infinitesimal differences we use the notations
dt € R, g € T and dn =n(q') — n(q) = Kdoq € T. As to their relations:

(5.9 lldr*l <llogll;  ldt] <2llogll;  Nldn] < Cllogll and [ldv]| < Clldg]].

Indeed, these bounds are straight consequences of the formulas (2.3) and (4.4), the
boundedness of K, the triangle inequality |dt| < ||dq|| + ||drT]| and our crucial
Lemma 4.3.

We need to compare the operators © and ©' taken at the points (q,v) and (¢',v’),
respectively. They act in the hyperplanes 7 and J' orthogonal to v and v’, respec-
tively. Consider the operators V*, K,V entering (2.3) at the reference point (q,v)
and their counterparts (V')*, K’, V' at the nearby point (¢’,v’). Let Q = Q. . be the
rotation in R¢ taking v to v’ and leaving invariant all the vectors perpendicular to v
and v’. Then Q takes J to J'. More specifically, Q acts by the rule

(5.10) Qu=u—(u,dvyjv for ueJ
and its inverse acts by
(5.11) Q 'u=u+ (u,dvyv for ueJ'

where the terms of the second order in dv are dropped. Furthermore we shall use
another rotator, Qq, that takes 7 to 7"': this later one we have already introduced at
the description of the parallel translation of the tangent bundle (see (4.1), (4.2)).
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Instead of V and V*, it is now more convenient to work with more “tame” operators
V = (v,n)V and V* = (v,n)V*. They act by the rules

(5.12) Vu=(v,n)u — (u,nyv  for ue J
and
(5.13) V= (v,n)u— (u,v)n for ueT

Similar formulas hold for V' and ( ')*, where v/, n” are substituted for v, n.
Put AV = Q;'V'Q -V, AV* = Q" 1(V')*Qy — V* and AK = Q;'K'Qo — K.
Direct calculations based on (5.12), (5.10) and (4.2) yield

[AV](u) = ((dv,n) + (v, dn))u + ((v,n)(u, dn) — (u,n){v,dn))n — (u, dn)v — (u, n)dv
hence

(5.14) 1AV < 2| dv]| + 4 |ldn]|

Note that AV* is the adjoint of AV, hence

(5.15) IAV*|| = AV < 2||dv]| + 4 [|dn]|

Now, because 9Q is C® smooth we have

(5.16) IAK] < Clléq]|

for some global constant C' > 0.

Sublemma 5.1. — There is a global constant C > 0 such that for any 7™ €
(7-111111/107 Tm:a.x)

(1 +7B*)"HQ™'0'Q — ©)(I + 7B)~!|| < Cllaq]|
Proof. — Recall that
0 =2(v,n)V*'KV = 2v,n) 'WVEKV
and similar formulas hold for ©’. We have, to the first order of ||dq||,

Q'O'Q-06=2((,n") - (v,n))V*KV
(5.17) +2(0,n) "M (AV*KV + V*AKV 4+ V*KAV)

Note that (v/,n’) — (v,n) = ((dv,n) + (v,dn)), to the first order in ||dg||. Thus we can
rewrite (5.17) in this way:

Q7'e'Q — © = 2((dv,n) + (v, dn))V*KV + 2(AV*KV + V*AKV + V*KAV)

Now we apply (5.5) and then (5.14)-(5.16) with (5.9). This completes the proof of
the sublemma. O
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After so much preparation we are ready to discuss curvature bounds for the flow,
i.e. for u-fronts W.

We need to estimate the ‘derivative’ of the second fundamental form Byy(z) with
respect to © € W. The operator By (x) acts in the hyperplane J that also depends
on x. For points 2’ = (r',v') € W infinitesimally close to z, let @ = Q. be the
rotator in R? that takes J to J' as defined by (5.10). Then the ‘increment’ of B is
defined by Q~'B’Q — B, where B = By (z) and B’ = By (z'). Now consider

Dw(x) := max 1Q™'B'Q — B||/|ldr|

where the maximum is taken over all nonzero infinitesimal displacement vectors dr =

r—r.

Lemma 5.2 (Curvature bounds - I). — There is a constant Dy,ax such that for any di-
vergent wave front W and x € W there is a ty = to(W,x) such that for all t > tg
we have the following: if no collisions occur in the interval (t — Tiin/2,t), then
Dy, (x4) € Dypax.

Proof. — For short, we put Dy = Dy, (2;). First we show that D, decreases during
free runs between collisions.

Sublemma 5.3. — If there are no collisions in a time interval (t,t + At), then
Dt+At < (1 + At bmin)‘:;Dt
Proof. — For short, we put B = By, (z¢) and By = By, ,,(T14a¢). Similarly, we

define B’ and B at the points x; and x;, 5,. Now, if A; and Ay are two invertible
linear operators acting in the same space, then obviously

(5.18) Ay — Ay = —A (AT — A7) A
Applying this trick twice and using (2.2) yields
Q7 'BQ-B =Q (I+AtB)'QQ'B'Q - B](I+AtB)!
Now the sublemma easily follows, with the help of (5.7) and (5.8). O
Sublemma 5.4. — If there is a collision in a time interval (t,t + Tmin/4), then
Dyyrns2 < Di+D

where D > 0 is a global constant.

Proof. — Let s = t + Tmin/2. Note that there are no collisions in the interval
(t + Twin/4, s). For short, we put B = By, (z;) and B' = By, (z.). Denote by
t; and ¢ the moments of reflection of the trajectories of the points x; and z}, re-
spectively, that occur in the interval (t,t + Timin/4). Put dt =t} —t;, 7 = s — t; and

7" = s —t}. Note that 7 > Ty,in/4 and 7 > Ty /4. Put BT = Bw, (71, +0) and
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B'* = By, +U(a:t/] +0). Let @ be the rotation of R? that takes v = v, to v/ = v/. It
1
acts on J = J,, by the rule (5.10). Applying the trick (5.18) twice yields

Q7 'B'Q-B=-Q 'B'QtI)B
(5.19) +Q MU +7BN)IQQ'BTQ - Bt (I +mBY)!
Note that || B|| < 1/7 < 4/Tmin, and likewise || B|| < 4/Tmin. Hence,
I = Q~'B'Q(dt I)B|| < Cld|

for a global constant C' > 0. Next, we have Bt = UB"U~! + © by (2.3), and,
similarly B'" = U'B’~U’'~! + ©'. Then we can further decompose the last term in
(5.19):
1Q7T'B'Q~ B| < Cldt| +|QT'U'B"U'Q-UB U
HIQTH I+ 7B TIQQTIOQ -0l (I +7BY)!|
Using Sublemma 5.1 (and its notation) gives, up to the first order in ||dq]|,
QTN +7'B*)7'QQ™'O'Q-e](I +78%)7!|
= (I +7B7)7Q™'O'Q — O] (I + 7BT) || < C|l4q|
Note that
(5.20) IQT'U'BTUTIQ-UB U | =[Q7'B~Q:— B|
where Q1 = U'"'QU is the rotator that takes the hyperplane J~ = Tai, o tO J =
Tz, . We apply the trick (5.18) twice and act as in (5.19) and easily obtain
fl—U
(5.21) QT B~ Q1 = B~ <|B" |||t |B~ ]| + Q1 ' BiQ1 — Bi
where By = By, (z:) and B} = By, (2}).
Combining the above estimates gives
1Q7'B'Q — Bl < Cldt| + Clloql + Q7 ' BiQ1 = B

for some global constant C' > 0. Note that dry = (I + 7BT)dr™ = (I + 1BT)V g,
and due to (5.3) we have ||0q|| < C||drs||. Lastly, |dt| < 2||éq|| by (5.9) and ||dr| <
lldrsl, which easily follows from (5.7). Therefore,

1Q™'B'Q = B|/lldrs|| < D+ Q7" BiQ1 — Bull/lldr|

where D is a global constant, which proves the sublemma. O

We now complete the proof of Lemma 5.2. Let ¢ > 0 satisfy the condition of the
Lemma, and n be the number of collisions on the interval (0,¢). Then combining
Sublemmas 5.3 and 5.4 gives

Dy < A"Dy+ (1+ A+ +X")D

where A = (1 + Tuinbmin/4) "2 < 1. Since D is a global constant, the Lemma follows.
O

ASTERISQUE 286



GEOMETRY OF MULTI-DIMENSIONAL DISPERSING BILLIARDS 143

In all that follows we will only consider u-fronts W for which Dyy(x) < Dyyax for all
x € W provided the trajectory S*z, —7min/2 < t < 0, does not collide with Q. As we
are mainly interested in those u-manifolds that approximate LUM-s, this convention
is justified by Lemma 5.2. Indeed, if the front W corresponds to a LUM, than S—*W
is a divergent front for any ¢ > 0.

Remark. — A useful estimate (5.21) obtained in the proof of Sublemma 5.4 can now
be restated. Recall that |dt| < 2||dq]|, [|B~|| - | B~ || < 1/72,, (a global bound) and

min

”(\?I—IB;(QI - Bl” < DmudeT'I,”

by the above convention. Also note that ||dr|| < ||dr~|| = ||drt | = |V ~20q]| < ||dq].
Hence,
(5.22) Q"B Q) — B~ || < C||dr||

with a global constant C' > 0.

Finally we should prove the curvature bounds on u-manifolds W in the Poincaré
phase space, in other words, that the ‘derivative’ of F' along u-manifolds is uniformly
bounded.

We will denote by disty (x,y) the distance between x,y € W in the Euclidean
metric on W. Let x = (¢,v) and 2’ = (¢’,v’) be two infinitesimally close points of
a w-manifold W, and F and F’ the corresponding operators at @ and 2’. Using our
previous notation. we consider the increment of £ defined by Q~'F’Q, — F. Here
again @ is the rotator taking n = n(q) to n’ = n(q’) and Q is the rotator taking v

to v’

Theorem 5.5 (Curvature bounds - II). — There is a global constant C' > 0 such that
Q' F'Qo = FIl < C'||daq]|

Proof. — Using the second formula in (4.4) and our earlier notation V* = (v.n)V*

gives

Q7 F'Qu = FIl < Q7'V"QuQy ' K'Qy = V'K
HQTUBTUTIQQTVTIQy - UBTUT VT

The first term is bounded by C'||d¢|| for some global constant C' > 0, according to
our earlier estimates (5.15) and (5.16). To bound the second term we need two more
estimates. One is

(5.23) 1Q™'V' ™1 Qo — VT < 4 ldvf| + 2 [|dn]| < Cq]|
which is proved just like (5.14) and (5.15), we omit the details. The other is

(5.24) IQ'U'B~U'Q - UB U™ < Cllog]|
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for a global constant C' > 0. In the proof of Sublemma 5.4 we introduced the rotator
Q1 = U'"'QU that takes the hyperplane J~ to J'~. With this, (5.24) is simply
equivalent to our early estimate (5.22). Theorem 5.5 is now proved. O

5.2. Distorsion bounds. — This subsection is devoted to the question, how
smoothly the volume expansion rates vary at nearby points on the same u-manifold
(distorsion bounds) and at different u-manifolds joint by holonomy maps along
s-manifolds (absolute continuity). Actually, the reason for introducing homogeneity
strips and secondary singularities (see (4.3)) is that we would like to control these
distorsions. Let us consider the evolution under 7" of a u-manifold W. Due to (4.11)
distances grow exponentially in n, and the same is true for the (d — 1)-dimensional
volume of T"W. However, at almost grazing reflections, when (v,n) =~ 0, the
expansion of u-manifolds is highly nonuniform, and so distortions are unbounded.
Nevertheless, as we shall prove in Theorem 5.7, the situation is much better with
homogeneous u-manifolds.

Throughout the subsection all metric quantities (norms, distances, volume ele-
ments, Jacobians) are understood in the e-metric, thus we often drop the sub- or
superscripts e.

Sublemma 5.6. — If W is a homogeneous u-manifold, then for any two points x =
(g,v) and T = (g,7) of W we have

(T, ) — (v,n)| < C(v,n) [diStw(x,f)] 1/3

where @ = n(q) and C > 0 is a global constant.
Proof. — Let W N I, # @ for some k. Then
(5.25) |(@,7) — (v,n)| <Cy(k+1)73

with a global constant C), according to our construction of I. Next, for any point
x' = (¢',v) infinitesimally close to x, we have, up to the first order in ||dz| (= ||dz|l.),

(5.26) |V, 0"y — (v,n)| = [{dv,n) + (v,dn)| < Cs||dq]| < Cs||dz]]

with some global constants Co,Cs, see (5.9) and Corollary 4.4. Integrating (5.26)
from z to T yields

(5.27) [T, ) — (v,n)| < Cydist(x,T)
Now (5.25) and (5.27) give
(@, 7) — (v,n)|* < CICy (k + 1)~ dist(x, T)

Lastly, recall that (v,n) > (k+ 1)"2if k > 0 and (v,n) > kg2 if & = 0, hence
(v,n) = kg *(k +1)72 for any k. Therefore,

7,7) — (v,n)|[? < CEC3KS (v.n)? dist (2. T
1 0

This proves the sublemma. O
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Let W be a u-manifold, z € W and T™ continuous at x. Denote by Jyw,,(z) the
expansion factor of the (d — 1)-dimensional volume of the manifold W under T™ at
the point z, i.e. Jw,(z) = |det DT |w (z)].

Theorem 5.7 (Distorsion bounds). — Let W be a small u-manifold on which T™ is con-
tinuous. Assume that W; := T'W is a homogeneous u-manifold for each 0 < i < n.
Then for all x,7 € W

1/3
I Jiwn (T) — In Ty ()] < C - {distw,, (T"z, T“‘T)}

for a global constant C > 0.

Proof. — Note that Jw.,(z) = [['—, Jw,1(T"z). Hence, it is enough to prove the
lemma for n = 1, because dist(7"z, T'T) grows uniformly exponentially in i due to
(4.11). So we put n = 1.

Denote z; = Tz and T; = TZ. We will also use a variable point 2’ € W infinites-
imally close to z, and put 2} = T2’. For convenience, we will use the subscript 1 to
denote quantities (including operators, hyperplanes, etc.) related to the points x;, 7
and 7. In a similar way, bars are used to denote quantities related to the points T and
71, and primes are used for quantities related to 2’ and zj. For example, we denote
by BT, B and B'* the second fundamental forms of the wave front (corresponding
to the u-manifold W) at the points x, #, and z', respectively. Similarly, ', F, and F’
denote the F' operator (4.4) taken at z, T and «’, respectively. In a similar way, Fi,
F,, and F| are the F operators taken at z1, T and 2, respectively, etc.

Note that the basic quantity, Jw 1 (z) was already calculated as J§, (z) in the previ-
ous section (formula (4.13)) where we also introduced the operator G. In view of this
formula, to prove Theorem 5.7 with n = 1, it is now enough to prove three claims:

— 1/3
Claim 1. — |IndetV —Indet V| < C- [distw (7,?)] .
Claim 2. — |IndetG — Indet G| < C - {distw(w,a_})].
' . 1/3
Claim 8. — |Indet(I + 7B ) —Indet(I + 7BT)| < C - {distTW(atl,Tl)] .

By C we denote some global constants. Indeed, the bounds in Claims 1 and 2 will
also hold at the points x; and Tj, because TW is a homogeneous u-manifold, and
Theorem 5.7 will then easily follow.

Proof of Claim 1. — Since detV = (v,n)~!, the claim is a direct consequence of
Sublemma 5.6.

Our proofs of Claims 2 and 3 use the following
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Sublemma 5.8. — Let A be an invertible linear operator in an m-dimensional space,
and AA an infinitesimal operator. Then, up to the first order of ||AA],

|Indet(A+ AA) — Indet Al = [tr(A™' - AA)| <m A7 AA|
Proof. — We have Indet(A + AA) = Indet A 4+ Indet(I + A~! - AA), and the rest is

straightforward. O
Proof of Claim 2. — 1t is enough to prove
(5.28) [Indet G' — Indet G| < C||6x||

for infinitesimally close points z, 2’ € W, then the integration from z to T will give
the bound in Claim 2.
As to the value of det G, we refer to formula (4.14). Now, by Sublemma 5.8, we
have
[Indet G’ — Indet G| < |Indet(] + F"™*F') — det(I + F*F)|
= |Indet(I + Qg 'F""F'Qq) — det(I + F*F)|
<(d-0) I+ FF)y"YQy'F"F'Qy — F*F)
(the introduction of Qg defined by (4.1) was necessary to ensure that both operators

act in the same space). It is obvious that ||(/ + F*F)~!|| < 1, and by Corollary 4.4
and Theorem 5.5 we have

Qg ' F™" F'Qy — F*F|| < C||dr]|

This proves (5.28), and so Claim 2 is proved.

Proof of Claim 3. — To shorten some formulas, we put R = I + 7B* (and, respec-
tively, define R and R’ at the points T and 2’). It will be enough to prove that

(5.29) |Indet R — Indet R| < C|(v'.n') — (v,n)| (v,n) " + C||6x|| + C [|021]
[ox)l < Cl|ox1]] by (4.11). Then
the integration of (5.29) from z to T (and, respectively, from x, to &) will give
< OB, 7) — (v,n)] (v,n)t + C [(:listTW(a:l.,Tl)}
After that Claim 3 will follow by Sublemma 5.6.

We now prove (5.29). By Sublemma 5.8 we have, to the first order in ||dz||,

Indet R — Indet R = Indet Q 'R'Q — Indet R

(5.30) =tr[R"Y7Q'B"TQ - 1B")]

for infinitesimally close points 2,2’ € W. Note that

|Indet R — Indet R

(the introduction of @ defined by (5.10) was necessary to ensure that both operators
act in the same space). Note that [|[R~!| < C' by (5.8). Next, we have, again to the
first order in ||dx

7Q7'BTQ Bt =dr Bt +r(Q7'U'BUT'\Q-UB U
(5.31) +7(Q7'0'Q - 0)
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Observe that
(5.32) [VR™Y<C and ||RT'V*<C
according to (5.3) and (5.4). Using (2.3) now yields
(5.33) IRT'BY|| < |R7Y B +2|R'VEV| < C
Now recall that |d7| < 2||d¢| + 2||0¢: || by (5.9). Hence we have, by (5.33),
[tr(dr R™'BY) | < (d = 1) [dr| |[R™ B < C(llagll + [[91 1)

so the first term in the right hand side of (5.31) is properly taken care of.
Denote AB~ = Q- 'U'B'~U'"'Q — UB~U~!. We then have, using (5.20) and
(5.22),

[tr (T R} AB7T) | < (d=1)|7| [[R_1 AB™||
< TmnanﬁlH HQ;IB,_Ql - B_“
< Cjaq]|

which takes care of the second term in (5.31).
Lastly, we use (5.17) to handle the third term in (5.31):

[tr (RTHQT'O'Q — @) | < 2|, n) — (v,n)| | tr (RT'V*KV)]|
+2|tr (RTAVFKV)| + 2| tr (RT'V*AKV)|
(5.34) +2|tr (RT'WV*KAV)]
We note that
tr (RTIAVFKV) = tr (AV*KVR™Y) = tr (R™'V*KAV)

where the first equation follows from a general formula tr(AB) =tr(BA) in linear
algebra, and the second is due to the fact that the operators AV*KVR™! and
RYW*KAV are adjoint to each other. Using this observation, we can rewrite
(5.34) as

[tr(RTHQT'O'Q—0))| < C (', ') = (v,n)| (v,n) " |RTVIEV|

+CO|AV*KVR™ Y| + C||RT'WV*AK V||

We now apply (5.32) and (5.15)-(5.16) with (5.9) and obtain

[tr (R7HQT'O'Q — )| < Ol 1) = (v, m)[ {v,n) ™" + C [|dz]

This completes the proof of (5.29) and hence Claim 3. Theorem 5.7 is now proved. O

After proving that the expansion factors vary nicely between nearby points on the
same u-manifold, we now investigate their behaviour at points of different u-manifolds
that lie on the same s-manifold. This is the absolute continuity property. Just like it
was with the distorsion bounds, it is important to consider homogeneous manifolds.
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Theorem 5.9 (Absolute continuity). — Let Wy be a small s-manifold, x,T € W, and
W, Wy, two u-manifolds crossing Wy at x and T, respectively. Assume that T* is
continuous on Wy and T'W, is a homogeneous s-manifold for each 0 < i < k. Then

[InJw, k(z) = InJyw (T)] < C

where C' is a global constant.

Proof. — For any z € W, let Jw,_ x(z) be the volume expansion factor of W, under
T* at the point 2, i.e. Jw, x(2) = |det DT* |y (2)|. By the analogue of Theorem 5.7
for homogeneous s-manifolds, we have

(5.35) [In Jw, x(z) — InJw, x(T)] < '

for a global constant C’.

Let |DT*(x)| denote the Jacobian of T* at a point = = (¢,v) € M with respect
to the Lebesgue measure dgdv on M in our local coordinates (g,v). Note that the
T-invariant measure is dv = (v,n)dqdv. Hence, |[DT*(x)| = (v,n)/(vr,ny) where
zy = (qu,vr) = T*z and ny = n(qy). Similarly, |DT*(Z)| = (T,7)/(Ty, ix), where the
notation is quite clear. Since both W and T*W, are small homogeneous s-manifolds,
Sublemma 5.6 implies that the quantity (v,n) does not vary much over ecither W,
or T*W,. In fact, ¢ < (v,n)/(T,7A) < C and ¢ < (v, ng)/ (T, 7)) < C for global
constants C' > ¢ > 0. Hence,

(5.36) 0 <c<|DT*)|/|DT*7)| < C <

for some global constants ¢ and C. Now Theorem 5.9 follows easily from (5.35), (5.36),

and Theorem 4.7. O
6. Outlook

The results of this paper can be summarized as follows. We have some bad news
(non-smooth behaviour) related to the singularity submanifolds in multi-dimensional
hyperbolic billiards. On the other hand, there are important good news related to
the u-manifolds in the multi-dimensional dispersing case. It is proved that practically
all important regularity properties (uniform hyperbolicity, alignment, curvature and
distorsion bounds) are just as valid as they are in the multi-dimensional case (cf.
Remark 4.6).

In billiard theory one is mainly interested in the ergodic and statistical properties
of the dynamical system. We emphasize that the above results are highly relevant
to these issues. As to the ergodic properties, a major breakthrough was achieved
with the proof of the Fundamental (or Local Ergodicity) Theorem ([SCh, KSSz]).
However, for some measure theoretic estimates, the original arguments in these papers
implicitly assumed uniform curvature bounds on the singularities. Thus these proofs
have to be checked. In a separate paper ([BChSzT]) we will show that — at least,

ASTERISQUE 286



GEOMETRY OF MULTI-DIMENSIONAL DISPERSING BILLIARDS 149

for billiards with algebraic scatterers — the original proofs of local ergodicity remain
valid if some suitable modifications are performed.

Much less is known about statistical properties. As to the multi-dimensional dis-
persing case, no optimal result (exponential decay of correlations) has been achieved
so far. Nevertheless, we conjecture that the rate of mixing is, indeed, exponential.
The recently developed method of Markov-returns ([Y1]) turned out to be especially
powerful in the study of decay rates for planar billiards ([Ch2, Ch3]). It is the
growth of unstable manifolds that is to be investigated for Young’s method to work.
Essentially all important features of unstable manifolds have been checked in sec-
tions 4 and 5 to control growth of LUMs, the only thing we do not know yet how to
handle is the irregular behaviour of singularities. We conjecture that, given a system-
atic geometric characterization of singularities, exponential decay of correlations for
multi-dimensional dispersing billiards could be proved.

Acknowledgements. — The authors express their sincere gratitude to Nandor Simanyi
and Andrés Sziics for illuminating discussions. Thanks are due to the referees for their
careful reading of the manuscript and for valuable remarks.
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Abstract. — We study a class of Hamiltonian systems on a 4 dimensional symplectic
manifold which have a saddle-center fixed point and satisfy the following property: All
the periodic orbits in the center manifold of the fixed point have an orbit homoclinic
to them, although the fixed point itself does not. In addition, we prove that these
systems have a chaotic behavior in the neighborhood of the energy shell of the fixed
point.

Introduction

A fixed point of a Hamiltonian system with two degrees of freedom is called a
Saddle-Center if the linearized vector field has one pair of purely imaginary eigenvalues
and one pair of non zero real eigenvalues. A saddle-center fixed point is surrounded
by a two-dimensional invariant manifold, the center manifold, filled by closed orbits.
A saddle-center fixed point has also a one-dimensional stable manifold and a one-
dimensional unstable manifold; the periodic orbits in the center manifold have two-
dimensional stable and unstable manifolds. If a point belongs to the intersection of
the stable and unstable manifold of the fixed point (resp. of one periodic orbit) then
its orbit is biasymptotic to the fixed point (resp. the periodic orbit). We call such an
orbit homoclinic.

Some consequences of the existence of an orbit homoclinic to the fixed point have
been investigated in [5], [9]. [7], [8]. [11]. [18] (specially section 7.2) and other papers.
It should be noted, however, that the existence of such a homoclinic is exceptional,
in contrast to the case of hyperbolic fixed points. Dimensional considerations show
that orbits homoclinic to the periodic motions of the center manifold are more likely

2000 Mathematics Subject Classification. — 3745, 34C37.
Key words and phrases. — Hamiltonian systems, saddle-center fixed point, homoclinic orbits, integra-
bility.
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to exist. The existence of such homoclinics has been studied in [4], [14] (see also [11],
(9], [10], [7], [12]) by perturbation methods, and in [2] by global methods. In these
papers, orbits homoclinic to periodic orbits sufficiently far away from the fixed point
are found.

In the present work, we study analytic perturbations of an integrable system with
a homoclinic loop. We prove the following interesting behavior : Given any periodic
orbit sufficiently close to the equilibrium in the center manifold, there exists an orbit
homoclinic to it, although in general there does not exist any orbit homoclinic to the
fixed point. This illustrates a question asked in [2].

In addition, topological entropy near the energy shell of the fixed point is obtained
as a consequence of the presence of these homoclinics. More precisely, we prove that
every neighborhood of the energy shell of the fixed point contains an energy shell with
chaotic behavior on it. A similar result for reversible Hamiltonian systems is claimed,
with no proof, in [14] pg 116. Other results in this direction under the hypothesis of
the system being far from integrable can be found in [9], [7], [13].

Our method is semi-global and heavily relies on the low dimension: We first use the
perturbative setting to prove the existence of quasiperiodic invariant tori confining
the system in a neighborhood of the unperturbed homoclinic loop. We then reduce
the problem to an area preservation argument on appropriate Poincaré return maps.
It would of course be very interesting to obtain similar results by global methods
and in higher dimension, in the spirit of [2], and to understand to what extent the
phenomenon described here is general.

This paper emanated from a discussion between the authors after a talk of one of
them at the international conference on dynamical systems dedicated to Jacob Palis.
The authors would like to thank the organizers of that conference, who made that
encounter possible. The first author learned a lot during his numerous conversations
with Michel Herman, and was moved a lot by his sudden death.

1. Notations and results

1.1. Let M be a four-dimensional analytic manifold, endowed with a symplectic form
Q, and let

H:MxI—R,
() — H(w, 1) = Hy(2)
be an analytic one-parameter family of Hamiltonians, where I is some interval con-
taining 0 in its interior. In all this paper, we shall assume that the Hamiltonian
system H,, has a saddle-center fixed point r,, for all 4 € I, and that H,(r,) = 0. It
is by now classical (see [15], [17], [5], [14], [7]), that the system H,, is integrable in
the neighborhood of the saddle-center r,. More precisely, there exist a neighborhood
U of 0 in R* and an analytic mapping ¢ : U x I — M such that ¢, is a symplectic
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embedding for each p, ¢,(0) =r,, and
Hp, © <Z5;1,(Q1»p17 (]27172) = h(117 [27 /’L)ﬂ

where

L =piq, Ir=(p3+d3)/2,
and the function h is analytic (one may have to reduce I'). Furthermore, one can be
reduced via a change in time-scale and a canonical transformation to the case where

01, h(0,0,p) = -1 and 9,h(0,0,u) = w(p) > 0.

The functions Iy and I» are preserved by the flow restricted to the local chart, this
flow is determined by the equations

P = =0, h(I1, Iz, 0)py P2 = =0, h(11, Iz, 1t)q2
G = Oph(ly, Lyp)q1 G2 = Oph(Iy, Iz, p)pa.

It follows that the center manifold of r, has equation I; = 0, its stable manifold has
equation I = 0, p; = 0 and its unstable manifold Io = 0, ¢q; = 0. In the following,
we will call Pg , the periodic orbit of H, at energy F, which in local coordinates is
the circle py = ¢ =0, L = F.

1.2. We shall also suppose that Hy is integrable (namely, its associated Hamiltonian
vector field has an additional real analytic first integral J such that dHy(z) and d.J(x)
are independent for almost every x) and that the vector field associated to Hy has
an orbit homoclinic to ro which connects the branch p; > 0 of the unstable manifold
to the branch ¢; > 0 of the stable manifold. Integrable systems with a saddle-center
and an orbit doubly asymptotic to it have been studied in [9], where it is explained
that there exist two different kinds of homoclinics. For comparison, let us mention
that we are here in case (A) of [9].

1.3. Theorem. — Let us consider an analytic one-parameter family H,, of Hamiltonian
systems satisfying the above hypotheses. There exists a positive number € such that
for all E € 10,¢[ and all p € | —,e[C I, there exists an orbit of H, homoclinic to
the periodic orbit Pg . In fact, there even exist infinitely many geometrically distinct
orbits homoclinic to Pg. .

1.4. Theorem. — Let us fit jp € | — e,e[. For each E € ]0,¢[, either the stable and
unstable manifolds of Pg,, coincide, or the flow of H,, on the energy shell H, = E
has positive topological entropy.

1.5. Theorem. — Let us fix a value of u satisfying the hypothesis of theorem 1.53. As-
sume in addition that the stable and unstable manifolds of the fired point r, do not
coincide. Then there exists a sequence E,, > 0 converging to 0 and such that the stable
and unstable manifolds of Pg, ,, do not coincide. It follows that, for each n, the flow
of H, restricted to the energy surface H, = E,, has positive topological entropy.
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1.6. The main result of the present paper is Theorem 1.3. It is proved in section 3.
Theorem 1.4 may be considered classical. However we include a proof in section 4
because we could not find any reference matching precisely our needs. Theorem 1.5
is a simple but, we believe, interesting consequence. It is proved in section 5. The
main notations and tools that will be used throughout the paper are introduced in
section 2

1.7. Remark. — In order to apply Theorem 1.5, one has to be able to decide whether
there exists an orbit homoclinic to the fixed point. Let us mention a result in that
direction. Under an additional hypothesis of reversibility of the family of Hamiltonian
systems H,, (see [7]) it is possible to prove that the set of values of p for which a
homoclinic orbit to the equilibrium point r, occurs is either a whole interval or it
is countable ([7], section 6). The same result may hold for the non reversible case
considered here but this is an open question.

2. Local sections and invariant curves

We analyze the orbit structure near the homoclinic loop in a rather usual way (see
(5], [9], [14],...), via Poincaré sections. More details in these papers. The existence of
invariant curves was already obtained in [8].

2.1. Let us define the two Poincaré sections given in local coordinates by
21:{(]1 :5} 22:{[)1:(3},

where 4 is a small positive number. Since d;, h = —1, the equation h(ly, 2. pu) = E
can be solved in [ for sufficiently small Io, E and p i.e. there exists an analytic
function v defined in a neighborhood of 0 in R* and such that

Iy, Ir,p)=FE < I, =v(ls, E, ).
As a consequence, for sufficiently small £ and g, the intersection X, (E, i) of ¥; with
the energy shell H,, = E is a graph over the (p2, ¢2)-plane. More precisely, the analytic
mappings o=/ : R? — R* given by
oy M(p2.q2) = 01 (pa.qo. By p) = (v(La(p2. g2). Eop) /0. 6, pa. ga).
o5 " (pay q2) = 02 (P2, qo, B 1) = (6. v(L2(p2,q2), E. 1) /6. p2. ¢2)
are symplectic charts of ¥,(E, ). In the following, we note y = (p2,q2) and take it

as coordinates of ¥, (E, p).

2.2. The intersection between the stable manifold of P, and X, as well as the
intersection between the unstable manifold and o, are the circles Ir(y) = I°(E, 1)
in coordinates, where I°(FE, 1) is the solution of the equation

h(OI(E, ). p) = E <= o(I°(E,p), E.p) = 0.
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The orbits starting in X1 (E, 1) outside of this circle hit o(FE, p) after a time

_ _ 1 ’U(]Q(y)vEHu)
Py Bon) = tLW). Bot) = 5 ) B D) 8 &2

Notice in the previous expression that v(I>(y), E, 1) is positive if and only if y lies
outside of the stable circle. The local transition map g, : 21(E,px) N {p1 > 0} —
Yo(E, i) is defined outside of the stable circle and can be computed in local coordi-

nates
lpu(y) = Uy, B.p) = R(0(L2(y), E. ) y
where R(0) is the matrix of the rotation of angle 6, and

0(1, B, p) = t(I2) O, h(v(Iz, E, 1), Iz, ).

The outer transition map gp,, : X2(F, p) — X1(F, ) is defined by following the flow
along the homoclinic loop.

2.3. The following estimate will be useful (see [7]):
0L, B, p) = —w(p)log |l = I°(E, p)| + Ap (L), To > I9(E, p)

where

I(E., ) = % + O(E?)

and where the function I — Ag ,(I>) is analytic around I°(F, i) for each E and
. To see this, just write v(Io, E, u) = (Is — I.(E, p))w(lz2, E, 1), where w is analytic
and w(l., E,pu) # 0.

2.4. The local transition maps lg , seen in coordinates as mappings of R? preserve
the circles centered at the origin. Since the unperturbed Hamiltonian Hj is assumed
to be integrable, the outer transition map go o also preserves these circles, hence this

symplectic map can be written

go.0(y) = R(¥(12(y))) v,

where v is a real map analytic in a neighborhood of 0. Let us now define the mapping
FE'AV;L =9E.u © lF),/m

we have
Foo=R(oly+00l).

In view of the estimates of 2.3, it is possible to choose positive numbers I~ < I
such that Fy o is an integrable analytic twist area preserving diffeomorphism of the
annulus A = {ys.t. I- < L(y) < I'"}. For sufficiently small E and p, Fg, is a
two-parameter analytic family of exact area preserving diffeomorphisms between A
and its image in R?. Here exact means that there exists a rotational Jordan curve C
in the annulus A with the following property : The image Fg ,(C') is also a rotational
Jordan curve in A and the area of the domain between {I, = I~} and Fg ,(C) is

SOCIETE MATHEMATIQUE DE FRANCE 2003



156 P. BERNARD, C. GROTTA RAGAZZO & P.A. SANTORO SALOMAO

equal to the area of the domain between {I; = I~} and C. A direct application of
KAM theorem now proves the following proposition.

2.5. Proposition. — There exist positive numbers ¢ and I such that, for all E € ]0,¢]
and p € | — €, €|, there exists an analytic rotational Jordan curve C(E, ) contained
in {y s.t. 1/2 < Ix(y) < I} and invariant under Fg,. Let us denote C'(E,u) =
oW (C(E ) = 95, (C(E, 1)

3. Homoclinic orbits and multiplicity

We now prove Theorem 1.3. We have to study the dynamics of the flow of H,, on
the energy surface {H, = E}, where E and p satisfy the hypotheses of Proposition
2.5. We will not mention any more the parameters £ and .

3.1. The map F' = gol has an invariant circle C'. Let S be the intersection between
the stable manifold and ¥;, and S’ be the intersection between the unstable manifold
and ¥,. Both S and S are the circle {I5(y) = I} in coordinates. The local transition
map [ is defined in the open annulus A in ¥, enclosed between S and C, and takes
values in the annulus A’ of ¥ enclosed between S’ and C’. The outer transition map
g is defined and analytic in D’, the open disk enclosed in C’, and takes values in D,
the open disk enclosed in C. We call B the closed disk bounded by S and B’ the
closed disk bounded by S’. Both [ and g preserve area (see figure 1).

E] Z2

[ A— A

Y/
/_\_ (/

A

A -

g: D' — D

FiGureg 1. The mappings

3.2. The existence of a homoclinic is a consequence of the facts recalled above, as
we shall see now. If g(S’) intersects S, then these intersection points are homoclinic
points, since S is contained in the stable manifold on one hand, and S’, hence g(5’),
are contained in the unstable manifold on the other hand. We call such intersections
I-bump homoclinic points. If g(S’) does not intersect S, then g(B’) (¢~ '(B)) is
contained in A (A’) since it can’t be contained in B (B’), by area preservation. It
follows that there exists a neighborhood U of B’ such that F o g is well defined in U.
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3.3. Lemma. — Suppose that for each n < N — 2 the map F™ o g is well defined in a
neighborhood of B' and satisfies F"og(S')NS = @. Then Fiog(B')NFiog(B') = 2,
forall0 <1< j < N -2,

Proof. — The hypothesis F" o g(S') NS = & and the area preservation property of
F and g imply that F" o g(B') N B = @ for all n < N — 2. We also have that
Frog(B'YNg(B') = @ forall 1 < n < N — 2. To prove this, we observe that the
image Im(F) of the map F is g(Im(l)) = g(A’). Since A’ is disjoint from B’, the
image of F' is disjoint from g(B’). Let us now take 0 < ¢ < j < N — 2, we have
Fiog(B"YNFiog(B')=F'(g9(B)NFI~"og(B)) =F(2)=a. O

3.4. Proposition. — There exists an integer N > 1 satisfying the hypotheses of Lemma
3.3 and such that

FN=log(8hNS # @.
The intersection points seen as points of ¥y, are homoclinic points, we call them N-
bump homoclinic points. We have the following alternative: Either FN~=10g(S") = S
and there are infinitely many N-bumps homoclinics, or FN=1 0 g(S") ¢ S and there
are infinitely many 2N -bumps homoclinics.

Proof. — Since the annulus A has bounded area, and since all the domains F™ o g(B’)
have the same positive area, only finitely many of them can be disjoint, hence the
existence of N. It is quite clear that there exist infinitely many N-bumps homoclinic
orbits in the case where FN¥~10¢(S’) = S. We shall now see that there exist infinitely
many 2/N-bumps homoclinic points in the second case, i.e. if

FN=Tog(8') # 8.

3.5. Definition (see [1]). — Let A be a compact topological disk in R2. We say that a
continuous curve 6 C R? — A has the obstruction property with respect to A if any
continuous curve v containing a point in A and a point outside A intersects the curve
6. It follows that any such curve v must intersect ¢ infinitely many times.

Let us note G = FV~1 o g. In view of the estimates 2.3, and since G(S’) is not

contained in B, the curve
§=1(G(S)N A)

has the obstruction property with respect to B’. It follows that the curve G(d N
dom(G)) has the obstruction property with respect to G(B’), where dom(G) is the
domain of definition of G. We have supposed that G(S’) intersects S (and thus B),
and that G(S’) is not S, hence is not contained in B, by area preservation. It follows
from the obstruction property that G(d) has to intersect S infinitely many times. We
have proved that the set G olo G(S") = F?N~1 0 ¢(S’) has infinitely many points of
intersection with S. These points clearly represent geometrically distinct 2/N-bumps
homoclinics. (|
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4. Bernoulli shift

In order to prove Theorem 1.4, we are now going to build a Bernoulli shift. Our
construction is quite similar to the one described in [16], chapter III, for the Sitnikov
map. However, we only look for a semiconjugacy, instead of a conjugacy in [16]. This
avoids many calculations and allows weaker hypotheses.

4.1. We use the notations of 3.1. The mapping G = FN~1 o0 g is defined in a
neighborhood of B’. We suppose that G(S’) and S are neither disjoint nor equal
t.e. that there exists an N-bump homoclinic to the periodic orbit under interest, but
that its stable and unstable manifolds do not coincide. The local transition map [ is
defined outside of B and satisfies the estimate of 2.3.

4.2. Under the hypotheses recalled in 4.1, the mapping F¥ = G ol has the Bernoulli
shift as a topological factor. As a consequence, the mapping F has positive topological
entropy, and there exist infinitely many k£N-bump homoclinic orbits for all k£ > 2.

In order to be more explicit, let us consider the set N = N U {0}, endowed with
the following topology : A subset U C N is open if and only if either it does not
contain oo, or it contains the subset {n € N, s.t. n > N} for some N > 1. This is
the classical compactification of N. Let us consider the set A of the sequences s € N
of the form

e 00,00, 8 gy e e 3 80y e e ey Sy, 00, 00, . . .

with co > m > —1, 00 > n > 0, and s; < oo for all —m < ¢ < n. It has to be

understood that m = —1 and n = 0 in the above expression stand for the sequence
- =Z ..
.e.,00,00,.... The set A is a compact subset of N~ containing
A=NZ

In addition, A is dense in A, which justifies the notations. The map A : A — A is
defined by A(s); = s;_1. Note that the continuous extension X of A to N” does not
preserve A.

We shall prove that there exist a compact set X C A, an invariant set X contained
in X and dense in it, and a surjective continuous mapping 7 : X — A satisfying
7(X) = A and such that the diagram

XF—N>X

Tl lf
A —2 A

commutes, where T is the restriction of 7 to X. In addition, the points of 7~ !(s) are
kN-bump homoclinic points when s is a sequence

ey 00,00, 8 s e ety 80y .- Spy 00,00, . ..
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withoo >m > 0,00 >n >0,k =m+n+2and s; < oo for all =m < i < n. To finish
this description, the preimage 7 !(...,00,00,...) consists of N-bump homoclinic
points.

4.3. In order to prove the statements of 4.2, we shall introduce the notion of vertical
and horizontal strips, following [16] for the main lines. However, as we already men-
tioned, we work under weaker hypotheses, and we will need more topological notions,
in the spirit of works of Conley, Easton and McGehee, see for example [6]. See also
[3] for related work. Let us consider the square @ as drawn in figure 2, where Vj is
the right edge, Uy is the lower edge, V., and U are the left and upper edges, and P
is the vertex Vo, NUs. We shall also note @ any domain of the plane homeomorphic

Joo
P L

Uo

FIGURE 2. The square

to this square, and define the following distinguished subsets:

Definition. — A vertical strip is a compact subset V of @ such that V U Uy U Uy is
connected. A horizontal strip is a compact subset U of @) such that U U Vy U V, is
connected.

Lemma. — If V; is a decreasing sequence of vertical strips, the intersection N;V; is a
vertical strip. The same holds for horizontal strips. A wvertical strip and a horizontal
strip have non empty intersection.

Proposition. — There exists a square Q in ¥y such that Us, C G(S"), Voo C S (hence
PcG(S')NS) and int(Q) N (G(B')U B) = &, where int(Q) is the interior of Q. In
this square Q, there exists a sequence U;, i € N of disjoint horizontal strips, and a
sequence V;, 1 € N of disjoint vertical strips such that

FN(V;) = U;.
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The strip U;41 ts above U; in Q and U; is converging to Uy, for the Hausdorff metric.
Seemingly, the strips V; are ordered from the right to the left and converge to V. In
addition, we have the following property:

If V is a vertical strip, then each of the sets F~N(V)NV; contains a vertical strip.
If U is a horizontal strip, then each FN(U) N U; contains a horizontal strip.

4.4. The structure described in 4.3 implies the existence of a Bernoulli shift as defined
in 4.2. We shall prove this fact now, and delay the proof of Proposition 4.3 up to 4.5.
We closely follow the presentation of [16], which may be consulted for more details.
Let us consider a sequence s; € A, and define the sets

J
‘/sob'—l'”s—n = ﬂ F_iN(Vg_"%

i=0
where j = n if s_,, < 0o, and j = min{k < n, s.t. s_; = oo} otherwise. These sets
are vertical strips, as can be proved by induction using Proposition 4.3 and noticing
that

Vigsrosn = Vigs_ros_; = Ve NE TN (Vo_s ).

In the same way, we define the horizontal strips
i
US1~~~ST.v = n FW’N(Us,)v
i=1

where j = n if s, < 00, and j = min{k < n, s.t. s = oo} otherwise. It follows from
Lemma 4.3 that
o<
V(s) = [ Veossn

n=0

is a vertical strip, and that

U(s) = ﬂ Usl,“s,,,y

n=1
is a horizontal strip. The set V(s) N U(s) is thus a non empty compact set. If s € A,
we have
V(s)NU(s)={pe@st. F-'N(p)eV,}.
We can now define the invariant set
X =|J V(s)nU(s),
sEA
the compact set
X = U V(s)NU(s)
sel
and the mapping 7 which, to each point of V' (s)NU(s), associates the sequence s € A.
This mapping is well defined since the sets V(s)NU(s) and V(s')NU(s’) are obviously
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disjoint for different sequences s and s’. It is straightforward with these definitions
to check the statements of 4.2.

22 Z1

G(S")

) )@

G=1(S)
FI1GURE 3. Construction of @

4.5. In order to prove Proposition 4.3, we shall first build the square Q. Let us
choose a point P of G(S")NS. There are two cases.

i. The curves G(S’) and S are outer tangent, i.e. G(B')N B C S and we can take
any point P € G(S')N S.

it. The curves G(S’) and S are crossing each other. In this case, we choose P such
that the curves G(S’) and S locally cross each other at P.

In both cases, P is isolated in G(S’) NS since both curves are analytic. Let us
consider the action-angle coordinates (I3, 6) on Y5, defined by the relations

po = \/2I2c080, qo = +/2[>siné.
There exists a positive integer a, a positive real number é and an analytic function
h: (I, I.4+6] — R such that the curve (I, h((Io—I.)'/®)), I € [I., I.+0] is contained
in G"l(S) N A. Recall that the circle S’ has the equation I, = I.. In the case where
P is a point of transversal intersection, we can take a = 1. It is possible to choose P,
0 and A in such a way that the open set
{I.< Iy < L.+ 6,h((Io — 1)V*) < 0 < h((Iy — I.)"/") + &}
is disjoint from G~1(S). We then set
Q=G({L. <L <I.+6h(Ir—I)"") <0< h((Iy 1)) + 6}).

We orient the curves S, S, G(S’) and G~1(S) positively, and give Uy and U, the
induced orientation. In order to prove that Proposition 4.3 holds with this square @,
it is enough to prove the following proposition.
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Proposition. — Any sufficiently small neighborhood of Uy, in Q contains a horizontal
strip U which is the image by FN of a vertical strip V of Q, and satisfies the following
property : If V is a vertical strip of Q, then F‘N(f/ﬂU) C V contains a vertical strip
of Q, and z'f[7 s a horizontal strip of Q, then FN(I? NV) C U contains a horizontal
strip.

Proof. — We need a Lemma.

Lemma. — Let ¢ : [0,1] — A, be an analytic curve such that ¢(]0,1]) C A and
c(0) € S. Then for € small enough, the curve FN oc :]0,e] — A is an analytic
spiral that accumulates on G(S") and that crosses Q infinitely many times. More-
over, every connected component of FN o ¢(]0,¢]) N Q crosses Q from Vi to Vi (the
orientation of FN o c is that defined by the parameterization,).

To prove this lemma we first write F¥ oc as G oloc. Then using estimate 2.3 and
recalling that [ is explicitly given by (see 2.2)

lpu(y) = Uy, B, p) = R(0(12(y), B, 1)) y
we conclude that [ o ¢ is an infinite spiral turning monotonically around S and accu-
mulating on S. In addition, easy explicit estimates show that, when ¢ is small enough,
each connected component of [(c(]0,¢])) N G~1(Q) is crossing G™H(Q) from G~1(V})
to G71(V). The lemma follows from the fact that G is a local diffeomorphism in a
neighborhood of P (see figure 4).

B B (L, G(S)
G~Y(B) y ~Gol(c)=F"(c)

S’ S
FIGURE 4. Spirals

This lemma implies that the set FV(Q) N @ has infinitely many connected compo-
nents which are horizontal strips accumulating on U,,. Each of these strips is bounded
by two horizontal arcs, a lower and an upper one, which are contained in F¥(Us,)
and FN(Uy), respectively, and two small sub-arcs of Vj and V... Let U be one of
these horizontal strips, sufficiently close to U,.. Using that: F~N(U) is connected,
FNU)NUyx # @ and F-N(U) N Uy # @, we conclude that F~N(U) = V is a
vertical strip. In addition, we see that the vertical strip V is a topological square
bounded on one side by a connected component of £~ (V) N @ crossing @, and on
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the other side by a connected component of F~"(V,,)N Q. To finish the proof of the
proposition we need another lemma

Lemma. — Let us consider a compact curve v in Q connecting Uy and Us,. There
exist connected components of ¥ NU intersecting both FN(Up) and FN (Us).

Proof. — To prove this fact, let us orient v from U to Up, and consider the last
point of intersection of v with FY(Uy) N U. Just after this last intersection, 7 lies
inside U, hence has to leave U through F~(Us). This proves the lemma. O

Let V be a vertical strip. It intersects U, by lemma 4.3. We are going to prove
that F~N(V NU) is a vertical strip. Assume that this is not true. In this case, the
compact set VU is disconnected, and is the union of two disjoint compact sets K,
and Ko, where K is the union of the connected components of V NU which intersect
EFN(Uy), and K3 the union of those which intersect FV (U ). We can find two disjoint
open sets of @, ©Q; and s, containing respectively K; and K. In addition, since
FN(Uy) NU and FN(Uy) NU are compact, we can choose €; and o such that
0, does not intersect FN (U, ) N U and € does not intersect £V (Uy) NU. The sets
U—(2;UQ) and V are compact and disjoint. It follows that one can find a connected
open neighborhood Q of V such that QN U C Q1 U Q. The open set ) contains a
curve v connecting Uy and U,.. Each connected component of v N U is contained
either in Q; or in €3, which is in contradiction with the conclusion of the lemma.
The intersection between V and horizontal strips can be studied exactly in the same
way. O

5. Chaos near the energy shell of the fixed point

5.1. In this section, we fix a value of the parameter p and work with a fixed Hamil-
tonian H. We suppose that the conditions of existence of invariant curves (see Propo-
sition 2.5) is satisfied, hence there exists a critical energy n > 0 such that, for all
E €]0,7n], there exists a homoclinic orbit to the periodic orbit Pg of energy E con-
tained in the center manifold. We also suppose that the stable and unstable manifolds
of the fixed point do not coincide.

5.2. Theorem. — Under the hypotheses recalled above, there exists a sequence E,, — 0
of positive numbers such that, for each n, the stable manifold of Pg, and its unstable
manifold do not coincide.

5.3. In order to prove this theorem, let us define the function N(F) which, to each
value of energy E € ]0,7[, associates the minimal number of bumps of an orbit
homoclinic to Pg

N(E) = min{n € Ns.t. Fp ' ogp(Sy) N Sk # 9},

which is finite in view of Theorem 1.3. See 3.1 for the definition of Sg.
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Lemma. — The function |0,n] > E —— N(E) is lower semi-continuous and con-

tinuous at each point Eog such that F gl(E”)_l

limp_.o N(E) = 0.

© 9r,(SE,) = Sg,. In addition,

This lemma implies the desired result. Assume by contradiction that the stable
and unstable manifolds of Pg coincide for all energies E in an interval ]0,e[. By
the lemma the function N would be continuous, hence constant on this interval, and
N would have a finite limit in 0, which is in contradiction with the last part of the
lemma. There remains to prove the lemma:

Proof of the lemma. — Let us fix a value Ey of the energy, and consider a sequence
E, — Eq such that N(E,) = N is constant. We have

Fy~'ogp, (Sp,) NSk, # 2.
for each n. This clearly implies that
Fg,_l OgEu(‘S}E(,) N SEO 7é g.

hence N(Ey) < N. This proves lower semi-continuity of N. If the stable and unstable
manifolds of P, coincide, there holds
N(Eo)—1 . .
FEO( o) OgE()(b;J“) = *SE()'
It is then clear, by area preservation, that
FNEI=Y 6 0(S1) N Sp # @

for E sufficiently close to Ey, hence N(E) < N(Ep). As a consequence, Ey is a point
of upper semi-continuity of N, hence a point of continuity. To end the proof, we note
that if there existed a sequence F,, — 0 with N(E,) bounded, there would exist a
homoclinic orbit to the fixed point. This can be checked by a compactness argument
similar to the proof of lower semi-continuity above. O
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ON THE SCALING STRUCTURE FOR PERIOD DOUBLING
by

Garrett Birkhoff, Marco Martens & Charles Tresser

Abstract. — We describe an order on the set of scaling ratios of the generic uni-
versal smooth period doubling Cantor set and prove that this set of ratios forms
itself a Cantor set, a Conjecture formulated by Coullet and Tresser in 1977. This
result establishes explicitly the geometrical complexity of the universal period dou-
bling Cantor set. We also show a convergence result for the two period doubling
renormalization operators, acting on the codimension one space of period doubling
maps. In particular they form an iterated function system whose limit set contains a
Cantor set.

1. Definitions and Statement of the Results

A unimodal map with critical ezponent o > 1 is an interval map that can be written
in the form f = yoq,0¢, where 1» and ¢ are orientation preserving C* diffeomorphisms
of [0, 1], and ¢, : [0, 1] — [0, 1] with ¢ € (0, 3] is the standard folding map (with critical
exponent « > 1) defined by
FE
L=t
that “folds” the interval at its unique critical point ¢, ¢;(t) = 1 and ¢?(t) = 0.

The space of orientation preserving diffeomorphisms of the interval [0, 1] with fixed

qi(r) =1—

N

smoothness is denoted by Diff* ([0, 1]). The space of unimodal maps with fixed critical
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exponent o > 1 and fixed smoothness can be represented by
U = Diff*([0,1]) x (0, 3] x Dift*([0.1]).

It carries what we call C*-distances dj,, k > 3, which combines the two C* distances
on each of the two diffeomorphisms i) and ¢ with the distance between the parameters
t of the folding parts. Notice that in general, the critical point of f is ¢y = ¢~ 1(t) # t.
Let py be the unique fixed point of f € U. A map on the interval is renormalizable
if it exchanges some number N; of subintervals. The return map on one of these
subintervals can again be renormalizable, exchanging this time N, intervals. If the
process continues forever, one says the map is infinitely renormalizable. For precise
definitions and an account of the theory, see for instance [dMvS]. Except otherwise
specified when we say renormalizable, we mean renormalizable in the sense of period
doubling, i.e., the map exchanges two intervals. We will only consider infinitely
renormalizable maps with Ny = Ny = -+« = 2.

Fix a critical exponent o > 1. We consider the set W of maps f : [0,1] — [0,1]
with f(cg) =1 and f(1) = 0 which are infinitely renormalizable. The critical point
defines two invariant intervals

U = [f2(ep), fHep)] and Vi = [f(er), fleg)).
To these two intervals correspond two renormalization operators Ry : W — W and
Ry : W — W defined by:

Rof =[f*IVy], and Rif =[f?|Uy].

where [-] means affine rescaling to obtain a unimodal map on [0,1] that sends its
critical point to 1 and 1 to 0.

Observe, both operators preserve W and R, is the critical point period doubling
renormalization operator which has been most studied in the literature (see in par-
ticular [La], [Ly], [Mc], [dMvS], [S2], and references therein for the case when « is
an even integer, and [E1], [E2] and [Ma2] for arbitrary o > 1).

Let T;, be the set of all words of length n over the alphabet {0,1}. We denote by T’
the set of all infinite words of the form w1> over the alphabet {0,1}, and by T the set
of all infinite words over the alphabet {0, 1}, equipped with the usual metric. Notice
that each T, naturally embeds into T'. For any word 7 € T, we will write T(ny € T,
for the initial segment of length n of 7. We are going to consider the iterated function

system generated by Ry and R;. To this end, we define:
Ry, = BrgyoroRegyy : W — W,

and we will prove the following convergence result for this iterated function system.

Theorem 1.1. — For any fized point fo of Ry, there is a Hdélder-continuous map h :
T — W such that for any 7 € T

'nl—l—l»ralc RT{”}f() = h(T)

ASTERISQUE 286



ON THE SCALING STRUCTURE FOR PERIOD DOUBLING 169

Moreover, the convergence of the sequence {RT{ n} fo} is exponential in the C*-metric.
A similar statement holds for any fized point f1 of Ry.

Remark 1.2. — For any o > 1, the existence of a fixed point f; of R; is proven in
[E1, E2] and [Ma2]. We will show (see Lemma 2.4) that the existence of a fixed point
f1 for Ry is equivalent to the existence of a fixed point fy for Ry. The uniqueness of
f1 in the case when « is an even integer was proven in [S2]. In the sequel we will fix
fo and f; to be fixed points of respectively Ry and R;.

Remark 1.3. — The set h(T) of limits lim, R:(,, fo is denoted by A C W. Here
the notation A represents the fact that we believe, but do not prove, that the set A
is indeed the attractor of the iterated function system generated by Ry and R;, and
in particular does not depend on the initial point, chosen here to be fy.

The second Main result, Theorem 1.10, describes the structure of the set A in the
case when o = 2. It relies on convexity properties of fy and Ry (fo).

Convexity Conditions 1.4. — We assume that:
C1  foll(fo)*(cyy)s 1) is strictly conver,
C2  Ri(fo)ll(Ri(f0))*(cry(s0)), 1] is strictly convex.

Remark 1.5. — In section 4 we will show that C1 actually holds true in the case when
successive R renormalizations of a convex function converge to fi: this is known to
be the case when « is an even integer. Furthermore, as we will explain, one can check
that both C1 and C2 hold true in the most important case of generic (quadratic)
critical points, a = 2.

Recall that a Cantor set is a perfect and totally disconnected compact metric space.

Proposition 1.6. — If the Convexity Conditions C1 and C2 hold true, then the limit
set A of orbits of fo under the interated function system defined by Ry and Ry is a
Cantor set.

For completeness and to fix notations and definitions, we include some basic dis-
cussion of the scaling function, whose origin is rather diffuse: first conjectures about a
form of it appeared in [CT], the name and a form of it come from [F], while what was
arguably the first theorem about it was in a never circulated work by Feigenbaum and
Sullivan cited in [S1]. The literature on scaling functions is extensive and discusses
scaling functions beyond the context of dynamics. In particular, in [KSV] a relation
with the thermodynamic formalism appeared.

Let A be the invariant Cantor set of fy. In the sequel we will remind the dynamical
construction of covers of A by finitely many intervals. These covers, called cycles,
form a refining nest of covers of this Cantor set. The scaling function contains the
infinitesimal geometrical information on how these covers refine. It will be shown that
the Cantor set A is, from a geometrical point of view, very different from the well
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known middle third Cantor set, in which each refinement is done everywhere in the
same manner.

Although, the Cantor set A is the invariant set of a non expanding map, it is also the
invariant Cantor set of an expanding interval map, the so-called presentation function
[R], [S1], a great remark that Rand attributes to Misiurewicz. As we next recall, this
directly follows from fy being a renormalization fixed point that is expanding to the
right of py,.

Let U = Uy, and V = Vj, = [1 — v, 1]. The affine (scaling) map s : [0,1] — [0,1]
defined by s : @ — v - (z — 1) + 1 is a homeomorphism from A to AN V. This is a
direct consequence of the fact that s conjugates fo = Ro(fo) = s~ 1o fZosto f¢. Also
the restriction,

f()lVﬁAﬂV—>AﬂU,

is a homeomorphism so that the map ¢ : [0,1] — U defined by g = (fo|V) o s is a
homeomorphism from A to ANU. Let F :[0,1] — [0, 1] be the multivalued function
defined by the two branches

Fy=5:[0,1] — [0,1] and F, =g¢:][0,1] — [0,1].

The branch Fy = s is affine, contracting, and orientation preserving while the branch
F} = g is orientation reversing. Furthermore, the absolute value of the derivative of
Iy strictly increases as a consequence of the Convexity Condition C1, so that F; is
also contracting (as py, is an expanding fixed point). It follows that the invariant set
of the iterated function system F = {Fy, Fy} is A, the invariant Cantor set of fo.

The cover {U, V'} of A is called the cycle of the first generation. The two intervals
of this cycle are permuted by the map fy. The Cantor set A is the intersection of a
decreasing sequence of covers we call respectively the cycles of generation n: the cycle
of generation n is the cover of A consisting of 2" intervals which are permuted by fg.

th

The intervals that form the n*” cycle can be described as follows.

The construction of the cycles is made by using the iterated function system gen-
erated by Fy and F}. We will use a notation for the words describing sequences of
compositions of these maps that will be different from the one we used in the defini-
tion of the iterated function system generated by Ry and R;. Namely, we write ¥,
for the set of words w = w(1)w(2)...w(n) of length |w| = n over the alphabet {0, 1},
and ¥ for the set of infinite sequences over the alphabet {0, 1} with the usual metric.
Let

I, = w(n) @0 Fw(l)([ov 1])

The n'” cycle consists of the intervals I,, with w a word of length n.

Lemma 1.7. — The way fo permutes these intervals is described by addition mod 2"
on the words indexing the intervals. In particular, if ¢ is the critical point of fo then
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c € In and fo(c) € Ign. Moreover, f(Iin) = Ipn and
fO : Im — ]’m+17

is a diffeomorphism for each word not equal to 1™, n > 1.

Proof. — Let w be a word of length n — 1. Then
Iml = FI (]’(U) = f() o S(LU) = f()(]’ur())a

which proves that fy permutes the intervals as stated. O

The orientation of an interval I,, is defined to be the number
o(w) = (—1)#),

where #(w) is the number of 1’s in w. The shift of a word w = w(1)w(2) ... w(n) is
defined as
o(w) = w(2)w(3d)...wn).
Observe, that
Ly C Iy(w)-

th

In particular, the n’* cycle has two intervals in each interval of the (n — 1) cycle:
I y

I()’II.M Ilw C [w-
The scaling function g, : w+— (0, 1) assigns to each word w of length n the ratio

_ |I/ml
|I(T(’U)) |

The a priori bounds on the possible values of g,, as presented in [Mal] for example

qn(w)

imply
'Iw| < p,w'

for some fixed p < 1. From this and the smoothness of fj it follows that the sequence
¢n converges to a Holder function ¢ : ¥ = {0,1}N — (0,1). This function ¢ is what
we call the scaling function, in minor departure from some previous authors.

The next proposition describes properties of the scaling function. To formulate this
proposition we need an order on ¥: with w standing for the maximal word such that
wy = ww' and wy = ww?, we say that w; is strictly smaller than wy (or wy < ws)if
and only if

(Dl (1) < ()P ()

Proposition 1.8. — If the Convexity Conditions hold true then q is strictly monotone.
Furthermore, under the same hypothesis, there exists constants C > 0 and r < 1
such that if wy < wo and wy (k) = wa(k) whenever k < n then

q(wz) = g(wy) + Cr"
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Remark 1.9. — 1If the Convexity Conditions C1 and C2 hold true, Proposition 1.8
confirms the 1977 Conjecture in [CT] that the limit set of the ratios ¢, (w) defining
the period doubling Cantor set is itself a Cantor set.

In particular, we thus have the following

Theorem 1.10. — In the case of quadratic critical point, o« = 2, we have the following.

— The Convexity Conditions holds true.

— The universal period doubling scaling function q is strictly monotone and the
range forms a Cantor set.

— The limit set A of orbits of fo under the interated function system defined by Ry
and Ry is a Cantor set.

This Theorem establishes explicitly the geometrical complexity of the universal
period doubling Cantor set: for related matters, see [GT] and [T].
Acknowledgements. — H. Epstein and O.E. Lanford discovered a relation between the
fixed points of Ry and R;. Roughly speaking this relation states that if f(z) = h(z?)
represents the fixed point of Ry then g(z) = (h(z))? represents the fixed point of Rj.
This result was not published. However, it was the main inspiration for Section 2. In
particular, Lemma 2.4 contains this result.

2. Decompositions and Convergence

The notion of decomposition, introduced in [Ma2], is a tool to describe the com-
binatorial aspects of universality. In this section, after some background on decom-
positions, we prove the convergence properties stated in Theorem 1.1.

The set T;, is ordered by the embedding into the natural numbers defined by
T(D)7(2)...7(n) — Z 7(5) - 271
i=1

Consider also the embedding j, : T),, — T}, 41 defined by
Jn T Tl
This embedding preserves the order. Observe that T inherites an order from the orders

on the sets T}, which extends to the order on T such that 7+ < 72 iff iy <70,y for

all n > 1. The elements of T are called decomposition times.
For the order <, the successor in T,, of 1™ € T,, is 0" € T,, and the predecessor
in T,, of 0" € T, is 1*. The successor of 7 € T in T}, is denoted by 7" and the

predecessor is denoted by 7.
The nonlinearity of an orientation preserving diffeomorphism ¢ € Diff?([0, 1]) is

ns = DIn D¢ € C°([0,1]).
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A decomposed unimodal map is a map
f:T — Diff*([0,1]) U (0, 3]
with the following properties

- f(l“), the folding part of f represents an element ¢; of the standard folding
family, so we have f(1°) =t € (0, 1],

f(7) € Diff*([0, 1]) for T # 1°°, (the diffeomorphic parts of f).
ETET\{I“‘\} |7].IT(T)|() < 0.
ZTET\{ 10c} 'D7)f(r) '0 < 00.

The set U of decomposed unimodal maps carries the metric d defined by

df,9) = D Wi —mamh + 1F1)=ga>)].
TET~{1>°}

The two summability conditions for decomposed unimodal maps allow to define
what we call compositions associated to decomposed unimodal maps. Namely, if one
considers a finite set T,, of decomposition times, the composition associated to f and
T, is defined as

O(F.n) = F(1"710) 00 F(0" 1) 0 f(0") 0 g5y
otherwise speaking, the folding part followed by the diffeomorphic parts in the order
of the decomposition times (so that the end result of the composition is a unimodal

map). In [Ma2] it is shown that this composition, when defined for decomposed
unimodal maps over the sets T;,, extends to a composition operator still denoted O:

O:U—U,

where U is equipped with the C? metric, which is a Lipschitz map. This composition
operator is based on a choice. Namely, the composition starts with the folding part
Af1my- We could as well start at any decomposition time 7 € T, N > 1 and consider
for each n > N the compositions defined by

O(r. fon) = J(r" ") o0 f(0" 1) 0 f(0") 0 gj(yuy 0 f(1"710) 0w 0 f(7"F) o f(7),

The same proof which was used in [Ma2] to construct O(f) shows the pointwise
convergence of the sequence O(r, f~ ,n) as n — oo, thus defining a map denoted O
again:
O:TxU—U.
Observe that O(1>, f) is the operator studied in [Maz2].
This construction can be generalized even more. Fix fe U and choose 75 > 71 in
Tn. For each n > N define the diffeomorphism

02 (fin) = f(ry ") o-—o f(r" ) o f(r) oo f(ri*) o f(m).

It follows from [Ma2] that these maps converge, and we set

O (f) = lim OZ(f.n).
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Moreover, there is a constant K i such that

07(f) —idh <K; - > |nplo

{T€T|To>T271}
Lemma 2.1. — The operator O extends continuously to an operator
O:TxU—U.

In particular, for each fe U there exists a constant K P> 0 such that for any pair

79,1 € T with 19 > T,

d>(O(2, ), O(11. f)) < K - > 75 (r)lo-

{r€T|2>7271}
Moreover for each 75 > 10 > 1 € T and _}TE U
O3 (f) = O7:(f) 0 OF:(]).

Proof. — Fix f € U and choose 75 > 71 in Tn. Let h = ():f()?) The construction of
h implies directly

hoO(r1, J) = Oy, ) o h.

This construction can be done for every pair of 71,7} € [r2, 1] N T. Hence, there is a
constant which only depends on f such that

d2(O(75, ), 0(71, f)) < Const - Z M7z lo-

{reT|r2>1271}

From this we get the continuous extension of O to T x U, together with the estimate
stated in the Lemma. The composition rule clearly holds for the operators O72(f,n)
and hence for the continuous extension of O. O

We will also write O (+) for O(7,-). Let Uy be the set of renormalizable unimodal
maps and Uy = (O1= )" (Uy). A renormalization operator R : Uy — U is constructed
in [Ma2] such that

()po oR=R, Oolw.

A decomposed unimodal map f € Uy is said to be n times renormalizable iff f =

O(f) € U is n times renormalizable: we then set f = ¢ o ¢, with ¢t € (0,1]. This
means there are pairwise disjoint intervals I/, 7 € T,,, forming the n'" cycle of f,
such that

te I,

— frfn = If'ﬂ, is a diffeomorpishm, whenever 7 # 1",

- I({,‘,'"' is onto.

Let g : I — J be an endormorphism which has either one or zero critical point.
Then [g] : [0,1] — [0,1] is a either a unimodal map or an orientation preserving

diffeomorphism obtained by affine scaling of the domain and image of g.
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Lemma 2.2. — Let f € U be n times renormalizable and ()(f) =f=d¢oq €Uy with
t € (0, 3 ] Forn>land7€T,CT
- O (R f) = (1L,
_ OT"+U°C(RTI ) [(ItUj n]
n+4 )
07 e (R 1) = [olas (1)

The reader is refered to [Ma2] for the precise definition of the renormalization
operator R : Uy — U, from which the Lemma immediately follows. This lemma
indeed captures all the properties of the renormalization operator R that we will
need.

Proposition 2.3. — For every r €T, CT
OroR"=R,;,001=, and Oy o R" = R; 0 Opy.

Proof. — Let f € U be n > 1 times renormalizable and

O(f) :Ol*(f):f:(bofh €Uy

with t € (0, %] As in the proof of Lemma 3.1 shows that for every n > 1 and

Tel,CT

Re(f) = [ 11L7).
Let m =7, 1 = TA”“L for k = 2,3,...,2". The composition rule for the operators
O7? and Lemma 2.2 imply

= [FI oo [FITS T o [F11L]
SHVANERY

= R, (f)

= R, 0 O1~(f).

0, o R"(f) ()‘rl (Rnf) 0.0 OT:a(Rn,f) ° OT]Z (Rirf)

The second equation is proved similarly. O

Lemma 2.4. — The operators Ry and Ry have fized points. Furthermore, for any even
integer «, both operators Ry and Ry have a unique fixed point.

Proof. — It was shown in [Ma2] that the operator R has a fixed point. The previous
proposition implies that a fixed point f € Uy of R produces fixed points of Ry and
R;. Namely,

Ri(O1<(f)) = O1<(f) and  Ro(Og=(f)) = Oo=(f).

Claim 2.5. — For each fixed point f € U of Ry (or Ro) there exists a unique fized
point of R, say f € U such that O1=(f ) f (or O()')c(f) =f).
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Proof. — Let f = ¢ oq € U be a fixed point of R; (the case of a fixed point for Ry
can be treated the similarly). Choose f € U such that

O1=(f) = .
For example, consider fE U defined by
- :(100) =qt,
- J01<) =,

— f(r) =id for 7 # 1°°,01*.
The definition of fand the fact that O1~ o R = Ry 0 Oy, implies

O1=(R"f)=f,n>1.
We will show

lim R"f = f €U,

n—0o0

with
Rf = f and O1~(f) = f.

Let n > 1 and 73 > 7 > 71 € Ty 41 three consecutive decomposition times in T4
with 73,7 € T,,. Observe, that 73 and 71 are consecutive points in 7;,. From Lemma
2.2 we get,
, +1 3¢ P4l 7 +1 7
07 (R™!f) = O (R™' ) 0 072 (R™1 )

= [ o (1]
= (2

T1

= [,

where we used that f is a fixed point of R;. Again from Lemma 2.2 we get [f |Ifl"’"] =

O (R" f). Hence,
O7 (R ]) = O (R"]).

This should be interpreted as R"“f being a refinement of R"’f. In [AMM] it has
been shown that there is a constant K > 0 and p < 1 such that

> ORER™) ~id)l <K - p"
T1€T,

This implies that lim,,_ R"’f = f € U. In particular, this implies that f is a fixed

point of R which projects by Oy~ to f. This concludes the existence part of the
Claim.
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We can use Lemma 2.2 to identify f(T), T € Ty. Namely,

f(r) lim R"f(7)

n-—oc

= lim OI""O7(R"f)

n—0o

Il

= lim [g|I]"]
n—0o0

[a:| 1),
where we used that f is a fixed point of R; to obtain the last equality. This implies
the uniqueness part of the Claim. O

It has been shown in [S2] that the operator R; has a unique fixed point when
« is an even integer. Now the uniqueness part of Lemma 2.4 follows by using the
Claim. 0

Proof of Theorem 1.1. — Let fo be a fixed point of Ry and fv() € U the unique fixed
of R with Ope (fo) = fo. Let h: T — W be defined by

h(7) = O (fo).
For any 71,75 € T let |75 — 71| be the maximal length for which initial segments of

the word 71 and 7 of that length agree. In [AMM] it has been shown that there is
a constant K > 0 and p < 1 such that
S gl < K -4
To>T>T)

Recall that 7, is the word consisting of the first n symbols of a word 7 € T. From
Lemma 2.1 we get

da(h(T(21,0), h(7)) < K - p".
Theorem 1.1 follows from Proposition 2.3. Namely,
Ry, fo = Rr,y 0 O fo
= Oz(,,0= © R" fo
= Or,,,0 fo
= h(7(n,07) — h(7),

where the convergence is exponential.

3. The monotonicity of the scaling function

The monotonicity of the scaling function ¢, as formulated in Proposition 1.8 is based
on the following combinatorial Lemmas. First we will concentrate on these Lemmas
and prove Proposition 1.8. Secondly, Proposition 1.8 is used to prove Proposition 1.6.

Although decomposition times and the words used to define the intervals I, are
conceptually different, the following Lemma shows that they are strongly related.
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Lemma 3.1. — For every word w of length n
R’m(f()) = [f(?nl-[m]-

Proof. — The proof is by induction in n. For n = 1 the Lemma restates the def-
inition of Ry and R;. Assume the Lemma holds for some n > 1. Choose a word
w of length n and consider the two intervals Iy, and I;,,. These intervals are con-
tained in [, and each contains a boundary point of I,,. Using the induction hypoth-
esis R, (fo) = [f2"|1.]) and the fact that f2"|I, permutes Iy, and I, we get that
Row(fo) = Ro(Ruw(fo)) and Ry (fo) = Ri1(Rw(fo)) correspond to either of f2"+l [T
or ‘](‘2”—H |Ilw'

It is left to identify which of the two intervals corresponds to Ug, (s, (resp. to
VRu(fo))- The map fo permutes the intervals I,» with |w’'| = n + 1 according to
addition mod.2" on the words indexing the intervals, as described in Lemma 1.7.
Observe that

lw = 0w+ 2™ - 1.
This means that f{?" |Ip,, is monotone because Ow + k - 1, k < 2™ never equals the
word 1"*! and fo|l;»+1 is the only place where monotonicity of fy fails. Hence,

Row(fo) = Ro([f5 11u]) = [(f5" )| ow]
and
Ruw(fo) = Ba(f5" 11u) = [(F7) 1 vl O
In the sequel we will identify Ry, (fo) with f(‘f” |1y

Lemma 3.2. — For every pair of words w and w°, the ma
b )

Rw” (f[)) : I’w(]m“ [’wl’m“ 5

is monotone and onto.

Proof. — Let |w°| = n. The action of fo on the intervals of length |w| + 1 + |w"| is
described by addition mod.2™ on the words indexing the intervals (see Lemma 1.7).
In particular,
wiw® = wouw” + 2™ - 1.

Hence

f() ' (I’IHOTUU) = Ly1uwo-
By construction we have

Ti1wo s Lwowo C Lo

Now the Lemma follows from R,o(fo) = | fgn |I,0], which we know from Lemma 3.1.
O

Lemma 3.3. — If the Convexity Condition holds then there exist constants C' > 0 and
r € (0,1) with the following property. Let w be a word of with |w| = n.
If o(w) = +1 then
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— w0 < wl and w00 < w0l < wll < wl0

- QrH-l(wO) < QH+1(w1)

= Gny2(w00) < gnio(w0l) < gnio(wll) < gui2(wl0)
= gnt2(wll) > ¢ui2(w0l) + Cr®

If o(w) = —1 then

- wl < w0 and w10 < wll < w0l < w00

- q::+1(U’1) < (I7z,+l<wo)

= Gnt2(wl0) < grio(wll) < guy2(w01) < gpp2(w00)
= qua2(w01) > gnia(wll) + Cr"

Proof. — The construction of the intervals [, imply immediately the following. If
o(w) = +1 then the interval I,, contains the right boundary point of I, ). And if
o(w) = —1 then I,, contains the left boundary point of I,,,. Using this, the convexity

of Fy and the fact that Fp is affine we get

Claim 3.4. — o(w) - ¢uy1(w0) < o(w) - qny1(wl), for every word w with |w| = n.
The case when o(w) = —1 of the Lemma can be proved similarly as the first case.

We will only present the proof in the case o(w) = +1. The first statement is merely
the definition of the order on the symbol space. The second follows directly from
Claim 3.4. This Claim also implies

Gni2(w00) < @ui2(w0l), and guia2(wll) < gui2(wl0).
To study the middle inequality, observe that
Iswyor U lsoyn C 11

First observe that o(w01) = —1 (and o(w1l) = 1). In particular the negatively ori-
ented interval I,,01 contains the left boundary point of the interval I, (,)01. Moreover,

Ia(u')(}l C IO] - [Oﬁfé(cf())L

where 0 € I is the left boundary point of ;.
By Lemma 3.2 we have

Ri(fo) : Louyor — Lo(uw)in-

The Convexity Condition states that the absolute value of the derivative of this map
decreases strictly on the interval [0, f(cy,)]. Now using

]m()l C [(r(ur)()l - [07 fé’(ﬁ/“)]

and that the interval I,,01 C ()01 contains the left boundary point of I, ()01, we
get

qn+2(w01) < q'n,+2(w1 1)
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From the a priori bounds described for example in [Mal], we know that there are
constants C' > 0 and r € (0,1) such that

l-[m| 2 C : lei
for all words w. This implies the final estimate of Lemma 3.3. O
Let w be a word with |w| = k. Then define the interval

Ju = [QA-+1 (11)0), qk41 (wl)]

Proof of Proposition 1.8. — The proposition 1.8 is reformulated in

Claim 3.5. — Let w be a word with |w| = k and |wh| =n. Then
gn(wh) € J,.

In particular,
J’wh - *]'IH'
2

Moreover, if w' and w? are distinct words of length k then J(w') and J(w?) are

disjoint and the distance between them is larger than Cr*.

Proof. — The proof of the first part of the Claim is by induction in n. For n = 2
the statement follows from the Lemma 3.3. Assume the Claim holds for all words wh
with Jwh| < n.

Consider a word wh = whh'h? with |lwh| = n + 1 and |h'| = |h?| = 1. Then
Lemma 3.3 implies that for every pair of symbol z,y

Qi1 (whay) € [gui1 (wWh10), gy (’tuﬁ()())].

In particular,
Gny1(wh) € [gni1 (wh10), g1 (wh00)]
= [gn (wﬁl)» (]7,,(’11)71/0)]
C ’]7173

The above equality follows from the fact that q,,+1(wﬁ10) = q,,l,(wlAzl) because the
interval [ ;.. is obtained from I -, by applying the affine branch Fy. The other
boundary is treated similarly. The last inclusion follows from the induction hypothesis.

The proof of the second part of the Claim is by induction in k = |w|. For k =1 the
Claim considering the distance between Jy and J; is a reformulation of the previous
Lemma. Assume, the Claim is proved up to some k > 1. Let w! and w? be two words
of length k + 1, say w! = w'

If w' differs from w? then the Claim follows because

r and w? = w?y with |0!| = |@0?| = k.

Jwr T g1y Ju2 C g2
and the induction hypothesis. So we may assume that

wt = w0, w? = wl.
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Apply Lemma 3.3 again to conclude that J,,1 and J,,2 are disjoint with the appropriate
distance between them. O

Proof of Proposition 1.6. — The proof of Proposition 1.6 relies on the relation be-
tween the two iterated function systems generated by respectively {Ro, R1} and
{Fy, F1} as formulated in Lemma 3.1. Notice, the only difference between ¥ and
T is that they carry different orders. The order does not play any role in the proof of
Proposition 1.6. We will use the symbol w for words which are in ¥ = 7. In Section 2
we constructed the continuous map h : ¥ — A (see Remark 1.3). Namely, for w € ¥,
let

h(w) = lim Ry, (fo).
n—oc {n}
In particular, this map is onto. It is left to show that h is injective.

Observe that every word w with |w| =n

Row(fo) = Ro(Ru(fo))-
In particular,
qnt1(0w) = |V1?“.(fn)|'
Recall that for w € ¥ we denote the word consisting of the first n symbols of w € ¥
by w,y- Let w!', w? € ¥ be such that h(w') = h(w?). Then
lq(0w") — q(0w?)| = lim |g,11(0w],\) = guy1(0w?,))]
N {n} {n}
=i Ve, ol = Ve, wll

{r

< Const lim dist(R,; (fo). Rz (fo)

n—oc

= Const - dist(h(w'), h(w?)) = 0.

1 2

The strict monotonicity of the scaling function, Proposition 1.8, implies w! = w?.

This proves that h: ¥ — A is a homeomorphism.

4. The Convexity Condition

In this section the Convexity Condition will be studied.

Lemma4.1. — Let f:(—1,1) — (=1,1) be C%. If

- f(o) = 07
- D.f(()) < “L
- D2f(0) <0
then
D2(f*)(0) < 0.
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Proof. — The chain rule applied to f? gives
D*(f*)(x) = D*f(f(x)) - (Df(2))* + Df(f(x)) - D*f(x).
Using the properties of f in z = 0 we get
D?(f*)(0) = D*f(0) - Df(0) - [Df(0) + 1] < 0. U

Lemma4.2. — Let C C W consisting of unimodal maps f € W, with negative
Schwarzian derivative (see [dMvS] for the definition), and the following property:
f110,¢] is convex, where ¢ is the critical point of f, and f|[c,1] is strictly convex (The
derivative of f is decreasing over [0,1] but strictly decreasing on [c,1]). Then

R()(C) c C.

Proof. — Let f € C with critical point ¢ € [0,1] and let ps be its fixed point. Let
Vi = PUQ, where P,() are the two intervals on which Ry f is monotone. Choose
@ C V; such that f(Q) C [0,¢]. The convexity property of f implies directly the
strict convexity of Ro(f)|Q.

The Schwarzian derivative of f is negative. This implies that p; is an expand-
ing fixed point, otherwise it would attract the critical point (see [dMvS]). Hence,
Df(py) < —1. The convexity condition of f allows us to apply the previous Lemma:

D*Ro(f)(py) < 0.

i.e. the derivative of f? is decreasingin p . Now, the Minimum Principle for maps with
negative Schwarzian derivative (again see [dMvS]), implies that Df? is decreasing
monotonically to zero on the interval [py, P], hence Ry f € C. O

Lemma 4.3. — The convezity condition C1 holds true for any even critical exponent
a, the map follps,, 1] is strictly conver.

Proof. — Let g € W be a standard folding map. Clearly, ¢; € C. From [S2] we have
nh—l»%c Ri’ 4@ = fl.

Let f be the unique fixed point of R (with ()]x(f) = f1). As in the proof of Claim

2.5 we get for every f € U with O1(f) = g that
lim R"]?: f
Hence,
lim Rijg = lim Op=R" f
n-—oc n—oC

= Oo=(f)

= fo.
where fj is the fixed point of Ry. This implies that the derivative of fy is decreasing
because of the previous Lemma . The renormalization fixed point fj is real analytic.
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Hence, the set E C [0, 1] consisting of the flat points of fo, points where D? f;, vanishes,
is finite.

The map fy is the fixed point of Ry. Hence, s(F), the map s is the affine scaling
of the interval [0, 1] to V%, is the set of flat points of Ry fo(= fo). Let Q@ C Vy, be the
maximal interval such that fo(Q) C [0, ¢]. Any non-flat point = € @ will be a non-flat
point of Rgfoy, this follows from the convexity, maybe not strict, of fo. Hence

s(E)NQ C E.

Assume, EN[ec,1) # @ and let © € E N e, 1) be the rightmost point. The fact that
fo is a renormalization fixed point implies that s(c) is the left boundary point of Q).
In particular we get

x<s(x)es(E)yns(el]) cENQ,

contradicting the fact that z was chosen to be the right most point in EN|e, 1). This

proves that fy does not have flat points in [py,,1) C [¢, 1). O
Lemma 4.4. — The convexity condition C2 holds true for o = 2.
Proof. — In the case o = 2, an approximation of f; can be found in [La]. We will

use the notation of [La]. The fixed point fi is represented as g(z) = h(z?) where
|| < 1.5. Actually, the map h defined on the disk Dy = {z]|z| < 1.5} where it is
analytic. The map h is approximated by a polynomial of degree 40.

40

ho(z) =14 g{¥z"

n=1
where
'qyl(l()) | g 10—(7I,~2)

It is also shown in [La] that
|h(z) — ho(2)] < 1.5-107%, 2z € Dy.

From Lemma 2.4 we get that the map f(z) = (h(z))?, z € Dy represents the fixed
point fo of Ry, the maps are equal up to an affine scaling. The map P(z) = (ho(2))?,
z € Dy, approximates this fixed point. For both maps the dynamically relevant
interval is [0, 1]: f([0,1]) = [0,1] and P([0,1]) = [0, 1].

To prove the convexity condition C2 it suffices to show the strict convexity of f2
restricted to the interval [f9(cy), 1].

Claim 4.5. — The derivative of of hg restricted to Dy satisfies

|Dho(2)] < 14.0

This estimate follows from the bounds on the coefficients of the polynomial hg.
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Claim 4.6. — For z € Dy
|P(2) = f(2)] <1.0-107%
and the deriwative of P restricted to the disk Dy satisfies
|[DP(z)| < 700.
The bound on the coefficients of the polynomial hy imply that ho({z||z| < 1.5}) is
contained in a disk of radius 23 around 0. The bounds on the distance between h and

ho and the fact that the derivative of the map z ~— 22 is bounded by 50 on the disk
of radius 23 around 0, finishes the proof of this Claim.

Let D be the s —neighborhood of the interval [0, 1].

Claim 4.7. — The map f? is defined on D (and is analytic). Moreover
If3(2) = P?(z)] <1077, 2 € D.
The fact that f? is well defined on D follows from the fact that P maps D well
inside the disk of radius Dy and that P and f are close on Dy. The estimate on the

distance between f? and P? on D follows from the bound on the derivative of P and
the very small distance between f and P.

Claim 4.8. — For every z € [0, 1]
|D?P?(2) — D?f%(2)| < 1.0- 1077

and
ID*P2(2) = D*f2(2)] < 1.0 10~

These bounds follow by applying the Cauchy integral formula for derivatives. Let
20 € [0,1]. Then

|D2P2(Z) —D2f2(z)| < _1~/ IP (Z> _f (Z)Idz
oD

< oor, |z — zo]?
1 )

<— 1072 —— . 27(1.5) < 1.0- 10710,
o o008 2mD)

The third derivative is treated similarly.

It is left to find a lower bound for |D?P?(z)| larger than 1072, We will use tra-
ditional cross ratio technology [dMvS] to reduce this question to a calculation in
finitely many points. Let h: T — h(T) be a diffeomorphism of the interval T to its
image and suppose it has negative Schwarzian derivative. Let M C T be a subinterval
and let L, R C T~ M be the two connected components of T'~. M. Let

i DL 0Ly
[R(M)|" [h(M )|
Then ’
i) < LT BADL

|M]
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The nonlinearity of h is n = Dln Dh = D?h/Dh. We have the following estimate
(1 4+ 7)|h(M)]

x)| < , x€ M.
|77(17)| 2 T2|A[|2 T €
The third inequality we will use is
. 3 D?h
3 > (2 2, D}
D°h > 2( Dh) )

in the case when Dh is negative.

We will apply these three estimates to the map f? restricted to the interval [cy, 1]
with M = [f%(cs),1]. The period two point of f and the position of f*(cs) can be
precisely estimated with the help of P. Using estimates for these two points gives the
following estimates

7202 and |M|>0.1, [f3(M)]| <0.6.

This implies
|D(D*P?)(x)| > —2.2-10%, z € M.

Claim 4.9. — For every z € [f%(cy), 1]
|D?P2(2)| = 0.5.

This is shown by numerical analysis. The second derivative of P? is calculated in
a sequence of points with increment 10~ over the interval | f%(ey),1]. In these point
the second derivative of P? is smaller than —1. The derivative estimate of D?P? leads
to the lower bound as stated in the Claim. O

The quadratic case, a = 2, as described in Theorem 1.10 follows from propositions
1.6 and 1.8, and lemmas 4.3 and 4.4.
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ROBUSTLY TRANSITIVE SETS AND
HETERODIMENSIONAL CYCLES

by

Christian Bonatti, Lorenzo J. Diaz, Enrique R. Pujals & Jorge Rocha

Abstract. — Tt is known that all non-hyperbolic robustly transitive sets A, have a
dominated splitting and, generically, contain periodic points of different indices. We
show that, for a C!-dense open subset of diffeomorphisms ¢, the indices of periodic
points in a robust transitive set A, form an interval in N. We also prove that the
homoclinic classes of two periodic points in A, are robustly equal. Finally, we describe
what sort of homoclinic tangencies may appear in A, by studying its dominated
splittings.

1. Introduction

When a diffeomorphism ¢ is hyperbolic, i.e., it verifies the Axiom A, the Spectral
Decomposition Theorem of Smale says that its limit set (set of non-wandering points)
is the union of finitely many basic pieces satisfying nice properties, each piece is invari-
ant, compact, transitive (i.e., it contains an orbit which is a dense subset), pairwise
disjoint and isolated (each piece is the maximal invariant set in a neighborhood of
itself). Moreover, by construction, a basic piece is the homoclinic class of a hyper-
bolic periodic point, i.e., the closure of the transverse intersections of its invariant
manifolds.

Even if the dynamics is non-hyperbolic, the homoclinic classes of hyperbolic pe-
riodic points seem to be the natural elementary pieces of the dynamics, satisfying
many of the properties of the basic sets of the Smale’s theorem: invariance, compact-
ness, transitivity and density of hyperbolic periodic points. Recent results in [BDa],
[Ar] and [CMP] show that, for C'-generic diffeomorphisms (i.e., those belonging to

2000 Mathematics Subject Classification. — 37 C20, 37 D30, 37 C29.
Key words and phrases. — Dominated splitting, heterodimensional cycles, periodic orbits, transitivity.
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a residual subset of Diff! (M)) two homoclinic classes are either disjoint or equal and
they are maximal transitive sets (i.e., every transitive set intersecting a homoclinic
class is contained in it). Notice that, in general, the homoclinic classes fail to be
hyperbolic, isolated and pairwise disjoint.

In [BDP] it is shown that, for C'-generic diffeomorphisms, a homoclinic class
is either contained in the closure of an infinite set of sinks or sources, or satisfies
some weak form of hyperbolicity (partial hyperbolicity or, at least, existence of a
dominated splitting). The first situation (called the Newhouse phenomenon) can be
locally generic, in the residual sense: there exist open sets in Diff"(M) where the
diffeomorphisms with infinitely many sinks or sources are (locally) residual for the
C"-topology. The case r > 2 for surface diffeomorphisms can be found in [N], see [PV]
for the case r > 2 in higher dimensions, and [BD4] for » = 1 in dimensions greater
than or equal to 3. Certainly, the Newhouse phenomenon exhibits very wild behavior
and it is conjectured that (in some sense) diffeomorphisms satisfying this phenomenon
are very rare (for instance, for generic parametrized families of diffeomorphisms, the
Lebesgue measure of the parameters corresponding to diffeomorphisms satisfying the
Newhouse phenomenon is zero), see [Pal.

We focus here on the opposite behavior. More precisely, we restrict our attentions
to the so-called robustly transitive sets introduced in [DPU] as a non-hyperbolic
generalization of the basic sets of the Spectral Decomposition of Smale. A robustly
transitive set A of a diffeomorphism ¢ is a transitive set which is locally maximal
in some neighbourhood U of it and such that, for every C'-perturbation ¢ of the
diffeomorphism ¢, the maximal invariant set of ¢ in U is transitive. From the results in
[M_], [DPU]J and [BDP] every robustly transitive set A admits a dominated splitting,
say TAM = Ey & -+ & Ej, and by [BDy], C!-generically, it is a homoclinic class. An
invariant set may admit more than one dominated splitting, since one can always
sum up some bundles of the original dominated splitting, obtaining a new dominated
splitting with less bundles, or, conversely, split some bundle of the splitting in a
dominated way. So it is natural to consider the finest dominated splitting of the set
A (i.e., the one that does not admit any dominated sub-splitting).

In this paper we study the interrelation between the dominated splittings (es-
pecially the finest one) of a robustly transitive set A and its dynamics, answering
questions about the indices (dimension of the stable manifold) of the periodic points
of A, the possible bifurcations (saddle-node and homoclinic tangencies) occurring in
this set as well as its dynamical structure.

Let us recall some definitions, necessary for what follows.

In what follows, M denotes a compact, closed Riemannian manifold and Diff* (M)
the space of C!-diffeomorphisms of M endowed with the usual topology.

Let A be a compact invariant set of a diffeomorphism ¢. A ¢.-invariant splitting
TaM = E @ F over A is said to be dominated if the fibers of E and F have constant
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dimension and there exists k € N such that, for every z € A, one has

. L 1
HoE Bl - o ¥ per (ol < 3

that is, the vectors in F' are uniformly more expanded than the vectors in E by the
action of ¢*. If it occurs we say that F' dominates E and write £ < F.

An invariant bundle E over A is uniformly contracting if there exists k such that,
for every x € A, one has:

1
k
||(/)* IE(.'L‘)H < 5
An invariant bundle E over A is uniformly expanding if it is uniformly contracting for

ot

Let TAM = E1 ® E5® --- @ E,, be a ¢.-invariant splitting over A such that the
fibers of the bundles F; have constant dimension. Denote by EI’ = @1} Ey; the direct
sum of E;, ..., FE;. Note that E{"_l ® E}" is a splitting of TAM for all k € {2,...,m}.
We say that E1 ® Es @ --- & Ey, is the finest dominated splitting of A if E{"_l o E"
is a dominated splitting for each k € {2,...,m} and every Ej is indecomposable (i.e.,
it does not admit any nontrivial dominated splitting). See [BDP] for the existence
and uniqueness of the finest dominated splitting.

Consider a set V' C M and a diffeomorphism ¢: M — M. We denote by A, (V) the
mazimal invariant set of o in V, i.e., Ay(V) = ,cz ¢ (V). Given an open set U C M
the set A, (U) is robustly transitive if Ay(U) is equal to Ay (U) and is transitive for
all ¥ in a C'-neighbourhood of ¢. We say that a i-invariant closed set K is transitive
if there exists some € K having a positive orbit which is dense in K.

If a robustly transitive set A,(U) is not (uniformly) hyperbolic then, by a C!-small
perturbation of ¢, one can create non-hyperbolic periodic points, and thus hyperbolic
periodic points with different indices in Ag(U) (see [Mz]). Our first two results
describe the possible indices of the periodic points of A4z(U), in terms of the finest
dominated splitting of Ay(U):

Theorem A. — Let U be an open set of M and M(U) a C*-open subset of Diff' (M)
such that A,(U) is robustly transitive for every ¢ € M(U). Then there is a dense
open subset N(U) of M(U) such that, for every ¢ € N(U), the set of indices of
the hyperbolic periodic points of Ay (U) is an interval of integers (i.e., if P and Q
are hyperbolic periodic points of indices p and q, p = q, of Ay(U), ¢ € N(U), and
J € lq.pl, then A,(U) has a hyperbolic periodic point of index j).

In the next result, we use the arguments in [Mj3] to relate the uniform contraction
or expansion of the extremal bundles of the finest dominated splitting of a robustly
transitive set with the indices of the periodic points of this set.

Theorem B. — Consider an open subset U of a compact manifold M and an integer
q € N*. LetU be a C'-open subset of Diff' (M) such that for every ¢ € U the mazimal
invariant set Ay(U) satisfies the following properties:
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(1) the set Ay(U) is contained in U and admits a dominated splitting Ey & Fy,
Eg < Fy, with dim Ey(z) = g,

(2) the set Ay(U) has no periodic points of index k < q.
Then the bundle Ey is uniformly contracting for every ¢ € U.

We can summarize the two results above, in order to get a characterization of the
set of indices of the periodic points of the set Ay (U), as follows.

Let U C M be open and ¢ a diffeomorphism such that A, (U) is robustly transitive
with a finest dominated splitting of the form Ty (yM = Ey @@ Ey(ypy, Ei < Eiq1.
Denote by E° the sum of all uniformly contracting bundles of this splitting and let
E,, be the first non-uniformly contracting bundle, i.e., B = F1 & --- & E4—1. In the
same way, denote by E* the sum of all uniformly expanding bundles of the splitting
and let g be the last non-uniformly expanding bundle, i.e., E* = Eg 1 @+ © Ej(y)-
Let U be a Cl-neighborhood of ¢ such that, for every 1 € U, the set A, (U) has the
same properties as A, (U) (i.e., robustly transitive and the number k(¢) of bundles of
the finest dominated splitting is equal to k(y)) and the dimensions of bundles E*(1)),
E.(¢), Eg(y) and E*(1), defined in the obvious way, are constant in ¢/ and equal to
corresponding bundles for ¢.

Corollary C. — With the notation above, there exist a C*-open and dense subset V of
U and locally constant functions i,7: V — N* such that

i(y) € [dim(E*®), dim(E*) + dim(E,)] N N*,
j(¥) € [dim(E"), dim(E") + dim(E3)] N N*,

and, for every i € V, the set of indices of the hyperbolic periodic points of Ay (U) is
the interval [i(v), dim(M) — j(y)] N N*.

The first known examples of non-hyperbolic robustly transitive sets had a one-
dimensional central direction, see [M;] and [Sh]. As a consequence, these examples do
not present homoclinic tangencies (non-transverse homoclinic intersections between
the invariant manifolds of some periodic point). Observe that if a periodic point has
a homoclinic tangency then, after a perturbation of the diffeomorphism, one create
a Hopf bifurcation (a periodic point whose derivative has a pair of conjugate nonreal
eigenvalues of modulus one), see [YA] and [R], hence points whose central direction
has dimension at least two. Currently examples of robustly transitive sets having
a central direction of dimension two or more are known, see [BD4], [B] and [BV].
Moreover, in some cases these sets exhibit homoclinic tangencies, see [B] and [BV].
Our next result explains what sort of dominated splitting of a robustly transitive set
prevents homoclinic bifurcations.

We say that a robustly transitive set A, (U) is C'-far from homoclinic tangencies
if there are no homoclinic tangencies in Ay (U), for all ¢ in a C'-neighbourhood of ¢.
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Theorem D. — Given an open set U of M let P(U) C Diff'(M) be an open set of
diffeomorphisms o such that:

(1) The set Ay(U) is robustly transitive and the minimum and the mazimum of
the indices of the hyperbolic periodic points of A,(U) are constant in P(U). Denote
these numbers by iy and i., respectively.

(2) The set A,(U) is Ct-far from homoclinic tangencies.

Then there is an open and dense subset O(U) of P(U) such that, for every ¢ € O(U),
the set Ay, (U) has a dominated splitting Ta ;) = E°* ® E1 @ -+ @ E, ® E", such that

E*¢ is uniformly contracting and has dimension iy > 1,
— E" 4s uniformly expanding and has dimension dim(M) —i. > 1,
— 1 =1i.—1is and the bundle E; has dimension one and it is not uniformly hyperbolic
for everyi=1,...,r.

In fact, from the proof of this theorem, we get more: given any robustly transitive
set Ag(U), for diffeomorphisms in a C'-neighbourhood of ¢, the dimensions of the
non-hyperbolic bundles of its finest dominated splitting determine the ranks of the
homoclinic tangencies (that is, the indices of the periodic points exhibiting the tan-
gency) that can occur in Ay (U). The precise statement of this result is in Section 6,
see Theorem F.

Finally, for robustly transitive sets which are far from homoclinic tangencies, we
prove that the (relative) homoclinic classes of two periodic points of this set are
equal in a C'-robust way. More precisely, let P, be a hyperbolic periodic point of
a diffeomorphism ¢. We denote by Hp, the set of transverse intersections of the
invariant manifolds of F,. Observe that the homoclinic class of P, is the closure
of Hp,. Given an open set U, the relative homoclinic class of P, in U is the closure
of the set Hp,(U) of transverse homoclinic points of P, whose orbits are contained
inU.

Theorem E. — Let U be an open subset of M and S(U) C Diff' (M) an open set of
diffeomorphisms ¢ such that

- the set A, (U) is robustly transitive, and

— there are no homoclinic tangencies (in the whole manifold) associated to periodic
points of A, (U).
Consider any pair of hyperbolic periodic points P, and Q, of A,(U) with indices p
and q whose continuations are defined for every v in S(U). Then there is an open
and dense subset D(U) of S(U) such that

Hp,(U)=Hgq,(U)
for every ¢ in D(U).
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Unfortunately, in the theorem above we cannot ensure that the relative homoclinic
classes of P, and Q, are equal to A, (U), although by the results in [BD,] this is
true for a residual subset of S(U).

Let us now say a few words about the proofs of our results. One of the main tools
is the notion of heterodimensional cycle. Given a diffeomorphism ¢ with two hyper-
bolic periodic points Py and Q, with different indices, say index(P,) > index(Qg),
we say that ¢ has a heterodimensional cycle associated to Py and @4, denoted by
(¢, Py, Qq), if W¥(P,) and W"(Q,) have a (nontrivial) transverse intersection and
Wu(P,) and W*(Q,) have a quasi-transverse intersection along the orbit of some
point z, ie., T,W*(Py) + T,W*(Qy) is a direct sum. Notice that, in this case,
dim(M) —dim(T, W (Py) + T, W?*(Q4)) is equal to index(P,)— index(Qy), this num-
ber being the codimension of the cycle.

The proof of Theorem A has two main ingredients. The first is Theorem 3.1, which
implies that, by unfolding a heterodimensional cycle associated to points of indices g
and p as above, one gets hyperbolic periodic points of some index in between ¢ and
p (a priori, we do not know the index of such a point). The second ingredient of the
proof is the Connecting Lemma of Hayashi (see Theorem 2.1 and [H]) which allows
us to create (after a C'-perturbation) heterodimensional cycles associated to any pair
of periodic points of a robustly transitive set.

Two other important tools are the constructions in [Ms] and in [BDP] (specially
the periodic linear systems with transitions). In this paper we need to introduce tran-
sitions between points of different indices in the same homoclinic class, generalizing
the construction in [BDP], in which only transitions between points with the same
index were considered.

Finally, to prove Theorem E, the main ingredient, besides the Connecting Lemma,
is the proposition below concerning the structure of the homoclinic classes of hyper-
bolic points having a heterodimensional cycle.

We say that a hyperbolic periodic point Ry is C'-far from tangencies if there is
a C'-neighbourhood W of ¢ in Diff' (M) such that every ¢ € W has no homoclinic
tangencies associated to Ry,. A heterodimensional cycle I'(¢, Py, Q) is C'-far from
homoclinic tangencies if the points Py and Q4 in the cycle are C'-far from homoclinic
tangencies.

Finally, we say that two points x and y are transitively related by ¢ if there exists
a transitive set of ¢ containing x and y. The points x and y are transitively related
in an open set U if there exists a transitive set of ¢ contained in U that contains x
and y.

Proposition 1.1. — Let U be an open set, ¢ a diffeomorphism, and P, and Q. a pair
of hyperbolic periodic points of ¢ of indices p and q = p — 1, respectively. Consider a
neighbourhood W of ¢ in Diff!(M) such that, for all ¢ € W),

— the continuations Py and Q are defined and C'-far from tangencies,
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- the points Py and Q are transitively related in U.

Then there is a C*-open subset Wy, of W, with ¢ € W, such that the relative homoclinic
classes of Py and Q4 in U are equal for every ¢ € W,.

[DR, Theorem A] asserts that, given any heterodimensional cycle I'(¢, Py, Q4) of
codimension one, far from homoclinic tangencies, there exists a C'-open set, whose
closure contains ¢, of diffeomorphisms ¢ such that P, and @, are transitively related.
Thus, for any diffeomorphism ¢ with a heterodimensional cycle which is far from
homoclinic tangencies, there are diffeomorphisms ¢ arbitrarily close to ¢ satisfying
the hypotheses of the proposition. The proof of Proposition 1.1 follows from the
results in [DR] and the Connecting Lemma of Hayashi.

This paper is organized as follows. In Section 2 we get some results concerning
heterodimensional cycles, robustly transitive sets and homoclinic classes using the
Hayashi’s Connecting Lemma. In Section 3 we prove Theorem A. For that, we study
the creation of periodic points in the unfolding of heterodimensional cycles (of any
codimension). In Section 4 we prove Theorem B, for that we recall some folklore
results concerning dominated splittings and reformulate some results in [My]. In
Sections 5 and 6, we study the relationship between the finest dominated splitting
of a robustly transitive set and the creation of homoclinic tangencies inside this set.
Finally, in Section 7 we prove the results concerning (relative) homoclinic classes.

Acknowledgements. We acknowledge Bianca Santoro for her comments that helped
us to make the english redaction compatible with the high standards of one of the
referees.

2. Transitively related points

We begin the proofs of our results by recalling the Hayashi’s Connecting Lemma
and deducing some consequences from it.

2.1. Connecting lemma and transitively related points

Theorem 2.1 (Hayashi’s Connecting Lemma, [H]). — Let P, and Q, be a pair of hy-
perbolic periodic points of a C'-diffeomorphism o such that there are sequences of
points x, and of natural numbers k, such that the sequences x, and p* (z,) accu-
mulate on W (P,) and on W (Q,), respectively.

Then there is a diffeomorphism 1 arbitrarily C*-close to p such that W*(Py) and
W?*(Qy) have a nonempty intersection.

Remark 2.2. — Every pair of hyperbolic periodic points P, and @, which are transi-
tively related satisfy the hypotheses of the Connecting Lemma (Theorem 2.1).
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Proof of the remark. — Consider a transitive set A containing P, and @, and a point
x of A whose positive orbit is dense in A. Then there are sequences of natural numbers
my, and 7, My, T, — 00 as n — 00, such that ¢ (z) — P, and ¢"(z) — Q..
Then it is immediate to get new sequences m/, and 7/, r!, — o0, such that
’ N . ) . o .
@"n(x) and " (z) converge to some point of W (P,) and of W} (Q,), respectively.

Taking subsequences, if necessary, we can assume that r/, = m/, + k,, for some k,, > 0.
. / .
Now it suffices to take x,, = ¢™n»(x) and consider the sequences z,, and k,. O

with m/

n?

2.2. Homoclinic relative classes and robustly transitive sets. — By [BDx,
Theorem B], there is a residual subset of Diff' (M) consisting of diffeomorphisms such
that the homoclinic classes of any two transitively related hyperbolic periodic points
are the same. The proof of this result is based on the Hayashi’s Connecting Lemma.
Using the relative version of the connecting lemma, we get a relative version of [BDq,
Theorem B] whose proof is here omitted.

Theorem 2.3 (Relative version of [BD,, Theorem B]). — Given an open subset U of M,
there exists a residual set G(U) C Difft(M) such that, for every p € G(U), two
hyperbolic periodic points P, and Q. of ¢ are transitively related in U if and only if
the relative homoclinic class in U of P, and Q, are equal, i.e., Hp, (U) = Hq ,(U).

Let A(U) C Diff' (M) be an open set such that A, (U) is robustly transitive for all
¢ € A(U). By Pugh closing lemma (see [Pu]) and a Kupka-Smale argument, there is
a residual subset R(U) of A(U) of diffeomorphisms ¢ such that, for all ¢ € R(U), the
hyperbolic periodic points form a dense subset of A, (U). Taking 7(U) = G(U)NR(U),
where G(U) and R(U) are as above, we get the following:

Proposition 2.4. — Let U C M and A(U) C Diff'(M) be open sets such that A,(U)
is robustly transitive for all ¢ € A(U). Then there exists a residual subset To(U) of
A(U) such that

Hr, (U) = A (U)
for every p € TA(U) and every hyperbolic periodic point P, € A,(U).

2.3. Heterodimensional cycles. — We will use the following lemma, which fol-
lows from the Connecting Lemma and an argument of transversality:

Lemma 2.5. — Let P, and Q, be hyperbolic periodic points of a diffeomorphism ¢ of
indices p and q, p > q. Suppose that Py and Qy are transitively related for every i
in a Ct-neighbourhood V of p. Then there is a dense subset W of V such that every
¢ in W has a heterodimensional cycle T'(¢, Py, Qy) of codimension (p — q).

Proof. — Let ¢ € V. Since P, and @, are transitively related, by Remark 2.2, we
can apply Theorem 2.1 to get & arbitrarily close to ¥ (hence & is in V) such that
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WH(Pe) N W*(Qe) # . Since
dim(W?(FP)) + dim(W"(Q¢)) = p + (dim(M) — g) > dim(M),

we can assume that W*(P:) and W*(Q¢) intersect transverselly.

Since £ belongs to V, the points P: and ()¢ are transitively related. Thus, again by
Remark 2.2, we can apply Theorem 2.1 to get ¢ arbitrarily close to § (¢ in V) such
that W*(Py) and W*(Qg) have (non empty) transverse intersection and W*(P,) N
W5(Qe) # @. After a new perturbation, if necessary, we can assume that the last
intersection is quasi-transverse, obtaining a heterodimensional cycle I'(¢, Py, Q) of
codimension (p — ), finishing the proof of the lemma. O

Let us state two remarks about the proof above that will be used in Section 7.

Remark 2.6. — Let P, and ), be hyperbolic periodic points of a diffeomorphism ¢
of indices p and ¢, p > ¢. Suppose that Py and @, are transitively related for every
1 in a neighbourhood V of ¢. Then there is an open and dense subset D of V such
that W*(P,) and W*(Q,) have a nontrivial transverse intersection, for every ¢ in D.

If in Theorem 2.3 we assume that the points P, and (), have the same index, we
get the following stronger version of it:

Remark 2.7. — Let P, and @, be hyperbolic periodic points of the same index of a
diffeomorphism ¢ and U an open set containing the orbits of P, and Q,. Suppose
that Py and @ are transitively related for every v in a neighbourhood V of ¢. Then,
there exists an open dense subset O of V such that, for every ¥ in O, the relative
homoclinic classes of Py, and @ in U are equal.

3. Proof of Theorem A: unfolding heterodimensional cycles

3.1. Transitions for heterodimensional cycles. — We begin this section by
stating a technical result, which introduces the concept of transition between periodic
points of different indices.

Theorem 3.1. — Let P and Q be two hyperbolic periodic points of a diffeomorphism
¢ of indices p and q, p > q, and periods n(P) and n(Q), respectively. Denote by Mp
and Mg the linear maps

ot NP ToM — TpM  and  ¢29(Q): Tg — ToM.
Assume that there exist dominated splittings
TpM = E\(P) @ Ex(P)® E3(P) and ToM = E1(Q) ® Ex(Q) & E3(Q),

with dim(E;(P)) = dim(E1(Q)) = ¢ and dim(E3(P)) = dim(E3(Q)) = dim(M) — p,
which are i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>