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LOGARITHMIC SOBOLEV INEQUALITY 
A N D SEMI-LINEAR DIRICHLET PROBLEMS 

FOR INFINITELY DEGENERATE ELLIPTIC OPERATORS 

by 

Yoshinori Morimoto & Chao-Jiang Xu 

Abstract. — Let X = (X\,..., Xm) be an infinitely degenerate System of vector fields, 
we prove firstly the logarithmic Sobolev inequality for this System on the associated 
Sobolev function spaces. Then we study the Dirichlet problem for the semilinear 
problem of the sum of square of vector fields X. 
Résumé (Inégalité de Sobolev logarithmique et problèmes de Dirichlet semi-linéaires pour 
des opérateurs elliptiques infiniment dégénérés) 

Soit X = (X\,... ,Xm) un système de champs de vecteurs infiniment dégénérés. 
On montre d'abord l'inégalité de Sobolev logarithmique pour ce système de champs de 
vecteurs sur les espaces de fonctions associés, puis on étudie le problème de Dirichlet 
semi-linéaire pour des opérateurs somme de carrés de champs de vecteurs X. 

1. Introduction 

In this work, we consider a System of vector fields X — (Xi,..., Xm) defined on an 
open domain Q C Rd. We suppose that this System satisfies the following logarithmic 
regularity estimate, 

(î.i) ||(logA)'u||£a <C< 
m 

j=l 
I I * ; * + I I * , vwec0°°(i]), 

where A = (e + Î Dp)1/2 = (D). We shall give some sufficient conditions for this 
estimâtes in the Appendix, see also [5, 10, 12, 14, 15, 21]. The typical example is 
the system in E2 such as X\ — dXl,X2 = e-'*1' l/&dX2 with 5 > 0. Remark that if 
s > 1, the estimate (1.1) implies the hypoellipticity of the infinitely degenerate elliptic 
operators of second order Ax = Y^jLi XjXj, where Xj is the formai adjoint of Xj. 

If r is a smooth surface of we say that r is non characteristic for the System 
of vector fields X, if for any point XQ G r, there exists at least one vector field of 
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246 Y. MORIMOTO & C.-J. XU 

Xi,... ,Xm which is transversal to f at xo. Let now r = UjejTj be the union of 
a family of smooth surface in Q. We say that r is non characteristic for X, if for 
any point xo G T, there exists at least one vector field of Xi,..., Xm which traverses 
JTJ at for ail j G Jo = {A: G J;xo G A } . For this second case, the typical 
example is X\ = dXl1X2 = exp(—sin2(7r/xi))_1/2s)dX2, we have Tj = {x\ = 1/j}, 
j GZ \ {0}, i~b = {xi = 0 } , and Xi is transverse to ail i^, j G Z. 

Associated with the System of vector fields X = (Xi,... , Xm), we define the fol-
lowing function spaces: 

MIÊ» + N u G L2(Q)\XjU G £2(^),j = l , . . . , ra 

Take now fi CC 1̂ , we suppose that dQ is C°° and non characteristic for the System 
of vector fields X. We define H]ç 0(fî) = G i/j^(îî); u|ao = 0 } , we shall prove in 
the second section (see Lemma 2.1) that this is a Hilbert space. 

Our first resuit is the following logarithmic Sobolev inequality. 

Theorem 1.1. — Suppose that the System of vector fields X = (X±,... ,Xm) vérifies 
the estimate (1.1) for some s > 1/2. Then there exists CQ > 0 such that 

(1.2) 
Jçi 

M2iog2s-] M 
vrddd 

dvrd m 

vrd 
l-MIÊ» + N i » 

/or a// v G ifjco(fi). 

Comparing this inequality with that of finite degenerate case of Hôrmander's Sys
tem, for example, for the System Xi = dXl, X2 = x\dX2 on R2, we have (see [4, 7, 24]) 

IMILP < C (||dH|2 + \\xk,d2v\\22 + llt;||?a: 1/2 

for ail v G Co°(fî), with p = 2 + 4/fc. Consequently, if k go to infinity, we can only 
expect to gain the logarithmic estimâtes as (1.2). That means that we are not in the 
elliptic case of [17]. 

Similarly to the elliptic and subelliptic case (see [3, 24]), by using the Sobolev's 
inequality, we study the following semi-linear Dirichlet problems 

(1.3) 
Axu = au log \u\ + bu, 
u\do = 0, 

where a, b G K. We have the following theorem. 

Theorem 1.2. — We suppose that the System of vector fields X = (Xi, . . . ,Xm) sat-
isfies the following hypothèses: 

H-l) dQ. is C°° and non characteristic for the System of vector fields X ; 
H-2) the System of vector fields X satisfies the finite type of Hôrmander's condition 

on Ù except an union of smooth surfaces r which are non characteristic for X. 
ES) the system of vector fields X vérifies the estimate (1.1) for s > 3 / 2 . 
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 247 

Suppose a ^ 0 in (1.3). Then the semi-linear Dirichlet problem (1.3) posses at 
least one non trivial weak solution u G H]ç0(Çt) n L°°(îî). Moreover, if a > 0, we 
have u G C°°(Ct \ T) n C°(fi \ T) and u(a:) > 0 for ail x G \ T. 

As in the elliptic case, we do not know the uniqueness of solutions (see [3]). The 
regularity of this weak solution near to the infinitely degenerate point of r is a more 
complicated problem, which will be studied in our future works. 

The structure of the paper is as follows: The second section consists of the proof of 
Theorem 1.1. The third section is devoted to the proof for the existence of weak solu
tion of Theorem 1.2, we introduce a variational problem and prove that the associated 
Euler-Lagrange équation is (1.3). In the fourth section we study the boundedness of 
weak solution of variational problems, which is a difficult step as in the classical case 
for the critical semilinear elliptic équations (see [20]). In the appendix we give some 
suffîcient conditions for the logarithmic regularity estimâtes. 

2. Logarithmic Sobolev inequality 

We study now the function spaces Hx o(̂ )> see the similar results in [22]. 

Lemma 2.1. — Suppose that dQ is C°° and non characteristic for the System X, then 
HxQ(Çl) is well-defined, and a Hilbert space. Moreover the extension of an élément 
ofH^Q) by 0 belongs to Hlx{Çl). 

Proof — For the well-definedness, we need to prove the existence of trace for v G 
iJ^(Q). We know that the trace problem is a local problem, so after the localization 
and straightened, we transfer the problem to the case: v G L2(R+),dXdv G L2(R+) 
with support of v is a subset of {|(X',XD)| < c, Xd ̂  0}, of course we can take the 
smooth function approximate to v, then we have 

v(x',xd) - v(x\c) = 
PXd 

Je 
dx,v(x't)dt, 

which prove that 

(2.1) IK>^)IIL2 ^ 4dxdv\\h> 

for ail 0 < xd ^ c. This shows that the trace v(x',0) G L 2 ^ " 1 ) . 
We shall prove now 0(Q) is a closed subspace of Hx(Çt). Let {VJ} be a Cauchy 

séquence of iïj^0(fî). Since it is also a Cauchy séquence of Hx(Ù), there exists a 
limit VQ G Hx(Q), and so it suffices to show that V\QQ = 0. Applying (2.1) to Vj - vo, 
we have 

IM. ,0 ) -M-M\h < 4dXd(vi -^o)||?2, 
which implies ||vo(-> 0)\\L2 = 0- We have proved that HxQ(Q) is a Hilbert space. The 
extension problem is the same as classic case. This is also a local problem, if we extend 
v by 0 to Xd < 0 and dénote that function by v, then v,dXdv G L2(R+), v\Xd=o = 0 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



248 Y. MORIMOTO & C.-J. XU 

implies that v,dXdv G L2(Md), and the tangential dérivation has nothing to change. 
So we have proved the Lemma. 

Since LlogL is not a normed space, we need the following Lemma, see also [19] 
for some détail of function space LlogL. 

Lemma2.2. — Let a2 > 0, B > 0 and let {vj,j G N} be a séquence in L2 satisfying 

Kriiog|ujir2 ^ b.dv 

Then {\VJ\ \\og\vj\\ai} is uniformly integrable for any 0 ^ ai < o\. Therefore there 
exists a convergent sub-séquence {VJ. } such that 

iim / K i 2 i i o g K i r = / K i 2 i i o g K i r 
k-*oc J 

and 

M 2 i i o g K i r ^b. 

Proof. — We prove that, for any e > 0, there exists S > 0 such that if E C fî, 
fi(E) < S, then 

JE 
\VA2\1or\VAF* <e, Vj. 

But for any e > 0, there exists to > e2 such that 
1 

logŒ2-(Tl t 
< e, Vt Si to. 

Take now ô = e(i% logCTl to)-1, KE) < <*> and 

Aj=En {Kl < to}, Bj = E n {\Vj\ > t0}. 

then 

and 
'Ai 

|v,-|2| log\VJ\P < tllogCTl toii(Aj) < e, 

vr 
N 2 i i o g N r < ^ 

JBi 
\vj\2\log\vj\\a2 < eM 

where M = sup- |vj|2| log I^H*72. The proof of the Lemma is complète. 

Proof of Theorem 1.1. — We are following the idea of [4]. Take v G HxQ(Q), we 
use the same notation for the extension by 0, As in the classical case, there exists 
a mollifier family {p£,e > 0} such that p£ * v G CQ°, lime_>o 9e * v = v in L2 and 
||A"(pe*t;)||LÏ < C{\\Xv\\L2 + \\v\\L2}, ||(logAy(p£*v)\\L2 < C{||(logA)^||L2 + ||t;||i2} 
with C independent on s. By using (1.1) and Lemma 2.2, we need only to prove the 
following estimate: 

(2.2) 
ICI 

Itflog28"1 
M 

cr+d1r+d21 
^ q, || (iog A)si;||22) 
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 249 

for ail for v G Cg°(îî). 
By the homogenization, we prove (2.2) for v G CQ°(Q) and |M|L2 = 1. Since 

2s — 1 > 0, we have 

vr 
M'iog2-1^!) M'iog2-1^!) M'iog2-1^!) 

'\v\>e 
M ' iog2-1^!) 

< C0 + 

vr 
l^iog2-1^!) . 

Since f2 is bounded, v G L°°(Q) and 2s — 1 > 0, we have by the définition of Lebesgue 
intégration 

vr 
\v\2\og2s~1{\v\) = 

vr 

vr 
X2log2s-1(X)dfi{\v\ > A} 

vr 
vr 

'o 
2Alog2s-1(A) + ( 2 s - l ) 

A3 
'(A)2 

log2s-2(A) ] /idwl > X)dX. 

where /i(-) is the Lebesgue measure. Since A3/(A)2 ^ A, log(A) > 1, we have that 

(2.3) 
'fi 

|w|2| log |v||2—1 ^C0 + Cs 
r>oo 

0 
M o ^ - ^ A ^ d v l > X)d\. 

So we need to estimate the second term of right hand side of (2.3). For A > 0 we set 
V = VI,A + V2,A with = M'iog2-1^!) Then 

H{\v\ > A} < M { K A | > A/2} + /I{|«2ÏA| > A/2}. 

For the first term we have 

IKA| |L~ < \\VHA\\LI ^ \\V\\L2\\lm<eA}\\L2 < Cde^ . 

Choose now AA = § log (À/4Cd), we have /x{|vi,aA | > A/2} = 0, hence 

vrd 

vr 
A l o g ^ A W M > X)dX < C0 + Cs 

vrd 

le 
Alog2s_1 AA»(|v| > A)dA 

M'iog2-1^!) 9+dskj 
le 

\log2s-1\fi(\v2>Ax\>X/2)d\ 

<C0 + 2CS 
»OC 

e 

log28"1 A, 
A 

\V2,Ax\\hd\ 

^ CQ + 2CS 
've 

vr 0 log2*"1 A 
A {ÇeRd;\£\2eA\} 

)v(t)\2dÇd\. 
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250 Y. MORIMOTO & C.-J. XU 

Now |£| ̂  eAx implies that À ̂  4Cd(|^|)d/2. By using Fubini theorem we have 

ROO 

vr 
Aloe^-^AMM > X)d\ < Co + 2CS 

vr 
\m\2 

R4CD(\i\)i/2 

Je 

l o g ^ A 

A 

mm\2de = cj|(iog 
vr 

log2s(4Cd(|£|)d/2)|£(0|2^ 

d+d4r 
vrd 

iog2s(\mm\2de = cj|(iogA)st,ii?,mv 

Here we have used the fact 

vr 
iog2s(m)m)\2dt > 

JRD 
i«(0i2de = i. 

Thus we have proved (2.2) by using (2.3). 

In the proof of existence of weak solution for the variational problem of section 3, we 
need also the first Poincaré's inequality. We study the following Dirichlet eigenvalue 
problems: 

(2.4) Axu = \u, 
u\dçi = 0. 

We have 

Lemma 2.3. — Under the hypothèses H-l), H-2) and H-3), the first eigenvalue \\ of 
problems (2.4) is strictly positive. This is équivalent to 

(2.5) d+d1dr+d1 1 
Ai 

m 

j=i 

mm\2de = cj|(iogdd+d1rd+d1 

By using this lemma, in iJjC0(Q), we can use ||X</?||£2 = i :7=i wx&wh) 
1/2 

as 
norm. 
Proof. — We set 

Ai = 
IMIL2=i,¥>€tfii0(n) 

inf { I I * * } - m m \ 2 d 

Suppose that Ai = 0, then there exists {<pj} C Hx0(iî) such that H-X̂ Hx̂  —> 0 
and II^HL2 = 1- By using (1.1), Hx0(Ct) is compactly embedding into L2(^). The 
variational calculus deduce that there exists <po G H]ç o(^)> IÎ OIIL2 — 1? <Po ^ 0 vérifies 

Ax<Po = 0. 

Since Ax is hypoelliptic on Ù and diï is non characteristic for X, we have y?o G 
Ccc(Q),ipo\dn — 0 (see [6, 9, 11, 16]). Under the hypothesis H-2), Bony's maximum 
principle (see [2]) implies that <po has not the maximum point in fî \ JT, and the 
maximum of (fo propagates along the intégral curves of X\,..., Xm in the interior of 
Q. Since r is non characteristic for the System Xi , . . . , Xm, for any point of T, there 
exists at least one vector field of X\, • • • , Xm which is transversal to r. Hence if the 
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 251 

maximum of (fo attains at a point of r in the interior of fi, then the maximum of <po 
propagates along the intégral curve of that vector field which traverses r, that means 
the maximum of tpo attains at a point of fi \ r, so it is impossible. Now it is only 
possible that the maximum of ipo attains at <9fi, but (po\dn = 0, which implies that 
ipo = 0 on fi. This is impossible because ||<£o||l2 = 1, so that we prove finally Ai > 0. 

3. Variâtional problems 

For a G M, we study now the following variât ional problems 

(3.1) d+d1r 
\\v\\L2 = l,v€H^0(n) 

inf d+d1 

with 

/„(«) - ||Xt;||2L2(n) - a 
d+d1 

|v|2log|v|. 

We have firstly the existence of minimizer of Ia(v). 

Proposition 3.1. — Under the hypothèses H-l), H-2) and H-3), Ia is an attained min
imum in Hx o(^)-

Proof. — We prove firstly Ia(v) is bounded below on {v G Jï]^0(fi), IMIL2 = 1}. 
Hypothesis H-3) and Theorem 1.1 give that 

(3.2) 
Jn 

v\2log2 M 
IMU» 

< C0 (||XV||IA(N) + |M|£3(N)) , 

for ail v G ifjC0(H). Now if a = 0, we have Io(v) > Ai for ail v e {v e 

#x,o(fi)> IMU2 = If a ^ °> we have 

a 
fr 

H2|iogH|< î 
2C0 a 

\v\2 |log|u||2 
Colal2 

2 
1 

* 2' *HLL»(n) " 
C0 . Co\a\2^ 

i 2 2 

for ail Hj^0(fi), ||u||£2 = 1}. We have that 

mm\2de = cj|(iog 
re 

|F|2| log |v|| 

> \\Xv\\2L2 -1 
2 

\Xv\\2L, -
mm\2de = cj|(iog 

2 2d 

vr 1 
2' î — 

'Cn Cnlal2' 
2 2 

for ail ve{ve Hlxo{ty, \\v\\L2 = 1}. 
Let now {VJ} C {v € H\ o(^)> IMIt2 = 1} be a minimizer séquence of Ia, then 

'Cb . Colol2 
, 2 2 

mm\2de 1 

2' 
mm\2de 
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252 Y. MORIMOTO & C.-J. XU 

It follows that {VJ} is a bounded séquence in 0(^)- Then there exists a subsequence 
(dénote still by {VJ}) such that Vj VQ in H]ç 0(ÇÏ) and Vj —» fo in L2(Q) which give 
that 

lim inf u\an = 0 ?2/o\ u\an = 0 xx xlim Ibill r2fo\ = llfoll r2rô  = 1. 
J-+00 

By using (3.2), {JQ \vj\2log Vj} is bounded, the Lemma 2.2 implies that there exists 
a subsequence of {VJ} such that 

lim 
j-+oo 

u\an = 0 xx 
in 

vo\2logv0. 

But we have also a direct proof of this convergence 

vr 
u\an = 0dd 

m 
\VQ\ \ogv0\ 

vr 
In 

(Vj - v0) 
f1 

vr 
ut(21ogvt + l)dtdx 

< c\\vj -v0\\L2 
vr 

Jo in 
\vt\2(\oz2 \vt\ + l)dx 

i il 
dt 

< C\\VJ -v0\\L2 
vr 

Jo 
(IMU2 + 

•1 

vrd 7n 
|t*|2|log2|f*||dx) 

1/2-
)<ft 

^ C\\VJ - V0||L2 
r-l 

0 
Wvth* + (\\Xvt\\2L2 + \\vt\\h + \\vt\\2L2 log2 \\vt\\2r,)1/2)dt, 

where vt = Vj + t(vj — vo), and we have used (3.2) for the function vt G Hx0(fl). 
Since {VJ} is a bounded séquence in i7jC0(Q), and \\VJ — follz,2 -• 0? the right hand 
side of above estimate go to 0 if j —> oo. We have proved finally Proposition 3.1. 

We study now the Euler-Lagrange équation of variational problems (3.1). 

Proposition 3.2. — The minimizer u of variational problem (3.1) is a non trivial weak 
solution of the following semilinear Dirichlet problem 

(3.3) 
Axu = au log \u\ + Iau, 

u\an = 0. 

Proof — The minimizer u obtained in Proposition 3.1 is in {v G 0(£î), ||^||L2 = 1} 
and u > 0. u is a weak solution of (3.3) is équivalent to 

(3.4) 
Jn 

m 

3 = 1 
XjuXjtp — a 

'n 
Uif log \u\ -Ia 

m 
uif = 0, 

for ail ip G Hx0(Q). For fixed </? G ffĵ >0(fî) and e G R with |e| small enough, we put 

u£ = u + e<p, tt£ = ue/\\ue\\L2, 

then ue G {f G i7jC0(fi), |M|L2 = 1}> so that 

tf(e) = Ifl(2e)^/a(u) = Ja, 
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and 

H(e) = 
1 

\\Us\\h 
la{ue) + a\0g\\u£\\L2. 

By direct calculus, 

H'(e) = 
2 

IM4L2 
Ia(u£] 

in 
U£(f -f 

a 

\K\\h vr 
vr 

vrd 
1 

x+d1r+ 
2 

/M 
Xu£X<£ — 2a u£(p\og\u£ \ - a U£if 

We have to prove the continuity of H'(e) at e = 0, since u£,Xu£ G L2(Q), we need 
only to prove 

lim 
vr vr 

U£</>logu\an = 0 = 
vr 

tt<plog|ll|. 

this can be deduced by Lebesgue dominant theorem if we use the fact |tlogt| < 
t2 + e-1, Vt ^ 0 and (p can be approximated by bounded fonctions. So that we have, 
for any e G M, with \e\ small enough 

Ia(ue) = H(e) = H(0) + Hf(0)e + <5(e)e ^ = #(0), 

where <J(s) 0 if e -» 0. We get finally #'(0) = 0, this is true for ail ip G H^0(Q), 
we have proved Proposition 3.2. 

Theorem 3.1. — Let a, 6 G R, a ^ 0, under the hypothèses H-l), H-2) and H-3), the 
Dirichlet problems (1.3) has at least one non trivial weak solution u G H]ç o(̂ )> u ^ 0> 
MU» > o. 

In fact, if S is a weak solution of problem (3.3), for c > 0 we set u = eu, then 
IMIL2 = C > 0, W ) 0, « G ifjf 0(r£) and in the weak sensé 

Axu = ait log \u\ -h (Ia — logc)it. 

Choose c = eIa~b > 0, we get (1.3). 

Following this direction, we can study the high order nonlinear eigenvalue problems. 
Suppose that we have the logarithmic Sobolev inequality 

d 
M2iogfc+1 

M 
v\\l>j 

£ C0 (\\Xvfmn) + \\vfL2m) . 

For a i , . . . , Ofe € M, we study the variational problems 

Ik 
a>i,---,a>k u\an = 0 

inf 
u\an = 0 

rk AI,...,AFC (v), 

with 

lL.;ak(v) = \\Xv\\lHQ) 
k 

3 = 1 
ai 

Jn 
\v\2 log3 \v\. 
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254 Y. MORIMOTO & C.-J. XU 

As in the proof of Proposition 3.1, we need to prove that there exists a subsequence 
of {VJ} of minimizer séquence such that 

lim 
vr f 

| ^ | 2 l o g S = 
r 

Kl2 log* V0 

which was already shown in the Lemma 2.2. 

By similar calculus as in Proposition 3.2, we can prove that for any a i , . . . , a& G M, 
there exists ûfc such that the following semilinear Dirichlet problems 

Axu = 
U\dQ = 0, 

^3=1 ^3 
u\an = 0 0(^)>u ^ 

has at least one non trivial solution in H]ç 0(fi), with u ^ 0 and \\u\\L2 = 1- Moreover, 
we have similar regularity results as Theorem 1.2. 

4. Boundedness and regularity of weak solutions 

By using the interpolation inequality, the condition H-3) and the Logarithmic 
Sobolev inequality (1.2) give that, for any N ^ 1, there exists CN such that 

(4.1) 
vr 

i;2log2 M 
Ml* 

vr î 
N 

XvfL* + cN\M2L2i 

for ail v G Hjrt0(iï). 

Theorem 4.1. — Let u G 0(^)>u ^ 0, \\u\\L2 / 0 be a weak solutions of équation 

(4.2) Axu = aulogu + bu. 

Thenue L°°(fi). 

It suffices to show that there exists A > 0 such that the estimate 

(4.3) \\u\\Lp < A 

holds for any p ^ 2. In fact, if fi£ = {# G fi; |w(x)| ^ A + e} for e > 0 then it follows 

from (4.3) that |fi£| < (xf j ) ~~^ (P ~~* 00) anc* nence we nave ^ ^-

We prove this by the following three propositions. To get the estimate as (4.3), we 
shall use w2p_1 or u2p~1\og2rn(up) as test function for the équation (4.2) for p ^ 1, 
m G N, but we don't know if u2v~x log2m(up) G iïjf0(fi), so we replace the func
tion u by iz(fc) with u^(x) = u(x) if x G {x G fi; \u(x)\ < k} and u^)(x) = k if 
x G G fi; ^ A:} for k > 1, p > 1. Then it is easy to check (see [22] and The
orem 7.8 of [8]) that u2^'1 log2m(^fc)) G H^^Q) for ail p > 1, m G N. If p = 1, we 

use (logmi£)2fc) G i7x0(fi) as test function. To simplify the notation, we shall drop 
the subscript and use w2p_1 log2rn(up) as test function. 
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Proposition 4.1. — Let u G i?x,o(^)> u^^i \\U\\L2 y^O be a weak solution of équation 
(4-2). Suppose that for some po ^ 1? there exists AQ such that 

\\u\\L2P0 ^ A0. 

Then 

(4.4) 
vr 

| X ( Ï Ï H 2 + 
Jn 

[u)2po log2 ((u)P0) < 2C2 + \a\2 + 2po(|6| + log A0) 

where the constant C2 is given in (4-1) and u = u/\\u\\L2P0. 

Proof. — We have u G Hv n(^), ll̂ ll r2P0 = 1, and u is a weak solution of équation 

(4.5) Axu = au log u + (b - log ||tx||L2p0)n. 

Take u2po 1 as test function, we have 

2pn- 1 
vrd Jn 

\XuPo\2 = a 
Po n 

u2po \ozupo + (b-\og\\u\\L2P0) d+d1r 

Jn 
which shows that 

(4.6) 
Jn 

XuP0\2 ^ 
1 

2 
u2po log2 uP0 + 

1 
k2' 

T|2+Po|&|+Po logAo). 

On the other hand, the logarithmic Sobolev inequality (4.1) gives 

vr 
(uPo)2\og2 

\uPQ\ 
}\UP0\\L2 

vr 1 
2 

{# G fi; |w(x)| ^ A + e 

Note that ||i£Po||l2 = INII^PO ANC* W = U/\\U\\L2PO, we have 

(4.7) 
Jn 

u2po \og2(uPo) ^ 
1 
2 

X(^°)||2L2+C2. 

Adding (4.6) and (4.7), we have the desired estimate (4.4). 

Proposition 4.2. — We have for any m G N 

(4.8) 
Jn 

\X(uPQ)\2\og2m-2(uP0) + 
Jn 

u2po log2m(upo) < Af?mP(m,po)(m!)2 

where P(m,p0) = p™ if m ^ Jp^, P(m,p0) = Po^ if m > Jpà, and 

Mi ^ (2|îî| + 4C2 + 2C4 + 10 + 6|a|2 + 8|6| + 8 log^0)1/2-

Proof. — For m = 1, this is (4.4). We prove now (4.8) by induction, suppose that 
(4.8) is true for some m G N, then we prove it for m H-1. From now on we drop the 
tilde of u and subscript of p to simplify the notation. Take u2p~l log2m(up) as test 
function in (4.5), we have 

2p-l 
p2 Jn 

| x ^ | 2 i o g 2 M K ) 2m 

P 'n 
\Xup\2\og2rn-\up) 

vr a 
P n 

u2nog2m+\uV) + {b-\og\\u\\L.P) 
u 

u2p\og2m(up), 
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which gives 

vr 
\Xup\2loz2rn(up) vr 

1 
2 vr 

\Xi,p\2\nçr2rn(i,p\ + <).rn2 
JQ 

|X^|2log2m~2K 

+ 
1 

4 JQ 
u2plog2rn+2(up) + (H2 + p|6| + plogi4o) 

Q 
u2plog2m(up) 

so that 

(4.9) 
JQ 

\Xup\2\og2m(up) < 
1 

: 2 Jn 
u2ploe2m+2(up) 

+ (4m2 + 2(|a|2 +p\b\ + p log A0))M2mP(m, p)(m\)2. 

We study now the term JQu2plog2m+2{up), we eut SI = fti U ftj U fij with fix = 
{a; € iï;u(x) ^ 1} and 

fi+ = {x G ft;«(ar) > 1,1 logm(«(xf )| < ||«plogm(«P)||L: 
fij = {x S îï;«(x) > l,|logm(«(x)P)| > ||uPlogmK)||L2}. 

Then 

vr 
«*log2m+2(«p) < |fi|((m+l)!)2. 

For the second term, (4.4) give 

vr 
u2p\og2m+2(up) ç \\uplogm(up)\\h u2plog2(up) 

< (2C2 + |a|2 + 2p|6| + 2plog A0)MfmP(m,p)(mV)2, 

and for the third term, we use the logarithmic Sobolev inequality (4.1) for N = 4, 

vr 
{# G fi; |w(x)| ^ A + e 

vr 
(uplogmup)2log2 

uPlogm(uP) 
||UPl0gm(UP)||L2, 

vr 1„ 
• 4" 

X(up\ogm up)\\2L2 + C4\\up\ogmup\\2L2 

vr 
1 
2 r 

|XK)|2log2mK) + m2 
vr 

|xK)|2iog2m-2K) + c4 
vr 

u2plog2m(up 

vr 1 
vr 

\X{up)\2 log2m(up) + (C4 + m2)M2mP{m,p){mV)2. 

Adding those three terms, we get 

(4.10) 
JQ 

u2p\og2m+2(up) < 
1 

2 . r 
\X(up)\2\og2m(up) + \Q\((m + l)\)2 

+ (2C2 + C4 + m2 + \a\2 + 2p\b\ + 2plog A0)M2m P (m, p)(mV)2. 
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Adding (4.9) and (4.10), we get 

(4.11) 
Jn 

u2p\og2m+2(up) + 
'n 

\X(up)\2 \og2m(up) ^ (2|fî| + 4C2 + 2C4 

+ 10 + 6|a|2 + 8|6| + 8log A0)M2mP(m + l,p)((m + l)!)2. 

We have proved Proposition 4.2. 

Proposition4.3. — Let u G Hx0(£ï),u ^ 0, IMIL2 0 be a weak solution of équation 
(4-2). Suppose that for some po > 1 and AQ ^ e12 we have 

\\u\\L2P0 ^ AQ. 

Then for 

Mi > (2|îï| + 4C2 + 2C4 + 10 + 6\a\2 + 8|6| + 8log A0)1/2, 

and S = l/2Mi, /ia?;e 

(4.12) 
7R2 

pod+s)dx ^ Apl^A 
dre +ds1r 1 4- I V/3 

Proof — For any 6 > 0, the estimate (4.8) gives that 

'n 
\up°^\2dx 

1/2 
vr 

Jn 
\uPouôpo\2dx \ 1/2 

./fi 

~poe<51og(uPo) i2 ,1/2 

vre 
re 

UP0 
oo 

m=0 

(Jlog(ÏÏP°))m|2 , 

ml 
dx 

1/2 OO 
vr 

m=0 vr 
ïï2p0 51og(ûP°))2r' 

m! 2 
dx 

1/2 

vrd 
OO —̂"\ 

71= 

vr 

ml ' Jn 
u2po \og2m(upo)dx 

.1/2 
vrd 

m=0 

oo 
pod+s)dx ^ Apl^A20Ml+S) 

OO 

m=0 

(5Mi)m. 

For (5 = l/2Mi, we have finally 

vr 
u2pod+s)dx ^ Apl^A20Ml+S) 

Since for any po > 1, 

4 2Vpo" = 4 2V̂ o"logp0 < / 12\2Po/3 

We have proved (4.12) if > e12, and Proposition 4.3. 

The same calculus give also 

(4.13) 
Jn 

\X(up^+5))\2dx < (1 + <S)2(4Mi)2,4 
2po(l+«)( 1+ Î 

,po(i+*) 
l/3> 

We put now for fc G N, 

pod+s)dx ^ Apl^A20Ml+S) xs L+P0-1/3E 
d+d1rd+d1 

1 V/3 
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then Proposition 4.3 implies that 

JQ 

pod+s)dx ^ A 

In 
2pk{l+S) v+1d 

2Vtr(l+Ô) 1 + 1 
Pfc(l + <5) 

l/3> 

dx 
2p0(l+<5)fc+1(l+Po1/3 f 

dv 
d+d1d 

with ô = l/2Mi and 

(4.14) Mx > (2|fi| + 4C2 + 2C4 + 10 + 6|a|2 + 8|6| + 8log A*)1/2 . 

We have now for ô = 1/2M\ < 1/4, 

log Ak 
log A0 = i+Pô1/i 

k 

d+d1r 

1 

(1 + d) 

3/3 
pod+s)dx ^ 

oo 

vrd 

1 

d+d1r 

j'/3 

= 1+Pn"1/3-
l 

l+< 
, 1/3 

dx 1 
1+d 

1/3 
- < l + 4p-1/3M1 <5Mi. 

So we can choose Mi independent on k 

(4.15) Mi = (2|fi| + 4C2 + 2C4 + 10 + 6|a|2 -h 8161 + 40 log A)) . 

We have proved for any A: G N, 

JQ 

2P0(l+<5)fc < A^ 
X 2Po(l+6)k 

For po = 1, we have A0 = e12. So we have proved (4.3) with A = e60Ml if \\u\\L2 = 1 
Now the proof of the Theorem 4.1 is complète. 

Theorem 4.2. — Let u G Hx0(Q),u > 0, |M|L2 ^ 0 be a weak solution of équation 
(4-2), suppose that a > 0, T and <9fi is non characteristic. Then u G C°°(fi \ T) Pi 
C°(fi \ T) and u(x) > 0 for ail x G fi \ T. 

Proo/. — Suppose xo G fi \ T, then there exists a neighborhood Vo C fi \ T of xo, 
for (p G Co°(Vb) we shall prove that v — (pu G C°°(Vb). It follows from équation (4.2) 
that, 

Axv = a -̂u log + bipu + 
m 

d+d41r 

PjXjU + y?0w = /o + 
m 

d+dr 
Xi fii 

with G C00(Vb),/7- G L°°(Vb), j = 0,.. . ,m. Since the System of vector fields X 
satisfies the finitely type Hôrmander's condition on Vo, the regularity resuit of [23] 
(see also [22, 24]) implies that u G C£(V0) for some e > 0. If u(x) ^ a > 0 for x G Vb, 
we have ttlog^x G C£(Fo) since tlog/; G C°°(t ^ a). Then we prove by récurrence 
that u G C°°(Vo). For xo G dfi \ JH, we have also u G C£(Vo H fi), but we know only 
-ulogîx G C°(Vb fl fi), so we can't get the C°° regularity of u near to the boundary 
<9fi. Now we finish the interior regularity of Theorem 4.2 by the following lemma. 

ASTÉRISQUE 284 



INFINITELY DEGENERATE ELLIPTIC OPERATORS 259 

Lemma 4.1. — Suppose that u G C°(fii),w ^ 0 is a non trivial weak solution of 
équation (4-2) on an open set fii C fi, let a > 0, then u(x) > 0 for ail x G fii. 

Proof. — Suppose that u(xo) = 0 for some xo G fii, then we have / = aulogu + bu 
continuous on fii, and /(xo) = 0, then for any e > 0, there exists a small neighborhood 
Uo C fii of xo such that 0 < u(x) ^ e on UQ. Since a > 0, we have for e small enough, 
f(x) ^ 0 on f7o, so that Axw ^ 0 on Uo, but xo is a minimum point of it, as in the 
proof of Lemma 2.3, the maximum principle of Bony ([2]) implies that u e 0 on 
so that u is a trivial solution by continuous of u in fii. 

5. Appendix: Logarithmic regularity estimate 

In this section we shall give sufficient conditions in order that the sum of squares 
of real vector fields 

1 of [21]). 
m 

3=1 

d+d1d 

satisfies the logarithmic regularity estimate (1.1). We start by the following simple 
model operator in M2 

L0 = Dl +DX2(g(x1)DX2), 

where C°° 3 g(t) > 0 if t ^ 0 and g(0) = 0. In what follows we do not require that 
g(x) is written as g = (p2 for some (p G C°°, and we consider a little more gênerai 
logarithmic regularity estimate than (1.1). The following proposition is essentially 
due to the device of Wakabayashi (see Example 5.1 of [21]). 

Proposition 5.1. — Let f(t) and g(t) be non-negative continuons functions and satisfy 
f(t),g(t) > 0 if t 7̂  0. Assume that there exists an e ^ 0 such that 

(5.1) lim sup 
dg 

d 

re 
f(r)dr 

l/s 

1 of [21]). 
\\ogg{t)\^e. 

Then for any compact set K in R2 there exist constants Co > 0 independent of e and 
C£ > 0 such that 

(5.2) 11 v7Ô*ô(log A)ŝ 112 ^ C0e2s(L0t*, u) + C£\\u\\2 

for allue C%°(K). 

Remark. — The typical example satisfying (5.1) is g(t) = exp(—2|£|-1/s), stated in 
Introduction with f = 1. It is known that (5.1) is also necessary for (5.2) with 
neglecting constant factor of e if f(t) and g(t) are monotone in each half axis R±. 
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The necessity is shown by way of another sufficient condition for (5.1), given by Koike 
[10], as follows: 

limsup/i(/;£)1/s|log#(£)| ^ e, 
t-»o 

where /i(/;£) = sup y/f(r)\t - r\ if ±t > 0. This condition is équivalent with 
0^±T^±t 

(5.1) except for constant factor of e under the monotonous condition. We refer [14] 
and références therein concerning détails for the estimate (5.2). 

Proof. — If F(t) = |0 f(r)dr then it follows from (5.1) that there exists a t0 > 0 
such that 

(5.3) g(t)<l and \F(t)\(-logg(t))s < 2es f(t) if |*| < t0. 

Since g(t) > 0 for t ^ 0, one can find a AQ > 0 such that 

(5.4) if A > A0 then Q,\ := {t; g(t)X ^ 1} C {t; \t\ < t0}. 

Note that for v{t) € C^M1) we have 

llVTÔÔaogA)^!!2 = ([A,F(t)](logA)2'V,V) 

< 2\(Dtv,F(t)(log\)2sv)\ 

^ 8e2s\\Dtv\\2 1 
8£2s " 

F(i)(logA)2st;||2 

by the Schwartz inequality. Choosing another suffîciently large Ào > 0 if necessary, 
we may assume 

1 
8e*s 

F(t)2(log X)4s ^ A ^ g(t)X2 in Qcx n supp v if A ^ A0. 

If A > AQ then it follows from (5.3) and (5.4) that 

F(t)2(logA)4s < F(i)2(-log5(i))2s(logA)2s < 4e2s/(*)(logA)2s in fiA. 

Above two estimâtes give 
1 

d+d1 |TO(logA)2^| |2^ 
1 

: 2 vrd 
f(t)(\og\)2s\v\2dt + e2 

ni 
g(t)X2\v\2dt. 

Therefore we have 

\\VJ(tWog\yv\\2 < 16e2s(\\Dtv\\2 + (g(t)\2v,v)) 

if A ^ Ao- The estimate (5.2) is obvious if we consider the partial Fourier transform 
v(xi, A) of u(x\,X2) with respect to #2 variable. 

In the rest of this section we shall give a sufficient condition for gênerai operator 
A j , by using Sawyer's lemma (see below), as in [15]. For the sake of simplicity, 
we confirm ourself to the logarithmic regularity estimate (1.1). Let Xj dénote the 
repeated commutator 

[Xjx, [Xj2, [Xj3, • • • [Xjk_11Xjk] •••]]] 
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for J = (j i , . . . Jk)Ji G {1 , . . . ,ra}, (and set |J | = k). For fc ̂  1 put 

G(x; A:) = min 
\VJ(tW |J|̂ fc 

|Xj(x,OI2, g(t;j,k,x0) = G((exp^)(x0); *), 

where (exptXj)(xo) is the intégral curve of Xj starting from xo G T. Here we reeall 
that r = {x G fi; 3£ G S**-1 satisfying Xj(x,Ç) = 0,VJ}. Let ^,fc(x0) dénote the 
mean value jjy /7 #(£; j , fc, #o)d£ on the interval /. Then we have the following: 

Proposition 5.2. — If s > 0 and if there exists an e > 0 such that 

(5.5) inf 
8>0,k€N 

\VJ(tWog\yv 

(supjlll^llogflf*(xo)|; / C (-/x,/x) and tfk(x0) < à}) < e 

for any xo ET, then there exist constants Co > 0 independent of e and Ce > 0 such 
that 

(5.6) ||(logA)'u||£a ^ C0e2s (Axu,t*) + Ce||ti||ia, 

for any u G Cg°(fi). 

Remark. — The condition (5.5) admits the case where ail intégral curves of Xj inter-
sect T in any small neighborhood of #o, such as the following: 

X1 = dXl X2 = exp ( - (x\ sin2(7r/xi)) 1/2s)dX2 

In this example, T is composed of hypersurfaces Tj = {x\ = 1/j} (j G Z \ {0}) and 
T0 = {xi = 0}. Since \x\ sinn/xi | is approximated to nj\xi — near Tj by Taylor's 
formula, (5.5) is satisfied for XQ G Tj. Let xo e To. If the interval / contains the 
point 1/j and its length is larger than a half of then #)'fc(xo) is comparable to 
that with X2 replaced by exp(—\x\\~xls}dX2. If the length of J is not larger than a 
half of 1/j, we can use the preceding resuit in the case of xo G Tj. 

Proof of Proposition 5.2. — It follows from (5.5) that there exist some j G {1 , . . . , m}, 
S > 0, k G N and /i > 0 such that 

log^(xo) 2s ^ (2e)2s|/|-2 if / C (-/x,/x) and g^k(x0) < 6. 

Take the new local coordinates x = (x\,x') in a neighborhood of Xo such that XQ = 
(0,0) and the line x' — constant vector in is the intégral curve of Xj starting 
from (0,x/). Since G(x: k) is continuous, we have 

logsHO,*') 
.2s < (4s)2s|/|-2 if I C (-/i,/x) \x'\ < /i and # ( 0 , z ' ) < ô 

by taking other small /x, ô > 0 if necessary. For a moment we consider x' as parameters. 
Let À be a large parameter satisfying À > 1/8. If gJjk(0, x')\ < 1 then we have 
— log<jrj'fc(0, x') ^ log À and hence 

(5.7) (logÀ)2s ^ (4£)2s(|/r2 +gi>k(0,x')\2) for V/ C (-/»,«). 
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When gjjk(0,x')\ > 1, this is also true for À ̂  À0 if À0 is chosen sufficiently large, 
depending on e. By means of the following lemma of Sawyer, we see that (5.7) implies 

(5.8) (log X)2s\v(t)\2dt^C0s2s (\Dtv(t)\2 + G(t,x';k)\2\v{t)\2)dt, 

for ail v(t) G CQ((-(I, /J,)), where Co > 0 is a constant independent of e. 

Sawyer's lemma (see Remark 5 in [18]). — Let Io be an open interval in and let 
V(i),W(t) ^ 0 belong to Lloc(Io). Then we have the estimate 

(5.9) 
dr 

V(t)\v(t)\2dt < C 
do 

(W(t)\v(t)\2 + \v'(t)\2)dt 

for ail v G CQ(IQ) with a constant C > 0 if and only if 

(5.10) Vi ^ A{3W3i + 2|7|"2} for any interval I with 31 C I0. 

holds with a constant A > 0. Moreover, if C and A are the best constants (5.9) and 
(5.10) then A < C < 100A Here 31 dénotes the interval with the same center as I 
but with length three times. 

In fact, if we set V(t) = (logA)2s and W(t) = g(t'J,k,{0,x'))\2 = G(t, x'; fc)À2, it 
is obvious that (5.8) follows from (5.7) if we replace 37 by I. It is well-known that 

(5.11) 
d+d41r 

UA'-^jull2 ^ C{(AXU,U) + H 2 } 

for some 0 < a = a(k) ^ 1/2. If we set 

q(xux ,£') = 
\J\^k 

\Xj(x,0\2\Ç\-2+2° 
l«i=o' 

in our local coordinates near x0, then we have q(x\, x', £') — G{x\ k) ^ 0 on f G Sd 2 
and 

\\Dtu\\2 + {qw(t,x',D')u,u) ^ C{(Axu,u) + \\u\\2}, 

where qw dénotes the pseudo-differential operator of Weyl symbol in R̂ T"1. If 
q(t,xf,Ç') = q(t,x',€')\€'\~2(T, then in view of the Littlewood-Paley décomposition 
in Rp"1 we may replace the second term by (qw(t1xf,D')\2u,u), provided that the 
support of the partial Fourier transform of u(t,xf) with respect to xf is contained 
in {\l/a ^ ^ 2À1/fT}. Though G is not smooth enough in gênerai, the Wick 
approximation of q™ gives 

x,£>')AVu) > (G(t,x'',k)\2u,u)-C\\u\\2, 

(see Proposition 2.1 of [13] and Proposition 1.1 of [1]). Hence (5.8) leads us to (5.6) 
for u with suppî/ contained in a small neighborhood of XQ. Finally, the usual covering 
argument shows (5.6) for the gênerai u. 
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