Asterisque

SERGE ALINHAC

An example of blowup at infinity for a quasilinear
wave equation

Astérisque, tome 284 (2003), p. 1-91
<http://www.numdam.org/item?id=AST_2003__284__ 1_0>

© Société mathématique de France, 2003, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique 1’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_2003__284__1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Astérisque
284, 2003, p. 1-91

AN EXAMPLE OF BLOWUP AT INFINITY
FOR A QUASILINEAR WAVE EQUATION

by

Serge Alinhac

Dédié a J-M. Bony a l'occasion de son soizantiéme anniversaire

Abstract. — We consider an example of a Quasilinear Wave Equation which lies
between the genuinely nonlinear examples (for which finite time blowup is known) and
the null condition examples (for which global existence and free asymptotic behavior
is known). We show global existence, though geometrical optics techniques show
that the solution does not behave like a free solution at infinity. The method of proof
involves commuting with fields depending on u, and uses ideas close to that of the
paradifferential calculus.

Résumé (Explosion a ’infini pour un exemple d’équation d’ondes quasi-linéaire)

Nous considérons un exemple d’équation d’ondes quasi-linéaire qui se situe entre
les exemples vraiment non-linéaires (pour lesquels ’explosion en temps fini est
connue) et les exemples vérifiant la condition nulle (pour lesquels la solution existe
globalement et est asymptotiquement libre). Nous montrons ’existence globale, bien
que des arguments d’optique géométrique non-linéaire indiquent un comportement
non libre de la solution & l’infini. La méthode de la preuve fait intervenir la com-
mutation avec des champs dépendant de u, et utilise des idées proches de celles du
calcul paradifférentiel.

In this text, Theorems, Propositions etc. are numbered according to the section
where they appear, without any mention of the Chapter. When quoted in a different
chapter, they appear with the additional mention of the Chapter. For instance, in
Chapter III, section 2, there is Lemma 2. In Chapter IV, section 4, the same Lemma
is quoted as Lemma III.2.

2000 Mathematics Subject Classification. — 35L40.
Key words and phrases. — Quasilinear Wave Equation, Energy inequality, decay, blowup, geometrical
optics, Poincaré inequality, paradifferential calculus, weighted norm.
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2 S. ALINHAC

Introduction

We prove in this paper the global existence (for € small enough) of smooth solutions
to the equation in R3 x R;
Otu — P (u)Azu = 0,c(u) = 1+ u,

with smooth and compactly supported initial data of size ¢.

This result has been proved before only in the radially symmetric case by Lindblad
[13], who also pointed out to some evidence that the nonradial solutions should have
a very large lifespan. It turns out that the solutions do not behave at ¢t = +oo like
solutions of the free wave equation (that is, u ~ ¢/(1 + t)); most derivatives of u
have, apart from the factor /(1 +t), an exponential growth exp C7 at infinity, where
7 = elog(l + t) is the slow time. This explains the title of this paper.

The method of proof is that of Klainerman [11], combining energy inequalities
and commutations with appropriate “Z” fields. Because of the blowup at infinity, the
fields we use have to be adapted to the geometry of the problem (as in Christodoulou-
Klainerman [7]), and their coefficients smoothed out. This is very close to the parad-
ifferential calculus of Bony [6], or, equivalently, to a Nash-Moser process.

I. Main result and ideas of the proof

We consider in R3 x R; the equation
(1.1)a F(u) = 8%u — (u)Azu =0,

where we will take for simplicity ¢ = ¢(u) = 1 + u, since higher powers of u produce
only easily handled terms. The coordinates will be

T = (331,.1'2,%3), t:‘TO’
and

Ou = (Oyu, Bau, O3u, Opur).
The initial data are
(1.1)y  u(z,0) =eud(z) + 2ud(x) + -, (Ow)(x,0) = euj(x) + *uj(x) + -,
for real C* functions !, supported in the ball |z| < M.

We will use the usual polar coordinates r = |z|, £ = rw, and define the rotation
fields
Ry = 2903 — 2302, Ry =301 — 103, R3=x102— 220:.
By Zy we will denote one of the standard Klainerman’s fields
(1.2) 0;, Rj, S =td +rd,, h;=mx;0;+1t0;.
For the Laplace operator, we have then
Ay =82+ (2/r)8, + (1/r*) A,
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 3

where the Laplace operator on the sphere A, is A, = R? + RZ + RZ2.
We define two linear operators

(1.3) P=c192—cA, P =c10?—c(0? +r72AL),

such that, setting u = ¢/rU, we have Pu =0, P,U = 0. We also set
L=c?8,+c?8,, Ly =c*/?8,— /%,

for which we have

(1.4) [L, L] = (Lyu/2¢)Ly — (Lu/2¢)L, Py = LL; —cr~2A, + (Lu/2c)L.

Remark that, since ¢ = c(u), iterated use of the fields L, L1, 0;, R;, S will generate a
considerable number of terms depending again on u. To master this phenomenon, we
will have to construct an appropriate “Calculus”. Finally, we set

(15) or=M+1-r+t,

which is positive and roughly equivalent to the distance to the boundary of the light
cone.
Our main result is the following Theorem.

Theorem. — Let so € N. For ¢ small enough, the Cauchy problem (1.1) has a global
smooth solution w. Moreover, we have the estimates

|Z&0u|r2 < Ce(14+1)°%, |al < so,
|0u] < Ce(1+t)7Y, |Z80u| < Ce(1+t) 02 |a| < sp—2.

In the case of radially symmetric data, the solution u is a smooth function of (12, t).
For this case, Lindblad [13] has proved global existence. We explain now the main
ideas of the proof. In the whole paper, all constants will be denoted by C, unless
otherwise specified.

I.1. A first insight using nonlinear geometrical optics

a. If w denotes the solution of the linearized problem on zero
(07 = Dw =0, w(,0)=ul(z), (w)(z,0)=ui(z),
we know (see [10]) that, for some smooth Fy,
wn~ 1/rFy(w,m—1t), T — 4o00.

Taking ew as a rough approximation of u, we observe as in [10], [1] that the quadratic
nonlinearity uAu produces a slow time effect, for the slow time 7 = elog(1 +t). This
means that, for large time, we expect formally u to be better approximated by

e/rV(r —t,w, 1),
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4 S. ALINHAC

for a smooth V satisfying V(r — t,w,0) = Fy(w, r —t). Substituting the above expres-
sion of u in (1.1), we obtain

(1.6) Vor +VVse =0, V(o,w,0) = Fy(w,0), o=r—t.

As pointed out already in [13], this is in sharp contrast with what happens, for
instance, for the equation 82u — (1 + u;)Au = 0. In this case, a similar approach
yields for V' the equation 2V, — V,V,, = 0, which is essentially Burgers’equation and
blows up in finite time. Here, one easily sees that (1.6) has global solutions: this gives
a hint that the lifespan of u could be very large (though not necessarily +oo, see for
instance the case of the null condition in two space dimensions [1]); the consequences
of this fact are precisely stated in Theorem II.1.
b. Looking more closely, we see that the solution V of (1.6) satisfies

Vol <C, 102,.,V]|<Ce .

o,w,T

Since we are willing to use Klainerman’s method [11], we have to apply products Z§
to (1.1)4, and use an energy inequality for P to control |0Z§u|r2. On the one hand,
the boundedness of V,, yields

|0u| < Ce/(1+¢t).
In the standard energy inequality for P (see [10] Prop. 6.3.2), this will cause an
amplification factor of the initial energy of the form
expCe /Ot ds/(1+s) = (1+1t)°e.
Thus the best one can expect, using the energy method and Klainerman’s inequality, is
|Z&0u| < Ce(1 +t)~1+Ceq /2,

which is the result we obtain. On the other hand, if we believe that u and its deriva-
tives actually behave like /7V, we see that derivatives like R;u or 82u, etc. do behave
like €/7(1+t)“¢, which matches with what we just obtained from the energy method.
This is why we say that we have blowup at infinity: the solution u exists globally, but
does not behave like a solution of the linear equation. This phenomenon has been
observed already, for instance in the study by Delort [8] of the Klein-Gordon equation.

1.2. Commuting Klainerman’s fields

a. If we apply for instance a rotation field R; to (1.1),, we obtain
PRu — 2(R;u)(Au) = 0.

Writing the energy inequality for P, it is not possible to reasonably absorb the term
(R;u)(Au) using Gronwall’s lemma since

t
eXp/ |Riul oo ~ exp[C™ (1 + )]
0
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 5

is far too big. On the other hand, applying Z§' to (1.1), produces a term (Z§u)(Au)
in the equation for PZ§u, which is a zero order term: to handle this term will require
some type of Poincaré lemma, controlling Z§u by 8Z§u. Note that even in a finite
strip |r — t|] < C close to the boundary of the light cone, such a term cannot be
reasonably controlled since again Au behaves exponentially in 7 at infinity.

b. Hence we have to modify the standard fields Zy to get better commutation
properties. Following the geometric approach of Christodoulou-Klainerman [7], we
define an optic function (in fact, only an approzimate optic function) ¢ = ¥(r,w, t) by

Ly=0, $0,wt)=—-M—-1-t

This is a substitute for the standard optic function r — ¢t + C, whose level surfaces are
the light cones r =t + C. To write down the modified fields Z,,, we first adapt Zj to
the geometry of the operator by defining Hy = ctd, + r/c0;. For some a(R;), a(S),
a(Hp) to be defined, we set now

R:n =R; + a(Ri)Ll, S =S5+ a(S)L1, Hgn = Hy + a(Ho)Ll.

Let us pause to explain how this compares with the approach of [7]. In [7], the
authors introduce an exact optic function, whose level surfaces give a foliation of
outgoing cones. The rotation fields and L are defined to be tangent to these cones.
This way of taking into account the exact geometry of the symbol has the advantage
of producing in the computations relatively easily understandable geometric objects.
On the other hand, it leads to rather tedious computations: may be, one is demanding
too much. Here, since Lu and (R;/r)u are expected to behave much better than other
derivatives of u, we consider that the effect of taking more complicated perturbations
(of the standard fields) involving L or R;/r would be negligible. The choice of the
perturbation coefficients a is dictated only by commutation properties with L. Ideally,
taking

(1-7)a La(R,) + a(RZ)(Llu/(2c)) = —Rm/(?c),
1.7 La(S) + a(S)(Liu/(2c)) = —Su/(2¢),a(Hp) = —a(S),
would give

(R, L] =L, [S™,Ll==xL, [H{, L]=xL.
To avoid singularities at r = 0, we introduce in fact a cutoff ¥ = X(r/(1 +1t)) in (1.7)
(see III.1 and the commutation relations of Lemma I11.3.1).
I.3. Induction on time. — The proof is by “induction on time” (see [10] for
instance). We first make the induction hypothesis
(IH)  |Z80u| < Ce(1+t)" 072 o] <so, n=10"2 so > 10.

This is a pointwise estimate, which is supposed to be valid up to some time 7. The
strategy of the proof is the following:

SOCIETE MATHEMATIQUE DE FRANCE 2003



6 S. ALINHAC

Step 1. — From (IH), we deduce (still for ¢ < T') the better behavior in L> norm
of a small number of derivatives of u (see Proposition I11.7)

|Z80u| < Ce(1 +t)"1HCa# 1 || < 80— 4.
Here, = 1/2+ 1071,

Step 2. — Using the energy method of Klainerman, we bound in L? norm (still for
t < T) a large number of derivatives of u (see VIL.3)

|Z&0u|p2 < Ce(1+1)°%,  |a| < 2(so — 4).
Step 8. — Using Klainerman’s inequality, we obtain
|Z§0u| < Ce(1 + t)_1+0501_1/2, || < 8o < 250 — 10.

If Ce < 1n/2 and t is large, this is much better than (IH) and Theorem I1.1 allows us
to prove that for small enough e, (IH) never stops being true and u exists globally.
To prove the L™ estimates of Step 1, we write the equation in the form

LLU = ¢/r?*A,U — (Lu/2c) LU,

and apply products Z2, to the left. In particular, we get |L1U| < C, which eventually
gives |Ou| < Ce/(1 +t).

To prove L? estimates without loosing derivatives, we have to commute Z,,, with P,
which causes new problems we analyze now.

I.4. Smoothing

a. In the expression of [Z,,, P]u necessarily appears the term (Pa)L;u, containing
(r=2A,a)Lyiu and (LLia)Lyu. Since, from (1.7), we expect to control R¥a in terms
of R¥Z,,u only, we see that we are missing two derivatives if we want to keep the full
r~2 decay, or missing one if we rather write

r2A, =77 Y (Ri/7)R;.

In both cases, we have to put a smoothing operator Sg in front of a. Here, 6 is a
big parameter, and Spv is roughly the smooth truncation of v(€) for |¢| < §. This is
very close to the paradifferential approach introduced by Bony [6], where symbols say
a(x)¢ correspond to operators Tp D, and not to aD,. A typical application of these
ideas is given in Alinhac [4], where instead of using true vectors fields ) a;0; tangent
to some (non smooth) surface, we use > T,,0;. In other words, we have to commute
to the equation vector fields (here, the Z,,) tangent to characteristic surfaces of the
operator (here, essentially the modified cones 1) = const), but these vector fields have
to be smoothed first. Alternatively, one can say that we use a Nash-Moser procedure
(see for instance [5]). As shown by Hérmander [9], the two approaches are essentially
equivalent.
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Since La is already known, we hope to neglect the term LL;a and concentrate on
Aya. If we take Sg to be smoothing in the w variables only, we have (with another
Sp on the right)

R;Sgv ~ 6Syv.

Choosing 6 = 6(t), we hope for the decay factor 1/r to compensate for the growth
6(t) in the term such as 1/rR;Sgv. Unfortunately, since L and L; have variable
coefficients, commutators arise in LL;Spa which display second order derivatives of a
with respect to 9, and 9; also. We are thus forced to introduce Sg as a smoothing
operator both in the variables w and r, say

So = 8585,

where the two parameters 61 (¢t) and 62(¢) have to be determined.
b. According to the analysis of a., we use now the smoothed modified fields

R™=R;+a(Ri)L1, S™=S+a(S)L;, H™= H;+a(H;)L1,
where H; = ctd; + x;/cd; and
Ei(R,) = Sga(Ri), 'd(S) = Sga(S), 6(HZ) = —w,ﬁ(S) — (w /\?i(R))z

These fields are denoted by Zm. Of course, we have to develop a calculus for these
fields and their commutators with Sy, etc., which is very similar to the calculus of
paradifferential operators. Needless to say, this part of the paper, corresponding to
sections IV.3, IV.4, IV.5, is quite tedious, and should be skipped by the reader.

c. On the one hand, we have the formula (cf. Lemma IV.5.1)

[8,5, Se] = 9’1/9189 + 9’2/9289.

On the other hand, we need in our estimates to have }/0; = O(e(1 +t)~!). Hence
we are forced to take

0; = 69(1 + t)=P:.
It turns out that the two speeds 3; will have to be chosen different: $; and 82 — (3, have

to be big enough. This reflects the dissymmetry between the first order derivatives
of u: e71(1 + t)u, is bounded while e~1(1 + t) R;u may grow like (1 + t)°e.

LI.5. Structure of [Z,, Plu. — This is the heart of the matter. Since the Z,
fields have been modified so as to improve the commutation with L (see 2.b), we
expect good formulas for [Zm, LL,] also. In contrast, computing the term [Zm, Ay
and taking the smoothing operator Sy into account is rather tedious. The result is
described in Proposition VI.1. It turns out that the most delicate terms to control
are the ones containing a, especially

(1.8) r~2LaAyu, LaL?u, LLadu, (1+t)'Ladu.
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8 S. ALINHAC

These terms are handled in part C of the proof of Proposition VII.1. Formulas for the
higher order commutators [Z7, P] are also established, and require the full calculus
for the fields Z,,.

1.6. Energy inequalities. — Writing PZnu= —[Zm, Plu, v = Zmu and using an
energy inequality for P, we have to check that the various terms of [Zm, Plu can be
absorbed from right to left in the inequality. To handle the first term in (1.8), we
need an inequality displaying a better control of the special derivatives (R;/r)v. Such
inequalities have been already discussed and used in [2], [3]: the idea is to establish
an energy inequality with a “ghost weight” e®("~), where b is bounded. Here, we use
9 instead of r — t, and take a weight

exp(T + 1)b(y), b(s)=B(-s)™", v>0, B>0,

where v and B! have to be chosen small enough (see Proposition V.3.1). This weight
does not disappear, but is bounded below and above by C(1 + t)€¢, which is allowed
in our context.

I1.7. Poincaré Lemma. — As explained in 2.a, we need a Poincaré Lemma to
control the zero order term (Aw)v in the linearized operator acting on v. In the
context of the weighted L? norms explained in §6, we obtained roughly the formula
(see Proposition V.2)

/ eP(Au)?v?dr < Ce?(1 + t)_Z/ ePvide, p= (1 +1)b(1)).
r>t/2 r>t/2

The miracle here is that we only know
|Au| < Ce(1+ t)_1+clso’f_2

and still get the estimate we would obtain if we had C; = 0. This is due to the special
structure of LU displayed in Lemmas I1.3.3 and I1.3.5.1, which say roughly

LU ~yreh(y),  |(s)] < C(L+ [s)) /24,

To prove the inequality, we make the change of variable s = 9(r,w, t) in the integrals,
and proceed as usual in the s variables.

I.8. Calculus for systems of modified Z; fields. — In the course of this paper,
we use in fact several systems of modified fields, each of which giving birth to a special
calculus. For instance, besides the two main systems of the Z,, of Chapter III.1 and
the Zm of Chapter IV.1 mentioned above, we have

i) The enlarged calculus for Z,, and the system Z, in the proof of Proposition
I11.7,

ii) The new system Z,, and the system Z, in the proof of Proposition IV.1,

iii) The system Z,, in the proof of Proposition VIIL.2.
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 9

We deliberately made the following choice: rather than building before the proofs
of these results a tight wall of Lemmas that no reader can cross, we chose to rather
write “Scheherazade type” of proofs, where the needed Lemmas are displayed and
proved exactly when one needs them. This allows the reader to view Proposition
II1.7, Proposition IV.1, Proposition VII.2 as black boxes which need not be opened
in a first approach, and avoids confusion between the different systems of fields.

The plan of the paper is as follows: in part II, we prove the large time existence
theorem (needed to start the induction) and discuss the first consequences of the
induction hypothesis, in particular the boundedness of e~!(1 + ¢t)0u and the special
structure of L2U. Chapter III is devoted to obtain the improved L™ estimates on u.
In part IV, the smooth modified fields Zm are defined and many lemmas display the
calculus for these fields. The weighted energy norms, the energy inequality and the
Poincaré Lemma are proved in Chapter V. The structure of the commutators [Zm, P]
and [Z‘;, P] are discussed in VL. Finally, using V and VI, simultaneous weighted L?
estimates of Z,’;“(?u and Z,’;aa are obtained in VII, allowing us to finish the proof of
the main result in VIIL.3.

II. Large time existence, induction hypothesis and first consequences

I1.1. Large time existence. — We consider the Cauchy problem I.1.1. Our first
result displays a very large lifespan of the solution.

Theorem 1. — Let T > 0 and sp € N. Then, if € is small enough, the solution u to
the Cauchy problem (1.1) exists and is C* for T = elog(1 +t) < 7. Moreover, we
have for some C the estimates

(1.1) 1Zg0u) < Ce(1+ )" 'o7 2, o] < so.
Proof. — We only sketch the proof, since it is very close to the proof of Theorem

6.5.3 in [10], using “induction on time”. There are two main differences:

i) The approximate solution u, can be constructed without time limitation.
ii) The structure of the equation on the difference & = u — u, is slightly different.

Let us review this more closely.
i) Construction of an approzimate solution
a. Let w satisfy
wy — Aw =0, w(z,0) =ul(z), wi(z,0)=ui(z).

Then w can be written
w=1/rF(w,1/r,r —t),
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10 S. ALINHAC

where F is defined in [10], (6.2.5). Note that here F is supported, like w, in —M <
r—t< M. When t — +00,

w~ 1/rFy(w,r —t), Fo(w,0)=F(w,0,0).
We consider now, for w € S, 7 > 0, 0 = r — t < M, the Cauchy problem
OV +VAEV =0, V(iow0)=F(w,o).

We claim that this problem has a smooth solution for 0 < 7 < 7, supported for
o < M. In fact, set

g = ¢(57wa7-)7 W(Sava) = V(d)awaT)'
We have
Ws = ¢SV07 WST = ¢s‘rVo + ¢S(VUT + ¢TV00'))

8"’(Ws/¢s) = (VO'T + ¢TV¢70')'
We choose now ¢ defined by

¢s = exp(70, Fp), O¢(M,w,7) =M,

and set W = ¢,. Note that ¢(s,w,0) = s, and W is zero for |s| > M. Since
Ws/bs = 05 Fp(w, o), we have

0= 87-(W3/¢5) = (Vcr-r + VVoa)(d)aW,T)-
Moreover, for 7 =0, W5 = 0,Fy, W(M,w,0) = Fy(w, M) = 0, hence
W(s,w,0) = Fy(w,s), V(o,w,0)= Fy(w,o).

Finally, for o < ¢(—M,w, 1), V is a smooth function of (w, 7). In particular, |V| < C
b. We introduce now two smooth real cutoff functions

x1 = xi(et), xz2 = x2(r/(1+1)),

where x1(s) is zero for s > 2 and one for s < 1, while x2(s) is zero for s < 1/2 and
one for s > 2/3. We define the approximate solution by

ug =ex1w +&/r(1 — x1)x2V(r —t,w, 7).

As in [10], we have for all a the estimates |Z§u,| < Ce/(1+t). We set also J,
0?uq — (14 ua)%Au,. To prove the analogue to Lemma 6.5.5 of [10], we have to note
that

B2(x2V) = X202V + 2(8ix2) (= Vi + /(1 + )V5) + (82x2)V,
02(x2V) = x202V + 2(0,x2) (Vo) + (87 x2)V.
In these expressions, note that
Ox2=0(1/(1+1), 0*x2=0(1/(1+1)?), x5Vo=0.
For t > 2/e, we obtain

Jo = =262/12(Vor + VVys) + O(e/(1 + t)*).
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 11

Thanks to the equation on V', we finally obtain in this region, for all ¢,
|28 | < Ce(1+1)73.

In the first period et < 1 or in the transition region 1 < et < 2, the discussion is the
same as in [10], and we obtain

|23 Ja| < Ce?|loge|(1+1) 2.
0

The main difference here with [10] is that V is no longer zero for 0 < —M. Hence
the support of J, is only contained in the region (1+1%)/2<r < M +1t, and

|28 JalL2 < Ce?|loge|(1+1)V2, £ <2/,
|Z8Jalp2 < Ce(+1)73/2, t>2/e.
We obtain finally
/< 128 Tl 2dt < Ce%2|loge].
TT

1) The induction argument. — We write the equation on u = u, + % in the form
(cP)u = 821 — (1 + uq + )2 A0 = —J, + (Aug)(2(1 + ug) + ).
We make the induction hypothesis
2504l < eoy2/(1+1), ol <o

This means that this pointwise estimate is supposed to hold for ¢ < T, for some T
We will eventually prove that T satisfies elog(1 + T') > 7. First, since |Ou, + 0u| <
Ce(1+1t)~!, we can use the standard energy inequality for the operator cP to evaluate
|0u|r2. We wish to apply Z§ to the left to the equation on 4, with |a| < 2s¢. Since
we have, for constants Cug,

(28,8 - M)l = D CapZg (8] - ),
1BI<]e|
we write the equation in the form
(02 — A = (1 +u)? — 1)A% — Jg + (Aug)(2(1 + ug) + 2)u = G.
Applying Zg, we obtain (82 — A)Z§u = Z§G - Y CangG. In Z§'G, we distinguish
the term ((1+u)?—1)AZg % which we take back to the left-hand side to get (cP)(Z§4).
a. We ignore the factor (2(1 + u,) + @) accompanying (Au,)% in G. For terms
(Zg Aua)(Zgu),  |v] + 18] < lal,

we use the inequality |07 'v|r2 < C|Ov|2. Since 01|Zy Au,| < Ce/(1+t), such terms
are absorbed using Gronwall’s inequality.

b. We ignore the factor 2(1 + (u, + %)/2) accompanying (us + %)A% in G. We
have to deal with terms

1) (ua + )25, Ali,
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2) (23 (ua +0))(Z3A0), 6] <lal, |y]+8] < la.
We use (the stars denoting irrelevant coefficients)

(28,8l = > #0%Z5,0 =07 Y %2

1BI<] ] -1
Hence
(28, Ali =07t Y *0ZJu.
lvI<la]
On the other hand,
o7 Hug + 4| < Ce/(1+ 1),

thus the term 1) will be controlled using Gronwall’s inequality.

For 2), we remark first that the part (Zju,)(ZAw) is easily handled. For the other
part, we distinguish which factor we are going to evaluate in L? norm. If |y| < s, we
write as before

|Zduz§Ailre < ) Cloy Z3ul 1|05 il 12

1BI< e

and use Gronwall’s inequality. If |y| > so + 1, we write
(07! Z80)(012884)] 12 < Y ClOZg 1|02 ] 12
1BI<s0
and use once again Gronwall’s inequality.
Finally, we obtain
|Z&01|L2 < Ce3?|loge|, |a| < 2s0.

Using Klainerman’s inequality, we obtain for |a| < 2s¢ — 2

|Z80u| < Ce%/?|logeloy 1/z(l-l—t)_l.

If 259 — 2 > sg, that is sp > 2 and ¢ is small enough, we obtain the statement by the
usual inductlon argument. O
I1.2. The optic function. — We assume in what follows that u is defined and C*°

for t < T'; u is also defined in any finite strip —C < ¢t < 0 for small enough . We
extend the integral curve 7 = ¢t + M of L for negative time until it reaches the t-axis.
All objects and estimates related to u will implicitly be considered as defined in the
corresponding region. We define the optic function ¢ = ¢(r,w,t) by

Ly =0, $0,wt)=-M-1-t.

Then 9 < C < 0 in the region of interest. As in [12], the function v is a substitute for
the usual phase r —t — M —1. The cones ¥ = const will be considered as deformations
of the standard cones o; = const, and later on, the geometry of the fields Zy will be
adapted to these new cones.

Lemma 2. — For T < T, we have for C big enough
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 13

i) ¢l < Clor +72),
ii) for o1 > C12, Cly| > o

Proof. — From a given point My = (ro,wo,to) we draw backward, for some big
enough C, the integral curve I of L, along with the curves I'; and I'p respectively
defined by

=—Ce(1+1t)7? 1/2, oy =Ce(1+ t)‘la}m.
According to the bound of u deduced from (1.1), the first curve is above, the second
below I'. The three curves meet r = 0 at t1,60,to, with t; > —M — 1 —1 > t2. By
integration,

2cri/2(t) + Celog(l +to) = 20i/2(t1) + Celog(1l + t1),
hence
Y] < 01(t1) < Clo1 + (elog(1 +1))?).
From the second differential equation, we get, if 01 > (Celog(1 +t))?, 44| > 01. O

I1.3. Induction hypothesis and its consequences. — We already know that u
exists as a C* function for t < T”, elog(1 + T”) > 7. For some sy € N and some
small n > 0 to be fixed later independently of £ (we will take in fact so > 10 and, say,
n = 1072), we assume now

(IH) 1Z80u| < Ce(1+1) o7 2 ¢ < TLT, ol < so

From now on, all estimates will take place for ¢ < T, and will use the induction
hypothesis (IH). We will eventually prove that T' = T", thus getting global existence.
11.3.1. Estimates on the optic function
Lemma 3.1. — For C big enough, we have

i) [¢] < Co1 +€2(1 +¢)m).

ii) For o1 > Ce(1+ )", Cly| = o1

iii) Everywhere for 7 > T, we have

o1 S C2(1+ )2y, [¢]| < Ce*(1 + t)*0;.

The proof is exactly the same as the proof of Lemma 2.

I1.3.2. Structure of LiU. — Since, from (IH), du is much smaller than e(1+t)~! as
soon as o1 = y(1+t) (for any v > 0), most of the estimates we need will take place
in the “exterior” region R, defined by

r>M+t/2, T

The part of the boundary of R, which is the union of r = M +t/2 and 7 = 7 will be
denoted by . First of all, to establish later an energy inequality, we need to prove
that |OU| is bounded.
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14 S. ALINHAC

Lemma 3.2. — In R., we have
LU = Vr(y,w) + p1,
with
[Vr(s,w)| S C(L+[s)) 72427, |pr| < Celgp]/2(1 +¢) 712,
Proof. — First, we obtain from (I H) the estimates
|Zg8U| < C(1 + t)"o7 M2,
Set now
f=cr2A,U — (Lu/2c¢) LU,

for which LL,U = f. Noting that (r +¢)(0: + 0;) = > w;h; + S, we get

|Lu| < C|(8s + 8, )u| + Clul|du| < (1 +t)~2*+210]/2,

ILU| < C|(8; + 8:)U| + Clul|0U| < (1 + t)~+2151/2,
hence

F1 < Q48724012 < Ce(1+ )22y /2,

If we draw from a point M in R, the integral curve I" of L, meeting v at M’, we

denote by I'_ and I'; respectively the backward and forward parts of I' in R.. We
set then

Ve(ew) = (WO + [ L == [ 1
r Ty
Here, the integrals are taken along I'. From the estimates on f, we get (uniformly
inT)

+o00
ol < Celgl1/? [ (14 5)72420ds < Celyl 21+ )7+,
t
To estimate Vr, we compare both sides on +y, using Lemma 2. O

In the rest of the paper, to simplify notations, we drop the dependence of V' on
(T, w).
I1.3.3. The quantities a1, by. — Let us define and fix in the sequence a cutoff function
X by
X =X(r/(C +1)),
where 0 < X < 1 is smooth, zero for s < 1/2 and one for s > 2/3 and C = 2(M + 1).
We define now a;,b; by

Ly, = —YLI’LL/QC, bl(O,t) =0, a) =expb;.
The following Lemma indicates the precise structure of b;.

Lemma 3.3. — We have

i) by = —(7/2)V (%) + p2,|p2| < C,
i) a1¢r =1+ ps, |p3| < Ce.
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Proof
a. By definition, using Lemma 3.2,

9= Loy + (1/2)V () = —(e/2rc)pr — (eX/2¢/*r*)U + (e(1 ~ X)/2r¢) LLU
+ V(22 = 1/2¢) + e(V/2e) (1 + 1)~ = r7Y),

1+t
hence
lg| < Ce(1 +£)2H53/2 4 Ce2(1 + ) =221 |yp| /2
+ C2(1 + £) 252 2|p| =122 4 Cegy(1 4 £)~2|gp|~1/2+20
< 062(1 + t)_2+2"|1p|1/2+2’7.
Thus,
by +7/2V(¥) = p3(¥) + p3,
with

6Bl < Ce2(1 4 1) H2njyj1/2+2n,

Since by + 7/2V is bounded on v, p3} is bounded, which proves i).
b. We have Ly, + c‘l/zurwr = 0. Hence

Llog(a1¥r) = —(Liu/2¢c + ¢~ /?u,) + (1 — X) L1u/2c.
Now Liu + 2¢Y/?u, = Lu,
|Lyu + 2¢u,| < Ce(1+t) ™01/, |Llog(aryy,)| < Ce(1 +t)~2+216}/2,
Since a19-(0,t) = 1/¢ = 1 4+ O(e), we obtain ii). O
I1.3.4. Improved estimates on the optic function

Lemma 3.4. — For C big enough,we have the estimates

i) [¢| < Coy + C(1+t)°*
ii) If o1 = C(1 +t)°¢, then C|y| > o1. In all cases, we have

o1 < ClY|(1+1)°, |9 < Cor(1 +1t)°5.

Proof
a. From Lemma 3.2, we obtain |L,U| < C|t|~1/2+27, since || < C(1+t). Hence,
using (IH),

|6,-U| < C(1 +t)_1+”ai/2 +Ofp| V2 |12,
Using the estimates a; < C(1 +t)°¢ and a9, > 1/2 from Lemma 3.3, we have
0.1 < C(L+ )Ryl /1y,

and by integration
U] < Co(1 + )50 /2470,
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16 S. ALINHAC

b. Just as in Lemma 2, let us consider the integral curve I' of L through a point
Moy, and denote by I'; and I'y respectively the curves

o) = —+ Ce/(1 +t)(1 + )T A>T,

where Ap = |¢(Mo)| and C is big enough. Let us call respectively o1, 71, o? the
values of o1 at the points where I'1, I', I'; intersect . Since o is decreasing along v,
and I is above I's and below I'y, we have

02 <7 <o}
Integrating the equation for I';, we thus get
Ag < C7y < Col < Coy (M) + CAY27(1 + £9)C¢

which gives i).
c. Using I'y, we get

01(Mo) < 02 + C(1 + t0) e AY* ™" < 02 + C(1 + t0) %% (01 (M) /2+27,
hence 01(Mp) < 02 + C(1 + to)¢8. If
o1(Mo) > 2C(1 +t9)°°,
we obtain o1(Mo) < 20%. Since [¢p| > 1/20; on v, we have finally
Ao > (1/2)71 2 (1/2)0f > (1/4)01(Mo),
which is ii). O

We conclude from this Lemma that |¢| is not quite equivalent to o: there exists
a blind zone

o1 < C(1+1)°¢

in which we cannot ensure that 1| is big even is oy is. This is due to a possible drift
of the integral curves of L toward the cone r =t + M. Inside this blind zone, we can
only prove |Liu| < Ce(1 +t)~!, while |Liu| < Ce(1+¢)7! _1/2+O outside.

I1.3.5. Structure of L3U. — To prove later the Poincaré Lemma, we need to elucidate
the special structure of L2U.

Lemma 3.5.1. — In R., we have a1 L2U = h(¢,w) + p4, with
|hr(s,w)] < C(L+[s]) /247, |pg| < O(1+1¢)73/2+4m,
Proof. — We have first
[L,a1L1) = —(a1/2¢)LuLl + (1 — x)a1(Liu/2¢) Ly,
hence

g = L(a1L2U) = —(a1/2¢) LuLL\U + ay Ly (LL,U) + (1 — x)a1(L1u/2¢) L2U.
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But
Li(LLU) = —Lyu/r? AU — 2632 /r3ALU — ¢/r?(L1ALU) 4 LiLu/2cLU
— LuL1u/2¢* LU + (Lu)?/4c?LU — LuLyu/4c*L U + Lu/2¢LLyU,
thus |g| < C(1+1t)~%/2+4", By integrating L, we get the structure of a; L2U with the
estimate on p4; comparing then both sides on 7y yields the estimate on h. O

Finally, we have to evaluate the smallness of 1.
Lemma 3.5.2. — We have, for v > M +t/2, the estimate
[rrl /97 < OT(L+ [9])7>/2H47 4 Ce(1 + [g]) ~%/2+4m.
Proof. — First 1y = ¥ + (Cluy — ue) Py, (8¢ + €Or )t + usthy = 0,
(8t + O ) b1t = —Ugethr — 2usry.

Hence

(@ + ) (Wre /97) = wae/ (che) = 2ui/(Pepr).
For r < M + t/2, the right hand side is less than Ce(1 + t)~%/2+27; since
i /92(0,t) = 0, we obtain by integration

Jthee /7| < Celyp|~2/2+20.

Now, for r > M +t/2,

use = ce/(4r)L3U + O(elg| ~/%)(1 + )72+,
hence

luee/ (evpe) — 207 /(9F)| < Ce(L+ )7 R(¥)] + Ofely| /2 (1 + 1) 72+47),

which gives by integration from r = M + t/2 the desired estimate. O

ITII. Improved L*° estimates on u

In this chapter, we will prove that the L> estimates (IH) on u imply in fact the
much better estimates of Proposition 7.

IIL.1. Modified vector fields. — In order to control u and its derivatives in the
spirit of Klainerman [11], we will need modified vectors fields Z,, (“m” for modified),
which are perturbations of the standard vectors fields Zy defined in (II.1.2). First, we
set
T T
Hy = c(u)tor + ——0,, H;= i+ =<8, 1<i<3,

o = c(u)to, + o) O c(u)to; + c(u)at i<3

thus defining hyperbolic rotations adapted to the operator P. Note that
Hy = ZwiHi, H; =w;Hy + Ct(ai — wiar).
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For each of the fields R;, S, Hy we define now a(R;), a(S),a(Hop) by

(1.1), La(R;) + Xa(R;)(Liu/(2¢)) = —XxRiu/(2¢),
(1.1)e La(S) +Xxa(S)(L1u/(2¢)) = —xSu/(2¢), a(Ho) = —a(S),

(1.1), a(R;)(0,t) =0, a(R;)(z,0) =0, a(S)(0,t)=0, a(S)(z,0)=0.

Remember that % is a standard cutoff defined in I1.3.3. Thus the coefficients a are
smooth functions (as long as u exists), vanishing for r > ¢t + M or r < t/2+ M + 1.
The set of the coefficients

a(Ri)va(S)val
will be denoted by (Coeff’). We then define the modified fields R™, S™, HJ* and K
by
(12) le = R,-—f—a(Ri)Ll, S™ = S+G(S)L1, H{)n = H0+a(H0)L1, K =a1L;.

We will write these equalities simply as Z,, = Z + aL;, where Z will be one of the
adapted vector fields R;, S, Hp or 0, and a will stand for the corresponding coefficient
as in (1.2). Remark that

(r+ct)L = e(Ho + S) = e(H + S™).

We finally define the family ®’ as the collection of the fields Z,,, = R*,S™, H", K.
As usual, ZF will simply denote a product of k fields taken among ®’. It is always
understood here that some of the fields in @’ are singular at r = 0, and they will be
considered only for r > vo(1 +t) (7o > 0).

In what follows, we will simply write f to denote a real C™ function of the (finitely
many) variables

g, u,w,01(1+8)7H (1 +8)7, 07", v > 0.

Remark that ¥ = f. Finally, we denote by Ny one of the quantities

e Y1+t Zhu, e '(1+t)ZF Lu, e (1 +t)Z8 Ly,

o7 ZFYa, ZF'La, ZF'Lia, a€ (Coeff').

We add the convention that 1 is also a Ny. We need now develop a calculus for these
modified fields. To simplify the notation, we dispense in general with writing sums of
terms of the same kind. For instance, we will write N for a sum of various Nk, Zn,
for a sum of Z,,, etc.
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II1.2. Some calculus Lemma

Lemma 2. — We have the following identities:

i) Zrlf@fZZkalw‘Nkj, ki+---+k; <k,

ii) ZEN, =3 fNg, -+ N, k1 + -+ k;j <k+p, k; > p for some i,
iii) ZEt =Y fNg, -+ Nij, ki + -+ k; <k,

iV) Z,’ildl=0'12ka1-~'Nkj, k1+"'kj <k.

Proof. — In view of the structure of the formulas, it is enough to prove them for
k =1 and any p.
We have

Rw=f, Rijo1=0, Rit=0,
Sw=0, So1=-M—-1+01, St=1t,8(c1/1+t)=f, SQA+¢t)" = f, So7" =,
How =0, Hpoy = fo1No, Hot= ft, Ho(o1/1+1t) = fNo.
On the other hand,
Liw=0, Lioi=f, Lit=f, Li(o1/1+t)=f/1+t,
Li(1+t)" =f/1+t, Li(o7") = f/o1.

Hence
Zmu = fNo+ fNoN1, Zm(01/1+1t) = fNo+ fNi,

Zm(1+1t)"™" = fNo + fN1,Zmoy " = fNo + fN1,
and Z,,f = f + fNo + fNy. Thus, i), iii) and iv) are proved. Now
Li((1+8)/o1) = o7 (L +1)/o1),  Z((1+1)/o1) = (1 +1)/o1)fNo,

hence

Zm((L+1t)/0o1) = (1 +t)/o1)(fNo + fN1).
Thus, with A =L or A= L,

Zm[e" (1 +1t)/01)ZBu] = (fNo + fN1)Np + Npq1,
Zm[E_l(l + t)Z,’;lAu] = (fNO + fN]_)Np + Np+1,
Zmlo7 Z8a) = (fNo + fN1)Nps1 + Npy2,

which proves ii). O

IT1.3. Commutation Lemmas. — For fields X;,Y, we will note
(adX)Y =[X,Y], (adX*)Y =[X1,[Xa,...Y]...].

The following Lemmas justify the introduction of the modified fields Z,,: they just
commute better with L than the standard fields Zg.
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Lemma 3.1. — We have
i) [Zm, L) = fdLy + fNoN: L,

ii) [Zm, L1] = fNoN1L + fNoN1 Ly,

i) (adZE)L =Y fNi, -+ Ni,L+ X f(Z4d)Ny, - - Ny, L,
i+ +kj<k, g+h+---+L<k-1,

i) (adZf)Ly =3 fNg, - Ni,L+ 3 fNi, ---Ni, Ly,
ki4---+k; <k, L+-+L <k

Here, d denotes one of the quantities d = (1 — X)Zmu = € fN1.

Proof. — Since d = €f N;, thanks to Lemma 2, it is enough to prove the formulas for
k = 1. We have

[Ri, L] = —Ri’u/(ZC)Ll, [Ri, L1] = —Riu/(2c)L,
[S,L] = —=L — Su/(2¢)Ly, [S,L1] = —Ly — Su/(2c)L,

[HO,L]=(—1+2\/_ )L+(g:\/c§Lu—H0u/(2c))L1,
[Ho, L1] = ( \[ —Hou/(2c))L+(1+ ;jleu)Ll

Remark here that
(r—ct)Ly = c(Ho — S), (r+ct)L=+/c(Ho+S),
hence the above formulas simplify to

[Ho, L] = (— 1+ -2 Lu)L + Su/(2¢)Ly,

2\/_

[Ho, L1] = —Su/(2¢)L + (1 T2 Llu)Ll

2 \/_
Since
[aLi, L) = —(La)Ly — aL1u/(2¢)Ly + aLu/(2¢)L, |aL1,L1] = —(L1a)Ly,

we obtain, thanks to the choices of the a for each Z,

[R™, L] = —(1 —X)R*u/(2¢)L1 + aLu/(2c)L,

[S™ L] = —(1—-%)S™u/(2¢c)L1 + (aLu/(2c) -1)L,

[H, L) = (1 - X)S™u/ oLy + (5= 2o Te T L+ aLu/(2¢) - 1)L,
[K,L] =aLu/(2¢)L — (1 —X)Ku/(2c)L;.
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Similarly,
[R™,L1] = —=1/(2¢)(R*u — aL1u)L — (L1a)Ly,
[S™,L1] = —1/(2¢)(S™u — aLiu)L — (1 + Lya) Ly,
r+ ct

(B, L] = ~1/20)(5™u — aLyu) L + (14 52 3ess

- Lla)Ll.

If we remark that
aLu = o7 agoy /(1 +t)e (1 4+ t)Lu = fNoNy,
(r—ct)Lu =1 —ct/(r + ct)Ve(Hy'u + S™u) = f Ny,

we can write

[Zm, L] = f(1 = X)(Zmu)L1 + fNoN1L = fdL1 + fNoN:1 L,

(Zm, L1] = fNoN1L + fNoN; L. 0
Lemma 3.2. — We have
i) (Zm L) = 3 f Nk, -+ Niy ZB L+ 3 fZ3,dNy, -+ NiZp Ly,
p<k—-1, p+ki+---+kj<k r<k-1, g+r+hL+---+L<k-1
ii) (ZF, L1 =3 fNk, - Ni, ZEL+ 3 fNy, -+ Ni,Z}, Ly,
p<k-1, p+ki+---+k<k r<k-1, r+hL+---+L <k

iii) [(Zh, L= > fNe---NgZBL+ Y [Ny~ N, Zir LaZb Ly
psk—1 (X li<k-1)
P+ kikk
+ Y. fNg Ny ZB L+ > Ny, - Ny, Z3dZ" L.
(P+X ki<k=1) (X lj+g+r<k-1)

Proof. — For k = 1, the formulas i) and ii) follow from Lemma 3.1. For iii) we write
(Zm, L1] = fNoN1L + (fNo — Lia) L.

Since
[Zk+1 A] Zk [Zm’A] + [ ,A]ZTTH

we obtain easily the Lemma by induction, using Lemma 2. O

For technical reasons, we will need the following variant of Lemma 3.2.
Lemma 3.3. — If Lw = g, we have

LZyw=3 fNy, - N, Zkit g+ 3 fZ8d--- Z%dNy, - - Ny, L1 Z¥+ w
+3 (A +t) fZud- - ZHAN, - - Ny, ZEi+ 1w
= 21 + Zz + 23
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Iny , > li<k.Ind,, i>21,i+% ¢+ ki<kkjy1 <k-1. In},,
i21, i+>.q+>ki<k+1l, 1<kji1<k-1
Proof. — For k =1,
LZpw = Zpng — [Zm, Llw = Zmg + fNoN1g + fNodLyw.
Hence the formula is correct, with >, = 0. Now
ZmLZEw = fNoN1LZEw + fNodLy Z5w + LZE w,
LZE W = Zm Y1 +ZmY 0+ Zmd g HfNoN1(D o+ D+ 3) + fNodL1 Zfw..

The last term belongs to ), for k + 1. The terms involving ), again belong to ),
for k 4+ 1. The terms involving ) 5 again belong to > 4 for kK + 1, and fNoN1 ),
belongs to ), for k+1. In Z,, ), the only nontrivial term is the one containing

Zm L1 ZFi+1w = fNgN1LZFi+1w + fNgN Ly ZF+ w + Ly ZE+ .
The last two terms give terms belonging to ), for k + 1. For the first, we write
LZgtw = f(1+8)71 3 Zy+Hw,
and the corresponding terms belong to )4 for k + 1. O

I11.4. A computation of Z¥,
Lemma 4. — We have, Zy denoting the standard fields defined in 1.1.2
Zk =S fNPNUNy, - N, Z8, 1<p<kki>2, p+3(ki—1)<k.
Proof. — We use the formula 8; = o7'Y.fZo. We get by inspection Z,, =
> fNoN1Zp, which implies the Lemma for k = 1, and the Lemma follows in general
by induction, using Lemma 2. O
II1.5. Estimates of the Ny
Proposition 5. — We have, for k < sop — 3
|Nk|Lo < C(1+t)°.
Proof
a. We have La = —%/(2¢)Zmu = Fy = ¢fN;. Hence
L(oTta) = =%/(2¢)07 Zmu + fuoy?a =e(1+t)" fNoN1 = Fy,
LLia = [L,L1Ja+ LiLa = Lyu/(2¢)Lia — Lu/(2c)Fo + L1 Fp = F>.

Also LL,U = ¢/m?A,U — Lu/(2¢)LU = G.
b. From Lemma 2, we get

ZLF =e(1+t)" Y fNi - Nigy, ki <1+ 1,
where here and later Z' means that not all N, are one. We now evaluate F5:
Fy = fe(1+t)"*NoN1 + L1 Fy,
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L1Fy = fLiuZmu+ f(1+ 1) Zmu + fNoN1Lu + fNoNi Lyu + f Zm L1
= fe(1+1t) " N2ZN;.

We thus obtain
ZEF =e(1+t) Y fNiy - Niy, ki+--+kj <k+1
c. We have in fact

Zmr = fr+ fa,eZ,U = fru+ fau+rZyu,

hence
eZWU =rZh utr Y fNk o NgZhutr D fNi - NeZhu
1<p<k ptki+---+k;<k
ki+--kj+p<k+1
+Y fNy Ny ZhaZhu,
p+q+li+---+1; <k
Thus

e toT 1+ ) ZE5Mu = fo ' ZEN'U + fNoo ' ZEa+ Y fNk, -+ Ny,
ki+-+ki<k+1, ki<k.

Similarly, we obtain, with A= L or A =1,
AU = e ?u+rAu, €ZnAU = fNoZmu + frAu + faAu + rZy, Au.
The last three terms are handled as before. For the first term, we write

Zh (fNoZmu) = fNoZJ ' w+ Y fNk, -+ - Ni; Z8,u,
p+ki+---+k<k+1, 1<p<k

Thus
(5.1) e M1+ )ZE Au = fZEFLAU + fNoe ' ZEH u + fNoo ' Za

+Zlka1"'Nkja
k1+"'+kj<k+1, k; <k.

d. Using Lemma, 3.3 for w = ol‘la and g = Fy or w = Lia et g = F5, we obtain
LZ¥(o7'a) = FF, LZXLia=Ff, F)=F,.
To estimate the right hand sides, we need the following Lemma.

Lemma 5.1. — In any region r < v(1+t),v < 1, we have
(1+t)|Lyw| < CY | Zpw).
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Proof. — We have the identity
r—ct

Ve
On the other hand, a rough estimate of a shows that

o7V al < Ceoy Y21+ 1)OeHn,

L1 = H6n -sm + 2(1L1.

Hence, in the region we consider, o] '|a| is as small as we want, and the Lemma
follows. O

We have, with the notations of Lemma 3.3, applied for the index k with w = ao,

g = F11
Ff =3+ ,+%;.
From the structure of F}, we get
=+ t) P FNL Ny, YL <k+ 1
Using Lemma 3.3 and the structure of d = € f N1, we have
| 22 I < Cldl(l + t)_llN’H-ll + 05(1 + t)_l Z iNkll o 'Nkj+1|7 ki <k.

Note that |d| < Ce(1 +t)~". We have a similar estimate for ) ;. The computations
are completely similar for F¥.

e. We have now to control the values of Z% (07'a), ZK Lia, ZEF'L1U on the
boundary r = M +t/2.
Lemma 5.2. — On the boundary r =t/2+ M, for k < so — 1,

i) Z¥Lia=0, |Zk (o7 "a)| < C,

ii) |z U) < C.
Proof. — Close to this boundary, a is either identically one or zero: the value of

Zk Lia is zero. For the U term, we remark that we can replace Z,, # K by the
corresponding Z, K by L;. For such fields Z (including L;), we have

Z = Zy+ ftu/o1Zy = fNoZp.
Denoting only here by Ny the terms
elo (14 ) Z%u, e '(14+t)Z%Lu, e (1 +t)Z"Lyu,
we get as before
28 =S fN, - NLZ5*, Sli<k, L > 1
Hence, with A =1,L, Ly,
Z¥Au =Y Ny, -~ Ni, Z5* Au.

By induction, starting from |Np| < C by the induction hypothesis, we get |[Nix| < C
for k < sg. Finally
ZML U =S fNy, -+ N, ZEH LU,
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hence the conclusion. The proof is similar for Z% o7 !. a

f. We now set
¢ = |Ni|Le,
and assume by induction ¢; < C(141)°%,1 < k (we have already shown and used that
|Ng| < C). Because of the structure of Lemma 4, we need first control ¢; without
using Lemma 4. Let

G =¢/r*A,U — Lu/(2¢)LU,
G1 = LZpIhU = Z,G + fdL2U + fNoN1G = fNoN1G + fNoN1ZoG + fdL2U.

It is clear that

|ZY(er2A,U)| < C(1+t)~2F157/2,
On the other hand,

L=cY20,408,)4 ("= c V)8, = fA+1t)"' S Zo + fud,
and as usual
fud = fual_l S Zo=¢e(l+ t)_lfN() > 2.

Finally L = (1+t)~*Y_ fNoZo. Hence

Lu/(2¢)LU = (1 +t) 2 fNE ZouZoU,

|Z(Lu/(2¢)LU)| < C(1 +t)~2+2n,
Adding, we get

|ZLG| < C(1 +t)~3/2+n,
We also have
|dL3U| < C(1+t)72+21(1 + ¢),
hence
|G1] < C(1+t)™%24¢; + C(1 +t)~17".

From this estimate, we get by integrating
t
1ZnL1U| < C(1 +£)°° + c/ drds/(1 + s)1+.
0

Integrating the equations on o1 'a and Lya, we get, using the estimates on F? estab-
lished in d.,

o al + |Lia] < C(1 +8)°% + Ce /t Guds/(1+5) + c/t Grds/(1+s)1*".
Now, ’ ’
C(1 + t)e™ 0y Zmu| Lo
C(1+t)e  LZnu|ro + C(1 + t)e | Ly Zmu| L.

|(1+t)(eo1) " Zpu| <
<

At this point we need the refinement iii) in Lemma 3.2:

(1 + 1)~ Zm, L1Ju| < C(1 + t)e (| Luldy + |Lyul(1 + |L1a]).
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Since (1 + t)e~!|Lu| < C(1 +t)~", we have
|(1 4+ t)(016)  Zmu| < C(1 + t)e | LZpu| + C(1 + t)e ™| Zpm L]
+C(1+t)""¢1 + C(1 +t)°® + C|L1al.
We use Lemma 3.1 to evaluate the first term:
A+ t)e HLZmu| < (L +t)e | ZmLu| + C|d|(1 + t)e™  Liu| + C|N1|(1 + t)e | Lu).

But
|ZmLu| < Co1|ZoLu| + C(1 4 t)°| Zo Lu).

Since
(A +t)e Y ZeLu| < C(1+t)77
we get
(1+t)e Y ZnLu| < C+ C(1 +1t) "¢y,
and finally

(14 t)e | LZmu| < CA+ )%+ C(1 + 1) "¢1 + Cegr.
From (5.1) we get now
(A +t)e Y ZmL1u| < C|ZmL1U| + €Y Zpu| + CloTtal + C(1 + t)°¢

Since
€ Zmul < C+ C(A+1) "¢y,
and, from the very definition of a, |La| < Ce¢1, we get finally

t
61 < C(1 +t)C€+C(1+t)_"¢1+Ce¢1+C/ ¢15ds/(1+s)+C’/ uds/(1+45)1+7.
0 0

The conclusion follows by Gronwall’s Lemma, since |¢;| < C for finite ¢.

g. To control ¢, k > 2, we essentially have to repeat the argument of f., using
Lemma 4 when necessary. Setting LZ¥*1L,U = G1, we estimate first Gx41 using
Lemma, 3.3, which requires controlling Z!,G,1 < k + 1. Thanks to Lemma 4,

ZL.G =Y fNON{ Ny, -+ Ni, Z5G,
and we already know |Z}G| < C(1 + t)~3/2+". Hence
|IZL Gl <o+t~ 1<k,
|ZEHG < CA+t) g + C(L+ )71

We obtain from Lemma 3.3, applied for the index k + 1 with w = L1U,¢g = G, and
the induction hypothesis on ¢;

[Git1] SCA+ )"+ C(L+ ) "pp1
+ Ce(1 + )71 4 Ce(1 + )~ ZEH LU
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From this estimate, we get by integration down to the boundary r =¢/2 + M
t t
\ZEFLU| < C(1+ )% + C / \ZHF LU ds /(1 + 8)7 4 C / Srsrds/(1+ )1,
0 0

hence .
|ZE L U| < C(1+t)05+0/ brrds/(1 4 s)H.
0

Integrating the equations on Z¥ (07 'a) and Z¥ Lia we get, using the estimates on
FF established in d.,

\ZE (07 20)|+ |25 Lya] < C(1+)C%+Ce /t ¢k+1ds/(1+s)+C/t Grs1ds/(1+8)1*7.

Now, ’ ’
|(1+t)(eor) "t ZE | < C(1 + t)e7 0, Z5 u| oo

S ClA+t)e ' LZ¥ ulpo + C|(1 + t)e L1 ZE | oo

At this point we need the refinement iii) in Lemma 3.2:

|1+ t)e [ ZEH Liju] < |(1 4 t)e ' Luldryr + C(1 +t)°F
+C|ZE Lyal|(1 + t)e " Liu| + C(1 + )% + C Y (1 +1)°%|Z8,d|.

gk
We have |(1 +t)e~!Lu| < C(1 +t)~". Using Lemma 2 and Lemma 4, we get
Z4d= Y fNj,---N,Z&

q1+q2=¢q
S likq

Zhu=3Y fNPNEN, - Ni, Z8u.

Since | Z{u| < Ce(1 +t)~27 we obtain
(1+1)°¢)2%d| < C+C(A+t)"¢rs1, q<k.
Finally
(14 t)(016) "1 ZF | < C|(1 + t)e LZE | + C|(1 + t)e 1 ZF Ly
+ C(1+t) "¢ry1 + C(1+1)°¢ + C|ZF Lyal.
We use Lemma 3.3 to evaluate the first term:
1+ 8)e™ L2y ul < 0y + 3+ 35 -

We obtain

Yo+ X5 SC(L+1)% + Ceyya,

Y1 Ol + ) Lu||[Npga | + C(L+ )% Y (1+t)e™ |28, Lul.
p<k+1
Using again Lemma 4, we obtain for p < k + 1,

|Z8, Lu| < C|Ny41||Z3 Lu| + C(1 + t)€¢|Z3 Lu.
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Since (1 + t)e~!|Z§Lu| < C(1 +t)~" by the induction hypothesis, we get
21 SCHCA+t) Py,
and finally
|1+ t)e ' LZE | < C(1 +1)°° + C(1 4+ t) "¢pp1 + Cedryr.
From (5.1) we get now
|1+ t)e 1 ZEF Liu| < C|ZEF LiU| + Ce™YZK  u| 4 CloT  Z8 a| + C(1 + t)©¢
From Lemma 4 we have
e Zul S C + C(1+ 1) "¢p4a, |28 Lal < C+ C(L+1) "1
From Lemma 2 we have
lor!Zyal < C|Zy, (o7 a)| + C(L+)°
thus finally
dri1 < loT ZEal + |25 Lal + |25 Laal + (1 + 1) (e0n) " 25l
+ (1 +)e 1 ZE Lu| + |(1 4+ t)e 1 Z5F L)
<C(+t)° + 0(1 + 1) "¢r41 + Cedria
+ C|Zk (67 a)| + C|ZE Lya| + C|ZX LU
<CA+t)° +CA+t) "prr1Cedrs1

t t
+C/ ¢k+15d3/(1+s)+0/ dry1ds/(1+ )17,
0 0

The conclusion follows by Gronwall’s Lemma. O

II1.6. Improved estimates of the Ny. — We will need later to know that the
Ni have a better behavior inside the light cone.

Proposition 6. — Let u > 1/2. For n > 0 small enough, we have for k < so — 3, with
the exception of Ng = 1, the estimates

|Ng| < C(1 +t)Ceat 1.
Proof. — We follow here the proof of Proposition 5 and use the notations there.
a. We have
L(ol ™ML U) = 077G + fNoe(1 + t) Yoy T*LU), oy *G| < C(1+1t)7!
Since |o-1 L U < Conr=1t/2+ M, we get by integrating the equation
ILU| < C(1+ )0t

On the other hand, we know |LU| < Cot/?(1 +t)=1+7 < Co'?*" Hence |0,U]| <
C(1 +t)°o%", which implies

Ul < CA+0)%ot, (1+1t)(016)  ul < C(+)“ 0}
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Finally, with A= L or A= L;,
Au =¢/rAU — (Ar/r)u, (1+t)e | Au| < CJAU|+C(1+t)"HU| < C(1 +t)%eat ™.
This proves the estimate for Ny.
b. We assume now
INi| < C(1+t)%o%™t, 1<k,
and set ¥r = 3 |0} #Ni|L~. We follow the proof of Proposition 5, g, just looking
more closely to the powers of o1. Set Vi1 = o1 *Z*¥+1L,U. We have
LViy1 = 01 *Gry1 + fNoe(1 + 1) Vipa.
We see that
o1 Z§Gl < C(L+ )71,

hence

oy Mz G

1—p) 7k+1
03 |Zm G

SCA+t)~1" Ik,
< C(L+ 87711 + [Ny,
Using Lemma 3.3 with w = LU, g = G, we get
Grr1 =21+ +25-
We have from the above estimates
o1 I 1 SCA+ )T (1 + |Nggal) + C(L+ )77 Niga | + C(L+ )17
<C(1+t)~ /2,

Since we get easily
ol M| ZL LU < CA+1)°, 1<k,
we have, using |d| < Ce(1 4+ t)~" and the estimate on |Z!, d| already established,
o172 | < Cld|(1+ ) Vasa | + CIZRd(L+ )71 + C(L+ ) 7177

SCA+ )71+ Vi)

and a similar estimate for ) ;. Finally
01 G| S C(L+ )7 7"2(1 + Vi)
We already know that |Vi41| < C on the boundary r = t/2+ M, hence by integration
we obtain
Veq1l <C(1+ t)CE.
c. We have, still with the notations of Proposition 5,
L(o7"a) = 0, " F1 + fNoe(1 + t) " (07 “a),
L(o; " Lya) = 01 *Fy + fNoe(1 + t) " (07 *Lya).

Set now

LZE(o7"a) = Fr, LZ¥ (0} *Lya) = Fy.
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. =k .
To estimate F';, we use Lemma 3.3 with

w=o07"a, g=o0, “F,+ fNoe(1+1t)~ Yo" a).

We find
751 =21+22+Z3~
We have
Wg=01 " Y Nk N ZEF+e(+t)70 Y Nk oo Ny ZB2(o7*
Li+la=l Li+la=l
S kil S ki<l
Since

TTHIZE Fy| < Ce(1 + )Y ol ™ Nga | + Ce(1 + ) 711C¢,
o1 H|ZE R < Ce(1+1)71FC Iy < k-1,

the first sum is less than

Ce(1 +t)~14C 4+ Ce(1 +t) Yoy Nisal.
The second sum is less than

Ce(1+ )7 ZE (o7 a)| + Ce(1 + t)~1HC¢,
and finally

13211 < Ce(1+8)7H9 + Ce(1 + )7 (loy ™ Niaa| + |25, (07 *a))).
Just as before, we also get
1302 1+ 151 S CA+ )11+ |Z5, (01 *a))),

hence
IFy] < Ce(14 )40 4 C(1+ )71 + Ce(1 + ) hep
+(Ce(L+ 1)+ C(L+1)717")|ZE (07 a)|

and a similar estimate for F’; Integration along L, we get
t

|25 (07" a)| + 125 (01 Lya)| < C(1 + 1) + C / Vrrieds/(1+ ).
0

d. We have

|(1+t)e~toT# Z5 | < C(A4t)e oy T“LZE  u| oo + C(1+1)e ™ o1 TH L) Z5 | Lo

Just as before, using point iii) in Lemma 3.2, we obtain

(14 t)e oy H[ZEH, Liju| < (14 t)e Y Lulbrsr + C(1 + )¢

a).

+C(1 +t)e~ Y Lyulloy ™ ZE Lya| + C,
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hence
A +t)e o 25 ul < C(L+ )% + CA+ t)e™ oy “LZg | + C(1+ ) e
+Clot™#ZF Lia| + C(1 + t)e~ o, T Z5+1 Lyl
Exactly as before, we get
(1+t)e Moy “LZEF | < C(L+1)°° + C(1 + ) "ps1-

From (5.1) we get now

(1+t)e Yol ZEH Liu| < Cloy ™ ZER LU | + Ce™ Yoy T+ ZE |

+Cloy*Zka| + C(1 +t)°".
Using Lemma 4, we obtain
loi=#zk | < C, oy *ZF La| < C

We also have from Lemma 2

lor " Zhal < |23 (o7"a)| + C (1 + 1),
loi™#ZE Lya| < |2, (017 Lia)| + C(1 +t)°¢
Finally,
¢
Y < O+ + O +0 s +C [ Gueds/(1+9)
0
which yields the result by Gronwall Lemma. O

II1.7. Back to the standard fields. — In this section, we will transform the
estimates on u given in terms of the fields Z,, into estimates given in terms of the
standard fields Zo. Remember that we have fixed u > 1/2 (u as close as we want to

1/2).

Proposition 7. — We have, for k < so — 4, the estimates
|ZEu| < Ce(1 +t)~1+Ceq%,

|Zkou| < Ce(1 +t)~1H+Ceqh1

NN

Proof
1. First, we need control b;.

Lemma 7.1. — We have, for a < sp — 3,
|Z2b1| < C(1+t)°°.
Proof. — We use Lemma 3.3 with w = by, ¢ = —X/2cL1u = fe/(1+t)Ny. We obtain
LZpb =5+ 5, +5-

Since
Zl=6/(1+t)Elel"‘NliNkz‘"'Nkjv ZZJ+Zkl<k
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we obtain |, | < Ce(1 +t)~1+Ce,
Exactly as before, using Lemma 5.1, we have

|22 | SCA+ )™ Zb| + Ce(L+ )79 37 |71 b
1<k-1
For 35, we get simply | 35| < Ce(1+1)7149e 30, 2L bil.
We already know that |b;| < C(1 + t)“¢. By induction, assuming already

S 1ZLbi <o+ )

1<k—1
we obtain
|LZEb| < Ce(14+t)71C 1 C(1 + )71 ZE by).
Integrating yields the desired estimate. O

2. We have Z,,, = Z + aL;, but we have only a good control of a/o1, not of a.
This forces us to display the fact that L; is a better field than the Z,,. To motivate
some technical definitions which will be given in 3., we present the following attempt
to express o1 L; in terms of the Z,,. We first write

r—ct
Ve
We introduce now a cutoff in the blind zone. For this, set ¢ = goo; Lexp Cyr, and
define x1 = x1(gq), where x1(s) is zero for s < 1 and one for s > 2. We write then

Li=Hy—S= Han - S™+ 20,(5)[/1

r—t tu
\/E Ll = H(Sn — Sm + QXIG(S)Ll + %Ll + 20,(5)(1 - Xl)Lla

0'1DL1 = (Cl - 2(1(5)\/5)(1)[11 - \/E(H{)n - Sm),
D= (1-o7tu—2vec(1 - x1)o7 ta(S)).

Since

la/o1] < C(1 +1)“ ol 7,
we have

(1 = x1)a(S) /01| < Cgh ™" (1 4 8)Fe~Cocli=m),
If we choose qo and Cj large enough, we obtain
I(1 = x1)ora(S)] < 1/4.
Hence, for ¢ small enough, D! will be a smooth function of
u, tu/or, (1-x1)o7 a(S).

We fix now this choice of qg, Cop.

3. We have now to develop a calculus analogous to that of Chapter III, and enlarged
so as to contain the cutoff in ¢ we have just introduced. We denote by Ny as before
one of the quantities

1, e'(1+t)oi'u, e '(1+t)Lu, e M(1+t)Lu
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When we want to emphasize the fact that Ny is not 1 but actually involves u, we
write Nj. We denote now by Ny, for k > 1, one of the quantities

e A+t 28w, e ' +1)ZELu, e'(1+t)ZF Ly,
o7 'z e, go(@)ZF ta, ZE'La, ZE'Lia, a € (Coeff).
Here, go is any smooth function, vanishing for ¢ < 1/2, whose derivative belongs to
Cg°. This is of course a slight abuse of notation, since the gg actually used in the

whole computation are generated by x1 and finitely many derivatives of x;. Hence,
for these enlarged N;, we still have

|Nl| < C(1+t)cs, 1 <sp—3.

In fact,
|90(9) Z1 *al < Cla™"go(g)I(1 + £)%¢|o7 "al

and g > 1/2 on the support of go.

In view of 2., we enlarge a little the definition of f. We will denote by f a smooth
function of

g, u, w, or(1+t)71 (1+)7", a7%, g(q), No.

Here, g is any smooth function whose derivative belongs to Cg°(R?% ). Finally, we need
to introduce nonlinear analogues to Ny, denoted by v;. We define v; as any smooth
function of

&, u,w,01(L+1) 71, (1+8)7,07%, 9(g), No, (1 = x1(9))o7 'a.
In some sense, we see that v is a generalization of f to order one derivatives. Of
course, the quantity D! from 2 is a v.

4. Some calculus Lemmas
We have to prove that the analogue to Lemma III.2 for the enlarged quantities is
correct.

Lemma 2’. — We have the following identities:
i) ZEf =3 fNi, - Ny, ki + -+ k; <k,
ii) ZE Np =3 fNk, -+ Ni;, k1 + -+ kj <k +p, and, for some i, k; > p,
lll) Z'rl;:zt:tszkl "'Nkjr k1++k] < k';
iV) Z,I%O'l =01 Ekal -"Nkj, k)l ++k] < k‘
V) anlll = ZVIN{Nll . 'Nlj, lz 2 2, Z(l, - 1) < k.
Proof
a. We try first i) for k = 1. With ¢ = qoal—1 exp CoT,
Ri(q) =0, S(q)=fa, Ho(a)=faNo, Li(g)=feoi', L(q)=faoi",
hence
Zm(q) = Z(q) + aL1(q) = fqNo + fqIV1,
Zm(9(2)) = a9'(@)(f + fN1) = f + fN1.
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Finally, Z,,No = f + fN;.
b. From a., we have Z,,90(q) = go(q)f N1, hence
ZmNp = fNiNp + Npp1

and ii) is proved for £ = 1 and any p.
c. iii) and iv) are clear for kK = 1. Thus, by induction, i)-iv) are proved.
d. To prove v) for k = 1, we just have to check the factor (1 — x1)o; ‘a:

Zm|(1 = x1)o7 'a] = FN? + fNa.
Now, by induction,

Zin =S (NP2 + NiNo)Ny, -+ Ny + S N (f N2 + fND)N, -+ Ny,

J

+ Z UNING -+ (3 fNiy -+ Nig,) -+ - Ny,
(X kili+1)
For a term NaNj, --- Nj,, the sum of indexes is less than or equal to k +j + 2 =
k+1+j+1, as desired. For a term in the last sum, we note that Z,,V, contains at
least one factor Ny, ¢ > pif p > 2. Let v’ be the number of k; greater than or equal to
two: 1 < 7’ < r. The sum of indexes corresponding to these terms is less than the sum
of all indexes, which is less than or equal to (D L,)+1< k+j+1<k+1+j—1+7
as desired. O

We define, for k£ > 1,
My = NIN, - Ny, 120, 1;>2, S(Li—-1)<k-1
This definition is justified by Lemma 2’, v). Remark that
My =wviN{, MMy =My, MM, =My 1,
and

Z V1Nk1~-'Nkj :Mk, Zka:ZMk-f-l’ Z%MkZZM]H_p.
(X kigk)

5. We are now ready to prove Proposition 7. Denote by Z; the fields
Ri, S, ho=1t0, +10:, O
Lemma 7.5. — We have
Zy = ¥ Myai (Ziby) -+ (Zyiba) 28,
with
p=21l, 0<I<k, mn>21, q-1+> rj+p<k.

Proof
a. Consider first £k = 1. We write, according to 2.,

o1Ly = vi((f + fNV) Ly + [ Zm) = M1 Zpn + M1y Zi.
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Then
R; = R — o7 "a(R:) (M1 Zm + Mya7 ' Zn,),
and similarly for S and Hy. Then
Hy = ctOr +r/cOy = ho + ftuLl + ftulLq,
ho = Ho + f(HF* + S™) + M1 Zpm + Myay ' Znm.
Finally,
Oy =2vc(L+ L1) = fZu + fa;lzm.

b. Now

—k+1 _ —k
Zo' = (M1 + Mia7Y) Zm(Zy),

and the formula follows at once by induction, since

Mqu = Mq, Zm My = Ml+17 Zma;l = —la;lZmbl.

From this Lemma, we get, for [ < sg — 3,

le=X(1 + o7 Zyu| + [e~ (1 + ) Zo Lu| + |e "1 (1 + )Zo Liu| < C(1 +t)Ceat™ ",

For | < sg — 4, we can in fact enlarge this estimate to have also
le=X(1 + t)Zydu| < C(1 + )%k,

To prove this, we write

O =2vc(L+ L1), &8 = (wi/2/c)(L—L1)—1/r(wAR)i, R;= Zy.
From the weak control
|Ziu| < C(1+t)°°

already proved, we get

Zof (w,w)| + [rZo(w/r)] < C(1+t)°e.

35

6. Finally, we want to replace, in the above formula, the fields Zo by Zo. But all
fields Zy can be expressed in terms of Zj. In fact, R;, S and 8, are already Z;, and

h; = t0; + x;0t = w;hg — t/r(w A R)i,

Bi = wi(—at + (7” + t)_l(h() + S)) - l/r(w A R)z
Thus
Zo =3 flw, 1+~ (1 + 1)) Z.

This implies that we have the desired estimates of Proposition 7.
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IV. A calculus of modified Klainerman’s vector fields
IV.1. Definitions and L™ estimates of the perturbation coefficients. — In
the previous chapter III, we have already used modified fields

Zm=2Z+aly

where the a have been defined by III.1.1. Our final result in Chapter III was the
estimates, for k < s9 — 4,
|ZEu| < Cre(1 4 t)71FC ek,
|ZEou| < Cre(1 4 t)~1HCreght,

For aesthetic as well as technical reasons, we will start again from scratch and define
new, and better supported coefficients a, by the formula

La(R;) + x(q)a(R;)(Liu/2¢) = —x(q)R;u/2c,
La(S) + x(9)a(S)(L1u/2¢c) = —x(q)Su/2c,
a(Hp) = —a(S), a(R;)(0,t) =0, a(R;)(z,0) =0,
a(8)(0,t) =0, a(S)(x,0) = 0.

(1.1)

Here ¢ = qooy Lexp Co7, where qq is taken to be
go = 1/2 exp(—Cpe log 2)

in such a way that the boundary of the support of x(q) intersects r =t + M at t = 1.
The big constant Cy is still to be determined. The function x(s) is a real C* function
being zero for s < 1/2 and one for s > 1. The aesthetic reason is to perturb as little
as possible the standard (adapted) fields Z. It turns out that it is enough to take
perturbation coefficients a supported in a logarithmic zone o; < C(1 + t)“¢. The
technical reason will appear in the proof of Proposition VII.1, where powers of ¢; on
support of a have to be bounded by factors (1 + ¢)”:¢ for appropriate ;.

Proposition 1. — The coefficients a(R;) and a(S) defined by (1.1) are zero fort small,
forr > M+t or g <1/2. Moreover, we can choose Cy such that, for k < so — 5, we
have

lor*ZEa| + |ZE0a) < C(1 + t)e.

Proof
a. To prove the claim about the supports, we have to check that the domain left
to the curve
01— 2qoexpCor =0
is an influence domain of the t-axis (where a is zero) for L. But, on this curve,
L(o1 — 2qoexp Co7) = Loy — (qo/v/'¢)(exp CoT)Coe /(1 + t)
= —01/(Ve(1+ 1)) ((1 + t)u/(e01) + Co).

If Cy is big enough, this is negative, proving the claim.
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b. To estimate a and its derivatives, we will use the same method as in Chapter
III, except that we already know estimates on u. Exactly as in III.1, we define

R:n =R; + a(R,')Ll, S"m=5+ a(S)Ll, H(;n = Hy + a(Ho)Ll.
We forget about K now, and take the family &' of the fields Z,, as the collection of
the fields
R, S™, Hy', L.
We will write f to denote a real C* function of the variables
g, u, w, O’1(1+t)_1, (1+t)_w, Ul_Ui) g(Q), NO’
where
No=1, e '(1+t)o; u, e * (1 +t)Lu, e (1 +t)Lyu,
and g is any smooth function whose derivative belongs to C§°(R% ). We denote by
N, k > 1 one of the quantities
e A +t)or ZEu, e A +1)ZE Lu, e (1 +t)ZF Ly,
o'z a, ZF La, ZE 1 L1a.
This machinery is the same as in III, except that we have enlarged f with g(q) and
Ny. As we can see from the proof of Lemma 2’ in section II1.7, all the calculus and
commutation Lemmas of III (that is, Lemma 2, Lemma 3.1, 3.2, 3.3 and Lemma 4)
remain valid with these new definitions. We will refer to these calculus lemmas just
as Lemma 2, Lemma 3.1, etc. The only difference in the commutation relations is
that
[L1, L) = —Lyu/(2¢) L1 + Lu/(2¢)L,

which means that, in Lemma 3.1, 3.2 or 3.3, we have either d = (1 — x(q))Znu or
d = Llu.

c. We will need the following correspondence between the fields Z,, and the stan-
dard fields Zj.

Lemma 1.1. — We have

ZE =3 Nk - N, ZE+ S fNy, -+ N, Zi(a/oy) - - Zra(a/o1) ZE.
In the first sum, p > 1, Y ki +p < k. In the second sum, p > 1, ¢ < k and
YLi+>Yri+p<k.
Proof. — We have 8 = fo1Zy. For k =1, we write

Ly = f0; + f0, = fo12,
R =R;+aly=Zy+ faJo1Zo, S™ =S+ fa/o12.

Then

Hy =10, + 10 + f(1 4+ t)ud = Y wi(td; + x;0;) + ftu/o1Zo = fZo,

Hy = fZo+ fa/o120,
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which proves the claim. For k > 2, we write Z¥+! = Z,, Z¥ | and the Lemma follows
by induction, since a term

ZmZ8 = fZ8Y + fajo  ZET!
adds one term in each sum. O

d. The following Lemma will be crucial in the whole construction.

Lemma 1.2. — Assume 1/2 < < 2/3. Then we have
|ac| + lar| + la/of| < Cs(1+ 1),

where C3 depends only on Cy1 and u and not on Cy. Moreover, if Cy is big enough,
we have, on the support of 1 — x, the estimates

!a/all g Ca IZmUI g C|Z0Ul, |Zma’ll.| g CIZ()aUl,
|Zou/o1|(1 + |8al + €71 (1 + t)(|ZoOu| + | Zou/o1]) < Ce(1 + )¢,

Proof
a. In fact, with b = a/of’,

Lb= —ub(Loy/o1) — xbLiu/(2¢) — x/(2¢)o1 * Zou, Loy = —u/+e,
hence
|Lb] < Coe(1 +1)7 b+ Coe(1 +¢)71FE,
By integration, we get
bl < (C2/Cr)(1 +1)( @+,
We have now
LiLa = —L1(x/(2¢))(aLiu + Zou) — x/(2¢)(LiaLiu + fO0Zou + f(a/o1)ZoLiu).
But, since L1q = fqal_l,
Li(x/(20)) = 1/(2e)x () fao1 " = x/(2¢*) L1u = f /o,
LiLa = f(ajoy)Liu+ fZou/oy + fe(1+t) ' Lia+ f0Zou + f(a/o1)ZoL1u.

LLia = fe(1+t)"'Lia + f(ZoL1u)(a/o1) + fe/(1+t)(a/or)
+ fZoyufor + fOZou + f(Zou/o1)(a/o1) = g1.
We deduce that
|LLya| < Ce/(1 +t)|Lial + Ce/(1 + t)(1 +t)°F,

where again C does not depend on Cj. Since La is bounded independently of Cy, we
get by integration the first part of the Lemma.
b. From a., we get |a/o1| < C as soon as Co(1 — p) > Cs. Then, for any v,

Ival < ClZo’U| + Cla/01||Z0v| < CIZ0v|
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Since
|Zou(a/o1)?| < Ce(1 4 t)~1+Cie+20se 53u-2

we obtain on the support of 1 — x
|Zou/a1| + | Zow(a/o1)?| < Ce(L +8)71F04E(1 4 1)~ (- 3%e,
where Cy does not depend on Cy. This completes the proof. O

e. From now on we assume that Cj has been fixed big enough for the estimates of
Lemma 1.2 to hold. We now assume by induction

IN| < C(1+1)°¢, 1<k,
which is true for k£ = 0. In particular, in view of Lemma, 2,
|Z(a/o)| S C(L+ )%, I<k-1.
Using Lemma 1.1 for the index k, we obtain
|ZE Ou| + |07t ZE Zou| < Ce(1 4 1)1,
We write now
L(a/01) = —x/(2¢)(a/01) Lau — X/ (20)(Zow/or) + fe/ (1 +1)(afo1) = g.
Applying Lemma 3.3 for the index k with w = a/oy, we get

LZ:Z(“/UI) =21t +2;-

Since
9= fe(L+t)" (a/o1) + f(Zou/o),
we have
1Z!,9 < Ce(1+8)71+C, 1<k -1,
1ZE g] < Ce(1 + 1) + Ce(1 + )| 2K (a/o1)).
Hence

13211 < Ce(L+ )71 + Ce(1 + )72}, (a/ 1)
In )4, all terms are controlled by induction, and |} ;| < Ce(1 +¢)~1*¢. In 3,
if kj+1 < k — 2, we just write L1 Z¥*w = ZE+ 1y and the term in controlled by
induction. If kj41 = k — 1, the corresponding term is just fdL;Z* w. If d = Lyu,
we remember L; = Z,, and keep the term as it is. If d = (1 — x)Zu, we need to use
that L, is a better field than the Z,,. We write as in 2, Proposition IIL7,

r—t/vcLy = H* — 8™ + 2aLy + tu/+/cL,
o1ly = fZy + faLli + fL;.
Iterating this, we obtain

o1y = fZ, + f(a/al)Zm + faz/alLl.
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Using the corresponding inequality to estimate the term at hand, we get
|fdL1ZE1w| < C|d|/o1[(C + Cla/o1|)| ZE w| + Ca? /o1 |L1 Z5 w]].
From Lemma 1.2, we obtain finally in all cases,
|30, | < Ce(L+1)714 + Ce(L+ )| Zy, (a/ o]
Integrating the equation on ZF (a/a1), we obtain
1Z(a/or)l S CL+ )%, o7t Zyal < O(L+1)".
f. Since
|ZopLu| + | ZPLiu| < Ce(14+t)714% p<k+1,
we obtain, using now Lemma 1.1 with the index k + 1, applied to u, Lu or Lju,
loT  ZE | 4+ | ZEF Lu| + | Z¥F Liu| < Ce(1 +t) 0=,
Similarly, since La = fZou + f(a/o1)Zou, we obtain directly |Z¥ La| < C
g. Remember that
LLia = fe(1+t) " Lia+ f(ZoL1u)(a/o1) + fe/(1 + t)(a/o1)
+ fZou/oy + fOZou+ f(Zou/o1)(a/o1) = g1.
Applying Lemma 3.3 for the index k£ and w = Lja, we obtain
LZpla =343+
As before, we get first
|24 g1] < Ce(L 4+, 1<k -1,
1Z]g1] < Ce(1+ )19 + Ce(1 + ) 71| Zp Laal,
which gives
I3, < Ce(1+)71C + Ce(1 + ¢) 7| 2k, Laal.
The analysis of ), and )4 are strictly identical to the ones we have done for con-
trolling Z¥ (a/). Finally

|LZ¥ Lya] < Ce(1 +t)714C° 4 Ce(1 + )71 25 lhal,

which gives by integration the desired estimate, and proves that | Ny, 1| < C(1+1t)°e.
h. It remains now to translate this result using the standard fields Z;. As in 5,
Proposition II1.7, we denote by Zo the fields

Ri, S, ho =rd; + td,, 8.
Lemma 1.3. — We have
Zo =Y fNi, -+ Ni,(Zta) -+ (Z30) 28,
with
p21l, j<k, Yki+Xri+p<k
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Proof. — The argument is not the same as in Lemma 7.5, since we have defined no v
here. We have

R;=R"—aZy,, S=8S"-aZ,, Ho=H)+aZn,,

Ho=ho+ fZm + f(1+t)ul;.
Remembering that
o1Ly = fZm + fL1 + fals,
we get
fA+tuly = f(L+t)u/o1)(fZm + fL1+ fal1) = fZm + faZm.

This proves the Lemma for £ = 1, and the general case follows by induction. O

Now, since support a is contained in g > 1/2,
|Zral < |loTtZnalor < C(1 +1)°F,
hence this Lemma, applied to a, La or L;a, yields
lo7 Zoal + [ZoLal + | ZoLual < C(1 +1)°°.

The transition from Zy to Zp is now identical with 7.5 ¢, and this completes the
proof. O

IV.2. Smoothing operators

IV.2.1. Smoothing operators on the sphere. — We will need, in the spirit of the
paradifferential calculus of J.M. Bony [6], smoothing operators Sz acting on functions
on the unit sphere S2. To define these SZ, we will fix

62 € CP(R2), 0< <, /¢2=1,

and a partition of unity on S2
X+ +x-=1,

where x4 is one for +z3 > 0 and vanishes near the pole (0,0,— £ 1). For w defined
on the sphere, we set

Sjw=_ (d20* [(xxw) @~ (p-2),

(+»_)

where py are the stereographic projections from the poles (0,0, +1), and

$2,0(y) = 62¢2(0y).
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The operators SZ enjoy the usual properties

(21.1)a |IS5w|| < Cllwl],
(2.1.1) 155w — wl| < 67% > " ||Rwl,
1<k
(2.1.1), ||R*Swl| < "l
Here, ||.|| stands for the L? or L® norm on the sphere, and
R* =R, ---R;,.

When computing with the Sy, we think of them as if they were only the convolution
with ¢ ¢, omitting for simplicity the cutoff functions etc. Note that if we abandon
the property [ ¢2 =1, properties (2.1.1), and (2.1.1), remain.

1V.2.2. Smoothing operators. — We choose now

p1 € C°(R), 0<¢1<1, /(]51 =1, supp¢; C {r <0},
and set
S;’Ul(’l",u_),t) = /0¢1(0(T - Tl))'LU('f',,w,t)dT',.

This is the standard smoothing operator in the r-variable. We will use it only in a
fixed domain on the form

rzmn(l+t), m>0,

acting on functions supported in r < M + t. With to different (big) parameters 6;
and 62 to be chosen later, and 0 = (61, 62), we define finally

Sow(r,w,t) = S§, Sg,w.
It is clear that, for some C (independent of t) we have the inequality
1Sew(., t)|zz < Clw(.,t)|rz-

This inequality holds also if the integrals of the ¢; are not normalized to be one, in
which case, to avoid confusion, we denote the corresponding operators by sg.
Computing commutators of Sy with various fields, we will also need operators

sy [p; qlw = selp;qlw, p=(P1,-.-,Pk)s 4= (q1,---,q1)
defined by

solp; gl = { [ o ) guloaty — )

[p1(r,p3' (¥),t) — p1(r', T (W), )] -+ - Pe(r, 231 (¥), t) — P (r', 3 (), 1)]
[ (', p7 (¥),t) — (v, 0 (W), 0] -l (7', 03 (), 1) — (', p (), 1)

x@"w(r',y, t)dr’dy’} (p+),
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or similar integral involving p_. Here, ¢; and ¢2 need not have integral one, and x
is an arbitrary function in C§°(R?). Note that sg[p; g] is automatically normalized to
take into account the effects of the factors

pi(r) = pi(r), 4 (y) — 4; (%)
The continuity of these operators is given in the following Lemma.
Lemma 2.2. — We have (uniformly int)
i) |se[p; qlw|r= < Clw|peo|0rpi| LIl Rgi| L,
ii) |se[p; glw|rz < Clw|r21110rpi|L-I1|Rgi|Loe,

iii) |so[p; glw|r2 < Clw|peo|0rp1|p2Iliz2|0rpi| LTI Ri| oo,
iv) |se[p; qlw|r2 < Clw|pee|Rq1|L211|0ppi| Lo Iiz2 | Res| Lo .

Proof. — The first two points are obvious. To prove iii) or iv), it is enough to consider,
for instance, an integral

/W@w@—ymmw—mwwwt
Since [b1(y) — b1(y)| < ly — ¥/'| fyy 18b1](y’ + s(y — v'))ds,

| / 6362(0(y — /) (b1 () — b1 (v'))dy/

L2
1
<C / ds / 624(02)|0b1|*(y' + sz)dy'dz < C|0by |32,
0
which gives the result. O

IV.3. Modified Klainerman’é fields

a. We define now fields Zm, analogous to the fields Z,, used in chapter III, but
with two important differences:

i) Zm has to have smooth coefficients everywhere and not only outside r = 0.

ii) The perturbation coefficients a from Z,, = Z + aL; have to be smoothed by
Se, S0 as to bear extra derivatives (as occurs typically in a Nash-Moser scheme, see
[5] for instance).

From now on, we fix, for some
BL>0, f2>0, B> f1, 632621, efr <1
to be chosen later,
0; = 0;(t) = 09(1 + t)Pe.

The coefficients a(R;),a(S) have already been defined in IV. 1. We define a = a(H;)
by
a(H;) = —w;a(S) — (wA a(R))s.
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We set now (recalling H; = ctd; + x;/cd;)

(3.1)q R™ = R; + 4(R:) L1,
(3.1), 5™ =8 +a(S)Ly,
(3.1), H™ = H; + a(H;) L1,
(3.1)4 K =Ly + L = (2/2),.
Here

a(R;) = Sea(R;),a(S) = Sea(S),

and, for technical reasons,

(3.2) a(H;) = —w;a(S) — (w AG(R));.

We do not use Hy since it does not satisfy i). Remark also that
(3.3) Swia(H;) = —a(S), > wia(H;) =—a(9).
Thanks to these choices, we get

r+ct

L= :0 = JHM + S™.
T L=YuHi+S=TwHr+ 3

The set of the coefficients
a(R:), a(S5), a(H;)
will be denoted by (Coeff), while the set of
a(R;), a(S), a(H,)
will be denoted by (Egéﬁ). We will denote by & the collection of the fields
R™, S™, HM, K,
and call Z,, any of them. Except for K , we will write simply

Zm =4 +alq,

where Z means one of R;, S, H;.
b. We denote by Ny one of the quantities
1, e (1 + t)oru, (1 +t)0u.

Remark that |]V0| < C. When we want to emphasize the fact that JVO is not 1 but
actually involves u, we write Nj. We denote by Ny, for k > 1, one of the quantities
e+ t)o7 Zku, €11 +t)ZF b,
oT1Z% Ve, Z* ', ZF¥194, @ e (Coeff).

As before, we enlarge a little the definition of f. We will denote by f a smooth

function of

€, u, w, o1 (L +t)71 (1+8)7", o7, g(q), No, v; > 0.
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Here, g is any smooth function whose derivative belongs to C§°(RY).
c. We can now express L; in terms of the Z,,.

Lemma 3.1. — We have the relations

i) L1 = fZm, L =~f1(1 +t)Zm,

i) Z=fZm+ fN1Zm,

iii) o1L; =fgm+fivlgm; N o

iV) 010t = fZm + fN1Zm, 010; = fZ + fN1Z1,.
Proof _ _ B

a. From the definition of K, L; = K — L. But L = fZ,, hence i). Writing
Z = Zpy, — aL; and using i), we get ii).

b. Once again

r—ct ~ ~ .
\/E Ll = H() -S= Zw,H,m - s + 2a(S)L1

As before, we deduce from this o1L; = me + quZm, which is iii).
Finally,

0 =f/A+t)R+ fL+ fLy = 07" f(Zm —aL1) + f/(1 + ) Zm + foi (01 L),
which gives iv). a

IV.4. Some calculus Lemmas for the modified fields. — We have to prove
the analogue to Lemma III.2.

Lemma 4.1. — We have the following identities:
i) ZNr’fzf~:ZfﬁkL"'ﬁky ki+-+kj <K,
ii) ZENp =3 fNig,---Ni;, k1 +--- + k; <k +p, and, for some i, k; > p,
iii) Zkt =13 fNi, -+ Ny, kv 4+ + k; <k,
iV) anUl :UIZkal "'Nkj, k‘1+-"+k‘j < k.
Proof
a. We try first i) for £k = 1. For the variables

& u, w, o1/(L+1), 1+8)7, o™
in f, we only have to check the action of H; and L. But, analogously to Hy,
Hw=f, Hit=ft, Hio=o01fNo, Hi(o1/(1+1)=fNo

and the action of L is at least as good as that of L;.
Now, with ¢ = qocrl_1 exp CoT,

Ri(q) =0, S(q) = fq, Hi(g) = faNo, L1(q) = fgo7", L(g) = fgoi?,
hence B
Zm(q) = Z(q) +aL1(q) = fgNo + fghNi,
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Zn(9(9) = ¢ (@) fN1 = fN1.

Finally, ZmNo = f + fNy.

b. We have

ZmNy = fN N, + Ny

and ii) is proved for k = 1 and any p. c. iii) and iv) are clear for k = 1. Thus, by
induction, i)-iv) are proved. O

We define, for k > 1,

Mk=fﬁfﬁllu'ﬁlj, 120, [;>2, Z(li—l)gk—l.
Remark that
My = fN{, MiMy= My, MM =M1,

and

Z fNi, -+ Nk, = M.
(X ki<k)
As in 4 of Proposition III.7, we get easily

ZmMy = Y Myy1, ZE My, = 3 Mt

We will state here for further reference the following commutation Lemmas.
Lemma 4.2. — We have the formula
i) (Zk,8) =3 fNi, - Nk, 22,0,
i) (ZE,8] = 3 fNi, -+ Ni,, 022,
In both sums, we have p < k—1, > kj +p < k.
iit)  [ZF,0) = fNk, -+ Nk, 28,0+ 3 f Nk, -+ Ny (Z73 A) -+ (Z3 A) Z8,0.
Here, A= 0a or A = Jflﬁ. In the first sum, we have Y kj+p < k—1. In the second
sum, we have ¢ 21, Y k; + > (ri +1)+p < k.

Proo
a.fConsider first k = 1. While [R;, 9], [S, 0] are just O multiplied by constants, we
have
[H;,8;] = —;(ct)d; — 8;(z:/c)d, = f9,[K,8] = fo.
Now
[L1,0] = foud+ f(1+t)"10 = f(1+t)7a.
Hence
[@Ly,0) = f(1 +t)~'ad + f0ad = fAD.
This proves the Lemma for k = 1.

b. We write now
[Zrlgj'l’a] = Zm[ZrI:zva] + [Zm?a]ZrI:w
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and consider formula i). We see that the first term yields obviously terms of the
desired form, while the second is

(f + IN)((0, 23] + Z3,9).
This proves i). To prove ii), we write instead
ZmOZP, = [Zm, 0| ZE, + BZEF.

To prove iii), we see that Z,, ([Z%,, 8]) yields automatically good terms. For [Z,,, 8] Z%,,
we write this term as

(f + FA)0, Z}) + Z},9),
which yields only terms of the desired form. O

Lemma 4.3. — We have

i) [Zm, R /7] = My /(1 + ) Zp + Myo1 /(1 4+ £)0 + £/ (1 + t)(R;@),

ii) [Z5,R;/r] = (14t) "M ZP 1 40y (148) " MO ZP} +65(14t) ~ M (282 590)DZP2.

In all terms of formula i), we have | =1+ > p; <k —1.

Proof
a. We have
[Ri, Rj] = —¢€iji Rk, [S, Rj] = 0, [hs, Rj] = —€ijnhi.
Now
H; = h; + tud; — xiu/cat, [H«,’, R]] = —Ei]’khk + ftud + ftRu8
But
hi = Hy, — tuy + zxu/cdy = fR+ wpHo + ftud, Hy = f010 + f Zpm,

hence

(Hi, Rj/r] = fR/r+ Myoy/(1+ )0+ f/(1+ ) Zm
and the same is true for the other Z as well. Finally,
[EL1, Rj/’l"] = —Rj'd/rLl + E[Ll, Rj/?‘],
(L1, R;/r] = fR/r® + fear/(1+t)>N,0,

which gives i), which is also ii) for k = 1, since R;a = f62s¢a.
b. Since [Z,,, 8] = M;0, ii) follows by induction from the properties of the M. O
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IV.5. Some commutation Lemmas for the modified fields
Lemma 5.1. — We have the formula

0/ 0/
i) [3,5, Sg]’w = -13010 + —259w,
0, 02
0/ 0/
ii) (01, Selw = E%Searw + o—g(s(;w + s fRw),
1 2

iii) b, Selw = 07 'sq[b;Jw + 65 se[; b]w,

iv)  01[0:, Selw = fsofow + fsel; A(w)]fOw + fsef; h(w)] fw(l +1)~*
+ fsel; h(w)w(1 + )71,

V) [Zmy Selw = fO7 so[fNY; | My Zw + £05 ' s[; fN My Zynw + £ N167 50 fOW
+ fﬁ10{159w + fﬁlﬁz_lseMlme + f02"139[; fuw]l.

Proof
a. We have
0053w =2 [ 0001} (00r — s’
= -2 [aulean e -t ar
_ 3_2 / 8(re) (O(r — 1)) Drw(r')dr.
Similarly,

[8:, Sjlw = 0’/9{/02[%2 + y02](0(y — ¥')) (x+w) (p=* (¥"))dy' }(p-) + - -+
— /01 / 058, [(y;62) (0w — )] Cerw) =2 )y} (p) + -
=010 (% / 02 (y;62) 0y — ¥'))3;[(xsw) (0~ W)}y }p=) + - - -

This gives the formula i) and ii). b. Let p" R; = 3" ] d,,. We have
0, [ Gron(v)ty' = [ G20(@1) W)

ol (y)9; / b2.0h(y")dy' = / b2,0(c (y) — ol (1)) (9;h) (¥ )dy + / b2,0(c0;R)(y)dy/,
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hence, with h(y) = (x+w)(P=" (),
[Ri, S3lw = 0—1{ / O20(cl(y) — o (y'))ajh(y’)dy'}@_)

- 9_1{ / O2,60[(wRi(x+))(P=" () — (wRi(X+))(p21(y'))}dyl}(p-) T
F R +x),

the dots meaning a similar term with p; and the last term being zero since we have
a partition of unity. Since R commutes with Sol, we obtain

02| R;, Solw = sg[; h]w + sg[; ] f Rw + sg[; hw]1,

where h = h(w) stands for various smooth functions of w.
c. Now remark that, for any function b,

b(r,y) /91¢1 (01(r —1'))03¢2(62(y — ¥ ))w(r',y)dr'dy’

_ / [0 y) = b 9)) + (B y) — b ¥)) + b ) w(r ) dy
which gives iii).
d. Since
0; = w0y — 1/7‘(&) A R)z,
we have
[0, se]lw = [wy, so]wr + /(1 + t)[R, so]w + f/(1 + t)|w, sg] Rw + [1/7, s¢] f Rw.
Since
1/r—=1/r" = —(r—7")/rr', [1/7,se]lw = (017) " Lse(w/7),

we obtain iv). e. With the above formula, we also obtain, using Lemma 2,

[@L1, Selw = @//c[Or, Solw + [@//c, SplOsw — [av/c, Sp]Orw.

Now, since
(b(r,y) = b(r", ) /o1 (r') = b(r,y) /o1 (r) = b(r',y) /o1 (r') + (r' = P)b(r, y) [o1(r) o1 ('),
sop; aJ(w/o1) = selp1, ..., Pi-1,pi/01, Pit1, -, Pr; gl
+pi/o18elp1, - -+, Dis - - - Pr; ) (w/01),
se[p; q)(w/o1) = selpsqu, -+ -, qi/01, - @lw.
Here, p; means as usual that p; is omitted. We may write sometimes
sl ..,pifo1,...;q]

instead of the correct
39@1» L) 7pi/01) e ,PkHI],
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the ... meaning that the non-written terms are unchanged. We thus obtain for
instance

[b, Sp)Ow = 67 sg[b; 10w + 65 *s[; b]Ow
=07 sg[b/01;]010w + b/o1560w + 05 sp[; b/ 01] 01 Ow.
To summarize, using ii), we get
[@L1, Selw = f/0156[f N1; 1M1 Zmw + f/8256]; f N1\ M1 Zw
+ fN1/0136 fOw + f /6286 M1 Zmw.
f. We also have
(S, Solw = t[0;, Selw + [r, Sp]Orw.
Since [r, Splw = 07 ' sqw,
(S, Selw = f/0150fOw + f/02(sow + so M1 Zw).
Similarly
[Ho, Selw = [c, Sp]tdrw + [c“l, Se|royw + r/c[B, Selw + 1/c[r, Sg]Osw
= f/61s6[tu;JorT for0w + f/0286[; FIMy Zmw + /0159 fOw
+ f/02(sgw + sg f Rw).
Since, using the formula of d.,
soltu; Jv/o1 = se[f; v+ fse(v/o1),
we obtain again
[Ho, Solw = f/6186[f; 1M1 Zw + £ /6150 0w + f /6asol; fIM1 Znw
+ f/02(sew + s f Rw).

Since H; = w;Hy — ct/r(w A R);, we get the same formula for [H;, Sp], with the
additional term f/62s¢[; fw]1l. This completes the proof. O

Lemma 5.2. — We have the formula
D) (Zm,solp allw = Masolp; glw + My /6x50[p; a) fOw + f/6150[ps a) My Zmw
+ > Misgpi, - .- ,Mlgmpj, e dw+ Y Mise[piquy -, My Zngy, - . ., qlw
+f/8150[p, M1; | M1 Zw + f/0256[p; ¢, Mi) M1 Zw
+ 3 Misglpy, .-, Dj, - - - Pr; q)f (Opj)w
+3 Mi/61s0lp;qu,- .., fOQ, - qlw+ D> M1/0280[p1,- -, Dj,- - -, Pk; Q, fOP;w.
ii) ZmSoW = Mlnglzfnw,r <1,

i) Zmse[p;Jw = Z My sg[M1Z0p; | My Z72w + Myse(f0p)w + M se[; fOplw,
r1+re<1
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iv)  Zmse[;qlw = Z so[; My 251 q) My Z72w + Myse(fOq)w + My sgl; fOglw.
ri+r2<1
7k sl — spl: My Zr1+Pig| M. 72 P2 M, soM;. Zri+p1gzr2+p2
V) mse[’ q]w 39[7 lo%m q] l14m w + My sg My, Ly, qLyy, w.
In formula v), we have for both terms
ri+ro<l, Y(L—-D+pr+p<k-—1

Proof. — We prove only the delicate formula i), and v), the other formula ii), iii)
and iv) being proved more easily along the same lines. We need only to get terms
involving Zmp, qu or terms in me with a small factor in front. a. We have easily
the formula

[0k, solp; qllw = /(1 + t)salp; qlw + 3 selpr, - -, Oepis - - -, Pis glw
+ 3 selp; g1y, 0y -, @],
[Or, so[p; ql]lw =3 se[p1,y- -« OrDiy- -, DE; QW + > S0[D5 Q14 - - -, Or iy - - -, QW
Also
[b, so[p; gl]w = 67 *seb, p; glw + 65 ' se[p; b, glw.

b. Since
By, [°H 20y — v )N () —a(¥) - (@) — ay)h(y)dy' =
> [0 a0y — ) (@) — () - B50:(v) — B;ai(¥)) -+ (@ (y) — (¥ (Y )dy’

+ 646206 - V) @) - W) (@) - AWDoY,

we need only push coefficients a{ through the last integral. We thus obtain as in b,
Lemma 5.1,

[Ri, so[p; qllw = fso[p;qlw + Y fselp1,-- -, fRDi, ... Dk; qlw
+> fsolpsar,- .., fRai, ... q)w + 05 ' sg[p; h(w), q] f Rw.

This is of the desired form.
c. Similarly, since

r(p(r,y) — p(r',y)) = rp(r,y) — r'p(r',y) + (' — ) (p(r', y) — p(r', ") + p(r',¥/)),
we obtain
rso[p; qlw = Splp1, ..., TDi, - ., Pk; QW
+ 02_189[1)17 DR 7ﬁi, v 7pk;q7pi]w + 39@17 e 7ﬁi7 « ooy Dk q]piwa
and trivially

rsop; qlw = 07 solp; qlw + se[p; a1, - - -, 7G5, - -, qi]w.
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Hence

[S, se[p; gl]w = fsolp; qlw + 67 se[p; glwr + 3 {So[m, oy SPi - DR qlw
+so[psa1,...,8, ..., qlw+ se[p1, ..., Diy- - -, Pk; q)(Orps)w
+05's6[p1y- - Dis-- Pk Qs 8rpi]W}-

This is of the desired form.
d. We have now

Hysg[p; qlw = csg[p; q]tdrw + 7/cse[p; q)0rw + fselp; glw
+> {CSg[. . tOrpj...;qlw+r/csel... Opj ... qlw

+cso[p;...t<9rqj...]w+r/csoh);...6tqj...]w}.

Since it is technically awkward to commute 1/c with sg, we proceed slightly differently.
We write for instance

(r/c)sel...O0pj...;q)w =rcsgl...0pj...;qlw + f(1+t)usg...0p;...;qlw.
Using the formula
o136[p; qlv = sel. .., 0105, ... ;qlv + Se[. .., Dy, - - -3 qlp;v + 1/628¢[. . ., Dj, - . .5 G, D]V,
o180[p; qlv = se[p;. .., 014, ... v+ 1/6156[p; q]v,
we obtain for the same typical term, remembering that (1 + t)u/o; is an f,
F(+t)usel...,0pj,...;q)w = fsol...,010pj,...;qlw
+ fsol...,Dj,---34|(Owpj)w + f/02s0]. .., Dj,- - -5 q, Opjlw.
Similarly, we have
F(L+t)usalp;...,0:q5,...Jw= fsolp;...,010:q5,...Jw+ f/0150[p;. .., 0q;,...]Jw.
Using the formula of c. to move r to one of the factors p or ¢, we get
Hosolp; qlw = solp; gl How + 3 fso[. .., M1 Zmp;, . -3 glw
+ 3 fsolps ..., MiZmg;, .- Jw + fso[p; glw + f/0156[p; q)Bsw
+ 2 {Fsol - By 30l Oupi)w + £rsalps ., gy, T
+f/0259[...,;Bj,...;q,ﬁtpj]w}
+ f/6130[u, p; q) f(1 + t)0w + f/0230[p; g, ul f(1 + t)Ow.
To see (1 + t)u/o; instead of u in the last two terms, we use the formula
sol...,01pj,--;qlv =Dpjsel. .., Dj, .- qlv + se[p; glorv,

solp;. .., 0145, ... ]v = se[p; glorv.

We thus obtain the desired form for [Ho, s¢[p; q]]-
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e. Finally, we write
aL1so[p; qlw = fN1so[p; glw + &/v/cso[p; g)0vw — Gv/esq[p; g)0rw
+Z{6/\/559[...,8tpj,...;q]w—'af csgl...,0rpj, ... s qlw
+a/vesolp; ..., 0uq,... Jw—a cse[p;...,arqj,...]w}.

To see the term aL;w, we will consider for instance
[@/V/¢, solp; q)18sw = 1/6150[a//c, p; q)O;w + 1/6254[p; 4,3/ v/ Dew.

In order to see a/o1 = N 1 instead of @, we have to move around o; using the formula
of d. We get

N1/6156[p; q)0cw + 1/6156( M, p; M1 Zmw + 1/6256[p; ¢, Ma] M1 Zinw.
The computation is analogous with the term containing d,w. To handle a term like
a/Vesel..., 0pj, - - - glw,

we again have to move around o;: this term is equal to

fﬁlalsg[. L O0pj, . qw = fﬁlse[. ., 010¢p5, .. 5 qlw
+ fN1sol. ., Bs - q)(Oeps)w + FN1 /626l .., By, - 3 4, Orps]w,

and a similar expression for the terms involving 0,p;, 0:q;, 0rq;.
To complete the proof, we note that H; = w;Hy + fR, hence

[Hi, s6[p; ql] = wi[Ho, se[p; ql] + [wi, selp; ql] Ho + f[R, se[p; )] + [f, se[p; dl| R,
which yields only terms of the desired form. Finally,
Ksolp; qlw = 2//c{solp; q)0ew + se[- .., Oepj, . . s qlw + s0[p; - . ., By - - - Jw}

We could write yw = f Kw and this would be enough for what we have in mind, but
since we want a commutator, we proceed differently. We write

2/v/eso[p; q)0cw = so[p; ) Kw + (2/V/e — 2)s6lp; q)Oew + s0[p; 4)(2 — 2/v/0) Dy,

and again move around o; in the first term to see u/o; and o;0w. We obtain terms
of the desired form with a gain of 1/(1 + t) instead of 6;!, and this is enough to
complete the proof of i).

f. To prove v), we note that it is true for k = 1, since f0 = M, Zm. Applying Zm
to v) and using ii) and iv), we get the formula by induction. O

Lemma 5.3. — For all k, we have the formula
[2,’;, So]’w = 0;1{ Z MZOSQ[Mll;]M12Z£L+T’LU + M[OSG[; Mll]MhZ’;‘"w

-+ M1089M112£1+Tw -+ MlOSQ[; Mllﬂva:lw]Ml2 }
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In all terms, we have
r<l, YULi-1)+p<k-1.

Proof
a. We will prove by induction that 2,’;;1[Zm, Sp]w is equal to the right hand side
with the same conditions

r<l, Y(L-1)+p<k-1.

For k = 1, by inspection of the formula for [Zm, Sp] in Lemma, 5.1, we see that this is
true, since 67 < 6,.

Assuming that this is true for k, we write Z% = Z,,Z%=1 and examine the various
terms. We have, using formula iii) of Lemma 5.2,

Zmso[My,; 1My, ZPw = My sg[My ZP (M, ); | My ZP2 (M, Z2 " w)
+ My3o(My Z (M) My, ZEFTw) + My sgl; My Z (My,)| My, ZPF T w.
Since ZglM,, = Mpyq, we get
= M189 [Mll-l-m ) ](M12+P2 2717;1+rw + Mlz ZTZ:L+pz+Tw)
+ My so(Myy 41, Z8"w) + Misel; My, 1) My, Z2 .

Taking into account that

Zm(MOTY) = 07 My,
we see that the action of Zm on the first term of the right-hand side yields terms of
the desired form. The issue is completely similar with the second term, and easy for
the third. For the last term, we write

Zmse[; My, Z2w| My, = Mysg[; My, 4p, Z2w + My, ZE}P w| M,
+ Myso(Mi, 41, Z5w + My 41,1 25 w) + Masg[; Mi, 11 28,w + My, Z5H w] My,

and see that all terms are of the desired form.
b. Since
[anv ‘59]w = Z ZTI:l—l[Zm,Sgl'Zvin—lw7
1<i<k
we see that this term is a sum of terms of the desired form with

Sli-1)+p+h<k—-Il+l-1=k-1
This completes the proof. O
Later on, we will need the following pseudo-commutator formula.
Lemma 5.4. — We have the formula
ZF sow = fsef Z5 w + 0101 My, s9My, Z2w + 05 Myysel; My, | My, ZE ™ w
+ 05 Myyso My, ZEF™w + 05 My, sel; My, ZE,w]M,,.
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In these sums,
r<l, Y(G-1)+p<k-1

Proo
(;.fWe consider first k = 1, and set yw + cO,w = g. As in the proof of Lemma 5.1,
we have
[S, se]w = t[0, se]w + 07 *sew, = fsew + sew,
since, by integration by parts, sow, = 61spw. Next,
[Ho, se]w = [c, s|tw, + [c1, sg]rw: + 7/(ct)sow + ¢~ 107 L spw;.
First,
uSqwy = ub1Spw, Spuw, = Sg(uUW), — SeUrw = 61SpuW — Spu,w,
¢, se]wr = [u, sglw, = 01[u, splw + spu,rw.
Second,
[1/¢,50]h = —1/clu, se](h/c),
[u, se]rwe/c = [u, se](rg/c — (rw), +w) = f(1+t)[u, se]fg + 61f(1 + t)[u, s¢] fw.
Finally,
07 ' sowy = 071 sp(g — (cw)r + urw) = 607 'spg + s fw + 67 spurw.
Collecting the terms, we obtain
[Ho, selw = fsofw + fsofg+ f01(1+ t)[u, sol fw + f(1+ E)[u, sl fg.
On the other hand,
aLqsow = fa[0:, se)w + fase(g — (cw), + uw) + fabyspw
= 61M1sofw + fNisog,
so(@Liw) = so(fN1g) + fOr56(f Nrw).
Finally,
H;sow = f[Hy, sg]lw + fseHow + f[R, se]w + fs¢Rw.
Collecting the terms, we obtain
Zmsow = f3.f Zmw + 0; MyseMyw + 1 My (1 + t)[u, sg) Myw
+ FNisog + so(FNTg) + F(L+ t)[u, 0] g
+ 65 (s6; /1M1 Zpw + sol; fu]l).
Opening the commutator term on w, we find
61 M1 (1 + t)[u, se] Myw = 6101 Mysg My w.

Remember now that
g=+vclw= f1+t)" ' Z,w.
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Hence

fA+8)[u, s0lfg = fsof Zmw,
and we replace also g by this value in the two other terms containing g. We thus
obtain

ZomSoW = fsefzmw +(1+ t)_lfﬁl”sgfﬁfzzmw
+ 0101 MysoMyw + 857 (se[; FIMLZE,w + sel; fw]l).

Thus the result is true for k = 1, the second term in the right-hand side being of the
form

05 My soMy Zpw
since (1 +¢t)7 = f6; . N
b. Let us assume now the formula for ansf)'w, | < k. We obtain
Z¥ sow = Z(ZE sow) = Mysof ZEw + F(Fsof Zm(fZE w)
+ 0101 Misg My (fZFw)) + f05 1 (Mysel; Mi) My Z, (£ ZE w)
+ MyseMi fZ¥ w + My se[; My ZF w|My) + 6101 (My M, + My, 41)se My, ZEw
+ 0101 My (Mysg My Z7, (My, ZEw)) + Zn (-4 -+ -+ -).

The last three terms are identical to the corresponding terms in the proof of Lemma
5.3, we need not redo the computation. All other terms are easily seen to be of the
desired form. O

IV.6. L™ estimates of the quantities Ny

Proposition 6. — Fiz i > 1/2. For n small enough, 69 and 31 big enough, we have
the estimates (except of course for No =1)

i) INk| < C(A+1)C %0k, k< so—4

ii) |ZEa) + |25 10a] < C(1+t)C°, k< so— 4.

Here, Cy does not depend on the 6;.

Proof. — From Proposition IT1.7 and Proposition IV.1, we know that, for k¥ < so — 4,
e 1+ 0oy Z8ul, e '(L+t)|Z50ul, o7'|Z5 al, 125 Ol

are bounded by C(1 + )%™, for a = a(R;),a(S). These estimates extend easily
also to a = a(H;) = —w;a(S) — (w A a(R));. Remark that, since a are supported in

o1 < C(l + t)COE,

we can ignore the powers of o, in estimates involving a.
a. First we estimate N;. From the properties of Sy and Lemma 5.1, we get

la) < C(1+1)°, |9a| < Cla|re + C|da|r~ < C(1 +t)°°.
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Now
Zm = [NoZo + for'aZ,
gives the control of the terms of Ny involving u. Remark also
|Zma| < C(1 +1)°¢| Zoa| L~ < C(1 +1)°°.
b. We need to establish an analogue to Lemma 1.1, including some refinement

using the fact that v and a do not play the same role in the process of estimating
the Ng.

Lemma 6.1. — We have the formula
) Zy =Y fNiN N, 25,
i) Zh= Y fNeoNgZ8+Y fNe - NeZ0(Gfo) - Zy(a)on) Z5.

p>1 g1
S ki+p<k

In the sum of i), we have p > 1, k; =22, > (k; — 1) +p < k. In the second sum of ii),
we havep > 1, <k, Y kj+> ri+p<k.

c. We assume 1 < k< sop—5 and

||

|Z},al +12;,0al

Using first Lemma 6.1 i) for the index k, applied to a or da, we get
|Z¥ a| +|ZE 8a) < C(1 +1)°°

C(1+1t)%ot ! 1<k,
CA+t)°, I<k-1.

//\ N

Using Lemma 5.3 for the index k£ and w = a, we see that the only terms which are
not already controlled (using the induction hypothesis), are the terms

My 86| My; | M1 Z%,a, My se; My M Z5,a, Myse[; Mya) M.

It is important to check the way 0; enters the constants (that is, f) in Lemma 5.3: §;
and 6 enter the computation only through formula i) or ii) of Lemma 4.1. In these
formula, 69 do not appear, and G; appear only through B;e; replacing 05 ! by f01'1
or 67 by f, gives f containing 69/69 < 1 or (#9)~! < 1 as constants, and negative
powers of (1 + t) expressed with 8;e. Hence, thanks to the constraints e3; < 1, all f
entering the computation are bounded independently of the choices of the quantities
69, 3;. We thus obtain

|ZE @ < C(1 4 )°¢ + Co(1 4 )90 | N1,
where here and later numbered constants Cy and C3 do not depend on 6;. We obtain
similarly
0:1|(Z%,, s6]0a| < C(1 +1)°° + Co(1 + t)° | Np1 |-
We have
Z% 86 = ZE (8, Spla + [Z%, So)Ba + Se Z¥ da.
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To evaluate the first term in the right-hand side, we use Lemma 5.1 ii) or iv) and
Lemma 5.2. With the same reasoning as before, we obtain

611Z% [0, Selal < C(1 + )¢ + Ca(1 + )¢ | Njey1 -
Finally, _
|ZF da) < C(1+1)°° + Co(1 + t)°2%07 | Ny y1 |-

Using now Lemma 6.1 ii) for the index k + 1, applied to u or du, we get

oTH(1+t)e™Y ZE u| < C(1+ )% + Cy(1 + )¢ ZE al,
and a similar formula for du. Finally,

|01 # N1 < C(1+ )98 + Co(1 + )07 o1 ™ Nig1),
where as before the constants Cg and C7 are independent of 8;. We choose then

Br>Cr, 69 >2Cs

to obtain the desired estimate. (]

V. Weighted L? norms, Poincaré Lemma and Energy Inequalities

V.1. Weighted norms. — For small v > 0 and big B > 0 to be chosen later, we
set

b(s)=B(—s)™", s<C<0, p=(r+1)b).
Remark that p, > 0, since b’ > 0 and 1, > 0. For fixed t, we define the L? weighted
norm by

[wlf = [ (expp)lufds.
We first have to clarify the control of o7 'w by dw in this norm.

Lemma 1.1. — We have, for any smooth w supported in |z| < M +t,
lor 'wlo < Clwy|o.

Proof. — For fixed w, t, omitting these variables for simplicity, we write
M+t
w(r) = - / wr (s)ds,
T

M+t
w(r)? < Cloy (r)+" / (01()w2(s)ds, 0 <p< 1.

Hence, since p is increasing,

M+t M+t ]
/ eP(") (o1 (r)) 2w(r)?ridr < C/ e”(s)(al(s))“wf(s)ds/ r2(oy(r)) "1 Hdr.
0 0 0

We split the right-hand side integral in

(M+t)/2 M+t
AT
0 (M+t)/2
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In the first integral,
o1(r) 2 1+ (M +1)/2,

hence it is less than
(M+t)/2
C/ e”(s)szwf(s)(al(s)(l + (M + t)/2)_1)“(s(1 + (M + t)/2)“1)ds
0

(M+t)/2
< C/ P2 (s)s?ds.
In the second integral, we write ’
/S r?(01(r)) "1 Hdr < C(M + ) (0(s)) 7,
and obtain that it is l(:ass than

M+t M+t
/ ePOw2(s)(M +t)%ds < C ePSw?(s)sds.
(M+t)/2 (M+t)/2

Collecting the two bounds and integrating in w finishes the proof. O
We now have to make sure that the smoothing operators behave properly.

Lemma 1.2. — If (3, is big enough, we have the formula

i) |se[p; qlblo < C|bloIL|0rp;|LIT|Rg;| Lo,
ii) |se[p; qlblo < C0rp1lo|b|Looiz2|0rpi| Lo TT| Rg;| Lo,
iif) |s[p; a]blo < C|Rgu|o|b|LoI1|0rpi|LooT1j<2| Rgj| Lo

Proof. — We prove only iii), which is the more difficult. With

1
a(r',y) —al',y) = (/O (Oyq1)(sy + (1 — S)y')dS) -1,

we can rewrite sg[p; q|b (assuming k factors p; and [ factors g;) as sums of

1
/0 ds / 91 02+ =161 (01(r—1"))p2 (02(y—y")) (p1.(r, ¥)—p1(r", ) - - - (Pr (r, y) =i (', )

By, q1)(', sy+(1=8)y" ) (@2(r', ) — @2 (', 4")) - - - (@ (', y) — @ (', ") () (', 4 )dr' dy'.
To introduce e? into this integral, we write

eP(ry) — eP(ry) _ op(r'y) 4 oP(r'y) _ op(r'ssy+(1=9)y") | op(r',sy+(1-8)y’)

For the integral corresponding to the last term, the previously proved L? estimate
works, yielding the quantity |Rqi|o. The first two terms are bounded by

[eP|Loo (Ir = 7'[|pr|Lee + |y — ||yl L),
and
le?| < C(1+1)%,  |p.| < C(1+1)°°.
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From the equation ¥ + ¢, = 0, we get
(0¢ + o) (o7 *Ritp) = —o] *Ryuth, + pu/o1(o] ¥ Riyp),
and we already know that
o1 Riupr | < Ce(1+ 1)1+,
Hence, while 0% is bounded for r < t/2, we get for r > t/2 and thus everywhere
o Rip| < C(1+8)°°.
This shows
|Bpl < C(r + Dl ™ 7| Ry < C(1+1)°.

Thus the integrals corresponding to the first two terms we have just bounded are
bounded by

COT (1 +)°%|0yq1| 12 [b] Lo T11r s | Lo TT52(By g5 o -
Putting the weight e? inside |0,q: |2 costs only an extra factor C(1 + t)“¢, hence if
(1 is big enough, the claim is proved. O

V.2. The Poincaré Lemma. — The Poincaré Lemma is what we need to control
the zero order term (Au)v in the linearized operator on u acting on v.

Proposition2. — Fiz v, 0 < v < 1/4, and let b(s) = B(—s)™", B > 0. Then we
can choose B such that, for any smooth v supported for r < M + t, we have, with
p= (7 +1)b(¥),

/ (expp)(L3u)?vidx < Ce*(1 + t)_z/ (expp)vidzx
r>t/2 ret/2

+ Ce? / (expp)(1 4 t)~ "/ 207 1v?dx.
r>t/2
The point of this Lemma is this: the factor L3u is well localized near the boundary

of the light cone, but behaves only like Ce(1+t)~1+¢1€ there. In this Lemma, we get
the inequality we would easily get if C; were zero.

Proof. — Using Lemma I1.3.5.1, we get first, with I = fr>t/2(expp)(L%U)2v2dw

I< C/ (expp)(1 +1t) "3/ 207 02dx + 2/ (exp p)ay 2h()*v?da.
r2t/2 r>t/2

We perform a change of variables in the last integral, setting
s = Q/J(T,wa t)v r= (]5(8,0.), t)7 7/’(¢,w>t) =S.
The domain t/2 < r < t+ M is sent on the domain

Y(t/2,0,1) < s <Yt + M,w, 1) = C(w),
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since 1) is constant along any ray r =t + M. Hence, with w(s,w,t) = v(¢,w, t),

/ (expp)ay2h(¥)*v?dr = / e aT2(p)h?(s)w?psds.
r>t/2 ¥

(t/2)<s<C(w)

z

We also have, from Lemma I1.3.3

¢s/a3(9) < 2/¢s,
hence
a1 2($)h*(s)9s < Ch*(s)/ -
Now, with b(s) = e(T+Dbs)(¢.)~1,
b(s)'/b(s) = (7 +1)V'(s) = Bss/ 5.
But
Gs¥rr(®) = —dss/(ds)?,
and Lemma I1.3.5.2 implies
|bss /5] < [brrl / (¥r)?)(8) < O(L+|s]) /247 4 Ce(1 + |s])>/2+41.

Since 0 < v € 1/2 — 45, we can choose B big enough to ensure % > 0.
Proceeding as usual we write now

w(s) = /S ws(s')ds’,

C(w)

it < ([ e ([,

s

and, since b is increasing, the last integral is less than (C(w) — s)/b(s). Hence

Cw) _ ) Clw)
/zﬁ(t/Z) b(S)h(S)2w2(8)d8 s </w(t/2) b(S,)wg(SI)dSI) (/w(t/2) h(s)z(c(w) - S)ds),

and the last integral is bounded by

C(w

C(w)
/ (1+|s])~**8ds < C.

—0o0

Noting that ws, = ¢sv-(¢) and ¢sg(s) = e™(®) we obtain by changing back the
variables

C(w) _ t+M
/ Bs)w?(s)ds < / (exp Tb(1))v2dr.
$(t/2) t/2

Finally, we obtain easily
|L3u — ¢/rL3U| < Ce(1 +t) 2421712

which completes the proof. O
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V.3. The energy inequalities. — We present here one of the many possible vari-
ations on the ideas of [3].

Proposition3.1. — Let P = ¢~ 102 — cA; and p = (7 + 1)b(¥)) as in Proposition 2,
Tiv = 0jv + (wi/c)0v. Assuming that u satisfies the induction hypothesis (IH) on
[0,T], we have, fort < T,

1(8v)(., )5 + C/O />t,/2(expp)(7 + 1) (¥) 3o (Tiv)*ddt’
< C|(ov)(.,0))3 +C’/0 /Ra(expp)IPvHvtldxdt'

+ Ce] dt' (1 +£)|(0v)(., £) 2.
0
Proof. — We have
(exp p) Pvvy = 8,(1/2(expp) (v} /c + clvz|)) — 3 8i((exp p)evive) + (expp)Q,
with
Q = 1/(2¢)(ue/c — pe)vi + (i + epi)vivy — 1/2(us + cpy)|vs|*.
Writing explicitly the derivatives of p we get
Q = (T + 1)/ (20 (®)[=*he (vi — Wi/ Pe)ve)® = v [ (W} — [tp]*)]
—e(14+t)7 b)) /2(c i + v |?) + us /2207 + 3 uivivy — ug/2lv, |2

Integrating this identity in the strip [0,t] X R3, we obtain as usual the control of the
energy

B®) =12 [ (expp)(ut/c+ clusf?),
R3
and the terms of the last line in @ are bounded by

Ce /0 "B+ 1),
Now, v is not an exact phase function for P. For r < t/2, ¢ is bounded, hence the
terms of the first line of @) are bounded by
C(r + D' )lIov]* < CA+ 7)1 +8)7'7|0vf,
which are negligible terms. For r > t/2, we write
Y7 — Ple|® = /1 T(Riy)*.
From the equation ¢ + ¢y, = 0, we get
(8 + €0, ) (o7 ¥ Riyp) = —o7 ¥ Ryutpy + pu/oq (o7 ¥ Ritp),
and we already know that

lor ¥ Rouy,| < Ce(1 +t)71HCe,
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Hence

loT*Rig| < C(1 +1)°°.
The error term

(7 + 1)b'0} /9 (Ri)? /r?
is then bounded by

Cv2(1 +elog(1 +t))(1 + [9) 1o (1 + )2+ < O(1 + )12,
which is negligible. Finally,
v; = (Vi /Pe)ve = v; + (wi/e)ve — (ve/e) (Yi + (i C)ihr),

Vi + (wi/S) e = Vi — withy.
Replacing v; — ¥;/¢vy by T;v in @ gives an error term bounded by

(7 + 1)V () [9he [vF (Riwp)? /72,
which we have already seen to be negligible. (]
In contrast with what could seem obvious, the energy inequality for L is non trivial.
Proposition 3.2. — Let p = (7 + 1)b(v) as in Proposition 2, and v > 0. Then, for
smooth functions v supported in y(1+t) < r < M +t, we have the inequalities

t
) (148 e 2u(, )12 < C / (1+ ¢)~YeP/2(Lv) (., )| 2dt’
0

t
+ Cs/ (1 +t)"2u(., t')|odt',v(z,0) =0,
0

i) (1+t)71Ov)(, )] < C/Ot(l + ) (OLY)(., t')|odt’

+ Ce /t(l +t')72(0v)(., t')|odt’, v(z,0) = vs(x,0) = 0.
0

Proof
a. We write

ePv/cLvv = 1/20,(ePv?) + 1/20,(cePv?) — (1/2)ePv?(ps + cpr) — (1/2)€ePu,v?,
and remark that

pe+cpr = (14 1)V () (e + cipr) + (1 + 1) 1b().

Hence, integrating in  and ¢ on [0, +00[X[0, ¢], we get
/e”\/Evadrdt' =1/2 /e”vz(r,w,t)dr—(l/?)/epv2(1+t')_1[(1+t’)ur+5b(1/1)]drdt',
which gives the bound

(1/2)/epvz(r,w,t)dr < Cs/e”’uz(l +t) " tdrdt’ + C/eplLvHvldrdt'.
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Integrating now also in w and using again the support condition on v, we obtain
t
g(t)? = (1 +t)"YeP 20 (., t)|12)? < C’e/ (1 +t)"1g%(t)dt’
0

+ [y e Lo leg)i,
0

which gives i).
b. With Lv = h, we have

hy = Lvy — (us/2¢)Lyv, hy = Lv, — (ur/2¢)L1v, Rih = LRv — (R;u/2c¢)Lyv.

Using the inequality of a. for v;, v, yields the desired terms. For R;v, we obtain
t
pi(t) = (1 + )" eP 2R (., t)| 12 < Cs/ (1 +#) " pi(t)dt’
0

t
+ C/ (1 +t")"|eP/2R;h| 2 + |Riu|po|eP/?(0v)| p2]dt’.
0
Dividing both sides by (1 +t), using the support condition and the fact that ¢ <t in
the integrals, we get

(14 t)"eP2(Ri/r)v(., t)| 12 < C/t(l +t')"YeP/2(R;i /r)h|2dt’
0

t
+C€/ (1 +t')72(eP/2(dv)| 2t
0

Since 8; = w;0r — (w A (R/7))i, this gives ii). O

VI. Commutations with the operator P
VI.1. Computation of [Zm,P] and consequences. — Recall that
P =c"19 - cA.

To establish formula describing [Zm, P], we compute separately the two terms [Z, P],
which involves only u, and [aL4, P].

Lemma 1.1. — We have the formula (1.2),, (1.2)s, (1.2)¢, (1.2)q. Away from r =0,
we also have the formula

1
8¢
- LRjuRjat — (1/2¢)[3/2c%u; — 1/4cuur + 1/4cu + 3(ui/c — |uz|?)]|Ls

var?
— (1/20){Lau/26(v/e/2ur e/ V) + 3(u?/* = fus L.

(1.1), [K,P)=Ku/cP - é(Lu +3Lu)L? — —(3Lu+ Lyu)L? — ¢3/%u, L1 L
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(1.1)y [Ri, P] = (Riu/c)P — (Riu/2¢)L? — (R;u/2c)L? — (Riu/c)LL,
— RyuLu/4c?Ly — Riu/2c¢®(Lu + Liu/2)L,

(1.1). [S,P] = (Su/c—2)P — (Su/2c)L? — (Su/2¢)L* — (Su/c)LL,
— SuLu/4c*Ly — Su/2c¢*(Lu + Liu/2)L,

LU'L(T + Ct)
2¢y/c
)L1 VL2 + (—Hu/c+ Tiug/c® — twiu,)LLy

(1.1)g [H;, P) = (Hiu/c)P + (—H;u/2c + ————%Lu)L?

wi(r —
2 \/—
— (tLyuL + tLuL:)(9; — wiby) + 2ct/r> RjuR;0; — 2z;/cr’ RjuR;0; — 2uy/cd;

+ (—Hsu/2c+

— (HyuLu/4c® — w,i =N )LuL1u+:c,/c\/_(uf/c — |ug|?) + 0u/v/e) Ly
— (HiuLu/2¢ + Lyu/4Ac?(Hiu — w;Su) + 8;u/v/c + wi/ev/e(ctu? — r|ug|*)) L.

Proof
a. We have

(1.2), [K,P] = Ku/cP — Ku/c*d? -c_l/zzuj(?;t,

(12)1, [Rz, P] = [Ri,c_lc'?f] - [R,‘,CA] = —Riu/Czaf—Ri’uA = Riu/cP—QRiu/czaf_
Similarly, since [S, 7] = =202, [S, A] = —24,

(1.2), [S,P] = [S,c7102] — [S,cA] = —Su/c?0? — Sul —2/cd? + 2cA
= (Su/c —2)P — 2Su/c*d?.

b. We have
(02, H;] = 2((c + tus) 0% — ziug /c?02) + (2us + tue)0; + /¢ (2u2/c — uge ) O,
A H;) = 2(tu](f)2 x,'/02uj(9ft +1/cd2)

+ tAud; — 2/c*u;0; + x; /2 (2lug|?/c — Au)d;.

Hence

[H;, P] = Hyu/cP — 2H;u/c?d? — 2u;/c(tdZ — x;/c*0?%) + 2u;(ctd;; 3% — x;/c 2)
—2uz/cO; — 2/c*(cu; + zi(uZ/c® — |ug|*)0;
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We can write
ctd? it = = 0:H .’L‘z/CatZ - (C + tut)é)i + xiut/czat,
ctafj = 8jHi - :c,'/caft — tUjai + (min/C2 - (5,‘]‘/0)815,
Ctafj = 6jH¢ - (.’L‘,‘/C2t)atHj + (xia:j/c?’t)ﬁf
+ (/%) (c + tue); — tu;O; — ¢~ (8 + (mizrj/Pt)us — ziu;/c)d;.

Using these identities to express all second order derivatives as 2 modulo dHy, we get

(1.2)¢ [Hi, P] = Hiu/cP — 2H;u/c*8} — 2uy /0, H; — A(ziu; /)0 H
+ 2u;0; H; + 4(zi/c3t)Sud? + 2t(u? /2 — |ug|?)0; + 4(ziu; /c*t)(c + tug)d;
— 4z, /A (uZ/c? — ug|?)0 — 4/ c(ui + Tizjujus/c3t)0;.
If we are away from r = 0, we can handle differently, using the identity
> v;0; = 0,0, + 1/r* Y RjuR,;.

‘We write then

[H;, P] = Hyu/cP — 2H;u/c*0} + 2x;u./c30?
— 2tus/c0¢(0; — wiOr + w;i0r) + 2¢t(ur0,0; + 1/T2R]"U/Rj6j)
—2z;/c(ur02 + 1/T2RjuR;8;) — 2us/cO; — 2x;/c2(u?/c? — |ux|?)0: — 2ui/cd;
= Hyu/cP — 2Hu/c?0? — 2(tus/cO; — ctu,0,)(0; — wi0,)
+2/r2(ctRjuRj6,~—xi/chuRjé)t)—2ut/06i——2x,~/cz(uf/c2—luzlz)at——Zui/cat+2 >
where Y means here the sum of the following four terms
3 = ziuy/BOF — twiug/cO?, — ziuy /D2, + ctuqw;O2.
Using the identities
2/c02 = 1/2L% + 1/2L? + LL; + Lu/4cLy + (Liu + 2Lu)/4cL,
2¢0? = 1/2L? +1/2L% — LL; + Lu/4cLy + (Lyu — 2Lu)/4cL,
40% = L? — L? + Lu/2cL; — Lyu/2cL,

we obtain from a. the desired forms for [K, P], [Ri, P] and [S, P]. In the present
computation of [H;, P], we get

( ct) wi(r + ct)
2y =2 ~oede = Liul?+ ~oede

+ (ziuZ /e — twiul /v/e + wiLiuSu/4c®) L + i—\/_—c—lLuLluL

After some algebraic manipulations, we get the result for [H;, P). O

LuLf + (alciut/c2 — twiur)LLy
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Lemma 1.2. — We have
[@L1, P] = (—L1a+ aLiu/c)P — (L@ + aLiu/2¢) L% + @/c(Lu/2 — Liu) L, L
+7r72R;aR; L1 — ar *RjuR;L — cr™%(L1a + 2av/c/r) A
+ [~L1La — Lyu/2cLqi@+ er2A,a + v/c/rLa
—a(=c/r? + (=L1u)?/2¢* + LuLiu/4c® — 1/4c(u?/c? — |uz|?))| L1
+ [Lia(Lu/2c — v/e/r) — a(c/r? + Liuug /e + 1/2¢(u2/c? — Jug|?))]L.
Proof. — We have
[L1,02] = us/cO L + ug/2cL — 1/4¢™ 52428, — 3/4¢=%/%u28,,
[L1,A] = u;/cO;L + 2/c/r3 Ay — 1/4¢™5/2|u, |20,
— 3/4¢3?|ug|?8, + Au/2cL + 2v/c/1%0,,
hence, writing here b = a,
[bL1, P] = bLyu/cP — 2b/c®*L1ud? — (Pb)Ly — 2by/cd; Ly + 2¢b, 0, Ly
+2¢/T?R;jbR; Ly + bu; /20, L — bu, 0, L — b/r*RjuR; L — 2bcy/c/r*A,,
— 2be\/c/T?0, — b/4c(u?/c? — |ug|?)(2L — Ly).

The strategy is the following: after some algebraic arrangements, we express LL;
using P only in the term (L1b)LL4, and take a careful look at the first order terms.
We have first

—2b;/cOy Ly + 2cb0,Ly = —(Lb)L? — (L1b)LLy,
ut /20y L — up 0, L = (Lu/2c) L1 L + (Liu/2¢) L2,
Next
—2b/c?L1ud? = —b/cLyu(LLy + 1/2L2 +1/2L? + Lu/4cLy + us/cy/cL).
Now we replace, in the term (L1b)LL4,
LL; = P +c¢/r?A, + 2¢/rd, — Lu/2cL,
which gives
[bL1, P] = (bLiu/c — L1b)P — (Lb+ bLyu/2c)L3 + b(Lu/2¢c — Lyu/c) L L
+2¢/r*R;jbR;L1 — b/T*RjuR;L — cr2(2by/c/r + L1b)A, + Q1,

where the first order terms @, are

Q1 =2¢/r(brL1 — (L1b)0;r) + q1 L1 + g2 L,

q1 = —b/2¢*(L1u)? — b/4c? LuLyu + be/r? — Lyu/2cLyb

— LiLb+c/r*Ayb — 1/4c(u?/c® — |uz|?),
g2 = —b/c*\eLyuug — be/r? + Lulqb/2c + 1/2¢(u?/c? — |ug|?).

SOCIETE MATHEMATIQUE DE FRANCE 2003



68 S. ALINHAC

It is important to remark that
brLy — L1608, = b,(L — 24/¢d,) — (Lb — 2+/cb, )0, = b.L — LbO,
=b,.L — (Lb)/2y/c(L — L1) = 1/2y/c(—L1bL + LbLy).

Collecting the terms gives the result. O
Putting together the two above Lemmas yields the desired expression.

Lemma 1.3. — We have the formula

i) [R™ P]=(Rwu/c— Lia+aLiu/c)P — A(R;)L? — Ryu/2cL?

+(—Riu/c+%(Lu/2—L1u))L1L+r_2Rj6RjL1—6r_2RjuRjL—cr"2(L16+25\/E/T)Aw
+ [=Riu/2¢*(Lyu + Lu/2) — LiLa — Lyu/2cLia + cr 2A,a + vc/rLa
—a(—=c/m? + (=L1u)?/2¢% + LuLiu/4c? — 1/4c(u?/c* — |uz|?))| L1
+[=Riu/4c? LiutLya(Lu/2c—+/c/r)—a(c/r?+ Liwug [ y/c+1/2¢(u? /2 —|ug|*))] L,

ii) [S™, P]=(Su/c—2— Lia+aLiu/c)P — A(S)L? — (Su/2c)L?
+(—Su/c+g(Lu/2—Llu)))LlL—I—r_szERle—6r"2RjuRjL—cr"2(L16+2E\/E/T)Aw
c
+ [=Su/2¢*(Lyw + Lu/2) — L1La — Lyu/2cLia + er 2Aua + ve/rLa
—a(—c/r? + (=L u)?/2c* + LuLyu/4c? — 1/4c(u/c? — |uz|?))| L1
+[—Su/4c Liu+Lia(Lu/2c—/c/r)—a(c/r?+ Liuus /c?y/e+1/2c(u? [ — |ug|?))] L,

~ . ~ —ct
iii) [H™ P|= (Hu/c— Lia+aliu/c)P — A(H;)L? -~ 20: (w A Ru);L?
_ (r—ct
+ (—Hyu/c+ ziug/c® — twiu, + %(Lu/2 — Liu))L1 L+ (—H;u/2c+ w—g—:\/_TC)Llu)Lz

— (tLyuL + tLulq)(0; — wiOr) + 2ct/r2RjuRj8¢ - 2x,-/cr2RjuRj3t
+ 7 2RjaR; Ly — ar *RjuR;L — cr?(L1a + 2av/c/r) A — 2uq/cd;

—H.u/2c2 Y (= _ _ o
+ [-Hiu/2¢ (L1u+Lu/2)+462\/EL1u( 2cy/ctu, + (1 — ct)Lu) — diu/+/c

+ 2 /22 (us Ly — 2v/e(u?/c? — |ug|?)) — L1 L@ — Liu/2cLi@ + cr 2A,a + ve/rLa
—a(—c/r? + (=L1u)?/2¢* 4+ LuLyu/4c? — 1/4c(u}/c® — |ug|?))] L1
+ [+ Lyu/4c*(wiSu — Hiu) — Byu/v/e+w;/e/e(rlug|? — ctu?) + Lu/2c(twiur — ziur/c?)
+ Lia(Lu/2¢ — /e/r) — a(c/r? + Liuug/c?v/e + 1/2¢(u?/c® — |ug|?))] L.
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Here,
A(R;) = La(R:) + L1u/2¢a(R;) + Riu/2c = La(R;) + RM™u/(2c),
A(S) = La(S) + Liu/2c¢a(S) + Su/2c = La(S) + S™u/(2¢),
A(H;) = —wiA(S) — (w A A(R))s.
Proof. — The formula are obtained by just adding the formula of Lemma 1.1 and

1.2, and using [L, L1] = Lyu/2¢cL; — Lu/2cL to replace LL; by LiL. The expressions
of A(R;) and A(S) are clear. We get

~ _ w;(r + ct) - oy Tt .

A(H;) = Hyu/2c 20re Lu + La(H;) + Liu/2ca(H;) Sor (w A Ru);.
Since

5 t
H; =w;Hy — ct/r(w AR);,w;Hy = ML —w;S,
Ve
we obtain
A(H;) = La(H;) + Lyu/2ca(H;) — wiSu/2¢ — 1/2¢(w A Ruy).

Using the definition of a(H;), we get the result. O

We will dispatch the terms in Lemma 1.3 into three categories:

i) A term which can be written in the form
MlaBZm, Mlaol_lzm,Mlaa

will be called “standard”(st.); otherwise, it will be called “special” (sp.).
ii) A standard term for which, for some v > 0,

la] <C(1+¢t)~177
will be called integrable (int.). Otherwise, it will be called “just”.

Rewriting appropriately the terms in Lemma 1.3, we obtain the following Propo-
sition.

Proposition 1. — We have
[Zm»P] =0P+3; +ZZ+Z3’
6 = fZmu+ fOa+ foua,
i) >°, is a sum of standard integrable terms with
a=01/(1+t)%(E (1 +t)0u), a=o01/(1+1t)%N;.
ii) >, is the sum of the just standard terms

Sy = fOUDZ, + FOZmud + fOUD,
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iii) >4 is the sum of the special terms

Y5 = —AL? + r2R;aR; Ly + fro2LiaA, + er2A,aL,
+ f(1 +t)"'0uR;a0 + fL1Lad + foul,ad + f(1 +t)~'Lao.

Proof. — We proceed by inspecting the terms in Lemma 1.3, after an appropriate
rewriting. We discuss only the terms in [I;T i, P], which are the most difficult, examining
the terms in the order they appear in the Lemma. The terms of the other [Zm,P]
have the same forms. The special terms will be discussed in the next Proposition.
1. The term —AL? is special.
2. We have
r—ct=f+o1f = fo,

hence
r—ct

2cr
and using Lemma IV.3.1,

01/(1 + t)Rjul? = My /(1 + t)Znu([Zum, L1] + fOZm).
Since [Zm, L] = M;0, the term is
Moy /(14 t)2N1(8 + 8Zp,).

It is st. int. with o = ea1/(1 + t)2N;.
3. Recalling that

(wA Ru); = fo1/(1+t)Rju,

L= r\-(ct(zw’H +5),

we note first
1
(r\—i{—ct) = 2\/_(7'+ t)2L1U, L( \-{_ct) 2\/E(r+ct)2((r — ct)Lu — 4c/c).

Hence
(1.3) LL= (lf;lt)zauz + /(14 t)0Zm,
(1.4) L2 =f/(04)2Zm + f/(1 4 1)0Z .
We write

My ZmuLy L = Myeoy /(1 + t)Ny(o1/ (1 + £)2(0u) Zm + 1/ (1 + )0 Zp,
hence both terms are st. int., with
a=e3/(1+1)*Ny, a=ceo/(1+ £)2N;.
We write _ _
ftouL,L = f(0u)?01/(1 +t) Zm + fOUOZm,
the second term is (just) while the first is st. int. with

a=¢20?/(1+t)3((1 + t)Ou/e).
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We write
faduL,L = (07'a)(fo?(0u)2/(1 + t)*Zm + fo1/(1 + t)0udZn,),

showing that both terms are st. int. with

a=e203(1+1)*N;, a=eco1/(1+1t)2N;.
We write _ 5 N

fHuL? = MiZpnu(f/(1+ )2 Zm + f/(1 4+ t)0Zm),

hence both terms are st. int., with

a=co?/(1+1)>°Ny, a=co/(1+ £)2N;.
4. To handle the term
tLiuL(8;—widr) = fLyuZm(wiR;/7) = My (8u)/(1+t) R+ fOU[Zm, Rj 7]+ fOUO Zpm,
we need Lemma IV.4.3. The term

My ((1 + t)ue)e/(1 + )% Z,,
is st. int. with
a=c¢eo1/(1+t)%((1 +t)0u/e).
According to Lemma IV.4.3, he middle-term is equal to
My8u/(1 + t) Zm + Myoy /(1 +t)0ud + fou/(1 + t)R,ad.
The last term is sp., the first two are st. int. with
a=c¢eo1/(1+t)%((1 +t)0u/e).
5. We write the term tLuL;(8; — w;0,) as
fZmuLi(R/7) = f/(1 + t)2ZmuR + f/(1 + t)Zmu([L1, R] + RL,).
Since o N
[L1,R] = fRuL,RLy = fNiZyL1,|Zm, L1] = fN10,
the term is
My /(1 + )2 ZuZo + My /(1 + ) Zinu(ZmuL + 8 + 8 Zyy,).

All three terms are st. int. with

a=e02/(1+1)°Ny, a=c¢o1/(1+1t)2N;.

6. We write
£/ + ) RjuR;0; = My/ (1 + t) Zmu([Zm, &) + 0Zm,).

In view of Lemma IV.4.2, both terms are st. int. with a = eoy/(1 4 t)2N;. 7. The
term r~2R;aR; L, is sp.
We write
ar~2RjuR;L = Mya/(1 + )2 Zmu([Zum, L) + LZym),
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showing that both terms are st. int. with a = e62/(1 + t)3N;. The next term is sp.,
then we write

far=3R? = fa/r*R;(R;/r) = M1o1/(1 + )2 Ny([Zim, 0] + 8 + 0Znm,),
which gives three st. int. terms with o = o /(1 + t)2Nj.
8. We reach now the first order terms. While

(1+t)ou
€

foud, f(1+1)(0u)?d = fe 0ud = foud,

are just, we write
£(0u) Zud = My Zudud,

which is a st. int. term with a = 201 /(1 + t)2N;.
9. The next four terms containing a are special.
10. We write then

fl/A+1)%a0 = for/(1+t)2N18, fa(0u)?d = fe2o1/(1 + t)%((1 + t)ue)d,
hence the two terms are st. int. with
a=01/(1+t)2N1, a=o01/(1+1t)*((1+1t)du/e).
Finally, the terms in L have exactly the same structure, with the exception of
F(1+ )" LGl = fLia(o1/(1+ t)?) (07 Zm)
which is st. int. with o = o/(1 + t)2N;. |

The following Lemma displays the structure of the most delicate terms in .

Lemma 1.4. — We have
VeLa = —Sp(x/(2V0)(Zmu + (a — @) Ly1w)) + (1 + t) "' spa + [u, Selar,

0, (VeLa) = —0,S(x/ (2V)(Zmu + (a — &) L1u))
+e(14t) " tspar + ur-Sear + 61[u, solar,
By(VeLa) = —0,So(x/(2V0)(Zmu + (a — &) L1u))
+e/(1+t)%spa+¢e/(1 + t)spas + urSear
+u/(14t)spar + (1 + t)"Lsgua, — Sputar + Spurar + 0:1[u, spla,
r2R;aR; Ly = My(1 + t)"205(560)0Zm + M1(1 + t)~202(s9a)0,
fro2LiaA, = My(1 +t)~1(8a)(R/7) Zm
+ My (88)(01 /(1 + t)*)(07 " Zim) + Mi (1 + £)72(9@) (010 + 02(s62))D),
er™2A,G0 = f(1 +t)"262(s9a)d, f(1 +t)"2OuRE0 = f(1 + t)~204(sa)O.
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Moreover, we have

|(1 + |8sa| + |8, + a2 /o1 4+ e (1 + t)(| ZoOu| + !Zou/all))al‘lﬁhoo

< Ce(1+t)71e.

Proof

a. We have

VeLa = (8; + ¢d,)a = €/(1 + t)spa + [c, Solar — Se(v/cLa),
which gives the first formula. The second formula follows, since
Ors9a = sga,, O0.Sgb = 01s4b.

The third is also clear, using the formula of Lemma IV.5.1, since Spb, = 0;34b.
b. From the definition of sy, we have

Risgb = h(w)faspb, A, Seb= f03seb.
Hence
r2R;aR; Ly = h(w)r202s¢aR;L1 = My(1 +t)~20289a(M10 + L1 Zr,),
cr 2A,aL; = f(1+t)~263sa,
f(14+1)710uR;a0 = f(1 + t)"20250a0.
c. We have
fr2LiaR? = fr'LhaR;(R; /1) = My(1+ )" 0a((Zm, R /7] + Ry /rZm).

Using Lemma IV.4.3, we get the result.
d. Using Lemma IV.5.1 to evaluate [0:, Sp] and Lemma IV.3.1 to express R, we
can write

Ved = (14 t) 7107 sga, + (1 +t) 7105 s M1 Z0a + [u, Splas

— S(x/(2v/) Lyu(a — @) + %‘%Zmu + X/ (293 Zt — So(x/ (V) Zrm).

Using the already established formula s¢(o1b) = o150b + 01—159b, we can bound the
first three terms of o, 1A by

Ce(1+t)~10718a) + Ce(1 + t) 7205 M |(|loT Z0 0] + |ar ).
Next, since
|b— Seb| < CO7|b,| + C6; (1b] + |Rb)),
< €07 '19a| + CO3  (|al + | My || Zmal),

X/ (2V) Zmu/01 = So(x/ (2V0) Zm/01)] < Ce(1+ )7 (67| Ma] + 65| Ma]).
Note that the error term produced when introducing oy in Sy is bounded by

Ce(1+1t)7107 M.

la —al
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Finally, observing that
|Zmu| < C|Zoul, |0¢a| +18,a| < Clal/(1 +1t) + Clae| + Cla,
we see that we can use Lemma IV.1.2 to control the terms containing (1 — x)o; 1 Zmu.
Taking (51 big enough with respect to | M| yields the desired estimate. O
VI.2. Higher order commutators. — Taking a standard cutoff ¥ = X(r/(1+1))
(that is x(s) is zero for s < 1/2 and one for s > 2/3), we write
[Zm’P] = Y[va P] +(1- Y)[Zm’P]v

and use the formula of Lemma 1.3 for the first term, the formula (1.2) of Lemma 1.1
for the second.
We need now a Lemma describing the structure of [Z¥ | P].

Lemma 2.1. — Writing in short
[Zm, P] = 6P + Q,
we have
i) (Zk,Pl=3"Z85...ZL6Zp P+ Y. ZF 6. .. Z4629.QZP,.

By an abuse of notation, we do not put indexes for the 6 and Q, though there is one
for each Z,,. In the first sum,

i1, p+X(+1) <k
In the second sum,
g+p+ > (ki +1)<k-1

ii) 28 Zm, P28, =S Z116 ... ZL8ZP P + S ZM16 ... ZRi 6 2P QZP.
In the first sum,

izl, pm+Y(i+1)<p+qg+1
In the second sum,

pt+pe+Y (ki+1)<p+gq

Proof. — For k =1, i) is clear. We write now

23+, P) = Zn|Z3,, P + (Zm, P\ Zy,.
We see that Zm acting on both sums yields only correct terms. On the other hand,

[Zm, P|Z}, = 8|P, ZE] + 62}, P + QZy,,

and all three terms are of the desired form. This proves i). The proof of ii) is
completely similar. O
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VII. L? estimates of © and a

Using the structure of PZ,’ﬁL"'lu displayed in VI, and the energy inequality for P,
we want to estimate now |0Z5+!ulo. Similarly, we will estimate |0Z% alo. To this
aim, we introduce some notations. We set, with a = a(R;) or a = a(5),

Ax =1+ (o7 28 alo + 1257 Balo), k21, ¢k = L [Nklo, k>0,
=11+ t)(le Oulo + |01_1Zk ulo) + IZ’c 19alo + o7 le Blo, k> 1.
The point of these notations is that the “bad” Ny is Z,’iﬁ, that we were forced to

introduce to have Lemma IV.3.1. The quantity ¢}, is just ¢ deprived of this bad
term. Note that, since @ is supported for o7 < C(1 + t)COe , we have

k < C(L+1)%g,

but this “small” amplification factor is very important in all this paper. According to
Lemma V.1.1, we have

Oy ~ 11 + )| Z¥ Bulo + | ZE 15l
Since the energy inequality will control 827’;“11, we introduce also
o =M1+ 0)0Zpulo + 125 Bl
Thanks to Lemma IV.4.2, we see that, assuming
o < CA+t)0, 1<k,

we obtain
[[ZEF1 Blulo < Ce(1 +1)°% + Ce(1 +t)~1| 2% 8alo.
It follows that
Ghpr SCA+ O+ Ol 1, Py SC(L+ t)1 O + Cjs-

VII.1. L2 estimates of u

Proposition 1. — We can choose B1 and B2 — (1 big enough to ensure the following
implication: Assume that, for 0 <1 < k < 2(so —4) — 1, we have

INiJo < C(141)1*C%, A < C(1+1t)°.
Then, for some v > 0,
|PZ¥ulo < Ce(148)"177 + Ce2(1+1) 7149 4 Ce(1 + )72 Ty
+ Ce®(1+ ) 2@ + Ce(L+ )1 T Aggr + Ce®(1 + t) A
+ca +t)-1+°‘€(/
o

Remark that the statement of the Proposition does not change if we replace ¢}, 11
by ¢Z+1°

- 1/2
e”(ﬂZ,’jl+1u)2dx)
1<C(1+t)Coe
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Proof. — Before proceeding, let us explain how we classify the various terms of
PZ’;‘"lu. We call SC (for subcritical) the terms which can be estimated by already
known quantities, that is, using the induction hypothesis. We wish these SC terms
to be bounded in weighted norm either by (1 +t)~1=7, or by €2(1 +¢)~1+¢¢ (y will
denote here various strictly positive numbers). In both cases,

t
/ ISC term|odt’ < Ce(1 4 t)°5.
0

The other terms are called C (critical) terms, and are more delicate to handle, since we
want them to be bounded by quantities we control directly through energy inequalities,
in such a way that application of Gronwall’s Lemma will be possible without damage.
More precisely, the quantities we expect to control are

[0ZFF ulo, |0ZF alo,

using the inequalities for P and for L respectively. The C terms for which we have an
easy control will be bounded by e(1 +¢)72"7@y41 or e(1+t) 1" 7Ax,1. The limiting
case will be C terms bounded by e?(1+t)~2¢;},, or €*(1+t)"*Ag1. Finally, one term
involves the special derivatives T;, and is expected to be handled using the control of
these special derivatives given in Proposition V.3.1.

A. 1. According to Lemma 2.1, ignoring ¥ here, we have
PZyu =206 ZR0Z3 (50, + 35+ 35) (Zyu),
with
g+r+Y(ki+1) <k

We are going to write down operators like ZﬁnQ, and estimate the corresponding
terms. With the notations of Proposition 1.1,

Z72Q= 2551+ 2555+ 75 T
A.2. We have
Z80 = Y. ZBMZZ0[ZB0Znm + 2% (07 Zm) + ZE20).
q1+gz2+93=q
Now Z& My = My4q,,
Z% (o1 /(L + )2 (e (1 + t)0u)) = o1 /(1 + )2 Y fNy, - Ny, Yol < go,
Z8(01/(L+ 0 N) = o1 /(L + 62 5 Nk, -+ Ny, Thi <1+ 6o
Using Lemma IV.4.2, we also have
Z80=0Z%+ Y fN,--N,0Z8, Sli+p<gs, p<g—1,
Z%8(07 Zn) = o7 S f Ny - NLZE, S li+p <gs+ 1.
We will often use the following standard remark: we have
M, =fNIN,--- Ny, L;i>2 Y(lLi—-1)<r-L
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Either all I; are < sg — 4, or one of them at least is > sp — 3; in the latter case, noting
$'(l; — 1) the sum corresponding to the other indexes, we have
Sli—1)+s—4<r—1.
If r < 2(sp — 4), this implies that for all other indexes, I; < so — 4.
Hence
|Mi41lo < C(1 + )% Nisalo + C(1 + )1,
IM,lo < C(L+8)¥%, 1<k

If ¢y = q = k, the corresponding term in Zg > Z}"nu is bounded in weighted L? norm
by
|Misilolae(l + )20t Lo < Ce(14+)"277(1 4+t + [ Niy1lo)-
If go = q = k, the corresponding term has the same bound, and also if g3 = ¢ =k
or r = k. In all other cases, the term is bounded by Ce(1 +¢)~1~". Since § = fNy,
7§ = Myyx,,1+ ki <k, the term involving ¥, in PZ%u is bounded in weighted
L? norm by
Ce(1+1)7' 77 + Ce(1+ )72 | Ney1lo-
A.3. We turn now to the terms involving ) ,. We have
285y Zru= > Zu(fou)Z20Znu+ Z8,(f0ZmudZyu).
q1+q92=9
For the first term, we have as before,
Z3(fou) = e(1+8)"' My, @121,
7207 u =072  u+ Y fNy, - Ni,0Z%u, Y lLi+p< e p<g2—1.
If g2 + r = k, necessarily ¢; = 0 and no § terms are present, hence the corresponding
term is bounded by
Ce(1 +t)~ 1 ZE+ ).
If go+7 < k—1, the weighted L? norm is bounded by Ce?(1+¢t)~1+C¢. For the second
term, either ¢ = k and all derivatives fall on the middle term to give f8Z*+ludu,
or the powers of Zm acting on u are all at most k. In the first case, the L? norm is

bounded by
Ce/(1+t)|eP/20Z5 ) .

In the second case, it is bounded by Ce?(1 + t)~1*¢¢. To summarize, the term
involving y°, in PZ% v is bounded in weighted L? norm by

Ce2(1+1) 10 4 Ce(1 + t) e 2025 2.

B. We turn now to the special terms Z,qn s Z,’;lu. We claim that, if p+q¢ < k—1,
all these terms are SC. In particular, any term in PZ% !y containing at least one §
factor will be SC, since then

p+qg<k-1, k<k-1
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It is also important to remark that, for SC terms supported for o1 < C(1 + t)°¢,
powers of g1 are not crucial, since extra factors (1 +¢)°¢ are admitted in the estimate
of the Proposition. In what follows, the index r is always r =0 or r = 1.

B.1. We have

Z8,(r"2R;aR; L1 ZBu) = My, (1 4 t)~205(ZP! s9a)dZP2 4P+,

with [y —14+p1 +p2 < ¢ Ifp+q < k—1, the term is SC, and also for p + ¢ = k,
except for the C terms

My (1) 202(s0a)DZ5 u, Miy1 (14t)~202(590)0Z5,u, My(14t)~205(Z% 59a)0 27 u.
Considering the last term, using Lemma IV.5.3, we see that all terms in [Z,’,“,L, Sgla are
SC, except
071 (Mysp[My; 1My ZF a + Mysg[My; | My Z7,a + My se[; My) M1 ZE a
+ M se[; Mk]Mlzrna + Mlnglzkna + Misgl; Mka + Mlzfn—la]Ml).
These terms are bounded in weighted L? norm by K; x |Z,’fla|0, Ko X |Mg1]o. Here,
Ky =07 |Mo|pee, Kz =07'(1Z},al1 + [Mi]r=).

Let us explain here once for all the meaning of such expressions. The notation M;, My
etc. is a commodity not to write explicitly the exact powers of N 1 involved. The point
is that these powers, in the finite computation we are doing here (once sp has been
chosen), never exceed some number depending on sg. The important fact is that,
according to Proposition IV.6, ]Vl,l < 8o — 4 is bounded in L™ norm by C(1 + t)¢1¢,
where C; does not depend on 6. Hence, here and in what follows, we can choose 5;
big enough to have

|Ki|l < C(1+1)79",
with C’ as big as we want.
Returning to our term, we see that its norm does not exceed

Ce(1+t) ™17+ Ce(1+t) 2 VPpy1 + Ce(1 + ) 1T Agyy.
The same analysis applies to the terms coming from
er~2A,a0, f(1+t)"'O0uRad,

with the same result.
B.2. We have

Z9 (fr2LyaA,ZPu) = Z9 (My(1 + t)~Y(8a)(R/7) ZE}  u)
+ Z%(My(8a) (o1 /(1 + t)2) (o7  ZE w)) + Z4, (M, (8a) (o1 /(1 + t)%)0ZEu)
+ Z9 (My(1 +t)~205(8a) (590)0Z2u) = (1) + (2) + (3) + (4).
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The term (4) is handled just as in B.1. The term (3) is analogous to (2), with one
less derivative. We have

(2) = My, (01/ (1 + 0)*)(ZB: 8a)oy 22,
with [; — 1+ p1 +p2 < p+ ¢. The only C terms here are
Mi(o1/(1+)2)(8@)o 2y,  Mi(o1/(1+)*)(Z5,06)(07 " Zmu),

Mi+1(01/(1+8)*)(8) (07 Zmu).

They are bounded by Ce(14t) "2~ 7@x1. The SC terms are bounded by Ce(1+t)~1=7.
Using Lemma IV.4.3, we can write

W= Y MO+t)"(ZRoE)(R/r)ZET
l1—1+p1+p2<q
+ ) M1+ (2R oa)Zrtrt
l1—14p1+p2<gq

+ > M, (o1 /(1 + t)%)(ZPr 8@)0 2P Pty
l1—14+p1+p2<g—1

+ > M, (02/(1 + t)2)(ZP: 8a)(ZP2 s9a) D ZE3 P+,
l1—14p1+p2+p3<g—1

The last three terms come from the commutator of R/r with some power of Zm, and
the last two are SC and bounded by Ce(1+t)~!=7. The second term is easily handled
and bounded by

Ce(14t) ™17+ Ce(1 4+ t) ™2V Ppys-
If po + p+ 1 < k, the first term can be rewritten as
My, (1 +t)~2(ZP8a) ZP> Pt 2y,
The C terms are then
My (1+1)72(8a) Z2u, Mi(1+1t)"%(Zk0a)Z2u,
My, (01/(1 + t)?)(ZBr8a) (07 Z5F ), 1 +p1 < 2.
All others are SC terms. The sum of all terms is bounded by
Ce(14+t)™17 4+ Ce(1 +t) "2V rya.
If po+p+1=k+ 1, we keep the first term as
My(1+1t)"Y(8a)R/rZE 1w,

If we think of R/r as 0, we cannot control this term. We have to keep in mind that
R/r = fT; and keep the term as such for later treatment.
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B.3. We have
73 (fOouL adZEu) = Z3, (fe(1 + t) " 0adZPu)
= Y fe(l+t)7N (2R 8a)0Zku

P1+p2<p+q
+ > My, e(1 +t)~1(ZP8a)0ZP>u.
Li=14p1+p2<p+g—1
All terms in the second sum are SC. The only C term in the first sum is
fe(1+1t)~1Z* 8adu,
which is bounded by Ce?(1 + t)~2¢} ;. All SC terms from both sums are bounded
by Ce?(1 +t)~1+Ce,
C. To understand the behavior of the last three special terms
—AL3, fL1Lad, f(1+t)"'Lad,

we cannot consider La as an 1\71. We need make explicit its closeness to La, and, in
particular, show that a factor ¢ is present in its estimates.

C.1 We prove the following estimates:
|ZL (VeLa)| Lo < Ce(1+t)~1H%, 1< so—5,
|ZL (\VeLa)lo < Ce(1+)°¢, 1<k—1,
|ZE (VeLa)|o < Ce(1 4 )9 + Ce(1 + )71 g py + Ce(1 + )% Ay
From Lemma 1.4, we have with a self-defined F
VeLla = —SoF + e(l+ t)_139a + [u, Spla,.
a. We have
ZLE = (x/2vVe)(ZH u+ (Zha— ZL @) Liu + Z(an_l/a - Z5Y3)ZE L))
21
+ N M (ZE u+ Y (Z2ha - ZE ) ZE T L),
r<i-1
If I < k-1, all terms in
(2}, So|E + So 2}, E
are SC, and are easily seen to be bounded as indicated. If [ = &, the only C terms in
ZF E are
F(ZE w4+ (ZEa — ZF3) Lyu).
These terms, and also all other SC terms, are bounded as desired. Since we do not

care about factors (1 + ¢)©¢ here, we see that the same bounds are true also for all
terms in [Z¥,, Sy]E.
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b. We have
ZL(e(L+ )" spa) = e(1 + )"V ([ZL,, sela+ se(Zha) + > My, ZL2s40).
li+l2<l
The terms in the last sum are all SC, and bounded as desired. For ! < k — 1, all other
terms are also SC and appropriately bounded. For [ = k,
|ZE alo < C(1 4 t)1HC Ay,
[ZE,, selalo < C(1+ 1)+ Apy + C(1+ )% e
c. We write
Z ([, Solar) = Y ZhuZl2Sea, — [ZY,, Seluar — So 2}, (uay).
Li+la=l
We do not use here the bracket structure, estimating each term separately.
C.2. We prove the following estimates, where A = 8, or A = 0;:
|ZL ALG|pe < Ce(1+1)714C% 1< 50— 5,
|ZL ALalo < Ce(1+1)°%, 1<k-1,
|ZE AL@ly < Ce(1+t)°% + Ce(1+ 1) ) q + CeApia.
We handle only A = 8;, the other case being similar and easier.

a. We have first
0:S9E = SoFE: + 689(1 + t)_lE,

By = 0,(x/(2V¢))(Zmu + (a — @) L1u)
+ (x/(2V2)) (8 Zmu + (a; — B;a)L1u + (a — @)8; L1uw).
We note first that
a(x/(2V0)) = for".
We observe now, using Lemma 1.4, that all terms in 8;(y/cLa) are either

i) linear in 87 Zyu (r < 1),

i) bilinear in 8 u (r < 1) and 8" a (' < 1) or 8”@ (r' < 1), with the exception of
(a —a)0;Lyu,

iii) linear in "a (r < 1) with a coefficient at least as good as (1 +t)~1.

Since we do not care about factors (14t)°¢ in the estimation of SC terms, we obtain
that all SC terms in Z., AL@ have the desired bound. We concentrate therefore on
C terms, which can occur only for [ = k. If we ignore at first the bracket terms in
Z,’;@thE, we can consider only SgZ,’;Et, since the other term involving (1 +t)"1E
is similar and simpler. The C terms in Z,’ﬁlEt are

fal_IZ,’f,’;"lu, fol_l(z'ﬁla - Z*3) Ly,

Z,’:,athu, (Z,’ﬁlat - Z’;Bta)Llu, (ana - Zv,’ﬁlﬁ)atLlu, (a— 6)anatL1u.
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Except for the last two terms, they are respectively bounded in weighted L? norm by
Ce(L+8) ' ¢iyr, Cedpsr + Ce(l+18) " Py,

Ce(1+t)° + Ce(1+t) '@ 11, CeApy1+Ce(l+1t)" ¢, .
We now write

|8:L1u| < C|LLyu| + C|L3u| < Cea® (1 + )2+ 4 C|L2u|.
Thus, using the Poincaré Lemma, and Lemma IV.4.2, we obtain

((ZE.a — ZE@)8,Liulo < Ce(1 +t) ¢ 1 + CeAyyr + Ce(1 +1)°%.

For the last term, we write

|ZF 8; Liulo < C|ZE ' 8ulo + Ce(1+1)°¢, |a —a| < CO7 | Myl

Choosing (; big enough in the sense we have already explained will give |a —a| < C,
which finishes the estimate of |SgZ,’§LEt|0. Now, as explained before, if 1 has been
chosen big enough, the bracket terms

(ZE, SelE:,[ZF, sel1+1t)7'E

generate terms having the same bound, except the terms involving My ;. This terms
will be bounded by

COT ' e(1 4 t) 1% iy < COTe(1 +1) 1% 1y,
which have the desired bound if 3; is big enough.

b. The term /(1 + t)2s9a is much better than /(1 + t)sga;, and similarly the
terms u/(1+t)sgar, (1+t)~!spua, are much better than u;Spa,, Spusa,. Considering
only

Zf,l(e/(l + t)sgas + utSear — Seuta, + Spuray),
we see that all terms are SC, except when [ = k. In this latter case, the C terms may
come only from

e/(1+ t)Z,’;saat + uthnSgar - Z’ﬁngutar + anSgurat.

Ignoring first the bracket terms, we obtain the desired bound Ce A for the C terms,
and the bound Ce(1 + t)©¢ for the SC terms. For the bracket terms, we proceed as
before, getting the same bound plus Ce(1+t) ¢}, ;.

c. The term 6;[u, sg]a:, being already amplified by 61, is the most delicate to
handle. We write

an([u, selat) = Z Zf,ﬁuff;sgat + uZ,lns(;at - anseuat.
Li4la=1,1>1

If ] < k—1, all terms are SC and bounded as desired. If I = k, we use Lemma IV.5.4
to express Zﬁlse. This Lemma displays terms of three types:

i) A term fsof Z,’ﬁl, critical with no amplification,

ii) Subcritical terms,
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iii) Possibly critical terms accompanied by a factor 65 1
We obtain

01Z% [u, se|a, = 61 f[u, s f ZE a; + 01 x SC terms + 6105 %(...).
The first term is bounded in weighted L? norm by
Clur|pe + 61/02|Ru| )| ZE aslo.

Having chosen (1, we can choose (3, big enough with respect to 8; to obtain (on the
support of a)

01/02|Rulp < Ce(1+1t)71
The SC terms are bilinear in u and a and bounded by Ce(1 + t)¢¢. The terms
containing 6,605 ! are either SC, or involve Z,’;at or My41. We handle them as usual,
choosing (2 — B1 big enough if necessary, and get the bound

Ce(1+1)% + CeApy1 + Ce(1+t) ¢y

C.3. Consider now the term Z4, (f(1 + t)~'LadZ2,u). All terms are SC, except if
p =0, ¢ = k the only term
fA+t)"1ZF Laou.
According to the estimates of C.1, the weighted L? norm of these terms is bounded
by
Ce(1+t) ™17+ Ce(14+t) 2 Vpg1 + Ce(1 + )17 Agys.
C.4. We use the estimates of C.2 to handle the term Z4,(f ALadZP,u). We obtain
right away the bound
Ce®(1+1t)7 1% + Ce*(1 + 1) 2¢) 1y + C2(1 + 1)  Apy1.
C.5. We consider finally
Z3(AL3Zbu) = Y (ZBA)ZBIiZhu.
q1+92=q
a. For 1 < ¢ <k —1, all terms are SC. Remembering that L; = me, we write
(Z8LE)Z% f Z fOZP u.
Using the estimates of C.1, we see that these SC terms are bounded as desired. For
the other part of A, we write, since L? = f0? + f/(1+ )0,
ZatWZ2 L2700 = My(1+ )~ (Z8 ) Z8,0u + My (Z81w)0Z2, 0u,

where in both sums [ — 14 s < p+ g2. Using 0 = Moy IZm in the last term, we see
that all these SC terms are bounded by Ce?(1 4 t)~1+C¢,

b. If ¢; = k, we have the term Z,’;ZL%U, which gives (apart from trivial SC terms)
Z¥ LaL3u, Z5t'uL?u. Using Poincaré Lemma, we see that the last term is bounded
by

Ce/(1+1)|0ZE ulo,
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which is the desired bound. Similarly, the first term is bounded by
Ce/(1 + t)|8,Z¥ Las.

Here arises a slight technical difficulty: the commutation of 8, with Z,’fl yields non
radial derivatives, and our C.2 estimates are only for A = 9; or A = J,. We have
easily, in the spirit of Lemma 4.2,

(ZF,0,]= Y Mi_iZL0.
I1<k—1
Hence
0,Z% La = Z* 0. La+ . My_,Z! dLa.
If, in the last term, 0 = &, we use C.2. If not, we write
B =wibr + f/A+ )R = fOr + My /(1 + 1) Zp,

and Z’nBL’d yields either SC terms involving Zf,',arL?i that we have already handled
(in C.4), or terms

Z 1+ t)"lMl_l:HZf,;“L&
U<I<k—1
that we have already handled in C.3.
c. Finally, if g1 = 0, apart from already discussed terms, we are left with

We proceed now exactly as in the proof of Proposition IV.1, e), writing
0101 =  Zm + [(@/01) Zm + f@2 o1 L,
so our term is
(A)o ) (fZmIrZ5u + F(a)01) ZmInZE u + F(@%)01) ZmLa ZE ).
Using the estimate of Lemma 1.4, we obtain the bound
Ce?(14t)71% 4+ C2(1 +t) 2 ¢ pr.-
D. Taking X into account now, using Lemma 2.1, we obtain
23+ P) =3 23 Zm, P\,
as the sum of the main term
XY 24,2, P\ZE,,
and terms supported on the support of 1 —%. The main term has been analyzed in

A, B, C using the expression of [Zn, P] given in Proposition 1.1. The other terms
are easily analyzed using formula (1.2) of Lemma 1.1, and yield terms bounded by

Ce(14t) 2 Vpy1. O
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VIIL.2. L? estimates of a. — We estimate now the perturbation coefficients.
Proposition 2. — We have the estimate

1+ )71 ZE dalo < C(1 +1)% + C(1 + )~ 1+C5|0ZE ulo
+ C/ eApt1ds/(1+5) + C/ Apri(1+5)7 7 ds + C/ el (8)ds/(1+ s)2.
0 0 0

Proof. — The new difficulty here is that the fields H; do not commute very well
with L: we have to use Hy instead.

1. We construct a calculus just as in IV.3. We define f as before, and keep the
fields

R =R, +a(R;)L., S™=S+a(S)L:, K=L+ L.
We replace ﬁlm = H; +a(H;)L, by H,, = Hy — a(S)L;. We denote by Z,, any one
of the fields
R™, 8™, K, Ho—a(S)Lx,
and by N any of the quantities
1+ t)s“lal_Ianu, 1+ t)E“I—Z—;i)u, 01_17::15, an_la, 7’;_15’6,

where @ = a(R;) or @ = a(S). We have for these fields the usual calculus Lemmas:
Lemma 4.1 is straightforward. Note also

r4+ct/veL=Hoy+S=Hp,+8"=2Zm, L ZIN(*L:me-
The analogue to Lemma 3.1 is also true:
R=fZm+ fN1Zm, 01L1=fZm~+ [N1Zpm.
We define as before quantities
My =3 fN\Ny, - Ni,, kj 22 S(kj—1)<k-1

The following Lemma gives the relations between the fields Zom and Zp,.

Lemma 1. — We have the formula
k

1) 7m=2fﬁk1'“ﬁki2£n p 21, Zkz+p<k,
ii) Z::z = Zfﬁiﬁkl e 'NkiEfn-H'
Here, kj 22, > (kj —1)+p<k-1.
111) Nk= Z fﬁkl"'ﬁkia _M_k=Mk’
(32 kj<k)
iv) Zh=(f+ o/ A+ 0 2+ Y MipZin
0<p<k—2

Note that |o1/(1+ t)a| < C.
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Proof
a. We have

Hp = Ho—a(S)Ly = Y wiH™ — (S wia(H;) + a(S))L1 = 3. wiZom,
which proves i) for k¥ = 1. Conversely,
H" = H; + 4(H;)Ly = wiHp — ct/r(w A R); + a(H;)L,
= w;(Ho — @(S)L1) — ct/r(w A R); — (r — ct)/r(w AG(R)); Ly
=fZm+ for/(1 +t)aZm,

which proves ii), iii) and iv) for k = 1.
b. Formula i) is immediate by induction. Formula ii) can be written
Zh=3 Mi 7y
p<k-1

Hence the calculus on M, proves ii) for all k, and the same reasoning applies to prove
iv). Finally, iii) follows from i) and ii) by the very definitions of the quantities, since

M;=M,, Ni= M, Ny=DM;s. O
2. We have the following commutation Lemma.
Lemma 2. — We have
i) (Zm, L] = (f + fN1)L + (f + fN1)Ls,
ii) [Zm, L) = fdL1 + (f + fN1)L.
Here, d means one of the three quantities
d = La(R;) + R™u/2¢, d=La(S)+8™u/2c, d= Lyu.
Thus the critical quantity d is just A (or Liu ). We have, with Lw = g, the formula
i) [L,Z5)w=SfNy, - N,Zot g+ Y fZ2d.. . Z%dN, - Ny, L 20 w
+ S+ ZEA. . 2 AN - N 2w =+ Y, + X

Inzl,leSk}, li+1<k—1. Inzz,zzl,z-!—ZqJ-i-Zk,sk, kj+1<k}—1.
Inzg,i21,i+ij'+2ki<k+l,1<kj+1<k'—1.

Proof. — Since i) is clear, we need only prove ii), the proof of iii) following then
exactly as in Lemma II1.3.3. We have

(B, L) = (f + fN1)L — (La(R:) + R"u/2c) Ly,
[S™, L] = (f + fN1)L — (La(S) + S™u/2c) L1,
(Hm, L] = f + fN1)L + (La(S) + S™u/2¢) Ly,
[K, L) = Lu/2cL — Lyu/2cL,. 0
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3. We write now

La=—-x/(2¢)(Zu+ aLiu) = —x/(2c)(7mu + (a — a)Lyu),
LLia = g1+ Liu/(2¢)L1a = G1, LR/ra=gs— x/ERa/r2 = Gy,

with
gi = /01 Zmu+ fOZmu+ fOu(a/or) + fOuda+ fou(a/oy) + fOuda+ f(a—a)0Lu.

Using the structure of the g;, we see that all terms in _Z_lmgi are SC (in the sense of
Proposition 1) for I < k — 1 and

Zeagilo < Ce(1+1)°%,  [Zimgilioe < Ce(l + t)~1+Ce.

For G, we have the same estimates as for g;. If I = k, we can replace the fields Z,,
by Z,, in the critical terms of ZI;gi, this substitution generating only SC terms with
the already seen estimate. Hence

—k —k -
|Zmilo + ZmGilo < Ce(1+)°¢ + Ce(1 +t) ¢}y + CeApir.
The delicate part is the estimation of Zin(\/ERa/rz) in EinGz. We write

Z(VeRa/1?) = \e/rZ,(Rajr) + 3 (1+8)' M, Z,, " (Ra/r).
1<hi<l
Now Ra = M1Zna,

72:11 (Mi(1+t) ' Z pa) = Z 1+ t)—lMl_Hz?l":ll—lz-l-la’

0<lz2<l-1l
I—1l;—1l2+1
a.

Z:n(\/ERa/TQ) = \/Z/’!’Z,lm(R(l/’l") + Z (1 + t)_2M11+127m
(121,11 +12K1)

If | = k, we keep the first term as it is, the second sum being bounded by
CA+t)"+CA+t) " Agsa.

If ] = k — 1, we compute the first term as before, and obtain for the whole of
an—l(\/ERa/r2) the above bound. If I < k — 2, the bound is the same as before,
without the critical part containing Ag1.

4. With w = Lja or w = Ra/r and Lw = G, we write the result of Lemma 2 in
the form

LZnw=2,G+ Y. MyiZ,,G+ fAliZy, ‘w

I<k—1
_ w5 51 5k - 1 =7
+ort Y MiZ,dZ, ‘wtor' Y Mi_pgZmdZyw.

1<q<k-1 p=1,q21
p+q<k—1

SOCIETE MATHEMATIQUE DE FRANCE 2003


file:///fcRajr
file:///ztd/o

88 S. ALINHAC

All terms of the second line are SC terms, and we see using the C.1 estimates of
Proposition 1 that they are bounded by Ce(1+¢)“¢. We also have, using the estimates
of 3.,

3" [MiiZ0,Glo < Ce(1+ )% + C(L+ )77 + C(1+1) 77 Agp.
I<k—1

We handle the critical term ELlffn_lw exactly as we have done with the term AL2Zk u
in C.5 of the proof of Proposition 1. Using the energy inequality for L, we finally get

(1+ )" (|Z5, Lralo + [Za (Ra/r)]o) < C(1 +1)°°

+ c/ot edrrrds/(1 + 5)2 +ca/0t Apsrds/(1+s) +c/0t Apsr(1 + 5)~"ds.
From the very definition of a, we obtain
1Z¥ Lalo < Ce(1 + )% + Ce(1 + £)°F Apyr + C(1 + £)°5|0Z5 ulo.
Adding this to the preceding estimate, we get

(1+8)7YZ% dalo < C(1+4)°% + C(1 + )" 1+C5|a 2k ug
t t t
+ C/O edh1ds/(1+5)° + CE/O Agy1ds/(1+5) + C/O Apy1(1+ )71 ds.

Now, using Lemma 1, we can replace the fields Z,, by Zm in the above estimate,
obtaining the desired result. O

VIIL.3. End of the proof of the main result

a. We first use the energy inequality and Proposition 1. In doing so, we have to
take care of the special quantity

t
E= / (1 +¢)~HHCEOZE o Ty Z5 o
0

arising from
// e?|PZ¥ 1|8, ZF u|dzdt.

It is understood here, in accordance with Proposition 1, that the integral of TZ-Z,’;“u
is taken only on
o < C(l + tl)COE.
Using Cauchy-Schwarz inequality, we obtain, with & > 0,8 > 0 to be chosen,
t t
E<a / (1+ )BT, 25 w2t + 1/ (4a) / (14 ¢/)~22Ce+Be| g 7R 1y 2y
0 0

Since the energy inequality gives us a control of

t ~
/ / eP(1 + V)b () (T Z5H u)? dadt’,
0 Jr>t'/2
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and ' () = Br|y|™¥~!, we have, by Lemma I1.3.4, a control of

t ~
/ / eP(1 + ')~C2¢ ST, 24+ 1u)2dadt’.
0 Jo1<C(1+t')Coc

Taking 8 = C3 and « small enough, we see that the first term of £ is absorbed in the
left-hand side of the inequality, while the second is smaller than terms already there.
b. We have now

t t -
|0Z%+ uly < Ce + Ce / dt'/(1 +t)|0Z% Hu|g + C / |PZE+Ly|odt!
0 0
t t
< Ce(1+1)°° + C’e/ Brprdt’ /(1 + 1) + Csz/ Glordt' /(1 +1)?
0 0

t t
+Ce/ Ak+1dt’/(1+t’)1+“’+052/ Apprdt’ /(14 1),
0 0

We set here for convenience
Ejy1 = e~ Y0Z5  ulo + Ay
We use now the formula
|Zk 8a)o < C(1 + t)11C% + C|ZE Balo + Ce™1(1 + t)|0ZE+ ulo.
To prove it, we go back to the formula
Zkda = Z% [, Spla + [ZE,, S4)0a + Se ZE da.
As before, the first two terms in the right-hand side involve

i) Terms already bounded by the induction hypothesis,

ii) Terms bounded by | Z¥ 8alo with a coefficient of the form 67 1Ca(1+4t)C2¢, where
Cs and C3 do not depend on 6;.

i) Terms involving Ni41, with a coefficient of the same form as in if).

The part of ]\~/k+1 involving @ will be absorbed in the left-hand side by choosing
B1 and 69 big enough. Keeping the part involving derivatives of u, we obtain the
formula. Using it, we obtain

(1+ ) Py S C(L+1)%° + CErya.

With these notations, the control of 82,’51“14 given by the energy inequality for P and
the control of Ax41 given by the energy inequality for L, added together, give

t t
Ery1 < C’(1+t)C€+C’/ Ek+1dt’/(1+t’)1+7+C’s/ Eppdt' /(1 + 1),
0 0

which yields by Gronwall Lemma Exy; < C(1 + t)©c. This proves the induction
hypothesis for | = k + 1

INktalo < C(L+1)C Ay < O(1+1)C".
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c. It remains now to obtain, for the standard fields Zo = R;, S, h;, 0,
|ZEBu| 2 < Ce(1+ )9, Kk < 2(so — 4).

First, we obtain o

Zo=fN{Z,, r<1.
Next, exactly as in Lemma 2, we get

ZE =S fN!Ny, --- Ny, 22,
with
ki>2, Y(kj—1)+p<k-1

Applying this identity to du, we obtain finally

|ZEdulo < Ce(1 +1)°5.
Since we have the inequality

lwlo < C(L+ 1) |wl a2,

this gives the result.
d. From Klainerman’s inequality, we obtain now

|ZEou| < Ceoy2(14+1)714C%, k< 2(sp —4) — 2.
Assuming that
2(so —4) — 2 = s,
for instance, sp = 10, we obtain the same control as the induction hypothesis, with 7,
replaced by Ce.

Fix now T > 0: we know from Theorem II.1 that, for ¢ small enough, there exists
a smooth solution for 7 < 7 = elog(1 + t) with

|ZEou| < CWeoy 1/2(1 +t)7, k< so.

In particular, u exists as a smooth function for ¢t < T (with T" > %), and satisfies for
t <T < T' (with T > f) the inequality (say n = 1072)
|ZEOu| < C(l)ea-lﬂ(l +t)~ .
If T < T', we obtain from this hypothesis, as we have seen, for ¢t < T,
|ZEBu| < CPeoy /2 (1 +1)71+Ce,
If € is small enough to verify Ce < 1/2, we deduce from this

|ZEou| < CO A+ 1) 207 V21 +4)" 14, I<ELT.

If € is such that
CAa+1)~"2 < cW),

we see that the supremum of such 7' cannot be strictly less than 7", hence T’ = +oc0
and our estimates are true for all ¢, which finishes the proof. O
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