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AN OVERVIEW OF THE WORK OF K. FUJIWARA, 
K. KATO, AND C. NAKAYAMA ON LOGARITHMIC ÉTALE 

COHOMOLOGY 

by 

Luc Illusie 

Abstract. — This paper is a report on the work of K. Fujiwara, K. Kato and 
C. Nakayama on log étale cohomology of log schemes. After recalling basic terminol­
ogy and facts on log schemes we define and study a class of log étale morphisms of 
log schemes, called Kummer étale morphisms, which generalize the tamely ramified 
morphisms of classical algebraic geometry. We discuss the associated topology 
and cohomology. The main results are comparison theorems with classical étale 
cohomology and log Betti cohomology, a theorem of invariance of Kummer étale 
cohomology under log blow-ups (for which we provide a complete proof) and a local 
acyclicity theorem for log smooth log schemes over the spectrum of a henselian 
discrete valuation ring, which implies tameness for the corresponding classical nearby 
cycles. In the last section we state results of K. Kato on log étale cohomology, where 
localization by Kummer étale morphisms is replaced by localization by all log étale 
morphisms. 

These notes are a slightly expanded version of lectures given at the Centre Emile 
Borei of the Institut Henri Poincaré in June, 1997. Their purpose is to present a survey 
of the theory of log (= logarithmic) étale cohomology developed by Fujiwara, Kato, 
and Nakayama in the past few years. Though the results obtained in this field are 
not of the same magnitude as those pertaining to log crystalline cohomology and the 
p-adic comparison theorems, reported on at other places of these proceedings ([Tsu], 
[Br-M]), they shed a new light on classical questions of étale cohomology, such as 
the tameness of nearby cycles. The log techniques provide more natural proofs to 
known theorems as well as interesting generalizations and refinements. In order to 
give a flavor of these, let us fix some notations. Let S = Spec A be a henselian 
trait, with generic point rj = Specif and closed point s = Spec A:. Let p be the 
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272 L. ILLUSIE 

characteristic exponent of s and let A = Z/nZ where n is an integer invertible on S. 
Fix a geometric point rj = Spec K above 77 and let / (resp. P) denote the inertia 
(resp. wild inertia) subgroup of G = Gdl(K/K). Let X be a scheme over S. By a 
theorem of Rapoport-Zink [R-Z], it is known that if X is regular, the generic fiber 
XJJ is smooth and the special fiber XS is a divisor with simple normal crossings and 
multiplicities ra^'s prime to p, then P acts trivially on the sheaves of nearby cycles 
Rqï&A. As a consequence of the theory of logarithmic étale cohomology, Nakayama 
[Na 2] shows that this conclusion still holds in cases where some of the m^s are 
divisible by p but X underlies a log smooth and vertical log scheme over S (1.5, 8.3). 
Another striking corollary is that under the same assumption the complex of nearby 
cycles RtyA, as an object of the derived category of A-modules on the geometric special 
fiber with continuous action of G, depends only on the special fiber XS endowed with 
its natural log structure, and in particular, when X has semistable reduction, depends 
only on the first infinitesimal neighborhood of XS in X. In this latter case, this implies 
the degeneration at E2 of the weight spectral sequences of Raporport-Zink [R-Z] and 
Steenbrink ([Ste 1], [Ste 2]). 

The paper is organized as follows. For the convenience of the reader we have 
collected in section 1 some basic terminology on log schemes, whose language we will 
use freely. The basic reference for this is [Ka 1] (see also [II]). The definition and 
main properties of the Kummer étale topology, which replaces, on fs log schemes, 
the classical étale topology on schemes, are discussed in section 2. The theory of the 
corresponding log fundamental group is sketched in sections 3 and 4. In section 5 we 
begin the study of Kummer log étale cohomology. We compare it both to classical 
étale cohomology and, in the case of log schemes over C, to the "log Betti" cohomology 
developed by Kato-Nakayama [K-N]. Section 6, the longest of this paper, is devoted 
to a fundamental result of Fujiwara-Kato [F-K], namely the invariance of Kummer 
étale cohomology under log blow-up. Because of the key role this result plays in the 
applications to nearby cycles — and also because [F-K] as it stands is still unpublished 
— we give the proof in detail, with a simplification due to Ekedahl, who suggested 
it to us during the lectures. Nakayama's results on nearby cycles mentioned above 
are discussed in section 8, after some premiminaries on (log) cohomological purity in 
section 7. One drawback of Kummer étale cohomology is that unlike classical étale 
cohomology it lacks good finiteness and base change theorems, as Nakayama pointed 
out in [Na 1]. In section 9 we present an attempt of Kato to remedy this by working 
with a finer topology, in which localization by any log étale map is permitted, and 
discuss some open problems in this direction. 

1. Log schemes 

1.1. All monoids are assumed to be commutative with units and maps of monoids 
to carry the unit to the unit. The group envelope of a monoid P is denoted PSP. A 
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monoid P is called integral if the canonical map P —• Pgp is injective, and saturated 
if it is integral and for any a G Pgp, a is in P if and only if there exists n ^ 1 such that 
an e P. If P is a monoid, we denote by P* the subgroup of its invertible elements 
and we set P = P/P*; thus PgP = Coker(P* -> Pgp). We say P is sharp if P* = {1}. 

1.2. A pre-log structure on a scheme X is a pair (M, a) where M is a sheaf of monoids 
on the etale site of X and a is a homomorphism from M to the multiplicative monoid 
Ox • A pre-log structure (M, a) is called a log structure if a induces an isomorphism 
from a~l{Ox) to Ox. The log structure defined by the inclusion Ox C Ox is called 
the trivial log structure. A /og scheme is a triple (X, M, a), usually simply denoted X, 
consisting of a scheme X and a log structure (M, a) on X. The sheaf of monoids of 
a log scheme X is generally denoted by Mx, and the sheaf Ox is considered as a 
subsheaf of Mx by means of a. To avoid confusion, it is sometimes convenient to 
denote the underlying scheme by X. For any pre-log structure (M, a) on a scheme X 
there is defined a log structure (Ma, aa) and a map M —» Ma (compatible with a and 
aa) which is universal in the obvious sense; this log structure is called the associated 
log structure. A map of log schemes / : (X, M, a) —• (F, A/", /3) is a map of schemes 
/ : X —» V together with a map of sheaves of monoids f~1N —> M compatible in 
the natural way with a and /3. If y = (y, iV, /3) is a log scheme and / : X —» y 
is just a map of schemes, then the log structure on X associated to (f~1N,f~1/3) 
is called the inverse image log structure and denoted f*N. A map of log schemes 
f : X = (X,M,a) —> Y = (Y,N,(3) is called strict if the natural map from f*N to 
M is an isomorphism. 

1.3. If P is a monoid, the inclusion P C Z[P] defines a pre-log structure on Spec Z[P], 
whose associated log structure is called the canonical log structure. A (global) chart, 
modeled on P, of a log scheme X is a strict map of log schemes X —• Spec Z[P] for some 
monoid P, where Spec Z[P] is endowed with its canonical log structure. Giving such a 
chart is the same as giving a monoid P and a homomorphism from the constant sheaf 
of monoids Px on X to Mx inducing an isomorphism on the associated log structures. 
A log scheme X is called integral if the stalk of Mx at each geometric point of X 
is integral, fine (resp. fine and saturated, or fs for short) if in addition, locally for 
the etale topology it admits a chart modeled on a finitely generated and integral 
(resp. finitely generated and saturated) monoid. Any fs log scheme admits (etale 
locally) a chart modeled on a torsionfree, fs {i.e. finitely generated and saturated) 
monoid (such monoids are the basic stones of the theory of toric varieties). A log 
point is an fs log scheme whose underlying scheme is the spectrum of a field k. It is 
called trivial if its log structure is trivial, standard if its log structure is associated 
to (N —> fc, 1 »—> 0). If / : X —> Y is a map of fine log schemes, a chart of / is a 
triple (a,b,u) where a : X —> SpecZ[P] and b : Y —> SpecZ[<2] are charts of X and 
y and u : Q —» P is a map of monoids such that the corresponding square of log 
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schemes commutes; a chart of / exists etale locally (and P and Q can be chosen to be 
fs if X and Y are fs). It turns out that fs log schemes are the most useful objects of 
log geometry. The category of fs log schemes admits finite inverse and direct limits; 
in particular one can perform base change in this category (the result being slightly 
different from that in the category of fine or arbitrary log schemes). 

1.4. If X is an fs log scheme, there is a largest open Zariski subset of X (possibly 
empty) on which the log structure is trivial, i.e. a : M —» 0* is an isomorphism. It is 
called the open subset of triviality of the log structure of X and is sometimes denoted 
Xtriv This is the first basic geometric invariant of X. For example, if X is the 
toric scheme SpecZ[P] (with P a torsionfree, fs monoid), endowed with its canonical 
log structure, Xtriv is the torus T = SpecZ[Pgp] canonically embedded in X. Finer 
invariants are obtained by considering MSP = Mgp/(D*, which is a constructible sheaf 
of torsionfree abelian groups, and the stratification 

X = X0 D • • • D Xi D • • • 

where Xi is the closed (Zariski) subset of X where rkMgP > z; in particular, Xtriv = 
Xo — X\: in the toric case above, this is just the stratification by the closures of orbits 
of the action of T on X. 

1.5. / : I -> F be a map of fine log schemes. One says that / is log smooth 
(resp. log étale) if étale locally (on X and Y) f admits a chart c = (a,b,u : Q -+ P) 
such that the kernel and the torsion part of the cokernel (resp. the kernel and the 
cokernel) of usp are finite groups of order invertible on X and the map from X to 
X xSpecZ[p] SpecZ[<3] deduced from c is a smooth (resp. étale) map on the underlying 
schemes. (For an intrinsic definition, in terms of local infinitesimal liftings such as in 
the classical case, see [Ka 1].) Log smooth (resp. log étale) maps are stable under 
composition and arbitrary base change (either in the category of fine or fs log schemes). 
If X and Y are log étale log schemes over a log scheme 5, any 5-morphism from X to 
Y is log étale, if / : X —> Y is a map of schemes, viewed as a map of log schemes with 
trivial log structures, then / is log smooth (resp. log étale) iff / is classically smooth 
resp. étale). 

1.6. A map h : Q —> P of fs monoids is said to be Kummer if h is injective and for 
all a G P there exists n G N, n ) 1, such that na G h(Q) (the monoid laws written 
additively). A map / : X —» Y of fs log schemes is said to be Kummer if for all 
geometric point x of X with image y in Y, the natural map My —> Mx is Kummer. A 
map / : X —» Y of fs log schemes is said to be Kummer étale if it is both log étale and 
Kummer. If / is log étale, then / is Kummer if and only if / is exact, which means 
that f*My —• Mx is exact at each stalk (a map h : Q —> P of integral monoids is 
called exact if Q = (/igp)~1(P) in Qgp) ([Na 1], 2.1.2). One can also show that / is 
Kummer étale if and only if / is étale locally deduced by strict base change and étale 
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localization from a map SpecZ[/z] : SpecZ[P] —» SpecZ[Q], where h : Q —> P is a 
Kummer map such that nP C h(Q) for some integer n invertible on X ([Vi 1], 1.2). 

Log blow-ups provide other examples of log étale maps, see 6.1. 

1.7. Let X be a locally noetherian regular scheme and let D C X be a divisor with 
normal crossings. Let j : U = X — D ^ X be the corresponding open immersion. 
Then the inclusion Mx = Ox H j*Oy ^ Ox is an fs log structure on X , which is 
said to be defined by X — D (or, sometimes, by D); in the case the pair (X, D) is that 
of a trait and its closed point, this log structure is called the canonical log structure. 
Étale locally X has a chart modeled on Nr (if F l i ^ r ^ r 1S a ^oca^ equation of D 
where (U)i^i^r is part of a system of local parameters on X , Nr —> Ox, (ni) *—» Iltf* 
is a local chart). 

Let S = Spec A be a trait endowed with the canonical log structure and let X be 
an fs 5-log scheme locally of finite type. Then X is log smooth over S if and only if 
étale locally X is strict (1.2) and smooth over T = Spec A[P]/(x — 7r), where TT is a 
uniformizing parameter of A, P is an fs monoid, x is an element of P such that the 
order of the torsion part of Pgp/(x) is invertible on X and the log structure of T is 
associated to the canonical map P —> A[P]/(x — n). It follows from the theory of 
resolution of singularities for toric varieties (cf. [Ka 4] and [Na 2]) that after some 
log blow up (see 6.1) we may obtain a local model as above with P = W (which model 
is then regular, generically smooth, with reduced special fiber a divisor with normal 
crossings). The case of semistable reduction corresponds to P = Nr and x = (!,...,!). 

2. Kummer étale topology 

2.1. Let X be an fs log scheme. The Kummer étale site of X , denoted 

Xket 

is defined as follows. The objects of Xket are the X — fs log schemes which are 
Kummer étale (1.6). If T, T' are objects of Xket, a morphism from T to Tf is an 
X-map T —> T'\ any such map is again Kummer étale ([Vi 1], 1.5). The category 
Xket admits finite inverse limits. The Kummer étale topology is the topology on Xket 
generated by the covering families (ui : Ti —• T)ieI of maps of Xket such that T is 
set theoretically the union of the images of the ui ; the Kummer étale site of X is the 
category Xket equipped with the Kummer étale topology; the Kummer étale topos 
of X , denoted Top(Xket) (or simply Xket again when no confusion can arise) is the 
category of sheaves on Xket (we shall not use the more standard notation Xket for 
we will later need the tilda to denote some other object); here and in the sequel we 
neglect questions of universes, which should be treated as in the classical case of étale 
topology (cf. [SGA 4] VII 1), see [Na 1]. 
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The datum for each object T of X\^et of the set of covering families of T as above 
defines a pretopology on X^et in the sense of ([SGA 4] II 1.3), and as a result (loc. 
cit.) the Kummer étale topology is simple to describe (the sieves generated by the 
covering families are cofinal in the set of covering sieves of T). In the verification 
of the axioms of a pretopology the only nontrivial point is to check the stability of 
covering families under base change, in other words, since "Kummer étale" is stable 
under fs change, to check the universal surjectivity of covering families. This follows 
from Nakayama's "fourth point lemma" : 

Lemma 2.2 ([Na 1], 2.2.2). — Let 

(2.2.1) 

X' 
h 

X 

WX 

WW 
XX 

Y 

f 

be a cartesian square of fs log schemes, and let y' G Y', s G X such that g{y') = f{x). 
Assume that f or g is exact (1.6). Then there exists x' G X' such that h(x') = x and 

XWW//MMM¨£ 

See (loc. cit.) for the proof. 

2.3. Let / : X —» Y be a morphism of fs log schemes. Base-changing by / in the 
category of fs log schemes defines an inverse image functor 

W<<< <N?.%£ 

which commutes with finite inverse limits, and by 2.2 is continuous (i.e. transforms 
covering families into covering families). Therefore by ([SGA 4] IV 4.9.2) f~x defines 
a morphism of topoi 

/ket : Top(Xket) —• Top(Xket) 

(also denoted simply / ) such that f*(E)(T) = E(f~1T) for any sheaf E on Xket and 
any object T of Yket- If g : Y —» Z is a second morphism of fs log schemes, we have 
as usual canonical isomorphisms (g o /)_1 2* /_1 o g-1, (g o /)ket = #ket ° /ket-

2.4. Let X be a scheme. Let us endow X with the trivial log structure. If u : T —> X 
is an object of Xket, then u is strict, the log structure of T is trivial and u is etale in 
the classical sense. It follows that the Kummer etale site Xket can be identified with 
the classical etale site Xet of X, an identification which we will do in the sequel. 

Let now X be an fs log scheme, and let X denote the underlying scheme equipped 
with the trivial log structure. We have a natural map of log schemes 

e:X-^X , 
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which, by 2.3, defines a map of sites (resp. topoi) 

o 
£ •' k̂et • Xet -

o 
We shall sometimes call Xet the classical etale site (resp. topos) of X and denote it 
by Xc\. If F is a sheaf on the classical etale site of X, e~xF induces on the classical 
etale site of any Kummer etale u : Y —• X the classical inverse image u~lF. As we 
shall see later 5.2, e cohomologically behaves as a constructible fibration in tori. 

2.5. Let X be an fs log scheme. Denote by fs/X the category of fs log schemes over 
X. We define the Kummer etale topology on fs/X as the topology generated by the 
covering families which are surjective families of Kummer etale maps 7$ —» T (as before 
such families define a pretopology on fs/X). The corresponding site (resp. topos), 

denoted 
(fs/X)ket 

is called the big Kummer etale site (resp. topos) of X, in contrast with Xket sometimes 
called the small Kummer etale site (resp. topos). Similar to 2.4 we have a natural 
"forgetful" map of topoi 

e : (fs/X)ket — (fs/X)* . 

The relations between the big and small sites (resp. topoi) are as good as in the case of 
the classical etale topology ([SGA 4] VII 2, 4). This is due to the following theorem 
of Kato: 

Theorem 2.6 ([Ka 3], 3). — Let X be an fs log scheme. The Kummer etale topology 
on fs/X is coarser than the canonical topology. 

This means that representable functors on fs/X are sheaves for the Kummer etale 
topology, namely, if Y is an fs log scheme over X, the functor T \—• Homx(T, Y) on 
fs/X is a sheaf for the Kummer etale topology. Kato in fact shows that this functor is 
a sheaf for a finer topology on fs/X, the log fiat topology, which we will not consider 
in these notes. 

2.7. . Let X be an fs log scheme. By 2.6 any fs log scheme Y over X defines a sheaf 
Homx(-,Y) on (/s/X)ketj hence on Xet by restriction. Here are some important 
examnles. 

(a) The sheaf O. Let Y be the affine line endowed with the inverse image log 
structure by the canonical projection onto X. The sheaf on (fs/X)ket (resp. Xket) 
corresponding to Y is just the structural sheaf O. Indeed, for any fs log scheme T 
over X, we have 

Horn* (T,Y) = Hornet ,Y) = T(T,OT). 
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o 
More generally, let ^ be a quasi-coherent sheaf on X, and let Y = V(£) 
(:= SpecSym(£)), endowed with the inverse image log structure of X. Then 
the sheaf corresponding to Y is (u : T —> X) \-> T(T, u*£). 

(b) The sheaf M. Let Y be the affine line A^ endowed with the log structure 
obtained by fs pull-back by X —• SpecZ from that of K\ = SpecZ[N] endowed with 
the canonical log structure; in other words, is the product X Xspecz SpecZ[N] 
in the category of fs log schemes over SpecZ with trivial log structure. Then the 
sheaf corresponding to Y is the structural sheaf of monoids M. Indeed, for any fs log 
scheme T over X, we have 

Homx(T, Y) = Hom(T, SpecZ[N]) = T(T, MT). 

(Actually (a) and (b) are the key cases to which Kato reduces the proof of 2.6.) 

(c) The sheaf Mgp. Consider the functor T r(T,M|p) on fs/X. Though one 
can show that this functor is not representable (as soon as X is nonempty), it is easy to 
deduce from (b) that it is still a sheaf for the Kummer étale topology (cf. [Ka 3], 3.6, 
[Ka 2], 2.1.3). 

(d) The Kummer exact sequence. Let n be an integer inversible on X. Let Z/n(l) = 
/in denote the sheaf on (fs/X\et induced by the sheaf of n-th roots of unity on the 
classical big étale site of X, i.e. T i—• {z e T(T, OT)',ZU = 1}. Then the following 
sequence of sheaves on (fs/X)^et (resp. Xket) is exact (Kummer exact sequence) 

0 —> Z/n(l) —• Mgp Mgp —> 0 

([K-N], 2.3): one is reduced to showing that a section a G T(X, M) is Kummer étale 
locally an n-th power, but such a section corresponds to a map a : X —• A^ (cf. (b)) 
and the map X' —> X deduced from the n-th power endomorphism of A^ by base 
change by a is a surjective Kummer étale map which makes a an n-th power. 

Let / : X —>• Y be a morphism of schemes. If / is a universal homeomorphism, 
which means that / is a homeomorphism on the underlying spaces and remains so after 
any base change Y1 —> Y, or equivalently ([EGA IV] 18.12.11) is radicial, integral 
and surjective, then the inverse image functor f~l : Yet —> Xet is an equivalence 
([SGA 4] VIII 1.1). This result (topological invariance of the étale site) plays a key 
role in the foundations of étale cohomology. The following analogue and generalization 
in the Kummer étale context has been established by I. Vidal : 

Theorem 2.8 ([Vi 1], 4.2, [Vi 4]). — Let f : X —• Y be a morphism of fs log schemes. 
Assume that f is Kummer (1.6), is a homeomorphism on the underlying spaces and 
remains so after any fs base change Y' —• Y. Then the inverse image functor f~l : 
Yket —• k̂et is an equivalence. 

2.9. We shall say that a morphism / : X —> Y of fs log schemes is a universal 
Kummer homeomorphism if it satisfies the hypotheses of 2.8. Here are some examples. 
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(a) Assume that / is strict and induces a universal homeomorphism on the un­
derlying schemes. Then since fs base change by strict maps commutes with taking 
the underlying schemes, / is a universal Kummer homeomorphism. An important 
particular case is that of a thickening [Ka 1]. In this case, the conclusion of 2.8 is a 
consequence of the existence and uniqueness of infinitesimal liftings of log etale maps 
(loc. cit.). 

(b) Assume that Y is an Fp-log scheme, and that / is purely inseparable in the 
sense of Kato ([Ka 1], 4.9) and induces a universal homeomorphism on the underly­
ing schemes. Then / is a universal Kummer homeomorphism ([Vi 1], 2.10). Basic 
examples are absolute Frobenius and exact relative Frobenius maps ([Ka 1], 4.12). 

3. Finite Kummer étale covers 

Definition 3.1. — Let X be an fs log scheme. A (finite) Kummer etale cover of X is 
an fs log scheme Y over X such that the sheaf it defines on Xket (2.6) is finite locally 
constant, i.e. there exists a Kummer etale covering family (Xi —• X)ieI of X such 
that for each i E I the log scheme Yi over Xi deduced by base change is a finite sum 
of copies of Xi. If G is a finite etale group scheme over X (in the classical sense), a 
Kummer etale Galois cover of X of group G is a Kummer etale cover Y of X endowed 
with an action of G by X-automorphisms such that Y is a G-torsor on X. 

When X has the trivial log structure, a Kummer etale cover of X is an etale cover 
of X in the classical sense, with the trivial log structure. We shall sometimes say 
"cover" instead of "Kummer etale cover", when no confusion can arise. If a finite etale 
group scheme G acts on a cover Y of X , for Y to be Galois of group G means that Y is, 
locally for the Kummer etale topology on X , isomorphic to G (with the log structure 
inverse image of that of X ) , G acting on itself by left translations; this is equivalent 
to saying that the map G xxY —> Y xxY, (g,y) (y, gy) is an isomorphism (where 
fiber products are taken in the fs sense). In this case, X is a sheaf-theoretic quotient 
of y, i.e. the sequence YxxY=$Y—>X is exact as a sequence of sheaves on Yket. 

Here is a basic example ([Ka 3], 2.5). 

Proposition 3.2. — Let X be an fs log scheme, endowed with a global chart X —> 
SpecZ[P], where P is an fs monoid. Let u : P —• Q be a Kummer map of fs 
monoids (1.6), such that Qgp/u(Pgp) is annihilated by an integer n invertible on X. 
Let Y = X xSpecZ[p] SpecZ[Q], Then the natural projection f : Y —• X is a 
Kummer étale Galois cover of group the (classical) étale diagonalizable group G = 
D(Qgp/u(Pgp))x = SpecOx[Qgp/u(Pgp)}. Moreover, f is open, finite and surjec-
tive on the underlying schemes, and remains so after any fs base change X' —> X. 

The key point is the following elementary lemma (cf. [Vi 1], 1.8]): 
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Lemma 3.3. — Let u : P —> Q be a map of fs monoids, such that V := (5gp/г¿(PSP) 
is annihilated by an integer n ^ 1. Then the natural map 

(3.3.1) (Q0pQ)fs^r©<g,<(w<a,0 QgP? (0j 6 a+ 6) 

¿5 an isomorphism, where the left hand side denotes the amalgamated sum in the 
category of fs monoids and (~) the class in T of an element of Qgp. 

For the convenience of the reader we insert a proof of 3.3. We have natural maps 

Q®pQ^(Q(Bp<xQ)INT — (Q 0P Q)fs 

where M := (Q(BpQ)mt is the amalgamated sum in the category of fine monoids and 
(Q ©P Q)fs is the saturation Msat of M. We know that M is the image of Q © Q in 
(Q©pQ)gp = <2gp©psp<2gp and that Mgp = QgpePgPQgp. Now the homomorphism 

Qgp 0 QgP _ > r 0 QgP? (0j 6) (6j a + 6) 

induces an isomorphism 

(*) Qgp 0 p g P g g p - ^ r e Q g p , 

as is shown by the commutative diagram with exact rows 

pgp 
(—1Z, u 

Qgp®QgF -><3gp ©pgp Qgp XW 

Id 

pgp 
(u.O) 

Qgp©Qgi 

(a,6) 

(6,a+6) 
>reQgp o 

We shall identify the two sides by (*). Thus M is the submonoid of T © Qgp 
consisting of pairs /̂) of the form (6, a + 6) for a, b e Q. Hence we have Msat c 
r © Q. Conversely, let (x,y) G T © Q. Let n ^ 1 such that nQgp C u(Pgp). Then 
n(x, y) = (0, ny) G M, so (x, y) G Msat and Msat = V © Q. 

Remark 3.4 
(a) Following Kato ([Ka 2], 3.4.1), let us call small a morphism u : P —> Q of 

integral monoids such that Cokertxgp is torsion. When Q is fine (a fortiori, fs), this 
is equivalent to saying that Coker̂ 815 is annihilated by a positive integer. Here are 
examples of small morphisms : (i) a Kummer morphism of fs monoids; (ii) a "partial 
blow-up" (cf. 6.1) : let P be an fs monoid, / C P a nonempty ideal, a e I, Q the 
saturation of the submonoid of Pgp generated by P and the elements b — a for b G / ; 
then the inclusion P ^ Q is small: Pgp —> <3gp is an isomorphism. 

(b) Lemma 3.3 shows the interest of working in the category of fs monoids, for 
the analogous statement with the push-out taken in the category of fine monoids 
would not hold. For example, for P = Q = N, u the multiplication by n > 1, the 
amalgamated sum Q ©p Q is an integral monoid strictly contained in N © Z/nZ. 

(c) The map 
Q © Q —> Q © Q , (a, 6) i—y (6, a + b) 
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corresponds to the map 

D{Q) x D(Q) —+ D(Q) x D(Q) , (g,x) — (x,gx) 

on the associated diagonalizable monoid schemes. The map (3.3.1) deduced by passing 
to the quotients corresponds to the induced map 

D(T) x D(Q) — D(Q) xD(P) D(Q) , (g,x) >— (x,gx), 

which is an isomorphism (the fibered product on the right hand side being taken in 
the category of fs log schemes). 

Let us prove 3.2. By construction, / : Y —» X is Kummer, and since Cokerwgp is 
killed by n invertible on X, f is log étale. By 3.4 (c), the action of D(T) on D(Q) 
induces, by base change by X —» D(P), an action of G on y such that G xx Y —• 
YxxY, (#, y) i-> (x, gy) is an isomorphism. So F is a Kummer étale Galois cover of X 
of group G. As for the last assertions, it is enough to prove that / is finite, open and 
surjective. Since base change by a strict map commutes with taking the underlying 
schemes, we may replace X by D(P), which we shall denote by X again. We follow 
the argument of Kato ([Ka 3], 2.5). Since Coker^gp is killed by n, Y := D(Q) is 
finite over X, and since u is injective, the projection / : Y —• X is surjective. Thus 
X has the quotient topology of Y. Let U be an open subset of Y. To show that f(U) 
is open, we have to show that f~1(f(U)) is open. But by Nakayama's fourth point 
lemma (2.2), /^(/(U)) = pr2(pr^(U)), where pru pr2 :Y xxY ^Y are the two 
canonical projections from the fs fibered product. Composition with the isomorphism 
G xxY -+ Y xxY, (g,y) y-> (y, gy) (where G := jD(Coker ' u ^ x transforms pr2 into 
the action of G on Y. Since G xxY = D(T) x Y (the product on the right hand side 
being taken over SpecZ), f~xf(U) is therefore the image of U by the action of D(T) 
on y , p : D(T) x y —> y , (g, y) i-> gy. But the map 

D(T) x Y - D(T) xY , (g,y)^ (g,gy) 

is an isomorphism, which transforms pr2 : D(T) xY-+Y into p. Now, since D(T) is 
fppf over SpecZ, pr2 is fppf, too, and in particular, open, so /_1 f(U) is open, which 
concludes the proof. 

Definition 3.5. — Let X be an fs log scheme. By a standard Kummer Galois cover 
of X, we shall mean a Kummer cover Y —• X of the type defined in 3.3. 

The existence, locally for the classical etale topology, of charts of Kummer etale 
maps X —> y subordinate to Kummer maps u : P —> Q with Coker^gp annihilated 
by an integer invertible on X, combined with 3.3, shows: 

Corollary 3.6. — Let X be an fs log scheme. The Kummer etale topology on X is 
generated by the surjective classical etale families and the standard Kummer Galois 
covers. 
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Corollary 3.7. — Let f : X' —• X be a Kummer étale map of fs log schemes. Then 
o 

the induced map f on the underlying schemes is open. 
The property of being open being local for the classical étale topology, we may 

assume that / is a standard Kummer Galois cover. Then the conclusion follows 
from 3.2. 

3.8. Let 5 be a locally noetherian fs log scheme. Denote by 

fs'/S 

the full subcategory of fs/S consisting of fs log schemes over S which are locally of 
finite type over S as schemes. Consider a property V of morphisms / : X —» Y in 
fs'/S. We shall say that V is local for the Kummer étale topology if the following 
conditions are satisfied: 

(i) if / : X —» Y satisfies V, then so does the morphism f':X'—> Y' deduced from 
/ by any Kummer étale base change S' —> 5; 

(ii) if (Si —> S)iei is a covering family for Xket (2.1), and if fa : X\ —» Y\ deduced 
from / by the base change Si —> S satisfies V for every i, then so does / . 

When (i) is fulfilled, to check (ii) it is enough, in view of 3.6, to check the following: 
(a) V is local for the classical étale topology (b) if fy is deduced from / by a classical 
étale base change V —> 5, and if after base change by a standard Kummer Galois 
cover V —• V, fy = f Xy V satisfies V, then fy satisfies V. 

Here is an example: 

Proposition 3.9. — Let S be a locally noetherian fs log scheme. The property for a map 
f in fs'/S of inducing a separated (resp. proper, resp. finite) map on the underlying 
schemes is local for the Kummer étale topology. 

Since the property of being separated (resp. proper, resp. finite) on the underlying 
schemes is local for the classical étale topology ([SGA 1] IX 2.4), it suffices to show 
the following. Let / : X —> Y be a map of fs log schemes, with Y locally noetherian 
and / locally of finite type, and let g : Y' —• Y be a standard Kummer étale Galois 
cover of Y. Then / is closed (resp. quasi-finite) on the underlying schemes if and only 
if f deduced by fs base change by g is so. But this follows from Nakayama's fourth 
point lemma 2.2 and the fact that g makes Y' a quotient topological space of Y. 

In particular: 

Corollary 3.10. — Let Y be a locally noetherian fs log scheme, and let f : X —» Y be 
a Kummer etale cover 3.1. Then f is finite and surjective. 

Remark 3.11. — One can show ([Ka 3] 10.2, [Vi 2] 1.2, [Vi 2]) that conversely, if 
/ : X —• Y is a Kummer etale map of locally noetherian fs log schemes which induces 
a finite map on the underlying schemes, then / is a Kummer etale cover (in the sense 
of 3.1). 
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Here are some other examples of properties which are local for the Kummer etale 
topology: 

Proposition 3.12. — Let S be a locally noetherian fs log scheme. The property for a 
morphism in fs'/S of being log smooth (resp. log étale, resp. Kummer étale) is local 
for the Kummer étale topology (2.8). 

See [Vi 2] for a proof. 
Moreover, the following descent result, stated in ([Ka 3] 10.2), holds (see [Vi 2] 

for a proof): 

Proposition 3.13. — Let S be a locally noetherian fs log scheme. Let Kcov(5) 
(resp. Lcf(Sket)) denote the category of Kummer étale covers of S (resp. the category 
of sheaves on 5ket which are locally constant with finite fibers). Then the natural 
functor Kcov(S') —> Lcf(5) is an equivalence of categories. 

4. Log geometric points and fundamental groups 

Definition 4.1 

(a) A log geometric point is a log scheme s which is the spectrum of a separably 
closed field k such that Ms is saturated and for every integer n ^ 1 prime to the 
characteristic of k, the multiplication by n on Ms (= Ms/k*) is bijective. 

(b) Let X be an fs log scheme. A log geometric point of X is a map of log schemes 
x : s —* X, where s is a log geometric point. If x : s —• X is a log geometric point, a 
Kummer etale neighborhood of x is a map of X-log schemes s —> U where U —• X is 
Kummer etale. 

A log geometric point x : s —> X defines a (classical) geometric point 

x : s —> X of the underlying scheme, and a point x(s) of X. We say that x is over 
or localized at x(s). As in the classical case, we will often make the abuse of notation 
consisting in denoting by the same letter the log geometric point x and its source. 
Also, when y is a point of X, we will often denote by y a log geometric point over y 
and y the corresponding (classical) geometric point. 

4.2. Let X be an fs log scheme, given with a global chart 

X -^SpecZ[P] 

where P is an fs monoid. Let N = J\fx be the set of integers > 1 which are invertible 
on X, ordered by divisibility. For n £ J\f denote by Pn a copy of P, and for m ^ n let 
umn be the multiplication by n/m. Write P for Pi and un for u\n = multiplication 
by n: P -> Pn. Let 

Xn := X xSpecZ[P] SpecZ[Pn] 
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(with SpecZ[Pn] —> SpecZ[P] given by г¿n). The (Pn,̂ mn) form an inductive sys­
tem indexed by N and correspondingly the (Xn,t>mn = X xSpecZ[p] SpecZ[ixmn]) a 
projective system indexed by N. Each transition map 

Vmn '• Xn > Xm 

is a standard Kummer cover of group D(Pgp ® Z/dZ)x = Hom(PSP, {^d)x) (3.5) 
where d = n/m. In particular, Xn is a standard Kummer cover of X of group 
Hom(PgP,(/in)x). 

These projective systems can be used to construct log geometric points. Let s = 
Spec A: be an fs log point, where k is separably closed of characteristic p, and let 
s —> SpecZ[P] be a chart modeled on the sharp fs monoid P := M3, associated to a 
chosen splitting Ms = k* © P, so that the log structure of s is associated to P —> fc, 
a i—> 0 if a ^ 0. Let P be the limit of the inductive system Pn as above, indexed by 
J\f = TV's, and let s : (s xSpecZ[P] SpecZ[P])red, with its natural log structure. Then 
Ms = k* 0 P is saturated, the log structure of s is associated to P —• fe, a i—• 0 if 
a ^ 0, and multiplication by n in jV on P = Mj is invertible, so that the natural 
map s —> s is a log geometric point over s (which is the identity on the underlying 
schemes). 

Definition 4.3. — Let x be a log geometric point of the fs log scheme X, and let T be 
a sheaf on Xket- The set 

Tx := ind. Iim^(î7), 

where U runs through the category of Kummer etale neighborhoods (4.1) of x (where 
maps are pointed maps), is called the stalk of T at x. 

Proposition 4.4 
(a) Let x be a log geometric point of the fs log scheme X. The functor T ^ Tx is 

a fibre functor (or point) ([SGA 4] IV 6.1, 6.2) of the topos X^et. 

(b) Every fibre function on Xket is isomorphic to one of the form described in (a). 

(c) The fibre functors of the form described in (a) make a conservative system. 

Let V(x) be the category of Kummer etale neighborhoods of x. Using 2.2 one 
checks that V(x)° is filtering, whence (a). We have seen in 4.2 that for any classical 
geometric point x of X there is a log geometric point x over x. This implies (c). By 
the known description of the points of the classical etale topos ([SGA 4] VIII 7.9), 
to check (b) we are reduced to the case where the underlying scheme of X is the 
spectrum of a separably closed field. The proof is then similar to that of (loc. cit.). 

Remark 4.4.1. — If s —> s is the log geometric point constructed in 4.2, then the 
Sm —> s for m G N form a cofinal system of Kummer etale neighborhoods of s. 
Therefore for a sheaf T on Sket we have 

T-s = ind. limr((5m)ket,̂ r). 
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4.5. As in the classical case, one can consider log strictly local log schemes, log strict 
localizations, specializations of fibre functors associated to log geometric points, and 
eventually get a stronger statement than 4.4 (b), in the form of an equivalence similar 
to that of ([SGA 4] VIII 7.9). Here is a brief sketch. Details are left to the reader. 

A log scheme S is called log strictly local if S is saturated, the underlying scheme 
S is strictly local (in the classical sense), and for every integer n ^ 1 invertible on 
5, multiplication by n on Ms (where s is the closed point) is bijective. If s is a log 
geometric point of the fs log scheme X, the log strict localization of X at x is defined 
as the inverse limit, in the category of saturated log schemes, of the Kummer etale 
neighborhoods of x. It is usually denoted by X(x) or X^)- It is a log strictly local 
log scheme over X. Let x, y be points of X such that x is a specialization of y, 
i.e. x G and let x (resp. y) be a log geometric point over x (resp. y). Then a 
specialization map s : y —> x is denned as an X-map X(y) —>• X(x), or equivalently 
an X-map y —> X(x). Given x and y there exists at least one specialization map 
s : y —> x with y a log geometric point over y. To such a specialization map s is 
associated a map of the corresponding fibre functors 

s* : ( - ) j — (-)y 

given by "inverse image by s": T(U) —• Ty for U a log etale neighborhood of x. We 
obtain in this way a category Pt(X) of log geometric points of X and a functor from 
Pt(X) to the category Pt(Xket) of points of the topos Xket? which turns out to be an 
equivalence, as in ([SGA 4] VIII 7.9). 

4.6. Let S be a locally noetherian, connected, fs log scheme and let s be a log 
geometric point of X. Using 3.13 it is easy to see ([Vi 2]) that the pair formed by 
Kcov(5) (3.13) and the fiber functor 

F : Kcov(S) —• fsets, X i—• F(X) := X, 

(where fsets denotes the category of finite sets) satisfies the axioms (Gl) to (G6) 
of ([SGA 1] V 4). Therefore, by (loc. cit.) the functor Fis pro-representable by a 
pro-object S of Kcov(S') and if 

<g(S,S) 
denotes the profinite group Aut(F) (opposite to Aut(S)), then F induces an equiva­
lence 

Kcov(5) 7rlog(5,S) - fsets , 
where the right hand side denotes the category of finite sets on which 7rl^g(S, 5) acts 
continuously. The group nl°g(S, s) is called the log fundamental group of S at s, and 
<S a log universal cover of S. As in the classical case (loc. cit.), for X in Kcov(5), 
i.e. a Kummer etale cover of 5, its connected components are again Kummer etale 
covers of 5; X is connected if and only if nli8(S, s) acts transitively on the stalk Xj. If 
G is a finite group, Kummer Galois covers of S of group G are pushed-out from S by 
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(continuous) homomorphisms 7r5°g(5, s) —> G; surjective homomorphisms correspond 
to connected covers. The log fundamental group is functorial with respect to pointed 
maps (and as usual, the definition - and the functoriality - can be extended to non 
necessarily connected, pointed log schemes). If s —> t is a specialization map between 
log geometric points of S (4.5), the corresponding map n°g(S,s) —> 7rl°g(S,t) is an 

o 
isomorphism. If s is the (classical) geometric point defined by s, the map e : S —• S 
induces a surjective homomorphism 0 QgP? (0j 0 QgP? (0j 

og(s,S) W<<9* Hom(M|P,Z'(l)(A 
called the forgetful homomorphism. 

Examples 4.7 
(a) Let s = Spec A; be an fs log point (1.3), and let 5 = Spec A: be a log geometric 

point over s. Then the forgetful homomorphism defines an exact sequence 

(4.7.1) 1 —• Jlog(s,S) —• 7r\°g(s,s) —> 7Ti(5,S) —> 1 , 

where J = 7log(s,s) is called the /op inertia group of 5. Moreover, there is a natural 
isomorphism 

(*) Jlog(s,S) 9* Hom(M|P,Z'(l)(A;)) 

and hence a noncanonical isomorphism 

Jlog(s,3) ^Z'(l)(fc)r, 

where r = rk M|P and Z'(l) denotes the product of Z^(l) for £ different from the 
characteristic exponent p of A:; the isomorphism (*) is given by the "tame character" 

pairing 
/log(s,S) xMy—•Z/(l)(fe) 

associating to a G 7log(s,5) and a G the projective system (<j(a1/n)/a1/n)n G 
Z'(1)(A:) where (a1/n)n is a compatible system of n-th roots of a in Mj (written 
multiplicatively), n running through the integers ^ 1 and prime to p. This follows 
from 4.2 and 4.4 (b). 

The fiber functor T »—> Tx defines an equivalence of categories 

Top(sket) ^—> 7r}°g(s,3) - sets 

where the right hand side denotes the category of sets endowed with a continuous 
action of 7Ti°g(s,3). For £ prime, we get an equivalence 

{Q£ - sheaves on sket} -—> Rep^(Tr), 

where the right hand side denotes the category of continuous finite dimensional Q -̂
representations of TT = 7r5°g(s}3), and Q -̂sheaves on the Kummer etale site of s are 
defined as in the classical case (see below). For £ ̂  p, k "not too big" (i.e. no finite 
extension of k contains all the roots of unity of order a power of £), and MfP of 
rank 1, the argument of Grothendieck ([S-T] Appendix) applied to the sequence 
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(4.7.1) shows that any V in Repĝ (7r) is quasi-unipotent, i.e. an open subgroup of 
Ilog(s,s) acts on V by quasi-unipotent automorphisms, and in this way V gives rise 
to a representation of a Weil-Deligne group associated to 7r (c/. [Vi 3] for details and 
further developments). 

(b) Let S = Spec A be an henselian trait, with closed point s = Spec k and generic 
point r) = Spec K. Fix an algebraic closure K of K and denote by A the normalization 
of A in fe, a valuation ring whose residue field k is an algebraic closure of k. We put 
S = Spec A, s = Spec A;, rj = Specif. Endow S (resp. 5) with the natural log 
structure associated to the inclusion A — {0} —> A (resp. A — {0} —> A), and denote 
by S (resp. 5) the resulting log scheme. While S is an fs log scheme, S is not, but is 
an integral and saturated log scheme, log strictly local 4.5, which is the inverse limit 
of the fs log schemes Si associated to the normalizations of A in the finite extensions 
Ki of K. With the induced log structure s (resp. s) is a discrete valuative log point 
(resp. a log geometric point above s), which we will denote by s (resp. s). The maps 
of log schemes 

n —• S —5cl 

pointed by the log geometric point rj induce surjections 

G = Gal(K/K) = TTifa) —• £?* := TT^S) —• Gal(fc/fc) = TT̂ S01) = TTI(SC1) 

(we omit the base point rj for brevity), with kernels 

P = Ker(G -> G*), / = Ker(G Gal(fe/fc)), /* = Ker(G* ^ Gal(Jfe/Jb)) ^ Z'(l), 

the wild inertia, the inertia and the tame inertia respectively. The identification of 
Gl with the tame quotient G/P (P the pro-p-Sylow) comes from the calculation in 
(a) together with the following two facts: (i) the specialization map rj —> s induces an 
isomorphism 

og(s,S) 9* Hom(M|P,Z'(l)(Aog(sW<,SFF 
) 9* Hom(M|P,Z'(l)(X<<<¨£MGF<<<SA 

(ii) the pointed map —> (5,5) induces an isomorphism 

7riog(S)S)^7rlog(5,S). 

In other words, restriction from S to rj defines an equivalence between Kummer etale 
covers of S and tame extensions of K, while restriction from S to s defines an equiv­
alence between Kummer etale covers of S and Kummer etale covers of s. 

(c) More generally, let X be a locally noetherian, regular scheme and let D C X 
be a divisor with normal crossings, and U := X — D. Endow X with the log structure 
defined by D. Let x be a log geometric point of X above x G jD, with image x as a 
geometric point of J9. Then one can show that there is a natural isomorphism 

og(s,S) 9* Hom(DDM|P,Z'(l)(A 
og(s,S) 9* Hom(M|DDP,Z'(l)(A 
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where the right hand side is the tame fundamental group of Grothendieck-Murre 
[G-M], classifying the finite Galois covers of U tamely ramified along D ([Ka 3], 
10.3) (see 7.6 for a generalization). 

(d) The isomorphism in (b) (ii) holds without assuming 5 to be a trait. More 
precisely, let S be the spectrum of a local henselian ring with closed point s and let 
s be a log geometric point over s. Then the pointed map (s,s) —• (5,s) induces an 
isomorphism 

og(s,S) 9* CWW(M|P,Z'^^(l)(A^^ 
og(s,S) 9* ¨¨¨^(M|P,Z'(l)^^(A^^ 

compatible with the classical isomorphism 7Ti(s,s) —> 7Ti(5,s) (and therefore an iso­
morphism on the corresponding log inertia groups). It is indeed easily seen, by reduc­
ing to the strictly local case and taking a chart S —» SpecZ[P] with P = Ms, that 
the Kummer covers Sn —* S constructed in 4.2 form a cofinal system ([Vi 1], A 3.2). 
One checks moreover that when S is classically strictly local, for any sheaf T on 5ket 
the stalk map T(Syiet,Jr) —• Tj induces an isomorphism r(5ket?«?r) ——-• (fs)1, where 
I = 7rlog(5,s) is the log inertia group. 

(e) Grothendieck's specialization theorem and calculation of the prime to p fun­
damental group of a proper and smooth curve over an algebraically closed field 
([SGA 1], X 3.10) can be revisited at the light of log fundamental groups: see Fu-
jiwara [F], where this calculation is reduced to that of the prime to p fundamental 
group of the projective line minus three points, thanks to a log Van Kampen theorem 
and the fact that the prime to p log fundamental groups of the (log) geometric fibers 
of a semistable family of curves form, in a suitable sense, a locally constant family. 

4.8. Let A be a noetherian ring. Let X be a locally noetherian fs log scheme and let 
T be a sheaf of A-modules on Xket- One says that T is constructible if locally for the 
Zariski topology X is set theoretically a finite disjoint union of strict log subschemes 
Yi over which T is locally constant and of finite type for the Kummer etale topology. 
(Note that in view of Vidal's result 2.8, the suscheme structure of the Y^s does not 
matter.) Constructible sheaves of A-modules form a full subcategory of the abelian 
category of all A-modules, which is stable under kernel, cokernel, extension, tensor 
product and inverse images (see ([Na 1], 3.1). They don't enjoy, however, the nice 
stability properties of the classical constructible sheaves with respect to the usual 
operations of homological algebra, e.g. they are not in general stable under Rqf* for 
/ proper, even for q = 0, cf. ([Na 1], B 3 (i)). This defect can be partially corrected 
by either making further hypotheses on / ([Na 1], 5.5.2) or working with the full log 
etale site (see 9 below). 

A formalism of (Q -̂sheaves and L-functions on fs log schemes can be developed 
similar to the classical one, see [Vi 3]. 
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5. Comparison theorems 

(A) Kummer etale vs classical etale cohomology 

Fix an integer n ^ 1 and let A = Z/nZ. 

5.1. Let X be an fs log scheme. Consider the canonical map 

£ : Xket —> Xc\ 

from the Kummer etale site to the classical etale site of X (2.4). Assume that n is 
invertible on X. Recall that we then have the Kummer exact sequence of abelian 
sheaves on Xket (2.7 (d)) 

(5.1.1) 0 —• A(l) —> Mgp Mgp —+ 0 , 

where Mgp (resp. A(l) = /xn) is the sheaf on Xket defined by F h r(F,Mgp) 
(resp. r(Y, /xn))- Consider the composite map of abelian sheaves on Xci: 

c : Mgp —• £*Mgp —• B^.ACl) . 

where the first map is the adjunction map and the second one is the boundary map 
coming from (5.1.1). It is the sheafification of the map Mgp(U) —> iJ1(L7ket, A(l)) 
associating to a section s of Mgp over an object U of Xc\ the A(n)-Kummer etale 
torsor 5x/n of its n^-roots (Mgp written multiplicatively). When s is a section of 0*, 
s1//n comes from a classical etale torsor, and hence c vanishes on (9*, thus inducing a 
map of sheaves of A-modules, still denoted 

c : M gP0A ( - l ) — t&e+A 

By cup-product, we get maps 

(5.1.2) c : (®«MgP) 0 A(-q) —• Rqe*A 

for all integers ^ ^ 0. The following basic result, due to Kato-Nakayama ([K-N] 2.4), 
is easy: 

Theorem 5.2. — The maps c (5.1.2) induce isomorphisms 

c : (A9MgP) 0 A(-q) -^U R«e*A . 

Lemma 5.3. — Let S be anfs log scheme whose underlying scheme is strictly local. Let 
s be a log geometric point over the closed point s, and I = 7i{og(5, s) the corresponding 
log inertia group. Then the stalk map induces an isomorphism 

RT(SkeUE)-^RT(I,Es) 

for E in Z)+(Sket, A) (E *-> Eg being viewed as a functor from D+(S, A) to D+(A[/]) 
(derived category of A-modules endowed with a continuous action of I)). 
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This follows from 4.7 (d). 
Let us prove 5.2. The assertions that c (5.1.2) factors through Aq and that the 

factored map is an isomorphism can both be checked on the stalks. So we may assume 
X = S is classically strictly local. With the notations of 5.3 we then have 

(Rqe*A)s = Hq(SkeU A) = Hq(I,A). 

By 4.7 (d) we have / = 7rJ°s(s, 3), and by 4.7 (a) we have 

/ = Hom(MsgP,Z'(l)) ^ Z'(l)r, r = r kMf . 

Therefore the cup-product if1 (J, A)®q —> Hq(I,A) factors through an isomorphism 
AqH1(I,A) Hq(LA) and 

H\I, A) = Hom(Hom(Aff\Z'(l)), A) = MSSP ® A ( - l ) . 

It only remains to check that this last canonical isomorphism corresponds to c, which 
follows from its description in 4.7 (a) in terms of the tame character pairing. 

5.4. For E G D+(Xci, A) we have, by the projection formula, 

E ® Re*A = Re*e*E 

(note that by 5.2 Re*A is stalkwise perfect), hence for E concentrated in degre 0, we 
have a natural isomorphism 

(Aq MgP) ® E(-q) —• K*e*e*E . 

Intuitively, Xket over Xc\ behaves like a (constructible) fibration in tori with fiber 
(Gm)r(x) over x with r(x) = rk(MSP)^. 

(B) Kummer étale vs log Betti cohomology 
5.5. Let X be an fs log scheme locally of finite type over C. Kato and Nakayama 
[K-N] associate to X a topological space Xlog together with a continuous map 

r : Xlog Xan 

where Xan = X(C) is the analytic space associated to X (in the case of normal 
crossing varieties a similar construction had been done independently by Kawamata 
and Namikawa [Kaw-Nam]). As a set of points, Xlog is the set of maps of log spaces 
(SpecC, 7r) Xan, where TT is the polar log structure R^o x S1 —• C, (r, z) i—• rz)\ the 
map r is given by forgetting the log structures. A point x of Xlog can be viewed as 
a pair x = (y, h) where y G Xan and h is a homomorphism h : Mgp —• S1 extending 
the "angle" homomorphism / »-> / (y) / | / (y) | on O*. 

When P is an fs monoid, and X = SpecC[F], with the canonical log structure, 
Xlog = Hommonoids( ,̂K^o x 51), and for x G Xlog, T(X) G X is the point TT O X : 
P —> C of X with value in C; thus Xlog has a natural topology of locally compact 
space (it's even a C°° manifold with corners), and r is proper, with fiber r~l(y) at 
y G X a product of r(y) copies of S1, where r(y) is the rank of (P/Py)gp = MgP, 
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Py = y~l(C*) C P being the face associated to y: P —• C. In general, using charts, 
one defines a topology on Xlog which is functorial in X, and is characterized by the 
following properties: (i) for X = SpecC[P] it is given by the above; (ii) for a strict 
map X —• y , the square (with vertical maps r) 

Xlog 

Xan 

. YLOG 

ân 

is a cartesian square of topological spaces. In particular, r : Xlog —> Xan is proper, 
and for x G Xan, r~1(x) is a product of r(x) copies of 51, where r(x) = rkMgP. 

5.6. One can view r : Xlog —• Xan as an analogue of the map e : Xket —> Xc\ 
discussed in (A). Kato-Nakayama prove for r a result similar to 5.2. 

Consider the exponential sequence on Xlog 

O ^ z ( l ) — T " 1 ^ ) exp -r-\crxJ^ 0 , 

with the usual notation Z(n) = (27rz)nZ. Kato-Nakayama embed it in a larger one 

(5.6.1) 

0 >Z(1) 

o- Z(l) 

Id 

og(s,S) 9* H<w 

okmù 

exp 

exp crxwwJ^ 0, 

crxJ^ 0, 0 

0 

Here Xan is endowed with the log structure naturally induced by that of X, and C 
is a certain sheaf of "logarithms" of local sections of r-1(Mgp) consisting of pairs 
(16, s) where 6 is a local continuous R-valued function on Xlog and s a local section of 
T-1(Mgp) such that exp(i6) = h(s), in the notation of 5.5. The middle vertical map 
in the diagram above is given by / j-> (z/m(/),exp(/)), and exp : £ —» r_1(Mgp) is 
given by the second coordinate. 

Using that for any sheaf T on Xan the adjunction map T —> T*T*T is an iso­
morphism, one deduces from the bottom exact sequence of (5.6.1) a map c : MgP (g) 
Z(—1) —• JR1r*Z of abelian sheaves on Xan, hence by cup-product a map 

(5.6.2) c: (®qMgP)(-q) —+Rqr*Z 

for all q ^ 0. Since r is proper with fibers products of S1, one obtains the following 
analogue of 5.2: 

Theorem 5.7 ([K-N], 1.5). — The maps c (5.6.2) induce isomorphisms 

c:(AqMëP)(-q)w<<^<<RqnZ . 

Corollaries similar to 5.4 hold. 
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5.8. Let X be a scheme locally of finite type over C. Because an etale map U —> X 
induces a local analytic isomorphism 17an —• Xan, we get a map of ringed sites (or 

topoi) 
V : ân * Xet, 

such that (77* Jr)(?7) = (̂E/an) for any sheaf T on Xan and U etale over X. Let 
n be an integer ^ 1 and A = Z/nZ. The basic comparison theorem of Artin-
Grothendieck ([SGA 4] XVI 4.1) asserts that for Q G £>+(Xet,A) (the full sub­
category of D+(Xet,A) consisting of complexes with bounded below, constructible 
cohomology), the adjunction map 

a : g —• Rrj*r)*Ç 

is an isomorphism, and consequently the natural map 
ff«(Xtat,0)—>ff'(*lQg,»7*0)ff«(Xtat, 
ff«(Xtat,0)—>ff'(*lQg,»7*0)0)—>ff'(*) 

from etale to Betti cohomology is an isomorphism. 
Kato and Nakayama establish a similar comparison theorem between Kummer etale 

cohomology and log Betti cohomology (by the latter we mean cohomology of the spaces 
Xlog). As in 5.5, let now X be an fs log scheme locally of finite type over C. The fact 
that the mth power map on S1 is a local homeomorphism implies, by taking charts, 
that any Kummer etale map U —• X induces a local homeomorphism Ulog —> Xlog. 
Therefore we get a map of ringed sites (or topoi) 

rj : Xlog — Xket 

such that (77*JT)(C7) = JF(J7log) for any sheaf T on Xlog. When the log structure of 
X is trivial this is but the map defined above. 

Theorem 5.9 ([K-N], 2.6).— With X and A = Z/nZ as above, for any Q G 
D+(Xket,A) (the full subcategory of D+(Xket,A) consisting of complexes with 
bounded below, constructible cohomology (4.8)), the adjunction map 

a-.g —> Rrj*r)*g 

is an isomorphism (and consequently the natural map 

ff«(Xtat,0)—>ff'(*lQg,»7*0) 

is an isomorphism). 

The proof is formal from 5.2, 5.7 and Artin-Grothendieck's comparison theorem 
quoted above. Here's a sketch of the main steps. 

(a) By looking at the stalks at a log geometric point of X, one sees that it is enough 
to prove that the map deduced from a by applying Re* is an isomorphism. 

(b) One may assume that g is a single constructible sheaf and even further that g 
is of form e*T with T constructible on Xc\ (this follows from general facts on Kummer 
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étale constructible sheaves, namely that any such sheaf is Zariski locally the cokernel 
of a map A^x —> Ay,x with U and V Kummer étale of finite presentation over X). 

(c) Applying Artin-Grothendieck's comparison theorem K Rq*rfK to K = 
Re*e*T, the statement that Re Acs) is an isomorphism boils down to the fact that 
the base change map 

rfRs*Q —+ Rr*rfQ 
for G = s*T, associated to the commutative square 

cww V 
Xket 

T 

Xan 
;,:$ 

' Xch 

€ 

is an isomorphism. By the projection formula one is reduced to the case Q = A, i.e. to 
showing that 

r)*Rqe*A —• Rqr*A 

is an isomorphism for all q. By 5.2 and 5.7 it is enough to check it for q = 1, and 
this follows from the compatibility between the classes c defined by the Kummer 
and exponential sequences: for any integer n ^ 1, rj~1(Mxp_et) (resp. C) is n-divisible 
(resp. uniquely n-divisible) and one has a morphism of exact sequences 

(5.9.1) 
0 Z(l) 

b$c •Un ^^ff«(Xtat,0 

c 
exp 

r-1 cxww<: 

n ^cww •m|p ) 

•0 

0 

where Â xLt 1S ^e snea,f Mgp on the Kummer etale site of X (4.1) and the middle 
vertical map is s i—• image of exp(s/n). 

6. Acyclicity of log blow-ups 

6.1. Let X be an fs log scheme endowed with a global chart X —• SpecZ[P], with 
P fs, Pgp torsionfree, and let / be an ideal of P (i.e. a subset of P such that PI c / . 
The log blow-up 

f : Xj — X 
of X along / is the map of fs log schemes defined as follows. Let X' := SpecZ[P] and 
I C Ox' the ideal generated by / . Let Y' := Proj(0n€NXn) —• X' be the blow-up of 
the scheme X' along X. The scheme Y' is covered by affine open pieces Ua indexed 
by a e J, 

J7fl = SpecZ[Pa], 
where Pa is the submonoid of Pgp generated by P and the set of b/a for b G I. Endow 
Y' with the unique log structure inducing the canonical one on each Ua. Note that 
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this structure is not necessarily saturated. Let y/sat be the saturation of F', which 
is an fs log scheme over X'. Finally, define Y = Xi to be the fs pull-back of y,sat 
by X —> X' and let / : Y —• X be the resulting map. This map is log etale (1.5) 
since each Ua and hence each (Ua)sat is so over X'. The ideal J = I My c My 
generated by I is invertible (i.e. locally monogenous), and one can show ([Ni]) that 
this property characterizes Y among the fs log schemes over X, namely for any map 
g : T —> X such that IMT is invertible, there exists a unique morphisme h : T —• Y 
such that fh = g. 

More generally, if X is any fs log scheme, a sheaf of ideals J C Mx is said to be 
coherent if etale locally it is of the form IMx, where X —> Spec Z[P] is a global chart 
as above and I an ideal of P. One defines the log blow-up of X along J, by patching 
the local constructions above, using for example the universal property, cf. [F-K], 
[Nil. 

Fujiwara-Kato prove the following striking result: 

Theorem 6.2 ([F-K], 2.7). — As in 6.1, let f : Y -> X be the log blow-up of X along 
a coherent sheaf of ideals J of Mx whose geometric stalks Jx are nonempty. Let 
A = Z/nZ, where n is an integer > 1 (not necessarily invertible on X). Then, for 
any T G D+(Xket, A), the adjunction map 

a-.?—* Rf*f*T 

is an isomorphism. 

The statement with Xket replaced by Xci is of course false, as the blow-up of the 
origin in the standard affine space Ar already shows. 

For the proof of 6.2 we need a few preliminaries. First we need the following base 
change result: 

Proposition 6.3. — Let A be as in 6.2, and let 

X' 

wx 

Y' 

h 
X 

Q 
f 

>Y 

o 
be an fs cartesian square of fs log schemes, where f is proper and g is strict. Then 
for T G -D+(Xket5 A), the base change map 

g*Rf*J7 —» Rflh*T 

is an isomorphism. 

By looking at the stalks at a log geometric point of Y', one is reduced to the case 
where the log structures of Y and Y' are trivial. Factoring / into / = fc\ o e and 
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using the classical proper base change theorem ([SGA 4] XII 5.1) one may assume 
further that / = e, in which case the conclusion follows from 5.2. 

Nakayama ([Na 1], 5.1) shows that for / proper the conclusion holds under a 
weaker hypothesis than the strictness of g, which is satisfied for example if / or g is 
exact However, under the sole assumption of properness of / , the conclusion can fail 
(loc. cit. B4), but holds again provided that one replaces the Kummer etale sites by 
the full log etale sites, as Kato has shown (see 9.5). 

6.4. Next, we need to recall the (well known) structure of the (classical) etale coho­
mology of tori. Fix an algebraically closed field k of characteristic exponent p, and 
let A = Z/nZ where n is assumed to be prime to p. 

Let A1 and Gm be respectively the affine line and the multiplicative group over k. 
and let j : Gm A1 be the canonical inclusion. We have 

Rqj*A = 
A if Q = 0 
A(-l){0} if g = l 

0 if q > 1 

where {0} is the origin in A1 and the canonical isomorphism for q = 1 comes from the 
Kummer sequence 0 —• A(l) —> O* —• (9* —• 0 on Gm, by sending 1 G A to S(t) where 
t G (j*0*){o} is the image of the standard coordinate on A1 and 6 is the coboundary 
map. Since Hq(Gm,A) = H°(A1,Rqj*A), we get 

Hq(Grn,A = 
A if q = 0 
A ( - l ) if q = l 
0 if q > 1 

Let now T/k (= Grm) be a torus, let L = Hom(T, Gm) (= Zr) be its character 
group and Lv = Hom(L,Z) = Hom(Gm,T) be its cocharacter group. We have 
T = Spec k [L]. The pairing 

H1(T,A)xLv —4 A ( - l ) 

(*, / ) ^ - f W G H\Gm,A) = A ( - l ) 

defines an isomorphism 

(*) HX(T, A) -^U L 0 A ( - l ) , 

By Kiinneth ([SGA 4 1/2], Th. finitude, 1.11), the cup-product ^^(T.A) -> 
Hq(T, A) factors through an isomorphism AqH1(T,A) -^-> Hq(T,A), so that from 
(*) we get an isomorphism 

(6.4.1) H"(T,A)^A"L®A(-q) 
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for all q ̂  0. This isomorphism is functorial with respect to group-scheme homomor-
phisms T" —> T. In particular, multiplication by d on T induces multiplication by dq 
on H*(T, A). 

As in 4.2, let J\f be the set of prime to p integers ^ 1 ordered by divisibility, and 

let 
T := inv. lim Tm 

where m runs through A/", Tm is a copy of T and for m | m', the transition map 
Tmf —• Tm is the multiplication by d = ra'/ra, a classical Kummer etale cover of 
group Lv ®Z/dZ (1). The scheme T over T is a prime to p universal cover of T, with 
group the prime to v fundamental group of T, 

(6.4.2) 7r£(T) = Lv®Z' ( l ) . 

The (descent) spectral sequence 

4J = H\it,W{T,A)) Hi+i{T,h), 

where TT = 7r\(T), yields an isomorphism 

(6.4.3) H"(T,A)^UHQ(TT,A). 

Indeed we have 
H9(T, A) = inv. lim Hq(Tm,A), 

with transition map from m to dm given by multiplication by dq, hence 

(6.4.4) ff«(Xtat,0)— 
>ff'(*lQg,»7*0) 

A for q =< w<0 

0 for Q ^ 1, 

since the inductive system is essentially zero for q ^ 1. The isomorphism (6.4.3), 
combined with (6.4.2), gives an alternate way to derive (6.4.1). 

As Ekedahl observed, the vanishing (6.4.4) is easily extended to toric varieties. 
This leads to a (slight) simplification of Fujiwara-Kato's original proof of 6.2. His 
observation is based on the following result: 

Lemma 6.5 (Ekedahl). — Let k and A be as in 6.4, let P be an fs monoid such that 
Pep is torsionfree, and let X = Speck[P], X* = Specfc[P*]. Then the map X X* 
defined by the inclusion P* C P induces an isomorphism 

Hq(X\A)^Hq(X,A<<<<) 

for all q. 

First recall the well-known homotopy lemma (cf [SGA 7] XV 2.1.3) : 

Lemma 6.6. — Let S be a connected k-scheme of finite type, let so, si be two rational 
points of S, let Y, Z be k-schemes of finite type and let f : S x Y —> Z be a k-map. 
Let fi := f o (Si x Idy) : Y -> Z. Then 

f*=ri:Hq(Z,A)-^Hq(Y<<<<,A) 

for all q. 
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By Künneth we have 

H*(S x y,A) = ff*(S,A)® ff*(y,A). 

Since S is connected. 

s*0 = si : H°{S,A) (= A) —• üT°(SpecA:, A) (= A), 

from which the conclusion follows. 
Let us prove 6.5. Since Pgp is torsionfree, a splitting of the extension 0 —• P* —• 

pgp —> PSP —• 0 gives a decomposition 

P = P* x Q, 

with Q fs, Qgp torsionfree and Q* = {1}. Therefore, by Kiinneth we may assume P 
to be sAarp, i.e. P* = {1}. We have then to prove that Hq(X, A) = A for q = 0 and 
zero otherwise. To do this we apply 6.6 to S = Y = Z = X (which is connected, being 
integral) and the product map / : I x I ^ I , corresponding to the comultiplciation 
P —> k[P] 0 fc[P], a i—• a ® a. As rational points Si G X(/c), we take si to be unit 
element {1} in X, i.e. the point corresponding to the homomorphism P —• k sending 
any element a to 1, and s0 the vertex {0} corresponding to the homomorphism P —> fc 
sending a to 0 for a ^ 1 and 1 for a = 1 (this map is well denned because P is sharp). 
Then (with the notations of 6.6) f\ = Idx while /o : X —• X sends X to {0}, and 
/* = f* implies the conclusion. 

When k = C, by Artin-Grothendieck's comparison theorem, 6.5 follows from the 
well known stronger fact that the topological space underlying (SpecC[P])an is con­
tract ible when P is sharp ([Fu], 3.2). 

6.7. In order to state Ededahl's generalization of (6.4.4) we need to review some 
standard definitions (cf. ([Fu], 1.4, [Od], 1.2, [KKMS], I). Let k be as in 6.4 and let 
T be a torus over k, with character group L. A fan in Lv is a finite set A of rational 
strongly convex polyhedral cones a in Lv <S> M such that for any a in A, every face of 
a belongs to A, and for any pair (a, a') of elements of A, a Pi a' is a face of both a 
and a'. Then for a G A, Pa := crv D L is an fs submonoid of L with Pgp = L, and 
if r is a face of a, Pa C Pr is a localization map, defined by inverting a face of Pa, 
namely (Pr)* H Pa\ if := Spec k[Pa], UT is open in Ua, and the torus T = U{oy is 
equivariantly embedded in each Ua. The ^onc variety X(A) associated to A is the 
union of the schemes Ua, Ua and Ua> being glued along Ua fl = C/ana'- A tone 
variety over fc, with torus T, is a scheme X/fc of the form X(A). Such a scheme 
X is of finite type over A:, separated, integral, and normal; the torus T acts on X 
and equivariantly embeds into X as a dense open orbit. The fan A can be recovered 
from the action of T on X, namely, a i—• Ua is a bijection from A to the set of open 
affine equivariant subschemes of X ([KKMS], I, th. 6), the equivariant embedding 
T C Ua determines Pa and in turn a = (Pa)v ®M^0- Conversely, if X is a separated, 
integral, normal scheme of finite type over k endowed with an action of T and an 
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equivariant embedding of T into X as an open orbit, then X = X(A) for a unique 
fan A ([KKMS], loc. cit.), [Od], 1.5). 

Let X/k be a toric variety with torus T, associated to a fan A. Let d be an integer 
^ 1. For each a G A, multiplication by d on the monoid Pa induces an endomorphism 
of Ua. When a runs through A, these endomorphisms glue to an endomorphism of X, 
still denoted d. Now let N be as in 4.2 and similar to the construction in 6.4 define 

X := inv. lim Xm 

where m runs through A/", Xm is a copy of X and for m \ m', the transition map 
X^ —• Xm is the multiplication by d = mf/m. Ekedahl's generalization of (6.4.4) is 
the following formula, where A = Z/nZ, n prime to p: 

(6.7.1) Hq(X,A) 
A for q = 0 

[0 for O L 

Let us prove (6.7.1). We have 

HQ(X,A) = ind.limJÏ*(Xm,A), 

where m runs through N and the transition map from m to m! — dm is d* : 
Hq(X,A) Hq(X,A). Let ^ be the open cover of X by the C/̂ , a G A. Con­
sider the Leray spectral sequence of U: 

(6.7.2) E\j = mj(Uaon-.n^A) Hi+j(X, A), 

where CrfTon...n(ji = Uao fl • • • (1 ^ and (<j0, . . . , 0*) r^ns through Al+1. For X = Xm, 
these spectral sequences form an inductive system indexed by N. Its limit is a spectral 

sequence 

(6.7.3) E\j(X) := inv.lim^J'(Xm) iJ'+J(X,A). 

By 6.5 the natural map 

H^u;on...nai,A) -+Hi(Uaon...n*t,A) 

is an isomorphism. When X runs through Xm these isomorphisms are compatible 
with the transition maps d*. Passing to the limit and applying (6.4.4), we get 

^ ( X ) : 
) 0(<ro,...,<7i)€A*+iA for J = 0 

0 for J > 0 . 

Therefore (6.7.3) degenerates at E2 and gives 

Hq(X,A) = H«(E1°(X)) = H<>(C'(A,A))Ì 

where C'(A, A) is the Cech complex, with coefficients in A, of the open cover, by the 
complements of its vertices, of the standard simplex S spanned by A. Thus (6.7.1) 
follows from the contractibility of S. 
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6.8. Let X/k be a toric variety as above, with associated fan A and torus T. There 
is a unique log structure on X inducing the canonical one on each Ua, a G A. The 
resulting log scheme, still denoted X, is fs and log smooth over k. The open subset of 
triviality of the log structure is the torus T, and by ([Ka 4], 11.6), Mx = Ox Hw<< 
where j : T X is the inclusion. The key ingredient in the proof of 6.2 is the 
following result (which is in fact a special case of a general purity result stemming 
out of 6.2, see 7.5): 

Proposition 6.8.1. — For A = Z/nZ, n prime to p, the restriction map 

f : (Xket, A) — Hq(TkeUA) = Hq(TchA) 

is an isomorphism for all q. 

Let L be the character group of T. By 3.2, for d e N, multiplication by d : X —» X 
is a (log) Kummer etale cover of group Lv 0 Z/dZ (1). Denote by Xket the 2-inverse 
limit (in the sense of ([SGA 4] VI) of the topoi (Xm)ket, where (Xm) is the inverse 
system considered in 6.7. Then Xket/Xket plays the role of a prime to p universal (log) 
Kummer cover of X, with group the prime to p log fundamental group TT = Lv ®Z'(1) 
of X, the same as that of T (6.4.2). We have again a descent spectral sequence 

(6.8.2) E% =H™(Xri (Xtet, A)) => tf^'(Xket, A), 

with 

(6.8.3) tf*(Xket, A) = ind. lim if 9((Xm)ket, A), 

with transition map from m to dm given by the endomorphism d* of if9(Xket, A). It 
turns out that this limit is actually the same as that obtained by working with the 
classical étale topology instead of the Kummer étale one: 

Lemma 6.8.4. — The restriction maps if9((Xm)ci, A) —> if9((Xm)ket, A) define an 
isomorphism 

ind. limHq((Xm)c\, A) ind. lim^((Xm)ket, A). 

In fact, a stronger statement holds: the natural map Xket —* Xci is an equivalence 
of topoi. Indeed, any Kummer etale map U —> X of finite type becomes classically 
etale after an fs base change by multiplication by d : X —> X, for a suitable d G N. 
Hence the classical etale maps U —> Xm generate the topology of Xket defined in the 
standard way from those of the (Xm)ket's. 

From 6.8.4 and 6.7.1 we get 

(6.8.5) ff«(Xket,A) = 
A for q = 0 

[0 for O 1 . 
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Thus the spectral sequence (6.8.2) yields an isomorphism 

(6.8.6) ff^Xket.A)ff«(Xtat,0)— A). 

By construction this isomorphism is compatible with (6.4.3), i.e. we have a commu­
tative square 

ff9(*ket,A) 

3 

H*(TchA) 

•H"(w,A) 

Id 

H9(n,A), 

with horizontal maps given by (6.8.6) and (6.8.3), which proves 6.8.1. 

6.9. Let us - at last - turn to Fujiwara-Kato's proof of 6.2. We have to show that 
for any log geometric point x of X, the following holds: 

(*)* a* : F* — w<<(Rf*f<*fh 

is an isomorphism. We prove (*)j by induction on 

r{x) = rk(M<gP), 

(where x (resp. x) is the point (resp. geometric point) of X image of x). Let r G N. 
Assume (*)j holds for all (X, J, x) such that r{x) < r, and let us prove it for r(x) = r. 
Applying 6.3 to the base change by the strict map x —• X, we may assume that 
the underlying scheme of X = x is Spec with k an algebraically closed field of 
characteristic exponent p, and that X is equipped with a chart X —• Spec/c[P], with 
P fs, sharp {i.e. P* = {0} (the monoid law written additively)), Pgp = 17 and 
J = IMx- By dévissage on T we reduce to the case T = A. Now let X be the affine 
toric variety Spec k[P], with vertex {0} corresponding to the map P —» k sending a 
to 0 for a ^ 0 and 0 to 1, and torus T = Spec/c[Pgp], of rank r. Endow X with its 
canonical log structure and let / : Y —• X be the log blow-up of X along / . Applying 
again 6.3, this time to the base change by the strict map x —> X sending x to {0}, 
we are reduced to showing that the stalk of a : A —> P/*A at a log geometric point 
{ 0 } ~ above {0} is an isomorphism. Let K G D+(Xket?A) be the cone of a, defined 
by the exact triangle 

A Rf,A —> K —> A[l]. 

We have to show 

(6.9.1) tf{0}~ = 0 

By the induction hypothesis we know that 

(6.9.2) Ks = 0 

for all log geometric points x over a point x of X distinct of {0}, since r(x) < r for 
such a ooint. Consider again the inverse svstem (Xrr,)rr,a\r used in 6.7 and 6.8, and 

ASTÉRISQUE 279 



OVERVIEW 301 

the inverse system ({0}m) it induces on {0} endowed with the induced log structure. 
By 4.4.1, we have 

H\Km~) = md. lim ir(({0}m)ket,K). 
Therefore, to prove (6.9.1) it suffices to prove that 

RT({0}ket,K) = 0 

But by (6.9.2) we have 

RT({0}ketiK) = RT(XketiK) . 

Hence it suffices to show that the inverse image map 

f* : Hq(XkeUA) ^ Hq(YkeUA) 

is an isomorphism for all q. 
Suppose first that n is prime to p (A = Z/nZ). The log-blow up Y of X along 

/ is a toric variety, with torus T, covered by the open affine equivariant subschemes 
(Ua)sat = Spec k[(Pa)sat] considered in 6.1. The projection / : Y —> X is T-equivariant 
and induces an isomorphism on T. That /* is an isomorphism then follows from 6.8.1. 

That concludes the proof of 6.2 in the case n prime to p. In the general case 
the proof proceeds in the same way, except that to dispose of the case where n is 
a power of p, it is necessary to replace the affine toric variety X = Spec k [P] by a 
T-equivariant compactification X, that is a toric variety with torus T, containing X 
as an equivariant dense open subset, and which is proper over k. It is a standard 
fact that such compactifications exist: if A is the fan of X (the set of faces of Pv), 
it suffices to choose a complete fan A containing A, and X(A) is a T-equivariant 
compactification of X ([Od], 1.12). If Z is the closed subscheme of X defined by J, 
the schematic closure Z of Z in X is defined by a T-equivariant sheaf of ideals X of 
Ox and even by a coherent sheaf of ideals J of M-^. Let / : Y —• X be the log 
blow-up of X along J. Then Y is a toric variety with torus T, and / is equivariant 
and induces an isomorphism on T. Again, one has to show (6.9.1), where K is the 
cone of a : A —• Rf*A. This time, the induction hypothesis only gives us that there 
exists a finite number of closed points xi (1 ̂  i ^ N) of X (including {0}) such that 

(6.9.3) Ks = 0 

for all log geometric points x over a point x of X not belonging to the set oixi's. As 
above, we have 

xww<^m 
w<ff«(Xtat, 

xbb,;m 
ind. limHq(((xi)m)ket, A) 

and by (6.9.3) 

vn,;;;^$ 
RT((xi)keUK) = RT(XkeUK)1 

so that again it is enough to show that 

^*:^(Xket,A)^^(yket,A) 
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is an isomorphism for all q. Writing A = Z/phZ x Z/n'Z with n' prime to p, and using 
the case treated above, we may assume A = Z/phZ. The result is then a consequence 
of the following lemma: 

Lemma 6.9.4. — Let X/k be a proper toric variety, with k algebraically closed of 
characteristic p > 0, and let A = Z/phZ, h > 1. Then we have 

tf*(Xket,A): f Л if g = 0 
[0 if q > 0 . 

By dévissage we reduce to A = Z/pZ. Since X is proper we have 

Hq(X,Ox) = 
к for q = 0 

! 0 for q > 0 . 

(([KKMS], p. 44) or ([Od], 2.8) in the case к = С). Hence, by Art in-Schreier 

Hq(XchA) = A if a = 0 
0 if q > 0 

By 6.8.4 (where n needs not be assumed to be prime to p), we get again (6.8.5) and 
(6.8.6), and since TT is of pro-order prime to p, the conclusion follows. This concludes 
Fujiwara-Kato's proof of 6.2. 

Fujiwara-Kato ([F-K] 2.4) also prove a noncommutative variant of 6.2 : 

Theorem 6.10. — Let f : Y —• X be a log blow-up as in 6.2. Then for any log 
geometric point yofY, with image x by f, the natural map 

ff«(Xtat,0)—>ff'(*lQg,»7*0) 

is an isomorphism. 

We will not attempt to explain their proof. Let us just say that the key point is 
to replace 6.8.1 by a Zariski-Nagata type purity result, namely that in the situation 
of 6.8.1, restriction to T defines an isomorphism between 7rJ°g(X) and the quotient of 
7Ti(T) classifying the étale covers tamely ramified at the generic points of X — T. 

7. Purity 

Recall Grothendieck's absolute purity conjecture (([SGA 4] XVI 3.10 b), 
([SGA 5] I 3.1.4)), now a theorem of Gabber [Ga]: 

Theorem 7.1. — Let d be a positive integer, X a regular locally noetherian scheme, 
г : Y —> X a regular closed subscheme, everywhere of codimension d, and A = Z/nZ 
with n invertible on X. Then 

Rqr(A) = 0 for q^2d . 
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and the cohomology class of Y ([SGA 4 1/2], Cycle 2.2) defines an isomorphism 

R2dil(A)^A(-d) 

This statement implies - and in fact is equivalent to - the following one: 

Theorem 7.2. — Let X be a regular locally noetherian scheme and let D = 

^2i<m<N Dm be a divisor with normal crossings on X, with Dm regular for all i. Let 

jm • Um = X — Dm ^ X, j : U — X — D ^ X be the inclusions, and let A = Z / n Z 

with n invertible on X. Then: 

(a) Rqjm*A = 0 for q > 1, jm*A = A, and the Kummer sequence defines an 

isomorphism Rxjm*A = A/}m(—1); 

(b) the natural map 
L 

cwwm 
Rjrn*A —> Rj*A 

is an isomorphism, which is equivalent to the conjunction of (i) and (ii): 

(i) the restriction map 

ff«(Xtat,0 
R1jm*A —• Rxj*A 

is an isomorphism. 

(ii) for all q ^ 0, the cup-product map <S>q Rxj*A —> Rqj*A factors through an 

isomorphism 

AqRxj,A Rqj*A . 

To see that 7.1 and 7.2 are equivalent one can argue as follows: from 7.1 one gets 

7.2 by induction on iV; conversely, one can assume X strictly local, one can factor 

i into i\ - - - id, where im : Ym —» Ym-i is of codimension 1, Ym is regular, Y^ = Y, 

Yo = X; it then suffices to apply 6.2 repeatedly to the regular divisors im's. 

7.3. Using 6.2, Fujiwara-Kato prove a Kummer etale variant (and generalization) of 

7.2 for log regular log schemes. 

Let X be an fs log scheme. One says that X is log regular (cf. ([Ka 4], 2.1) if the 

underlying scheme X is locally noetherian and the following condition holds: 

(7.3.1) for any (classical) geometric point x of X above x, if Jx is the ideal of Ox,x 

generated by the image of Mx,x — @x,x by a> ®x,x/Jx is regular and 

dim 0Xix/Jx + rk Mw<<,;:ù= dim 0Xlx. 

Log regularity was first defined by Kato ([Ka 4], 2.1) for schemes equipped with 

log structures defined for the Zariski topology and satisfying "condition (S)" (similar 

to fs). The definition we make here is adapted to the context in which we are working. 

For the links between the two notions, see [Ni]. 

Here are some examples and properties which follow easily from ([Ka 4], 2.1). 
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o 
(a) If X has the trivial log structure, X is log regular if and only if X is regular. 

o 
(b) If X is regular and X has the canonical log structure given by a divisor with 

normal crossings D C X, then X is log regular. In this case, Mx,x — W^x>) at all 
geometric points x, where r(x) = r k M ^ . Conversely, if X is log regular and if at 
some geometric point x, Mx,x — Nr(x\ then etale locally around x, X is regular and 
the log structure of X is given by a normal crossings divisor (this can be seen by taking 
a chart X -> SpecZ[Nr^)] around x, and using (7.3.1) together with ([EGA IV] 17.1.7). 

(c) If Y is log smooth over X and X is log regular, then Y is log regular. If X is 
an fs log scheme separated and of finite type over the spectrum of a perfect field k 
endowed with the trivial log structure, then X is log regular if and only if X is log 
smooth over k. 

(d) If X is log regular and j : U ^ X is the open subset of triviality of the log 
structure, then U is dense and the log structure of X is the direct image of that of 
U, le. Mx = OxnjtOfr ([Ka 4], 11.6). 

o 
(e) If X is log regular, X is Cohen-Macaulay and normal. 

Theorem 7.4 ([F-K], 3.1). — Let X be a log regular fs log scheme, let j : U <—• X be 
the open subset of triviality of the log structure, and A = Z/nZ with n invertible on 
X. Then the adjunction map 

A • Rjket*A 

is an isomorphism. 

o 
First we treat the case where X is regular and the log structure of X is given 

by a normal crossings divisor D. We may assume that D has simple normal cross­
ings, i.e. D = J2i^m^N Dm, with the Dm regular. The proof exploits the analogy 
between the formulas for Rqe*A (5.2) and Rqj*A (7.2). More precisely, consider the 
commutative square 

Uket 
jket 

> Xket 

e 

Ucì-
jcì 

s 

-̂ cl • 

In the same way as in step (a) of the proof of 5.9 we see by looking at the stalks at 
log geometric points that to prove that the adjunction map a : A —> Rjket* A is an 
isomorphism, it is enough to prove that the map 

/3 = Re*(a) : Re*A —• Rjci*& 
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is an isomorphism (we have identified C/ket to Uc\ by e). Since U = X — D and 
M = My = Or Pi 7*C??r, we have 

MgP = 
l<m<A 

xw^^wù 

Consider the square 

MgP® A(-l) 
nnm^ùù 

Id 

^gffpm$ùù 
AzU-1) ^w<<,,;:^^ 

^^ 

where the top horizontal map is the isomorphism given by 5.2, and the bottom one 
is the isomorphism given by 7.2 (a), (b) (i). This square commutes because both 
horizontal maps are given by a Kummer sequence. Therefore 

(3 : Rqe*A —• Rqjd*A 

is an isomorphism for q = 1, hence for all q by 5.2 and 7.2 (b) (ii). 
In the general case, working classically etale locally on X, we may assume, thanks 

to Kato's resolution of toric singularities ([Ka 4], 10.4), that there exists a log blow-
up / : Y —> X of X along some coherent sheaf of ideals of Mx such that My^ = Nr^ 
for all geometric points y of Y. Since / is log etale, Y is log regular (7.3 (c)), hence 

o 
by 7.3 (b) Y is regular and the log structure of Y is given by a divisor D with normal 
crossings. Moreover / induces an isomorphism from the open subset of triviality 
V = Y — D for the log structure of Y to U. Let h : V —• Y be the inclusion. By the 
particular case treated above the adjunction map A —> Rhket*A is an isomorphism. 
Applying Rfket* and taking into account that the adjunction map A —• i?/ket*A is an 
isomorphism by Fuji war a-Kato's basic theorem 6.2, we get the conclusion. 
Corollary 7.5. — Under the assumptions of 7A, the restriction map 

3 : Rs*A —• Rjd*A 

(deduced from the adjunction map of 7A by application of Re*) is an isomorphism, 
and consequently the restriction map 

Hq(Xke\A)^Hq{UchA) 

is an isomorphism for all q. 

Fujiwara-Kato also establish a noncommutative, Zariski-Nagata type variant of 7.4, 
which is a generalization of the key lemma used in their proof of 6.10, namely: 

Theorem 7.6 ([F-K], 3.1). — Let X be a log regular fs log scheme, and let U C X be 
the open subset of triviality of the log structure. Then the functor 

Kcov(X) —> Etcov(CZ), Y —> Y xx U 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



306 L. ILLUSIE 

from the category of finite Kummer etale covers of X (3.1) to the category of finite 
classical etale covers of U induces an equivalence between Kcov(X) and the full sub­
category of Etcov(E7) consisting of covers V —• U which are tamely ramified along 
X — U, i.e. such that if Z is the normalization of X in V, at all points x G X — U 
with dim Ox,x — 1, the restriction of Z to S^eo,Ox,x is tamely ramified. 

There are analogues of 7.4 and 7.6 for log Betti cohomology. The main result is 
the following one, whose proof is elementary: 

Theorem 7J ([Og], 5.12, [K-N], 1.5.1). — Let X be a log smooth, fs log scheme over 
C, let j : U ^ X be the open subset of triviality of the log structure, and jlog : 
Uan = Ulog Xlog be the corresponding inclusion (5.5). Then any point x G Xlog 
has a fundamental system of neighborhoods V such that V fl Uan is contractible. In 
particular: 

(a) the adjunction map Z —> Rj°gZ is an isomorphism; 

(b) the restriction to Uan = Ulog defines an equivalence between the category of 
locally constant sheaves on Xlog and the corresponding category on Uan. 

8. Nearby cycles 

8.1. Let S = Spec A, where A is a henselian discrete valuation ring with fraction field 
K and residue field k with characteristic exponent p. Let s = Spec A;, r\ = Specif. 
We fix an algebraic closure K of K and denote by A the normalization of A in K, a 
valuation ring whose residue field k is an algebraic closure of k. We put S = Spec A, 
s = Spec k,fj = Spec K. 

As in 4.7 (b), we endow S (resp. S) with the natural log structure associated to the 
inclusion A — {0} —> A (resp. A — {0} —> A). We denote by S (resp. S) the resulting 
log scheme, and similarly by s (resp. s) the point s (resp. s) with the induced log 
structure. We will keep the notations of 4.7 (b) for the various fundamental groups 
associated to these data. In particular, the full Galois group G = Gal(K/K) acts on 
S and s (by transportation of structure). A basic fact is that G acts on s through its 
tame quotient 

Gl = 7riog(S,S) = 7riog(s,s) = GjP . 

In order to see this it is convenient to consider the log scheme Sl = Spec (A*) (with 
the log structure associated to the inclusion A1 — {0} —> A£), where A* is the union of 
the normalizations of A in the tamely ramified extensions of K contained in K. Let sl 
be the closed point of 5* with its induced log structure. Then Sl -» S (resp. s* —> s) 
is a log universal cover of S (resp. s), with (opposite) automorphism group Gf. On 
the other hand, the canonical projection s —• s* is a limit of fs universal Kummer 
homeomorphisms (cf. 2.8), and therefore s-automorphisms of s* extend uniquely to 
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s-automorphisms of s ([Vi 1], A4), ([Na 1], 3.1.3)). The tame inertia 

It = Ilo*(s,s)cGt 

acts on s* (hence on s) through the tame character 

t: P Z'(l)(k) 

as explained in 4.7 (a 

8.2. Let A = Z/nZ, with n prime to p. Let X be an fs log scheme over 5. We 
define X and Xj by the fibered products in the category of integral and saturated log 
schemes: 

X = X xs S, Xs = X Xg s = Xs xs s . 

Note that though by definition S and S have the same underlying schemes, the un­
derlying scheme of X is in general different from the pull-back X of X by S —> S in 
the category of schemes. A similar remark applies to Xj and X-g. We have cartesian 
squares (in the category of integral and saturated log schemes) 

cww i X j w,c 

s S V 
For C e D+(X^et, A) we define the complex of log nearby cycles R^logC by 

(8.2.i; RVlo*(C) =?e t*^e t (£ |Xf ) 

where the superscript "ket" means that the inverse and direct images are taken with 
respect to the Kummer etale topologies (defined as limits since X is an inverse limit of 
fs log schemes). The functor i^log a priori goes from D+(Xket, A) to J9+(X|et, A), 
but as usual, with a little more care, one can define it as going from D+(X^et,A) 
to £>+(Xsket xs 77, A), where, using Deligne's notation in ([SGA 7] XIII), Xket xs n 
denotes the topos of (Kummer etale) sheaves on Xg endowed with a continuous action 
of G compatible with that of G on Xj. 

Log nearby cycles are related to the classical ones as follows. Let j be defined 
by the cartesian squares of schemes 

xccw 
i X j Xjj 

s S p^ùmm 

Denote by i?\I>cl the classical nearby cycles functor ([SGA 7] XIII), defined by 

(8.2.2) RV*(f)=TRû(F\Xïï) 
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for T G D+(Xri, A) (this is a functor from D+(XV, A) to D+(XS xs 77, A)). Consider 
the commutative diagram 

Xket i Xkei j vbww< 

xw 

wk;n^ù i 

£ 

bvw<< 
,n;: 

e 

Xjj 

where for brevity we write X§1 for Xs xs 77, etc. and the middle (resp. left) vertical 
map is the canonical projection, i.e. the composition 

H™(Xri,Qi) — H^Xf 

(resp. X£et -=-f Xf1 -+ Xf1). By 6.3 applied to the left square (strict base change by 
i) and a standard limit argument we have, for C G Z)+(X^og, A), 

R1jm*A —• Rxj*AR1jm*A —• Rxj*AR1jm*A 
R1jm*A —• Rxj*AR1jm*A —• Rxj*AR1jm*A 

and therefore, 

(8.2.3) №clRe*C 2* R£*RVlog£ . 

In particular, when the log structure of X is vertical, by which we mean that the log 
structure of Xv is trivial (i.e. Xv coincides with the open subset of triviality of the 
log structure of X) , we have X^ = X^et and 

№clRe*C 2* R£*RVlog£ . 

By analogy with the classical case, for C G D+(Xlog,A), one can also define the 
complex of vanishing cycles R<frlog£ G D+(Xget xs 77, A), which sits in an exact 
triangle (of D+(Xket xs 77, A)) 

(8.2.4) i*£ —> RVlog£ —> R$log£ -±L> 

and is related to the classical one by 

(8.2.5) R$clRe*£ ^ Re*R$logC . 

When X is proper over 5, then by 6.3 applied to the strict base change by s —• 5, 
we get, for T G D+(Xket, A), a canonical isomorphism 

(8.2.6) fir(X|et,^logJT) ^ fir(X^et, JT), 

from which by (8.2.4) we derive, for C G D+(Xket, A), a specialization map 

(8.2.7) sp : #r(X!et ,f £) — i*r(X£et,/£), 

which is an isomorphism if and only if RT(X±e\ R<f>log£) = 0. 
Concerning i?\I/log, the main result so far is the following theorem of Nakayama: 
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Theorem 8.3 ([Na 2], 3.2). — Let X be a log smooth fs log scheme over S. Then 

R$l°ëA = 0 . 

This is a simple application of the purity theorem 7.4. Indeed, let u : U Xv 
be the open subset of triviality of the log structure of Xv (which is also that of X). 
Let Sf be the normalization of S in a finite extension K' of K contained in K, s' its 
closed point, and put the standard log structures on S' (resp. s'). Let 

хв, -*-> X' ¿— х к , ¿±- и' 

be the diagram deduced by fs base change by S' —» S from the given diagram 

Xs X J- XK ^- U . 

Because U' is the open subset of triviality of the log structures of both XK' and X', 
we have, by 7.4, 

R(j'u')ketA = AX, , RKketA = AXk„ 
hence 

( * ) RJlketA = Ax,, 

and therefore 
z,ket*î ketA = AXs,. 

By definition we have 

iFtflog(A) = ind.limz,ket* ĵ:ketA 

where K' runs through the finite extensions of K contained in K, and the conclusion 
follows. 

In [Na 2] Nakayama gave a proof of (*) independent of Gabber's purity theorem 
(which is the key ingredient in 7.4). Kato gave an alternate proof as a corollary of a 
log smooth base change theorem (see 9.6). 

Corollary 8.4. — Let X be a log smooth fs log scheme over S. Then we have a canon­
ical isomorphism in D+(SS xs 77, A): 
(8.4.1) iîtfcl(ite.A) = iîe.(A|Xy), 

and in particular, if the log structure of X is vertical (8.2.3), 

R9ciA = Ke*(A\Xs'). 

A striking consequence of 8.4 is that, when X is log smooth over S (resp. log 
smooth and vertical over 5), RtyclRe*A (resp. jR^C1A), as an object of D^(Xsxsr]1 A), 
depends only on Xs endowed with its log structure. It has been shown by Kisin [Ki 2] 
(and independently by Vidal) that if the log structure of X is vertical, the log structure 
of Xs depends only on some infinitesimal neighbourhood of Xs in X, in the following 
sense: if X\, X2 are fs log schemes over S which are log smooth and vertical, there 
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exists an integer m ^ 1 such that if X\ ® A/7rm+1 and X2 ® A/7rm+1 are isomorphic 
(as schemes over 4̂/7rm+1) then so are (Xi)s and (X2)s (as log schemes over 5); here 
7r is a uniformizing parameter of A. In the case of semistable reduction, m = 1 suffices 
(c/. ([Na 2], A4)). 

Since the wild inertia P acts trivially on Xj (8.1), it also acts trivially on 
№cl(Re*A) = Re*(A\Xs) (resp. ##cl(A)), so we have 

(8.4.2) 
RVcl(R£*A) = Rr(P,RVc\Re*A)), 

RqVc\R£*A) = T(P,RqVcl(Re*A)) 

(note T(P, —) is exact on the category of A[P]-modules on Xj). Therefore, when the 
log structure of X is vertical, we have 

fl*cl(A) = iïïT(P,iï*cl(A)) 

RqVc\A) = r(P,RqVcl(A)). 

The tameness of the Rq^A had been proven by Rapoport-Zink [R-Z] in the case X is 
etale locally of the form S[#i,. . . , xn]/(xl1 • • • x%r — 7r), with ir a prime element in A 
and di prime to p for all i. By (8.4.1), this tameness holds even if some are divisible 
by p but gcd(ai,..., ar,p) = 1. When a\ — • • • = ar = 1 - the case of semistable 
reduction - the whole inertia / acts trivially on the Rq^A (loc. cit.), a result which 
also follows from 8.4 as we shall see later. 

Combining (8.4.2) with (8.2.6) and 7.5 we get: 

Corollary 8.4.3. — Let X be a proper and log smooth fs log scheme over S, and let 
U <^-> Xv ^ X be the open subset of triviality of the log structure of X. Then the wild 
inertia P acts trivially on Hq(U£l,A) and the specialization map (8.2.7) 

sp : Hq(X§\Re+A) —• Hq(U^,A) 

is a (Galois equivariant) isomorphism for all q. 

Unraveling (8.4.1) yields the following description of the sheaves of nearby cycles 
Rq9cl(Re*A) (= RqVclA when X is vertical): 

Corollary 8.4.4 ([Na 2], 3.5). — Let f : X —• S be a log smooth fs log scheme over S, 
and let T := Re*A = RjfA e D^(XTJ, A) (where j : U ^ X^ X is the open subset 
of triviality of the log structure of X). Let C be the (classically) locally constant sheaf 
of finitely qenerated abelian qroups on Xs defined by 

C := Coker ( /* (Mf) (Afj£))/torsion, 

where ip is the canonical map. Then: 
(a) There is a natural, Galois equivariant isomorphism 

R0^1? ® Aq(Cs ® A(-l)) —• Rq^clF 

for all q > 0. 
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(b) The stalk ofR°S&clT at a (classical) geometric point x overs is (noncanonically) 
isomorphic to A[Ex], where Ex := Coker/* : —• iiog (a finite abelian group, 
isomorphic to Coker Horn(3> ,̂ Z'(l)) with <j> as above). The tame inertia J* = Z'(l)) 
acts on (R0^01^)^ by the regular representation, i.e. through the composite map J* = 
I^^A\Ûog]^A\Ex}ww<. 

When X has semistable reduction over S with special fiber Xs = D a divisor with 
simple normal crossings T,Di, then U = X^, T = Ax, C = CokerZ^ —> 0Z^i5 
R°\&clA — A, and one recovers the classical global formula for Rq^lA (cf. [Na 2] and 
[12]). The global structure of the constructible sheaf RP^clT is controlled by the 
projection 

o o 
a : Xs —• Xs ; 

it can be proved that a is a finite map, which is the composition of a closed surjective 
immersion with a finite map with separable residual extensions, such that RP^^J7 is 
just the direct image by a of the constant sheaf A (see [Ka 7], [Vi 3]). In particular, 
with the notation above, if we set dx = cardJE -̂, then dx = J2a{y)=xl^(y) ' k(x)]- If 
N = sup ¿4, then TN — 1 on Rq^clJr for any T G / , and therefore, in the situation 
of 8.4.3 

(8.4.4.1) (TN -l)q'\Hq(№\A) = 0 

where q' is the minimum of q + 1 and the rank of M^P (= suprk(M^P)^-, x running 
through the geometric points of X). 

The proof of 8.4.4 from (8.4.1) is an application of 5.2, using either one of the two 
factorizations of s : X~et —> X^1 in8.2as£ = ao£ = £o/3 : 

Xket 0 ss^^ 

£ 

xf o 
£ 

Xket 

(see([Na 2], 3.5) and [Vi 3]). 

8.5. Let X be a scheme over 5, which is proper and has semistable reduction with 
special fiber Xs = D a divisor with simple normal crossings D = ^Di. Then there 
is defined the Rapoport-Zink-Steenbrink double complex realization A of i?\£clA and 
its associated weiqht svectral seauence fR-Zl 

(8.5.1) 771 —r,n+r 
•kl 

Hn(Xrf,A), 

where 
^^xww -r,n+r 

q>0 

Hn-r-2q(D{r+l+2q) ^ ^ A)(_r _ ^ 
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and £)(r+1+2^ is the disjoint sum of the intersections r + 1 + 2q by r + 1 + 2g of the 
components of the divisor D. 

It follows from (8.4.1) that these can be constructed purely in terms of Xs as a 
log scheme with the log structure induced from the canonical one on X (associated 
to D). Indeed the whole construction stems out from the choice of a complex of 
A [/^-modules on Xj with nonnegative degrees, representing RtyclA; the point is that 
the inertia acts trivially on the cohomology sheaves RqtyclA. 

By letting A = Z / ^ Z , £ prime invertible on 5, taking the inverse limit when v 
varies, and tensoring with Q, one deduces from (8.5.1) a spectral sequence 

(8.5.2) №clRe*C 2* R£*RVlog£ . 

where 
cww^lùù 

vwwssq^$$ 
№clRe*C 2* R£*RVlog£ .№clRe*C 
№clRe*C 2* R£*RVlog£ .№clRe*C 

When k is a finite field, the Weil conjecture [Dl] implies that the initial term of (8.5.2) 
is pure of weight r, and consequently (8.5.2) degenerates at E2> This degeneration 
holds even if k is not finite. Indeed, because (8.5.1) can be defined purely in termes of 
the log scheme Xs, a specialization argument due to Nakayama [Na 3] enables one to 
reduce to the finite field case. When k = C, using the standard comparison theorems 
between Betti and classical etale cohomology, one recovers the degeneration results of 
Steenbrink ([Ste 1], [Ste 2]). 

8.6. In the situation of 8.5, the complex RtyclQt[d], where d — &imX/S, is a per­
verse sheaf, of which the logarithm of the monodromy N = log T ® f (where T is a 
topological generator of Z^(l)) is a nilpotent endomorphism. Up to a shift, the weight 
spectral sequence (8.5.2) is associated to the monodromy filtration of this perverse 
sheaf (cf [12]). It is conjectured that if Xs is projective, then the abutment filtration 
of (8.5.2) coincides with the monodromy filtration. This is the so-called monodromy-
weight conjecture. This has been proven by Deligne in equal characteristic p > 0 
(more precisely, for S equal to the henselization at a closed point of a smooth curve 
over a finite field), and by Rapoport-Zink in mixed characteristic for d < 2. 

8.7. The perversity of RtyclQe[d] holds for any scheme X flat over 5, generically 
smooth, of pure relative dimension d. As Gabber observed, it is not hard to show, 
using de Jong's theorem over a discrete valuation ring ([dJ], 6.5), that the monodromy 
of this perverse sheaf is quasi-unipotent, so that one can define its logarithm TV and 
the corresponding spectral sequence of monodromy filtration associated to N. Again, 
for X/S proper, because of Gabber's results (see [Bry] and [12]) one expects its 
degeneration at E2, and for Xs projective, the coincidence of the abutment filtration 
with the monodromy filtration. As for the construction of the spectral sequence and 
its degeneration at E2, one can hope that the case where X underlies a vertical, log 
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smooth log scheme over S is within reach. At least, the problem can be reduced to one 
over a standard log point (1.3). The monodromy-weight conjecture in the same case 
for X/S projective and in equal characteristic p > 0 should also be accessible, though 
not being a trivial consequence of Deligne's results in Weil II [Dl] (the problem is to 
pass from the henselization at a closed point of a smooth curve over a finite field to 
an arbitrary henselian trait of char. p). 

8.8. There is a more or less classical relation between the monodromy-weight con­
jecture and the local invariant cycle problem. Let X be a proper, flat scheme 
over 5, of relative dimension d, generically smooth, with special fiber Xs projective 
over s. Assume that the quasi-unipotence of the monodromy of the perverse sheaf 
\I> := RtyclQe[d] has been established. Consider its logarithm N and the correspond­
ing kernel filtration Ki = KeiN1^1 : ̂  —• This filtration defines a quasi-filtration 
of \£ in Db(Xs, Qe), in the sense of ([Sa], 5.2.17), and hence a spectral sequence ((loc. 
cit.), see also ([D2], Appendice)): 

(8.8.i; №clRe*C 2* R£*RVlog£ .№clRe*C 2* R£*RVlog£ .№cl 

Assume furthermore that X satisfies the monodromy-weight conjecture (8.6). Then, 
by analogy with Saito-Zucker's results over C ([Sa-Z], 0.4), one can expect that 
(8.8.1) degenerates at E2 and that its abutment filtration is the kernel filtration Ki = 
Ker Nl+1 on H*(Xrj,Qe). By an elementary lemma of homological algebra ([Sa-Z], 
1.4.1), it would indeed be enough for this to establish the degeneration at E2 of an 
auxiliary spectral sequence, namely the spectral sequence of hyper cohomology of Xj 
with coefficients in gr \̂I>, filtered by the filtration M induced by the monodromy 
filtration of ^ : 

(8.8.2) №clR№clRe*C 2* R£*RVlog£ .e*C 2* R£*RVlog£ . 

If the expectation above about (8.8.1) is fulfilled, then we get an exact sequence 

(8.8.3) №clRe*C 2* R£*RVlog£xxx .№clRe*C 2* R£*RVlog£ . 

This exact sequence is to be compared with the local invariant cycle property, which 
asserts that the specialization map 

(8.8.4) sp : Hm(Xj,Qe) — Hm(XTj,Qe)1 

is surjective. Assume that X has strict semistable reduction (i.e. semistable reduction 
and Xs is a divisor with strict normal crossings in X). Then the Rapoport-Zink 
calculation of ^ by a Steenbrink-type double complex [R-Z] (see also ([12], 3.11) shows 
that the kernel filtration on d] coincides with the canonical filtration defined by 
the canonical truncations r< ,̂ so that (8.8.1), after a suitable shift and renumbering, 
coincides with the usual spectral sequence of vanishing cycles 

(8.8.5) №clRe*C 2* R£*RVlog£ .№clRe*C 2* R£*RVl 
№clRe*C 2* R£*RVlog£ .№clRe*C 2* R£*RVlo 
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Moreover, at least when s is the spectrum of a finite field, it follows from Rapoport-
Zink's description of \I> and of the Weil conjectures [Dl] that (8.8.2) degenerates 
at E2. Therefore when the monodromy-weight conjecture holds, (8.8.5) degenerates 
at £3 and has the kernel filtration as abutment filtration, (8.8.3) holds and can be 
rewritten 

(8.8.6) 
№clRe*C 2* R£*RVlog£ .№clRe*C 2* R£*RVddlo 
: H™(Xri,Qi) — H^X^Qi)) = H^iX^Qt)1: H™(dd 

Finally, since / acts unipotently on Hm(Xrf, OA in this case, we have 

(8.8.7) Ker(iV : H™(Xri,Qi) — H^X^Qi)) = H^iX^Qt)1 

and (8.8.6) is but the local invariant cycle property (8.8.4). One can perhaps expect 
that the results of this discussion still hold when X underlies a vertical, log smooth 
log scheme over S instead of having strict semistable reduction. In general, however, 
(8.8.7) does not hold, the kernel filtration on \I> is not the canonical filtration, and 
the local invariant cycle property may be true while the exactness of (8.8.6) fails. To 
illustrate this, consider the following example, which was communicated to me by 
Gabber 

Let k be an algebraically closed field of characteristic exponent p, let d be an integer 
^ 3, prime to p, let S be the henselization at the origin of the affine line over /c, with 
local parameter £, and let X C P| be the hypersurface defined by the equation 

tOCQ ~\~ X-^ ~\~ #2 — 0 5 

where (a?o, xi, #2) are homogeneous coordinates on P2. Then X is smooth over /c, and 
is a relative (twisted) Fermât curve over S. After base change by t »—> td, X becomes 
constant over 77, so the inertia / acts onH1 (X^, Qi) through \id (by the standard action 
of /id on the Fermât curve Xq + xf + x% = 0 given by a(xQ,xi,X2) = (axo,#1,£2)). 
Hence (as is well known and elementary) 

H^X^QtY^O. 

On the other hand, the special fiber Xs consists of the bunch of lines xf -j- x2 = 0, 
and in particular is reduced; since X/S is flat, we thus have R°^Qi = Qe, hence 

H^XstBPVQt) = H\XsMi) = 0 . 

Therefore we cannot have the degeneration of (8.8.5) at E$ with kernel filtration as 
abutment, since (8.8.6) fails, N being zero, and i71(X^, Qe) of dimension (d — l)(d -
2) > 0. However, the local invariant cycle property holds, which agrees with Deligne's 
general result ([Dl], Weil II, 3.6.11). Note that X, equipped with the log structure 
given by the special fiber is not log smooth over 5; indeed X is not log regular, since 
the rank of MSP at the singular point of Xs is d ^ 3. 

ASTÉRISQUE 279 



OVERVIEW 315 

8.9. Let X/S and U be as in 8.4.3 and assume Xjf connected. Let TT[p \Urf) denote 
the maximal prime to p quotient of the fundamental group of Ujf (relative to some ge­
ometric base point). Then G = Ga\(K/K) acts on TT^ \Uff) by outer automorphisms: 
we have a representation 

p: G —> OutO^(£%)). 

Using Fujiwara-Kato's purity result 7.6, Kisin has proven the following theorem, which 
complements 8.4.3: 

Theorem 8.10 ([Ki 1], 1.16). — The homomorphism p above factors through the tame 
quotient G/P, and depends only on the log scheme Xs (with log structure induced by 
that of X). 

9. Full log étale topology and cohomology 

9.1. Let X be an fs log scheme. The (full) log étale site of X 

X\0get 

(abbreviated to Xet when no confusion can arise) is defined as follows. The objects 
of Xioget are log etale maps of fs log schemes T —• X (1.5). Morphisms are X-maps 
T' —> T (such a map is automatically log etale (1.5)). Covering families are maps 
/ : T' —• T of Xioget such that / is universally surjective, which means that after any 
base change by a map S —> T of fs log schemes, the underlying map of schemes / ' of 
f = f XT S (base change taken in the category of fs log schemes) is surjective. These 
covering families form a pretopology whose associated topology, called the log etale 
topology, defines the log etale site of X. 

Here are two typical examples of covering families: 

(i) a Kummer log etale map / : T' —» T (1.6) such that / is surjective (then / is 
necessarily universally surjective, as observed in 2.1); 

(ii) a log blow-up / : Tj —> T (6.1); note that a Zariski open subset U of Tj can 
surject to T but, since / x ^ T / : TIXTTJ —• Tj is an isomorphism by 3.3, it universally 
surjects to T if and only if U = Tj. 

Actually it is not hard to show (Nakayama) that coverings of type (i) and (ii) 
generate the log etale topology: if / : T' —> T is a log etale map such that T admits a 

chart T —> SpecZ[P] and T' is quasi-compact, then there exists an ideal I in P such 
that / xT Ti is Kummer. 

Because log blow-ups are covering families, it may happen, in contrast with 2.6, 
that, for a map Y —> X of fs log schemes, the functor Homx(-, Y) on Xioget is not a 
sheaf. For this functor to be a sheaf it is necessary and sufficient that Y(U) -—> Y(Ui) 
for any log blow-up Ui -^U with U log etale over X. 
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Nakayama shows that the topos associated to Xet admits enough points: as a 
conservative family, one can take the functors T \—• Tx '= hid. l i m ^ X ' ) , where x is 
a log geometric point of X (4.1 (b)) such that Mx is valuative and X' runs through 
the log etale, x-pointed fs log schemes X' over X (a monoid P is called valuative if 
it is saturated and for any a G Pgp, either a or a-1 is in P; Kato has developed a 
vast theory of valuative log schemes, see [Ka 2] (and [II] for a survey)). Another 
way - perhaps more conceptual but essentially equivalent - of constructing points of 
Xet is the following. For x a geometric point of X, choose a chart U —» SpecZ[P] of 
X in a (classical) etale neighborhood of x. For each finitely generated and nonempty 
ideal I of P, let Uj be the log blow-up of U along I (6.1). These Ui form an inverse 
system indexed by the set T(P) of finitely generated and nonempty ideals 7, partially 
ordered by divisibility. Choose a compatible system (#(•) = (x(I)) of log geometric 
points x(I) of Ui above x. If T is a sheaf on Xet, define Fx(-) — ind. lim^rx(/) where 
I runs through T(P) and Tx^ is defined as in 4.3. Then T • ̂ Fx(i) 1S a point of Xet, 
and such points form a conservative system. 

9.2. Let / : X —» Y be a map of fs log schemes. As in 2.3, base-changing by / in 
the category of fs log schemes defines an inverse image functor 

/ • êt > Xet, 

which is continuous and commutes with finite inverse limits, hence defines a morphism 
of sites (resp. topoi) 

/et • Xet > Yet-
These morphisms satisfy the usual transitivity isomorphism for a composition. 

9.3. Let X be an fs log scheme. As the log etale topology is finer than the Kummer 
etale one, we have a natural map of sites (resp. topoi) 

ft : êt > k̂et-

When the log structure of X has the property that MgP is of rank ^ 1 at each 
geometric point of X, then K is an equivalence. This is the case in particular when X 
is a trait (with its canonical log structure) or a standard log point (1.3). 

Since the full log etale topology is obtained from the Kummer one by adding the 
log blow-ups, the cohomological properties of K are controlled by Fujiwara-Kato's 
theorems 6.2, 6.10. As Nakayama showed (private communication), it is easy to 
derive from them the following results: 

Theorem 9.4. — Let X be an fs log scheme, and let A = Z/nZ, n ^ 1. 
(a) The inverse image functor K,* (9.3) induces an equivalence from the category of 

finite locally constant sheaves on Xket to the category of finite locally constant sheaves 
on Xet. 
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(b) For any T G JD+(Xket, A), the adjunction map 

: H™(Xri,Qcxxx 

is an isomorphism (and therefore the inverse image map 

: H™(Xri,Qi) — H^X^Qi)) =^i 

is an isomorphism for all q). 

Part (a) of 9.4 can be reformulated by saying that for every valuative log geometric 
point x of Xet (9-1)? if one defines the fundamental group iri(Xet,x) of Xet at x, in 
the usual way, as the (profmite) automorphism group of the fiber functor T »-» Tx on 
the category of finite locally constant sheaves on Xet, then the natural map (4.6) 

ni(XeUx) —• 7Ti(Xket,x) = 7riog(X,x) 

is an isomorphism. It is not known whether the statement analogous to (a) with 
"finite" removed holds. 

As we mentioned after 6.3, proper base change for the Kummer etale cohomology 
requires extra assumptions on the morphisms. These restrictions can be removed if 
one works with the full log etale cohomology, as was shown by Kato: 

Theorem 9.5 ([Ka 5]). — Let A be as in 9.4. Let 

(9.5.1) 
X' 

f 

Y' 

_h_ 
X 

cx 
f 

Y 

o 
be an fs cartesian square of fs log schemes, where f is proper. Then for T 6 
D+(Xet,A), the base change map 

: H™(Xri,Qi) — H^fffX 

is an isomorphism. 

The proof consists of a rather long reduction to the proper base change theorem 
for classical étale cohomology ([SGA 4] XII 5.1), using 9.4 (b) as a key ingredient. 

Nakayama's result on vanishing cycles 8.3 is a local acyclicity statement for a log 
smooth map over a trait. In classical étale cohomology any smooth map is locally 
acyclic and this in turn implies a smooth base change theorem and (combined with 
the finiteness theorem) a specialization theorem for proper smooth maps ([SGA 4], 
XV, XVI). Unfortunately, no such generalizations hold for Kummer étale cohomology 
([Na 2], 4.3, Bl). In this respect, however, the full log étale cohomology behaves 
much better. Indeed, Kato proved the following log smooth base change theorem: 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



318 L. ILLUSIE 

Theorem 9.6 ([Ka 5]). — Consider a cartesian square (9.5.1), where g is log smooth 
and f is quasi-compact and quasi-separated. Let A = Z/nZ with n invertible on Y. 
Then for T G D+(Xet, A), the base change map 

g* RUT — RfJCT 

is an isomorphism. 

The crucial case to which Kato reduces the proof of 9.6 is the case where g is the 
affine line over Y, with its standard log structure. This requires a delicate global 
argument inspired from Nakayama's proof of 8.3 in [Na 2]. 

Note that 8.3 is an immediate corollary of 9.6. Indeed, thanks to 9.4 (b), 9.6 
reduces the verification of 8.3 to the trivial case where X = S. 

9.7. A map / : X —• Y of fs log schemes is said to be compactifiable if Y is quasi-
compact and quasi-separated and / can be factored into / = g o i where g is proper 
and i is an open immersion (in other words, if / is Y-compactifiable in the sense 
of ([SGA 4] XVII 3.2). By the proper base change theorem (9.5), the composition 
Rg* o i\ : D+(Xet, A) —• D+(Yet, A) does not depend, up to a transitive system of 
isomorphisms, on the factorization f = g o i (here i\ is defined as i"Ri* when i is 
factored as inif where i" is a strict open immersion and i' is the identity). As usual, 
one defines 
(9.7.1) Rf, : D+(Xet,K) D+(Yet,A) 

as the corresponding limit. The proper base change theorem then implies that Rf\ 
commutes with any base change. 

A theory of Rf\ was first developed by Nakayama in the Kummer etale framework 
[Na 1]. Working with the full log etale sites has great advantages as regard to finite-
ness theorems. For / : X —» Y proper and n invertible on X, it is not true that if T is 
a constructible sheaf of A-modules on X, R%f*T is constructible, unless / satisfies the 
additional hypothesis of being log infective (i.e. for all geometric point x of X with 
image y in Y, My —» Mx is injective) ([Na 1], 5.5.2, B3 (i)). This restriction can 
be lifted in the context of full log etale cohomology. Namely, we have the following 
theorem of Kato: 

Theorem 9.8 ([Ka 6]). — Let f : X —• Y be a compactifiable (9.7) map of fs log 
schemes, with Y locally noetherian, and let A be as in 9.4. Then for T G D+(Xet, A), 
we have Rf\T G D+(Yet, A), where Rf\ is the functor defined in (9.7.1). 

Here a sheaf Q of A-modules on Xet is called constructible if, locally for the log etale 
topology on X, there exists a finite decomposition of X into locally closed subsets Xi 
such that the restriction of Q to Xi is locally constant with fibers of finite type over 
A, and D+(—A) denotes the full subcategory of D+(—, A) consisting of complexes T 
such that W(T) is constructible for all i. 
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The key point in the proof of 9.8 is that / may be rendered exact (1.6) by log étale 
localization on Y. Standard dévissages using the proper base change theorem then 

reduce to the case where / is exact, / is the identity, T consists of a constant and 
constructible sheaf, and n = £v, with £ prime, either invertible or zero on X. This 
case is treated by a direct argument using the comparison theorems 5.2 and 9.4 (b). 

As in the case of classical étale cohomology ([SGA 4] XIV), combining the smooth 
base change theorem 9.6 with the finiteness theorem 9.8, one gets a specialization (or 
proper smooth base change) theorem: 

Theorem 9.9. — Let f : X —• Y be a proper and log smooth map of fs log schemes, 
with Y locally noetherian. Let A = Z/nZ with n invertible on Y. Let J7 be a locally 
constant and constructible sheaf of A-modules on Xet. Then Rqf*T is locally constant 
and constructible for all q. 

In view of 9.4, 9.9 implies the same result for Xet replaced by Xket (a particular 
case of this consequence had been previously proven by Nakayama ([Na 2], 4.3). 

Proceeding as in ([SGA 4] XVII), one can define a partial right adjoint Rfl 
to Rf\, giving rise to a global duality formula of the form Rf*RHom(lC*RfC) = 
RHom(Rf\<JC< C) (see [Na 1] in the Kummer étale case). The problem, however, is 
to calculate Rf \ Some cases have been treated by Nakayama. For example, we have 
the following result, reminiscent of the classical Poincaré duality theorem ([SGA 4] 
XVIII 3.2.5): 

Theorem 9.10 (Nakayama). — Let f : X —> S be a compactifiable, log smooth, vertical 
(8.2.3) map, with S as in 8.3, and let A = Z/nZ with n invertible on S. Then 

RfASket=Axket(d)[2d], 

where d is the relative dimension of f. 

A similar result holds with S replaced by a trivial or standard log point (1.3). See 
([Na 1], 7.5), ([Na 2], 4.4) for more general statements. 

9.11. Unfortunately, if / : X —• Y is a map of fs log schemes over a trivial log 
point s (1.3), with X and Y separated and of finite type over s, and A = Z/nZ, n 
invertible on s, it is not true in general that i?/* carries D+(Xet, A) into D+(Yet, A), 
as one would expect, by analogy with Deligne's finiteness theorem in ([SGA 4 1/2], 
Th. finitude). Nakayama gives the following counterexample: let S be a standard log 
point over s (1.3), Y = = S xs A] the affine line over 5, with the log structure 
pulled back from the standard log structure of A*, and f : X —> Y the inclusion 
(a strict open immersion) of the complement of the zero section. Then /*A is not 
constructible: there is no log blow-up Y' of Y at the origin over which /*A becomes 
classically (or Kummer) constructible; indeed, taking again one blow-up Y" of Y' and 
a point y of Yet above the origin in Y', but factoring through a geometric point of the 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



320 L. ILLUSIE 

exceptional divisor of Y" distinct from the origin (see the construction of points of 
the log etale topos at the end of 9.1), we would find that the stalk of /*A at y is zero, 
while the stalk of /*A at the trivial point of Yet located at the origin (corresponding 
to a constant inverse system of log points, in the language of loc. cit.) is A. 

Finding a more flexible definition of constructibility giving rise to a formalism of 

six operations a la Grothendieck (®, PHom, Rf*< f*,Rf\,Rf) in suitable categories 
Dbc((—)et, A) on fs log schemes separated and of finite type over a trivial log point (or 
a standard log point, or a trait with its canonical log structure) looks like a difficult 
- perhaps intractable - problem. 

Log etale cohomology is still largely an unknown territory. Transposing into it stan­
dard topics of classical etale cohomology such as cycles classes, perverse sheaves, trace 
and Euler-Poincare formulas raises more or less difficult questions, which have not yet 
been taken up. Their study should hopefully cast a new light onto old problems, as 
the results in section 8 have already illustrated. 
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