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A N I N T R O D U C T I O N T O p -ADIC T E I C H M U L L E R T H E O R Y 

by 

Shinichi Mochizuki 

Abstract. — In this article, we survey a theory, developed by the author, concerning 
the uniformization of p-adic hyperbolic curves and their moduli. On the one hand, 
this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic 
curves and their moduli to nonarchimedean places. It is for this reason that we shall 
often refer to this theory as p-adic Teichmiiller theory, for short. On the other hand, 
this theory may be regarded as a fairly precise hyperbolic analogue of the Serre-Tate 
theory of ordinary abelian varieties and their moduli. 

The central object of p-adic Teichmiiller theory is the moduli stack of nilcurves. 
This moduli stack forms a finite flat covering of the moduli stack of hyperbolic curves 
in positive characteristic. It parametrizes hyperbolic curves equipped with auxiliary 
"uniformization data in positive characteristic." The geometry of this moduli stack 
may be analyzed combinatorially locally near infinity. On the other hand, a global 
analysis of its geometry gives rise to a proof of the irreducibility of the moduli stack of 
hyperbolic curves using positive characteristic methods. Various portions of this stack 
of nilcurves admit canonical p-adic liftings, over which one obtains canonical coordi
nates and canonical p-adic Galois representations. These canonical coordinates form 
the analogue for hyperbolic curves of the canonical coordinates of Serre-Tate theory 
and the p-adic analogue of the Bers coordinates of Teichmiiller theory. Moreover, 
the resulting Galois representations shed new light on the outer action of the Galois 
group of a local field on the profinite completion of the Teichmiiller group. 

1. Prom the Complex Theory to the "Classical Ordinary" p-adic Theory 

In this §, we attempt to bridge the gap for the reader between the classical uni
formization of a hyperbolic Riemann surface that one studies in an undergraduate 
complex analysis course and the point of view espoused in [21, 22]. 
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Key words and phrases. — Hyperbolic curve, moduli stack, uniformization theory, Fuchsian uniformiza
tion, Bers uniformization, p-adic, Serre-Tate theory, canonical liftings, Galois representations, outer 
Galois actions, Teichmiiller group . 

© Asterisque 278, SMF 2002 



2 S. MOCHIZUKI 

1.1. The Fuchsian Uniformization. — Let X be a hyperbolic algebraic curve over 
C, the field of complex numbers. By this, we mean that X is obtained by removing r 
points from a smooth, proper, connected algebraic curve of genus g (over C), where 
2g — 2 + r > 0. We shall refer to (#, r) as the type of X. Then it is well-known that to 
X, one can associate in a natural way a Riemann surface X whose underlying point 
set is X(C). We shall refer to Riemann surfaces X obtained in this way as "hyperbolic 
of finite type." 

Now perhaps the most fundamental arithmetic - read "arithmetic at the infinite 
prime" - fact known about the algebraic curve X is that X admits a uniformization 
by the upper half plane H : 

H —> X 

For convenience, we shall refer to this uniformization of X in the following as the 
Fuchsian uniformization of X. Put another way, the uniformization theorem quoted 
above asserts that the universal covering space X of X (which itself has the natural 
structure of a Riemann surface) is holomorphically isomorphic to the upper half plane 
H = {z G C | lm(z) > 0}. This fact was "familiar" to many mathematicians as early 
as the last quarter of the nineteenth century, but was only proven rigorously much 
later by Koebe. 

The fundamental thrust of [21, 22] is to generalize the Fuchsian 
uniformization to the p-adic context. 

At this point, the reader might be moved to interject: But hasn't this already been 
achieved decades ago by Mumford in [25]? In fact, however, Mumford's construction 
gives rise to a p-adic analogue not of the Fuchsian uniformization, but rather of the 
Schottky uniformization of a complex hyperbolic curve. Even in the complex case, 
the Schottky uniformization is an entirely different sort of uniformization - both ge
ometrically and arithmetically - from the Fuchsian uniformization: for instance, its 
periods are holomorphic, whereas the periods that occur for the Fuchsian uniformiza
tion are only real analytic. This phenomenon manifests itself in the nonarchimedean 
context in the fact that the construction of [25] really has nothing to do with a fixed 
prime number "p," and in fact, takes place entirely in the formal analytic category. 
In particular, the theory of [25] has nothing to do with "Frobenius." By contrast, 
the theory of [21, 22] depends very much on the choice of a prime "p," and makes 
essential use of the "action of Frobenius." Another difference between the theory of 
[25] and the theory of [21, 22] is that [25] only addresses the case of curves whose 
"reduction modulo p" is totally degenerate, whereas the theory of [21, 22] applies to 
curves whose reduction modulo p is only assumed to be "sufficiently generic." Thus, 
at any rate, the theory of [21, 22] is entirely different from and has little directly to 
do with the theory of [25]. 
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AN INTRODUCTION TO p-ADIC TEICHMÜLLER THEORY 3 

Upper Half Plane Riemann Surface 

FIGURE 1. The Fuchsian Uniformization 

1.2. Reformulation in Terms of Metrics. — Unfortunately, if one sets about 
trying to generalize the Fuchsian uniformization H —> X to the p-adic case in any 
sort of naive, literal sense, one immediately sees that one runs into a multitude of 
apparently insurmountable difficulties. Thus, it is natural to attempt to recast the 
Fuchsian uniformization in a more universal form, a form more amenable to relocation 
from the archimedean to the nonarchimedean world. 

One natural candidate that arises in this context is the notion of a metric - more 
precisely, the notion of a real analytic Kahler metric. For instance, the upper half 
plane admits a natural such metric, namely, the metric given by 

dxz -f dy2 
y2 

(where z = x + iy is the standard coordinate on H ) . Since this metric is invariant 
with respect to all holomorphic automorphisms of H , it induces a natural metric on 
X = H which is independent of the choice of isomorphism X = H and which descends 
to a metric /ix on X. 

Having constructed the canonical metric /^x on X, we first make the following 
observation: 

There is a general theory of canonical coordinates associated to a 
real analytic Kahler metric on a complex manifold. 

(See, e.g., [21], Introduction, §2, for more technical details.) Moreover, the canonical 
coordinate associated to the metric /xx is precisely the coordinate obtained by pulling 
back the standard coordinate "z" on the unit disc via any holomorphic isomorphism 
of X = H with the unit disc. Thus, in other words, passing from H —• X to /ix is a 
"faithful operation," i.e., one doesn't really lose any information. 

Next, let us make the following observation: Let A4g,r denote the moduli stack of 
smooth r-pointed algebraic curves of genus g over C. If we order the points that were 
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4 S. MOCHIZUKI 

removed from the compactification of X to form X, then we see that X defines a 
point [X] G Mg,r(C). Moreover, it is elementary and well-known that the cotangent 
space to Aig,r at [X] can be written in terms of square differentials on X. Indeed, 
if, for simplicity, we restrict ourselves to the case r = 0, then this cotangent space 
is naturally isomorphic to Q =f H°(X, u>x/C) (where u>x/c is the algebraic coherent 
sheaf of differentials on X). Then the observation we would like to make is the 
following: Reformulating the Fuchsian uniformization in terms of the metric /xx allows 
us to "push-forward" /xx to obtain a canonical real analytic Kahler metric /XM on the 
complex analytic stack Mg,r associated to Mg,r by the following formula: if 0, ifr € Q, 
then 

sdd +d 
def 

sd 

0-V 
sd 

(Here, is the complex conjugate differential to if>, and the integral is well-defined be
cause the integrand is the quotient of a (2, 2)-form by a (1, l)-form, i.e., the integrand 
is itself a (1, l)-form.) 

This metric on Mgjr is called the Weil-Peters son metric. It is known that 

The canonical coordinates associated to the Weil-Peters son metric 
coincide with the so-called Bers coordinates on M#,r (the universal 
covering space o/Mg)rJ. 

The Bers coordinates define an anti-holomorphic embedding of M^r into the complex 
affine space associated to Q. We refer to the Introduction of [21] for more details on 
this circle of ideas. 

At any rate, in summary, we see that much that is useful can be obtained from 
this reformulation in terms of metrics. However, although we shall see later that 
the reformulation in terms of metrics is not entirely irrelevant to the theory that 
one ultimately obtains in the p-adic case, nevertheless this reformulation is still not 
sufficient to allow one to effect the desired translation of the Fuchsian uniformization 
into an analogous p-adic theory. 

1.3. Reformulation in Terms of Indigenous Bundles. — It turns out that the 
"missing link" necessary to translate the Fuchsian uniformization into an analogous p-
adic theory was provided by Gunning ([13]) in the form of the notion of an indigenous 
bundle. The basic idea is as follows: First recall that the group Aut(H) of holomorphic 
automorphisms of the upper half plane may be identified (by thinking about linear 
fractional transformations) with PSL2(M)° (where the superscripted "0" denotes the 
connected component of the identity). Moreover, PSL2QR)0 is naturally contained 
inside PGL2(C) = Aut(P^). Let I lx denote the (topological) fundamental group of 
X (where we ignore the issue of choosing a base-point since this will be irrelevant for 
what we do). Then since I lx acts naturally on X = H, we get a natural representation 

Px : n x — PGL2(C) - Aut(P^) 
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AN INTRODUCTION TO p-ADIC TEICHMÛLLER THEORY 5 

which is well-defined up to conjugation by an element of Aut(H) C Aut(P^). We 
shall henceforth refer to px as the canonical representation associated to X. Thus, 
px gives us an action of IIx on P^, hence a diagonal action o n X x P ^ . If we form the 
quotient of this action of IIx o n X x P j , , we obtain a P1-bundle over X/ I Ix = X which 
automatically algebraizes to an algebraic P1-bundle P —• X over X. (For simplicity, 
think of the case r = 0!) 

In fact, P —> X comes equipped with more structure. First of all, note that the 
trivial P1-bundle X x P^ —» X is equipped with the trivial connection. (Note: here 
we use the "Grothendieck definition" of the notion of a connection on a P1-bundle: 
i.e., an isomorphism of the two pull-backs of the P1-bundle to the first infinitesimal 
neighborhood of the diagonal in X x X which restricts to the identity on the diagonal 
X C X x X.) Moreover, this trivial connection is clearly fixed by the action of IIx, 
hence descends and algebraizes to a connection Vp on P —> X. Finally, let us observe 
that we also have a section a : X —• P given by descending and algebraizing the 
section X —> X x P^ whose projection to the second factor is given by X = H C Pj,. 
This section is referred to as the Hodge section. If we differentiate a by means of 
Vp, we obtain a Kodaira-Spencer morphism Tx/c ~^ °~*TP/X (where "TA/B" denotes 
the relative tangent bundle of A over B). It is easy to see that this Kodaira-Spencer 
morphism is necessarily an isomorphism. 

This triple of data (P —• X, Vp, a) is the prototype of what Gunning refers to as 
an indigenous bundle. We shall refer to this specific (P —• X, Vp) (one doesn't need 
to specify a since a is uniquely determined by the property that its Kodaira-Spencer 
morphism is an isomorphism) as the canonical indigenous bundle. More generally, 
an indigenous bundle on X (at least in the case r = 0) is any P1-bundle P —• X 
with connection Vp such that P —+ X admits a section (necessarily unique) whose 
Kodaira-Spencer morphism is an isomorphism. (In the case r > 0, it is natural to 
introduce log structures in order to make a precise definition.) 

Note that the notion of an indigenous bundle has the virtue of being entirely 
algebraic in the sense that at least as an object, the canonical indigenous bundle 
(P —> X, Vp) exists in the algebraic category. In fact, the space of indigenous bundles 
forms a torsor over the vector space Q of quadratic differentials on X (at least for 
r = 0). Thus, 

The issue of which point in this affine space of indigenous bundles on 
X corresponds to the canonical indigenous bundle is a deep arithmetic 
issue, but the affine space itself can be defined entirely algebraically. 

One aspect of the fact that the notion of an indigenous bundle is entirely algebraic 
is that indigenous bundles can, in fact, be defined over Z[ | ] , and in particular, over 
Zp (for p odd). In [21], Chapter I, a fairly complete theory of indigenous bundles in 
the p-adic case (analogous to the complex theory of [13]) is worked out. To summa
rize, indigenous bundles are closely related to projective structures and Schwarzian 
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FIGURE 2. The Construction of the Canonical Indigenous Bundle 

derivatives on X. Moreover, the underlying P1-bundle P —> X is always the same 
(for all indigenous bundles on X) , i.e., the choice of connection Vp determines the 
isomorphism class of the indigenous bundle. We refer the reader to [21], Chapter I, 
for more details. (Note: Although the detailed theory of [21], Chapter I, is philo
sophically very relevant to the theory of [22], most of this theory is technically and 
logically unnecessary for reading [22].) 

At any rate, to summarize, the introduction of indigenous bundles allows one to 
consider the Fuchsian uniformization as being embodied by an object - the canonical 
indigenous bundle - which exists in the algebraic category, but which, compared to 
other indigenous bundles, is somehow "special." In the following, we would like to 
analyze the sense in which the canonical indigenous bundle is special, and to show 
how this sense can be translated immediately into the p-adic context. Thus, we see 
that 

The search for a p-adic theory analogous to the theory of the Fuch
sian uniformization can be reinterpreted as the search for a notion 
of "canonical p-adic indigenous bundle" which is special in a sense 
precisely analogous to the sense in which the canonical indigenous 
bundle arising from the Fuchsian uniformization is special 

1.4. Frobenius Invariance and Integrality. — In this subsection, we explore in 
greater detail the issue of what precisely makes the canonical indigenous bundle (in 
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AN INTRODUCTION TO p-ADIC TEICHMULLER THEORY 7 

the complex case) so special, and note in particular that a properly phrased charac
terization of the canonical indigenous bundle (in the complex case) translates very 
naturally into the p-adic case. 

First, let us observe that in global discussions of motives over a number field, it is 
natural to think of the operation of complex conjugation as a sort of "Frobenius at 
the infinite prime." In fact, in such discussions, complex conjugation is often denoted 
by "Froo." Next, let us observe that one special property of the canonical indigenous 
bundle is that its monodromy representation (i.e., the "canonical representation" px : 
IIx —> PGL2(C)) is real-valued, i.e., takes its values in PGL2QR). Another way to put 
this is to say that the canonical indigenous bundle is Fr^-invariant, i.e., 

The canonical indigenous bundle on a hyperbolic curve is invariant 
with respect to the Frobenius at the infinite prime. 

Unfortunately, as is observed in [5], this property of having real monodromy is not 
sufficient to characterize the canonical indigenous bundle completely. That is to say, 
the indigenous bundles with real monodromy form a discrete subset of the space of 
indigenous bundles on the given curve X, but this discrete subset consists (in general) 
of more than one element. 

Let us introduce some notation. Let Aig,r be the stack of r-pointed smooth curves 
of genus g over C. Let Sg,r be the stack of such curves equipped with an indigenous 
bundle. Then there is a natural projection morphism Sg,r —* Mg,r (given by forgetting 
the indigenous bundle) which exhibits S9:r as an affine torsor on A4g,r over the vector 
bundle £ljvig r/c of differentials on -M^,r. We shall refer to this torsor Sg,r —> Mg,r as 
the Schwarz torsor. 

Let us write Sx for the restriction of the Schwarz torsor Sg,r —> A4g,r to the point 
[X] G A4gyr(<C) defined by X. Thus, Sx is an affine complex space of dimension 
3g — 3 + r. Let Tlx £ Sx be the set of indigenous bundles with real monodromy. As 
observed in [5], IZx is a discrete subset of Sx- Now let S'x C Sx be the subset of 
indigenous bundles (P —» J , Vp) with the following property: 

(*) The associated monodromy representation p : IIx —+ PGL2(C) 
is injective and its image T is a quasi-Fuchsian group. Moreover, if 
Q C PX(C) is the domain of discontinuity of T, then Q/T is a disjoint 
union of two Riemann surfaces of type (g, r). 

(Roughly speaking, a "quasi-Fuchsian group" is a discrete subgroup of PGL2(C) whose 
domain of discontinuity ft (i.e., the set of points of P1(C) at which T acts discontin-
uously) is a disjoint union of two topological open discs, separated by a topological 
circle. We refer to [10, 27] for more details on the theory of quasi-Fuchsian groups.) 

It is known that S'x is a bounded ([10], p. 99, Lemma 6), open (cf. the discussion of 
§ 5 of [27]) subset of Sx (in the complex analytic topology). Moreover, since a quasi-
Fuchsian group with real monodromy acts discretely on the upper half plane (see, e.g., 
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8 S. MOCHIZUKI 

[26], Chapter I, Proposition 1.8), it follows immediately that such a quasi-Fuchsian 
group is Fuchsian. Put another way, we have that: 

The intersection IZx H $x — is the set consisting of the single 
point corresponding to the canonical indigenous bundle. 

It is this characterization of the canonical indigenous bundle that we will seek to 
translate into the p-adic case. 

To translate the above characterization, let us first recall the point of view of 
Arakelov theory which states, in effect, that Zp-integral structures (on say, an affine 
space over Qp) correspond to closures of bounded open subsets (of, say, an affine space 
over C). Thus, from this point of view, one may think of S'x as defining a natural 
integral structure (in the sense of Arakelov theory) on the complex affine space Sx • 
Thus, from this point of view, one arrives at the following characterization of the 
canonical indigenous bundle: 

The canonical indigenous bundle is the unique indigenous bundle 
which is integral (in the Arakelov sense) and Frobenius invariant (i.e., 
has monodromy which is invariant with respect to complex conjuga
tion). 

This gives us at last an answer to the question posed earlier: How can one charac
terize the canonical indigenous bundle in the complex case in such a way that the 
characterization carries over word for word to the p-adic context? In particular, it 
gives rise to the following conclusion: 

The proper p-adic analogue of the theory of the Fuchsian and Bers 
uniformizations should be a theory of 7Jp-integral indigenous bundles 
that are invariant with respect to some natural action of the Frobenius 
at the prime p. 

This conclusion constitutes the fundamental philosophical basis underlying the theory 
of [22]. In [21], this philosophy was partially realized in the sense that certain Zp-
integral Frobenius indigenous bundles were constructed. The theory of [21] will be 
reviewed later (in § 1.6). The goal of [22], by contrast, is to lay the foundations for a 
general theory of all Zp-integral Frobenius indigenous bundles and to say as much as 
is possible in as much generality as is possible concerning such bundles. 

1.5. The Canonical Real Analytic Trivialization of the Schwarz Torsor 
In this subsection, we would like to take a closer look at the Schwarz torsor 

Sg^r —• Mg,r> For general g and r, this affine torsor Sg,r —> Mg,r does not ad
mit any algebraic or holomorphic sections. Indeed, this affine torsor defines a class in 
H1(Aig^rjQj^ig r/c) which is the Hodge-theoretic first Chern class of a certain ample 
line bundle C on Aig,r> (See [21], Chapter I, §3, especially Theorem 3.4, for more 
details on this Hodge-theoretic Chern class and Chapter III, Proposition 2.2, of [22] 
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AN INTRODUCTION TO p-ADIC TEICHMÙLLER THEORY 9 

for a proof of ampleness.) Put another way, Sg,r —> A4g,r is the torsor of (algebraic) 
connections on the line bundle C. However, the map that assigns to X the canonical 
indigenous bundle on X defines a real analytic section 

sn : M9AQ — sg,r(C) 

of this torsor. 
The first and most important goal of the present subsection is to remark that 

The single object SH essentially embodies the entire uniformization 
theory of complex hyperbolic curves and their moduli. 

Indeed, SH by its very definition contains the data of "which indigenous bundle is 
canonical," hence already may be said to embody the Fuchsian uniformization. Next, 
we observe that dsn is equal to the Weil-Petersson metric on Mg,r (see [21], Introduc
tion, Theorem 2.3 for more details). Moreover, (as is remarked in Example 2 following 
Definition 2.1 in [21], Introduction, §2) since the canonical coordinates associated to 
a real analytic Kahler metric are obtained by essentially integrating (in the "sense of 
anti-d-ing") the metric, it follows that (a certain appropriate restriction of) SH "is" 
essentially the Bers uniformization of Teichmuller space. Thus, as advertised above, 
the single object SH stands at the very center of the uniformization theory of complex 
hyperbolic curves and their moduli. 

In particular, it follows that we can once again reinterpret the fundamental issue of 
trying to find a p-adic analogue of the Fuchsian uniformization as the issue of trying 
to find a p-adic analogue of the section sn. That is to say, the torsor Sg,r —> Mg,r is, 
in fact, defined over Z[^], hence over Zp (for p odd). Thus, forgetting for the moment 
that it is not clear precisely what p-adic category of functions corresponds to the real 
analytic category at the infinite prime, one sees that 

One way to regard the search for a p-adic Fuchsian uniformization 
is to regard it as the search for some sort of canonical p-adic analytic 
section of the torsor Sg,r —• A4gir-

In this context, it is thus natural to refer to SH as the canonical arithmetic trivializa-
tion of the torsor Sg,r —> Ai9lr o,t the infinite prime. 

Finally, let us observe that this situation of a torsor corresponding to the Hodge-
theoretic first Chern class of an ample line bundle, equipped with a canonical real 
analytic section occurs not only over M.g,r, but over any individual hyperbolic curve 
X (say, over C), as well. Indeed, let (P X, Vp) be the canonical indigenous bundle 
on X. Let a : X —> P be its Hodge section. Then by [21], Chapter I, Proposition 
2.5, it follows that the T =f P — a(X) has the structure of an c^x/c-^orsor over X. 
In fact, one can say more: namely, this torsor is the Hodge-theoretic first Chern class 
corresponding to the ample line bundle OJX/C- Moreover, if we compose the morphism 
X = H C used to define a with the standard complex conjugation morphism 
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10 S. MOCHIZUKI 

on P^, we obtain a new EEx-equivariant X —* P^ which descends to a real analytic 
section sx • X(C) —> T(C). Just as in the case of Ai9yr, it is easy to compute (cf. 
the argument of [21], Introduction, Theorem 2.3) that <9sx is equal to the canonical 
hyperbolic metric /^x- Thus, just as in the case of the real analytic section SH of the 
Schwarz torsor over Ai9ir, sx essentially "is" the Fuchsian uniformization o /X. 

1.6. The Classical Ordinary Theory. — As stated earlier, the purpose of [22] 
is to study all integral Probenius invariant indigenous bundles. On the other hand, 
in [21], a very important special type of Frobenius invariant indigenous bundle was 
constructed. This type of bundle will henceforth be referred to as classical ordinary. 
(Such bundles were called "ordinary" in [21]. Here we use the term "classical ordinary" 
to refer to objects called "ordinary" in [21] in order to avoid confusion with the more 
general notions of ordinarity discussed in [22].) Before discussing the theory of the 
[22] (which is the goal of § 2), it is thus natural to review the classical ordinary theory. 
In this subsection, we let p be an odd prime. 

If one is to construct p-adic Frobenius invariant indigenous bundles for arbitrary 
hyperbolic curves, the first order of business is to make precise the notion of Frobenius 
invariance that one is to use. For this, it is useful to have a prototype. The prototype 
that gave rise to the classical ordinary theory is the following: 

Let Ai =f (A^i,o)zp be the moduli stack of elliptic curves over Zp. 
Let Q —• Ai be the universal elliptic curve. Let £ be its first de 
Rham cohomology module. Thus, £ is a rank two vector bundle on 
Ai, equipped with a Hodge subbundle T C £, and a connection 
(i.e., the "Gauss-Manin connection"). Taking the projectivization of 
£ defines a P1-bundle with connection ( P —> Ai, Vp), together with 
a Hodge section a : Ai —• P. It turns out that (the natural exten
sion over the compactification of Ai obtained by using log structures 
of) the bundle (P , Vp) is an indigenous bundle on Ai. In particu
lar, (P , Vp) defines a crystal in P1-bundles on Crys(.M 0 Fp/Zp). 
Thus, one can form the pull-back 4>*(P, Vp) via the Frobenius mor-
phism of this crystal. If one then adjusts the integral structure of 
r ( P , V F ) (cf. Definition 1.18 of Chapter VI of [22]; [21], Chapter 
III, Definition 2.4), one obtains the renormalized Frobenius pull-back 
F * ( P , Vp). Then (P , Vp) is Frobenius invariant in the sense that 
( P , V p ) ^ F * ( P , V P ) . 

Thus, the basic idea behind [21] was to consider to what extent one could construct 
indigenous bundles on arbitrary hyperbolic curves that are equal to their own renor
malized Frobenius pull-backs, i.e., satisfying 

F * ( P , V P ) ^ ( P , V P ) 
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AN INTRODUCTION TO p-ADIC TEICHMÛLLER THEORY 11 

In particular, it is natural to try to consider moduli of indigenous bundles satisfying 
this condition. Since it is not at all obvious how to do this over Zp, a natural first 
step was to make the following key observation: 

/ / (P, Vp) is an indigenous bundle over Zp preserved by ¥*, then 
the reduction modulo p o/(P, Vp) has square nilpotent p-curvature. 

(The "p-curvature" of an indigenous bundle in characteristic p is a natural invariant 
of such a bundle. We refer to [21], Chapter II, as well as § 1 of Chapter II of [22] for 
more details.) Thus, if (A49^)FP is the stack of r -pointed stable curves of genus g (as 
in [4, 20]) in characteristic p, one can define the stack Wgjr of such curves equipped 
with a "nilpotent" indigenous bundle. (Here, "nilpotent" means that its p-curvature 
is square nilpotent.) In the following, we shall often find it convenient to refer to 
pointed stable curves equipped with nilpotent indigenous bundles as nilcurves, for 
short. Thus, 7?g,r is the moduli stack of nilcurves. We would like to emphasize that 

The above observation - which led to the notion of "nilcurves" -
is the key technical breakthrough that led to the development of the 
"p-adic Teichmuller theory" of [21, 22]. 

The first major result of [21] is the following (cf. [22], Chapter II, Proposition 1.7; 
[21], Chapter II, Theorem 2.3): 

Theorem 1.1 (Stack of Nilcurves). — The natural morphism Tfg,r —> (>Mg,r)j?p is a 
finite, flat, local complete intersection morphism of degree p^9~3+r. 

In particular, up to "isogeny" (i.e., up to the fact that p3g~3+r ̂  1), 
the stack of nilcurves J\Tg,r Q <Sg,r defines a canonical section of the 
Schwarz tors or S9yT —• M9,r in characteristic p. 

Thus, relative to our discussion of complex Teichmuller theory - which we saw could 
be regarded as the study of a certain canonical real analytic section of the Schwarz 
torsor - it is natural that "p-adic Teichmuller theory" should revolve around the study 
of Jyfg^r-

Although the structure of J\Fg,r is now been much better understood, at the time of 
writing of [21] (Spring of 1994), it was not so well understood, and so it was natural 
to do the following: Let jV^^ Ç ~№g,r be the open substack where ~MQir is étale over 
(Mg,r)FP' This open substack will be referred to as the (classical) ordinary locus of 
A/*̂ 5r. If one sets up the theory (as is done in [21, 22]) using stable curves (as we do 
here), rather than just smooth curves, and applies the theory of log structures (as in 
[18]), then it is easy to show that the ordinary locus of ~fflg,r is nonempty. 

It is worth pausing here to note the following: The reason for the use of the term 
"ordinary" is that it is standard general practice to refer to as "ordinary" situations 
where Frobenius acts on a linear space equipped with a "Hodge subspace" in such a 
way that it acts with slope zero on a subspace of the same rank as the rank of the 
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Hodge subspace. Thus, we use the term "ordinary" here because the Frobenius action 
on the cohomology of an ordinary nilcurve satisfies just such a condition. In other 
words, ordinary nilcurves are ordinary in their capacity as nilcurves. However, it is 
important to remember that: 

The issue of whether or not a nilcurve is ordinary is entirely differ
ent from the issue of whether or not the Jacobian of the underlying 
curve is ordinary (in the usual sense). That is to say, there exist 
examples of ordinary nilcurves whose underlying curves have nonor-
dinary Jacobians as well as examples of nonordinary nilcurves whose 
underlying curves have ordinary Jacobians. 

Later, we shall comment further on the issue of the incompatibility of the theory of 
[21] with Serre-Tate theory relative to the operation of passing to the Jacobian. 

At any rate, since ~№g\r is étale over (-M^r)Fp, it lifts naturally to a p-adic formal 
stack Af which is étale over (A49yr)zp • Let C —• Af denote the tautological stable curve 
over Af. Then the main result (Theorem 0.1 of the Introduction of [21]) of the theory 
of [21] is the following: 

Theorem 1.2 (Canonical Frobenius Lifting) 
There exists a unique pair (<£A/- : Af —> Af; (P, Vp)) satisfying the following: 
(1) The reduction modulo p of the morphism is the Frobenius morphism on Af', 

i.e., <&j\f is a Frobenius lifting. 
(2) (P, Vp) is an indigenous bundle on C such that the renormalized Frobenius 

pull-back o / $ ^ ( P , V p ) is isomorphic to (P, Vp), i.e., (P, Vp) is Frobenius invariant 
with respect to 

Moreover, this pair also gives rise in a natural way to a Frobenius lifting $>c : Cord —> 
Cord on a certain formal p-adic open substack Cord of C (which will be referred to as 
the ordinary locus of C). 

Thus, this Theorem is a partial realization of the goal of constructing a canonical 
integral Frobenius invariant bundle on the universal stable curve. 

Again, we observe that 

This canonical Frobenius lifting Qfj- is by no means compatible (rel
ative to the operation of passing to the Jacobian) with the canonical 
Frobenius lifting (on the p-adic stack of ordinary principally po
larized abelian varieties) arising from Serre-Tate theory (cf., e.g., 
[22], §0.7, for more details). 

At first glance, the reader may find this fact to be extremely disappointing and unnat
ural. In fact, however, when understood properly, this incompatibility is something 
which is to be expected. Indeed, relative to the analogy between Frobenius liftings 
and Kâhler metrics implicit in the discussion of §1.1 ~ 1.5 (cf., e.g., [22], §0.8, for 
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more details) such a compatibility would be the p-adic analogue of a compatibility 
between the Weil-Petersson metric on (A4g,r)c and the Siegel upper half plane metric 
on (Ag)c- On the other hand, it is easy to see in the complex case that these two 
metrics are far from compatible. (Indeed, if they were compatible, then the Torelli 
map (A4g)c —* (^g)c would be unramified, but one knows that it is ramified at 
hyperelliptic curves of high genus.) 

Another important difference between &nd <&A is that in the case of ^>^, by 
taking the union of <f>^ and its transpose, one can compactify into an entirely 
algebraic (i.e., not just p-adic analytic) object, namely a Hecke correspondence on 
Ag. In the case of 3>jv", however, such a compactification into a correspondence is 
impossible. We refer to [23] for a detailed discussion of this phenomenon. 

The Intregral Portion 
of the Schwarz Torsor 

The 
Canonical 
p-Adic 
Section 

The Frobenius Action 
is a sort of p-adic flow 
towards the canonical section 

The Moduli 
Stack of Curves 

FIGURE 3. The Canonical Frobenius Action Underlying Theorem 1.2 

So far, we have been discussing the differences between <f>jsf and 3>^. In fact, 
however, in one very important respect, they are very similar objects. Namely, they 
are both (classical) ordinary Frobenius liftings. A (classical) ordinary Frobenius lifting 
is defined as follows: Let k be a perfect field of characteristic p. Let A =f W(k) (the 
Witt vectors over k). Let S be a formal p-adic scheme which is formally smooth 
over A. Let $>s • S —• S be a morphism whose reduction modulo p is the Frobenius 
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morphism. Then differentiating $5 defines a morphism d&s • ^S^S/A —• ^S/A which 
is zero in characteristic p. Thus, we may form a morphism 

: &*SQS/A —• ^S/A 

by dividing d$s by p. Then 3>s is called a (classical) ordinary Frobenius lifting if is 
an isomorphism. Just as there is a general theory of canonical coordinates associated 
to real analytic Kahler metrics, there is a general theory of canonical coordinates 
associated to ordinary Frobenius liftings. This theory is discussed in detail in § 1 of 
Chapter III of [21]. The main result is as follows (cf. § 1 of [21], Chapter III): 

Theorem 1.3 (Ordinary Frobenius Liftings). — Let 3>s : S —• S be a (classical) ordi
nary Frobenius lifting. Then taking the invariants ofQ$/A with respect to gives 
rise to an etale local system Q$ on S of free Zp-modules of rank equal to dim A(S). 

Let z E S(k) be a point valued in the algebraic closure of k. Then ftz =f Q$\z may 
be thought of as a free Zp-module of rank dim>i(5); write 0Z for the Zp-dual of Qz. 
Let Sz be the completion of S at z. Let Gm be the completion of the multiplicative 
group scheme Gm over W{k) at 1. Then there is a unique isomorphism 

TZ:SZ^ Gm ®|P Sz 

such that: 
(i) the derivative ofTz induces the natural inclusion Q,Z <—* QS/A\SZ; 

(ii) the action of&s on Sz corresponds to multiplication by p on Gm <g)|P ©z. 

Here, by "Gm Qz," we mean the tensor product in the sense of (formal) group 
schemes. Thus, Gm(g)|^©^ is noncanonically isomorphic to the product of dimA(S) = 
rankZp(©z) copies of Gm. 

Thus, we obtain canonical multiplicative parameters on Jsf and Cord (from Qjsj and 
3>C5 respectively). If we apply Theorem 1.3 to the canonical lifting <I>̂  of Serre-Tate 
theory (cf., e.g., [22], §0.7), we obtain the Serre-Tate parameters. Moreover, note 
that in Theorem 1.3, the identity element " 1 " of the formal group scheme Gm (g>zp 
corresponds under Tz to some point az G S(W(k)) that lifts z. That is to say, 

Theorem 1.3 also gives rise to a notion of canonical liftings of points 
in characteristic p. 

In the case of <f>,4, this notion coincides with the well-known notion of the Serre-Tate 
canonical lifting of an ordinary abelian variety. In the case of the theory of 
canonically lifted curves is discussed in detail in Chapter IV of [21]. In [22], however, 
the theory of canonical curves in the style of Chapter IV of [21] does not play a very 
important role. 
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Remark. — Certain special cases of Theorem 1.3 already appear in the work of Ihara 
([14, 15, 16, 17]). In fact, more generally, the work of Ihara ([14, 15, 16, 17]) 
on the Schwarzian equations of Shimura curves and the possibility of constructing an 
analogue of Serre-Tate theory for more general hyperbolic curves anticipates, at least 
at a philosophical level, many aspects of the theory of [21, 22]. 

Thus, in summary, although the classical ordinary theory of [21] is not compatible 
with Serre-Tate theory relative to the Torelli map, it is in many respects deeply 
structurally analogous to Serre-Tate theory. Moreover, this close structural affinity 
arises from the fact that in both cases, 

The ordinary locus with which the theory deals is defined by the 
condition that some canonical Frobenius action have slope zero. 

Thus, although some readers may feel unhappy about the use of the term "ordinary" 
to describe the theory of [21] (i.e., despite the fact that this theory is incompatible 
with Serre-Tate theory), we feel that this close structural affinity arising from the 
common condition of a slope zero Frobenius action justifies and even renders natural 
the use of this terminology. 

Finally, just as in the complex case, where the various indigenous bundles involved 
gave rise to monodromy representations of the fundamental group of the hyperbolic 
curve involved, in the p-adic case as well, the canonical indigenous bundle of Theorem 
1.2 gives rise to a canonical Galois representation, as follows. We continue with the 
notation of Theorem 1.2. Let A/7 —* A/" be the morphism 3^/", which we think of as 
a covering of A/"; let C =f C <S>at A/7. Note that C and N have natural log structures 
(obtained by pulling back the natural log structures on A4g,r and its tautological 
curve, respectively). Thus, we obtain Clo§, A/"log. Let 

I W =f CAAlog ®zp QP); n c =f TTi (Clog ®Zp Qp) 

Similarly, we have IIvv; He- Then the main result is the following (Theorem 0.4 of 
[21], Introduction): 

Theorem 1.4 (Canonical Galois Representation). — There is a natural Zp-flat, p-adic-
ally complete "ring of additive periods" Vffi1 on which II/v/-/ (hence also Ha via the 
natural projection He* —• 11///) acts continuously, together with a twisted homomor-
phism 

p:Ilc>-+ PGL2(£>£al) 
where "twisted" means with respect to the action of He on T>ffil. This representation 
is obtained by taking Frobenius invariants of (P, Vp), using a technical tool known as 
crystalline induction. 

Thus, in summary, the theory of [21] gives one a fairly good understanding of what 
happens over the ordinary locus A/^r, complete with analogues of various objects 
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(monodromy representations, canonical modular coordinates, etc.) that appeared in 
the complex case. On the other hand, it begs the following questions: 

(1) What does the nonordinary part of AFg,r look like? What sorts of nonordinary 
nilcurves can occur? In particular, what does the p-curvature of such nonordinary 
nilcurves look like? 

(2) Does this "classical ordinary theory" admit any sort of compactification? One 
sees from [23] that it does not admit any sort of compactification via correspondences. 
Still, since the condition of being ordinary is an "open condition," it is natural to ask 
what happens to this classical ordinary theory as one goes to the boundary. 

The theory of [22] answers these two questions to a large extent, not by adding on a 
few new pieces to [21], but by starting afresh and developing from new foundations a 
general theory of integral Frobenius invariant indigenous bundles. The theory of [22] 
will be discussed in § 2. 

2. Beyond the "Classical Ordinary" Theory 

2.1. Atoms, Molecules, and Nilcurves. — Let p be an odd prime. Let g and r 
be nonnegative integers such that 2g — 2 + r > 1. Let N*g,r be the stack of nilcurves 
in characteristic p. We denote by Ng,r Q ^g,r the open substack consisting of smooth 
nilcurves, i.e., nilcurves whose underlying curve is smooth. Then the first step in our 
analysis of A/*̂ ,r is the introduction of the following notions (cf. Definitions 1.1 and 
3.1 of [22], Chapter II): 

Definition 2.1. — We shall call a nilcurve dormant if its p-curvature (i.e., the p-
curvature of its underlying indigenous bundle) is identically zero. Let d be a non-
negative integer. Then we shall call a smooth nilcurve spiked of strength d if the zero 
locus of its p-curvature forms a divisor of degree d. 

If d is a nonnegative integer (respectively, the symbol oo), then we shall denote by 

Ad] Ç W dls 

the locally closed substack of nilcurves that are spiked of strength d (respectively, 
dormant). It is immediate that there does indeed exist such a locally closed substack, 
and that if k is an algebraically closed field of characteristic p, then 

Mg,r(k) = 
OO 

d=0 
W Dd 1 

Moreover, we have the following result (cf. [22], Chapter II, Theorems 1.12, 2.8, and 
3.9): 
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Theorem 2.2 (Stratification of A/^,r). — Any two irreducible components of~fcfg,r inter
sect. Moreover, for d = 0 , 1 , . . . , oo, the stack Ng,r[d] is smooth over ¥p of dimension 
3g — 3-\-r (if it is nonempty). Finally, Afg,r[oo] is irreducible, and its closure in7Jg^r 
is smooth over Fp. 

Thus, in summary, we see that 

The classification of nilcurves by the size of the zero locus of their 
p-curvatures induces a natural decomposition of Ng,r into smooth (lo
cally closed) strata. 

Unfortunately, however, Theorem 2.2 still only gives us a very rough idea of the 
structure of Ng,r. For instance, it tells us nothing of the degree of each Ng,r[d] over 
Mg,r-

Remark. — Some people may object to the use of the term "stratification" here for 
the reason that in certain contexts (e.g., the Ekedahl-Oort stratification of the moduli 
stack of principally polarized abelian varieties - cf. [11], § 2), this term is only used for 
decompositions into locally closed subschemes whose closures satisfy certain (rather 
stringent) axioms. Here, we do not mean to imply that we can prove any nontrivial 
results concerning the closures of the Ng,r [d\s. That is to say, in [22], we use the term 
"stratification" only in the weak sense (i.e., that Ng,r is the union of the Ng,r [d]). This 
usage conforms to the usage of Lecture 8 of [24], where "flattening stratifications" are 
discussed. 

In order to understand things more explicitly, it is natural to attempt to do the 
following: 

(1) Understand the structure - especially, what the p-curvature looks like - of all 
molecules (i.e., nilcurves whose underlying curve is totally degenerate). 

(2) Understand how each molecule deforms, i.e., given a molecule, one can consider 
its formal neighborhood J\f in ~ffg,r> Then one wants to know the degree of each 
Nr\J\fg,r[d] (for all d) over the corresponding formal neighborhood A4 in Aig,r. 

Obtaining a complete answer to these two questions is the topic of [22], Chapters IV 
and V. 

First, we consider the problem of understanding the structure of molecules. Since 
the underlying curve of a molecule is a totally degenerate curve - i.e., a stable curve 
obtained by gluing together P-^s with three nodal/marked points - it is natural to 
restrict the given nilpotent indigenous bundle on the whole curve to each of these 
P-^s with three marked points. Thus, for each irreducible component of the original 
curve, we obtain a P1 with three marked points equipped with something very close 
to a nilpotent indigenous bundle. The only difference between this bundle and an 
indigenous bundle is that its monodromy at some of the marked points (i.e., those 
marked points that correspond to nodes on the original curve) might not be nilpotent. 
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In general, a bundle (with connection) satisfying all the conditions that an indigenous 
bundle satisfies except that its monodromy at the marked points might not be nilpo-
tent is called a torally indigenous bundle (cf. [22], Chapter I, Definition 4.1). (When 
there is fear of confusion, indigenous bundles in the strict sense (as in [21], Chapter 
I) will be called classical indigenous.) For simplicity, we shall refer to any pointed 
stable curve (respectively, totally degenerate pointed stable curve) equipped with a 
nilpotent torally indigenous bundle as a nilcurve (respectively, molecule) (cf. §0 of 
[22], Chapter V). Thus, when it is necessary to avoid confusion with the toral case, 
we shall say that "AFg,r is the stack of classical nilcurves." Finally, we shall refer to 
a (possibly toral) nilcurve whose underlying curve is P1 with three marked points as 
an atom. 

Classical . 
Ordinary Spiked 

Dormant 

Molecule 

The Moduli Stack of Nilcurves has 
(in general) many different irredu
cible components corresponding to 
the degree of vanishing of the 
p-curvature of the nilcurves para
metrized. Darker components are 
farther from being reduced. 

The Generic Structure of the Moduli 
Stack of Nilcurves can be analyzed by 
looking at how Molecules Deform. 

FIGURE 4. The Structure of 77g,r 

At any rate, to summarize, a molecule may be regarded as being made up of atoms. 
It turns out that the monodromy at each marked point of an atom (or, in fact, more 
generally any nilcurve) has an invariant called the radius. The radius is, strictly 
speaking, an element of Fp/{±} (cf. Proposition 1.5 of [22], Chapter II) - i.e., the 
quotient set of Fp by the action of ±1 - but, by abuse of notation, we shall often 
speak of the radius p as an element of Fp. Then we have the following answer to (1) 
above (cf. § 1 of [22], Chapter V): 
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Theorem 2.3 (The Structure of Atoms and Molecules). — The structure theory of 
atoms (over any field of characteristic p) may be summarized as follows: 

(1) The three radii of an atom define a bijection of the set of isomorphism classes 
of atoms with the set of ordered triples of elements o / F p / { ± l } . 

(2) For any triple of elements pa,P{3, P-y £ FP, there exist integers a,b,c G [0,p— 1] 
such that (i) a = ±2pOL, b = ±2p@, c = ±2/9T; (ii) a+b+c is odd and < 2p. Moreover, 
the atom of radii pmpp^py is dormant if and only if the following three inequalities 
are satisfied simultaneously: a + b > c, a + c > b, b + c > a. 

(3) Suppose that the atom of radii pOL^pp^p1 is nondormant. Let va,vp,v<y be the 
degrees of the zero loci of the p-curvature at the three marked points. Then the non-
negative integers vOL,vp,v1 are uniquely determined by the following two conditions: 
(i) va+vp + Vj is odd and < p; (ii) vQ = ±2pa, v@ = ±2pp, v1 = ±.2p1. 

Molecules are obtained precisely by gluing together atoms at their marked points in 
such a way that the radii at marked points that are glued together coincide (as elements 
0 / F P / { ± I } ; . 

In the last sentence of the theorem, we use the phrase "obtained precisely" to mean that 
all molecules are obtained in that way, and, moreover, any result of gluing together 
atoms in that fashion forms a molecule. Thus, 

Theorem 2.3 reduces the structure theory of atoms and molecules to 
a matter of combinatorics. 

Theorem 2.3 follows from the theory of [22], Chapter IV. 
Before proceeding, we would like to note the analogy with the theory of "pants" 

(see [1] for an exposition) in the complex case. In the complex case, the term "pants" 
is used to describe a Riemann surface which is topologically isomorphic to a Riemann 
sphere minus three points. The holomorphic isomorphism class of such a Riemann 
surface is given precisely by specifying three radii, i.e., the size of its three holes. 
Moreover, any hyperbolic Riemann surface can be analyzed by decomposing it into 
a union of pants, glued together at the boundaries. Thus, there is a certain analogy 
between the theory of pants and the structure theory of atoms and molecules given 
in Theorem 2.3. 

Next, we turn to the issue of understanding how molecules deform. Let M be a 
nondormant classical molecule (i.e., it has nilpotent monodromy at all the marked 
points). Let us write ntor for the number of "toral nodes" (i.e., nodes at which the 
monodromy is not nilpotent) of M. Let us write n^or for the number of dormant 
atoms in M. To describe the deformation theory of M, it is useful to choose a plot 
II for M. A plot is an ordering (satisfying certain conditions) of a certain subset of 
the nodes of M (see § 1 of [22], Chapter V for more details). This ordering describes 
the order in which one deforms the nodes of M. (Despite the similarity in notation, 
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plots have nothing to do with the "VF-patterns" discussed below.) Once the plot is 
fixed, one can contemplate the various scenarios that may occur. Roughly speaking, 
a scenario is an assignment (satisfying certain conditions) of one of the three symbols 
{0, +, —} to each of the branches of each of the nodes of M (see § 1 of [22], Chapter V 
for more details). There are 2ndor possible scenarios. The point of all this terminology 
is the following: 

One wants to deform the nodes of M in a such a way that one can 
always keep track of how the p-curvature deforms as one deforms the 
nilcurve. 

If one deforms the nodes in the fashion stipulated by the plot and scenario, then each 
deformation that occurs is one the following four types: classical ordinary, grafted, 
philial, aphilial. 

Nilcurve in a Neighborhood 
of a Molecule 

The Deformation 
Theory of 
Nilcurves 

The Corresponding Molecule 

Molecules 
Can Be 
Analyzed by 
Looking at 
Their Com
ponent Atoms 

P 1 

r 

s 

Atoms Can Be Completely 
Analyzed in Terms of Their Radii 

The Molecule Decomposed 
into Atoms (the p-adic 
Analogue of Pants) 

FIGURE 5. The Step Used to Analyze the Structure of Afg,r 

The classical ordinary case is the case where the monodromy (at the node in ques
tion) is nilpotent. It is also by far the most technically simple and is already discussed 
implicitly in [21]. The grafted case is the case where a dormant atom is grafted on to 
(what after previous deformations is) a nondormant smooth nilcurve. This is the case 
where the consequent deformation of the p-curvature is the most technically difficult 
to analyze and is the reason for the introduction of "plots" and "scenarios." In order 
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to understand how the p-curvature deforms in this case, one must introduce a certain 
technical tool called the virtual p-curvature. The theory of virtual p-curvatures is 
discussed in §2.2 of [22], Chapter V. The philial case (respectively, aphilial case) is 
the case where one glues on a nondormant atom to (what after previous deformations 
is) a nondormant smooth nilcurve, and the parities (i.e., whether the number is even 
or odd) of the vanishing orders of the p-curvature at the two branches of the node 
are opposite to one another (respectively, the same). In the philial case (respectively, 
aphilial case), deformation gives rise to a spike (respectively, no spike). An illustration 
of these four fundamental types of deformation is given in Fig. 6. The signs in this 
illustration are the signs that are assigned to the branches of the nodes by the "sce
nario." When the p-curvature is not identically zero (i.e., on the light-colored areas), 
this sign is the parity (i.e., plus for even, minus for odd) of the vanishing order of 
the p-curvature. For a given scenario E, we denote by nphi(S) (respectively, naph(E)) 
the number of philial (respectively, aphilial) nodes that occur when the molecule is 
deformed according to that scenario. 

If U = Spec(A) is a connected noetherian scheme of dimension 0, then we shall 
refer to the length of the artinian ring A as the padding degree of U. Then the theory 
just discussed gives rise to the following answer to (2) above (cf. Theorem 1.1 of [22], 
Chapter V): 

Theorem 2.4 (Deformation Theory of Molecules). — Let M be a classical molecule 
over an algebraically closed field k of characteristic p. Let Af be the completion of 
ATg,r at M. Let A4 be the completion of (A4G,R)FP at the point defined by the curve 
underlying M. Let rj be the strict henselization of the generic point of A4. Then the 
natural morphism Af —> M is finite and flat of degree 2ntor. Moreover: 

(1) If M is dormant, then A/"red — and Njj has padding degree 23#-3+r. 
(2) If M is nondormant, fix a plot II for M. Then for each of the 2ndor scenarios 

associated to IV, there exists a natural open sub stack A s Q A/jf =f N XM V such that: 
(i.) Afjj is the disjoint union of the A/s (as £ ranges over all the scenarios); (ii.) 
every residue field of My, is separable over (hence equal to) k(rj); (Hi) the degree of 
(A/E)red over rj is 2naph^; (iv) each connected component of My, has padding degree 
2^Phi(s). (vj ^e smQQth nilcurve represented by any point of (As)red is spiked of 
strength p • nphi(E). 

In particular, this Theorem reduces the computation of the degree of any Afg,r[d] over 
(•Mg,r)FP to a matter of combinatorics. 

For instance, let us denote by n°^p the degree of A/£rrd (which - as a consequence of 
Theorem 2.4! (cf. Corollary 1.2 of [22], Chapter V) - is open and dense in Afg,r [0]) over 
(A^^,r)Fp. Then following the algorithm implicit in Theorem 2.4, is computed 
explicitly for low g and r in Corollary 1.3 of [22], Chapter V (e.g., n^f^ = ^4,p = 
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Classical 
Ordinary Node 

deforms to 

Grafted 
Node 

deforms to 

Philial 
Node 

deforms to • I resulting spike I 

Aphilial 
Node 

deforms to 

FIGURE 6. The Four Types of Nodal Déformation 

nifi? = h(p2 + i ) ; 3tc). Moreover, we note the following two interesting phenomena: 

(1) Degrees such as n^^p tend t° be well-behaved - even polynomial, with coeffi
cients equal to various integrals over Euclidean space - as functions of p. Thus, for 
instance, the limit, as p goes to infinity, of riQr^p/pr~3 exists and is equal to the vol
ume of a certain polyhedron in (r — 3)-dimensional Euclidean space. See Corollary 
1.3 of [22], Chapter V for more details. 

(2) Theorem 2.4 gives, for every choice of totally degenerate r-pointed stable curve 
of genus an (a priori) distinct algorithm for computing n°Trp. Since n°r^p, of 
course, does not depend on the choice of underlying totally degenerate curve, we 
thus obtain equalities between the various sums that occur (to compute n™r,P) m 
each case. If one writes out these equalities, one thus obtains various combinatorial 
identities. Although the author has yet to achieve a systematic understanding of these 
combinatorial identities, already in the cases that have been computed (for low g and 
r), these identities reduce to such nontrivial combinatorial facts as Lemmas 3.5 and 
3.6 of [22], Chapter V. 

Although the author does not have even a conjectural theoretical understanding of 
these two phenomena, he nonetheless feels that they are very interesting and deserve 
further study. 
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2.2. The .M.Fv-Object Point of View. — Before discussing the general theory 
of canonical liftings of nilpotent indigenous bundles, it is worth stopping to examine 
the general conceptual context in which this theory will be developed. To do this, 
let us first recall the theory of -objects developed in §2 of [6]. Let p be a 
prime number, and let S be a smooth Zp-scheme. Then in loc. cit., a certain category 
MJ^{S) is defined. Objects of this category Ai!Fv (S) consist of: (1) a vector bundle 
E on S equipped with an integrable connection Vs (one may equivalently regard the 
pair (£, V5) as a crystal on the crystalline site Crys(S <S>zp ^p/^p) valued in the 
category of vector bundles); (2) a filtration F'(£) C £ (called the Hodge filtration) of 
subbundles of £\ (3) a Frobenius action 3>£ on the crystal (£, V^). Moreover, these 
objects satisfy certain conditions, which we omit here. 

Let lis be the fundamental group of S ®zp QP (for some choice of base-point). In 
loc. cit., for each A/1.7rV(S')-object (£, V5, F'(£), $£), a certain natural Ils-module 
V is constructed by taking invariants of (£, V^) with respect to its Frobenius action 
3>£. If £ is of rank r, then V is a free Zp-module of rank r. On typical example of 
such an A/t.7rV(S')-object is the following: 

If X —• S is the tautological abelian variety over the moduli stack 
of principally polarized abelian varieties, then the relative first de 
Rham cohomology module of X —• S forms an A/(JrV(5)-module 
whose restriction to the ordinary locus of S is (by Serre-Tate the
ory) intimately connected to the "p-adic uniformization theory" of 
S. 

In the context of [22], we would like to consider the case where S = (A4g,r)zp> 
Moreover, just as the first de Rham cohomology module of the universal abelian 
variety gives rise to a "fundamental uniformizing AiF^ (S)-module" on the moduli 
stack of principally polarized abelian varieties, we would like to define and study a 
corresponding "fundamental uniformizing A/t^rV-object" on (A/t^,r)zp- Unfortunately, 
as long as one sticks to the conventional definition of A/(.7rV-object given in [6], it 
appears that such a natural "fundamental uniformizing . M - o b j e c t " simply does 
not exist on (JA9tr)zP' This is not so surprising in view of the nonlinear nature of 
the Teichmuller group (i.e., the fundamental group of (Mg,r)c)> In order to obtain a 
natural "fundamental uniformizing wM^rV-object" on (A4g,r)zp, one must generalize 
the "classical" linear notion of [6] as follows: Instead of considering crystals (equipped 
with nitrations and Frobenius actions) valued in the category of vector bundles, one 
must consider crystals (still equipped with nitrations and Frobenius actions in some 
appropriate sense) valued in the category of schemes (or more generally, algebraic 
spaces). Thus, 

One philosophical point of view from which to view [22] is that it is 
devoted to the study of a certain canonical uniformizing AiF^-object 
on (Mg^r)zp valued in the category of algebraic spaces. 
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Just as in the case of abelian varieties, this canonical uniformizing AlJrV-object will 
be obtained by taking some sort of de Rham cohomology of the universal curve over 
(Mg,r)zp- The rest of this subsection is devoted to describing this MTV-oh]ect in 
more detail. 

Now let S be the spectrum of an algebraically closed field (of characteristic not 
equal to 2), and let X be a smooth, proper, geometrically curve over S of genus > 2. 
Let P —> X be a P1-bundle equipped with a connection Vp. If a : X —» P is a section 
of this P1-bundle, then we shall refer to the number ^deg(cr*Tp/x) (where Tp/x is 
the relative tangent bundle of P over X) as the canonical height of a. Moreover, note 
that by differentiating <r by means of Vp, one obtains a morphism rX/s cr*rP/x-
We shall say that a is horizontal if this morphism is identically zero. 

(Roughly speaking) we shall call (P, Vp) crys-stable if it does not admit any hor
izontal sections of canonical height < 0 (see Definition 1.2 of [22], Chapter I for a 
precise definition). (Roughly speaking) we shall call (P, Vp) crys-stable of level 0 (or 
just stable) if it does not admit any sections of canonical height < 0 (see Definition 
3.2 of [22], Chapter I for a precise definition). Let I be a positive half-integer (i.e., 
a positive element of | Z ) . We shall call (P, Vp) crys-stable of level I if it admits a 
section of canonical height —I. If it does admit such a section, then this section is the 
unique section of P —> X of negative canonical height. This section will be referred 
to as the Hodge section (see Definition 3.2 of [22], Chapter I for more details). For 
instance, if £ is a vector bundle of rank two on X such that Ad(£) is a stable vector 
bundle on X (of rank three), and P —• X is the projective bundle associated to £, 
then (P, Vp) will be crys-stable of level 0 (regardless of the choice of Vp). On the 
other hand, an indigenous bundle on X will be crys-stable of level g — 1. More gen
erally, these definitions generalize to the case when X is a family of pointed stable 
curves over an arbitrary base (on which 2 is invertible). 

The nonlinear A/(.7rV-object on (Aig,r)zp (where p is odd) that is the topic of [22] 
is (roughly speaking) the crystal in algebraic spaces given by the considering the fine 
moduli space y —> (Aig,r)zp of crys-stable bundles on the universal curve (cf. Theorem 
2.7, Proposition 3.1 of [22], Chapter I for more details). Put another way, this crystal 
is a sort of de Rham-theoretic H1 with coefficients in PGL2 of the universal curve 
over Aig,r- The nonlinear analogue of the Hodge filtration on an A/l^rV-object is the 
collection of subspaces given by the fine moduli spaces yl of crys-stable bundles of 
level I (for various I) - cf. [22], Chapter I, Proposition 3.3, Lemmas 3.4 and 3.8, and 
Theorem 3.10 for more details. 

Remark. — This collection of subspaces is reminiscent of the stratification (on the 
moduli stack of smooth nilcurves) of §2.1. This is by no means a mere coincidence. 
In fact, in some sense, the stratification of Afg,r which was discussed in §2.1 is the 
Frobenius conjugate of the Hodge structure mentioned above. That is to say, the 
relationship between these two collections of subspaces is the nonlinear analogue of the 
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relationship between the filtration on the de Rham cohomology of a variety in positive 
characteristic induced by the "conjugate spectral sequence" and the Hodge filtration on 
the cohomology. (That is to say, the former filtration is the Frobenius conjugate of 
the latter filtration.) 

Thus, to summarize, relative to the analogy between the nonlinear objects dealt 
with in this paper and the "classical" A/t.7rV-objects of [6], the only other piece of data 
that we need is a Frobenius action. It is this issue of defining a natural Frobenius 
action which occupies the bulk of [22]. 

2.3. The Generalized Notion of a Frobenius Invariant Indigenous Bundle. 
— In this subsection, we would like to take up the task of describing the Frobenius 
action on crys-stable bundles. Just as in the case of the linear A^^rV-objects of [6], 
and as motivated by comparison with the complex case (see the discussion of §1), 
we are interested in Frobenius invariant sections of the AdJ1'^-object, i.e., Frobenius 
invariant bundles. Moreover, since ultimately we are interested in uniformization the
ory, instead of studying general Frobenius invariant crys-stable bundles, we will only 
consider Frobenius invariant indigenous bundles. The reason that we must nonethe
less introduce crys-stable bundles is that in order to obtain canonical lifting theories 
that are valid at generic points of Ng,r parametrizing dormant or spiked nilcurves, it 
is necessary to consider indigenous bundles that are fixed not (necessarily) after one 
application of Frobenius, but after several applications of Frobenius. As one applies 
Frobenius over and over again, the bundles that appear at intermediate stages need 
not be indigenous. They will, however, be crys-stable. This is why we must introduce 
crys-stable bundles. 

In order to keep track of how the bundle transforms after various applications of 
Frobenius, it is necessary to introduce a certain combinatorial device called a VF-
pattern (where "VF" stands for "Verschiebung/Frobenius"). VF-patterns may be de
scribed as follows. Fix nonnegative integers g,r such that 2g — 2 + r > 0. Let 
x d^f l(2g - 2 + r). Let Lev be the set of / G \L satisfying 0 < I < We shall call 
Cev the set of levels. (That is, Lev is the set of possible levels of crys-stable bundles.) 
Let II : Z —• Cev be a map of sets, and let zu be a positive integer. Then we make 
the following definitions: 

(i) We shall call (II, zu) a VF-pattern if U(n + zu) = U(n) for all n G Z; 11(0) = %; 
II(z) - U(j) G Z for all i, j G Z (cf. Definition 1.1 of [22], Chapter III). 

(ii) A VF-pattern (II, zu) will be called pre-home if II(Z) = {x}. A VF-pattern 
(II, zu) will be called the home VF-pattern if it is pre-home and zu = 1. 

(iii) A VF-pattern (II, w) will be called binary if II(Z) C {0,x}. A VF-pattern 
(II, zu) will be called the VF-pattern of pure tone zu if II(n) = 0 for all n G Z not 
divisible by zu. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



26 S. MOCHIZUKI 

(iv) Let (II, zu) be a VF-pattern. Then i G Z will be called indigenous (respectively, 
active; dormant) for this VF-pattern if H(i) = x (respectively, II(z) ^ 0; H(i) = 0). 
If i,j G Z, and i < j , then will be called ind-adjacent for this VF-pattern if 
II(z) = n( j ) = x and II(n) ^ x for all n G Z such that i < n < j . 

At the present time, all of this terminology may seem rather abstruse, but eventually, 
we shall see that it corresponds in a natural and evident way to the p-adic geometry 
defined by indigenous bundles that are Frobenius invariant in the fashion described 
by the VF-pattern in question. Finally, we remark that often, in order to simplify 
notation, we shall just write II for the VF-pattern (even though, strictly speaking, a 
VF-pattern is a pair (II, zj)). 

Now fix an odd prime p. Let (II, zu) be a VF-pattern. Let 5 be a perfect scheme of 
characteristic p. Let X —• S be a smooth, proper, geometrically connected curve of 
genus g > 2. (Naturally, the theory goes through for arbitrary pointed stable curves, 
but for simplicity, we assume in the present discussion that the curve is smooth 
and without marked points.) Write W(S) for the (ind-)scheme of Witt vectors with 
coefficients in S. Let V be a crystal on Crys(X/W(S)) valued in the category of 
P^bundles. Thus, the restriction V\x of V to Crys(X/Sf) may be thought of as a 
P1-bundle with connection on the curve X —• S. Let us assume that V\x defines an 
indigenous bundle on X. Now we consider the following procedure (cf. Fig. 7): 

Using the Hodge section of V\x, one can form the renormalized 
Frobenius pull-back Vx =f F*(P) of V. Thus, F*(P) will be a crys
tal valued in the category of P1-bundles on Crys(X/W(S)). Assume 
that V\\x is crys-stable of level 11(1). Then there are two possibil
ities: either 11(1) is zero or nonzero. If 11(1) = 0, then let P 2 be 
the usual (i.e., non-renormalized) Frobenius pull-back 3>*Pi of the 
crystal V\. If 11(1) 7̂  0, then V\\x is crys-stable of positive level, 
hence admits a Hodge section; thus, using the Hodge section of V±\xy 
we may form the renormalized Frobenius pull-back V2 — F*(Pi) 
of V\. Continuing inductively in this fashion - i.e., always assum
ing Vi\x to be crys-stable of level II(z), and forming Vi+\ by taking 
the renormalized (respectively, usual) Frobenius pull-back of Vi if 
n(z) 7̂  0 (respectively, U(i) = 0), we obtain a sequence V% of crystals 
on Crys(X/W(S)) valued in the category of P1-bundles. 

Then we make the following 

Definition 2.5. — We shall refer to V as H-indigenous (on X) if all the assumptions 
(on the Vi) necessary to carry out the above procedure are satisfied, and, moreover, 
P = P. 
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Thus, to say that V is II-indigenous (more properly, (II, ̂ -indigenous) is to say that 
it is Frobenius invariant in the fashion specified by the combinatorial data (II,n7). 

Now we are ready to define a certain stack that is of central importance in [22]. 
The stack Qu - also called the stack of quasi-analytic self-isogenies of type (II, VJ) -
is defined as follows: 

To a perfect scheme S, Qn(S) assigns the category of pairs (X —> 
S,V), where X S is a curve as above and V is a U-indigenous 
bundle on X. 

Thus, Qu is may be regarded as the moduli stack of indigenous bundles that are 
Frobenius invariant in the fashion specified by the VF-pattern II. 

We remark that in fact, more generally, one can define Qu on the category of 
epiperfect schemes S. (Whereas a perfect scheme is a scheme on which the Frobenius 
morphism is an isomorphism, an epiperfect scheme is one on which the Frobenius 
morphism is a closed immersion.) Then instead of using W(5), one works over B(S) 
- i.e., the "universal PJ9-thickening of S" For instance, the well-known ring Bcrys 
introduced by Fontaine (and generalized to the higher-dimensional case in [6]) is a 
special case of B(S). The point is that one needs the base spaces that one works with 
to be Zp-flat and equipped with a natural Frobenius action. The advantage of working 
with arbitrary B(S) (for S epiperfect) is that the theory of crystalline representations 
(and the fact that Bcrys is a special case of B(S)) suggest that B(S) is likely to be the 
most general natural type of space having these two properties — i.e., Zp-flatness and 
being equipped with a natural Frobenius action. The disadvantage of working with 
arbitrary B(S) (as opposed to just W(S) for perfect S) is that many properties of 
Qn are technically more difficult or (at the present time impossible) to prove in the 
epiperfect case. For the sake of simplicity, in this Introduction, we shall only consider 
the perfect case. For more details, we refer to [22], Chapter VI. 

Now, we are ready to discuss the main results concerning Qn. The general theory 
of Qn is the topic of [22], Chapter VI. We begin with the following result (cf. Theorem 
2.2 of [22], Chapter VI): 

Theorem 2.6 (Representability and Affineness). — The stack Qu is representable by a 
perfect algebraic stack whose associated coarse moduli space (as in [7], Chapter 1, 
Theorem is quasi-affine. If II is pre-home, then this coarse moduli space is even 
affine. 

Thus, in the pre-home case, Qn is perfect and affine. In particular, any sort of de 
Rham/crystalline-type cohomology on Qu must vanish. It is for this reason that we 
say (in the pre-home case) that Qn is crystalline contractible (cf. Fig. 8). Moreover, 
(cf. Theorem 2.12 of [22], Chapter III), 
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».» X> X-hO, 0,2GX-2, X, 0,... 

FIGURE 7. The Sense of Frobenius Invariance Specified by a VF-Pattern 

Corollary 2.7 (Irreducibility of Moduli). — (The fact that Qu is crystalline con-
tractible for the home VF-pattern is intimately connected with the fact that) A4g,r is 
irreducible. 

In the Case of a Pre-Home VF-Pattern, 
the Stack of Quasi-Analytic Self-
Isogenies is Crystalline Contractible 
(perfect and affine). This implies the 
connectedness of the moduli stack of curves. 

The Moduli Stack of Curves 

FIGURE 8. Crystalline Contractibility in the Pre-Home Case 
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The basic idea here is the following: By induction on g, it suffices to prove that 
Aig,r does not admit any proper connected components. But if it did admit such a 
component J , then one can apply the following analysis to A/j ==f A/ ,̂r xMg,r J> First 
of all, by Theorem 1.1, Afj is finite and flat of degree p3s-3+r over J. Now let / be 
an irreducible component of Afj for which the vanishing locus of the p-curvature of 
the nilcurve parametrized by the generic point of / is maximal (in other words, an 
irreducible component whose generic point lies in Afg,r[d], for d maximal). It is then 
a formal consequence of Theorems 1.1 and 2.2 that / is smooth and proper over Fp, 
and that the whole of / (i.e., not just the generic point) lies in some Afg,r[d\. Now we 
apply the fact that A/^,r[0] is affine (a fact which belongs to the same circle of ideas 
as Theorem 2.6). This implies (since / is proper and of positive dimension) that the 
d such that / C Afg,r[d] is nonzero. Thus, since (by [21], Chapter II, Corollary 2.16) 
Ng,r is nonreduced at the generic point of A/^,r[d], it follows that the degree of I over 
J is < p39-s+r Qn other hand, by using the fact that the Schwarz torsor may 
also be interpreted as the Hodge-theoretic first Chern class of a certain ample line 
bundle (cf. [21], Chapter I, §3), it is a formal consequence (of basic facts concerning 
Chern classes in crystalline cohomology) that deg( / / J ) (which is a positive integer) 
is divisible by p33-3+r. ^his contradiction (i.e., that deg( / /J) is a positive integer 
< p39-s+r wnich is nevertheless divisible by p3flr_3+r) concludes the proof. 

As remarked earlier, this derivation of the irreducibility of the moduli of Mg,r 
from the basic theorems of p-adic Teichmuller theory is reminiscent of the proof of 
the irreducibility of A4g,r given by using complex Teichmuller theory to show that 
Teichmuller space is contractible (cf., e.g., [2, 4]). Moreover, it is also interesting in 
that it suggests that perhaps at some future date the theory (or some extension of 
the theory) of [22] may be used to compute other cohomology groups of A4g,r. Other 
proofs of the irreducibility of AAg,r include those of [8, 9], but (at least as far the 
author knows) the proof given here is the first that relies on essentially characteristic 
p methods (i.e., "Frobenius"). 

Before proceeding, we must introduce some more notation. If Z is a smooth stack 
over Zp, let us write Zw for the stack on the category of perfect schemes of charac
teristic p that assigns to a perfect S the category Z(W(S)). We shall refer to Zw 
as the infinite Weil restriction of Z. It is easy to see that Zw is representable by a 
perfect stack (Proposition 1.13 of [22], Chapter VI). Moreover, this construction gen
eralizes immediately to the logarithmic category. Write AAw (respectively, Sw) for 
((Mlg^)zp)w (respectively, ((«S^)zp)w)- (Here Sg,r —> Mg,r is the Schwarz torsor 
over Aigy, we equip it with the log structure obtained by pulling back the log structure 
of A 4 ^ . ) Now if V is n-indigenous on X, it follows immediately from the elementary 
theory of indigenous bundles that there exists a unique curve Xw W(S) whose re
striction t o S C W(S) is X —> S and such that the restriction of the crystal V to Xw 
defines an indigenous bundle on Xw- The assignment V h-> (XW —• W(S),V\xw) 
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(respectively, V i—» {Xw —* W(S)}) thus defines a natural morphism Qu —• <Sw 
(respectively, Qn —> Mw)- Now we have the following results (cf. Propositions 2.3, 
2.9; Corollaries 2.6 and 2.13 of [22], Chapter VI): 

Theorem 2.8 (Immersions). — The natural morphism Qu —> Sw is an immersion in 
general, and a closed immersion if the VF-pattern is pre-home or of pure tone. The 
morphism Qn —> A4w is a closed immersion if the VF-pattern is the home VF-
pattern. 

Theorem 2.9 (Isolatedness in the Pre-Home Case). — In the pre-home case, Qn is 
closed inside Sw and disjoint from the closure of any non-pre-home Qn 's. 

We remark that in both of these cases, much more general theorems are proved in 
[22]. Here, for the sake of simplicity, we just selected representative special cases of 
the main theorems in [22] so as to give the reader a general sense of the sorts of results 
proved in [22]. 

The reason that Theorem 2.9 is interesting (or perhaps a bit surprising) is the 
following: The reduction modulo p of a II-indigenous bundle (in the pre-home case) is 
an admissible nilpotent indigenous bundle. (Here, the term "admissible" means that 
the p-curvature has no zeroes.) Moreover, the admissible locus A/*̂ rm of Afg,r is by 
no means closed in ~Mg,r, nor is its closure disjoint (in general) from the closure of 
the dormant or spiked loci of AT r̂- On the other hand, the reductions modulo p of 
n'-indigenous bundles (for non-pre-home U') may, in general, be dormant or spiked 
nilpotent indigenous bundles. Thus, 

Theorem 2.9 states that considering 7Lv-flat Frobenius invariant lift
ings of indigenous bundles (as opposed to just nilpotent indigenous 
bundles in characteristic p) has the effect of "blowing up"J\Fg^r in 
such a way that the genericization/specialization relations that hold 
in A/*3,r do not imply such relations among the various Q's. 

We shall come back to this phenomenon again in the following subsection (cf. Fig. 9). 

2.4. The Generalized Ordinary Theory. — In this subsection, we maintain 
the notations of the preceding subsection. Unfortunately, it is difficult to say much 
more about the explicit structure of the stacks Qu without making more assumptions. 
Thus, just as in the classical ordinary case (reviewed in § 1.6), it is natural to define 
an open substack - the ordinary locus of Qu - and to see if more explicit things can 
be said concerning this open substack. This is the topic of [22], Chapter VII. We shall 
see below that in fact much that is interesting can be said concerning this ordinary 
locus. 

We begin with the definition of the ordinary locus. First of all, we observe that 
there is a natural algebraic stack 

JJsIl,s 
J 9^ 
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(of finite type over Fp) that parametrizes "data modulo p for Qn" (Definition 1.11 of 
[22], Chapter III). That is to say, roughly speaking, Af^r parametrizes the reductions 
modulo p of the V% appearing in the discussion preceding Definition 2.5. We refer to 
[22], Chapter III for a precise definition of this stack. At any rate, by reducing modulo 
p the data parametrized by Qn, we obtain a natural morphism of stacks 

<2n d r 
dv 

On the other hand, since sd 
sd parametrizes curves equipped with certain bundles 

there is a natural morphism 9,r (Mg,R)FV- Let Aford AT M lenote the open 
substack over which the morphism J\f 'r —> (Mg,r)¥p is e£a/e. Let Qord C Q11 denote 
the open substack which is the inverse image of \fovd zJTn's. 

- J v p,r 
Definition 2.10. — We shall refer to Qord as the (H-) ordinary locus of Qu. 

Just as in the classical ordinary case, there is an equivalent definition of II-ordinarity 
given by looking at the action of Frobenius on the first de Rham cohomology modules 
of the Vi (cf. Lemma 1.4 of [22], Chapter VII). Incidentally, the classical ordinary 
theory corresponds to the II-ordinary theory in the case of the home VF-pattern. (In 
particular, J\ford is simply the ordinary locus A/^r of A/^r-) Thus, in some sense, the 
theory of [21] is a special case of the generalized ordinary theory. 

Our first result is the following (cf. Theorem 1.6 of [22], Chapter VII): 

Theorem 2.11 (Basic Structure of the Ordinary Locus). — Qord is naturally isomor
phic to the perfection of J\ford. 

Thus, already one has a much more explicit understanding of the structure of Qord 
than of the whole of Qu. That is to say, Theorem 2.11 already tells us that Qord is 
the perfection of a smooth algebraic stack of finite type over Fp. 

Our next result - which is somewhat deeper than Theorem 2.11, and is, in fact, 
one of the main results of [22] — is the following (cf. Theorem 2.11 of [22], Chapter 
VII): 

Theorem 2.12 (u;-Closedness of the Ordinary Locus). — / / I I is binary, then QOTd is en
closed (roughly speaking, uclosed as far as the differentials are concerned^ - cf [22], 
Chapter VII, %0, §2.3 for more details) in Qn. In particular, 

(1) If3g - 3 + r = 1, then Qord is actually closed in Qn. 
(2) IflZC. Qu is a subobject containing Qord and which is "pro" (cf [22], Chapter 

VI, Definition 1.9) of a fine algebraic log stack which is locally of finite type over Fp, 
then Qord is closed in 1Z. 

In other words, at least among perfections of fine algebraic log stacks which are locally 
of finite type overFp, Qord is already "complete" inside Qn. 
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Thus, if H is pre-home or of pure tone, then Q"rd is an uj-closed substack ofSw-
If the VF-pattern in question is the home pattern, then Qard is an cu-closed substack 
of Mw-

Nonordinary 
Portion of the 
Home VF-Pattern 

Ordinary Locus 
of the Home VF-
Pattern 

Non-Pre-Home 
VF-Patterns 

The Infinite Weil Restriction 
of the Schwarz Torsor 

The Schwarz Torsor 
in Characteristic p 

FIGURE 9. The c«>Closedness and Isolatedness of the Classical Ordinary Theory 

This is a rather surprising result in that the definition of Q"rd was such that <2ord is 
naturally an open substack of Qn which has no a priori reason to be closed (in any 
sense!) inside Qn. Moreover, A/^r is most definitely not closed in J\fy.r- Indeed, one 
of the original motivations for trying to generalize the theory of [21] was to try to 
compactify it. Thus, Theorem 2.12 states that if, instead of just considering ordinary 
nilpotent indigenous bundles modulo p, one considers Zp-flat Frobenius invariant in
digenous bundles, the theory of [21] is, in some sense, already compact! Put another 
way, if one thinks in terms of the Witt vectors parametrizing such Zp-flat Frobenius 
invariant indigenous bundles, then although the scheme defined by the first compo
nent of the Witt vector is not "compact," if one considers all the components of the 
Witt vector, the resulting scheme is, in some sense, "compact" (i.e., w-closed in the 
space Sw of all indigenous bundles over the Witt vectors). This phenomenon is sim
ilar to the phenomenon observed in Theorem 2.9. In fact, if one combines Theorem 
2.9 with Theorem 2.12, one obtains that: 
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In the home (i.e., classical ordinary) case, the stack Qord is cv-closed 
in Sw and disjoint from the closures of all Qu for all non-pre-home 
TV. Moreover, Qord is naturally an u-closed substack of Qu for all 
pre-home IF. 

This fact is rendered in pictorial form in Fig. 9; cf. also the discussion of § 3 below. 
The next main result of the generalized ordinary theory is the generalized ordinary 

version of Theorem 1.2. First, let us observe that since the natural morphism J\ford —• 
(Mg,r)¥p is etale, it admits a unique lifting to an etale morphism 

•A/2prd - (Mg,r)zp 

of smooth p-adic formal stacks over Zp. Unlike in the classical ordinary case, however, 
where one obtains a single canonical modular Frobenius lifting, in the generalized case, 
one obtains a whole system of Frobenius liftings (cf. Theorem 1.8 of [22], Chapter 
VII) on Njfd\ 

Theorem 2.13 (Canonical System of Frobenius Liftings). — Over N%fd, there is a 
canonical system of Frobenius liftings and indigenous bundles: i.e., for each indige
nous i (i.e., such that II(i) = x)> a lifting 

Фlog . /vrord \ford 

of a certain power of the Frobenius morphism, together with a collection of indigenous 
bundles Vi on the tautological curve (pulled back from (Aig,r)zp) overJ\f£*d. Moreover, 
these Frobenius liftings and bundles are compatible, in a natural sense (Definition 1.7 
of [22], Chapter VII). 

See Fig. 10 for an illustration of the system of Frobenius liftings obtained for the 
VF-pattern illustrated in Fig. 7. 

At this point, one very important question arises: 

To what extent are the stacks Aford nonempty? 

Needless to say, this is a very important issue, for if the Aford are empty most of 
the time, then the above theory is meaningless. In the classical ordinary case, it was 
rather trivial to show the nonemptiness of A/^r. In the present generalized ordinary 
setting, however, it is much more difficult to show the nonemptiness of AfOTd. In 
particular, one needs to make use of the extensive theory of [22], Chapters II and IV. 
Fortunately, however, one can show the nonemptiness of J\ford in a fairly wide variety 
of cases (Theorems 3.1 and 3.7 of [22], Chapter VII): 

Theorem 2.14 (Binary Existence Result). — Suppose that g > 2; r = 0; andp > 4?9~3. 
Then for any binary VF-pattern (i.e., VF-pattern such that II(Z) C {0, x})> the stack 
Aford is nonempty. 
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A Lifting of 
4)4 

The Corresponding 
Frobenius Liftings in the 

Generalized Ordinary Case 

The Space on which the 
Frobenius Liftings Live 

A Lifting of A Lifting of 
4.2 

A Typical Corresponding VF-Pattern (of Period 8): 
X> X-1.0, 0, %,X-2, X, 0,... 

FIGURE 10. The Canonical System of Modular Frobenius Liftings 

Theorem 2.15 (Spiked Existence Result). — Suppose that 2g — 2 + r > 3 and p > 5. 
Then there exists a uspiked VF-pattern" of period 2 (i.e., zu = 2 and 0 < 11(1) < \ ) 
for which №Td is nonempty. 

In fact, there is an open substack of№Td called the very ordinary locus (defined by 
more stringent conditions than ordinarity); moreover, one can choose the spiked VF-
pattern so that not onlyj\ford, but also the uvery ordinary locus of№vd"is nonempty. 

These cases are "fairly representative" in the following sense: In general, in the binary 
case, the reduction modulo p of a II-indigenous bundle will be dormant. In the spiked 
case (of Theorem 2.15), the reduction modulo p of a II-indigenous bundle will be 
spiked. Thus, in other words, 

Roughly speaking, these two existence results show that for each type 
(admissible, dormant, spiked) of nilcurve, there exists a theory (in 
fact, many theories) of canonical liftings involving that type of nil-
curve. 

Showing the existence of such a theory of canonical liftings for each generic point of 
ATg,r was one of the original motivations for the development of the theory of [22]. 

Next, we observe that just as in Theorem 1.2 (the classical ordinary case), 
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In the cases discussed in Theorems 2.14 and 2.15, one can also 
construct canonical systems of Frobenius liftings on certain "ordinary 
loci" of the universal curve over . Moreover, these systems of 
canonical Frobenius lifting lie over the canonical system of modular 
Frobenius liftings of Theorem 2.13. 

We refer to Theorem 3.2 of [22], Chapter VIII and Theorem 3.4 of [22], Chapter IX 
for more details. 

We end this subsection with a certain philosophical observation. In [22], Chapter 
VI, 

The stack Qu is referred to as the stack of quasi-analytic self-
isogenies. 

That is to say, in some sense it is natural to regard the Frobenius invariant indigenous 
bundles parametrized by Qu as isogenics of the curve (on which the bundles are 
defined) onto itself. Indeed, this is suggested by the fact that over the ordinary 
locus (i.e., relative to the Frobenius invariant indigenous bundle in question) of the 
curve, the bundle actually does define a literal morphism, i.e., a Frobenius lifting (as 
discussed in the preceding paragraph). Thus, one may regard a Frobenius invariant 
indigenous bundle as the appropriate way of compactifying such a self-isogeny to 
an object defined over the whole curve. This is why we use the adjective "quasi-
analytic" in describing the self-isogenies. (Of course, such self-isogenies can never 
be p-adic analytic over the whole curve, for if they were, they would be algebraic, 
which, by the Riemann-Hurwitz formula, is absurd.) Note that this point of view is 
in harmony with the situation in the parabolic case (g = 1, r = 0), where there is an 
algebraically defined canonical choice of indigenous bundle, and having a Frobenius 
invariant indigenous bundle really does correspond to having a lifting of Frobenius 
(hence a self-isogeny of the curve in question). 

Moreover, note that in the case where the VF-pattern has several x — \(%9~2+r)'s 
in a period, so that there are various indigenous TVs in addition to the original 
Frobenius invariant indigenous bundle V, one may regard the situation as follows. 
Suppose that V is indigenous over a curve X —• W(S), whereas Vi is indigenous over 
Xi —» W(S). Then one can regard the "quasi-analytic self-isogeny" V : X —• X as 
the composite of various quasi-analytic isogenics V% : Xi —• Xj (where i and j are 
"ind-adjacent" integers). Note that this point of view is consistent with what literally 
occurs over the ordinary locus (cf. Theorem 3.2 of [22], Chapter VIII). Finally, we 
observe that 

The idea that Qn is a moduli space of some sort of p-adic self-
isogeny which is "quasi-analytic" is also compatible with the analogy 
between Qu and Teichmiiller space (cf the discussion of Corollary 
2.7) in that Teichmiiller space may be regarded as a moduli space of 
quasiconformal maps (cf, e.g., [2]). 
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2.5. Geometrization. — In the classical ordinary case, once one knows the ex
istence of the canonical modular Frobenius lifting (Theorem 1.2), one can apply a 
general result on ordinary Frobenius liftings (Theorem 1.3) to conclude the exis
tence of canonical multiplicative coordinates on -A/̂ d. We shall refer to this process 
of passing (as in Theorem 1.3) from a certain type of Frobenius lifting to a local 
uniformization/canonical local coordinates associated to the Frobenius lifting as the 
geometrization of the Frobenius lifting. In the generalized ordinary context, Theo
rem 2.13 shows the existence of a canonical system of Frobenius liftings on the Af£*d 
associated to a VF-pattern (II, zu). Thus, the following question naturally arises: 

Can one geometrize the sort of system of Frobenius liftings that one 
obtains in Theorem 2.13 in a fashion analogous to the way in which 
ordinary Frobenius liftings were geometrized in Theorem 1.3? 

Unfortunately, we are not able to answer this question in general. Nevertheless, in the 
cases discussed in Theorems 2.14 and 2.15, i.e., the binary and very ordinary spiked 
cases, we succeed (in [22], Chapters VIII and IX) in geometrizing the canonical system 
of modular Frobenius liftings. The result is uniformizations/geometries based not on 
Gm as in the classical ordinary case, but rather on more general types of Lubin- Tate 
groups, twisted products of Lubin- Tate groups, and fibrations whose bases are Lubin-
Tate groups and whose fibers are such twisted products. In the rest of this subsection, 
we would like to try to give the reader an idea of what sorts of geometries occur in 
the two cases studied. 

In the following, we let & be a perfect field of characteristic p, A its ring of Witt 
vectors W(k), and S a smooth p-adic formal scheme over A. Let A be a positive 
integer, and let 0\ = W(Fp\). For simplicity, we assume that 0\ C A. Let Q\ be 
the Lubin-Tate formal group associated to 0\. (See [3] for a discussion of Lubin-Tate 
formal groups.) Then Gx is a formal group over 0\, equipped with a natural action 
by 0\ (i.e., a ring morphism 0\ E n d o A M o r e o v e r , it is known that the 
space of invariant differentials on Q\ is canonically isomorphic to 0\. Thus, in the 
following, we shall identify this space of differentials with 0\. 

We begin with the simplest case, namely, that of a Lubin-Tate Frobenius lifting. Let 
: S —• S be a morphism whose reduction modulo p is the Ath power of the Frobenius 

morphism. Then differentiating 3>s defines a morphism d$s • ®S^S/A —> &s/A which 
is zero in characteristic p. Thus, we may form a morphism 

: $>*SQS/A —• &s/A 

by dividing d<&s by p. Then $>s is called a Lubin-Tate Frobenius lifting (of order X) 
if £1$ is an isomorphism. If 3>s is a Lubin-Tate Frobenius lifting, then it induces a 
"Lubin-Tate geometry" - i.e., a geometry based on Q\ - on S. That is to say, one has 
the following analogue of Theorem 1.3 (cf. Theorem 2.17 of [22], Chapter VIII): 
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Theorem 2.16 (Lubin-Tate Frobenius Liftings). — Let 3>s : S —> S be a Lubin-Tate 
Frobenius lifting of order A. Then taking the invariants of Qs/A with respect to 
f£<i> gives rise to an Stale local system on S of free 0\-modules of rank equal 
to dirriA('S'). 

Let z € S(k) be a point valued in the algebraic closure ofk. Then ftz =f tt&\z may 
be thought of as a free 0\-module of rank d i m ^ S ) ; write €>z for the 0\-dual of £lz. 
Let Sz be the completion of S at z. Then there is a unique isomorphism 

TZ:SZ^ Gx ®gl G2 

such that: 

(i) the derivative ofTz induces the natural inclusion QZ £IS/A\SZ; 

(ii) the action of$>s on Sz corresponds to multiplication by p on Gx <S>ffA Oz. 

Here, by "G\®^>x ®z, " we mean the tensor product over 0\ of (formal) group schemes 
with Ox-action. Thus, Gx ®ol ®z ^s noncanonically isomorphic to the product of 
dimes ' ) = ra,nkox(@z) copies of Gx-

Of course, this result has nothing to do with the moduli of curves. In terms of VF-
patterns, Theorem 2.13 gives rise to a Lubin-Tate Frobenius lifting of order zu when 
the VF-pattern is of pure tone vo. 

The next simplest case is the case of an anabelian system of Frobenius liftings. 
Let n be a positive integer. Then an anabelian system of Frobenius liftings of length 
n and order A is a collection of n Lubin-Tate Frobenius liftings 

Фт Фг> : Ь —• S 
each of order A. Of course, in general such Frobenius liftings will not commute with 
one another. In fact, it can be shown that two Lubin-Tate Frobenius liftings of order 
A commute with each other if and only if they are equal (Lemma 2.24 of [22], Chapter 
VIII). This is the reason for the term "anabelian." Historically, this term has been used 
mainly in connection with Grothendieck's Conjecture of Anabelian Geometry ([12]). 
The reason why we thought it appropriate to use the term here (despite the fact that 
anabelian geometries as discussed here have nothing to do with the Grothendieck 
Conjecture) is the following: (Just as for the noncommutative fundamental groups of 
Grothendieck's anabelian geometry) the sort of noncommutativity that occurs among 
the &i's (at least in the modular case - cf. Theorem 2.13) arises precisely as a result 
of the hyperbolicity of the curves on whose moduli the 3>i's act. 

Let Si =f ^d&i. Let A ^f Sno- • -oSi. Then taking invariants of tts/A with respect to 
A gives rise to an etale local system on S in free ONA-modules of rank dim^*!?). 
Next let SPD denote the p-adic completion of the PD-envelope of the diagonal in 
the product (over A) of n copies of S\ let SFM denote the p-adic completion of the 
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completion at the diagonal of the product (over 4̂) of n copies of .5. Thus, we have a 
natural morphism 

SPD —• SFM 

Moreover, one may think of SPD as a sort of localization of SFM- Write 3>PD : <SPD —> 
5PD for the morphism induced by sending 

(si,..., sn) (*l(s2), *2(s3), • • •, *n(5l)) 

(where (si,..., sn) represents a point in the product of n copies of S). Then we have 
the following result (cf. Theorem 2.17 of [22], Chapter VIII): 

Theorem 2.17 (Anabelian System of Frobenius Liftings). — Let <E>i,..., 3>n : S —> S be 
a system of anabelian Frobenius liftings of length n and order A. Let z G S(k) be a 
point valued in the algebraic closure of k. Then Qz =f £l#\z may be thought of as a 
free On\-module of rank dim^(.S); write &z for the On\-dual of Qz. Let (SPD)z be 
the completion of SPD at z. Then there is a unique morphism 

Tz : (SPD)* - Gx <8>%x 

such that: 

(i) the derivative ofTz induces a certain (see Theorem 2.15 o/[22], Chapter VIII 
for more details) natural inclusion of £lz into the restriction to (SPD)U °f the differ
entials of Yl7=i & over A; 

(ii) the action O / $ P D on (5PD)z is compatible with multiplication by p on Q\ ®|f 

Here, by "G\$$^§x ®z," we mean the tensor product over 0\ of (formal) group schemes 
with Ox-action. Thus, Q\ (g>|f Sz is noncanonically isomorphic to the product of 
n • dimA(S) = rankc>A(©2) copies of G\-

Moreover, in general, Tz does not descend to (.SFM)^ (C -̂ [22], Chapter VIII, §2.6, 
3.1). 

One way to envision anabelian geometries is as follows: The various 3Vs induce 
various linear Lubin-Tate geometries on the space S that (in general) do not commute 
with one another. Thus, the anabelian geometry consists of various linear geometries 
on S all tangled up inside each other. If one localizes in a sufficiently drastic fashion -
i.e., all the way to (SPD)* _ then one can untangle these tangled up linear geometries 
into a single (9NA-linear geometry (via Tz). However, the order A Lubin-Tate geome
tries are so tangled up that even localization to a relatively localized object such as 
(SFM)z is not sufficient to untangle these geometries. 

Finally, to make the connection with Theorem 2.13, we remark that the system of 
Theorem 2.13 gives rise to an anabelian system of length n and order A in the case 
of a VF-pattern (II, zu) for which zu = n • A, and H(i) = X (respectively, H(i) = 0) if 
and only if i is divisible (respectively, not divisible) by A. 
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In fact, both Lubin-Tate geometries and anabelian geometries are special cases of 
binary ordinary geometries (the sorts of geometries that occur for binary VF-patterns, 
i.e., n whose image C {0, x])- A general geometrization result for binary ordinary 
geometries is given in Theorem 2.17 of [22] , Chapter VIII. Here, we chose to concen
trate on the Lubin-Tate and anabelian cases (in fact, of course, Lubin-Tate geometries 
are a special case of anabelian geometries) since they are relatively representative and 
relatively easy to envision. 

The other main type of geometry that is studied in [22] is the geometry associated 
to a very ordinary spiked Frobenius lifting <E> : S —> S. Such a Frobenius lifting 
reduces modulo p to the square of the Frobenius morphism and satisfies various other 
properties which we omit here (see Definition 1.1 of [22] , Chapter IX for more details). 
In particular, such a Frobenius lifting comes equipped with an invariant called the 
colevel. The colevel is a nonnegative integer c. Roughly speaking, 

A very ordinary spiked Frobenius lifting is a Frobenius lifting which 
is "part Lubin- Tate of order 2 " and "part anabelian of length 2 and 
order 1." 

The colevel c is the number of dimensions of S on which $ is Lubin-Tate of order 2. 
The main geometrization theorem (roughly stated) on this sort of Frobenius lifting is 
as follows (cf. Theorems 1.5 and 2.3 of [22] , Chapter IX): 

I 

Classical 
Ordinary 

VF-Paltern: 
... 

(period I ) 

Pure Tone 

VF-Pallern: 

(period 2) 

Major Types of Geometries 

Anabelian 
(regarded as 
a geometry on 
the diagonal) 

VF-Pattern: 

(period 2) 

Lubin-Tate Geometry on 
the Strong Coordinates 
(which form the base) 

The Fibers Get 
an Anabelian Geometry 

The Spiked Case 
VF-Pattern: 
x- x-i.x. 
(period 2) 

FIGURE 11. Major Types of p-adic Geometries 
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Theorem 2.18 (Very Ordinary Spiked Frobenius Liftings). — Let <f> : S —± S be a very 
ordinary spiked Frobenius lifting of colevel c. Then <I> defines an etale local system QP^ 
on S of free O^-modules of rank c equipped with a natural inclusion w Qs/A-

Let z G S(k) be a point valued in the algebraic closure of k. Then Cls^ =f Q#\z may 
be thought of as a free O2-module of rank c; write ©^ for the O^-dual ofCtf1. Let Sz 
be the completion of S at z. Then there is a unique morphism 

TZ : sz - G2 © F 

such that: 

(i) the derivative ofTz induces the natural inclusion of into £ls/A> 

(ii) the action of <& on Sz is compatible with multiplication by p on G2 ®©? • 

Here, the variables on Sz obtained by pull-back via Tz carry a Lubin-Tate geometry 
of order 2, and are called the strong variables on Sz. Finally, the fiber ofTz over the 
identity element of the group object Q2 (g)ff2 ©I* admits an anabelian geometry of length 
2 and order 1 determined by <I> (plus a "Hodge sub space" for & - cf [22], Chapter IX, 
§1.5, for more details). The variables in these fibers are called the weak variables. 

Thus, in summary, 3> defines a virtual fibration on S to a base space (of dimension 
c) naturally equipped with a Lubin-Tate geometry of order 2; moreover, (roughly 
speaking) the fibers of this fibration are naturally equipped with an anabelian geom
etry of length 2 and order 1. In terms of VF-patterns, this sort of Frobenius lifting 
occurs in the case VJ — 2, 11(1) 7̂  0 (cf. Theorem 2.15). The colevel is then given by 
2 ( x - n ( l ) ) . 

Next, we note that as remarked toward the end of § 2.4, in the binary ordinary and 
very ordinary spiked cases one obtains geometrizable systems of Frobenius liftings not 
only over Af£*d (which is etale over (A49:r)zp) but also on the ordinary locus of the 
universal curve over J\f£*d. (More precisely, in the very ordinary spiked case, one must 
replace N%fd by the formal open substack defined by the very ordinary locus.) Thus, 
in particular, 

In the binary ordinary and very ordinary spiked cases, one obtains 
geometries as discussed in the above theorems not only on the moduli 
of the curves in question, but also on the ordinary loci of the universal 
curves themselves. 

See Fig. 11 for a pictorial representation of the major types of geometries discussed. 
Finally, we observe that one way to understand these generalized ordinary geome

tries is the following: 

The "Lubin-Tate-ness" of the resulting geometry on the moduli stack 
is a reflection of the extent to which the p-curvature (of the indigenous 
bundles that the moduli stack parametrizes) vanishes. 

ASTÉRISQUE 278 



AN INTRODUCTION TO p-ADIC TEICHMÙLLER THEORY 41 

That is to say, the more the p-curvature vanishes, the more Lubin-Tate the resulting 
geometry becomes. For instance, in the case of a Lubin-Tate geometry, the order of 
the Lubin-Tate geometry (cf. Theorem 2.16) corresponds precisely to the number of 
dormant crys-stable bundles in a period (minus one). In the case of a spiked geometry, 
the number of "Lubin-Tate dimensions" is measured by the colevel. Moreover, this 
colevel is proportional to the degree of vanishing of the p-curvature of the indigenous 
bundle in question. 

2.6. The Canonical Galois Representation. — Finally, since we have been con
sidering Frobenius invariant indigenous bundles, 

We would like to construct representations of the fundamental group 
of the curve in question into PGL2 by looking at the Frobenius in
variant sections of these indigenous bundles. 

Such representations will then be the p-adic analogue of the canonical representation 
in the complex case of the topological fundamental group of a hyperbolic Riemann 
surface into PSL2OR) C PGL2(C) (cf. the discussion at the beginning of §1.3). Un
fortunately, things are not so easy in the p-adic (generalized ordinary) case because 
a priori the canonical indigenous bundles constructed in Theorem 2.13 only have 
connections and Frobenius actions with respect to the relative coordinates of the tau
tological curve over Af%*d. This means, in particular, that we cannot immediately 
apply the theory of [6], §2, to pass to representations of the fundamental group. To 
overcome this difficulty, we must employ the technique of crystalline induction devel
oped in [21]. Unfortunately, in order to carry out crystalline induction, one needs to 
introduce an object called the Galois mantle which can only be constructed when the 
system of Frobenius liftings on N%fd is geometrizable. Thus, in particular, we succeed 
(in [22], Chapter X) in constructing representations of the sort desired only in the 
binary ordinary and very ordinary spiked cases. 

First, we sketch what we mean by the Galois mantle. The Galois mantle can 
be constructed for any geometrizable system of Frobenius liftings (e.g., any of the 
types discussed in §2.5). In particular, the notion of the Galois mantle has nothing 
to do with curves or their moduli. For simplicity, we describe the Galois mantle 
in the classical ordinary case. Thus, let S and A be as in § 2.5. Let II5 be the 
fundamental group of S ®zp Qp (for some choice of base-point). Let $ be a classical 
ordinary Frobenius lifting (in other words, Lubin-Tate of order 1) on 5. Then by 
taking Frobenius invariant sections of the tangent bundle, one obtains an etale local 
system ©|J on S of free Zp-modules of rank dimA(S). Moreover, defines a natural 
exact sequence of continuous Il^-modules 

0 — 0^(1) -+ JS* -> Zp — 0 

where the "(1)" denotes a Tate twist, and "Zp" is equipped with the trivial Il^-action. 
Roughly speaking, this extension of Ils-modules is given by taking the pth power 
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roots of the canonical multiplicative coordinates of Theorem 1.3 (cf. §2.2 of [22], 
Chapter VIII for a detailed discussion of the p-divisible group whose Tate module 
may be identified with E$). Let B' be the affine space of dimension dim^(5) over Zp 
parametrizing splittings of the above exact sequence. Then the action of l i s on the 
above exact sequence induces a natural action of l i s on Bf. Roughly speaking, the 
Galois mantle B associated to 4> is the p-adic completion of a certain kind of p-adic 
localization of B. 

More generally, to any geometrizable system of Frobenius liftings 
(as in §2.5) on S, one can associate a natural p-adic space B - the 
Galois mantle associated to the system of Frobenius liftings - with 
a continuous Us-action. In the binary ordinary case, B will have a 
natural affine structure over some finite étale extension of 1*p. In the 
very ordinary spiked case, B will be fibred over an affine space over 
O2 with fibers that are also equipped with an affine structure over O2. 

In fact, to be more precise, B is only equipped with an action by a certain open 
subgroup of l i s , but we shall ignore this issue here since it is rather technical and not 
so important. We refer to §2.3 and §2.5 of [22], Chapter IX for more details on the 
Galois mantle. So far, for simplicity, we have been ignoring the logarithmic case, but 
everything is compatible with log structures. 

We are now ready to state the main result on the canonical Galois representation 
in the generalized ordinary case, i.e., the generalized ordinary analogue of Theorem 
1.4 (cf. Theorems 1.2 and 2.2 of [22], Chapter X). See Fig. 12 for a graphic depiction 
of this theorem. 

Theorem 2.19 (Canonical Galois Representation). — Letp be an odd prime. Let g and 
r be nonnegative integers such that 2g — 2 + r > 1. Fix a VF-pattern (II, vo) which is 
either binary ordinary or spiked of order 2. Let S =f in the binary ordinary case, 

and let S be the very ordinary locus of in the spiked case. Let Z —> S be a certain 
appropriate finite covering which is log étale in characteristic zero (cf. the discussion 
preceding Theorems 1.2 and 2.2 o/[22]? Chapter X for more details). LetXl£g -+ Zlo% 
be the tautological log-curve over Zlog. LetUxz (respectively, Hz) be the fundamental 
group of Xl£ë ®zp QP (respectively, Zlog ®zp Qp) for some choice of base-point. (Of 
course, despite the similarity in notation, these fundamental groups have no direct 
relation to the VF-pattern "EL") Thus, there is a natural morphism Uxz ~~* ^z-
Let B be the Galois mantle associated to the canonical system of Frobenius liftings of 
Theorem 2.13. The morphism Tlxz —• 11^ allows us to regard B as being equipped 
with a Uxz-action. 

Let V be the tautological U-indigenous bundle on X. Then by taking Frobenius 
invariants ofV, one obtains a P1 -bundle 

FB^B 
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equipped with a natural continuous Hxz -action compatible with the above-mentioned 
action ofYlxz on the Galois mantle B. 

Action of 
Arithmetic 
Fundamental 
Group of Total 
Space of Family 
of Curves 

Actions are 
Compatible 

FIGURE 12. The Canonical Galois Representation 

Put another way, one obtains a twisted homomorphism of Uxz into PGL2 of the 
functions on B. (Here, "twisted" refers to the fact that the multiplication rule obeyed 
by the homomorphism takes into account the action of Tlxz on the functions on 13.) 
Finally, note that for any point of Z <S>zp Qp (at which the log structure is trivial), one 
also obtains similar representations by restriction. This gives one canonical Galois 
representations even in the non-universal case. 

Finally, in [22], Chapter X, § 1.4, 2.3, we show that: 

The Galois representation of Theorem 2.19 allows one to relate the 
various p-adic analytic structures constructed throughout [22] (i.e., 
canonical Frobenius liftings, canonical Frobenius invariant indigenous 
bundles, etc.) to the algebraic/arithmetic Galois action on the profi-
nite Teichmüller group (cf. [22], Chapter X, Theorems 1.4, 2.3). 

More precisely: By iterating the canonical Frobenius liftings on N del = Nrd swe obtain 
a certain natural infinite covering 

N ( 00 N 

Action of 
Arithmetic 
Fundamental 
Group of 
Base Space 

P 1 -bundle 

The Galois Mantle 

The Canonical Projective Bundle 
over the Galois Mantle 

p-adic spaces 
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(i.e., projective limit of finite coverings which are log etale in characteristic zero). On 
the other hand, if we denote by 

sdx Mz def Md rld z 
the universal log-curve over the moduli stack, and by Cjj the geometric generic fiber of 
this morphism, then the natural outer action ^i{Mqp) (i-e., action on a group defined 
modulo inner automorphisms of the group) on 7Ti(C%) defines an action of tti(Mq ) 
on 

RepQp d^ Repine(X),PGL2(Om)) 
(where is defined to be the ring of Witt vectors with coefficients in the finite field 
of p™ elements, and uRep" denotes the set of isomorphism classes of homomorphisms 
tt\°P(X) —> PGL2(OTU); two such homomorphisms are regarded as isomorphic if they 
differ by composition with an inner automorphism of PGL2{0^)). Moreover, this 
action defines (by the "definition of 7Ti") an infinite etale covering 7Zqp —• «Mqp. We 
denote the normalization of Aizp in 7̂ qp by 7Zzp- Let A4 be the p-adic completion 
of Aizp, and 1Z d= lZzp *Mzp Mzp- Then the main results on this topic (i.e., [22], 
Chapter X, Theorems 1.4, 2.3) state that the Galois of representation of Theorem 
2.19 induces a commutative diagram 

N[oo] sd K 

sdv M 
in which the horizontal morphism (which is denoted k in [22], Chapter X) on top is 
an open immersion. 

The proof that k, is an open immersion divides naturally into three parts, corre
sponding to the three "layers" of the morphism Af[oo] —± Ai. The first layer is the 
quasi-finite (but not necessarily finite) etale morphism J\f —> M. Because the mor
phism J\f —> Ai is etale even in characteristic p, this layer is rather easy to understand. 
The second layer corresponds to the finite covering Z —* S of Theorem 2.19. Together, 
the first and second layers correspond to the "mod p portion" of the Galois represen
tation of Theorem 2.19 - i.e., the first layer corresponds to the "slope zero portion" 
of this representation modulo p, while the second layer corresponds to the "positive 
slope portion" of this representation modulo p. From the point of view of the "A4 JrV-
objects" over B(J\f) (cf. the discussion following Definition 2.5 in §2.3) corresponding 
to the representation of Theorem 2.19, this slope zero portion (i.e., the first layer) 
parametrizes the isomorphism class of these A/fJrV-objects over (B(J\f)-pp)Te^, while 
the positive slope portion (i.e., the second layer) parametrizes the isomorphism class 
of the deformations of these A/(^rV-objects from bundles on curves over (B(J\f)Fp)red 
to bundles on curves over B(N)YP> 
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Finally, the third layer of the covering is what remains between A/"[oo] and the 
"Z" of Theorem 2.19. This portion is the analytic portion of the covering (i.e., the 
portion of the covering equipped with a natural "analytic structure"). Put another 
way, this portion is the portion of the covering which is dealt with by the technique of 
crystalline induction (which is concerned precisely with equipping this portion of the 
covering with a natural "crystalline" analytic structure - cf. [22], Chapter IX, § 2.3 -
especially the Remark following Theorem 2.11 - for more details). 

Thus, the fact that the morphism "does not omit any information" at all three 
layers is essentially a tautological consequence of the various aspects of the extensive 
theory developed throughout [22]. From another point of view, by analyzing this 
morphism k, we obtain a rather detailed understanding of a certain portion of the 
canonical tower of coverings of Mqp =F (A4^)qp given by 

MQ M%Ad 

analogous to the analysis given in [19] of coverings of the moduli stack of elliptic curves 
over Zp obtained by considering p-power torsion points (cf. the Remark following [22], 
Chapter X, Theorem 1.4, for more details). 

Thus, in summary, Theorem 2.19 concludes our discussion of "p-adic Teichmiiller 
theory" as exposed in [22] by constructing a p-adic analogue of the canonical rep
resentation discussed at the beginning of §1.3, that is to say, a p-adic analogue of 
something very close to the Fuchsian uniformization itself — which was where our 
discussion began (§1.1). 

3. Conclusion 

Finally, we pause to take a look at what we have achieved. Just as in § 1, we would 
like to describe the p-adic theory by comparing it to the classical theory at the infinite 
prime. Thus, let us write 

Cc^Mc = (Ml°sr)c 

for the universal log-curve over the moduli stack (M°^)c of r-pointed stable log-
curves of genus g over the complex numbers. Let us fix a "base-point" (say, in the 
interior - i.e., the open substack parametrizing smooth curves - of Aie) [X] G A4c(C) 
corresponding to some hyperbolic algebraic curve X over C. Let us write X = X(C) 
for the corresponding hyperbolic Riemann surface. Next, let us consider the space 

Repc d= Rep(7rfp(A'),PGL2(C); 

of isomorphism classes of representations of the topological fundamental group tTi°P(X) 
into PGI/2(C). This space has the structure of an algebraic variety over C, induced 
by the algebraic structure of PGL2(C) by choosing generators of 7r\OP(X). Note, 
moreover, that as [X] varies, the resulting spaces Rep(7Ti(^), PGL2(C)) form a local 
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system on Aic (valued in the category of algebraic varieties over C) which we denote 
by 

7Zc —> Mc 

One can also think of IZc as the local system defined by the natural action of 
7TiOP(A4c(C)) on Repc =f Rep(7rJop(Ar), PGL2(C)) which is induced by the natu
ral outer action of 7r^op(-Mc(C)) on tti°p(^) - cf. the discussion of the p-adic case at 
the end of §2.6 above (for more details, see [22], Chapter X, § 1.4, 2.3). 

Next, let us denote by 

QF c RC 

the subspace whose fiber over a point [Y] G A4c(C) is given by the representations 
7r\op(y) —> PGZ/2(C) that define quasi-Fuchsian groups (cf. §1.4), i.e., simultaneous 
uniformizations of pairs of Riemann surfaces (of the same type (#,r)), for which one 
(say, the "first" one) of the pair of Riemann surfaces uniformized is the Riemann sur
face y corresponding to [Y]. Thus, whereas the fibers of 7Zc —> -Mc are of dimension 
2(Sg — 3 + r) over C, the fibers of QT —• A4c are of dimension Sg — 3 -f r over C. 

Local System of 
Representations 

into PGL 2 

Integral Subspaces 
of Fibers of Local 

System 

Moduli Stack of 
Hyperbolic Curves 

FIGURE 13. Integral Subspaces of the Local System of Representations 
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Then, relative to the notation of [22], Chapter X, §1.4, 2.3, the analogy between 
the complex and p-adic cases may be summarized by the following diagram: 

QT 4=>* M\oo\ 

n n 

(Kc Mc) <=^ (U-+M) 

(where the vertical inclusion on the left is the natural one; and the vertical inclusion 
on the right is the morphism k of [22], Chapter X, Theorems 1.4, 2.3). We also give 
an illustration (Fig. 13) of this sort of situation. Relative to this illustration, the 
"integral (or bounded) subspaces" of the local system are QT and A/"[oo] (cf. §1.4 
for an explanation of the term "integral"). Note that just as in the complex case, the 
fibers of the covering N[oo] —• M. have, so to speak, "Galois dimension" 3# —3 + r over 
O-co (cf. the crystalline induction portion of the proof of [22], Chapter X, Theorem 
1.4), whereas the fibers of the covering TZ —> M. are of "Galois dimension" 2(3g — 3 + r) 
over OVJ. In the p-adic case, A/"[oc] denotes the "crystalline" or "Frobenius invariant 
indigenous bundle" locus of 7Z - cf. the discussion of § 1.4. 

In the complex case, the "Frobenius" (i.e., complex conjugation) invariant portion 
of QT is the space of Fuchsian groups, hence defines the Bers uniformization of 
Teichmiiller space (cf. §1.5). On the other hand, in the p-adic case, the covering 
A/̂ oo] Ai is "made up of" composites of Frobenius liftings, by forgetting that these 
Frobenius liftings are morphisms from a single space to itself, and just thinking of 
them as coverings. If one then invokes the structure of Frobenius liftings as morphisms 
from a single space to itself one so-to-speak recovers the original Frobenius liftings, 
which (by the theory of [22], Chapters VIII and IX) define p-adic uniformizations of 
Mlog gr (Zp 

In the complex case, the space of quasi-Fuchsian groups QT may also be inter
preted in terms of quasi-conformal maps. Similarly, in the p-adic case, one may inter
pret integral Frobenius invariant indigenous bundles as quasi-analytic self-isogenics 
of hyperbolic curves (cf. the end of § 2.4). 

Finally, in the complex case, although QT is not closed in 7£c, the space QT (when 
regarded as a space of representations) is complete relative to the condition that the 
representations always define indigenous bundles for some conformal structures on 
the two surfaces being uniformized. Note that one may think of these two surfaces as 
reflections of another, i.e., translates of one another by some action of Frobenius at 
the infinite prime (i.e., complex conjugation). Similarly, although jV[oo] is not closed 
in 1Z, it is complete (at least for binary VF-patterns II) in the sense discussed at the 
end of [22], Chapter X, §1.4, i.e., relative to the condition that the representation 
always defines an indigenous bundle on the universal thickening B+{—) of the base. 
Note that this thickening B+(—) is in some sense the minimal thickening of (the 
normalization of the maximal log etale in characteristic zero extension of) "(—)" that 
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admits an action of Frobenius (cf. the theory of [22], Chapter VI, §1; B+(—) is the 
PD-completion of the rings B(-) discussed in [22], Chapter VI, §1; in fact, instead 
of using B+(—) here, it would also be quite sufficient to use the rings B(-) of [22], 
Chapter VI, §1). In other words, just as in the complex case, 

jV[oo] is already complete relative to the condition that the represen
tations it parametrizes always define indigenous bundles on the given 
curve and all of its Frobenius conjugates. 
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