
Astérisque

THOMAS ZINK
The display of a formal p-divisible group

Astérisque, tome 278 (2002), p. 127-248
<http://www.numdam.org/item?id=AST_2002__278__127_0>

© Société mathématique de France, 2002, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2002__278__127_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 
278, 2002, p. 127-248 

T H E D I S P L A Y O F A F O R M A L p - D I V I S I B L E G R O U P 

by 

Thomas Zink 

Abstract. — We give a new Dieudonne theory which associates to a formal p-divisible 
group X over an excellent p-adic ring R an object of linear algebra called a display. 
On the display one can read off the structural equations for the Cartier module of X, 
and find the crystal of Grothendieck-Messing. We give applications to deformations 
of formal p-divisible groups. 

Introduction 

We fix throughout a prime number p. Let R be a commutative unitary ring. Let 
W(R) be the ring of Witt vectors. The ring structure on W(R) is functorial in R and 
has the property that the Witt polynomials are ring homomorphisms: 

wn : W(R) —• R 

(x0j.. .a:*,...) i—> x% -\-px^ H \-pnxn 
Let us denote the kernel of the homomorphism wo by IR. The Verschiebung is a 
homomorphism of additive groups: 

v : W(R) • W(R) 

(x0j... Xi, . . . ) i—• (0, x0,... Xi, . . . ) 

The Probenius endomorphism F : W(R) —+ W(R) is a ring homomorphism. The 
Verschiebung and the Frobenius are functorial and satisfy the defining relations: 

wn(Fx) == wn+i(x), for n > 0 
wn(vx) = pwn-i(x), for n > 0, w0(vx) = 0. 

2000 Mathematics Subject Classification. — 14L05, 14F30. 
Key words and phrases. — p-di visible groups, crystalline cohomology. 
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128 T. ZINK 

Moreover the following relations are satisfied: 

FV = p, v(Fxy) = xvy, x,yeW(R) 

We note that IR = VW(R). 
Let Pi and P2 be VF(P)-modules. An F-linear homomorphism <fi : Pi —* P2 is a 

homomorphism of abelian group which satisfies the relation cf)(wm) = Fw</)(m), where 
ra G P , w G W(R). Let 

: W{R) ®F,w(R) Pi —> P2 

be the linearization of <fi. We will call 0 an F-linear epimorphism respectively an 
F-linear isomorphism if <ffi is an epimorphism respectively an isomorphism. 

The central notion of these notes is that of a display. The name was suggested 
by the displayed structural equations for a reduced Cartier module introduced by 
Norman [N]. In this introduction we will assume that p is nilpotent in R. 

Definition 1. — A 3n-display over R is a quadruple (P, Q, P, V~1), where P is a 
finitely generated projective W(R)-module, Q C P is a submodule and F and V~x 
are ^-linear maps F : P —> P, V~x : Q —> P . 

The following properties are satisfied: 
(i) IRP C Q C P and P/Q is a direct summand of the W(P)-module P/IRP. 

(ii) V~x : Q —> P is a F-linear epimorphism. 
(iii) For x G P and w € W(P), we have 

V-^^wx) = wFx. 

If we set w = 1 in the relation (iii) we obtain: 

Fx = V~1(vlx) 

One could remove F from the definition of a 3n-display. But one has to require that 
the F-linear map defined by the last equation satisfies (iii). 

For y G Q one obtains: 
Fy = p - V~xy 

We note that there is no operator V. The reason why we started with V~l is the 
following example of a 3n-display. Let R — k be a perfect field and let M be a 
Dieudonne module. It is a finitely generated free W(fc)-module which is equipped with 
operators F and V. Since V is injective, there is an inverse operator V~x : VM —• M. 
Hence one obtains a display (M, VM, P, V-1). In fact this defines an equivalence of 
the category of Dieudonne modules with the category of 3n-displays over k. 

Let us return to the general situation. The M^(P)-module P always admits a direct 
decomposition 

P = L 0 T, 
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THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 129 

such that Q = L 0 IRT. We call it a normal decomposition. For a normal decompo
sition the following map is a F-linear isomorphism: 

V'1 0 F : L 0 T • P 

Locally on Specie the W(i?)-modules L and T are free. Let us assume that T has 
a basis e i , . . . , e<f and L has a basis e^+i , . . . , e^. Then there is an invertible matrix 
{otij) with coefficients in W(R), such that the following relations hold: 

Fej = r 

wqs 
^oiijei, for j = 1 , . . . ,d 

(wo(0ki 
SAI 

sd+d 
a^-e* for j = d + 1 , . . . , ft, 

Conversely for any invertible matrix (a^) these relations define a 3n-display. 
Let ((3ki) the inverse matrix of (a^) . We consider the following matrix of type 

(ft, — d) x (ft — d) with coefficients in R/pR: 

B = (wo(0ki) modulo p)fe,i=d+i,...,/i 
Let us denote by be the matrix obtained from B by raising all coefficients of B 
to the power p. We say that the 3n-display defined by (a^) satisfies the F-nilpotence 
condition if there is a number iV such that 

JB(PJV-1)...JB(P).JB = 0. 

The condition depends only on the display but not on the choice of the matrix. 

Definition!. — A 3n-display which locally on Speci? satisfies the F-nilpotence con
dition is called a display. 

The 3n-display which corresponds to a Dieudonne module M over a perfect field 
k is a display, iff V is topologically nilpotent on M for the p-adic topology. In the 
covariant Dieudonne theory this is also equivalent to the fact that the p-divisible group 
associated to M has no etale part. 

Let S be a ring such that p is nilpotent in S. Let a C S be an ideal which is 
equipped with divided powers. Then it makes sense to divide the Witt polynomial 
wm by pm. These divided Witt polynomials define an isomorphism of additive groups: 

W(a) —> aN 
Let a C aN be the embedding via the first component. Composing this with the 
isomorphism above we obtain an embedding a C W(a). In fact a is a VF(Sf)-submodule 
of W(a), if a is considered as a VT(5)-module via wo. Let R = S/a be the factor 
ring. We consider a display V = (P, Q, Fy V~x) over S. By base change we obtain a 
display over R: 

VR = V = (P,Q,F,V-1) 
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130 T. ZINK 

By definition one has P = W(R)®w(S) P- Let us denote by Q = W(a)P + Q C P the 
inverse image of Q. Then we may extend the operator V~x uniquely to the domain 
of definition Q, such that the condition V~xaP = 0 is fulfilled. 

Theorem 3. — With the notations above let V' = (P ' , Q', P , V~x) be a second display 
over S, and V = (P ' , Q', P, V~1) the display over R obtained by base change. Assume 
we are given a morphism of displays u : V —> V over R. Then u has a unique lifting 
u to a morphism of quadruples: 

u : (P, Q, F, V-1) — (P', Q', F, V^1). 

This allows us to associate a crystal to a display: Let R be a ring, such that p is 
nilpotent in R. Let V = (P, <2, P, V~x) be a display over R. Consider a surjection 
S R whose kernel a is equipped with a divided power structure. If p is nilpotent 
in S we call such a surjection a pd-thickening of R. Let V = (P, Q, P , V~1) be any 
lifting of the display V to S. By the theorem the module P is determined up to 
canonical isomorphism by V. Hence we may define: 

VV{S) = S®W{S)P 

This gives a crystal on Spec R if we sheafify the construction. 
Next we construct a functor ET from the category of 3n-displays over R to the 

category of formal groups over R. A nilpotent P-algebra Af is an P-algebra (without 
unit), such that AfN = 0 for a sufficiently big number N. Let NUR denote the 
category of nilpotent R-algebras. We will consider formal groups as functors from the 
category Nil/? to the category of abelian groups. Let us denote by W(J\f) C W(J\T) 
the subgroup of all Witt vectors with finitely many nonzero components. This is a 
W(P)-submodule. We consider the functor G^{J\T) = W(Af) <8>w(R) P on NilR with 
values in the category of abelian groups. Let G^1 be the subgroup functor which is 
generated by all elements in W(N) ®w(R) P of the following form: 

v€®x, <£®y, f e W{N), y e Q, x e P. 

Then we define a map: 

(1) V'1 - id : G~x —• G°v 

On the generators above the map V~x — id acts as follows: 

(V1 - id)(v£ 0 x) = £ (8) Fx - v£ ® x 

(V-1 - id)(£ ® i/) = Fe ® V~xy -Z®y 

Theorem 4. — Let V = (P, Q,P, V~x) be a Sn-display over R. The cokernel of the 
map (1) is a formal group BT-p. Moreover one has an exact sequence of functors on 
Nil*; 

0 _ + G-1 y " 1 ~ l d ) —• BTV —• 0 
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THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 131 

If J\f is equipped with nilpotent divided powers we define an isomorphism: 

expp :Af®R P/Q —• HPp(Af), 
which is called the exponential map. In particular the tangent space of the formal 
group BT-p is canonically identified with P / Q . 

Let ER be the local Cartier ring with respect to the prime p. Then BT-p has the 
following Cartier module: 

M(V) = ER ®W{R) P/(F <g> x - 1 ® Fx, V ® V~1y - 1 ® y)^R, 

where x runs through all elements of P and y runs through all elements of Q, and 
( )Eh indicates the submodule generated by all these elements. 

Theorem 5. — Let V be a display over R. Then BT-p is a formal p-divisible group of 
height equal to rankw(R) P-

The restriction of the functor BT to the category of displays is faithful. It is fully 
faithful, if the ideal of nilpotent elements in R is a nilpotent ideal. 

The following main theorem gives the comparison of our theory and the crystalline 
Dieudonné theory of Grothendieck and Messing. 

Theorem 6. — Let V = (P,Q, F,V~1) be a display over a ring R. Then there is a 
canonical isomorphism of crystals over R: 

Vv — — * Bsrv 
Here the right hand side is the crystal from Messing's book [Me]. IfW(R) —• S is a 
morphism of pd-thickenings of R, we have a canonical isomorphism 

S^W(R)P = ^BTV(S). 

In this theorem we work with the crystalline site whose objects are pd-thickenings 
S —> R, such that the kernel is a nilpotent ideal. We remark that the crystal DHZV 
is defined in [Me] only for pd-thickenings with nilpotent divided powers. But if one 
deals with p-divisible groups without an étale part this restriction is not necessary 
(see corollary 97 below). In particular this shows, that the formal p-divisible group 
BT-p lifts to a pd-thickening S —• R with a nilpotent kernel, iff the Hodge filtration 
of the crystal lifts (compare [Gr] p. 106). 

The functor BT is compatible with duality in the following sense. Assume we are 
given 3n-displays V\ and V2 over a ring i?, where p is nilpotent. 

Definition 7. — A bilinear form ( , ) on the pair of 3n-displays V\, V2 is a bilinear 
form of VF(i?)-modules: 

Pl x P2 —• W(R), 
which satisfies 

v{V-1yi,v-1y2) = (yuy2) for yi e Qi, y2 e Q2. 
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132 T. ZINK 

Let us denote by Bil('Pi,'p2) the abelian group of these bilinear forms. Then we 
will define a homomorphism: 

(2) Bil(VuV2) —> Biext^HTp, x B7V2,Gm) 

Here the right hand side denotes the group of biextensions of formal groups in the 
sense of Mumford [Mu]. 

To do this we consider the exact sequences for i = 1,2: 

0 —• G^1 V~X ~ ld) Gj>. —• ETVi —> 0 

To define a biextension in Biext1(HFp1 x HZ>2, Gm), it is enough to give a pair of 
bihomomorphisms (compare [Mu]): 

« i : G^CAO x G%(jV) — Gm(AT), 
a2 : G°VI(JV) x Ĝ CAO — Gm(AT), 

which agree on G^(j\f) x Gp*(A/*), if we consider G^1 as a subgroup of G^. via 
the embedding V-1 — id, for i = 1,2. To define oc\ and a2 explicitly we use the 
Artin-Hasse exponential hex : W(j\f) —» Gm(jV): 

<*i(yux2) = hex(F-1y1,x2) for Vl G GV\(N), x2 G G^2(A/") 

OL2{x1,y2) = -hex(xi ,2 /2) for o;i G G ^ A T ) , 2/2 € Gvl(Af) 
This completes the definition of the map (2). 

Theorem 8. — Let R be a ring, such that p is nilpotent in R, and such that the ideal 
of its nilpotent elements is nilpotent. Let V\ and V2 be displays over R. Assume that 
the display V2 is F-nilpotent, i.e. there is a number r such that FrP2 C IRP2. Then 
the map (2) is an isomorphism. 

I would expect that ET induces an equivalence of categories over any noetherian 
ring. We have the following result: 

Theorem 9. — Let R be an excellent local ring or a ring such that R/pR is an algebra 
of finite type over a field k. Assume that p is nilpotent in R. Then the functor ET is 
an equivalence from the category of displays over R to the category of formal p-divisible 
groups over R. 

We will now define the obstruction to lift a homomorphism of displays. Let S —> R 
be a pd-thickening. Let V\ and V2 be displays over S, and let V\ and V2 be their 
reductions over R. We consider a morphism of displays Tp : V\ —• V2. Let </? : P\ —• P2 
the unique map which exists by theorem 3. It induces a map, which we call the 
obstruction to lift Tp: 

Obs t^ : Qi/IsPi — > a 0 5 P2/Q2 
This morphism vanishes iff Tp lifts to a homomorphism of displays tp : V\ —* V2. 
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We will now assume that pS = 0 and that ap = 0. We equip S —• R with the 
trivial divided powers. Then pObstTp = 0. Therefore pTp lifts to a homomorphism of 
displays ip : V\ —> V^- Let us assume moreover that we are given a second surjection 
T S with kernel b, such that bp = 0, and such that pT = 0. Let V\ and V2 be 
two displays, which lift V\ and TV Then we give an easy formula (proposition 73), 
which computes Obst ifr directly in terms of Obst Tp. This formula was suggested by 
the work of Gross and Keating [GK], who considered one-dimensional formal groups. 
We demonstrate how some of the results in [G] and [K] may be obtained from our 
formula. 

Finally we indicate how p-divisible groups with an etale part may be treated us
ing displays. Let R be an artinian local ring with perfect residue class field k of 
characteristic p > 0. We assume moreover that 2R = 0 if p = 2. The exact sequence 

0 > W(m) • W(R) n > W(k) • 0, 
admits a unique section d : W(k) —• W(R), which is a ring homomorphism commuting 
with F. 

We define as above: 
W(tn) = {(xo, x i , . . . ) G WT(m) | Xi = 0 for almost all i} 

Since m is a nilpotent algebra, W^m) is a subalgebra stable by F and V. Moreover 
W(m) is an ideal in W(R). 

We define a subring W(R) C W(R): 

W(R) = W(R) | f - <5TT(0 € W(m)}. 
Again we have a split exact sequence 

0 • W(m) > W(R) * ) W{k) • 0, 
with a canonical section 5 of n. Under the assumptions made on R the subring 
W(R) C W(R) is stable by F and v. Therefore we may replace in the definition of a 
3n-display the ring W(R) by W{R). The resulting object will be called a Dieudonne 
display over R. In a forthcoming publication we shall prove: 

Theorem. — Let R be an artinian local ring with perfect residue field k of charac
teristic p > 0. We assume moreover that 2R = 0 if p = 2. Then the category of 
Dieudonne displays over R is equivalent to the category of p-divisible groups over R. 

I introduced displays after discussions with M. Rapoport on the work of Gross 
and Keating [GK]. I thank Rapoport for his questions and comments and also for 
his constant encouragement, which made this work possible. I also thank J. de Jong, 
G.Faltings, and B.Messing for helpful remarks, and O.Gabber for his helpful questions, 
which he asked during lectures. The remarks of the referee helped me to correct an 
error in the first version of this paper. I forgot that Messing [Me] assumes nilpotent 
divided powers, which is necessary in the presence of an etale part (see the remarks 
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134 T. ZINK 

above). I am very grateful to him. Finally I thank the organizers of the "P-adic 
Semester" in Paris 1997 for giving me the possibility to present my results there. At 
this time a preliminary version of this work entitled "Cartier Theory and Crystalline 
Dieudonne Theory" was distributed. 

Note added in March 2001: A proof of the last theorem above is given in [Z3]. The 
relation of the theory of Ch. Breuil [Br] to the theory given here is explained in [Z4]. 
A construction of the display associated to an abelian scheme over R is given in [LZ], 
by means of a de Rham-Witt complex relative to R . 

1. Displays 

1.1. Generalities. — Let A and B be commutative rings and p : A —•> B be a 
homomorphism. If at is a £?-module, we denote by 7V[p] the A-module obtained by 
restriction of scalars. Let M be a A-module. A p-linear map a : M —• N is an bi
linear map a : M —> N[p]. It induces a P-linear map oft : B^P,AM —> N. We will say 
that a is a p-linear isomorphism (respectively epimorphism), if oft is an isomorphism 
(respectively epimorphism). 

Let R be a unitary commutative ring, which is a Z(p)-algebra. Let W(R) be the 
Witt ring with respect to the prime number p. We apply the definitions above to the 
case where A = B = W(R), and where p is the Probenius endomorphism F : W(R) —•> 
W(R). (For notations concerning the Witt ring we refer to the introduction.) As an 
example we consider the Verschiebung V : W(R) —• W(R). It induces a VF(i?)-linear 
isomorphism 

v : W(R)[F] —> IR. 

Its inverse is a F-linear map: 

V'X : IR W(R) 

This map is a F-linear epimorphism, but it is not a ^-linear isomorphism (!) unless 
R is a perfect ring. 

We define base change for F-linear maps as follows. Let S —• R be a homomorphism 
of commutative rings. Assume a : Q —> P is a F-linear homomorphism of W(S)-
modules. Then the base change CYR is 

aR : W{R) ®W{S) Q —• W{R) ®W{S) P. 

w (8) x i—• Fw <S> a(x) 

We have 

(oft)w{R) = ( A ^ ) # , 

where the index W{R) is base change for linear maps. 
We are now ready to define the notion of a display. 
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THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 135 

Definition 1. — A 3n-display over R is a quadrupel (P, Q, F, V~x), where P is a 
finitely generated projective W(P)-module, Q C P is a submodule and F and V~x 
are ^-linear maps F : P P , V~x : Q -> P . 

The following properties are satisfied: 
(i) IRP C Q C P and there exists a decomposition of P into a direct sum of 

W(P)-modules P = L 0 T, such that Q = L 0 J^T. 
(ii) F_1 : Q —• P is a F-linear epimorphism. 

(iii) For x G P and w € VK(P), we have 

(1) V~1(vwx) = wFx. 

We make some formal remarks on this definition. The 3n-displays form an additive 
category. We are mainly interested in the case, where R is a Zp-algebra. Then we 
have ZP C W(R) and hence the category is Zp-linear. 

The operator F is uniquely determined by V~x because of the relation: 

V-X(?\x) = Fx, for xeP. 

If we apply this to the case x = y e Q and apply the ^-linearity of V~x, we obtain 
the relation: 

(2) Fy=p-V-1y. 

A decomposition P = L 0 T as required in (z), we will call a normal decomposition. 
We set P = P/IRP and Q = Q/IRP. Then we get a filtration of R-modules 

(3) 0 C Q C P , 

whose graded pieces are projective finitely generated P-modules. This is the Hodge 
filtration associated to a display. 

Lemma 2. — Let R be a p-adically complete and separated ring. Let us replace in the 
definition 1 the condition (i) by the weaker condition that IRP C Q C P and that 
the filtration (3) has finitely generated projective R-modules as graded pieces. Then 
(P, Q,P, V"1) is a Sn-display. 

Before proving the lemma we need a general fact about the Witt ring. 

Proposition 3. — Let R be a p-adic ring, i.e. complete and separated in the p-adic 
topology. Then the ring W(R) is p-adic. Moreover it is complete and separated in the 
iR-adic topology. 

Proof. — We begin to show that W(R) is separated in the p-adic topology. Since 
W(R) is the projective limit of the rings WN(R/pRNR) for varying n and m it is 
enough to show that that p is nilpotent in each of the rings W^R/p^R). To see this 
we consider a ring a without unit such that pma = 0. An easy induction on m shows 
that p is nilpotent in Wn(a). 
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136 T. ZINK 

It is enough to prove our assertion for a ring R which has no p-torsion. Indeed in 
the general case we may choose a surjection S —» R where S is a torsion free p-adic 
ring. But then we obtain a surjection W(S) —• W(R) from the p-adic ring W(S) to 
the p-adically separated ring W(R). This implies that W(R) is a p-adic ring. 

To treat the case of a p-adic ring we need a few lemmas: 

Lemma 4. — Let S be a ring without p-torsion. Let x = (xo, • • •, Xm) £ Wm+i(«S') be a 
Witt vector. Then for any fixed number s > 1 the following conditions are equivalent: 

(i) ps | Xi for i = 0 , . . . ,ra 
(ii) pn+s | wn(x) for n = 0 , . . . , m. 

Proof — The first condition clearly implies the second. Assume the second condition 
holds. By induction we may assume ps | xi for i = 0 , . . . , n — 1. Then we write 

wri(x) = wn_i(xg . . . ( x0 + los DP+ pnxn. 

By the obvious implication and by induction the first term on the right hand side is = 0 
mod pO- iHps . Since (n — 1) + ps > n + s, we conclude pnxn = 0 mod pn+sS. • 

Lemma 5. — Let R be a p-torsion free ring. Let a G Wrn(R) be a given Witt vector. 
Let u be a number. We assume that the equation 

(4) pux = a 

has for each s a solution in the ring Wm(R/psR). Then the equation (4) has a solution 
in W^R). 

Proof. — Let us consider a fixed s. By assumption there is a z G Wm(R), such that 
puz = a holds in the ring Wm(R/ps+uR). We let xs be the image of z in the ring 
Wm(R/psR)- Then we claim that xs is independent of the choice of z. 

Indeed, let z' be a second choice and set £ = z — zf. The Witt components of pu£ 
are elements of psJrUR. Hence the lemma implies 

pn+s+u i Wn(p" f ) for n = 0 . . . m - 1. 

It follows that pn+s | wn(£). But applying the lemma again we obtain the ps | & for 
all Witt components of £. 

This shows the uniqueness of xs. We set x = limx5 G W(R) and obtain the desired 
solution of (4). • 

Lemma 6. — Let S be without p-torsion. We will denote by Ir the ideal yrW(S) C 
W(S). Let T be the linear topology on W(S), such that the following ideals form a 
fundamental set of open neighbourhoods of zero: 

(5) Ir + W(psS) 

Here, r, s runs through all pairs of numbers. 
Then puW(S) is for each number u closed in the topology T. 
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Proof. — We have to show 

(6) 
r,s£N 

puW(S) + Ir + W(psS) = puW(S) 

Let x be an element from the left hand side. 
We denote for a fixed number r by x the image of x in Wr(S). Then the equation 

puz — x 

has a solution z in the ring Wr(S/psS) for each number s. By the last lemma we have 
a solution in Wr(S) too. This shows x e puW(S) + Ir. 

We take the unique solution zr G ^ ( 5 ) of puzr = x in Wr(5), and we set 2 = 
lim zr. Hence x = puz e puW(S). • 

Let S be a torsion free p-adic ring. Clearly the Witt ring W(S) is complete and 
separated in the topology T. The assertion that W(S) is p-adic is a consequence of 
the last lemma and the following elementary topological fact (see Bourbaki Topologie 
III §3 Cor 1): 

Lemma 7. — Let G be an abelian group. Let A resp. B be linear topologies on G, which 
are given by the fundamental systems of neighbourhood of zero {A^} resp. {Bn}, where 
An and Bn are subgroups. 

We make the following assumptions: 
a) Each An is open in the B-topologyf i.e. the B topology is finer. 
b) Each B n is closed in the A-topology. 
c) G is complete and separated in the A-topology. 

Then G is complete and separated in the B-topology. 

We omit the easy proof. 
We note that in the Witt ring W(R) of any ring we have an equality of ideals for 

any natural number n: 

(7) rn -_n—1 T lr> = V In 

If R is ap-adic ring the additive group IR is p-adically complete and separated, because 
it is by the Verschiebung isomorphic to W(R). This shows that W(R) is then also 
complete in the IR-Û(HC topology. This completes the proof of proposition 3. • 

Corollary 8. — Assume that p is nilpotent in R . Then the p-adic and the In-adic 
topology on W(R) coincide. This topology is finer than the V-adic topology, which 
has the ideals In = YNW(R) as a fundamental system of neighbourhoods of zero. 

Proof — This is clear. • 

We turn now to the proof of lemma 2. The proposition 3 implies in particular that 
W(R) is complete and separated in the /^-adic topology. We set An = W(R)/IR. We 
start with a decomposition P = L ® T such that Q/IRP = L over A\ = R and lift it 
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step by step to a decomposition An ®w(R) P = Ln(BTn over An using the surjections 
with nilpotent kernel An —» An-i. Then we obtain the desired decomposition by 
taking the projective limit. 

Lemma 9. — Let (P, Q, F, V~x) be a 3n-display over a ring R, and P = L 0 T be a 
normal decomposition. Then the map 

(8) V'1 0 F : L 0 T • P 

is a F-linear isomorphism. 

Proof. — Since source and target of V-1 0 F are projective modules of the same 
rank, it is enough to show, that we have a ^-linear epimorphism. Indeed, by the 
property (ii) of the definition 1 the W(R)-raod\i\e P is generated by V~1l, for I E L 
and V^C^wt) for t e T and w eW. The lemma follows, since V^C^wt) = wFt. • 

Using this lemma we can define structural equations for a 3n-display, whose Hodge 
filtration (3) has free graded pieces. Let (P, Q, F, V~1) be a 3n-display over R with 
this property. Then the modules L and T i n a normal decomposition P = L 0 T, are 
free. We choose a basis e i , . . . , e<j of T, and basis ea+i . . .e/j of L. Then there are 
elements G W(R), i,j = 1 , . . . , h, such that the following relations hold. 

(9) 

Fej = 
h 

2=1 
QLijei, for j = 1 , . . . , d 

V(1 ei = h 

1=1 
OUI j et for j = d + 1 , . . . , h 

By the lemma 9 the matrix {ocij) is invertible. 
Conversely assume we are given an invertible h x /i-matrix (otij) over the ring W(R) 

and a number d, such that 0 < d < h. Let T be the free W(R)-module with basis 
e i , . . . e<i and L be the free W(P)-module with basis e^+i , . . . , e^. We set P = L © T 
and Q = L@IRT, and we define the F-linear operators F and y _ 1 by the equations 
(9) and the following equations 

Fej = 
h 

i=l 
poiijei, j = d + 1 , . . . , h 

V-1(vwej) = 
h 

i=l 
woLijei, j = 1 , . . . ,d 

One verifies easily, that this defines a 3n-display over R. 
For a 3n-display (P, Q, P, T^-1) we do not have an operator V as in Dieudonne or 

Cartier theory. Instead we have a VF(P)-linear operator: 

(10) V» : p __> W(R) ®FW{R) p 
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Lemma 10. — There exists a unique W(R)-linear map (10), which satisfies the fol
lowing equations: 

( i d 
VHwFx) = p - w <g) x, for w G W(R), x E P 

V^(wV 1y)=w<g>yJ fory^Q 

Moreover we have the identities 

(12) F*V* = pidp, V*F* =pidmR)®FtWlRip . 

Proof. — Clearly V* is uniquely determined, if it exists. We define the map V$ by 
the following commutative diagram, where w = w(r): 

W ®F,W L e W <g>F,w T 
(V-i + F)i 

(13) id +J9 id 

W ®F w L 0 W (S>F,W T 

p 

7v 

w <g>F,W p 

Here the lower horizontal map is the identity. 
We need to verify (11) with this definition. We write x = Z + t , for Z G L and t G T 

V*{wFx) = V*(wFl) + V*(wFt) = V*(y-1(?wl)) + V*(wFt) 

= 1 0 vwl + pw 0 t = pw 0 (Z + £) = pw 0 x. 

Next take y to be of the form y = I + vut. 

vHwV-iy) = VHwV^l) + V*(wuFt) 

= w 0 Z + pwu 0 £ = it; 0 Z + wFV u 0 t 

= iy 0 (Z + vu£) = w <S>y. 

The verification of (12) is left to the reader. • 

Remark. — The cokernel of V* is a projective W(#)/pW(i?)-module of the same 
rank as the i2-module p/q. 

Let us denote by the W(jR)-linear map 

Ld(g)F¿ ш Ш 0 : W ®F* w P > W ®FÍ+I w P, 

and by Vn$ the composite F"~ Vtt o • • • oF V*1 o V$. 
We say that a 3n-display satisfies the nilpotence (or V-nilpotence) condition, if 

there is a number iV, such that the map 
vm . p _^ wtR\ ®fn^w(r) p 

is zero modulo IR +pW(R). Differently said, the map 

(14) R/pR®m,0,w(R) P —• R/pR®™N,w(R) P 
induced by VN^ is zero. 
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Definition 11. — Let p be nilpotent in R. A display (P, Q,P, V~1) is a 3n-display, 
which satisfies the nilpotence condition above. 

Let us choose a normal decomposition P = L © T . It is obvious from the diagram 
(13) that the map 

R/pR ®w0,w(«) p 
vr 

R/pR®v,xw{R) P 
pr 

R/pR ®Wl,w(H) T 
is zero. Therefore it is equivalent to require the nilpotence condition for the following 
map: 

17» : L <-> L 0 T = P s W ®f,vf P v • W <g>F\v L 
Less invariantly but more elementary the nilpotence condition may be expressed if 
we choose a basis as in (9). Let (/3k,i) be the inverse matrix to (a*^-). Consider the 
following (h — d) x (h — d)-matrix with coefficients in R/pR: 

B = (w0(&) modulo p)fe,z=d+i,...,/I 
Let B(pt^ be the matrix obtained by raising the coefficients to the pz-th power. Then 
the nilpotence condition says exactly that for a suitable number N : 
(15) S(PJV"1)...JB(P).jB = 0 

Corollary 12. — Assume that p is nilpotent in R. Let (P, P, V-1) be a display over 
R. Then for any given number n there exists a number N, such that the following 
map induced by VN$ is zero: 

Wn(R) ®W{R) P —• Wn(R) ®FN,w(r) P 

Proof — Indeed, by the proof of proposition 3 the ideal IR -\-pWn(R) in Wn(R) is 
nilpotent. • 

We will also consider displays over linear topological rings R of the following type. 
The topology on R is given by a filtration by ideals: 

(16) R = a0 D ai D • • • D an ..., 

such that Oidj C ai+j. We assume that p is nilpotent in R/ai and hence in any ring 
R/ai. We also assume that R is complete and separated with respect to this filtration. 
In the context of such rings we will use the word display in the following sense: 

Definition 13. — Let R be as above. A 3n-display V = (P, Q, P, V~x) over R is called 
a display, if the 3n-display obtained by base change over R/a\ is a display in sense of 
definition 11. 

Let V be a display over R. We denote by Vi the 3n-display over R/ai induced by 
base change. Then Vi is a display in the sense of definition 11. There are the obvious 
transition isomorphisms 

(17) <f>i • {Vi+i)R/ai —> Vi 
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Conversely assume we are given for each index i a display Vi over the discrete ring 
R/(Xi, and transition isomorphisms fa as above. Then the system (7^, fa) is obtained 
from a display V over R. In fact this is an equivalence of the category of systems of 
displays (Vi, fa) and the category of displays over R. 

If R is for example complete local ring with maximal ideal m, such that pR = 0, 
we can consider the category of displays over R in the sense of definition 11 but we 
can also consider the category of displays over the topological ring P , with its m-adic 
topology. The last category is in general strictly bigger. 

1.2. Examples 
Example 14. — Let R = k be a perfect field. A Dieudonne module over k is a finitely 
generated free VT(fc)-module M, which is equipped with a F-linear map F : M —> M, 
and a F_1-linear map V : M —> M, such that: 

FV = VF = p 

We obtain a 3n-display by setting P = M, Q = VM with the obvious operators 
F : M —• M and V"1 : VM —• M. Moreover (P, Q,F, V^-1) is a display if the map 
V : M/pM —• M/pM is nilpotent. The map V$ is given by 

0 : M • ®F,w(fc) M. 
ra i—> 1 O Vm 

In the other direction starting with a display (P, Q, F, F-1) we obtain a Dieudonne 
module structure on P if we define V as the composite: 

(18) V : P W(fc) ®f,w(fc) ^ —- ^ 
w <S> x i • F w - x 

This makes sense because the Frobenius endomorphism F is an automorphism of 
W(k). We see that the category of 3n-displays over a perfect field is naturally equiv
alent to the category of Dieudonne modules. 

More generally let fcbea perfect ring of characteristic p. Then F is an automorphism 
on W{k) and pW(k) = Ik- We call a Dieudonne module k a finitely generated 
projective VT(fc)-module M equipped with two Z-linear operators 

F:M —> M, 

V : M —> M, 
which satisfy the relation F(wx) — FwFx, V(Fwx) = wVx, FV = VF = p. 

If we are given a homomorphism of k —> k1 of perfect rings, we obtain the structure 
of a Dieudonne module on Mf = W(kf) ®w(k) M. 

Since p is injective on W(k), there is an exact sequence of /.-modules: 

0 —• M/FM M/pM —• M/VM —• 0 
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If we tensorize this sequence with k' we obtain the corresponding sequence for Mf. In 
particular this sequence remains exact. We also see from the sequence that M/VM 
is of finite presentation. Hence we conclude that M/VM is a finitely generated pro
jective fc-module. Therefore we obtain a 3n-display (M, 7 M , P, V~1). 

Proposition 15. — The category of Sn-displays over a perfect ring k is equivalent to 
the category of Dieudonne modules over k. Moreover the displays correspond exactly 
to the Dieudonne modules, such that V is topologically nilpotent for thep-adic topology 
on M. 

The proof is obvious. We remark that a Dieudonne module M, such that V is 
topologically nilpotent is a reduced Cartier module. The converse is also true by [Zl] 
Korollar 5.43. 

We note that Berthelot [B] associates to any p-divisible group over a perfect ring 
a Dieudonne module. In the case of a formal p-divisible group his construction gives 
the Cartier module (compare [Z2] Satz 4.15). 

Example 16. — The multiplicative display Qm = (P,Q,F,V~1) over a ring R is de
fined as follows. We set P = W(R), Q = IR and define the maps F : P —• P , 
V-1 : Q -> P BY: 

Fw = Fw for w e W(R) 

V-\vw)=w 

We note that in this case the map V$ is given by: 

V* : W(R) — • W(R) <8>F,W(R) W{R) £ W(R) 

V^w = 1 (g) vK; = pu; 0 1 

Hence using the canonical isomorphism K the map V$ is simply multiplication by p. 
Therefore we have a display, if p is nilpotent in R, or more generally in the situation 
of definition 13. 

Example 17. — To any 3n-display we can associate a dual 3n-display. Assume we are 
given two 3n-displays V\ and V2 over R. 

Definition 18. — A bilinear form of 3n-disolavs 

(,):V1xV2 • Gm 

is a bilinear form of VF(i?)-modules 

( , ) : Pj x P2 —* W(R), 

which satisfies the following relation: 

(19) Viy-1yl,V-1y2) = (yi,y2), for yi € Qu y2 G Q2 

We will denote the abelian group of bilinear forms by B i l ^ i x P2, Gm)-
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The last relation implies the following: 

(y-1yuFx2) = F(yi,x2) for 2/1 G Qu x2 G P2 

(20) (Fxi ,Fx2) =PF{xux2) for Xi e Pi, 

(Fx1,V~1y2) = F{xuy2) for 2/2 e #2, 

Indeed, 

^ - ^ i , ^ ) = ^ - ' V i , V-x(Vla:2)) = (yi,Vl*2) = Vl(i,i,*2) = VF(vi,x2) 

implies the first relation of (20) because v is injective. The other relations are verified 
in the same way. We note that (Qi,Q2) C IR by (19). Assume we are given a finitely 
generated projective V^(P)-module P. Then we define the dual module: 

P* = Homw{R)(P,W(R)) 

Let us denote the resulting perfect pairing by ( , ): 

(21) 
PxP* —y W(R) 
X X Z i—• (x, z) 

There is also an induced pairing 

( , ) : W(R) 0F,W(R) P x W(R) 0F,w(R) P* ~> W(R), 

which is given by the formula: 

(w (g) x, v ® z) = wvF(x,z), x G P, z G P* , w,v G W(-R) 

Let us consider a 3n-display V = (P, Q,F, V~X) over R. We set Q = {</> G 
P* | <£(Q) C Then Q/IRP* is the orthogonal complement of Q/IRP by the 
induced perfect pairing: 

P/IRP x P*/IRP* — P 

Definition 19. — There is a unique 3n-display P* = (P*, Q, F, V-1), such that the 
operators P and V~1 satisfy the following relations with respect to the pairing (21): 

(22) 

(V^x^Fz) = F{x,z) f o r x G Q , zeP* 

(Fx, Fz) = pF(x, z) for x G P, z G P* 

(Fx, V"1^) = F(x, z) for x G P, 2 G Q 

^ ( y - 1 ^ , ^ - 1 ^ ) = (x,^) f o r x G Q , zeQ 

Hence we have a bilinear form of displays 

V x V* —* Gm 

We call P* the dual 3n-display. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



144 T. ZINK 

As for ordinary bilinear forms one has a canonical isomorphism: 

(23) BilOPx x P2, Gm) —+ Hom(P2, V{) 

From the relations of definition 19 we easily deduce that the W(R)-lme&v maps F$ 
and V$ for V respectively V1 are dual to each other: 

(24) 
(V*x, v <g> z) = (x, F*(v ® z)) 

(F*(w O x), z) = (w<g> x, V*z) 

Let us assume that p is nilpotent in R. In terms of the dual 3n-display we may 
rephrase the nilpotence condition as follows. Iterating the homomorphism F^ for the 
dual 3n- display we obtain a map: 

(25) FN* : W(R) <8>F*>W(R) P* —+ P* 

Then the 3n-display V satisfies the V-nilpotence condition, iff for any number n there 
exists a number N, such that the following map induced by (25) is zero: 

FN* : WN(R) ®FNTW(R) P* —+ WN(R) ®W(R) P* 

In this case we will also say that V1 satisfies the F-nilpotence condition. 

Next we define base change for a 3n-display. Suppose we are given a ring homo
morphism cp : S —• R. Let P be a W^(S)-module. If tp : P —• P' is a F-linear map of 
W(S')-modules, we define the base change ^pw(R) as follows: 

<Pw(R) *• W(R) ®W(S) P W(R) ®W(S) P' 
w 0 x i—• Fw <S> p(x) 

Then we have (<Pw(s))^ = ^w(R) &VT(S)<^ f°r the linearizations. 
Let V = (P, Q,F, V-1) be a 3n-display over S. Let <p : S —• R be any ring 

morphism. We will now define the 3n-display obtained by base change with respect 
to (p. 

Definition 20. — We define VR = (PR, QR, FR, V^1) to be the following quadruple: 
We set PR = W(R) ®W(S) P-
We define QR to be the kernel of the morphism W(R) <8>w(S) P —> R <8>s P/Q-
We set FR = F(8)P. 
Finally we let V^1 : QR —> PR be the unique VT(P)-linear homomorphism, which 

satisfies the following relations: 

VR1(w <g>y) =Fw® V~xy, for w e W(R), y eQ 
(26) 

V^L(vw 0 x) = w <8> Px, for x e P 

Then VR is a 3n-display over P , which is called the 3n-display obtained by base 
change. 
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To show that this definition makes sense we have only to prove the existence and 
uniqueness of V^"1,. The uniqueness is clear. For the existence we choose a normal 
decomposition P = L ® T. Then we have an isomorphism: 

QR - W{R) ®W(S) L®IR ®W{S) T 

We define Vj^1 on the first summand by the first equation of (26) and on the second 
direct summand by the second equation. We leave the verification that (26) holds 
with this definition to the reader. 

In the case where cp is surjective the image of the morphism W(R) <8>w(S) Q 
W(R) ®w(S) P — PR-> is simply QR, but in general this image is strictly smaller than 
QR-

By looking for example at (15) it is clear that VR is a display if V was a display. 
There is also an obvious converse statement. 

Lemma 21. — Let c/> : S —> R be a ring homomorphism, such that any element in the 
kernel of 4> is nilpotent. Then V is a display if VR is a display. 

Remark. — Before we turn to the next example, we collect some general facts about 
the liftings of projective modules. Let S —• R be a surjective ring homomorphism, 
such that any element in the kernel is nilpotent, or such that S is complete and 
separated in the adic topology defined by this kernel. Assume we are given a finitely 
generated projective module P over R. Then P lifts to S, i.e. there is a finitely 
generated projective S-module P together with an isomorphism (f> : R<g>s P —> P- By 
the lemma of Nakayama the pair (P, <j>) is uniquely determined up to isomorphism. 
The existence follows from the well-known fact that idempotent elements lift with 
respect the surjection of matrix algebras End^S^) —> EndJR(Pw), where u is some 
number (e.g. H.Bass, Algebraic K-Theory, W.A. Benjamin 1968, Chapt. Ill Prop. 
2.10). 

Let L be a direct summand of P . A lifting of L to a direct summand of P is obtained 
as follows. Let L be any lifting of L to S. Let L —* P be any lifting of L —> P , whose 
existence is guaranteed by the universal property of projective modules. In this way 
L becomes a direct summand of P . This is easily seen, if one lifts in the same way 
a complement T of L in P . Indeed the natural map L 0 T —> P is by Nakayama an 
isomorphism. 

Let us now assume that the kernel of S —> R consists of nilpotent elements. We 
also assume that p is nilpotent in S. Let now P denote a projective W^(P)-module. 
We set PR = R ®WO,vk(r) P- We have seen that PR may be lifted to a finitely 
generated projective 5-module P5. Since W(S) is complete and separated in the 
/5-adic topology by proposition 3, we can lift P5 to a projective finitely generated 
W(S)-module P. We find an isomorphism W(R) ®w(S) P ~* P? because liftings of 
PR to W(R) are uniquely determined up to isomorphism. Hence finitely generated 
projective modules lift with respect to W(S) W{R). Since the kernel of the last 
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morphism lies in the radical of W(S), this lifting is again unique up to isomorphism. 
We also may lift direct summands as described above. 

Let {P,Q,F,V~l) be a 3n-display over S and (P,Q,F,V-X) be the 3n-display 
obtained by base change over R. Then any normal decomposition P = L 0 T may 
be lifted to a normal decomposition P = L 0 T. Indeed choose any finitely generated 
projective M^(S')-modules L and T, which lift L and T. Because Q —> Q is surjective, 
we may lift the inclusion L —> Q to a W(S)-module homomorphism L —+ Q. Moreover 
we find a VK(5)-module homomorphism T —• P , which lifts T —+ P. Clearly this gives 
the desired normal decomposition P = L © T. 

Example 22. — Let S —• R be a surjection of rings with kernel a. We assume that p 
is nilpotent in S, and that each element a G a is nilpotent. 

Let Po = (Po,Qo, F, V~x) be a 3n-display over R. A deformation (or synonymously 
a lifting) of Po to S is a 3n-display V = (P, Q,F, V^1) over 5 together with an 
isomorphism: 

VR ^ P0-

Let us fix a deformation P . To any homomorphism 

a E Homw(5)(P, W (̂a) P) , 

we associate another deformation Pa = (P<*, Qa, Fa, K T 1 ) as follows: 
We set Pa = P , Qa = Q, and 

. v Fax = Fx — a(Fx) , for x £ P 
( } Vr-1y = F - 1 j / - a ( ^ - 1 y ) , for 2/GQ. 

The surjectivity of (V^T1)*1 follows the kernel of W(S) —+ W(R) is in the radical of 
W(S) and therefore Nakayama's lemma is applicable. 

Since F and F& respectively V~x and V~x are congruent modulo W(a) the 3n-
display Pct,r obtained by base change is canonically isomorphic to Po. 

We note that any deformation is isomorphic to Va for a suitable homomorphism 
a. Indeed, let V\ — (Pi, Qi, Pi , Vf"1) be any other deformation of Po- We find 
an isomorphism of the pairs (P,Q) and (Pi ,Qi) , which reduces to the identity on 
(Po, Qo)- Indeed, we fix a normal decomposition P0 = L0 0 To and lift it to a normal 
decomposition of V respectively of P i . Then any isomorphism between the lifted 
normal decompositions is suitable. Hence we may assume that (P, Q) = (Pi ,Qi) . 
Then we define F -linear homomorphisms 

f : P _ > W(a) ®w(s) P, v : Q —• W(a) P, 

by the equations: 

F28V Fix = F * - for x e P 

( ) V1-1y = V-1y-rf(v) ioryeQ. 
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Then £ and 77 must satisfy the relation: 

7](vwx) = w£(x), for x E P. 

It is then easily checked that there is a unique homomorphism a as above, which 
satisfies the relations: 

a(V~1y) = 77(2/), for y E Q 
a(Fx) = £(x), for x G P 

Then the deformations Pa and V\ are isomorphic. 

Example 23. — Let R be a ring such that p • R = 0. Let us denote by Frob : R —• P 
the absolute Probenius endomorphism, i.e. Frob(r) = rp for r € R. 

Let P = (P, Q, P, be a 3n-display over P . We denote the 3n-display obtained 
by base change with respect to Frob by V^p) = (P(p), P, V'1). More explicitly 
we have 

P(P) = W ( P ) ® P 

= /fl ®F|W(fl) P + Image ( W ( P ) ®F|W(ii) Q) 

The operators P and V~X are uniquely determined by the relations: 

F(w <g> x) = Fw 0 Px, for w e W(R), x e P 

V~1(vw<g>x) = w 0 Fx, 

V~1{w <g>y) = Fw® V~xy, for y G Q. 

(At the first glance it might appear that this explicit definition does not use p • 
R — 0. But without this condition /IRP^ would not be a direct summand of 
P ^ / I R P ^ . The elements 1 0 vwx = pw 0 x would cause trouble, if F and v do not 
commute.) 

The map V* : P W ( P ) 0F,vy(i*) ^ of lemma 1.5 satisfies V#(P) C Q(p). Using 
the fact that P is generated as a VK(P)-module by the elements V~xy for y G Q a 
routine calculation shows that F # commutes with P and V~x. Hence V# induces a 
homomorphism of 3n-displays 

(29) Frv : V *p(p) 

which is called the Frobenius homomorphism of V. 
Similarly the map F* : W(R) <8>F,w(R) p ~+ p satisfies F*(Q^) C IRP. One can 

check that P # commutes with the operators F and V~1. Therefore P # induces a 
map of 3n-displays, which is called the Verschiebung. 

(30) Ver-p : V{p) V. 

Prom the lemma 1.5 we obtain the relations: 

(31) Frv • Verp = p • idp(P), Ver-p Fr-p = p - id-p . 
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Example 24. — We will define displays, which correspond to the Lubin-Tate groups. 
Let OK be a complete discrete valuation ring with finite residue class field fc, and 
field of fractions K of characteristic 0. We fix a prime element n G OK- Let R be a 
p-adic ring, which is equipped with a structure <fi : OK —• R of a OK-algebra. We set 
u = </>(7r). 

The displays we are going to construct are displays V over the topological ring R 
with its p-adic topology. Moreover they will be equipped with an action t : OK —> 
E n d P of OK- This implies an action of the ring OK ®Zp W(R) on P. Let us extend 
the operators F and v on the ring W(R) O^-linearly to the ring OK 0 W(R). We 
need the following easy lemma: 

Lemma 25. — Consider the ring homomorphism: 

(32) OK ®Zp W{R) — > OK/TTOK 0 R/uR. 

It is the residue class map on the first factor, and it is the composite of wo with the 
natural projection R —• R/uR on the second factor. 

Then an element in OK <8> W(R) is a unit, iff its image by (32) is a unit. 

Proof — By proposition 3 the ring OK®ZPW(R) is complete in the IR -adic topology. 
Hence an element in this ring is a unit, iff its image in OK ®Zp R is a unit. Since this 
last ring is complete in the p-adic topology, we get easily our result. • 

Let us first do the construction of the Lubin-Tate display in a special case: 

Proposition 26. — Let us assume that OK/KOK = fp. Let R be a p-torsion free p-
adic ring, with an OK-algebra structure CJ> : OK —> R- Then there is a unique display 
VR = (PR,QR, F,V~x) over the topological ring R, with the following properties: 

(i) PR = OK®Zp W(R). 
(ii) QR is the kernel of the map 0 0 wo : OK &ZP W(R) —> R. 

(iii) The operators F and V~X are OK-linear. 
(iv) V R - 1 ( 7 R ® 1 - 1 ® M ) = 1-

To prove this proposition we need two lemmas: 

Lemma 27. — With the assumptions of proposition 26 we set e — [OK > Then 
the element: 

r = -(TT6 0 1 - 1 0 [uep]) G K 0Zp W(R) 
p 

is a unit in OK ®Zp W(R). 
Proof. — The statement makes sense because OK ®Zp W(R) has no p-torsion. First 
we prove that the element TTG 0 1 — 1 0 [uep] is divisible by p. We have 7re = ep for 
some unit e G 0*K. Therefore it is enough to show that p divides 1 0 [uep]. Since 
uep = cf){e)pplp1 it is enough to show that p divides [pp] in W(R). This will follow from 
the lemma below. 
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To show that r is a unit we consider its image by the map 0(8) wo : OK <8>ZP W(R) —• 
R. It is equal to ^(ue — uep), which is a unit in R. It follows immediately from lemma 
25 that r must be a unit too. • 

Lemma 28. — The element [pP] g W{7jp) is divisible by p. 

Proof. — Let Qm g Zp for m > 0 be p-adic integers. By a well-known lemma [BAC] 
IX.3 Proposition 2 there exists a Witt vector x g W(XP) with wm(:r) = #m, for all 
ra > 0, if and only if the following congruences are satisfied: 

gm+i = 9m mod pm+1 

Hence our assertion follows if we verify the congruences: 
V(1 ei =p+1e 

P 
(ppy™ 

P 
nod »m+1 m = 0 , 1 , . . . 

But both sides of these congruences are zero. • 

Proof of proposition 26. — Let LR c PR be the free W(,R)-submodule of PR with 
the following basis 

7T* ® 1 — 1 <g> [u% i = 1 , . . . , e - 1. 
Let us denote by TR c PR the W(i?)-submodule W(R)(1 <S) 1). Then PR=TR® LR 
is a normal decomposition. 

To define a display we need to define ^-linear maps 

V-1 :LR—*PR 

F : T R ^ pr, 

such that the map V~X 0 F is an F-linear epimorphism. 
Since we want V~1 to be O^-linear we find by condition (iv) that for i = l , . . . , e — 1: 

(33) Vr-1(7ri(8)l-l®[tii]) = 7T* <g> 1 - 1 <g> [Uip] 
7T <S> 1 - 1 <8> [up] 

k+l=i-. 
7Tfc® \uln. 

Here k and I run through nonnegative integers and the fraction in the middle is by 
definition the last sum. The equation makes sense because by lemma 27 the element 
7r <g> 1 — 1 ® [up] is not a zero divisor in OK <8> W{R). 

If we multiply the equation (iv) by p we find 

F(?r ® 1 - 1 ® [u]) = p, 

and by the required OK-linearity of F: 

(7T(g>l-l<g)[t/p])-Fl=p. 

Therefore we are forced to set: 

(34) 7re (8) 1 - 1 (8) [uep] 
7T (8) 1 - 1 ® [up] 
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The ^-linear operators V 1 : LR —> PR and F : TR —> PR defined by the equations 
(33) and (34) may be extended to F-linear operators 

V-1 :QR—>PR, F:PR-^ PR 

using the equations (1) and (2). Then V~x is the restriction of the operator V~x : 
PR[^] —• PR[]>\ defined by Vxx = n1g>l_i^[uP] and F is the restriction of pV~x : 
PR[^] —> PR[^]- This shows that the operators F and V-1 are O^-linear. Since 1 is 
in the image of (T^-1)^ : W(R) <S>w(R) QR PR, and since this map is OK ® W{R)-
linear, we conclude that (V-1)# is an epimorphism. It follows that (PR,QR, F, V~X) 
is a 3n-display, which satisfies the conditions of the proposition. The uniqueness is 
clear by what we have said. 

It remains to be shown that we obtained a display in the topological sense. By 
base change it is enough to do this for R = OK- Let us denote by V = ( P , <2, P , V~X) 
the 3n-display over Fp obtained by base change OK —• Fp. Then P = OK and F 
is the Ox-linear map defined by Fir = p. Hence the map V is multiplication by 7r. 
Hence V is a display. • 

Finally we generalize our construction to the case where the residue class field 
k of OK is bigger than Fp. In this case we define for any torsionfree Ox-algebra 
<fi : OK —> R a display 

VR = (PR,QR,F,V-1). 

Again we set 
PR = OK ®ZP W(R), 

and we define QR to be the kernel of the natural map 

(35) <j> ® w0 : OK <g>zp W(R) —* R. 
We identify W(k) with a subring of OK- The restriction of <f> to W(k) will be 

denoted by the same letter: 
6 : Wik) —• R. 

Applying the functor W to this last map we find a map (compare (89) ) 

(36) p : Wik) —• W(W(k)) —• W(R), 

which commutes with the Probenius morphism defined on the first and the third ring 
of (36) (for a detailed discussion see [Gr] Chapt IV Proposition 4.3). 

Let us denote the Probenius endomorphism on W{k) also by a. We have the 
following decomposition in a direct product of rings 
(37) OK ®Zv W(R) = 

iez/fz 
OK ®a\w(k) W(R). 

Here / denotes the degree / = [k : Fp] and the tensor product is taken with respect 
to p. 
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The operators F and v on W(R) act via the second factor on the left hand side of 
(37). On the right-hand side they are operators of degree —1 and 4-1 respectively: 

F: OK <8u< ivm W(R) —• OK 0 f f i - i , ™ W(R) 
V : OK ®ai,w{k) W{R) —• OK ®<r*+i,w(*) W(R). 

We obtain from (37) a decomposition of the OK ®ZP VF(P)-module PR: 

PR = 
e C die l 

Pi, Pi = 0K®*i,w(k) WIR) 

Therefore we obtain also a decomposition 

QR = QO®PI 0 - - - 0 P / - 1 . 

The map (35) factors through 

(38) Ok ®w(k) W(R) P , 

and Qo is the kernel of (38). The following elements form a basis of Po as W(R)-
module 

Ui = 7r* ® 1 - 1 ® [u% i = 1 , . . . , e - 1 
e0 = 1 ® 1. 

Here г¿ denotes as before the image of TT by the map OK —• R, and e is the ramification 
index e = [OK : W(fc)]. Let T = W(R)e0 C P0, and let L0 C Qo the free W(R) 
submodule generated by u\, . . . , a;e-i- We have a normal decomposition 

PR = T®L, 

where L = L0 0 Pi 0 • • • 0 P / - i . 
Now we may define the O^-linear operators F and V-1. We set = 1 ® 1 G Pi. 

Then V-1 is uniquely defined by the following properties: 

V 1UJI = ef_i, 

(39) V~xei = e*_i for 0 i G Z / / Z . 

V 1 is Ox-linear. 

Multiplying the first of these equations by p we obtain the following equation in the 
ring Ok ®*f-\w(k) W(R): 

FcJiFe0 = p e / - i 

To see that this equation has a unique solution Feo it suffices to show that: 

i(7re 0 1 - 1 ® [uep]) G OK ®ff/-iWfc) 

is a unit. This is seen exactly as before, using that ^(1 ® [upe]) is mapped to zero by 
the map W(R) R/u. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



152 T. ZINK 

Hence we have defined the desired F-linear operators F : PR —> PR and V~X : 
QR —* PR. Again V~X extends to a F-linear endomorphism of K (8>zp W(R), which is 
given by the formula: 

V -t x = F(X\ 
d 

where 0 G OK <8>ZP W(R) is the element, which has with respect to the decomposition 
(37) the component LJ± for i = 0 and the component for i ^ 0. 

As before this proves the following proposition: 

Proposition 29. — Let K be a finite extension of Qp with ramification index e and 
index of inertia f. Let OK,Tt,k have the same meaning as before. 

Let R be torsion free OK-algebra, such that R is p-adically complete and separated. 
Denote by u the image of TT by the structure morphism 4> • OK —• R- Let p : W(k) —> 
W(R) be the homomorphism induced by the structure morphism. Then we have a 
decomposition 

OK ®Zp W(R) -
iez/fz 

Ok ®cr*yw(k) W(R) 

Let 0 G OK <S>ZP W(R) be the element, which has the component 1 for i ^ 0 and the 
component 7r ® 1 — 1 <g) [u] for i = 0. 

Then there is a uniquely defined display PR = (PR, QR, F, V~1) over the topological 
ring R, which satisfies the following conditions: 

(i) PR = OK®%P W(R). 
(ii) QR is the kernel of the map 4> <2> wo : OK ®Zp W(R) —• R. 

(hi) The operators F and V~x are OK-linear. 
(iv) V~10 = 1. 

1.3. Descent. — We will now study the faithfully flat descent for displays. 

Lemma 30. — Let M be a flat W(S)-module, and let S —» R be a faithfully flat ring 
extension. Then there is an exact sequence 

^ 0—>M —• W(R) ®W(S) M =4 W(R (g) R) ®W{S) M^W(R <g> R ® R)<g)W(S) M 

Here the (8) without index means (8)5. 

Proof. — The arrows are induced by applying the functor W to the usual exact 
sequence for descent: 

0 ^ S R ^ R<S)S 

Since M is a direct limit of free modules, we are reduced to the case M = W(S). 
In this case any term of the sequence (40) comes with the filtration by the ideals 
lR®s-<8>sR,n C W(R (8)5 • • • (8)5 i?). We obtain by the usual f.p.q.c. descent an exact 
sequence, if we go to the graded objects. • 
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Let V = (P, Q, P, V'1) be a display over 5. Then the modules PR and QR obtained 
by base change fit into an exact sequence 

0 —• QR —-> PR —-+ R 0 5 P/Q —• 0 

Proposition 31. — Let S —> R be a faithfully flat ring morphism. Consider a display 
(P, Q,F, V~X) over S. Then we have a commutative diagram with exact rows 

0 —* P —* PR =4 PR®SR ^ PR®SR<8>SR ^ "'' 

U U U U 

0 —> Q —> QR =4 QR<G>SR ^ QR<S>SR<8)SR ^ " ' 

Proof. — Indeed, the first row is exact by the lemma. The second row is the kernel 
of the canonical epimorphism from the first row to: 

0 -> P/Q R 0 P / Q =4 J? 0 5 (8)5 P/Q ^ # 0 5 iJ 0 5 R 0 P/Q H • • • 

This proves the proposition and more: 

Theorem 32 (descent for displays). — Let S R be a faithfully flat ring extension. 
Let V = (P ,Q,F, V"1) and V' = (P ' , Q', F, V'1) be two displays over S. Then we 
have an exact sequence 

0 - Hom(P, V') -> Hom(P*, V'R) =t Hom(PMSR, VfR®sR). • 

Let be a VF(P)-module. Then we may define a variant of the usual descent datum 
relative to S —> R. 

Let us give names to the morphisms in the exact sequence (40): 

pi P12 
(41) W(S) —»• W(R) W{R®s R)™W(R®s R<S>s R). 

P13 

Here the index of pij indicates, that the first factor of R 0 5 R is mapped to the factor 
z, and the second is mapped to the factor j . The notation pi is similar. In the context 
of descent we will often write 0 instead of 0 5 We also use the notation 

p*N = W(R 0 R) ®PI,W(R) N. 

We define a W-descent datum on at to be a W(R 0 R)-isomorphism 

a:p$N—>p*2N, 
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such that the following diagram is commutative (cocycle condition): 

(42) 

Phpì* sssdsss 
PilPï^ 

PÎSPÎ* P23P1N 

Pl3<* Pha 

PhP2N P23PÏN 
To any descent datum we may associate a sequence of morphisms 

W{R) ®W(R) N 
q 

d1 
W{R <8> R) ®W(R) N 

cs 
d1 1 

d2 

V(R ®R<G>R) <8)W(R) N — -

where the tensor product is always taken with respect to the map 

W(R) —> W(R <8 • • • (2) R) induced by a G R •—• l ® - - - ® l ® a € i 2 ® - - - ® i J . 

The maps <9*: W(R®n) ®W(R) N —> W(R®(n+V) ®W(R) N, for i < n are simply the 
tensorproduct with N of the map W(R®n) —• W(R®(n+V) induced by 

a\ ® • • • (8 an 1—• a\ (8) • • • ® ai <8> 1 <8> a^+i <8> • • • an. 

Finally the map dn: W(R®n) ®W{R) N W^J*®™-1) ®vr(K) ^ is obtained as follows. 
The descent datum ex induces a map u(x) = a(l (8) x): 

u: iV • W(R 0 P) <8>VK(I*) N, 

which satisfies u{rx) = pi(r)w(x). Consider the commutative diagram 

R • i2<8# 

lslsdd VK(I*) 

The upper horizontal map is r 1—• r<8>l and the lower horizontal map is r i® • • *<8>rn 1—• 
n <8> • • * <8> rn (8) 1. The left vertical map is r 1 ® • • • <g> 1 ® r and finally the right 
vertical map is r\ ® r2 •—» 1 (8 • • • <8> 1 <8 r i (8 f2. 

If we apply the functor we obtain: 

W(R) • W(R®R) 

vr Q2 

W(R®n) • W(R^n+1)) 

Since u is equivariant with respect to the upper horizontal arrow, we may tensorize 
u by this diagram to obtain 

W{R®n) ®q,W(R) N — W(R®n+l) ®q2,W(R®R) W{R ® R) ®W{R) N. 

This is the map we wanted to define. 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 155 

We set 

an = 
n 

i=0 
(-1)*$* : W(R®n) 0 N —• W(R^n+1)) 0 N. 

The cocycle condition assures that we get a complex: 

(43) W(R)®W(R)N IL W(R <g> R) ®W(R) N S2 W(R ®R®R) (g>w(R) N ' * 

Proposition 33. — Let S —* R be a faithfully flat ring homomorphism. Assume that 
p is nilpotent in S. Let P be a finitely generated projective W(R)-module with a W-
descent datum a relative to R —» S. Then the complex (43) for N = P is exact. The 
kernel PQ of 5\ is a projective finitely generated W{S) -module and the natural map 

W{R) ®W{S) Po^P 

is an isomorphism. 

We prove this a little later. 

Corollary 34. — The functor which associates to a finitely generated projective W{S)-
module PQ the W{R)-module P = W{R) <8>W(S) Po with its canonical descent datum 
is an equivalence of categories. 

Proposition 35. — The following conditions for a W(R)-module P are equivalent: 
(i) P is finitely generated and projective. 

(ii) P is separated in the topology defined by the filtration InP for n 6 N (same 
notation as in the proof of proposition 3), and for each n the WN(R)-module 
P/InP is projective and finitely generated. 

(iii) P is separated as above, and there exist elements f \ , . . . , /M 6 R, which 
generate the unit ideal, and such that for each i = l , . . . , m W(RFI)-module 
W{RFI) ®w(R) P is free and finitely generated. 

Proof. — For any number n and any / G R we have a natural isomorphism WN(RF) = 
WN(R)[F]. This fact shows, that (iii) implies (ii). Next we assume (ii) and show that 
(i) holds. We find elements ixi, . . . which generate P/IP as an i2-module. They 
define a map L = W(R)H —• P. Since L is complete in the topology defined by the 
ideals In this map is surjective and P is complete. By the lemma below we find for 
each number n a section an of L/InL —•> P / / n P , such that crn+i reduces to o~n. The 
projective limit of these sections is a section of the W^(i?)-module homomorphism L —> 
P. For the proof of the implication (i) implies (iii), we may assume that R <S>w(R) P 
is free. But then the same argument as above shows that any basis of R®W(R) P lifts 
to a basis of P . • 

Lemma 36. — Let S —• R be a surjective ring homomorphism. Let 7v : Pi —> P2 be 
a surjective S-module] homomorphism. Suppose that P2 is a projective S-module. Let 
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7r : Pi —• P2 be the R-module homomorphism obtained by tensoring TT by P 0 £ . Then 
any section a : P2 —* Pi lifts to a section a : Pi —• P2. 

Proof — Let us denote by K the kernel of 7r, and set K = R 0 s K- Let r be any 
section of 7r. Consider the morphism a — r : P2 —• This lifts to a S'-module 
homomorphism p : P2 —» if, because P2 is projective. We set a = r + p. • 

Proof — (of proposition 33): We begin to prove the statement on the exactness of 
(43) under the additional assumption that p • S = 0. On each term of the sequence 
(43) we consider the filtration by iis®",m®w(ii) P- Since P is projective the associated 
graded object is 

lR,m/lR,m+l ®W(B) P > (iR®R,m/'iR®R,m+l) <8>W(R) P > ' * * 

Applying the assumption p • R = 0 we may rewrite this as 

R ®P™,R P/IRP ZR®SR ®P-,fl P/IRP ^ '' " 

The symbol pm indicates, that the tensor product is taken with respect to the ra-th 
power of the Probenius endomorphism. The last sequence comes from a usual descent 
datum on R 0p™?# P/IRP and is therefore exact, except for the first place. Now 
we will get rid of the assumption p • S = 0. We consider any ideal a C S such that 
p • a = 0. Let us denote by a bar the reduction modulo p (i.e. R = R/pR e tc ) , and 
by a dash the reduction modulo a. 

We have an exact sequence 

0 — • a < g > P ® P - ( g ) P —• P 0 P 0 - - 0 P — > P ' ®5/ Rf 0 • • -s> 0 R' —• 0 

a 0 r*i 0 • • • 0 rn i—> ari 0 • • • 0 rn 

An obvious modification of the complex (43) yields a complex 

(44) W(a 0 P)O W R P 6l > WX*®R®R) ®w(R) P —^—> 
where the factor a is untouched in the definition of 5i. 

We set P = W(JR) 0vy(#) i3- Then the complex (44) identifies with the complex 

(45) W(a®sR)®wai)P 61 ) W ( a 0 ^ P 0 ^ P ) 0 v r ( ^ ) P ^2 > 

given by the induced descent datum on P . Since pa=pS=p-R = 0 the argument 
before applies to show that (45) is exact except for the first place. Now an easy 
induction argument using the exact sequence of complexes 

0 - W(a 0 ^ P0n) ®W(R) P - W(P^n) OWR P - W(P'®n) OW(R) P ' - 0 

proves the exactness statement for the complex in the middle. 
In fact our method gives slightly more, namely that we have also, for each ra, 

exactness of the complex of the augmentation ideals 

lR®n,m ®W(R) P' 
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Now we set P0 = ker^I: (P -+ W(R <g> R) ®W(R) P) and P¿ = P0 N IRP. By the 
exact cohomology sequence we have a diagram with exact rows and columns. 

0 0 0 0 

0 - P1 
m3 

IR ® P 
W(R) 

IR®R <S> P 
W(R) 

IR®R®R ® P 
W(R) 

0 ^ Po + W(R) ® P — > W ( R ® R ) ® P — • W Y i î ® i 2 ® iî) ® P 
wrd W{R) W(R) 

O - ^ P O / P Q 1 — • P/IRP —• R®R®PRED/IRP —•RSO R®R®R®P/IRP 

0 0 0 0 

By the usual descent PO/PQ is a finitely generated projective .S-module. We may 
lift it to a projective VF(S)-module F , by lifting it step by step with respect to 
the surjections Wn+i(S) —• Wn{S) and then taking the projective limit. By the 
projectivity of F we obtain a commutative diagram 

F pos 

Po/Pè 

From the upper horizontal arrow we obtain a map W(R) <S>w(S) F —+ P, which may 
be inserted into a commutative diagram 

W(R) ®W(S) F • P 

R 0s PO/PQ » P/IP 

Since the lower horizontal arrow is an isomorphism by usual descent theory we con
clude by Nakayama that the upper horizontal arrow is an isomorphism. Comparing 
the exact sequence (40) for M = F with the exact sequence (43) for N — P,we obtain 
that F —• Po is an isomorphism. Since also the graded sequence associated to (40) is 
exact, we obtain moreover that PQ1 = IPQ. Hence the proof of the proposition 33 is 
complete. • 

We may define a descent datum for 3n-displays. Let S be a ring, such that p is 
nilpotent in S and let S —• R be a faithfully flat morphism of rings. We consider the 
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usual diagram (compare (41)): 

91 
912 

RZZR®s RSl^R^s R®s R 
92 923 

Let V = {P.Q.F.V-1) be a 3n-display over R. We denote the 3n-displays obtained 
by base change by q\V etc.. Then a descent datum on V relative to R —» S is an 
isomorphism of 3n-displays 

a: q\V xvp 

such that the cocycle condition holds, i.e. the diagram (42) is commutative if the 
letter p is replaced by q and the letter N is replaced by V. Clearly for any 3n-display 
Vo over S we have a canonical descent datum a-p0 on the base change VO,R over R. 

Theorem 37. — The functor Vo »—• (VO,R, <x.-p0) from the category of displays over S to 
the category of displays over R equipped with a descent datum relative to S —> R is an 
equivalence of categories. The same assertion holds for the category of 3n-displays. 

Proof — Let (V,a) be a display over R with a descent datum relative to S —> R. 
We define a VF(.Sf)-module Po and a S-module KQ, such that the rows in the following 
diagram are exact 

(46) 
0 y Po • P ——+ W{R ®s R) ®W{R) P 

0 > K0 • P/Q — > R®SR®R P/Q 

Here the maps 5 are given by the descent datum a as explained above. That we 
have also a descent datum on P/Q follows just from our assumption that a is an 
isomorphism of displays and therefore preserves Q. We claim that the map Po - • 
KQ is surjective. Indeed, since R —* S is faithfully flat, it suffices to show that 
R<S>s Po/IsPo —> R<S>s Ko is surjective. But this can be read of from the commutative 
diagram: 

W(R) ®W(S) PQ » R ®s Po/IPo • R ®s K0 

P — » PI IP - >P/Q 

Note that the vertical arrows are isomorphisms by proposition 33 or the usual descent 
theory. 
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Let us denote by Qo the kernel of the surjection P0 —* KQ. Then we obtain a 
commutative diagram with exact rows and columns: 

0 0 0 

0 0d Q — >Q2 

o - Po- p - ¥ W(R <g)S R) ®W(R) P = P*2P 

0- Po/Qo P/Q R®SR®R (P/Q) <Ê(P/Q) 

0 0 0 

Here Q2 and p$P are parts of the display q^P = (p2'P,Q2,F,V~1) which is obtained 
by base change. 

To get a display Po = (Po,Qo, F, V-1) we still have to define the operators F and 
V~1. First since a commutes with F by assumption we have a commutative diagram 

F S 
PÏP 

F 

P 
8 

P*2P 

F 

This shows that F induces a map on the kernel of ô: 

F: PN —• Po 

Secondly a commutes with V 1, i.e. we have a commutative diagram 

Qi 
a 

v1 

p\p 
a 

Q2 

vrd 

• P\P 

Recalling the definition of S one obtains a commutative diagram 

Q-
svr 

>Q2 

v-1 

p 6 . p*2P = W(R®S R) ®W{R)P. 
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Hence we obtain V~X : Qo —• Po as desired. Finally we need to check the nilpotence 
condition. Since the maps V-1 and F are compatible with PQ ^ P , the same is true 
for V* by the characterization of lemma 10. Hence we have a commutative diagram 

Po p 
+v v+ 

W{S) ®f,w(s) P0 > W{R) ®F,w(R) P 

The nilpotence follows now from the injectivity of the map 

S/pS®Wn,w(s) Po —> R/pR®v,n,w(R) P 
and the form (14) of the nilpotence condition. 

1.4. Rigidity. — Our next aim is a rigidity theorem for displays in the sense c 
rigidity for p-divisible groups. Let S be a ring, such that p is nilpotent in 5. Assum 
we are given an ideal a C S with a divided power structure jn ([BO] 3.1). We se 
apn (a) = (p71 — l)!7p" (a). We may "divide" the n—th Witt polynomial wn(X0, . . . , Xn 
by pn: 
(47) wn№),. • -)Xn) = aprt(X0) + apn-i{X1) H H Xn. 
Let us dénote by aN the additive group YlieN a- We define a W(S)-module structure 
on aN: 

;[a0,ai •••] = [w0(£)ao, wi (£)a i , . . . ], where £ € W(S), [a0,ai , . . . ] € aN 

The define an isomorphism of VF(S')-modules: 

(48) 
log : W(a) —> aN 

a = (a0,ai,a2 • • •) •—• [wo(o), w i ( a ) , . . . ] 

We denote the inverse image log x[a, 0 , . . . , 0 , . . . ] simply by a C W(a). Then a is an 
ideal of W(S). 

By going to a universal situation it is not difficult to compute what multiplication, 
Probenius homomorphism, and Verschiebung on the Witt ring induce on the right 
hand side of (48): 

[a0,ai,.. .][6o, &i, • • •] = [aoboipaibij... ,p*ai&i,.. 

F[a0,ai, • • •] = [pai,pa2, pat,...] 

v[ao,oi, . . .] = [0,ao ,ai , . . . ,Oi,. . .] 

The following fact is basic: 

Lemma 38. — Let (P, Q, F, F-1) 6e a display over S. Then there is a unique exten
sion of the operator V~x: 

V-1: W(a)P + Q—• P, 

Sî/cft tfid* V ^ d P = 0. 
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Proof. — Choose a normal decomposition 

p = L E T. 

Then W(a)P + Q = aT 0 L 0 IST. We define V~x using this decomposition. To 
finish the proof we need to verify that V~1aL = 0. But Fa = 0, since the Frobenius 
map on the right hand side of (48) is 

F[UQ,UU...] = \pUi,pU2,...]. 

• 

Lemma 39. — Let S be a ring, such that p is nilpotent in S. Let a C S be an 
ideal with divided powers. We consider two displays V = (P, Q, P, V"1) and V = 
(P ' , Q', P, F-1) over 5 . Tften natural map 

(49) HomCP, — Hom(^S/a, ^ / „ ) 
M 

is infective. Moreover let M be a natural number, such that ap = 0 for any a £ a. 
Then the group pM Hom(Ps/a, VS/a) lies in the image of (49). 

Proof — As explained above the map V~x : Q' —> P' extends to the map V~x : 
W(a)P' + Q' -* P ' , which maps W(a)P' to W(a)P'. Let u : V -> V be a map of 
displays, which is zero modulo a, i.e. u(P) C W(a)P', We claim that the following 
diagram is commutative: 

(50) 

P-
i 

u W(a)P' 

V* 

W{S) ®F,W(S) P 
1®U W(S) ®F.w<s) W(a)P' 

(Y-i)* 

Indeed, since P = W(S)V~1Q, it is enough to check the commutativity on elements of 
the form wV-1^ where I £ Q. Since V#(wV~1l) = w<8>l. the commutativity is readily 
checked. Let us denote by 1 ®FN U : W{R) <G>F",w(R) P —* W(R) <&FN,W(R) W(a)P' 
the map obtained by tensoring. Iterating the diagram (50) we obtain 

(51) (V~N)*(1 ®FN u){VN#) = u 

By the nilpotence condition for each numberM, there exists a number JV, such that 

VN#{P) C IS,M ®F»,W(S) P. 

But since IS,M ' W(a) = 0 for big M, we obtain that the left hand side of (51) is zero. 
This proves the injectivity. 

The last assertion is even true without the existence of divided powers. Indeed, 
it follows from the assumption that pMW(a) — 0. Let now u : Vs/a ^s/a ^e a 
morphism of displays. 
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For x E P let us denote by x E W(S/a) ®w(S) P its reduction modulo a. Let 
y E P' be any lifting of u(x). Then we define 

v(x) = pM -y. 

Since pMW(a) = 0 this is well-defined. One checks that v is a morphism of displays 
V ->V> and that v = pMu. • 

Proposition 40. — Let S be a ring such that p is nilpotent in S. Let a C S be a 
nilpotent ideal, i.e. aN = 0 for some integer N. Let V and V' be displays over S. The 
the natural map 

Uom(R,V') —* Hom(Vs/aV's/a) 

is infective, and the cokernel is a p-torsion group. 

Proof — By induction one restricts to the case, where ap = 0. Then we have a 
unique divided power structure on a, such that 7P(a) = 0 for a E a. One concludes 
by the lemma. • 

Corollary 41. — Assume again that p is nilpotent in S and that the ideal generated 
by nilpotent elements is nilpotent. Then the group Hom('P, V) is torsionfree. 

Proof — By the proposition we may restrict to the case where the ring S is reduced. 
Then the multiplication by p on W(S) is the injective map: 

(S0, 5i, 52 . . . ) I • (0, sg, SP . . . ) 

Therefore the multiplication by p on P' is also injective, which proves the corollary. 
• 

2. Lifting Displays 

In this chapter we will consider a surjective homomorphism of rings S —• R. The 
kernel will be denoted by a. We assume that the fixed prime number p is nilpotent 
in S. 

To a display over R we will associate the crystal, which controls the deformation 
theory of this display in a way which is entirely similar to the deformation theory of 
Grothendieck and Messing for p-divisible groups. 

2.1. The main theorem. — We begin by a lemma which demonstrates what we 
are doing in a simple situation. 

Lemma 42. — Let S —» R be as above and assume that there is a number N, such that 
aN = 0 for any a E a. Let (Pi,Fi) for i = 1,2 be projective finitely generated W(S)-
modules Pi, which are equipped with F-linear isomorphisms Fi : Pi —• Pi. We set 
Pi = W(R) <8>w(S) Pi and define F-linear isomorphisms Fi : Pi —> Pi, by Fi(£<g>x) = 
F£ ® FiX, for £ E W(R), xePi. 
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Then any homomorphism a : (Pi , P i ) —• (P2,F2) admits a unique lifting a : 
(Pi ,F1)- . (P2,F2) . 

Proof — First we choose a lifting ao : Pi —• P2, which does not necessarily commute 
with the Fi. We look for a W(5)-linear homomorphism u G Hom^(5)(Pi, W(a)P2), 
such that 

(52) F2(a0 + u) = (a0 + w)Fi. 

Since a commutes with F1 the F-linear map rj = F2ao — aoFi maps Pi to WXa)P2. 
The equation (52) becomes 

UJFI — F2U; = VJ 

or equivalently 

(53) w - F*(W(S) ®F,W{S) "XF?)-1 = V*(Ff)-1. 

We define now a Zp-linear endomorphism U of Homv^(s)(Pi, W{a)P2) by 

^ = P2#(W(5) ®F}W{S) u){F#)~\ 

Then (7 is nilpotent. Indeed for this it suffices to show that F2 is nilpotent on W{a)P2. 
Clearly we need only to show that the Frobenius F is nilpotent on W(a). Since p is 
nilpotent an easy reduction reduces this statement to the case, where p • a = 0. It is 
well-known that in this case the Frobenius on W(a) takes the form 

F(a0,au...Jai,...) = (ag, a\,..., a f , . . . ) . 

Since this is nilpotent by assumption the operator U is nilpotent, too. 
Then the operator 1 — U is invertible, and therefore the equation (53) 

(1-U)UJ = T)*(F*)-1 

has a unique solution. • 

Corollary 43. — Assume that we are given an ideal c C W(a), which satisfies Fc C c 
and a W(S)-module homomorphism ao : P\ —• P2, which satisfies the congruence 

F2a0(x) = a0(Fix) mod cP2. 

Then we have a = ao mod cP2. 

Proof. — One starts the proof of the lemma with ao given by the assumption of the 
corollary and looks for a solution UJ E Hom^(s)(Pi, cP2) of the equation (52). • 

Theorem 44. — Let S —> R be a surjective homomorphism of rings, such that p is 
nilpotent in S. Assume the kernel a of this homomorphism is equipped with divided 
powers. Let V be a display over R and let V\ and V2 be liftings to S. Let us denote 
by Qi the inverse image of Q by the map Pi —> P for ¿ = 1,2. Let V~x : Qi —> Pi 
be the extension of the operator V~x : Qi —> Pi given by the divided powers. Then 
there is a unique isomorphism a : (Pi, Qi, P, V~1) (P2, Q2, P, V~1), which lifts the 
identity ofV. 
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Proof. — The uniqueness follows from the proof of lemma 39. Indeed one has only 
to observe that the commutative diagram (50) still makes sense. By assumption we 
have pM • a = 0 for some number M. We make an induction on the number N to 
show the following assertion: 

There exists a VT(5)-linear lifting a : Pi —> P2 of the identity such that 

Fa(x) = a(Fx) mod pNW(a) for x G Pi 

^ V~la(y) = aiV^y) mod pNW(a) for y G Q\. 

We note that the divided powers give us an isomorphism YLN w'n : W(A) ~ aN. From 
this we see that 

*W(a) C pW(a), Is • W(a) C pW(a). 

In order to have a start for our induction, we consider the equations (54) to be fulfilled 
in the case N = 0 for any VF(S')-linear lifting a. Hence we may assume that we have 
already constructed a W(.S')-linear homomorphism a^v, which lifts the identity and 
satisfies (54). To prove the theorem we have to construct a M^(5')-linear lifting ot! 
of the identity, which satisfies (54) with N replaced by N 4- 1. We choose a normal 
decomposition Pi = L\ 0 Xi and we put L2 = ajv(£i) and T2 = OA/(TI). Then 
p2 = L2 0 T2 will in general not be a normal decomposition for the display V2. But 
we can replace the display V2 by the display (P2, L2 + /5X1, P, T^_1), which is defined 
because L2 + /5X1 C Q2. Hence we may assume without loss of generality that 
P2 = L2 -f T2 is a normal decomposition. 

For ¿ = 1,2 we consider the F-linear isomorphisms 

Ui = V~1 + Pz : 0 7; —> P*. 

Then we define a to be the unique W(S)-lmeax map Pi —• P2, lifting the identity 
which satisfies 

(55) a{Uxx) = U2OL{X), for x G Pi-

One readily verifies that satisfies this equation modulo pNW{a). By the corollary 
to the lemma 42 we obtain: 

(56) a = aN mod pNW{a) 

We will verify that a commutes with F modulo pN+1 W{a). We verify this for elements 
Zi G Li and t\ G Ti separately. We write a(h) = l2 4-12, where l2 G L2 and t2 G T2. 
Since ajsrih) £ L2 we conclude from the congruence (56) that t2 = 0 mod p^W^a). 
Therefore we obtain 

Pt2 = 0 mod pN+1W(a). 

Also since Vr~1(W'(a)P2) C W(a)P2, we find 

V~H2 = Q m.odpNW(*). 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 165 

Now we can compute: 

aiV^h) = a(*7iZi) = U2a(h) = V~xl<2 + P*2 

V } = V~H2 = ^ - ^ ( / i ) - Vr"1t2 mod p^+1 W(a). 

If we multiply the last equation by p, we obtain 

a(FZi) = Fa(Zi) modulo pJV+1Wr(a), for H E Lx. 

To treat the elements in T\ we write ot{t\) = l2 + t'2. The same argument as before 
now yields l2 = 0 mod p^W^a). Since our operator y - 1 is F-linear on Q2 and since 
V2 is a sum of elements of the form £ • y, where £ G p^W^a) and t/ G L'2, we obtain 

F " 1 / ^ = 0 mod p ^ + ^ a ) . 

Now we compute as above: 

a(F*i) = a(tfi*i) = tf2<*(*i) = V'% + Ff2 

EE Ft'2 = F a ( t i ) - FZ2 EE Fa(tx) mod p ^ W ^ a ) . 

Altogether we have proved 

(58) a(Fx) = Fa(x) mod pN+1W{A), for x e P i . 

Prom this equation we conclude formally 

(59) « ( V ^ y ) EE V ^ a f o ) mod piV+1W(a) for y E ISPI. 

Indeed, it is enough to check this congruence for y of the form v£-x. Since V~1(v£x) = 
£Fx, we conclude easily by (58). The following equation holds because both sides are 
zero: 

(60) aiy-iy) = V~xa{y) for y G A - Pi. 

The equation (57) shows that a does not necessarily commute with V~x on L\ mod
ulo pN+1W(A). Indeed, the map Lx L2®T2 T2 factors through pNW(A)T2. 
Let us denote by 77 the composite: 

77 : LI —> pNW(A)T2 - • pNW(A)P2 

Then we may rewrite the formula (57) as 

(61) aiV-Hy) EE V-*OL(H) - V(H) mod pN+1W(a). 

We look for a solution ar of our problem, which has the form 

a = a + a;, 

where a; is a VF(S)-linear map 

(62) u : Pi —>pNW{a)P2. 
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First of all we want to ensure that the equation (58) remains valid for a/. This is 
equivalent with 

UJ(FX) = Fu(x) mod pN+1W(a) for x G Pi. 

But the right hand side of this equation is zero mod pN~*~1W(a). Hence a! satisfies 
(58), if 

OJ(FX) = 0 mod pN+1W(a). 

We note that any W(S)-linear map (62) satisfies trivially uo(FL\) = u{pV~1Li) = 
pu{V~1 L\) = 0 mod pN+1W(a). Hence a! commutes with F mod pN~{~1W(a), if u 
mod pN+1W(a) belongs to the W'(^-module 

(63) Hom(P1/W(S)FTu p^M/p^W^a) ®W(s) P*). 

Moreover CM' commutes with V~x mod pN+1W(a), if cu satisfies the following congru
ence 

(64) uty-Hx) - V^cuih) = n(h) mod pN+xW{a), for h G L±. 

Indeed, we obtain from (64) 

a'iV^y) = V~1QL,(y) mod pN+1W(a), for y G Qu 

because of (61) for y G L\ and because of (59) and (60) for y G Is Pi -\-aPi. Hence our 
theorem is proved if we find a solution UJ of the congruence (64) in the VF(Sf)-module 
(63). 

The map V~x induces an F-linear isomorphism 

V'1 : Lx • P1/W(S)FT1. 

Hence we may identify the T^(.S)-module (63) with 

(65) HomF_linear(Ia, pNW{*)/pN+1 W(a) ®W(S) P2), 

by the map u i—• UJV~X. 

We rewrite now the congruence (64) in terms oiu — UJV~1 . The map V~xUJ is in 
terms of u the composite of the following maps: 

(66) 

LI <- i 
PI 

pr V(1 ei = L1d 
V* 

y W(S) <2>F,w(s) ¿1 

pNW(a)/pN+1W(a) ®w(s) P2 
v-1 

- pNW(a)/pN+1W(a) ®wfs) P2 

The map i in this diagram is the canonical injection. The map pr is the projection 
with respect to the following direct decomposition 

Px = W(S)V-lLx © W(S)FT1 
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Finally the lower horizontal F-linear map V 1 is obtained as follows. The divided 
powers provide an isomorphism (compare (48)): 

pNW(a)/pN+1W(a) (pNa/pN+1a)N. 

Using the notation [ao, a i , . . . , an,... ] for a vector of (pNa/pN+1a)N, the map V 1 is 
given by: 

V 1[a0,ai, . . .] ®x = [ai ,a2, . . . ] 0 Fx. 

Let us denote by i? = F # o pr o i the composite of the upper horizontal maps in the 
diagram (66). Then we may write 

V(1 ei = V + i )Rd 

We define a Z-linear operator U on the space 

(67) HomF_linear(L1,piVW(a)/piV+1W(a)^(5)P2), 

by 

(68) VN = V(1 ei =R* 

Hence the equation (64) which we have to solve now reads as follows: 

(1 - U)u) = n mod pN+1W(a). 

Here 1 denotes the identity operator on the group (67) and UJ and rj are considered as 
elements of this group. Clearly this equation has a solution UJ for any given 77, if the 
operator U is nilpotent on (67). 

To see the nilpotency we rewrite the space (67). We set Di = Pi/Is Pi + pP% = 
S/pS <g)WQ w(s) and we denote the image of Qi in this space by Dj. Then our 
group (67) is isomorphic to 

UomFTOhenius(DlpNW(a)/pN+1W(a) ®s/pS £>2), 

where Horn denotes the Frobenius linear maps of S/pS-modules. Now the operator 
U is given by the formula (68) modulo pW{S) + /5 . But then locally on Spec S/pS, 
the operator B, is just given by the matrix B of (15). Hence the nilpotency follows 
from (15). • 

2.2, Triples and crystals. — Let R be a ring such that p is nilpotent in R, and 
let V = (PjQ^F^V'1) be a display over R. Consider a pd-thickening S —> R with 
kernel a, i.e. by definition that p is nilpotent in S and that the ideal a is equipped with 
divided powers. In particular this implies that all elements in a are nilpotent. We 
will now moreover assume that the divided powers are compatible with the canonical 
divided powers on pZp C Zp. 

A P-triple T = (P, F, V~x) over S consists of a projective finitely generated W(S)-
module P , which lifts P , i.e. is equipped with an isomorphism W(R) <S>w(S) P — P . 
Hence we have a canonical surjection P —• P with kernel W(a)P. Let us denote 
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by Q the inverse image of Q. Moreover a triple consists of two ^-linear operators of 
W(£)-modules F : P —> P and V-1 : Q —* P. The following relations are required: 

V~1(vwx) = wFx, for w e W(S),w e P. 

V- 1(aP) = 0 

Here a C W(S) is the ideal given by the divided powers (48). 
There is an obvious notion of a morphism of triples. Let a : V\ —> V2 be a 

morphism of displays. Let T\ respectively T2 be a Pi-triple respectively a P2-triple 
over S. An morphism a : Pi —• P2 is a homomorphism of ^(S')-modules which 
lifts a and which commutes with F and V - 1 . We note that 5(<2i) c Q2- Therefore 
the requirement that a commutes with V~x makes sense. With this definition the 
P-triples over S form a category, where V is allowed to vary in the category of displays 
over R. We call it the category of triples relative to S —> P . 

Let us now define base change for triples. Let cp : R —> R' be a ring homomorphism. 
Let S —» R respectively S' —• R! be pd-thickenings. Assume that we are given a 
homomorphism of pd-thickenings: 

(69) 

S rv 
S' 

R vd R! 

Let T be a P-triple over S as before. Let Vw be the display obtained by base 
change from V. Then we define a P^'-triple Ts* over S' as follows. We set Ts> = 
(W(S') <8>W(S) P,F,V~X) with the following definition of F and V'1. The operator 
F is simply the F-linear extension of F : P —• P. The operator V~x on Q' is uniquely 
determined by the equations: 

V~1{w <g> 2/) = ^ ^ r V for y G G W ^ ' ) 

F 0 x) = tu (8) Fx, for x E P 

V_1(a 0 x ) = O , for a G a' C W (̂a') 

Here a' is the kernel of Sf —> i?' with its pd-structure. 
Let 5 —> i? be a pd-thickening and P b e a display over R. Let T be a P-triple 

over 5 . By theorem 44 it is determined up to unique isomorphism. We can construct 
all liftings of V to a display over S as follows. We consider the Hodge filtration of V. 

(70) Q/IRP C P/IRP 

Let L be a direct summand of P/IsP, such that the filtration of 5-modules 

(71) L C P/IsP 
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lifts the filtration (70). We call this a lifting of the Hodge filtration to T. If we denote 
by QL C P the inverse image of L by the projection P —> P/IsP we obtain a display 
(P,QL, F, V~X). By theorem 44 we conclude: 

Proposition 45. — The construction above gives a bisection between the liftings of the 
display P to S and the liftings of the Hodge filtration to T. 

We will now formulate an enriched version of theorem 44. 

Theorem 46. — Let a : V\ —> V2 be a morphism of displays over R. Let S —> R be a 
pd-thickening and consider for ¿ = 1,2 a Pi-triple % over S. Then there is a unique 
OL-morphism of triples a : T\ —• T2. 

Proof. — To prove the uniqueness we may assume a = 0. Then we consider the 
diagram 50 with P respectively Pr replaced by P\ respectively P2 and u replaced by 
5. There is a mao V# on P which is uniquely determined by 

V*{wV~1y) : = w<g>y, for w e W(S), y eQ. 

Its existence follows by choosing a lifting of the Hodge filtration of V to T. With 
these remarks the arguments of lemma 39 apply, and show the uniqueness. To show 
the existence we first consider the case where a. is an isomorphism. By choosing liftings 
V\ respectively V2 of V\ respectively V2 to S this case is easily reduced to theorem 
44. The general case is reduced to the first case by considering the isomorphism of 
displays: 

P i © p 2 —• Viev2 , 

(x,y) i—> (x,a(x) +y) 

where x G V\ and y G V2. • 

Remark. — This theorem extends trivially to the case where S is a topological ring 
as in definition 13. More precisely let R be as in the last theorem, and let S —> R 
be any surjection, such that the kernel a is equipped with divided powers. If p is not 
nilpotent in S this is not a pd-thickening in our sense (compare section 2.2). Assume 
that there is a sequence of sub pd-ideals . . . an D an+i . . . , such that p is nilpotent in 
S/an and such that S in complete and separated in the linear topology defined by the 
ideals an. Then the theorem above is true for the surjection S —• R. We note that S 
is a p-adic ring. We will call S —• R a topological pd-thickening. We are particularly 
interested in the case where S has no p-torsion. 

Let us fix S —•> R as before. To any display V we may choose a P-triple T-p(S). By 
the theorem V •—> T-p(S) is a functor from the category of displays to the category of 
triples. It commutes with arbitrary base change in the sense of (69). If we fix V we 
may view S »—• T-p(S) as a crystal with values in the category of triples. We deduce 
from it two other crystals. 
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Let X be a scheme, such that p is locally nilpotent in Ox- Then we will consider 
the crystalline site, whose objects are triples (J7, T, 5), where U c X is an open 
subscheme, U —> T is a closed immersion defined by an ideal J c O r , and <5 is a 
divided power structure on J. We assume that p is locally nilpotent on T, and that 
the divided powers S are compatible with the canonical divided power structure on 
the ideal pZp C Zp. The reason for this last condition, which was not necessary in 
theorem 46 will become apparent later. Let W(0Cxys) be the sheaf on the crystalline 
site, which associates to a pd-thickening U —* T the ring W(T(T,OT))- A crystal in 
W(Oxys)-modules will be called a Witt crystal. 

Sometimes we will restrict our attention to the crystalline site which consists of 
pd-thickenings (£/, T, £), such that the divided power structure is locally nilpotent in 
the sense of [Me] Chapt. Ill definition 1.1. We call this the nilpotent crystalline site. 

Let V be a display over R. Then we define a Witt crystal JC-p on Speci? as 
follows. It is enough to give the value of tC-p on pd-thickenings of the form Spec R! 
Spec S", where Spec R' ^ Spec R is an affine open neighbourhood. The triple over S' 
associated to VR is of the form 

TPR,(S') = (P,F,V-1). 

We define 

(72) Kv (Spec Rf -+ Spec S') = P. 

For the left hand side we will also write K-p(Sr). 

Definition 47. — The sheaf K-p on the crystalline situs of Spec R is called the Witt 
crystal associated to V. We also define a crystal of (9crys-modules on Specie by 

VV{S') = tGp(S')/Is'1C{S'). 

T>-p is called the (covariant) Dieudonne crystal. 

More generally we may evaluate these crystals for any topological pd-thickening in 
the sense of the last remark. If (S, an) is a topological pd-thickening we set: 

KV(S) = H m ^ ( f l / o n ) 

v } T>V(S) = lunT><p(R/an) 
71 

The Witt crystal and the Dieudonne crystal are compatible with base change. This 
means that for an arbitrary homomorphism of pd-thickenings (69) we have canonical 
isomorphisms: 

Kh>Kt(S')^W(S')(g,ms)I dOp(S) 

(74) DDr VV^,{S')~S'®SVV{S). 
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This follows from the definition of the 7^/-triple Ts>. The P-module T>j>{R) is iden
tified with P/IRP and therefore inherits the Hodge filtration 

(75) -D\,(R) C VV(R). 

The proposition 45 may be reformulated in terms of the Dieudonne crystal. 

Theorem 48. — Let S —• R be a pd-thickening. Consider the category C whose objects 
are pairs (V,E), where V is a display over R, and E is a direct summand of the 
S-module V-p(S), which lifts the Hodge filtration (75). A morphism 4> : (P^E) —• 
(V, E') in the category C is a morphism of displays 4> • V —• V, such that the induced 
morphism of the associated Dieudonne crystals (definition 4 V maps E to E'. Then 
the category C is canonically equivalent to the category of displays over S. 

The description of liftings of a display V over R is especially nice in the following 
case: Let S —• R be surjection with kernel a, such that a2 = 0. Then we consider the 
abelian group: 

(76) Hom(P^(iJ), a ®R (V<p(R)/T>],(R))) 

We define an action of this group on the set of liftings of V to S as follows. Two 
liftings correspond by theorem 48 to two liftings E\ and E2 of the Hodge filtration. We 
need to define their difference in the group (76). Consider the natural homomorphism: 

Ex C VV(S) —• VV(S)/E2 

Since Ei and E2 lift the same module T>\> (R) the last map factors through 

(77) Ei a(Vv(S)/E2). 

The right hand side is canonically isomorphic to CL&R (T>-p(R)/'Dp(P)), since a2 = 0. 
Hence the map (77) may be identified with a map: 

u : V^(R) —> a ®R T>v(R)/T>Jp(R) 

We define Ei — E2 = u. It follows immediately that: 

(78) E2 = {e - vJ^) | e G Ex}, 

where u(e) G aV-p(S) denotes any lifting of u{e). This proves the following 

Corollary 49. — Let V be a display over R. Let S —• R be a surjective ring homo
morphism with kernel a, such that a2 = 0. The action of the group (76) on the set of 
liftings of V to a display over S just defined is simply transitive. If Vo is a lifting of 
V and u an element in (76) we denote the action by VQ + U. 

Using example 1.17 it is easy to give a description of VQ 4- u in the situation of 
the last corollary. Let a C W^a) be the subset of all Teichmiiller representatives of 
elements of a. If we equip a with the divided powers ap(a) = 0 this agrees with our 
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definition after equation (48). We restrict our attention to homomorphisms a : PQ — 
aPo C W(a)Po and consider the display defined by (27): 

(79) F„x = Fx — a(Px) , for x € Pn 
K T 1 » = - ^O^-1?/), for y e QQ 

Then there is an element u in the group (76) such that: 

(80) Vac = V0 + M 

It is easily described: There is a natural isomorphism aPo = a P/IRP. Hence a: 
factors uniquely through a map: 

ä : P / / Ä P — • a ®Ä P/IRP. 

Conversely any P-module homomorphism ot determines uniquely a map a. Let u be 
the composite of the following maps: 

(81) u : Q/IRP C P/IRP - ^ a 0 ß P/IRP -^a®R P/Q. 

Then the equation (80) holds. To see this consider the isomorphism : 

r : ( ? 0 , Q o , ^ , 0 — (Po,Qo,P, V"1), 

which exists by theorem 46 . Using the relations: 

FaP0 = V^aPo = 0, a2 = 0, 

it is easily verified that r{x) = x + a(x) for x G PQ. It follows that Vex is isomorphic 
to the display (P0, r(Q0), P, V 1 ) . Since 

T(<2O) = + a(x)|x G Qo} 

the equation (80) follows with the u defined above (81). 
Next we define the universal deformation of a display. Let S —> R be a surjection 

of rings, such that the kernel is a nilpotent ideal a. For a display V over P , we define 
the functor of deformations of V : 

defp(S) 

as the set of isomorphism classes of pairs where V is a display over S and 
i: V —» 7 ^ is an isomorphism with the display obtained by base change. 

We will consider the deformation functor on the following categories AugA_^. Let 
A be a topological ring of type (16). The ring R is equipped with the discrete topology. 
Suppose we are given a continuous surjective homomorphism <p : A —•> R. 

Definition 50. — Let AugA_^ be the category of morphisms of discrete A-algebras 
ips : S —> R, such that ips is surjective and has a nilpotent kernel. If A = P , we will 
denote this category simply by Augfi. 
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A nilpotent ii-algebra Af is an P-algebra (without unit), such that j\fN = 0 for a 
sufficiently big number N. Let Nil/* denote the category of nilpotent R-algebras. To 
a nilpotent P-algebra j\f we associate an object R\j\f\ in Aug^. As an J?-module we 
set R\Af\ = R(BJV. The ring structure on R\Af\ is given by the rule: 

(ri 0 ni)(r2 0 n2) = (rir2 © nn2 + r2ni + nin2) for m e JV, n € R. 

It is clear that this defines an equivalence of the categories NUR and AugH. An R-
module M is considered as an element of NUR by the multiplication rule: M2 = 0. 
The corresponding object in Aug^ is denoted by R\M\. We have natural fully faithful 
embeddings of categories 

(R — modules) C AugR C AugA_^ 

Let F be a set-valued functor on AugA_+R. The restriction of this functor to the 
category of R-modules is denoted by tp and is called the tangent functor. If the 
functor tp is isomorphic to a functor M i—• M <g>R tp for some i?-module tp, we call 
tp the tangent space of the functor F (compare [Zl] 2.21). 

Let T be a topological A-algebra of type (16) and : T —• R be a surjective 
homomorphism of topological A-algebras. For an object S G AugA_H, we denote by 
Hom(T, S) the set of continuous A-algebra homomorphisms, which commute with the 
augmentations I¡)T and ips- We obtain a set-valued functor on AugA_+R: 

(82) Spf T(S) = Hom(T, S) 

If a functor is isomorphic to a functor of the type Spf T it is called prorepresentable. 
We will now explain the prorepresentability of the functor Defp. Let us first 

compute the tangent functor. Let M be an R-module. We have to study liftings 
of our fixed display P over R with respect to the homomorphism R\M\ —> R. The 
corollary 49 applies to this situation. We have a canonical choice for Vo' 

Po = PR\M\> 

Let us denote by ~Def-p(R\M\) the set of isomorphism classes of liftings of V to 
Then we have an isomorphism : 

(83) UomR(Q/IRP, M ®R P/Q) DefV(R\M\), 

which maps a homomorphism u to the display P0 + u. Hence the functor Defp has a 
tangent space, which is canonically isomorphic to the finitely generated projective R-
module HomR(Q/IRP, P/Q). Consider the dual R-module u = UomR(P/Q, Q/IRP). 
Then we may rewrite the isomorphism (83): 

Homfí^ ,M) —• T>eiv(R\M\) 

Hence the identical endomorphism of u defines a morphism of functors: 

(84) Spf i?m —>DefP 
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We lift a; to a projective finitely generated A-module to. We consider the symmetric 
algebra S\(UJ). Its completion A with respect to the augmentation ideal is a topo
logical A-algebra of type (16), which has a natural augmentation A —> A —• R . Since 
the deformation functor is smooth, i.e. takes surjections S\ —• 52 to surjective maps 
of sets, the morphism (84) may be lifted to a morphism: 

(85) Spf A —• Def̂ > 

It is not difficult to show, that this is an isomorphism using the fact that it induces 
by construction an isomorphism on the tangent spaces (compare [CFG]). It is easy to 
describe the universal display over pun™ over A, Let u : Q/IRP —» UJ ®R P/Q the 
map induced by the identical endomorphism of UJ. Let a : P —• UJ (£>R P/Q be any 
map, which induces u as described by (81). The we obtain a display Vex over R\UJ\. 

For punlv we may take any lifting of Va to A . 
Let us assume that the display V is given by the equations (9). In this case the 

universal deformation is as follows. We choose an arbitrary lifting (o^) G Glh{W{K)) 
of the matrix (ctij). We choose indeterminates (tki) for fc = 1 , . . . d, Z = d + 1 , . . . ft. 
We set A = AJt^]. For any number n we denote by En the unit matrix. Consider 
the following invertible matrix over Glh(A): 

(86) 'Ed [tki] 
0 Eh-di 

(ddlsj) 

As usual [tki] € W(A) denotes the Teichmuller representative. This matrix defines by 
(9) display puniv over the topological ring A . The the pair (A, 7?umv) prorepresents 
the functor Defp on the category AugA_^. 

2.3. Wit t and Dieudonne crystals. — Our next aim is to explain how the Witt 
crystal may be reconstructed from the Dieudonne crystal. 

The ideal IR C W(R) will be equipped with the divided powers (see [Gr] Chapt. 
IV 3.1): 

(87) ap(vw) = ^ "2VV>) , for w G W(R). 

The morphism wo : W(R) —• R is a topological pd-thickening, in the sense of the 
remark after theorem 46, because (87) defines a pd-thickenings w0 : WN(R) —• R . We 
note that the last pd-thickenings are nilpotent, if p ^ 2. 

If we evaluate a crystal on Spec R in W(R) we have the topological pd-structure 
above in mind (compare (73)). 

More generally we may consider a pd-thickening S —> R , where we assume p to be 
nilpotent in S. Let a c S b e the kernel. The divided powers define an embedding 
a C W(S), which is an ideal of W(S) equipped with the same divided powers as 
a C S. The kernel of the composite W(S) S —> R is the orthogonal direct sum 
Is 0 a. Since we have defined divided powers on each direct summand, we obtain a 
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pd-structure on the kernel of: 

(88) W(S) —• R. 

Again this induces pd-thickenings Wm(S) —• R. Therefore me may consider (88) as 
a topological pd-thickening, and evaluate crystals in W(S). 

In the case the divided powers on the kernel of Wm(S) —> R are nilpotent, if 
the divided powers on the ideal a were nilpotent. 

Proposition 51. — Let S —> R be a pd-thickening. There is a canonical isomorphism 

KV{S)^VV(W(S)). 

This will follow from the more precise statement in proposition 53. 
For later purposes it is useful to note that this proposition makes perfect sense if 

we work inside the nilpotent crystalline site. 
To define the isomorphism of proposition 51 we need the following ring homomor-

phism defined by Cartier: 

(89) A : W{R) —• W(W(R)). 

It is defined for any commutative ring R. In order to be less confusing we use a hat 
in the notation, if we deal with the ring W(W(R)). 

The homomorphism A is functorial in R and satisfies 

(90) w„ (A(0 ) = FX £ € W(R). 

As usual these properties determine A uniquely. We leave the reader to verify that 
the equation: 

(91) W (wn)(A(0) = F"£, 

holds too. 

Lemma 52. — The following relations hold: 

A(F0 = ^(A(0) = W (F) (A(0) , 

A(v$ ( A ( 0 ) = [v€, o, o , . . . ] e W(IR) 

Here on the right hand side we have used logarithmic coordinates with respect to the 
divided powers on IR . 

Proof — We use the standard argument. By functoriality we may restrict to the 
case where R is torsion free (as Z-module). Then W(R) is torsion free too. Hence it 
is enough to show that for each integer n > 0 the equations of the lemma hold after 
applying wn. This is readily verified. • 
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Proposition 53. — Let S —• R be a pd-thickening with kernel a, and let V = 
(P, Q,F,V~X) be a display over R. Let T = (P, P, V"1) be the unique (up to 
canonical isomorphism) V-triple over S. Consider the pd-thickening W(S) —• R with 
kernel Is 0 a. Let T denote the unique V-triple related to this pd-thickening. Then 
T is of the form 

T = (W(W(S)) ®AiW(S) P, F, V-1), 

where the operators F and V~1 are uniquely determined by the following properties: 

(92) F(£<g> x) = ^® Fx, £eW(W(S)),xeP 

V'H^Qy) =F£®V~ly, y€Q 

V-i^tox) = £<8>Fx. 

Here as usual Q denotes the inverse image of Q by the morphism P P. 
The triple T provides the isomorphism of proposition 51: 

(93) JGp(S) = P = W(S) ®w0 (W(W(S)) ®AfW(5) P) = VV(W(S)) 

Proof. — Let a : W(S) —• R be the pd-thickening (88). It follows that from (91) that 
W(W(S)) ®A,VK(5) P = P is a lifting of P relative to a. We have homomorphisms 

P P —• P, 

where the first arrow is induced by W(wo) : W(W(5)) —• W(S). Let <2 be the inverse 
image of Q in P . 

We choose a normal decomposition P = L 0 T , and we lift it to a decomposition 
P = L 0 T. Then we have the decomposition 

(94) Q = Z © / S f e a f . 

The divided power structure on the ideal /5 0 a C M^(5) induces an embedding of this 
ideal in W(W(S)). We will denote the images of Is respectively a by Is respectively 
a. The analogue of the decomposition (94) for the pd-thickening W(S) —• R gives for 
the inverse image of Q: 

(95) TV~1{Q) = W(W(S)) ® L®Iw(m ® T 0 ?9 ® T e a <g> f. 
A,W(S A,W(S) A ,W(S) A,W(S) 

By the definition of T the operator V~x must be defined on 7r_1(Q) and it must be 
a lifting of V~l on P . 

Let us assume for a moment that F - 1 exists as required in the proposition. We 
claim that this implies that V~x vanishes on the last two direct summands on (95). 
To see that V~1 vanishes on Is <8>A,W(S) T, we remark that by lemma 52 any element 
of Is may be written in the form A ( V £ ) —V A ( £ ) , for £ G W(S'). Hence it suffices to 
show that for t G T 

K - 1 ( A ( v O - î ^ A ( 0 ® * ) = 0 . 
But this follows from the equation (92). 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 177 

Let a G a C W(S) be an element. The same element considered as element of 
a C W(W(S)) will be denoted by a. We have the following lemma, which we prove 
later. 

Lemma 54. — We have A (a) = a. 

Hence V~1(a ® i) = Vr~1(l ® at) = 1 ® F - 1 ^ = 0, by the second equation of (92) 
for y = at. Now we see from the decomposition (95) that the operator V~x from the 
triple T is uniquely determined by the requirements (92). Moreover we can check now 
that V-1 (if it exists) is a lift of V~x : Q -+ P relative to W(w0) : W(W(S)) -> W(S). 
In fact our proof of the uniqueness shows that 7r_1(Q) is generated by all elements 
of the form £ ® y, for £ G W(W(S)) and y e Q and of the form ^ ® x, for x € P. 
Since W(WQ) commutes with F and v, we see from (92) that V'1 is indeed a lift. It 
remains to show the existence of a V~x as asserted in the proposition. 

To prove the existence of V~X, we define an F-linear operator V~X on 7r_1(Q). On 
the first direct summand of (95) it will be defined by the second equation of (92), and 
on the second direct summand by the third equation of (92). On the last two direct 
summands of (95) we set V~X equal to zero. We only have to check, that the last two 
equations of (92) hold with this definition. We will write down here only some parts 
of this routine calculation. Let us verify for example that the second equation of (92) 
holds for y € IsT. We may assume that y is of the form y = vr]t, where rj G W(S) 
and t G T. Then we have to decompose £ <g>v r/t according to the decomposition (92): 

f ®v y]t = A(^77) • I<g> t = (A (VTJ) - ^A(ry)) • f ® t + 9A(ri)Z ® t 

Here the first summand is in the third direct summand of (95) and the second sum
mand is in the second direct summand of the decomposition (95). The definition of 
V~X therefore gives: 

V'1 (V® yj = V-1 (9A(ri) - £® *) 

= V-1 (9 (A (Vf t) ® t) = A (Vf C ® Ft 

= p f ® rjFt = ^ ® V-1 (vVt) = ^® V~xy 

Hence the second equation of (92) holds with the given definition of V~1 for y G IsT-
For y G L this second equation is the definition of V-1 and for y G aT the lemma 54 
shows that both sides of the equation 

V-1 (P£®y) = f ® F y 

are zero. Because we leave the verification of the third equation (92) to the reader we 
may write modulo the lemma 54: • 

Let us now prove the lemma 54. The ideal W(a) C W(S) is a pd-ideal, since it 
is contained in the kernel o 0 / s of (88). One sees that W(a) inherits a pd-structure 
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from this ideal. One checks that in logarithmic coordinates on W(a) this pd-structure 
has the form: 

ap[a0, au • • • ] = [^P{ao),p^p-1)ap{a1),... ,^(p_1)ap(aO,. . . ] 

where ap(a,i) for ai G a denotes the given pd-structure on a. 
On W{a) the operator Fn becomes divisible by pn. We define an operator ^rFn 

on W(a) as follows: 

±Fn : W(a) — W(a) 
[a0, a i , a2 . . . ] i—• [an, an+i, an+2, • • • ] 

Since W(a) C VT(S') is a pd-ideal, we have the divided Witt polynomials 

w ; : W(W(a)) —> W(a) 

If a £ a C W(a) the element a G a C VF(VT(a)) used in the lemma 54 is characterized 
by the following properties 

wQ (a) = a, (a) = 0 for n > 0. 

Therefore the lemma 54 follows from the more general fact: 

Lemma 55. — Let S be a Zp-algebra and a C 5 be a pd-ideal. Then the canonical 
homomorphism 

A : W{a) —• W(W(a)) 

satisfies 

< (A (a)) = ^F\, for a € W(a),n > 0. 

Proof. — One may assume that S is the pd-polynomial algebra in variables ao, a i , . . . 
over Zp. Since this ring has no p-torsion the formula is clear from (90) • 

Corollary 56. — Under the assumptions of proposition 53 let cp : W(R) —» S be a 
homomorphism of pd-thickenings. Then the triple T = (P, F, V~x) may be described 
as follows: Let 8 be the composite of the homomorphisms 

(96) 6 : W{R) W(W(R)) W^ > W(S) 

This is a ring homomorphism, which commutes with F. 
We define P = W(S) ®S,W(R) P- Then P is a lifting of P with respect to the 

morphism S —> R. For the operator F on P we take the F-linear extension of the 
operator F on P. Let Q C P be the inverse image of Q. Finally we define V~x : Q —• 
P to be the unique F-linear homomorphism, which satisfies the following relations. 

V~1(w <%> y) = Fw ® V~Yy, w G W(S), y eQ 
(97) V^^w ®x) =w®Fx, we W(S), xeP 

V^ia ®x) = Q a e a c W(S). 
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In particular we obtain the following isomorphisms: 

K>P(S)&W(S) ®w(r) ICv(R) 
VV(S) ^ S ®W{R) KV{R). 

Proof. — We apply proposition 53 to the trivial pd-thickening R —> P , to obtain the 
triple T. Then we make base change with respect to cp : W(R) —+ S. • 

We will now see that the isomorphism of proposition 51 (compare (93)) is compat
ible with Frobenius and Verschiebung. 

Let R be a ring such that p • R = 0. For a display V over R we have defined 
Frobenius and Verschiebung. 

Trv : V —> P(p) Verp : V(p) —• V 

They induce morphisms of the corresponding Witt and Dieudonne crystals: 

(98) Fr-Dr : Vv —> P?(P), FrKv : Kv —• JCV(P) 

(99) V e r ^ : Vv{p) —• Vv, Veijcv : K,v{p) —• Kv 

Let us make the morphisms more explicit. We set V = (P, Q, P, V"1). Let S —> R 
be a pd-thickening, such that p is nilpotent in S. We denote by T = (P, P, V~1) the 
unique P-triple over S. The unique -triple over S is given as follows 

T<*> = (W (S) ®FIW(S) P, F, V-1) , 

where F and V"1 will now be defined: 

P(c ® x) = F£ ® Px, for £ € x e P. 

The domain of definition of y - 1 is the kernel of the canonical map 

W(S) ®F,W(S) P > R ®Frob,i? P /Q , 

which is induced by W(S) S' —• P . The operator V-1 on is uniquely 
determined by the following formulas 

V-1 (£®y) = F£® V~xy, for £e W(S), yeQ 
(100) V-1 (v£(g)x) = £(g>Px, x e P 

( a ® f ^ ( 5 ) PJ = 0 . 

Even though it makes the text long, we do not leave the verification of the existence 
of V~x to the reader: We take a normal decomposition P = L 0 T. Then we obtain 
the decompositions 

Q = L 0 IST 0 a f 
q(P) = W(S) ®FtW(s) Leis ®F,W(S) T 0 a T 

We define the operator V~x on by taking the first formula of (100) as a formula 
on the first direct summand, the second formula on the second direct summand and 
so on. Then we have to verify that V~x defined on this way satisfies (100). To verify 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



180 T. ZINK 

the first formula (100) it is enough to check the cases y € L,y G IsT and y G oT 
separately. For y G L the assertion is the definition of V"1 and for y G aT both sides 
of the equation become zero. Therefore we may assume y = vr}x, for 77 G W(S) and 
x G T. We have 

£ & V77a: = p^rj ® x. 

Now in the ring W(ZP) = W (W (Fp)) we have the equation 

p - [p ,0 ,0 = A ^ 1 ) - [ v l , 0 . . - 0 ] = V A 1 = vl . 

Since ZP —• 5 is a pd-morphism the same equation holds in W(S). We obtain 

p£/7 <g> x = ([p, 0 • • • 0] + vl) £r? 0 

Since [p, 0 • • • 0]£r? (g) x G a 0 T we obtain by the definition of F-1 

y 1 (p£r? ® a?) = F"1 (vl • cry 0 a?) = l^"1 {VF (fr) ® = F(^) ® ^ 

= fc ® t7Fx = F£ ® V"1 (̂ 770:) . 

This proves the assertion. The verification of the last two equations of (100) is 
done in the same way, but much easier. 

Hence we have proved the existence of V~1. It follows that is a P(p - triple 
To the triple T = (P,F, V~x) there is by lemma 1.5 an associated W^(5)-linear 

map 

( 1 0 1 ) V* : P — W(S) ®F,w(S) P, 

which satisfies the relations 

V*{wV~1y) =w<g>y, for y G Q,w G W(S) 

V^(wFx) — p - w <g> x. 

Indeed, to conclude this from lemma 1.5 we complete T to a display (P,Q, 
jF, V~X) and note that Q = Q + aP. 

Then we claim that ( 1 0 1 ) induces a map of triples: 

(102 ) Frr : T —> T&> 

We have to verify that the morphism ( 1 0 1 ) commutes with F and V~1. Let us do the 
verification for V"1, The assertion is the commutativity of the following diagram: 

Q 
1 

vr+ 
C W(S) ®F,wis) P 

v-1 

P-
V* 

V-i 

W(S) <E>F,w(S) P 
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We take any V E Q and we write it in the form 

v = 
m 

¿=1 
V(1 ei = 

for £i e W(S) and Zi € Q. Then we compute 

V#(V-xii\ = 1 бон 

^-1(V#y) = V-1 
m 

i=l 
£i 0 Zi dd 

m 

2=1 

<Féi® v~xzi = 10?/ 

We leave to the reader the verification that 

F* : W(S) ®F,w(S) P-^P 

induces a morphism of triples 

Verr : T<p> —• T 

Then F r r and Verr are liftings of Fr-p and Ver-p and may therefore be used to 
compute the Frobenius and the Verschiebung on the Witt crystal and the Dieudonne 
crystal: 

Proposition 57. — Let R be a ring, such that p • R = 0. Let V be a display over R. 
We consider a V-triple T = (P, F,V~1) relative to a pd-thickening S —> R. Then 
the Frobenius morphism on the Witt crystal Frjc^ (S) : K-p —> JCp(P) (S) is canonically 
identified with the map V# : P —» W(S) ®F,W(S) F, and the Verschiebung morphism 
VerjcT(S) : /Cp(P>(S) —• JC-p(S) is canonically identified with F# : W(S)®F,w(S) P ~* 
P. The Frobenius and Verschiebung on the Dieudonne crystal are obtained by taking 
the tensor product with Sf0Wo>v̂ (S)-

This being said we formulate a complement to the proposition 53. 

Corollary 58. — Let us assume that p • R = 0. Then for any pd-extension S R the 
isomorphism of the proposition 53: 

KV(S) ^VV(W(S)) 

is compatible with the Frobenius and the Verschiebung on these crystals. 

Proof. — We will check this for the Frobenius. The commutativity of the following 
diagram is claimed: 

Kp(S) *T><n(W(RW 

FrKT, Fr-Dv 

fCv(p) (S) • 2 w (W(S)). 
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Now we take a P-triple (P, P, V *) over S. Taking the proposition 57 into account, 
we may rewrite the last diagram as follows: 

p<-

V* 

W(S)®(W(W(S)) <8> P) 
w0 A,W(S) 

1® V* 

W(S) ®(W(W(S)] 
wo F,W(W(S)) 

W(W(S)) ® P) 
A,W(5) 

W(S) p 
F,W(S) 

W(S) <8>(W(W(S)) 
wo A,W(5) 

W(S) P) 
V(1 ei 

It is enough to check the commutativity of this diagram on elements of the form 
1 ® V_1(£ ® y), £ € W(W(S))y G Q and V " 1 ^ ® a;),* G P. This is easy. • 

We will now study the functor which associates to a display its Dieudonné crystal 
over a base R of characteristic p. In this case the Dieudonné crystal is equipped with 
the structure of a filtered P-crystal. We will prove that the resulting functor from 
displays to filtered P-crystals is almost fully faithful. 

Let R be a ring, such that p * R = 0, and let P b e a display over R. The inverse 
image of the Witt crystal /Cp by the Probenius morphism Prob : R —• R may be 
identified with /Gp(P). To see this we look at the commutative diagram: 

W(S) F 
WIS) 

R 
Prob 

R 

The vertical map is a pd-thickening by (88) and Fis compatible with the pd-structure. 
This diagram tells us ([BO] Exercise 6.5), that 

FYob* KV{W{S)) = W(W(S)) ®w(F),w(w(S)) JCP(W(S)). 

The pd-morphism WQ : W(S) —> S gives an isomorphism 

W(S) ®w(W0),w(w(S)) Frob* KV(W{S)) = FYob* KV{S) 

Combining the last two equations we get as desired identification: 

(103) Prob* tCv(S) = W(S) ®F,v^(5) 10p(S) = JCpM (5). 

From this we also deduce: 

Frob* V<p(S) =VVM(S) 
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Remark. — This computation of Frob* T)<p may be carried out inside the nilpotent 
crystalline site, if p ^ 2. The point is that we need that W(S) —• R is a topological 
nilpotent pd-thickening, if S is a nilpotent pd-thickening. The result is the same. 

Definition 59. — Let X be a scheme, such that p * Ox = 0. Let us denote by Frob : 
X —• X the absolute Frobenius morphism. A filtered F-crystal on X is a triple 
(2>, G, F r ) , where V is a crystal in C^ys-modules G C P x is an Ox-submodule of 
the Ox-module T>x associated to V, such that G is locally a direct summand. F r is 
a morphism of crystals 

Fr : V —• Frob* V = VM. 

We also define a filtered F-Witt crystal as a triple (/C, Q,Fr ) , where /C is a crystal 
in W(0^ys)-modules, Q C JCX is a W(Ox)-submodule, such that Ix/Cx C Q and 
Q/Ixfcx C Ox ®w0,w(Ox) is locally a direct summand as Ox-module. F r is a 
morphism of W(0^ys)-crystals 

Fr.K, —• /C(p) = Frob* /C. 

With the same definition we may also consider filtered F-crystals (resp. F-Witt 
crystals), if p ^ 2. 

The same argument which leads to (103) shows that for any pd-thickening T <— 
U X there is a a canonical isomorphism: 

JCW(T) = W(OT) ®F,W(OT) K(T) 

From a filtered F-Witt crystal we get a filtered F-crystal by taking the tensor product 
Oxys®W(o%ys)- Let R be a ring such that p • R = 0 and P = (P ,Q,F, F"1) be a 
display over P as above. Then we give the Witt crystal /Cp the structure of a filtered 
F-Witt crystal, by taking the obvious and by defining Fr : JC-p —• tC-p^ as the map 
(98). By taking the tensor product 0CxYS®v*o,w(oc£y8) we also equip the Dieudonne 
crystal 2>p with the structure of a filtered F crystal. 

We will say that a pd-thickening (resp. nilpotent pd-thickening) S —> P is lift able, 
if there is a morphism of topological pd-thickenings (resp. topological nilpotent pd-
thickenings) S' —* 5 of the ring P , such that S' is a torsionfree p-adic ring. We prove 
that the functors /C and Z> are "fully faithful" in the following weak sense: 

Proposition 60. — Let R be a Fp-algebra. Assume that there exists a topological pd-
thickening S —• R, such that S is a torsionfree p-adic ring. 

Let V\ and Vi be displays over R. We denote the filtered F-crystal associated to 
Vi by (Di, Gi, Fri) for ¿ = 1,2 and by (K,i,Qi, Fri) the filtered F-Witt crystal. 

Let a : (T>\, G\, F r i ) —• (J)i,G*i<>Fr<z) be a morphism of filtered F-crystals. Then 
there is a morphism (p : V\ —> V2 of displays, such that the morphism of filtered 
F-crystals T>(<p) : 6?i, F r i ) —> ^Pi^G^^Fr^), which is associated to cp has the 
following property: 
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For any liftable pd-thickening S' —• R, we have 

(104) as> =V(<p)s>. 
The similar statement for the filtered F-Witt crystals is also true. 

Remark. — The result will later be used to show that the functor ET of the intro
duction is fully faithful under the assumptions of the proposition. In fact we will use 
the following variant of the proposition: Assume that p ^ 2 and that we are given 
a topological nilpotent pd-thickening, such that S is a torsionfree p-adic ring. Then 
it is enough to have a morphism a on the nilpotent crystalline site to conclude the 
existence of such that for any liftable nilpotent pd-thickening S' —» R the equality 
(104) holds. 

Proof. — First we prove the result for the filtered P-Witt crystals. Let (Pi,P, V~x) 
be the ^- t r ip le over S for i = 1,2. We may identify /Q(S) with Pi and Fri(S) 
with the morphism F # : Pi —> W{S) ®F,W(S) Pi- Then we may regard as as a 
homomorphism of Wr(.S')-modules 

as : Pi —• P2, 
which commutes with V#: 

(105) V*as = ( 1 0 as)V*. 
Since CXR respects the nitrations Q\ and Q2, we get 

ocsiQi) c Q2. 
Because the ring S is torsionfree we conclude from the equations F # • V# = p and 
y # . j r# — p? which hold for any display, that the maps F # : W(S) 0F,V^(s) Pi —• Pi 
and V* : Pi —• W(S) <g>F,w(S) Pi are injective. Hence the equation 
(106) P # ( l (8) as) = asF* 
is verified by multiplying it from the left by V# and using (105). We conclude that as 
commutes with P . Finally as also commutes with V~x because we have pV~1 = F 
on Q. 

We see from the following commutative diagram 

Pi as P2 

Pi 
vr 

P2 
that aR induces a homomorphism of displays and that as is the unique lifting of aR 
to a morphism of triples. This proves the proposition in the case of filtered P-Witt 
crystals. Finally a morphism /3 : T>\ —• T>2 of the filtered P-crystals also provides a 
morphism a : K\ —> /C2 of the Witt crystals by the proposition (53), which commutes 
with Fr by the corollary (58). It is clear that a also respects the nitrations. Hence 
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the assertion of the theorem concerning filtered F-crystals is reduced to the case of 
filtered F-Witt crystals. • 

2.4. Isodisplays. — Let R be a ring and let a C R be an ideal, such that p is 
nilpotent in R/a. We assume that R is complete and separated in the a-adic topology. 
In this section we will consider displays over the topological ring R with its a-adic 
topology (see definition 13). 

We consider the ring WQ(R) — W(R) ®z Q- The Frobenius homomorphism F and 
the Verschiebung v extend from W(R) to Wq(R). 

Definition 61. — An isodisplay over R is a pair (X, F) , where X is a finitely generated 
projective WQ(P)-module and 

F : X—>X 
is an F-linear isomorphism. 

Let us assume for a moment that R is torsionfree (as an abelian group). Then we 
have a commutative diagram with exact rows 

0 • IR • W(R) • R • 0 

0 • IR®Q • Wq(R) • P ® Q • 0, 

where the vertical maps are injective. In particular W(R) nlR<g>Q = IR. 

Definition 62. — Let R be torsionfree. A filtered isodisplay over R is a triple 
(X, P , F) , where (X, F) is an isodisplay over R and E C X is a WQ(R) submodule, 
such that 

(i) IRT C E C X 
(ii) E/IRX C X/IRX is a direct summand as R 0 Q-module. 

Example 63. — Let V = (P, Q, P, V~X) be a 3n-display over R. Obviously P extends 
to an F-linear homomorphism P : P ® Q —• P ® Q. 

The pair (P®Q, P) is an isodisplay. Indeed, to see that P is an F-linear isomorphism 
we choose a normal decomposition P = L 0 T. We present P : P —* P as a composite 
of two morphisms 

L 0 T pidz, 0 i d x 
l e x V"1 ffiF l e x . 

The last morphism is already an F-linear isomorphism and the first morphism becomes 
an F-linear isomorphism, if we tensor by Q. 

Example 64. — If R is torsionfree, we get a filtered isodisplay (P ® Q, Q ® Q, P) . 
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Example 65. — Let a C R be an ideal, such that R is complete and separated in the 
a-adic topology. We assume that pR C a C R. 

Let H e a perfect field, such that k C R/a. Then we find by the universality of 
Witt vectors a commutative diagram 

(107) 

W(k) p R 

k R/a 

The map 5 : W(k) * W(W(k)) ^ W{R) commutes with F. Hence if we are given 
an isodisplay (iV, F) over fe, we obtain an isodisplay (X, F) over R if we set 

X = WQ(R) <8>s,wQ(k) N, F(£ ® x) = FÇ <g> Fx. 

We will write (Z,P) = WQ(R) <S>s,wQ(k) (N,F). 
Let QisgR be the category of displays over R up to isogeny. The objects of this 

category are the displays over R and the homomorphisms are HomQisg(P,V') = 
Hom(P, V') ® Q. We note that the natural functor (Displays)/? —• QisgR is by corol
lary 4 1 faithful if the nilradical of R/pR is nilpotent. It is clear that the construction 
of example 63 provides a functor: 

(108) QisgR —• (Isodisplays)/? 

Proposition 66. — If p is nilpotent in R, the functor (108) is fully faithful 

Proof. — The faithfulness means that for any morphism of displays OL-.V-^V, such 
that the induced map CXQ : PQ —> PQ is zero, there is a number TV, such that pNa = 0. 
This is obvious. To prove that the functor is full, we start with a homomorphism of 
isodisplays ao : ( P Q , F ) —• ( P Q , P ) . Let I m P ' be the image of the map P ' —• PQ. 

Since we are allowed to multiply ao with a power of p, we may assume that ao maps 
I m P to ImP'. Since P is projective we find a commutative diagram: 

(109) PQ 
an P' 

P a vr 

Since P a — a P is by assumption in the kernel of PR —• PQ , we find a number AT, 
such that pN (Fa — aF) = 0. Multiplying a and ao by pN, we may assume without 
loss of generality that a commutes with P . Moreover, since p is nilpotent in P' JIRP' 

we may assume that a (P) C IRP' and hence a fortiori that a(Q) C Q'. Finally since 
pV~x = F on Q it follows that pa commutes with V~x. Therefore we have obtained 
a morphism of displays. • 
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Let us now consider the case of a torsionfree ring R. Then we have an obvious 
functor 

(110) QisgR —> (filtered Isodisplays) 

Proposition 67. — Let R be torsionfree. Then the functor (110) is fully faithful. 

Proof. — Again it is obvious that this functor is faithful. We prove that the functor 
is full. 

Let V and V' be displays over R. Assume that we are given a morphism of the 
corresponding filtered isodisplays 

a0 : (Pq ,<3q,F) — + ( P Q , Q Q , F ) . 

We have to show that ao, if we replace it possibly by pN OLQ, is induced by a homo-
morphism 

a : (P, Q, F, V'1) — (P', Q', F, V'1). 

The proof of proposition 66 works except for the point where the inclusion a(Q) C Q' 
is proved. But this time we already know that a(Q) C QQ. We choose finitely many 
elements # I , . . . , X M £ Q<> whose images generate the R-module Q/IRP. Since it 
suffices to show that a(xi) G Q', if we possibly multiply a by pN we are done. • 

Definition 68. — An isodisplay (resp. filtered isodisplay) is called effective, if it is in 
the image of the functor (108) (resp. ( 110 ) ) . 

Proposition 69. — Let R be torsionfree. Let a C R be an ideal, such that there exists 
a number N, such that aN C pR and pN E a. Let (T^F) and (T2,F) be effective 
isodisplays over R. Then any homomorphism ao : (Ti,F)R/a -+ (Z2,F)R/a lifts 
uniquely to a homomorphism oto : (T±, F) —> (T2, F). 

Proof. — We choose displays V\ and V2 over R together with isomorphisms of isodis
plays (P^QjjF) ~ (Ti,F)fori = 1 ,2 . By the proposition 66 we may assume that ao 
is induced by a morphism of displays a : V\^R/A p2,R/a- Indeed, to prove the 
proposition it is allowed to multiply ao by a power of p. 

Next we remark, that for the proof we may assume that a = p • R. Indeed, let 
S —> T be a surjection of rings with nilpotent kernel and such that p is nilpotent in S. 
Then the induced map WQ(S) —> WQ(T) is an isomorphism and hence an isodisplay 
on S is the same as an isodisplay on T. Applying this remark to the diagram 

R/aR —• R/a + pR <— R/pR, 

we reduce our assertion to the case, where a = pR. 
Since pR C R is equipped canonically with divided powers the morphism of dis

plays a : V\,R/PR —• V2,R/PR lifts by theorem 46 uniquely to a morphism of triples 
(P i ,F , V~x) —> (P2, FiV-1) which gives a morphism of isodisplays QQ : (Pi^^F) —> 
(P2,Q,F). This shows the existence of ao. 
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To prove the uniqueness we start with any lifting ao : (Xi ,F) —> (T2^F) of ao-
Since it is enough to show the uniqueness assertion for pNao and some number AT, 
we may assume that ao(Pi) C P2. Since Pi and P2 are torsionfree as abelian groups 
it follows that ao commutes with F and with V^-1, which is defined on Qi c Pi 
resp. Q2 C P2 taken with respect to R —> R/pR. Hence ao is a morphism of triples 
(Pi, P, V~x) —> (P2, P, V~x), which is therefore uniquely determined by the morphism 
of displays a : PLYR/PR V2^R/PR. • 

We will now explain the period map. Let us fix an effective isodisplay (iV, P ) over 
a perfect field k. We consider the diagram (107) and make the additional assumption 
that a* C pR for some number t. We consider the category M(R) of pairs (P , r ) , 
where V G QISQR and r is an isomorphism r : VR/a,Q —> (N, F)R/a in the category of 
isodisplays over R/a. By the proposition 69 any homomorphism between pairs (P, r) 
is an isomorphism and there is at most one isomorphism between two pairs. 

The period map will be injection from the set of isomorphism classes of pairs (P, r) 
to the set Grassv^Q(fc)iV(P(g)<Q)), where Grassy(fc)iV is the Grassmann variety of direct 
summands of the W^A^-module N. 

The definition is as follows. The lemma below will show that the isodisplay 
WQ(R) <g>s,wQ(k) (AF, F ) is effective. Hence by the proposition 69 there is a unique 
isomorphism of isodisplays, which lifts r 

r: ( P Q , F ) — WQ(R) ®s,wQ(k) (N,F). 

The map 

WQ(R) ®s,wQ(k) N - ^ - L PQ — > P Q / Q Q 

factors through the map induced by wo 

WQ(R) ®$|Wq(*) N —• RQ ®6,WQ(k) N-

Hence we obtain the desired period: 

(HI ) R® ®8,wQ(k) N -» PQ/QQ 

Hence if IsoM(R) denotes the set of isomorphism classes in A4(R) we have defined 
a map 

Iso M(R) —• GrasswQ(fc)iV(jRQ). 

This map is injective by the proposition 67. 
Now we prove the missing lemma. 

Lemma 70. — Let (N, F) be an effective isodisplay over a perfect field k (i.e. the slopes 
are in the interval [0,1],). Then in the situation of the diagram (107) the isodisplay 
WQ(R) ®s,wQ(k) (N>F) is effective. 
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Proof. — One can restrict to the case R = W(k) and p = id. Indeed, if we know in 
the general situation that WQ(W(&)) <8>A,WQ(fc) (N,F) is the isocrystal of a display 
Vo, then /9*7*0 is a display with isodisplay WQ(R) <g>s,wQ(k) (N,F). In the situation 
p = id let(M, Q, F, V~1) be a display with the isodisplay (AT, F). Then the associated 
triple with respect to the pd-thickening W{k) —• k is the form (W(W(k)) <8>A,w(fc) 
M, F, F_1), where V~x is given by (92). This triple gives the desired display if we 
take some lift of the Hodge-filtration of M/pM to M. The isodisplay of this display 
is(WQ(W(k))®^WQ{k)N,F). • 

Finally we want to give an explicit formula for the map (111). The map r"1 is 
uniquely determined by the map: 

(112) p : N —• PQ, 

which is given by p(m) = r - I ( l ® ra), for m G N. This map p may be characterized 
by the following properties: 

(i) p is equivariant with respect to the ring homomorphism 8 : WQ(&) —> WQ(R). 

(ii) p(Fm) = Fp{m), for m £ N 
(iii) The following diagram is commutative: 

(113) 

P0 WQ(R/a) ®wQ(k) N 

0 
' N 

We equip PQ with the p-adic topology, i.e. with the linear topology, which has as 
a fundamental system of neighbourhoods of zero the subgroups p%P. Because W(R) 
is a p-adic ring, P is complete for this linear topology. 

Proposition 71. — Let po : N —» P be any 6-equivariant homomorphism, which makes 
the diagram (113) commutative. Then the map p is given by the following p-adic limit: 

p = lim F^nF'K 

Proof — We use p to identify PQ with WQ(R) <8><S,WQ(A;) AT, i.e. the map p becomes 
m i—• 1 0 m, for m £ N. We write po = p + a. Clearly it is enough to show that: 

(114) lim F'aF-'im) = 0, for m € N. 
i—+oo 

Since p and po make the diagram (113) commutative, we have a(N) C WQ(a)<g>s,wQ(k) 
N. We note that WQ(a) = WQ(pR). 

We choose a M^(fc)-lattice M c i V , which has a VF(fc)-module decomposition M — 
®Mj, and such that there exists nonnegative integers s,rj E Z with FsMj = pT^Mj. 
We take an integer a, such that 

a(M) c paW(pR) ®a>w(jb) M. 
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It suffices to prove (114) for elements m € Mj. We compute for any number u: 

(115) Fusa(F-usm) e p~UTjFusa(Mj) C pa~urjFus(W(pR) ®s,w(k) M). 

But using the logarithmic coordinates for the pd-ideal pR we find: 

FW(pR) = W(p2R) = pW{pR). 

This shows that the right hand side of (115) is included in 

pa-ur*+usW(pR) ®Wfc) M. 

Since TV is an effective isodisplay we conclude s > rj for each j . This proves that 
FusaF~us(m) converges to zero if u goes to oo. 

More generally we can consider the limit (114), where i runs through a sequence 
i = us + q for some fixed number q. By the same argument we obtain that this limit 
is zero too. • 

2.5. Lifting homomorphisms. — Consider a pd-thickening S —+ R with kernel 
a. We assume that p is nilpotent in S. 

We consider two displays V% = {P%,Qi, F^V'1) for i = 1,2 over S. The base 
change to R will be denoted by Vi = Viyr = (Fi,Qi, F, V-1). Let Jp : V\ —• V2 be a 
morphism of displays. It lifts to a morphism of triples: 

(116) lp:(P1,F,V-1) ^(P2,F,V~1) 

We consider the induced homomorphism: 

Obs t^ : Qx/IsPi Pi/IsPi P2/ISP2 —> P2/Q2 

This map is zero modulo o, because <£>(Qi) C Q2- Hence we obtain a map: 

(117) O b s t ^ : Qi/IsPi —> a (8)5 P2/Q2 

Clearly this map is zero, iff Tp lifts to a morphism of displays V\ —• V2 

Definition 72. — The map Obst <̂  above (117) is called the obstruction to lift Tp to S. 

This depends on the divided powers on a by the definition of cp. 
The obstruction has the following functorial property: Assume we are given a 

morphism a : V2 —* P3 of displays over S. Let a : V2 —• V3 be its reduction over R. 
Then Obst ad is the composite of the following maps: 

Qi/IsPi 
Obst u) 

a <%>s P2/Q2 
1 (8) a 

a (8)5 P3/Q3 

We will denote this fact by: 

(118) Obst acp = a Obst ip 
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In the case a2 = 0 we have an isomorphism a<g>s P2/Q2 — P2/Q2' Hence the 
obstruction may be considered as a map: 

(119) Obst : QJIBPX —• a <&R P2/Q2 

In this case the equation (118) simplifies: 

(120) Obst Wp = a Obst Tp 

Let S be a ring, such that p - S = 0 for our fixed prime number p. Let S —> R be a 
surjective ring homomorphism with kernel a. We assume that ap = 0. In this section 
we will use the trivial divided powers on a, i.e. ap(a) — 0 for a € a. 

Let us consider a third ring 5, such that p • S = 0. Let S —+ 5 be a surjection with 
kernel b, such that bp = 0. Again we equip b with the trivial divided powers. 

Assume we are given liftings Vi over S of the displays Vi over S for ¿ = 1,2. The 
morphism pip : V\ —• V2 lifts to the morphism p(p : Vi —+ V2 of displays. Hence we 
obtain an obstruction to lift pip to a homomorphism of displays V\ —> V2: 

O b s t ( ^ ) : Qi/IsPi —> P2/Q2 

We will compute this obstruction in terms of Obst <p. For this we need to define two 
further maps: The operator V~x on Pi induces a surjection 

(121) (V-1)* :S®^zQ1/IsP1 P1/ISP1 + W(S)FP1. 

Here we denote by Frob the Frobenius endomorphism of S. The map (121) is an 
isomorphism. To see this it is enough to verify that we have on the right hand side 
a projective 5-module of the same rank as on the left hand side. Let P = L © T 
be a normal decomposition. Because pS = 0, we have W(S)FL C pW(S)P C I§P-
Since we have a decomposition P = W(S)V~^L © W(S)FT, one sees that the right 
hand side of (121) is isomorphic to W(S)V~1L/I§V~1L. This is indeed a projective 
S-module of the right rank. 

The ideal b is in the kernel of Frob. Therefore the left hand side of (121) may be 
written as S <g*Froh,s Qi/IsPi- We consider the inverse of the map (121) 

V* : P i / / ? P i + W(S)FP1 —+ S ®Frob,5 Qi/IsPi, 

which we will also consider as a homomorphism of W/r(.Sr)-modules 

(122) V* : P. S®Frob,S Qi/IsPi-

Now we define the second homomorphism. Since bp = 0, the operator F on P2/IgP2 
factors as follows: 

V(1 ei W F 
P2/I§P2 

P2/ISP2 
F» 
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The module Q2/IgP2 is in the kernel of P. Hence we obtain a Probenius linear 
map 

Fb : P2/Q2 —> h/ish, 
whose restriction to a(P2/Q2) induces 

Fb : a(P2/Q2) — b(P2//gP2). 

If we use our embedding b C W(b), we may identify the target of Fb with b • P2 C 
W(b)P2- Let us denote the linearization of Fh simply by 

(123) F* : S 0FROB,s a(P2/Q2) — • bP2 

Proposition 73. — T/ie obstruction to lift pip : V\ —» P2 to a homomorphism of dis
plays V\ —> P2 is given by the composition of the following maps: 

Qi/IsPi 
vd 

S (8>Frob,s Qi/IsPi 
5 ® O b s t ^ 

5®frob,5 a(P2/Q2) 

fx 

b(P2/Q2) 

ifere t/ie horizontal map is induced by the restriction of the map (122) to Qi/I§Pi, 
and the map P # is the map (123) followed by the factor map bP2 —> b(P2/Q2). 

Before giving the proof, we state a more precise result, which implies the proposi
tion. 

Corollary 74. — The morphism of displays pip : V\ —• P2 lifts by theorem ^6 to a 
morphism of triples ip : (Pi, P, V-1) —• (P2, P, V~1). This morphism may be explicitly 
obtained as follows. We define UJ : P\ —> bP2 C VF(b)P2 ¿0 fee composite of the 
following maps 

Pi 
V* 

S®frob,s Ql/IsPl 
S (g) Obst 

5®prob,5 a(P2/Q2) bP2. 
Tften we fta^e £fte equation 

V(1 e+=W 
where <p : Pi —» P2 ¿5 ant/ WYSWmear map, which lifts ip : Pi —• P2. 

We remark that depends only on <p and not on the particular lifting <p. 

Proof. — It is clear that the proposition follows from the corollary. Let us begin with 
the case, where Jp is an isomorphism. We apply the method of the proof of theorem 
44 to pip. 

We find that p(p commutes with P. 

(124) F(pip) = (ptp)F 

Indeed, since ip commutes with P, we obtain 

FS(x) - SIFx) E W(b)P2. 
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Since p • W(b) = 0, we obtain (124). We have also that p<p(Qi) C Q2. 
We need to understand how much the commutation of pip and V~x fails. For this 

purpose we choose normal decompositions as follows. Let P\ = Li ®T2 be any normal 
decomposition. We set L2 = Tp(L) and T2 = Tp(Ti). Since Tp is an isomorphism we 
have the normal decomposition P2 = L2®T2. We take liftings of these decompositions 
to normal decompositions 

p1 = Lx 0 Ti and P2 = L2 0 T2. 

Finally we lift the last decomposition further to normal decompositions 

Px = Li 0 fx and P2 = L2 0 f2. 

We write the restriction of ip to Li as follows: 

<p(h) = A(ÏI) + jx(JI), A(ZI) € L2, /¿(¿1) E W(a)T2 

Since ap = 0, we have /5 • W(a) = 0 and the Witt addition on W(a) is the usual 
addition of vectors. Let us denote by an the 5-module obtained from a via restriction 
of scalars by Frobn : S —> S. Then we have a canonical isomorphism of ^-modules 

W(a)To £ 
n>0 

<*n ®s T2/I2T2 

Hence // is a map 
/x : Lx/IsLi 

n>0 
0 5 T2/IST2. 

We denote by //n its n — th component. Then 

/I0 : Lx/IsLx - a 0 5 T2/IST2 

may be identified with the obstruction 77 = Obst ip. 
Since <p commutes with V~1 we have 

(125) ìpìv-Hx) = VR~1A(ZI) + Y ~ v g i ) -

Let us denote by c the kernel of the map S —> R. We choose any lifting r : L\ —• 
W(c)P2 of the Frobenius linear map: 

V~ v : £1 —• W(a)T2 
v-4 W(a)P2. 

We write the restriction of cp to Li in the form 

<̂  = A + fjb, 

where A : L± —» L2 and /1 : Li —• W(a)T2. Then we obtain from the equation (125) 
that 

^ - ' î i ) (V^Xih) + r(h)) G W(b)P2ì for h 6 Li. 

Since pW(b) = 0, we deduce the equation 

(126) P ^ V " 1 / ! ) = P F - 1 A ( i 1 ) + P F ( / X ) . 
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On the other hand we have obviously 

ßo : li lks a ®s (T2/IsT2) C W(a)T2, 

If we subtract this form (126), we get an information on the commutation of pep and 
V-1: 

ßo : li sjks j a ®s (T2/IsT2) C W(a)T2, + oqn ss+sj (127) 

We set / / = /i — /io, with the map fio defined above and consider it as a map p! 
L\ —> vW(a)T2. We choose any lifting of \i' to a W(5)-linear map 

£' : £ i —> VW(t)T2. 

Then V 1 n' is defined and is a lifting of V since by definition V l/io = 0. 
Therefore we may take r = V~1Jxf. Hence we may rewrite the right hand side of 
(127): 

(128) pr-Fß = F(p - ß). 

Then ß — ß' is a lifting of the map 

ßo : l i —• a ®s (T2/IsT2) C W(a)T2, 

to a map 
ßo '• Li —• W(c)T2. 

In fact the expression F^q is independent of the particular lifting /xo of hq. Therefore 
we may rewrite the formula (127) 

(129) V-^êil^-pëiV^h) = FJloih). 

Let u C W{c) be the kernel of the following composite map: 

W(c) —• W(a) = 

n>0 

pr 

n>l 
sdl 

u is the ideal consisting of vectors in W(c), whose components at places bigger than 
zero are in b. We see that fu C b = bo C W(b). We find: 

FMh) e b(P2//gP2) C W(b)P2. 

More invariantly we may express F^q as follows. 
We have a factorization: 

F : P2/I0P2 PilIsPiski +d 

PilIsPi 
PilIsPi 

Then JF6 induces by restriction a map 

Fb : a(P2//sP2) —+ b(P2//<;P2). 
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The map FUQ is the following composite map. 

Li - Li 
bd 

a(T2/IsT2) 
pb 

b(P2/%P2). 

By a slight abuse of notation we may write 

FJlo = F% 

We obtain the final form of the commutation rule 

(130) V^pipih) - pipiV^h) = F6/xo(W. 

We want to know the map of triples 

tA: (Pi,^!/-1) — (̂F2,F,F-1), 

which lifts p(f. ^ _ _ 
As in the proof of 2.2 we write tp = p^p+w, where UJ : P± —> W(b)P2 is a VT(S')-linear 

map. The condition that tp should commute with F is equivalent to u)(W(S)FT1) = 0. 
We consider only these UJ. TO ensure that V~x and ip commute is enough to ensure 

( 1 3 1 ) V'1^) = ̂ {V-Xh) for h e Zi. 

On I^Ti the commutation follows, because tp already commutes with F. Using ( 130) 
we see that the equality ( 1 3 1 ) is equivalent with: 

(132) u(V-xh) - V^ujih) = FVo(/i) 

We look for a solution of this equation in the space of W(S)- linear maps 

UJ : P1/W(S)FT1 • b0 ®g h/Igh C W(b)P2 

Then we have V^UJ^I) = 0, by definition of the extended V~X. Hence we need to 
find UJ, such that 

(133) a;(V_1?i) = FVoGi). 

We linearize this last equation as follows. The operator V~X induces an isomorphism 

(V-1)* : W(S) <8>FtW(§) Li — Pi/WffiFTu 

whose inverse will be denoted by V#. 
We will also need the tensor product fif0 of /io with the map WQ : W(S) —> S: 

Mo : W{S) ®F,W(S) Lx —> £<8>Frob,s a(T2/IsT2). 

Finally we denote the linearization of Fb simply by F#: 

F* : 5®Fvob,s a(P2/IsP2) —+ b(P2//gP2). 

Noting that we have a natural isomorphism W ( 5 ) < 8 ) p ¿ 1 — W(S) ®w(S) L±, we 
obtain the following equivalent linear form of the equation (133) : 

UJ(V-X)* = F#fx'0. 
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It follows that the unique lifting of pip to a homomorphism of triples is 

$ = p$ + F#p!0V*. 

In this equation denotes the composite map 

Pi —* Pi/WfflFTx —> W(S) ®F,w(S) Lx. 

This map tp induces the obstruction to lift pip: 

r : Qx/IgP! Pi/IgPi P2/ISP2 - P2/Q2. 

Since pep maps Qi to Q25 we may replace tp in the definition of the obstruction r 
by F&IIQV& . This proves the assertion of the corollary in the case where Tp is an 
isomorphism. 

If Tp is not an isomorphism we reduce to the case of an isomorphism by the standard 
construction: Consider in general a homomorphism xp : P± —> V2 of displays over S. 
Then we associate to it the isomorphism 

^ : P i e P 2 • Pi © V2 
x © y 1—• x © y + V>(x) 

If P i and P2 a*e liftings to S as in the lemma, we denote by xp : (P^F^V1) -> 
(P2, -F1? the unique lifting to a homomorphism of triples. Then 

xpi(x®y) =x®(y + xp(x)), x G Pi , y e P 2 . 

It follows that Obst xp\ is the map 

0 © Obst ip : Qx/I^Pi © Q2//5P2 —> P1/Q1 © P2/Q2. 

Applying these remarks the reduction to the case of an isomorphism follows readily. 
• 

We will now apply the last proposition to obtain the following result of Keating: 

Proposition 75. — Let k be an algebraically closed field of characteristic p > 2. Let 
Po be the display over k of dimension 1 and height 2. The endomorphism ring OD 
ofPo is the ring of integers in a quaternion division algebra D with center QP. Let 
a 1—• a* for a G OD be the main involution. We fix a G OD, such that a £ Zp and 
we set i = OYdoD(& — &*). We define c(a) G N: 

Jp1'2 + 2pW2-V + 2p(*/2-2) + • • • + 2 fori even 
~ \ 2pJqiL + 2p^~1) + • • • + 2 fori odd 

Let P over k\t\ be the universal deformation of PQ in equal characteristic. Then a 
lifts to an endomorphism ofP over k\t\/tc(<OL>i but does not lift to an endomorphism 
ofP over k{tj/tc^+1. 
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Proof. — The display VQ = (Po, Qo? F, V *) is given by the structural equations 

Fd = e2 
Vх e2 = ex. 

For any a G W(Fp2) we have an endomorphism (pa of Po? which is given by 

(134) (fa(ei) = aei <£a(e2) = cr(a)e2 

Here a denotes the Frobenius endomorphism W(FP2), and a is considered as an ele
ment of W(k) with respect to a fixed embedding FP2 с к. 

We denote by П the endomorphism of Vo defined by 

(135) Uei = e2 Пе2 — pe\. 

The algebra O/? is generated by П and the ipa. The following relations hold: 

П 2 = р , Пера = (f^U. 

The display Pn = (Pu, Qu, F, V-1) of X over fc[t] is given by the structural equations 

Fei = \t\ex + e2 , V~1e2 = ei. 

To prove our assertion on the liftability of a it is enough to consider the following 
cases: 

(136) a = tpaps , а ф <j{a) mod p , s G Z, 5 > 0 
a = у>врвП;, a G И^(Рр2)* , s G Z , s > 0 

Let us begin by considering the two endomorphisms a for s = 0. The universal 
deformation Vй induces by base change k[t] -> fc[tj/£p a display V = (P, Q, F, V-1). 
Then a induces an obstruction to the liftability to S = fc[t]/£p: 

(137) Obs ta : Q/ISP —• t(P/Q), 
e2 i—• o(a) • ei 

where o(a) G £fc[£]/£p. To compute the obstruction, we need to find the extension of 
a to a morphism of triples 

5 : (P.F.V-1) —+ {P,F,V~l). 

Let ei,e2 G P be defined, by 

ei = ei and e2 = [t]ei + e2. 

This is a basis of P and the extended operator V~x is defined on e2. We find the 
equations 

Fei = e2, V~xe2 = ei. 

Then obviously 5 is given by the same equations as a: 

(138) 2(ei) = aei, a(e2) = cr(a)e2, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 

file:///t/ex


198 T. ZINK 

respectively 

(139) a(ei) = a(a)e2, ot{e2) = ape\. 

For the first endomorphism a of (136) we find 

a(e2) = a(e2 — [t]ei) = a(a)e2 + [t]aei 

= a(a)e2 + [t](a(a) — a)e\ 

Hence the obstruction to lift a to k\t\/tp is o(cpa) = o(a) = (cr(a) — a)£ G £fc[tj/£p. 
For the second endomorphism a of (136) we find 

a(e2) = ot(e2 — \t]e\) = apei — [t]a(a)e2 

= apex - [t]<r(a) ([t]ei + e2). 

Hence we obtain the obstruction 

o(ifaJl) = o(a) = -t2a(a) e tk[t]/tp. 

Now we consider the first endomorphism of (136) for 5 = 1. It lifts to an endomor
phism over k\t\/tp. We compute the obstruction to lift it to k\t\/tp . We can apply 
the lemma to the situation 

ds -k[t]/t*><r -k[t]/tp2 

R S S 

We set (p = <pa and V = P~. Then we have the following commutative diagram of 
obstructions 

(140) Q/IëP: S ®frob,s Q/IsP 
S <8> Obst(<pa) 

S ®FVOB,S t(P/Q) 

Obst(p(paJ 
F* 

tp{P/Q) 

The first horizontal map here is computed as follows: 

Qlhp P/IgP + W(S)FP 
x +1xd 

S®Froh,sQ/IsP 

e2 [ • e2 = —tei 

—tei —t ® e2 

We obtain that the maps in the diagram (140) are as follows 

e2 \ t <8> e2 —t<g)t (cr(a) — a) ei -t • tp ( - a ( a ) + a) Fex 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 199 

Therefore we obtain for Obst(p<£>a): 

Obstp(^>a = (A(A) - a) FEX = TP+2(AA - A)EX € T* (P/O) • 

With the same convention as in (137) we write O(PTPA) = (A(A)—A)TP+2. Then we prove 
by induction that PS<PA lifts to K[T]/TP + 2(PS~1 + h i ) and that the obstruction 
to lift it to K{T}/TPS+1 is (A(A) - A) • tPa+2(p—For the induction step we apply 
our lemma to the situation 

fc[ii/***+2<p*"1+-+i> k[t]/v k[t]/t*'+a 

R S S 
We set JP = P*<PA over R and V = V~. Then the maps in the diagram (140) are as 
follows 

e2 I > -t <g> e2 I > -t ® (<t(o) - a)tP°+2(P° +-+1>ei 

- t (A - A(A)) I?(PM+*(P'-1+"+1))FEX 

This gives the asserted obstruction for ps+1^a" 

Obst (P'^IPA) = aia) - a)̂ +l+2̂ +-+P)+1 • tei. 

Next we consider the case of the endomorphisms PS(PAIL. In the case S = 1 we apply 
the lemma to the situation 

K < K\I\/TP x + ls +d 

fc f S SD 

and the endomorphism <P = <^an. Then the maps in the diagram (140) are as follows: 

62 I > -T ® e2 I • —T ® -t2cr(a)ei 

TT2PAFE! 

This gives Obst(p<^aII) = £2p+2a. Now one makes the induction assumption that for 
even S the obstruction to lift P8(PATL from fc[t]/*2fr'+-+1) to fc[t]/tp*+1 is - t 2 ^ + ' • 
A(A) and for odd 5 is T2(VS+--+I) . a We ge^ ^he induction step immediately from the 
lemma applied to the situation 

fcM/*2(pS+'"+1) KM/PS+1 - K{T\/PS+2. 

We finish this section with a result of B. Gross on the endomorphism ring of the 
Lubin-Tate groups. Let A b e a Zp-algebra. Let S be an >l-algebra. 
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Definition 76. — An yl-display over S is a pair (V, 0 , where V is a display over 5, and 
¿ : A —• E n d P is a ring homomorphism, such that the action of 4̂ on P/Q deduced 
from ¿ coincides with the action coming from the natural 5-module structure on P / Q 
and the homomorphism A —• S giving the A-algebra structure. 

Let a G A be a fixed element. We set R = S/a and Ri = S/d1^1. Then we have a 
sequence of surjections 

S —> • * * —> R{ —> Ri—i —> ''' —> R — Ro 

Let Vi and V<z be displays over S. They define by base change displays and 
over Ri. We set Vx = ^ 0 ) and P2 = H ° \ 

Assume we are given a morphism (p : V\ —> V2, which lifts to a morphism <^-1) : 
_^ -p^-x\ The obstruction to lift (p^-V to a morphism v[l) -> is a 

homomorphism: 

Obst v^-1* : Q^/IRIP^ — (aO/(ai+1) 0 * P2( i ) / ^ ; 

Clearly Obst ip(% 1>} factors through a homomorphism: 

Obsti¥> : QI/IRPX —> {al)/{ai+1) ®R P2/Q2. 

Proposition 77. — Assume that (7^2,0 is an A-display over S. Let cp : V\ —» V<i be a 
morphism of displays, which lifts to a morphism p^-1^ —• V^~^. Then i(a)<p lifts to 
a homomorphism —-» and moreover we have a commutative diagram if i > 2 
or p > 2; 

( 1 4 1 ) 

QI/IRPI 
Obstj ip 

{ai)/{ai+1)®RP2/Q2 

Obsti+i(t(a)^T 
(a^)/(a^)®RP2/Q2 

a <g> id 

Loosely said we have Obsti+i(t(a)(p) = aObsti(<^). 

Proof. — We consider the surjection —• Ri-\. The kernel a2i?i+i has divided 
powers if i > 2 or p > 2. Hence the obstruction to lift c^*-1) to JR^+1) is defined: 

O b s t ^ - 1 ) :Q<ii+1)/lR,..PÏi+1) —+ (а*)/(а?+2)в>я,., P¡i+1)/OÍI+1) 

is defined. Since t(a) induces on the tangent space p ( * + 1 ) t h e multiplication 
by a we obtain 

Obst/iaW*-1) =flObst^(»-1> 

This proves the proposition. • 

We will now apply this proposition to the case of a Lubin-Tate display. Let K/QP 
be a totally ramified extension of degree e > 2. We consider the ring of integers 
A = OK- The rôle of the element a in the proposition will be played by a prime 
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element TT G OK- For S we take the ring S = OK <8>ZP W(FP). NOW we take a 
notational difference between ir and its image in S, which we denote by a. 

Let V = (P ,Q ,P , V^1) be the Lubin-Tate display over S. We recall that P = 
OK ®ZP W(S), Q = kernel (OK <g>zp W(S) 5), and V'1^ ® 1 - [a]) = 1. 

Let P be the display obtained by base change over R = S/aS = FP. The operator 
V'1 of P satisfies 

TT" — 1 2 _i—1 
V TT = 7T , 

where TT = 7r 0 1 G Ox (g>zp W(P). (One should not be confused by the fact that this 
ring happens to be S). We note that Q = IT P. 

We consider an endomorphism <p : V —» P , and compute the obstruction to lift cp 
to i?i = S/a2S: 

Obsti(^) : Q/IRP —» (a)/(a2) <g>* P /Q . 

The endomorphism induces an endomorphism on P/Q, which is the multiplication 
by some element Lieip G FP. Let us denote by a the Frobenius endomorphism of FP. 

Lemma 78. — Obsti(y>) is the composition of the following maps: 

Q/IRP = Q/pP -
1/TT 

P/TTP = P/Q 
a 1 (Lie cp) — Lie ^ 

P/Q 

a 

(a)/(a2) ®* P / Q 

Proof. — We write 

¥>(!) = & + ÇITT + • • • + «C-ITT6-1, & € W(FP). 

Applying the operator V we obtain: 

(142) = F"^4 + F-<6*r*+1 + . . . , for » = 0 , 1 . . . 

By theorem 46 this admits a unique extension to an endomorphism of the triple 
( f W ^ j V ' 1 ) , where P*1) = ®Zp W(iJi). For the definition of the extension (p 
we use here the obvious divided powers on the ideal aR\ C R± = S/o?S given by 
ap(a) = 0. Then we have V~1[a]P^ = 0, for the extended V""1. Hence we find for 
the triple (P(1),P, V~l) the equations: 

\r — 1 i 1 
1/ 7T = 7T , 

for i > 1, P I = P 

7T* 
The last equation follows because the unit r of lemma 27 specializes in P i to 7re/p. 
Hence we can define (p on P^ by the same formulas (142) as (p. In other words: 

(143) ¥> = ¥>®W(FP) W(Rl)' 

This formula may also be deduced from the fact that (p is an endomorphism of the 
display VRX obtained by base change via the natural inclusion R —> R\. 
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The map (p induces an OK ®ZP RI-module homomorphism 

( 1 4 4 ) QW/IRlpW—>pW/QW. 

By definition the module on the left hand side has the following basis as an Pi-module: 

7T - a, 7T2 - a2 , . . . ,7re-1 - ae , 

where we wrote 7r for 7r ® 1 G O K ®ZP P I and a for 1 ® a. We note that 7r2 G Q^1^ for 
i > 2, because a2 = 0 in P i and because is an Ox-module. By (143) and (142) 
we find 

^(TT - a) = F \0TT + f cITT2 + a(£0 + £ITT + • • • ) 

dd 7T - a, 7T2 a mod Q(1) 

Since <p is an OK ®Zp Wr(Pi)-module homomorphism we have (p(7rz) = 0 mod Q 1̂̂ . 
This gives the result for Obsti <p because £o mod p = Lie (p. • 

We can obtain a result of B. Gross [G] in our setting: 

Proposition 79. — Let us assume that p > 2. Assume that K is a totally ramified 
extension o/Qp? which has degree e = [K : Qp]. We fix a prime element ir G OK-
Let V be the corresponding Lubin-Tate display over OK- Let V = the display 
obtained by base change via OK —» Fp C FP. Let OD = EndP be the endomorphism 
ring. Let K be the completion of the maximal unramified extension of K with residue 
class field FP. Then we have 

E n d 7 ^ / ( ^ + 1 ) = OK + 7rmOz> m > 0. 

Proof — We use the notation of proposition 77, and set Ri = 0^/(7r+1). Let ip G OD 
be an endomorphism of V. It follows from the formula (2.61) that n771^ lifts to an 
endomorphism of V over 0^/7rm_fl. Prom (77) we obtain by induction: 

Obstm+i ir^cp = 7rm Obsti <p, 

where 7rm on the right hand side denotes the map 

7T™ : (7r)/(7T2) ®R P/Q — (7T™+1)/(7r™+2) ®« P/Q. 

We recall that P = Po = FP by definition. 
Now assume we are given an endomorphism 

^ G {OK + 7rMOD) - (OK + irM+10D). 

Since 7T is a prime element of OD we have the expansion 

i> = M + | a i > + -•• + [am]?rm + • • • where ai G Fp*. 

We have G FP for i < m and am 0 FP since i\> £ OK 4- TT^^OD- Then we find 

Obstm+1 iP = Obstm+i ([am]7rm + •••) = Obsti ([am]] + 7r[am+i] + • • • ) 
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Since <r(am) ^ am the obstruction Obsti (|_am] H- 7RLAm+il • * *) does not vanish. 
Hence Obstm_j_i ip does not vanish. • 

3. The p-divisible group of a display 

3.1. The functor BT. — Let R be a unitary commutative ring, such that p is 
nilpotent in R. Consider the category Nil^ introduced after definition 50. We will 
consider functors F : Nil# —• Sets, such that F(0) consists of a singe point denoted 
by 0 and such that F commutes with finite products. Let us denote this category by 
T. If Af2 = 0, we have homomorphisms in Nil/*: 

jsr x Af additiQn) Af, Af —!—> Af, where r e R. 
The last arrow is multiplied by r. Applying F we obtain a P-module structure on 
F(Af). A R-module M will be considered as an object of NUR by setting M2 = 0. 
We write tF(M) for the P-module F(M). 

We view a formal group as a functor on Nilj? (compare [Zl]). 

Definition 80. — A (finite dimensional) formal group is a functor F : Nil^ —• 
(abelian groups), which satisfies the following conditions. 

(i) F(0) =0. 
(ii) For any sequence in Nil/? 

0 —vJSfx —>Af2 —• Ms —> 0, 

which is exact as a sequence of i?-modules the corresponding sequence of abelian 
groups 

0 — > F ( N 1 ) — • F{JV2) —• F(Af3) — • 0 

is exact. 
(iii) The functor tp commutes with infinite direct sums. 
(iv) tr(R) is a finitely generated projective P-module. 

Our aim is to associate a formal group to a 3n-display. 
Let us denote by W(Af) C W(Af) the subset of Witt vectors with finitely many 

non-zero components. This is a VF(i?)-subalgebra. 
Let us fix Af and set S = R\Af\ = i?0jV". Then we introduce the following 

WYi?)-modules 

PJV = W(Af) ®W(R) PcPs 
QJV = (W(Af) ®W(R) P) n QS 
PM = W(Af) ®W(R) PGPs 
QJV = PJV n QS 
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Wejwill denote by Iu C W{N) resp. IJV C W(N) the W(i?)-submodules VW{M) 
and VW(N). We note that F and v act also on W(A/"). Hence the restriction of the 
operators F : Ps —> Ps and V~l : Qs —• Ps define operators 

F:PM-^PM V-1 :QM—*PM 

F.PM-^PN V-1 : QAT — + PAT. 
If we choose a normal decomposition 

P = L 0 T, 

we obtain: 

( 1 4 5 ) QAT = W{N) <S>w(R) L®Ij* ®W(R) T 
QM = W{N) ®W{R) L 0 TM ®W(R) T 

Theorem 81. — Let V = (P, Q,F, V~l) be a 3n-display over R. Then the functor 
from NUR to the category of abelian groups, which associates to an object N G Nil# 
the cokemel of the homomorphism of additive groups: 

V'1 - id : QM —• PV, 

is a finite dimensional formal group. Here id is the natural inclusion Qjj C PV- We 
denote this functor be BTp. One has an exact sequence: 

(146 ) 0 sdv V'1 - id ds ETV(N) 0. 

We will give the proof of this theorem and of the following corollary later in this 
section. 

Corollary 82. — Let P be a 3n-display, such that there is a number N with the property 
FNP C IRP. Then we have an exact sequence compatible with (H6): 

0 — V-1 - id Pu BTV{M) 0 

Remark. — The F-nilpotence condition FNP C IRP is equivalent to the condition 
that F : P —• P induces a nilpotent (Probenius linear) map R/pR®VIL0P —> R/pR®Wo 
P of J?/pi?-modules. 

Assume that N is equipped with divided powers, i.e. the augmentation ideal of the 
augmented .R-algebra R\M\ is equipped with divided powers. Then the divided Witt 
polynomials define an isomorphism: 

(147) w'n : W(M) 
i>0 

sdv 

This induces a homomorphism: 

(148 ) W(M) ST 
i>0 

(n0,ni,n2,...) 1—• [w'o(n0),w'i(no,ni),...]. 
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To see that the homomorphism (147) takes W(N) to the direct sum, it is enough 
to check, that for a fixed element n E N the expression apk (n) = " ^ r " becomes 
zero, if k is big enough. But in terms of the divided powers 7m on N this expression 
is ^j^7pfc(n). Since the exponential valuation ordp(^r) tends with k to infinity, we 
conclude that (148) is defined. 

If we assume moreover that the divided powers on N are nilpotent in the sense 
that 7pfc(n) is zero for big fc, for a fixed n €E N, the homomorphism (148) is an 
isomorphism. Indeed, for the surjectivity of (148) it is enough to verify that elements 
of the form [x, 0 , . . . , 0 , . . . ] lie in the image, because the morphism (147) is compatible 
with Verschiebung. To prove the surjectivity of (148) we may moreover restrict to 
the case where p-N = 0. Indeed pN C N is a pd-subalgebra, which is an ideal in N. 
Hence N/pN is equipped with nilpotent divided powers. Therefore an induction with 
the order of nilpotence of p yields the result. If p • N = 0, we see that any expression 
U2p-" is zero for k > 2 because PW pk is divisible by p. But then the assertion, that 
[x, 0 ,0 , . . . 0] is in the image of (148) means that there is (n0, n i , . . . ) G W{N) satisfies 
the equations 

x = n0, ap(n0) + ni = 0, ap(ni) + n2 = 0, ap(n2) + n3 = 0 • * • . 

We have to show that the solutions of these equations: 

nk = (-l)1+*>+ "'+pfc"1ap(- • • ap(x)) • • •) k > 1, 

where ap is iterated fc-times, become zero if k is big. It is easy to see from the 
definition of divided powers that ap(- • • (ap(x)) • • •) and 7pfc(x) differ by a unit in 
Z(p). Hence we find a solution in W(.A/"), if 7pk(x) is zero for big k. Hence (148) is 
an isomorphism in the case of nilpotent divided powers. Assume we are given divided 
powers on N. They define the embedding 

(149) N —• W{N), 
n i—• [n, 0 • • • 0 • • • ] 

where we have used logarithmic coordinates on the right hand side. If we have nilpo
tent divided powers the image of the map (149) lies in W(N). Then we obtain the 
direct decomposition W(N) = N 0 vW?(A/r). 

By lemma 38 the operator V~x : Qs —> Ps extends to the inverse image of Q, if 
N has divided powers. This gives a map 

(150) V~l : W(N) <S)\v(R) P —> W(N) ®W(R) P. 

If the divided powers on N are nilpotent, we obtain a map 

(151) V1 : W(N) ®W(R) P — W(N) ®W{R) P. 

In fact the nilpotent divided powers are only needed for the existence of this map. 
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Lemma 83. — If N has nilpotent divided powers the map (151) is nilpotent. If N has 
only divided powers but if we assume moreover that FNP C IRP for some number 
N, the map (150) is nilpotent. 

Proof. — From the isomorphism (145) we get an isomorphism 

(152) W(N) ®W{R) P * 
i>0 

N ®w, W(R) P 

We describe the action of the operator V 1 on the right hand side. Let us denote by 
Fi the following map 

ti : AI ®WI. W Ä ) P —• N (gW, w(R) г > 1. 
a® x i—• a (g) Fx 

If we write an element from the right hand side of (152) in the form [uq, ui,u2,... ], Ui G 
N w(R) P, the operator V 1 looks as follows: 

(153) V 1[u0,u1,...] = [F1u1,F2u2,...,FiUi--]. 

In the case where the divided powers on M are nilpotent, we have an isomorphism 

(154) W(AÍ)®W(R)P —+ фЛГ P X s 
i>0 

Since V~x on the right hand side is given by the formula (153), the nilpotency of V~l 
is obvious in this case. 

To show the nilpotency of V~x on (152), we choose a number r, such that prR = 0. 
Then we find w*(Jr) - Af C prAf = 0, for any i G N. By our assumption we find a 
number M, such that FMP C IrP> This implies Fi+1 • . . . • i**+M = 0 and hence the 
nilpotency of V~X. • 

Corollary 84. — Let V be a 3n-display over R. For any nilpotent algebra Af G Nil/* 
the following map is infective 

V'1 -id:QM —• P^. 

Proof. — We remark that the functors Af •—• i v and Af i—• QA/* are exact in the sense 
of definition (80) (ii). For Q^j- this follows from the decomposition (145). 

Since any nilpotent Af admits a filtration 

0 = JV0cMc---cA/'r=Af, 

such that Af? C we may by induction reduce to the case Af2 = 0. Since in this 
case Af may be equipped with nilpotent divided powers, we get the injectivity because 
by the lemma (83) the map V~x — id : W(Af) ® P —» W(Af) ® P is an isomorphism. 
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Corollary 85. — Let V be a 3n-display over R, such that FNP C IRP for some 
number N. then the map 

Y'1 - id : QAT — > PAT 

is infective. 

The proof is the same starting from lemma (83). 

Proof of theorem (81) and its corollary. — For any 3n-display V we define a functor 
G on Nil/? by the exact sequence: 

0 dn V'1 - id 
Pjsf G{N) 0. 

If V satisfies the assumption of corollary (85) we define a functor G by the exact 
sequence: 

0 QjV 
V"1 — id 

Pu G(JV) 0. 

We verify that the functors G and G satisfy the conditions (i) - (iv) of the definition 
(80). It is obvious that the conditions (i) and (ii) are fulfilled, since we already 
remarked that the functors j\f »-» Qjs/ (resp. Q^r ) and j\f »-» Pj^ (resp. P/v ) are 
exact. 

All what remains to be done is a computation of the functors and tg. We do 
something more general. 

Let us assume that J\f is equipped with nilpotent divided powers. Then we define 
an isomorphism, which is called the exponential map 

(155) exp-p : Af ®R P/Q —• G(N). 

It is given by the following commutative diagram. 

(156) 0 nd PM A/" ®H P/Q • -v n 

V'1 - id exp 

n — + QA 
V-1 - id 

PAT > 0 ( A 0 - ->o. 

If .A/"2 = 0, we can take the divided powers 7^ = 0 for i > 2. Then the exponential 
map provides an isomorphism of the functor £g with the functor M 1—* M <Sir P/Q 
on the category of i?-modules. Hence the conditions (iii) and (iv) of definition 80 are 
fulfilled. If the display V satisfies the condition FN • P C IrP for some number AT, 
we may delete the hat in diagram (156), because the middle vertical arrow remains 
an isomorphism by lemma (83). In fact in this case we need only to assume that N 
has divided powers. We get an isomorphism 

(157) exp : Af <g) P/Q—• G{j\f). 

It follows again that G(j\f) is a finite dimensional formal group. The obvious 
morphism G(JV) —> G(j\f) is a homomorphism of formal groups, which is by (155) 
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and (157) an isomorphism on the tangent functors tQ —* to- Hence we have an 
isomorphism G = G, which proves the theorem 81 completely. • 

Corollary 86. — The functor V H-> BT-p commutes with base change. More precisely 
if a : R —* S is a ring homomorphism base change provides us with a display a*P and 
a formal group a*BTp over S. Then we assert that there is a canonical isomorphism: 

a*BTp ^ BT^V 

Proof. — In fact for M. G Nils we have the obvious isomorphism: 

W{M) ®W(R) P ~ W(M) ®W(S) W(S) 0W{R) P = W(M) ®W{S) a*P 

This provides the isomorphism of the corollary. • 

Proposition 87. — Let R be a ring, such that pR = 0, and let P be a display over R. 
Then we have defined a Frobenius endomorphism (29): 

(158) Frv :P —>P^\ 

Let G = BTp be the formal group we have associated to P. Because the functor BT 
commutes with base change we obtain from (158) a homomorphism of formal groups: 

(159) BT(Fr-p) : G —• G{p). 

Then the last map (159) is the Frobenius homomorphism Fro of the formal group G. 

Proof — Let N G Nil/? be a nilpotent P-algebra. Let M[p\ G Nil^ be the nilpotent 
i?-algebra obtained by base change via the absolute Frobenius Frob : R —» R. Taking 
the p-th power gives an i?-algebra homomorphism 

(160) FrM :M^Af[p]. 

The Frobenius of any functor is obtained by applying it to (160). In particular the 
Frobenius for the functor W is just the usual operator F: 

F. W{M) —• W(Af[p]) = W{N). 

From this remark we obtain a commutative diagram: 

W{N)®WMP • G(Af) 

FrG (161) F®idP[ 

W(N[P])®WMP • G(A/jp]) 

The left lower corner in this diagram may be identified with W{M) ®F,W(R) P — 

W®W(R)P(P\ All we need to verify is that for £ G W(Af) and x G P the elements 

F£ <g> x G W(N) ®F,W(R) P and £ ® V#x G W{N) ®w{R) P^p) nave the same image 
by the lower horizontal map of (161). Since P is generated as an abelian group by 
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elements of the form uV 1y, where y € Q and u € W{R), it is enough to verify the 
equality of the images for x = uV~1y. But in W(JV)®FW(R) P we have the equalities: 

F£ 0 uV~ly = F(£u) 0 V'xy = V-X{£u 0 y) 

The last element has the same image in G(A/jp]) as by the exact sequence 
(146). Hence our proposition follows from the equality: 

f 0 ^ ( t t V " 1 ! / ) = £u 0 y 

We note that here the left hand side is considered as an element of W ®w(R) P^P\ 
while the right hand side is considered as an element of W <8>F,W(R) P- O 

Proposition 88. — Let R be a ring, such that pR = 0. Let V be a display over R. 
Then there is a number N and a morphism of displays 7 : V —» V^p ) such that the 
following diagram becomes commutative: 

V 
v dd 

Fr% 

-p{pN) 
7 

Proof. — By (29) Fr-p is induced by the homomorphism V# : P —> W(R)<S>Fyw(R) P-
First we show that a power of this map factors through multiplication by p. By the 
definition of a display there is a number M, such that VM# factors through: 

(162) VM* :P -+IR®FM>W{R)P 

Hence the homomorphism y(M+1)# is given by the composite of the following maps: 
(163) 

P 
v* 

W(R) ®F,W,R) P 
W{R) ® VM* 

W(R) ®F,W(R) IR ®FM,W(R) P 

W{R) ^FM+IW(R)P 

Here the vertical arrow is induced by the map W(R) <8>F,W(R) IR ~^ W(R) such that 
£ ® C £FC We note that this map is divisible by p., because there is also the map 
K : W(R) ®F,W(R) IR W(R) given by £ (g> vr) £77. Composing the horizontal 
maps in the diagram (163) with K we obtain a map 70 : P —• W(R) ®FM+1,W(R) P-> 

such that 70P = V^M+1^. For any number m we set 7m = Vrm^7o. Then we have 
LRNP = Y(M+m+i)#^ 

Secondly we claim that for a big number m the homomorphism 7m induces a 
homomorphism of displays. It follows from the factorization (162) that 7M respects 
the Hodge filtration. We have to show that for m > M big enough the following F 

-linear maps are zero: 

(164) F 7m 'YmF, V 7m 'YmV 
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These maps become 0, if we multiply them by p. But the kernel of multiplication by 
p on W{R) ®Fm,w{R) P is W(a) <g>F™>,w(R) P, where a is the kernel of the absolute 
Frobenius homomorphism Frob : R —> R . Because W{a)IR = 0, we conclude that the 
composite of the following maps induced by (162) is zero: 

W(a) <&F™,W{R) P -» W(a) <8>F™,W(R) IR ®F™,W(R) P —• W{R) ®FM+™,W(R) P 

Hence 72M commutes with F and V~X and is therefore a morphism of displays. This 
is the morphism 7 we were looking for. • 

Applying the functor ET to the diagram in the proposition we get immediately that 
BT-p is a p-divisible group. If p is nilpotent i n f i a formal group over R is p-divisible, 
iff its reduction mod p is p-divisible. Hence we obtain: 

Corollary 89. — Let p be nilpotent in R , and let V be a display over R . Then BT-p is 
a p-divisible group. 

We will now compute the Cartier module of the formal group BT-p. By definition 
the Cartier ring KR is the ring opposite to the ring Hom(W, W). Any element e E Ep 
has a unique representation: 

e = 
n,m>0 

Vn[an,m]Fm, 

where anjTn E R and for any fixed n the coefficients an,m = 0 for almost all m. We 
write the action e : W(N) —•» W(Af) as right multiplication. It is defined by the 
equation: 

(165) ue = 
m,n>0 

Vm{{an,m](Fnu)) 

One can show by reducing to the case of a Q-algebra that pnu = 0 for big n. Hence 
this sum is in fact finite. 

Let G be a functor from Nil# to the category of abelian groups, such that G(0) = 0. 
The Cartier module of G is the abelian group: 

(166) M (G) = H o m ( ? , G), 

with the left E^-module structure given by: 

{e<t>){u) = (t>{ue), <j> e M ( G ) , u e W(N), e£KR 

Let P be a projective finitely generated W(i?)-module. Let us denote by G p the 
functor N »—• W(Af) ®w(R) P- Then we have a canonical isomorphism : 

(167) ER ®W{R) P -> Hom(W, GP) = M ( G P ) 

An element e <g> x from the left hand side is mapped to the homomorphism u 1—• 
ue ® x e W{N) ®W(R) P-
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Proposition 90. — Let V = (P, Q, F, V~x) be a Sn-display over R. By definition (146) 
we have a natural surjection of functors Gp —BTp. It induces a surjection of Cartier 
modules: 

(168) KR ®w(r) P —> M(BTV) 

The kernel of this map is the ¥,R-submodule generated by the elements F<&x— l<g>Fx, 
for x G P, and V ® V~~xy —l®y, for y G Q. 

Proof — We set G!p = Gp and we denote by G^1 the subfunctor Af 1—• Q^f. Let 
us denote the corresponding Cartier modules by respectively M ^ 1 . By the first 
main theorem of Cartier theory, we obtain from (146) an exact sequence of Cartier 
modules: 

(169) 0 — > M " 1 M P — > M(BTr) —> 0 

We have to compute pp explicitly. Using a normal decomposition P = L ® T we 
may write: 

G ^ c a o = W(AT) ®W(R) L®TM ®W(R) T 
The Cartier module of the last direct summand may be written as follows: 

a70) №RF ®W{R) T —• Hom(VT, T®w(R) T) 
^ } eF®t 1—• (u i-> ueF ® t) 

From this we easily see that M ^ 1 C M^> is the subgroup generated by all elements 
eF <g> x, where e G KR and by all elements e ® y, where e G E# and y G Q. 

The map V-1 : G^1 •—> GS> is defined by the equations: 

(171) V~x{u <g> 2/) = uV <g> V~1y, u eW, (Af) y G Q 
Vr"1(txF <g> x) = ® Fx, x G P 

Hence on the Cartier modules V 1 — id induces a map pp : M ^ 1 -+ M§>, which 
satisfies the equations: 

/179x pv(eF®x) = e(g>Fx — e F ® x, # E P 
pv(e<g>y) = eV <%>V-ly - e®y, y G Q 

This proves the proposition. • 

3.2. The universal extension. — Grothendieck and Messing have associated to a 
p-divisible group G over i? a crystal U>G, which we will now compare with the crystal 
T>p, if V is a display with associated formal p-divisible group G = BT(V). 

Let us first recall the theory of the universal extension [Me] in terms of Cartier 
theory [Z2]. 

Let 5 b e a Zp-algebra and L an 5-module. We denote by C(L) = YliZo VlL, the 
abelian group of all formal power series in the indeterminate V with coefficients in L. 
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We define on C(L) the structure of an Es-module by the following equations 

sd 
oc 

¿=0 

V%] sv 
oo 

2=0 
V'wnfâk, for £ G W(S),U G L 

V 
2=0 

dv 
2=0 

OO 
d+dls 

ds OO 

2=0 

sv sv 
2=1 

sdx+ js OO 

The module C(L) may be interpreted as the Cartier module of the additive group 
of L: 

Let L+ be the functor on the category Nils of nilpotent S-algebras to the category 
of abelian groups, which is defined by 

L+(JST) = (N®S £)+ 

Then one has a functor isomorphism: 

Af®sL 9ê W(Af) ®Es C{L 
n ® I [n] ® V°l 

Consider a pd-thickening S —> R with kernel a. Let G be a p-divisible formal group 
over R and M = MQ — M(G) be its Cartier module (166), which we will regard as 
an Es-module. 

Definition 91. — An extension (£, N) of M by the 5-module L is an exact sequence 
of Es-modules 

(173) 0 —• C(L) —> N —> M —v 0, 

such that N is a reduced Es-module, and aN C V°L, where a C W(S) C Es is the 
ideal in W(S) defined after (48). 

Remark. — We will denote V°L simply by L and call it the submodule of exponentials 
of C(L) respectively N. A morphism of extensions (L,N) —• {L',N') consists of a 
morphism of 5-modules (p : L —> V and a homomorphism of Es-modules u : N —• N' 
such that the following diagram is commutative 

0 • C(L) • N • M • 0 

u 

0 > C{L') v N' > M • 0 

More geometrically an extension as in definition 91 is obtained as follows. Let G be 
a lifting of the p-divisible formal group G to a p-divisible formal group over 5, which 
may be obtained by lifting the display V to S. Let W be the vector group associated 
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to a locally free finite ^-module W. Consider an extension of f.p.p.f. sheaves over 
Spec S: 

(174) 0 —> W —> E —>G —> 0 

The formal completion of (174) is an exact sequence of formal groups (i.e. a sequence 
of formal groups, such that the corresponding sequence of Lie algebras is exact). 
Hence we have an exact sequence of Cartier modules. 

0 —• C(W) —• Mfi —> M5 —• 0, 

E being the formal completion of E. 
We have aMg ~ a ®s LieP. We let L = W + aLieP as submodule of LieP or 

equivalently of Mg. Since L is killed by F we obtain an exact sequence 

0 —> C{L) —• Mg —> MG — > 0 , 

which is an extension in the sense of definition 91. Conversely we can start with a 
sequence (173). We choose a lifting of M/VM to a locally free S'-module P . Consider 
any map p making the following diagram commutative. 

(175) N/VN > M/VM 

dc+c 
P 

Let W = kerp. Then L = W + a(N/VN) as a submodule of LieiV. The quotient of 
N by C(W) is a reduced E^-module and hence the Cartier module of a formal group 
G over S, which lifts G. We obtain an extension of reduced E^-modules 

0 —> C(W) —> N —> Mà —> 0, 

and a corresponding extension of formal groups over S 

0 —>W+ —> Ê —> G —> 0. 

Then the push-out by the natural morphism —> W is an extension of f.p.p.f. 
sheaves (174). 

These both constructions are inverse to each other. Assume we are given two 
extensions (W, P , G) and (Wi,Ei,G?i) of the form (174). Then a morphism between 
the corresponding extensions of Cartier modules in the sense of definition 91 may be 
geometrically described as follows. The morphism consists of a pair (U,VR), where 
u : E —> E\ is a morphism of f.p.p.f. sheaves and VR : WR —> Wi)fi a homomorphism 
of vector groups over R. The following conditions are satisfied. 
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1) We have a commutative diagram for the reductions over P : 

0 > WR > ER > G > 0 

ld t u 

0 WifjR c T f tb 0 

2) For any lifting v : W —• Wi of VR to a homomorphism of vector groups the map: 

v-u^:W. — 

factors through a linear map W —> a <g> LiePi : 

W - (a ® Lie£"i)A exp Pi-
Here the second map is given by the natural inclusion of Cartier modules C(aMg ) C 
M^ or equivalently by the procedure in Messing's book [Me] (see [Z2]). This dictio
nary between extensions used by Messing and extensions of Cartier modules in the 
sense of definition 91, allows us to use a result of Messing in a new formulation: 

Theorem 92. — Let S —» R be a pd-thickening with nilpotent divided powers. Let 
G be a formal p-divisible group over R. Then there exists a universal extension 
(Luniv,iVuniv) of G by a S-module Luniv. 

Then any other extension (L, N) in sense of definition 91 is obtained by a unique 
S-module homomorphism Lumv —> L. 

Proof. — This is [Me] Chapt. 4 theorem 2.2. • 

Remark. — The definition of the universal extension over S is based on the exponen
tial map 

exp : (a <g> UeE)A —> EA, 

which we simply defined using Cartier theory and the inclusion a C W(S) given by 
the divided powers on a. In the case of a formal p-divisible group it makes therefore 
sense to ask whether Messing's theorem 92 makes sense for any pd-thickening and not 
just nilpotent ones. We will return to this question in proposition 96 

Since we consider p-divisible groups without an étale part, this theorem should 
be true without the assumption that the divided powers are nilpotent. This would 
simplify our arguments below. But we don't know a reference for this. 

The crystal of Grothendieck and Messing deduced from this theorem is defined by 

BG(S) = LieiVuniv. 

Lemma 93. — Let S —» R be a pd-thickening with nilpotent divided powers. Let V = 
(P, Q ,^ , V~x) be a display over R. By proposition 44 there exist up to canonical 
isomorphism a unique triple (P, P, V~1)y which lifts (P, P, V~x), such that V~1 is 
defined on the inverse image QcPofQ. 
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Then the universal extension of BT(P) is given by the following exact sequence of 
Es-modules 

(176) 0 —• C(Q/ISP) —• Es ®W(S) P/{F O x - 1 ® Fx)x€p —> M(P) —> 0, 

where the second arrow maps y G Q to V® V~1y — 1 ® and the third arrow is given 
by the canonical map P —> P. 

Proof — By [Zl] the Es-module N in the middle of the sequence (176) is a reduced 
Cartier module, and the canonical map P —> Es ®w(S) P, x I <8) x provides an 
isomorphism P/IsP — N/VN. 

Let us verify that the arrow C(Q/IsP) —» N in the sequence (176) is well-defined. 
Clearly y \—> V <g>V~1y — 1 ® ?/ is a homomorphism of abelian groups Q —+ N. The 
subgroup IsP is in the kernel: 

V ® V~ivwx — 1 ® vwx = V<£> wFx - 1 ® vwx 

= VwF ® x — 1 <8) vwx = vwx — 1 (g) = 0, 

for ti; G W(5) ,x G P . 
Moreover one verifies readily that F(V (g> V~1y — 1 <g> y) = 0 in N. Then the 

image of Q —• AT is in a natural way an 5-module, Q/IsP —>• N is an .S-module 
homomorphism, and we have a unique extension of the last map to a E^-module 
homomorphism 

C{Q/ISP) — N. 

We see that (176) is a complex of ^-reduced E^-modules. Therefore it is enough to 
check the exactness of the sequence (176) on the tangent spaces, which is obvious. 

We need to check that (176) is an extension in the sense of definition 91, i.e. 
a - N <Z Q/IsP, where Q/IsP is regarded as a subgroup of iV by the second map of 
(176) and a C W(S) as an ideal. 

Indeed, let a G a, x G P and £ = ^ f f o ^ i ™ G E5. Then a^<S>x = a^2j [£oj]Fj ® 
x = 1 <g) a ^2 l^oj]F^x. Hence it is enough to verify that an element of the form 1 <g> ax 
is in the image of Q —> N. But we have 

V <g) V~xax — 1 ® ax = — 1 ® ax. 

It remains to be shown that the extension (176) is universal. Let 

0 —> C(Luniv) — • ATUNIV — • M(V) —> 0 

be the universal extension. For any lifting of M(V) to a reduced Cartier module M 
over 5, there is a unique morphism jVumv —• M, which maps Luniv to a * M. Let L 
be the kernel of Luniv —> aM. Then it is easy to check that 

(177) 0 —• C(L) —> NunW —> M —> 0 
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is the universal extension of M. Hence conversely starting with a universal extension 
(177) of M, we obtain the universal extension of M over S as 

0 —• C(L + aNuniv) —• JVuniv —• M —• 0, 

where the sum L + aNunW is taken in LieiVuniv. 
Now let Q C Q be an arbitrary W^(.S)-submodule, such that V = (P, Q, P, V'1) is 

a display. By the consideration above it suffices to show that 

(178) 0 —• C{Q/ISP) —• N —• M{V) —> 0 

is the universal extension of M(P) over S. In other words, we may assume R — S. 
Starting from the universal extension (177) for M = M(P) , we get a morphism 

of finitely generated projective modules L —* Q/IsP. To verify that this is an iso
morphism it suffices by the lemma of Nakayama to treat the case, where S = R is a 
perfect field. In this case we may identify M(P) with P . The map P —• E 5 ®w{S) P<> 
x 1—• 1 ® x induces the unique W(S) [F]-linear section a of 

a 
0 > C{Q/ISP) > N > p > 0, 

such that Va{x) - a(Vx) e Q/IsP (compare [Zl], 2, 2.5 or [Ra-Zi] 5.26). The 
extension is classified up to isomorphism by the induced map a : P —• N/VN. Since 
this last map is P —• P/IgP the extension is clearly universal. • 

Our construction of the universal extension (176) makes use of the existence of the 
triple (P, P, F_1). If we have a pd-morphism ip : W(R) —• 5, we know how to write 
down this triple explicitly (corollary 56). Hence we obtain in this case a complete 
description of the universal extension over S only in terms of (P, Q, P, V"1). Indeed, 
let be the inverse image of Q/IP be the map 

S ®w{R) P —• P ®W(R) P-

Then the universal extension is given by the sequence 

(179) 0 — C(Q^) — Es ®W(R) P/(F ® x - 1 ® Fx)xeP —• M(P) —> 0, 

where the tensor product with is given by 6^ : W(R) W(S) (compare (96)). 
The second arrow is defined as follows. For an element y £ we choose a lifting 
y e C 1^(5) <8>w(R) P- Then we write: 

1 ® y G Es ®W(S) (W(S) ®W(R) P) = №s ®W(R) P 

With this notation the image of y by the second arrow of (179) is V (8) V~1y — 1 C§> y. 
One may specialize this to the case of the pd-thickening S = Wm(R) P , and 

then go to the projective limit W{R) = hn2m Wm(R). Then the universal extension 
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over W(R) takes the remarkable simple form: 
0 —• C(Q) —• KW{R) ®W(R) P/(F 0 x - 1 ® Fx)xeP —• M(V) —> 0 

(180) 
y\—y V <g> V~xy - 1 ® 

3.3. Classification of p-divisible formal groups. — The following main theorem 
gives the comparison between Cartier theory and the crystalline Dieudonne theory of 
Grothendieck and Messing. 

Theorem 94. — Let V = (P, Q,F, V~x) be a display over a ring R , such that p is 
nilpotent in R . Let G = ET(V) be the associated formal p-divisible group. Then 
there is a canonical isomorphism of crystals on the crystalline site of nilpotent pd-
thickenings over SpecP: 

Vv DG 
It respects the Hodge filtration on T><p(R) respectively ID)Q(R). 

Let S —» R be a pd-thickening with nilpotent divided powers. Assume we are given 
a morphism W(R) —> S of topological pd-thickenings of R . Then there is a canonical 
isomorphism: 

S®W{R)P^BG(S). 

Remark. — We will remove the restriction to the nilpotent crystalline site below 
(corollary 97). 

Proof. — In the notation of lemma 93 we find V-p{S) = P/IsP and this is also the 
Lie algebra of the universal extension of G over 5, which is by definition the value of 
the crystal H>G at S. • 

Corollary 95. — Let S —• R be a surjective ring homomorphism with nilpotent kernel. 
Let V be a display over R and let G be the associated formal p-divisible group. Let 
G be a formal p-divisible group over S, which lifts G. Then there is a lifting of V 
to a display V over S', and an isomorphism ET{V) G, which lifts the identity 
ET(V) G. 

Moreover let V be a second display over R , and let a : V —» V be a morphism. 
Assume we are given a lifting V over S of V'. We denote the associated formal 
p-divisible groups by G' respectively G'. Then the morphism a lifts to a morphism of 
displays V V, iff ET{a) : G —> G' lifts to a homomorphism of formal p- divisible 
groups G —> G''. 

Proof. — Since S —> R may be represented as a composition of nilpotent pd-thicke
nings, we may assume that S —» R itself is a nilpotent pd-thickening. Then the left 
hand side of the isomorphism of theorem 94 classifies liftings of the display V by 
theorem 48 and the right hand side classifies liftings of the formal p-divisible group 
G by Messing [Me] Chapt V theorem (1.6). Since the constructions are functorial in 
V and G the corollary follows. • 
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Proposition 96. — Let V be a display over R. Let S —> R be a pd-thickening with 
nilpotent kernel a. Then the extension of lemma 93 is universal (i.e. in the sense of 
the remark after Messing's theorem 92). 

Proof. — We denote by G the formal p-divisible group associated to V. Any lifting 
G of G to S gives rise to an extension of MQ in the sense of definition 91: 

0 —> C(aMg) —• Md —• MG —• 0 

With the notation of the proof of lemma 93 we claim that there is a unique morphism 
of extensions N —* Mg. Indeed, the last corollary shows that G is the p-divisible 
group associated to a display V{G) which lifts the display V. Hence V(G) is of the 
form (P, Q, P, V~x), where (P, P, V~1) is the triple in the formulation of lemma 93. 
But then the description of the Cartier module in terms of the display gives 
immediately a canonical morphism of Cartier modules N —> M^,. Its kernel is G(L), 
where L is the kernel of the map P/IsP —• Lie G, i.e. the Hodge filtration determined 
by G. This shows the uniqueness of N —> Mg. 

Now let us consider any extension: 

0 —• C(Li) —• iVi —• M(V) —• 0 

Using the argument (175), we see that there is a lifting G of G, such that the extension 
above is obtained from 

o —> c{ux) — • m — > M 5 — • 0. 

Let Q C P be the display which corresponds to G by the last corollary. Then by 
lemma 93 the universal extension of is : 

0 —> C(Q/ISP) —>N —• Mg —• 0 

This gives the desired morphism N —• N±. It remains to show the uniqueness. But 
this follows because for any morphism of extensions N —• iVi the following diagram 
is commutative: 

N • N± 

MG > MG 
Indeed we have shown, that the morphism of extensions N —> MQ is unique. • 

Remark. — Let V be the display of a p-divisible formal group G. Then we may 
extend the definition of the crystal TD>G to all pd-thickenings S —• R (not necessarily 
nilpotent) whose kernel is a nilpotent ideal, by setting: 

BG(S) =LieEs, 

where Es is the universal extension of G over 5, which exist by the proposition above. 
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This construction is functorial in the following sense. Let V be another display over 
R and denote the associated formal p-divisible group by G'. Then any homomorphism 
a : G —> G' induces by the universality of the universal extension a morphism of 
crystals: 

B(a) : BG —> B e . 

Corollary 97. — / / we extend B ^ to the whole crystalline site as above, the theorem 
94 continues to hold, i.e. we obtain a canonical isomorphism of crystals: 

(181) Vv —• BG 

Proof. — This is clear. • 

Proposition 98. — The functor ET from the category of displays over R to the category 
of formal p-divisible groups over R is faithful, i.e. if V and V are displays over R, 
the map 

Hom(P,P ' ) —>Hom(PT(P),PT(P')) 
is infective. 

Proof. — Let V = {P,Q,F,V-X) and V = (P',Q',P,V~x) be the displays and G 
and G' the associated p-divisible groups. Assume a : V —> V is a morphism of 
displays. It induces a morphism a : G —• &'. 

But the last corollary gives a back if we apply to a the functor B: 

BG(W(R)) —• BG>(W(R)). • 

Proposition 99. — Letp be nilpotent in R and assume that the set of nilpotent elements 
in R form a nilpotent ideal. Then the functor ET of proposition 98 is fully faithful. 

We need a preparation before we can prove this. 

Lemma 100. — Let V and V1 be displays over R. Let a : G —• G' be a morphism of 
the associated p-divisible groups over R. Assume that there is an injection R —* S of 
rings, such that as : Gs —• G's is induced by a morphism of displays ¡3 : Vs —> Vs. 
Then a is induced by a morphism of displays a : V —» V. 

Proof. — The morphism W(R) —> R is a pd-thickening. By the corollary 97 a induces 
a map a : P —• P7, namely the map induced on the Lie algebras of the universal exten
sions (180). Therefore a maps Q to Q'. By assumption the map (3 = W(S) ®vy(/2) a : 
W(S) <S>w(R) P —• W(S) ®w(R) P' commutes with F and V1. Then the same is true 
for a because of the inclusions P C W(S) ®w(R) P, P' C W(S) <&W(R) P'> Hence a 
is a morphism of displays. By proposition 98 ET(a) is a. • 

Proof of the proposition. — If R = K is a perfect field, the proposition is true by 
classical Dieudonne theory. For any field we consider the perfect hull K C Kperf and 
apply the last lemma. Next assume that P = Yliei ^i ŝ a Pr°duct of fields. We 
denote the base change P —> Ki by an index i. A morphism of p-divisible groups 
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G —• C , is the same thing as a family of morphisms of p-divisible groups Gi —• G\ 
over each iff. Indeed, one can think of G in terms of systems of finite locally free 
group schemes. Then one needs only to observe that any finitely generated projective 
module L over R is of the form n^*> since it is a direct summand of Rn. Next one 
observes that the same statements are true for morphisms of displays V —> P ' , because 
W(R) = YlW(Ki) etc. Hence the case where R is a product of fields is established. 
Since a reduced ring may be embedded in a product of fields we may apply the lemma 
to this case. The general case follows from corollary 95 if we divide out the nilpotent 
ideal of nilpotent elements. • 

We now give another criterion for the fully faithfulness of the functor BT, which 
holds under slightly different assumptions. 

Proposition 101. — Let R be an ¥p-algebra. We assume that there exists a topological 
pd-thickening (S,an) of R, such that the kernels o/5/an —-> R are nilpotent, and such 
that S is a p-adic torsion free ring. 

Then the functor ET from the category of displays over R to the category of p-
divisible formal groups is fully faithful. 

Proof. — Let P\ and P2 be displays over P , and let Gi and G2 be the p-divisible 
formal groups associated by the functor ET. We show that a given homomorphism of 
p-divisible groups a : Gi —> G2 is induced by a homomorphism of displays Pi —> P2. 

The homomorphism a induces a morphism of filtered F-crystals ax> ' O d —* ^G2 ON 
the crystalline site. Since we have identified (corollary 97) the crystals D and T> on this 
site, we may apply proposition 60 to obtain a homomorphism <fi : Pi —» P2 of displays. 
We consider the triples (Pi, P, V~x) and (P2, P, V~1)J which are associated to Pi and 
P2, and the unique lifting of <f> to a homomorphism (j> of these triples. Then H^GI(S) is 
identified with Pi/Is Pi for i = 1,2. Let Ei?s and E2,s be the universal extensions of 
Gi and G2 over S. By the proposition loc.cit. the homomorphism CLT>(S) : Lie E^s —> 
Lie E2,5 coincides with the identifications made, with the homomorphism induced by 
O 

4> : PJIS Pi —* P2/ISP2 

Let us denote by 6 : Gi —> G2 the homomorphism BT(</>). Then by theorem 94 b 
induces on the crystals the same morphism as <t>. 

The two maps Ei,s —» E2,s induced by a and b coincide therefore on the Lie 
algebras. But then these maps coincide because the ring S is torsionfree. Hence we 
conclude that a and b induce the same map Ei,# —•> E2,jR> and finally that a = b. • 

Proposition 102. — Let k be a field. Then the functor BT from the category of dis
plays over k to the category of formal p-divisible groups over k is an equivalence of 
categories. 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 221 

Proof. — By proposition 99 we know that the functor ET is fully faithful. Hence 
we have to show that any p-divisible formal group X over k is isomorphic to ET(V) 
for some display V over k. Let £ be the perfect closure of k. Let X = Xt be the 
formal p-divisible group obtained by base change. By Cartier theory we know that 
X = BT(V) for some display V over £. 

Now we apply descent with respect to the inclusion q : k —> £. Let q\ and q^ be 
the two natural maps £ —• £ 0& t~ Let Xi respectively V% be the objects obtained by 
base change with respect to qi for ¿ = 1,2. Our result would follow if we knew that 
the functor ET is fully faithful over £ 0& £• Indeed in this case the descent datum 
X\ = X2 defined by X would provide an isomorphism V\ =7*2- This isomorphism 
would be a descent datum (i.e. satisfy the cocycle condition) because by proposition 
98 the functor ET is faithful. Hence by theorem 37 it would give the desired display 
V over k. 

By proposition 101 it is enough to find a topological pd-thickening S —• £<2>k£, such 
that S is a torsion free p-adic ring. We choose a Cohen ring C of k and embedding 
C —> W{£) [AC] IX, §2, 3. Then we consider the natural surjection: 

(182) W{£) 0C W{£) —• £ ®k £ 

The ring A = W(£) 0c W{£) is torsionfree because W{£) is flat over C. The kernel of 
(182) is pA. We define S as the p-adic completion: 

S = limA/pnA. 
n 

Then S is a torsionfree p-adic ring, such that S/pS = £<g>k£. This follows by going to 
the projective limit in the following commutative diagram: 

0 • A/pnA P ) A/p^A • A/pA > 0 

\, \. \, 

0 > A/pn~l —^—• A/pnA > A/pA > 0 

But with the canonical divided powers on pS the topological pd-thickening S —• £<S>k£ 
is the desired object. • 

Theorem 103. — Let R be an excellent local ring or a ring such that R/pR is of finite 
type over afield k. Then the functor ET is an equivalence from the category of displays 
over R to the category of formal p-divisible groups over R. 

Proof. — We begin to prove this for an Artinian ring R. Since ET is a fully faithful 
functor, we need to show that any p-divisible group G over Z? comes from a display 
V. Let S —» R be a pd-thickening. Since we have proved the theorem for a field, we 
may assume by induction that the theorem is true for R. Let G be a p-divisible group 
over R with BT(V) — G. The liftings of G respectively of V correspond functorially 
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to the liftings of the Hodge filtration to 

VV(S)=BG(S). 

Hence the theorem is true for S. 
More generally if S —> R is surjective with nilpotent kernel the same reasoning 

shows that the theorem is true for S, if it is true for R. 
Next let R be a complete noetherian local ring. We may assume that R is reduced. 

Let m be the maximal ideal of R. We denote by Gn the p-divisible group GR/mn 
obtained by base change from G. Let Pn be the display over P/mn, which correspond 
to Gn. Then V = limPn is a 3n-display over R. Consider the formal group H 
over R which belongs to the reduced Cartier module M(P) . Since Pn is obtained 
by base change from V and consequently M{Vn) from M(P) too, we have canonical 
isomorphisms Hn = Gn. Hence we may identify H and G. Clearly we are done, if 
we show the following assertion. Let V — (P, Q, P, V~1) be a 3n-display over P , such 
that M(P) is the Cartier module of a ^divisible formal group of height equal to the 
rank of P . Then P is nilpotent. 

Indeed, it is enough to check the nilpotence of Vs over an arbitrary extension 
S D P , such that p • S — 0 (compare (15)). Since R admits an injection into a finite 
product of algebraically closed fields, we are reduced to show the assertion above in 
the case, where R is an algebraically closed field. In this case we have the standard 
decomposition 

p = 7?nil 0 7>et 

where Pml is a display and Pet is a 3n-display with the structural equations 

V~1ei = ei, for i — 1 , . . . , h. 

Then 

M(Pet) = 0 E W ( ^ - e t ) , 
i=l 

is zero, because V - 1 is a unit in ER. We obtain M(P) = M(Pnil) = Pnil. Hence the 
height of the p-divisible group G is rank^P1111. Our assumption heightG = rank^P 
implies P = Pml. This finishes the case, where R is a complete local ring. 

Next we consider the case, where the ring R is an excellent local ring. As above 
we may assume R is reduced. Then the completion R is reduced. Since the geometric 
fibres of Spec R Spec P , are regular, for any P-algebra P, which is a field, the ring 
R <&R L is reduced. Hence if R is reduced, so is R ®R R. Consider the diagram: 

^ PI ^ ^ 
R —^—• R \ R<S>RR 

P2 
Let G be a ^-divisible formal group over R. It gives a descent datum on p*G = G^: 

a :p\GR —tplGfr 
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We find a display V over P , such that BT(V) = G^. Since the functor ET is fully 
faithful over R®RR by proposition 99 the isomorphism a is induced by an isomorphism 

a:p\V —• p\V 
Prom the corollary 98 it follows that a satisfies the cocycle condition. By theorem 
37 there is a display V over P , which induces (P , a ) . Since the application of the 
functor ET gives us the descent datum for G, it follows by the usual descent theory 
for p-divisible groups, that ET{V) = G. 

Finally we consider the case of a finitely generated W(fc)-algebra P . We form the 
faithfully fiat P-algebra S = Y[Rm, where m runs through all maximal ideals of P . 
Then we will apply the same reasoning as above to the sequence 

P —> S ] S <g>R s. 
P2 

We have seen, that it is enough to treat the case, where R is reduced. Assume further 
that SpecP is connected, so that G has constant height. 

We see as in the proof of proposition 99, that to give a p-divisible group of height h 
over Y[ Rm is the same thing as to give over each Pm a p-divisible group of height h. 
The same thing is true for displays. (One must show that the order N of nilpotence 
in (15) is independent of m. But the usual argument in linear algebra shows also in 
p-linear algebra that N = h — d is enough.) Since each ring Pm is excellent with 
perfect residue field, we conclude that Gs = ET(V) for some display V over S. We 
may apply descent if we prove that the ring S ®R S is reduced. This will finish the 
proof. Let us denote by Q(R) the full ring of quotients. Then we have an injection 

( n ^ m ) ®A ( n ^ ) ^ (HQ(R™)) ®Q(R) ( n ^ c ^ ) ) 
The idempotent elements in Q(R) allows to write the last tensor product as 

0 ( (Ilm Q (Rn/pRm)) ®QWPR) 0 1 « Q (Rra/pRm)) ) peSpecR K 7 p minimal 
We set K = Q(R/pR). Then we have to prove that for any index set / they are no 
nilpotent elements in the tensor product 

( n * ) « * ( n 4 
iei iei 

But any product of separable (= geometrically reduced) if-algebras is separable, 
because f| commutes with the tensor product by a finite extension E of K. • 

4. Duality 

4.1. Biextensions. — Biextensions of formal group were introduced by Mumford 
[Mu]. They may be viewed as a formalization of the concept of the Poincaré bundle in 
the theory of abelian varieties. Let us begin by recalling the basic definitions (loc.cit.). 
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Let A, B, C be abelian groups. An element in Extx(i? <g>L C, A) has an interpreta
tion, which is similar to the usual interpretation of Extx(P, A) by Yoneda. 

Definition 104. — A biextension of the pair B, C by the abelian group A consists of 
the following data: 

1) A set G and a surjective map 

TT:G >BxC 
2) An action of A on G, such that G becomes a principal homogenous space with 

group A and base B x C. 
3) Two maps 

-\~B : G XB G —> G +C'GxcG —> G, 
where the map G —> B used to define the fibre product, is the composite of 7r 
with the projection B x C —> £?, and where G —• C is defined in the same way. 

One requires that the following conditions are verified: 
(i) The maps of 3) are equivariant with respect to the morphism A x A —• A given 

by the group law. 
(HE) The map + b is an abelian group law of G over J5, such that the following 

sequence is an extension of abelian groups over B: 
0->BxA—• G BxC-+0 

b x a i—• a + 0^(6) 
Here OB : B —• G denotes the zero section of the group law and a + 0fi(6) 
is the given action of A on G. 

(uc ) The same condition as (UB) but for G. 
(Hi) The group laws -Hb and -he are compatible in the obvious sense: 

Let Xij E G, 1 < i, j < 2 be four elements, such that prB(xi,i) = prs(#i,2) and 
prc(#i , i) = prc(x2,i) for i = 1, 2. Then 

(#11 + b #12) +C (#21 + b #22) = (#11 +C #2l) + b (#12 +C #22). 

Remark. — The reader should prove the following consequence of these axioms: 

0B(bi) +c 0B(b2) = 0B(61 + 62) 
The biextension of the pair B,C by A form a category which will be denoted by 
BIEXT1 ( B x G, A). If A-> A' respectively B' ^ B and Cf -> C are homomorphism 
of abelian groups, one obtains an obvious functor 

BIEXT1 (B xC,A) —• BIEXT1 (B' x C',Ar). 
Any homomorphism in the category BIEXT1 (B x C,A) is an isomorphism. The 
automorphism group of an object G is canonically isomorphic of the set of bilinear 
maps 

(183) Bihom(B x G, A). 
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Indeed if a is a bilinear map in (183), the corresponding automorphism of G is given 
by 9 9 + a(ir(g)). 

If b G J5, we denote by Gb or Gbxc the inverse image of b x C by 7r. Then 
induces on G& the structure of an abelian group, such that 

0 —> A —> Gb —>C —• 0 

is a group extension. Similarly one defines Gc for c G C . 

A trivialization of a biextension G is a "bilinear" section s : B x C —• G, i.e. 
7T o 5 = idjsxc, and s(b, — ) for each 6 G B is a homomorphism G —• G&, and s(—, c) 
for each c G G is a homomorphism B —* Gc- A section s defines an isomorphism of 
G with the trivial biextension A x B x G. 

We denote by Biext1(B x C,A) the set of isomorphism classes in the category 
B I E X T ^ x G , ^ ) . It can be given the structure of an abelian group (using cocycles 
or Baer sum). The zero element is the trivial biextension. 

An exact sequence 0 —» £?i —> B —> B2 —•> 0 induces an exact sequence of abelian 
groups 

0 —• Bihom(#2 x C,A) —> Bihom(B x G, A) —• Bihom(£i x G, A) 

B i e x t 1 ^ xC,A) —• B i e x t 1 ^ x C,A) —• B i e x t 1 ^ x C,A) 

The connecting homomorphism 5 is obtained by taking the push-out of the exact 
sequence 

0 —> BxxC —> B xC —> B2xC —• 0, 

by a bilinear map a : Bi x G —> A. More explicitly this push-out is the set Ax B x C 
modulo the equivalence relation: 

(a, 61 + 6, c) = (a + c), 6, c), a G A, b G B c G G, 61 G #1 

If 0 —• Ai —» A —• A2 —> 0 is an exact sequence of abelian groups, one obtains an 
exact sequence: 

0 —• Bihom(J5 x CjAi) —• Bihom(J3 x G, A) —• Bihom(B x G, A2) 

B i e x t 1 ^ x G, Ai) —• B i e x t 1 ^ x G, A) —• B i e x t 1 ^ x G, A2) 

We omit the proof of the following elementary lemma: 

Lemma 105. — If B and C are free abelian groups, one has 

Biex t^S x G, A) = 0. 

This lemma gives us the possibility to compute Biext1 by resolutions: 
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Proposition 106. — (Mumford) Assume we are given exact sequences 0 —> K\ —• 
jpf0 —• -B —•> 0 and 0 — > L o — > C —» 0. T/ien one /ms an exact sequence of 
abelian groups 

Bihom(lfo x Lo,-4) —• Bihom(if0 x ¿1,-4) xBihom(KIXLI,A) Bihom(ifi x L0,A) 

—• B i e x t 1 ^ x C,A) —> Biext1(jRTo x L0,A) 

Proof — One proves more precisely that to give a biextension G of B x C together 
with a trivialization over Ko X LQ: 

G - >B x C 

K0 x L0 

is the same thing as to give bilinear maps £ : Ko x Li —> A and /i : Ki x L0 —> A, 
which have the same restriction on K\ x L\. We denote this common restriction by 
(f : Ki x Li —• A. 

Using the splitting 0^ of the group extension 

0 — • A — • GBXO — • B — • 0, 

we may write 

(184) s{k0,h) =0B(6o) for fco G i^o^i € Li, 

where &o is the image of fco in B and £(fco,Zi) € A This defines the bilinear map £. 
Similarly we define fi: 

(185) s(kul0) = 0c(co) + *o)> 

for fci E ATi and Zo € £o, where CO E C is the image of Zo- Clearly these maps are 
bilinear, since s is bilinear. Since 0B(0) = 0c(0) their restrictions to K\ x L\ agree. 

Conversely if £ and /x are given, one considers in the trivial biextension A x Ko x L0 
the equivalence relation 

(a, fc0 + fci^o + ¿1) = (a + £(fc0,Zi) + /i(fci,Z0) + £(fci,Zi),fc0,Z0). 

Dividing out we get a biextension G of B x C by A with an obvious trivialization. 
• 

The following remark may be helpful. Let Zo £ Lo be an element with image c G C . 
We embed i^i - > i x i*T0 by fci >—• (—/x(fci, Zo), fci). Then the quotient (A x K0)/Ki 
defines the group extension 0 —• A —• Gc —> B -+ 0. 

Corollary 107. — There is a canonical isomorphism: 

Ext1 (I? <g)L C, A) —• B i e x t 1 ^ x C,A). 
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Proof. — If B and C are free abelian groups one can show that any biextension is 
trivial (see (105)). One considers complexes KM = - 0 —> K\ —* KQ —> 0 • • • and 
Lm = • • • 0 —» L\ —> Z/0 —» 0 • • • as in the proposition, where and L0 are free 
abelian groups. In this case the proposition provides an isomorphism 

(186) P ^ H o m ^ 0 L.,A)) = B i e x t 1 ^ x L,^). 

Let T. = • • • 0 -> T2 -+ Ti —• T0 —• 0 • • • be the complex K. 0 P#. Then the group 
(186) above is simply the cokernel of the map 

(187) Hom(T0,4) —• Hom(Ti/ImT2, A). 

Let • • • Pi P1 -» K\ -> 0 be any free resolution. We set PQ = Ko and 
consider the complex P# = • • • —> Pi —> • • Pi —> Po —* 0. The same process applied 
to the Z/s yields Q# = • Qi -» • Qi -> Q0 -> 0. Let f = P. 0 Q.. Then the 
complex 

• • • 0 — > f i / I m f 2 —>f0 —• ••• 
is identical with the complex 

. • 0 —• Ti/ImT2 —> T0 —> ••• 

Therefore the remark (187) yields an isomorphism 

^(HomiK. ®L.,A)) ~ H1(Hom(P.®Q.,A)) = Extx(P 0 L C, A). • 

The notion of a biextension has an obvious generalization to any topos. This theory 
is developed in SGA1. We will consider the category Nil/? with the flat topology. To 
describe the topology it is convenient to consider the isomorphic category AugH (see 
definition 50). Let (P,e) G Aug^ be an object, i.e. a morphism e : B —> R of P-
algebras. We write P+ = Kere for the augmentation ideal. We will often omit the 
augmentation from the notation, and write B instead of (P,e). 

If we are given two morphisms (B,s) —+ (Ai,Si) for i = 1,2, we may form the 
tensorproduct : 

(Аьs i ) <8>(Re) (A2,e2) = {Ax 0ßl A2ìei 0 s2 ) . 

This gives a fibre product in the opposite category Aug^p: 

Spf Ai xSpf B Spf A2 = Spf (Ai 0 B A2). 

Via the Yoneda embedding we will also consider Spf B as a functor on Nil#: 

Spf P(A0 = HomNil*(P+,A0. 

We equip Aug^fp with a Grothendieck topology. A covering is simply a morphism 
Spf A —> Spf P , such that the corresponding ring homomorphism B —> A is flat. We 
note that in our context flat morphisms are automatically faithfully flat. We may 
define a sheaf on Aug^p as follows. 
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Definition 108. — A functor F : AugR —• Sets is called a sheaf, if for any flat homo-
morphism B —+ A in AugH the following sequence is exact. 

F(B) -+ F(A) =4 F(A 0B A). 

Recall that a left exact functor G : Nilp —> (Sets) is a functor, such that G(0) 
consists of a single point, and such that each exact sequence in Nilp 

0 —• A/i —• N2 —• A/*3 —> 0 

induces an exact sequence of pointed sets 

0 — G(A/i) —• G(AT2) —+G(N3) 

i.e. G(M\) is the fibre over the point G(0) C G(Af$). It can be shown that such a 
functor respects fibre products in Nilp. We remark that any left exact functor on 
Nilp is a sheaf. 

A basic fact is that an exact abelian functor on Nilp has trivial Cech cohomology. 

Proposition 109. — Let F : Nilp —• (Ab) be a functor to the category of abelian groups, 
which is exact. Then for any flat morphism B —> A in AugR the following complex 
of abelian groups is exact 

F(B) F(A) =$ F(A <g)B A) =j F(A ®B A 0B A) Z • • • 

Proof — Let AT be a nilpotent jB-algebra and B —•* C be a homomorphism in Aug^. 
then we define simplicial complexes: 

(Cn(AT,B^A),e?) 
( 1 8 8 ) 

(Cn (C,B^A),6?) 
for n > 0. 

We set 
CN(N,B A)=N®BA®B'-®B A 

Cn{C,B A) = C®B A®B - • ®B A, 
where in both equations we have n + 1 factors on the right hand side. The operators 
0n . Qn-i (jn for i = 0 , . . . , n are defined by the formulas: 

Of(x 0 do 0 • * • 0 an_i) = (a: 0 ao 0 • • • 0 a*-i 0 1 0 • • • 0 a^ - i ) , 

where x G Af or x E C. 
One knows that the associated chain complexes with differential 5N = X X - 1Y&? 

are resolutions of A/" respectively C, if either P —* A is faithfully flat or B —> A has a 
section 5 : A —• J5. In the latter case one defines 

sn : Cn • Cn~1,sn(x 0 a0 0 • • • 0 an) = xS(a0) 0 ax 0 • • • 0 an. 

ASTÉRISQUE 278 



THE DISPLAY OF A FORMAL p-DIVISIBLE GROUP 229 

If one sets C-1 = N respectively C'1 = C and 0g : C'1 -* C°,0g(x) = x <g> 1, one 
has the formulas: 

(189) sn0? = id(7«-i> for i — 0 
0£TiSn , f o r z > 0 and n > 1. 

Let us extend the chain complex (Cn,8n) by adding zeros on the left: 

(190) o • o - ^ c - 1 0§ = <5° rd 51 C1 
sv 

C2 

Since by (189) we have snSn + £n xsn 1 = i d ^ - i , we have shown that this complex 
is homotopic to zero. 

If F : Nil# —• (Ab) is a functor we can apply F to the simplicial complexes (188), 
because 0f are i2-algebra homomorphisms. The result are simplicial complexes, whose 
associated simple complexes will be denoted by 

(191) Cn(Af, B ^ A, F) respectively Cn(C, B —> A, F ) . 

Let us assume that B —• A has a section. Then the extended complexes Cn(F), n G 
Z are homotopic to zero by the homotopy F(sn), since we can apply F to the relations 
(189). 

Let now F be an exact functor and assume that B —> A is faithfully flat. If Af2 = 0, 
each algebra Cn(Af, S —> A) has square zero. In this case the 5n in (190) are algebra 
homomorphisms. Therefore we have the right to apply F to (190). This sequence is 
an exact sequence in Nil#, which remains exact, if we apply F. Hence the extended 
complex Cn(Af, B -+ A, F) , n G Z is acyclic if Af2 = 0. 

Any exact sequence 0 —• /C —> A4 —> Af —• 0 is Nil^, gives an exact sequence of 
complexes. 

0 — • Cn(/C, —• A, F) —• Cn(.M,I? —> A,F) —• Cn(Af, 1? —• A, F) —• 0. 

Hence Cn(Af, B —> A,F) is acyclic for any Af G NUB- Finally let a C B be the kernel 
of the augmentation B —• R. Then one has an exact sequence of complexes: 

(192) 0 Cn(a, B A, F) Cn(#, £ -> A, F) Cn(B/a, B /a -> A/a, F) -> 0 

The augmentation of A induces a section of B/a = R —• A/a. Hence the last complex 
in the sequence (192) is acyclic. Since we have shown Cn(a, B —> A, F) to be acyclic, 
we get that Cn(B, B —> A, F) is acyclic. This was our assertion. • 

We reformulate the result in the language of sheaf theory. 

Corollary 110. — An exact functor F : Nil# —* (Ab) is a sheaf on the Grothendieck 
topology T = Aug^p. For each covering T\ —• T2 in T the Cech cohomology groups 
Hl(Ti/T2,F) are zero for i > 1. In particular an F-torsor over an object of T is 
trivial. 
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By SGA7 one has the notion of a biextension in the category of sheaves. If Fy L 
are abelian sheaves a biextension in BIEXT1 (K x L,F) is given by an F-torsor G 
over K x L and two maps tx : G xK G —> G and ti, : G xL G —> G, which satisfy 
some conditions, which should now be obvious. If F is moreover an exact functor, 
then any F torsor is trivial. Hence in this case we get for any Af G Nil/?, that G(Af) 
is a biextension of K(Af) and L(Af) is the category of abelian groups. This is the 
definition Mumford [Mu] uses. 

4.2. Two propositions of Mumford. — We will now update some proofs and 
results in Mumford's article. We start with some general remarks. Let F be an exact 
functor. Let G H be any F-torsor is the category of sheaves on T. If H = Spf A is 
representable we know that 7r is trivial and hence smooth because F is smooth. (The 
word smooth is used in the formal sense [Zl] 2.28.) If H is not representable, TT is still 
smooth since the base change of G by any Spf A —± H becomes smooth. 

More generally any F-torsor over H is trivial if H is prorepresentable in the fol
lowing sense: 

There is a sequence of surjections in Aug R: 

• • • * > An-\-i > An • • • > A±, 

such that 

(193) H - U r n Spf A*. 

Then 7r has a section because it has a section over any Spf Ai and therefore over H 
as is seen by the formula: 

Hom(fT, G) = Urn Hom(Spf AU G) 

Hence we have shown: 

Lemma 111. — Let F : Nil/? —*• (Ab) be an exact functor. Then any F-torsor over a 
prorepresentable object H is trivial. 

For some purposes it is useful to state the first main theorem of Cartier theory in 
a relative form. Prom now on R will be a Z(p)-algebra. 

Let B be an augmented nilpotent i?-algebra. In order to avoid confusion we will 
write SpfR B instead of Spf B in the following. Let G : Nil/} —* (Sets) be a left exact 
functor. There is an obvious functor Nil^ —» Nil/?. The composite of this functor 
with G is the base change GB-

Assume we are given a morphism 7t : G —> Spf/? J5, which has a section a : 
Spf/£ B —> G. Then we associate to the triple (G, 7r, a) a left exact functor on Nil^: 

Let £ € Nile and let B\C\ = B ® C be the augmented B-algebra associated to it. 
Then B\C\ is also an augmented i?-algebra, with augmentation ideal B+ 0 C. Then 
we define the restriction Res# G(£) of G to be the fibre over a of the following map 

HomSpfRB(Spf/?S|>C|,G) —• HomSpfR B(SpfR B, G). 
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The functor G H-» Resjs G defines an equivalence of the category of triples (G, 7r,cr) 
with the category of left exact functors on Nile. We will call the triple (G, 7r, a) a 
pointed left exact functor over SpfB. It is useful to explain this formalism a little 
more. 

Let us start with a left exact functor F on Nil/?. Then F x Spf B Spf B is 
naturally a pointed functor over Spf B. The restriction of this pointed functor is FB> 

ResB(F xSpfB) = FB. 

Suppose that the B-algebra structure on £ is given by a morphism <p : B+ —» £. 
Then we have also a map of augmented i?-algebras B\C\ —> i2|£|, which is on the 
augmentation ideals <p -f id/: • B+ 0 £ —• £. 

Lemma 112. — Le£ : i?+ C be a morphism in Nil/?. Via (/? we may consider £ 
as an element of Nils- Then Res# G(£) may be identified with the subset of elements 
of G{C), which are mapped to <p by the morphism 

7TC : G(£) —> Hom(B+,£). 

Proof — Consider the two embeddings of nilpotent algebras 6£ : £ —> £?+ 0 £ = 
B\C\+,LC(1) = 0 0 / and Lb+ : B+ -* 0 £ = B|£ |+, tB+ (&) = & 0O. Let us denote 
by Ga(B+ 0 £) C G(£+ 0 £) = Hom(SpfH B\C\,G) the fibre at a of the map 

(194) Hom(Spf^B\C\,G) Hom(Spf^B, G) 

We have an isomorphism in Nil*?: 

(195) 
B+Ç&C B+ x £ 

6 e i '—• b x (y?(6) + 0 

Let G(P+ 0 £) —• G(£) be the map induced by B+ 0 £ —• £, 6 © Z -» y?(6) + Z. 
It follows from the isomorphism (195) and the left exactness of G, that this map 
induces a bijection G(T(B+ 0 £) G(£). Hence we have identified G(£) with the 
fibre of (194) at a. It remains to determine, which subset of G(£) corresponds to 
Homspf a(Spf B\C\, G). But looking at the following commutative diagram 

G(B+ 0 £) G(£) 

7T£ n + OCs 

H o m ( P + , S + 0 £ ) Hom(S+,£) 

svd dv 

we see that this subset is exactly the fibre of 7T£ at <p. • 

Conversely given a functor H : NUB —> (Sets), such that H(0) = {point}. Then 
we obtain a functor G : Nil*? —> (Sets) by: 

GUSH = 
ip:B+-+jV 

H{K)> A/" G Nil/s, 
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where Af^ is Af considered as a 23-algebra via (p. Then we have a natural projection 
7r : G{Af) —• Hom(i?+, Af), which maps H(Af<p) to (p. The distinguished point in each 
H(Af<p) defines a section a of 7r. 

In particular our remark shows that a group object in the category of arrows 
G —• Spf B, such that G is a left exact functor on Nil# is the same thing as a left 
exact functor H : Nil# —• (Ab). 

In Cartier theory one considers the following functors on NUR: 

D(Af) = Af, A(Af) = (1 + tAT[t])x, for AT G Nil*. 

Here t is an indeterminate. The functor D is considered as a set valued functor, while 
A takes values in the category (Ab) of abelian groups. We embed D into A by the 
map n n ( l - ni) for n G Af. 

Theorem 113 (Cartier). — Let G H be a morphism of functors on Nil*. Assume 
that G is left exact and has the structure of an abelian group object over H. The 
embedding D c A induces a bisection. 

HomroUpS/ff (A x H, G) —• Hompointedfunctors//j (D x H,G). 

Proof. — If H is the functor H(Af) = {point}, Af G Nil^ this is the usual formulation 
of Cartier's theorem [Zl]. To prove the more general formulation above, one first 
reduces to the case H = Spf B. Indeed to give a group homomorphism A x H —• G 
over H is the same thing as to give for any morphism Spf B —• H a morphism 
A x Spf B —• Spf B x H G of groups over Spf B. 

Secondly the case H = Spf B is reduced to the usual theorem using the equivalence 
of pointed left exact functors over Spf B and left exact functors on Nil#. • 

The following map is a homomorphism of abelian functors: 

(196) X(A° —>W(N) 
11(1 - Xit1) I • (xpo , Xpi , . . . , Xpk . . . ) 

If we compose this with D C A, we obtain an inclusion D C W. 
Let R be a Q-algebra. Then the usual power series for the natural logarithm 

provides an isomorphism of abelian groups: 

log : A(A0 = (1 + t/f[t])+ —> tAf[t] 

The formula s\ ^ Yli>i = Ylnpk^pk - defines a projector s\ : tAf[t] —• tAf[t]. 
Then Cartier has shown that £i induces an endomorphism of A over any Z(p)-algebra. 
Moreover the homomorphism (196) induces an isomorphism: 

6 i A ^ W. 

We use this to embed W into A. 
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Mumford remarked that Cartier's theorem provides a section K of the natural 
inclusion 

(197) Homgroups/ff (W x H, G) —> Hompointed functors / H ( W X H,G). 

Indeed, let a : W x H —• G be a map of pointed set-valued functors. We define 
H(a) : A x H —• G to be the unique group homomorphism, which coincides with a on 
D x H (use theorem 113 ). We get K,(a) as the composition of/5(a) with the inclusion 
W x H C A x H. 

Proposition 114. — Le£ F : NUR —» (A6) 6e an exactf functor. Then 

Ext1 (W,F) = 0 , 

where the Ext-group is taken in the category of abelian sheaves on T. 

Proof. — By the remark (193) a short exact sequence 0 —> F G —> W -+ 0 has a 
set-theoretical section s : W —• G. Then K(S) splits the sequence. • 

Remark. — It is clear that this proposition also has a relative version. Namely in the 
category of abelian sheaves over any prorepresentable sheaf H in T. we have: 

Ext^roups/i/(W x H, F x H) = 0, 

if H is prorepresentable. Indeed consider an extension 

(198) 0 —> F xH —• G W xH —• 0. 

Then G is an F torsor over W x H and hence trivial. Let a be any section of 7r. Let 
us denote by t : H —> W x H and SQ \ H —+ G the zero sections of the group laws 
relative to H. We obtain a morphism SG — crt : H —> F. Let pr2 : W x H —• H be 
the projection. Then we define a new section of 7r by 

(199) ctnew = O- + (SG ~ C7i) pr2 . 

Then <Tnew is a morphism of pointed functors over H, i.e. it respects the sections SG 
and ¿. Hence we may apply the section K of (197) to anew This gives the desired 
section of (198). 

If G : Nil^ —» (Ab) is any functor, we set 

(200) G+(Af) = Ker(G(A0 —• G(0)). 

Because of the map 0 —• Af we obtain a functorial decomposition 

G(M) = G+(A0eG (0 ) , 

which is then respected by morphisms of functors. If G is in the category of abelian 
sheaves we find: 

Ext\b(W,G) = Ext1Ab(W,G+), 

which vanishes if G+ is exact. 
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Carrier's theorem applies to an abelian functor G, such that G+ is left exact: 

Hom(A, G) ~ Hom(A, G+) ~ G+(Xi?[Xj), 

where the Horn are taken in the category of abelian functors on NUR. If F, G are 
abelian sheaves on T, the sheaf of local homomorphisms is defined as follows: 

Hom( F.GMA+) = Hom(FA,GA), A e AugR. 
(201) 

Hom(F,G)+(A+) - Ker(Hom(FA,GA) —+ Hom(Ffi, G*)). 
Cartier's theorem tells us that for a left exact functor G: 

(202) 
Hom(A,G)(A+) = G(XA[X\) 

Hom+(Â,G)(A+) = G(XA+[X\) 

In particular the last functor Hom+(À, G) is exact if G is exact. Using the projector 
€1 we see that Hom+(W, G) is also exact. 

Proposition 115 (Mumford). — Let F be an exact functor. Then 

B i e x t ^ t ? x W,F) =0. 

Proof. — We strongly recommend to read Mumford's proof, but here is his argument 
formulated by the machinery of homological algebra. We have an exact sequence 
(SGA7): 

0 -* E x t ^ t y . H o m f f i . F ) ) —> Biextx(W x W,F) —> Hom(ÏV, Ext1(tV, F)). 

The outer terms vanish, by proposition (114) and because the functor Hom+(Vr, F) 
is exact. • 

Our next aim is the computation of Bihom(lV x W,Gm). Let us start with some 
remarks about endomorphisms of the functors W and W. 

Let R be any unitary ring. By definition the local Cartier ring KR relative to p 
acts from the right on W(J\f). Explicitly this action is given as follows. The action of 
W(R): 

(203) W{M) x W(R) —• W(Af), 

is induced by the multiplication in the Witt ring W(R\j\f\). The action of the operators 
F, V e ER is as follows 

(204) nF = vn, nV = Fn, 

where on the right hand side we have the usual Verschiebung and Probenius on the 
Witt ring. An arbitrary element of MR has the form sWLS IZ+ ^j^=i SS SKX , &5 Uj £ 
W(R), where lim/i^ = 0 in the V-adic topology on W(R) (see corollary 8). We may 
write such an element (not uniquely) in the form: Yl^71**™, where an G TV(i?)[jF]. 

By the following lemma we may extend the actions (203) and (203) to a right action 
of EH on W(j\f). 
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Lemma 116. — For any n e W(N) there exists a number r such that pr n = 0. 

Proof. — Since n is a finite sum of elements of the form S 5 SN n G Af it suffices to 
show the lemma for n = [n]. This is trivial. • 

We note that in the case, where p is nilpotent in R there is a number r, such that 
F W{M) = 0. Hence in this case the Cartier ring acts from the right on W(Af). 

We write the opposite ring to ER in the following form: 

(205) sd d+d oo 

i=l 

s x+ dl 
oo 

J=0 
VjFj I 6,^- e W(R),]im& = 0 

The limit is taken in the F-adic topology. The addition and multiplication is defined 
in the same way as in the Cartier ring, i.e. we have the relations: 

(206) FV = p, VÇF = VÇ, FÇ = F£F, ÇV = VF£. 

Then we have the antiisomorphism 

t : ER —•+ 'ER, 

which is defined by t(F) = V, t(V^) = F and t(^) = £ for £ £ W^fl). The ring *ER 
acts from the left on W(Af): 

Fn = n, Vn = n. 

It is the endomorphism ring of W by Cartier theory. 

We define ER to be the abelian group of formal linear combinations of the form: 

(207) ER = 
oo 

1=1 

s +sml 
oo 

j=o 

sx +x 

There is in general no ring structure on ER, which satisfies the relations (206). The 
abelian group tEp is a subgroup of ER by regarding an element from the right hand 
side of (205) as an element from the right hand side of (207). Obviously the left action 
of *ER on W(Af) extends to a homomorphism of abelian groups 

(208) ER —» Hom(W, W). 

We will write this homomorphism as 

n i—> un 

since it extends the left action of *E#. We could also extend the right action of ER: 

n i—> nu. 

Of course we get the formula 
nu = tun. 
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The first theorem of Cartier theory tells us again that (208) is an isomorphism. By 
the remark after lemma (116), it is clear that in the case where p is nilpotent in R 
the homomorphism (208) extends to a homomorphism: 

(209) ER —• End(W0 

The reader can verify that there exists a ring structure on KR that satisfies (206), if 
p is nilpotent in R. In this case the map t : KR —• *EK extends to an antiinvolution 
of the ring KR. Then (209) becomes a homomorphism of rings. 

By Cartier theory we have an exact sequence: 

(210 ) 0 — • W(N 
•(F-l) 

W{N) hex Gm(A0 — » 0 

The second arrow is the right multiplication by (F — 1) € ER , and hex is the so called 
Artin-Hasse exponential. For the following it is enough to take ( 210 ) as a definition 
of GM. But we include the definition of hex for completeness. It is the composition 
of the following maps (compare ( 196 ) ) : 

(211) W(M) ^ eiÂ(A0 c A (AO = (1 + W[t])x 
t = 1 

(1+A0X. 

It is easy to produce a formula for hex but still easier if one does not know it. The 
verification of the exactness of (210) is done by reduction to the case of a Q-algebra 
N. We will skip this. 

Proposition 117. — The Artin-Hasse exponential defines an isomorphism of abelian 
groups: 

(212) ^ : W(R) —• Hom(W?, Gm) 

An element £ € W(R) corresponds to the following homomorphism >c^.W —» GM. / / 
u G W(Af), we have: 

H^(U) = hex(£ • ?x). 

Proof — This is a well-known application of the first main theorem of Cartier theory 
of p-typical curves. Let [X] = (X, 0 . . . 0 . . . ) be the standard p-typical curve in 
W(XK[X\). We have to show that hex(£ • [X]) gives exactly all p-typical curves of 
GM if £ runs through W(R). We set 7m = hex([X]). This is the standard p-typical 
curve in GM. It satisfies F7m = 7m by (210). By definition of the action of the 
Cartier ring on the p-typical curves of GM we have: 

hex(£|xd=£7m. 

If £ = Yl V^ÇilF* as elements of E # we obtain: 

?7m = 
oc 

i=0 

V Ei m v 

These are exactly the p-typical curves of GM. 
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From (200) we deduce the following sheafified version of the proposition: 

Corollary 118. — The homomorphism (212) gives rise to an isomorphism of functors 
on NU\R: 

H : W(JV) —• VLom(wMrr,)+(jV) 

We are now ready to classify the bilinear forms Bihom(VT x W,Gm). To each 
u G E# we associate the bilinear form (3U: 

W(JV) x W(j\f) — > W(JV) x W(JV) mult. W(AT) hex Gm(jV) 
£ x r? En x 1 £ x r? 

Proposition 119. — We have the relations: 

£,77 = buATi.E) 
hex(£^)r7 = hex £(^77). 

Proof — Clearly the second relation implies the first one. For u G W(R) we have 
(£u)r) = £(ur)). Hence the assertion is trivial. 

First we do the case u = F: 

hex(£F)77 = hex ^77 = hex v(^Frj) = hex(£Fry)F = hex£F?7 = hex f (FT/). 

The fourth equation holds because: 

hex(W(Af)(F - 1)) = 0 

Secondly let u = V: 

hex(^V)r] = hexF£r7 = hex v(F£ri) = hex£V77 = hex£(Vrj). 

Finally we have to treat the general case u = 
00 

i=l 
'f*Wi + 

00 

¿=0 
w-iF*. For a finite sum 

there is no problem. The general case follows from the following statement: 
For given £, 77 G W(j\f) there is an integer mo, such that for any w G W(R): 

hex(£wFm)77 = 0, hex(£Vrnw)ri = 0. 

Indeed, this is an immediate consequence of lemma 116. 

Proposition 120 (Mumford). — The map: 

(213) —- Bihom(TV x W, Gm), 

u 1—• 0U(€, rj) = hex(£u)ri 

is an isomorphism of abelian groups. 

Proof. — One starts with the natural isomorphism. 

Bihom(t? x W,Gm) ^ Hom(t?,Hom+(IV,Gm)). 
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The sheaf Hom+(W,Gm) is easily computed by the first main theorem of Cartier 
theory: Let A — R © Af be an augmented nilpotent i?-algebra. Then one defines a 
homomorphism: 

(214) W{Af) —> Hom+(^,Gm)(A0 C Hom(W?4, G m J , 

as follows. For any nilpotent A-algebra Ai the multiplication Af x Ai Ad induces 
on the Witt vectors the multiplication: 

W{Af) x W{Ai) —> W(M). 

Hence any u G W(Af) induces a morphism W(A4) —» Gm(.M),£ hexu;£. Since by 
the first main theorem of Cartier theory: 

W(A) —>Hom(W^,GmA), 

is an isomorphism. One deduces easily that (214) is an isomorphism. If we reinterpret 
the map (213) in terms of the isomorphism (214) just described, we obtain: 

(215) ER • Hom(W, W) 

u '—> (f £u) 

But this is the isomorphism (208). • 

4.3. The biextension of a bilinear form of displays. — After this update of 
Mumford's theory we come to the main point of the whole duality theory: Let V and 
V be 3n-displays over R. We are going to define a natural homomorphism: 

(216) Bil(P x V', Gm) —• Biext1 (BTV x BT<p>.Gm) 

Let ( , ) : P x P' -+ W(R) be a bilinear form of 3n-displays (18). For Af G Nilj* 
this induces a pairing 

(217) ( , ) : Ptf x Ptf —• W(AT), 

(Compare chapter 3 for the notation). More precisely, if x = £ 0 u G Pj\r = 
W(Af) <&w(R) P and x1 = £'<8>u' G P'u = W(AT)<g*W(R) P ' , we set (x',x) = £€'(u, u') G 
W(AT), where the product on the right hand side is taken in W(R\Af\). 

To define the biextension associated to (217), we apply a sheafified version propo
sition 106 to the exact sequences of functors on NUR: 

0 —• Qat V~X ~LD> PAT —> BTv(Af) —• 0 

0 — QV V"1"ID) P'N — BTV,(N) — , 0. 
The proposition 106 combined with proposition 115, tells us that any element in 
Biext1 (l?Zp x J5Tp/,Gm) is given by a pair of bihomomorphisms 

on : QaTx P'M —• Gm(Af) 

a2 : PsfX Q'AT —• Gm(A0, 
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which agree on Q/j x Q'^f. 
In the following formulas an element y G Qu is considered as an element of P^r by 

the natural inclusion id. We set 
a i (y ,x ' ) = hex(Vr-1y,x/), for y G QM, X' G P^. 

(218) 
a2(x, y7) = - hex(x, y7), for x 6 PAF ? 2/ € QM. 

We have to verify that ot\ and «2 agree on QM X Q̂ R, i.e. that the following equation 
holds: 

ai(y, V ' V - y7) = a2(Vr""1y - y,y'). 
This means that: 

h e x ^ - V y - y - y7) = -hex^"1!/ - y,y7), 

which is an immediate consequence of (1.14): 

hex(^"V y-V) = he^iV^y^y') = hex(y,y7). 

We define the homomorphism (216) to be the map which associates to the bilinear 
form ( , ) G Bil(V x P*\Q) the biextension given by the pair a i , a 2 . 

Remark. — Consider the biextension defined by the pair of maps f3\ : Qu x Pj^ —• 
W{M) and /32 : Pjsf x ~~* defined as follows: 

Pi{y,xr) = hex(y,x7), y € QAT, G 
(219) 

02(x,y') = -hex(ar, V _ y ) , x e P^, V e Q'M-
We claim that the biextension defined by (219) is isomorphic to the biextension de
fined by (218). Indeed by the proposition 106 we may add to the pair (/3i,/32) the 
bihomomorphism 

hex( , ) : PM x P^f —- Gm(AT) 
obtained from (217). One verifies readily: 

Pi(y,xf) H-hex(y~1y - y,x') = a.\(y,x') 
fo(x, y') + hex(;r, V~1y/ - yf) = a2(y, y7). 

Remark. — Let 67 5 x C be a biextension by an abelian group ^4, with the 
relative group laws and +c - Let s:BxC-+CxB, (6, c) H-> (c, 6) be the switch 
of factors, and set 7rs = son. Then (67,7rs, +c» +b) is an object in BIEXT(67 x B, A). 
We will denote this biextension simply by 67s. Let us suppose that B = C. Then we 
call a biextension G symmetric if G and 67s are isomorphic. 

Let us start with the bilinear form 

( , ) : V x P' —- gm. 

SOCIÉTÉ MATHÉMATIQUE DE PRANCE 2002 



240 T. ZINK 

We denote by G the biextension, which corresponds to the pair (218) of bihomomor-
phisms ot\ and a2. Clearly the biextension Gs corresponds to the pair of bihomomor-
phisms a\ : Q'N x jFV —* W(Af) and a | : Pj^ x —• W(N), which are defined by 
the equations: 

/220X <x\(v'i z) = a2(x, y') = - hex(x, yf) 
^2{x',y) = 0:1(3/, x') = hex(Vy,x') 

If we define a bilinear form: 

(,)s:V'xV —• ON, 

by (x',x)s = (x,x'), we see by the previous remark that the biextension defined 
by (220) corresponds to the bilinear form — (x',x)s. We may express this by the 
commutative diagram: 

Bil(V x V',G) • Biext1 (BTV x BTv^Gm) 

- i i * 
Bil(V x V,Q) • Biext1 (BTV, x BTv,Gm) 

Let V = V and assume that the bilinear form ( , ) is alternating, i.e. the cor
responding bilinear form of VF(i?)-modules P x P —> W(R) is alternating. Then it 
follows that the corresponding biextension G in Biext1 (jBTp x BTp, Gm) is symmetric. 

4.4. The duality isomorphism. — Assume we are given a bilinear form ( , ) : 
V x V Gm as in definition 18. Let G = £T<p and G' = BTV, be the formal 
groups associated by theorem 81. The Cartan isomorphism Biext1 (G x G',Gm) = 
Extx(G (g)L G',Gm) Extx(G, i?Hom(G', Gm.)) provides a canonical homomorphism 

(221) Biext1 (G x G',Gm) —• Hom(G, Ext1 (G', Gm)). 

Let us describe the element on the right hand side, which corresponds to the biex
tension defined by the pair of bihomomorphisms OL\ and a2 given by (218). For this 
purpose we denote the functor N »-» P/s simply by P , and in the same way we define 
functors Q, Pr,Qr> We obtain a diagram of sheaves: 

^ ^ ( l ' " 1 - i d ) * _ , 
Hom(P/, Gm) > Hom(Q', Gm) • Ext1 (G',Gm) > 0 

(222) 
a i ot2 

(V-1 - id) 
0 >Q > p >G >0 

Hence {V~x —id)* is the homomorphism obtained from V~l — id : Qf —> P1 by applying 
the functor Hom(—, Gm). The horizontal rows are exact. The square is commutative 
because the restriction of ot\ toQxQ' agrees with the restriction of a2 in the sense of 
the inclusions defined by V~x — id. Hence (222) gives the desired G —• Ext1 (G', Gm). 
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The functors in the first row of (221) may be replaced by their +-parts (see (200)). 
Then we obtain a diagram with exact rows: 

Hom(P',Gm)+ >Hom(Q',Gm)+ > Ext^G' , Gm)+ >0 

(223) 

0 > Q > p > G >0 

The first horizontal arrow in this diagram is injective, if V' is a display. Indeed, the 
group G' is p-divisible and by the rigidity for homomorphisms of p-divisible groups: 

(224) Hom(G/,Gm)+ = 0 . 

Remark. — Let V' be a display. The following proposition 121 will show that the 
functor Ext1(G/,Gm.)+ is a formal group. We will call it the dual formal group. The 
isomorphism (226) relates it to the dual display. 

By the corollary 118 one obviously obtains an isomorphism 

(225) W(JV) ®W(R) PL —> Hom(P, Gm)+(A/"). 

Here P* — Homly(fl)(P,^(J?)) is the dual VF(P)-module. Therefore the functor 
Hom(P/,Gm)+ is exact, and the first row of (223) is by proposition 109 exact in the 
sense of presheaves, if V' is a display. 

Proposition 121. — Let V be a display and V1 be the dual Sn-display. By definition 
19 we have a natural pairing 

( , ) : P * x P • C, 

which defines by (216) a biextension in Biext1(BTVt x BTp,Gm). By (221) this 
biextension defines a homomorphism of sheaves 

(226) BTVt —• Ext1 (BTv % G™ )+. 

The homomorphism (226) is an isomorphism. 

Proof. — In our situation (223) gives a commutative diagram with exact rows in the 
sense of presheaves: 

0 • Hom(P, Gm)+ • Hom(Q, Gm)+ • Ext1 (G, Gm)+ > 0 

(227) 

0 > Ql > Pt > Gl > 0. 

Here we use the notation G = BTp, Gf = BT^pt. Let us make the first commutative 
square in (227) more explicit. 
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The bilinear pairing 

(228) W(J\T) ®W(R) P*x W(Af) ®W{R) P —> Gm(JSO, 
£(8) a:* x ^(g)x i—> hex(^(x*, x)) 

provides by the corollary 118 an isomorphism of functors 

(229) W{M) ®W{R) Pl —* Hom(P, Gm)+(Af). 

In order to express Hom(Q, Gm)+ in a similar way, we choose a normal decomposition 
P = L 0 T . Let us denote by L* = Homw(R)(L, W{R)) and T* = HomW(i?)(T, W(R)) 
the dual modules. In terms of the chosen normal decomposition the dual 3n-display 
pl = (P*, Q*, F, V~x) may be described as follows. 

We set Pf = P*,Q* = T* 0 IRL*. Then we have a normal decomposition 

P* = 1} 0 T*, 

where L* = T* and Tl = L*. To define P and V"1 for 7>* it is enough to define 
F-linear maps: 

y-1 : £,* • pf F : T* —• P*. 

We do this using the direct decomposition 

p = W{R)V-XL 0 W(P)FT. 

For x* € L* = T* we set: 

( V - ^ S ^ F y ) = wF(xt,y), w € W(P), 1/ € T 
(V^x*, wV^x) = 0 , x e L. 

For 2/* e T* = L* we set: 

(Fy^wFy) = 0 , 
(P?/*,^^-1^) = wF(ty,x), x e L. 

The bilinear pairing: 

W(N) ®F.w(m T* x WIN) ®F.W<R) T Gm(Af) 
^ ® x* x u (g> y h e x ^ t / ^ S y ) ) 

EC T 

defines a morphism 

(230) W ( A 0 ®F,W(-R) T* —* Hom(Ty ®F,wr(/e) T,GM)+(.A0, 

where ®F,w(i*) ^ denotes the obvious functors on NUR . The right hand side of 
(230) may be rewritten by the isomorphism: 

(231) TfV ®w(R) T —• W{M) <8>F,w(R) T 

vu<g)y I—> u®y 

The pairing (228) induces an isomorphism: 

(232) W{M) &>w(R) L* —> Hom(W ®W(R) L, GM)+(A0 
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Taking the isomorphisms (230), (231) and (232) together, we obtain an isomorphism 
of functors 

(233) 
Hom(Q, Gm)+(Af) ~ W{N) ®F,w(R) T* 0 W{N) ®W{R) L* 

= W{j\f) ®F,W(R) Lf 0 W(jV) <S>W(R) T*. 

We use the decomposition Pt = W(i2)F"1Lt 0 W(R)FTt to rewrite the isomor
phism (229) 

(234) 
Hom(F,Gm)+(A0 ^ W(N) ®W{R) W^V^L1 0 W(jV) ®W{R) W(R)FTt 

~ W{N) ®F,w{R) L* e W(JV) ®F,w(R) T\ 

Here an element £ 0 xl 0 rj <g> yl from the last module of (236) is mapped to ^ l ^ - 1 ^ 0 
rjFyt from the module in the middle. 

We rewrite the first square in (227) using the isomorphism (233) and (234): 

(V-1 - id)* 
w(M) ®Ff L* 0 W(N) ®F, r* W(N) 0 f , ^ e w (A0 ® Tt 

(235) 
a i «2 

V"1 - id 
W(Af) ® L* 0 W(A/) ®F, r* > W(N) ® Zr* 0 W{/sf) ® T* 

In this diagram all tensor products are taken over W(i?). We have to figure out what 
are the arrows in this diagram explicitly. We will first say what the maps are and 
then indicate how to verify this. 

(236) 52 = - (F® idLt 0 \&wM®w(R)T*) 

OLX = F® id̂ T 0 idvv(7V)<g)F,w{R)T't 

The upper horizontal map in (235) is the map (F_1 — id)* = HomfF-1 — id, Gm) : 
Hom(P,Gm) -> Hom(Q,Gm). We describe the maps (V-1)* = Hom(F~1,Gm) and 
id* = Hom(id,Gm). Let £ ® 0 77 ® y* G ®F,W 0 VF(A/") ®F,W T* be an 
element. Then we have: 

(237) <y-1)*(£ ® xl 0 r7 ® z/*) = £ ® 0 vrj ® y*. 

Finally the map id* is the composite of the map (V~x)# 0 F # : W(A0 ®F,W(JR) © 

W(J\f)<g>Fjw(R)Tt —> W(N)®w(R) Pl with the extension of —a.2 to the bigger domain 
W(Af) ®W(R) = W(M) ®W(R) & 0 W(M) ®W(R) Tt- We simply write: 

(238) id* = -a2 ({V-1)* 0 F # ) . 

If one likes to be a little imprecise, one could say (V~xy = id and (id)* = V"1. 
Let us now verify these formulas for the maps in (237). 5 i is by definition (218) 

the composition of V~x : Q1^ —• Pj^f with the inclusion Pfo C W(N) ®w(R) Fl = 
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Hom(P, Gm)+(jV). Hence by the isomorphism (234) which was used to define the 
diagram (235) the map Si is: 

o :! sls 
v-1 

W(JSf) 
W(R) 

sd+d z%u ®xx sl 

dkd 
W(N) 

F,W(R) z%u ®x 
F,W(R) 

rjnt 

Clearly this is the map given by (236). 
Consider an element u(S)Xt G W(Af)(S>w(R) Ll. This is mapped by a2 to an element 

in Hom(Q,Gm)+(.A/) = Hoffl( /®ww r,Gm)+(AT) 0 Hom(W? ®w(il) L,Gm)+(.A/), 
whose component in the second direct summand is zero and whose component in the 
first direct summand is given by the following bilinear form a2: 

a2(u ® x*, vur ® 2/) = — hex ^u't^x*, y) = — hex?/FuF(*x, y). 

Hence the image in the first direct summand is equal to the image of Fu ® xf by the 
homomorphism (230). 

Next we compute the map: 

(V-1)* : W{M) ®W{R) P* ~ Hom(P,Gm)+(7V) —> Hom(Q, Gm)+(AT). 

Let use denote by ( , )& the bilinear forms induced by the homomorphism (230) 
respectively (232). Let 6<&zl G W(Af)<®w(R) Pl be an element, and l e t0®x®i;®yG 
W{M) ®W(R) L e W(A0 ®F,w(jR) T - W(A/")o dlsL ® jjy ®W(JR) T = QAA- Then 
we have by definition of (l^-1)*: 

(239) ((^-1)*(0 0 z%u ®x + v®y)D= hexeFu(z\ V^x) + hexdv{z\ Fy). 

Since we use the isomorphism (234) we have to write 0 zf in the form £ ® V~~1xt + 
77 <g> Fy*, where £,77 G Wr(JV/'),x< G L*,2/* G T*. Then we find for the right hand side 
of (239): 

(240) h e x ^ t ^ y - V , V^x) + h e x ^ F " V , Fy) 

+ YieyLT)Fu(Fyt,V~1x) + hexrru(Fyt,Fy) 

By definition of the dual 3n-display the first and the last summand of (240) vanish. 
Using (20) we obtain for (240): 

hex£vF(xty) +hexr)FuF(yt,x) = hex^vF(xt, y) + hex vr}u{yt,x). 

Since this is equal to the left hand side of (240), we see that (V *)*(£® V 1xt+rf®Fyt) 
is the element in Horn(Q,GM)+(Af) induced by: 

£ 0 x* + vr) ® y* G W W ®F,W(«) © WWO x rR r* 

This is the assertion (237). 
Finally we compute id*. By the isomorphisms (229) and (233) the map id* identifies 

with a map 

(241) id* : W(N) ®W(R) Pl — W(/f) ®F,w(R) L* © W(M) ®W(R) Tf 
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The assertion of (238) is that this map is the extension of —52 , if we identify the 
left hand side of (241) with W(j\f) ®w(R) LF ® W(j\f) ®w{R) TL using our normal 
decomposition. 

Let £ <8> xl 0 T) <8) y} G W{j\f) <8>w(R) LL 0 W(j\f) ®w(R) and u® x®vv®y G 
W{N) ®w(R) L ® IM ®w(R) T = QM for some Af-algebra j\4. We obtain: 

id*(£ (8> xl 0 77 (g) yl){u (8) x 0 vf (8) y) = hex(^vt;(x*, T/) + hex 777/(2/, x) 

= hex vF^F(xt, y) + hex 777/(2/*, ?/}, 

which proves that 

id*(£ <8) + 77 (8) T/*) = F£ <8> x* + 77 <8> 2/*. 

Altogether we have verified that the diagram (235) with the maps described coincides 
with the first square in (227). We may now write the first row of the diagram (227) 
as follows: 

O - W 
F,W(R 

L ® IM ®w(R) T 

W(R) 

(Y'1)* - id* 
w 

F,W(R) 
L ® IM ®w(R) T 

W(R) 

(242) 
Ext1(G,Gm)+ 

0 

Here we wrote W and J for the functors jV 1—• W(JV) and j\f I^. We also used the 
isomorphism (231) to replace W ®Fyw(R) TF by I ®w(R) TL. The map (V^-1)* is just 
the natural inclusion. 

We know from (227), that Ext^G, Gm)+ is an exact functor on Nil^. We will now 
compute the tangent space of this functor. 

Let us assume that j\f is equipped with a pd-structure. Then the logarithmic 
coordinates (48) define an isomorphism of W(JR)-modules 

N®Irt~W(]sf). 

Hence we have an isomorphism of abelian groups: 

A/" ®W{R) T* 0 IM ®W(R) TF W(JV) ®W{R) TK 

We extend id* to an endomorphism of W{j\f) (8)F,W(R) & ® W(j\T) ®w(R) TL by setting: 

id*{N®w{R) TT) = 0. 

We claim that id* is then a nilpotent endomorphism. First we verify this in the 
case, where p • JV = 0. Then we have FW(j\f) = 0 and therefore the map 52 is 
zero on the first component. It follows from (238) that the image of id* lies in 
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0®W(AT)<8>w(R)TT C W(N)<&F,W(R)LT®W(N)<g>W(R)TT. Via the natural inclusion 
and projection id* induces an endomorphism 

id*,2 : W(Af) ®W{R) TL — W(M) ®W{R) T\ 

By what we have said it is enough to show that id22 is nilpotent. The endomorphism 

F : P* = LL 0 T* —• P* = L* 0 T*, 

induces via inclusion and projection an endomorphism 

<p : TL • T*. 

By the formula (238) we find for id22: 

id^2 ((n + vO®y*) = EO Y 5XY, 

where n G A/", £ G M^(JV), and i/É G T*. But since P is a display the 3n-display P* is 
P-nilpotent, i.e. there is an integer r, such that y>R(TL) c IRT*. Since H^(AO • = 0 
it follows that (id22)r = 0. In the case where pAf is not necessarily zero, we consider 
the nitration by pd-ideals 

0 = prM c p^Af c • • • c N. 

Since the functors of (242) are exact on Niln an easy induction on r yields the nilpo-
tency of id* in the general case. This proves our claim that id* is nilpotent if p-Af — 0. 
Since (V-1)* is the restriction of the identity of 

W(Af) ®F,w(R) Ll 0 W(Af) ®W{R) T* 

it follows that (V-1)* — id* induces an automorphism of the last group. One sees 
easily (compare (156)) that the automorphism (V~x)* — id* provides an isomorphism 
of the cokernel of (V-1)* with the cokernel of (V-1)* — id*. Therefore we obtain for 
a pd-algebra Af that the composition of the following maps: 

N®W{R) T< W(Af) ®W{R) T* — Ext1(G,GM)+(A^) 

is an isomorphism. This shows that the ExtVG, Gm)+ is a formal group with tangent 
space TL/IRT1 by definition 80. Moreover 

G* —• Ext^G, Gm)+ 

is an isomorphism of formal groups because it induces an isomorphism of the tangent 
spaces. This proves the proposition. • 

Let V be a 3n-display and let V be a display. We set G = BTVJ G' = BTV>, and 
(G'Y = BT^pty. If we apply the proposition 121 to (221) we obtain a homomorphism: 

(243) Biext^G x G', Gm) —• Hom(G, {G'Y) 

We note that this map is always injective, because the kernel of (221) is by the 
usual spectral sequence Ext1(G, Hom(G', Gr™)). But this group is zero, because 
Hom(G',Gm)+ = 0 (compare (224)). A bilinear form P x V -+ G is clearly the 
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same thing as a homomorphism V —> (V'Y. It follows easily from the diagram (223) 
that the injection (243) inserts into a commutative diagram: 

Bil(P x P ' , G) ~ > HomOP, (V'Y) 

(244) [ ^BT 

Biext^G x G ' , G m ) > Hom(G,(G')*) 

Theorem 122. — Let R be a ring, such that p is nilpotent in R, and such that the set 
of nilpotent elements in R are a nilpotent ideal. Let V and V be displays over R. We 
assume that V is F-nilpotent, i.e. the dual Sn-display (V'Y is a display. Then the 
homomorphism (216) is an isomorphism: 

B\\(V x V\G) —• Biext1(BTv x BT<p>,Gm). 

Proof. — By proposition 99 the right vertical arrow of the diagram (244) becomes an 
isomorphism under the assumptions of the theorem. Since we already know that the 
lower horizontal map is injective every arrow is this diagram must be an isomorphism. 

• 
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