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QUASI-AFFINOID VARIETIES 

1. Introduction 

In [6], we developed the commutative algebra of rings of separated power series 
and the local theory of quasi-affinoid varieties. The goal of this paper is to define the 
category of quasi-affinoid varieties and to treat the basic sheaf theory. The Quasi-
Affinoid Acyclicity Theorem, the main result of this paper, is proved in Theorem 3.2.4. 
This paper uses the Nullstellensatz (Theorem 4.1.1) and results from Subsections 5.3 
and 5.4 of [6], and the Quantifier Elimination Theorem of [7]. 

Let X := Max A, where A is a if-quasi-affinoid algebra. Other than the canonical 
topology on X induced by the complete, nontrivial, ultrametric absolute value | • | : 
K R+., there are two G-topologies we consider in this paper, the "wobbly" G-
topology on X and the "rigid" G-topology on X, Both of these G-topologies are based 
on the same collection of admissible open sets, namely the system of i?-subdomains U 
of X, defined in [6, Definition 5.3.3]. By [6, Theorem 5.3.5], an i?-subdomain U has a 
canonical A-algebra of quasi-affinoid functions. In this manner X is endowed with a 
quasi-affinoid structure presheaf Ox, which to each i^-subdomain U of X , assigns the 
A-algebra Gx(U) of quasi-affinoid functions on U. The fact that Ox is a presheaf is 
one of the principal results of [6]. (See [6, Theorem 5.3.5 ff].) 

The wobbly and rigid G-topologies on X differ, however, in the systems of admis­
sible open coverings that they assign to X. In Subsection 2.2 we define the wobbly 
sheaf ys)x to be the sheafification of Ox with respect to the wobbly G-topology. We 
show that wobbly coverings of X (finite coverings by i?-domains) are Wx-acyclic, and 
give a basic finiteness theorem for the wobbly sheaves based on [6, Theorem 6.1.2]. 
This finiteness theorem in various guises is a key feature that appears in many of 
the applications of the theory, for example the results of [7]. When X carries the 
wobbly G-topology, however, morphisms of affinoid varieties Y (carrying the usual 
strong affinoid G-topology) into X are not continuous (unless Y is finite), and the 
quasi-affinoid structure presheaf is not a sheaf. 
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The rigid G-topology on X , defined in subsection 2.3 assigns to X the largest 

collection of coverings, the quasi-affinoid coverings, such that morphisms of affinoid 

varieties into X are continuous. We conclude this paper, in Section 3, by proving that 

any quasi-affinoid covering of X is Ox-acyclic. In particular, Ox is a sheaf for the rigid 

G-topology. Thus, the category of quasi-affinoid varieties (in the rigid G-topology) is 

an "extension" of the category of affinoid varieties and enjoys many similar properties 

from the point of view of analytic geometry and commutative algebra. It should be 

remarked that if X is affinoid (and infinite) then there is an i?-subdomain U of X such 

that 0^noid(U) ^ 0^uasi-affinoid(f/) as C>x(X)-algebras, because ^uasi-affinoid([7) is 

always a Noetherian ring. 

In Subsection 2.1 we define the system of admissible open sets on a quasi-affinoid 

variety X , and we define the quasi-affinoid structure presheaf Ox- In Subsection 2.2 

we define the system of wobbly admissible open coverings of X to be finite coverings 

of X by i?-domains and prove various properties of the sheafification Wx of the 

presheaf Ox with respect to the wobbly G-topology. In Subsection 2.3 we define the 

system of rigid admissible coverings of X. This is the G-topology we adopt for the 

category of quasi-affinoid varieties. We also give a simple characterization of rigid 

("quasi-affinoid") coverings in terms of "quasi-affinoid generating systems". 

In Subsection 3.1 we give an intrinsic characterization of quasi-affinoid coverings in 

terms of refinements by "closed" i?-subdomains and we also prove some lemmas about 

refinements of quasi-affinoid coverings by certain closed i?-subdomains that will be 

used in the Quasi-affinoid Acyclicity Theorem. Subsection 3.2 is devoted to the proof 

of this theorem. 

The remainder of Section 1 is devoted to a summary, drawn from [2] of the definition 

of Cech Cohomology with coefficients in a presheaf and to statements of the basic 

comparison theorems. 

1.1. Cech Cohomology with Coefficients in a Presheaf. — Let X be a set 

and let T be a collection of "open" subsets of X , closed under finite intersections. A 

presheaf T on X is a map from T to the class of abelian groups such that for all 

U C V C W G T, there is a "restriction" homomorphism T{V) -¥ F(U) : f *-> f\u 

such that T{U) - » T{U) is the identity and 

HV) 

f(W) • T{U) 

commutes. 
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Let 21 = {Ui}iei be a covering of X by elements Ui G T. For (i0,... ,iq) G Jg+1, 

put 

C*(2l,J0 := 
Q 

3=0 

C*(2l, 

The Z-module of q-cochains on 21 with values in T is 

C*(2l,J0 := 

(io,...,ig)G/̂ +1 

C*(2l,J0 := <Z>0, 

Cq(%T) := (0), g < 0. 

The (¿0, . . . , ^-component of a g-cochain / is denoted fi0...iq G F{Ui0...iq). We 

define the coboundary homomorphisms dq : Cq(%F) -> C«+1(2l, J7) by # := 0 if 

q < 0, and for a > 0, 

C*(2l,J0 :=C*(2l,J0 := 
<Z+1 

(-l)Vio... 
«̂0---*q+l 

where the notation ?j means omit i,. Note that dg+1 o dq = 0, so C*(2t, T) is a chain 

complex, called the Cech complex of cochains on 21 with values in T. We denote the 

corresponding cohomology complex i7*(2l, .F), where 

Hq(%T) :=Kerdq/lmdq~1. 

If X G 1, we define the augmentation homomorphism 

e : ?{X) - C°(9i,F):f (f\ui0)i0ei, 

with image contained in Kerd0. The covering 21 is T- acyclic iff the sequence 

0 -> .F(A") - A C°(2l ,^ ) C1(2l,7') A 

is exact; i.e., iff e induces an isomorphism of T{X) with C°(2l, T) and if9 (21, T) — (0) 

for g ^ 0. A g-cochain / is an alternating cochain iff for all permutations n of 

C*(2l,J0 :=$^$ 

/MO)—M«) "~ (Sen7r)/*0---«q-

The alternating g-cochains form a submodule Cf(2l, .F) of C9(2l, .T7). As dq maps 

alternating cochains into alternating cochains, the modules C|(2l,.F) constitute a 

subcomplex C* (21, T) of C* (21, J7) called the Cech complex of alternating cochains on 

21 with values in T. The corresponding cohomology modules are denoted by 

C*(2l,J0 :=C*(2l,J0 :=C*(2l,J0 :=C*(2l,J0 

There is no essential difference between the complexes C*(2l,T) and C*(2l, J7), since 

both yield the same cohomology. 

Proposition 1.1.1. — The injection i : C*(2t, T) C*(2l,.F) induces bijections Hq(t) : 

Hq\%T) -3 Hq{%T), for all q. 
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Let 21 = {Ui}i£i and 05 = {Vj}j£j be T-coverings of X. Then 05 is a refinement 

of 21 iff for each j G J there is some i e I such that Vj cUi. 

Proposition 1.1.2 ([2, Proposition 8.1.3.4]). — Le£ 21 and 05 6e open coverings which 

are refinements of each other. Assume X G X. 7%en £/&e covering 21 ¿5 T-acyclic if, 

and only if, 05 ¿5 T-acyclic. 

For the next propositions, it is convenient to define some notation. Let 21 = {Ui}iei 

be a X-covering of X and let V G T; then 

a | v : = { v n t / i } i e / 

is a T-covering of V which is called the restriction of 21 to V. We define the presheaf 

T\y on (V,T|v) by restricting the domain of T to X|v . 

Proposition 1.1.3 ([2, Theorem 8.1.4.2]).— Assume that all coverings %\vio...jq and 

*B\ui0...ip are T-acyclic. Then, 

iJr(2l,^) * J T ( » , . F ) 

/or a// r. In particular, if X G X, £fte covering 21 T-acylic if, and only if, 05 ¿5 
.F-aq/c/zc. 

Proposition 1.1.4 ([2, Corollary 8.1.4.3]). — Assume that 05 a refinement of$L and 

that 05|t/io ip is J7-acyclic for all indices io,..., ip G / and for all p. Then, if X G X, 

£fte covering 21 ¿5 T-acyclic if, and only if, 05 ¿5 T-acyclic. 

Proposition 1.1.5 ([2, Corollary 8.1.4.4]). — Assume that the covering ^B\uiQ...ip is T-
acyclic for all indices io,...,ip G / and for all p. Then, if X G X, £/&e covering 

21 x 05 := H Vj}iG/ o / X ¿5 F-acyclic if, and only if, 21 is F-acyclic. 
jeJ 

We assume that the reader is familiar with the following concepts, which can be 

found in [2, Chapter 9]: G-topology ([2, Definition 9.1.1.1]); sheaf and stalks ([2, 
Definition 9.2.1.2ff]); sheafification ([2, Definition 9.2.2.1]); and locally G-ringed space 

([2, Section 9.3.1]). 

2. G-Topologies and the Structure Presheaf 

Recall that a G-topology on a set X is determined by a system X of admissible 

open sets, and for each admissible open [/, a system Cov U of admissible coverings 

of U by admissible open sets (see [2, Definition 9.1.1.1]). Let A be a quasi-affinoid 

algebra (i.e., A = 5m,n/7, see [6]) and put X := Max A. In this section, we will 

consider two G-topologies on X , the wobbly G-topology and the rigid G-topology. 

The admissible open sets in both of these topologies will be the same, namely the 

collection of i?-subdomains of X. The systems of admissible open coverings, however, 

will be different. 
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2. G-TOPOLOGIES AND THE STRUCTURE PRESHEAF 131 

For each i?-subdomain U C X , we have shown ([6, Subsection 5.3]) that there is a 

uniquely determined ^4-algebra Ox{U) that satisfies the Universal Mapping Property 

of [6, Definition 5.3.4] and such that Max Ox(U) = U. Note that Ox(X) = A. In 

fact, the Universal Mapping Property for iZ-subdomains ([6, Theorem 5.3.5]) shows 

that Ox, so defined, is presheaf. This is summarized in Subsection 2.1. 

In Subsection 2.2, we show that Ox is not a sheaf with respect to the wobbly G-

topology on X , and we discuss a few properties of its sheafification Wx with respect 

to the wobbly G-topology. 

In Subsection 2.3, we define the class of quasi-affinoid coverings, and the rigid 

G-topology of a quasi-affinoid variety X. In particular, it is with respect to this G-

topology that we show in Subsection 3.2 that Ox is indeed a sheaf. We also define the 

category of quasi-affinoid varieties and prove that fiber products and disjoint unions 

exist in this category (but the disjoint union of two quasi-affinoid subdomains is not 

necessarily a quasi-affinoid subdomain). 

2.1. Open Sets and the Structure Presheaf. — The notion of quasi-affinoid 

subdomain of a quasi-affinoid variety X was defined in [6, Section 5.3] by means of 

the following universal property. 

Definition 2.1.1. — Let X — Max A be a quasi-affinoid variety and let U C X. Then 

U is a quasi-affinoid subdomain of X iff there is a quasi-affinoid variety Y and a quasi-

affinoid map (f : Y -> X with ip(Y) C U such that <p represents all quasi-affinoid maps 

into U in the sense of [6, Definition 5.3.4]. 

A certain class of quasi-affinoid subdomains plays a key role in the local theory, 
that is the class of quasi-rational subdomains and, by iteration, i^-subdomains (see 
[6, Definition 5.3.3 and Theorem 5.3.5]). Recall that if / i , . . . , /r, p i , . . . ,gs, h G A 

generate the unit ideal of the quasi-affinoid algebra A, then 

U := {x e Max A : \fi(x)\ < \h(x)\ and \gj(x)\ < \h(x)\, 1 < i < r, 1 < j < s} 

is a quasi-rational subdomain of X = Max A; indeed the quasi-affinoid map induced 

by the natural jFf-algebra homomorphism 

(2.1.1) A-ïA r 
h, [ g 

represents all quasi-affinoid maps into U (the latter ring is denned in [6, Defini­

tion 5.3.1]). When s = 0 (i.e., when there are no p's), we will find it convenient to 

denote U by 

X 7 ̂$^ 
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132 QUASI-AFFINOID VARIETIES 

Other special types of quasi-rational subdomains are those of the form 

X(f) := { * e X : | / ; ( x ) | < l , 1 < i < r } , 

X(f, g-1) :={xeX: < 1, \9j(x)\ > 1, 1 < * < r, 1 < j < s}. 

Unlike the affinoid case, a quasi-rational subdomain of a quasi-rational subdomain of 

X , although it is by definition an i?-subdomain of X, need not itself be a quasi-rational 

subdomain of X (see [6, Example 5.3.7]). In order to keep track of the complexity of 

.R-subdomains, we define the notion of level. 

Definition 2.1.2. — Let X = Max A be a quasi-affinoid variety. We define the class of 

i?-subdomains of X of level < £ inductively as follows. Any quasi-rational subdomain 

of X is an R-subdomain of X of level < 1. If U is an ^-subdomain of X of level < £, 

then any quasi-rational subdomain V of U is an R-subdomain of X of level < £ + 1. 

The class of i?-subdomains of X is closed under finite intersections. 

Definition 2.1.3. — Let X — Max A be quasi-affinoid. By X, denote the system of 

.R-subdomains of X\ note that 0 , X G T and that T is closed under finite intersection. 

The elements of X are the admissible open sets. Using (2.1.1) and Definition 2.1.2, 

we inductively assign to each U G X a generalized ring of fractions over A, which we 

denote Ox(U). The map U i-> Ox(U) is called the quasi-affinoid structure presheaf 

on (X,X). 

By [6, Theorem 5.3.5], the natural if-algebra homomorphism A -> Ox(U) repre­
sents all quasi-affinoid maps into U. This has the following consequence. 

Theorem 2.1.4. — Ox is a presheaf on (X, X). 

When U C X is an affinoid i2-subdomain of X (see [6, Proposition 5.3.8]), it 

follows from [6, Theorem 5.3.5] that 0^noid{U) = p^i-affinoid^^ But, taking 

X := Max#(£i>, for example, it can easily be seen that 0<fnoid ^ (9psi-affinoid as 
presheaves. Indeed, put 

U := {x G X : \x\ < 1} . 

Then (9^asi-affinoid([/) — x i s a ring of separated power series, hence is Noethe-

rian. On the other hand, 

Oafnoid(U) = Urn K(&)(^ 

eey/\K°°\{0}\ 

is not Noetherian. 

In [6, Theorem 6.2.2], we showed that a quasi-affinoid subdomain V of X is a 

finite union of i?-subdomains C/o,.. •, Up of X. The covering {Ui} of V so obtained 

is admissible in the sense of Subsection 2.2, but it is not, in general, auquasi-affinoid" 

covering in the sense of Subsection 2.3. 

ASTÉRISQUE 264 



2. G-TOPOLOGIES AND THE STRUCTURE PRESHEAF 133 

2.2. The Wobbly G-Topology. — Recall that the intersection of finitely many 

i^-domains is an i?-domain [6, Section 5.3]. This allows us to make the following 

definition. 

Definition 2.2.1. — Let A be a quasi-affinoid algebra, X := Max A. The wobbly G-

topology on X is defined by taking the admissible open sets of X to be the system of 

i^-subdomains of X. For each admissible open [7, we take the admissible coverings of 

U to be the system of all finite coverings of U by admissible open sets. 

This definition admits finite coverings of X = Max A by disjoint admissible open 

sets, for example, when A = T\, 

U0:={xeX: |£(a0| < 1}, U, := {x € X : \£{x)\ = 1} 

is such a covering. Moreover, the complement of any i^-subdomain of X is a finite 

disjoint union of iJ-subdomains of X by an easy extension of [6, Section 5.3]. It 

follows that any wobbly admissible cover of X has a wobbly admissible refinement by 

finitely many pairwise disjoint .R-subdomains. 

Definition 2.2.2. — Let A be a quasi-affinoid algebra, X := Max A. Define W x , the 

wobbly sheaf on X , to be the sheafification (see [2, Section 9.2.2)], with respect to the 

wobbly G-topology on X , of the presheaf Ox- For each admissible open J7, we have 

wx(u) = iimO(c/0) e • • • e o(up\ 

where the direct limit runs over the directed system of all (wobbly) admissible open 

coverings of {[ /o, • . . , Up} C Cov U. 

By the preceding remark, observe that the characteristic function of any /2-subdo-
main of X belongs to the ring W x ( X ) ; hence Wx(X) / Ox{X) when X is infinite. 
In particular this shows that Ox is not in general a sheaf with respect to the wobbly 
G-topology. 

Proposition 2.2.3. — Let X = Max^4, where A is a quasi-affinoid algebra, and let 21 

be a wobbly admissible covering of X, i.e., a finite covering of X by R-subdomains. 

Then 21 is Wx-acyclic. 

Proof. — Since the intersection of two i2-subdomains is an J?-subdomain, and since 

the complement of any ii-subdomain is a finite disjoint union of i?-subdomains, there 

is an admissible refinement 05 = {Vj}jeJ of 21 by finitely many pairwise disjoint R-

subdomains. By Proposition 1.1.4, it suffices to prove that disjoint wobbly coverings 

are universally W^-acyclic; i.e., for each i?-subdomain X' of X , a disjoint wobbly 

covering of X' is Wx-acyclic. To see this, observe that Cq(*B\x', W x ) = (0) for q ^ 0 

because the elements of 93|x' are pairwise disjoint, and the map 

e : Wx(X') — • C ° ( » | x ' , W x ) : / - - » • ( / | v , W 

is a bijection, by definition of Wx- • 
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134 QUASI-AFFINOID VARIETIES 

Remark 2.2.4 
(i) The stalks of the wobbly sheaf on X agree with those of the rigid structure 

presheaf: for each x G l , 

Wx,x = Ox,x = l™}Ox(U). 
UBx 

This follows from the representation in Definition 2.2.2 of Wx(U) as a direct limit. 
(ii) There is a natural map of Max Wx(X) onto the space Cont Ox(X) of contin­

uous valuations (for the definition of Cont Ox(X) see [4]). This is because a point of 
Cont Ox {X) is uniquely determined by the collection of quasi-rational subdomains 
to which it belongs. The mapping is in general not injective. 

(iii) Note that if U C V are two i?-subdomains of X , then the canonical restric­
tion Wx(V) -» Wx(U) is surjective; i.e., Wx is a flasque sheaf in the sense of [3, 
Exercise 11.1.16]. 

(iv) We may reformulate [6, Theorem 6.1.2] in terms of the wobbly sheaf, as follows. 

Theorem. — Let n : Y -> X be a quasi-affinoid map with finite fibers. Then the 
induced morphism of sheaves on X 

Wx —> 7r*yvy 

(where 7r*Wy is the direct image sheaf) is finite. 

This theorem is false upon replacing W by the rigid structure presheaf O (see [6, 
Example 6.1.3]). This finiteness theorem in various guises is a key feature of the 
proofs of the quantifier elimination theorems of [5] and [7]. 

(v) Let A be an afEnoid algebra of positive Krull dimension. Then the identity 
map 

id : Sp A -> Max A 

is not continuous if Sp A carries the strong affinoid G-topology of [2, Section 9.1.4] 
and Max A carries the wobbly G-topology induced by regarding A as a quasi-affinoid 
algebra (though the inverse image of an admissible open is admissible open). 

2.3. Quasi-Affinoid Coverings and the Rigid G-Topology. — In this section, 
we define the weakest G-topology on X = Max A, A quasi-affinoid, such that each 
i?-subdomain of X is admissible open and such that each quasi-affinoid morphism 
<p : Y -¥ X, with Y an affinoid variety carrying the strong affinoid G-topology 
([2, Section 9.1.4]) is continuous. Let U be an i?-subdomain of X. Since <£_1(C/) 
is admissible open in F, specifying such a topology is equivalent to specifying an 
appropriate system of admissible open coverings of X. We call such coverings quasi-
affinoid coverings, and we prove a simple sufficient condition for a finite covering of 
X by i?-subdomains to be a quasi-affinoid covering. 
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Definition 2.3.1. — Let X = Max A, where A is a quasi-affinoid algebra. A covering 

21 of X is said to be a quasi-affinoid covering iff 21 is a finite covering by i?-subdomains 

C/b,..., Up such that for every quasi-affinoid morphism (p : Y -> X, where Y is an 

affinoid variety, the covering {<p~l{Uo),..., ^-1(C^p)} of Y has a finite refinement by 

rational subdomains of Y. 

In other words, {E/o,. • •, Up} is a quasi-affinoid covering of X iff for all ip : Y X 

with Y affinoid, {^-1(C7o),. . . , ^P~l{Up)} is an admissible open covering of F, where 

Y is given the strong G-topology (in the sense of [2, Section 9.1.4]). Theorem 3.1.5 

gives a more intrinsic characterization of the class of quasi-affinoid coverings. 

Definition 2.3.2. — Let X = Max A, where A is quasi-affinoid. The rigid G-topology 

on X is defined by taking the admissible open sets to be the system of i?-subdomains 

of X. For each admissible open set U, we take the admissible coverings of U to be 

the system of all quasi-affinoid coverings of U. 

In the rest of this section, we give a simple characterization of the rigid G-topology 

on a quasi-affinoid X that will be useful in Subsection 3.1, where we give a more 

intrinsic characterization of the rigid G-topology. 

Definition 2.3.3. — Let X be quasi-affinoid. A system {Xi}iei of affinoid iî-sub-

domains of X (i.e., i?-subdomains of X that are, in fact, affinoid, see [6, Proposi­

tion 5.3.8]) is a system of definition for the rigid G-topology of X iff for any quasi-

affinoid map <p : Y X, where Y is an affinoid variety, <p(Y) C Xi for some i. 

The different representations of a quasi-affinoid algebra A as a quotient of a ring of 

separated power series give (possibly different) systems of definition, as we see below. 

Definition 2.3.4. — Let A = Sm,n/J be a representation of the quasi-affinoid algebra 

A as a quotient of a ring of separated power series. Put X :— Max A, and for each 

e € V l ^ \ { 0 } | , e < 1, put 

X£ := Max(5m,n/7 xTm 
^ e e 

=MaxTm>n(e)Ae(/)xTm>n(e) 

where e € K° is chosen so that ee = \e\ for some £ G N. (See [6, Section 3.2].) This 

is the intersection of X with a closed polydisc; it is an i?-subdomain of X which 

is, in fact, affinoid. Note that Xe depends on the representation A — 5m,n/7. (For 

definitions of Tm?n(e) and te(I) see [6, Section 3.2].) 

We now show that {X£}£<i is a system of definition for X. 

Lemma2.3.5. — Let X and {X£}£<i be as above. Then {X£}£<i is a system of 

definition. 
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136 QUASI-AFFINOID VARIETIES 

Proof. — This follows from the affinoid Maximum Modulus Principle ([2, Proposi­

tion 6.2.1.4]) and from the fact that the X£ are i?-subdomains of X , that are affinoid. 

Let ^* : A C be a if-algebra homomorphism, where C is an affinoid algebra. 

Put Y := MaxG. By the Nullstellensatz, [6, Theorem 4.1.1], |^*(p<)(2/)| < 1 for all 

y G F, where p{ is the image of pi in Sm,n/I, 1 < i < n. By the Maximum Modulus 

Principle, 

max ||</>*(Pi)||suP =:e < 1. 
l<i<n 

Hence tl){Y) C X£. • 

The next proposition shows that any system of definition characterizes the quasi-
affinoid coverings, hence the rigid G-topology. 

Proposition 2.3.6. — Let X be quasi-affinoid and let {Xi}iei be a system of definition 

for X. A covering 2t = {Uo,..., Up) of X by R-subdomains U{ is a quasi-affinoid 

covering if, and only if, for each i € I, the covering {Xi fl C/o, • • •, Xi fl Up] of the 

affinoid variety Xi has a finite refinement by rational domains. 

Proof 

(=>•) This is immediate. 

(<=) Let tp : Z -> X be a quasi-affinoid map, with Z affinoid. We must show that 

{^_1(C^o)5 • • •»ip^iUp)} has a finite refinement by rational domains. For some i G / , 

ip(Z) C Xi, and {Xi fl Uo,..., Xi fl has a finite refinement by rational domains, 

which we pull back to Z via ip. • 

Remark2.3.7. — Let {Yi}iei be a system of definition for the rigid G-topology on 
X. Then by Lemma 2.3.5, {Yi}iEi must be a covering of X by affinoid subdomains 
because each X£ C Y{ for some z and {X£}£<i coverings X. Unless {Yi}iei is finite, 
however, it is not an admissible (quasi-affinoid) covering of X. And if it is finite, then 
X itself must be affinoid by [6, Proposition 5.3.8]. 

Using the rigid G-topology of the last subsection, we now define the category of 

quasi-affinoid varieties. Let (p : X -> Y be a quasi-affinoid morphism (see Def­

inition 2.3.8, below). It follows from the definition of i?-subdomain that (p~x(U) 

is an i?-subdomain of X for any i?-subdomain U of Y. To check that (p is con­

tinuous, it remains to show that if {C/o, • . . , Up} is a quasi-affinoid covering of Y 

then {<£-1(C/o),... ,^-1(C/p)} is a quasi-affinoid covering of X. Let Z be an affinoid 

variety and let i/j : Z —> X be a quasi-affinoid map. The fact that the covering 

((P>~1 {Ui))} of Z has a finite refinement by rational domains then follows from 

the facts that ip~l(</?-1 (Ui)) — ((p o xjj)~l(Ui), and {Ui} is a quasi-affinoid covering of 

y . Note, moreover, that the induced maps <px : Oyi(P(x) ~^ Ox,x of stalks are local 

homomorphisms for each x G X. 
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Definition 2.3.8. — Let A be a quasi-affinoid algebra and let X := Max A. The 

quasi-affinoid variety SpA is the locally G-ringed space (X,Ox), where X carries 

the rigid G-topology. (The Acyclicity Theorem, Theorem 3.2.4, guarantees that Ox 

is a sheaf on X for its rigid G-topology.) A morphism (X, Ox) -> (Y,Oy) is a pair 

(<p,</?*) such that <p* : Oy(Y) -> Ox(X) is a if-algebra homomorphism and <p is the 

map from X = Max Ox (X) to Y = MaxCV(F) induced by the Nullstellensatz ([6, 
Theorem 4.1.1]). 

Fiber products and direct sums exist in this category. 

Proposition 2.3.9. — The category of quasi-affinoid varieties admits fiber products; 

i.e., if (fi : Xi Z and <p2 '• X2 -> Z are quasi-affinoid morphisms, then there is a 

quasi-affinoid variety X\ Xz X2 and quasi-affinoid morphisms 7Ti : X\ Xz X2 —> Xi 

such that, given any quasi-affinoid variety Y and morphisms ipi and a as shown, there 

is a unique morphism ¡3 that makes 

Xx xzX2 

$^$ 

X, 
^$ 

Y 

8 
^2 

^^$ 

x2 

¥1 
a 

Z 
^p^p 

commute. 

Proof. — This is just the dual diagram obtained from the diagram of [6, Proposi­

tion 5.4.3]. Thus, 

Xx xz X2 = Sp(0Xl(Xi) ®sOr(z) Ox2(X2)), 

and the morphisms 71̂  are dual to the corresponding if-algebra homomorphisms of 

[6, Proposition 5.4.3]. • 

Proposition 2.3.10. — The category of quasi-affinoid varieties admits disjoint unions; 

i.e., if Xi and X2 are quasi-affinoid varieties, then there is a quasi-affinoid variety 

Xi IIX2 and morphisms (fi : X{ —> X\ IIX2 such that for any quasi-affinoid variety 

Y and morphisms ipi : Xi -> Y, there exists a unique morphism a that makes 
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X1Ì1X2 

^^$^$ 

xx ^$ 

$ù$ 

X2 

^ù$ 

Y 
1P2 

commute. 

Proof. — This is the dual of the diagram one obtains for direct sums of quasi-affinoid 
algebras (see [6, Lemma 5.4.1]). Thus 

Xx IIX2 = Sp(0Xl (Xi) © Ox2(X2)). 

For completeness, we include the following. 

Corollary 2.3.11. — Let cp : X -> Y be a quasi-affinoid morphism, and let U,V be 

quasi-affinoid subdomains of Y. Then U f)V is a quasi-affinoid subdomain of Y and 

<^-1(L0 is a quasi-affinoid subdomain of X. 

Proof. — It suffices to note that U D V = U xY V and y~l(U) = U xY X. That 
the Universal Mapping Property for quasi-affinoid domains (see [6, Section 5.3]) is 
satisfied is a consequence of Proposition 2.3.9. • 

Unlike the situation for affinoid subdomains (see [2, Proposition 7.2.2.9]), the dis­

joint union of two quasi-affinoid subdomains may fail to be a quasi-affinoid subdo-

main. For example, take X := SpSi,0, U := SpSi,o[f]«j V = SpSi,o(£-1). Then the 

diagram 

X 

u u v X 

cannot be completed as required; i.e., the closed unit disc is the set-theoretic disjoint 

union of the open unit disc and an annulus, but not as quasi-affinoid subdomains. 
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3. Coverings and Acyclicity 

In Subsection 3.2 we prove our main theorem, that quasi-affinoid coverings are 

Ox-acyclic (which has the consequence that Ox is a sheaf for the rigid G-topology 

on X). The proof follows the general outline given in [2, Chapter 8] for the affinoid 

case. To make it work in our context requires the characterization of quasi-affinoid 

covers given in Subsection 3.1. This relies on the quantifier elimination of [7]. 

3.1. Refinements by closed i?-subdomains. — We define a special class of 

quasi-affinoid subdomains, the closed i^-subdomains, that facilitate our computations 

and are general enough for our purposes. In Theorems 3.1.4 and 3.1.5, we give the 

more intrinsic characterization of the quasi-affinoid coverings as those that have a 

finite refinement by closed i?-subdomains. 

Definition 3.1.1. — Let X = SpA be a quasi-affinoid variety. The class of closed 

R-subdomains of X of level < I is defined inductively as follows. If / i , . . . , fn,g £ A 

generate the unit ideal of A, then 

x ( í ) : = М а х л Д , . . . , ^ \ 
\9/ \9 9 

is a closed i?-subdomain of X of level < 1. If U C X is a closed i?-subdomain of level 
< and V is a closed i?-subdomain of U of level < 1, then V is a closed i?-subdomain 
of X of level < £ + 1. (Unlike the affinoid case, there may exist closed i?-subdomains 

of X of level > 1; see [6, Example 5.3.7].) 

Remark 3.1.2. — Note that a closed .R-subdomain U of X is relatively affinoid in 
the sense that X£ n U is an affinoid rational subdomain of the affinoid variety X£ 

(defined in Definition 2.3.4). Thus by Lemma 2.3.5, any finite covering of X by closed 
i?-subdomains is a quasi-affinoid (admissible) covering of X. 

Our next goal is to show that a quasi-affinoid covering has a refinement by finitely 

many closed .R-subdomains. The first step is to prove a shrinking lemma for R-

subdomains that contain an affinoid. We recall here the definition made in [6, 
Section 5.3]. Write the quasi-affinoid algebra A = 5m,n/7, and suppose / i , . . . , / r , 

9i,- • •,9s, h £ A generate the unit ideal. Put X := Max A. Then 

U := {x e X :\fi(x)\ < \h(x)\ and \gj(x)\ < \h(x)\, 1 < i < r, 1 < j < s} 

is an iî-subdomain of X of level < 1, and 

Ox(U) = A C*(2l,J0 : = . . . , Ïj-^J C*(2l,J0 :=., ̂ - = 5m+r,n+s/J, 

where 

J ~I + ^{Km+i ~ fi) + ^2(hpn+j - gj). 
r s 
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Let S G y/\K\{0}\, say Se = \e\ for some e G K°°. We can "shrink" the i?-subdomain 
U to a smaller closed i?-subdomain U(S) by replacing the strict inequalities |<?j(#)| < 
\h(x)\ with the more restrictive weak inequalities \gj{x)\ < 8\h(x)\; i.e., |<7J(#)| < 

\ehl(x)\. We have 

C*(2l,J0 :=C*(2l,J0 :=C*(2l,J0 :=C*(2l,J0 Pn+l 
e 

Pn+ss 
e 

The point here is to emphasize that U(6) is, in fact, a closed i?-subdomain with 
U(S) C U. 

This construction can be carried out for an .R-subdomain U of any level. Write 

Ox(U) — 5m+r?n+5/J, 

where J D / is given exactly as in [6, Definition 5.3.3]. Then 

U(S) := Max(5m+r,n+s/J) Pn+l 
e 

Pn+s ^ 
e j 

is a closed i?-subdomain with U(8) C U. Note that the closed i?-subdomain U(S) 
may depend on the presentation of [7. 

Lemma 3.1.3. — (In the above notation.) Let U be an R-subdomain of 

X = Max5m,n/7. 

Suppose (f : Y -» X is a quasi-affinoid morphism with Y affinoid and <p(Y) C U. 
Then for some S G y/\K\{0}\, S < 1, <p(Y) C U(S). 

Proof — Write 

Ox(U) = 5m+r,n_(_s/J, 

as above, let pj be the image of pj in OxiU), 1 < j < n + s, and let (p* : Ox{U) —> 
Oy(Y) be the if-algebra homomorphism corresponding to (p. Put 

S '.— max I 
l<j<s 

^(Pn+j) |sup« 

By the Nullstellensatz and the Maximum Modulus Principle, S G y/\K \ { 0 } | and 
6 < 1. Then V(Y) C I7(tf). • 

Theorem 3.1.5 characterizes quasi-afHnoid coverings in terms of finite coverings by 
closed i?-subdomains. For the proof of the Acyclicity Theorem of Subsection 3.2, 
however, we require some precise information about the complexity of the resulting 
refinements by closed i?-subdomains. This is contained in Theorem 3.1.4. 

Theorem 3.1.4. — A covering 21 = { C / o , . . . , Up} of X by finitely many R-subdomains 
of level < 1 is a quasi-affinoid covering if, and only if, it has a refinement by finitely 
many closed R-subdomains of X of level < 1. 
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Proof 

Immediate by Remark 3.1.2 and Lemma 2.3.5. 

(=>) Assume each Ui is of level < 1. Let X := SpA and let A = Smin/I be a 

representation of A as quotient of a ring of separated power series. 

Let e G y/\K \ { 0 } | , e < 1, and consider the covering {X£ n Ui}o<i<p of the 

affinoid variety X£. By assumption, this covering has a refinement by finitely many 

rational domains, hence by Lemma 3.1.3, for some 6 G y/\K \ { 0 } | with 6 < 1, 

{Xe D E^(£)}o<i<p is a covering of X£. We may therefore define the function 6(e) by 

6(e) := inî{6 G v ^ Y W : X£ fl E70(<*),..., Xe D covers X J . 

The function ¿(5) is definable in the sense of [7, Definition 2.7]. Therefore, by the 

Quantifier Elimination Theorem [7, Theorem 4.2], there are c, e0 G y/\K \ { 0 } | , 

£0 < 1, and a G Q such that for 1 > e > eo, 

6(e) = cea. 

Let e G K° satisfy \e\ — e$. Since 6(e) < 1, we have two possibilities. 

Case (A). — lime_>i 6(e) < 1. 

Choose 6 G y/\K\{0}\, <& < 1, with l m w (5(e) < 6. Then {E70(<J), • • •, Up(6)} is 
the desired refinement of 21 by closed .R-subdomains of level < 1. 

Case (B). — l i m ^ i 6(e) = 1. 

In this case, c = 1 and a > 0. Write a = a/6, a, 6 G N. Since each is of level 

< 1, we may write 

Ox(Ui)=A 
fil 
hi 

flVi 
hi 

9 u 9isj 
hi' hi 

where A = 5m,n/7, as above, and 

Jl * (/¿1 ")'''•) flVi 1 9il 1 • • • •) 9iS{ 5 hi) 

is the unit ideal for 0 < i < p. 

Let pi be the image of pi in Ox(X). Define 

Xj := {xeX : \pj(x)\ = majcjp^a;)! and > e0} 

Note that X is covered by X£o and the Xj. For # G X j , we have 

(3.1.1) C*(2l,J0 :=C*(2l,J0 :=C*(2l,J0 := < Ipjix)^2» < 1. 

Put 

U'a := Max A 
fa fju 9g 9jSi e_ (h ft*} 

h i ' f Ç h ? ' " " p Ç h r p t ' P j " " ' P j C * ( 2 l , J 0 : = , 
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By (3.1.1), 
{Uij} 

SO<i<p 
l<j<n 

U {X£o n Ui}o<i<p 

is a refinement of 21 that covers X because {£^-}o<i<p covers Xj. Since X£o is affinoid 

and {?7i}o<z<p is a quasi-affinoid covering, there are finitely many rational subdomains 

Vj of X£o such that {Vj}o<j<q is a covering of X£o that refines {XSO PiUi}o<i<p. By [2, 
Theorem 7.2.4.2], each V} is of level < 1 (in fact defined by polynomial inequalities). 

Moreover, each U[j is of level < 1. To see this, observe first that in the definition of 

U[j we may assume that £ = a and hence that U[j is defined by the inequalities 

\fik\ < \hi\ k = l , . . . , r<, 

\9tk\<\paihf\ * = 1 , . . . ,* , 
\9tk\<\paihf\ 

\9tk\<\paihf\ k = 1,... ,n. 

These inequalities are equivalent to 

C*(2l,J0 :=C*(2l,J0C*(2l,J0 :=C*(2l,J0C*(2l,J0 :=C 

C*(2l,J0 :=C*(2l,J0C*(2l,J0 :=C*(2l,J0C*(2l,J0 

C*(2l,J0 :=C*(2l,J0C*(2l,J0 :=C*(2l,J0C*( 

C*(2l,J0 :=C*(2l,J0 

C*(2l,J0 :=C*(2l,J0C*(2l,J0 :=C*(2l,J0C*(2l 

This is immediate from the fact that Ji is the unit ideal and the Nullstellensatz ([6, 
Theorem 4.1.1]). The functions occurring in the second set of inequalities generate 
the unit ideal and thus these inequalities define U[j as a closed i?-subdomain of X of 
level < 1. Therefore 

{Ulj}o<i<p U {Vj}o<j<q 

is the desired refinement of 21. 

In fact, the generalization of Theorem 3.1.4 to level < £ > 1, is true, as can 

be seen by a careful examination of the proof of Theorem 3.1.5, but since we do not 

need this extra information, we do not keep track of it in the proof. Though we don't 

use it, we include the following theorem which gives a complete characterization of 

quasi-affinoid coverings. 

Theorem 3.1.5. — A covering is quasi-affinoid if, and only if, it has a refinement by 

finitely many closed R-subdomains. 

Proof 

(<(=) Immediate, by Remark 3.1.2 and Lemma 2.3.5. 

(^>) Let X = Max5m5n/7 and suppose [To,. . . , Up is a quasi-affinoid covering of X. 

Suppose X Q , . . . , X N is a covering of X by closed .R-subdomains. It suffices to show 
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that each quasi-affinoid covering {Xj fl Ui}o<i<p of Xj, 0 < j < n, has a refinement 

by finitely many closed .R-subdomains. 

Fix e G K°° \ { 0 } , and consider the following covering of X by closed i?-subdomains 

X o , . . . , Xn: 

X0 :=X , . . . , 
e e > 

Xj := X 
KPJ' Pj. l<i<n 

1 < j < n. 

Since X0 is affinoid and {Ui}0<i<p is a quasi-affinoid covering of X, {X0 D Ui}o<i<p 

has a refinement by finitely many rational domains. 

Observe that 

Ox(Xj) = S [I + (im+jpj ~ e) + 

$^$ 

/^m+tPi - Pi)), 

1 < i < n- Making the substitutions pi = £m+i/9j, ^ 7̂  we may write 

O x ( X j ) — Sm+n,i/Ij, 

for the corresponding ideal / j . Thus, we have reduced the theorem to the case n = 1; 

i.e., 

X = MaxSm,i/J. 

Let e G y/\K \ { 0 } | , and consider the covering {X£C\Ui}o<i<p of the affinoid variety 

X£. By assumption, this covering has a finite refinement by rational domains, hence 

by Lemma 3.1.3, for some 8 G y/\K \ { 0 } | , 8 < 1, {Xe 0 £/«(<$)} is a covering of Xe. 

We may therefore define the function 8(s) by 

8(e) := inf{J G V / I ^ \ { 0 } l *e H t/0(<5), • • •, *e H C/p(<5) covers X£}. 

The function <J(e) is definable in the sense of [7, Definition 2.7]. Therefore, by the 

Quantifier Elimination Theorem [7, Theorem 4.2], there are c, SQ G \J\K \ { 0 } | , 

6Q < 1, and a G Q such that for e > £0, 

6(e) = cea. 

Since 8(e) < 1, we have two possibilities. 

Case (A). - lime_n <J(e) < 1. 

Choose 8 G v/ZiT \ { 0 } | , 8 < 1, with lim£_n <J(e) < Then {f/0(<*),..., UP(S)} is 
the desired refinement of {Ui}. 

Case (B). — lime_>i 5(e) = 1. 
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In this case c = 1 and a > 0. Write a = a/b, a,b e N. Let px be the image of p\ 

in OX(X). When > 6Q, we have 

^ i W I ) = |Pi(^)|û/fr<|Pi(^)|û/26<l. 

Write 

Ox(Ui) — Sm+ri,l+sil Ji, 

where is determined according to [6, Definition 5.3.3]. Put 

\9tk\<\paihf\ \9tk\<\paihf\ \9tk\< 

where 

J'i — J + (Pl£m+r;+l ~~ £o) + 
St 

$*$ 

\9tk\<\paihf\ \9tk\< 

Put 

:__ ^m+r,+l+s*,l H Jz'. 

By inspection, 

U[ = Max5m+ri+i+5.,i/j;/ 

is exactly the closed i?-subdomain obtained from Ui by replacing each strict inequality 
| / | < |#| that occurred in its definition by the weak inequality | / | < |pi|°/26|#|. Now, 
{Ul}o<i<pU{X£onUi}o<i<p is a refinement of {Ui}o<i<p. As above, we find a refine­
ment of the covering {X£o n Ui}o<i<p of the affinoid variety X£o by rational domains 
{Vj}o<j<q- Finally {t/t'}o<»<p U {Vj}o<j<q is the desired refinement of {£/i}o<*<p by 
closed i?-subdomains of X. • 

Theorem 3.1.4, together with the following lemmas, provide the successively sim­

pler refinements of a quasi-affinoid covering that are required to prove the Acyclicity 

Theorem of the next section. 

Definition 3.1.6. — Let A be quasi-affinoid, X := Max A. A rational covering of X 

is a covering of the form 

X 
14 
25 

fn 

fi. l<i<n 

where / i , . . . , fn G A generate the unit ideal. Clearly, any rational covering is quasi-

affinoid. 

Lemma 3.1.7. — Any finite covering of X by closed R-domains of level < 1 has a 

refinement which is a rational covering. 

Proof. — Exactly as in [2, Lemma 8.2.2.2]. 
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Definition 3.1.8. — Let A be quasi-affinoid, X := Max A. Let / 1 , . . . , fn G A. A 

Laurent covering of X is a covering of the form 

\ . . . ,/nn)}(ai,...,a„)G{l-l}"' 

Any Laurent covering is quasi-affinoid. 

Lemma 3.1.9. — Let 21 be a rational covering of X. Then there is a Laurent covering 

05 of X such that for each V G 05, the covering 2l|v ¿5 a rational covering of V 

generated by units / 1 , . . . , fn of 0(V) such that there are F i , . . . , Fn G Ox(X) with 

fi = Fi\v, I <i <n. 

Proof. — As in [2, Lemma 8.2.2.3]. • 

Lemma 3.1.10. — Let 21 be a rational covering of X generated by units of Ox(X). 

Then there is a Laurent covering 05 which is a refinement of 21. 

Proof. — As in [2, Lemma 8.2.2.4]. • 

3.2. The Quasi-Affinoid Acyclicity Theorem. — The Quasi-affinoid Acyclicity 

Theorem, Theorem 3.2.4, is the main result of this paper. It follows immediately that 

the quasi-affinoid structure presheaf Ox is a sheaf for the rigid G-topology of the 

quasi-affinoid variety X. 

Lemma 3.2.1 (cf. [9]). — Let X = Max A be quasi-affinoid and let f G A. Then the 

covering 21 := {X(f),X(f~1)} of X is Ox-acyclic. 

Proof. — We follow [2, Section 8.2.3], which treats the affinoid case. Since there are 

only two open sets in 21, the alternating Cech cohomology modules C^(2t, Ox) — (0) 

if q ye 0,1. Thus, by Proposition 1.1.1, it suffices to prove that the sequence 

0 —»• Oxix) ^ cS (a ,Ox) cl(%ox) — • 0 

is exact, where the augmentation homomorphism e is defined by 

Since A = Ox(X), the above sequence may be written 

0 _ > A - i * A{f) x Ai/'1) A A(f,f-1) - » 0, 

where e is induced by the canonical inclusions of A in A(f) and A(f~1), and 

Ф ) := (g\x(f),g\xif-*))-

d°(#o,#i) := 9i - go-

Let rj and C be indeterminates. It is sufficient to establish the exactness of the following 
commutative diagram. 
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0 0 

« - f)MO x ( i - fv)A(v) — « - m i c e 1 ) • - 0 

0 • A 
$$ 

- A(0 x A(V) 
A \9tk\<\pai o 

o - A 
£ 

A(f) x Aif-1) 
$ù 

^$ù^ù^$^$ 
o 

o o 

The map t: A -> x ¿4(77) is the canonical injection, A is determined by 

A : Ai() x ¿(77) — • i f C r 1 ) : ( M C U i f a ) ) — • M C 1 ) - M O , 

and A' is induced by A. 
The columns are exact because 

Aif) = AiO/(C-f), Aif-1) = A(r,)/(1 ~ fn), 

Aif,r1)=AiCC-1)/iC-f). 

To check the exactness of the first two rows, we require the direct sum decomposition 

(3.2.1) AiO e C'AiC1) = Aicc1) = Aic,v)/(Cv - 1 ) . 

This follows from the fact that for any complete quasi-Noetherian 5-ring B C K°, 

we have the direct sum decomposition of B(£i,..., £m)[[/>i, • • • ? pn]-modules 

Bfa,... ,£m+2>[pi, • • • ,Pn] = M 0 iV, 

where 

M := 

V 
y 

\9tk\<\paihf\ 

\9tk\<\p 

N := 

V 

^^$$ 

Mm+2<A*m + l 

$^$ù$^^$ 
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This decomposition induces the corresponding decomposition on Sm+2,n> which, in 
turn, induces the decomposition (3.2.1). Prom (3.2.1), we obtain 

(C - miCC1) = (C - f)M0 e (l - fC^AiC1)-

This yields the surjectivity of A' and (3.2.1) yields the surjectivity of A. In particular, 
the first row is exact. To check the exactness of the second row, note that 

л ( E E w ) = E bi<~* - E a ¿ = ° 
у г>0 г>0 / i>0 i>0 

if, and only if, di — bi = 0 for i > 0 and a0 = bo (see the discussion following [6, 
Definition 5.2.7]). 

To see that e is injective, let g G A, g ^ 0. Then, since being 0 is a local property, 
there is some maximal ideal m of A such that the image of g in the localization Am 
is not zero. Thus, by the Krull Intersection Theorem [8, Theorem 8.10], the image of 
g in the completion 4̂m is not zero. Since {X(f), X(f~1)} covers X , the conclusion 
follows from [6, Proposition 5.3.6 (ii)]. Now, by some diagram-chasing, the third row 
is exact. • 

Corollary 3.2.2. — Let X = Max A be quasi-affinoid, then any Laurent covering (see 
Definition 3.1.8) of X is Ox-acyclic. 

Proof. — Use Lemma 3.2.1 and apply Proposition 1.1.5 inductively. • 

In fact, the rest of the proof of the Ox-acyclicity of quasi-affinoid coverings holds 
in greater generality. 

Proposition 3.2.3. — Let T be a presheaf on the quasi-affinoid variety X. Assume 
that Laurent coverings are universally T-acyclic on X; i.e., that for each R-subdomain 
X' C X, all Laurent coverings of X' are T-acyclic. Then all quasi-affinoid coverings 
of X are ^-acyclic. 

Proof. — The proposition is proved by induction on the complexity of the quasi-
affinoid covering, after successive simplifications. 

Claim (A). — Rational coverings (see Definition 3.1.6) generated by invertible func­
tions are universally T-acyclic. 

By Lemma 3.1.10, such a covering is refined by a Laurent covering. Apply Propo­
sition 1.1.4. 

Claim (B). — Rational coverings are universally F-acyclic. 

Let 21 be a rational covering. By Lemma 3.1.9, there is a Laurent covering 05 such 
that for each V G 05, the covering 21 |v is a rational covering of V generated by units 
of Ox(V), hence is ^"-acyclic by Claim A. For U G 21, 05|t/ is a Laurent covering, 
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hence by assumption is ^-acyclic. Since 03 is ^"-acyclic by assumption, the claim 

follows from Proposition 1.1.3. 

Claim (C). — Coverings by closed R-domains of level < 1 are universally T-acyclic. 

Let 21 be such a covering. By Lemma 3.1.7, 21 has a rational refinement, 03. Now 
Claim C follows from Claim B and Proposition 1.1.4. 

Claim (D). — Quasi-affinoid coverings by R-domains of level < 1 are universally T-

acyclic. 

Let 21 = { C / o , . . . , Up] be such a covering. By Theorem 3.1.4, 21 has a refinement 

03 by finitely many closed i^-subdomains of level < 1. For each Ui0...ir, and each 

r, 03|c/io ir is a covering of Ui0„.ir by finitely many closed R-subdomains, which, as 

subdomains of Ui0...ir have level < 1. Therefore Claim D follows from Claim C and 

Proposition 1.1.4. 

We now conclude the proof of the theorem. 

Let 21 = {C/o, • • •, Up} be a quasi-affinoid covering of X. We say that 21 is of type 

< (£, j) iff {7o,.. •, Uj are of level < £ + 1 and Uj+\,..., Up are of level < £. 

Order the types lexicographically. We prove the claim by induction on (£,j). When 

£ — 1, j = — 1, this is Claim D. Suppose the claim holds for quasi-affinoid coverings 

of type < j ) , and let 

* = {UQ,...,Uj,U'j+l,Uj+2,...,Up} 

be a quasi-affinoid covering of type < (£,j 4-1). Now, since C/j+1 is of level < £ + 1, 
there is an i?-subdomain Uj+\ of level < £ such that C/j+1 C Uj+i and C7j+1 is of level 
< 1 in { /¿+1 . Consider the covering 

2t:= {U0,...,Uj+1,...,Up}, 

which is a quasi-affinoid covering of type < (£,j), hence by the inductive hypothesis 

is ^"-acyclic. 

To apply Proposition 1.1.4, we consider the coverings tB\uiQ...ir • If some index is ^ 

j + 1, then Ui0...iP C Uia, and 2$|i/io...ir is refined by the trivial covering {UiQ„.ir}nUis. 

In this case, *&\uiQ...ir is T-acyclic by Proposition 1.1.2 since the trivial covering is 

.^-acyclic. It remains to consider the covering 

B[Uj+1= {Uj+i H C/o, . . . ,Uj+1 H Uj,U'j+1,Uj+1 n Uj+2,..., tfj+i n tfp}. 

This is a covering of Uj+\ of type < (£,j), which is ^"-acyclic by the inductive hy­

pothesis. Now, since 21 is ^"-acyclic, 03 must also be .^-acyclic by Proposition 1.1.2. 

To finish the proof, note that any quasi-affinoid covering of type < (£ + 1, — 1) is of 

type < (£, p) for some p. • 

Theorem 3.2.4 (Quasi-Affinoid Acyclicity Theorem). — Let X be a quasi-affinoid va­

riety. Any quasi-affinoid covering of X is Ox-acyclic. 
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Proof. — This is an immediate consequence of Corollary 3.2.2 and Proposition 3.2.3. 
• 

Corollary 3.2.5. — Let X be a quasi-affinoid variety. Then Ox is a sheaf with respect 
to the rigid G-topology on X. 
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