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HOLDER IMPLIES COLLET-ECKMANN

by

Feliks Przytycki

Abstract. — We prove that for every polynomial f if its basin of attraction to oo
is Holder and Julia set contains only one critical point ¢ then f is Collet-Eckmann,
namely there exists A > 1, C > 0 such that, for every n > 0, [(f™) (f(c))| > CA™.
‘We introduce also topological Collet-Eckmann rational maps and repellers.

0. Introduction

J. Graczyk and S. Smirnov proved in [GS] that if a rational map is Collet-Eckmann
(abbr. CE), then every component of the complement of Julia set J is Holder. An-
other proof was provided later in [PR1]. The question whether a converse fact holds
remained unanswered. Moreover it has been proved in [PR2] (using an example from
[CJY]) that if there are at least two critical points in J, then the converse may occur
false, even for polynomials. Namely if the forward trajectory of a critical point c at
some times approaches very closely another critical point, but all critical points in J
are nonreccurrent, then Ao, the basin of infinity is John even, but |(f™)'(f(c))| does
not grow exponentially fast.

Here (in Sec.3) we prove that A, Holder implies CE for polynomials if there is
only one critical point in J. In fact we prove this in a more general setting of rational
functions. We prove this by using Graczyk and Smirnov’s ‘“reversed telescope” idea.

In Section 4 we introduce for rational maps the property topological Collet-Eckmann
(abbr. TCE). This property means roughly a possibility of going from many small
scales around each point to large scale round discs with uniformly bounded criticality
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386 F. PRZYTYCKI

under the action of the iterates of f. This property is topological (i.e. it is preserved
under topological conjugacies) and we prove in Section 4 that it implies CE, provided
there is only one critical point in J (or more than one, but none in the w-limit set of
the others). Since by [PR1] CE implies TCE we obtain a new elementary proof that
CE is a topological property. The first proof was provided in [PR2]: For f being CE,
and g topologically conjugate to it, it was proved that the conjugacy can be improved
to a quasiconformal one on a neighbourhood of J(f). This implied CE for g, by a
method not much different from presented here (but simpler technically).

In the unimodal maps of the interval case the fact CE is a topological property
was proved in [NP] via the same TCE property called there finite criticality. The
intermediate property used there was uniform hyperbolicity on periodic orbits (abbr.
UHPer). Here this idea also appears implicitly, though we cannot prove UHPer implies
CE (the fact proved for unimodal maps of interval with negative Schwarzian derivative
by T. Nowicki and D. Sands in [NS].)

Finally, in Section 5, we introduce and study holomorphic TCE invariant sets in
particular repellers and prove that if a repeller is the boundary of an open connected
domain in C, then it is TCE iff the domain is Holder. In consequence, for each domain
with repelling boundary, to be Holder is a topological property. We prove also the
analogous rigidity result for Holder immediate basins of attraction to attracting fixed
points.

1. Preliminaries on Hdlder basins

Definition 1.1. — Let f : C — C be a rational map of the Riemann sphere. We call
an f-critical point ¢ (i.e. such that f'(¢) = 0) ezposed if its forward f-trajectory does
not meet other critical points.

The map f is called Collet-Eckmann if its every exposed critical point ¢ that belongs
to the Julia set J = J(f), or its forward orbit converges to J, satisfies the following
Collet-Eckmann condition:

There exists A > 1 such that for every n > 0

(CE) I(f™)(e1)| > Const A™.

Notation. — By Const we denote various positive constants which can change from
one formula to another. We use the notation x,, = f™(z).

The definition of holomorphic Collet-Eckmann map was introduced in [P2] with
(CE) assumed only for critical points in J. This allowed parabolic periodic points.
Here we modify the definition, in accordance with [GS, Def 1.2].

One calls a simply-connected open hyperbolic domain A Hélder if there exists o > 0
such that any Riemann mapping from the unit disc D onto A is Holder continuous.
This can be generalized to non-simply connected domains, see [Po] or [GS, Def 5.1).
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HOLDER IMPLIES COLLET-ECKMANN 387

We shall not rewrite here this definition in absence of dynamics because we do not
need this. However if A is an immediate basin of attraction to a sink, for a rational
mapping f, f(A) = A, Graczyk and Smirnov provided an equivalent definition [GS,
Def.1.4, Sec.5 Prop.3] which will be of use for us. Denote Crit* := (J;2, f7(Crit),
where Crit= Crit(f) means the set of all critical points for f.

Definition 1.2. — We call A Holder if there exists Ago > 1 such that for every z €
A\ clCrit™ there exists C; > 0 such that for every y € f"({z}) N A
(1.1) 1(F™)' (W) = C1 A,

We extend this definition to periodic A, f¥(A) = A, by replacing f by f* above.
This replacement allows in proofs to assume f(A) = A.

We need also the following

Notation (cf. [PUZ]). — Suppose f(A) = A. Let 2!,..., 2% be all the pre-images of z
in A. Consider smooth curves v/ : [0,1] = A\ clCrit™, j = 1,...,d, joining 2z to 27
respectively (i.e. v7(0) = z, 47 (1) = 29).

Let 34 := {1,... ,d}Z+ denote the one-sided shift space and o the shift to the left,
i.e. 0((an)) = (any1). For every sequence a = ()32 € £ we define yo(a) := y°°.
Suppose that for some n > 0, for every 0 < m < n, and all a € 9, the curves 7,, ()
are already defined. Write z,(a) := yn(a)(1).

For each a € £9 define the curve v,41(a) as the lift (image) by f~(7t1) of yon+1
starting at zn(a).

The graph 7 = 7 (2,7}, ...,v%) with the vertices z and z,(a) and edges v, (a) is
called a geometric coding tree with the root at z. For every a € £% the subgraph
composed of z, z,(a) and v, () for all n > 0 is called a geometric branch and denoted
by b(a). Denote by b, () for n > 0 the subgraph composed of z;(«) and v;+1(«) for
all j > n.

The branch b(«) is called convergent to x € 8A if z,(a) — .

For an arbitrary basin of attraction A we define the coding map zeo : D(200) — clU
by zeo(@) := lim,, o 2n(a) on the domain D = D(z) of all such a’s for which b(«a)
is convergent. By Lemma 1.3 below, for A Holder, D = £¢ and z,, is Holder.

Finally let U',...,U? be open topological discs with closures in A4 \ cl Crit™, con-
taining v!,. .., 7% respectively. For each a and n > 0 denote by U, () the component
of f~™(U%") containing v,(a).

In the subsequent Lemmas A is a Holder immediate basin of attraction to a periodic
sink for a rational function f.

Lemma 1.3. — There exists Co > 0 such that for every a € % and every positive
integer m
(1.2) diam Up, () < CoAgy”
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388 F. PRZYTYCKI

and

(1.3) Um (@) C B(zoo(a), C2Agd" /(1 — Aid))-

Proof. — This follows frqm (1.1) and uniformly bounded distortion for all the bran-
ches of f~™, n > m on U involved. O
Lemma 1.4. — For every x € OA there exists a € ¢ such that b(c) is convergent to
x.

Proof. — Notice that & = lim z,,, (@*) for a sequence a* € ©¢ and a sequence of inte-

gers ny, see [PZ, the proof of (9)]. Now any a a limit of a convergent subsequence of
a* satisfies the assertion of the Lemma. The convergence of b(a) is even exponential.
This follows from Lemma 1.3 O

Lemma 1.5. — Let A be a Hélder immediate basin of attraction to a sink for a rational
map f. Then for every A : 1 < A < Ay, there exist 6 > 0 and ng > 0 such that for
every n > ng and every x € 0A, if for every j =0,...,n—1

(1.4) dist(z;, Crit) > exp —dn,

then |(f™)'(z)| > A™.

Proof. — Consider a € ¢ such that b(a) converges to xo. Then for
s = [C5 +nd/(log Auo)] + 1

(the square brackets stand for the integer part), where

(log C2/e(1 — Ano))
Cs3 =
log Ano

K

for an arbitrary € : 0 < € < 1, one obtains by (1.3)
zs(0™(a)) C B(Zn,C2Ags/(1 — MAgl) = B(zn,cexp —on).
Moreover for every 0 < j < n
(1.5) 2s4+j(0" 7 (a)) € B(xp_j,cexp —dn).
For y := z54n(a) we have
1™ @ =12 W] 1) (DI~ > CLAgS* L™
for L := sup |f'|.

Using the definition of s we see that for § small enough and n large, the latter
expression is larger than A™ for an arbitrary A : 1 < A < Ago, SO

(1.6) 1) @) > A
For £ small enough, in view of (1.4) and (1.5), we can replace y by = in (1.5),
changing X by a factor arbitrarily close to 1. O
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HOLDER IMPLIES COLLET-ECKMANN 389

Definition 1.6. — Let X be an f-forward invariant set. We say that f on X satisfies
the property exponential shrinking of components if thereexist £ :0 < { < landr >0
such that for every x € X and positive integer n the component of f~"(B(f™(z),r))
containing x has diameter bounded by £”.

Lemma 1.7. — The property A is Holder implies the property: exponential shrinking
of components, for f on A, with & arbitrarily close to /\I;cl).

In the proof we shall use the following fact, a variant of the telescope lemma [P1,
Lemma 5]:

Lemma 1.8. — Let X be a compact set in C and f : U — C be a holomorphic map
on a neighbourhood of X such that f(X) = X. Then (3C > 0)(Vu > 1)(3n > 0)
such that for every x € X and positive integer n > 0, for every r > 0, the disc
B := B(xp,r) and every compact connected set Y C B the following holds:

Denote W; := Comp,,, _| (f79(B)) for j =0,...,n. Let Y, be an arbitrary compo-
nent of f~"(Y) in W,. Assume finally that diam W; <n for every j =0,...,n —1.

Then
diam W, ndiam Y,

“damB = !/ diamYy
Proof of Lemma 1.8. — See [P1]. The idea of the proof is that if W is far from Crit
then, denoting Y; = f*~7(Ys),
diam W, ~ diam Y4,
diam W; diam Y;
If W41 is close to a critical point of multiplicity v then, instead of ~, the inequality <

with a constant depending on v appears on the right hand side. These cases however
happen rarely as long as diam W, are small. O

Proof of Lemma 1.7. — Fix(!) an arbitrary n > 0 and z € 8A. By Lemma 1.4 we
can find a € ¢ such that b(a) — z. By the continuity of f for every 0 < j < n we
have b(07(a)) — z;. Let m(r) be the largest integer such that v, (0™ (c)) intersects
9B for B := B(xy,r). Denote by b' the curve in by, (;y—1(0"(a)) contained in B and
joining &B to z,. Denote by W, the component of f~J(B) containing z,—;. Denote
finally by b; the component of f~7(b') contained in by,(r)—14;(6” 7 (a)). By Lemma
1.3 we have
diam b; < Const /\ﬁgm(r)ﬂ).
So, using Lemma 1.8 and due to diam b’ comparable with diam B, we obtain

(1.7) diam W; < p? Const /\;I(gm(r)ﬂ).

(1) A different proof, for polynomials — using puzzles, was obtained jointly by the author and Jacques
Carette.
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390 F. PRZYTYCKI

for p > 1 arbitrarily close to 1, as long as all diam W; for all ¢ < j are small. Observe
however that if » — 0 then m(r) — oo (more precisely m(r) > (log(1/r)/log L) —

Const). So if r is small enough that A" compensates Const, diam W; are small
and (1.7) holds by induction. O

Lemma 1.9. — Let A be a Hélder domain. Then for every ¥ : 0 < 9 < log A\go/log L
there exists r(¥) > 0 such that for every x € A and a < r(9) such that for W =
Comp, f~"(B(zs, a))

diam W < o?.

Proof. — Set s = [log(r/a)/log L]. Let a be small enough that s > 0. We have chosen
r and £ according to Definition 1.6 and Lemma 1.7.

As L is a Lipschitz constant for f, we obtain for B’ := Comp,_ f~°(B(Tn+s,T))
B' D B(zp,a).
By Lemma 1.7 diam Comp, f~"(B’) < £"*%, hence
diam W < ¢n+e < ¢°.

1
By s > M — 1 we obtain

log L
: T\ _ log(1/¢)
diam W < (—L-) e
|
2. A technical lemma
Lemma 2.1. — For every v > 2 there exist €1 : 0 < €1 < 1/2 such that the following

holds:

Write g(z) = gu(z) = 2¥ + u for an arbitrary u with |u| < 1. Consider any
® : g71(D) — C univalent and such that in the spherical metric diam ®(g~*(D)) <
diam %@. Here D is the unit disc in C, considered later with the euclidean metric.
Write F := ®~1 with the domain ®(¢g~1(D)). Assume

(2.1) u € &(g~1(D)).
Moreover assume
(2.2) lul <e1 and |(go F)(u)| < e1.
Then either
1 1
_1 = it
(2.3) cl@(g (2]1]))) c 5D,

or there exists €5 : 0 < €9 < 1 such that

(2.4) ®(g* (e2D)) D e2D.
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HOLDER IMPLIES COLLET-ECKMANN 391

Proof. — Suppose there exist u, N\, 0 and univalent ®, on g;}(D) satisfying (2.1)
such that g, (Fn(u,)) = 0 and both (2.3) and (2.4) fail. Then starting from some
n the distortion of ®, on V,, := g;nl(%]D)) is bounded by a constant (). A reason for
this, is for example the existence of a definite geometric annulus in g;1(D) \ V;,.

The sequence of the domains V,, converges in Carathéodory’s sense, [McM, 5.1], to
V := (1/2)/*D and, as all diameters of ®,(V,) are uniformly bounded by  diam C,
and one can choose from (®,,V,) a subsequence convergent to certain (®,V’).

Now notice that by (2.2) ®(0) = 0, in particular 0 € ®(V'). On the other hand
by the failure of (2.3) we obtain cl®(V) ¢ %]D). Hence diam ®(V) > 1/2. Hence
supy |®'| > 121/ So infy |®/| > Q~12Y/(»~1). A result is that for every r : 0 <r <
(1/2)1/” the set ®(rD) contains the disc of radius @ 12/ (*~1r centered at 0.

Thus if Q—12Y/(»=V71/¥ > 7 or after rewriting:

1
(25) T < §Q_V/(V_l)’

we obtain for g(z) = 2z” the inclusion cl ®(¢~*(7D)) D 7. This implies the analogous
inclusion for n large, what contradicts the assumption that (2.4) fails. O

Remark 2.2. — One could compute £1,e5 explicitly, however we have chosen above
a more lazy way. In particular €2 can be chosen independent of ®, i.e. the statement
of the Lemma could start with: (Vv)(3e1,€2)....

3. Holder implies CE

An important role will be played by the following variant of a lemma proved in
[DPU, Lemma 2.3 and (3.2)]

Lemma 3.1. — Let X be a compact set in C and f : U — C be a holomorphic map
on U a neighbourhood of X such that f(X) = X. Fiz c € Crit(f) N X. Assume that
there is no periodic orbit in X attracting the point c.
For every y € X write k(y) = max(0, —logdist(y, c)). For y = ¢ write k(y) = oo.
Then there exists a constant Cy such that for each x € X andn > 1

n
!
(3.1) D k(=) < nCy,
=0
where Y' denotes summation over all but at most one index j at which k(z;) is
mazimal, (0o is also possible).

Proof. — To proceed as in [DPU] extend f to C in a differentiable way. The obser-
vation used in [DPU] is that f*(U) C U for U small intersecting X is not possible.
In case f is a rational map and X contained in Julia set, the family fi® on U for
7 = 1,2,... would be normal, what contradicts a property of Julia set. In general
case we use also the additional property of f™ on U if (3.1) fails: |(f™)'| < 1/2. This
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392 F. PRZYTYCKI

yields an attracting periodic orbit in X, what, together with the property U > c also
following from the construction in [DPU], contradicts the assumptions. O

Definition 3.2. — We call A regular for f if for every small r > 0, for every x € dA,
every positive integer n and every component W of f~"(B(z,r)) if W N A # & then
(W nA)=B(z,r) NA.

The notion of regular is introduced ad hoc because we do not know how to prove
our main theorem below without assuming this. Of course if A is completely invariant,
i.e. f71(A) = A, then A is regular.

The reader will see that in the proof instead of B = B(x,r) for all r it is sufficient to
consider B boundedly distorted in many scales. To have such B satisfying Definition
3.2 it is sufficient to assume that A is Holder and Jordan. The idea is that if B is
large and BN A is connected, then for pullbacks W; (components of f=7(B)) W, N A
are also connected. If a critical value is met in A then only one component of
F~Y(W; N A) N Wj41 can intersect A. Otherwise their boundaries would be glued at
a critical point, contradicting Jordan property. Bounded distortion and many scales
are due to TCE property (see Sec.4).

Theorem 3.3. — Let A be a Holder immediate basin of attraction to a periodic sink
for a rational map f. Assume A to be regular. Let ¢ € DA be a critical point whose
closure of the forward orbit is disjoint from Crit \{c}. Then c satisfies (CE), with A
arbitrarily close to Ago-.

Corollary 3.4. — Let f be a polynomial and A, be Holder. Suppose there is only one
critical point in J(f). Then f is CE, with X arbitrarily close to Ayo-

Proof of Theorem 3.3. — The proof uses the procedure of the “reversed telescope”
invented by Graczyk and Smirnov [GS, Appendix] to prove that CE2 (plus the so-
called R-expansion property) implies CE. CE2 means |(f")’(y)| > Const A™ for every
y € J and n such that n is the smallest positive integer for which f"(y) € Crit, A > 1.
Here instead of CE2 we shall use the definition of Holder domain, the property (1.1).

Step 1. The block preceding the telescope. — Fix an arbitrary, large,n. Let0 < m < n
be the last time dist(z,,, Crit) < exp —nde for an arbitrary constant € : 0 < e < 1
and for § from Lemma 1.5. Here £ = x¢ := c¢. (We use the symbol x for c to
distinguish the trajectory c, of ¢ from c it passes by.) A critical point ¢’ such that
dist(x,,, ') < exp —nde must be ¢, supposed that n is large enough that exp —néde <
dist(O* (¢), Crit \({c})), where O™ (c) stands for the forward orbit of ¢ (c included).

(1) If n —m — 1 > en then |(f*~™ 1) (@my1)] > A" ™! by Lemma 1.5.

(2) f n —m — 1 < en then by Lemma 3.1 we have

> k() < (n-m-1)Cy,
m<j<n
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HOLDER IMPLIES COLLET-ECKMANN 393

the function k considered with respect to c. Hence
(™) (@mt1)| > exp(—(n —m —1)C%)
for a constant C; > 0.

Notice that by k(zm) > k(x;) for every j : m < j < n, there is no need to exclude
an exceptional j from the above sum, because the exceptional index in ) might
be only 7 = m.

Suppose we know that there exists a constant A > 1 such that

(3.2) I(F™) (@) = A™.
Then in the case (1), (CE) for c is proved. In the case (2) we obtain
|(F™) (21)] > A™ exp(—(n — m —1)C}) > A"

m<j<n

for 1 < A < X with X arbitrarily close to A for € appropriately small, in particular we
also obtain (CE).

Thus, we need to prove (3.2), provided
(3.3) dist(z,,, c) < exp —nde < exp —mde.

We shall prove this with an arbitrary A : 1 < A < Ay, and for m large enough. More
precisely, we shall prove (3.2) with the lower bound Const A}, where Const depends
only on §,¢.

Note that n large implies m large by the first inequality of (3.3) (¢ cannot too soon
approach itself).

Step 2. Telescope: the first tube. — Define first some constants.

Let T = [2(8e¥)~1Cy] + 2 for ¥ from Lemma 1.9. Let C4 = (3&1)~7 for €; from
Lemma 2.1.

Consider now B := B(xm41,Cs dist(ym+y1,c1). For every j = 0,1,... define

W; := Comp,_ . _. f79(B).

Fix j = jo the first time W), intersects Crit, at ¢’ say. This can happen only with

¢’ = c. Indeed, otherwise, using Lemma, 1.9, we obtain
dist(O* (¢), Crit \{c}) < dist(cm, ') < diam W, 1 < Cy exp —mded,

what for m large enough is not possible.

We conclude with W;; 5 c. We have two cases:
Case 1°. fi(c1) ¢ 2e1B;
Case 2°. fi(c1) € 2&1B.

Consider the case 2°. (Then we call f/ : W; — B the first tube of our telescope.)
In appropriate charts, in particular for B identified to D, we can decompose f? into

g o F', the decomposition in the language of Lemma 2.1, where g corresponds to the
z + z¥ + u part of f and F takes care of the rest, in particular it includes f/—1.
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394 F. PRZYTYCKI

We have also ¢; € 1e1B because 1e; > C;'. Finally diam W; < -;—diam@ by
Lemma 1.9. Thus we can apply Lemma 2.1. We multiplied ¢; by 1/2 because here we
consider the spherical metric whereas in Sec.2 we considered discs 7ID with respect to
the euclidean metric on C.

We obtain two possibilities:

(1) The closure of W} := Comp, ., . f~9(70B) is contained in 7o B.

To replaces here 1/2 resulting from the difference between the spherical met-
ric on B and the euclidean on D.
(2) There exists €2 : 0 < €2 < 1 such that

(3.4) W' = Comp, ., . f9(e2B) D exB

(Here is an explanation of the existence of £, that yield this alternative, for a
reader who does not wish to decipher Section 2: If (1) does not hold we shrink B to
g2 B so that diam ij’ > diames B and consider £; small enough that f7(c;) is close
to m+1, hence ¢ is a “center” of the boundedly distorted W;’ . €1 small means also
that ¢ is close to the center of €2 B. This gives (3.4).)

Notice now that (3.4) contradicts &m4+1—; € J(f). Thus, we can suppose that
cl W]I C 10B.

Step 3. The capture of expansion. — fJ : W] — 1B is polynomial-like, hence W}
contains an f7-fixed point p. In the case f is a polynomial (Corollary 3.4) A = A
is completely invariant, hence p € A of course. Hence if we had UHPer on A we
would obtain for a constant A > 1

(3.5) ) @)l 2 V.

(We shall come back to this discussion in Section 4. In particular UHPer on 0A will
be deduced from A Holder, with A = Ago.)

In the general case we do not know whether p € A, unfortunately. So, instead,
we use the assumption A is regular. Denote f7 by F. As W]' itersects 0A at xpm41—j,
it intersects also A at, say, y!. Write F(y!) = y°. Since y° has an F-preimage in
W;N A, by the regularity of A also y' has an F-preimage y® in W/ N A, next y* has,
etc. Hence |(F?)'(y%)| > RM;, = (RYiM; ), where R is a constant dependent on
diam B. (If diam B is small then R is large. It arises from the ratio of derivatives of
f* at y° and z in Def.1.2., resulting from a distortion bound.) Hence for an arbitrary
X < AHo one can take % large enough and find s : 0 < s < 7 such that

(3.5) I(F9) ()| = N for p = F°(y").

By construction the distortion of f/~! on W] is bounded by a constant. Hence we
have

178 @I/ (@mt1-5)] < Const.
We have also | f/(f3=1(p))|/|f' (zm)| < Const C{*~V/¥ for v the multiplicity of f at c.
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HOLDER IMPLIES COLLET-ECKMANN 395

(We use the assumption that ¢; is peripheric in B with the factor Cy, i.e.
dist(ci, Zm41) > C7 * diam B.

Notice that earlier, in Step 2., we used the opposite inequality, that c; is close to the

center.)
We conclude using (3.5) or (3.5’) that
(3.6) |(£7) (@m-+1-7)| 2 My, Const O D7
Step 4. Longer first tube. — Consider now the case 1°. In this case instead of taking

W; for j = jo +1,... we replace B by %slB in the definition. Denote the resulting
sets by W;. We stop at j = j; such that for the first time W;; 3 c. Either we have
the case 2° now or again the case 1° in which we continue with preimages of 2B,
etc. Notice that we finally arrive at the case 2° because if we stop at j = m we have
Tm+1—j5 = Ci.

The conclusion (3.6), in the case 2°, ending this procedure at some j;, holds if
(%61)t+1 < C4_1

We have fortunately, by Lemma 1.9, (compare Step 2.)

diam Wj < C? exp —mded.
Hence, by Lemma 3.1,
t < Cs(m+1)(—391og Cy + méed) ™!

that is less than T'— 1 defined in Step 2. if m is large enough. The estimate (3&;)'** >
Cy ! follows now from the definition of Cy.

Step 5. The number of tubes. Conclusion. — Thus, we have (3.6) for j = j;. Denote
this integer by k1. We consider now B := B(Zm41—k,,Cs dist(®m41—,,c1)) and
repeat the above construction. We obtain the inequality (3.6) for z,,41—k, instead
of 41—k, and for j = k2. We continue until Z{zl k; = m. We have constructed a
reversed telescope [GS, Appendix]. Setting -y := Const Ci"_l)/ Y we conclude with
(3.7) I(F™)' (e1)] = ¥ A,

Indeed, at each step 'y/\ﬁ"o > 1 for m large enough, because k; is large; ¢ cannot
too soon approach itself. So, by (3.6), using bounded distortion for the appropriate
branch of f~(*i=1) on the appropriate B’ = Comp f~!(1e1B), we obtain

(3.8) s < dist(Tm—ky —kq» €) < dist(Tym—k,, ) < €Xp —mde,

resulting from the related inequalities concerning dist(Zm—g, —..—k;+1,€1)-

Formally, (3.8), the construction of the i-th tube and k; large, are proved alternately
by induction over ¢. In particular m — ky — --- — k; > ky for ¢ < I is also large. Here
dist(Zp—k; ——k;»C) < exp —mde < exp —(m — k3 — - -+ — k;)d¢e replaces (3.3)

By Lemma 3.1 we obtain a bound for I:

I<(de)7'Cy +1.
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Thus (3.7) yields (3.2), with A arbitrarily close to Ag, for m large enough. Therefore
as noticed at the beginning we obtain (CE). O

It is possible to prove Theorem 3.3 without refering to Lemmas 1.7, 1.9(3). The
method relies on the following fact (weaker than Lemma 1.9)

Lemma 3.5. — For A Hoélder, there exists C > 0 such that for every Q > 1,
r > 0, positive integer n and x € OA, for B a topological disc of diameter r bound-
edly distorted around f™(x), say containing B(xn,r/4), for W the component of
F™(B(zn,r)) containing z, if f™|w is univalent and the distortion of f~™ on B =
B(zn,,r) is bounded by Q (namely sup |(f~™)'|/inf |(f~)'| < Q), then

diam W < CQr?, for ¥ =logAuo/logL.

Proof. — Consider a@ € X¢ such that b(a) converges to . W contains a round
disc centered at x of diameter equal to Q! - %diam W. By Lemma 1.3 )\ﬁé <
Const -Q~! diam W, in particular ¢t = [(Const + log Q + log(— diam W))/log Ano] + 1,
implies z;(a) € W. Hence z;_n(0™(a)) € B. Sot —n > (log1/r)/log L — Const.
Now t > t — n implies
[(Const + log Q + log(— diam W))/log Auo] + 1 > (log1/r)/log L — Const,

hence after exponentiating the both sides, diam W < Const Qr?. O

Now, in Proof of Theorem 3.3, in Step 2, one can define W; with the use of the
“shrinking neighbourhoods” procedure, see [P2, Sec.2]:

For B := B(xzm+1,Cydist(xmy1,c1)), for every j = 0,1,... write By; := 3;B for
B = le(l — b;) for b; := exp —«t for an arbitrary k > 0, close to 0.

Write B’ = Comp,  f~!(B) and ij = Comp,, f~'(Byj;). Finally define W; :=
Comp,,,,, , f~U=1(BL)

For j < jo — 1 we have by construction f/~! univalent on f(W,41) with distortion
bounded by exp(— Const kj) (using Koebe distortion theorem). Hence diam W; can
be estimated due to Lemma 3.5 by Constr? for ¥ arbitrarily close to log Ay, / log L.

We do the same trick in Step 4. in the definition of Wj.

4. TCE rational maps and the topological invariance of CE

In this section we shall provide a new proof of the theorem proved first in [PR2],
that CE is a topological condition provided the following holds:

Condition (x). — For every exposed critical point ¢ € J(f) it holds
c | J £ (e)n (Crit\{c}) = @.

n>0

(2)We followed that way in the first distributed version of the paper.
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In other words for no critical point in J(f) its w-limit set contains another critical
point. This condition was already present in Theorem 3.3. (Recall that exposed means
the forward trajectory of ¢ does not meet other critical points.)

Let us introduce some properties of a rational map f related to CE and to ezpo-
nential shrinking of components, compare Def. 1.6. (We follow the numeration and
terminology from [NP].)
2° (exponential shrinking of components) There exist 0 < & < 1 and r2 > 0 such that
for every z € J everyn > 0 and W = Comp,, f~"(B(f"(z),r2)) one has diam W < £7.
3° (exponential shrinking of components at critical points) The same as above, but
only for W containing a critical point.
4° (finite criticality or topological Collet-Eckmann, abbr. TCE) There exist M >

0,P > 1 and r > O such that for every x € J there exists an increasing sequence of
positive integers nj,j = 1,2, ... such that n; < Pj and for each j

#{i: 0 < i <ny, Compy:(yy f~ I B(f™ (z),r) N Crit # @} < M.

5° (mean exponential shrinking of components) There exist P > 1,0 < & < 1 and
rs > 0 such that for every x € J there exists an increasing sequence of positive
integers n; = nj(x), j = 1,2, ... such that n; < Pj and for each j one has

diam Comp, f~™ (B(f™ (z),rs)) < &7.

Another interesting condition is uniform hyperbolicity on periodic orbits (abbr:

UHPer): There exists Aper > 1 such that every periodic p € J(f) satisfies
1(F*) (P)] > Aber-
where k is a period of p.

Formally we do not restrict 3° to critical points in J, but this condition implies
there are no critical points outside J attracted to J (which is equivalent to the absence
of parabolic periodic orbits).

Notice that 4° is a topological condition, 7.e. if it is satisfied by f and there exists
a homeomorphism A from a neighbourhood of J(f) to a neighbourhood of J(g) such
that h(J(f)) = J(g) and hf = gh then 4° holds also for g.

The implications CE=> 2° = 3° = 4° have been proven in [PR1] (see also [NP]).
4° = 5° has also been proven in [PR1]. Here we shall prove 5° = 2° and next
2° =CE provided (*). Thus we shall prove:

Theorem 4.1. — If f is topological Collet-Eckmann and satisfies (¥) (a particular
case is that there is only one critical point in J), then f is CE.

In view of the above discussion we shall obtain

Corollary 4.2. — (CE & (x)) is a topological property.
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Remark that it is straightforward to prove 5° = UHPer, see Lemma 4.7. below.
Unfortunately we cannot prove UHPer= CE, to mimic the interval case [NP], [NS].

Let us start the proofs with 5° = 2° which is surprisingly easy.

Lemma 4.3. — Mean exponential shrinking of components implies exponential shri-
nking of components.

Proof. — Fix an arbitrary * € J(f) and n > 0. Write B; := B(zxj,rs5) for j =
0,1,...,n. Set tg := 0 and define the increasing sequence of integers 0 < t; < ta,...
by induction as follows: Given t; take t;;1 such that ¢; + (n — t;) /2P < t;4+1 < n and
for

Ky, := Comp,, frln=t(By,,,),

(4.1) diam K1 < €517,

This is possible by the definitions of the constants in 5°. 5° implies that the number of
n; = n;(x¢;)’s not exceeding m = Pk is at least k for every k = 1,2,.... So for every
m > 0 we obtain #{n; : n; < m} > [m/P] (the integer part of m/P). In particular
for m > 2P we obtain #{n; : nj < m} > m/2P, hence {n; : m/2P < n; < m} # &.
Finally apply this to m = n — ¢; and choose as t;;; any n; from the latter nonempty
set.
If 52“'1_“ < rs, i.e.
logrs

. tiv1 —t; >
(42) i+1 (= loggs

then by (4.1)
(4.3) K1 C thi .

Suppose ¢ = I is the smallest integer such that either n — ¢y < 2P so we may not
find t741 satisfying (4.1), or (4.2) does not hold. The latter: t;11 —t; < logrs/logé&s,
together with t741 —t;y > (n — t71)/2P imply n — t; < 2Plogrs/logé&s. Denote the
maximum of this constant and 2P by C.
Due to (4.3) for every ¢ =1,...,I — 1 we have a “telescope” so we obtain
Comp,, f~*~%)(By,) C By,.
Hence, applying also (4.1) for i = 0,
(4.4) diam Comp, (f =% (B,)) < diam Comp, f~*(By,) < &' < &/

provided n > 2P (otherwise I = 0, i.e. there is no ¢;).
Finally, due to n — t; bounded by C, we can replace in (4.4) B, by

Compzt, f_(n_tl) (B(Sb'n ’ TZ))
for a constant r; small enough. We conclude with

diam Comp,, f~"(B(zp,r2)) < fgﬂp
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which proves 2° with & = é/ 2P The case n < 2P is trivial, ro small enough does
the job. O
Lemma 4.4. — Assume 2°. Then there exist ¥ : 0 < ¥ < 1 such that for every a > 0
small enough, for every x € J(f) and everyn >0

(4.5) diam Comp,, f~*(B(f™(z),a)) < a®.

Proof. — See Proof of Lemma 1.9. O

Analogously to Lemma 1.5 we have the following
Lemma 4.5. — Assume 2°. Then there exist A > 1, § > 0 and an integer nog > 0
such that for every n > ng and x € J(f), if for every j =0,...,n—1

dist(z;, Crit) > exp —dn,

then |(f™) (x)| > A™.
Remark 4.6. — This Lemma, will be proved with A arbitrarily close to & *. Notice
that this, for A rather than J(f), together with Lemma 1.7, give a new proof of
Lemma 1.5.
Proof of Lemma 4.5. — Consider arbitrary d, > 0. Let

1 5
lios & * TTogz ]+

Then, by 2°, forall0 < j <n
(4.6) diam Comp,,, _. F2 I (B(Tnys,m2)) < &7 < €5 < eexp—6n.
Now let B = B(zp,r2exp —0Mn) for M = [log L/(—logé&2)] + 1. Then for n large
enough we obtain, using (4.6) for j = 0 and the definition of s,
Comp,, f~°(B(*nys,72)) D B.

Let W,, = Comp, f~"(B). Then there exists y € W,, such that
diam B
ny\/ > > _ n
Y @) 2 gt 2 (2ra exp —0Mm)gF,
where the second inequality follows from 2°. Now, as in Proof of Lemma 1.5, for ¢
small, with the use of (4.6), we can switch from y to x, hence |(f™)'(z)| > A", for A
arbitrarily close to & 1 if §, e are appropriately small. O

Lemma4.7. — 2° implies UHPer on J(f). Moreover Aper = &5 °.

Proof. — For each periodic point x € J(f), with f¥(x) = x, we consider the backward
trajectory ¢ = fNk¥—Ji(x), N such that Nk — j > 0. By 2°, for j large enough,
W, are so small that shrinking of W; is comparable to decreasing of derivatives of
the respective branches of f~J (critical points are far away, so there is almost no
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distortion). Moreover we obtain |(f™V*)'(z)| > Const & N* for every positive N with
the same Const, that implies |(f¥)'(x)| > £, %. Compare [NP, section 2]. O

Proof of Theorem 4.1. — It is sufficient to prove that 2° and (x) imply (CE) for
every exposed critical point in J. The proof is the same as the proof of Theorem 3.3.
Having obtained a mapping corresponding to the polynomial-like f7|y: — 79B we
find a periodic point p and we refer to UHPer, compare (3.5). (We do not have the
harder case (3.5’)). O

5. TCE repellers

Call a pair (X, f) a holomorphic invariant set if X C C is compact and f: X — C
is defined on a neighbourhood of X and f(X) = X. (Recall that in Lemmas 1.8 and
3.1 we considered already such pairs.) We say that holomorphic invariant sets (X, f)
and (Y, g) are topologically conjugate if there exist neighbourhoods Ux,Uy of X,Y
respectively, and a homeomorphism A : Ux — Uy such that hf = gh. Recall that a
property of holomorphic invariant sets is called topological if for every (X, f) and (Y, g)
topologically conjugate, if (X, f) satisfies this property then (Y, g) satisfies this too.
Sometimes we restrict the space of holomorphic invariant sets under consideration to
those that satisfy certain property (not necessarily topological, for example to those
f’s that extend to rational functions).

For example it is easy to see (and is well-known) that the exzpanding property
(namely |(f*¥)!| > 1 for a positive integer k), is topological. An argument is that
expanding is equivalent to 4° with n; being the sequence of all positive integers and
M = 0, that is of course a topological condition.

Here we consider (X, f) with properties weaker than expanding, namely with:
2° — 5° with J replaced by X, W intersecting X and f not necessarily extendable to
a rational function on the Riemann sphere.

One can define also CE as (CE) for every exposed c € W for W intersecting X.

We call a holomorphic invariant set (X, f) a holomorphic repeller if there exists a
neighbourhood V of X in the domain of f such that (Vz € V'\ X)(3n > 0) such that

frx) ¢ V.
We have the following

Proposition 5.1. — For (X, f) holomorphic invariant sets, 5° = 2° = 3° = 4°.
Moreover, for (X, f) holomorphic repellers, or holomorphic invariant sets such that
f extends to a rational function and X C J(f), the properties 2°, 3°, 4° and 5° are
equivalent. Then all of them are topological properties, CE implies each of 2° — 5°
and conversely, provided (x) from Section 4.

Proof of Proposition 5.1. — As mentioned in Sec.4 the proof of 3° = 4° has been
done in [PR1, Lemma 2.2] for f rational ( X = J has been considered there, but for
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X strictly in J the proof is the same). For (X, f) an arbitrary holomorphic invariant
set we need to refer to [DPU] as it is stated here in Lemma 3.1. The assumptions
are satisfied: if there existed a periodic point p € X whose periodic orbit attracts a
critical point ¢ € X, then for x = ¢ the condition 2° would not hold.

As mentioned in Sec.4 the implication 4° = 5° for f rational has been proven in
[PR1]. For (X, f) holomorphic repeller we refer to the following fact proved in [PR2,
Appendix]:

If X # C then 4° implies that X is nowhere dense.

Now repeating [PR1, (2.6)] one uses the repelling property to know that all the
maps f™ : W — B, for every B(z,r),z € X, r small and every W a component
of f~™(B) intersecting X, are proper. This is needed in the proof that if f™ have
uniformly bounded criticalities on W, then the respective preimages of %B have di-
ameters shrinking to 0 as n — oco.

To prove the latter fact we find a little disc D in %B \ X, so that the components
W' of fm-preimages of D in W have diameters shrinking to 0. Such D exists due
to X nowhere dense and W’ — X. Finally we use a bounded distortion lemma in a
bounded criticality setting (for example [PR1, Lemma 2.1].

5% = 2° is automatic, see Lemma 4.3. The proof that CE implies 4° is the same
as in [PR1] and the proof of the opposite implication is the same as in Section 4. [

We call a holomorphic repeller satisfying any of the properties 2° — 5° a topological
Collet-Eckmann repeller, abbr. TCE repeller.

Proposition 5.2. — Let X = OA for a connected open domain A C C. Let f be
a holomorphic map defined on a neighbourhood U of X such that f(U N A) C A,
f(X) =X Then A Hélder implies (X, f) is TCE (i.e. it satisfies 4°). Coversely, if
(X, f) is TCE and additionally it is a repeller or f extends to a rational map on C,
then A is Holder.

Proof. — Assume that A is Holder. Definition 1.2 is still valid except that one consid-
ers only z € A close to A. Observe now that Holder implies 2°. The proof is similar
to Proof of Lemma 1.7., except that in this situation one needs Markov geometric
coding tree. Instead of one point z as in Sec.1, choose a finite family Z C A in a small
Hausdorff distance from the whole X and join each 29 € f~1(Z) by a curve 77 to a
point in Z, so that v7 is close to A, in particular in the domain of f—!.

Next 2° implies TCE by Proposition 5.1.

In the opposite direction TCE implies 2° by Proposition 5.1. Next we prove that
A is Holder: Consider a disc B := B(x,r) for x € X such that diamW < ¢&”
for W components of f~"™(B) intersecting X (compare property 2°) and consider
D = B(z,6) C ANB. Let W' be a component of f~"(D) in W. Hence diam W' < &7
so by bounded distortion |(f™)'(y)| > Const{~™ for y € W', f*(y) = 2. Compare
[GS, Sec.5] and [PR1, Sec.3]. O
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We obtain an immediate

Corollary 5.3 (Rigidity of Holder domains). — Let A be a connected open domain
A Cc C. Let f be a holomorphic map defined on a neighbourhood U of A such
that f(UN A) C A, f(DA) = JA. Suppose A is Holder. Let g be a holomorphic
map on a neighbourhood of a compact set Y C C such that f on a neighbourhood
of X = O0A is conjugated by a homeorphism h to g and h(X) =Y. Assume that g
extends to a rational function on C or assume that (X, f) (hence (Y, g)) are repellers.
Then the component of C\'Y intersecting h(A) is Hélder.

Let us underline that we allow above critical points in X to be in the w-limit set
of other critical points. Proposition 5.2 and Corollary 5.3 are much easier than the
corresponding Theorem 3.3 and Corollary 4.2.

Remark finally that in between holomorphic expanding repellers (i.e. holomorphic
repellers with expanding property) and holomorphic TCFE repellers there lies the class
of holomorphic semihyperbolic repellers, that is satisfying the property 4° with n;
being the sequence of all positive integers. Semihyperbolicity is of course a topological
condition.

Notice that this semihyperbolicity is equivalent to 2° with all f"|w of uniformly
bounded criticality. Notice also that for compact nowhere dense repellers semihyper-
bolicity is equivalent to the assumption that critical points in X are nonrecurrent, see
[CJY]. Parabolic points cannot happen for repellers.

If X = 0A for A a basin of a sink, I believe that f semihyperbolic is equivalent to
A John. This has been proven in the case A = A, for polynomial f in [CJY].
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