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RATIONAL MAPS WITH DISCONNECTED JULIA SET 

by 

Kevin Pilgrim & Tan Lei 

Abstract. — We show that if / is a hyperbolic rational map with disconnected Julia 
set then with the possible exception of finitely many periodic components of J 
and their countable collection of preimages, every connected component of J is a 
point or a Jordan curve. As a corollary, every component of 3 is locally connected. 
We also discuss when a Jordan curve Julia component is a quasicircle and give an 
explicit example of a hyperbolic rational map with a Jordan curve Julia component 
which is not a quasicircle. 

1. Introduction 

For a rational map / of the Riemann sphere C to itself with disconnected Julia 
set Jwe investigate the topological and geometric possibilities for a connected com
ponent of J'. If J is disconnected, then / maps components of J onto components 
of 3, and there are uncountably many such components (cf. [Mi] and [Be]). The 
postcritical set of / 

V:= ( J / °» (c ) 
n>0 

f'(c)=0 

plays a crucial role in our study. We say that / is hyperbolic \iVV\J = 0 , geometrically 
finite if V H J is finite, and nice if V Pi J is contained in finitely many connected 
components of J. 

Theorem 1.1. — Let f be a polynomial with disconnected filled Julia set /C. Assume 
that only finitely many connected components of IC intersect V. Then, with the pos
sible exception of finitely many periodic components and their countable collection of 
preimages, every connected component of IC is a point. 
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Using a variant of this theorem, we establish 

Theorem 1.2. — Let f be a hyperbolic rational map with disconnected Julia set J. 
Then, with the possible exception of finitely many periodic components and their count
able collection of preimages, every connected component of J is either a point or a 
Jordan curve. 

The same result for geometrically finite maps can be proved by similar methods as 
well. We will only sketch the necessary modifications at the end of the paper. 

We establish also weaker results for nice maps. The precise statements are given 
in Propositions [Case 2], [Case 3] , [Case 4] and Theorem 9.2. 

It is known that J can be a Cantor set ([Be], §1.8), or homeomorphic to the 
product of a Cantor set with a quasicircle, where each component is a 1^-quasicircle 
for some fixed K independent of the component ( [Mcl]) . In §8 we give an explicit 
example of a hyperbolic rational map which has a Jordan curve Julia component 
which is not a quasicircle. 

Results from plane topology imply that at most countably many Julia components 
contain an embedding of the letter UY". Our theorems make precise which ones they 
are. It is also interesting to see that at most countably many Julia components can 
be a segment, which a priori is not a restriction from plane topology alone. 

By a theorem of McMullen ( [Mcl ] , Corollary 3.5), there are at most countably 
many periodic components of J. Since periodic points of / are dense in J, if J 
is disconnected there must be exactly countably many periodic Julia components. 
Since the degree of / is finite there must be exactly countably many preperiodic Julia 
components. Hence there are uncountably many wandering Julia components. Our 
theorems show that under the stated assumptions, no wandering Julia component can 
be a segment or contain an embedding of the letter "Y", since they must either be 
points or Jordan curves. 

Combining the above theorem with a result of Tan-Yin ( [TY]) , which shows that 
every preperiodic Julia component for a hyperbolic rational map is locally connected, 
we answer in the affirmative a question of McMullen [Bi]: 

Corollary 1.3. — For a hyperbolic rational map, each Julia component is locally 
connected. 

This corollary completes another entry in the growing dictionary between the the
ories of rational maps and Kleinian groups. The analogs of a hyperbolic rational map 
/ and its Julia set J are a convex compact (or expanding) Kleinian group T and its 
limit set A. It is known that each component of A is locally connected; the proof 
depends on the fact that a "wandering" component of A, i.e. a component with trivial 
stabilizer, is necessarily a point. See [ A M ] and [Mc3] (Theorem 4.18). 

The main ideas in our proof are a canonical decomposition C = E U ZY, where 
E is a finite collection of Julia components such that f(E) C J5, and the fact that 
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a hyperbolic rational map / is uniformly expanding on a neighborhood of its Julia 
set with respect to the Poincaré metric on C — V. Our goal is to show that any 
Julia component which does not land in E is either a point or a Jordan curve. To 
this end, we further decompose the sphere into several canonical pieces and measure 
the itinerary of the orbit of a Julia component Jo under / with respect to these 
pieces. We use a combinatorial analysis combined with the lemma below to show 
that components with certain kinds of itineraries are points. A separate argument 
treats the case of Jordan curves. 

We say that K c C is a full continuum if K is compact, connected, and C — K 
is connected. The following Lemma was essentially known to Fatou (see [Br], Thm. 
6.2) 

Lemma 1.4 (Fatou). — Let f be a rational map, Q = U"=i Qibe the union of finitely 
many disjoint full continua, such that Q fi V = 0. Then any connected set J C J 
satisfying fn(J) C Q for infinitely many n is a point. 

Contents. — In §2 we give some motivating examples, define the above mentioned 
decomposition and state four basic lemmas for nice maps, and give a more precise 
statement (Theorem 1.2') of Theorem 1.2. We then reduce the proof of Theorem 1.2' 
to three cases, Cases 2, 3 and 4. Related results for nice maps are stated as well. In 
§3 we analyze the topology and dynamics of the decomposition and prove the four 
basic lemmas. §4 contains analytic preliminaries for use in §§5 and 6. In §§5, 6, and 
7 we prove the Propositions in Cases 2, 3, and 4, respectively; §7 contains also the 
proof of Theorem 1.1. §8 lists related results and discusses when a Jordan curve Julia 
component is a quasicircle. §9 contains sketches of proofs-a generalization our results 
to the geometrically finite case and some further results for nice maps. §10 is an 
appendix of technical topological results used in our proofs. 

Acknowledgments. — Recently G. Cui, Y . Jiang, and D. Sullivan [CJS] have also 
proven Theorem 1.2 for geometrically finite maps in a different context. Their methods 
are in some respects similar, but they do not make use of a canonical decomposition. 
The authors would like to thank Cui for providing a copy of their manuscript, A. 
Douady, D . Epstein, M. Lyubich, C. McMullen, B. Sevennec and M. Shishikura for 
many useful discussions, and MSRI for financial support. 

2. The decomposition and the reduction to three cases 

Let / be a rational map with Julia set J = J(f) and postcritical set V = V(f). 
For J' a continuum {i.e. a compact, connected set) in C , and P a compact set 

disjoint from J7, we say that J' separates P if either J' D P ^ 0, or J' fl P = 0 and 
there are at least two components of C — J' intersecting P. We say that J' separates 
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P irito exactly q parts if J' PI P = 0 and C — J ' lias exact ly </ components hitersecthig 
P. 

Let be a component of J/. We say that J' is critically separating if J ' séparâtes 
P. We say that two distinct components J' and J " of J are parallel. if they are bot h 
critically separating and the unique aririnlus component in C — (./' U J") (see Lemma 
3.1) does not intersect P. 

Définition (décomposition C = E U ZY, first step). Let be the union of Julia com
ponents J' such that ci t lier 

(1) J' DP / 0, or 
(2) J' DP = 0 and J ' séparâtes P into three or more parts, or 
(3) J' séparâtes P into exactly two parts and J' séparâtes no two Julia components 

which are parallel to ,/', i.e. ail Julia components J" parallel to J' are contained 
in the same component of C — ./'. 

\Ye think of J' as an extrenial Julia component. Set U — C — E. The set E may be 
empty. a. g. if J is a Cantor set. 

Examples. Let 

/o(.:) = : 2 + l ( ) - 9 c " : i (McMullen) and /,(.:) = - o ( : 2 - l ) o - + l ( r 1 1 : ~'\ 

The Julia set of f\ . in log(c )-coordinates. is shown in Figure 1. The Julia set of / 0 is 
homeomorphic to product of a Cantor set with a quasicircle (|Mcl|). 

For f\, the point at infinity and —1 forni the unique attracting cycle. There are 
five critieal points in the annulai* Fat ou component near the eentcr of the picture, 
which niaps to the Fat ou component eontaining zéro (at left) bv degree five. P is 
contained in the union of the dise fat ou component eontaining zéro (at left) and the 
immédiate basins of infinity (at far right) and —1 (the promineiit dise at right). The 
set E consists of a homeomorphic copy J f of tho Julia set of z2 — 1. at right. and its 
preimage J (at left) which is a threefold cover of J+ . ,/ f and J are parallel, J~ 
niaps to J f . and J f is fixed. 

FKU-RK 1. Julia set of - o (z2 - l ) o - + H ) - 1 1 ; - 3 
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Lemma 2.1. — If f is nice, the set E consists of at most finitely many Julia com

ponents, f{E) C E, f~xlA C IA, and every component of E is either periodic or 

preperiodic. 

This lemma will be proved in the next section. One can also show that E is closed 

and forward-invariant for any rational map / ; we omit the proof. 

Definition (decomposition of ZV, second step). — Define 

— A = |J {annular components of IA disjoint from V}; 

— T> = |J {disc components of IA disjoint from V}; 

— £ = |J {components of U not in A or V} 

= (J {non-disc non-annular components of ZY, 

or components of IA intersecting V}. 

— T>' == |J {disc components of U disjoint from V but intersect 

— £>" = (J {disc components of U disjoint from V U f_1E}. 

Note that U = AuT>U£ = AuVfUV"u£. 

Example. — Let f — fi- Then IA = C — E is decomposed into: 

— A = a single annulus, bounded by J~ and J + {A is not a closed annulus). 

— C = three disc components, each intersecting V. Two are disc components of 

IA containing the attractor at infinity and — 1 with boundaries contained in J + , 

and the other is the component of U containing zero with boundary contained 

in J~. 

— T> = T>" — the countable set of remaining components of £/, all discs with 

boundaries in E. 

— V = 0. 

The set f~XE consists of E plus two other components contained in A and parallel 

to components in E. 

Definition (decomposition of f~1A, third and final step). — We denote by 

— As, the union of components A' of f~xA such that A! c A and A! <—t A is not 
homotopic to a constant map, and 

— A°, the union of components A' of f~xA such that A' C A and A' ^ A is 

homotopic to a constant map. 

For fi, the set As consists of two essential subannuli of A, and the set A° is empty. 

Here is a more precise statement of Theorem 1.2. 

Theorem 1.2'. — Let f be a hyperbolic rational map and C = E UlA be the decompo

sition above. Let Jo be a Julia component. Set Jn = fnJo. Then exactly one of the 

following occurs: 

(1) Jn C E for n > no, in which case JQ is preperiodic, or 
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(2) Jn C As for n > n0, in which case J0 is a Jordan curve, or 

(3) there is a sequence —>• oo such that Jnje C U — As, in which case Jo is a 

point. 

If E = 0, £fte J^/za se£ J is totally disconnected. 

This decomposition is canonical and natural with respect to conjugation by Mobius 

transformations. While the first decomposition C = UUE is the same for any iterate 

of / , the further decomposition can change. 

The following lemmas will be proved in the next section: 

Lemma 2.2. — If f is nice, the sets C, A, V, As and A° all have finitely many 

components. 

Lemma 2.3. — Let f be a nice map. Then each component L of C contains a unique 

Fatou component W such that dW D dL and W HV = Lf)V. 

Lemma 2.4. — Let f be a nice map. Then every Julia component Jo is in one of 

the following four cases: let Jn = fn{Jo), 

Case 1. There is UQ such that Jn C E for U>UQ. 

Case 2. There is no such that Jn C A 5 for n > no-

Case 3 . Jn C A° U V for infinitely many n. 

Case 4. Jn C £ for infinitely many n. 

While these cases cover all possibilities, the last two are not mutually disjoint. 

This result tegether with Lemma 2.2 means that some finite part of the decom

position encodes a significant portion of the orbit of each Julia components. We are 

going to prove: 

Proposition (Case 2). — In Case 2, Jo is a Jordan curve if f is hyperbolic, or C — Jo 

has exactly two components if f is nice. 

Proposition (Case 3). — In Case 3, JQ is a point if f is hyperbolic, or C — Jo is 

connected if f is nice. 

Proposition (Case 4). — In Case 4J JO is a point if f is nice (in particular if f is 

hyperbolic). 

Our cases are also distinguished by our methods of proof. In Case 2, we extract 

a dynamical system consisting of a finite collection of annuli and covering maps and 

analyze this restricted system. Case 3 is similar to Case 2. Case 4 is more delicate. 

We actually prove a stronger result, Theorem 7.1, from which both Proposition [Case 

4] and Theorem 1.1 follow as corollaries. 

Theorem 1.2 and Theorem 1.2' are direct consequences of the above Propositions. 
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3. Topology and dynamics of the decomposition 

Throughout this section, / denotes a nice rational map. We first prove Lemmas 
2.1 and 2.2, and then analyze the topological and dynamical possibilities for the sets 
in our decomposition in order to prove Lemmas 2.3 and 2.4. We will frequently use 
the following result from plane topology (see [Ne] for a proof) : 

Lemma 3.1. — For a nonempty set J of disjoint continua J ' in S2, every component 
of S2 — J1 is a disc (simply connected). Given J' and J" two disjoint continua, the 
set S2 — (J ' U J") has a unique annulus component A(J*,J"), the component J" is 
contained in a component U' of S2 — J', and 

U1 = A( J ' , J") U J" U [J{V \V is a component of S2 - J" and V n J' = 0}. 

/ / J ° is a continuum disjoint from J' U J" but separating J' and J", then 

A(J', J") = A(J\ J° ) U A(J°, J") U J ° U 

( J { F | V is a component of S2 - J° and V n (J' U J") = 0}. 

Proof of Lemma 2.1. — Since / is nice, there exists a compact set B C C such that 

(1) B has finitely many connected components, 
(2) B D and each connected component of B intersects 
(3) B contains every Julia component intersecting V and no other Julia compo

nents. 

B may be taken to be the union of Julia components intersecting V together with 
the suitable preimages of the following: closed, forward-invariant neighborhoods of 
attracting and superattracting basins; closed, forward-in variant attracting parabolic 
petals, invariant closed sub-discs of Siegel discs containing points of and invariant 
sub-rings of Herman rings containing points of V. Then a Julia component J is 
critically separating if and only if it is either contained in B, or is disjoint from V and 
separates components of B. 

An easy induction argument shows that the number of Julia components J' which 
separate B into three or more pieces is finite and bounded by k — 2 if B has k 
components. Such Julia components are in E by definition. 

Now we deal with the Julia components in E that separate B into exactly two 
parts. By a method similar to the above, one can prove that if each continuum of the 
set is disjoint from B and separates B into exactly two parts, and no two continua are 
parallel (relative to B), then this set of continua is finite. Now assume J ° C E and 
J° separates V into two parts. We will see that among the Julia components parallel 
to J ° at most one of them is contained in E. Let J 1 , J2 be two distinct parallels of 
J°. Since J ° does not separates its parallels, J1 and J2 are contained in the same 
component of C — J ° . There are two possible cases: 
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(a) The component J1, say, separates J ° from J2. Then, according to Lemma 3.1, 

J1 is contained in A( J ° , J2) and J1 ^ A( J ° , J2) is homotopically non trivial. Since 

A ( J ° , J 2 ) D P = 0, the component J1 is also parallel to J2. So J1 separates V into 

exactly two parts, and separates parallels of J1. Thus J1 is not contained in E. 

(b) We have J1 C A ( J ° , J2) but J1 does not separate J° U J2 (therefore J2 C 

A ( J ° , J1) but J2 does not separate J° U J1) . This is impossible for the following 

reason: The annulus A(J°, J2) contains J1 and all but one (disc)-components of 

C — J1. Since J1 is critically separating, at least one of these components contains 

points of V. So A(J°, J2) n V ^ 0. This is a contradiction to the assumption that 

J ° and J2 are parallel. 

So E contains at most finitely many components that separate B into two or three 

parts, hence E has at most finitely many components. 

The following lemma implies that f(E) C E; since U = C — E, f~xU C U. 

Therefore each component of E is either periodic or preperiodic. If E is not empty, 

it consists of finitely many periodic cycles of Julia components, and some (finitely 

many) of their preimages. • 

Proof of Lemma 2.2. — If E = 0, we have £ — C and A — V = 0. There is nothing 

to prove. 

Assume now E ^ 0. Since f~xE has finitely many components, so is T>'. It 

remains to prove that A U £ has finitely many components. Using the notation in 

the proof of Lemma 2.1, the set V is contained in B, which consists of finitely many 

connected components and contains finitely many Julia components. Let U be a 

disc-component of £ intersecting V. Then either U contains a component of B, or 

U contains a preimage of a closed parabolic attracting petal containing points of V 

used in the construction of B. Since the number of components of B and the number 

of such petals is finite, the number of disc-components of £ intersecting V is finite. 

The other components of A U £ are precisely the non simply connected components of 

C — E. Since E consists of finitely many components, only finitely many components 

of C — E can be non simply connected. • 

Lemma 3.2. — If a Julia component J' is critically separating then f(Jf) is also 

critically separating. If f{J") of a Julia component J1' separates V into two parts and 

separates the parallels of f{J"), then either J" does not separate V or J" separates 

the parallels of J" and separates V into two parts. 

Proof — We prove that if f{J') is not critically separating then neither is J'. If 

J1 nV 7̂  0 then f(J')C\V 7̂  0. Hence we may assume that J' and f(J') are disjoint 

from V. Assume that V is contained in one (disc)-component of C — / ( J ' ) - There 

is a Jordan curve 7 separating f(J') and V. Let C be the disc-component of C — 7 

containing / ( J ' ) « Since C C\V = 0, every component of / - 1 ( C ) is again a disc, and 
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again disjoint from V since f~1V Z> V. One of them, say bounded by 7', contains J'. 
Thus J' does not separate V. 

Now we prove the second statement of the lemma. By assumption C — /(J") has 
exactly two components U1 and U2 intersecting V, and there are Julia components 
J1 C U1 and J2 C U2 parallel to / ( < / " ) • Then A(JX ,J2) n V = 0, since, according 
to Lemma 3.1, A(J1, J2) is the union of A(J\/(J")), ^ ( / ( J " ) , < J 2 ) , / ( J " ) and the 
components of C — f(J") distinct from U1 and C/2, and none of these sets intersects 
V. 

Now each component of f~1(A( J1, J2)) is again an annulus, and again disjoint 
from V. One of them, say A " , contains J", and the components of dA" are contained 
in two distinct Julia components J[ and J'2 which are separated by J". 

Since all but two components of C — J" are contained in A11, and A" DV = 0, the 
component J" separates V into at most two parts. If it does separate P , so do J[ 
and J'2. Hence J[ and J2 are parallel to J". • 

Lemma 3.3. — Suppose f : S2 —> S2 is a branched covering, U,V C S2 are finitely 
connected open subsets with f(U) — V and f\U : U —• V proper. Then f(dU) = <9F 
and / maps connected components of dU onto connected components of dV. 

Remark. — A subtlety is that the map / : dU —• dV need not be open in the subspace 
topology, in other words, a component of dU may be a proper subset of a component 
of f-^dV). 

Proof. — That f(dU) C dV follows by properness. Since / (17) = V , f{dU) C <9V\ 
and / ( { / ) is a closed subset containing V, we have f(dU) = Finally, let iif' be 
a boundary component of 17" and let K be the component of dV containing f(K'). 
Since / is a branched covering and V has finitely many boundary components, there 
are open annuli A' C [7, A C V such that Kr,K are boundary components of A ' , A 
respectively and / : A' —• A is a covering map. Then f\A' : A' ^ A satisfies the 
hypotheses of the first conclusion, so f(dA') = <9A It follows easily that f(K') = 
A \ • 

Lemma 3.4. — Given any integer n and any component V of f~nU, any Julia 
component is either contained in V or disjoint from V. The boundary dV has finitely 
many components, and each component is contained in a different Julia component 
which is disjoint from V. 

Proof. — fn(Y) is a component of U and the mapping fn : V —• fn(V) is proper 
and finite-to-one. Hence V has finitely many boundary components since fnV E U 
has finitely many boundary components. Since fn preserves the Julia components, a 
Julia component intersecting both V and dV would be mapped to a Julia component 
intersecting both fn(V) and dfn(V), which is impossible. • 
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Lemma3.5. — Any Julia component J° not in E separating EUV is disjoint from 

V and critically separating. 

Proof. — Since J° is not in E, if it separates E it must separate components of E. 

Assume that J1 and J2 are two Julia components in E, separated by J ° . Then there 

is a component U% of C — J° containing J2, i = 1, 2, and U1 C\U2 = 0. By Lemma 3.1 

the set U1 contains all but one component of C — J1. Since J1 is critically separating, 

U1 D V / 0. Similarly C/2 D P 7̂  0. Thus J° separates P . 

Assume now J1 is a Julia component in E and x G P such that J1 and x are 

separated by J ° . One can show similarly that J° is also critically separating. • 

Lemma 3.6. — Critically separating Julia components are contained in EuAEL\As. 

Proof — Here we denote by UV the set of z £ U for which f{z) G V. 

We show at first that those Julia components are contained in EuA. If J1 C\V 7̂  0 
then J' € E by definition. Thus we may assume that J' n V — 0 and that J ' is 

critically separating and is not in E. Then there are exactly two components U1 and 

U2 of C - J' meeting V, and each Ul contains parallels of J'. Set Pl — Ul C\ V. We 

will construct a component of A containing J'. 

For i = 1 and 2, let 

= { [ / I {/ is a component of the complement 

of some Julia component and U HV = P1}. 

Set W« = U uem U-
Here we apply the topological result Lemma A . l to conclude that Wx is an open 

disc which is also an element of Wl and is in fact the unique maximal element. Because 

each U1 contains parallels of J', we have dW1 n dW2 = 0 and W1 U W2 — C . Thus 

W1 n W2 is an annulus. To show that this annulus is a component of A, we just need 

to show diW1 H W2) G E smdW1 DW2 HE = 0. 

Denote by J1 the Julia component containing dW1i = 1,2. 

Assume by contradiction that J1, say, is not contained in E. Since W 1 , as a 

component of C — J1, meets only part of V, the Julia component J1 is critically 

separating. By definition of E, the only possibility for J1 not being in E is that there 

is another component W of C — J1 such that P2 = V — P1 is contained in W, and 

there is a Julia component J° C W parallel to J1. Thus C — J° has a component 

U containing J1 UW1. Furthermore U CiV = W1 HV = P1 (Lemma 3.1). In other 

words, U is also an element of W 1 . This contradicts the fact that W1 is the maximal 

element of W 1 . 

Thus d(Wx nW2) C E. Now any critically separating Julia component in W1 DW2 

would also separate J1 and J2, therefore separate V into two parts and be parallel 

to both J1 and J2. So W1 fl W2 contains no component of E. As a consequence, 
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W1 n W2 is an annulus component of C — E disjoint from V. By definition, W1 f l W2 

is a component of A. 

So J' C A. Thus every critically separating Julia component is contained in E U A. 

Now A is decomposed into AE U As U A° U A £ U AV. For any Julia component 

J' in .AC U AX*, we have / (J ' ) C CUT). Hence f(J') is not critically separating. By 

Lemma 3.2, the component J' is not critically separating either. Since the inclusion 

map of each component of A° into A is homotopic to a constant map, and A is 

disjoint from no continuum in A° can be critically separating. 

Thus all critically separating Julia components are contained in E U AE U As. • 

Lemma 3.7. — For U a component of C\JT>, there is a unique component UR of 

f~xti which we call a reduced component with the following properties: 

(1) UR C U, dU C dUR, and each component of dU is a component of dUR; 

(2) If U n f~xE = 0 then UR — U. Otherwise UR is the complement in U of the 

union of finitely many disjoint full continua, each of which is contained in U; 

(3) (U -UR)DV = 0; 

(4) IfU is a component of £ then f(UR) is also a component of C. In particular, 

f{8C) C 8C. 

(5) f(UR) is a component V ofU, f(dUR) = dV, and f maps connected compo

nents of dUR onto connected components of dV. 

(6) There are finitely many components U in T> such that U fl f~1(V U E) ^ 0. 

For any such U, f(UR) is a component of CU A. 

Proof 

(1) and (2) Note that f~xU = C - f~xE. If U n f~xE = 0, the set U is also 

a component of C — f~xE (since f~xE D E), and we set UR = U. Otherwise, let 

C*i , . . . , Ck denote the components of f~xE which are contained in U. Lemmas 3.5 
and 3.6 imply that no Ci separates components of dU. Hence for each i, there is a 

unique component Vi of C — Ci containing dU. Let Ki — C — V* and K — UiKi. 

Lemma 3.1 implies that either Ki fl Kj = 0 or Ki C Kj or Kj C K{. Each Ki is full 

since Vi is connected. Then UR := U — K has the first two properties in the lemma. 

(3) Now we show that no component of dUR separates (VnU)UdU. This is trivial 

for components of dUR which are also components of dU. For the other components 

of dUR, if this does not hold, there would be a Julia component J' in U separating 

VUE, and thus J' would be critically separating (Lemma 3.5). This is impossible by 

Lemma 3.6. Therefore URnV = U HV and (U - UR) n V = 0. 

(4) Assume now that U is a component of C. f(UR) is a component of U. By 

definition of £ , either U D V ^ 0 or U is neither a disc nor an annulus. In the first 

case 

f(UR) f l ^ D f{UR C\V) = f(U n ? ) / 0 , 
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so f(UR) is again a component of C. In the second case, either UR П f~xV Ф 0 
(in which case f(UR) П Р / 0 and hence f{UR) is in £ ) , or f : UR -± f(UR) is an 
unbranched covering. Since £/ is not a disc or annulus neither is UR. Any covering 
over a disc (resp. an annulus) is again a disc (resp. an annulus), so f(UR) is neither 
a disc nor an annulus and hence f(UR) is a component of С 

(5) This follows immediately from the properness of / : UR -> V and Lemma 3.3. 

(6) Suppose U П f~x(V U E) ф 0. If U D f~xE ф 0, then U is a component of 
T>'. Otherwise U contains a Fatou component intersecting V. By the No Wandering 
Domains theorem, the number of such Fatou components is finite, hence the number 
of components U of the latter type is finite. Combining with the fact that V has 
only finitely many components (Lemma 2.2), we get the finiteness. Now if f(UR) was 
an element of T>, then f(UR) would be an open disc disjoint from V and J5, hence 
U would be an open disc disjoint from f~1(V U E). Hence f(UR) is a component of 
AuC. • 

Lemma 3.8. — Let A be a component of A and S+ be a component of dA. Then 
there is a unique component A+ of f~xlA with the following properties: 

(1) A+ С A and 6+ С дА+; 
(2) Either A+ is a component of As or A+ is a component of AC, i.e. f{A+) is 

a component of A or C; 
(3) f(dA+) = df(A~*~) and f maps connected components of дА+ onto connected 

components of df{A+). Thus f maps boundary components of components of 
As onto boundary components of components of A or С 

The proof is similar to the one above. 

Lemma 3.9. — Assume E ф 0. For U a component oflA, the set f(U) is again a 
component oflA if and only ifU C\f~xE = 0. Either there is a minimal integer к > 0 
such that fkU П f~xE ф 0, or some iterate V of U is a periodic Fatou component. 
In the latter case, V is finitely connected, is itself a component oflA, and either 

(1) V C\V Ф 0, and V is a component of С which is either a simply-connected 
attracting or parabolic basin, or a Siegel disc or Herman ring intersecting V, 
or 

(2) V (IV = 0, and V is either a Siegel disc and a component of ТУ, or a Herman 
ring and a component of A. 

Proof. — If UDf^E ф 0 then f(U)(lE ф 0, and so f(U) can not be a component 
of IA = С — E. Otherwise U П f~~1E = 0 and so U is a component of f~xlA which 
maps properly under / onto a component of IA. 

Assume now that for every n > 0, fn(U) П f~xE — 0. Then fnU is a component 
of IA for every n > 0. By Montel's theorem the family {fn\u}n is then normal (since 
E is uncountable if it is nonempty), so U coincides with a Fatou component (since 
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dU C J). By the No Wandering Domains Theorem, some iterate V of U is a periodic 

Fatou component, and so V is a component of C. Since components of U are finitely 

connected, V is finitely connected. The Lemma then follows from the classification of 

periodic Fatou components and the fact that attracting or parabolic basins are either 

simply connected or infinitely connected ([Be], §7.5). • 

The following lemma is a more precise version of Lemma 2.3: 

Lemma 3.10. — Assume E / 0. Let LQ,L\, . . . ,Lm be the (finitely many) compo

nents of C. Then each Li contains a unique Fatou component Wi such that dWi D 

dLi. Moreover the components of dLi are precisely the components of dWi separating 

V. 

We say f*(Li) — Lj if f(LR) = Lj. In this case every Li is preperiodic under 

/* and f(Wi) = Wj. Furthermore, if {L0, ••• ,Lp-i} is aperiodic cycle of f*, then 

either 

(1) Lf = Li for all 0 < i < p — 1, in which case Wi = Li and either 

(a) Wi f l P / 0 for all i, in which case Wi is a simply connected attracting 

or parabolic basin, a Siegel disc or a Herman ring intersecting V, or 

(b) Wi H V — 0 for all i, in which case Wi is a Siegel disc or Herman ring 

disjoint from V; or 

(2) Lf ^ Li for some i, in which case Wi is an infinitely connected attracting or 

parabolic basin for each 0 < i < p — 1. 

Proof — By Lemma 2.2 the set C has only finitely many components. By Lemma 3.6 

no Julia component separates dLi (resp. dLf) or is critically separating. Corollary 

A.5 implies that there is a unique Fatou component Wi (resp. WR) such that Wi C Li 

and 8Wi D dLi (resp. WR C L? and dWtR D & L f ) . 

By Lemma 3.7, we have dLf Z> dLi, thus by uniqueness with respect to the 

property of containing dLi, we have WR = Wi. 

Note that every connected component of dWi is either contained in dLi or is 

contained in Li. Since no Julia component in Li is critically separating, and every 

component of dLi is critically separating, the components of dWi separating V are 

precisely those in dLi. 

If fXu) = Lj, by uniqueness of Wj, we have f(Wi) = f(W?) = Wj. 

By Lemma 3.7, for any i, f(LR) is again a component of C, thus coincides with 

some Lj. So f*(Li) is well defined for each i. Since there are only finitely many 

components in £ , each of them is eventually periodic under / * . 

Let { LQ ,..., Lp-1} be a periodic cycle of / * . Then { W o , . . . , Wp-1} forms a periodic 

cycle of Fatou components. 

If Lf — Li, 0 < i < p—1, then the conclusion (1) follows by Lemma 3.9. Otherwise, 

Lf has at least two boundary components, hence Wi has at least two boundary 

components. Wi cannot be a Siegel disc or Herman ring. For in these cases, dWiDV ^ 
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0 and so Li = Wi is itself a component of ZY, contradicting Lf ^ Li for some z. Hence 

Wi is either an attracting or parabolic basin with at least two boundary components, 

hence is infinitely connected. • 

For our example f — fi above, £ has a periodic cycle of period 2 formed by the 

Fatou components containing infinity and - 1 . 

Proof of Lemma 2.4. — Since f{E) C E, if Jno C E for some no, then Jn C E for 

all n > no- This is our case 1. 

Assume now Jn C U for all n. Assume furthermore that Jo is not in Case 2, that 

is, Jn n As = 0 for infinitely many n. We are going to show Jn C A° U V U £ for 

infinitely many n (so Jo is in Case 3 or 4 or bo th) . 

We show at first that Jn C A° U V U £ = A° U £>' U V" U £ for infinitely many n. 

Denote by AB the set of z G A for which / ( z ) G i5. We have Jn n AE = 0 for all n. 

If Jn C AV U A £ for some n, then Jn+i C 2> U £ . Since 

U = AE U As U A° U AV u AC U D u £ , 

we are done. 

We now show that if Jn C £>" for infinitely many n, then Jn C CUV' for infinitely 

many n. Assume Jni C for D a component of V". By definition, n f~xE = 0. 
By Lemma 3.7, either f(D) is a component of V U (this corresponds to the case 

D n f~xV = 0), or / ( ! } ) is a component of £ . As a consequence of Sullivan's non-

wandering domain theorem, there is an integer 0 < k < oo such that D, f(D), . . . , 

fk~1(D) are components of V" and fk(D) is a component of £>' U £ . Therefore 

Jn1+* C D ' U £ . • 

4. Analytic preliminaries 

We now restrict to the case when / is hyperbolic. The results generalize to geomet

rically finite maps; the Poincaré metric p is replaced by a more complicated metric 

for which the map is still expanding (cf [TY] and §9). 

Recall that / is hyperbolic if and only if J DV — 0. If \V\ = 2 then / is conjugate 

to zn and J is connected. Moreover, C — V is connected. Let p\dz\ denote the 

Poincaré Riemannian metric o n C - ? , dp(x,y) the corresponding distance, and lp{^) 

the length of a curve with respect to p. Then / : C — /_1( /P) - » C — V is expanding 

with respect to p. If B is the subset given in the proof of Lemma 2 . 1 , then since / is 

hyperbolic we have V C B C £ fi (C - J), and / : C - /_1( int (Z?)) -> C - int(J3) 

expands p uniformly by some definite factor À > 1 . The inverse of / is then uniformly 

contracting, in the following sense: if 7 : [0,1] C — int(i?) , then ^(7) < (1/Xn)lp(/y) 

for any lift 7 of 7 under fn. This observation will be the main tool in our proofs of 

Propositions [Case 2] and [Case 3]. 
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If U is a path-connected subset of C — V, we define the path metric d p a t h ^ x , y) 

on U with respect to p by 

d p a t h ^ x , ? / ) = inf{/P(7) | P : [0,1] -> U, 7(0) = x, 7(1) = v}-
7 

Lemma 4.1. — Let Jf be a periodic or preperiodic Julia component and U a com

ponent of C — J'. Then there is a C1 Jordan curve 7 : S1 —> U — B, a continuous 

surjective map h : S1 —> dU and a constant L depending on U, such that for each 

t G S1 j one can find a path rjt : [0,1] —> U with p-length at most L, such that 

!7t(]0,1]) c U, /7.(0) = h(t) and 77,(1) = y(t). 

Recall that we have a partition E U U of C , and A U X> is the union of disc and 

annulus components of U disjoint from V. Moreover d(A UV) C E, and E consists 

of finitely many preperiodic Julia components. 

Corollary 4.2. — Each component U of A,T>,A°, and AS has finite path-diameter 

relative to p, and each has locally connected boundary. 

Proof. — We first assume that J' is fixed and that the ideal boundary (cf. [Mcl]) 
of U is also fixed by / . In other words, there is a component U' of f~1U such 

that U' C U, but dU C dU' and f{dU) = dU. We have f(U') = U. Choose 

7 = 70 : S1 —> U such that the annulus A between dU and 7 ( 5 1 ) contains no points 

of f^B. Denote by A' the component of f~xA such that A! C U' and dU C dA!. 

We may adjust 7 so that A' C A, see [Mc l ] . 

Choose x1 € A' such that f(x') = 7(0) . The degree d — d e g ( / : A' A) is a 

positive integer. We define 71 (t) so that 71 (0) — xf and / ( 7 1 ( f ) ) = 7 ( d * t). Let 

i70 : [0,1] x S1 -> A be a C1 map such that ii"o(0, •) = 71 and H0(l, •) = 7. 

Since / : A ' —> A is a covering, one can lift Ho to get Hi : [0,1] x S1 —» ^4' such 

that i f i ( l , - ) = Ho(0, • ) . Define 72(0 = -ffi(0, • ) . One can then define i ? n - i and 7n 

by induction. 

To control the convergence, we proceed as follows. For each t0 6 S1, the /?-length 

of the curve {^0(^,^0)5 s G [0,1]} is finite, depending continuously on to G S1. So 

it has a finite maximum, say C. For t G 5 1 , dp{^n{t), 7n_i(£)) is smaller than or 

equal to the length of the curve {Hn(s,t), s G [0,1]} which is smaller than or equal 

to C" /An-1 . So {7n} forms a Cauchy sequence. 

Therefore 7n(£) converges uniformly to a limit map, /1, and the path distance 

between 7 ( f ) and 7n(£) is uniformly bounded by C'X/(X — 1 ) . 

To define 77* for each t G 51 , note that the set ft(£) U (Un>o U«?e[o,i] Hn(s,t)) is an 

embedded closed arc with finite length. Reparametrizing it we get 77(f). 

For periodic J' or periodic ideal boundary, we consider an iterate of / . For prepe

riodic cases, we pull back the curves given by the result for the periodic cases. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



364 K. PILGRIM & TAN LEI 

5 . Proof of Proposition [Case 2] 

This is the case where a Julia component Jo satisfies Jn = /n( Jo) C As for n> TIQ. 

We may assume no = 0. 

Part I, f is hyperbolic. — We will show that J0 is a Jordan curve. 

Recall that As consists of components of / - 1 A parallel to some components of A. 

Denote by A i , A2,..., Ap the components of A s , and by Aij the set of points z 

such that z G A*, f(z) G Aj. 

If Aij 7̂  0, it is an essential subannulus of Ai, and / : Aij - » A / is a covering. For 

f : Ai —> f(Ai) is a covering, / ( A * ) is a component of A and A , is a subannulus of 

f(Ai) parallel to f(Ai). 

For each Aj, choose 7̂  : S1 —> A7 an injective homotopically non-trivial C1 curve. 

For each i such that Aij / 0, choose Xij G A ^ such that f(xij) = 7 ^ ( 0 ) . Then the 

homotopy classes of 7» and 7̂  determine uniquely generators for 7Ti(A^) and -k\(Aj). 

The degree = d e g ( / : Aij —> A^) is then a positive or negative integer. Define a lift 

7ij(t) of jj so that 7^(0) = ar^ and f(cdj(t)) = jj(dij • £). Let : [0,1] x S1 -•> A* 

be a C1 map such that Hij(0, •) = 7» and i ^ ( l , •) = 7^. 

Let a = (aocii • • ) be any infinite sequence such that for all n > 0 we have 1 < 

an < p and Aanan+1 ^ 0 and call such a sequence admissible. 

For n > 0, denote by Tn = Tn(a) the set of points z such that / ^ ( z ) G Aak for 

0 < < n. Then Tn+i is an essential subannulus of Tn for n > 0 and / n : Tn -> Attn is 

a covering. The curve 7ao determines a generator for ni(Tn) and we let dn = d e g ( / n : 

Tn -> Aari); it can be a positive or negative integer. 

Set J' — J'(a) — C\nTn. Since Tn forms a nested sequence of compact connected 

sets which are critically separating, J' is also compact connected and critically sepa

rating. We will show that either J' C <9T/v for some N, or J; is a Jordan curve, and 

a Julia component. The proof is split into several lemmas. 

Lemma 0. — For each n > 0. there is a (parametrized) C1 curve Cn(t), and for n > 1, 

a homotopy Gn : [0,1] x —y Jn—1 such that £n(S^) C Tn C Aao, 

G n ( M ) = Cn(t). Moreover / n ( C n ( 0 ) = lan (dn • t). 

Proof. — Set Co = 7a0- Assume we have constructed Cn-i and Gn-\. Since the 

map /n_1 : Tn-i -> Aan_1 is a covering, mapping Tn onto Aan_lian, one can lift the 

homotopy Han_uan to a map Gn : [0,1] x S 1 ^ Tn- i with Gn(0,£) = Cn-i(*)- Set 

£n(t) = Gn(l,t). These are the maps required by the lemma. Finally, by our choice 

of generators of fundamental groups, we have fn(Cn(t)) = 7ari(dn -1). • 

Next, by our choice of B (in particular B n J — 0) we have |J Ai C C — B and 

A^ C C — f~1(B) for all possible pairs ( i , j ) . By Corollary 4.2, there is a positive 

number M such that for i — 1 , . . . , p , the path diameter of Ai G A 5 with respect to p 
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is at most M. Moreover, on As C C — / 1(mk{B)), f expands p by a definite factor 
A > 1. 

Lemma 1. — The curves Cn(t) defined in Lemma 0 converge uniformly to a continuous 
map C : S1 —> Aao. 

Proof — For each possible pair (i, j ) , the p-length of the curve {Hij(s, to), s G [0,1]} 
is finite, depending continuously on to G S1. So it has a finite maximum. Let C be 
the maximum of the p-length of the curves among all possible couples and all 
to G S1; it is again finite. For t G S1, dp(Cn(t),Cn-i(t)) is less than or equal to the 
length of the curve {Gn(s,t), s G [0,1]} which is smaller than or equal to C jXn~x. 
So {Cn} forms a Cauchy sequence. • 

Choose a base point x± in each component of dAao. Denote by 5+ (resp. 6~) the 
component of dTn which either contains x+ (resp. x~) or which separates x+ (resp. 
x~) and Tn. Denote by Dh the Hausdorff distance on compact subsets of C — int(B) 
with respect to the metric dp. By definition 

Dh{F,G) — max ( maxmindp(x,y) , maxmindp(x,y) ) . 

Lemma 2. — For every e > 0, there exists an N independent of a such that for every 
n>N, DH(J',5+) <s, DH{J',$n) <z <™d DH(J',Tn) <e. 

Lemma 3. — DH(J'', CnOS1)) 0. 

Proof of Lemmas 2 and 3. — Fix y G <5+. We first show 

min dp(x,y) < M/\n. 
xEJ' 

Let yn = fn(y),n > 0, and for each n choose xn G / n ( J ' ) - Then for each n, there 
is a path nn : [0,1] -> Aan such that 7 ^ ( 0 ) = yn, nn(l) = x ^ ^ Q O , 1[) C_Aan, and 
lP(Vn) < M. For any n, / ^ ( / n ( J ' ) ) n Tn = J', since /n(f | fc T*) - f l* / n ? V Hence 
there is a lift rjn : [0,1] -> Tn of 77n under / n joining y to some point x'n G J'. Hence 
by expansion 

minc^Oz,?/) <Eu, :— Eu^i^mp< lp{rjn) < M/Xn. 

Hence 

max min dp(x, y) < M/Xn. 

A similar argument bounds maxxGj, minyeS+ dp{x, y) by the same quantity. The 
remainder of the two lemmas are proved similarly. • 

Lemmas 1 and 3 imply that C(^'1) — J'- As a consequence, J ' is locally connected. 

Lemma 4. — Either J' coincides with one boundary component o /T/v for some N, or 
J' C Tn for all n. In the second case, J' is a Jordan curve, and a Julia component. 
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Proof. — We first show J' C J. First, dJ' C J since dTn C J for all n and J is 
closed. Second, J ' = <9J'. For otherwise there is a nonempty component W of int(J ' ) . 
Then W (Z Tn for all n, and as a consequence fn(W) c A for all n. Thus { / n } is 
normal on I f . So coincides with a Fatou component. But for a hyperbolic map 
every Fatou component is eventually attracting, and meets eventually V, contradicting 
AnV = 0. 

There are thus two possibilities: either J' C 8TN for some iV, or J ' C Tn for all 
n. In the first case J' coincides with one boundary component of 7 \ for all k > N 
(Lemma 2) . In the second case, J' must be a Julia component. For otherwise, J' is 
a nonempty proper closed subset of some Julia component J"; if x G J" — J' then 
DH(X,J') > 0, and hence Lemma 2 implies that for some n, dTn either separates 
x and J ' or dTn contains x. But this implies that J" intersects dTn, hence J' is 
contained in a boundary component of Tn, violating our assumption. 

Moreover, Lemma 2 implies that C — J' has exactly two components Ui,U2, and 
dUi = dU2 = J'. The lemma below (pointed out to us by M. Lyubich) allows us to 
conclude that J' is a Jordan curve. • 

Consider now our Julia component Jo such that Jn C As for all n. It determines an 
admissible sequence a = (ao«i • • • ) by setting an = m if Jn C Am. Then Jo = J'{a), 
and it is a Jordan curve. 

Remark. — The proof actually shows much more; see §8. 

Part II, f is nice. — Let Jo be a Julia component such that Jn C As for all n. Define 
Tn to be the component of f~nU containing Jo (it is in fact the same Tn as in Part 
I) . Then each Tn is an open annulus, contained essentially in Tn_i . With the help of 
Sullivan's non-wandering domain theorem, one can show easily that Jo = f]n Tn. On 
the other hand, since Jo is disjoint from 9Tn C f~n(E) for all n, there is a sequence 
nk —» oo such that Tnfe C Trtk_1. Therefore C — J0 has exactly two components. 

Lemma 5.1. — Assume that K is a closed subset of C satisfying either conditions 
a) and b) or condition c): 

a) K is the common boundary of two disjoint open connected sets U\ and U^-
b) K is locally connected. 
c) C — K has exactly two components V\ and V2 and each point of K is accessible 

from both V\ and V2. 
Then K is a Jordan curve. There are counter examples if one of the above condi

tions is not satisfied. 

Proof. — Condition a) shows that U\ and U2 are simply connected and K is compact 
connected. By b) and Caratheodory's theorem, a Riemann map <f> : A —> U\ extends 
continuously to the boundary, and the extension is locally non constant. But the 
extension is also injective, for otherwise the image by <f> of a pair of distinct radial 
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segments of A would form a Jordan curve v and each component of C — v would 

intersect £/2. The contradicts the fact that v n U2 = 0 and U2 is connected. 

For a proof in condition c) case, see Newman ([Ne]), Theorem 16.1. • 

6. Proof of Proposition [Case 3] 

This is the case where a Julia component Jo satisfies Jn = fn(Jo) C A° U T)1 for 

infinitely many n. 

Part I. f is hyperbolic. — We will need the following variant of Lemma 1.4; the 

difference is that we do not assume Q{ is full. 

Lemma 6.1. — Let f be a hyperbolic rational map and Q = uf=1QZ be a finite family 

of disjoint path-connected subsets of C such that 

(1) Qi n V = 0 for each i, 

(2) the inclusion maps ii : Qi —> C — V are homotopic to constant maps, and 

(3) the path-diameter of each Qi with respect to dpath^. is finite. 

Then any connected set J satisfying fn(J) C Q for infinitely many n is a point. 

Proof. — We may assume Qi Pi B — 0, where B is a closed neighborhood of V 

constructed previously. Then since / is hyperbolic, / expands p uniformly by some 

factor A > 1 on C — /_1(int(J3)) . Let Jn = fn(J) and let Qn denote the component 

of Q containing Jn. Choose x0,yo £ Jo and let xn — fn(xo),yn — fn(yo)- Let M be 

an upper bound on the path-diameters of the Qi with respect to p. Then for each n, 

there is a path rjn : [0,1] —>• Qn, rjn(0) = xn\ nn(l) = yn for which lp(rjn) < M. Since 

Qn ^ c - P is homotopic to a constant map, for each n there is a lift r)n of r]n under 

fn joining XQ to 2/o- By expansion, 

dP(x0,yo) < lP(Vn) < lp(r)n)/Xn < M/\n 0. 

Hence xo = yo and J is a point. • 

Now assume that J0 is a Julia component for / , and Jn C A° U T>' for infinitely 

many n. By Lemma 2.2 the set A° UX>' has finitely many components, each of finite 

path diameter by Corollary 4.2. The above Lemma then applies and hence Jo is a 

point. 

Part II. f is nice. — For each component U of A° C A, take a simple closed curve 7 

which is a generator of the fundamental group of U. Then C — 7 has exactly one disc 

component V contained in A. The set U = U U V is an open disc contained in A (so 

is disjoint from V. Therefore the enlarged set A° U V consists of finitely many open 

discs disjoint from V. The rest of the proof is very similar to Part II in the proof of 

Proposition [Case 2]. We omit the details here. 
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7. Proof of Proposition [Case 4] and Theorem 1.1 

In this section we derive Theorem 1.1 and Proposition [Case 4] from 

Theorem 7.1. — Let f be a rational map (not necessarily hyperbolic or nice). Let 
W be the union of finitely many Fatou components Wo,..., Wm such that 

(1) / ( W ) C W; 
(2) each Wi eventually lands on an attracting or parabolic periodic basin under 

iteration of f, and Wi ( 1 P / 0 for all i; 
(3) for each Wi, only finitely many components K\^,..., Km^i of C — Wi intersect 

V. 

Then there is a finite union Q of disjoint full continua in C — V such that any Julia 
component Jo satisfying fn(Jo) C I J i ~~ U j = i -^ j , * ) for infinitely many n passes 
infinitely often through Q, and is a point. 

Proof of Theorem 1.1. — Let Wo be the basin of infinity of the polynomial / . It 
is a fixed attracting component, and infinitely connected. Since only finitely many 
components of IC — C — Wo intersect V, we may apply the above theorem to prove 
that every Julia component of / passing infinitely many times through Uo is a point, 
where 

Uo = Wo U {K | K is a /C-component disjoint from V}. 
On the other hand, every Julia component is the boundary of a /C-component. So 
every /C-component passing infinitely many times through Uo is a point. But in this 
particular case, we know also that the orbit of a /C-component either stays entirely in 
Uo or lands eventually on a /C-component intersecting V, which is preperiodic, since 
there are only finitely many of such /C-components and the union of them is forward 
invariant. • 

Proof of Proposition [Case 4]- — Let / be a nice map and Jo be a Julia component. 
Assume that Jn = / n ( J o ) C C for infinitely many n. For each component Li of C, 
Lemma 3.10 provides a unique Fatou component Wi such that Wi C Li and dLi C 
dWi. The union of these W^s satisfies the conditions of Theorem 7.1. Moreover, 
in the notation of the statement and the proof of the theorem, we have Li — Ui — 
^ ~ - U j = i Kjj. Therefore we can apply Theorem 7.1 to conclude that Jo is a point. • 

We now start the proof of Theorem 7.1. — We will use the following notation. Let 
5 be a closed subset of S2 and W be an open connected subset of 52 . Define 

U(W, S) = W U [J{K I K a component of S2 - W such that K n S = 0}. 

Then U(W, S) is an open set. 
For i — 0,... ,m, set Ui — U(Wi,V) = C — Uj=i Our aim is to find a compact 

set Q satisfying the properties in the theorem. We then apply Lemma 1.4 to obtain 
the result. 
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The proposition below is proved in the Appendix. 

Proposition 7.2. — Let W be a Fatou component of a rational map f. Suppose that 

V H (C — W) is contained in the union K\ U • • • U Kr of finitely many connected 

components of S2 — W. Let W be a connected component of f~1(W) and let U = 

U{W,V) andU' = U(W',f-1(V)). Then 

(1) U and Uf are connected open subsets with finitely many boundary components; 

(2) / : U' -> U is proper, surjective and a branched covering; 

(3) / : dU' —> dU is surjective, and given any connected component K[ of S2 — U', 

f maps dK[ surjectively onto dKj for some unique component Kj of S2 — U. 

Since each component Wi contains points of V, Ui D Uj = 0, i ^ j . For each i, 

set U[ = UiyVi,f-xV). Then U[ C Ui since f'x{V) D V. By Proposition 7.2, U[ has 

finitely many boundary components, hence Qi := Ui — U[ consists of finitely many 

full continua disjoint from f~1(V), hence disjoint from V. This will be one piece of 

our set Q. 

Proposition 7.2 also implies that / : U[ -* Uj is proper if f(Wi) = Wj. We 

analyze the dynamical system / : UiU! —> UiUi. Define = Uj if / ( £ / / ) = Uj 

(equivalently, if f(Wi) = Wj). 

Assume that a Julia component JQ satisfies that fn(Jo) C | J i Ui for infinitely many 

n. Then either fn(Jo) C | J * Qi ^or infinitely many n or fn(Jo) C | J i U[ for all n>n\. 

In the former case fn(Jo) C Q for infinitely many n too since Q is going to be defined 

as a set containing \J{Qi. In the latter case the orbit of Jo lands eventually into a 

periodic cycle of / * . We now analyze this second case. 

Let Uo,..., Up-i be a periodic cycle of / * . Set g = fp. Then J(g) = J{f) and 

Ui = U{Wi,V(f)) = U(Wi9V(g)). 

For any Julia component J0 such that J0 C UQ and fn(J0) C U[ for all n > 0, 

we have / ( J 0 ) C U[, /P_1(J0) C Up_x and fp(J0) C U^ and so on. Therefore 

9n(Jo) = fnp(Jo) CZU^GUo for all n. 

Set W = Wo and U = UQ = U(W,V). Then W is a fixed attracting or parabolic 

Fatou component of g. 

We are going to find a compact set Q'0 which is the union of finitely many disjoint 

full continua such that, if the p-orbit of a Julia component Jo passes infinitely many 

times through [/, then it passes infinitely many times through Q'0 as well. 

Denote by X the empty set in case W is an attracting basin, or the set of one 

single element which is the fixed parabolic point of Wy in case W is a parabolic basin. 

SetXn = \J0<j<n9-jX. 

One can find a disc V C W with Jordan curve boundary such that V C W U X 

and g(V) C VUX. We may choose V such that (dV - X) (IP = 0. For any n, let Vn 

be the unique component of g~n(V) containing Vo — V. Then Vn C V^+i U Xn for 

any n. There is an integer iV guaranteed by Lemma 7.3, such that every component 
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of C — VN contains at most one of the finitely many components of C — W which 
intersect V, and V n W C VN. 

The set C — VN is a disjoint union of finitely many full continua with 

J C in t (C - VN) U XN. 

Denote the components of C — VN by £ > i , . . . , D / , . . . , Dn such that, for j > / , DjDV = 
0; and for 1 < j < /, Dj contains a unique component Kj of C — W such that 

For 1 < j < Z, set Aj = int(Dj) — Kj. Then Aj is an open annulus with possibly 
finitely many pinched points at points in XN- Moreover Aj contains no critical value 
(by the choice of N). 

Now we look at the level N + 1. For U = U{W, V) and U' = U(W, g~lrP), the map 
g : U' —>> U is a branched covering (Proposition 7.2). Since VJvUflJ^i ^j^A}j>i Dj) = 
C7, we conclude that U' — <?_1(Uj=i A? ^ U?>z 1S connected, and coincides with 
g~XVN H So <?-1V/v has a unique component in U1, which is VN+I-

Denote the components of C — VN+I by D \ , . . . , D'i,..., D'u such that C D'j C 
25j for 1 < j < /, and ^ ( 1 ^ = 0 for j > 1. 

We set g*(Ki) — Kj if g(dKi) = dKj, which is well-defined by Proposition 7.2. 
Set A'j = int(DJ) - Kj, j = 1 , . . . , / . If #*(1^) = i ^ , then g(A'i) = Aj and 

# : A\ —>- is a covering map. 
Note that Aj — Aj = in t (S7) - int(£K). Moreover n (int(157) - Wj) is contained 

in L U / ^ V 
We claim then every Julia point x in Uj=o ^ must have some iterate in 

I 

3=0 

If not, there is no > 0 such that for all n > no, 

gn(x) e \ \{Aj I Kj is periodic for p*}. 

On the other hand, for K0y. ..,Kq-\ a periodic cycle of and for any y e A'0, 
there is a minimal integer s > 0 such that gs(y) £ (JjCo A'j, for Lemma 7.3 below 
implies that each Kj is the nested intersection of sets of the form nnBn, where Bn is 
a component of C — Vn, n > 0. 

Therefore if a Julia component J0 satisfies that gn(Jo) C [jlj=o u Us>z D's f°r 
infinitely many n, then gn(Jo) C Us>/ f°r infinitely many n. 

On the other hand, for our set U = U(W,V), we have 

j n u с 
3=0 

A'. U 

S>1 

D'SUXN+UXN+1. 
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Thus saying gn(Jo) C U for infinitely many n is the same as saying 

0 n ( J o ) c U ^ u | j B i 
j=0 s>l 

for infinitely many n. 
Return to our original map / now. The components of Qo = Uo — UQ are disjoint 

full continua contained in \Jlj=0 Aj U \JS>1 D's. Therefore Q'0 = Q0 U \Js>i D's IS again 
a union of finitely many disjoint full continua. 

For each periodic cycle of / * , choose one representative Ui in the cycle, and de
fine Q\ in the same way, for the other i in the cycle, define Q\ — Qi. We write 
{ 0 , 1 , . . . , m } = V U 7, where j G I' if Uj is /^-periodic and j € I otherwise. 

Set Q = U i e / ' Qi u Uz€/ This is again a union of finitely many disjoint full 
continua, disjoint from V. Now let Jo be a Julia component passing infinitely many 
times through \J{ Ui. Then either it passes infinitely many times through (J* Qi C Q, 
or there is some i E I ' , such that Jo passes infinitely many times through C Q. In 
both cases J0 must pass infinitely many times through Q. 

Finally we apply Lemma 1.4 to conclude that such Julia components are points. 
We mention here two particular cases. 
1. The component W is simply connected. In this case U = W and no Julia 

component passes through U. 
2. The set U(W,V) coincides with C , that is V d W. In this case / = 0 and each 

Julia component is a point. That is J is totally disconnected. • 

A variant of the following lemma can be found in [St], page 63 and 117. 

Lemma 7.3. — Let W be an fixed attracting or parabolic basin of a rational map 
f. Let V be either a disc neighborhood of the attracting fixed point with Jordan 
curve boundary or a Fatou petal in W of the parabolic fixed point. Then for Vn the 
component of f~n(V) containing V, we have W = (Jn^> and each component of 
CJ — Vn is closed disc with possibly finitely many pinching points. Furthermore, given 
any two components K\ and K2 of C — W, there is an integer N such that VN 
separates K\ and . 

8. Further results 

8 .1 . Diameter of Julia components. — Let / be a hyperbolic rational map. 

Corollary 8.1. — A Julia component JQ of J is not a point if and only if there is 
an integer N such that Jn — / n ( J o ) C As U f~xE for any n > N. 

If Jo is a point, we may regard iV as -hoc 
One can show that the set f~x{As U f~xE) — (As U f_1E) is contained in finitely 

many discs. Thus the same technique as in the above sections can prove also the 
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following results: to each integer iV, there is a positive number e(N), with e(N) 0 

as N —> oo, such that for Jo a Julia component, and N the minimal integer such that 

/ n ( J o ) C As U f~xE for n > N, the spherical diameter of J0 is at most e(N). 

8.2 . Symbolic dynamics of Julia components in As. — Let / be a hyperbolic 

rational map. The arguments given in §5 actually show much more. The space T 

of admissible sequences {aoa± ... } equipped with the product topology and the one

sided shift map a is a subshift of finite type. Let C1(C) denote the space of all closed 

subsets of C in the Hausdorff topology. The map / induces a map from this space 

to itself which we again denote by / . Given a G E, we have defined in §5 a nested 

sequence of annuli Tn(a) and a continuum J ' ( a ) = nnTn(a ) . The set J ' ( a ) may or 

may not be a Julia component. 

Theorem 8.2. — The map 

$ : a H+ J ' ( a ) ; T C1(C) 

defines a uniformly continuous infective map conjugating g to /|<J>(£). Moreover, 

(1) there is a (at most) countable subset Te and a finite subset Ee,o C T such that 

(a) a G £e,o if and only if J'(a) is a boundary component of Aao for some 

Aao G As', i.e. is a boundary component ofTo(a). 

(b) a G T>e if and only if J'(cx) is a boundary component of Tn(a) for some 

n. 

(c) a(Ee,0) C Ec,o. 
(d) Ee =Un>o<T-n(Se,0). 

(2) a ^ Te if and only if J'(a) is a Jordan curve Julia component satisfying 

fn(J'(a)) C As for all n > 0. 

(3) Let Je,o = 3>(£e?o). Then as a subset ofC, 

( J * ( a ) = {z I fn(z) G A.s U (U5eJe,0«5) V n > 0 } . 

The elements of the set of continua Je : = ${Te) may be thought of as "exposed" 

boundary components, in the sense that they are boundary components of Tn. 

Corollary 8.3. — The following are equivalent: 

(1) T is uncountable. 

(2) There is a wandering component of the Julia set which is a Jordan curve. 

(3) There are uncountably many wandering components of the Julia set which are 

Jordan curves. 

(4) There are infinitely many periodic Jordan curve Julia components. 

(5) There exists a component C of A, disjoint essential subannuli A,B C C, and 

integers m , n > 0 such that f™ : A —> Cfn : B —• C are covering maps. 

Proof. — For any subshift of finite type (T,a), the following are equivalent: 
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— the space of admissible sequences S is uncountable; 

— there is a wandering sequence; 

— there are uncountably many wandering sequences; 

— there are infinitely many periodic sequences; 

— there are two finite-length sequences a = ( a o , . . . , am), /3 = (&o5 • • • > bn) with 

c : = ao = am = bo = bn and 7̂  bi for some 0 < i < min ra, n. 

By the above Theorem and the preceding facts, the first three conditions are thus 

equivalent, and (1) implies (4) . The set E contains finitely many Julia components, 

and each periodic Jordan curve Julia component which is not in E must be contained 

in As. Each such component is J'(a) for some periodic a, by the above Theorem, 

hence S has infinitely many periodic sequences and so (4) implies (1) . We now show 

the equivalence of (4) and (5) . First, note that (5) is equivalent, by pulling back, to 

the same condition with C", a component of A, replaced by C , a component of As. 

The equivalence of (4) and (5) then follows immediately from the above Theorem and 

the preceding paragraph. • 

Proof of Theorem 8.2. — The continuity of $ follows immediately from Lemma 2 of 

§5. That $ is a semiconjugacy follows from the fact that / : Tn(a) —> Tn_i(cr(a)) is 

a covering map, hence / : Tn{a) -> Tn_i(cr(a)) is surjective, and so 

/ ( * ( a ) ) = / ( J ' ( a ) ) - f(nnTM) = nn T n _ ! ( a ( a ) ) = J ' ( a ( a ) ) - *(<r(a)) . 

To see that 3> is injective, first note that given a boundary component S of A G Ay no 

other component B G A has 8 as a boundary component. For S is locally connected 

(e.g. by Corollary 4.2) and hence S is homeomorphic to S1 if it is the common 

boundary of two disjoint open annuli, by Lemma 5.1. But if this occurs then S is a 

component of the Julia set separating its parallels, violating the construction of A. 

More generally, since / sends boundary components of Tn ( a ) to boundary components 

of Tn_i(cr(a)) , if 5 is the common boundary of Tn(a) and Tn(/3), then Tn(a) = Tn(/3), 

i.e. if a = {a0ai . . . } , / ? = {60^1 • • • } then ai = 0 < i < n. If J'(a) = J'(/3), then 

either J ' ( a ) = J'(/?) is a boundary component of Tn(a ) , some n, or J ' ( a ) C Tn(a) 

for all n. In the former case we have Tn(a) = Tn({3) for all n by the above observation 

while in the latter we must have Tn(a) = Tn(/3) for all n since if a ^ (3 then for some 

n, Tn(a) D Tn((3) = 0. Hence a = /3. 

( 1 ) Define £e,o as m l (a ) - We first prove that Je?o = 3>(^e,o) is forward-invariant 

under / . Let Jo G Je,o and let J\ — / ( J o ) - Then J0 is a boundary component of 

T0(a) for some a. The proof of Lemma 4 of §5 shows that then J0 is a boundary 

component of T&(a) for all k > 0, hence Jo is a boundary component of T\(a). Since 

/ : Ti(a) -+ T0(a(a)) is a covering, / ( J o ) — Ji is a boundary component of T0(o~(a)) 

and so Ji G Je,o- Now 1(a) holds by definition, 1(c) follows from the above result and 

the fact that 3> is a semiconjugacy. Define Se by 1(d) . 1(b) then follows immediately 

from the fact that $ is a semiconjugacy and the fact that fn : Tn(a) —> T0(crn(a)). 
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(2) Note that a <£ Se if and only if J ' ( a ) C Tn(a) for all n, by l b ) . The result then 

follows by Lemma 4 of §5. 

( 3 ) First, let J0 = J ' ( a ) . If a $ £ c , then J0 C Tn(a) for all n > 0, hence / n ( J0 ) C 

To(<rn(a)) C As for all n > 0. Otherwise, there is a minimal N > 0 such that for 

0 < i < iV, J0 c Ti(a) and for z = Ny Jo is a boundary component of Ti(a). Hence 

for 0 < i < AT, /*(J0) C T0(a*(a)) C As, and for i = TV, .P(Jo) is a boundary 

component of To(crl(a)) G Je,o- Since Je?o is forward-invariant under / the inclusion 

in this direction is proved. 

To prove the other direction, given z an element of the right-hand side we must 

produce a so that z G J'(a). Let zn = fn(z). If zn G Abn G As for all 0 < n < N 

we set an = bn. Hence we may assume zn G dAs for all n > 0. Choose a component 

Aao so that ZQ G JO, a boundary component of AO0 (there may be more than one 

such component, since the annuli in As may have closures which intersect). Then 

Jo € Je,o- Since Je,o is forward-invariant, Jn = / n ( J o ) is a boundary component 

of a unique component Aan of As. We now claim that a = (a^ai . . . ) chosen in 

this fashion is admissible, i.e. that Aaiai+1 ^ 0 for all i. For on the one hand, 

f(Aai) = A G A, hence J^+i = / ( J i ) is a boundary component of A. On the other 

hand, J^+i is a boundary component of Aai+1 <Z B € A. li A ^ B then we must have 

that Ji_|_i is the common boundary of A and B, which we have previously noted is 

impossible. Hence A — B and so Aaiai+1 ^ 0. Hence Jo = J'(a) contains z. • 

8.3 . Modul i restrictions and description of the shift. — Let / be a nice 

rational map. Let { C i , . . . , C&} be the set of annuli in A. Denote by rrij the modulus 

of Cj. Note that 0 < rrij < oo . For each j choose a Jordan curve 7 j C Cj which is 

a homotopically non trivial in Cj. Set T = { 7 1 , . . . , 7 ^ } . Let A( i , j) denote the set of 

components Cijt\ of f~1(Cj) homotopic to Ci and let dijy\ be the positive degree of 

/ : Ci,j,A —> Cj. 

Define two linear maps 

/ r , / r , # : R r ^ R r 

by 

/r(7,) = 
ù^$ù^$ù AGA(i,j) Eu, :— 

1 
17* 

and 

/r,#(7j) = 
ù$ù^ù$ AGA(i,i) 

1 7i« 

If A ( i , j ) = 0 we take the coefficient of 7$ to be zero. The map / r is the Thurston 

linear transformation defined by the multicurve Y. The Grôtzsch inequality implies 

that if fn = (rrij ) G R r is the vector of moduli rrij, then 

(fr(rn))j <rrij,l <j <k. 
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As a consequence, the leading eigenvalue of fr is smaller than 1 (consider the product 

vfrm with v a leading eigenvector of ( / r )*)-

The map / r , # is almost the transition matrix for the subshift (£ ,c r ) . The compo

nents of As are in one-to-one correspondence with the collection of elements 

{A | A G A(iJ)}. 

If A\, Afj, G As where A G A(iJ) ^ 0 and fi G A(fc, / ) ^ 0 then 

-4am = {z | jz G f(z) G AM} / 0 if and only if j = fc. 

An admissible sequence a G S i s thus given by an infinite sequence An where successive 

terms satisfy the above condition. Hence by removing any basis elements yj for which 

the jth row of / r , # consists only of zeros we obtain a new matrix. Iterating this 

removal process we obtain a matrix which gives exactly the subshift ( S , a). 

8.4. Quasicircles and non-quasicircles. — A Jordan curve J in the sphere is a 

K-quasicircle if it is the image of a round circle under a K-quasiconformal map, and 

it is said to have K'-bounded turning if the ratio 

disnn(L)/d(x,y) < K' 

for all x,y G J, where L is the component of J — {x,y} with smallest diameter. 

Here distance is measured with respect to the spherical metric d. J is said to be a 

quasicircle if it is a K-quasicircle for some K. It is known that J is a quasicircle if 

and only if it has bounded turning ([LV] II, §8). 

If a Jordan curve component J of J is preperiodic and / is hyperbolic, it is a qua

sicircle by the surgery argument of McMullen [Mc l ] . However, a wandering Jordan 

curve component J need not be a quasicircle. We first show 

Theorem 8.4. — Let f be a hyperbolic rational map. If the orbit of CM under a does 

not accumulate on Se,o then Q(a) is a quasicircle. 

(Here we use the same notation as in §8.2). The proof also shows the following 

corollary. However, we have no example where the hypotheses are satisfied. 

Corollary 8.5. — i f £€}o is empty (i.e. if every boundary component of a component 

of As maps to a boundary component of C which is not also a boundary component 

of any component of As), then there exists a K such that for every a G £ , 3>(a) is a 

Julia component which is a K — quasicircle. 

Proof — Let Jo = 3>(a). If a does not accumulate on Se,o then there is a positive 

integer A ô such that 

% - {TAr0(a*(a)), * > 0 } 

is a disjoint union of open annuli which is compactly contained in As', and which 

contains the entire forward orbit of JQ. Since the orbit of Jo does not accumulate on 
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a boundary component of As, it does not accumulate on boundary components of 

7Q . Hence there is an integer N± > N0 such that 

T; = {TNl(ai(a)), i>0} 

is a disjoint union of open annuli which is compactly contained in T0' and which 

contains the entire forward orbit of J0. Then fNl~~No(Ti) = T0'. 

Enlarge T¿ slightly to a disjoint union To of open annuli whose boundaries are 

real-analytic Jordan curves and which is compactly contained in As. Let 71 be the 

union of preimages of components of To under fN*-N<> containing components of 77-
Then 7i is compactly contained in 7o, and 

9 = fNl~No : Ti To 

is an expanding conformal dynamical system. 

On the other hand, we may build another model for this dynamical system of the 
form 

h:K0^> 1Z\ 

where TZi consist of round annuli and the map h on each component is z i-> zd, some 

d. We may also find smooth maps fa : TZi —>> T% such that fa ° h = g o fa on 1Z\ 

and fa — fa rel d1Zo- That is, the pair (fa, fa) gives a combinatorial equivalence 

between the two dynamical systems. By Theorem A . l of [Mc2], fa are isotopic rel 

dlZo to a quasiconformal conjugacy ip. Since the Julia set of h is the product of a 

Cantor set with a round circle, Jo is a component of the Julia set of g and hence J0 

is a quasicircle. 

If Se,0 is empty, then f~x(As) n As is compactly contained in As. We may then 

apply the argument above with T¿ — As and T{ — f~x(As) D As to prove the 

Corollary. • 

Example. — We illustrate this by our example f — f\. In this case As has two 

components Ao and A\. We choose Ao to be the outermost one, i.e. the one with 

a fixed boundary (the component J + ) . There are no components of J which are 

points, and indeed J — {z \ fn(z) 6 As V n } . Moreover, the boundary components 

of components of As are entire Julia components, and Ao fl A\ = 0. It follows that 

the connected components of J are precisely the sets of the form J ' ( a ) , a G S. Hence 

by Theorem 8.2, the dynamics on the space of connected components of J in the 

Hausdorff topology is conjugate to the one-sided shift on two symbols 0 and 1. Note 

that then £e,o — { ( 0 0 0 . . . ) } and hence that T,e = {(a0ai . . . ) | an = 0 V n > n o } . 

The dynamical system ( S , a) is conjugate via </> to (C,g), where C is the invariant 

Cantor set for the interval map g : [0 ,1 /3] U [2/3 ,1] —> [0,1] given by g(c) — 3c for 

0 < c < 1/3 and g(c) = 3(1 — c) for 2 /3 < c < 1. The conjugacy <j> is defined by 

fac) — (aoaia,2 . . . ) where an = 0 if gn(c) G [0 ,1 /3] and an = 1 otherwise. Note that 

the point 0 G C corresponds to ( 0 0 0 0 . . . ) and the point 1 G C to ( 1 0 0 0 . . . ) . Order 

ASTÉRISQUE 261 



RATIONAL MAPS WITH DISCONNECTED JULIA SET 377 

the components of J so that J > J ' if J' separates J and the point at infinity. Then 
the composition <I> o 0 is order-preserving with respect to the usual ordering on the 
interval and > . 

Say c G C is exposed if c is a boundary point of a component of the complement of 
C and is buried otherwise. Similarly, we say a Julia component is exposed if it meets 
the boundary of a Fatou component of / and is buried otherwise. Then c is exposed 
if and only if 0 (c ) G S€ if and only if * o 0 (c ) is exposed if and only if $ o 0 (c ) is a 
covering of J+ if and only if $ o 0(c) is not a Jordan curve. 

Finally, we note that Ee is dense in S. 
We now show 

Theorem 8.6. — 3> o 0 (c ) is a quasicircle if and only if c does not accumulate at 
0 under g, i.e. if and only if a = 0(c) does not contain arbitrarily long strings of 
consecutive zeros. 

Thus quasi-circle components form a dense subset in the space of Julia components. 
On the other hand, the non quasi-circle components form a residual set in Baire's 
category. 

Proof. — Let J0 = $ (CQ ) and Jn = /n ( J0 ) = $ (#n(c0) ) , n > 0. By Theorem 8.4 it 
suffices to show that if zero is a limit point of the orbit of c0 then J0 is not a quasicircle. 
On a compact neighborhood of As avoiding the point at infinity the spherical and 
planar metrics are equivalent, hence Jo is a quasicircle if and only if it has bounded 
turning with respect to the planar metric. For simplicity we conjugate the map by 
1 jz so that J4" is near zero and the Jn separate J+ from infinity. 

By Theorem 8.2, if gn{co) has zero as limit point, then there is a subsequence 
Jnh —>• J + in the Hausdorff topology. In J+ we may find a cut point p and small open 
discs W and W with W CW and such that W DP = 0, p G W , and W contains 
a connected component L of J+ — {p}. Since p is a cut point p is accessible from the 
component of C — J+ containing infinity (recall we conjugated our map by 1/z) via 
two distinct accesses r\x,r\y. Since Jnfc —> J+ in the Hausdorff topology and the Jnfc 
are critically separating, for k sufficiently large, there are points Xk G nx Pi Jnk n W 
and yk G r/y n Jnk n W such that xu,yh P &nd f°r which the component Lk of 
Jnfe — of smallest diameter is also contained in W and has diameter bounded 
below by D = diam(Z/). 

Since W H V — 0, there is a univalent branch /i^ of (/nfc)_1 on W sending 
to a subarc of J0. Let x0k = hk(xk), yok = hk{yk), and L0fc = hk{Lk). Then the 
Koebe distortion theorem implies that since is compactly contained in W , there 
is a constant C > 1 independent of k such that hk distorts ratios of planar distances 
between points of W by at most a factor of C. Hence for all k 

jdiamCLfc) < diam(Lofe) < ^ d i a m ^ ) 
|s* - 2/fc| ~ \xok -yok\ ~ \xk ~Vk\' 
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But diam(Z/fc) is bounded from below by D while \xk — Vk\ —> 0. Hence Jo has 
unbounded turning and so is not a quasicircle. • 

8.5 . Constructing other examples. — The map / i was initially found by using 
quasiconformal surgery to glue z2 — 1 with 1/z3 in the appropriate fashion. This 
construction and its generalizations are the subject of work in progress. For example, 
one may apply the same construction by replacing z2 — 1 with any polynomial p whose 
filled Julia set has interior, and glue it to 1/z3. 

Question. — If p is a quadratic polynomial with non-locally connected Julia set and 
a Siegel disc, can one obtain, by this gluing, a map with wandering Julia components 
which are critically separating but not Jordan curves? 

8.6. H o w to find the set E. — There are finitely many Fatou components 
Wo,..., Wm either intersecting V or separating V into at least three parts (Lemma 
2.2). For each Wi take the finitely many boundary components which are critically 
separating. Saturate them into Julia components. Call the union of them El. It is 
finite and forward invariant. Fill in the disc components of C — E' disjoint from V. 
We get a fattened E" of E'. We distinguish three types of components of C — E": type 
I, components containing exactly one Wi (these are also the components intersecting 
U ^ ) ; type IIJ annulus components disjoint from | J ^ 5 and tyPe HI? non-annulus 
components disjoint from | J ^ « In each of type III component, there are finitely 
many Julia components separating V into at least three parts. Adding them to Ef, 
we get E. Note that the set £ is precisely the union of components of type I (see also 
Lemma 3.10). 

Let I f be a fixed attracting basin for a rational map / . How do we know that 
only finitely many components of C — W intersect V? And if so how can we find 
VN in Lemma 7.3 and in the proof of Theorem 7.1? Here is a constructive answer. 
Take Vo a open disc with Jordan curve boundary in W such that f(Vo) C Vb. Let Vn 
be the component of / _n (Vb) containing Vo- Then only finitely many components of 
C — W intersect V if and only if there is a minimal integer N such that each boundary 
curve of V/v+i is either not critically separating, or is parallel to a boundary curve of 
VN- And for this VN, each component of C — VN contains at most one component of 
C — W intersecting V. 

9. Generalizations 

9 .1 . Geometrically finite maps. — Our techniques allow a generalization of The
orem 1.2 to the case of geometrically finite maps / . In [TY] (§1, Step 4 and Prop. 
1.3)) (cf. also [DH2]) a Riemannian metric is constructed for which / is uniformly 
expanding on a neighborhood of its Julia set. The arguments given above for Propo
sitions [Case 2] and [Case 3] then apply in this more general setting. Proposition 
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[Case 4] is proved for nice maps, therefore applies automatically to geometrically 
finite maps. 

We may also recover a variant of Theorem 8.2 for geometrically finite maps as well, 
though we may lose the injectivity of <I>-it may be possible to construct a map / 
with a periodic Jordan curve Julia component Jo which intersects V and which is the 
common boundary of two components of As. Then J0 may be J ' ( a ) for two distinct 
admissible sequences a. At worst, however, $ is two-to-one. We define Se,o and Se 
the same as for hyperbolic maps. 

Theorem 8.4 holds for geometrically finite maps as well, and we may recover a 
result of Cui et. al. ([CJS], Prop. 6.2): 

Proposition 9.1. — / / / is geometrically finite, then there are at most finitely many 
periodic Jordan curve Julia components Jo which are not quasicircles. 

Proof — Let Jn = / n ( J 0 ) . Then either Jn C As for all n, or Jn is a boundary 
component of a component of As for all n, since Jo is periodic. The latter set of such 
J0 is finite, while in the former case Jo = J ' ( a ) for some unique a G S. The sequence 
a cannot accumulate on Ee?o under a since otherwise Jo accumulates on a boundary 
component of As, by Theorem 8.2. Hence Jo is a quasicircle by Theorem 8.4. • 

9.2 . A further result for nice maps 

Theorem 9.2. — If f is nice and every component of As is also a component of A, 
then every Julia component Jo not eventually landing on a component of E is a point. 

Proof. — The hypotheses imply that every component of As is a Herman ring or a 
preimage of a Herman ring, therefore contains no Julia components. So Case 2 of 
Lemma 2.4 does not occur. 

By Proposition [Case 4] , if Jo is a Julia component such that Jn = fn(Jo) C C for 
infinitely many n, then Jo is a point. 

Assume now J0 is a Julia component that is not in Cases 1, 2 and 4 of Lemma 2.4. 
Replacing Jo by a forward iterate of it if necessary, we may assume that 

Jn D (E U As U C) = 0 for all n > 0. 

Furthermore, by Lemma 2.4, Jn C A° U T>' for infinitely many n. Therefore 

jn c Q = (A° - A°AS U A°AC) U (V - V'AS U V'C U VAC) 

for infinitely many n, where the notation ABC means 

{z\zeA, f(z)€B,f2(z)eC}. 
We claim that Q is contained in the disjoint union of finitely many full continua 

disjoint from V. We can then apply Lemma 1.4 to conclude that Jo is a point. 
Let A1 be a component of A°. Either it coincides with a component of A°AS, 

or A — f(A') is a component of A — As. Assume we are in the latter case. By 
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Lemma 3.8, for S± the boundary components of A, there are components F + , V~ of 
AC (which may coincide) such that 5+ C dV+ and S~ C dV~. Thus A - (V+ U V " ) 
is disjoint from cM. Hence A' — ^l'.AC is contained in A'. Since the inclusion map 
from A1 into C — V is homotopic to a constant map, A ' — A1 AC is contained in a full 
continuum disjoint from V. 

The case of a component of T>' is similar, using Lemma 3.7. • 

Appendix A 

Technical results about plane topology 

In this appendix we collect technical results used in the course of our proofs. 
The following lemma was used in the proof of Lemma 3.6. 

Lemma A.l. — Let P1 and P2 be two disjoint non empty closed sets of S2. Set 

W = {U | U is a complement component 

of some component of J', P1 <ZU and P2 C\U = 0}. 

Then W is either empty or totally ordered with respect to inclusion, and W — Ut/ew U 
as the unique maximal element, and dW is connected. 

Proof. — That W is totally ordered with respect to inclusion if it is nonempty follows 
from Lemma 3.1. Since each U G W7 is a disc and the C/'s are nested, we have that 
IT is a disc. Hence dW is connected. 

We now show that W is also an element of W . Let x G dW. For any integer n, 
there is a point x' in W such that the distance between x' and x is less than 1/n, and 
there is U G W such that x' G U. The segment [x, x'} intersects dU, which is a subset 
of J. We conclude then either x G dU or there are points of J arbitrarily close to x. 
In both cases x G J. 

Since dW is a connected subset of J, it is contained in some component S of J. 
Now W must be a component of C — 5. This is because SnU = 0 for any U G W , 

therefore S fl W = 0. 
Moreover W D P1 , but fl P2 — 0. So ^ is indeed the maximal element of 

W . • 

The remaining results are essentially ingredients in the proof of Theorem 7.1. The 
logical dependencies are: 

Lemma A.2 —• Corollary A.3 -> Corollary A.4 Corollary A.5 -> Lemma 3.10 —• 
Theorem 7.1. 

We will need the following fact from general topology. 
Let X be a compact Hausdorff space. Then every component Y of X coincides 

with the intersection of open and closed subsets of X containing Y. Moreover, for 
any open neighborhood U of Y, there is a closed and open subset V of X such that 
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Y C V C U. The component Y is always closed. In case Y is not open in X, there is 

a sequence of closed and open sets Vn such that Y ^ Vn ^ Vn-i, and f]n Vn = Y. 

If X is the Julia set of some map, and is disconnected, no component of X is open 

in X (see [Be]). 

In the next three results, let J U T be a decomposition of S2 with J closed and 

disconnected, let d denote spherical distance and dn the Hausdorff distance on closed 

sets with respect to d. 

The following Lemma is known as Zoretti's Theorem ( [Wh], p . 109). 

Lemma A.2. — Given J' and J" two distinct components of Jand e > 0. there is 

a Jordan curve 7 in T separating J1 and J" such that supx67 d(x, J') < e. 

The next two results are easy consequences of Lemma A.2 . 

Corollary A.3 

(1) Let U be a connected component of S2 — J' for some connected component of 

J'. Then there is a sequence of closed discs Dn bounded by Jordan curves yn 

such that 7n C U D J7, Dn C int(£>n_i), dU C int(£>n), and DH(dU,yn) -> 0 

(where DH denotes the Hausdorff distance of compact sets). 

(2) Given W a component of T and K a component of S2 — W, there is a sequence 

of closed disks Dn such that Dn C int(jDn_i), dDn C W and f]n Dn = K. 

Proof. — Let {iiTm}^)=0 be a sequence of closed discs such that X m _ i C int(i^m), 

UmKm = U, and dnidU^dKm) 0. Let J0 = J U K0,F0 = S2 - J0. Then J0 is 

closed and disconnected and Lemma A.2 implies that there is a Jordan curve 70 C 

Fo C F separating dU from 8KQ. Let D0 be the disc bounded by 70 and containing 

dU. Inductively define 7n as follows. There is an m(n) such that 7n_i C int(i^m(n)). 

Let J-n = J U Krn(n)7 Fn = S2 — Jn. Lemma A.2 implies that there is 7^ C Fn C F 

separating dU from K^n) and bounding a closed disc Dn containing dU. This shows 

the first part; the second is similar. • 

Corollary A.4. — The following conditions are equivalent: 

(1) there is a component W of T contained in U such that dW n dU ^ 0; 
(2) there is a component W of T contained in U such that dU is a component of 

dW; 
(3) there is an n, such that no component of separates dU and yn, where 7n is 

a sequence of Jordan curves as in Corollary A.3, Part 1. 

Proof. — That 2 1 is obvious; 2 3 follows directly from Part 2 of Corollary 

A.3 and the hypothesis that dU is a component of dW. To see 3 => 2, note that 

(U — Dn) must be connected, where the Dn are as in Part 1 above. Let X = dW. 

Then dU is contained in a nested intersection of sets which are open and closed in X , 

hence dU is a connected component of dW. Finally, that 1 2 follows easily from 
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the observation that if Co is the connected component of dW which intersects dU, 
then Co is contained in some component Jo of J, hence Co cannot separate points of 
U. • 

Corollary A.5. — Let E be a nonempty set of finitely many disjoint components of 
J and let U be a connected component of S2 — E. 

(1) If dU is connected, let Wo be a component of T contained in U, and assume 
no component of J separates Wo from dU. 

Then dU is a connected component of dWo, and Wo is the unique component 
of T contained in U whose boundary intersects dU. 

(2) If dU is not connected, assume no component of J separates components of 
E. 

Then there exists a component Wo of T contained in U such that every 
connected component of dU is a connected component of dWo, and Wo is the 
unique component of T contained in U whose boundary intersects each compo
nent of dU. 

Proof — Assume first that dU is connected. By Corollary A .3, Part 1, there is a 
sequence 7n —> dU of Jordan curves in T f l U\ we may take these curves to separate 
some point wo of Wo from dU. By hypothesis and Corollary A.4 , Part 3, there exists 
a component W of T contained in U such that dU is a connected component of dW. 
If W ^ Wo, then since Wo, W C U we must have that W and Wo are separated by a 
component J' of J which is contained in U. Then W U dU is a connected set which 
is separated from Wo by J', hence dU is separated from Wo by J;, a contradiction. 
The uniqueness assertion follows from the equivalence of the first two parts in the 
previous lemma, and the proof of the second case is similar. • 

Appendix B 

Proof of Proposition 7,2 

A subtlety to prove Proposition 7.2 is that the map / : dW1 —> dW need not be 
open in the subspace topology. We first establish 

Claim. — Let f be a rational map and let Wf, W be two Fatou components of f such 
that f(Wf) = W. Let K (resp. K') be a component of C — W (resp. C — W') such 
that f(dK')ndK / 0. Then 

(1) f(dK') - dK. 
(2) f(K') D K. 
(3) KHP = 0 if and only if K' H / _ 1 P = 0. In this case f(K') = K. 
(4) For any set S D P, K' D / _ 1 5 # 0 if and only if K n S # 0. 
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Proof of Proposition 7.2 

(1) By (1) above, if K' is a connected component of C — W, then f(dK') = dK 

where K is a connected component of C — W. By (1) and (4) , there are finitely many 

such K' for which K' n # 

(2) It suffices to show f(U') C U and f(dU') C a t / . Since U' is the union of W 

with components of C — PV' disjoint from / - 1 P , this follows from (1) and (3) . 

(3) Again this follows directly from the finiteness of the number of boundary com

ponents and (1) . • 

Proof of Claim 

(1) Denote by J the Julia component containing dK. 

Denote by V the component of C — J containing W and by V the component of 

C — / _ 1 J containing W. Then / : V —> V is proper and / maps each boundary 

component of V onto the boundary of V\ which is dK' (see Lemma 3.3). 

Clearly f(dKf) C dK. So dK' nV = 0. Since W C V and C dW, we 

have C dV. So <9A' is contained in a component S' of dV. But 5 ' is in the 

Julia set, and the Julia component of dK' is contained in K', so S' C K'. Since d X ' 

separates W from int(iiT'), no point of int(K') can be in V. Therefore 5" C dK'. 

Thus 5" = dK' and f(dK') = dK. 

(2) A rational map / maps connected components of preimages of a compact 

connected set surjectively onto its image (see [Be], Ch. 5) . Let L' be the connected 

component of the preimage of K intersecting dK'. Then f(L') = K and dK' C l / ' C 

K'. Hence f(K') D iT. 

(3) Assume at first that A T I P = 0. Since K is full the component V in point (2) 

is also full. A simple topological argument then shows K' — V. So f(K') = K and 

K'nf~1P= 0. 

Assume now that K' n f~xP = 0. If K n P 7̂  0 , since / ( A ' ) D A we would have 

A ' D f~xP ^ 0 which is impossible. So K n P = 0 , A ' = 1/ and f(K') = K. 

(4) Assume at first that X f l F = 0 . Since f(K') = K, we get 4 ) . Assume now 

K H P ^ 0 . Then KC\S y£ 0 and AT' fi 7̂  0 (for otherwise A ' n / _ 1 P = 0 and 

KHP = 0). • 
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