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L E M P E R T M A P P I N G S 
A N D H O L O M O R P H I C M O T I O N S IN C n 

by 

Kari Astala, Zoltan Balogh & Hans Martin Reimann 

Abstract. — The purpose of this note is twofold: to discuss the concept of holomorphic 
motions and phenomena of Mane-Sad-Sullivan type in several complex variables and 
secondly, to compare the different notions of Beltrami differentials in CR-geometry 
which have appeared in [4] and [7]. 

1. Introduction 

Holomorphic motions in the complex plane C are isotopies of subsets A C C for 
which the dependence on the "time" parameter is holomorphic. This simple notion has 
been important in explaining a number of different questions in complex analysis, in 
particular the rigidity phenomena in complex dynamics and the role of quasiconformal 
mappings in holomorphic deformations. 

It was Mane, Sad and Sullivan [9] who first realized that for time-holomorphic iso
topies one can forget all smoothness requirements in space variables and thus produce 
almost automatic rigidity results in various contexts. Given a subset A C C , it is 
simply enough to define a holomorphic motion of A as a mapping / : A x A —> C , 
where A = {A € C : |A| < 1 } , such that 

(i) for any fixed a G A, the map A —> / ( A , a) is holomorphic in A 
(ii) for any fixed A E A , the map a -> / ( A , a ) = f\(a) is an injection and 

(iii) the mapping fo is the identity on A. 

Then / is automatically continuous in A x C and the restrictions f\(.) are qua-
sisymmetric mappings [9]; in case A = C they are quasiconformal with the precise 
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2 K. ASTALA, Z. BALOGH &: H.M. REIMANN 

bound on the dilatation 

( i ) K(fx) < 1 + |A| 
1 - | A | -

The picture was then completed by Slodkowski [12] who proved the so called Gener
alized A-lemma, that a holomorphic motion of any set A c C extends to a motion of 
the whole C. 

In this setting it is natural to look for similar phenomena in several complex vari
ables, when the sets moving are of higher dimension. However, one quickly sees that 
the simple minded generalization does not work: Let, for example, S(x) — x/\x\ for 
x € R \ { 0 } , S(0) = 0 and define 

fx(z,w) = (* + XS(Re{w}),w). 

Then f\ is holomorphic in A and injective but not even continuous in C 2 . 

Our first goal in this note is to introduce the proper notion or point of view to 
holomorphic motions in several complex variables and then show the existence of the 
first nontrivial examples, results of Mane-Sad-Sullivan type. We expect that similar 
phenomena occur, in fact, in much larger setups. 

Remark. — The generalizations to the case where the parameter space is higher di
mensional were studied by Adrien Douady in his work [3]. 

If there are to be holomorphic motions in C n , the one-dimensional theory suggests 
that they are connected to a notion of quasiconformality. Therefore recall that in 
several complex variables the appropriate concepts are the quasiconformal mappings 
on CR-structures [4], or mappings on boundaries of pseudoconvex domains which 
firstly are contact transforms, i.e. preserve the horizontal (complex) lines of the 
tangent spaces 

HvdD = TvdD n JTvdD 
where J is the complex structure as a mapping of T p C 2 , and secondly, are there 
quasiconformal with respect to the corresponding Levi Form, i.e. 

(2) K(p) 
sup{L(F*X,F*X) : X G HpdD, L(X,X) = 1} 
inî{L{F*X,F*X) : X G HpdD, L(X,X) = 1} 

< K 

for all p G dD. 
The same direction is, actually, suggested also by the approach of Slodkowski [12]. 

He viewed holomorphic motions (or their graphs) as disjoint analytic disks in C 2 . 
Namely given such a motion / : A x A —> C each point a e A defines a holomorphic 
disk Da C C 2 , a holomorphic image of A, by 

(3) Da = { (A , / (A ,a ) ) : AG A } 

and these disks are clearly pointwise disjoint. Conversely, given a family of analytic 
disks of the form (3) with Da fl = 0 when a ^ 6, they define a holomorpic 
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motion \I>(A,/(0, a)) = /(A, a). (The extension of a given motion was then obtained 
by studying certain totally real tori whose polynomial hulls were shown to consists of 
disjoint families of suitable analytic disks.) 

Interpreting the Mane-Sad-Sullivan result in the language (3) of disjoint analytic 
disks, for a motion of the whole complex plane the disks Day a G C, fill in the domain 
A x C. And when we move along the disks with A, in the transverse direction i.e. on 
the complex lines of the corresponding tangent spaces of <9A(|A|) x C the mappings 
(0,a) i—y (A,/(A, a)) are now quasiconformal by the original A-lemma. 

This picture makes it very suggestive that similar phenomena should occur in other 
situations in C 2 or C n as well. That is, for suitable families of analytic disks one 
should expect that moving holomorphically along these disks yields automatic qua-
siconformality in transverse horizontal directions, quasiconformality in the Koranyi-
Reimann sense, with the bound (1) on the dilatation. The philosophy of holomorphic 
motions in C n would then be not that there is one strict definition of these motions 
but rather that there are several natural situations that share the common features 
described here. 

To show that there do exist nontrivial holomorphic motions in the above sense in 
C 2 (the choice n = 2 is made for simplicity) we make use of the theory developed by 
Lempert [5]-[8] and consider bounded strictly R-convex smooth subdomains D C C 2 

and their generalizations the strictly linearly convex domains. The latter class consists 
of smooth bounded domains with the property that for each boundary point p € dD 
the horizontal space HpdD does not intersect D\{p) and that HpdD has precisely 
first order contact with dD at p. That is, there exists c > 0 such that 

dist(<?, HpdD) > c • dist(p,#) 2, qE D. 

In particular, strictly convex domains are strictly linearly convex which in turn are 
strictly pseudoconvex. 

As shown by Lempert in strictly linearly convex domains extremal Kobayashi disks 
are especially well behaved. For this recall that in any bounded domain containing 
the origin the Kobayashi indicatrix / of D is defined by 

/ = { / ' (0 ) : / : A D is holomorphic and / ( 0 ) = 0 } . 

If v G dly a holomorphic mapping / = fv : A -> D such that / (0 ) = 0 and 
/ ' ( 0 ) = v is then called an extremal map corresponding to the vector v. In strictly 
linearly convex domains extremal disks are uniquely determined by t>, a fact no longer 
true for general pseudoconvex domains. This enables us to simply define 

* : A x(A,t;) b C 2 , *(A,t;) 
/ . (A) 

A 
and we can describe a full counterpart of the Mahe-Sad-Sullivan result, a holomorphic 
motion of dl. 
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4 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Theorem 1. — Let D be a strictly linearly convex domain containing the origin and 
^ : A x dl -> C 2 be defined by ^(X.v) = A _ 1 / i ; (A) . Tften ^ satisfies the following 
properties: 

(1) * (0 , -) = Id | 0 7 ; 
(2) : A -> C 2 ¿5 holomorphic; 

(3) *(A, •) : <97 -> A\ is a contact mapping where A\ — \£(A,<97) is the boundary 

of a strictly pseudoconvex domain. In particular, \£ is continuous in A x dl; 
(4) \£(A, •) : dl —>• A\ is K{\)-quasiconformal with K{X < 1 + |A 

1 - A ' A € A. 

We should mention that statement (4) is the new result proven here; statements 
(1), (2) and (3), due to Lempert, are being included for the sake of completeness. 
To obtain the optimal dilatation bound we turn to our second goal, to compare 
the different notions of Beltrami differentials in contact geometry and CR-manifolds, 
introduced respectively, by Koranyi and Reimann [4] and Lempert [7]. This with 
required preliminary material will be presented in the next section. 

2. Inner actions and Beltrami differentials 

It will be convenient start with a version of the Riemann mapping theorem in C n 

due to Lempert ([5], [6]), and use the formalism introduced by Semmes [11]. These 
Riemann mappings preserve the complex structure to some extent but are flexible 
enough to yield general existence results. In more precise terms, Lempert considered 
mappings p : B D from the unit ball in C n onto domains D C C n containing the 
origin which satisfy the following three requirements: 

(1) /0 : i5\{O}—>>Z)\{0}isa smooth diffeomorphism and p : B —> D is bilipshitz; 
(2) p restricted to any complex line through the origin is holomorphic; 
(3) p restricted to the boundary of any ball Br centered at the origin and of radius 

0 < r < 1 is contact, i.e. 

p*HdBr = HdDr (Dr = pBr). 

For the last condition recall that when a domain is strictly pseudoconvex the hor
izontal tangent bundle HOD = TdD n JTdD, where J is the complex structure, 
defines a contact structure on the boundary. 

In what follows a mapping with the above properties (l)-(3) will be called a Lem
pert mapping. The basic existence result is then: 

Theorem A (Lempert). — Let D be a strictly linearly convex domain. Then there 
exists a Lempert mapping p : B —> D. 

A very nice exposition of the properties of the Lempert mappings was given by 
Semmes in [11]. The statement and proof of Theorem A, for example, may be found 
in [11] in the case of strictly convex domains and it is based essentially on the results 

ASTÉRISQUE 261 



LEMPERT MAPPINGS AND HOLOMORPHIC MOTIONS IN Cn 5 

in [5]. The proof of Theorem A in the case of strictly linearly convex domains follows 
exactly as in the strictly convex case (Theorem 5.2 in [11]) using the results in [6]. 

It is important for our purposes to estimate the Beltrami differential of the Lempert 
mapping p : B D in the sense [4], as a quasiconformal mapping on the level surfaces 
p : dBr —> dDr. Therefore, let first r = 1 and use the notation 

dD — M 

for the boundary of the stricly linearly convex domain D C C 2 . Then on the unit 
sphere 

s3 Z,W \z\2- + \w\2 

= 1} 

we consider the (1,0)-vectorfield Z = z 
a 

dw — w 
d 
dz 

It is easy to check that Z is a 

section of #1,053 where 

C ® HS3 = Hl9°S3 0 H0*1 S3 

is the complexified horizontal bundle of the sphere and Hp>° is the space of (1,0)-
vectors, i.e. vectors of the form Y — iJY, Y G HPM. Since p is a contact mapping 
we can write 

(4) p*Z — Y + vY where Y G rrl.O 
np(z,w) 

M. 

We have used here the fact that H } xM is complex one-dimensional and therefore 
Y in (4) is uniquely determined. 

In fact, in an invariant formulation one should think of v in (4) not as a number 
but rather a complex-antilinear map v : H^°M —• H^°M at each point p G M so 
that p*Z = Y + v(Y). Once we have chosen a basis in Hpj0S3 (or Z in (4)) v becomes 
a complex number. 

To study the variation of v on M let us fix a point (z, w) G S3. Then £(2, w) G S3 

for Q E S1 and (4) gives us a function v : S1 —• C, v — u(Q = vp(Q), p = p(z,w). 
Moreover using property 3 of Lempert mappings we can do this consideration for any 
C G A \ 0 and we obtain a function u on A \ 0 . 

The following simple statement (see also [4]) will be useful later in our note: 

Lemma 2. — Let us consider the Lempert mapping p : B -> D of a strictly linearly 
convex domain D and the Beltrami differential v as constructed above. Then we have 
the inequality: \v\ < 1. 

Proof. — Let us denote by uo(z,w) = |^ | 2 + |it;|2 — 1 the defining function of B and 
u\{p) = uo(p~1(p))1 p G D. Then u\ is a defining function of D that is smooth on 
Z ) \ { 0 } (see [11], lemma 2.9). Moreover if we consider the (l,l)-forms fio. = \ddu§ 
and fii = \ddu\ by Lemma 2.6 in [11] we have 

(5) = |^|2 + |it;|2 
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6 K. ASTALA, Z. BALOGH & H.M. REIMANN 

We insert in the forms ffco and tti vectors from the complexified horizontal spaces 
C 0 HS3 and, respectively, C 0 HM. Relation (5) gives 

(6) n0(Z, Z) = n x <y + PY,Y + uY). 

Sincefîi(y,y) = f î i ( y , y ) = 0 we have 

(7) 0 < f i o ( Z , Z ) = (l-\u\2)U1(Y,Y). 

By strict pseudoconvexity of D we have &i(Y, Y) > 0 and hence < 1. 

Furthermore, note that like in the classical case of planar quasiconformal map
pings there is a relationship between the norm of the Beltrami coefficient and the 
quasiconformal dilatation of (2), given by 

(8) K(p) := sup Kip) 
fîi(y,y) 

. l + IMloo 
1-IMIoo' 

see [4]. 

In his work [7] on embeddability of CR-structures Lempert studied inner actions 
on the boundary M of the strictly linearly convex domain D and defined for them 
another, apparently quite different Beltrami differential. Our next goal is to find a 
relationship between these two notions. 

We begin by basic notation. Let {gt},t G R , be a smooth R-action on M . It 
is called transverse if its infinitesimal generator {dgt/dt}t=o is everywhere transverse 
to the contact plane field HM and a contact action {gt} in case the tangent maps 
gt* preserve the contact distribution HM for all t. A consistent orientation of M 
is obtained by declaring the frame Xy JX, [ JX, X] to be positive for a nonvanishing 
local section of HM. Then a transverse contact action is called positive if for one (or 
any) local section X of HM the frame X , JX and {dgt/dt}t=o is positively oriented. 

Let us now consider a positive contact action {<7^},C € S1 of the unit circle. In 
general this action does not respect the complex structure J and one can measure 
this fact as follows. Let p G M and X G C (g> HPM be such that X and X are linearly 
independent. Since the complex dimension of C <g> HPM is 2 this means that X and 
X span C <g) ifpM, so that there are complex numbers (not unique of course) a, b not 
both zero such that 

(9) aX + bX G H^M. 

Clearly \a\ ^ |6| for otherwise the (0,1)-vector in (9) and its conjugate would be 
dependent. We shall assume that X is chosen so that \a\ > \b\ holds. In this case we 
say that X is a (1, 0)-like vector. 

If we fix p G M and X then the images g^X and g$*X span C 0 H9c(p)M as g^* 
preserves the contact bundle HM. Therefore there are again complex numbers a(£), 
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b(Q not both zero, such that 

(10) S3 —> 53, h^(z,w) — £(z,w) £(z,w £(z,w£(z,w 

Although a(C) and 6(C) are not unique their quotient p(Q = b(Q/a(Q G C U {00} 
is uniquely determined and depends smoothly on £. Since |/i(C)| / 1 as before and 
^(1) = b/a it follows that \p(Q\ < 1 for all ( G S 1 . 

In this setting, Lempert calls p the Beltrami differential associated to the trajectory 
of p. In fact /1 depends on p itself and X but this dependence is just up to Moebius 
transformations of the unit disc ([7], proposition 3.1). 

A positive contact action is now called inner if its Lempert-Beltrami differential 
p, for each trajectory, extends to a smooth function on the closed unit disc A in such 
a way that this extension is holomorphic in A. 

The existence of the inner actions on boundaries of strictly linearly convex domains 
was proved by Lempert in [7]. We present here a different approach (in Theorem 
3) that gives us the possibility to draw some precise consequences in the proof of 
Theorem 1. In fact, we are going to consider the action : M —> M given by 
g^(p) = p (C (p _ 1 (p ) ) ) for p G M, £ G 5 1 . In other words, g^ : M —• M is the 
conjugate of the standard action : S3 —> 5 3 , h^(z,w) — £(z,w) from the sphere 
S3 to M by the Lempert mapping p. 

It is in this setup that we can observe a connection between the two Beltrami 
differentials p and v. The observation is based on the fact that since the definition 
of p depends on the choice of p G M and a vector X G C <g) HPM one must do this 
selection carefully. After fixing (z,w) G S3 and p = p(z,w) G M (and hence also the 
function vp{Q ) a consistent way is to take X — p*Z(z^ = Y + uY. We are allowed 
to do that since < 1 by Lemma 2 and therefore X and X are independent. With 
these particular choices we then consider the Beltrami differential p of as given by 
(9) and (10). 

Theorem 3. — Let D C C 2 be a strictly linearly convex domain with boundary M 
and let p : B —> D be the Lempert mapping whose Beltrami coefficient, as a contact 
quasiconformal transformation, is v. Then the action g^ : M —>• M given by g^(q) = 
p(C(p~1(q))) is an inner action. If the Lempert-Beltrami differential p of this action 
g^ is defined as above we have then the relation 

a i ) H0 = 
£( 
z, 
w 

k 2 
M C ) for C e A' { 0 } . 

Proof — We begin by proving the second statement for £ G S1. If we denote by 
/i£ : S3 —>• S3 the standard action h^(z,w) = C • {z,w) then it is easy to see that 

(12) £(z,w Ç 
c 

z, Ce Â. 
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8 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Fix a point (z, w) G S3 and p = p(z, w). For the value ( = 1 we have that X = Y + i/Y 
and X = Y + i^y are linearly independent and there are numbers a, b G C such that 
aX + bX G flj}'1 M or (01/ + b)Y + (a + ftp)? G H^M. Therefore av + 6 = 0 and thus 

= —bja— —¿¿(1). Furthermore <7£*J\T(p) and g^X{p) are again independent and 
there are numbers a(C),6(C) £ C such that 

(13) «(C)pc.*(p) + 6(C)p<.a:(p) e£(z,wh 

i.e. MO = 6(C)/o(C). 
On the other hand using (12) 

gç*X(p) = (p. o hc* o Ptt 1)X(p) = (p. o h^)Z{z,w) = p . 6(C 
)p<. 

:Z(Ç(Z,W))(Z, 

Ç 
C' 

XYp(C(*,u;))) 
c 

(y + p(C)y). 

Consequently (13) becomes 

(14) 6(C 
p<. c 

K O + 6 0 
+ 6 
( 0 Y + a (0 

Ç 
C 

+ 6(0 
ç 

HO 
6(C)p<.ÇÇ+ 6(0+ 6(0 
C 

which gives 

(15) « ( 0 f ( 0 + 6(0 
ç 

= 0, 

and therefore (11) follows for the points £ on the unit circle S1. 

For the remaining part, the action : M —¥ M was given by 

(16) gc = pohço p X , £ G S 1 . 

It is clear that is a contact action because p is a contact mapping by property 3 
and h{ is a contact action on 53. Furthermore g^ is transverse since p\sz : S3 -± M is 
a diffeomorphism and is transverse on S3. For the the first statement it therefore 
suffices to show that p(Q extends holomorphically to A. This follows along the same 
lines as in [7] but we present the argument for the convenience of the reader. 

Let us recall that //(£) is given by 

(17) g^X + KQgc.X G flJ;jp)M, C e S1 

where X = Y + vYeC<g> HpM. NOW X = Yx + iY2 for some YUY2 G HPM where 
Yi and I2 are independent over R. 

Applying the projection map 7T1'0 : C (8) Hgc^M - » H^°,,M to (17) we obtain 

(18) g^X + KQgc.X G flJ;jp)M, C e S1g^X + KQgc.X G flJ;jp)M, C e S1C e S1$* 

and thus (18) determines //(C) for £ G 51. To obtain a holomorphic extension we ex
tend (18) to C e A. Namely, we denote by f (£) = v r1 '0^*^) and 77(C) = T T 1 ' 0 ^ * ^ ) 
and we see as in [7] that £ and 77 are holomorphic sections of the pullback bundle 
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g*£[i&M. Our purpose is to show that (18) has then a solution for p{Q for C G A 
and the function p : A —> C is holomorphic. 

We can rewrite (18) in the form 

(19) C(C) = i 
i - M C ) 
i + M O 

n(0, Ce A. 

If we denote a = i l-a 
1+n we obtain £(C) = «I C M C ) , C e A \ { 0 } . Because f and are 

holomorphic sections of g^H1,0M and the fibers of Hli0M have complex dimension 1 
we conclude that (19) has a holomorphic solution a : A \ { 0 } —> C. The point C = 0 
is troublesome as £ and 77 vanish there. 

On the other hand p(Q i-cx{<) 
»+A(C) and thus we obtain that p is a holomorphic 

function on A \ { 0 } if we show that a(Q ^ —i for C € A \ { 0 } . To see this let us 
assume a(Co) = — i for some Co € A \ { 0 } . This gives 

(20) T 1 , 0 JC .^ (P ) = f 1 , 0ffCo.(*l +*^2) = 0. 

But then we use again (12) and write g^{X{p)) = p*((C/C)Z(C(z,w))). By defini
tion p : Br —¥ Dr is a contact mapping for any 0 < r < 1. Therefore 

(21) gc.(X(p)) = Y(p(C(z,w))) + P(0Y(p(az,w)))] 

with Y(p(C(z,w))) gc.(X(p)) M|^|. Consequently (20) and (21) would imply 

9C»*X{P) = 0 

which is impossible, g^0 being a diffeomorphism. 
If we show that \p\ < 1 on A \ { 0 } we can remove the isolated singularity £ = 0 

and conclude that p is holomorphic on A. It is enough to show that |/i(C)| 7̂  1 f ° r 

C G A \ { 0 } . Assuming |/x(Co)| = 1 for some Co G A \ { 0 } we get a(Co) E R and f(Co), 
77(Co) are dependent over R. But this is again impossible since Y\,Yi G HPM are 
independent and g^0 is a diffeomorphism. 

Finally, we note that the above arguments give now (11) for general C since p 
satisfies (16) (and therefore (17)) in A \ { 0 } . We can therefore use (21) and the same 
consideration as for ( G 5 1 to obtain 

"(0 
ç 
c 

M C ) 
ç 
c 

= 0, C e A U O } 

which proves (11). 

Corollary 4. — Consider Y = 7r1,0p*Z as a vector field on M and define the actioi 

9c (p) — P(CP~1(P)) a s above. Then 

(22) gc.Y = Y' + n(£)Y> 

where rj is holomorphic in A. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



10 K. ASTALA, Z. BALOGH & H.M. REIMANN 

Proof. — Determining the Lempert-Beltrami coefficient p, of the trajectory of p by 
the vector Xp = Yp + P(1)YP as above, we have from the argument in (17), (18) that 

n^MQgeX + g<*x] = o 

for all points £ G A. Since by assumption (22) 

^ [ M O s c . * + = (MC) +gc.(X(p))gc.(X(p))gc.(X(p))+ »7(0 + *(I))n'c(P)> 

we must therefore have that 

»7 (0 = -
u(C) + u(l) 
L + P(l)/i(C) ' 

As gç is an inner action, it follows that 77(C) is holomorphic. 

3. Holomorphic motions and Kobayashi indicatrix 

The proof of Theorem 1 can now be obtained quickly from the results of the 
previous section. Indeed, the Lempert mapping gives a natural homeomorphism R 
from the unit ball B to the Kobayashi indicatrix / of the domain D, 

R(w) = d_ 
dC 

p(Cw)K=0gc.(X(. 

The mapping R is C-homogenous of degree 1 on complex lines through the origin and 
as shown in [5], [11] it is a contact transformation on dB. Therefore our holomorphic 
motion of the boundary dl of the indicatrix, 

*(A,t;) - fv{\) 
A ' 

(A,v) G A x dl, 

admits a natural factorization 

* ( A , V ) = 
1 
X9 1\ 0 cr(v), 

where we have used the abréviation 

<t = p\dB °R 1\dl-

Let Y = 7r1,0p#Z be the vector field as above in Corollary 4. Since a : dl —> dD 
is a smooth contact transformation we find a vector field W, W(x) G H^°dl for all 
x G dl, such that 

(t+W = Y + kY 

on dl. 
With these tools we can now estimate the quasiconformal dilatation of the holo

morphic motions \£(A, •). Namely by (8) one has to bound their Beltrami differentials 

ASTÉRISQUE 261 



LEMPERT MAPPINGS AND HOLOMORPHIC MOTIONS IN Cn 11 

and for this we have from Corollary 4 that 

( 2 3 ) VJX,-)W = 
1 

A 
1 

[gx)*(Y + RY) 

( 2 4 ) gc.(X Q (Y + fj(X)Y' + kY' + rj(X)KY') 

gc.(X(p)) A 

A 

77(A) + K 

l + n(X)K 
Y", 

where Y" = A _ 1 (14- t7(A)k ; )F ' . Consequently, the absolute values satisfy lf(\I>* (A, • ) ) = 

(1 + | 5 ( A ) | ) / ( 1 - 1 5 ( A ) ! ) " 1 , where 

( 2 5 ) (5(A) = 
77(A) + ^ 

1 + w(A)/C" 

Since by Corollary 4, 77 is holomorphic in the unit disk with |I77I|OO < 1> the same 
holds true for 6 as well. On the other hand, as \ £ * ( 0 , - ) is the identity mapping, 
5 ( 0 ) = 0. By Schwartz lemma we then get |<$(A)| < |A| which completes the proof of 
Theorem 1. 

Remark. — We would like to mention at the end that the results of Theorems 1 
and 3 are true in more general situations than for strictly linearly convex domains. 
Whenever we have a Lempert mapping with the properties stated at the beginning 
the proofs carry over. In particular, the new work [2] finds the Lempert mappings for 
the larger class named circular-like domains; these are characterized by the fact that 
their Lempert invariants are bounded by 1. 
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