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DYNAMICS OF QUADRATIC POLYNOMIALS, III 
PARAPUZZLE AND SBR MEASURES 

by 

Mikhail Lyubich 

Dedicated to 60th birthday of A. Douady 
Abstract. — This is a continuation of notes on the dynamics of quadratic polynomi­
als. In this part we transfer our previous geometric result [L3] to the parameter plane. 
To any parameter value c (outside the main cardioid and the little Mandelbrot sets 
attached to it) we associate a "principal nest of parapuzzle pieces". We then prove 
that the moduli of the annuli between two consecutive pieces grow at least linearly. 
This implies, using Martens &; Nowicki (cf. this volume) geometric criterion for exis­
tence of an absolutely continuous invariant measure together with [L2], that Lebesgue 
almost every real quadratic polynomial is either hyperbolic, or has a finite absolutely 
continuous invariant measure, or is infinitely renormalizable. In the further papers 
[L5,L7] we show that the latter set has zero Lebesgue measure, which completes the 
measure-theoretic picture of the dynamics in the real quadratic family. 

You first plow in the dynamical plane 
and then harvest in the parameter plane. 

Adrien Douady 

1. Introduction 

This is a continuation of notes on dynamics of quadratic polynomials. In this part 
we transfer the geometric result of [L3] to the parameter plane. To any parameter 
value c G M in the Mandelbrot set (which lies outside of the main cardioid and 
satellite Mandelbrot sets attached to it) we associate a "principal nest of parapuzzle 
pieces" 

A ° ( c ) D A x ( c ) D 

corresponding to the generalized renormalization type of c. Then we prove: 
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174 M. LYUBICH 

Theorem A. — The moduli of the parameter annuli mod(A / (c) \ A / + 1 ( c ) ) grow at 
least linearly. 

(See §4 for a more precise formulation.) 
This result was announced at the Colloquium in honor of Adrien Douady (July 

1995), and in the survey [L4], Theorem 4.8. The main motivation for this work was 
to prove the following: 

Theorem B (joint with Martens and Nowicki). — Lebesgue almost every real quadratic 
Pc : z i—>• z2 -he which is non-hyperbolic and at most finitely renormalizable has a finite 
absolutely continuous invariant measure. 

More specifically, Martens and Nowicki [MN] have given a geometric criterion for 
existence of a finite absolutely continuous invariant measure (acim) in terms of the 
"scaling factors". Together with the result of [L2] on the exponential decay of the 
scaling factors in the quasi-quadratic case this yields existence of the acim once "the 
principal nest is eventually free from the central cascades". Theorem A above implies 
that this condition is satisfied for almost all real quadratics which are non-hyperbolic 
and at most finitely renormalizable (see Theorem 5.1). Note that Theorem A also 
implies that this condition is satisfied on a set of positive measure, which yields a new 
proof of Jacobson's Theorem [J] (see also Benedicks & Carleson [BC]). 

A measure ¡1 will be called SBR (Sinai-Bowen-Ruelle) if 

(1.1) 
1 
n 

n—l 

k=0 
Sfkx -> n 

for a set of x of positive Lebesgue measure. It is known that if an SBR measure exists 
for a real quadratic map / = P c , c £ [—2,1/4], on its invariant interval 7C, then it is 
unique and (1.1) is satisfied for Lebesgue almost all x G Ic (see Introduction of [MN] 
for a more detailed discussion and references). Theorem B yields 

Corollary. — For almost all c £ [—2,1/4], the quadratic polynomial Pc has a unique 
SBR measure on its invariant interval Ic. 

Another consequence of our geometric results is concerned with the shapes of little 
Mandelbrot copies (see [L3], §2.5, for a discussion of little Mandelbrot copies). Let 
us say that a Mandelbrot set M' has a (K,s)-a bounded shape if the straightening 
X : M1 —> M admits a i^-quasi-conformal extension to an (e diam M')-neighborriood 
of M ' . We say that the little Mandelbrot sets of some family have bounded shape if a 
bound (K, e) can be selected uniform over the family. 

A Mandelbrot copy M' is called maximal if it is not contained in any other copy 
except M itself. It is called real if it is centered at the real line. 

ASTÉRISQUE 261 



PARAPUZZLE AND SBR MEASURES 175 

A little Mandelbrot copy encodes the combinatorial type of the corresponding 
renormalization. In [L3] we dealt with diverse numerical functions of the combina­
torial type. For real copies a crucial information is encoded by the essential period 
pe(M') (see [L3, §8.1], [LY]). 

For a definition of Misiurewicz wakes see §3.3 of this paper. 

Theorem C. — For any Misiurewicz wake O, the maximal Mandelbrot copies con­
tained in O have bounded shape. In particular, all maximal real Mandelbrot copies, 
except the doubling one, have a bounded shape. Moreover, a real copy M' has a 
{K^e)-bounded shape, where K —> 1 and e —> oo as pe{M') —> oo. 

In §6 we will refine this statement and will comment on its connection with the 
MLC problem and the renormalization theory. 

Let us now take a closer look at Theorem A. It nicely fits to the general philosophy 
of correspondence between the dynamical and parameter plane. This philosophy was 
introduced to holomorphic dynamics by Douady and Hubbard [DH1]. Since then, 
there have been many beautiful results in this spirit, see Tan Lei [TL], Rees [R], 
Shishikura [Sh], Branner-Hubbard [BH], Yoccoz (see [H]). 

In the last work, special tilings into "parapuzzle pieces" of the parameter plane 
are introduced. Its main geometric result is that the tiles around at most finitely 
renormalizable points shrink. It was done by transferring, in an ingenious way, the 
corresponding dynamical information into the parameter plane. 

In [L3] we studied the rate at which the dynamical tiles shrink. The main geomet­
ric result of that paper is the linear growth of the moduli of the principal dynamical 
annuli. Let us note that the way we transfer this result to the parameter plane (The­
orem A) is substantially different from that of Yoccoz. Our main conceptual tool is 
provided by holomorphic motions whose transversal quasi-conformality is responsi­
ble for commensurability between the dynamical and parameter pictures (compare 
Shishikura [Sh]). To make it work we exploit existence of uniform quasi-conf or mal 
pseudo-conjugacy between the generalized renormalizations [L3]. 

The properties of holomorphic motions are discussed in §2. In §3 we describe the 
principal parameter tilings according to the generalized renormalization types of the 
maps. In §4 we prove Theorem A. In §5, we derive the consequence for the real 
quadratic family (Theorem B). In the last section, §6, we prove Theorem C on the 
shapes of Mandelbrot copies. 

Let us finally draw the reader's attention to the work of LeRoy Wenstrom [W] 
which studies in detail parapuzzle geometry near the Fibonacci parameter value. 

Remark. — We have recently proven that the set of infinitely renormalizable real 
parameter values has zero linear measure. Together with Theorem B this implies that 
almost every real quadratic has either an attracting cycle or an absolutely continuous 
invariant measure [L7]. 
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176 M. LYUBICH 

2. Background 

2.1. Notations and terminology 

Dr(p) = {z:\z-p\<r}; 

Br = Dr(0); 

ID) = ID)i ; 

Tr = {z:\z\=r}; 

A(r,i2) = { r < | z | < i ? } . 

The closed and semi-closed annuli are denoted accordingly: A[r, A(r, i?], A[r, i?). 
By a topological disc we will mean a simply connected domain D C C whose 

boundary is a Jordan curve. 
Let 7ri and 7T2 denote the coordinate projections C2 —> C. Given a set X c C 2 , we 

denote by X\ — 7rf its vertical cross-section through A (the "fiber" over A). Vice 
versa, given a family of sets X\ c C , A E D, we will use the notation: 

X = UXeDXx = {(X,z) EC2 : A G D , ^ X A } . 

Let us have a discs fibration ni : V —> D over a topological disc D c C (such that 
the sections U\ are topological discs, and the closure of U in D x C is homeomorphic 
to D x D over D). In this situation we call U an (open) topological bidisc over D. We 
say that this fibration admits an extension to the boundary dD if the closure U of U 
in C2 is homeomorphic over D to D x ID . The set U is called a (closed) bidisc. We 
keep the notation U for the fibration of open discs over the closed disc D (it will be 
clear from the context over which set the fibration is considered). 

If U\ 3 0, X E D, we denote by 0 the zero section of the fibration. 
Given a domain A C D, let U| A = U D 7rf1 A. This is a bidisc over A. 
If the fibration m admits an extension over the boundary dD, we define the frame 

SV as the topological torus U\^d£fdU\. A section 3> : D U is called proper if it is 
continuous up to the boundary and &(dD) C 5U. 

We assume that the reader is familiar with the theory of quasi-conformal maps 
(see e.g., [A]). We will use a common abbreviation K-qc for uif-quasi-conformar. 
Dilatation of a qc map h will be denoted as Dil(h). 

Notation an x bn means, as usual, that the ratio an/bn is positive and bounded 
away from 0 and oc. 

2.2. Holomorphic motions. — Given a domain D C C with a base point * and 
a set X* C C, a holomorphic motion h of X* over D is a family of injections h\ : 
X* —> C, A E D, such that h* = id and h\(z) is holomorphic in A for any z E X*. 
We denote X\ = h\X*. The restriction of h to a parameter domain A C D will be 
denoted as fe|A. 
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PARAPUZZLE AND SBR MEASURES 177 

Let us summarize fundamental properties of holomorphic motions which are usually 
referred to as the \-lemma. It consists of two parts: extension of the motion and 
transversal quasi-conformality, which will be stated separately. The consecutively 
improving versions of the Extension Lemma appeared in [LI] and [MSS], [ST], [BR], 
[SI]. The final result, which will be actually exploited below, is due to Slodkowsky: 

Extension Lemma. — A holomorphic motion h\ : X* —> X\ of a set X* C C over a 
topological disc D admits an extension to a holomorphic motion H\ : C —> C of the 
whole complex plane over D. 

Quasi-Conformality Lemma ([MSS]). — Let h\ : U* —» U\ be a holomorphic motion 
of a domain U* C C over a hyperbolic domain D c C . Then the maps h\ are K(r)-
quasi-conf ormal, where r is the hyperbolic distance between * and A in D. 

Let us define the dilatation of the holomorphic motion as 

Dil(h) = sup Dil(/iA). 
\eD 

It can be equal to oo over the whole domain D but becomes finite (< K(r)) over the 
hyperbolic disk of radius r. 

A holomorphic motion h\ : U* —>• U\ over D can be viewed as a complex one-
dimensional foliation of the domain U = U\er>U\, whose leaves are graphs of the 
functions A i—>• h\(z), z E C/*. A transversal to the motion is a complex one dimen­
sional submanifold of C2 which transversally intersects every leaf at one point (so 
that "transversal" will mean a global transversal). Given two transversals X and Y', 
we thus have a well-defined holonomy map H : X —y Y, H(p) = q iff p and q belong 
to the same leaf. 

A map H : X —> Y is called locally qc at p E X if it is qc in some neighborhood of 
p. In this case the local dilatation of H at p is defined as the limit of Dil(iif | U)s (p)), 
as e —> 0. 

Corollary 2.1 (Transverse qc structure). — Any holomorphic motion h over D is lo­
cally transversally quasi-conformal. More precisely, for any two transversals X and 
Y, the holonomy map H : X —• Y is locally quasi-conf ormal. If H(p) — q then the lo­
cal dilatation of H at p depends only on the hyperbolic distance between the m (p) and 
7Ti(q) in D. IfDil(h) < oo then the holonomy H is globally qc with Dil(iJ) < T>\\(h)2. 

Proof. — Let p — (A, a) , q — (//, /3). By the A-Lemma, the map G — h^o h^1 : U\ —> 
Ufj, is quasi-conformal, with dilatation depending only on the hyperbolic distance 
between A and fi in D and bounded by Dil(fo)2. Hence a little disc He{a) C U\ is 
mapped by G onto an ellipse Q£ C with bounded eccentricity about (3 (where the 
bound depends only on the hyperbolic distance between A and fi. 

But the holonomy 17A —> X is asymptotically conf ormal near p. To see this, let us 
select a holomorphic coordinates (0,z) near p in such a way that p = 0 and the leaf 
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178 M. LYUBICH 

via p becomes the parameter axis. Let z — ip(0) = e H parametrizes a nearby leaf 
of the foliation, while 0 = g(z) — bz + • • • parametrizes the transversal X. 

Let us do the rescaling z — e£, 9 — ev. In these new coordinates, the above leaf is 
parametrized by the function = e~1ip(€i/), \v\ < 22, where R is a fixed parameter. 
Then *'(*/) = i/)'(ev) and *"(*/) = ei/>"(ei/). Since the family of functions is 
normal, \p"(z/) = 0(e). Moreover, ip uniformly goes to 0 as -0(0) -> 0. Hence | * ' ( 0 ) | = 
l ^ ( 0 ) | < S0(e), where S0(e) -> 0 as e -> 0. Thus = (J0(e) + 0(e) < 6(e) -> 0 
as e -> 0 uniformly for all \u\ < R. It follows that *(*/) = 1 + 0(5(s)) = 1 + o( l ) as 
e 0. 

On the other hand, the manifold X is parametrized in the rescaled coordinates by 
a function v = bC 4- 0(1). Since the transverse intersection persists, X intersects the 
leaf at the point (̂ o,Co) = (&, + o(l)) (so that R should be selected bigger than 
b). In the old coordinates the intersection point is (0o>zo) = (beye)(l + o ( l ) ) . 

Thus the holonomy from U\ to X transforms the disc of radius \e\ to an ellipse 
with small eccentricity, which means that this holonomy is asymptotically conformal. 
As the holonomy from C7M to Y is also asymptotically conformal, the holonomy H : 
(X, p) - » (Y, q) is locally qc at p, and its local dilatation at p is the same as the local 
dilatation of G : (U\,p) (U^^q). Thus it depends only on the hyperbolic distance 
between A and ^ , and is bounded by Dil(ft)2. 

To conclude the proof, one should just remark that a map is globally qc if and 
only if it is locally qc with uniformly bounded local dilatations, and then the global 
dilatation is equal to the supremum of the local ones. • 

Remark. — The author thanks the referee for pointing out that the above Corollary 
also follows from [DH2, p. 327] (compare also [Sh, §3]). 

2.3. Winding number. — Given two curves ^ 1 , ^ 2 '• 9D —> C such that ^ i (A) ^ 
^2(A), A G <92?, the winding number of the former about the latter is defined as the 
increment of ^ arg(^i(A) — ^2 (A)) as A wraps once around 3D. 

Let us have a bidisc U over 2?. Given a proper section * : 2? —> U let us define 
its winding number as follows. Let us mark on the torus 5U the homology basis 
{[92?], [<9£/*]}. Then the winding number w{&) is the second coordinate of the curve 
* : 3D —> SV with respect to this basis. 

Argument Principle. — Let us have a bidisc U over 2? and a proper holomorphic sec­
tion : 2? —> \J, (/) = 7T2 o Let & : 2? —> U be another continuous section holomor­
phic in D, i\) — 7T2 o Then the number of solutions of the equation 4>{\) = ^(A) 
counted with multiplicity is equal to the winding number w(&). 

Proof. — Indeed, w($) is equal to the winding number of <f> around ip, which is equal, 
by the standard Argument Principle, to the number of roots of the equation 

<KA) = ip(X). • 
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PARAPUZZLE AND SBR MEASURES 179 

3. Parapuzzle combinatorics 

3.1. Holomorphic families of generalized quadratic-like maps* — Let us 
consider a topological disc D C C with a base point * G D, and a family of topological 
bidiscs Vi C U C C2 over D (tubes), such that the V* are pairwise disjoint. We 
assume that VO,A 3 0. 

Let 

(3.1) g : UVi -> U 

be a fiber wise map, which admits a holomorphic extension to some neighborhoods of 
the Vi (warning: these extensions don't fit), and whose fiber restrictions 

g(X, •) = gx : UiV-,A ->UX, AG D, 

are generalized quadratic-like maps with the critical point at 0 G V\ = Voyx (see [L3], 
§3 .7 for the definition). We will assume that the discs U\ and V^x are bounded by 
piece wise smooth quasi-circles. 

Let us also assume that there is a holomorphic motion h over (D, *), 

( 3 . 2 ) hx : (U*,UidVi9.) -+ (Ux,UidVi,xh 

which respects the boundary dynamics: 

( 3 . 3 ) hx o g* (z) =gx°hx (z) for z G<ï><ï><ï>gx°h. 

A holomorphic family (g,h) of (generalized) quadratic-like maps over D is a map 
(3.1) together with a holomorphic motion ( 3 . 2 ) satisfying ( 3 . 3 ) . We will sometimes 
reduce the notation to g. In case when the domain of g consists of only one tube 
Vo, we refer to g as DH quadratic-like family (for "Douady and Hubbard", compare 
[DH2]). 

<ï> 

<ï> 

X 
<ï> X 

U 

D 

Figure 1. Generalized quadratic-like family. 
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180 M. LYUBICH 

Remark. — It would be more consistent to call just g a holomorphic family, while to 
call the pair (g,h), say, an equipped holomorphic family. However, in this paper we 
will assume that the families are equipped, unless otherwise is explicitly stated. 

Let us now consider the critical value function 0(A) = 0^(A) = <7A(0), ^ ( A ) = 
&gW — # ( ^ 0 ) = ( ^ 0 ( ^ ) ) - Let us say that g is a proper (or full) holomorphic 
family if the fibration 7Ti : U —>• D admits an extension to the boundary D, ¥j C U, 
and <I> : D —• U is a proper section. Note that the fibration 7Ti : V0 —>- D cannot be 
extended to D, as the domains V\,o pinch to figure eights as A —> dD. 

Given a proper holomorphic family g of generalized quadratic-like maps, let us 
define its winding number w(g) as the winding number of the critical value 0(A) 
about the critical point 0. By the Argument Principle, it is equal to the winding 
number of the critical value about any section D —> U. 

We will also face the situation when g does not map every tube Yi onto the whole 
tube U but still satisfies the following Markov property: gYi either contains Yj or 
disjoint from it (and all the rest properties listed above are still valid, see §3.3). Then 
we call g a holomorphic family of Markov maps. 

Let mod(g) = infXeD mod(Ux \ VO,A)-

3.2. Douady & Hubbard quadratic-like families. — Let us consider a proper 
holomorphic family / : V - » U of DH quadratic-like maps. The Mandelbrot set M(f) 
is defined as the set of A G D such that the Julia set J (fx) is connected. We will 
assume that * G M(f). 

Since the U\ and are bounded by quasi-circles, there is a qc straightening 
u* : cl(*7* \ V*) -> A[2,4] conjugating /* : <9T4 dU* to z \-> z2 on T 2 . The 
holomorphic motion h on the ucondensator" U \ Y spreads this straightening over the 
whole parameter region D. We obtain a family of quasi-conformal homeomorphisms 

(3.4) oux :c\(Ux^Vx) - > A[2,4] 

conjugating fx\9Vx to z z2 on T 2 . Pulling them back, we obtain for every fx 
the straightening ux : —̂  A ( ^ A , 4 ) well-defined up to the critical point level px = 
| ^A(0) | (SO that for A G M(f) it is well-defined on the whole complement of the Julia 
set). This determines external coordinates of points z G ttxi radius r and angle 9, 
defined as the polar coordinates of LOX(Z)* 

Note that if Dil(fe) < oo then the straightenings UJX are uniformly L-qc with L = 
Dil(ft) • Dil(<X;*). Note also that Dil(cj*) depends only on the qc dilatation of the 
quasi-circle dU*, <9V* and on mod(E7* \ V*). 

By the geometry of ( / , h) we will mean a triple of parameters: (mod( / ) )_1 , Dil(ft), 
and the best dilatation of a;*. If mod( / ) —> oo, while the Di\(h) and Dil(u;*) go to 1 
(over some directed set of quadratic-like families), then we say that the geometry of 
(/, h) vanishes. 
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PARAPUZZLE AND SBR MEASURES 181 

By an adjustment of a DH quadratic-like family we will mean replacement the 
domains £/*, V* with some other domains J7* C C/*, K = f^U*, spreading them 
around by h (U\ — h\U*, V\ = h\V*), and the corresponding shrinking of the 
parameter domain: D = 3>-1U. It provides us with an adjusted family ( / : V —> U, h) 
over D. 

We will use the following standard adjustment. Select U* to be bounded by the 
hyperbolic geodesic V in the annulus [7* \ V*. Then V* is bounded by the hyperbolic 
geodesic T' in V* \ f~xV*. By the Koebe Theorem, the geometry of these geodesies 
(i.e., their qc dilatation) depends only on mod([7* \ V*). Thus after this adjustment, 
Dil(u5#) depends only on mod(L^xV*). Moreover, mod(C/*\Vi) > (3/4) mod(C7*\K). 
Thus the geometry of the adjusted family depends only on mod(£7* XJ^*) Dil(/i). 

Moreover, if we fix Dil(ft) and let mod(£7* \ V*) -> oo, then mo&(U\ \ V\)) —> oo, 
Dil(/i|D) —> 1 (by A-lemma), and Dil(w*) —> 1, so that the geometry of the adjusted 
family vanishes. 

In what follows we will not change notations when we adjust quadratic-like families. 

Let us now define a map £ : D \ M(f) —>• A(l , 4) in the following way: 

(3.5) £ (A) = u>x(fx0). 

Lemma 3.1. — Let (/, h) be a DH quadratic-like family with winding number 1. Then 
formula (3.5) determines a homeomorphism £ : D \ M(f) —> A( l ,4 ) . IfDil(h) < oo 
then £ is L-qc with L depending only on the geometry of (f,h). Moreover, L —> 1 as 
the geometry of ( / , h) vanishes. 

Proof. — Let us consider the critical value graph X = 3>(A) = { ( ^ > / A 0 ) , A G D}. 
By the Argument Principle, it intersects at a singe point each leaf of the holomorphic 
motion ftonUxV, so that the holonomy 7 : [/* \ V* —» X is a homeomorphism onto 
the image R\. Hence Ai = TTIRI C D is a topological annulus, and the map 

f-1 =K1O1OUJ-1 : A[2,4) -> Ai 

is a homeomorphism. 
Let I \ be the inner boundary of A\, and Di be the topological disc bounded by 

I V Since the critical value /A(0) , A 6 D 1 , does not land at the leaves of holomorphic 
motion h\Di, it can be lifted by / to a holomorphic motion hi of the annulus V} \ V*2 
over where = VA and V2 = f^1V\. Since the graph X intersects every leaf 
belonging to dV1 at a single point, the family ( / : V2 —>• V1, h) is proper over Di and 
has winding number 1. Let A2 = $~1(V1 \ V2). Then the same argument as above 
shows that the map £-1 : A[\/2, 2) —> is also a homeomorphism. 

Continuing in the same way, we will inductively construct a sequence of holomor­
phic motions hn over nested discs Dn, and a nest of adjoint annuli An = Dn-i \ Dn 
which are homeomorphically mapped by £ onto the round annuli A[22 " , 22 " ) . 
Altogether this shows that £ is a homeomorphism. 
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182 M. LYUBICH 

Finally, assume h is K-qc. Since all further motions hn are holomorphic lifts 

of h over Dn by fn, they are K-qc over their domains of definition as well. By 

Corollary 2.1, they are transversally K-qc. Moreover, the straightening 

gx°h £/* \ J{U) — • A ( l , 4 ) 

is qc, while the projection 7Ti : X D is conformal. Since £ is the composition of 

the straightening, the holonomy and the projection, it is L-qc with L = K • Dil(<x;*). 
In particular, L - » 1 as K and Dil(u;*) go to 1. • 

Note that the motions hn over domains Dn constructed in the above proof preserve 

the external coordinates: uj\(h\z) = oo*(z), z G U* \ f~nV*. We will refer to this 

property by saying that h respects the external marking, or that h is marked. 

Example (see [DH1]). — Let us consider the Mandelbrot set M of the quadratic fam­

ily Pc : z i-» z2 + c. Let i i : C \ M - > C \ P b e the Riemann mapping tangent 

to id at oo. Recall that parameter equipotentials and external rays are defined as 

the i?-preimages of the round circles and radial rays. Let ftr be the topological disc 

bounded by the equipotential R~x{re%e : 0 < 6 < 2TT} of radius r > 1. 

For every c G O4, let us consider the quadratic-like map Pc : Vc —> Uc where Vc 

and Uc are topological discs bounded by the dynamical equipotentials of radius 2 and 

4 correspondingly. Then the conformal map uc : Uc \ Vc —> A[2,4) conjugates Pc\dVc 

to z z2 on T 2 , so that it can serve as a straightening (3.4). With this choice of the 

straightening, the parameter map £ : D \ M —> A ( l , 4) constructed in Lemma 3.1 is 

just the restriction of the Riemann map JR. • 

With Lemma 3.1, we can extend the notion of parameter rays and equipotentials 

to quadratic-like families as the £-preimages of the polar coordinate curves in A ( l , 4 ) . 

If £(A) = ret0 then r and 0 are called the external radius and the external angle of 

the parameter value A. Note that 3D becomes the equipotential of radius 4. 

Before going further, let us state a general lemma about qc maps: 

Gluing Lemma. — Let us have a compact set Q C C and two its neighborhoods U and 

V. Let us consider two qc maps (j) : U —> C and ip : V \ Q —> C. Assume that these 

maps match on dQ, i.e., the map f : V —> C defined as cj> on Q and as xfr onV^Q 

is continuous. Then f is quasi-conformal and D i l ( / ) = max(Dil(</>|<2), D i l ( ^ ) ) . 

Proof. — See e.g., [DH2, Lemma 2, p. 303]. • 

Recall now that every quadratic-like map / : V —>• U is hybrid equivalent to a 

quadratic polynomial Pc : z \-> z2 + c (The Straightening Theorem [DH2]). It is 

constructed by gluing / to z Z2 on C \ Kfe (by means of the qc straightening 

u) : c\(U \ V) —> A[2,4] respecting the boundary dynamics), and pulling the standard 

conformal structure on C \ ID2 back to U \ K(f) by iterates of / . In the case of 

connected Julia set J ( / ) , the parameter value c = x(f) ls determined uniquely. 
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Given a quadratic-like family f\ : V\ —> U\ over D with winding number 1, let us 
consider a family of straightenings (3.4) and the corresponding family of quadratic 
polynomials Px(\) : z t-> z2 + xW-

Note that 

(3.6) £ = g x ° h R o X \ D \ M ( f ) , 

where £ is denned in (3.5), and R is the Riemann mapping on the complement of 
the Mandelbrot set. This formula follows from the definitions of £ and x and the 
description of R given in the above Example. 

Lemma 3.2. — Under the circumstances just described, the straightening 

gx°h (D,M(f\gx > ( « 4 , M ) 

is a K-qc homeomorphism of the disc D onto a neighborhood Q4 of the Mandelbrot 
set M bounded by the parameter equipotential of radius 4. The dilatation K depends 
only on the geometry of (/, Ai). 

After adjusting the family (f,h), Dil(x) will depend only on mod(£7* \ V*) and 
Dil(ft). Moreover, Dil(x) -> 1 and mod(£> \ M(f)) -> 00 as mod(C7* \ V*) -+ oc 
(with a fixed Dil(Ai)). 

Proof — By [DH2], x is a homeomorphism. By [L5, Lemma 5.4], x\M(f) admits a 
local qc extension XA to a neighborhood N\ of any point A G M ( / ) , with dilatation 
depending only on m o d ( / ) . Let us select neighborhoods W\ <E N\. Then let us select 
finitely many xi = X\i such that the corresponding neighborhoods Wi = W\t cover 
M(f). By the Gluing Lemma, 

Bi\(X\(D x M ( / ) ) U Wi) < max(Dil(x|£> x Af ( / ) ) , Dil(Xi)). 

Taking into account Lemma 3.1, we conclude that 

Dil(x) = maxDil(x|CD \ Af ( / ) ) U Wi) 
i 

depends only on the geometry of (f,h). 
Moreover, by [L5], the Dil(xi) —> 1 as mod( / ) —>• oc. By Lemma 3.1, after the 

adjustment of ( / , & ) ) , Dil(x|£> \ M ( / ) ) -> 1 as mod(/*) oc keeping K = Di\(h) 
fixed. Hence by the Gluing Lemma, Dil(x) -> 1 as mod(/*) —> oo. 

Finally, by transversal quasi-conformality of holomorphic motions, 

mod(£> \ M(f)) > K'1 mod(*7* \ V*) -+ oc. 

• 

We will mostly deal with equipotentials of radius 41/271, the preimages of the out­
ermost equipotential of radius 4. Let us say that the equipotential of radius 41/271 has 
level n, so that the outermost equipotential has level 0, the equipotential of radius 2 
has level 1, etc. 
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3.3. Wakes and initial Markov families. — Lemma 3.2 shows that the landing 
properties of the parameter rays in a quadratic-like family coincide with the corre­
sponding properties in the quadratic family. This allows us to extend the notions of 
the parabolic and Misiurewicz wakes from the quadratic to the quadratic-like case. 
Namely, the q/'p-parabolic wake Pq/P = Pq/P(f) is the parameter region in D bounded 
by the external rays landing at the g/p-bifurcation point bq/p on the main cardioid 
of M(f) and the appropriate arc of dD. Dynamically it is specified by the property 
that for A in this wake there are p rays landing at the a-fixed point a\ of J (fx), and 
they form a cycle with rotation number q/p. 

The maps 

(3.7) fl'Vx^ Ux 

restricted to appropriate domains form a (non-equipped) quadratic-like family over 
the wake (see [D], [L3], §2.5). (The domain V\ is a thickening of the puzzle piece 
Y^1-1-^ bounded by two pairs of rays landing at the a-fixed and co-fixed (i.e., the other 
preimage of a) points and two equipotential arcs. The domain Ux is a thickening 
of the puzzle piece Y^ bounded by two rays landing at the a-fixed point and an 
equipotential arc of level 1.) Note however that this family fails to be proper as the 
domains U\ don't admit continuous extension at the root. 

Proposition 3.3 (see [D]). — Let f be a DH quadratic-like family with winding number 
1. Then the winding number of the critical value A »—y /^(0) about 0 when A wraps 
once about the boundary of the parabolic wake dPQ/p is also equal to 1. 

By [DH2, D], the quadratic-like family (3.7) generates a homeomorphic copy 
Mq/p — Mq/p(f) of the Mandelbrot set attached to the bifurcation point bqjp. Its 
complement M \ Mqjp consists of a component containing the main cardioid and 
infinitely many decorations (using terminology of Dierk Schleicher [Sch]) D^lp, where 
a is a dyadic sequence of length |<r| = t — 1, t = 1, 2 , . . . , i = 1,. . . , p — 1. The 
decoration D^p touches Mq/p at a Misiurewicz point /x = p^/p for which 

/ f (0) € f?{0) =gx f?{0) =gxfc = 0 , . . . , t - l , while f?{0) =gx°hgx°h 

where a!^ is the a-co-fixed point. (Such Misiurewicz points are naturally labeled by 
the dyadic sequences). 

Every decoration D^pgx°h belongs to the Misiurewicz wake 0^pgx°h of level t bounded 
by two parameter rays landing at fi^pgx°h (there are p rays landing at this point). Let 
us truncate such a wake by the equipotential of level pt. We will obtain the initial 
puzzle pieces 0^pgx°h which sometimes will also be called "Misiurewicz wakes". They 
can be dynamically specified in terms of the initial puzzle (see [L3], §3.2). Namely, 
there are p — 1 puzzle pieces f?{0) =gx i = 1 , . . . ,p — 1, attached to the co-fixed point a'. 
Pulling them back by (t — l)-st iterate of the double covering fp : y(1+^) —Y^\ 
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we obtain 2l 1 puzzle pieces Z^J~^ labeled by the dyadic sequences. The wake 

Oaqfp is specified by the property that f*>0 G Z^+{t~1)p). 

The wake 0^lp containing a point A will also be denoted by 0(A). 
By tiling we mean a family of topological discs with disjoint interiors. Let us 

consider the initial tiling constructed in [L3], §3.2 (see Figure 2): 

(3.8) Y?' V2 U 

k>0 i 

f?{0) = 

k>0 j 

7(l+*p) 

where f?{0) =gx f?{0) =gx 

1 

1+D 

-1+2p 

Y(°) 

Y.(1) 

a 

f?{0) =g 

X 

v ° 

a' 

Q 2 

z<;> 

Figure 2. Initial tiling (p = 3, £ = 2). 

Lemma 3.4. — Tfte family of puzzle pieces y(1+kp) and Zj^kp\ k < t — 1, moves 
holomorphically in the region inside the parabolic wake Pq/P bounded by the parameter 
equipotential of level pt with all the Misiurewicz wakes of level < t — 1 removed. 

Let us recall that f?{0 means 
f?{0) 
=gx f?{0) =gx 

Lemma 3.5. — Let f be a DH quadratic-like family with winding number 1. Then 
the initial tiling (3.8) moves holomorphically within the Misiurewicz wake O = Op^lq. 

The critical value 4>o(A) = / \*0, of the double covering fpt : V® Z^l is a proper 

map <&0 : O ̂  2 ^ with winding number 1 (where t — \a\ + 1). 

Proof. — Indeed, all puzzle pieces of this initial tiling are the pullbacks of Z^. As A 

ranges over the wake O = O^f^ the corresponding iterates of 0 don't cross the bound­

ary of Zj1^. It follows that the boundary of the initial tiling moves holomorphically. 
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Moreover, the torus SZ^ is foliated by the curves with the same external co­
ordinates, and one curve corresponding to the motion of the a-co-fixed point. By 
definition of the Misiurewicz wake, the critical value 3>o(A) intersects once every leaf 
of this foliation when A wraps once around dO. Hence 4>o ' O ->SZ^ is a proper map 
with winding number 1. • 

Let ho stand for the above holomorphic motion of the initial tiling. 
Recall for further reference that there are two puzzle pieces QI,A and Q2,x in 

Y 1̂"f_(*"~1)p) which are univalently mapped by fx onto Y^1+(t-1)p) (see Figure 2 ) . The 
pieces Xfx are the pull-backs of Vx = X® x under the fc-fold iterate of the Bernoulli 
map 

/r:Oi,AUQ2,A^yA(1+(<-1)p). 

Let SZ^D SZ^Xfx denote the domain in y^1"1" -̂1)̂  which is mapped under fxp onto 
ya+(t-i)p); in particular, no A = y(.i+(t-i)P) 

3.4. First generalized quadratic-like family. — Let us consider a proper DH 
quadratic-like family / = {fx} over D with winding number 1. Fix a Misiurewicz 
wake O of this family. The first generalized quadratic-like map g\^x ' UF/A ~~̂  V\ is 
defined as the first return map to Vx (see [L3], §3.5). The itinerary of the critical 
point via the elements Pi of the initial tiling (3.8) determines the parameter tiling 
T*1 of a Misiurewicz wake O by the corresponding puzzle pieces. Let A1 (A) stand for 
such parapuzzle piece containing A. 

More precisely, for any A G O, let us consider the first landing map Tx : ULjx —> Vx 
(see [L3], §11.3). The puzzle piece L-iX is specified by its itinerary i = (¿0,... ,i8-i) 
through non-central pieces Pi of the initial tiling until the first landing at f?{0) =gx : 

(3.9) Llx = {z:G?zePik, m = 0,...,s-l, f?{0) =gx G?z£V°}, 

where Gx stands for the Markov map (3.5) from [L3]. These tiles are organized in 
tubes with holomorphically moving boundary. Moreover, the first landing map 
induces a diffeomorphism T : —> V° fibered over id. 

Let ix stand for the itinerary of the critical value </>o(\) = /A*0 through the ini­
tial tiling, so that ffO G L-ixX. Let L* = l*m and *0(A) = (A,<£0(A)). Then the 
parapuzzle pieces of the tiling V1 are defined as follows: 

Ax(*) - *o X = {A G O : / f 0 G L * , A } . 

Let V} denote the components of /~pt(L-|AX(*)) contained in V°, where V£ = V1 is 
the critical component (i.e., the one containing 0). The first return map 

gl=TofPt : UV) • V° = U1 

is the desired first generalized renormalization of / . 
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By means of the first landing map T, the holomorphic motion ho over O can be 
lifted to the tubes . By the A-lemma, this lift and the motion ho of the boundary 
of the initial tiling (3.8) admit a common extension Ho over O. 

Since the critical value 3>(A) lands at the tube L* as A ranges over A * ( * ) , H0 can 
be lifted to a holomorphic motion of the annulus V£ \ Vx over A X ( * ) . Let us extend 
this motion to V£ by the A-lemma. This provides us with a motion hi which equips 
the generalized quadratic-like family g±. 

Since the winding number of 4>o about Z ] over O is equal to 1 (by Lemma 3.5), 
the function • A X ( * ) —> L* is proper with winding number 1. Since the first 
landing map T is a fiberwise diffeomorphism of every tube Lq onto Vo, it induces a 
homeomorphism between the marked tori 5Lj —» SVo. Hence the function * i ( A ) = 
(A ,TA O 0 o ( A ) ) , A 1 (A) —> Vo, is also proper with winding number 1. Thus we have: 

Lemma 3.6. — Let f be a DH quadratic-like family with winding number 1. Then 
the first generalized renormalization (gx : UV] - » V° = U1, hi) is a proper family 
with winding number 1 over A X ( * ) . 

Together with the tubes (3.9) let us also consider bigger tubes Wj over O denned 
as follows. Let P^ ,A = Xfx be the first "X-pieces" in the itinerary {Pim}m=o- Then 

(3.10) W?,A = iz : Gxz € «m,x, rn = 0 , . . . , r - 1, Grxz G A * A } , 

where the domains fi£A are defined at the end of §3.3. Moreover, 

(3.11) G\ : WltX — • îî£A, SZ^ îî£A, îî£A, îî£A, (l+(t-l)v) 

and both maps are univalent isomorphisms. Thus Gs : Wj —> Y^1"1-^-1^ is a fiberwise 
conformal diffeomorphism fibered over id. 

Hence the holomorphic motion of Y ^ 1 + ^ - 1 ^ (see Lemma 3.4) can be lifted to 
holomorphic motions of the Wj. Let W* = , where is the itinerary of the 
critical value 0o(*) = f*0 through the initial tiling. Let us introduce the following 
parameter domains in O: 

(3.12) A X ( * ) = $-xW* = { A : 0o(A) G W^x} D A X ( * ) . 

This extension of A X ( * ) will be used for a priori bounds on the parameter geometry 
(see §4). 

3.5. Renormalization of holomorphic families. — Let us now consider a gener­
alized quadratic-like family (g : UVi —> U, h) over (D, * ) . Let X stand for the labeling 
set of tubes V^. Remember that I 3 0 and Vo 3 0. Let Z# stand for the set of all 
finite sequences i = ( ¿ 0 , . . . , « t - i ) of non-zero symbols ik G T \ { 0 } . For any i G Z#, 
there is a tube Vj such that 

gkVj c Vifc, fc = 0, r - 1, Grxz 1 and fl*V? - U. 
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We call t — \i\ the rank of this tube. The map gl : Vj —> U is a holomorphic 
diffeomorphism which fibers over id, that is, g\Vi A = U\, A e D . 

Let us redefine the holomorphic motion h of U as follows: 

9\(Hi,\z) = M<?*^), z G ^7,* \ u\J\=t+iV3,*, WHERE t = |ii| 

By ( 3 . 3 ) , h\ is correctly defined on [7* minus a Cantor set. Extend it to the whole 
[/* by the A-lemma. 

Consider tubes C V- such that gll^ = V0, where £ = |i|. The first landing map 
T : ULq —> V0 is defined as T\Lj — gl. By construction, 

Tx(hxz) = hx(T*z) for z G U < 9 L ^ . 

Let 0(A) = PAO and <£(A) = (A, 0(A)). Let i* be the itinerary of the critical value 
<£(*) under iterates of g* through the domains V^*, until its first return to Vb,*. In 
other words, let # * ( 0 ) G = IL*. 

Let us now consider the following parameter region around *: 

D' = D'(*) = * - 1 L , E . 

For A G -D', the itinerary of the critical value under iterates of g\ until the first return 

back to VO,A is the same as for g* (that is, i*). Let us define new tubes V̂ - C V0 as 

the components of ( # | V o ) _ 1 0 M ^ ' ) ' Let 

( 3 . 1 3 ) g' : UV'j -> V0|£>' = U' 

be the first return map of the union of these tubes to Vo. 
For A G D', the critical value <£(A) does not intersect the boundaries of the the 

tubes Lj. Hence we can lift the holomorphic motion h on U \ L* to a holomorphic 
motion h! on U' \ Vo over D' and extend it by the A-lemma to the whole tube U'. 
Thus we obtain a generalized quadratic-like family (g1', h') over Df which will be called 
the generalized renormalization of the family (g,h) (with base point * ) . 

If g is a proper family then g' is clearly proper as well. Moreover, w(g') = 1 if 
w(g) = 1. Indeed, by the Argument Principle the curve &\D' intersects once every 
leave of <9L*. Hence it has winding number 1 about this tube. As the first landing 
map T : L* —> Vo is a fiber bundles diffeomorphism, it preserves the winding number. 
Thus the new critical value 4>' : D' —»• U', 4>' = T o 4>, has also winding number 1. 

Let us summarize the above discussion: 

Lemma 3.7. — Let g : UV; —>• U be a generalized quadratic-like family over (JO,*). 
Assume it is proper and has winding number 1. Then its generalized renormalization 
g' : UVj —> V over Df is also proper and has winding number 1. 

3.6. Central cascades. — In this section we will describe the renormalization 
of a generalized quadratic-like family through a central cascade, which will be then 
treated as a single step in the procedure of parameter subdivisions. Let us consider a 
holomorphic family (g : UV^ —•> U, h) of generalized quadratic-like maps over ( A , * ) . 
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'V(' will !lOW subdividl' ~ «('('ordiug to tlH' cOlnbillaturics of the central cascades of 

maps .'1> .. (see [L31. SS3.1. :~.6). To Ihis end Ipt us firs1 stmtify the parameter \,tlUl'S 

a.ccurding to t h(' lengt h of t heir ('('ulral cascade. This yiclds a IWSt of parapuzzlc 
pit'c('s 

For À E D(V ~ 1) " DIV). the map !l>.. has a ccntral cascade 

(:3.11) T .(0) - l',' T' - {.(l) T .(S) '.\ = '>..::J,.\ = ,'>.. ::J ... ::J v>.. 

of h'llgt h S. so t hat y\ 0 E \ ~;\' - 1) " \ ."~\). :'\ ot e t hat the puzzle pi('CE'S \ '; k) ar(' 
orgallized into the tulws V(k) uv!'r DIA:- 1) 

TIl\' int(·rsl·ction of thesl' puzzle piec('s. nD(c'\'). is the litt II' :\landplbrot s('t 11(g) 

('l'Il/prc'cl at the sU]H'rattractiug paranwtl'r value c = dg) sudl that y,(U) = O. LN us 
cali (' the ('ent.er of D. 

Let * E D(;\' - 1) " DI ,V). Let us cOIlsi([Pr tht' BI'rnoulli Illap 

(:3.15 ) 

asscwiated \Vith the c;tsl'adt' (;~.14) (sec IL31. S:3.6 and Figlln' :3). Her\' the tIl1)('s \~\:YJ 

ove1' DI.'\ -- 1) are t hl' pull- backs of the III lies 'Vil D ( S -- 1 ). i i:- (). hv the ('m'I'ring maps 

(;~.1(i) gk : CV(k) " V l /;-+ 1))ID(lV-I) --+ (U" VlID(V ·1) 1 .. = n. 1 .... N - 1. 

'\ 

N N-1 
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Figure :). Solar SYSU'Ill: Bernoulli sc!teuH' assol'iatf'd to a celltral cascade. 
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In the same way as in §3.5, to any string j = ( j o , . . . ,jt-i) corresponds the tube 
over D^-V, 

Wj = {PE U\D(N-V : GNP E WJN , n = 0 , . . . , t - 1 } . 

Note that GL univalently maps each W j onto U | JD^"1) . Thus W j contains a tube L J 
which is univalently mapped by GL onto the central tube D^N. These maps altogether 
form the first landing map to D^N , 

(3.17) T : U L J V ( I V ) . 

Remark. — Note that 

(3.18) m o d ( ^ A X L-jX) = mod(i7A X V^N)) > mod(C7A X Vx), 

since Gx univalently maps the annulus Wj x \ Lj x onto U\ \ V\N^ • 

Let us now consider the itinerary j+ of the critical value 0 ( * ) = g*(0) through the 
tubes Wj until its first return to V^N\ so that * ( * ) 6 1 ^ = L*. Let W* = W j and 

(3.19) A ° ( * ) =• • D D(N) D •••, A ° ( * ) = W* . 

Thus the annuli JD(7V~1) \ D^N^ are tiled by the parapuzzle pieces A ° ( A ) according 
as the itinerary of the critical point through the Bernoulli scheme (3.15) until the 
first return to VXNK Altogether these tilings form the desired new subdivision of A . 
(Note however that the new tiles don't cover the whole domain A : the residual set 
consists of the Mandelbrot set M(g) and of the parameter values A G D^N~^ \ G D^N~D^N 
for which the critical orbit never returns back to VXN\) 

The affiliated quadratic-like family over A ° ( * ) is defined as the first return map to 
V^N) = U%. Its domain U V ? is obtained by pulling back the tubes L J from (3.17) by 
the double branched covering g : y(N) —>• Y^N~^ | A ° ( * ) , and the return map itself is 
just T og. 

The affiliated holomorphic motion is also constructed naturally. Let us first lift 
the holomorphic motion h from the condensator U \ V to the condensators ( V ^ \ 
V(AH_1))|Z)(iV~1) via the coverings (3.16). This provides us with a holomorphic motion 
of (U \ V ^ ^ U W , - ) over D ^ " 1 ) . Extend it through V * ^ by the A-lemma, lift it to 
the tubes ( W J , L J ) and then extended again by the A-lemma to the whole domain U 
over Z ) ^ - 1 . Let us denote it by H. 

Lifting this motion via the fiberwise analytic double covering over A ° ( * ) , 

g : ( V \ V , | J V ? ) — • ( V ^ " 1 ) X L * , ( J % ) , 

we obtain the desired motion of (U° \ V ° , U ^ o ^ T ) over D^ND^ND^ND^ND^ND^N By the A-lemma it 
extends through V q . 

g : (V \ V * , M V ? ) 

i^o^ 
g : (V \V*, MV?) 

i^o^ 

w e o b t a i n the des i red m o t i o n o f ( U ° \ V ° , U i ^ o ^ î ) ove r B y t n e A - l e m m a it 
e x t e n d s t h r o u g h V Q . 
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3.7. Principal parapuzzle nest. — Let us now summarize the above discussion. 
Given a quadratic-like family (/,/1) over D = A0, we consider the first tiling V1 of 
a Misiurewicz wake O as described in §3.4. Each tile A e V1 comes together with a 
generalized quadratic-like family ( ^ A ^ A ) over A. 

Now assume inductively that we have constructed the tiling T>1 of level I. Then the 
tiling of the next level, £>/+1 is obtained by partitioning each tile A G T>1 by means 
of the cascade renormalization as described in §3.6. 

Let AZ(A) stand for the tile of V1 containing A, while A* (A) C AZ(A) C AZ_1(A) 
stand for the other tile defined in (3.19). Each tile A = AZ(A) contains a central 
subtile IIZ(A) = *^1Vo corresponding to the central return of the critical point (here 
<£A(A) = (A,#A(A))). Note that 11*(A) may or may not contain A itself. 

Let us then consider the sequence of renormalized families (gi \, hi,\) over topo­
logical discs A*(A). We call the nest of topological discs A0 D A1 (A) D A2(A) D • • • 
(supplied with the corresponding families) the principal parapuzzle nest of A. This 
nest is finite if and only if A is renormalizable. 

Let C/,A £ AZ(A) be the centers of the corresponding parapuzzle pieces. Let us call 
them the principal superattracting approximations to A. If A is not renormalizable, 
then —> A as I - » oo, since diam AZ(A) —>• 0 (see the next section). 

The mod(Az(A) \ AZ+1(A)) are called the principal parameter moduli of A € D. 
When we fix a base point *, we will usually skip label * in the above notations, so 

that Az = Az(*), gx = gt*, h{ = ht^ etc. 

4. Parapuzzle geometry 

The following is the main geometric result of this paper: 

Theorem A. — Let us consider a proper DH quadratic-like family ( / , h) with winding 
number 1 over D, and a Misiurewicz wake O C D. Then for any A 6 M(f) DO, 

mod(Az(A) x A/+1(A)) > Bl, and mod(Az(A) \ nz(A)) > Bl, 

where the constant B > 0 depends only on O and m o d ( / ) . 

The rest of this section will be devoted to the proof of this theorem. 

4.1. Initial parameter geometry. — In this section we will give a bound on 
the geometry of the first level parapuzzle. Fix a quadratic-like family (f,h) and its 
Misiurewicz wake O = 0^p, \a\ = t, as in §3.3. In what follows we will use the 
notations of §3.3 and §3.4. 

Lemma 4.1. — There is a marked holomorphic motion of any annulus fi^A \ 
over O with dilatation depending on the geometry of (f,h) and the choice of O only. 
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Proof. — Indeed, by Lemma 3.4, the configuration 

( y ° , U 0Y<1+*">, [ J \Jzf+kp)) 
k<t-l k<t-l j 

represents a holomorphic motion over the parabolic wake Pq/P (truncated by the 
appropriate equipotential) with removed Misiurewicz wakes of level < t — 1. Since O 
is compactly contained in this region, this holomorphic motion has a finite dilatation 
K — K(O) over O (depending only on O and the geometry of ( / , h)). 

Let us now lift this motion to the tubes Zj1+tp^ and Qi , Q2 by the map fp. Since 
this map is a fiberwise diffeomorphism over O, it preserves the dilatation of the motion 
(though the motion does not extend beyond O any more). Similarly we can lift the 
motion to all quadrilaterls between the equipotentials of level 1 + {t — l)p and 1 + tp 
left after removing Z-pieces of level < t — 1 (see Figure 2). This provides us with a 
marked motion h0 of the annulus y^1+(t~1)p) x yg OVer O with the same dilatation 
K. This handles the case k = 0. 

For k > 0, lift ho by the following fiberwise diffeomorphism over O: 

ft •• (n?.A.*k) ( i f + ( t - 1 ) p ) , V ? ) . 

Lemma 4.2. — All parapuzzle pieces of the first level are well inside the corresponding 
wake: mod(0 \ A1) > v > 0. Moreover, the holomorphic motion hi of the conden-
sator U1 \ V1 over A1 is K-qc. The constants v and K depend only on the geometry 
°f (fih) and the choice of O. 

Proof. — Let us consider the tubes L* C W * over O constructed in §3.4. By means 
of the fiberwise conformal diffeomorphism (3.11) 

= $-x(W* \U)cOA1 \ A1 = $-A1 \ A1 =x(W* \U)cO 

we can lift the motion constructed in Lemma 4.1 to the condensator W * \ L* . Since 
the dilatation of the motion under such a lift is preserved, it depends only on the 
geometry of ( / , h) and the choice of O. 

Let us now consider the parameter annulus 

A1 \ A1 = $-x(W* \ U ) c O 

(see (3.12)). By transverse quasi-conformality of holomorphic motions (Corollary 2.1), 

mod(Ax \ A1) > K'1 mod(W* \ L*), 

where L* \ W* is the *-fiber of the condensator W * \ L* . 
But Gl univalently maps W* \ L* onto yj1^-1^ x yo (see (3.10)-(3.11)). Since 

by [L3, §4.1], the modulus of the latter annulus depends only on the geometry of 
(/, h) and the choice of 0 , the first statement of the lemma follows. 
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Moreover, the motion hi on U1 \ V1 is a double covering of the motion Ho on 
Zj1^ \ L* over O (see §3.4). Since A1 is well inside O, the A-lemma implies that H0 
has a bounded dilatation over A1 (depending only on the geometry of ( / , h) and the 
choice of O). Hence the dilatation of h\ on U1 \ V1 over A1 is bounded as well. • 

4.2. Inductive estimate of the parameter geometry 

Lemma 4.3. — Let us consider a generalized quadratic-like family (g : UV^ —> U, h) 
over A. Assume that the dilatation of h on U \ Vo is bounded by K and 

mod(£/* \ Vb,*) > » > 0, A E D. 

Then the dilatation of the cascade renormalized motion h^ on U° \ VQ over D° (as 
described in §3.6) is bounded by = K^di^K). 

Proof. — We will use the notations of §3.6. We assume that /* has a central cascade 
(3.14) of length AT, so that * E D^N~^ \ D^N\ The holomorphic motion / i o n U \ ¥ 0 
can be lifted to a motion H on W* \ L* by a fiberwise conformal diffeomorphism T 
(an extension of the first landing map (3.17)). Hence this motion has dilatation K 
on the tube W* \ L* • By transverse quasi-conformality of holomorphic motions, 

(4.1) /i° = mod(A° \ A°) > K~x\i. 

Let us extend H by the A-lemma through L* to a motion on the whole tube W* 
over A°. Applying the A-lemma again, we conclude that this motion has dilatation 
K° = iiT0(/i<>) over A ° . But the motion h° on IF \ Vg is the lift of H on U \ L* over 
A° by the fiberwise conformal double covering g. Hence it has the same dilatation 
K°. • 

4.3. Inscribing rounds condensators. — In this section we will show that the 
parameter annuli have definite moduli. Given a holomorphic motion h\ and a holo­
morphic family of afRne maps g\ : z \-± a\z + b\, we can consider an "affmely equiv­
alent" motion g\ o h\. In this way the motion can be normalized such that any two 
points 2;,( E [/* don't move (that is, h\(z) = z and ^ A ( C ) = C f°r ^ € Let us 
start with a technical lemma: 

Lemma 4.4. — Let us consider a holomorphic motion h : ({7*,V*,0) —> (U\,V\,0) 
of a pair of nested topological discs over a domain D. Assume that the maps h\ : 
(dU*,dV*) —» (dU\,dV\) admit K-qc extensions H\ : ( C , £/*) —>> ( C , U\) (not nec­
essarily holomorphic in A but with uniform dilatation K). Then there exists an 
M — M(K) such that if mod ({7* \ V*) > M then after appropriate normalization 
of the motion, there exists a round condensator D x A(g, 2q) embedded into U \ V. 

Proof. — Let z* be a point on dU* closest to 0. Normalize the motion in such a way 
that z* — 1, and this point does not move. With this normalization, V* C H\ (0) 
where e — e{m) -> 0 as m = mod(£/* \ V*) oo. 
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Since the space of normalized K-qc maps is compact, \H\(eeie\) < 5, where S = 
5{e,K) 0 as e -> 0, K being fixed, and \Hx(ei6)\ > r where r = r(K) > 0. It 
follows that the domain U \ V contains the round cylinder D x A(<5, r), and we are 

Corollary 4.5. — Under the circumstances of Lemma 4-4> let & : D -± U be a proper 
analytic map with winding number 1. Let D' — 3>_1V. 7/mod(£7* \ V*) > M — M(K) 
then mod(£> \ D') > log 2. 

Proof. — By Lemma 4.4, I K V D DxAwheveA = A(q,2q). LetQ = *_1(Z>x^4). By 
the Argument Principle, <f> = 7r2o<I> univalently maps Q onto A, so that mod(Z^\Z)/) > 
mod Q = mod A = log 2. • 

4.4. Puzzle geometry. — Let us now recall for reader's convenience two key re­
sults of [L3], which will be used below. 

Theorem 4.6 (Moduli growth [L3], Theorem III). — Let f be a quadratic-like map 
whose straightening c — x(f) belongs to a Misiurewicz wake O. Let n(k) be the 
non-central levels of its principal nest V° D V1 D • • • . Then 

where B depends only on O and mod( / ) . 

Remark. — A related result on moduli growth for real parameter values was inde­
pendently proven by Graczyk & Swiatek [GS]. Note in this respect that the proof 
of our parameter result (Theorem A) needs in a crucial way the above Theorem 4.6 
with complex parameter values (even if one is ultimately interested in the real case). 

Let us consider a quadratic-like family ( / , fe) and its parameter tilings. Let A G 
AZ(A). Let us consider the corresponding Z-fold generalized renormalizations of these 
two maps gi : UVi -+U and gi : UVi —> U. Then the holomorphic motion h transforms 
the domains of gi to the corresponding domains of gi respecting the boundary marking 
(coming from the external coordinate system, see §3.2). In this sense f\ and fx have 
"the same combinatorics up to level" I. 

Let us say that gi and gi K-qc pseudo-conjugate if there is a K-qc homeomorphism 

respecting the boundary marking. Thus it matches with the boundary holomorphic 
motion, and hence respects the boundary dynamics: h(giz) — gi(hz) for z G UdVi. 

Theorem 4.7 (Uniformly qc pseudo-conjugacies [L3, §11]). — Assume that A G Лг+1(А), 
where the tile A/+1(A) is defined by (3.19). Then the corresponding generalized renor­
malizations g and g are K-qc pseudo-conjugate, with К depending only on the Misi­
urewicz wake O(A) and geometry of (f,h). 

done. • 

mod(FnW+1 yn(fc)+2) > Bk 

h : (U, UVi) (U, UVi), 
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Remarks 

(1) Concerning the assumption A G A/+1(A), see [L3], Remarks on pp. 272 and 
277. 

(2) In [L3] (see §4) the initial choice of straightening of two maps / and / is made 
independently and its dilatation depends only on the m o d / and m o d / . In 
the above formulation, the choice should be consistent with the holomorphic 
motion ft, so that its dilatation depends on the geometry of (f,h). 

4.5. Uniform bound of dilatation 

Lemma 4.8. — Let * belong to a Misiurewicz wake O. For any principal parapuzzle 
piece A = Az+1(*), the corresponding holomorphic motion ft A O/UZ+1 \ VQ+1 over A 
has a uniformly bounded dilatation, depending only on the choice of the Misiurewicz 
wake O and the geometry of ( / , f t ) . 

Proof — Let K be a dilatation bound given by Theorem 4.7. Find a n M = M(K) by 
Corollary 4.5. By Theorem 4.6 and (3.18), there exists an l0 such that mod(Wl xl /*) > 
M for I > l0. 

For I < Zo, the desired dilatation bound is guaranteed by Lemmas 4.2 and 4.3. 
Fix an I > Zo- Consider the generalized quadratic-like family (g : UV* —> U, ft) over 

D = A*(*). In what follows we will use the notations of §3.6. Let * G D(N~V \ D^N\ 
By Theorem 4.7, for A G A/+1(*), there is a K-qc pseudo conjugacy 

1(*) x A/+1(*)) > log2D(N~V \1 m \ 

with K depending only on the choice of wake O and geometry of ( / , h). As we have 
mod{Wl \ L[) > M, Corollary 4.5 can be applied. We conclude that 

(4.2) mod(A/+1(*) x A/+1(*)) > log2 

for I sufficiently big (depending on O and geometry of (f,h)). 
In §3.6 we have constructed a holomorphic motion H of (U, WJ,ILJ) over g : (V \V*, 

By the A-lemma and (4.2), H is L-qc over A = A/+1(*), with an absolute L provided 
I is big enough. But the holomorphic motion / IA on U '+1 \ V ' + 1 is the lift of H on 
1 mod(Wï+ \ L7J > Blover A by means of the fiberwise analytic double covering 

D(N~V \ D^N> K-1 mod(Wï+ \ L7J > Blù^ 

Hence /&A on U/+1 \ V / + 1 is also L-qc. 

4.6. Proof of Theorem A. — We are now prepared to complete the proof: 

mod(Az \ Az+1) > K-1 mod(Wï+ \ L 7 J > Bl. 

The first estimate in the above row follows from Lemma 4.8 and Corollary 2.1. The 
last estimate is due to Theorem 4.6. 
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For the same reason, 

mod(A' \ Ul) x mod(Ui \ V^^) > Bl. • 

Remark. — The author thanks the referee for the following note. Instead of exploiting 
holomorphic motions in the above proof, one can use (for high levels /) a refined 
version of Lemma 4.4. Indeed, the proof of this lemma shows that one can inscribe 
into U \ ? a round condensator of modulus comparable with mod(£/* \ V*) (with a 
constant depending on the dilatation K only). This provides us with inscribed round 
condensators over principal parapuzzle pieces with linearly growing moduli, which 
yields linearly growing parameter moduli. 

Thus, formally speaking, holomorphic motions are needed only on the initial levels. 
However, their actual role is more significant as their transversal quasi-conformality 
is a true mechanism behind commensurability of the dynamical and parameter ge­
ometries. 

5. Application to the measure problem 

In this section we will apply the previous results to the real quadratic family Pc : 
z z2 + c, c G R. Let Mil stand for the set of non-renormalizable real parameter 
values c G [—2, —3/4). Note that all periodic points of the Pc : z H-» Z2 + c, c G Mil, 
are repelling. Indeed, the interval [—3/4,1/4] where Pc has a non-repelling fixed point 
is excluded, while maps with non-repelling cycles of higher period are renormalizable. 

Let MC stand for the set of parameter values c G Mil such that the principal nest 
of Pc contains only finitely many non-trivial (i.e., of length > 1) central cascades. 

Theorem 5.1 

— The set Mil has positive measure; 
— The set MC has full Lebesgue measure in MlZ. 

Remarks 

(1) The former (positive measure) result is known (see [BC], [J]). The latter (full 
measure) is new. 

(2) The corresponding statements concerning at most finitely renormalizable pa­
rameter values are derived from the above statements by considering quadratic­
like families associated with little copies of the Mandelbrot set. 

(3) By the result of Martens & Nowicki [MN] together with [L2], Pc has an ab­
solutely continuous invariant measure for any c G MC. Altogether these yield 
Theorem B stated in the Introduction. 

Proof of Theorem 5.1. — Let d stand for the real tip of the little Mandelbrot set 
attached to the main cardioid (i.e. P^(0) — a). As all parameter values c G [d, —3/4) 
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are renormalizable, we can restrict ourselves to the interval [—2,rf) D NlZ. This 
interval belongs to the Misiurewicz wake O attached to d. 

Given measurable sets 1 , 7 C l , with length(Y) > 0, let dens(X|Y") stand for the 
length(X n Y)/ length(F). 

We will now restrict all tilings T>1 constructed above to the real line, without change 
of notations. We will use the same notation, T>1, for the union of all pieces of T>1. For 
every A = A1 (A) € V1, let us consider the central piece l i e A corresponding to the 
central return of the critical point. By Theorem A, dens(II|A) < Cql for absolute 
C > 0 and q < 1. Let Tl be the union of these central pieces. Summing up over all 
A G D1, we conclude that 

(5.1) length(rz) < dens(r/|P/) < Cql 

(the whole interval is normalized so that its length is equal to 1). 
It follows that for I sufficiently big, 

dens ( \J rl+k\Vlj < dql < 1, 
fe>0 

which means that with positive probability central returns will never occur again. 
This proves the first statement. 

To prove the second one just notice that (5.1) together with the Borel-Cantelli 
Lemma yield that infinite number of central returns occurs with zero probability. • 

6. Shapes of the Mandelbrot copies 

In this section we will prove Theorem C stated in the Introduction. Let us fix a 
quadratic-like family ( / , f t) and a Misiurewicz wake O in it. 

Lemma 6.1. — All maximal Mandelbrot copies in O have a bounded shape depending 
only on the geometry of (f,h) and the choice of O. In particular, in the quadratic 
family the shape depends only on the wake O. 

Proof. — Take a maximal Mandelbrot copy M' C O centered at *. Let (/z : V1 —> 
Uz,ft/) be the DH quadratic-like family in the principal nest of * generating M'. By 
Lemma 4.8, the dilatation of ft/ on Uz \ V1 is bounded by a constant K depending 
only on the geometry of ( / , ft) and the choice of O. By a weak form of Theorem 4.6, 
mod( / / ) > e > 0, where e depends on the same data only. Hence by Lemma 3.2, M' 
has a bounded shape depending on the same data only. • 

Corollary 6.2. — All real maximal Mandelbrot copies in ( / , f t ) . except the doubling 
one, have a bounded shape depending only on the geometry of ( / , ft). In particular, all 
real maximal copies in the quadratic family, except the doubling one, have a bounded 
shape with an absolute bound. 
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Let us consider a family C of maximal Mandelbrot copies supplied with a combi­
natorial parameter r = r (M/) , M' E £ , satisfying the following 

Big Modulus Property. — Let M' € £ be a Mandelbrot copy generated by a quadratic­
like family over a domain A'. Then for c E A', mod(i?Pc) > fi{r) —> oo as r —> oo. 

For the family C = Co of maximal Mandelbrot copies contained in a wake 0 , 
several examples of such parameters are given in [L3] (see Theorems IV and I V ) : the 
height, the return time, etc. For the family C = £r of maximal real Mandelbrot sets, 
all these parameters can be unified in a single one called the essential period pe (see 
[L3, §8], [LY]). 

We say that the shapes of Mandelbrot copies M' approach the shape of M as 
r ( M ' ) —> oo if the M' have a (JRT, s)-bounded shape with K —> 1, e -> oo as r oo. 
Lemma 3.2 implies: 

Lemma 6.3. — Assume that we have a family C of maximal Mandelbrot copies and 
a combinatorial parameter r : C —> R satisfying the Big Modulus Property. Then the 
shapes of the Mandelbrot copies M' E C approach the shape of M as r ( M ' ) -> oo. In 
particular, the shapes of the M' E CR approach M as pe(M') —> oo. 

Putting together the above statements, we obtain Theorem C. 

Remark. — If the essential period pe{M') stays bounded but the period p(M') grows, 
we obtain Mandelbrot copies near a parabolic cusp. The shapes of such copies were 
analysed by Douady and Devaney [DD]. 

6.1. Relation to M L C . — Let us consider a family C of Mandelbrot copies. As­
sume that any copy M' with combinatorial type ( M 0 , . . . , Mn), Mi E £ , has a bounded 
shape. Let us say that such an C is fine. 

Given a family C of Mandelbrot copies, let Ec stand for the set of infinitely renor­
malizable parameter values with combinatorics (M0, M i , . . . ) , where Mn E C. 

Proposition 6.4. — Let C be a fine family of Mandelbrot copies. Then 

— The Mandelbrot set is locally connected at any point c E Ec; 
— The set Ec has zero Lebesgue measure. 

Proof 
• Take a string r = (M0, M i , . . . ) with Mi E C. It determines a nest M ° D M1 D 

• • • of little Mandelbrot copies shrinking to the combinatorial class CT of infinitely 
renormalizable maps with combinatorics r. To prove MLC at a point c E CT we need 
to show that c is a single point of Cr. 

Let cn stand for the center of Mn, and Hn 3 cn stand for the corresponding 
hyperbolic component. Let rn be the inner radius of ifn, i.e., the radius of maximal 
round disk centered at cn and inscribed into Hn. As the domains Hn are pairwise 
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disjoint, rn —> 0. Since the sets Mn have a bounded shape, rn x diamMn. Hence 
diamM71 —» 0, so that the combinatorial class CT = PlMn consists of a single point. 

• To prove the second statement, note that the hyperbolic components Hn do not 
belong to Ec as they are not infinitely renormalizable. Hence near any point c G Ec 
there are gaps of definite relative size in arbitrary small scales. By the Lebesgue 
density points theorem, mea,s(Ec) = 0 . • 

Examples of fine families 

(a) Family of maximal Mandelbrot copies M' with big height: x ( M ' ) > \ -
(b) Family of real maximal Mandelbrot copies with big period: p(M') > p (see 

[L7]). 

Remarks 

(1) We conjecture that the whole family of real maximal Mandelbrot copies is fine 
(so that all real Mandelbrot copies have bounded shape). We are not sure 
whether this is still valid for the full family of complex maximal Mandelbrot 
copies. This would imply MLC but it may happen that MLC is still true, 
though there exist very distorted Mandelbrot copies. 

(2) In [L6] we have constructed a fine family £ of Mandelbrot copies such that 
HD (Ec ) > 1. Thus the Hausdorff dimension of the set of infinitely renormal­
izable parameter values is at least 1. (The dimension of the set of infinitely 
renormalizable real parameter values is at least 1/2.) 
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