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DYNAMICS OF QUADRATIC POLYNOMIALS, III
PARAPUZZLE AND SBR MEASURES

by
Mikhail Lyubich

Dedicated to 60th birthday of A. Douady

Abstract. — This is a continuation of notes on the dynamics of quadratic polynomi-
als. In this part we transfer our previous geometric result [L3] to the parameter plane.
To any parameter value ¢ (outside the main cardioid and the little Mandelbrot sets
attached to it) we associate a “principal nest of parapuzzle pieces”. We then prove
that the moduli of the annuli between two consecutive pieces grow at least linearly.
This implies, using Martens & Nowicki (cf. this volume) geometric criterion for exis-
tence of an absolutely continuous invariant measure together with [L2], that Lebesgue
almost every real quadratic polynomial is either hyperbolic, or has a finite absolutely
continuous invariant measure, or is infinitely renormalizable. In the further papers
[L5,L7] we show that the latter set has zero Lebesgue measure, which completes the
measure-theoretic picture of the dynamics in the real quadratic family.

You first plow in the dynamical plane
and then harvest in the parameter plane.
Adrien Douady

1. Introduction

This is a continuation of notes on dynamics of quadratic polynomials. In this part
we transfer the geometric result of [L3] to the parameter plane. To any parameter
value ¢ € M in the Mandelbrot set (which lies outside of the main cardioid and
satellite Mandelbrot sets attached to it) we associate a “principal nest of parapuzzle
pieces”

A%) D Al(c) D -

corresponding to the generalized renormalization type of c. Then we prove:
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174 M. LYUBICH

Theorem A. — The moduli of the parameter annuli mod(Al(c) <~ A!*1l(c)) grow at
least linearly.

(See §4 for a more precise formulation.)

This result was announced at the Colloquium in honor of Adrien Douady (July
1995), and in the survey [L4], Theorem 4.8. The main motivation for this work was
to prove the following:

Theorem B (joint with Martens and Nowicki). — Lebesgue almost every real quadratic
P. : z + 22+ c which is non-hyperbolic and at most finitely renormalizable has a finite
absolutely continuous invariant measure.

More specifically, Martens and Nowicki [MIN] have given a geometric criterion for
existence of a finite absolutely continuous invariant measure (acim) in terms of the
“scaling factors”. Together with the result of [L2] on the exponential decay of the
scaling factors in the quasi-quadratic case this yields existence of the acim once “the
principal nest is eventually free from the central cascades”. Theorem A above implies
that this condition is satisfied for almost all real quadratics which are non-hyperbolic
and at most finitely renormalizable (see Theorem 5.1). Note that Theorem A also
implies that this condition is satisfied on a set of positive measure, which yields a new
proof of Jacobson’s Theorem [J] (see also Benedicks & Carleson [BC]).

A measure p will be called SBR (Sinai-Bowen-Ruelle) if

1 n—1
(1.1) ~ > gk = p
k=0

for a set of x of positive Lebesgue measure. It is known that if an SBR measure exists
for a real quadratic map f = P,, ¢ € [—2,1/4], on its invariant interval I, then it is
unique and (1.1) is satisfied for Lebesgue almost all z € I. (see Introduction of [MIN]
for a more detailed discussion and references). Theorem B yields

Corollary. — For almost all c € [—2,1/4], the quadratic polynomial P. has a unique
SBR measure on its invariant interval I..

Another consequence of our geometric results is concerned with the shapes of little
Mandelbrot copies (see [L3], §2.5, for a discussion of little Mandelbrot copies). Let
us say that a Mandelbrot set M’ has a (K, ¢)-a bounded shape if the straightening
X : M' - M admits a K-quasi-conformal extension to an (¢ diam M')-neighborhood
of M'. We say that the little Mandelbrot sets of some family have bounded shape if a
bound (K,¢e) can be selected uniform over the family.

A Mandelbrot copy M’ is called mazimal if it is not contained in any other copy
except M itself. It is called real if it is centered at the real line.
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PARAPUZZLE AND SBR MEASURES 175

A little Mandelbrot copy encodes the combinatorial type of the corresponding
renormalization. In [L3] we dealt with diverse numerical functions of the combina-
torial type. For real copies a crucial information is encoded by the essential period
pe(M') (see [L3, §8.1], [LY]).

For a definition of Misiurewicz wakes see §3.3 of this paper.

Theorem C. — For any Misiurewicz wake O, the mazimal Mandelbrot copies con-
tained in O have bounded shape. In particular, all mazimal real Mandelbrot copies,
except the doubling ome, have a bounded shape. Moreover, a real copy M' has a
(K, e)-bounded shape, where K — 1 and € = 0o as pe(M') — oo.

In §6 we will refine this statement and will comment on its connection with the
MLC problem and the renormalization theory.

Let us now take a closer look at Theorem A. It nicely fits to the general philosophy
of correspondence between the dynamical and parameter plane. This philosophy was
introduced to holomorphic dynamics by Douady and Hubbard [DH1]. Since then,
there have been many beautiful results in this spirit, see Tan Lei [TL|, Rees [R],
Shishikura [Sh], Branner-Hubbard [BH], Yoccoz (see [H]).

In the last work, special tilings into “parapuzzle pieces” of the parameter plane
are introduced. Its main geometric result is that the tiles around at most finitely
renormalizable points shrink. It was done by transferring, in an ingenious way, the
corresponding dynamical information into the parameter plane.

In [L3] we studied the rate at which the dynamical tiles shrink. The main geomet-
ric result of that paper is the linear growth of the moduli of the principal dynamical
annuli. Let us note that the way we transfer this result to the parameter plane (The-
orem A) is substantially different from that of Yoccoz. Our main conceptual tool is
provided by holomorphic motions whose transversal quasi-conformality is responsi-
ble for commensurability between the dynamical and parameter pictures (compare
Shishikura [Sh]). To make it work we exploit existence of uniform quasi-conformal
pseudo-conjugacy between the generalized renormalizations [L3].

The properties of holomorphic motions are discussed in §2. In §3 we describe the
principal parameter tilings according to the generalized renormalization types of the
maps. In §4 we prove Theorem A. In §5, we derive the consequence for the real
quadratic family (Theorem B). In the last section, §6, we prove Theorem C on the
shapes of Mandelbrot copies.

Let us finally draw the reader’s attention to the work of LeRoy Wenstrom [W]
which studies in detail parapuzzle geometry near the Fibonacci parameter value.

Remark. — We have recently proven that the set of infinitely renormalizable real
parameter values has zero linear measure. Together with Theorem B this implies that
almost every real quadratic has either an attracting cycle or an absolutely continuous
invariant measure [L7].
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176 M. LYUBICH

2. Background

2.1. Notations and terminology

Dr(p) = {z:lz—pl <t}
D, = D.(0);
D = D;
T, = {z:]z]=rk
A(r,R) = {r<|z| <R}

The closed and semi-closed annuli are denoted accordingly: Alr, R], A(r, R], A[r, R).
By a topological disc we will mean a simply connected domain D C C whose
boundary is a Jordan curve.
Let m; and 7> denote the coordinate projections C2 — C. Given a set X C C2, we
denote by X = m; '{\} its vertical cross-section through X (the “fiber” over \). Vice
versa, given a family of sets X, C C, A € D, we will use the notation:

X =UxepXr={(N\,2) €eC*: A€ D,z € X,}.

Let us have a discs fibration m; : U — D over a topological disc D C C (such that
the sections Uy are topological discs, and the closure of U in D x C is homeomorphic
to D x D over D). In this situation we call U an (open) topological bidisc over D. We
say that this fibration admits an extension to the boundary 9D if the closure U of U
in C? is homeomorphic over D to D x D . The set U is called a (closed) bidisc. We
keep the notation U for the fibration of open discs over the closed disc D (it will be
clear from the context over which set the fibration is considered).

If Uy 5 0, A € D, we denote by 0 the zero section of the fibration.

Given a domain A C D, let UA = Unx;'A. This is a bidisc over A.

If the fibration 7; admits an extension over the boundary 8D, we define the frame
O6U as the topological torus UyxcgpAU,. A section ® : D — U is called proper if it is
continuous up to the boundary and ®(9D) C §U.

We assume that the reader is familiar with the theory of quasi-conformal maps
(see e.g., [A]). We will use a common abbreviation K-qc for “K-quasi-conformal”.
Dilatation of a qc map h will be denoted as Dil(h).

Notation a, =< b, means, as usual, that the ratio a, /b, is positive and bounded
away from 0 and oo.

2.2. Holomorphic motions. — Given a domain D C C with a base point * and
a set X, C C, a holomorphic motion h of X, over D is a family of injections hj :
X. — C, A € D, such that h, = id and hx(z) is holomorphic in A for any z € X,.
We denote X = hyX.. The restriction of h to a parameter domain A C D will be
denoted as h|A.
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PARAPUZZLE AND SBR MEASURES 177

Let us summarize fundamental properties of holomorphic motions which are usually
referred to as the A-lemma. It consists of two parts: extension of the motion and
transversal quasi-conformality, which will be stated separately. The consecutively
improving versions of the Extension Lemma appeared in [L1] and [MSS], [ST|, [BR],
[S1]. The final result, which will be actually exploited below, is due to Slodkowsky:

Extension Lemma. — A holomorphic motion hy : X. — X of a set X, C C over a
topological disc D admits an extension to a holomorphic motion Hy : C — C of the
whole complex plane over D.

Quasi-Conformality Lemma ((MSS]). — Let hy : U, — Ux be a holomorphic motion
of a domain U, C C over a hyperbolic domain D C C. Then the maps hy are K(r)-
quasi-conformal, where r is the hyperbolic distance between * and A in D.

Let us define the dilatation of the holomorphic motion as

Dil(h) = sup Dil(hj,).
AeED

It can be equal to co over the whole domain D but becomes finite (< K (7)) over the
hyperbolic disk of radius r.

A holomorphic motion hy : U, — Uy over D can be viewed as a complex one-
dimensional foliation of the domain U = UxepUx, whose leaves are graphs of the
functions A — hx(z), z € U.. A transversal to the motion is a complex one dimen-
sional submanifold of C?> which transversally intersects every leaf at one point (so
that “transversal” will mean a global transversal). Given two transversals X and Y,
we thus have a well-defined holonomy map H : X — Y, H(p) = ¢ iff p and ¢ belong
to the same leaf.

A map H : X — Y is called locally qc at p € X if it is qc in some neighborhood of
p. In this case the local dilatation of H at p is defined as the limit of Dil(H | D. (p)),
as e — 0.

Corollary 2.1 (Transverse qc structure). — Any holomorphic motion h over D is lo-
cally transversally quasi-conformal. More precisely, for any two transversals X and
Y, the holonomy map H : X — Y is locally quasi-conformal. If H(p) = q then the lo-
cal dilatation of H at p depends only on the hyperbolic distance between the 71 (p) and
71(q) in D. IfDil(h) < oo then the holonomy H is globally gc with Dil(H) < Dil(h)2.

Proof. — Let p= (A, @), ¢ = (i, 3). By the A-Lemma, the map G = h, o h;l Uy —
U, is quasi-conformal, with dilatation depending only on the hyperbolic distance
between A and p in D and bounded by Dil(h)2. Hence a little disc D.(a) C U, is
mapped by G onto an ellipse Q). C U, with bounded eccentricity about 3 (where the
bound depends only on the hyperbolic distance between A and u.

But the holonomy Uy — X is asymptotically conformal near p. To see this, let us
select a holomorphic coordinates (6, z) near p in such a way that p = 0 and the leaf
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via p becomes the parameter axis. Let z = ¢(8) = € + - - - parametrizes a nearby leaf
of the foliation, while 8 = g(z) = bz + - - - parametrizes the transversal X.

Let us do the rescaling z = €(,6 = ev. In these new coordinates, the above leaf is
parametrized by the function ¥ (v) = e~1¢(ev), |v| < R, where R is a fixed parameter.
Then ¥'(v) = ¢'(ev) and ¥"(v) = ey (ev). Since the family of functions {¥(8)} is
normal, ¥"(v) = O(g). Moreover, ¥ uniformly goes to 0 as ¥(0) — 0. Hence |¥'(0)| =
[¥'(0)| < do(g), where do(¢) — 0 as € = 0. Thus ¥'(v) = do(e) + O(e) < 6(e) = O
as € — 0 uniformly for all |v| < R. It follows that ¥(v) = 1+ O(d(e)) =1+ o(1) as
e —0.

On the other hand, the manifold X is parametrized in the rescaled coordinates by
a function v = b{ + 0(1). Since the transverse intersection persists, X intersects the
leaf at the point (vp, (o) = (b,1)(1 + 0o(1)) (so that R should be selected bigger than
b). In the old coordinates the intersection point is (6o, 20) = (be,&)(1 + o(1)).

Thus the holonomy from Uy to X transforms the disc of radius |e| to an ellipse
with small eccentricity, which means that this holonomy is asymptotically conformal.
As the holonomy from U, to Y is also asymptotically conformal, the holonomy H :
(X,p) = (Y, q) is locally qc at p, and its local dilatation at p is the same as the local
dilatation of G : (Ux,p) = (Uy,q). Thus it depends only on the hyperbolic distance
between A\ and u, and is bounded by Dil(h)2.

To conclude the proof, one should just remark that a map is globally qc if and
only if it is locally qc with uniformly bounded local dilatations, and then the global
dilatation is equal to the supremum of the local ones. O

Remark. — The author thanks the referee for pointing out that the above Corollary
also follows from [DH2, p. 327] (compare also [Sh, §3]).

2.3. Winding number. — Given two curves ¢, ¢2 : 8D — C such that ¥;(\) #
2(A), A € 8D, the winding number of the former about the latter is defined as the
increment of 5 arg(¢1(A) — ¥2())) as A wraps once around 8D.

Let us have a bidisc U over D. Given a proper section ® : D — U let us define
its winding number as follows. Let us mark on the torus dU the homology basis
{[6D],[0U.]}. Then the winding number w(®) is the second coordinate of the curve
® : 0D — 0U with respect to this basis.

Argument Principle. — Let us have a bidisc U over D and a proper holomorphic sec-
tion®:D > U, ¢ =mpo®. Let ¥ : D — U be another continuous section holomor-
phic in D, ¢ = mg o W. Then the number of solutions of the equation ¢(\) = Y(A)
counted with multiplicity is equal to the winding number w(®).

Proof. — Indeed, w(®) is equal to the winding number of ¢ around v, which is equal,
by the standard Argument Principle, to the number of roots of the equation
d(A) = P(N). 0

ASTERISQUE 261



PARAPUZZLE AND SBR MEASURES 179

3. Parapuzzle combinatorics

3.1. Holomorphic families of generalized quadratic-like maps. — Let us
consider a topological disc D C C with a base point * € D, and a family of topological
bidiscs V; € U C C? over D (tubes), such that the V,; are pairwise disjoint. =~ We
assume that V5,5 3 0.

Let

(3.1) g:uUvV; »>U

be a fiberwise map, which admits a holomorphic extension to some neighborhoods of

the V; (warning: these extensions don’t fit), and whose fiber restrictions
g(/\,')Eg)\:Ui‘/i,A_)U,\, /\EDv

are generalized quadratic-like maps with the critical point at 0 € V) = Vp,  (see [L3],

§3.7 for the definition). We will assume that the discs Ux and V; » are bounded by

piecewise smooth quasi-circles.
Let us also assume that there is a holomorphic motion h over (D, %),

(3'2) h)\ : (U*7Uia%,*) — (U—A’ UiaVi,A)a
which respects the boundary dynamics:
(3.3) hxoge(z) =groha(z) for z€UOV..

A holomorphic family (g,h) of (generalized) quadratic-like maps over D is a map
(3.1) together with a holomorphic motion (3.2) satisfying (3.3). We will sometimes
reduce the notation to g. In case when the domain of g consists of only one tube
Vo, we refer to g as DH quadratic-like family (for “Douady and Hubbard”, compare
[DH2]).

D

Figure 1. Generalized quadratic-like family.
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180 M. LYUBICH

Remark. — It would be more consistent to call just g a holomorphic family, while to
call the pair (g, k), say, an equipped holomorphic family. However, in this paper we
will assume that the families are equipped, unless otherwise is explicitly stated.

Let us now consider the critical value function ¢(A) = ¢4(A) = ga(0), (\) =
P,(N) = g(A,0) = (A, ¢(N)). Let us say that g is a proper (or full) holomorphic
family if the fibration 7; : U — D admits an extension to the boundary D, V; C U,
and ® : D — U is a proper section. Note that the fibration m; : Vo — D cannot be
extended to D, as the domains V0 pinch to figure eights as A — 9D.

Given a proper holomorphic family g of generalized quadratic-like maps, let us
define its winding number w(g) as the winding number of the critical value ¢(\)
about the critical point 0. By the Argument Principle, it is equal to the winding
number of the critical value about any section D — U.

We will also face the situation when g does not map every tube V; onto the whole
tube U but still satisfies the following Markov property: gV; either contains V; or
disjoint from it (and all the rest properties listed above are still valid, see §3.3). Then
we call g a holomorphic family of Markov maps.

Let mod(g) = infaecp mod(Ux \ Vp,2).

3.2. Douady & Hubbard quadratic-like families. — Let us consider a proper
holomorphic family f : V — U of DH quadratic-like maps. The Mandelbrot set M (f)
is defined as the set of A € D such that the Julia set J(f)) is connected. We will
assume that x € M (f).

Since the Uy, and V; x are bounded by quasi-circles, there is a qc straightening
wy ¢ cl(Us N\ Vi) = A[2,4] conjugating f. : V. — OU, to z — 22 on To. The
holomorphic motion h on the “condensator” U~V spreads this straightening over the
whole parameter region D. We obtain a family of quasi-conformal homeomorphisms

(3.4) W) : CI(U)‘ ~ V)\) — A[2,4]

conjugating fi|OVx to z +— 2% on Ty. Pulling them back, we obtain for every f)

the straightening wy : 2\ — A(px,4) well-defined up to the critical point level p) =
|wx(0)] (so that for A € M (f) it is well-defined on the whole complement of the Julia
set). This determines external coordinates of points z € 2, radius r and angle 6,
defined as the polar coordinates of wy(z).

Note that if Dil(h) < oo then the straightenings wy are uniformly L-qc with L =
Dil(h) - Dil(w,). Note also that Dil(w.) depends only on the qc dilatation of the
quasi-circle U, 8V, and on mod(U, \ V,).

By the geometry of (f, h) we will mean a triple of parameters: (mod(f))~!,Dil(h),
and the best dilatation of w,. If mod(f) — oo, while the Dil(h) and Dil(w.) go to 1
(over some directed set of quadratic-like families), then we say that the geometry of
(f, h) vanishes.
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PARAPUZZLE AND SBR MEASURES 181

By an adjustment of a DH quadratic-like family we will mean replacement the
domains U,, V* with some other domains U, C U., V., = e 1U*, spreading them
around by h (U y = haU., Vi = h)\V*), and the corresponding shrinking of the
parameter domain: D = &~'U. It provides us with an adjusted family (f : V - U, h)
over D.

We will use the following standard adjustment. Select U, to be bounded by the
hyperbolic geodesic I' in the annulus U, \ V.. Then V. is bounded by the hyperbolic
geodesic IV in V, ~ f71V,. By the Koebe Theorem, the geometry of these geodesics
(i-e., their qc dilatation) depends only on mod(U, \ Vi). Thus after this adjustment,
Dil(&.) depends only on mod(U,~\V.). Moreover, mod(U,~V,) > (3/4) mod(U,\V,).
Thus the geometry of the adjusted family depends only on mod(U, \ V,) and Dil(h).

Moreover, if we fix Dil(h) and let mod(U, \ Vi) — oo, then mod(U,\ <~ W) = oo,
D11(h|D) — 1 (by A-lemma), and Dil(w,) — 1, so that the geometry of the adjusted
family vanishes.

In what follows we will not change notations when we adjust quadratic-like families.

Let us now define a map £ : D ~ M (f) — A(1,4) in the following way:
(3.5) E(A) = wa(fr0).

Lemma 3.1. — Let (f,h) be a DH quadratic-like family with winding number 1. Then
formula (3.5) determines a homeomorphism & : D ~ M(f) — A(1,4). If Dil(h) < oo
then £ is L-qc with L depending only on the geometry of (f,h). Moreover, L — 1 as
the geometry of (f,h) vanishes.

Proof. — Let us consider the critical value graph X = ®(\) = {(\, fA0), A € D}.
By the Argument Principle, it intersects at a singe point each leaf of the holomorphic
motion h on U\ V, so that the holonomy v : U, \ V, — X is a homeomorphism onto
the image R;. Hence A; = my Ry C D is a topological annulus, and the map

g“l =m 0")/0(4.)*_1 A[2,4) — A

is a homeomorphism.

Let I'; be the inner boundary of 4;, and D; be the topological disc bounded by
I';. Since the critical value f»(0), A € D;, does not land at the leaves of holomorphic
motion h|Dj, it can be lifted by f to a holomorphic motion h; of the annulus V! \ V2
over Dy, where V! = V) and V? = f 1y,. Since the graph X intersects every leaf
belonging to V! at a single point, the family (£ : V2 — V! h) is proper over D; and
has winding number 1. Let Ay = ®~1(V! \ V2). Then the same argument as above
shows that the map £~ : A[v/2,2) — A, is also a homeomorphism.

Continuing in the same way, we will inductively construct a sequence of holomor-
phic motions h,, over nested discs D,,, and a nest of adjoint annuli 4,, = D,,_; ~ D,
which are homeomorphically mapped by £ onto the round annuli A[22" " 22°7").
Altogether this shows that £ is a homeomorphism.
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182 M. LYUBICH

Finally, assume h is K-qc. Since all further motions h, are holomorphic lifts
of h over D, by f", they are K-qc over their domains of definition as well. By
Corollary 2.1, they are transversally K-qc. Moreover, the straightening

wa : Us N J(fe) — A(1,4)

is qc, while the projection m; : X — D is conformal. Since £ is the composition of
the straightening, the holonomy and the projection, it is L-qc with L = K - Dil(w..).
In particular, L — 1 as K and Dil(w,) go to 1. O

Note that the motions h,, over domains D,, constructed in the above proof preserve
the external coordinates: wy(hxz) = wi«(2), 2 € U, \ f7"V,. We will refer to this
property by saying that h respects the external marking, or that h is marked.

Example (see [DH1]). — Let us consider the Mandelbrot set M of the quadratic fam-
ily P. : 2 22+¢c. Let R: C~ M — C~ D be the Riemann mapping tangent
to id at co. Recall that parameter equipotentials and external rays are defined as
the R-preimages of the round circles and radial rays. Let 2, be the topological disc
bounded by the equipotential R=1{re® : 0 < § < 27} of radius r > 1.

For every c € €14, let us consider the quadratic-like map P, : V. — U, where V,
and U, are topological discs bounded by the dynamical equipotentials of radius 2 and
4 correspondingly. Then the conformal map w. : U, \ V; = A[2,4) conjugates P,|0V,
to z — 22 on T2, so that it can serve as a straightening (3.4). With this choice of the
straightening, the parameter map £ : D ~ M — A(1,4) constructed in Lemma 3.1 is
just the restriction of the Riemann map R. O

With Lemma 3.1, we can extend the notion of parameter rays and equipotentials
to quadratic-like families as the -preimages of the polar coordinate curves in A(1,4).
If £(\) = re*® then r and @ are called the external radius and the external angle of
the parameter value A. Note that 9D becomes the equipotential of radius 4.

Before going further, let us state a general lemma about qc maps:

Gluing Lemma. — Let us have a compact set ) C C and two its neighborhoods U and
V. Let us consider two gc maps ¢ : U — C and ¢ : V . Q — C. Assume that these
maps match on 0Q), i.e., the map f : V — C defined as ¢ on Q and as ¢ on V N\ Q
is continuous. Then f is quasi-conformal and Dil(f) = max(Dil(¢|Q), Dil(%)).

Proof. — See e.g., [DH2, Lemma 2, p. 303]. O

Recall now that every quadratic-like map f : V — U is hybrid equivalent to a
quadratic polynomial P, : z — 22 + ¢ (The Straightening Theorem [DH2]). It is
constructed by gluing f to z — 22 on C \ D, (by means of the qc straightening
w: cl(UNV) — A2, 4] respecting the boundary dynamics), and pulling the standard
conformal structure on C \ Dy back to U ~ K(f) by iterates of f. In the case of
connected Julia set J(f), the parameter value ¢ = x(f) is determined uniquely.
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PARAPUZZLE AND SBR MEASURES 183

Given a quadratic-like family fy : Vo — U over D with winding number 1, let us
consider a family of straightenings (3.4) and the corresponding family of quadratic
polynomials Py(y : z — 2% + x(A).

Note that

(3.6) §=Rox|D~ M(f),

where ¢ is defined in (3.5), and R is the Riemann mapping on the complement of
the Mandelbrot set. This formula follows from the definitions of £ and x and the
description of R given in the above Example.

Lemma 3.2. — Under the circumstances just described, the straightening
x: (D, M(f)) — (4, M)

is a K-qc homeomorphism of the disc D onto a neighborhood Q4 of the Mandelbrot
set M bounded by the parameter equipotential of radius 4. The dilatation K depends
only on the geometry of (f,h).

After adjusting the family (f,h), Dil(x) will depend only on mod(U, \ V.) and
Dil(h). Moreover, Dil(x) — 1 and mod(D ~ M(f)) — oo as mod(U, \ Vi) — o0
(with a fized Dil(h)).

Proof. — By [DH2], x is a homeomorphism. By [L5, Lemma 5.4], x| M (f) admits a
local qc extension x to a neighborhood Ny of any point A € M(f), with dilatation
depending only on mod(f). Let us select neighborhoods W) € Ny. Then let us select
finitely many x; = xa, such that the corresponding neighborhoods W; = W, cover
M(f). By the Gluing Lemma,

Dil(x|(D ~ M (f)) U W;) < max(Dil(x|D ~ M(f)), Dil(xi))-
Taking into account Lemma 3.1, we conclude that
Dil(x) = max Dil(x|(D ~ M(f)) UW;)
depends only on the geometry of (f, h).
Moreover, by [L5], the Dil(x;) — 1 as mod(f) — oo. By Lemma 3.1, after the
adjustment of (f, h)), Dil(x|D ~ M(f)) — 1 as mod(f.) — oo keeping K = Dil(h)

fixed. Hence by the Gluing Lemma, Dil(x) — 1 as mod(f.) — oo.
Finally, by transversal quasi-conformality of holomorphic motions,

mod(D ~ M(f)) > K ' mod(U. \ Vi) — oo.
O
We will mostly deal with equipotentials of radius 4!/2", the preimages of the out-
ermost equipotential of radius 4. Let us say that the equipotential of radius 41/2" has

level n, so that the outermost equipotential has level 0, the equipotential of radius 2
has level 1, etc.
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3.3. Wakes and initial Markov families. — Lemma 3.2 shows that the landing
properties of the parameter rays in a quadratic-like family coincide with the corre-
sponding properties in the quadratic family. This allows us to extend the notions of
the parabolic and Misiurewicz wakes from the quadratic to the quadratic-like case.
Namely, the q/p-parabolic wake Py, = P,;,(f) is the parameter region in D bounded
by the external rays landing at the g/p-bifurcation point b, /p on the main cardioid
of M(f) and the appropriate arc of &D. Dynamically it is specified by the property
that for A in this wake there are p rays landing at the a-fixed point ay of J(fy), and
they form a cycle with rotation number ¢/p.
The maps

(3.7 X :Va—= Ux

restricted to appropriate domains form a (non-equipped) quadratic-like family over
the wake (see [D], [L3], §2.5). (The domain V) is a thickening of the puzzle piece
Y>f1+p ) bounded by two pairs of rays landing at the a-fixed and co-fixed (i.e., the other
preimage of a) points and two equipotential arcs. The domain U, is a thickening
of the puzzle piece Y)‘(l) bounded by two rays landing at the a-fixed point and an
equipotential arc of level 1.) Note however that this family fails to be proper as the
domains U, don’t admit continuous extension at the root.

Proposition 3.3 (see [D]). — Let f be a DH quadratic-like family with winding number
1. Then the winding number of the critical value X — fY(0) about 0 when X\ wraps
once about the boundary of the parabolic wake OF,, is also equal to 1.

By [DH2, D], the quadratic-like family (3.7) generates a homeomorphic copy
M,/p = My/p(f) of the Mandelbrot set attached to the bifurcation point bg/,. Its

complement M ~ M,,, consists of a component containing the main cardioid and
infinitely many decorations (using terminology of Dierk Schleicher [Sch]) DZ};
o is a dyadic sequence of length |o| =t -1, ¢t =1,2,...,¢=1,...,p— 1. The
decoration DZ); touches My, at a Misiurewicz point p = pg /p for which

, where

fPE0) e YP gk =0,...,t —1, while fP/(0) = o,

where C"L is the a-co-fixed point. (Such Misiurewicz points are naturally labeled by
the dyadic sequences).

Every decoration D;’); belongs to the Misiurewicz wake 6,‘;/; of level t bounded
by two parameter rays landing at p /p (there are p rays landing at this point). Let
us truncate such a wake by the equipotential of level pt. We will obtain the initial
puzzle pieces OZ); which sometimes will also be called “Misiurewicz wakes”. They
can be dynamically specified in terms of the initial puzzle (see [L3], §3.2). Namely,
there are p — 1 puzzle pieces Zi(l), i =1,...,p— 1, attached to the co-fixed point «'.
Pulling them back by (¢t — 1)-st iterate of the double covering fP : Y(1+P) — y (1),
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we obtain 2!~1 puzzle pieces Z, (lf(t—l)p ) labeled by the dyadic sequences. The wake
OZ}’ is specified by the property that fP0 € Z (1+(t vp),

The wake OZ /’p containing a point A will also be denoted by O(\).

By tiling we mean a family of topological discs with disjoint interiors. Let us
consider the initial tiling constructed in [L3], §3.2 (see Figure 2):
(3.8) v sveulJUUxku Uz,

k>0 ¢ k>0 j

where V) = X0 ,.

Figure 2. Initial tiling (p = 3, t = 2).

Lemma 3.4. — The family of puzzle pieces Y( kP nd Z(1+kp) kE<t—1, moves
holomorphically in the region inside the pambolzc wake Py, bounded by the parameter
equipotential of level pt with all the Misiurewicz wakes of level < t — 1 removed.

Let us recall that Zgl) means U Zj(lg
Lemma 3.5. — Let f be a DH quadratic-like family with winding number 1. Then
the initial tiling (3.8) moves holomorphzcally within the Misiurewicz wake O = 0p e
The critical value ®Po(N) = 0, of the double covering f/\ V)‘ — Z()? is a proper
map Pg : O — Z; ) with wmdmg number 1 (where t = |o| + 1).

Proof. — Indeed, all puzzle pieces of this initial tiling are the pullbacks of Zj(l)z As A\

ranges over the wake O = 07}’ | the corresponding iterates of 0 don’t cross the bound-

q/p’
ary of ZJ(R It follows that the boundary of the initial tiling moves holomorphically.
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Moreover, the torus 5Z§1) is foliated by the curves with the same external co-
ordinates, and one curve corresponding to the motion of the a-co-fixed point. By
definition of the Misiurewicz wake, the critical value ®,()\) intersects once every leaf
of this foliation when A wraps once around 80. Hence ¢ : O — Z;-l) is a proper map
with winding number 1. O

Let ho stand for the above holomorphic motion of the initial tiling.

Recall for further reference that there are two puzzle pieces @1, and Q2 in
Y/\(1+(t_l)p ) which are univalently mapped by f¥ onto Y§1+(t_l)p ) (see Figure 2). The
pieces X[, are the pull-backs of VY = X, under the k-fold iterate of the Bernoulli

map
R :Q1AUQ2) — Y)‘(H(t-l)p)-

Let QF, D X}, denote the domain in Y)\(1+(t_1)p ) which is mapped under f¥? onto

Y)f1+(t_1)p); in particular, Qf , = Y)fl"'(t_l)p).

3.4. First generalized quadratic-like family. — Let us consider a proper DH
quadratic-like family f = {fa} over D with winding number 1. Fix a Misiurewicz
wake O of this family. The first generalized quadratic-like map g, : UVi’l)\ — V0 is
defined as the first return map to VY (see [L3|, §3.5). The itinerary of the critical
point via the elements P; of the initial tiling (3.8) determines the parameter tiling
D! of a Misiurewicz wake O by the corresponding puzzle pieces. Let A!(\) stand for
such parapuzzle piece containing .

More precisely, for any A € O, let us consider the first landing map T» : UL; , — VY
(see [L3], §11.3). The puzzle piece L; , is specified by its itinerary 7 = (o, - ..,%5—1)
through non-central pieces P; of the initial tiling until the first landing at V:

(3.9) L;»={2:G¥z€ P, m=0,...,s—1, Gze W},

where G, stands for the Markov map (3.5) from [L3]. These tiles are organized in
tubes IL; with holomorphically moving boundary. Moreover, the first landing map
induces a diffeomorphism T : L; — V° fibered over id.

Let iy stand for the itinerary of the critical value ¢o()\) = ff\’tO through the ini-
tial tiling, so that fftO € Lz . Let L, = L;, and ®(A) = (A, #o(A)). Then the
parapuzzle pieces of the tiling D! are defined as follows:

Al(x) = 5L, = {A € O: fF'0 € L, »}.

Let V! denote the components of f7*(L;|A!(x)) contained in V°, where V§ = V! is
the critical component (i.e., the one containing 0). The first return map

glzTo_fpt:UV;—%VOEUl

is the desired first generalized renormalization of f.
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By means of the first landing map T, the holomorphic motion hg over O can be
lifted to the tubes L;. By the A-lemma, this lift and the motion ho of the boundary
of the initial tiling (3.8) admit a common extension Hg over O.

Since the critical value ®()) lands at the tube L, as A ranges over Al(x), Hy can
be lifted to a holomorphic motion of the annulus V? \ V! over A!(x). Let us extend
this motion to V}! by the A-lemma. This provides us with a motion h; which equips
the generalized quadratic-like family g, .

Since the winding number of ®, about Z; over O is equal to 1 (by Lemma 3.5),
the function ®o : Al(x) — L. is proper with winding number 1. Since the first
landing map T is a fiberwise diffeomorphism of every tube IL; onto Vp, it induces a
homeomorphism between the marked tori 6L; — 6Vo. Hence the function ®1(\) =
(A, T o po(N)), At(A) — Vo, is also proper with winding number 1. Thus we have:

Lemma 3.6. — Let f be a DH quadratic-like family with winding number 1. Then
the first generalized renormalization (g, : UV} — V0 = U, h,y) is a proper family
with winding number 1 over Al (x).

Together with the tubes (3.9) let us also consider bigger tubes W; over O defined
as follows. Let P;, x» = XF, be the first “X-pieces” in the itinerary {P;,, }5,—o- Then

(3.10) Wia= {z:GPz€ P\, m=0,...,7r—1, G5z € Q;c’/\}’
where the domains Qf  are defined at the end of §3.3. Moreover,
(3.11) G% Wi, — QF Gy, — y(HE=De)

and both maps are univalent isomorphisms. Thus G® : W; — Y(+{(-1)P) j5 5 fiberwise
conformal diffeomorphism fibered over id.

Hence the holomorphic motion of Y(+(—1P) (see Lemma 3.4) can be lifted to
holomorphic motions of the W;. Let W, = W; , where i, is the itinerary of the

critical value ¢o(*) = fP0 through the initial tiling. Let us introduce the following
parameter domains in O:

(3.12) AY(¥) = ®7'W, = {)\: do(N) € Win} D A(¥).

This extension of A!(x) will be used for a priori bounds on the parameter geometry
(see §4).

3.5. Renormalization of holomorphic families. — Let us now consider a gener-
alized quadratic-like family (g : UV; — U, h) over (D, x). Let Z stand for the labeling
set of tubes V;. Remember that Z 3 0 and Vo 5 0. Let Z4 stand for the set of all
finite sequences 7 = (io,...,%t—1) of non-zero symbols ix, € Z \ {0}. For any i € Zy,
there is a tube V; such that

g"V;CV,,k=0,....,t —1 and g'V;=U.
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We call ¢t = |i| the rank of this tube. The map g : V; — U is a holomorphic
diffeomorphism which fibers over id, that is, gf\V; y=Ux, A€ D.
Let us redefine the holomorphic motion h of U as follows:

gx(h;z2) = halglz), z€ V5, ~ Upjj=t+1Y5 where t = [i].

’*’

By (3.3), By is correctly defined on U, minus a Cantor set. Extend it to the whole
U. by the A-lemma.

Consider tubes L; C V; such that g'l; = V,, where ¢t = |7|. The first landing map
T : UL; — Vy is defined as T'|L; = g*. By construction,

Ta(haz) = ha(Tuz) for z € UDL;,.

Let ¢(A\) = gA0 and ®(\) = (A, ¢(N\)). Let 7, be the itinerary of the critical value
¢(x) under iterates of g, through the domains V; ., until its first return to V5. In
other words, let ¢.(0) € I; = L..

Let us now consider the following parameter region around x:

D' = D'(x) = &7 'L,.

For A € D', the itinerary of the critical value under iterates of g, until the first return
back to Vg, is the same as for g. (that is, 7.). Let us define new tubes V;. C VYo as
the components of (g|Vo) 1 (L;|D’). Let

(3.13) g UV, - Vo|D' =T

be the first return map of the union of these tubes to Vy.

For A € D', the critical value ®()\) does not intersect the boundaries of the the
tubes ;. Hence we can lift the holomorphic motion hon UNL, toa holomorphic
motion A’ on U’ \ V, over D’ and extend it by the A-lemma to the whole tube U’.
Thus we obtain a generalized quadratic-like family (g’, h') over D' which will be called
the generalized renormalization of the family (g, h) (with base point x*).

If g is a proper family then g’ is clearly proper as well. Moreover, w(g') = 1 if
w(g) = 1. Indeed, by the Argument Principle the curve ®|D’ intersects once every
leave of OL.. Hence it has winding number 1 about this tube. As the first landing
map T : L, — VY is a fiber bundles diffeomorphism, it preserves the winding number.
Thus the new critical value ®' : D' — U’, ®' = T o ®, has also winding number 1.

Let us summarize the above discussion:

Lemma 3.7. — Let g : UV; — U be a generalized quadratic-like family over (D, x).
Assume it is proper and has winding number 1. Then its generalized renormalization
g' UV, - U over D’ is also proper and has winding number 1.

3.6. Central cascades. — In this section we will describe the renormalization
of a generalized quadratic-like family through a central cascade, which will be then
treated as a single step in the procedure of parameter subdivisions. Let us consider a
holomorphic family (g : UV; — U, h) of generalized quadratic-like maps over (A, *).
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We will now subdivide A according to the combinatorics of the central cascades of
maps gx (see [L3], §§3.1, 3.6). To this end let us first stratify the parameter values
according to the length of their central cascade. This yields a nest of parapuzzle
pieces

A=D>D :)"'DD(N)D"‘
For A € DYN=1 DY) the map gy has a central cascade

(3.14) "/\(0) =U,D V) = \"A“) 5.9 V/\(N)

of length N, so that ¢,0 € V)\('\'*l) ~ \'A('\‘). Note that the puzzle pieces \;fk) are
organized into the tubes V%) over D=1,

The intersection of these puzzle pieces. NDY) s the little Mandelbrot set M (g)
centered at the superattracting parameter value ¢ = ¢(g) such that ¢.(0) = 0. Let us
call ¢ the center of D.

Let x € DY DY) Let us consider the Bernoulli map

(3.15) G :UW, - U

associated with the cascade (3.14) (see |L3|. §3.6 and Figure 3). Here the tubes W;
over DN are the pull-backs of the tubes V;|DOY =1 i £ 0, by the covering maps

(3.16)  g* (VP vty DOYED (U V)DL k=001, .. N — 1.

Figure 3. Solar svstem: Bernoulli scheme associated to a central cascade.
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In the same way as in §3.5, to any string 7 = (jo,...,Jjs—1) corresponds the tube
over D(V-1)

W; ={peUDWNY :G"peW,,, n=0,...,t—1}.

n ?

Note that G* univalently maps each W5 onto U D=1, Thus W; contains a tube L;
which is univalently mapped by G* onto the central tube V(). These maps altogether
form the first landing map to V(™)

(3.17) T :UL; — V),
Remark. — Note that
(3.18) mod(W5 , N L3.,) = mod(Ux ~ V™) > mod(Us ~ Va),

since G¥ univalently maps the annulus W5 5~ Lz, onto Ux ~ V/\(N).

Let us now consider the itinerary j, of the critical value ¢(*) = g.(0) through the
tubes W; until its first return to V()| so that ®(x) € L; =L Let W, =W; and

(3.19) A°(x) = 7L, A°(x) = @ 'W,.

Thus the annuli DXV=1 <\ DY) are tiled by the parapuzzle pieces A°()) according
as the itinerary of the critical point through the Bernoulli scheme (3.15) until the
first return to V/\(N). Altogether these tilings form the desired new subdivision of A.
(Note however that the new tiles don’t cover the whole domain A: the residual set
consists of the Mandelbrot set M (g) and of the parameter values A € D(V-1 D)
for which the critical orbit never returns back to V)‘(N) 2

The affiliated quadratic-like family over A°(x) is defined as the first return map to
V,\(N) = Uy. Its domain UV is obtained by pulling back the tubes L; from (3.17) by
the double branched covering g : V() — V(¥=1|A°(x), and the return map itself is
just T og.

The affiliated holomorphic motion is also constructed naturally. Let us first lift
the holomorphic motion h from the condensator U\ V to the condensators (V(¥)
V*+1))| DIN=1) via the coverings (3.16). This provides us with a holomorphic motion
of (U~ VW) UW;) over DN~ Extend it through V) by the A-lemma, lift it to
the tubes (WJ—.,LF) and then extended again by the A-lemma to the whole domain U
over DV~ Let us denote it by H.

Lifting this motion via the fiberwise analytic double covering over A°(x),

g: (Uo \VO’ UV;)) — (V(N—l) \L* R U ]L;)’
i#0 T#7
we obtain the desired motion of (U° \ V°, |J,. ., Vs) over A°(x). By the A-lemma it
extends through V§.

i#0
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3.7. Principal parapuzzle nest. — Let us now summarize the above discussion.
Given a quadratic-like family (f,h) over D = A°®, we consider the first tiling D! of
a Misiurewicz wake O as described in §3.4. Each tile A € D! comes together with a
generalized quadratic-like family (g, ha) over A.

Now assume inductively that we have constructed the tiling D! of level I. Then the
tiling of the next level, D't is obtained by partitioning each tile A € D! by means
of the cascade renormalization as described in §3.6.

Let A!()) stand for the tile of D' containing A, while A!(A) C AY(\) € AZ1())
stand for the other tile defined in (3.19). Each tile A = A!()) contains a central
subtile TI'(\) = ®1' Vo corresponding to the central return of the critical point (here
PA(N) = (N, ga(N)). Note that II'(\) may or may not contain A itself.

Let us then consider the sequence of renormalized families (g, y,hi,x) over topo-
logical discs A'(\). We call the nest of topological discs A® D Al1(\) D A%2(A\) D ---
(supplied with the corresponding families) the principal parapuzzle nest of A. This
nest is finite if and only if A is renormalizable.

Let ¢; » € A!()\) be the centers of the corresponding parapuzzle pieces. Let us call
them the principal superattracting approzimations to A. If A is not renormalizable,
then ¢;» — X as I — oo, since diam A!(A) — 0 (see the next section).

The mod(A!(\) . Alt1()\)) are called the principal parameter moduli of A € D.

When we fix a base point *, we will usually skip label * in the above notations, so
that Al = Al(x), g, = g;.., bu = hu« etc.

4. Parapuzzle geometry

The following is the main geometric result of this paper:

Theorem A. — Let us consider a proper DH quadratic-like family (£, h) with winding
number 1 over D, and a Misiurewicz wake O C D. Then for any A € M(f)N O,

mod(A'(\) ~ AYY(N\) > Bl, and mod(A'(\) < II'(\)) > BI,
where the constant B > 0 depends only on O and mod(f).

The rest of this section will be devoted to the proof of this theorem.

4.1. Initial parameter geometry. — In this section we will give a bound on
the geometry of the first level parapuzzle. Fix a quadratic-like family (f,h) and its
Misiurewicz wake O = O | |o| = t, as in §3.3. In what follows we will use the

a/p’
notations of §3.3 and §3.4.

Lemma 4.1. — There is a marked holomorphic motion of any annulus Qf’)\ ~ Xik)\
over O with dilatation depending on the geometry of (f,h) and the choice of O only.
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Proof. — Indeed, by Lemma 3.4, the configuration

(v, Y oo, |J i)
k<t—1 k<t—1 j
represents a holomorphic motion over the parabolic wake P/, (truncated by the
appropriate equipotential) with removed Misiurewicz wakes of level < ¢ — 1. Since O
is compactly contained in this region, this holomorphic motion has a finite dilatation
K = K(O) over O (depending only on O and the geometry of (f,h)).

Let us now lift this motion to the tubes Z;Ht” ) and @, @ by the map fP. Since
this map is a fiberwise diffeomorphism over O, it preserves the dilatation of the motion
(though the motion does not extend beyond O any more). Similarly we can lift the
motion to all quadrilaterls between the equipotentials of level 1 4+ (¢ — 1)p and 1+ tp
left after removing Z-pieces of level < t — 1 (see Figure 2). This provides us with a
marked motion hg of the annulus Y;lﬂt_l)p ) VY over O with the same dilatation
K. This handles the case k£ = 0.

For k£ > 0, lift hy by the following fiberwise diffeomorphism over O:

P (b XE) — (TP YY),
O
Lemma 4.2. — All parapuzzle pieces of the first level are well inside the corresponding

wake: mod(O \ A') > v > 0. Moreover, the holomorphic motion hy of the conden-

sator Ut . V! over A' is K-qc. The constants v and K depend only on the geometry
of (f,h) and the choice of O.

Proof. — Let us consider the tubes L, C W, over O constructed in §3.4. By means
of the fiberwise conformal diffeomorphism (3.11)

k k
Gg : W*,)\ AN L*’A —> QZ,A ~N X’i,A

we can lift the motion constructed in Lemma 4.1 to the condensator W, ~\ L.. Since
the dilatation of the motion under such a lift is preserved, it depends only on the
geometry of (f, h) and the choice of O.

Let us now consider the parameter annulus

A'NA' =3 ' (W, NL,)CO
(see (3.12)). By transverse quasi-conformality of holomorphic motions (Corollary 2.1),
mod(A! ~ A') > K~ mod(W, \ L.),

where L, ~ W, is the *-fiber of the condensator W, \ L.

But G* univalently maps W, ~ L, onto Y.’ T¢~DP) (10 (see (3.10)-(3.11)). Since
by [L3, §4.1], the modulus of the latter annulus depends only on the geometry of
(f,h) and the choice of O, the first statement of the lemma follows.
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Moreover, the motion h; on U' \ V! is a double covering of the motion Hg on
Zg.l) N L, over O (see §3.4). Since A! is well inside O, the A-lemma implies that Hg
has a bounded dilatation over A! (depending only on the geometry of (f,h) and the
choice of O). Hence the dilatation of h; on U' \ V! over A! is bounded as well. O

4.2. Inductive estimate of the parameter geometry

Lemma 4.3. — Let us consider a generalized quadratic-like family (g : UV; — U, h)
over A. Assume that the dilatation of h on U\ Vg is bounded by K and

mod(Us ~ Vo.) > >0, X€D.

Then the dilatation of the cascade renormalized motion h® on U° \ V§ over D° (as
described in §3.6) is bounded by K° = K°(u, K).

Proof. — We will use the notations of §3.6. We assume that f. has a central cascade
(3.14) of length N, so that * € DV—1) <\  D(V). The holomorphic motion h on U~ Vj
can be lifted to a motion H on W, ~ L. by a fiberwise conformal diffecomorphism T
(an extension of the first landing map (3.17)). Hence this motion has dilatation K
on the tube W, \ L,. By transverse quasi-conformality of holomorphic motions,

(4.1) p® = mod(A° A% > K~ lp.

Let us extend H by the A-lemma through L, to a motion on the whole tube W,
over A°. Applying the A-lemma again, we conclude that this motion has dilatation
K° = K°(u°) over A°. But the motion h® on U® \ V§ is the lift of H on U\ L, over
A° by the fiberwise conformal double covering g. Hence it has the same dilatation
K-. O

4.3. Inscribing rounds condensators. — In this section we will show that the
parameter annuli have definite moduli. Given a holomorphic motion A, and a holo-
morphic family of affine maps gy : 2z — axz + by, we can consider an “affinely equiv-
alent” motion gy o hx. In this way the motion can be normalized such that any two
points z,{ € U, don’t move (that is, hx(z) = z and hx(¢) = ¢ for A € D). Let us
start with a technical lemma:

Lemma 4.4. — Let us consider a holomorphic motion h : (U,,Vi,0) = (Ux, Vi,0)
of a pair of nested topological discs over a domain D. Assume that the maps hj :
(0U.,0Vy) — (OUx,0Vy) admit K-qc extensions Hy : (C,U,) — (C,Uy) (not nec-
essarily holomorphic in A but with uniform dilatation K). Then there exists an
M = M(K) such that if mod(U. \ Vi) > M then after appropriate normalization
of the motion, there exists a round condensator D x A(q,2q) embedded into U\ V.

Proof. — Let z, be a point on dU, closest to 0. Normalize the motion in such a way
that z. = 1, and this point does not move. With this normalization, V., C D, (0)
where € = e(m) — 0 as m = mod(U, \ V) — oo.

SOCIETE MATHEMATIQUE DE FRANCE 2000



194 M. LYUBICH

Since the space of normalized K-qc maps is compact, |Hx(ee?|) < §, where § =
d(e,K) — 0 as € = 0, K being fixed, and |Hx(e®)| > r where r = r(K) > 0. It
follows that the domain U \ V contains the round cylinder D x A(4,7), and we are
done. O

Corollary 4.5. — Under the circumstances of Lemma 4.4, let ® : D — U be a proper
analytic map with winding number 1. Let D' = ®~'V. Ifmod(U,~\V,) > M = M(K)
then mod(D ~ D') > log 2.

Proof. — By Lemma 4.4, UNV D Dx A where A = A(q,2q). Let Q = ® ' (DxA). By
the Argument Principle, ¢ = m20® univalently maps Q onto A, so that mod(D~D’) >
mod ¢ = mod A = log 2. O

4.4. Puzzle geometry. — Let us now recall for reader’s convenience two key re-
sults of [L3], which will be used below.

Theorem 4.6 (Moduli growth [L3], Theorem III). — Let f be a quadratic-like map
whose straightening ¢ = x(f) belongs to a Misiurewicz wake O. Let n(k) be the
non-central levels of its principal nest V° D V1 D .... Then

mod(Vk+L ( yr(k)+2) > B
where B depends only on O and mod(f).

Remark. — A related result on moduli growth for real parameter values was inde-
pendently proven by Graczyk & Swiatek [GS]. Note in this respect that the proof
of our parameter result (Theorem A) needs in a crucial way the above Theorem 4.6
with complex parameter values (even if one is ultimately interested in the real case).

Let us consider a quadratic-like family (f,h) and its parameter tilings. Let A€
Al(N). Let us consider the corresponding [-fold generalized renormalizations of these
twomaps g; : UV; - U and g; : UV; — U. Then the holomorphic motion A transforms
the domains of g; to the corresponding domains of g; respecting the boundary marking
(coming from the external coordinate system, see §3.2). In this sense fx and f; have
“the same combinatorics up to level” .

Let us say that g, and g; K-qc pseudo-conjugate if there is a K-qc homeomorphism

h: (U, UV;) = (U, UWh),
respecting the boundary marking. Thus it matches with the boundary holomorphic

motion, and hence respects the boundary dynamics: h(g;z) = g;(hz) for z € UJV;.

Theorem 4.7 (Uniformly gc pseudo-conjugacies [L3, §11]). — Assume that A € AF1(N),
where the tile A'T1()\) is defined by (3.19). Then the corresponding generalized renor-
malizations g and g are K -qc pseudo-conjugate, with K depending only on the Misi-
urewicz wake O(\) and geometry of (f,h).
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Remarks

(1) Concerning the assumption X € AL, see [L3], Remarks on pp. 272 and
277.

(2) In [L3] (see §4) the initial choice of straightening of two maps f and fis made
independently and its dilatation depends only on the mod f and mod f. In
the above formulation, the choice should be consistent with the holomorphic
motion h, so that its dilatation depends on the geometry of (f, h).

4.5. Uniform bound of dilatation
Lemma 4.8. — Let x belong to a Misiurewicz wake O. For any principal parapuzzle
piece A = A'1(x), the corresponding holomorphic motion ha of Ut N\ V5t over A

has a uniformly bounded dilatation, depending only on the choice of the Misiurewicz
wake O and the geometry of (f,h).

Proof. — Let K be a dilatation bound given by Theorem 4.7. Find an M = M (K) by
Corollary 4.5. By Theorem 4.6 and (3.18), there exists an /o such that mod(W!~ L%) >
M for I > lo.
For [ < lg, the desired dilatation bound is guaranteed by Lemmas 4.2 and 4.3.
Fix an [ > lg. Consider the generalized quadratic-like family (g : UV; — U, h) over
D = Al(x). In what follows we will use the notations of §3.6. Let + € D(V—1) \ D),
By Theorem 4.7, for A € A'*1(x), there is a K-qc pseudo conjugacy

wA : (U*,U‘/z',*) — (U)\yu‘/i,A)v

with K depending only on the choice of wake O and geometry of (f,h). As we have
mod(W! \ L,) > M, Corollary 4.5 can be applied. We conclude that

(4.2) mod(AF (%) N A (%)) > log 2

for [ sufficiently big (depending on O and geometry of (f, h)).

In §3.6 we have constructed a holomorphic motion H of (U, W5, L;) over DW-1),
By the A-lemma and (4.2), H is L-qc over A = A!*1(x), with an absolute L provided
l is big enough. But the holomorphic motion ha on Ul \ Vi*1 is the lift of H on
VV=1) (L. over A by means of the fiberwise analytic double covering

g : Ut (v 5 vV (L.

Hence ha on Utt! < Vi1 is also L-qc. O

4.6. Proof of Theorem A. — We are now prepared to complete the proof:
mod(A! N\ A1) > K~ mod(W;, \ L;,) > BI.

The first estimate in the above row follows from Lemma 4.8 and Corollary 2.1. The
last estimate is due to Theorem 4.6.
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For the same reason,
mod(A' N IT) < mod(UL \ V§,,) > BL. O

Remark. — The author thanks the referee for the following note. Instead of exploiting
holomorphic motions in the above proof, one can use (for high levels 1) a refined
version of Lemma 4.4. Indeed, the proof of this lemma shows that one can inscribe
into U \ V a round condensator of modulus comparable with mod(U, \ V) (with a
constant depending on the dilatation K only). This provides us with inscribed round
condensators over principal parapuzzle pieces with linearly growing moduli, which
yields linearly growing parameter moduli.

Thus, formally speaking, holomorphic motions are needed only on the initial levels.
However, their actual role is more significant as their transversal quasi-conformality
is a true mechanism behind commensurability of the dynamical and parameter ge-
ometries.

5. Application to the measure problem

In this section we will apply the previous results to the real quadratic family P, :
2+ 22+ ¢, ¢c € R Let NR stand for the set of non-renormalizable real parameter
values ¢ € [-2,—3/4). Note that all periodic points of the P, : 2 — 22 + ¢, c € N'R,
are repelling. Indeed, the interval [-3/4, 1/4] where P, has a non-repelling fixed point
is excluded, while maps with non-repelling cycles of higher period are renormalizable.

Let AMC stand for the set of parameter values ¢ € AR such that the principal nest
of P, contains only finitely many non-trivial (i.e., of length > 1) central cascades.

Theorem 5.1

— The set N'R has positive measure;
— The set NC has full Lebesgue measure in N'R.

Remarks

(1) The former (positive measure) result is known (see [BC], [J]). The latter (full
measure) is new.

(2) The corresponding statements concerning at most finitely renormalizable pa-
rameter values are derived from the above statements by considering quadratic-
like families associated with little copies of the Mandelbrot set.

(3) By the result of Martens & Nowicki [MIN] together with [L2|, P, has an ab-
solutely continuous invariant measure for any ¢ € N'C. Altogether these yield
Theorem B stated in the Introduction.

Proof of Theorem 5.1. — Let d stand for the real tip of the little Mandelbrot set
attached to the main cardioid (i.e. P3(0) = a). As all parameter values ¢ € [d, —3/4)
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are renormalizable, we can restrict ourselves to the interval [-2,d) D ANR. This
interval belongs to the Misiurewicz wake O attached to d.

Given measurable sets X,Y C R, with length(Y) > 0, let dens(X|Y") stand for the
length(X NY)/length(Y).

We will now restrict all tilings D! constructed above to the real line, without change
of notations. We will use the same notation, D!, for the union of all pieces of D!. For
every A = Al(\) € D!, let us consider the central piece II C A corresponding to the
central return of the critical point. By Theorem A, dens(II|A) < Cq' for absolute
C > 0 and ¢ < 1. Let I'! be the union of these central pieces. Summing up over all
A € D!, we conclude that

(5.1) length(I) < dens(I¥|D') < C¢'

(the whole interval is normalized so that its length is equal to 1).
It follows that for [ sufficiently big,

dens ( U I‘l+k|Dl) <Ci¢t <1,
k>0
which means that with positive probability central returns will never occur again.
This proves the first statement.
To prove the second one just notice that (5.1) together with the Borel-Cantelli
Lemma yield that infinite number of central returns occurs with zero probability. O

6. Shapes of the Mandelbrot copies

In this section we will prove Theorem C stated in the Introduction. Let us fix a
quadratic-like family (f, h) and a Misiurewicz wake O in it.

Lemma 6.1. — All mazximal Mandelbrot copies in O have a bounded shape depending
only on the geometry of (f,h) and the choice of O. In particular, in the quadratic
family the shape depends only on the wake O.

Proof. — Take a maximal Mandelbrot copy M’ C O centered at x. Let (f, : V! —
U, k) be the DH quadratic-like family in the principal nest of x generating M’'. By
Lemma, 4.8, the dilatation of h; on U’ \ V! is bounded by a constant K depending
only on the geometry of (f,h) and the choice of O. By a weak form of Theorem 4.6,
mod(f,;) > & > 0, where £ depends on the same data only. Hence by Lemma 3.2, M’
has a bounded shape depending on the same data only. O

Corollary 6.2. — All real mazximal Mandelbrot copies in (f,h), except the doubling
one, have a bounded shape depending only on the geometry of (f,h). In particular, all
real mazximal copies in the quadratic family, except the doubling one, have a bounded
shape with an absolute bound.
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Let us consider a family £ of maximal Mandelbrot copies supplied with a combi-
natorial parameter 7 = 7(M'), M' € L, satisfying the following

Big Modulus Property. — Let M' € L be a Mandelbrot copy generated by a quadratic-
like family over a domain A’. Then for ¢ € A’, mod(RPFP,) > u(7) = oo as 7 — oo.

For the family £ = Lo of maximal Mandelbrot copies contained in a wake O,
several examples of such parameters are given in [L3] (see Theorems IV and IV’): the
height, the return time, etc. For the family £ = Lp of maximal real Mandelbrot sets,
all these parameters can be unified in a single one called the essential period p. (see
[L3, §8], [LY]).

We say that the shapes of Mandelbrot copies M' approach the shape of M as
T(M') — oo if the M’ have a (K,¢)-bounded shape with K — 1, ¢ — 0o as 7 — oo.
Lemma 3.2 implies:

Lemma 6.3. — Assume that we have a family £ of maximal Mandelbrot copies and
a combinatorial parameter T : L — R satisfying the Big Modulus Property. Then the
shapes of the Mandelbrot copies M' € L approach the shape of M as T(M') — oco. In
particular, the shapes of the M' € Lr approach M as p.(M') — co.

Putting together the above statements, we obtain Theorem C.

Remark. — 1If the essential period p.(M') stays bounded but the period p(M') grows,
we obtain Mandelbrot copies near a parabolic cusp. The shapes of such copies were
analysed by Douady and Devaney [DD].

6.1. Relation to MLC. — Let us consider a family £ of Mandelbrot copies. As-
sume that any copy M’ with combinatorial type (My, ..., M), M; € L, has a bounded
shape. Let us say that such an £ is fine.

Given a family £ of Mandelbrot copies, let E¢ stand for the set of infinitely renor-
malizable parameter values with combinatorics (Mp, M1, ...), where M, € L.

Proposition 6.4. — Let L be a fine family of Mandelbrot copies. Then

— The Mandelbrot set is locally connected at any point c € E;
— The set E; has zero Lebesgue measure.

Proof

e Take a string 7 = (My, My,...) with M; € L. It determines a nest M° D M! >

- of little Mandelbrot copies shrinking to the combinatorial class C, of infinitely
renormalizable maps with combinatorics 7. To prove MLC at a point ¢ € C, we need
to show that c is a single point of C..

Let ¢™ stand for the center of M™, and H™ > c" stand for the corresponding
hyperbolic component. Let 7, be the inner radius of H", i.e., the radius of maximal
round disk centered at ¢" and inscribed into H™. As the domains H™ are pairwise
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disjoint, r, — 0. Since the sets M™ have a bounded shape, r, < diam M". Hence
diam M™ — 0, so that the combinatorial class C, = NM™ consists of a single point.

e To prove the second statement, note that the hyperbolic components H" do not
belong to E. as they are not infinitely renormalizable. Hence near any point c € E¢
there are gaps of definite relative size in arbitrary small scales. By the Lebesgue
density points theorem, meas(E¢) = 0. O

Examples of fine families
(a) Family of maximal Mandelbrot copies M’ with big height: x(M') > .
(b) Family of real maximal Mandelbrot copies with big period: p(M’) >
[L7]).

P (see

Remarks

(1) We conjecture that the whole family of real maximal Mandelbrot copies is fine
(so that all real Mandelbrot copies have bounded shape). We are not sure
whether this is still valid for the full family of complex maximal Mandelbrot
copies. This would imply MLC but it may happen that MLC is still true,
though there exist very distorted Mandelbrot copies.

(2) In [L6] we have constructed a fine family £ of Mandelbrot copies such that
HD(E;) > 1. Thus the Hausdorff dimension of the set of infinitely renormal-
izable parameter values is at least 1. (The dimension of the set of infinitely
renormalizable real parameter values is at least 1/2.)
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