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ASYMPTOTIC MEASURES
FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS
OF A RECTANGLE

by
Michael Jakobson & Sheldon Newhouse

To Adrien Douady on the occasion of his sixztieth birthday

Abstract. — We prove the existence of Sinai-Ruelle-Bowen measures for a class of
C? self-mappings of a rectangle with unbounded derivatives. The results can be
regarded as a generalization of a well-known one dimensional Folklore Theorem on
the existence of absolutely continuous invariant measures. In an earlier paper [8]
analogous results were stated and the proofs were sketched for the case of invertible
systems. Here we give complete proofs in the more general case of noninvertible
systems, and, in particular, develop the theory of stable and unstable manifolds for
maps with unbounded derivatives.

1. Folklore Theorem and SRB Measures

A well-known Folklore Theorem in one-dimensional dynamics can be formulated
as follows.
Folklore Theorem. — Let I = [0, 1] be the unit interval, and suppose {I1,Is,...} is

a countable collection of disjoint open subintervals of I such that \J; I; has the full
Lebesgue measure in I. Suppose there are constants Ko > 1 and K; > 0 and mappings

fi : I, — I satisfying the following conditions.
(1) f; extends to a C? diffeomorphism from Closure(l;) onto [0,1], and

1.151; IDfi(z)| > Ko for alli.

|D? fi(2)|

(2) Supzeli ml.ﬁ‘ < Kl fOT all i.
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104 M. JAKOBSON & S. NEWHOUSE

where |Iz| denotes the length of I;. Then, the mapping F(z) defined by F(z) = fi(2)
for z € I, has a unique invariant ergodic probability measure u equivalent to Lebesgue
measure on 1.

For the proof of the Folklore theorem and the ergodic properties of u see for example
[2] and [14].

In an earlier paper [8] we presented an analog of this theorem for piecewise C?
diffeomorphisms with unbounded derivatives with proof sketched. We now wish to
give a more general version of the results in [8]. We refer the reader to that paper for
relevant remarks and references.

Let @ be a Borel subset of the unit square @ in the plane R? with positive Lebesgue
measure, and let F' : é — Q be a Borel measurable map. An F-invariant Borel
probablility measure u on @ is called a Sinai — Ruelle — Bowen measure (or SRB-
measure) for F if u is ergodic and there is a set A C Q of positive Lebesgue measure
such that for x € A and any continuous real-valued function ¢ : @ — R, we have

) 1 n—1 X
1) Jim 5> orta) = [ o

The set of all points « for which (1) holds is called the basin of .

Note that if 4 is an SRB measure, and m; is the normalized Lebesgue measure
on its basin, then the bounded convergence theorem gives the weak convergence of

1

the averages ;- Zz;é FFm; of the iterates of m; to u. Hence, SRB measures occur

as limiting mass distributions of sets of positive Lebesgue measure. This fact makes
them natural objects to study.

We are interested in giving conditions under which certain two-dimensional maps
F' which piecewise coincide with hyperbolic diffeomorphisms f; have SRB measures.
As in the one-dimensional situation there is an essential difference between a finite
and an infinite number of f;. In the case of an infinite number of f;, their derivatives
grow with ¢ and relations between first and second derivatives become crucial.

2. Hyperbolicity and geometric conditions

Consider a countable collection £ = {E1, Es, ..., } of full height closed curvilinear
rectangles in Q. Assume that each E; lies inside a domain of definition of a C?
diffeomorphism f; which maps E; onto its image S; C Q. We assume each F; connects
the top and the bottom of (). Thus each E; is bounded from above and from below
by two subintervals of the line segments

{(z,y):y=1,0<2<1} and {(z,9):y=0,0<=z <1}

We assume that the left and right boundaries of F; are graphs of smooth functions
2@ (y) with |dz() /dy| < a where a is a real number satisfying 0 < a < 1. We further
assume that the images f;(E;) = S; are narrow strips connecting the left and right
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ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 105

sides of @ and that they are bounded on the left and right by the two subintervals of
the line segments

{(z,y):2=0,0<y <1} and {(z,y9):x=1,0<y<1}
and above and below by the graphs of smooth functions Y*(X), |dY®/dX| < a. We
will see later that the upper bounds on derivatives |dz(? /dy| < avand [dY® /dX| <
follow from hyperbolicity conditions that we formulate below.
We call the E]s posts, the S}s strips, and we say the E!s are full height in () while
the S}s are full width in Q.
For z € @, let £, be the horizontal line through z. We define

(sz(E,,) = diam(fz n Ei), 6i,ma.x = maxdz(Ei), 6i,min = min 5z(Ez)
2EQ z€Q

We assume the following geometric conditions

Gl. int E; Nint E; = @ for ¢ # j.

G2. mes(Q \ U; int E;) = 0 where mes stands for Lebesgue measure,

G3. — Zi 5i,max log éi,min < 0.

We emphasize that the strips S; can intersect in an arbitrary fashion, differently
from condition G3 in ([8]).

In the standard coordinate system for a map F : (z,y) — (Fi(z,y), Fa(z,y)) we
use DF(x,y) to denote the differential of F' at some point (z,y) and Fj,, Fjy, Fjza,
Fjgy, etc., for partial derivatives of Fj, j =1,2.

Let Jp(z) = |F1z(2)F2y(2) — F1y(2)F2;(2)| be the absolute value of the Jacobian
determinant of F' at z.

Hyperbolicity conditions. — There exist constants 0 < o < 1 and K¢ > 1 such that
for each ¢ the map
F(z) = fi(z) for z € E;

satisfies

Hl. |For(2)| + a|Fay(2)| + ®|F1y(2)| < a|Fi(2)]

H2. |F1Z(Z)| et alFly(z)I Z K().

H3. |F1y(z)| + a|F2y(z)| + a2|F2w(z)| < aIFm(z)|

H4. |Fi2(2)| — a|F2(2)| > Jr(2)Ko.

For a real number 0 < a < 1, we define the cones
Kg — {(’01,112) : I’U2| < a|'01|}
K} = {(v1,v2) : |u1| < afve]}
and the corresponding cone fields K*(z), K2 (z) in the tangent spaces at points z € R2.
Unless otherwise stated, we use the max norm on R2, I(vl,v2)| = max(|v1|, |v2|).

The following simple proposition relates conditions H1-H4 above with the usual
definition of hyperbolicity in terms of cone conditions. It shows that conditions H1
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106 M. JAKOBSON & S. NEWHOUSE

and H2 imply that the K} cone is mapped into itself by DF and expanded by a factor
no smaller than Ky while H3 and H4 imply that the K2 cone is mapped into itself by
DF~! and expanded by a factor no smaller than K.

Proposition 2.1. — Under conditions H1-Hj above, we have
(2) DF(K!) C K*
(3) veE K% = |DFv| > Kol|v|
(4) DF~Y(K3) C K;
(5) veE K = |DF'v| > Ko|v|
Proof. — H1 implies (2):
Let v = (v1,v2) € K. Then, |v| = |v1| since e < 1 and |U2| < alvl|.

Write DF(’Ul,’Uz) = (levl + F]_y'UQ, Fs,v + Fzy’UQ) = (ul,uz).
Then, using H1, we have

Il

ngzvl + Fzyvzl

|Foe |1 + [ Fay|eron
|01](| P2z | + | P2y |)
|o1|(a|Fie| = |Fiy|a)
a|F1wv1 + Fly’Uzl

o2

VAR VANSE VARSI VAN

OL|’LL1 |
proving (2).
H2 implies (3):
Now, let v = (v1,v2) be a unit vector in K%, so that |v| = [v1| =1 and |vz| < .
Using H2 and the fact that DF'(v) € K%

a
DFE)] = fu
| Fizv1 + Fiyvs|
|Fiz| — | Fiy|
Ko

we have

v v

which is (3).
The proofs that H3 and H4 imply (4) and (5) are similar using the fact that

pF-1- L ( Fay _F1y>

Jz _F2a: Fla:
This completes our proof of Proposition 2.1. O
Remark. — In ([8]) different hyperolicity conditions were assumed which implied the
invariance of cones and uniform expansion with respect to the sum norm |v| = |v1| +

|vz2| (see [8] and [7] for related hyperbolicity conditions). The methods here can be
adapted to work under the assumptions of ([8]).
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ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 107

The map
F(z) = fi(z) for z € int E;

is defined almost everywhere on Q). Let Qo = U, int E;, and, define Qn,n > 0,
inductively by Qn = @0 NF1Q,_ 1. Let @ = Np>o Q. be the set of points whose
forward orbits always stay in |J, int F;. Then, Q has full Lebesgue measure in @, and
F maps é into itself.

The hyperbolicity conditions H1-H4 imply the estimates on the derivatives of the
boundary curves of E; and S; which we described earlier. They also imply that any
intersection f;E; N Ej; is full width in E;. Further, E;; = E; N fi_lE]- is a full height
subpost of E; and S;; = f; fiE;; is a full width substrip in Q.

Given a finite string io .. .%,—1, indexed by non-negative integers, we define induc-
tively

n

_ -1
E’io...i -1 — E’io N f’io E’iliz...’in_l'

Then, each set E;, ;. _, is a full height subpost of E;,.
Analogously, for a string ¢_,+1 .. .%o indexed by non-positive integers, we define.

Si—n+1---io = f’llo (S'—n+1--4i—1 n Eio)

and get that S;_, ;. 4 is a full width strip in Q. It is easy to see that S;_, ., ., =
(fioo fiy 0o -0 fi i1 )(Ei_,i1..4) and that fi;l(si—n+1---i0) is a full-width strip in
E;,.

For infinite strings, we have the following Proposition.

Proposition 2.2. — Any C' map F satisfying the above geometric conditions G1-G3
and hyperbolicity conditions H1-H4 has a “topological attractor”
A= U () Si_s...io-
e p1-eri1d0 k>0

The infinite intersections (Npeq Si_y...io define C* curves v = y(z), |dy/dz| < a which
are the unstable manifolds for the points of the attractor. The infinite intersections

reo Eio...ir, define C' curves z(y), |dz/dy| < a which are the stable manifolds for
the points of the attractor.

Proposition 2.2 is a well known fact in hyperbolic theory. For example it follows
from Theorem 1 in [3]. See also [10].

Remark 2.3. — 'The distortion condition D1 and distortion estimates below imply
that if our maps f; are C?, then the unstable manifolds are actually C2. Similar
conditions on the inverses of f; imply that the stable manifolds are C2. There are
analogous conditions (see section 6) to guarantee that the invariant manifolds are C”
for r > 2.
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108 M. JAKOBSON & S. NEWHOUSE

Remark 2.4. — The union of the stable manifolds contains the above set @ which
has full measure in ). The trajectories of all points in Q converge to A. That is the
reason to call A a topological attractor, although F is not typically a well-defined
mapping on all of A. However the convergence of Birkhoff averages to the unique
SRB measure is a much stronger property. Condition D1 is natural in this context
and may be necessary for the existence of the SRB measure. At present, we need to
assume condition G3. This is used to prove absolute continuity of the stable foliation
as in Section 10. It also implies that our SRB measure has finite entropy. We do not
know if condition G3 is actually necessary for our results.

3. Distortion conditions and the main theorem

As we have a countable number of domains the derivatives of f; grow. We will need
to formulate certain assumptions on the second derivatives. Unless otherwise stated,
we will use the norm |v| = max(|'v1|, |v2|) on vectors v = (v1,v2), and the associated
distance function d((z,y), (z1,y1)) = max(|x —z1|, |y — u1|).

As above, for a point z € @, let I, denote the horizontal line through z, and if
E C @Q, let 6,(F) denote the diameter of the horizontal section {, N E. We call §,(F)
the z — width of E.

In given coordinate systems we write f;(x,y) = (fii(z,y), fiz(z,y)). We use
f'i,ja;y f'ijya fija:a:a fija:y, etc. for partial derivatives of fijaj = 1, 2.

We define

2 f. =
PRI = i 25 oty oo )

Next we formulate distortion conditions. These will be used to control the fluc-
tuation of the derivatives of iterates of F' along vectors in K¥ as in Lemma 7.1 and
Proposition 8.1 below.

Suppose there is a constant Cy > 0 such that the following distortion condition
holds

2
D1 sup J—Q—MJZ(EZ) < Cy.
2€E:ix1 |fi1a(2)]
Theorem 3.1. — Let F be a piecewise smooth mapping as above satisfying the ge-
ometric conditions G1-G3, the hyperbolicity conditions H1-H4, and the distortion
condition DI1.

Then, F has an SRB measure u whose basin has full Lebesgue measure in Q.
Moreover, the natural extension of the system (F, u) is measure-theoretically isomor-
phic to a Bernoulli shift, F' has finite entropy with respect to the measure yu, and we
have the formula

- 1 1 n
(6) hu(F) = lim_ Elog|DF ()]
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where the latter limit exists for Lebesgue almost all z and is independent of such z.

Remark 3.2. — Formula (6) says that the entropy can actually be computed by taking
the logarithmic growth rate of the norms of DF™(z) for almost all z. It is actually
true that if v is any unit vector in the K% cone in the tangent space to such a z, then

.1 n
(7 hu(F) = lim —log|DF"(2)(v)|
This last expression can easily be implemented numerically.

Remark 3.3. — If we assume that the interiors of the strips .S; are disjoint, then (F, u)
itself is isomorphic to a Bernoulli shift, and the entropy formula

hu(F) = /long“FIdu
holds where D*F'(z) is the norm of the derivative of F' in the unstable direction at z.

Acknowledgement. — We wish to thank Francois Ledrappier and Dan Rudolph for
useful conversations during the preparation of this paper.

4. Some estimates of partial derivatives

We will need to use the Mean Value Theorem for various partial derivatives of the
mappings f; at points near the domain F;. Since the E; are not necessarily convex
subsets of R?, it will be useful to have our maps f; extended to neighborhoods &; of
E; which contain |, g, Bes(z)(2) where C is a fixed positive constant and Bgs(,)(2)
denotes the ball about z of radius Cd(z). Using the proof of the Whitney extension
theorem in [1] it is possible to show that there is an extension fi of f; to such a
neighborhood which satisfies the same properties H1-H4, D1, with possibly different
constants. We will assume henceforth that our maps f; have such extensions.

We collect here some estimates which follow from our assumptions.

Let f(z,y) = (fi(z.y), f2(z,y)) be one of our maps f; on E;.

Lemma 4.1. — For z € E;, we have the estimates
® o <e
® oS
10) o s

Proof. — We have

o= (5 1)
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110 M. JAKOBSON & S. NEWHOUSE

and

- 1 ( foy =N )
D 1 _ ( Yy y
ffz Jz _f2:z: fl:c
where J, = fizf2y — fozf1y-
Using Df, (§) € K% and D ff_z1 (9) € K& immediately gives

el _ o Ll
lfl:cl - Ifla:l
Now, we know that |Df_z1 (9 | > Ky in the max norm, so —1—|max(|f1y|, ]f1m|) >

.
K.

Hence, either |J |K0 |f1y| or |J |Ko |f1a,-[

The first case gives

(|f1:cf2y| lflyf?xl)KO |f1y|

or

'nyl < |f1y| S+ Iflyf22x|
|f1z| KOIflwl Ifl:z:l

< ——+a?

- KOlflwl

1
< K_g + a?.
Analogously, in the second case,
(|fre f2y| — | f1yf22|) Ko < | fiz]
or

|f2y| < 1
lfl:z:‘ - KO'fla:l

IA

Thus, in any case, we have

o o 1

|f1z| _K—02-+a '

O

We have assumed that our maps f; have extensions to neighborhoods &; of E; with
the following properties.
The map f; takes &; onto a set S; C R? such that

(11) Bcgz(Ei)(z) cé& forzeE;
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and
(12) fi satisfies H1-H4, D1 on &;

Any C* curve v(t) such that 7'(t) € K for all ¢ will be called a K¥ curve. Similarly,
a K2 curve is a C! curve «(¢) for which ~/(¢) € Kj for all t. In this paper, all of
our K¥ curves will actually be of class C2, and this will be assumed without further
mention.

Lemma 4.2. — Let f; have an extension to the neighborhood &; as above. Then, there
1s a constant C1 > 0 independent of i such that if z and w lie on a K¥ curve in &,

then
| firz(2)] |2 — w|
e @)] = P\ 5. )

Proof. — Write f = f;.
Since |sz (%) | = max(|f1w(z)l, |f2m(z)]) > Ko and lf2w(z)l < a|f1w(z)], we know
that

el = D1 (g) 12 Ko > 1

so, for w near z, both fi,(z) and f1,(w) have the same sign. We assume this sign is
positive (replace f by — f otherwise).

Since f extends to the neighborhood &;, and, for some constant C' > 0, this last
set contains the balls of radius Cé,(E;) > 0 about points z in E;, the mean value
theorem gives us that if |z — wl < C6,(E;), then there is a 7 on the line segment
joining z and w such that

frza(T)
f1z(T)

fla:y (7')

frz(7)

|logf1w(z)—logf1w(w)| < | ||z—w|+| I]z—w|a

or

| f12(2)] |z — w|
[ Fra(w)] = P\ (055,

using the distortion estimate D1.

Let z = (xo,¥0), let z, = (z,,y,) be the point of intersection of the horizontal line
¢, with the right boundary curve of E;, and let z¢ = (x¢, y¢) be the point of intersection
of the horizontal line £, with the left boundary curve of E;. Since w lies on a K¥
curve containing z, the line ¢° through z and 7 has equation y — yo = B(z — o)
for some [ with |B| < a. Also, since the right boundary curve of E; through z,
is a K2 — curve, it is contained between the lines ¢, : ¢ — z, = —a(y — y,) and
¢f :x—x, = a(y —y,). Similar statements hold for the left boundary curve of E; and
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112 M. JAKOBSON & S. NEWHOUSE

the lines £, : z —zy = —a(y —y¢) and ¢ : x — x¢ = a(y — y¢). Using the intersections
of the lines £°, ¢F, é;’:, an elementary argument gives that
1 1 _(E) _ 1 1

Traz = 1+ |Bla = 0.(E:i) ~— 1—|B|a e

This gives the desired estimate for z,w with |z — w| < C8.(E;).

To get the general estimate of the Lemma, we simply find a sequence 2z = z,
21,...2; = w with 2z € Ej, |2k — zk41| < C8:(E;), each z on the same K¥ curve,
and j dependent only on «,C, and §,(E;). Using the estimate for each pair z;, z;4+1
then easily gives us the general estimate to complete the proof of the Lemma. O

In some of our arguments below, it will simplify matters if we can take the constant
Ky in (3) and (5) to be large. The next lemma shows that this can be arranged by
replacing F' by a fixed finite power F'* with ¢t > 0.

Lemma 4.3. — Suppose the maps f; satisfy (2), (3), (4), (5), and D1 on the neigh-
borhoods

U Bos.eo(2),
z2€E;
and let t > 0 be a positive integer.
Then there are positive constants Co = Co(t), Co = Ca(t) such that the maps
fi,_, 0+--0 fi, satisfy (2), (3), (4), and (5) with Ko replaced by K¢ and D1 with Co
replaced by Co(t) on the neighborhoods

U Bcz(t)Jz(Eio__.it_l)(z)
2€Eig...iy_,

Proof. — The proof is by induction on the number of elements in the composition.
We assume that it holds for compositions of length ¢ and prove it for those of length
t+ 1.

Let Bco(s...i,) denote the set

U Beuerns. ..o (2)-
z€FE;,.. i,
From Lemma 4.2, we can choose a constant Ca(t + 1) € (0,C>2(¢)) C (0,1) so that
if w S BC(io...it)a then flo(w) € BC(il..‘it)'
It is clear that the maps f;, o- - - o f;, satisfy (2), (3), (4), and (5) with Ko replaced
by Kt so we only need to be concerned with the statement regarding D1.
If E is a subset of Q, z € E, and f(z,y) = (fi(x,y), f2(x,y)), we set
|D? fi(2)]
O.(f,F) = max ——— 9, (F
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Let f = f'it O .- Ofi17 g = fio, h = ng, Ef = Eil...ity Eg = E’Ilo, Eh = Eio.;.ity
and, for z € Ep, write Af = §4,(Ey), Ag = 6,(Ey), and Ah = 6,(Ex). Also, write
o(f) = ®gz(f7 Ef)a O(g) = @z(g,Eg), ©(h) = O,(h, Ep).

Let us first estimate the quotient

|glm(w)|
Iglw(z)l
for any w € £, N &,,.
Note that g1,(w) and g1,(z) have the same sign. We assume it is positive. The

argument when it is negative is similar.
Letting C; be the constant in Lemma 4.2, if w,w € £, N &;,, we have

w
(13) =@l pa0)
|91w(w)|
We can connect w to z in £, NE&;, by a chain of points w = wo, w1, ... w; = z where

,w,- - ’UJH_], < Cz(l)(SZ(Eg), and k < 3/C>%(1).
Hence, putting ¢ = exp (6C1/C2(1)), we have

14 LA Seila BN
(14) |91z (2)| T o<i<k |910 (wig1)| —

Interchanging z,w in the above argument gives |glw(w){ / [glz(z)| > ¢!, From
these two inequalities we get, for any w, 7 € £, N &;,,

|91m(7')| |91z(z)|

—2
S 0] @)
_ |glw(T)|
|gla:(w)|
<¢

By the Chain Rule for partial derivatives we have the following formulas for ¢ = 1,2

(15) hiw = fimglz + fingm; hiy = fimgly + fingy

(16) ki, = fion8’ + fian920910 + Fiva91090n + Fiyu 9o + FinGine + fiynen
A7) hiy = firn91y910 t Finy 920910 + Fiya 91,920 + Fiyy 92y 920 + finGiny + fiyGauy
(18)  hiyy = fia8r) + Fiay 92091y + +Fiya Oy 92y + Fiuy o) + Fiaryy + FiyGouy

Let w € Bcg(s...i,)- Except where otherwise mentioned, we compute the partial
derivatives below at w.
From (15) and Lemma 4.1, we get

(19) |P1z| = | freg12|(1 — @)
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From (16), we have, for i = 1, 2,

oes () _ AR AR
) Ahl < (1—a?)1 [@(f)lyh @) 37 +200)9m (@) 37

+O(1)|g.. ()| 37 +30(9) 2—’9’]

Since the g-image of a horizontal line is a K} curve and the boundaries of E; are
K¢ curves, we can use the mean value theorem and a simple geometric estimate to
get a constant C3(a) > 0 such that

|glm(T)|Ah < C3(O£)Af

for some point 7 in £, N E},.
Putting all these estimates together gives

hias (W) Ap| < Cya) @) + O(9))

h,. (w)
Similar estimates can be given for the quantities

h,.,(w) h,,, (w)
Ry (w) by (w)
Thus, we simply define Co(t + 1) so that it is larger than Cy(a)(Co(t)¢% + Co) and we
have proved Lemma 4.3. O

Ah Ah

K

5. Families of Fiber contractions

Fiber contraction maps were defined in [7] to provide a tool in the analysis of
smoothness of stable and unstable manifolds. We collect here certain facts about
parametrized families of fiber contraction maps and related concepts.

Let (X,dy1), (Y,d2) be complete metric spaces and give X x Y the metric

d(((l}, Y), (xlvyl)) = max(dl (xvml)v d2(ya y,))

Let m; : X XY = X,7m2 : X XY — Y be the natural projections.

A pair of maps (F, f) is called a fiber contraction on X xY if the following properties
hold.

(1) f: X > Xand F: X xY — X XY are continuous maps.

(2) 7T1F == f7l'1.

(3) There is a constant 0 < K < 1 such that for ¢ € X,y,y’ € Y, we have

d(F(z,y), F(z,y")) < Kda(y,y").

We call f the base map and F the total map of the fiber contraction (F, f).
Let f be a continuous self-map of the complete metric space X. We say the a point
xo € X is an attracting fixed point of f if for every z € X, the sequence of iterates
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z, f(z), f2(z),... converges to zo as n — oo. Clearly if such an ¢ exists, it must be
the unique fixed point of f.

Let A be a topological space and consider a family {fx}xca of self-maps of the
complete metric space X. We say that the family is continuous if the map (A, z) —
fr(z) from A x X to X is continuous.

A family {fx} of self-maps of X is called a uniform family of contractions if

(1) there is a constant 0 < K < 1 such that, for all A\, z,z',
d(f/\w7 fol) < Kd(:l,',:l,',).
(2) the family {f\} is continuous.
We say that a family {(Fy, fa)} of fiber contractions is a uniform family of fiber
contractions if
(1) the fiber Lipschitz constants are uniformly less than 1. That is, there is a
constant 0 < K < 1 such that for any A\, z,y,y’

d(Fx(z,y), Fa(z,y')) < Kda(y,y')
(2) the families {F\} and {f.} are continuous.
The following Proposition is standard (see e.g. [6]) and its proof will be omitted.

Proposition 5.1. — If { f1} is a uniform family of contractions of the complete metric
space X, and x is the fized point of fx, then the family {xr} depends continuously
on A.

Proposition 5.2. — Suppose {(Fx, f1)} is a uniform family of fiber contractions whose
base maps { fo} have attracting fized points {xx} depending continuously on A\. Then,
each of the maps F» has an attracting fized point of the form (xx,yx) € X XY and
the family {(zx,yr)} depends continuously on A.

Proof. — Letting x be the fixed point of the base map f\, Hirsch and Pugh prove
in [7] that F has an attracting fixed point of the form (zx,yx) where y, is the fixed
point of the map F(x,,-) on Y. Since z, depends continuously on A, the family
{F(zx,-)} is family of uniform contractions on Y. Therefore, by Proposition 5.1, the
fixed points {yx} depend continuously on . O

The following corollary is proved by induction using Propositions 5.1 and 5.2.

Corollary 5.3. — Suppose X1 x Xo X ---x X 18 a sequence of complete metric spaces
and {F\;},1 <i < N is a sequence of maps with the following properties.
(1) {Fx1} is a uniform family of contractions on X;.
(2) For 2 < i < N, {Fx;, F\i-1} is a uniform family of fiber contractions on
H1§j§i Xj.
Then, each of the families {Fx;} has an attracting family of fixed points {zx ;}
which depends continuously on .

SOCIETE MATHEMATIQUE DE FRANCE 2000



116 M. JAKOBSON & S. NEWHOUSE

6. Invariant Manifolds

We consider the collection £ = {E1, Ea, ... } of rectangles as above and the sequence
(f1, f2,-..) of C? diffeomorphisms with f;(E;) = S; satisfying G1-G3, H1-H4, and
D1. From Proposition 2.1, using the max norm on R?2, we have, for each i,

(20) Dfi(Kg) C Kg
(21) v € K2 = |Dfv| > Kol|v|
(22) Df7H(KS) € K§
(23) v € K = |Df'v| > Kolv|

For each finite sequence ¢_,41 ...%...%,—1 We have defined, in Section 2, the sets
Eig..cin_1+Si_ni1...i0-

Given a non-positive itinerary ¢ = (...¢_pé_py1...%0), we consider the set W =
Ei, N;;>0 Sin...i_y- Clearly, W/ is a closed, connected full-width subset of E;,. Its
image FW;‘ = fi,W}* is the set (),,~q Si_,...ir,» & full-width connected subset of Q.
The next result shows that FW}! is a C? curve which depends continuously on .

For convenience, we let D%) = 1 for a function 1.

Theorem 6.1. — There is a constant K > 0 such that for each non-positive itinerary
t=1(...1—n...10), the set FW} is the graph of a C? function g; : I — I such that,
forzel,

(24) |Dgi(2)| <
and
(25) |D?g:(2)| < K.

Further, given ¢ > 0, there is a positive integer N > 0 such that ift = (...i_p .. .30)
and J = (...j—n...Jjo) are non-positive itineraries with i_y, = j_, for 0 < ¢ < N,
then

(26) |D*gi(2) — D*g;()| < e
forzel and 0 <k < 2.

Remark 6.2. — The proof of Theorem 6.1 uses graph transform techniques as in [7],
[12]. However, since our maps have unbounded derivatives, and the off-diagonal terms
of our derivatives are not small, certain modifications of the techniques in [7], [12]
are necessary.

It can be shown that if f; is C” for r > 2, then the curves W} are C" and depend
continuously on ¢ in the C" sense provided the f; satisfy the r-th order distortion
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condition
Dk f;
_|_f(zT)_|15z(5i) < Co
2€E;, i>1 |fz1:c(z)|
2<k<Zr

where DF f;(z) is the supremum of the ¢-th order partial derivatives of f; at z for
£ <k.

We proceed toward the proof of Theorem 6.1.

Notice that if we replace F' = {f;} by a positive power F*, ¢t > 0, and £ by the
collection {Fj,..i,_,}, we may assume that Ko is as large as we wish in (21), (23).
In the present section we will take Ko > 4. Of course this changes the distortion
constant Cp in D1 to some C; = C1(f,t) but this will not cause us difficulties.

Let N be the set of positive integers, and let ¥ = NZ be the space of doubly
infinite sequences ¢ = (...4_14g%1 ...) of elements of N with the product topology.
Let 0 : ¥ — X be the usual left shift automorphism.

For an element ¢ € X, let 7 = (igi;...) be its non-negative part, and let
©~ = (...i_190) be its non-positive part. Set W£ = Np>o Fio...in. and WL =
E;, N ﬂnzo Si i

It follows from (20)—(23) that the sets W7 , W intersect in a unique point and
there is a continuous map 7 : ¥ — () defined by

{n((.. i igir...))} = Wi NWE

Moreover, for each ¢ € ¥ there is a splitting 77 (;) R? = ;‘(i) &3] E;(i) which depends
continuously on z and is such that D f;; maps E}r‘(i) to E}r‘(ai) and Efr(i) to Efr(m.). The
arguments for these facts are analogous to standard arguments in hyperbolic theory
(e.g., to prove that C'! perturbations of the Smale horseshoe diffeomorphism have a
hyperbolic non-wandering set) and will not be given here.

Thus, the matrix of DF' is diagonal with respect to the splitting E* & E° on the
image of .

For z = (%) and v € T,R?, we write v = (v1,v2) € E¥ @ E¢ and define |v| =
|v|]. = max(|v1], |v2|). This norm depends continuously on i € X.

We will identify all tangent spaces with the space R? itself by standard translations.

It will be convenient to use the subundles E%, E* to define affine local coordinates
near points z, f;z in which D f;, becomes diagonal and in which D f;,, is nearly diag-
onal for |w — z| no larger than a fixed multiple of . (E;). Here i = iq with z = 7 ().

Toward this end, let A, be the affine automorphism of R? such that

(1) A.(z) = =.

(2) DA, (}) = (L) € BY.

(8) DA. (%) = (%) € E=.

Since EY C K} and E C K}, we have lazl <a, lbzl <a.
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Let f: f, = Azlz fiA; be the local representative of f; using the Ay, ., A, coordi-
nates. Note that fis defined on the affine image AFI(&;) of &;.
Then the matrix Df, is diagonal. For w near z in A,(&;), let

= _ [ frz(w) fiy(w)
Do = (fzz(w) fzy(W))
and set
|f1y ()] _ |Foe(w)] _ ||
| fiz(w)]’ | fiz(w)|’ | Fre(w)]

We wish to estimate ¢;;(w) for w near z in &;. It follows from the definitions that
€ij(z) = 0,7 # j. Also, (21) and (23) imply €22(2) < 1/KZ < 1/16 since Ko > 4.

21 (w)

612(’w) =

22 (w)

Lemma 6.3. — There are constants Co € (0,1),C3 > 0,C4 > 0, such that for z €
E;,we A;l(gz), if |’LU — Z| < Czéz(E,-), then

(27) |eij (w) —€i5(2)| < Cs |;Z_Et”)| ,
and

28 Comr— < |7, <ot
) 5. = el = 95

Proof. — To begin with, let us choose C> € (0, 1) so that if |w — z| < C26,(E;), then
w € &N AFH(E;) and f satisfies D1 for some (possibly different) constant Cp. Since
Azlz and A, are uniformly bounded, it is possible to choose Cy and C» independent
of z€ E; and 7 > 1.

We next show that there are constants Cs > 0,Cg > 0 such that for z € E; and
Iz — w| < C59,(E;),

29 C‘1<M<C.
(& S | Few)| T °

or. (3) = (3)

_ 1
= DA;!Dfa.wDA., (0)

_ 1 ( 1 —bfz) (.fl:z: fly) (1 bz)
N sz —Qafz 1 faz f2y a, 1

Since
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where Jy, = 1 — ay.bs, and the partial derivatives of fi, f are evaluated at A,(w),
we have

Itz frz(W) = fio + fiyaz — bszfae — brsfoyas
Jt:Fry(w) = fiobs + fiy — bz foabs — by foy
szf?a:(w) = _afzfla: - afzflyaz + fox + f2ya'z
Jt2foy(W) = —ag. frzbe — afsfiy + fozbs + foy

Using the first equation above, the fact that IJ le > 1—a?, and the estimates (8),
(9), (10) at A, (w) we get

,flx(w)l < lela:(Az(w))l

for some constant C'. But, from Lemma 4.2 we have | fi1z (A, ('w))| is bounded above
by const | flm(z)|, so this gives the lower bound in (29).
For the upper bound, we will obtain the two estimates

(30) | frz(w)] > Clwa ((1)) l
and
(31) 07 (3) | 2 Cliatw)

for some constant C' > 0.

To prove (30), we note first note that the vector v = (. %) (}) is in the cone K¥.
Since D f4, preserves this cone, we have that D f4_(v) is a constant multiple of the
vector (1) for some @ with |a| < a.

Thus,
o (3) = (50)

is a constant multiple of the vector
1 -b fz 1 _ 1—-bs.a
—ay, 1 a) \-ay,+a

‘J;F:?z(w)l < 2a
lfla:('w)l ~1-a?

This gives
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and, hence,

flz(w) = max (| f1 for (w
1(51@.})) ’ = max (| fiz(w)], | foz(w)])

2a ~
< max (1 7=5 ) | aetw)|
and (30) follows.

Next we go to the proof of (31).

(aiz b{’) and its inverse are uniformly bounded as are Jy, and

o7 (5) | = elorecn ()]
piw (o.) = (1)

Since the matrix
its inverse, we have

But,

where A1 = flcc + azf1y. SO,

4DfAz(w) (al) | > |f1a:| _a2|f1x|
Z (1 - a2)|f1:1:|
> (1—a®)|fiz(A7 0)|
> C| fra(w))|

This completes the proof of (29).
Next, we give the proof of the estimate
|z — w|

(32) ler2(w) — e12(2)| < Cs 520D

The other estimates for (27) are similar. N
Since f14(z) = 0, we need to estimate | f1y(w)/ fiz(w)].
But,

szfly(w) = flz(Azw)bz + fly(Azw) - bfzf2w(Azw)bz - bfzf2y(Azw)v

so,
|fiy(w)] < € max | fis(7)]| Az (w) = 2|.
Now, we know that the quantities 6,(F;)/d,(E;), |f1z(w)|/|f1w(w)| are bounded

above and below, and, by Lemma (4.2), the same holds for |fi,(7)|/|fiz(w)|. This
gives (32) and (27).
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For (28), notice that f(£, N E;) is a full-width K¥ curve in Q. In the max metric,
it has unit length. By the Mean Value Theorem there is a 7 € £, N E; such that

s ()

|21 () | = max (s o)
= |fiz(1)]

But,

S0,

1

Since, | fiz(7) |/ IJ?u(w)| is bounded above and below, (28) follows.
This completes the proof of Lemma 6.3. O

Fore > 0,let B.(z) = {w € R? : |w~z|z < e}. Here |fw—z|z refers to the max norm
in the image of the affine coordinate map A,. The set B.(z) is then a parallelogram
centered at z with sides parallel to E¥, ES. Write B.(z) = B¥(z) x BZ(z) where B¥(z)
is a line segment centered at z parallel to EY¥, and Bf(z) is a line segment centered
at z parallel to ES. A full-width curve of slope less than 1 in B.(z) is the graph of a
function ¢ : B¥(z) — BZ(z) in which ¢ is Lipschitz with Lipschitz constant less than
1.

With z = (i), let 2o = z,2; = w(0?%) for j <O0.

Our next goal, as is usual in invariant manifold theory, is to find a sequence of
numbers £; > 0 such that the neighborhoods B; = B, (z;) have the following prop-
erties.

B1 If z; € E;;, then B; C &;;.

B2 f;j (Bj) overflows Bj1 in the sense that if v is a full-width curve of slope less

than 1 in Bj; passing through z; , then ﬁj (v) N Bjy, is a full-width curve of
slope less than 1 in Bj, passing through z;41.

Let €; = (C26.;(E;;) where C> is the constant of Lemma 6.3. By Lemma 6.3;
for Iw - ZJI < &j, the matrix of D fZ (w) is hyperbohc with off-diagonal terms small
compared to ] flz(w)l This implies that the image f%'y of a curve v as above will
have slope less than 1 in Bg,, (2j+1). Letting f = f%, and using a ~ b to mean
a/b is bounded above and below, we have length(fv) ~ |f1m (T)|C’25z] (E;;) for some
7 € ~. In the proof of Lemma 6.3 we saw that (521(EzJ ~ 1/|f1w(7'1)| ~ 1/|flz(7'1)|
and |flz(r)| ~ |f1w(zj)| ~ 'flz (7'1)| It follows that fzJ'y contains a neighborhood of
fixed size C7 about fzJ (2j) in f,J
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Let
o= {éj if £; < Cy
Cr ifg; > Cy.
Then, the overflowing property above is satisfied.

Now fix a non-positive itinerary ¢ = (...i_p ...%9). We first show that W} contains
the graph of a C? function g; : By — B§ such that, for all w € B¥

(33) |Dgi(w)] <1
and
(34) |D?gi(w)| < K>

where K> is independent of ¢.

We also will show that the functions g; depend continuously on .

Once these things are done, the proof of Theorem 6.1 is completed as follows.

Let 5 = (...%—-1%0J1j2 - .-) be a doubly infinite itinerary which agrees with ¢ for
non-positive indices. Let zo = w(j). Then there is a k > 0 independent of Z,j such
that fi__i o---0 i__ll (W) C B_x. Note that here we use the original maps f;;, not
the affine representatives fv@]

Thus W} is the f;_, o---o f;_,-image of a curve of bounded slope and bounded
C? size. Letting F* = f;_, o---o f;_, we have that W2 is the graph of a function
['(F*,g) where F* has bounded distortion and g has bounded C!, C? sizes. Using
the formulas (36), (37), and (38) which appear in the second derivative of the graph
transform function then gives that I'(F*,g) also has bounded C? size. The same
argument then works for I'(F*+1, g) and this gives (25). A similar argument gives the
continuity statement in Theorem 6.1.

To get estimate (24) first note that hyperbolicity conditions imply that any vector
v in the tangent space to a point in W}* which is not in K} has its backwards iterates
eventually in K} and, hence, eventually expanded. Since the tangent vectors to W}
are eventually contracted in the past, they must be in K}.

We now return to the affine representatives f; , of the maps f;;.

To obtain g; satisfying (33), (34), it is convenient to use graph transform techniques
as in [7], [12].

In view of Lemmas 4.3 and 6.3, we may assume that
(35) Ky > c, Eij('w) < %, 622(11)) < %
for w € B; where ¢ > 0 is arbitrary. In the present section, it suffices to take ¢ > 4.
In section 8 below, we will take ¢ > 117.

We define some function spaces.

Recall that 2o = 7(2), z; = m(o%) for i < 0. Let ¢; = e(no't), B¥ = B(z),
Bj = B2, (z).
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Let Go; be the space of Lipschitz functions g from B} to B} with Lipschitz constant
less than or equal to 1. For such a g, let graph(g) = {(z,y) : y = g(z) for z € B}}.
For 91,92 € GOi) set

doi(g1,92) = sup |gi1z — gaa|.
zEB}

Let Gy; be the set of continuous functions H : B x R — R such that for each
z € B}, the map
v — H(z,v)
is linear of norm no larger than 1.

Define the metric dy; on Gy; by

dli(Hl,Hz) = sup 'Hl (:L‘,’U) — Hz(.’l,‘,U)‘
z€BY,|v|<L1

Let Ga; be the set of continuous functions J : B x R x R — R such that for each
z € B}, the map
(v,w) = J(z,v,w)
is symmetric and bilinear of norm no larger than K> for some constant Ks to be

specified later.
Set

dzi(.]l,Jz) = sup IJl(.’B,’U,’U) - Jz(.’l)’,’U,U)l
z€B},|v|<L1

The spaces (Goi, doi), (G1i, d1i), (G2i, d2i) are bounded complete metric spaces.
Let Z— = {k < 0} be the non-positive integers and consider the spaces

Lo={¢:2 = | JGoi: ¢i € Goi Vi}
Ly ={¢p:Z~ —>Ug1i 1@ € Gi; Vi}
i
Lr={¢:Z" —|JG2i: ¢ € Goi Vi}
i
with the metrics
- 1
di(¢, %) = D opdin(dk, ¥x)
k>0
where ¢, ¥ € L;,1=0,1,2.
The spaces L; are also bounded complete metric spaces. _
Let us recall the graph transform operator [7]. Let f = f;, for some i;, and let
g9 € Goj. Write f(z,y) = (fr(z,y), f2(z,y)), and let (1,9) : B} — B} x Bf be the

graph map defined by (1, g)z = (z, gz).
We define

L(f,g9) =fao(1,9)0[fio(1,9)]7"
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It follows from our hyperbolicity assumptions the I'(f, g) is a well-defined mapping
from goj to go’j+1 for y < —1.
Returning now to the spaces £; of sequences of functions, let us use the notation
g = (gr)k<o, for elements of Lo, H = (Hy)k<o, for elements of £;, and J = (Ji)k<o,
for elements of £o. If g = (gr)k<o is a sequence of C? functions, we write Dg =
(Dgr)r<0, D*g = (D gi)r<o0-
We will define continuous maps
‘I)o : [,0 — ;C(),
@1:£0X£1——)E1,
q’g:ﬁoXﬁl Xﬁz—)[,z,
=1 :£0x£1 —),C()Xﬁl,
Ezi£0X£1 X£2—)£0X£1 ><£2

with the following properties.

FB1. Ei1(g, H) = (®0(9), ®1(g9, H)) and Z2(g, H,J) = (®o(g), ®1(g, H), ®2(g, H, J))
for each (g,H,J) € Lo x L1 X La.

FB2. If (9x) k<o is a sequence of C? maps with g € Gox, Dgr € G1x, D2gx € Gay, for all
k, then Z3(g, Dg, D*g)x = (TU(fir_, > 9k—1), DT (fir_y» gk—1), D®T(fir_,» gk—1))-

FB3. @, is a contraction mapping; i.e., it is Lipschitz with Lipschitz constant less
than 1.

FB4. The map =, is a fiber contraction map over ®¢ in the sense of [7}].

FB5. The map =, is a fiber contraction map over Z;.

Once these properties are established, we proceed as follows.
Let z9 = (2o,y0) € (%), let m2(z,y) = y, and let g = (gx)k<o be the sequence of
constant maps
go(z) = yo
gr—1(x) = m2(fi_y 00 fi ;)7 (20).
forx € By _;.
Using the fiber contraction theorem of [7] we have that the sequence 2% (g, Dg, D?g),
n > 1, converges to a fixed point (g, H,J) of 5. Letting 7o : Lo X L1 X L2 — Lo,
m : Lo X Ly X Lo = Ly, o : Lo X L1 X L9 — Lo be the natural projections, the
definitions give
m0E5(9)o = (fiiy 0+ 0 fi_y, 9-n)
mZE5(9)o = DI(fi_,0---o fi_,,9-n)
mE3(g)o = D*T(fi, 00 fi_,,9-n)

Since all three of these sequences converge, it follows that

lim T(f;_, 0 -0 fi_.,g-n) =gi
n—o00
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is C? with Dg; = lim 71 E%(g)o and D2?g; = lim m2E%(g)o. The function g; will be the
C? function whose graph is contained in (and hence equals) W}.

Let us now define the maps ®; and establish their properties.

Let f = f;j for some i; and let g be a C? function such that g € Goj,Dg €

Gij, D?g € Gaj.
Write u(z) = [f1 o (1,9)] ().
Then, differentiating ['(f,g) = f20 (1,9) o ([f1 o (1,9)]~! we get

DI(f,9) = f..(uz,guz)Du(z) + f,, (uz, gur) Dg(uz)Du(z)
= fo. Du(z) + f,, Dg(uz)Du(x)
D?0(f,9) = f;.. Du(z)Du() + f,,, Du(z) Dg(uz)Du(z) + f,,. Du(z)Dg(uz)Du(z)
+ fo,, Dg(uz) Dg(uz) Du(x)Du(z) + f,, D?u(x)
(36) +f2yD2g(u:c)Du(:c)Du(a:) + f,, Dg(uz)D*u(x)
We can compute formulas for Du, D?u in terms of f, g by differentiating the formula

fi(uz, gur) = = twice and solving for Du, D*u.
We get

(37) Du(z) = [f,, (uz, guz) + f,, (uz, guz)Dg(uz)] -t
and
(38) D?*u(x) = —Du(x) [f1u (Du(x))? + 2f,., Dg(ux)Du(x) Du(x)
+fuyy (Dg(uz))® Du(x)? + f,, (Du)?D?g(uz)] .
For H € Gyj,J € Gaj, let us write H, for the map H(z,-), J; for the map J(z,-,-).
Define
Dy = Dy (u, H)g = [f1. (ux, gux) + f,, (uz, guw) Hyz | -

Dz(u’ H’ J)z = _Dl [flz:uDl‘Dl + 2f1wau:lJD1Dl
+fiyy Hue Hug D1D1 + f,, D1 D1 Juz)

Rl(f’gv h):l: = [f2:¢ (ux,gua:) + f2y (ux,guw)Hum] D,

R2(f7g,H7 J)a: = -f2:=a.-D1D1 + fzgyDlHule + fzy@DlHule
+ fzyyHquuleDl + f2ZD2 + fzy Ju:z;-DlDl + fzyHuzD2

Finally, if g = (gk)k<o € Lo, H = (Hk)r<o € L1,J = (Jr)k<o € L2, set
20(9)k = T(firo1» 95-1)

®,(g, H)r = (®o(g)ks R1(fin_s>gk—1, Hr—1))

®y(g, H, )i = (®0(9)k, R1(fir_,» k-1, He—1), Ro(fir_,» Gb—1, He—1, Je—1)).
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and define =;,Z5 as in FB1.
Then, Z; and ®; satisfy properties FB1 and FB2 above.
Let us verify the fiber contraction properties of =, =Zs.

Fiber contraction property of Z1. — We first show that for fixed f, g with f = ﬁj and
g : B} — B a given Lipschitz map of Lipschitz constant no larger than 1, R;(f,g,")
maps Gy; into G; j4+1 and is a contraction.

Since the graph of g is in @, the C° size of I'(f, g) is no larger than 1. This, and
the overflowing property of f on B; gives that I'(f, g) is a map from B}, to Bj ;.

Let Lip(¢) be the Lipschitz constant of a map .

As above, let u(z) = [f1 o (1,9)]7 .

Then,

1

Lip(u) < Foli—e)

Using I'(f,g9) = fao (1,9) o [f1 o (1,9)] !, and the fact that Lip(g) < 1, we get

Lip(T'(f,9)) < Lip(f2o(1,g))Lip(u)
(| foe| + | £2, ) Lip(w)

€21 €22
1-— £12 1-— €12
€21 + €22 <1

1—¢e12 —

IA

<

by (35). Thus, I'(f,9) € G1,j+1-
If H, H € G, we have
|Ri(f,9,H) — Ri(f,9, H)| < |(fon + fo Hua)D1(t, H) — (fo, + fo, Huz)D1(u, H)|
< |£2||D1(w, H)||H - H]
+(|fau| + [ foo || Hua )| D1 (u, H) — D1 (u, H)|

E22 . =~
1 —612IH—H|

+(|fou| + oy || Hue )| Da(u, H) = Di(u, H)
To compute |D1 (u, H) — Dy (u, }NI)|, we use the formula
|61 = G| < |61 ][G2 |G - Ge

IN

which follows immediately from the formula
|G5'G2GT! — G3'G1GY| <G5 |Gz — G| |G
Thus,
| D1 (u, H)|| D1 (w, B[ £, | H = H]|

€12 73
— |\H - H
|f..](1 —612)2| |

|D1(u, H) — Dy (u, H)|

IA

IN
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Putting the above inequalities together, and using the fact that |ﬁ | <1, we get

~ - £21€12 £€22812 77
Ri(f,g,H) — Ri(f,g,H)| < + + H-H
I 1(f, 9, H) 1(f, 9 )‘ = [(1—512)2 (1_612)2] I I

Now, the fact that R; contracts the fibers follows from the estimates for €;; already

given above.

The fiber norm of Rx(f,g,H,J) and fiber contractions of Rz(f,g,H,J) are ob-
tained in the same way. We just write down the final estimates and leave the compu-
tations to the reader.

We have
|R2(f, 9, H, J)| < ilsz . (521“”)4'172{ |
T (1 —e12)? (1—e12)3|f..]
(€21 + €22)€12 €22
+ + J
[(1*612)3|fu| (1—512)2|f1,|]| |
< le +ZQ|J|
and
(21 + €22)€12 =~ )
Ry(f,g9,H,J) — Ra(f,9,H,J _—J—J+—-————J J
et 00 . = Reld oo D1 < Gz 1= 1 iz

Let us summarize the conditions we need to get the required properties of R;, Ro.

E21 + €22

39 <1
(39) 1—e1s

€22 £€21€12 £22€12
40 <1
(40) l—c12 (1—e€12)2 (1—¢12)2
(41) (€21 + €22)e12 €22 <1

-2 fn] A=)’ |fic]

Since €12 < 1/4 and Ky > 4, inequalities (39), (40), and (41) hold. Also, |sz| <1
So, if we let K > 1/(1 — ,2{2) and K, = K A, we have

|7] < K2 = |Ra(f,9,H, J)| < Ko.

Hence, this K is sufficient to define the space Gs;.

Proof of continuous dependence of the unstable manifolds W on the itineraries %
We have already noted that it suffices to prove that the functions g; depend C?
continuously on .
It is clear that the maps

(f»g)_)[‘(fvg)v (f?gvH)—)Rl(fa.‘LH)v (fvgaH>J)_>R2(f7gvH’J)
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are continuous. Since the spaces Goj, G1j, G2; are bounded and the metrics on Lo,
L1, Lo give the product topologies, it follows that the maps ®g,Z1,Z2 are contin-
uous. Also our previous estimates give that, using the non-positive itineraries ¢ as
parameters, the family (®¢); is a uniform family of contractions. Similarly, the fam-
ilies (®1):, (P2); are families of uniform fiber contractions. Thus, the continuous
dependence of g; (and hence W}*) follows from Propositions 5.1 and 5.2. O

7. Fluctuation of Derivatives

We need to estimate quotients of the form

|D(fir 00 fin):(v2)]

|D(fir 00 fin)w(vw)]

where z,w are in a K* curve v and v,, v, are the unit tangent vectors to v at z,w,
respectively.

The domains of the compositions f;, o --- o f; become narrow and possibly very
non-convex. Since we wish to use the Mean Value Theorem in these domains, it will
be convenient to choose certain star-shaped subdomains. This will be done in the
next section. Here we present a useful Lemma.

Recall that a set E is star-shaped relative to a point z € E if for any w € E, the
line segment joining z to w lies in E.

For a point z € E let 6,(E) denote the diameter of the intersection of the horizontal
line through z and F.

Writing f for one of the compositions above, assume that D f maps the cone K},
into itself, expands it by at least Ko > 1, and that D f~! maps the cone K¢ into itself
and expands it by at least Kq as well.

For a subset E of the domain of f and z € E, define
| D% f (w)|

O.(f,FE) = 32% m5z(E)

(42)

where

D2 (w)] = max{

fijk(w)l 11=1,2 (j,k) = (x,x),(:c,y),(y,y)}.

Lemma7.1. — Let E be a subset of the domain of f which contains z and is star-
shaped relative to z. Let v be a C? curve in E parametrized in the form v : x —
(z,g(x)) where g is a C? function such that |Dg(x)| < a and |ng(x)| < K3 for all
x. Suppose z,w € v,w € E, and v,,v,, are the unit tangent vectors to v at z,w,
respectively. Let ©@ = ©,(f, E) and § = §,(E).

Then, there is a constant C = C(a, K3) > 0 such that

Isz(vz)|

(43) |wa(vw)|

< exp (C exp(C@)lzjs—wl) .
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Proof. — We use the max norm |(v1,v2)| = max(|v1], |v2])-

Let z = (z,9(x)), w = (y,9(y)), vz = (V12,V22), Vw = (V1w V2w)-

Then, |vi.| = |v1w| = 1. Also, since Df,(v.), D f,,(vy) are in the cone K%, we
have

| £ ()12 + £, (2)v2:] = |Dfa(v2)]|

and
| fre (W10 + [, (W)v20| = | D fur(vw)]
So,
lwa(Uw)l = ‘flz (w)viw + fi, (w)v2w|
— Ifly (’LU)'U2w|
= Il (1= G
> |fo. ()] (1 — a?)
and
lsz(’Uz)l _ Isz('Uz)I - |wa(vw),
@ Dfute)] T IDfuva)]
Isz(Uz) — wa(vw)l
(45) < exp( |wa(”w)| )
Al(z,w) + Az(z,w)
(46) < exp( 1= o?) )
where
_ Isz(UZ) — sz(vw)'
(47) Ai(z,w) = o)
and
_ IDfZ('Uw) - wa(vw)l
(48) As(z,w) = |f11 (w)l
We consider the two terms A;(z,w) and A»(z,w) separately.
We have

|sz(vz) - sz(vw)l =
ma'x(‘flmvlz + fly'U2z = flzV1iw — flyv2wlv |f2£v1z + foyv2: — forViw — f2yv2'w|)

where the partial derivatives are all evaluated at z.
From Lemma 4.1 an upper bound for this last quantity is

|f1x(z)|(1 + 2a + % +a2)|vz — Vg
0
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and this gives

| Fia(w )I

Now, Ivz — vwl is bounded above by the product of the maximum curvature of -y
and |z — w]. An upper bound for the curvature is the quantity Kj.

Let us use C = C(a, K3) for possibly different values of C below.

As in the proof of Lemma 4.2, we get

Ai(z,w) < Cla) 75—

Iflz: (z)l
[Fra)] = PO
So,
(49) A1 (z,w) < Cexp(CO)|z — w| < Cexp(CO) |2 —(;wl

Proceding similarly, the numerator of As(z,w) is bounded above by
g%(lfzz(z) - fzw(w)llvlwl + Ifzy(z) - fiy(w)||v2w|)

< 2i:1f121’?3:fm,y | fii(2) — fij(w)|
Now,

|fz:v(z) - fm:(w)l < |fm:z(7')”z - wl + Ifizy(T)“z - w|

and

lfiy(z) fzy(w)l lfzya:(Tl)'IZ—w'+|fzyy(’l’1)”z—w|

for suitable 7,7, which implies that

(50) As(z,w) < COexp(CO) Yl |2 wl
Using CO < exp(C0O), (49), (50) and a different C , we see that the proof of Lemma
7.1 is complete. O

8. Distortion for compositions

In view of Lemma 7.1, to estimate quotients of the form (42), we will need to
control the distortions of the compositions ©,(f;, o---o f;_ ) on appropriate sets.

Let ¢ € X, and let z € W (7¢) be a point in the local stable manifold of w(%).
Write ¢; = i;(z) for the j-th entry in the itinerary of z, and write F™(z) = f;,_,

-+ 0 fi, o fi,(2) so that F™(z) € E;, () for all n.

For a curve v, and z,w € 7, let v,, v, denote the unit tangent vectors to v at z,w,
respectively.

As in section 2, let

Ei..i, = Eijp N figl(Eil...i,.)
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Proposition 8.1 (Bounded distortion of compositions). — There is a constant K4 > 0
such that for any i € X, any full width KY curve v in E;;, and any n > 0, we have
DF}(v
(51) l_';_(_z_).l_ < K4
|DFz(vw)|

for any z,w € E;._;, Ny.

To prove this proposition, it will be convenient to cover the images F7(yNE;,. i.)
by small parallelograms in which the distortions ©(F') become small, and to make
use of affine coordinates as in section 6.

Let EZ be the tangent space to Wi? (%) at z, and let E be the tangent space to y
at z. Writing z; for F' iz, j > 0, we translate these subspaces along the forward orbit
of z by defining

Ez,:DFg(E:)a EZZDFJ(E;L)? J=>0

This gives us a splitting of TR? along the forward orbit of z and the angles between
the subspaces Ej]. , E;‘j are uniformly bounded away from 0 by a constant that depends
on «.

Using these splittings, we can define affine coordinates along the forward orbit of
z, giving local coordinate representatives }';j of fi;, and small parallelograms B; =
B} x Bj with sides parallel to the subspaces E7,, E7 satisfying conditions analogous
to those in B1, B2 following Lemma 6.3. As we have already noted, in view of Lemmas
4.3 and 6.3, we also can arrange for the conditions (35) to hold where ¢ > 117.

In these affine coordinates, the subspaces E;‘J , Ejj become horizontal and vertical,
repectively. As in section 6 we use the max norm in these coordinates, so each small
e-ball B.(z;) = B(zj,¢) will be a square of side length 2¢ centered at z;.

If E is any subset of B;, and z € F, let C(z, E) denote the connected component
of E containing z. As in section 6, we may assume that

B;c |J B(w,Kéu(E;))

’wGEij

where K > 0 is a fixed constant.
For the remainder of this section we identify f;; with its local coordinate represen-

tative f,J
Thus, we may assume, for w € Bj,
(52) | fi;1z(w)| > Ko > 117
D2 f; (w)|
(53) |—’————62j E; ) < C
|fij1z(w)| (Es,) °
(54) max(e12(w),e21(w)) < €9, €22(w) < &g
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(55) K$.,(Ei;) > diam(B;) > C16., (E;,)

where Cp, (', g9 are positive constants, C; < Cp, and g9 < 1/4.
We also may assume that v; = C(z;, F7y N Bj) is a K curve in Bj;.
Let £; € (0,min(C;/2,1)) be small enough so that

1
(56) exp(1565100)£ <2
Let Bj,el = Bj M B(Zj, %ézj (E,,,J))
The definition of B; ., implies that
@zJ‘ (fz, ) E) S <€lc;’O
for any subset E C B, ,.-
We use 9B to denote the boundary of a set B.

Since f;; maps E;; to a full-width rectangle in @, there is a constant K > 0 such
that

62 (Es;) > K| fijia(z)|

Therefore, since 6,;(Bj.,) = €16;;(E;;), Lemma 4.2 provides a constant K5 > 0
such that

(57) dist(fs; (25),0fi; (v N Bje,)) > Kser
For Zj € E,;j, let

1 Ksey
Bj,51 if -2-61521. (Eij) < 2K,

| Kse
B(Zj,Ksé’l/zKo) if 561521- (E,LJ) > 2;(01

B, =

Thus, each Ej C Bj.,-
Since f;; expands horizontal distances by at least Ko, we have that

dist(fi, (23), 0, (13 1 By) > 2

S0
fi;(C(z5,7; 0 Bj)) D C(fi; 25, £i;75 0 Bjta)
The set Bj, = By, N F~'B;,,, N---N F~(»"1=)B;  is a narrow curvilinear

rectangle around z;.
Let

ajn = dist(z;,7; N 8B, )
Let E;, be the curvilinear rectangle whose left and right boundary curves are

pieces of the left and right boundaries of Ej’n and whose top and bottom boundary
curves are horizontal line segments each of whose distance from z; is o r,.

Lemma 8.2. — The curvilinear rectangle E; , is star-shaped relative to z;.
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Proof. — Let by, by denote the left and right boundary curves of Ej, and let ¢;, {5
denote the top and bottom boundary curves (which are horizontal line segments).
Let w € Ejn, let ¢;,, denote the line segment joining z; to w, and let Oyert Ejn
denote the union b; | b2.
Since z;j,w lie between the horizontal lines through ¢;, £2, any intersection of £; ,,
and the boundary of Ej ,,, must be in Oyert Ej . Thus, to show that ¢; ,, is contained
in Ej; , it suffices to show that

(58) (Zj,w \ {Zj, w}) n 8ve’rtEj,n = 9.

Assuming (58) fails we will get a contradiction.

By construction, b;, by are K -curves. This and the assumption that g9 < 1/4,
imply that any line segment joining z; to a point Z in OyertE;, must have slope no
larger than 4/3.

But since z; and w lie in Ej,, if (58) fails there is a point Z € OyertEjn such
that the line ¢;,, is parallel to the tangent vector to OyertEjn at Z. However, by, b
are K -curves, so their tangent vectors have slope no smaller than 4 which is our

contradiction, proving Lemma 8.2. O
Lemma 8.3. — Fix j > 0. Then, for each n > j, we have
(59) 0., (F"7,Ejn) < 13£,Co.

Proof. — The proof is by induction on n — j. Clearly (59) holds for n — 7 = 1.
Assuming it holds for n — j, we show it holds for n +1-3.

Let z =25, f=F, g= Fn=i, Ef = Enpny1 = By, Eg = Ejn, h = fog, and
En = Ejnt1-

Let Af = 6.,(Eyf), Ag =6.;(Ey), Ah = 6.;(E#r).

We use O(f) = @yz(f’ Es), O(g9) = @z(g,Eg), ©(h) = ©,(h, E4).

Consider the quotient

9. (W)
9:.(2)
where w € Ej,.
Since the left and right boundary curves of Ej are K curves, and o < 1/4 we
have that |w — z[ < 3Ah.
Since both g, (2), g,, (w) have absolute value greater than 1, they have the same
sign. Replacing g by —g if necessary, we may assume these signs are positive.
By the mean value theorem,

9., ()]
lg,. (7)]

19,.. (7|

|9, (7)]
< 60(9) 5

|log g,. (w) —logg,, (2)| < |z —w| + |z — wl
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so,
19,2 ()| Ah
(60) exp( 60(g )Ag) <] S (6®(g)A—g).
Further, setting ¢ = exp(120@(g9)Ah/Ag), we have, for any w,T € Ep,
190 ()] _ ]9, ()] |5, (2)]
19:. (D] 191, (2)] |92 (7)]
(61) < ¢

Similarly, if 7,7 € E4, then

|gla= (T2) I
|g1.-¢ (11 )l
Also note that if ¢y is the full width horizontal line segment through z in Ej, then
g(fo) is a full width K7 curve in Ey, and there is a 7 € {o for which lg1z (T)|Ah =
length (g(€o)) < 3AFf.
This gives

(62) < exp(120(g)) < exp(156e1Cp) < 2

an _ 5

Af = 4lg. (D]

Observe that it follows from the definition of £, and (57) that, for some 7, € Ey,
Igu (7'1)|A9 > Kseg.

(63)

So, by (62),
Ah _ _ 5Af g..(m)]
Ag ~ 4|g,,(1)| Kse
5Af
— 2K5e;
(64) <3
< Xy
Let us estimate
]Dzh(w)l
O(h) = Ah
Let
1 16
= < —
T 1 en(@en(f) = 15
and

Ah 3
C = exp(12®(g)A—g) < exp (156610()%)

Recall that Ko and €; were chosen so that
(66) Ko > 117
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(67) n¢ < 2

Recall the Chain Rule formulas (15)—(18).

By (15), we have

e ()] = | f1a010 + f1, 92 |
> |f1,91,, |(1 —e21(9)€12(f))

| fiaGua|n™
Write e2(f) = max(e12(f),€22(f))-
From (16) we get
b, (W)
h,, (w)

Ah[ <n [®<f>|glw(w)|§§ +20()|g.. ()| 57
+ O )en ()]s (w)| 55 + O(g) max(L,en (N)(L + €z(f))%}ﬂ
Now, using (61), (63), (64), (66),(67), we get

Pine (W) Al
WAh‘ =1 [9<f)3<(1 +2¢,,(9) + 5, (9)%) + 2@(g)A_g]

< 61¢O(f) + 3@(9)—%

< 120(/) + 150(0)

Similarly,
,,l::((::)) Ah‘ < 77[39(f)C(612(g) + e22(g) +
+era(g)en(y) + enlg)en (9)) +20(0) 2]
< 30(f) + :),e(g)Ki0
< 30(f) + i%@(g)
and
h,,, (w)

mAh’ <n [3@(f)C(€12(9)2 + 2e22(g)e12(g9) + 522(9)2)]
< 20(/) +30(0) 1

1
< —
< 20(f)+ 13@(9)
In all cases we have

O(h) < 120(f) + 11—39(9) < 136,Cy
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proving Lemma 8.3. O

Proof of Proposition 8.1. — The curvilinear rectangles Ej,n are determined by the
orbit segment {z; = F7(z)}7_,. We write this as
éj’n = §z7j7n

There are analogous sets

~

By,jn = Epjw n---N F—(n_l_j)EFn—lw

where B e, 1S a suitable small parallelogram centered at Ftw for any w € E;,. ;, N7.
Let v, 2z, w, v,, vy be as in the hypotheses of the Proposition, and consider F"z,
Frwe~vyn Ein .
We can connect these points by a chain F"z = F™(wy), F™(wz2), ..., F*(wg) =
F"(w) with k < C;1(a,€) such that, for every £ =1,...k— 1, and every 0 < j < n,
Fj(w€+1) € §wg,j,n
then, it follows from Lemmas 7.1 and 8.3 that, for some constant Cz(a,¢), we have
ID Fy (Uw¢)|
|D Wet1 (’Ule)I
in the special affine coordinates centered at we. Changing back to the standard

coordinates on @ simply makes (68) hold with a different constant Co = Ca(a, &1).
Then,

(68) < Ca(a,e1)

|DF (v2)|] |DFZ, (vw,)]
< C¥-
|DF"(vw)| H |DF2,, (Vw,,)| ~
proving Proposition 8.1. O

9. Sinai Local Measures

For two points z1, 22 in an unstable manifold W}* and unit tangent vectors vy, v
to W at z1, 22, respectively, let D*F(z;) = |DF, (u,)| denote the Jacobian of F' at
Z; along WE. We know that W is a full-width K} curve in E;,. Also, the curve
fioW} is a full width K¥ curve in Q.

Proposition 9.1. — Suppose © = (...i_p...10) i8S an arbitrary infinite non-positive
itinerary and let W denote its unstable manifold. Write f;, W} = graphg; where
i I — I is the C? function given in Theorem 6.1. Suppose x1,x2 € I and z, =
(z1,9:i71), 22 = (T2, g9ix2). Then, the infinite product

H D*F(F~°z)

(69) £(z1,2,1) = DuF(F—2,)

converges and depends continuously on (wl,wg,z).
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Moreover, there is a constant K¢ > 0 independent of (x1,x2,t) such that
(70) Kg' < &(z1,22,1) < Kg

Proof. — It clearly suffices to prove the upper bound in (70) since interchanging z;
and ze would then give the lower bound.

Let z; = fizlzl,Ez = figlzz so that z,,z2 € W}

We use the local coordinates f; , and rectangles §j of the previous section. To avoid
confusion, we will use F%(z) = (fi_, o---0 f;_,)(z) and F~% = (fi_, 0---0 f;_,)!
instead of identifying F, f;; with F, ﬁ ; as in the preceding section. We use B, for the
affine neighborhood centered at z.

In our local coordinates, with z € E;,, W N Ez becomes a K2 curve. Also, there

is a sequence zZ; = wi, ..., w, = Z2 of points in W} such that
e1 K
(71) d(wji1,w5) < =5
and
(72) k< | 2|41
— le1 K5 )

Recall that ﬁ—le = f;—llw,
Further, E-l ( fl wWEn Bz Fluw, ) contains the intersection of W}* with the ball of
radius €1 K5/2 about w;. Since wjy; is in this latter set, we have F- le+1 € Bﬁ_le.

Analogously, we have F- fwjs1 € BF_,w
Now, there is a constant Cg > 0 such that

for every s > 1.

DUF(F~*z) DUF(F~°%1)
<
H L DuF(F~%23) = Ce H . DuF(F~°%;)

_ ﬁ"Hl D“F(F~*w,)
D“F(F—swj+1)

s=1 j=1

so, to prove Proposition 9.1 it suffices to show

v DYF(F~*w;)
<
(73) HDuF(F Swjt1) Kz

for some K7 > 0 and any j.

Since the angles between EY and Ef are bounded by a constant depending on «,
the linear maps DF (ﬁ_s(wj)) and DF(F~*(w;j)) are conjugate by a linear map whose
images on unit vectors are bounded above and below by constants which depend only
on a. A similar statement holds replacing w; by wj;. Hence, there is a constant
Cs = Cs(a) such that, for any s > 1 and any j,

W —8,,. n —8,,,. W I —8,,,.
- o1 DE(Frwy) _ DUE(EMwy) o DUF(Ftwy)
DuF(F—swjy,) ~ D*F(F~*wji1) DuF(F~3w;;1)
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so, it suffices to find K7 > 0 such that

00 wL L —S,,,.
DuF(F—wy41)

s=1

By Lemmas 7.1 and 8.3, there is a constant K; > 0 such that

|DEN (v:)] _

forany N > 1,Z € E, y and unit vectors v, vz tangent to W*(z), W*(Z), respectively.
Let N be large enough so that

K,

= —w—— <1
K(I)VK5€1

(77) T
By definition, FN~!(Eg_,n,, y) is a full-width subrectangle of Bgn_1_.n,, - So,

the F image of a full-width horizontal line segment in B FN-1-aNy, contains a curve
of horizontal width at least 1 K5.
Thus, setting @w; = F~'w; and §;, = 513_,,\,@ (Eﬁ—sNﬁj,N)’ we have

K 1
(78) <6y, <
Der ] <SRG
for some v € W"(f’—SNtUj) N Eﬁ—stj,N‘
Then,
- - . - 1
F_SN’[E' _F—st. — F—sN—}—N,&;' —F_3N+N~' _
| j+1 ]I I J+1 ]'lDuFN(;T__E)'
€1K5 IDuﬁ‘N(TN)l
= |DvFN(rn)| e1K5|DUFN (7x)]
. va-—sN+N{ﬁj+1 _ fw——sN+Nﬁ5j
K1 = ~ = sN+N ~
< 6i361K5|F sN+ij+l — FsN+ w]l
Ki \°, - -
S (5,‘,_’51"_1 .o .(51;1 (51—[{-5—> ]wj+1 - ’U)jl
giving
Iﬁ_SNaj+1 = ﬁ_SNﬂ?jl K \° 1 ~ ~
< . — 4D
(79) di, <€1K5) Kév(s—l) | @)1 — W;
K s—1
— e1 K5
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Hence,

> DUF(F~w;) 5 DUFN(F-sN-ly))
I o Ft - Lo
_ ﬁ D“FN (F~*N ;)
so1 DYFN(F=*Nw;iq)

< exp (iC’w—s) =K
s=1

using Lemma 7.1 and (79).

Since the functions g; depend continuously on # in the C? topology, the continuity
statement in 9.1 follows from the fact that given € > 0, there is an Ny > 0 such that
if N > Ng, we have

> DUF(F~%z
H DYF(F~°z1)

—1
DVF(F2) <¢

which is immediate from the proof just given.
This proves Proposition 9.1. O

For a C? curve v in Q, let p, denote the Riemannian measure on 7.
From Proposition 9.1 we get the existence of the following limit

DY F(F 82’1)
(80) nlggoH DR (Fia,) = (10 7) = &1, )
for any two points 21,22 € W;. Letting v denote W, we can use p, and the ratios
&(z1,22) obtained in the preceding limits to get special measures on the unstable
manifolds. More precisely, following Sinai in [13], Lecture 16, we define

vy 1 (A) = /A £(z1, 22)dpy (22)-

It is easy to see that if z3 is another point in ~, then v, ~(A) = £(23, 21)v2, ~(A),
so the measures v, , and v,, , are simply rescalings of each other. In particular, if
A,B C v and v, ,(B) < oo, then v, 4(A)/v,, ,(B) is independent of z;.

For z; € v N é, let E;, be the element of {E;} containing F'z;, and let v, = W}.

The family of measures {v,, ,} is invariant in the sense that if A, B C v, F(A),
F(B) C 71, and Vzl,’Y(B) < 00, then Vzly’Y(A)/Vzl,’r(B) =VFz1,m (FA)/VF21,’71(FB)’

We call the family of measures v,, , Sinat local measures or just local measures.

10. Absolute Continuity of the Stable Foliation

We know that for each non-negative itinerary a = (ag,ai,...) there is a C* K¢
curve W#(a) =(),,>0 Fao...an_, of full height in Q.
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Note that two points in @ with different forward itineraries have disjoint stable
manifolds since the interiors of the E;s are disjoint. Thus, the set {W*(a) : ma € @}
is a foliation of its union. We call this the stable foliation. Let W = {W*(a) : ma € é}
denote this foliation. We denote the union J{W*(a) : ma € Q} by W+. Note that
W is a Borel subset of Q of full two-dimensional Lebesgue measure in Q. For any
two full width C? K¥ curves 7,7, let m,, be the holonomy projection from v to n
along the foliation W. That is, for z € y N W™, and W#(a) the leaf of W which
contains z, m,y(2) is the unique point of intersection of W#(a) and n. As above, for
any C? K¥-curve 7, let p, denote the Riemannian measure on . Recall that the
foliation W is called absolutely continuous if

(AC-1) each full-width C? K¥-curve v meets W7 in a set of positive p, measure
and
(AC-2) the image measure 7., p is equivalent to the measure p,.

Proposition 10.1. — The foliation VW is absolutely continuous

Before we can prove Proposition 10.1, we need a couple of Lemmas.

The next Lemma is well-known and elementary. Since the proof is short, we include
it for completeness.

Lemma 10.2. — Suppose that x1,z3,... and y1,Y2,... are sequences of numbers in
the open unit interval (0,1) such that
(81) —in logy; < oo.

i>1

For € > 0 and non-negative integer n, let D, = {i : y; < exp(—en)}.
Then,

(82) Z Z T; < 00.

n>14€Dy
Proof. — For each n > 1, let
E, ={i:exp(—e(n+1)) <y; <exp(—en)}

Then, D, = || E;, where | | denotes disjoint union, so

IPIEED 3 Sp I

n>1i€D, n>1j>nicE;

j=n

Letting c; = ZieEj x;, this last sum is just

ci + o + c3+...
+ c2 + c3+...
4+ c3+...

= 2>19¢
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Now, ¢ € E; implies that —logy; > €j or —x;logy; > €jz; which gives

~ Z z;logy; > Z EJTi

i€E; t€E;
= gjc;
Hence,
ey i <> > —milogy; < — Y wlogyi < o0
i>1 j>14i€E;
which implies that 3,5, jc; < oo. O

In the next lemma, we will use the geometric condition G3. Each z € @ has a
unique forward itinerary (ao(z),a1(z),...) with F*(2) € int E, ().

Lemma 10.3. — Let v be a C? K¥-curve of full-width in Q such that p(yN @) > 0.
Let ¢ > 0. For py-almost all points z € v N Q, there is a positive integer n(z) > 0
such that if n > n(z), then

Opn(2)(Ea,(z)) > exp(—en).
Proof. — For ease of notation, if A is a subset of v, let us write [A| for p,(A).
Let D,, = {Z >1: (Si,min < 6_5"}.
In view of lemma 10.2, the condition G3 implies that

(83) Z Z (5i,max < 0.

n>1i€Dy,

Let V,, = {Z evyn @ : 6F"(z)(Ean(z)) < e‘sn}.

We will show ’
(84) Z |Vn| < 00.

n>1

Once this is done, the Borel-Cantelli Lemma gives that p,-almost all points of v
lie in at most finitely many of the V, s which proves Lemma 10.3.

Let A,, be the set of finite itineraries (ao, ..., an—1) which occur for points in Q.

For a given finite sequence ag, a1,...,an—1 € Ap, let

Vo(ag, ... an_1) ={2 €V : Fiz € E,, for 0 <i < n}.
Then,
Vn(a07 ‘e »an—l) = U (’Ynan...an_li né)

i>0
and this last union is disjoint.
Also, V,, is the disjoint union of the V;,(aop, . ..,an—1) as these finite itineraries vary
in A,.
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The bounded distortion of compositions (Proposition 8.1) gives us a constant K > 0
such that for (ao,...,an—1%) € Ant1, and 2 € YN Egy. 0,145

I'Y N Ea.ol..an_lil

< A’JF"(z) (Ez)

|’Y m an...a,n_l {
Also, the definition of V,(ag,...,a,—1) gives us that 0a,(2),min < €775 d.e., that
an(z) € Dy,.
Thus,
Vn(a0’ L) an—l) g l_I Y N Ea,o,...,a,,_li N é
1€D,
This gives
|V'I'L| S Z Z |’Yn an,...,an_1i|
(ap...an—1)€A, i€D,
vﬂE .
- » 3 i eedpon, ..
ag...an—1i€D, 7 a°"‘a"—1|
S Z Z K51max|7r]an Qn — 1|
ag...an—11€D,
S Z K(si,max
leDn
Hence, (84) is a consequence of (83). O
Lemma 10.4. — For any full-width KY curve v,
py(YNQ) =1
Proof. — The curve v cannot meet both the upper and lower boundaries of (). For

definiteness, we suppose that v does not meet the lower boundary of ¢). The other
case is similar.

Then, there are constants a; > 0,as > 0 and a C! diffeomorphism ¢ from @ onto
a curvilinear subrectangle @; of @) such that

(1) ¢ maps the upper boundary of () onto v and maps the lower boundary of @
onto itself.
(2) Do(Kg) C K
(3) Do (K3) C K
Let ¥ = ¢~ 1() denote the upper boundary of Q.
Since a subset A of v has full p, measure if and only if ¢~ (A) has full p5 measure,
it suffices to prove that

(85) p7(p~t(YNQ)) =1
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Let E; = ¢ (Ey),
gi,ma.x = max 0 (Ez)
zEE;

and

gi,min = min 57.(Ez)
2€E;

The properties of ¢ guarantee that

(86) - Z g’i,max log gi,min < oo
i

Now, Q1 OQ has full Lebesgue measure in Q1, so, ¢! (@) has full Lebesgue measure
in Q. Thus, for almost all horizontal lines ¢ in @, we have that ¢ N ¢~1(Q) has full
Riemannian measure.

To complete the proof of Lemma 10.4, we will prove that p,(¢ N ¢~1(Q)) varies
continuously with £.

This is a consequence of the following.

For any € > 0, there is an N = N(g) > 0 such that for any horizontal full-width
line segment ¢,

pe(€N U Ez) <e
i>N
which is, in turn, a consequence of
Z diam(¢ N E;) < e.
i>N

Since the vertical boundaries of the E{ s are K5 curves, there is a constant C(az2) >
0 such that, for all z',m(ﬁ‘i) > C(az)(gi,max)z. So, gl-,max — 0 as i — oo.

By (86) and Lemma 10.2 with z; = ; max,¥i = 0i min, given € > 0, we can find

ng > 0 such that
Z 5z',max <eg
gi,min<2_n0
Now, take N such that « > N implies that gz’,min < 2770,
This gives >, ydiam(¢N E;) < 375 5 ng i,max < € as required . a

For future use let us observe that the argument in the last proof actually works for
all K¥ curves uniformly to prove

Lemma 10.5. — Given ¢ > 0, there is an integer N(g) > 0 such that for every KY
curve vy, we have

(v (| E)) <e.

i>N
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Proof of Proposition 10.1. — We use v <« u for v is absolutely continuous with re-
spect to u, and v ~ p for v < p and p K v.

Let 7,7 be two C? full-width K* curves.

In what follows we restrict our measures to Q. Thus, when we write p~(A) we
mean p,(AN Q).

We will show that

(87) TynxPy <K Pn
Once this is done, interchanging v and 7, we have m,,,.p, < py.
So, pn = Tyne(TnyxpPn) K TypupPy OF Py ~ Typep~ as required for the proof of

Proposition 10.1.

We know that p(y N Q) =1.

Let B C v N Q be such that p~(B) > 0.

Let K; € (1, Ky).

By Lemma 10.3, for almost all z € v, there is an n(z) > 0 such that n > n(z)
implies
(88) 6F"(z) (Ean(z)) > Kl_n

From standard measure theory, we can take a compact set A C B such that
pv(A) > 0 and there is an n(A) > 0 such that (88) holds for all n > n(A) and all
z € A.

We will show that there is a constant K > 0 such that

(89) P (T (A)) > K_IPW(A)

This, in turn gives p,(m,,(B)) > 0 to prove (87).

Since K1 < Ky, and dist(F"(z), F™(7myn(2))) < const-K; ", we may assume that,
for z € A and large n,
1 diam(F"(Egg(2)...an(z) N7))
2 diam(Fn(an(z)...an(z) N 77))

For a unit vector v tangent to the curve v at 7 and a positive integer n, let us write
D, F"(t) for DF™(v).

Now, for z € A, there are points 7, € 7,7 € n such that

diam(y N Eoqy(2)...an(2)) | Dy F™ ()| = diam(F"™(y N Eqgq(2)...an(2)))

(90) <2

and
diam(n N Eaq(2)...an(2)) | PnF™ (Tn)| = diam(F™(n N Eqq(2)...an(2)))-
We claim (AC-3) there is a constant K = K(A) > 0 such that for all z € A and
n>0
D.,F™
| ¥ (Z)‘ <K

1) K <1, ] <5
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Assuming (AC-3) for the moment, we see that there is a possibly different K > 0
such that, for all n > 0,z € A, we have
dla,m('y N an(z) .Qn (z))
dla'm(n N an(z) .an (z))
But, for large n, as z varies in A, the sets ¥ N E,;(2)...a,(z) form a covering of A

by small intervals and the sets 7 N E,(2)...a. () form a covering of m,,(A) by small
intervals. This gives (89) and concludes the proof of Proposition 10.1. O

Proof of (AC-8). — Let z, = F"(2),w, = F"™(myy(2)) for each n > 0. We use
affine coordinates centered as z, as in our earlier sections. We use the splitting
T..R?> = EY & E in which E¥ contains DF"(v;) and E7_ is tangent to W (zn)
at zn.

Let F denote the representative of F' in these coordinates, and let En be the small
parallelogram centered at z, as before. We may and do assume that Kqo > 3.

Write v, , vy, for the unit vectors tangent to F™(y) at z, and F™(n) at wy, re-

< K.

(92) K<

spectively.
Now,

D, F"(z) |DF,, (vs,)
93 —— Y < const- oo e
(93) Dy F(ryn(2) = H LD (v
80, it suffices to show

DF., (v,
(94) uﬂ < exp(an)
|‘DFwn (an )I
where
(95) Z a,, < const-log K
n>1

to prove (AC-3).

Write §,, for 5Fn(z) (Ea,,(z))-

In our affine coordinates, v,, = (3).

Since dist(F™(myn(2)), F"(2)) is exponentially smaller than 4, for large n and
|vw, — vz,| = 0 as n — oo, there is an ng = no(A) such that n > ng implies
wy € By, and vy, € K . (Here g9 < 1/4 as in section 6).

Below, we use various constants Cy, 1 < s < 8, which are independent of n and
z € A and are defined in the first equation in which they appear.

As in the proof of lemma 7.1,
M‘)‘L = exp(Al n + A2 n)
|DE,, (vw,)]
where

Ain <01 |'Uzn = Vw, |
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and
Asp < Cy |Zn _wnl
Since
|zn wn| ( 1
<(C3|—
5n - 3 0
it suffices to show
(96) |v'wn - 'Uznl < C4 (_

for all n to prove (94), (95), and (AC-3).

Writing DF,,., _, (Vw, 1) = (€n,Mn) and vy, = (uk,u2) we have

& = ﬁlm(wn—l)ui_l + ﬁly(wn—l)ui—l

M = Fog(Wn—1)uph_y + Foy(wp_1)u_,

and
|[DFoy (V)| = [nl-
Thus,
up =1, ul =
This gives
Vw, — Uz, | < %

1 |ﬁ2m(wn——1)|
= (1_83) (lﬁlw(wn—l)l "

Using Fy;(2n-1) = 0, we get

|ﬁ2w(wn—1)| < |ﬁ2mw(7-)|

|f’1$(wn_1)| - |ﬁlw(wn—1)|
|wn—1 - Zn—1|
< -

= 05 5n—1

for suitable 7.
Analogously,

| Foy (wn—1)| - |§2y(zn_1)|
|Fie(wn—1)| T |Fie(wn-1)]
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which gives

|wn—1 - Zn—1|

,nnl 1
<
6n—1

e = G-Kg

1 ) Kl n—1
L — -
S @oeprg el + O <K>

Inductively, we assume
K n—2
s ()

Ao1| +Cr

and get

] = < 2 () ()

Ifnl a (1 _‘S%)Kg Ko
Since 2= <1 < K; and g0 < 1/4, we get 2/[(1 — €§)K3] < K1/Ko and
K n—1
2] <2Cs [ —
|un| < 203 (Ko
which proves (96). O

11. Construction of an SRB measure

We wish to use a construction analogous to that of Sinai in [13] to construct our
SRB measure. There are several difficulties which appear.
(1) The family of unstable manifolds {W*(z)} does not form a measurable parti-

tion of the attractor A in Q.
(2) The underlying set A is not compact, so care has to exercised in the taking of
limits of iterates of measures.

We will see that these problems can be handled by lifting the required construction
to the symbolic space ¥, getting a measure there, compactifying, getting a limit
measure which is supported on ¥, and projecting back into Q.

We have defined a continuous map 7 from ¥ into @ as follows. For a € ¥ with
a = (...a_1a0a1 ),

{r(@)} = [ Eao...an N Fag-Sa_...a0

n>0
Let o be the left shift automorphism on ¥. For each a € X, we have local stable
and unstable sets defined by

Wige(@a) = {b:a; = b;,i > 0}

Witke(a) = {b: a; = b;,i < 0}
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We have the local stable and unstable sets in @@ as well:

I/‘/'licl;c(ﬂ-a) = m fa_olsa,_n.,.ao

n>0

I/Vlf)c(ﬂ-a) = ﬂ an...an
n>0

Each W (wa) is a K¥ curve which has full width in E,,, and each W _(7a) is a
K curve of full height in Q.

Note that ifa = (.. . ),b =(...b;...),ma,wb € Q, and a; # b; for some i > 0,
then I/I/vlf)c(ﬂ-a') N loc(ﬂ'b)

Thus, the map = : VVloc(a) Nr1Q — Wi . (ra) N Q is a one-to-one, continuous
onto map for each a € w‘l(@). By standard results, it is a Borel isomorphism.

Recall the functions £(z1, 22) and the Sinai local measures v, - defined at the end
of section 9.

We now use them to define finite measures on the local unstable sets W} _(a) in .

Write Wit (a) = Wi, (@) N 771Q.

If v = 1Oc(ﬂ'a), then v N @ has full Riemannian measure in v, and the Borel

isomorphism 7 : Wloc(a) — (ra) N Q allows us to transfer the Riemannian

loc
measure p-, from v N Q up to loc(a) We call this measure p,. It clearly only

depends on the non-positive indices of a.
For z,w € W _(a), let

loc
&(z,w) = &(rrz, Tw)

where £(-, -) is the densn;y of the Sinai local measure defined at the end of Section 9.
Next, for z € W (a), we define a finite measure v, on W% (a) by

va(A) = /A &(2, w)dpa (w)

These measures have the following properties
(1) For z1,22 € Wﬁc(a), and A C Wl’gc(a)
Va (A) = z(zh z2)V22 (A)
(2) I A, B C W (a),z1 € W¥.(a), vs,(B) > 0, and 0(A),0(B) C Wi, (ca), then
Vsz, (0B) > 0 and
Voz (0A) _ vz (A)
VUZl (JB) VZl (B)

It follows from these facts that if v,, (B) > 0, for some 2, then v,,(B) > 0 for
any z2, and the normalized measure vg(A) = v,, (AN B)/v,,(B) is independent of

the choice of z; € VI%%C (a). Moreover, the normalized measures are o-invariant in the
following sense: if A and B are as in 2 above, then o,vp(0(A)) = v,(B)(c(A)). We
will call the measures v,, local measures or Sinai measures.
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For a point @ € ¥, with local unstable set ngc(a), let Vg norm be its normalized
local measure. Thus,

i
va(Wig(a))

Va,norm (A) =

for every A C AW/I’gc(a).

For each i > 1, let V; = {a € ¥ : ap = i}, and fix a local stable set S; C V;. Thus,
S; = W (2;) where z; is a particular point in V;. Let M; be the partition of V;
into local unstable sets. The quotient set V;/ M, is in one-to-one correspondence with
Si, so the partition M; is measurable with respect to any complete Borel probability
measure on V;. Let M = J, M;. Since ¥ is a countable disjoint union of the Vs, M
is a measurable partition of ¥ for any complete Borel probability measure.

For convenience, we will say that a Borel partition M is measurable with respect
to a Borel Probability measure u, if it is equal mod zero to a measurable Borel
partition of the Borel completion of the measure p. This allows us to discuss systems
of conditional measures, etc, with respect to arbitrary measurable Borel partitions of
Borel probability measures.

Now fix an element 2o € 7~ 1(Q), and let Wl]ﬁc (z0) be its local unstable set. Let v
be the associated normalized Sinai measure.

Theorem 11.1. — The sequence of averages

-1
1
VUp = — E 0'*1/0
n
k=0

converges weakly to a measure T on X which is o-invariant, ergodic, and the con-
ditional measures of @ with respect to the partition M coincide with the normalized
Sinai measures on elements of M.

The proof will require several steps.

Let N be the set of positive integers, and let N = N|J{co} be its one-point
compactification. We put a metric on N making it isometric to {0,1,1/2,1/3...} C R
with the standard metric. Let & = N~ with the product topology and let : ¥ — &
be the shift. The set ¥ is a dense F-invariant subset of .

We take a subsequence {v,, } of {v,} which converges to a measure 7 on .

Claim 1. — The measure i is supported on X. That is,
A(Z\Z) =0.
Proof. — A point @ € £\ £ has a; = oo for some i. Fixing i, let

Ji={a€§2ai=00}.
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We will show that, given € > 0, there is an open neighborhood U; of J; \ ¥ such that
foralln > 1—1,

(97) o (o) (Us) < e

This will imply that z(J; \ £) = 0. Since this holds for every i, Claim 1 follows.
Let £;1 > 0 be a small number to be chosen later.
From Lemma 10.5, there is an N > 0, such that for every K} curve v,

(98) | UE | <a
=N

Let po = pz, be the lift to W% (20) of the Riemannian measure on W% (720) N Q,
and let £y = po(Wi¥.(20))- N
By Proposition 9.1, for any E C W} (20),

po(E)
o

(99) Kg? <w(E) < K§

po(E)
o
Given a non-negative itinerary a = (apa; - .. ), let
Vao..‘an = {b € ngc(ZO) 1 b; = a;, i = o,... ,n}

By Proposition 8.1, for any n > 1, if v, = F"* (W% (72)), then

pO(Vao...an)

100 Ky py(Ban) <
( ) 4 p'Yn( an) — pO(Vao,..an—l)

< K4 p,(Ea,)

Setting U; = {a € T : a; > N}, we see that (98) and (100) imply that, if n+14¢ > 1,
then

(101) pO(Vaoman+i—1 N a—nUi) < K4€1p0(va0~~-an+i—l)
Also, ’I/IZ’;C(ZO) N o~"(U;) is the disjoint union

l_l Vao...an.'.,‘_] rjo‘—nU-l

ag...-Gn4i—1
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So,
(oxv0)(Ui) = vo(a™™(Us))
= VO(WIZC(ZO) N O'—nUi)
= Z VO(Vao,‘.an.,.i_l n a—nU’L)
aQg...-An4i—1
< Z ﬁpg(v i, No™"U;)
= eo ag...QGn4i—1 2
agQ---Gn+4i—1
K2 p0(Vag...anri, No~"U;)
= Z 76_ ao (‘c; +im1 ) - p0(Vag..amsir)
Q0. Gnti-1 0 Po QQ---Gn4i—1
K2
< Z T§K4€1PO(Vao...an+i—1)
aQ...0n4i~—1
K2
= 51—61(480
4o
= €1K§K4
Hence, if we set ¢1 = ¢/(K2K,), we get (97), and Claim 1 is proved. O

The measure T is clearly invariant under the shift o.

We extend the partition M of ¥ to ¥ by adding the element ¥ \ . We will also
use the letter M to denote this extended partition. We let V; denote the closure of
V; in &, and let M; denote the restriction of M to V;.

Let 7 : ¥ — ¥/M be the natural projection. Let i1 = 7, be the induced measure
on /M.

There is a system of conditional measures - on C' € M defined for p-almost all
C e M.

Claim 2. — For pi-almost oll C, ic = ve.

Proof. — Let us use A for the closure of a subset A C ¥ in .
Let ¢ : ¥ — R be a continuous function supported in V; for some i.
For each n > 0, the measure o7vy is supported on countably many C’s in M, and
these C’s are local unstable sets.
The conditional measure (o7vy)c is then just the restriction of ¢vy to C normal-
ized.
But, the invariance property of quotients of the Sinai measures gives, for A C C,
(ox10)(A) _ vo(0™"A4)
(o710)(C) — wo(0~"0)
vo(A)
vo(C)

vc(A)
Thus,
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(x) the conditional measure (6%vp)c is equal to the normalized Sinai measure v¢
when C is a local unstable set in a”(AW’fgc(zo)).
and this implies
(*xx) the conditional measure (v,)c equals vc on each local unstable set C in ¥
such that v, (C) > 0.
Let S; be the stable set of z; € V;. Its closure S; is the local stable set of z; in X..
This is a compact subset of & and may be identified with V;/ M.
Thus, we may think of the projection 7 as a map from V; — S;.
Let K > 0 be such that |¢(z)| < K for all z € V;.
The function

h(z) = f;r‘—l(z) ¢(U))dl/;;—1(z)(w) for z € f,
0 for z € S; \ S
is then bounded and measurable and its restriction to S; is continuous. Also, [h(z)| <
K for all z € S;.

Let 7z* be the normalized restriction of 7 to V5.
We assert

(102) [S_ h()d(F ) = /V g

Since, (X \ £) = 0, this tells us that the conditional measures of 77 with respect
to M are the v¢ as required for Claim 2.
To prove (102), we let € > 0 be arbitrary, and we show

(103) ‘ /g () - /V odi| < 5

Let v}, be the normalized restriction of vy, to Vi.

Since V; is open and closed in T, we have v}, — fi* as k — oo.

Since 7 : V; — S; is continuous, we get T.vi, — T

By (97), there is a compact subset 4; C S; such that, for large k£ > 0,
(104) vi, (Vi\7T ' (4)) <e.

Since h restricted to A; is continuous, we can use the Tietze extension theorem
to find a continuous map h : S; = R such that |h(z)| < K for all z € S;, and
h(z) = h(z) for z € A;.

Then,

/_ hd(Tuv), ) — /_ hd(7.TY).
S,’ S'i
By construction of h, we then get, for large k,

) / hd(7avh,) — / hd(?r'*‘;z“')‘ < 3¢K.
Ai Ai
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By (*%),

[ naGaiy = [ sdeh,),
A; 71(A:)
The right side of this last equality differs from fj; ¢dv}, by no more than eK, and

‘/ hd(%*ﬁi) - / hd(%*l-_//i) <eK.
A; S;
Putting all these together gives (103) and completes the proof of Claim 2. O
Claim 3. — [1 is ergodic.
Proof. — This is a variant of the standard Hopf argument for geodesic flows in neg-

atively curved Riemannian manifolds.
Let ¢ : & — R be continuous. We show that fi-almost all forward time averages

1 n—1
- > #(a*z)
k=0
approach the same value.
Let
1 n—1
— i i k
$ror(2) = lim — 3 ¢(c"2)
k=0
and

n—1

. 1 _
Pbac(z) = lim_ - kz:% P(o™"2)

be the forward and backward limiting time averages of a point z.

From the Ergodic Theorem and standard arguments, there is a set A; C X of full
fi-measure such that z € A; implies @sor(2), Ppac(2) exist and are equal. Also, since
¢ is continuous, ¢, is constant on stable sets and ¢pqc is constant on unstable sets.

For each z € ¥, let

We(z) = |J o "W (2)
n>0
be the global stable set of z.

Now, z-almost any local unstable set C' is such that vo(A4; N C) = 1. Pick one
such C and let S be the union of the global stable sets of points in A; N C. By the
topological transitivity of the shift, the absolute continuity of the stable foliation W
in @, and the fact that the push forwards by 7 of the conditional measures of & with
respect to M are equivalent to the Riemannian measures on the local F-unstable
manifolds, we get that v, (S) = 1, for every local unstable set C;. Hence, (S) = 1.

For any two points 21,22 € g, there are points wy,ws € A; N C such that z; €
We(wy), z2 € W?(w3).
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Then, ¢for(zl) = ¢for(w1) = ¢bac(w1) = ¢bac(w2) = ¢for(w2) = ¢for(22)' This
proves Claim 3. O

Claim 4. — lim,, o v, = [.

Proof. — Let fi; be another subsequential limit of the sequence {v,}. Substituting
7, for 7 in the preceding arguments gives that &, is ergodic, shift invariant and
(%) =1.

Let G be the set of Ti-generic points, and let G, be the set of [i;-generic points.
Thus, for any continuous function ¢ : ¥ — R,

n—1
(105) acGr= =3 ¢(c*a) - /¢dﬂ
n k=0
and
1 n—1
(106) a € Gy, = ~ D po*a) » /¢dﬁ1
k=0

Ergodicity implies that @(GzNXY) =1 =1; (G, NZ) = 1.
If we show that

(107) GpNGy, NE # 2

then, in view of (105) and (106), we get

[ odn= [ oam

for all continuous ¢, and Claim 4 follows.
For a given set A C X, let

we(A) = | Wic(a)
acA

We call A stably saturated if W°(A) = A. It is easy to see that both Gz and Gy,
are stably saturated.

The arguments in the proof of Claim 3 show that if #(A) = 1 and A C X, then,
for any local unstable set C, with Sinai measure v¢, we have vo(W?(A)) = 1. In
particular,

ve(GrN ) = ve(W*(Gzn %)) = 1

Replacing &z by fi; in the arguments of Claim 3 gives vc(Gg, N X) = 1, as well.
Thus, vc(Gzg NGy, NY) =1 for any C and (107) holds.
This completes the proof of Theorem 11.1. O

ASTERISQUE 261



ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 155

The construction of the SRB measure pu. — Let u = m, Q.

The measure p is clearly an F-invariant and ergodic measure on Q.

There is a set A C Q of full ;1 measure consisting of u-generic points; i.e., £ €
A,¢ : Q — R continuous implies that 2 3770 ¢(F*z) — [ ¢du.

Let S be the union of the local stable manifolds of points x € A. Clearly, each
z € S is u-generic. We will show that m(S) = 1 (i.e. that S has full Lebesgue
measure in @) to prove that p is SRB.

Now, m~1(S) has full z-measure in ¥. Hence, for some (in fact, f-almost any)
local unstable set C C %, we have vo(r~1S) = 1. This gives m,vc(S) = 1. But mve
is equal to the normalized Sinai measure on the local unstable manifold containing
SN (C), and, hence, is equivalent to the Riemannian measure restricted to SN« (C).
This implies that S N7 (C) has full Riemannian measure in 7(C). Then, the absolute
continuity of W gives p,(S) = 1 for every K} curve 7, so Fubini’s theorem gives
m(S) = 1.

. Further ergodic properties and an entropy formula

In this section we will study properties of the natural extension of the ergodic sys-
tem (F, @, p). The first proposition identifies this natural extension with the system

(0,5, 7).

Proposition 12.1. — The system (o,%, 1) is isomorphic to the natural ertension of
the system (F,Q, ).

Proof. — Since the map F' on @ is not surjective, the meaning of this proposition is
that there is a subset @, of Q of full y-measure such that F (Q,) = Q1, and the system
(0, X, 1) is isomorphic (mod 0) to the natural extension of the system (F, Q1, ).

Indeed, let Q1 be the set of points x € Q, such that there is a sequence xg, Z1,. ..
in Q with o = z and F(zn+1) = @n for all n > 0. It is easy to see that F’ maps Q1
onto itself. To see that u(Q;) = 1, it suffices to show that (7~1Q;) = 1, and, since

7~1Q has full & measure and 7 is o-invariant, this follows from
(108) Q1) D [ " (= 'Q)
n>0

To prove (108), let @ € ),,>, o™(71Q), and let zo = 7(a),z, = To "a.

Since, 0™ "a € w‘lé for all n > 0, we have that x,, = moc "a € @ for each such n.
On the other hand, Fz,,1 = Fro " 'a = nooc™ " 'a = no "a = z,, for all n > 0.
This shows that zo = ma € Q1, so a € 7—1Q; which is (108). So, @ is the required
set.

The underlying set @ of the natural extension of (F, @1 , ) may be identified with
the set of sequences T = (zg,1,...) in which each z, € @1 and Fxp41 = z, for all
n > 0.

SOCIETE MATHEMATIQUE DE FRANCE 2000



156 M. JAKOBSON & S. NEWHOUSE

Let £ = {E1, Ea, ...} be the original collection of full height rectangles of ). For
any sequence T € (), the element z, is in the interior of a unique E,_,_. Similarly,
the point F(x¢) is in the interior of a unique E,, . This enables us to define a map

$:Q — X by
#(T) =a

where, for each n > 0, z,, € int E,_, and F"z¢ € int E,,. Now, the verification
that the map ¢ induces an isomorphism (mod 0) between the system (o, X,z) and
the natural extension of (F, Q1, u) is straightforward, and we leave the details to the
reader. O

Let ¢ be the partition of ¥ into the sets V;; i.e., the time 0 partition. Put n =
Vi _., oC. Then, the elements of 7 coincide with the local stable sets We.(a).

Moreover, we have that, mod zero, on > 7,\/,, 0™n is the point partition, and
/\,, ™7 is the trivial partition {X}.

So, by definition, (o, z) is a K-system.

Then we state

Proposition 12.2. — The map (o, x) is Bernoulli.

We thank Dan Rudolph and Francois Ledrappier for useful conversations in con-
nection with the proof of this proposition.

The following Weak Markov property was introduced in [11]. It was used to prove
the Bernoulli property of Anosov flows ( see [4], [11]).

Let 8 be any partition,

g.=\ o6
k<i<l

Given a collection of sets P, let us use P for its union.

Say that g is weak Markov (WM) if, for any ¢ > 0, there is an integer N = N (¢),
and collections P = P(g) of atoms of 35°, M = M/(e) of atoms of 8% _ with the
following properties.

1) g(Pt)>1—¢,and p(M*+) >1—=¢.

(2) For any z{¥ € B{¥,any 7,y € P with Z|Jy C z{’, and any subcollection A of

M with m(A*|y) > 0, one has

‘E(A“L |Z)
a(A*|g)

The proof of Proposition 2.2 in [11] shows that a finite weak Markov partition in
a K-system is weakly Bernoulli in the sense of Friedman and Ornstein [5].

(109) —1’ <e
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We will prove that the partition { is weak Markov. Then, arguments as in the
proof of Proposition 2.2 in [11] give us that each of the finite partitions

k
G o={V1,Va,..., Vi, 2\ | J Vi}
i=1

is also weakly Bernoulli. This implies that each factor map on X/ V/, o%(y is Bernoulli.
Then, Theorem 5 in [9] gives that (o, Z) is Bernoulli.

Thus, to prove Proposition 12.2, it suffices to show that the partition ( of ¥ is
weak Markov.

The corresponding (§° is the partition into local unstable sets W% (a), and ¢
is the partition into local stable sets.

Given € > 0, let no(¢) > be large enough so that (U|;j>p, () Vi) < /4

For each ¢, let z; be a point in V;, and let A; C W2 (2;), B; C W% (2;) be compact
subsets so that the sets

Dy = |J W(2), Di= |J Wic(w)
zZEA; wEB;

satisfy
_c
2li+27

A(Vi \ DY) < A(Vi\ Df) < 555

Then, set P = P(&) = Uj;j<no(e) Di's M = M(€) = Ujij<no(e) Dsi -

We have that i(P*) > 1—¢,a(M*) > 1—e. Also, the set Z. = U|;j<po(e) D N D}
is compact.

Let a,b € V;, and let W¥_(a), W}%.(b) be their local unstable sets. Let m, 5 be the
projection from W¥ (a) to W% (b) along the local stable sets in V;. As a approaches
b in X, the maps 74,5 approach the identity 7y and the measures p, approach pp.
Also, the densities &(a, b) vary continuously with a@,b in V;. On the compact set Z.
the convergence and continuity above are uniform. Further, each € P is one of
the sets W¥_.(a) and the conditional measure 7i(-|Z) is just the Sinai measure vz. If
a€z,beyand Uy C xl € ¢, then a; = b; for —N < j < 0. For N large,
the measures fi(-|Z), z(:|g) have densities whose quotient is closer to 1 than €. These
statements imply the Weak Markov property above. This completes the proof of
Proposition 12.2.

Entropy formula. — Tt follows from our constructions that the measures of V; satisfy
(110) lesi,min < ﬁ(‘/z) < 025i,max

for some positive constants ¢, ca.
Since the partition ( generates, we get

.1
hu(o) = inf EHE(CO—n+1) < Hz(¢)
From condition G3 and (110), the last term is finite.

SOCIETE MATHEMATIQUE DE FRANCE 2000



158 M. JAKOBSON & S. NEWHOUSE

Forae X, andn >1,1let Voo . 0.y = Voo No WV, N---No ™1V, ., and let
Eqg...a,_, be the full height subpost of @) defined in section 2.

Since o is ergodic with respect to 7, the Shannon-Breiman-Macmillan theorem
gives a set A with w(A) = 1 such that a € A, implies

1 _
(111) — 108 A (Vag...an-1) = (o)

Using that the conditional measures of & along local unstable sets have bounded
densities relative to the measures p,, we see that there is a constant K > 0 such that,
for a € X,

112 Kt i diam(¢, N Eqqy...a < (Vae...a

(112) zGVIVré,lﬁwa) iam( a0--an_1) < B(Vao...an_1)

and

(113) B(Vag.an_1) < K X diam(¢, N Eqq...ap_1)-
z loc Ta

This and Proposition 8.1 imply that, if F"(z) = (F{*(z), F3*(z)), then there are a
constant Ki(a) > 0 and points uy,1(a), un2(a) € Wi _(mwa) such that

(114) B(Vao...an_1) | Fis (un,1(@))| < Ki(a)
and
(115) Ki(a)™' < E(Vao---an—l)|F11?c(un,2(a))|

By arguments like those in the proof of estimate (91), for z almost all a, there is
a constant Ki(a) > 0 such that, for z,w € W _(wa), n > 1,

| % (2)]

(116) Kz(a)™! < 1t < Ka(a)
| F% (w)|
From (114), (115), (116) we get the existence of a constant K3(a) >, such that
(117) K3(a)™" <T(Vag...an—r) | Fip(ma)| < K3(a).
Thus there is a set A with m(A) = 1, so that if a € A, then
. 1
(118) nll)rgo - log |F{_; (7ra)| = hy(0o)

Since o is isomorphic to the natural extension of F', we have h,(F) = hg(0o).
Letting A; = w(A), then, for p-almost all z in A;, we have

(119) lim %log |F2(2)| = hu(F)

n—ro0
Taking S to be the union of the stable manifolds of points in A;, we get that S
has full Lebesgue measure in @ and (119) holds for all z € S.
But, for z € @, we have

|1 (2)| = max(| % (2)], |35 (2)]) < [DF™(2)] < (1 + o) | FT% (2)].

So, we have proved formula (6) and completed the proof of Theorem 3.1.
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As a final remark, if v = (v1,v2) is a unit vector in K¥, then

(1— a2) IF{;] < lFﬁvl + F{;vzl
= |DF"(z)v'
|FP| (1+a?)

IN

That is, for certain constants C';,C2, we have

Ci1|F1L| < |DF™(2)(v)| < Ca|F1|

which, together with (119), implies formula (7).
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