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ASYMPTOTIC MEASURES 
FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 

OF A RECTANGLE 

by 

Michae l Jakobson & Sheldon Newhouse 

To Adrien Douady on the occasion of his sixtieth birthday 
Abstract. — We prove the existence of Sinai-Ruelle-Bowen measures for a class of 
C2 self-mappings of a rectangle with unbounded derivatives. The results can be 
regarded as a generalization of a well-known one dimensional Folklore Theorem on 
the existence of absolutely continuous invariant measures. In an earlier paper [8] 
analogous results were stated and the proofs were sketched for the case of invertible 
systems. Here we give complete proofs in the more general case of noninvertible 
systems, and, in particular, develop the theory of stable and unstable manifolds for 
maps with unbounded derivatives. 

1. Folklore Theorem and S R B Measures 

A well-known Folklore Theorem in one-dimensional dynamics can be formulated 
as follows. 

Folklore Theorem. — Let I = [0,1] be the unit interval, and suppose { i i , / 2 , •. • } is 
a countable collection of disjoint open subintervals of I such that {J{ Ii has the full 
Lebesgue measure in I. Suppose there are constants KQ > 1 and K\ > 0 and mappings 
fi'.Ii^I satisfying the following conditions. 

(1) fi extends to a C2 diffeomorphism from C l o s u r e ^ ) onto [0 ,1] , and 

inf \Dfi(z) \ > K0 for alii. 

(2) supzeI. - f e v T ^ r l ^ l < Kx for all i. 
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104 M. JAKOBSON & S. NEWHOUSE 

where denotes the length of Ii. Then, the mapping F(z) defined by F(z) = fi(z) 

for z G Ii, has a unique invariant ergodic probability measure fi equivalent to Lebesgue 

measure on I. 

For the proof of the Folklore theorem and the ergodic properties of ¡1 see for example 

[2] and [14]. 

In an earlier paper [8] we presented an analog of this theorem for piecewise C2 

diffeomorphisms with unbounded derivatives with proof sketched. We now wish to 

give a more general version of the results in [8]. We refer the reader to that paper for 

relevant remarks and references. 

Let Q be a Borel subset of the unit square Q in the plane R2 with positive Lebesgue 

measure, and let F : Q —>• Q be a Borel measurable map. An F-invariant Borel 

probabil i ty measure ¡1 on Q is called a Sinai — Ruelle — Bowen measure (or SRB-

measure) for F if JJL is ergodic and there is a set A C Q oi positive Lebesgue measure 

such that for x G A and any continuous real-valued function </> : Q —> R , we have 

1 n_1 C 
(1) lim - y^(f>(Fkx) = / </>dfjL. 

k=0 J 

The set of all points x for which (1) holds is called the basin of ¡1. 

Note that if JUL is an SRB measure, and mi is the normalized Lebesgue measure 

on its basin, then the bounded convergence theorem gives the weak convergence of 

the averages ^ X)fc=o F+mi of the iterates of m i to JJ,. Hence, SRB measures occur 

as limiting mass distributions of sets of positive Lebesgue measure. This fact makes 

them natural objects to study. 

We are interested in giving conditions under which certain two-dimensional maps 

F which piecewise coincide with hyperbolic diffeomorphisms fi have SRB measures. 

As in the one-dimensional situation there is an essential difference between a finite 

and an infinite number of fi. In the case of an infinite number of their derivatives 

grow with i and relations between first and second derivatives become crucial. 

2. Hyperbolicity and geometric conditions 

Consider a countable collection £ = {E1^E2-)..., } of full height closed curvilinear 

rectangles in Q. Assume that each Ei lies inside a domain of definition of a C2 

diffeomorphism fi which maps Ei onto its image Si C Q. We assume each Ei connects 

the top and the bot tom of Q. Thus each Ei is bounded from above and from below 

by two subintervals of the line segments 

{(x,y) : y = 1, 0 < x < 1} and {(x,y) :y = 0y0<x<l}. 

We assume that the left and right boundaries of Ei are graphs of smooth functions 

x^(y) with \dx^/dy\ < a where a is a real number satisfying 0 < a < 1. We further 

assume that the images fi(Ei) — Si are narrow strips connecting the left and right 
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ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 105 

sides of Q and that they are bounded on the left and right by the two subintervals of 

the line segments 

{(x,y) : x = 0, 0 < y < 1} and {(x,y) : x = 1, 0 < y < 1} 

and above and below by the graphs of smooth functions Yl{X), \dY^/dX\ < a. We 

will see later that the upper bounds on derivatives \dx^ jdy\ < a and |<iy W/dX\ < a 

follow from hyperbolicity conditions that we formulate below. 

We call the E^s posts, the strips, and we say the E[s are full height in Q while 

the S^s are full width in Q. 

For z e Q, let £z be the horizontal line through z. We define 

6z(Ei) = d i a m ( 4 n £7»), <̂ ,max = m a x ^ ( ^ ) , <5i)min = min6z(Ei). 
zeQ zEQ 

We assume the following geometric conditions 

G l . int Ei H int Ej = 0 for i ^ j . 
G2. mes(Q \ U« int Ei) — 0 where mes stands for Lebesgue measure, 
G3. — YLi ,̂raax log 5z,min < OO. 

We emphasize that the strips Si can intersect in an arbitrary fashion, differently 

from condition G3 in ([8]). 

In the standard coordinate system for a map F : (x,y) —» (Fi {x, y), F2(x, y)) we 

use DF(x,y) to denote the differential of F at some point (xyy) and FjXj Fjy, Fjxx, 

Fjxy, etc., for partial derivatives of Fj, j = 1,2 . 

Let J F ( Z ) = \Flx(z)F2y(z) — Fly{z)F2x(z)\ be the absolute value of the Jacobian 

determinant of F at z. 

Hyperbolicity conditions, — There exist constants 0 < a < 1 and K0 > 1 such that 

for each i the map 

F(z) = fi(z) for z e Ei 

satisfies 

HI . F2x(z) +a F2y(z)\+a2 Fly(z)\<a\Flx(z)\ 

H2. Flx(z)\ - a Fly(z) > K0. 

H3. \Fly{z)\ +<x\F2y{z)\ +a2\F2x(z)\ < a\Flx(z)\ 

H4. Flx(z)\- a F2x(z) > JF{z)K0. 

For a real number 0 < a < 1, we define the cones 

= { ( f i , t * ) : h | < a | t ; i | } 

Ka = {(vi,V2) : | v i | < a\v2\} 

and the corresponding cone fields K%(z), K^(z) in the tangent spaces at points z G R2. 

Unless otherwise stated, we use the max norm on R2, | ( ^ i , ^ 2 ) | = max( |v i | , \v2\). 

The following simple proposition relates conditions H1-H4 above with the usual 

definition of hyperbolicity in terms of cone conditions. It shows that conditions HI 
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106 M. JAKOBSON & S. NEWHOUSE 

and H2 imply that the K% cone is mapped into itself by DF and expanded by a factor 

no smaller than K Q while H3 and H4 imply that the K^ cone is mapped into itself by 

DF~X and expanded by a factor no smaller than K Q . 

Proposition 2.1. — Under conditions H1-H4 above, we have 

(2) DF{K%) Ç Kl 

(3) veK£ \DFv\ > K0\v\ 

(4) DF-\K'a) Ç Kl 

(5) veKZ \DF-Xv\ > K0\v\ 

Proof. — HI implies (2): 

Let v = (vi,v2) G K%. Then, \v\ = \v± \ since a < 1 and \v2\ < a\v±\. 

Write DF(vuv2) = (FlxV! + Flyv2,F2xv1 + F2yv2) = (ui,tz2). 

Then, using HI , we have 

\v>2\ = \F2xV1 + F22/v21 

< \F2xl\v! I + |F22 / | a | ^ | 

< | ^ i | ( |F2x | + |F2y|a) 

< | v i | ( a | F i x | - \Fly\a2) 

< a\FlxV! + F i„v2 | 

= a | u i I 

proving (2) . 
H2 implies (3) : 
Now, let v = (vi,v2) be a unit vector in K™, so that \v\ = Ĵ i | = 1 and \v2 \ < a. 

Using H2 and the fact that DF(v) G K%, we have 

\DF(v)\ = \Ul\ 

= \Flxvx + Flyv2\ 

> \Flx\-a\Fly\ 

> K0 

which is (3) . 

The proofs that H3 and H4 imply (4) and (5) are similar using the fact that 

DF-i = ±(F*y ~Fiy) 
Jz \—F2x Fix J 

This completes our proof of Proposition 2.1. • 

Remark. — In ([8]) different hyperolicity conditions were assumed which implied the 

invariance of cones and uniform expansion with respect to the sum norm \v\ — \v\ \ + 

Iv21 (see [3] and [7] for related hyperbolicity conditions). The methods here can be 

adapted to work under the assumptions of ([8]). 
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The map 

F(z) = fi(z) for z € intEi 

is defined almost everywhere on Q. Let Q0 = \JiintEi, and, define Qn,™ > 0, 

inductively by Qn = Q0 D F - 1 Q n _ i . Let Q = Hn>o be the set of points whose 

forward orbits always stay in \Ji int Ei. Then, Q has full Lebesgue measure in Q, and 

F maps Q into itself. 

The hyperbolicity conditions H1-H4 imply the estimates on the derivatives of the 

boundary curves of Ei and Si which we described earlier. They also imply that any 

intersection fiEi n Ej is full width in Ej. Further, Ey = ¿5* n f^Ej is a full height 

subpost of Ei and Sij = fjfiEij is a full width substrip in Q. 

Given a finite string i0 . . . i n _ i , indexed by non-negative integers, we define induc

tively 

Ei0,,.in_1 = Ei0 n / io Ei1i2mtmin_1. 

Then, each set Ei0...in_1 is a full height subpost of Eio. 

Analogously, for a string i-n+i . . . ¿0 indexed by non-positive integers, we define. 

Si_n+1...i0 = fi0(Si_n+1,.,i_1 n Ei0) 

and get that Si_n+1,.,i0 is a full width strip in Q. It is easy to see that Si_n+1..,i0 — 

(fi0 0 fi-i 0 * • * 0 / » _ „ + ! . . ¿ 0 ) and that Z"1 ..z0) is a full-width strip in 

Eio. 

For infinite strings, we have the following Proposition. 

Proposition 2.2. — Any C1 map F satisfying the above geometric conditions Gl-GS 

and hyperbolicity conditions H1-H4 has a "topological attractor" 

A = U f l 5 * - * - * . -
...i-n+i.2_izo A;>0 

The infinite intersections HfeLo Si-k...i0 define C1 curves 7 = y(x)7 \dyjdx\ < a which 

are the unstable manifolds for the points of the attractor. The infinite intersections 

H/feLo *̂o...*fe define C1 curves x{y), \dx/dy\ < a which are the stable manifolds for 

the points of the attractor. 

Proposition 2.2 is a well known fact in hyperbolic theory. For example it follows 

from Theorem 1 in [3]. See also [10]. 

Remark 2.3. — The distortion condition D l and distortion estimates below imply 

that if our maps fi are C2, then the unstable manifolds are actually C2. Similar 

conditions on the inverses of fi imply that the stable manifolds are C2. There are 

analogous conditions (see section 6) to guarantee that the invariant manifolds are Cr 

for r > 2. 
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Remark 2.4. — The union of the stable manifolds contains the above set Q which 

has full measure in Q. The trajectories of all points in Q converge to A. That is the 

reason to call A a topological attractor, although F is not typically a well-defined 

mapping on all of A. However the convergence of Birkhoff averages to the unique 

SRB measure is a much stronger property. Condition D l is natural in this context 

and may be necessary for the existence of the SRB measure. At present, we need to 

assume condition G3. This is used to prove absolute continuity of the stable foliation 

as in Section 10. It also implies that our SRB measure has finite entropy. We do not 

know if condition G3 is actually necessary for our results. 

3. Distortion conditions and the main theorem 

As we have a countable number of domains the derivatives of fi grow. We will need 

to formulate certain assumptions on the second derivatives. Unless otherwise stated, 

we will use the norm = m a x ( | v i | , |^2|) on vectors v = ( v i , ^ ) , and the associated 

distance function d((x,y), (#1,2/1)) = max( |x — x\ |, \y — y\ |). 

As above, for a point z € Q, let lz denote the horizontal line through z, and if 

E C Q, let SZ(E) denote the diameter of the horizontal section lz n E. We call SZ(E) 

the z — width of E. 

In given coordinate systems we write fi(x,y) — {fn{x,y),fi2(x,y)). We use 

fijx, fijy, fijxx, fijxy, etc. for partial derivatives of fij,j = 1,2. 

We define 

l ^ / i W | = . max J W * ) | . 
j=l,2,(k,l) = (x,x),(x,y),(y,y) 

Next we formulate distortion conditions. These will be used to control the fluc

tuation of the derivatives of iterates of F along vectors in as in Lemma 7.1 and 

Proposition 8.1 below. 

Suppose there is a constant Co > 0 such that the following distortion condition 

holds 

D l sup 
z£Ei,i>l 

D2fi(z)\ 

filx(z) 
5z(Ei) < C0. 

Theorem 3.1. — Let F be a piecewise smooth mapping as above satisfying the ge

ometric conditions G1-G3, the hyperbolicity conditions H1-H4, and the distortion 

condition Dl. 

Then, F has an SRB measure \i whose basin has full Lebesgue measure in Q. 

Moreover, the natural extension of the system (F, 11) is measure-theoretically isomor

phic to a Bernoulli shift, F has finite entropy with respect to the measure fi, and we 

have the formula 

(6) K{F) = lim 
j=l,2,(k,l 

1 
log DFn(z)ù^$\ 
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where the latter limit exists for Lebesgue almost all z and is independent of such z. 

Remark 3.2. — Formula (6) says that the entropy can actually be computed by taking 

the logarithmic growth rate of the norms of DFn(z) for almost all z. It is actually 

true that if v is any unit vector in the K% cone in the tangent space to such a z, then 

(7) 
hJF) = 

lim — log 
n—>oo fi 

DFn(z){v)\ 

This last expression can easily be implemented numerically. 

Remark 3.3. — If we assume that the interiors of the strips Si are disjoint, then (F, /i) 

itself is isomorphic to a Bernoulli shift, and the entropy formula 

hJF) = ' log\DuF\d/Lc 

holds where DuF(z) is the norm of the derivative of F in the unstable direction at z. 

Acknowledgement. — We wish to thank Francois Ledrappier and Dan Rudolph for 

useful conversations during the preparation of this paper. 

4. Some estimates of partial derivatives 

We will need to use the Mean Value Theorem for various partial derivatives of the 

mappings fi at points near the domain Ei. Since the Ei are not necessarily convex 

subsets of R2 , it will be useful to have our maps fi extended to neighborhoods Si of 

Ei which contain {Jz£Ei ECs(z)(z) where C is a fixed positive constant and BC5(Z){Z) 

denotes the ball about z of radius C5(z). Using the proof of the Whitney extension 

theorem in [1] it is possible to show that there is an extension fi of fi to such a 

neighborhood which satisfies the same properties H1-H4, D l , with possibly different 

constants. We will assume henceforth that our maps fi have such extensions. 

We collect here some estimates which follow from our assumptions. 

Let f(x,y) = (fi(x.y), f2(x,y)) be one of our maps fi on Ei. 

Lemma 4.1. — For z € Ei, we have the estimates 

(8) 
\hy(z)\ 
hy{z) 

^ù$^$ 

(9) 
/ 2 x 0 ) 

flx(z) 
ù^ù$ 

(10) 
hy{z) 

/ ! * ( * ) I 
< 

1 
$ù^ù + a2 

Proof. — We have 

Dfz -
fix fly 

fix fly 
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110 M. JAKOBSON Sz S. NEWHOUSE 

and 

Df^ ( Ç ) 1^ 
Jz 

fly -fly 
-fix fix . 

where Jz = fixf2y - fixfiv 
Using Dfz ( I ) e K% and Dfjl ( \ ) e immediately gives 

fix 
fix 

< a \hv\ 
fix 

< a. 

Now, we know that \Df^ ( Ç ) | > K Q in the max norm, so 
1 

Jz 
m a x ( | / l y | , \fix\) > 

Ko 
Hence, either |J*|lfo < \fiy\ or |J^|i^o < \fix\-
The first case gives 

I fix fly I fly fix )K0 < \fiy 
or 

fly 
\flx 

< 
Df^ 

Ko\flx\ 

fly fix 

\flx\ 

< a 
K0\fix\ 

+ a2 

< 
1 

Df^ 
Df^ 

Analogously, in the second case, 

\hxhy\ - \hyhx\)KQ < \ flx\ 

or 

1/2,1 
\flx\ 

< 
1 

Ko\fix\ 
+ a2 

< 
1 

K2 
+-a2 

Thus, in any case, we have 

1/2* 
fix 

< 
1 

Df^ 
Df^ ( Ç 

We have assumed that our maps fi have extensions to neighborhoods S% of Ei with 
the following properties. 

The map fi takes Ei onto a set Si C R2 such that 

(11) Bc6x(Ei)(z) C Ei for z e Ei 
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and 

(12) Si satisfies H1-H4, D l on Si 

Any C1 curve j(t) such that Y(t) E K% for all t will be called a K% curve. Similarly, 

a curve is a C1 curve 7(2) for which Y(t) E for all t. In this paper, all of 

our curves will actually be of class C2, and this will be assumed without further 

mention. 

Lemma 4.2. — Let Si have an extension to the neighborhood £i as above. Then, there 

is a constant C± > 0 independent of i such that iS z and w lie on a K% curve in Si, 

then 

\fiix(z)\ 

\fi\x(™)\ 
< exp I C\ w\ 

Sz(Ei) 

Proof. — Write / = Si-

Since \DSz ( o ) I = max( | / ia.(^) | , |/2x(^)|) > K0 and |/2x(^)| < a\S\x{z)\, we know 

that 

\Six(z)\ = \DSz(^j\>K0 > 1 

so, for w near z, both Six(z) and Six(w) have the same sign. We assume this sign is 

positive (replace / by — / otherwise). 

Since / extends to the neighborhood £i, and, for some constant C > 0, this last 

set contains the balls of radius CSz(Ei) > 0 about points z in Ei, the mean value 

theorem gives us that if \z — w\ < CSz(Ei), then there is a r on the line segment 

joining z and w such that 

I Slxxij) 
l o g / l a - W - log / ia . (w) | < 

J1XX\T) 

flx(T) 
z — w 4-

flxy(T) 

flx(r) \z — w\a 

or 

\flx(z)Df^\ 

\flx(w)\ 
< exp (1 + a)C0 \z — w\ 

Sr(Ei) 

using the distortion estimate D l . 

Let z = (#0,2/0)) le^ zr — (%nyr) be the point of intersection of the horizontal line 

£z with the right boundary curve of Ei, and let zi = (x£, yi) be the point of intersection 

of the horizontal line tz with the left boundary curve of Ei. Since w lies on a K% 

curve containing z, the line £° through z and r has equation y — y0 = f3{x — XQ) 

for some (3 with | /? | < a. Also, since the right boundary curve of Ei through zr 

is a — curve, it is contained between the lines £~ : x — xr = —a(y — yr) and 

: x — xr = o:(y — 2/r). Similar statements hold for the left boundary curve of Ei and 
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112 M. JAKOBSON & S. NEWHOUSE 

the lines lt : x — xi = —a(y — yt) and t[ : x — xi = a(y — yi). Using the intersections 

of the lines £°, £^r, £^, an elementary argument gives that 

1 < 1 < 6T(Ej) 1 1 
1 + a2 ~ 1 + \0\a ~ Sz(Ei) - 1 - \P\OL ~ 1 - a2 * 

This gives the desired estimate for z,w with \z — w\ < CSz(Ei). 

T o get the general estimate of the Lemma, we simply find a sequence zo = z, 

z\, • • -Zj = w with Zk E Ei, \zk — Zk+i\ < C5z(Ei), each Zk on the same curve, 

and j dependent only on a, C , and 6z(Ei). Using the estimate for each pair ¿¿,£¿+1 

then easily gives us the general estimate to complete the proof of the Lemma. • 

In some of our arguments below, it will simplify matters if we can take the constant 

K0 in (3) and (5) to be large. The next lemma shows that this can be arranged by 

replacing F by a fixed finite power Fl with t > 0. 

Lemma 4.3. — Suppose the maps fi satisfy (2), (3), (4), (5), and Dl on the neigh

borhoods 

( J BcSz(Ei)(z),Df^ ( Ç ) 
zEEi 

and let t > 0 be a positive integer. 

Then there are positive constants Co = Co(t), C2 = C<z{t) such that the maps 

fit-! 0 '' * 0 fi0 satisfy (2), (3), (4), and (5) with Ko replaced by K Q and Dl with Co 

replaced by Co(t) on the neighborhoods 

z€Eio...it_1 
BC*{t)6,(Ei0...it_1)(z)Df^Ç ) 

Proof. — The proof is by induction on the number of elements in the composit ion. 

We assume that it holds for compositions of length t and prove it for those of length 

t + 1. 

Let Bcu0...it) denote the set 

zeEiQ...it 
BC2{t+l)ôz{Ei0..At){z)-D (Ç ) 

From Lemma 4.2, we can choose a constant C<i{t 4- 1) E (0 ,C2(£)) ^ (0 ,1 ) so that 

if w E BC(i0...it), then fio(w) E Bc{il„At). 

It is clear that the maps fito--. o fio satisfy (2) , (3) , (4 ) , and (5) with K 0 replaced 

by K Q + 1 , so we only need to be concerned with the statement regarding D l . 

If E is a subset of Q, z E E, and f(x,y) =Df^ ( Ç ) y), fi(x, y)), we set 

ez(f,E) = max 
¿=1,2 

D2fi(z) 

AM) 
Df^ ( Ç ) 
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Let / = fit o . •. o g = /io, h = / o g, Ef = E^...^, Eg = £7»0, £ A = Eio.,mit, 

and, for 2? G write A / = 5gz(Ef), Ag = Sz(Eg), and A / i = 6z(Eh). Also, write 

©(/) - egz(f,Ef), S(g) = ®z{g,Eg), 0( /z) = 0 , ( / i , ^ ) . 

Let us first estimate the quotient 

gix(w) 
gix(w) 

for any w G £z H £¿0 • 

Note that and piar(^) have the same sign. We assume it is positive. The 

argument when it is negative is similar. 

Letting C\ be the constant in Lemma 4.2, if w,w G £z fi 5i0, we have 

(13) 
9ix(w) 

\9ix(w)\ 
< exp(2Ci) 

We can connect w to z in £z n ^ 0 by a chain of points w — WQ , w\,... Wk = z where 

\wi-wi+1\ < C2(l)6z(Eg), and k < 3 / C 2 ( l ) . 

Hence, putting £ = exp l&Cx/C^iX))^ we have 

(14) 
0i* M 

9ix(z) 
< 

0<i<k 

9ix(u>i) 

\9ix{wi+i) 
gix( 

Interchanging z,w in the above argument gives | p i x ( ^ ) | / | ^ i a : ( ^ ) | > C 1- From 

these two inequalities we get, for any W,T E £z n £i0, 

r 2 < 
9ix{r) 

9ix(z) 

\9ix(z)\ 

9ix(w) 

ù^$ 
9ix(r) 

9IX(VJ) 

< c 2 

By the Chain Rule for partial derivatives we have the following formulas for ¿ = 1,2 

(15) hitB — fiX9ix îiy9ixi hiy — fix9iy fiy9iy 

(16) ^ixx fixx9lx fixy Qlx 9lx f iyx 9\x 92.x J'iyy 9 2x fix9lxx ~^~fiy92xx 

( l ^ ) ^ixy fi x x 91 y 91 x fixy9ly9\x fiyx 9ly 9lx Jiyy9ly9lx fix9lxy fiy9"2.xy 

(18) hiyy = fixxgly + fixy9iy9\y + +fiyx9\y9<2y + fiyy92y + fix9iyy + fiy9iyy 

Let w G Bc(i0...it)- Except where otherwise mentioned, we compute the partial 

derivatives below at w. 

From (15) and Lemma 4.1, we get 

(19) hix \ > \hx9ix\Q ~ o?) 
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From (16), we have, for ¿ = 1,2, 

gix(w) 

gix(w) 
Ah < ( i - a 2 ) - x gix(w)gix(w) , Aft 

A / 
+ 28( / ) |Sa . («;) | 

Aft 

A / 

+ e ( / ) | f l a . ( « ; ) 
Aft 

A / 
+ 30(5) 

Aft 

A<?J 

Since the g-image of a horizontal line is a K% curve and the boundaries of Ef are 

K£ curves, we can use the mean value theorem and a simple geometric estimate to 

get a constant Cs(a) > 0 such that 

glx(r)\Ah < C3(a)Af 

for some point r in £z n Eh. 

Putting all these estimates together gives 

<C4(a)(0 

<C4(a)(0 
Aft < C 4 ( a ) ( 0 ( / ) C 2 + ©(<?)) 

Similar estimates can be given for the quantities 

<C4(a)(0 

<C4(a)(0 
Ah 

<C4(a)(0 

<C4(a)(0 
Ah 

Thus, we simply define Co(t 4-1) so that it is larger than 64(a)(Co(£)C2 + Co) and we 
have proved Lemma 4.3. • 

5. Families of Fiber contractions 

Fiber contraction maps were defined in [7] to provide a tool in the analysis of 

smoothness of stable and unstable manifolds. We collect here certain facts about 

parametrized families of fiber contraction maps and related concepts. 

Let ( X , d i ) , ( y , ¿2) be complete metric spaces and give X x Y the metric 

<C4(a)(0<C4(a)(0 = max (d1(x,x'),d2(y,y')). 

Let 7ri : X x Y —)• X, TT2 : X x Y —> Y be the natural projections. 

A pair of maps (F, / ) is called a fiber contraction on X x Y if the following properties 

hold. 

(1) / : X —> X and F : X x Y —> X x Y are continuous maps. 

(2) 7TlF = /7ri. 
(3) There is a constant 0 < K < 1 such that for x € X,y,y' € Y, we have 

d(F(x,y),F(x,y')) <Kd2(y,y'). 

We call / the base map and F the total map of the fiber contraction (F, / ) . 

Let / be a continuous self-map of the complete metric space X. We say the a point 

XQ G X is an attracting fixed point of / if for every x G X , the sequence of iterates 
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x, f(x), f2{x),... converges to ^ a s n - ) oo . Clearly if such an XQ exists, it must be 
the unique fixed point of / . 

Let A be a topological space and consider a family {fx}xeA of self-maps of the 
complete metric space X . We say that the family is continuous if the map (A ,# ) —> 
fx(x) from A x X to X is continuous. 

A family {fx} of self-maps of X is called a uniform family of contractions if 

(1) there is a constant 0 < K < 1 such that, for all \,x,xf, 

d(fxxj<C4(a)(0xx')Kd(x,x'). 

(2) the family {fx} is continuous. 

We say that a family {(Fx, fx)} of fiber contractions is a uniform family of fiber 
contractions if 

(1) the fiber Lipschitz constants are uniformly less than 1. That is, there is a 
constant 0 < K < 1 such that for any X,x,y,y' 

d(Fx(x,y)<C4,Fx{x,y'))< d2(y,y') 

(2) the families {Fx} and {fx} are continuous. 

The following Proposition is standard (see e.g. [6]) and its proof will be omitted. 

Proposition 5.7. — If {fx} is a uniform family of contractions of the complete metric 
space Xj and xx is the fixed point of fx, then the family {xx} depends continuously 
on \ . 

Proposition 5.2. — Suppose {(Fx, fx)} is a uniform family of fiber contractions whose 
base maps {fx} have attracting fixed points {xx} depending continuously on X. Then, 
each of the maps Fx has an attracting fixed point of the form (xx,yx) E X x Y and 
the family {(x\,y\)} depends continuously on X. 

Proof. — Letting xx be the fixed point of the base map / A , Hirsch and Pugh prove 
in [7] that Fx has an attracting fixed point of the form (xx,yx) where yx is the fixed 
point of the map F(xx,') on Y. Since xx depends continuously on À, the family 
{F(xx, ')} is family of uniform contractions on Y. Therefore, by Proposition 5.1, the 
fixed points {yx} depend continuously on A. • 

The following corollary is proved by induction using Propositions 5.1 and 5.2. 

Corollary 5.3. — Suppose X \ x X 2 x • • • x X N is a sequence of complete metric spaces 
and {Fx,i}<, 1 < i < N is a sequence of maps with the following properties. 

(1) {Fx,i} is a uniform family of contractions on X \ . 
(2) For 2 < i < N, {Fx,i,Fx,i-i} is a uniform family of fiber contractions on 

r i i< j< i X3' 
Then, each of the families {Fx,i} has an attracting family of fixed points {xx,i} 

which depends continuously on X. 
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6. Invariant Manifolds 

We consider the collection £ = {Ei,E2,... } of rectangles as above and the sequence 

( / 1 5 / 2 ? • • • ) of C2 diffeomorphisms with fi(Ei) = Si satisfying G 1 - G 3 , H1-H4, and 

D l . From Proposition 2.1, using the max norm on R2, we have, for each z, 

(20) Dfi(KZ) ÇK™ù$^$ 

(21) v G K™ => I D / ^ I > K o M 

(22) v G K™ => IDDfi(KZ) Ç K™/^I 

(23) 
Dfi(KZ) Ç K™Dfi(KZ) Ç K™Dfi(KZ) Ç 

For each finite sequence i-n+i . . . ¿0 • •• *n-i we have defined, in Section 2, the sets 

Ei0_.in_1, *S'i_ri+1 ...40. 
Given a non-positive itinerary i = ( . . . z_nz_n+i . . . ¿0), we consider the set W™ = 

Ei0 n Hn>o ^i-n-.-i-i • Clearly, TV" is a closed, connected full-width subset of E{0. Its 

image FW™ = fi0W™ is the set rin>o^-n-*o) a full-width connected subset of Q. 

The next result shows that FW™ is a C2 curve which depends continuously on i. 

For convenience, we let D°ip = ^ for a function ip. 

Theorem 6.1. — There is a constant K > 0 such that for each non-positive itinerary 

i = (. . . i _n . . . ¿0), the set FW™ is the graph of a C2 function : I —> I such that, 

for z G I, 

(24) Dgi(z)\ < a 

and 

(25) \D29i{z)\ <K. 

Further, given e > 0, there is a positive integer N > 0 such that ifi = (... i-n .. .io) 

and j = ( . . .j-n . • - jo) &re non-positive itineraries with i-t = j-e for 0 < I < N, 

then 

(26) D k 9 i ( z ) - D k 9 j ( z ) \ < e D f i ( 

for z G I and 0 < k < 2. 

Remark 6.2. — The proof of Theorem 6.1 uses graph transform techniques as in [7], 

[12]. However, since our maps have unbounded derivatives, and the off-diagonal terms 

of our derivatives are not small, certain modifications of the techniques in [7], [12] 

are necessary. 

It can be shown that if fi is Cr for r > 2, then the curves W™ are Cr and depend 

continuously on i in the Cr sense provided the fi satisfy the r-th order distortion 
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condition 

sup 
ze£i, i>i 

2<k<r 

\Dkfi(z)\ 

filx(z) k-1 
-5z(£i) <C0 

where Dkfi(z) is the supremum of the £-th order partial derivatives of fi at z for 

£<k. 

We proceed toward the proof of Theorem 6.1. 

Notice that if we replace F = {fi} by a positive power Ff,t > 0, and £ by the 

collection {i^o...2t_i}5 we may assume that KQ is as large as we wish in (21), (23). 

In the present section we will take K0 > 4. Of course this changes the distortion 

constant Co in D l to some C\ = C±(f,t) but this will not cause us difficulties. 

Let N be the set of positive integers, and let S = N z be the space of doubly 

infinite sequences i = (..Dfi(KZ) Ç K ™ . . . ) of elements of N with the product topology. 

Let a : S —» S be the usual left shift automorphism. 

For an element i G S, let i + = (iQi\ . . . ) be its non-negative part, and let 

i~ = (. ..i-iio) be its non-positive part. Set W?+ = C\n>Q^i0...in and WVL — 

Ei0 n Hn>0 Si-n-~i-i ' 
It follows from (20)- (23) that the sets Wf+, WVL intersect in a unique point and 

there is a continuous map 7r : X —> Q defined by 

{TT((. . .i-xioh ...))} = Wf+ n wv_ 

Moreover, for each i G X there is a splitting T ^ ^ R 2 = E™^ 0 i £ * ^ which depends 

continuously on i and is such that Dfio maps E™^ to E™^aij and E%^ to E^aiy The 

arguments for these facts are analogous to standard arguments in hyperbolic theory 

(e.g., to prove that C1 perturbations of the Smale horseshoe diffeomorphism have a 

hyperbolic non-wandering set) and will not be given here. 

Thus, the matrix of DF is diagonal with respect to the splitting Eu 0 Es on the 

image of n. 

For z = 7r(i) and v G T^R2, we write v = (vi,v2) G E% 0 Esz and define \v\ — 

\v\z — max( | ^ i | , |^21). This norm depends continuously on % G X. 

We will identify all tangent spaces with the space R2 itself by standard translations. 

It will be convenient to use the subundles Eu, Es to define affine local coordinates 

near points z, fiZ in which Dfiz becomes diagonal and in which Dfiw is nearly diag

onal for \w — z\ no larger than a fixed multiple of 8z(Ei). Here i = i0 with z = 7r(i). 

Toward this end, let Az be the affine automorphism of R2 such that 

(1) Az(z)=z. 

(2) DAza) = (a\) eE™. 

(3)DAZDfi(KZ)Ç™(={b{)eE'. 

Since Eu Ç K™ and Esz C we have \az \ < a, \bz \ < a. 
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Let / = fi — A^zfiAz be the local representative of fi using the AfiZJAz coordi

nates. Note that / is defined on the affine image A~x{Si) of Si. 

Then the matrix Dfz is diagonal. For w near z in Az(Si), let 

Dfw = 
fhx{w) hy{w) 

J2x(w) f2y(w)j 

and set 

£12 O ) = 

Dfi(KZ) 

flx(w) 
£21 (w) = 

f2x(w) 

\flx(w) 
£22(w) = 

\f2y(w) 

\flx(w)\ 

We wish to estimate Sij(w) for w near z in Si. It follows from the definitions that 

Sij(z) = 0J^ j . Also, (21) and (23) imply e22(z) < l/K$ < 1/16 since K0 > 4. 

Lemma 6.3. — There are constants C2 € ( 0 , 1 ) , C3 > 0 , 6 4 > 0? such that for z E 

Ei,w e A~x{Si), if \w - z\ < C28z{Ei), then 

(27) €ij(w) -Sij(z) < C3 
z — w 

Sz(Ei) 

and 

(28) C4 
1 

Dfi(KZ 
< \flx(w)\ Dfi(KZ 

1 

Sz(Ei) 

Proof. — To begin with, let us choose C2 € (0 ,1) so that if \w — z\ < C-z5z{Ei), then 

w € £i (~1 A^^i) and / satisfies D l for some (possibly different) constant Co- Since 

Aj.\ and Az are uniformly bounded, it is possible to choose Co and C2 independent 

of z € Ei and i > 1. 

We next show that there are constants C5 > 0, C% > 0 such that for z € Ei and 

\z-w\ < C5Sz(Ei), 

(29) Cë1 < 
\flx(w) 

\flx(w)\ 
< C6. 

Since 

Dfi(K 
1/ 
2 

Dfi(KZ) 
Ç K™ 
Dfi(KZ 

= DAj^DfAzWDAz 
T 

,0, 

= 
1 

Jfz 

1 -bfz 
-afz 1 

'fix fly 

Kflx fly, 

' 1 bz 
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where Jfz = 1 — afzbfz and the partial derivatives of / i , / 2 are evaluated at Az(w), 

we have 

Jfzfix(w) = fix + fiyaz — bfzfix — bfzf2yaz 

Jfzfiy(w) = fixbz + fiy - bfzf2xbz — bfzf2y 

Jfzfixiw) — —afzfix — cbfzfiyaz + f2x + f2yaz 

Jfzf2y(w) = -afzfixbz - dfzfiy + f2xbz + f2y 

Using the first equation above, the fact that | Jfz\ > 1 — a2, and the estimates (8), 

(9), (10) at Az(w) we get 

Dfi(KZ) <C\flx(Az{w))1 — bfza 
—df$\ 

for some constant C. But, from Lemma 4.2 we have | / ia ; (^(^) ) | is bounded above 

by const | / i x ( ^ ) | , so this gives the lower bound in (29). 
For the upper bound, we will obtain the two estimates 

(30) 
Dfi(KZ) Ç K™w 

Dfw 
\0y 

and 

(31) \Dfw 
1 

0 
C\flx(wù$^$)\ 

for some Constant C > 0. 

To prove (30), we note first note that the vector v = ( ̂  b{ ) ( J ) is in the cone K ™ . 
Since D/AZ preserves this cone, we have that D/AZ(V) is a Constant multiple of the 

vector ( ì ) for some a with |a| < a. 
Thus, 

Dfw 
1 
2 

1 — bfza 
—dfz + a 

is a constant multiple of the vector 

1 -bfz 

~afz 1 

T = 1 — bfza 

—dfz + a 

This gives 

\f2x(w)\ 

hx(w)\ 
< -

2a 

. — a2 
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and, hence, 

1 — bfza 
—dfz + a 
^m^$m$ 

= max ( | / i * 0 ) | , | /2x (w) | ) 

< max 1, 
2a 

1 - a2 
\hx(w)\ 

and (30) follows. 

Next we go to the proof of (31). 

bince the matrix i bfz 
a,fz 1 

and its inverse are uniformly bounded as are Jfz and 

its inverse, we have 

Dfw 
1 

0 
> C \hx(w)\ 

1 

az 

But, 

DfAz(w) 
1 

az 
^= A1 

A* 

where Ax = f\x + azfly. So, 

D/AZ(W) 
( 1 > fix -a2 fix 

> ( l - a 2 ) | / i J \ h x ( w ) \ 
\hx(w)\\hx(w)\\hx(w)\ 
\hx(w)\hx(w)\\\hx(w)\ 
> C\flx(w)\ 

This completes the proof of (29). 

Next, we give the proof of the estimate 

(32) £l2(w) - £ 1 2 0 0 I < C 3 
z — w 

Sz(Ei) 

The other estimates for (27) are similar. 

Since fiy(z) = 0, we need to estimate \fiy{w)/f\x(w)\. 

But, 

Jfzfiy(w) = fix{Azw)bz + fly(Az\hx(w)\w)zw)bz - bfzf2y(Azw), 

so, 

fiy(w)\ < C max \fijk(r)\\Az{w) - z\ 
i,jyk,T 

Now, we know that the quantities 5z(Ei)),\hx(w)\\fix(w)\/\w)\\fix(w)\ are bounded 

above and below, and, by Lemma (4.2), the same holds for \f\x{r)\ /\fix{w)\. This 

gives (32) and (27). 
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For (28), notice that f(£z n Ei) is a full-width K% curve in Q. In the max metric, 
it has unit length. By the Mean Value Theorem there is a r G £z n E{ such that 

Df(r) 
0 

Sz(Ei) = 1 

But, 

so, 

Df{r) ( M = тах(|/1ж(т)| , | /2а;(т)|) 

= | Л * ( г ) | 

\fix(r)\ = Sz(Ei)' 

Since, | /ix(^)[/|/ia;(^)| is bounded above and below, (28) follows. 
This completes the proof of Lemma 6.3. • 

For e > 0, let Be(z) = {w G R2 : \w—z\z < s } . Here \w—z\z refers to the max norm 
in the image of the affine coordinate map Az. The set B£(z) is then a parallelogram 

centered at z with sides parallel to E™,ESZ. Write B£(z) = B^(z) xBs£(z) where B£(z) 

is a line segment centered at z parallel to El1, and B§(z) is a line segment centered 

at z parallel to Esz. A full-width curve of slope less than 1 in B£(z) is the graph of a 

function 4> : B™(z) Bs£(z) in which <f> is Lipschitz with Lipschitz constant less than 

1. 

With z = 7r(i), let ZQ = z, Zj = n(aH) for j < 0. 

Our next goal, as is usual in invariant manifold theory, is to find a sequence of 

numbers Ej > 0 such that the neighborhoods Bj = B£j(zj) have the following prop

erties. 

B l If Zj G E^, then Bj C £tj. 

B2 fij (Bj) overflows Bj+i in the sense that if 7 is a full-width curve of slope less 

than 1 in Bj passing through Zj , then . (7) n Bj+± is a full-width curve of 

slope less than 1 in Bj+\ passing through Zj+\. 

Let Ej — C2&Zj(Eij) where C2 is the constant of Lemma 6.3. By Lemma 6.3, 

for \w — Zj\ < Ej, the matrix of Dfi5(w) is hyperbolic with off-diagonal terms small 

compared to This implies that the image /^.7 of a curve 7 as above will 

have slope less than 1 in B£j+1(zjjr\). Letting / = , and using a ~ b to mean 

a/b is bounded above and below, we have length(f^) ~ \ fix(^)\C2SZ^•\Eij) for some 

r G 7. In the proof of Lemma 6.3 we saw that SZj(Eij) ~ l/ |/ia;(Ti)| ~ l / | / i # ( r i ) | 

and | / ia;(r) | ~ | / i x ( ^ ) | ~ |/ia:(Ti)|- It follows that /¿¿7 contains a neighborhood of 

fixed size C7 about fij(zj) in /¿.7. 
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Let 

\hx(w 
Sj if Sj < C7 

C7 iïëj > C7. 

Then, the overflowing property above is satisfied. 

Now fix a non-positive itinerary i = ( . . . i_n . . . i0). We first show that W™ contains 

the graph of a C2 function gi : BQ BQ such that, for all w G BQ 

(33) \D9i(w)\ < 1 

and 

(34) \D2gi(w)\ <K2 

where K2 is independent of i. 

We also will show that the functions gi depend continuously on i. 

Once these things are done, the proof of Theorem 6.1 is completed as follows. 

Let j = ( . . .i-\ioj\j2 . . . ) be a doubly infinite itinerary which agrees with i for 

non-positive indices. Let ZQ = 7r(j). Then there is a k > 0 independent of i,j such 

that fr\ o • • • o fr\ (W?) C B^k. Note that here we use the original maps fi., not 

the affine representatives fi.. 

Thus W™ is the fi_1 o • • • o fik -image of a curve of bounded slope and bounded 

C2 size. Letting Fk = fi_1 o • • o fi_h we have that W™ is the graph of a function 

T(Fk,g) where Fh has bounded distortion and g has bounded CX,C2 sizes. Using 

the formulas (36), (37), and (38) which appear in the second derivative of the graph 

transform function then gives that Y(Fh,g) also has bounded C2 size. The same 

argument then works for T(Fk+1, g) and this gives (25). A similar argument gives the 

continuity statement in Theorem 6.1. 

To get estimate (24) first note that hyperbolicity conditions imply that any vector 

v in the tangent space to a point in W™ which is not in K™ has its backwards iterates 

eventually in and, hence, eventually expanded. Since the tangent vectors to W™ 

are eventually contracted in the past, they must be in K™. 

We now return to the affine representatives fij of the maps fi.. 

To obtain gi satisfying (33), (34), it is convenient to use graph transform techniques 

as in [7], [12]. 

In view of Lemmas 4.3 and 6.3, we may assume that 

(35) K0 > c, 6ij(w) < i , e22 (w) < i 

for w G Bj where c > 0 is arbitrary. In the present section, it suffices to take c > 4. 

In section 8 below, we will take c > 117. 

We define some function spaces. 

Recall that z0 = 7r(i), Zi = Tr{a%i) for i < 0. Let Si — e{7rali), Bf = B™.(zi), 

B? = B°£i{Zi). 
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Let Got be the space of Lipschitz functions g from Bf to Bf with Lipschitz constant 

less than or equal to 1. For such a g, let graph(g) — {(x,y) : y — g{x) for x G Bf}. 

For g1,g2 G Goi, set 

\hx(w)\=* sup 9ix - g2x 

Let Gu be the set of continuous functions H : Bf x R —> R such that for each 

x G S f , the map 

\hx(w)\\hx(w 

is linear of norm no larger than 1. 

Define the metric du on Gu by 

du(Hi, H2) = sup 
»GBJ*,|t;|<l 

|Hi(a?,i;) - H2(x,v) 

Let be the set of continuous functions J : 2?J* x R x R —» R such that for each 

x G B f , the map 

(v,w) —> J{x,v,w) 

is symmetric and bilinear of norm no larger than 7̂ 2 for some constant K 2 to be 

specified later. 

Set 

d2i(Ji, J2) = sup 
x€B?,\v\<l 

Ji (x, v, v) — J2 (x, v, v) 

The spaces (Goi,doi), (Gii,du), (G2i,d2i) are bounded complete metric spaces. 

Let Z ~ = {k < 0 } be the non-positive integers and consider the spaces 

Co = {</>: Z - Goi : <i>% G Goi V i } 

£i ={<(>: Z - Goi : <i>% G Goi Vi} 

Goi : <i>% G Goi Vi}Goi : <i>% G Goi Vi} 

with the metrics 

di(</>,ip) = 

k>0 

^dik(<f)k,ipk) 

where 0, -0 G A ? * = 0 ,1 , 2. 

The spaces are also bounded complete metric spaces. 

Let us recall the graph transform operator [7]. Let / = for some ij, and let 

g e GOJ. Write f(x,y) = (fi(x,y),f2(x,y)), and let ( l , p ) : £V -> fl« x B | be the 

graph map defined by (l,g)x — (x,gx). 

We define 

r ( / , » ) = / 2 ° ( l , 0 ) ° [ / 1 o ( l , 0 ) ] - 1 . 
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It follows from our hyperbolicity assumptions the F(f,g) is a well-defined mapping 

from goj to Goj+i for j < - 1 . 

Returning now to the spaces C\ of sequences of functions, let us use the notation 

9 = {9k)k<o, for elements of C Q , H — (Hk)k<o, for elements of C±, and J = (Jk)k<o, 

for elements of £ 2 . If 9 = (9k)k<o is a sequence of C 2 functions, we write Dg = 

(Dgk)k<0,D2g = (D2gk)k<0-

We will define continuous maps 

$ o : Co —> Co, 

$ i : Co x d —> Cly 

$2 : Co x d x C2 —> C2, 

51 : Co x C\ —> Co x Ci, 

52 : Co x d x £2 — ^ £0 x £ i x £2 

with the following properties. 

F B I . S i ( f f , i f ) = ( * o ( s ) , * i t e , H ) ) and S2(<?, if , J ) = (*0(ff), * i ( p , H ) , * 2 ( » , H , J ) ) 

for each if, J ) 6 £o x C\ x £2 . 

FB2. If (gk)k<o is a sequence of C2 maps with G QokJ^9k £ , D2gk^ Q2k for all 

fc, then S2(g,Dg,D2g)k = (T(fik_1, # * - i ) , DT(fik_1, gj,^), D2T(fik_1,gk-i)). 

FB3. 4>o is a contraction mapping; i e . , it is Lipschitz with Lipschitz constant less 

than 1. 

FB4. The map S i is a fiber contraction map over $0 in the sense of [7]. 
FB5. The map S2 is a fiber contraction map over Hi. 

Once these properties are established, we proceed as follows. 

Let zo — {xo-iVo) £ ^C*)? le^ 7T22/ ) = y, and let g = (gk)k<o be the sequence of 
constant maps 

po (#) = Vo 

gk-i(x) = 7T2(fi_1 o • • • o / ^ . J - 1 ^ ) . 

for x G B%_±. 

Using the fiber contraction theorem of [7] we have that the sequence S2 Dg, D2g), 

n > 1, converges to a fixed point (fij, i f , J ) of S2. Letting no : Co x C± x C2 ~* Co, 

7Ti : £o x £ i x £2 —>* £ i , 7r2 : £0 x C\ x £2 —>• C2 be the natural projections, the 

definitions give 

7TOS£(0)o = T{fi_x O . . . O , #_n) 

7TiSJte)0 = DTifi^ o . . . o £_n, #_n) 

7r2S£(<7)0 = Z ^ I X / j ^ o • • . o £_w, g_n) 

Since all three of these sequences converge, it follows that 

lim r ( / L x o • • • o fi_n, g_n) = gi 
n-»oo 
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is C2 with Dgi = lim7Ti^2(^)0 and D2gi = l i m ( # ) o - The function gi will be the 

C2 function whose graph is contained in (and hence equals) '. 

Let us now define the maps $i and establish their properties. 

Let f — fi. for some ij and let g be a C2 function such that g G Goj, Dg G 

Gij,D2geG2j> 
Write u(x) = l / i o f u r t ^ 

Then, differentiating T(f,g) = / 2 oGoi : <i>% G Goi Vi}o Q / i o (1,#)J we get 

DY{f,g) = f2x(ux,gux)Du(x) + f2y(ux, gux)Dg(ux)Du(x) 

= f2xDu(x) +i>% G Goi f2yDg(ux)Du(x) 

D2T{f,g) = f2xxDu(x)Du(x) + f2xyDu(i>% G Goix)Dg(Goi : <i>% G Goi Vi}ux)Du(x) + f2yxDu(x)Dg(ux)Du(x) 

+f2yyDg(ux)Dg{ux)Du{x)Goi:<i>%i>%GGoiVi}Du(x2xDzu(x) 

(36) +f2yD2g{ux)Du(x)Du(x) + f2yDg(u2u(x) 

We can compute formulas for D ^ , D2u in terms of / , # by differentiating the formula 

f^u = x twice and solving for DuyD2u. 

We get 

(37) £>u(x) = [/la> (ux,i>% G Goi guxGoi : <i>% G Goi Vi}) + fly (ux, gux)Dg(ux)] 1 

and 

(38) D2u{x) = -Du(x) [flmm(Du(x))2+i>% Goi2flxyDg(ux)Du(x)D 

+f1(Dg(ux))2Du(i>%GGoix)2+ fx(Du)2D2g(ux)] . 

For H G Gij, J G G231 let us write Hx for the map H{x, • ) , for the map J (# , •, • ) . 

Define 

Dx = Dx{u,H)x = [flx(ux,gux) + fly(ux, gux)Hux\ 1 

D2{u,H,J)x = -£>x [flxxD1D1^-2flxyHuxD1D1i>% G Goi 

+fiyyHuxHuxDiDx i>% G Goi+ flyD±Di Jux] 

Ri (/i>% G Goi» ̂ ) * = [ /2 . Goi <i>% G Goi Vi}0^0?) + /2y (ua;, # ^ ) ^ z ] £>i 

R2(f,9,H, J)x = fa„ i>% G Goii>% G Goii>% G Goii>% G Goii 

+ f2yyHuxHuxDiDi + f2xD2 + f^yJUxD\D\ + f2yHuxD2 

Finally, if flf = (gk)k<o e C0,H = (Hk)k<0 G £1 , J = (Jk)k<o € £2 , set 

$0(0)* = Goi : <i>% G Goi ) 

$1 ( # , # ) * = (<&o(fl)fe,i2i(/ifc_i, 0 / b - i , i ? * - i ) ) 

$2(g,Goi<i>%G=Goi: <i>% G Go i (*o ( f f e , RiUih-i9k-i^Hk^1),R2(fik_1i>% G . 
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and define H i , £ 2 as in F B I . 

Then, Si and <&i satisfy properties F B I and FB2 above. 

Let us verify the fiber contraction properties of S i , S2. 

Fiber contraction property of S i . — We first show that for fixed / , g with / = fi. and 

g : —> Bj a given Lipschitz map of Lipschitz constant no larger than 1, i ? i ( / , g, •) 

maps Qij into Gij+i and is a contraction. 

Since the graph of g is in Q, the C° size of T(f,g) is no larger than 1. This, and 

the overflowing property of / on Bj gives that T(f,g) is a map from to Bj^_x. 

Let L i p ( ^ ) be the Lipschitz constant of a map ip. 

As above, let u(x) = [f± o 

Then, 

Lip(u) < 
1 

| / i . | ( l - e i 2 ) 

Using T(f,g) — /2 o (1,0) o [/1 o ( l , p ) ] \ and the fact that Lip(#) < 1, we get 

Lip ( r ( / ,<7) ) < L i p ( / 2 o ( l , p ) ) L i p ( t i ) 

< ( | / a . | + |/ay|)Lip(ti; 

^21 , t22 
1 - S12 1 - S12 
^21 + ^22 

1 - £\2 
< 1 

by (35). Thus, r ( / , ( / ) € £ i , i + i . 
If H, H G Gii, we have 

| J2 i ( / , 0 , fO-J2 i ( / , f l , J / ) | < |(/a, +f2yHux)D1(u,H)-(f^ +f2vHux)D1 (u,H)\ 

i>% G Goii>% G Goii>% G=/5265 

+ ( | / a . | + l/a, I #u* I) !£>! (« ,# ) - #1i>% G Goi 

i>%GGoiGoi1 

+ ( | / a . | + | / 2 J | i ï U x | ) | i ? l ( « , ^ ) i > % G Goi -Ii>% G Goi 

To compute D\{u,if) — D\{u,H) , we use the formula 

l ^ - G ^ l ^ l G r ' l l G ^ l l G x - G a l 

which follows immediately from the formula 

|(j?2 1G?2G?i 1 — (J?2 ^GiG^ * I < (j?2 1 | ^ 2 — G?i I |(J?I * I 

Thus, 

D ^ ^ - D ^ H ^ < \Di(u, H)\\DI(U, i>% G Goi|/ly \\H — H 

£12 < 
| / A J ( l - ^ 1 2 ) 2 ' 

H - H 
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Putting the above inequalities together, and using the fact that \H| < 1, we get 

-ft'4eiPo(Vra0...a„+i_1)-ft'4eiPo(Vra0...a„+i_1) 
< ^22 

1 - el2 1 
H -H\ + 

^21^12 

( i - £ 1 2 ) 2 

£22^12 

( 1 - £ 1 2 ) 2 . 
o(Vra0...a„+i_1 

Now, the fact that R\ contracts the fibers follows from the estimates for Sij already 

given above. 

The fiber norm of R2(f,g,H,J) and fiber contractions of R2(f,g,H,J) are ob 

tained in the same way. We just write down the final estimates and leave the compu

tations to the reader. 

We have 

\R2(f,g,H,J)\ < 
4 D2f\ 

-ft'4eiPo(Vra0...a„+i_1) 

(£21 +£22 )4 ID2/1 
-ft'4eiPo(Vra0...a„+i 

(S21 + £22)£l2 

( l -£ i2)3 A -

^22 

(l-ei2)2\A„\ 
J 

< Ax + A2\J\ 

and 

R2(f,g,H,J)-ft'4eiPo(Vra0...a„+i_1)-R2(f,g,H,J)\ < 
(£21 4- £22)^12 

( i - £ 1 2 ) 3 | / l x 
j — j 

£22 

( l - e i 2 ) 2 | . A . | 
T | J - J | 

Let us summarize the conditions we need to get the required properties of Ri, R2. 

(39) 
£21 + £22 

1 - £12 
< 1 

(40) 
^22 

1 - 612 

S2i6±2 

( 1 - Ê 1 2 , 2 
^22^12 

( 1 - ^ 1 2 ) 2 
< 1 

(41) 
(£21 + £22)^12 

( 1 - £ 1 2 ) 3 | / J 

£22 

(l-e12r\flx 
-ft'4ei 

Since £12 < 1/4 and if0 > 4, inequalities (39), (40), and (41) hold. Also, \A2\ < 1. 

So, if we let K > 1/(1 — A2) and K2 = KAX, we have 

J\<K2^> \R2(fyg,H,J) < K2. 

Hence, this K2 is sufficient to define the space Q2j. 

Proof of continuous dependence of the unstable manifolds W± on the itineraries i 

We have already noted that it suffices to prove that the functions gi depend C2 

continuously on i. 

It is clear that the maps 

(f,9)^T(f,g), -ft'4eiPo(Vra0...a„+i_1)-ft'4eiPo(Vra0...a„+i_1) (f,g,H, J ) - > R2(f,g,H,J) 
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are continuous. Since the spaces QQJ, Q \ J , Q2j are bounded and the metrics on £0 , 

Ci, C>2 give the product topologies, it follows that the maps 3>o?Si,H2 are contin

uous. Also our previous estimates give that, using the non-positive itineraries i as 

parameters, the family (4>o)i is a uniform family of contractions. Similarly, the fam

ilies (3>i)i, ( $ 2 ) 2 are families of uniform fiber contractions. Thus, the continuous 

dependence of gi (and hence W™) follows from Propositions 5.1 and 5.2. • 

7. Fluctuation of Derivatives 

We need to estimate quotients of the form 

(42) 
i>% G Goii>% G Goi$^$ 

\D(fii 0 * *• 0 fin)w(vw)\ 

where z,w are in a K% curve 7 and vz,vw are the unit tangent vectors to 7 at 

respectively. 

The domains of the compositions o • • • o fin become narrow and possibly very 

non-convex. Since we wish to use the Mean Value Theorem in these domains, it will 

be convenient to choose certain star-shaped subdomains. This will be done in the 

next section. Here we present a useful Lemma. 

Recall that a set E is star-shaped relative to a point z G E if for any w G 25, the 

line segment joining z to w lies in E. 

For a point z G E let Sz (E) denote the diameter of the intersection of the horizontal 

line through z and E. 

Writing / for one of the compositions above, assume that Df maps the cone K^, 

into itself, expands it by at least K Q > 1, and that Df-1 maps the cone into itself 

and expands it by at least KQ as well. 

For a subset E of the domain of / and z G E, define 

i>% G Go 
sup 
weE 

\D2f(w)\ 
$^^$ù 

$!!ùù 

where 

D2f(w)\ = max{ | / . i f c (w) | : i = 1,2 (j,k) = (x,x), (x,y), (y,y)}. 

Lemma 7.1. — Let E be a subset of the domain of f which contains z and is star-

shaped relative to z. Let 7 be a C2 curve in E parametrized in the form 7 : x —> 

(x,g(x)) where g is a C2 function such that \Dg(x)\ < a and \D2g(x)\ < K% for all 

x. Suppose zyw G 7,10 G E, and vz,vw are the unit tangent vectors to 7 at z,w, 

respectively. Let 0 = Qz(f,E) and 5 = SZ(E). 

Then, there is a constant C = C(a,Ks) > 0 such that 

(43) 
\Dfz(Vz)^$$ 

Dfw(vw)ù$ù 
< exp C e x p ( C O ) 

z — w 

S 
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Proof. — We use the max norm |(^x, ^2) | = max(|t>i|, |^21)-
Let z = (x,g(x)),w = (y,g(y)),vz = (vlzyv2z),vw = (vlw,v2w). 

Then, \viz\ = \v±w\ — 1. Also, since Dfz(vz),Dfw(vw) are in the cone K%, we 

have 

\flm{z)vlz + fly(z)v2z Dfz{vz) 

and 

i>% G Goii>% G Goii>% G Goi Dfw{vw) 

So, 

\Dfw{vw) i>% G Goii>% G Goii>% G G 

\fla>(w)Vlw 1 -
fly(w)V2w 
\Dfz(vw) 

> | / l œ ( ^ ) | ( l - a 2 ) 

and 

(44) 
i>% G Goi 

Dfw(vw) 
1 4 

i>% G Goi £>/u>(̂ u>)l 
Dfw(vw) 

(45) < exp 
\DfJvr\Df\Dfz(vz(vw)) 

Dfw(vw) 

(46) < exp( 
i>% Gi>% G Goi 

(1 - a2) 

where 

(47) >ll(2!,iw) = 
\D f z ( v z ) -D f z \D f z ( vw)  

i>% G Goi 

and 

(48) i>% G Goi 
\Dfz(vw) - Dfw(vw) 

\Dfz(vw) 

We consider the two terms A\(z,w) and ^2(^5 separately. 

We have 

Dfz(vz)-D\Dfz(vw)fz(vw) $^$ 

max(\flx\Dfz(vw)viz + fiyv2z -flxVlw\Dfz(vw) — flyV2w flxVlz +\Dfz(vw) f2yV2z - f2xVlw — f2yV2w\ 

where the partial derivatives are all evaluated at z. 

From Lemma 4.1 an upper bound for this last quantity is 

flx(z) 1 + 2a + 
1 

^$ù + a2 vz - vw 
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and this gives 

Ai(z,w) < C{a) 
fix(z)\ 

fix(W)\ 
vz - vw 

Now, \vz — vw\ is bounded above by the product of the maximum curvature of 7 
and \z — w\. An upper bound for the curvature is the quantity K3. 

Let us use C = C(a,Ks) for possibly different values of C below. 

As in the proof of Lemma 4.2, we get 

\flx(z) 

\flx(w) 
< exp(CO) 

So, 

(49) Ax{z,w) < Cexp(CQ)\z-w\ < C exp (C0) 
z — w 

S 
Proceding similarly, the numerator of A2(z,w) is bounded above by 

max( 
¿=1,2V fix{z) ~ fix(w)\ fix( fiy(z) - fiy(w)\\v2w 

< 2 max 
fix(z)\fix(z)\ 

\fij(z) - fij(w) 

Now, 

\fix(z) ~ fix(l»)\ < \ fixx(r)\\z -w\ + \ fixy(r)\\z - W 

and 

Siy{z) - fiy(w)\ < IfiyxiT^Wz -w\ + IfiyyiT^Wz ~ W\ 

for suitable r, T\ , which implies that 

(50) A2(z,w) < C 0 exp (C0) 
\z — w 

u 
Using C © < e x p ( C 0 ) , (49), (50) and a different C , we see that the proof of Lemma 

7.1 is complete. • 

8. Distortion for compositions 

In view of Lemma 7.1, to estimate quotients of the form (42) , we will need to 

control the distortions of the compositions Qz(fi! 0 * * * 0 fin) on appropriate sets. 

Let i G S, and let z G W{oc(Tri) be a point in the local stable manifold of 7r(i). 

Write ij = ij(z) for the j-ih entry in the itinerary of zy and write Fn(z) — fin_t o 

* * * 0 fii 0 fi0(z) so that Fn(z) G Ein(z) for all n. 

For a curve 7, and z, w G 7, let vz,vw denote the unit tangent vectors to 7 at u>, 

respectively. 

As in section 2, let 

fix(z)\fix(z Ei0 n frHEh...in) 
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Proposition 8.1 (Bounded distortion of compositions). — There is a constant K4 > 0 

such that for any i G £ , any full width K% curve 7 in Ei0, and any n > 0. we have 

(51) 
D F ? ( v z ) \ f i x ( z ) \ 

fix(z)\fix(z)\ 
< K4 

for any z,w G EiQ„An 0 7 . 

To prove this proposition, it will be convenient to cover the images F^(7(1^...^) 

by small parallelograms in which the distortions 0 ( F ) become small, and to make 

use of affine coordinates as in section 6. 

Let Esz be the tangent space to W{oc(iti) at z, and let Ez be the tangent space to 7 

at z. Writing Zj for F^z, j > 0, we translate these subspaces along the forward orbit 

of z by defining 

EsZj = DFl(El), EuZj = DF^(E^), j > 0 

This gives us a splitting of T R 2 along the forward orbit of z and the angles between 

the subspaces EZj, EZj are uniformly bounded away from 0 by a constant that depends 

on a. 

Using these splittings, we can define affine coordinates along the forward orbit of 

z, giving local coordinate representatives of and small parallelograms Bj — 

Bj x Bj with sides parallel to the subspaces EZj, EZj satisfying conditions analogous 

to those in B l , B2 following Lemma 6.3. As we have already noted, in view of Lemmas 

4.3 and 6.3, we also can arrange for the conditions (35) to hold where c > 117. 

In these affine coordinates, the subspaces Ez., Ez. become horizontal and vertical, 

repectively. As in section 6 we use the max norm in these coordinates, so each small 

£-ball B£(zj) = B(zj,e) will be a square of side length 2e centered at Zj. 

If E is any subset of Bj, and z € E, let C(z,E) denote the connected component 

of E containing z. As in section 6, we may assume that 

Bj C ( J B{w,KSw{Ei.)) 

where K > 0 is a fixed constant. 

For the remainder of this section we identify fij with its local coordinate represen

tative fi.. 
Thus, we may assume, for w G Bj, 

(52) \fijix(w)\ >K0> 117 

(53) » , f f i , ) < C . 

(54) max(ei2(ty),e2i(w)) < £0, £22(w) < e0 
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(55) KSZ.(EIS) > d i a m ( ^ ) > d ^ . ( i ^ ) 

where C o , C i , £ o are positive constants, C± < Co, and SQ < 1/4. 

We also may assume that 7^ = C(zj,Fj^ n JBJ) is a K£0 curve in S^. 

Let £1 G ( 0 , m i n ( C i / 2 , 1 ) ) be small enough so that 

(56) exp(156eiCo) 
16 

15 
< 2 

Let Bjt£l = Bj n B(Zj, %6Zj(Ei.)). 

The definition of B^Ex implies that 

e z j ( f i j , E ) < e 1 C 0 f i x ( z 

for any subset E C BjiSl. 

We use dB to denote the boundary of a set B. 

Since fij maps Eij to a full-width rectangle in Q, there is a constant K > 0 such 

that 

M ^ ) > ^ | / ^ i , ( ^ ) r 1 

Therefore, since SZj(Bj,£l) = SiSz^E^)^ Lemma 4.2 provides a constant JK"5 > 0 

such that 

(57) di s t ( / i i { z^d f i , (7 i n Bi>ei)) > K5£i 

For Zj G , let 

fix(z 

fix( if 
1 

2 
fix(z)\fix(z)\ < 

fix 

2iiT0 

Bizj.K^x^Ko) if 
1 
2 ' 

fix(z)\fix( fix( 

2K0 

Thus, each Bj Ç Bj<£l. 

Since fij expands horizontal distances by at least K Q , we have that 

dist(fii(zj),dfii('YJnBj)) >fix(z)\ 
KB£i 

2 
so 

hi ( C { Z J , lù f)Bj))D C{fii »i, /*,-7i n Bj+1 ) 

The set Bj,n = Bij D F~lBij+1 n • • • D F"^1-^Bin_1 is a narrow curvilinear 

rectangle around Zj. 

Let 

aj,n = dist(2:J-,7j D dBjfn) 

Let be the curvilinear rectangle whose left and right boundary curves are 

pieces of the left and right boundaries of Bj,n and whose top and bo t tom boundary 

curves are horizontal line segments each of whose distance from Zj is aj<n. 

Lemma 8.2. — The curvilinear rectangle Ej<n is star-shaped relative to Zj. 
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Proof. — Let 61,62 denote the left and right boundary curves of EjiTl and let £±, £2 

denote the top and bot tom boundary curves (which are horizontal line segments). 

Let w G Ej,n, let £j,w denote the line segment joining Zj to w, and let dvertEjyTl 

denote the union 61 (J 62. 

Since Zj, w lie between the horizontal lines through ¿1,^2, any intersection of £jiW 

and the boundary of EjyTl, must be in dvertEj,n. Thus, to show that £jiW is contained 

in Ej,n it suffices to show that 

(58) (£JTW \ {ZJ,W}) fl dvertEj,n = 0 . 

Assuming (58) fails we will get a contradiction. 

By construction, 6i,62 are / ^ - c u r v e s . This and the assumption that eo < 1/4, 

imply that any line segment joining Zj to a point z in dvertEj^n must have slope no 

larger than 4 /3 . 

But since Zj and w lie in EjiU, if (58) fails there is a point z G dvertEjyn such 

that the line £jiW is parallel to the tangent vector to dvertEj,n at ~z. However, 61, 62 

are K§Q-curves, so their tangent vectors have slope no smaller than 4 which is our 

contradiction, proving Lemma 8.2. • 

Lemma 8.3. — Fix j > 0. Then, for each n > j , we have 

(59) QZJ(Fn-i,Ejtn) < 13eiC0. 

Proof — The proof is by induction on n — j . Clearly (59) holds for n — j = 1. 

Assuming it holds for n — j , we show it holds for n + 1 — j . 

Let z = Zj, f = F, g = Fn~j, Ef = #n,n+i = i ? ^ , £ ^ = E^,n, h = f o g, and 

£71 — EjfTl+i. 

Let A / = <5*n (£? , ) , = SZj(E9), Ah = SZj(Eh). 
We use © ( / ) = G9Z(f,Ef), Q(g) = &z(g,E9), S(h) = &z(h,Eh). 
Consider the quotient 

Pi. (w) 
fix(z)\ 
fix(z)\ 

where w G Eh-

Since the left and right boundary curves of Eh are Kl curves, and £0 < 1/4 we 

have that \w — z\ < 3Ah. 

Since both glx(z),glx(w) have absolute value greater than 1, they have the same 

sign. Replacing g by — g if necessary, we may assume these signs are positive. 

By the mean value theorem, 

log51(BM - log glm(z) < Or) 

9, AT) 
z — w\ 

9imy(r)\ 

»x . (r ) 
z — w 

< 60(5) 
Ah 
=$=* 
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SO, 

(60) exp - 6 0 ( 5 ) 
Aft 

Aft 
< 0 i . (w) 

0 i . (*) 
< exp 6 0 ( 5 ) 

Aft 

AgJ 

Further, setting £ = exp(120(</)Aft/A<?), we have, for any W , T G 

0 i . (w) 

0 i . ( r ) | 
= 

AftAft 

0 i . O ) | 

0 i . (¿0 

0 i » | 

< C (61) 

Similarly, if n , T2 G £ ^ , then 

(62) 
0i. (w)0i. (w) 

0i . ( r i ) 
< e x p ( 1 2 0 ( # ) ) < exp(156eiC0) < 2 

Also note that if £Q is the full width horizontal line segment through z in Eh, then 

g{io) is a full width K^0 curve in Ef, and there is a T e 4 for which |<7la,(r)|A/i = 

length (g(e0)) < | A / . 

This gives 

(63) 
Aft 

A / 

5 

4 | 0 i . ( r ) | 

Observe that it follows from the definition of Eg and (57) that, for some T\ G Eg, 

0 I . ( T Ì ) | A 0 > K6SL 

So, by (62), 

Ah 

A<7 

5 A / 

4 | 0 ! . ( r ) 

0 i . ( n ) I 
0i. (w)0i. (w) 

< 
5 A / 

2K5£l 

(64) < 3 
K0 

Let us estimate 

(65) ©(ft) = max J 
w€Eh 

D2h(w)\ 

KÀW) 
Ah 

Let 

V = 
1 

1 - £ 2 i ( 0 ) e i 2 ( / ) 

16 

15 

and 

C = exp(120(ff; 
Aft, 

A<7 
I < exp 156£!C0 

3 

Ko 

Recall that K Q and ei were chosen so that 

(66) K0 > 117 

ASTÉRISQUE 261 



ASYMPTOTIC MEASURES FOR HYPERBOLIC PIECEWISE SMOOTH MAPPINGS 135 

(67) r ? C < 2 

Recall the Chain Rule formulas (15) - (18) . 

B y (15), we have 

0i. (w)0i. (w) 

> 

0i. (w)0i. (w)0i. (w) 

A . 0 . . | ( l - e 2 i ( f f ) e i 2 ( / ) ) 

| /i-ffi-|»7 1-

Write s2(f) = max(ei2( / ) ,£22( / ) ) -
From (16) we get 

A.0..|(l-e2i( 
A.0..|(l-e2i( 

Aft e ( / ) | 5 l , M 
Aft, 

A / 
+ 2 0 ( / ) A . 

, Aft 

' A / 

+ e( /)eai( |7) |ffa.(u;) 
, Aft 

' A / 
0 ( 5 ) max(l ,£21 ( / ) ) ( ! + e2(f), 

Aft 

A 5 

Now, using (61), (63) , (64), (66),(67), we get 

h,„ (w) 
A.0..|(l 

Ah < ri 0 ( / ) 3 C ( l + 2e21 (g) + e21 (g)2) + 2&(g) 
Ah' 

A 5 J 

< 6r7C0(/) + 3 0 ( 5 ) 
3 

Ko 

< 1 2 0 ( / ) + 
1_ 

Ï3 
9 ( 5 ) 

Similarly, 

himy(w) 

A.0..|(l 
Aft A.0..|(l 3 0 ( / ) C ( £ i 2 ( 0 ) + e 2 2 ( 5 ) + - e 2 i ( f f ) e i 2 ( / 

+£12(5 )^21(5 ) + £22 (5 )^21(5 ) ) + 2 0 ( 0 ) 
Aft-

Â7-

< 3 0 ( / ) + 3 0 ( 5 ) 
3 

Ko 

< 3 0 ( / ) + 
1 

13 
A.0..|(l-

and 

^ „ ( w ) 
A.0..|(l-e2 

<lft < r? [30(/)C(£i2(<?)2 + 2e22{g)e12{g) + e22(g)2)] 

< 2 0 ( / ) + 3 0 ( 5 ) 
_3_ 

Ko 

< 2 0 ( / ) + 
13 

*=$$ 

In all cases we have 

0(ft) < 1 2 0 ( / ) + 
1 

13 
6 ( 5 ) < 13£iC0 
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proving Lemma 8.3. 

Proof of Proposition 8.1. — The curvilinear rectangles BjiU are determined by the 

orbit segment {ZJ = F^(z)}^=0. We write this as 

A.0..|(l-e2i(ff)ei2(/))A.0..| 

There are analogous sets 

Bw,j,n — BFjw n • • • H F (n 1 ^BFn-iw 

where BFiw is a suitable small parallelogram centered at F£w for any w G Eio..An (I7. 
Let 7, zy w, vz, vw be as in the hypotheses of the Proposition, and consider Fnz, 

Fnw € 7 n Siw. 

We can connect these points by a chain Fnz = Fn(wi), Fn(w2)1 . . . , Fn(wk) = 

Fn(w) with k < Ci(a,e) such that, for every I — 1 , . . . k — 1, and every 0 < j < n, 

A.0..|(l-e2i(ff)e G Bwe,j,n 

then, it follows from Lemmas 7.1 and 8.3 that, for some constant C 2 ( a , e ) , we have 

(68) 
A.0..|(l-e2i(ff) 

A.0..|(l-e2i(ff)ei2(/)) 
< C2(a,£i) 

in the special affine coordinates centered at we- Changing back to the standard 

coordinates on Q simply makes (68) hold with a different constant C2 = C2(a,£i). 

Then, 

DF?(vz)\ 

DF%{vw)\ 

k-l 

e=i 

\DF^(vWe)\ 

A.0..|(l-e2i(ff)ei2(/)) 
< c t 1 

proving Proposition 8.1. 

9. Sinai Local Measures 

For two points z\, Z2 in an unstable manifold and unit tangent vectors v±, v2 

to at 2i,#2, respectively, let DuF{zi) — \DFZi{vi)\ denote the Jacobian of F at 

Zi along W™. We know that is a full-width curve in Ei0. Also, the curve 

f i ^ ï is a full width K% curve in Q. 

Proposition 9.1. — Suppose i = ( . . . i-n ... i0) is an arbitrary infinite non-positive 

itinerary and let denote its unstable manifold. Write fi0W^ = graphs gi where 

gi : I —¥ I is the C2 function given in Theorem 6.1. Suppose x\,x2 G / and z\ — 

(x\,qiX\), zo — (xo, QiXo)- Then, the infinité product 

(69) £ O i , x 2 , t ) = 
oo 

s=l 

DuF{F~sz1A . 

DuF(F~sz2) 

converges and depends continuously on (# i , #2 , i ) . 
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Moreover, there is a constant Ka > 0 independent of (xi,x2,i) such that 

(70) A.0..|(l-e2i(ff)ei2(/))A.0..|(l-e2i(ff)ei2(/)) 

Proof — It clearly suffices to prove the upper bound in (70) since interchanging z\ 

and z2 would then give the lower bound. 

Let Z! = fio1zllz2 = fio1z2 so that zuz2 e W?. 

We use the local coordinates and rectangles Bj of the previous section. To avoid 

confusion, we will use Fs(z) = (fi_1 o • • • o fi_s)(z) and F ~ S — o • • • o fi_s)~1 

instead of identifying F, fij with F , f\. as in the preceding section. We use Bz for the 

affine neighborhood centered at z. 

In our local coordinates, with z 6 Ei0, n Bz becomes a K™Q curve. Also, there 

is a sequence z± = w\,..., Wk = z2 of points in such that 

(71) d(wj+1,Wj) < 
€lK5 

2 

and 

(72) k < 
2 

A.0..|(l-e2 
+ 1. 

Recall that F 1Wj = fi_\wj. 

Further, U.Alz}xWi N^F-^WJ) contains the intersection of W/4 with the ball of 

radius £iK5/2 about WJ. Since wj+1 is in this latter set, we have F^WJ+X e Bp_± . 

Analogously, we have F~swj+1 e Bp_Sw. for every s > 1. 

Now, there is a constant C6 > 0 such that 

oo 

*=$$$ 

DuF(F~sz1) 

DUF(F~sz2) 
< C6 

oo 

s=l 

D U F ( F ~ s z 1 ) o 

D U F ( F ~ s z 2 ) ^ 

CO 

^$ù 

k-1 

.7 = 1 ' 

D U F ( F - S w j ) = * $ = $ 

DUF{F-Swj+1)ù^$$ 

so, to prove Proposition 9.1 it suffices to show 

(73 
oo 

s=l 

DUF(F~swj) 

DUF{F~swj+1) 
< K7 

for some K? > 0 and any j . 

Since the angles between E™ and 2?| are bounded by a constant depending on a, 

the linear maps DF(F~S(WJ)) and DF(F~S(WJ)) are conjugate by a linear map whose 

images on unit vectors are bounded above and below by constants which depend only 

on a. A similar statement holds replacing Wj by Wj+i. Hence, there is a constant 

= C&ia) such that, for anv s > 1 and any 7, 

(74) wxq DUF(F-Swj) 

DuF(F~swj+1) 
< 

DuF(F-sWi) 

DuF{F~swj+1) 
=*$ DuF(F-sWj) 

' DuF(F-swj+i) 
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so, it suffices to find K? > 0 such that 

(75) 
OO 

s=l 

DuF(F-sWj) 

DuF(F~swj+1) 
< K7 

By Lemmas 7.1 and 8.3, there is a constant K\ > 0 such that 

(76) 
DFzN(vz)\ 

A.0..|(l-e2i(ff 
A.0..|(l-e 

for any N > 1, z € E Z , N and unit vectors vz,Vz tangent to Wu(z), Wu(z), respectively. 

Let N be large enough so that 

(77) r = 
A.0..|(l-e2i 

A.0..|(l-e2i( C 1. 

By definition, FN 1(Ep_sNw. N) is a full-width subrectangle of 
fN — 1 — sNw . ' So, 

the F image of a full-width horizontal line segment ̂ A.0..|(l-e2i(ff)ei2(/)) contains a curve 

of horizontal width at least £\K5. 

Thus, setting Wj = F~lWj and 5is = Sp_sN~XEp_aN~, N), we have 

(78) 
eiK5 

D»F»(TN) 
A.0..|( 

1 

^$ù 

for some TN € WU(F~sNWj) D EP_SN~. N. 

Then, 

F~sNwj+1 - F~SNWJ F~aN+Nwj+1 - F'sN+Nwj 
1 

\DUFN(T^)A.0..|(l-e2 

£iK5 

DUFN(TN) 

DUFN(TN) 

£xK5\DuFN{?^) 

jr-sN+N~.+i _ p-sN+N~. 

< Si, 
*=$ 

ù$ù 
A.0..|(l-e2i(ff)ei2(/))A.0..|(l-e2i(ff)ei2(/)) 

A.0..|(l-e2i(ff)ei2(/)) $^mm 

ù^$ùù 
Wj+l - Wj 

giving 

(79) 
\F-'Nwj+1 - F~sNWj 

A.0..|(l-e2i(ff 
< 

* 
ùù 

$^ùù 
1 

" 0 
WJ+1 ~ WJ 

< 
ù^$ 

eiK5 
s-l 
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Hence, 
oo 

s=l 

-ft'4eiPo(Vra0...a„+i_1) 

DuF{F~swj+1) 

oo 

= 

DUFN (F~sN~1Wj) 

DuFN{F-sN~1wj+1) 

oo 

s=l 

DuFN(F~sNwj) 

DuFN(F~sNwj^1] 

< exp 
oo 

5=1 

C7TS = K7 

using Lemma 7.1 and (79). 

Since the functions gi depend continuously on i in the C2 topology, the continuity 

statement in 9.1 follows from the fact that given e > 0, there is an N0 > 0 such that 

if N > N0, we have 

oo 
~i—r 

j=N0 

DuF(F~sz1) 

DUF{F-Sz2) 
- 1 < e 

which is immediate from the proof just given. 

This proves Proposition 9.1. 

For a C2 curve 7 in Q, let p7 denote the Riemannian measure on 7. 

From Proposition 9.1 we get the existence of the following limit 

(80) lim 
n—too 

n 

s=l 

• DuF(F~sz1) 

DuF{F~sz2) 
= f(2l,22) = &(2i,22) 

for any two points zi,z2 € . Letting 7 denote we can use p7 and the ratios 

£(21,22) obtained in the preceding limits to get special measures on the unstable 

manifolds. More precisely, following Sinai in [13], Lecture 16, we define 

^ 1 , 7 ( 4 ) = 
*=^$ 

£(2i,22)dp7(£2). 

It is easy to see that if z$ is another point in 7, then vZzn(A) = £(23, zi)uZlyJ(A), 
so the measures vZl ~ and 

i^zs ,7 are simply rescalings of each other. In particular, if 

i , 5 C 7 and vZliy(B) < 00, then uZin(A)/uZl^(B) is independent of z\. 

For zi G 7 fl Q, let Eit be the element of {Ei} containing Fz\, and let 71 = W^. 

The family of measures { ^ 1 , 7 } is invariant in the sense that if A, B C 7, F{A), 

F(B) C 71, and vZlty(B) < oo, then i/Zlty(A)/i/Zl^(B) = vFzi^1(FA)/vFziai{FB). 

We call the family of measures vZltJ Sinai local measures or just local measures. 

10. Absolute Continuity of the Stable Foliation 

We know that for each non-negative itinerary a — ( a o , « i , . . . ) there is a C1K^ 

curve Ws(a) = f |n>0 Ba0...oB.i of full height in Q. 
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Note that two points in Q with different forward itineraries have disjoint stable 

manifolds since the interiors of the E[s are disjoint. Thus, the set {Ws(a) : 7ra G Q} 

is a foliation of its union. We call this the stable foliation. Let W = {Ws(a) : 7ra G Q} 

denote this foliation. We denote the union | J { ^ s ( a ) : 7ra ^ Q} by >V+. Note that 

W + is a Borel subset of Q of full two-dimensional Lebesgue measure in Q. For any 

two full width C2 K% curves 7,7/, let 7ryrj be the holonomy projection from 7 to 77 

along the foliation W . That is, for z G 7 Pi >V+, and VFs(a) the leaf of W which 

contains 7r7ry(̂ ) is the unique point of intersection of Ws(a) and rj. As above, for 

any C2 -curve 7, let p1 denote the Riemannian measure on 7. Recall that the 

foliation W is called absolutely continuous if 

(AC-1) each full-width C2 jftT^-curve 7 meets W + in a set of positive p7 measure 

and 

(AC-2) the image measure 7r7r?^p7 is equivalent to the measure pv. 

Proposition 10.1. — The foliation W is absolutely continuous 

Before we can prove Proposition 10.1, we need a couple of Lemmas. 

The next Lemma is well-known and elementary. Since the proof is short, we include 

it for completeness. 

Lemma 10.2. — Suppose that x\yX2, • •. and 2/1,2/2? • • are sequences of numbers in 

the open unit interval (0 ,1) such that 

(81) -^Xjlogyj < 00. 
i>i 

For e > 0 and non-negative integer n, let Dn = {i : yi < exp (—en)} . 

Then, 

(82) ] T ^2 Xi < °°* 
n>l i€Dn 

Proof. — For each n > 1, let 

En = {i : exp(—e(n + 1)) < y% < exp(—en)} 

Then, Dn — Uj>n Ej, where [J denotes disjoint union, so 

Y YXi = Y Y YXi-

n>i ieDn n>ij>nieEj 

Letting Cj — ̂ 2iGE. Xi, this last sum is just 

ci -h c2 + C3 + . . . 
+ c2 + c3 + . . . 

+ c3 + . . . 

A.0..|(l-e2i(ff)ei2(/))^$ù 
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Now, i G Ei implies that — log7^ > ej or — Xilogyi > ejxi which gives 

ieEj 
Xilogyi > ejx 

ieEj 

Xilogyi > 

Xilogyi 

Hence, 

e 

Xilogy 
,JC3 

j>i ieEj 

-Xilogyi < - Xi log yi < 00 

which implies that Y2j>i 3cj < 00 • 

In the next lemma, we will use the geometric condition G3. Each z G Q has a 

unique forward itinerary (ao(^) , 0 1 ( 2 ) , . . . ) with Fn(^ ) G int Ean^zy 

Lemma 10.3. — Le£ 7 6e a C2 K^-curve of full-width in Q such that p7(7 fl Q) > 0. 

£e£ e > 0. For p7-almost all points z G 7 Pi £ftere ¿5 a positive integer n(z) > 0 

s?4cft £fta£ if n> n(z), then 

ôFn(z)(Eari(z)) > e x p ( - e n ) . 

Proof — For ease of notation, if A is a subset of 7, let us write \A\ for py(A). 

Let Dn = {i > 1 : (5i,min < e " ^ n } . 
In view of lemma 10.2, the condition G3 implies that 

(83) 

n>i ieDn 
ẑ,max ^ OO. 

Let yn = G j HQ : ôFn{z)(Ean(z)) < e~en}. 

We will show * 

(84) 

n>l 

vn < 00. 

Once this is done, the Borel-Cantelli Lemma gives that pT-almost all points of 7 

lie in at most finitely many of the Vns which proves Lemma 10.3. 

Let An be the set of finite itineraries ( a o , . . . , a n - i ) which occur for points in Q. 

For a given finite sequence ao, a i , . . . , an- i G Anj let 

^ ( a o , . . •, an_i ) = {z € Vn : Flz G £ai for 0 < i < n } . 

Then, 

Ki(«0, • • • , ^n-l) 
i>0 

Xilogyi > ejxXilogyi > 

and this last union is disjoint. 

Also, Vn is the disjoint union of the Vn(ao,..., an_i) as these finite itineraries vary 

in An. 
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The bounded distortion of compositions (Proposition 8.1) gives us a constant K > 0 
such that for ( a 0 , . . . , an_ i i ) G A i + i , and ^ G 7 H ^ . . - « i , 

7 Pi Eao_anli 
Xilogyi > ejx < i f < w ) № ) 

Also, the definition of F n ( a 0 , . . . , an_i) gives us that 5an(»,min < e en; i e . , that 
an(z) G £>n. 

Thus, 

yn (a0 , . . . ,an_i) Ç 

Xilogyi > 
T H ^ Û O a „ . i i n Q 

This gives 

vn < 
(a0...aTl-1)eAn i£Dn 

7 f ^oo,...,aB_ii 

ao...an_i i£Dn 

7 f -Eao,...,an_it 

¡7 ^ ^ao—fln-i 
7 H £a0...a„_x 

ûo.-an-i itzDn 

Xilogyi > Tnsao. . .a„_1 

^z, max 

Xilogyi > 

Hence, (84) is a consequence of (83). 

Lemma 10.4. — For an?/ full-width curve 7 , 

P ^ ( 7 H Q ) = 1 

Proof. — The curve 7 cannot meet both the upper and lower boundaries of Q. For 

definiteness, we suppose that 7 does not meet the lower boundary of Q. The other 

case is similar. 

Then, there are constants a\ > 0, a2 > 0 and a C1 diffeomorphism <j> from Q onto 

a curvilinear subrectangle Q\ of Q such that 

(1) <j> maps the upper boundary of Q onto 7 and maps the lower boundary of Q 

onto itself. 

(2) D<KK%) C K» 

(3) Z t y - 1 ^ ) C Ksa2. 

Let 7 = </>-1(7) denote the upper boundary of Q. 

Since a subset A of 7 has full pT measure if and only if </>-1(A) has full measure, 

it suffices to prove that 

(85) Xilogyi > ejxXilogyi > ejx 
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Let Ei = ^(Ei), 

and 

*»,max = max. S z(Ei) 
z<EEi 

<$t,min = niin Sz(Ei) 
z(EEi 

The properties of 4> guarantee that 

(86) - Y2 *«,max log ?i,min < OC 
i 

Now, QiC\Q has full Lebesgue measure in Qu so, ^ _ 1 ( Q ) has full Lebesgue measure 

in Q. Thus, for almost all horizontal lines £ in Q, we have that £ fl <\)~X{Q) has full 

Riemannian measure. 

To complete the proof of Lemma 10.4, we will prove that pi{£ fl </>-1(Q)) varies 

continuously with £. 

This is a consequence of the following. 

For any e > 0, there is an N = N(e) > 0 such that for any horizontal full-width 

line segment £, 

p£(£D ( J Ei) <e 
i>N 

which is, in turn, a consequence of 

d iam(^n %) < e. 
i>N 

Since the vertical boundaries of the E[s are K^2 curves, there is a constant C(a2) > 

0 such that, for all i,m(Ei) > C(<̂ 2)(<$*,max)2- So, ^max —> 0 as i oo. 

By (86) and Lemma 10.2 with Xi = < ,̂max,2/i = <̂ ,min, given £ > 0, we can find 

no > 0 such that 

3ri,min<2 — oXilogyi > ejx^$ùù 

Now, take N such that i > N implies that <̂ ,min < 2_n°. 

This gives J2i>N diam(£ fl £7*) < ^ j . min<2--0 <*»,max < £ as required . • 

For future use let us observe that the argument in the last proof actually works for 

all curves uniformly to prove 

Lemma 10.5. — Given e > 0, there is an integer N(s) > 0 such that for every K% 

curve 7, we have 

p 7 ( 7 n ( | J Ei))<e. 

i>N 
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Proof of Proposition 10.1. — We use v <^ \i for v is absolutely continuous with re

spect to and v ~ p, for v <C p and p <C V. 

Let 7,77 be two C2 full-width K% curves. 

In what follows we restrict our measures to Q. Thus, when we write p1{A) we 

mean p<y(A n Q). 

We will show that 

(87) 7Tyn*P7 <^ Pi) 

Once this is done, interchanging 7 and 77, we have 1*^*9™ <^ P7. 

So, pv = ^^n-ki^n-y-kpn) <^ 7r7r?*p7 or ~ n-yn+Py as required for the proof of 

Proposition 10.1. 

We know that £>7(7 Pi Q) = 1. 

Let 5 C 7 Pi Q be such that py(B) > 0. 

Let G ( l , ! T o ) . 
By Lemma 10.3, for almost all z G 7, there is an n (z ) > 0 such that n > n{z) 

implies 

(88) 8FHz)(Ean(z))> K^n. 

From standard measure theory, we can take a compact set A C B such that 

psy(A) > 0 and there is an n(A) > 0 such that (88) holds for all n > n{A) and all 

z e A. 

We will show that there is a constant K > 0 such that 

(89) pn(7ryn(A)) > K-xp^A) 

This, in turn gives pr)(7ryT1(B)) > 0 to prove (87). 

Since K\ < K 0 , and d is t (Fn(z) , Fn(7r77?(z))) < const ' K Q U , we may assume that, 

for z G A and large n, 

(90) 1 
9 

diam(Fn(£7ttnr^...a„f2i D 7 ) ) 

diam(Fn(Eaoiz)...an(z) DTJ)) 
< 2 

For a unit vector v tangent to the curve 7 at r and a positive integer n, let us write 

DyFn(r) for £>F"(u) . 

Now, for z € A, there are points rn G 7, r G r? such that 

diam(7n£ao(2). . .a„(s)) |Z)7Fn(Tn)| = d iam(Fn(7 n Eao{z)...an{z))) 

and 

diam(77n£;ao(z)...ari(2))|JD7;Fn(rn)| = diam(Fn(rç n Eao{z)..Mri{z))). 

We claim (AC-3) there is a constant i f = K (A) > 0 such that for all z G A and 

n > 0 

(91) K-1 < 
\D^Fn(z)\ 

' D„F«(7ryt,(z))\ 
r<K. 
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Assuming (AC-3) for the moment, we see that there is a possibly different K > 0 
such that, for all n > 0, z G A, we have 

(92) K-1 < d i a m ( ^ n E ^ ) . . . ^ ) ; 
diam(?7n£7aoW...an(2)) 

< K. 

But, for large n, as z varies in A, the sets 7 D -E7ao(*)...a„(z) form a covering of 4̂ 
by small intervals and the sets rj D £?a0(^)...o„(«) form a covering of 7ryr](A) by small 
intervals. This gives (89) and concludes the proof of Proposition 10.1. • 

Proof of (AC-3). — Let zn = Fn(z),wn = Fn(7r77?(z)) for each n > 0. We use 
affine coordinates centered as zn as in our earlier sections. We use the splitting 
TZnIl2 = E™n 0 EsZn in which E%n contains DFn(vz) and E8Zn is tangent to Wfoc(zn) 
at Zfi. 

Let F denote the representative of F in these coordinates, and let Bn be the small 
parallelogram centered at zn as before. We may and do assume that K0 > 3. 

Write vZn,vWn for the unit vectors tangent to Fn{^) at zn and Fn{rj) at wn, re
spectively. 

Now, 

(93) 
D1Fn(z)Xilogy 

DvF"(7r7V(z))X 
< const 

n-1 

8=1 

DFZs(vZs) 

DFWs (vWs ) 

so, it suffices to show 

(94) № „ ( * > * » ) I 
DFWn (vwJ 

< exp(on) 

where 

(95) 
n>l 

an < const • log K 

to prove (AC-3) . 
Write Sn for 8Fn{z){Ean{z)). 
In our affine coordinates, vZn = ( J ) . 
Since dist(Fn(7r7„(z)), F n ( z ) ) is exponentially smaller than 5n for large n and 

\vwn — vzn\ 0 as n —>• oo, there is an no = ^o(^4) such that n > no implies 
G and vWn G iiT^0. (Here So < 1/4 as in section 6) . 

Below, we use various constants CS1 1 < s < 8, which are independent of n and 
2? G A and are defined in the first equation in which they appear. 

As in the proof of lemma 7.1, 

DFZn(vZn) 

DFWn (vWn] 
< exp(Ai,n + A2,n) 

where 

Ai,n < d Xilogyi > ejx 
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and 

^2,n < C2 
ZnXilogyi 

Xil 

Since 

Zn Wn 
^2,n < C2 < Ci 

,K0 

n 

it suffices to show 

(96) ^2,n < C2 < C4 
Ko 

n-l 

for all n to prove (94), (95), and (AC-3) . 
Writing DFWn_1(vWn_1) = (^n,7?n) and vWn = {un,u2n) we have 

Cn = Flx(wn-i)un_1 + Fly(wn-1)un_1 

Vn = F2x(wn^1)un_1 + F2y(ywn-1)u2n_1 

and 
U>n-1 — Zn-lU>n-1 — Zn-lU>n-1 — 

Thus, 

U>n-1 — Zn-lU>n-1 — ̂7n 
U>n-1 

This gives 

U>n-1 — Zn-l \rin\ 

l & l 

< 1 

1 - 4 , 

l ^ ^ n - l ) ! 

Flx(wn-l) 

^ ( ^ n - i ) ! 

^lx(^n-l) 
« n - l 

Using F2x(zn-i) = 0, we get 

^ ( W n - l ) 

^ ( ^ n - i ) ! 

FixiWn-x) 

FixiWn-x) U>n-1 — Zn-l 
F2xy(r) 

FixiWn-x) 
Wn-1 — Zn-i 

< cb 
Wn-1 —Zn-l 

On-1 

for suitable r . 
analogously, 

F2y{wn-i) 
Fix(wn-!) 

F2y(zn-i) 

Flx(wn-i)\ 
+ c 6 

Wn-1 — Zn-i 
U>n-1 
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which gives 

U>n-1 
+ C7 

1 
(1 - ei)K$ "n-l + C7 

Wn-\ —Zn-1 
Sn-1 

1 
( l - ^ o 2 1 "n-l + C7 + C7 

Ko. 

n-l 

Inductively, we assume 

"n-l < 2C8 K 

Ko 

n—2 

and get 

+ C7 Vn 2C* 

( l - ^ ) ^ o 

Ki^\ 
Ko J 

\ n—2 
+ c8 

'Ki 
Ko 

n-l 

Since ^ < 1 < Kx and e0 < 1/4, we get 2 / [ ( l - sl)Kl) < Kx/Ko and 

(l - sl)Kl) < K : 

Ko, 

n-l 

which proves (96). 

11. Construction of an S R B measure 

We wish to use a construction analogous to that of Sinai in [13] to construct our 
SRB measure. There are several difficulties which appear. 

(1) The family of unstable manifolds { W u ( z ) } does not form a measurable parti
tion of the attractor A in Q. 

(2) The underlying set A is not compact, so care has to exercised in the taking of 
limits of iterates of measures. 

We will see that these problems can be handled by lifting the required construction 
to the symbolic space E, getting a measure there, compact ifying, getting a limit 
measure which is supported on E, and projecting back into Q. 

We have defined a continuous map 7r from E into Q as follows. For a G E with 
a = ( . . . a_ia0ai . . . ) , 

Ma)} = 
n>0 

(l - sl)Kl) <(l - sl)Kl) <(l - s 

Let a be the left shift automorphism on E. For each a G S, we have local stable 
and unstable sets defined by 

Wlsoc(a) = {b:ai = bi,i>0} 

Wluoc(a) = {b:ai = bi,i<0} 
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We have the local stable and unstable sets in Q as well: 

^ l o c ( ^ ) - f l /a"ol5*-»-»o 

n>0 

W?oc(7ra) = f | Eao...an 
n>0 

Each WfoC(7ra) is a K% curve which has full width in Eao, and each Wfoc(7ra) is a 

K£ curve of full height in Q. 

Note that if a = ( . . . ai...), 6 = ( . . . 6 ^ . . . ) , 7ra, 7r6 G Q, and a\ ^ bi for some i > 0, 

then W£c(7ra) D W£c(7rfc) = 0 . 

Thus, the map 7r : W^c(a) D -K~XQ -> W ^ ^ ^ a ) fl Q is a one-to-one, continuous 

onto map for each a G 7r""1(Q). By standard results, it is a Borel isomorphism. 

Recall the functions £(21, £2) and the Sinai local measures uZl,y defined at the end 

of section 9. 

We now use them to define finite measures on the local unstable sets W^c(a) in S. 

Write W&c{a) = WYuoc(a) n n^Q. 

If >y = Wfoc(iv€i), then 7 H Q has full Riemannian measure in 7, and the Borel 

isomorphism n : W^c(a) —> M^QC(7ra) fl Q allows us to transfer the Riemannian 

measure p7 from 7 fl Q up to W ^ c ( a ) . We call this measure pa. It clearly only 

depends on the non-positive indices of a. 

For z,w G J4^c(a) , let 

£(z,w) — £ (iTZ, 7TW) 

where £(*,-) is the density of the Sinai local measure defined at the end of Section 9. 

Next, for z G Wfoc(a), we define a finite measure vz on W^c(a) by 

MA) = 
J A 

Ç(z,w)dpa(w) 

These measures have the following properties 

(1) For zuz2e Wxuoc{a), and A C W £ c ( a ) 

^ ( A ) = i{z1\z2)uZ2{A) 

(2) If A , B c W £ c ( a ) , * i G ^ c ( o ) , ^ ( B ) > 0 , a i i d ( 7 ( 4 t 7 ( B ) C ^ c H , t h e n 

vaZl (crB) > 0 and 

uaZl (aA) 

VazA^B) 

(l - sl)Kl) < 

(l - sl)Kl) < 

It follows from these facts that if vZl(B) > 0, for some z\, then vZ2(B) > 0 for 

any z2l and the normalized measure 1/3(A) = vZl(A n B)/i/Zl(B) is independent of 

the choice of zi G WioC(a)- Moreover, the normalized measures are cr-invariant in the 

following sense: if A and B are as in 2 above, then a+1/3(0-(A)) = ^o-(B)(cr(-^))- We 

will call the measures vz, local measures or Sinai measures. 
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For a point a E £ , with 

local measure. Thus, 

local unstable set W^c(a), let va, 
a,norm 

be its normalized 

^ a, norm (A) = 
HA) 

"«(W£C(«)) 

for every A C W£c(a). 

For each i > 1, let Vi = {a E £ : a0 = i } , and fix a local stable set Si C V -̂ Thus, 

Si — Wfoc(zi) where Zi is a particular point in Vi. Let be the partition of Vi 

into local unstable sets. The quotient set Vi/Mi is in one-to-one correspondence with 

Si, so the partition Mi is measurable with respect to any complete Borel probability 

measure on Vi. Let A4 = [Ji Mi. Since S is a countable disjoint union of the V(s, A4 

is a measurable partition of £ for any complete Borel probability measure. 

For convenience, we will say that a Borel partition A4 is measurable with respect 

to a Borel Probability measure if it is equal mod zero to a measurable Borel 

partition of the Borel completion of the measure //. This allows us to discuss systems 

of conditional measures, etc, with respect to arbitrary measurable Borel partitions of 

Borel probability measures. 

Now fix an element z0 £ 7r_1(Q), and let W^c(z0) be its local unstable set. Let UQ 
be the associated normalized Sinai measure. 

Theorem 11.1. — The sequence of averages 

converges weakly to a measure ~p on £ which is a-invariant, ergodic, and the con

ditional measures of ~p with respect to the partition AA coincide with the normalized 

Sinai measures on elements of Ai. 

The proof will require several steps. 

Let N be the set of positive integers, and let N = N ( J { o o } he its one-point 

compactification. We put a metric on N making it isometric to { 0 , 1 , 1 / 2 , 1 / 3 . . . } C R 
2 

with the standard metric. Let £ = N with the product topology and let a : E —> £ 

be the shift. The set £ is a dense a-invariant subset of £ . 

We take a subsequence {^nfc} of {vn} which converges to a measure JI on £ . 

Claim 1. — The measure ~p is supported on £. That is, 

^* 
^ n—1 

k=0(l^sl)Kl) < 

7i(S \ S ) = 0. 

Proof. A point a E £ \ £ has ai — oo for some i. Fixing z, let 

Ji = {a E £ : ai = o o } . 
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(98) pT ( | J E3) < ex 
KJ>N 

Let po = Pz0 be the lift to W\£c(zo) of the Riemannian measure on W^C(TTZQ) PI Q, 

and let £0 = M ^ i o c ( ^ o ) ) . _ 

By Proposition 9.1, for any E C W^c(z0), 

(99) K6-2^ < ME) < Kl Po(E) c — û  ^ — t) p to to 

Given a non-negative itinerary a = (ao«i . . . ) , let 

Vao...an = {be W£c(z0) : bi = aiy i = 0 , . . . , n } 

By Proposition 8.1, for any n > 1, if 7n = FN{W^C(TTZ0)), then 

(100) K4-1Pln (Ean) < n P f a o - a J , < KA p,n {Ean) 
pO\Vao...ari-1) 

Setting Ui = {a € E : a* > TV}, we see that (98) and (100) imply that, if n + i > 1, 

then 

(101) A)(Vra0...an+,_1 n a -nC /0 < ^ i P o l K o - a ^ - J 

Also, W^ocC^o) n a~n(Ui) is the disjoint union 

We will show that, given e > 0, there is an open neighborhood Ui of Ji \ E such that 

for all n > 1 — i, 

(97) < ( ^ o ) ( ^ ) < e 

This will imply that ~p(Ji \ E) = 0 . Since this holds for every i, Claim 1 follows. 

Let E\ > 0 be a small number to be chosen later. 

From Lemma 10.5, there is an N > 0, such that for every K% curve 7, 

ao---an+i-i 

Vao...an+i_x na~nUi 
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So, 

v-n{Ui)) v-n{Ui))v-n{Ui)) v-n{Ui)) 

v0\ ù^ùv-n{Ui))^$ z0 v-n{Ui)) 

v-n{Ui)) 
v-n{Ui))-ft'4eiPo(Vra0...a„+i_1) 

< 

ao...a,n+i — i 

ù$ 

to Po ( V V - . a ^ n a - ^ ) 

ao...an+i — l 

^ù^$ 

4 

P 0 ( K 0 . . . a n + i . i n ^ [ / i ) 

A)(Vrao...aTl+i_i) 
Pol ̂  y Oo...On+i-l , 

< 

-ft'4eiPo(Vra0...a 

^m$^$ 

4 
-ft'4eiPo(Vra0...a„+i_1) 

^ù$ùmù 
m$ 

to 
ù$$ùa 

-ft'4eiPo(Vra0...a„+i_1) 

Hence, if we set £i = s -ft'4eiPo(Vra0...a„ we get (97), and Claim 1 is proved. 

The measure Ji is clearly invariant under the shift a. 

We extend the partition M of £ to S by adding the element S \ S. We will also 

use the letter M to denote this extended partition. We let Vi denote the closure of 

Vi in S, and let Aii denote the restriction of At to VV 

Let 7f : E —> E / A 1 be the natural projection. Let /i = 7?^/! be the induced measure 

on E/.Vf. 

There is a system of conditional measures Uc on C £ Ai defined for ^-almost all 

C € M. 

Claim 2. — For Ji-almost all C, ~pc — vc-

Proof. — Let us use A for the closure of a subset A C E in E. 

Let <f> : E —> R be a continuous function supported in for some i. 

For each n > 0, the measure o~™vo is supported on countably many Cs in A4, and 

these C ' s are local unstable sets. 

The conditional measure (cr™vo)c is then just the restriction of cr™z/0 to C normal

ized. 

But, the invariance property of quotients of the Sinai measures gives, for 4 c C , 

-ft'4eiPo(Vra0...a„+i_1) 

-ft'4eiPo(Vra0. 

-ft'4eiPo(Vra 

v0{o-"C) 

= 
vc{A) 

-ft'4eiPo( 
= vc (A) 

Thus, 
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(*) the conditional measure (cr™vo)c is equal to the normalized Sinai measure vc 
when C is a local unstable set in an(W£c(zo)). 

and this implies 

(**) the conditional measure {vn)c equals vc on each local unstable set C in S 
such that vn(C) > 0. 

Let Si be the stable set of zi G Vi. Its closure Si is the local stable set of ^ in E. 
This is a compact subset of S and may be identified with Vi/Aii. 

Thus, we may think of the projection n as a map from Vi —>» Si. 
LetK>0 be such that \<f>(z)\ < K for all z G 17*. 
The function 

h(z\ = ffn-Hz) <f>(w)dl/^(z)M f°r ^ € 5i 
\ o for z E~Si 

< 5eK 

for z e S i \ S i 

is then bounded and measurable and its restriction to is continuous. Also, | / i ( ^ ) | < 
K for all z G 5*. 

Let /J* be the normalized restriction of / / t o VV 
We assert 

(102) / h(z)d(nicJii) = / <№ 
JSi JVi 

Since, \ S ) = 0, this tells us that the conditional measures of Ji with respect 
to M are the vc as required for Claim 2. 

To prove (102), we let e > 0 be arbitrary, and we show 

(103) f h(z)d(n^JIi) - f (f>dfli 
\JSi JVi 

Let vxnh be the normalized restriction of vnk to Vi. 
Since Vi is open and closed in S, we have uznk —• JP as k —> oo. 
Since 7f : —>• 5« is continuous, we get 7r*z/̂ fc —t tt+JT1. 
By (97), there is a compact subset Ai C Si such that, for large k > 0, 

(104) < ( F i \ r 1 ( A i ) ) < £ . 

Since /i restricted to Ai is continuous, we can use the Tietze extension theorem 

to find a continuous map h : Si —>• R such that |ft-(z)| < K for all z G 5« , and 

/i(^) = /j(^) for z G 

Then, 

/_ 7id(5r*i£fc) /_ hd(w*J?). 
JSi JSi 

By construction of /i, we then get, for large fc, 

/ hd(7r+vlnk) - hd{ir*iJ < 3eK. 
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By (** ) , 

Ai 
-ft'4eiPo(Vra0...a„+i_1) 

-ft'4eiP 
M O , 

The right side of this last equality differs from Vi ù^ù$$ù by no more than eK, and 

Ai 
hdiiT+n1) -

Si 

-ft'4eiPo(Vra < eK. 

Putting all these together gives (103) and completes the proof of Claim 2. 

Claim 3. — jji is ergodic. 

Proof. — This is a variant of the standard Hopf argument for geodesic flows in neg

atively curved Riemannian manifolds. 

Let <fi : S —> R be continuous. We show that fi-almost all forward time averages 

1 

n 

n-l 

k=0 

ó(akz) 

approach the same value. 

Let 

<f>for(z) lim 
n—>-oo 

B 

Î 

n-l 

k=0 

4>{*kz) 

and 

<t>bac(z) lim 
1 

n 

n-l 

-ft'4 

4>{a~kz) 

be the forward and backward limiting time averages of a point z. 

From the Ergodic Theorem and standard arguments, there is a set A± C X) of full 

7Z-measure such that z G A1 implies <f>f0r(z),4>c(z) exist and are equal. Also, since 

<f>is continuous, is constant on stable sets and (f>bac is constant on unstable sets. 

For each z G S, let 

W*(z) = ( J *-nWfoc(z) 
n>0 

be the global stable set of z. 

Now, /7-almost any local unstable set C is such that uc(Ai n C) = 1. Pick one 

such C and let S be the union of the global stable sets of points in A\ n C. By the 

topological transitivity of the shift, the absolute continuity of the stable foliation W 

in and the fact that the push forwards by n of the conditional measures of ~p with 

respect to Ai are equivalent to the Riemannian measures on the local F-unstable 

manifolds, we get that ^d(S) = 1, for every local unstable set C±. Hence, Jl(S) = 1. 

For any two points z\,zi G 5 , there are points w\,W2 G A\ D C such that z\ G 

Ws(w1),z2 G Ws(w2). 
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Then, (f>for(zi) = 0/or(wi) = 0 6 a c O i ) = (f>bac(w2) = 4>for{™2) = 4>for{Z2)- This 

proves Claim 3. • 

Claim 4. — limn_^oo vn — ~p. 

Proof. — Let JL1 be another subsequential limit of the sequence {isn}- Substituting 

Ji1 for JI in the preceding arguments gives that Jix is ergodic, shift invariant and 

Let Gjr be the set of Ji-generic points, and let G ^ be the set of Jl1 -generic points. 

Thus, for any continuous function 0 : S —>> R , 

1 n_1 /* 
(105) o E G ^ ^ - ^ (p(aka) / </>d/Z 

71 k=0 J 

and 

1 n-1 r 
(106) a G G ^ = > - ] P <t>{aka) - » j <t>dp1 

n k=o J 

Ergodicity implies that Ji(Gjr PI S ) = 1 = ~Pi(G-fi1 ( 1 S ) = 1. 

If we show that 

(107) GF fl D S # 0 

then, in view of (105) and (106), we get 

J (pdp = j 4>djl1 

for all continuous 0, and Claim 4 follows. 

For a given set A c S , let 

VFS(,4) = 

-ft'4ei 
WToc(a) 

We call stably saturated if j y s ( A ) = A It is easy to see that both Gjr and Gjz1 

are stably saturated. 

The arguments in the proof of Claim 3 show that if Jt{A) = 1 and A c S, then, 

for any local unstable set G , with Sinai measure z/c, we have ^ ( W ^ C ^ ) ) = 1. In 

particular, 

^ ( G ^ H S ) = uc(W8(G-p f l X))) = 1 

Replacing /7 by ¿¿1 in the arguments of Claim 3 gives t/c{Gji1 D S ) = 1, as well. 

Thus, vdGjj; f l G1j1 n S ) = 1 for any G and (107) holds. 

This completes the proof of Theorem 11.1. • 
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The construction of the SRB measure fi. — Let JJL — TT^JL. 

The measure JJL is clearly an F-invariant and ergodic measure on Q. 

There is a set A C Q of full // measure consisting of //-generic points; i.e., x G 

Ay(f> : Q —> R continuous implies that ^ JZk=o 4>{Fkx) —> f 4>dfi. 

Let S be the union of the local stable manifolds of points x G A. Clearly, each 

x G S is //-generic. We will show that m(S) = 1 (z.e. that 5 has full Lebesgue 

measure in Q) to prove that // is SRB. 

Now, 7r-1(S') has full //-measure in E. Hence, for some (in fact, //-almost any) 

local unstable set C C E, we have ^ ( t t - 1 ^ ) = 1- This gives n+vciS) = 1. But t t^c 

is equal to the normalized Sinai measure on the local unstable manifold containing 

Sri7r(C), and, hence, is equivalent to the Riemannian measure restricted to Sr\n(C). 

This implies that SC\7r(C) has full Riemannian measure in n(C). Then, the absolute 

continuity of W gives p7 (5 ) = 1 for every K% curve 7, so Fubini's theorem gives 

m ( 5 ) = 1. 

12. Further ergodic properties and an entropy formula 

In this section we will study properties of the natural extension of the ergodic sys

tem (F,Q,fjt). The first proposition identifies this natural extension with the system 

(<7 ,E,/J). 

Proposition 12.1. — The system (cr, S , / / ) is isomorphic to the natural extension of 

the system (F, 

Proof. — Since the map F on Q is not surjective, the meaning of this proposition is 

that there is a subset Q\ of Q of full //-measure such that F ( Q i ) = Qi? and the system 

(cr, E , / / ) is isomorphic (mod 0) to the natural extension of the system (F, Q i , / / ) -

Indeed, let Q\ be the set of points x £ Q, such that there is a sequence xo,x±,... 

in Q with xo = x and F(xn+i) = xn for all n > 0. It is easy to see that F maps Qi 

onto itself. To see that //(<2i) = 1, it suffices to show that //(7r_1Qi) = 1, and, since 

7r^~1Q has full JX measure and JI is cr-invariant, this follows from 

(108) n-^Qi) D f | ^ ( t t ^ Q ) 
n>0 

To prove (108), let a G f]n>0 an(7r~1Q), and let XQ — ir(a),xn = 7rcr_na. 

Since, a~na G /ir~1Q for all n > 0, we have that xn = 7ra~na G Q for each such n. 

On the other hand, Fxn+\ — Fna~n~1 a = 7raa~n~1a = 7ra~na = xn for all n > 0. 

This shows that x0 = 7ra 6 Q i , s o o 6 7r-1<2i which is (108). So, Qi is the required 

set. 

The underlying set Q of the natural extension of (F, Q i , / / ) may be identified with 

the set of sequences x = (#0, # 1 , . . . ) in which each xn G Qi and Fxn+\ — xn for all 

n > 0. 
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Let f = {ElyE2,... } be the original collection of full height rectangles of Q. For 

any sequence x € Q, the element xn is in the interior of a unique Ea_n. Similarly, 

the point Fn(x0) is in the interior of a unique Ean. This enables us to define a map 

</> : Q - » E by 

0(af) = a 

where, for each n > 0, xn G intJ5a_n and Fn^0 € inti£an. Now, the verification 

that the map <fi induces an isomorphism (mod 0) between the system (cr, S,/x) and 

the natural extension of (F, Qi,n) is straightforward, and we leave the details to the 

reader. • 

Let £ be the partition of S into the sets Vi\ i.e., the time 0 partition. Put rj — 

V^L-oo Then, the elements of 77 coincide with the local stable sets Wfoc(a). 

Moreover, we have that, mod zero, arj >- 77, Vn o~nV is the point partition, and 

/\no-nrj is the trivial partition { £ } . 

So, by definition, (<7,/J) is a K-system. 

Then we state 

Proposition 12.2. — The map (cr,/J) is Bernoulli. 

We thank Dan Rudolph and Francois Ledrappier for useful conversations in con

nection with the proof of this proposition. 

The following Weak Markov property was introduced in [11]. It was used to prove 

the Bernoulli property of Anosov flows ( see [4], [11]). 
Let /3 be any partition, 

-ft'4eiPo(V 

k<i<l 

-ft'4eiPo( 

Given a collection of sets P , let us use P+ for its union. 

Say that (3 is weak Markov ( W M ) if, for any e > 0, there is an integer N = iV(e), 

and collections P = P(e) of atoms of Pfi°,M = M(e) of atoms of / 3 ° ^ with the 

following properties. 

(1) 7I(P+) > 1 - e, and p ( A f + ) > 1 - e. 

(2) For any xff € / J^any x,y £ P with x[Jy C xff, and any subcollection 4̂ of 

M with 7I(^4+|^) > 0, one has 

(109) 
HA+\x) 

HA+\y) 
- 1 < e 

The proof of Proposition 2.2 in [11] shows that a finite weak Markov partition in 

a K-system is weakly Bernoulli in the sense of Friedman and Ornstein [5]. 
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We will prove that the partition Ç is weak Markov. Then, arguments as in the 

proof of Proposition 2.2 in [111 give us that each of the finite partitions 

Ck = { V i , v 2 , . . . , v * , 

$^ù$ 

k 

Vi} 

is also weakly Bernoulli. This implies that each factor map on E / U 1S Bernoulli. 

Then, Theorem 5 in [9] gives that (<r,7Z) is Bernoulli. 

Thus, to prove Proposition 12.2, it suffices to show that the partition £ of S is 

weak Markov. 

The corresponding Co° 18 the partition into local unstable sets Wfcc{a), and C-oo 

is the partition into local stable sets. 

Given e > 0, let n0(e) > be large enough so that ~P({J\i\>no(e) ^) < £/^-
For each i, let zi be a point in V * , and let Ai C W*oc(zi), Bi C W£c(zi) be compact 

subsets so that the sets 

-ft'4eiPo(Vra0.. 

zeAi 

-ft'4eiPo(Vra0...a„+i -ft'4eiPo( 

w€Bi 

Wfoc(w) 

satisfy 

â(Vi \ D?) < 
e 

2H+2' 
№ \ D i ) 

e 
2l*l+2 

Then, set P = P{e) = UN|<n0(.) M = M& = UW<n0(,) Dl 
We have that / l ( P + ) > l - e , / l ( M + ) > 1-e. Also, the set Z£ = U|<|<no(e) DinD? 

is compact. 

Let a, b G V^ , and let W ^ ^ a ) , WJQC(6) be their local unstable sets. Let 7ra>5 be the 

projection from Wfcc{a) to W^c(b) along the local stable sets in V{. As a approaches 

b in S, the maps 7ra,5 approach the identity 7Tb,b and the measures />a approach p&. 

Also, the densities £(a,fe) vary continuously with a, b in V£. On the compact set Z£ 

the convergence and continuity above are uniform. Further, each x G P is one of 

the sets W^c(a) and the conditional measure ~p(-\x) is just the Sinai measure v^. If 

a e x,b E y and x | J l7 C G Co^ then aj = bj for —N < j < 0. For iV large, 

the measures jl(-\x),Ji('\y) have densities whose quotient is closer to 1 than e. These 

statements imply the Weak Markov property above. This completes the proof of 

Proposition 12.2. 

Entropy formula. — It follows from our constructions that the measures of Vi satisfy 

(110) Cl Oi ,min < -p(Vi) < C20i, max 

for some positive constants c\, c2. 

Since the partition £ generates, we get 

/i7r(c) = inf 
n n 

1 
$^$ù$ : c V i ) < ^ ( 0 

From condition G3 and (110), the last term is finite. 
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For a E S, and n > 1, let V a 0 . = K 0 H c r " 1 ^ n • • • fl <r~n+1Van_x, and let 
Eao...an-i be the full height subpost of Q defined in section 2. 

Since a is ergodic with respect to /1, the Shannon-Breiman-Macmillan theorem 
gives a set 4̂ with ~p(A) = 1 such that a € A, implies 

( H I ) -^log|I(VrO0...aw_1) - » M " ) 

Using that the conditional measures of ~fi along local unstable sets have bounded 
densities relative to the measures pa, we see that there is a constant K > 0 such that, 
for a E S, 

(112) i f " 1 min diam(4n£7ao...an_1) < № 0 . . . a n _ J 

and 

(113) 7l(Vra0...an_i) < K max d i a m ( 4 n EaQ„man_x). 
«€Wj'oc(7ro) 

This and Proposition 8.1 imply that, if F n ( z ) = (F{l(z), Fgiz)), then there are a 
constant i ^ i ( a ) > 0 and points i /n, i(a) , un,2(a) E W ôcC71"0) sucn that 

(114) F ( K „ . . . « n _ J | F & ( u „ , i ( a ) ) | < /t-i(a) 

and 

(115) i f i ( a ) - 1 < № „ . . . a „ _ 1 ) | i T x ( « n , 2 ( a ) ) | 

By arguments like those in the proof of estimate (91), for Ji almost all a, there is 
a constant Ki(a) > 0 such that, for z,w E W^OC{TTO), n > 1, 

(116) ^ ( a ) " 1 < \^\Z)\ < K2(a) 
|Flx(W)| 

From (114), (115), (116) we get the existence of a constant K^{a) > , such that 

(117) Ksia)-1 < ,*(K,0...a„_1)|F1"x(7ra)| < K3(a). 

Thus there is a set A with Jl(A) — 1, so that if a E A, then 

(118) lim - log \F?X (tto) I = hw(a) 
n—>-oo ft 

Since a is isomorphic to the natural extension of F , we have hfl(F) — hjj;{o~). 
Letting A\ = 7r(A), then, for /j-almost all z in ^4i, we have 

(119) lim i log 1 ^ ( 2 ) 1 = ^ ( F ) 

Taking S to be the union of the stable manifolds of points in A\, we get that S 
has full Lebesgue measure in Q and (119) holds for all z E S. 

But, for z € Q, we have 

\F?x(z)\ = max ( { \F?x ( z%\F?x{z ) \ ) < | Z ) F n ( z ) | < (1 + a ) | F £ ( * ) | . 

So, we have proved formula (6) and completed the proof of Theorem 3.1. 
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As a final remark, if v = (vi,v2) is a unit vector in K%y then 

( i - « 2 ) l * ? . I -ft'4eiPo(Vra0...a„+i_1) 

= \DFn(z)v\ 

< 1 ^ 1 ( 1 + a 2 ) 

That is, for certain constants C\,C2, we have 

-ft'4eiPo(Vra0...a„+i_1) \DFn(z)(v) <C2\F?X\ 

which, together with (119), implies formula (7) . 
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