Astérisque

Yakov Berkovich

Non-solvable groups with a large fraction of involutions

Astérisque, tome 258 (1999), p. 241-248
http://www.numdam.org/item?id=AST_1999__258__241_0
© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

NON-SOLVABLE GROUPS WITH A LARGE FRACTION OF INVOLUTIONS

$b y$

Yakov Berkovich

Abstract

In this note we classify the non-solvable finite groups G such that the class number of G is at least $|G| / 16$. Some consequences are derived as well.

C.T.C. Wall classified all finite groups in which the fraction of involutions exceeds $1 / 2$ (see [1], Theorem 11.24). In this paper we classify all non-solvable finite groups in which the fraction of involutions is not less than $1 / 4$.

We recall some notation.
Let $k(G)$ be the class number of G. Let $i(G)$ denote the number of all involutions of $G, T(G)=\sum \chi(1)$ where χ runs over the set $\operatorname{Irr}(G)$. Now

$$
\operatorname{mc}(G)=k(G) /|G|, f(G)=T(G) /|G|, i_{o}(G)=i(G) /|G|
$$

It is well-known (see [1] , chapter 11) that

$$
i(G)<T(G), i_{o}(G)<f(G), f(G)^{2} \leq \operatorname{mc}(G)
$$

(with equality if and only if G is abelian).
In this note we prove the following three theorems.
Theorem 1. - Let G be a non-solvable group.
If $m c(G) \geq 1 / 16$ then $G=G^{\prime} Z(G)$, where G^{\prime} is the commutator subgroup of G, $Z(G)$ is the centre of $G, G^{\prime} \in\{P S L(2,5), S L(2,5)\}$.

Theorem 2. - Let G be a non-solvable group.
If $f(G) \geq 1 / 4$ then $G=G^{\prime} Z(G)$ and $G^{\prime} \in\{P S L(2,5), S L(2,5)\}$.
Theorem 3. - Let G be a non-solvable group.
Then $i_{o}(G) \geq 1 / 4$ if and only if $G=P S L(2,5) \times E$ with $\exp E \leq 2$.
Lemma 1 contains some well-known results.

Lemma 1

(a) If G is simple and a non-linear $\chi \in \operatorname{Irr}(G)$ is such that $\chi(1)<4$, then $\chi(1)=3$ and $G \in\{P S L(2,5), P S L(2,7)\} ;$ see [2].
(b) (Isaacs; see [1], Theorem 14.19). If G is non-solvable, then $|c d G| \geq 4$; here $c d G=\{\chi(1) \mid \chi \in \operatorname{Irr}(G)\}$.
(c) (see, for example, [1], Chapter 11). If G is non-abelian then

$$
m c(G) \leq 5 / 8, f(G) \leq 3 / 4
$$

Lemma 2. - Let $G=G^{\prime}>1, d \in\{4,5,6\}$. If $m c(G) \geq(1 / d)^{2}$ then there exists a non-linear $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)<d$.

Proof. - Suppose that G is a counterexample. Then by virtue of Lemma 1(b) one has

$$
\begin{gathered}
|G| \quad \sum_{\chi} \chi(1)^{2} \geq 1+d^{2}(k(G)-3)+(d+1)^{2}+(d+2)^{2} \\
\geq 1+d^{2}\left(\frac{|G|}{d^{2}}-3\right)+2 d^{2}+6 d+5=|G|-d^{2}+6 d+6>|G|
\end{gathered}
$$

since $d \in\{4,5,6\},-$ a contradiction (here χ runs over the set $\operatorname{Irr}(G)$).
Lemma 3 contains the complete classification of all groups G satisfying $i_{o}(G)=1 / 4$.
Lemma 3. - If $i_{o}(G)=1 / 4$ then one and only one of the following assertions holds:
(a) $G \cong A_{4}$, the alternating group of degree 4 .
(b) $G \cong P S L(2,5)$.
(c) G is a Frobenius group with kernel of index 4.
(d) G is a non-cyclic abelian group of order 12.
(e) G contains a normal subgroup R of order 3 such that $G / R \cong S_{3} \times S_{3}$; if x is an involution in G then $\left|C_{G}(x)\right|=12$ (here S_{3} is the symmetric group of degree 3).

Proof. - By the assumption $|G|$ is even. $i(G)$ is therefore odd by the Sylow Theorem and $|G|=4 i(G), P \in \operatorname{Syl}_{2}(G)$ has order 4.
(i) Suppose that G has no a normal 2-complement. Then P is abelian of type $(2,2)$ and by the Frobenius normal p-complement Theorem G contains a minimal nonnilpotent subgroup $F=C\left(3^{a}\right) \cdot P$ (here $C(m)$ is a cyclic group of order m and $A \cdot B$ is a semi-direct product of A and B with kernel B). Since all involutions are conjugate in F, all involutions are conjugate in G. Hence $C_{G}(x)=P$ for $x \in P^{\#}=P-\{1\}$, $a=1$. If G is simple then by the Brauer-Suzuki-Wall Theorem (see [1], Theorem 5.20) one has

$$
|G|=\left(2^{2}-1\right) 2^{2}\left(2^{2}+1\right)=60
$$

Now we assume that G is not simple. Take H, a non-trivial normal subgroup of G. If $|G: H|$ is odd, then

$$
\begin{array}{r}
i(G)=i(H), i_{o}(H)=i(H) /|H|=i(G) /|H|= \\
|G| i_{o}(G) /|H|=|G: H| i_{o}(G)=|G: H| / 4
\end{array}
$$

Therefore $|G: H|=3$ and $i_{o}(H)=3 / 4$. Now $f(H)>i_{o}(H)$, hence H is abelian (Lemma $1(\mathrm{c})$) and $f(H)=1$. It is easy to see that H is an elementary abelian 2 -group, $H=P$. Now $|P|=4$ implies $|G|=12, F=G \cong A_{4}$.

Now suppose that H has even index. Since G is not 2-nilpotent ($=$ has no a normal 2-complement) then $|H|$ is odd. In view of $\left|C_{G}(x)\right|=4$ for $x \in P^{\#}$ one obtains that $P H$ is a Frobenius group with kernel H, P is cyclic - a contradiction.
(ii) G has a normal 2-complement K.

First assume that P is cyclic. Then all involutions are conjugate in G, and for the involution $x \in P$ one has $C_{G}(x)=P$. Then G is a Frobenius group with kernel K of index 4.

Assume that $P=\langle\alpha\rangle \times\langle\beta\rangle$ is not cyclic. We have $P=\{1, \alpha, \beta, \alpha \beta\}$, and all elements from $P^{\#}$ are not pairwise conjugate in G. Thus

$$
\left|G: C_{G}(\alpha)\right|+\left|G: C_{G}(\beta)\right|+\left|G: C_{G}(\alpha \beta)\right|=i(G)=|G: P|
$$

Note that $C_{G}(\alpha)=P \cdot C_{K}(\alpha)$, and similarly for β and $\alpha \beta$. Therefore

$$
\begin{equation*}
\left|C_{K}(\alpha)\right|^{-1}+\left|C_{K}(\beta)\right|^{-1}+\left|C_{K}(\alpha \beta)\right|^{-1}=1 \tag{1}
\end{equation*}
$$

Since $|K|>1$ is odd then (1) implies

$$
\begin{equation*}
\left|C_{K}(\alpha)\right|=\left|C_{K}(\beta)\right|=\left|C_{K}(\alpha \beta)\right|=3 . \tag{2}
\end{equation*}
$$

By the Brauer Formula (see [1], Theorem 15.47) one has

$$
\begin{equation*}
\left|K \left\|\left.C_{K}(P)\right|^{2}=\left|C_{K}(\alpha)\left\|C_{K}(\beta)\right\| C_{K}(\alpha \beta)\right|=3^{3}\right.\right. \tag{3}
\end{equation*}
$$

If $C_{K}(P)>1$ then (3) implies $|K|=3$ and $G=P \times K$ is an abelian non-cyclic group of order 12 .

Assume $C_{K}(P)=1$. Then $|K|=3^{3}$. Now (2) implies that K is not cyclic. By analogy, (2) implies that $\exp K=3$. From $\exp P=2$ follows that G is supersolvable. Therefore R, a minimal normal subgroup of G, has order 3. Applying the Brauer Formula to G / R, one obtains $G / R \cong S_{3} \times S_{3}$, and we obtain group (e).

Proof of Theorem 1. - Denote by $S=S(G)$ the maximal normal solvable subgroup of G.
(i) If G is non-abelian simple then $G \cong \operatorname{PSL}(2,5)$.

Proof. - Take $d=4$ in Lemma 2. Then there exists $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=3$. Now Lemma 1(a) implies $G \in\{\operatorname{PSL}(2,5), \operatorname{PSL}(2,7)\}$. Since

$$
\operatorname{mc}(\operatorname{PSL}(2,7))=1 / 28<1 / 16
$$

then $G \cong \operatorname{PSL}(2,5)($ note that $\operatorname{mc}(\operatorname{PSL}(2,5))=1 / 12)$.
(ii) If G is semi-simple then $G \cong \operatorname{PSL}(2,5)$.

Proof. - Take in G a minimal normal subgroup D. Then $D=D_{1} \times \cdots \times D_{s}$ where the D_{i} 's are isomorphic non-abelian simple groups. Since (see [1], Chapter 11) $\operatorname{mc}\left(D_{1}\right) \geq \operatorname{mc}(G) \geq 1 / 16, D \cong \operatorname{PSL}(2,5)$ by (i) and so $\operatorname{mc}\left(D_{1}\right)=1 / 12$. Now

$$
\operatorname{mc}(D)=\operatorname{mc}\left(D_{1}\right)^{s}=(1 / 12)^{s} \geq 1 / 16
$$

implies that $s=1$. Therefore $D \cong \operatorname{PSL}(2,5)$. Since $G / C_{G}(D)$ is isomorphic to a subgroup of $\operatorname{Aut} D \cong S_{5}, \operatorname{mc}\left(S_{5}\right)=7 / 120<1 / 16$, then $G / C_{G}(D) \cong \operatorname{PSL}(2,5)$. Because $D \cap C_{G}(D)=1, G=D \times C_{G}(D)$. Now

$$
1 / 16 \leq \operatorname{mc}(G)=\operatorname{mc}\left(C_{G}(D)\right) \operatorname{mc}(D)=(1 / 12) \operatorname{mc}\left(C_{G}(D)\right)
$$

implies that $\operatorname{mc}\left(C_{G}(D)\right) \geq 3 / 4>5 / 8, C_{G}(D)$ is abelian (Lemma $\left.1(\mathrm{c})\right), C_{G}(D)=1$ (since G is semi-simple), and $G \cong \operatorname{PSL}(2,5)$.
(iii) $G / S \cong \operatorname{PSL}(2,5)$.

This follows from $\operatorname{mc}(G / S) \geq \operatorname{mc}(G)$ (P.Gallagher; see [1], Theorem 7.46) and (ii).
(iv) If $G=G^{\prime}$ then $\left.G \in \operatorname{PSL}(2,5), \mathrm{SL}(2,5)\right\}$.

Proof. - By virtue of (iii) we may assume that $S>1$.
Suppose that (iv) is true for all proper epimorphic images of G. Take in S a minimal normal subgroup R of G, and put $|R|=p^{n}$. Then by the Gallagher Theorem and induction one has $G / R \in\{P S L(2,5), \mathrm{SL}(2,5)\}$.
(1iv) $G / R \cong \operatorname{PSL}(2,5)$, i.e. $R=S$.
If $Z(G)>1$ then $R=Z(G)$ is isomorphic to a subgroup of the Schur multiplier of G / R so $|R|=2$ and $G \cong \operatorname{SL}(2,5)$ (Schur). In the sequel we suppose that $Z(G)=1$.

Then $C_{G}(R)=R$, so $n>1$. If $x \in R^{\#}$ then $\left|G: C_{G}(x)\right| \geq 5$, since index of any proper subgroup of $\operatorname{PSL}(2,5)$ is at least 5 . Let $k_{G}(M)$ denote the number of conjugacy classes of G ($=G$-classes), containing elements from M. Then

$$
k_{G}(R) \leq 1+\left|R^{\#}\right| / 5=\left(p^{n}+4\right) / 5
$$

If $x \in G-R$ then $Z(G)=1$, and the structure of G / R imply $\left|G: C_{G}(x)\right| \geq 12 p$ (indeed, x does not centralize R and $\left|G / R: C_{G / R}(x R)\right| \geq 12$). Hence

$$
\begin{aligned}
& k_{G}(G-R)=k(G)-k_{G}(R)=|G| \operatorname{mc}(G)-k_{G}(R) \geq \\
& 60 p^{n} / 16-\left(p^{n}+4\right) / 5=\left(71 p^{n}-16\right) / 20
\end{aligned}
$$

Now

$$
\begin{equation*}
|G-R|=59 p^{n} \geq 12 p k_{G}(G-R) \geq 12 p\left(71 p^{n}-16\right) / 20 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
5 \times 59 p^{n-1}=295 p^{n-1} \geq 213 p^{n}-48 \geq 426 p^{n-1}-48 \Rightarrow 131 p^{n-1} \leq 48 \tag{2}
\end{equation*}
$$

a contradiction.
(2iv) $G / R \cong \operatorname{SL}(2,5)$.
Proof. - Suppose that $R_{1} \neq R$ is a minimal normal subgroup of G. Then (by induction)

$$
R R_{1}=R \times R_{1}=S,\left|R_{1}\right|=2, G / R_{1} \cong \mathrm{SL}(2,5)
$$

and $G^{\prime}<G$, since the multiplier of $\operatorname{SL}(2,5)$ is trivial, a contradiction. Therefore R is a unique minimal normal subgroup of G. Similarly, one obtains $Z(G)=1$.

Let $p>2$. Then $C_{G}(R)=R$. In this case $Z(S)<R$, so $Z(S)=1$ and S is a Frobenius group with kernel R of index 2. As in (1iv) one has

$$
k_{G}(S)=k_{G}(S-R)+k_{G}(R) \leq 1+\left(p^{n}+4\right) / 5=\left(p^{n}+9\right) / 5
$$

If $x \in G-S$ then $\left|G: C_{G}(x)\right| \geq 12 p$ and

$$
\begin{array}{r}
k_{G}(G-S)=k(G)-k_{G}(S)=|G| \operatorname{mc}(G)-k_{G}(S) \geq \\
120 p^{n} / 16-\left(p^{n}+9\right) / 5=\left(73 p^{n}-18\right) / 10 \\
|G-S|=118 p^{n} \geq 12 p k_{G}(G-S) \geq 6 p\left(73 p^{n}-18\right) / 5 \\
295 p^{n-1} \geq 219 p^{n}-54 \geq 657 p^{n-1}-54 \\
54 \geq 362 p^{n-1}
\end{array}
$$

a contradiction.
Let $p=2$. Since R is the only minimal normal subgroup of G and $Z(G)=1$ then,

$$
\begin{array}{r}
k_{G}(S) \leq 1+\left(2^{n+1}-1\right) / 5=\left(2^{n+1}+4\right) / 5 \\
k_{G}(G-S) \geq 120.2^{n} / 16-\left(2^{n+1}+4\right) / 5=\left(71.2^{n}-8\right) / 10 \\
59.2^{n+1}=|G-S| \geq 24 k_{G}(G-S) \geq 24\left(71.2^{n}-8\right) / 10 \\
295.2^{n} \geq 426.2^{n}-48 \\
48 \geq 131.2^{n}
\end{array}
$$

a contradiction.
(v) If D is the last term of the derived series of G then $D \in\{\operatorname{PSL}(2,5), \operatorname{SL}(2,5)\}$. Proof. - Since $D=D^{\prime}$ and $\operatorname{mc}(D) \geq \operatorname{mc}(G) \geq 1 / 16$ the result follows from (iv).
(vi) The subgroup D from (v) coincides with G^{\prime}.

Proof. - We have $D \in\{\operatorname{PSL}(2,5), \mathrm{SL}(2,5)\}$ by (v). Since $Z(G)<D$ we may, by virtue of the Gallagher Theorem [1], Theorem 7.46, assume that $Z(D)=1$. Then $D \cong \operatorname{PSL}(2,5)$. Since

$$
\operatorname{Aut} D \cong S_{5}, \operatorname{mc}\left(S_{5}\right)=7 / 120<1 / 16
$$

then

$$
G / C_{G}(D) \cong \operatorname{PSL}(2,5), G=D \times C_{G}(G)
$$

and $C_{G}(D)$ is abelian (see (ii)). So $D=G^{\prime}$.
(vii) $G=S G^{\prime}$.

This follows from (iii) and (vi).
(viii) $\left|S^{\prime}\right| \leq 2$. In particular, S is nilpotent and all its Sylow subgroups of odd orders are abelian.
Proof. - In fact, $S^{\prime} \leq S \cap G^{\prime} \leq Z\left(G^{\prime}\right)$.
(ix) $G=S * G^{\prime}$, a central product.

Proof. - Take an element x of order 5 in G^{\prime}. Since $G^{\prime} \cap S \leq Z(G)$, then

$$
G / G^{\prime} \cap S=G^{\prime} / G^{\prime} \cap S \times S / S \cap G^{\prime}
$$

implies that $\langle x, S\rangle$ is nilpotent. Hence $\langle S, x\rangle=P \times A$ where $P \in \operatorname{Syl}_{2}(S)$ and A is abelian. As $x \in A$ then $x \in C_{G}(S)$. Since $G^{\prime}=\left\langle x \in G^{\prime} \mid x^{5}=1\right\rangle$ it follows that $G=S G^{\prime}=S * G^{\prime}$.
(x) S is abelian.

Proof. - We have $G=\left(S \times G^{\prime}\right) / Z$ where $|Z| \leq 2$. For $G^{\prime} \cong \operatorname{PSL}(2,5)$ our assertion is evident. Now let $G^{\prime} \cong \mathrm{SL}(2,5)$. Then $|Z|=2, Z \geq S^{\prime}$. Suppose that S is non-abelian. Then $Z=S^{\prime}$.

Take $\chi \in \operatorname{Irr}(G)$. We consider χ as a character of $G^{\prime} \times S$ such that $Z \leq \operatorname{ker} \chi$. Then $\chi=\tau \vartheta$ where $\tau \in \operatorname{Irr}\left(G^{\prime}\right), \vartheta \in \operatorname{Irr}(S)$ and $\chi_{Z}=\chi(1) 1_{Z}=\tau(1) \vartheta(1) 1_{Z}$. Now $\tau_{Z}=\tau(1) \lambda, \vartheta_{Z}=\vartheta(1) \mu$ where $\lambda, \mu \in \operatorname{Irr}(Z), \lambda \mu=1_{Z}$. Noting that $|Z|=2$, one has
$\lambda=\mu$ and $\tau_{Z}=\tau(1) \lambda, \vartheta_{Z}=\vartheta(1) \lambda$. Since S is non-abelian then $\operatorname{cd} S=\{1, m\}$ where $m^{2}=|S: Z(S)|$.

Suppose that $\lambda=1_{Z} . \operatorname{Irr}\left(G^{\prime}\right)$ has exactly 5 characters containing Z in their kernels, so for τ we have exactly 5 possibilities. Since $Z \leq \operatorname{ker} \vartheta$ then $\vartheta \in \operatorname{Lin}(S)$, and for ϑ we have exactly $|\operatorname{Lin}(S)|=|S| / 2$ possibilities. Hence for χ we have exactly $5|S| / 2$ possibilities if $\lambda=1_{Z}$.

Suppose that $\lambda \neq 1_{Z}$. Then Z is not contained in $\operatorname{ker} \tau$, so for τ we have exactly $\left|\operatorname{Irr}\left(G^{\prime}\right)\right|-\left|\operatorname{Irr}\left(G^{\prime} / Z\right)\right|=9-5=4$ possibilities. Since $S^{\prime}=Z$ is not contained in $\operatorname{ker} \vartheta$, then ϑ is not linear, and for ϑ we have exactly $\left(|S|-\left|S / S^{\prime}\right|\right) / m^{2}=|S| / 2 m^{2}$ possibilities. For χ we have, in this case, exactly $4|S| / 2 m^{2}=2|S| / m^{2}$ possibilities.

Finally,

$$
k(G)=5|S| / 2+2|S| / m^{2}
$$

and

$$
\operatorname{mc}(G)=k(G) /|G|=k(G) / 60|S|=1 / 24+1 / 30 m^{2}
$$

Since $m>1$ then

$$
\operatorname{mc}(G) \leq 1 / 24+1 / 120=1 / 20<1 / 16
$$

a contradiction. Therefore S is abelian, $S=Z(G)$ and $G=G^{\prime} Z(G)$. In this case $\operatorname{mc}(G) \in\{1 / 12,3 / 40\}$. The theorem is proved.

Let now $f(G) \geq 1 / 4$. Then $\operatorname{mc}(G)>f(G)^{2} \geq 1 / 16$, and Theorem 2 is a corollary of Theorem 1. It is easy to see that in this case $f(G)=f\left(G^{\prime}\right) \in\{4 / 15,1 / 4\}$.

Proof of Theorem 3. - In view of Lemma 3 we may assume that $i_{o}(G)>1 / 4$. Since

$$
\operatorname{mc}(G) \geq f(G)^{2}>i_{o}(G)^{2}>1 / 16
$$

we may apply Theorem 1. By this theorem $G=G^{\prime} Z(G)$ where

$$
G^{\prime} \in\{\operatorname{PSL}(2,5), \mathrm{SL}(2,5)\}
$$

If $G^{\prime}=G$ then $G \cong \operatorname{PSL}(2,5)$ since $i_{0}(\operatorname{SL}(2,5))=1 / 120<1 / 4$. Now let $G^{\prime}<G$.
Suppose that $\exp \left(G / G^{\prime}\right)>2$. Let M / G^{\prime} be the subgroup generated by all involutions of G / G^{\prime}. Then $i(M)=i(G)$,

$$
\begin{aligned}
i_{o}(M)= & i(M) /|M|=|G: M| i(G) /|G|= \\
& |G: M| i_{o}(G) \geq|G: M| / 4 \geq 1 / 2
\end{aligned}
$$

and M is solvable by [1] Theorem 11.24 (since $f(M)>i_{o}(M) \geq 1 / 2$), a contradiction. Thus $\exp \left(G / G^{\prime}\right)=2$.

If $G^{\prime}=\operatorname{PSL}(2,5)$ then $G=G^{\prime} \times Z(G)$. If $\exp Z>2$ and $M=G^{\prime} \times \Omega_{1}(Z(G))$ then

$$
i(G)=i(M), i_{o}(M)=|G: M| i_{o}(G)>|G: M| / 4 \geq 1 / 2
$$

and M is solvable (see [1], Theorem 11.24) - a contradiction. Hence if $G^{\prime} \cong \operatorname{PSL}(2,5)$ then $G=\operatorname{PSL}(2,5) \times E$ with $\exp E \leq 2$.

Now suppose that $G=G^{\prime} Z(G), G^{\prime} \cong \mathrm{SL}(2,5)$ and $Z(G)$ is a 2-subgroup. Set $\langle z\rangle=Z\left(G^{\prime}\right)$.

If $\exp Z(G)=2$ then $Z(G)=\langle z\rangle \times E, G=G^{\prime} \times E$, and $i_{o}(G)<1 / 4$. Assume that $\exp Z(G)=4$. Then

$$
G^{\prime} \cap Z(G)=\langle z\rangle=\Phi(G)
$$

where $\Phi(G)$ is the Frattini subgroup of G.
Let s be an element of order 4 in $Z(G)$. Then $Z(G)=\langle s\rangle \times E$ and

$$
G=\left(G^{\prime}\langle s\rangle\right) \times E, \exp E \leq 2
$$

Let us calculate $i_{o}(H)$ where

$$
H=G^{\prime}\langle s\rangle, Z(H)=\langle s\rangle, o(s)=4
$$

Take $P \in \operatorname{Syl}_{2}\left(G^{\prime}\right)$. Then $P \cong Q(8)$ contains exactly three distinct cyclic subgroups $\langle a\rangle,\langle b\rangle,\langle c\rangle$ of order 4 , and $a^{2}=b^{2}=c^{2}=s^{2}=z$. Hence

$$
(a s)^{2}=(b s)^{2}=(c s)^{2}=1
$$

and it is easy to see that $i_{o}(\langle P, s\rangle)=7$. Now

$$
\begin{array}{r}
\langle P, s\rangle \in \operatorname{Syl}_{2}(H),\left|H: N_{H}(\langle P, s\rangle)\right|=5 \\
\langle P, s\rangle \cap\langle P, s\rangle^{x}=\langle s\rangle
\end{array}
$$

for all $x \in H-N_{H}(\langle P, s\rangle)$. Thus

$$
\begin{array}{r}
i_{o}(H)=\left|H: N_{H}(\langle P, s\rangle)\right| i_{o}(\langle P, s\rangle)- \\
\left(\left|H: N_{H}(\langle P, s\rangle)\right|-1\right) i_{o}(\langle s\rangle)=5 \times 7-4=31
\end{array}
$$

Since

$$
G=H \times E,|E|=2^{\alpha}, \exp E \leq 2
$$

then

$$
\begin{array}{r}
i(G)=i(H)|E|+|E|-1=31.2^{\alpha}+2^{\alpha}-1=32.2^{\alpha}-1 \\
\quad i_{o}(G)=i(G) /|G|=\left(32.2^{\alpha}-1\right) / 240.2^{\alpha}<2 / 15<1 / 4
\end{array}
$$

a contradiction. Therefore $G^{\prime} \not \approx \mathrm{SL}(2,5)$ and the theorem is proved.
Question. - Find all non-solvable groups G with $i_{o}(G)=2^{-n}, n>2$.
There exist four multiplication tables for two-element subsets of group elements (see [3]). These multiplication tables afford the following 2×2 squares:

$$
\begin{array}{llllllll}
A & B & A & B & A & B & A & B \\
B & A & B & C & C & A & C & D
\end{array}
$$

Here distinct letters denote distinct elements of a group.
Let us calculate the number $P(1)$ of the squares of the first type in a finite group G. If a pair $\{a, b\}$ of elements of G affords a square of the first type, then $a^{2}=b^{2}, a b=b a$. Then $\left(a^{-1} b\right)^{2}=1$, so $i=a^{-1} b$ is the involution commuting with a and b. If $i \in \operatorname{Inv}(G)$ (the set of all involutions of $G), x \in C_{G}(i)$, then the pair $(x, x i)$ affords the square of the first type. Therefore $i \in \operatorname{Inv}(G)$ affords exactly $\left|C_{G}(i)\right|$ squares of the first type. Let

$$
\operatorname{Inv}(G)=K(1) \cup \cdots \cup K(r)
$$

where $K(1), \ldots, K(r)$ are distinct conjugacy classes of G. Then

$$
P(1)=\sum_{i \in \operatorname{Inv}(G)}\left|C_{G}(i)\right|=\sum_{j=1}^{r} \sum_{i \in K(j)}\left|C_{G}(i)\right|=r|G|
$$

Thus $P(1)=r|G|$, where r is the number of conjugacy classes of involutions in G.
By analogy, we may prove that the number $P(1,2)$ of commutative squares in the multiplicative table of G is equal to $k(G)|G|$. The number $P(2)$ of squares of the second type in the multiplicative table of G is therefore equal to $P(2)=P(1,2)-$ $P(1)=(k(G)-r)|G|$. If $p(n)$ is the fraction of squares of the n-th type in the multiplicative table of G then

$$
p(1)=r /|G|, p(2)=(k(G)-r) /|G|=\operatorname{mc}(G)-p(1)
$$

It is easy to see that the number $P(1)+P(3)$ of squares of the first and the third type in the multiplicative table of G is equal to $|G| s$ where s is the number of real classes (a class K of G is said to be real if $x \in K \Rightarrow x^{-1} \in K$). Thus

$$
P(4) \equiv 0(\bmod |G|)
$$

References

[1] Berkovich Ya. G., Zhmud' E. M., Characters of finite groups, Part 1, Amer. Math. Soc., Providence, Rhode Island, 1998.
[2] Blichfeldt H. F., Finite collineation groups, Chicago, 1917.
[3] Freiman G. A., On two- and three-element subsets of groups, Æquat. Math., 22, 1981, 140-152.

[^0]
[^0]: Y. Berkovich, Research Institute of Afula, Department of Mathematics and Computer Science, University of Haifa, 31905 Haifa, Israel • E-mail : berkov@mathcs2.haifa.ac.il

