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SUMSETS WITH D I S T I N C T S U M M A N D S AND T H E 
E R D Ô S - H E I L B R O N N C O N J E C T U R E ON S U M S O F 

R E S I D U E S 

by 

Gregory A . Preiman, Lewis Low & Jane Pitman 

Abstract — Let 5 be a set of integers or of residue classes modulo a prime p, with 
cardinality |5| = k, and let T be the set of all sums of two distinct elements of S. 
For the integer case, it is shown that if |T| is less than approximately 2.5A; then S 
is contained in an arithmetic progression with relatively small cardinality. For the 
residue class case a result of this type is derived provided that k > 60 and p > 50k. 
As an application, it is shown that \T\ > 2k — 3 under these conditions. Earlier results 
of Freiman play an essential role in the proofs. 

1. Introduction 

1.1. Let Z be the set of all integers and let Fp be the finite field of residue classes 
modulo p, where p is a prime number. If A is a subset of Z or Fp (written A C Z or 
A C Fp) we denote the cardinality of A by \A\. For a finite subset A of Z or Fp we 
shall consider 2A, the set of all sums of two elements of A, and also 2AA, the set of 
all sums of two distinct elements of A, that is, 

2A = fa + b : a, b G A}, 
2AA = {a + b : a,b e A, a ^ 6} 

1.2. Sums of elements from a set of integers. — First we consider the sumset 
2A for Ac Z. We write 

A — { a 0 , a i , . . . ,Ofe_i}, k=\A\.. 

where 
a0 < ai < • • • < ak-i . 

Since the k — 1 sums a* + a^+i and the sums + = 2a« are all distinct we have 

\2A\ >2k-l. (1) 
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and it is easily seen that equality holds if and only if A is an arithmetic progression 
(that is, the differences a*+i — a{ are all equal). Freiman [6, page 11] has proved the 
following more precise result (which will be used in Section 2 below). 

Theorem A (Freiman). — Let D C Z. If \2D\ < 2\D\ - 1 + d , where d < \D\ - 3, 
then D C L, where L is an arithmetic progression such that 

\L\<\D\+d 

(so that D is obtained by deleting at most C\ terms from the arithmetic progression 
L). 

1.3. Sums of elements from a subset of Fp. — Next we look at 2A for A C Fp 
such that \A\ = k. By analogy with (1) we have the following special case of the 
well-known Cauchy-Davenport theorem: 

12.41 > min(p,2fc- 1). (2) 
More detailed results have been obtained by various authors and Freiman [6, p.46] 
has used the above theorem on 2D for D C Z to obtain the following result in the 
same vein for A C Fp. 

Theorem B (Freiman). — Let A C Fp such that 

\A\ = k< p/35. 

Suppose that \2A\ = 2k — 1 + b, b < OAk — 2. Then A C L7 where L is an arithmetic 
progression in Fp such that \L\ = k + 6. 

1.4. Sums with distinct summands and the Erdôs-Heilbronn conjecture 

For A C Z as in 1.2 above, the k — 1 sums ai + a^+i and the k — 2 sums ai + ai+2 
are all distinct and belong to 2AA. Thus 

\2AA\ >2k-3, (3) 

and it can be checked that for k > 5 equality holds if and only if A is an arithmetic 
progression. 

By analogy with the Cauchy-Davenport theorem (2), Erdos and Heilbronn conjec
tured in the 1960?s (see Erdos and Graham [5]) that for A C Fp such that \A\ = fcwe 
must have 

\2AA\ > m in (p ,2&-3 ) . (4) 
Although there is a short elementary proof of (2) (see, for example, Davenport [3]), the 
corresponding result for distinct summands seems to be more difficult. As discussed 
further below, the full conjecture (4) has been proved since 1993. The main published 
contribution prior to 1993 seems to be that of Mansfield [7], who proved the following 
theorem. 

Theorem (Mansfield). — Let A C Fp such that \A\ — k. Then the Erdôs-Heilbronn 
conjecture (A) is true if 

either k < 11 or 2k~l < p. 
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Our aim in this paper was to develop analogues for 2AA of Freiman's results on 
2D, both for D C Z and for A C Fp, which would be strong enough for the purposes 
of proving (4) for a wider range, as well as being of independent interest. 

1.5. Results obtained. — In Section 2 we use simple combinatorial arguments 
together with Freiman's theorem on 2D for D C Z to prove the following theorem. 

Theorem 1. — Let D be a set of k integers for which 

\2AD\ < 2Jfe-3 + C, 

where 

0 < C < 1 
2 

( * - 5 ) 

Then D is contained in an arithmetic progression L such that 

\L\ <k + 2C + 2. 

In Section 3 we use Theorem 1 and arguments based on trigonometric sums to 
prove the main result of the paper, which is as follows. 

Theorem 2. — Let A C Fp such that 

\A\ = k< P 
50 ' 

k > 60. 

Suppose that 
\2AA\ <2k-3 + C, 

where C < 0.06&. Then A C L, where L is an arithmetic progression in Fp such that 

\L\ <k + 2C + 2. 

As a corollary, we will show that for A C Fp such that |.4| = k the Erdos-Heilbronn 
coniecture (4) is true if 

k < P 
50 ' 

k > 60. (5) 

Pybus [10] told us that he had obtained a proof of a version of the Erdos-Heilbronn 
conjecture based on different ideas. More recent work by others, including proofs of 
the full conjecture, will be discussed in Section 4 at the end of the paper. 

1.6. Isomorphisms. — We note that the sumsets 2 A and 2AA can be considered 
for any set A with addition. If A and B are two sets, each with an addition, and 
4>: A ~» B is a bijection, we call </> an isomorphism if and only if 

<t>{a) + cf>(b) = (f)(c) + <j>(d) <^a + 6 = c + d. 

We call A and B as above isomorphic if such an isomorphism exists, in which case we 
have 

|2i4| = \2B\ and \2AA\ = \2AB\. 

We shall use the fact that affine transformations of Z or Fp are isomorphisms. 
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2. Sums of distinct elements from a set of integers 

2.1. In this section we consider a set of integers A such that \A\ = k and use notation 
as at the beginning of section 1.2, together with some further vocabulary as follows. 
We note that 2AA is isomorphic to the set 

I (a» + aj) : 1 < i < j < n} 

and it is helpful to think geometrically in terms of the points a* and the mid-points 
of pairs di, aj (i < j). We shall say that a; is representable if and only if a* coincides 
with one of the mid-points, that is 

2oi E 2AA. 

We shall call a sum ai 4- a,i+s with s > 1 an s-step sum, and we recall that the 
1-step and 2-step sums are all distinct. For s > 1, an s-step sum will be called new 
if and only if it is not equal to any j-step sum with 1 < j < s. All 1-step and 2-step 
sums are new, but for s > 3 an s-step sum is not necessarily new. We shall use the 
notations 

k1=k1(A) = total number of new s-step sums with s > 3 
k2 = k2(A) = number of a7'S which are representable. 

If an s-step sum ai+ai+s is not new, then for some j , k such that i < j < j+k < i+s 
we must have 

Q>i + Q>i+s — CLj H~ 
and hence 

0 < aj — ai = ai+s — aj+k . 
We therefore consider the associated difference set 

V{ai,ai+S) = (&г+1 "~ aiiai+2 — a>i+l, . . . , CLi+s — ai+s-i). 

Our proof of Theorem 1 will be based on the following lemma. 

Lemma. — For A C Z such that \A\ = k, k > 5? let ki,k2 be the number of new 
s-step sums with s > 3 and the number of representable elements of A as defined 
above. Then 

кг + к2 > к - 4. (6) 

Proof. — Consider a particular subscript i such that 0 < i < k — 5. If ai -f a^+3 is 
not new we must have 

V(ai,ai+z) = (x,y,x) 

for some x, y > 0, and so 
V(ai,ai+4) = (x,y,x,z) 

tor some z. itz = xoxz = x-\-y tnen ai+3 is a mia-point ana so is represent aoie, 
while if z 7̂  x and z ^ x + y then en + ai+4 is new. Thus at least one of the following 
three statements holds: 

(i) cii H- cii+z is new; (ii) ai + a«+4 is new; (hi) 0^+3 is representable. 
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This is true for i = 0 , 1 , . . . , k — 5 ; the new sums arising from (i) and (ii) for different 
Vs are distinct, and the representable elements arising from (iii) are also distinct. 
Hence at least one element counted in ki H- k2 arises in this way from each of the k — 4 
possible values of the subscript i and so (6) follows. 

We note that the above argument involves only 3-step and 4-step sums. By more 
detailed arguments using s-step sums with s > 5 it can be shown that in fact 

kx + k2 > k - 2 for k > 8. (7) 

2.2. Proof of Theorem 1. —- We now consider D C Z such that \D\ = k. Let 
k\ = k\{D), = k2(D) and suppose that D satisfies the hypotheses of Theorem 1, 
so that 

|2AD| < 2 f c - 3 + C (8) 

0<C < h(k-5). (9) 

Since 

(2D)\(2AD) = {2d I d e D, d is not representable}, (10) 

we have 

\2D\ = \2AD\ + k-k2 . (11) 

Using (8) and the above lemma we obtain 

12D I < 2 f c - 3 + C - f & - f e > = 3ife - 3 + C - k2 = 3 & - 3 + C + &1 - (h+k2) 

< 3k - 3 + C + fci - (Jfe - 4) = 2k + 1 + C + fci . 12 

The number of 1-step sums is equal to k — 1, the number of 2-step sums is equal to 
k — 2, and the number of new sums (different from these) is equal to k\. Thus, we 
have 

|2AD| = 2 f c - 3 + &i , 

and hence by (8), 
fci < C. 

Applying this inequality in (12), we get 

I2DI < 2IDI - 1 + 2C + 2. (13) 

It now follows from (9) and (13), by Theorem A in Section 1.2, that D C L1 where L 
is an arithmetic progression such that \L\ < \D\ + 2C + 2, as required. 

3. Sums of distinct summands from a subset of Fp 

3.1. The proof of our main result, Theorem 2, will depend on the use of trigonometric 
sums. We view the elements of Fp as residue classes modulo p, and note that for a £ Z 
and x G Fp, e2ntax/p is defined uniquely by 

g2wiax/p g27ri a XQ/P 

where XQ is any representative residue belonging to the residue class x. 
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For finite sets A C Fp we shall consider trigonometric sums of the form 

T = 

xeA 

g27ri ax/p (14) 

We note that for such sums it is easily checked that if k = \A\ then 

P-I 

a=l xEA 

g27ri ax/p 
2 

<pk-k¿ (15) 

3.2. We shall need the following lemma of Preiman [6]. 

Lemma. — Let A be a subset of Fp such that \A\ — k, and let a £ Z such that a ^ 0 
(mod p) and let T be the corresponding trigonometric sum defined by (14)- Suppose 
that \T\ > Cok, where 0 < Co < 1. Then, for some u and v in Fp such that v ^ 0, at 
least 

1 
2 

(Co + 1)* 

distinct elements of A belong to the arithmetic progression 

{u + sv : 0 < s < P-I 

'2 
Proof — See Preiman [6], Section 1 of Chapter II, Corollary to Lemma on pages 
46-47 and discussion on page 50. 

3.3. Proof of Theorem 2. — We now turn to the proof of Theorem 2. We there
fore consider A C Fp such that 

\A\ = k < p/50, (16) 

|2AA| < 2k - 3 + C, C < 0.06k, k > 60 (17) 
Consider the sum 

5 = 
p-i 

a=0 xi ,X2£A xi ,X2£A 

e2TTi(a/p)(xi+X2-x3) 

We divide the sum S into two parts, 

S = 
P-I 

a=0 xi,X2£A x3€2A 

p-1 

a=C X\,X2(zA x3e(2A)\(2*A) 

= Si — S2 , (18) 

say. Since each pair x\,X2 of elements of A yields exactly one x% in 2A such that 

x\ + X2 = xs, we have 
Si = k2p (19; 

(as in Freiman [6], p.48 (2.3.2)). 
Denote by B the set of all elements of A which are not representable. Then, in 

view of (10) we have 

S2 = 
n-1 

a=0 xi ,X2£A xi ,X2£A 

e2iri(a/p)(xi-\-x2-2aj) 
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For dj in B, the equation x\ + x2 — 2aj = 0 holds only if xi = x2 = a,j and therefore 

Sz = p\B\ (20) 

It follows from (18), (19) and (20) that 

S > p(k2 - k) (21) 

Then from (21) and the definition of S, we obtain 

p(k2 - k) 
p-I 

a=0 &1 ,X2EA x3£2AA 

e2iti{a/p){x\+X2—xz) 

p-1 

a=0 xEA 

2ivi{a/p)x 2 

x£2AA 

e2wi(a/p)x 

k2\2AA\ 
p-1 

a=l x£A 

e27ri(a/p)x |2 

x£2AA 

e2Tri(a/p)x 

: k2\2AA\ max 
â O (mod p) 

x£A 

e2Tti{a/p)x 
p-1 

a=l xeA 

e2ni(a/p)x 

x£2AA 

e2iri(a/p)x 

By using Cauchy's inequality and applying (15) to A and 2AA, we see that this 
expression is 

< k2\2AA\ max 
â O (mod p) 

xEA 

e2iri(a/p)x pk — k2 p\2AA\ - \2AA\2 . 

Dividing by pk2 and solving the inequality for 

U = max 
â O (mod p) 

x£A 

2wi(a/p)x 

we obtain 
U 

k 
> 

1 — ap — 7 
л/ÍAÍL - в)(1 - ав)) 

= / (a , £ , 7 ) , say, 

where 

a = 
\2AA\ 

k 
8^ 

k 

P 
7 = 

1 

k ' 

and so, by (16) and (17) 

0 < a < 2.06 - 37, 0<B< 
1 

50 
0 < 7 < 

1 

60 
< 

1 

50 

By consideration of partial derivatives in the relevant range it can be checked that 

/ ( a , ) 9 , 7 ) > / ( 2 . 0 6 - 3 7 , A 7 ) > / 2.01 , 1 
50 •5 

1 
60 

and hence 
U > 0.6859fc . (22) 
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By applying the lemma in Section 3.2 above to the sum 

T 
xEA 

e2iri(a/p)x 

and using (22), we see that there exist u,v in Fp with v ^ 0 and a subset Ai of A 
such that 

A1 C u + vs : 0 < s < \{p - 1) 
and |Ai| = mi, say, satisfies 

mi = \Ai\> 0.8429&. (23) 

We consider the set 
Bi c { o , i , . . . , ! ( p - i ) } c z 

defined by 
Bi 5 : 0 < s < \(p - 1) u + vs G Ai (24) 

By changing u and v if necessary we can assume that the first element of Bi is 0 and 
that the greatest common divisor of the differences between successive elements of Bi 
is 1. 

Since the mapping <f> given by (j){u + vs) = s gives an isomorphism of Ai onto Bi 
under addition mod p on Ai and addition in Z on Bi, it follows that Ai is isomorphic 
to Bi as a subset of Z , so that (using (3) on Bi) 

\Bi\ = \Ai\ =mi |2AAi| = | 2 A £ i | > 2 m i - 3 (25) 

Suppose now that 

\2AA! \ > 2|Ai| + Ci - 3 , d Л11 - 5 
2 

Then from (23) it follows that 

|2AA| > |2AAi| > 2 .5Ui | - 5.5 > 2.107& - 5.5 

and further, remembering that k > 60, we get 
\2AA\ > 2.06k - 3. 

contradicting (17). Thus we can assume that 

| 2 A A i | < 2 ^ 1 1 + ^ - 3 , 

and hence 
\2ABi \ < 2|£i | + Ci - 3 . 

Then from Theorem 1 we get that Bi is contained in an arithmetic progression L C Z 
such that 

\L\ < IB1I + 2 C 1 + 2 2\Bi \ - 3 < 2k-3. 

By our assumptions on Bi (following (24)) it follows that 

Bi C L C [ 0 , l , 2 , . . . , 2 f c - 4 } (26) 

All elements of Fp, and in particular those of A can be written in the form 

a = u + vs. 0<s<p-l, 
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for u, v as above. If A contained an element a with 

6k < s < p - 4k (27 

then in view of (24) and (26) and the fact that p > 10k the sets 2AAi and A% + a 
would be disjoint and so, by (25) we would have 

\2AA\ > |Ai + a | + |2AAi mi + |2A^i | > 3mi - 3 

and hence by (23) 
\2AA\ > 2№k - 3, 

a contradiction to (17). Hence (27) does not hold for elements of A and it is easily 
seen that all elements of A can be written in the form a = u + vs with 

-4k < s < 6k. 

As p > 20k, addition mod p on s in the above range [—4k, 6k] coincides with 
ordinary addition. Thus A is isomorphic to the set B C Z (with addition in Z) given 
by 

B s : u + vs £ A, — ^ (p — 1 < s < è (P - 1) -4k,6k 

so that by (17) 
\2AB -- \2AA\ <2k-Z + C, C < 0.06k. 

By Theorem 1 it follows that B is contained in an arithmetic progression L with 

\L'\ < A: + 2C + 2, 

where C < 0.06&, and so A is contained in the arithmetic progression 

L = {u + vs : s G L'} 

with \L\ = \Lf\. This completes the proof of Theorem 2, 

3.4. Application to Erdos Conjecture. — We now obtain the following corollary 
on the Erdos conjecture. 

Corollary to Theorem 2. — Let A C Fp such that 

\A\ = k P 
50 

k > 60. 

Then 

\2AA\ >2k-3. 

Proof. — If \2AA\ >2k-2 there is nothing to prove, so suppose that \2AA\ <2k-3. 
Then by Theorem 2 (with C = 0) we have A C L, where L is an arithmetic progression 
in Fp with \L\ < k 4- 2. Since p > 2k + 5 and \A\ = k, it follows that A is isomorphic 
to a set B of integers (under addition in Z) such that 

\B\ =k B Ç { l , 2 , . . . , t + 2 

Hence, using (3), we have 

|2AA| = \2AB\ >2k-3 
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4. Postscript on the Erdos-Heilbronn conjecture 

Rodseth [11], also using results of Freiman, has proved (4) for p > ck, for some 
positive constant c. More detailed arguments along the lines of the present paper 
and based on (7) can be used to obtain (4) for p > 8k, but some such restriction is 
essential to this approach. 

Recently, two independent proofs have been given of the full Erdos-Heilbronn con
jecture (4), without any restriction at all. For the first, see Dias da Silver and 
Hamidoune [4] and Nathanson [8]. The second, which uses only simple properties 
of polynomials over finite fields, is due to Alon, Nathanson and Ruzsa, [1],[2]. We are 
grateful to these authors for information about this work and to Professor Nathanson 
for the opportunity to see a preliminary version of his expository account of this topic 
in Nathanson [9]. 
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