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ON FREIMAN'S THEOREMS C O N C E R N I N G THE S U M OF 
TWO FINITE SETS OF INTEGERS 

by 

John Steinig 

Abstract — Details are provided for a proof of Freiman's theorems [1] which bound 
\M -f N\ from below, where M and N are finite subsets of Z. 

1. Introduction 

If M and N are subsets of Z, their sum M + N is the set 

M + iV : x € Z x = ò + c, ò € M, c€iV 

If a set 2£ C Z is finite and non-empty, its cardinality will be denoted by \E\, and 
its largest and smallest element by max(-E) and min(£J), respectively. If A is some 
collection of integers, say a i , . . . ,a^, not all zero, their greatest common divisor will 
be denoted by (ai,...,a*.), or by gcd(A). 

Now let M and iV be finite sets of non-negative integers, such that 0 E Mf)N, say 

M bo, - - - , bm-i with 6 o - 0 and bi < bi+1 (all i) (1.1) 

and 
N Co, . . . ,c n _i with c 0 = 0 and Ci < Ci+i (all t). (1.2) 

It is easily seen that 
M + iV M iV 1 (1.3) 

(consider 6 0, · · · , &m-l, bm-l + Ci, . . . , 6m_i + Cn-i) . 
The following two theorems of Freiman's [1] give a better lower bound for |M + iV|, 

when additional conditions are imposed on M and N. 
Theorem X. Let M and N be unite sets of non-negative integers with 0 G M D N, 
as in (1.1) and (1.2). If 

Cn-l bm-l m 4- n — 3 (1.4) 
or 

Cn-l bm-l m + n - 2, (1.5) 

1991 Mathematics Subject Classification, — 11 B 13. 
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130 J. STEINIG 

then 
|M + iV bm-l + U . (1.6) 

If 
Cn-1 bm-l m + n - 3 , (1.7) 

then 
M + iV bm-1 maxfra, n) . (1.8) 

Theorem XI. Let M and N be finite sets of non-negative integers with 0 £ M D iV, 
as in (1.1) and (1.2). If 

max bm-1, Cn-1 m + n — 2 (1.9) 

and 
fei ?. · · ? fern-l ? c i , . . . , c n_i 1 (1.10) 

then 
M + iV m + n — 3 + min(ra, n) . (1.11) 

We remark here that if min(m,n) > 2, then any sets M and N which satisfy (1.4) 
or (1.5) also satisfy (1.10). In fact, either of these conditions implies that gcd(M) = 1 
or gcd(iV) = 1. For if gcd(M) > 1, then M contains neither 1, nor any pair of 
consecutive positive integers; that is, bv — bv-\ > 2 for v — 1 , . . . , m — 1. Hence, by 
summing up, 6 m _i > 2m — 2. Similarly, c n_i > 2n — 2 if gcd(iV) > 1. And these two 
lower bounds are incompatible if (1.4) or (1.5) holds. 

Interesting applications of these two theorems to the study of sum-free sets of 
positive integers are given in [2] and [3]. 

The proof of Theorem XI in [1] is presented very succinctly, but divides the argu
ment into many cases and is in fact quite long once the necessary details are provided. 
The aim of this paper is to give a detailed proof, separated into fewer cases than in 
[1]. As in [1], one proceeds by induction on m + n and distinguishes two situa
tions (called here, and there, Cases (I) and (II)), essentially according to the size of 
max(6 m _ 2 , c n _ 2 ) . 

Inequality (2.11) and Theorem 2.1 (below) are essential tools, here and in [1]. 
Case (I) requires fewer subcases here than in [1], and uses an argument which is 
applied again at the end of Case (II). Case (II) has been simplified by avoiding con
sideration of the sign of bp — cp (cf. [1], after (26)), and of m — p± — pi ([1], after 
(29)). 

For completeness, Theorem X is also proved, since it is used to prove Theorem 
XI. We follow [1] here, but the formulation of Theorem X given above differs from 
Freiman's in including (1.5) and (1.7), which in [1] are embodied in the proof of 
Theorem XL 

I am grateful to Felix Albrecht, who helped me by translating [1] into English. 
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ON FREIMAN'S THEOREMS 131 

2. Preliminaries 

We now introduce some more notation and three auxiliary results. 
Part of the proof of Theorem XI exploits a certain symmetry between M and N 

and the sets 
M* bm-l — bv m—1 v=0 (2.1) 

and 
N* Cn—1 n-1 

I/=0 
(2.2) 

which we also write as 

M* XQ i X\ ? · · · 5 with Xis bm—1 bm—l — v (2.3) 

and 
N* Vo, Vi, · · · ,yn-i with yv Cn-1 - Cn-1-v 

(2.4) 

xo 0} %m—l bm-l and x% xi+1 
for all i; y0 0, Vn-i Cn-1 and 

^ < yi+1 for all i). 
The hypotheses of Theorem XI are met by M* and iV* if they are by M and N. 

because 
i&m-l — bm-2i · · · 5 &m-l ~ &1 > &m-l 6l, . . . , 6 m - l (2.5) 

|M*| = \M\, \N*\ = \N\ and max(sm_i, 2/n-i) = max(6m_i, c„_i). And the theo
rem's conclusion holds for \M + N\ if it does for \M* + N*\, since the two are equal. 

For any r and s with 0 < r < m and 0 < s < n, let 

M'r bi £ M i r-i Ns a 6 TV : i s-1 (2.6) 

and 
M* 

r Xi e M* i r- 1 iV* 
s 

yi E N* i 5 - 1 
Theorem XI is proved by induction. Typically, one writes M = M'r U (M\M'r), 

then subtracts from each element of M\M'r its smallest element, 6 r, in order to obtain 
a set with the same cardinality, which contains 0. This set is, for 0 < r < m — 1, 

M" 0, br+i — brj. . . , bm-i — br bv — br 
m — 1 
v—r (2.7) 

and the corresponding set for N\N' is 

N" 
Tl — S 

0, Cs+1, . . . , Cn_i cs Cv - Cs 
n-1 
v=s 

(2.8) 

For any r and s with 0 < r < ra and 0 < s < n, we have 

M" m — r and n—s n — S (2.9) 

Many of the estimates involving these sets will be combined with the following 
elementary inequality: if E\ and E2 are subsets of the finite set E, then 

E E1 E/2 E1 E/2 (2.10) 
We shall use the following form of (2.10): if k < r < m — 1 and t < s < n — 1, then 

M + N M' + N' M^_k + NZ_e M'r + N's M\M'k N\N',) (2.11) 

To obtain (2.11), set .E = M + iV, E1 = M'r + N's and E2 = (M\M'k) + (N\Nfi 
in (2.10), and observe that 

A C * N" M x e z X bu + cv — (bk + ci) k u m - 1, e v n-1 
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132 J. STEINIG 

so that if x runs through the elements of Mm_k + N„_£, then x + (bk + q ) runs 
through those of E2; consequently 

Mm-k Ν"n-l x e z X bu ~h Cv, jfc u m — 1 l v n - 1 (2.12) 
From (2.10) and (2.12) we get (2.11). 

The following property of the counting functions 
B(s) h e M 1 bi s C(s) CieN 1 Ci s (2.13) 

follows from Mann's inequality ([4], Chap. 1.4; [5]); we will apply it to choose the 
parameters in (2.11). 

Theorem 2.1. IfB(s) + C(s) > s for s = 1, . . . ,k, then {0 ,1 , . . . , k} C M + N. 
We will use the following proposition in establishing Case (II) of Theorem XI. Its 

proof is suggested by an argument of Freiman's ([1], p. 152). There is an arithmetical 
hypothesis, different from (1.10), but no condition on the size of max(M U N). The 
conclusion is stronger than (1.11). 

Proposition 2.2. IfM and N are finite subsets of Z, such that 0 e MnN, \M\ > 2, 
\N\ > 2 and gcd(iV) \ gcd(M), then 

M + N M 2 N 2 (2.14) 
Proof. — Set d := gcd(JV), and N0 := iV\{0}. Since 0 G M and d \ gcd(M), some, 
but not all elements of M are divisible by d. Let br and bs be the largest integers 
in M such that, respectively, br = 0 and bs ^ 0 (mod d). Then M, {br} + iV0 and 
(bs) -h iVo are pairwise disjoint subsets of M + iV (for instance, 6 = 6 r + c for some 
b £ M and c € iV"o would imply both 6 = 0 (mod d) and b > br + 1). This proves 
(2.14). 

Corollary 2.3. Let M and N be as in (1.1) and (1.2), and such that (1.10) holds. 
Assume also that min (m,n) > 3. Then (1.11) is true, if any one of the following 
conditions is satisfied: 

gcd(M) 1 (2.15) 
gcd M'm-1 1 (2.16) 

gcd 'M* m —1 1 (2.17) 
Proof. — Because of (1.10), gcd(M) \ gcd(iV) if gcd(M) > 1; and then \M + N\ > 
m + n - 2 + min(m,n), by (2.14). Thus (1.11) follows from (1.10) and (2.15). 

Now suppose that (2.16) is verified. We may assume that gcd(iV) = 1, for if not, 
(1.11) is true (exchange M and N in Proposition 2.2 and argue as above). Then, 
gcd(M^_ 1) \ gcd(iV) and by Proposition 2.2, 

M'm-1 + N 2 m — I n-2 m + n — 4 4- min m, n 
This implies (1.11), since 6 m _i + c n_i 0 Mm_± 4- N. 

Finally, (1.10) and (2.5) imply that (x i , . . . ? x m - i , 2/1?··· ,Vri-i) = 1· The preced
ing arguments then show that (2.17) implies (1.11) for M* and iV*, hence also for M 
and N. 
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ON FREIMAN'S THEOREMS 133 

3. Freiman's Theorems 

3.1. Proof of Theorem X. — Consider the sets 

A bo, · . · , bm-i, 6 m _i + C\ , . . . , bm-i + Cn-i 

and 
B g E Z 1 9 bm-u 9 £ M 

Since A C (M + N) and |A| + |£ | = bm^x + n, (1.6) is true if B = <f>. If B ^ <p, 
(1.6) is proved by constructing an injective mapping, say / , of B into (M -f N)\A, as 
follows. Let g € B. 

If g e N, then g £ M + N; g $ A, since i n B = ^. In this case, set f{g) = g. 
If g $ N, if c n_i < 6 m _i and c n_i < g < 6 m _i , then the n integers 

0 - c 0, # - c i , . . . , £ - c n_i (3.1) 

are in the interval [1, 6 m _i) . Since |B| = 6 m _i — (m — 1) < n — 1, some integer in 
(3.1) belongs to M, say g — cs — 6 r, whence p = 6 r + c s G M + iV. As before, g $ A. 
Here also, set /(#) = 

If g # N and # < c n _i , let i (0 < z < n — 2) be such that C{ < g < c^+i. The n — 1 
integers 

# + bm-i - cv v i + l , . . . , n - 2 g-Cv V 0,. . . , t (3.2) 

are distinct (#+&m-i —cn-2 > # = # — Co), and in [1, 6 m _i) . If 6 m - i — (m — 1) < n —2, 
as in (1.4), one of them must belong to M. If bm-i — (m — 1) = n — 1 and c n_i < 6 m _i 
as in (1.5), we may include g + 6 m _i — c n_i in (3.2) since g + 6 m _i — c n_i > # in this 
case, and reach the same conclusion. Hence g or g + bm-i is in M + N. Neither is 
in A; g $ A as before, and g -f 6 m - i 0 ^ since g + 6 m - i > &m-i and g $ N. We set 
/(#) = or /(#) = g + 6 m _i , so as to have f(g) G M + N. 

This / is injective. Indeed, f(g) = g or /(#) = # + bm-i for each g e B; and if 
g < g' < bm-i then g <g' < g + Bm-1 <9' + bm-1. 

This concludes the proof of (1.6). And (1.8) now follows on observing that if 
bm-i = Cn~i in (1.4), the roles of M and N may be exchanged. 

3.2. Proof of Theorem XI. — The proof proceeds by induction onm + n. Since 
(1.3) implies (1.11) if min(m, n) < 2, we may assume that min(ra,n) > 3. We shall 
show that (1.11) is true for M and N, if it is true for all finite sets A and B of 
non-negative integers which are such that 

A B m + n, (3.3) 

0 6 A B (3.4) 
gcd AUB 1 (3.5) 

and 
max AUB A B 2 (3.6) 

We consider separately the two cases 
(I) max bm-2j Cn-2 m + n — 4, (3.7) 
(II) max bm-2, Cn-2 m + n — 4. (3.8) 
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134 J. STEINIG 

We first deal with 
Case (I). Clearly, (3.7) implies that M(IN ^ {0}. We proceed to make this remark 
more precise. 

Let B and C be the counting functions defined in (2.13). Because of (3.7), we have 
В m + n — 4 С т + п — 4 m + n — 4 (3.9) 

and 
В m + n — 5 •С m + n — 5 m + n — 5 . (3.10) 

It follows from Theorem 2.1 that (1.11) is true, if also 
B(s) + C(s) s for s 1, . . . ,m H- n — 6 (3.11) 

Indeed, Theorem 2.1 and (3.9) through (3.11) ensure that {0,1, . . . , m + n — 4} C 
M + N. And if bm-i > cn-i , then the n integers fem_i + cv (y = 0 , . . . ,n — 1) 
are in the set (M + iV)\{0,1,. . . , m + n — 4}, because of (1.9); if c n_i > 6m_i we can 
find m integers in this set. Hence, \M + N\ > (m + n — 3) + min(m,n) if (3.7) and 
(3.11) are true. 

It therefore suffices to consider the possibility that (3.11) fails to hold, say that 

B(s0) C(s0) So (3.12) 
for some s0, 1 < s0 < m + n — 6. Then, 

B{So + 1) C(s0 + 1) s 0 + l (3.13) 
It follows from (3.10), (3.12) and (3.13) that there is an integer г, with sQ + 2 < i < 
m _|_ n _ 5 such that 

B(s) + C(a) s for So s г - 1 (3.14) 
and В (г) 4- С (г) > г. 

Then, 
Bit -1) cu -1) г - 1 (3.15) 

and 
Б(г) + C(i) г 4-1, (3.16) 

whence г е М (IN. And г — 2 > 5 0 by definition, hence from (3.14), 
B(i - 2) CU - 2) i-2. (3.17) 

With (3.15), this implies that i ~ I e M U N. 
We now define q\ and 2̂ (1 < q1 < m — 2 and 1 < q2 < n — 2) by setting 

bqi г cq2 (3.18) 

then max(6g i_i,Cg2_i) = г — 1. 
Prom (3.16) and (3.18) we have 

i 0 1 + 0 2 - 1 (3.19) 
hence #i + q^ > 4, since i > 3. And from (3.18) and (3.19), 

hi Cqi qi + 02 - 1 . (3.20) 

ASTÉRISQUE 258 



ON FREIMAN'S THEOREMS 135 

We may invoke the induction hypothesis to obtain the following estimates: 
if bqi-i = i — 1, then 

M" n , , 
m — q\-\-\. 

N" m + n- (qi + q2) 2 4- min m — qi + 1, n — q2 
(3.21) 

if Cq2-! i — 1, then 
M"M-Q1 

iyn-q2 + l m + n qi +Ç2 2 + min m — qi, n — g2 + 1 (3.22) 

and in both cases, 
Mm-q1+1 N"n-q2+1 m + n q1 + q2 min m-qun-q2 

(3.23) 

Indeed, (3.3) is verified each time because of (2.9) and since #i + #2 > 4. Condition 
(3.4) is met, since 0 G M£_rnN%_s by (2.7) and (2.8). Condition (3.5) is satisfied 
because by (3.18) we have 1 = bqi —6 g i-i G M ^ _ g i + 1 if 6 g i_i = ¿ -1 , and 1 G N'^_q2+1 

if C g 2 _ i = i — 1. To verify (3.6) we observe that by (2.7) and (1.9), 

max M" N" 
71 — S 

max bm—l bT) Cfi—i Cs 

m + n — 2 max br 5 Cs 

from which (3.6) follows in each case. 
We shall also need two consequences of Theorem X, namely 

Ki+l N'q2+1 qi +<?2 max q1, q2 
(3.24) 

and 
M'q1 + N'q2+1 2<?i + q2 - 1. (3.25) 

To obtain (3.24) we observe that because of (3.20) the sets M1

 + 1 and Nq2+1 satisfy 
(1.7) since 

К+г N'q2+1 3 qi + q2 - 1 ; 
(3.24) is (1.8) for these sets. 
For (3.25), we note that M'QI and Nq2+1 verify (1.5) since by (1.1) and (3.20), 

bqi-i cqi qi + q2 ~ 1 M'q1 N'q2+1 2 
By (1.6) then, 

M'q1 
N'q2+1 cq2 + qi 

and this is (3.25). 
We proceed to apply (3.21) through (3.25). The argument in Case (I) is now 

separated into two subcases, 
(la) bqi-i Cq2~l (3.26) 
(lb) bqi-i Cq2-l 

Case (la). In this case, 
M + N M'q1+1 N'q2+1 M''m-q1+1 N''n-q2+1" 3 (3.27) 

To prove (3.27) we use (2.11) with r = q1 + 1, 5 = q2 + 1, k = qi - 1, £ = q2 - 1. 
For simplicity of notation, set Mi = Mqi+1, Nt = Nq2+1, M2 = M\Mqi_t and 
N2 = iV\iV^2_1. We must show that |(MX + Nx) n (M 2 + JV2)| = 3 in order to get 
(3.27) from (2.11). Indeed, bqi-i + c g 2 _ i , bqi + c g 2 _ i , bqi-i + cq2 and 6 g i + c g 2 are in 
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136 J. STEINIG 

(Mi + Nx) fl (M 2 4- JV2), and bqi + e g 2_i = 6 g i_i 4- c g 2 by (3.18) and (3.26). These are 
the only elements of (Mi 4- N±) fl (M 2 + iV2). For consider some x € Mi 4- iVi, say 
x = bu 4- c v , with ii < gi — 1 or v < g2 — 1; then x < 6 g i_i 4- c g 2 , hence x € M 2 4- iV2 

only if x = bqi-i 4- c g 2 _i. 
Return now to (3.27). On combining (3.27), (3.23) and (3.24) we have 

M + N m + n - 3 max(gi, g2) min m -qun- q2 

and this implies (1.11). This concludes the proof in Case (la). 

Case (lb). The argument when bqi-i cq2-i is typical. Then, we have 

M + iV M'q1+1 N'q2+1 
M"''m-q1 N''n-q2+1" 2 (3.28) 

and 
M + iV M'q1 

N'q2+1 M''m-q1" N''n-q2+1" (3.29) 

To verify (3.28), set r = q% + 1, s = g2 + 1, k = qi , £ = g2 — 1 in (2.11) and observe 
that if u < qi - 1 and v < g2, then bu + cv G M ^ l + 1 +iV^ 2 + 1 but 6 u + c v < 6 g i _ x + c g 2 < 
6 g i + c g 2_i = min {M\M'qi) + (iV\iVg2_i). Hence 6 9 1 + c g 2_i and 6 g i 4- c g 2 are the 
only elements of (M'QI+1 4 - N l

q 2 + 1 ) n ( ( M \ M g J 4 - ( J V \ ^ 2 - 1 ) ) . And (3.29) follows from 
(2.11) with r = gi, 5 = g2 + 1, k — gi, £ = g2 — 1, since 6 g i_i 4- cq2 < bqi + c g 2_i that 
is, max(M; + i V ; + 1 ) < min ( (M\M;) 4- (N\Nq2^)). 

From (3.28), (3.22) and (3.24), 

M + iV m + n — 4 max(gi, g2) min m — gi , n — g2 -h 1 

from which (1.11) follows if g2 > gi. 
If <?i > Q2 we use (3.29), (3.22) and (3.25) which together yield 

M + N m 4- n — 3 + gì min ra — gi , n — g2 4-1 
and (1.11) follows. 

This settles Case (lb) when 6 g i_i < c g 2 _i. If 6 g i_i > c g 2_i the argument goes 
through as above on replacing (3.22) by (3.21) and similarly interchanging the roles 
of M and N in (3.25), (3.28) and (3.29). 

This disposes of Case (I). 

Case (II). This case is determined by condition (3.8). We may also assume that 

max bm-i — b\, c n_i — C\ m 4- n — 4 (3.30) 

for otherwise, by Case (I), the conclusion of Theorem XI holds for M* and iV*, since 
bm-i -h = Xm-2 and c n_i - ci = yn-2-

Because of Corollary 2.3, it suffices to consider sets M and N such that 
gcd(M) gcd(iV) 1 (3.31) 

gcd((M*) m —1 1 (3.32) 

and 
gcd(M^_1) 1 (3.33) 

In Case (II), we may further assume that 

b1 Cl 1 (3.34) 
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and that 
bm-i — bm-2 Cn-i —Cn_2 1 (3.35) 

as we proceed to show. Consider (3.34) first. If &i ^ c\ then 0, &i, c\ are distinct 
elements of M + iV, not in M 0 + N0 (in the notation of Proposition 2.2). Hence if 
h ^ ci, 

M + iV M 0 + iV0 3 M* m—1 iV* n-1 3 (3.36) 
(6m_i + c n_i - x runs through (M*)^_ x + (-2V*)n-i> if x runs through M 0 + iV0). 

Inequality (3.36) also holds if b\ = c\ > 2. For if b\ — c\ > 2, let bu and cv be the 
smallest integers in M and iV, respectively, such that &i f 6U and &i { cv (they are 
well-defined, because of (3.31)). Then u > 2 and t> > 2, whence 

fro + Co &i + c 0 min(6w, c ) (3.37) 
And min(6w, c v) £ M 0 + N0. Indeed, say bu < cv, and suppose that bu — bk + ĉ  for 
some k > 1 and £ > 1. Then 6U > bk and c v > 6W > q, whence bk = ct = 0 (mod 6i). 
This is impossible since b% \ bu. Hence with (3.37), we have (3.36) again. 

Now the induction hypothesis applies to (M*)'rn_1 and (iV*)^_1 because of (3.30) 
and (3.32). With it, (3.36) yields (1.11). This justifies assumption (3.34). 

To justify (3.35), we use M* and iV*; note that (3.35) is equivalent to xi = yi = 1. 
By (2.5) and (3.31), gcd(M*) = gcd(iV*) = 1. By reasoning as for (3.34) we see that 

|Af* +iV* M'm-1 K-l 3 (3.38) 

except perhaps if xi = yi — 1. And because of (3.8) and (3.33), we may apply the 
induction hypothesis to Mm_x and iV4_x; (1.11) then follows from (3.38). 

Another restriction is possible in Case (II): we may assume that m = n. Indeed, 
suppose m < n. The induction hypothesis applies to M and N^_x: (3.5) is satisfied 
because of (3.31); so is (3.6) since by (1.9) and (3.35), 

max M u K_, max Pm—li Cn_i 1 m + n — 3 M K-l 2 
From the induction hypothesis we get 

M + Λ£_ι m n-1 3 min m, n — 1 m + n — 4 min (m, n) 
and (1.11) follows. If m > n we can reason in the same manner with Mm_x and N. 

Finally, since Theorem XI is symmetric in M and iV, and since we have made no 
assumptions distinguishing M from iV, we may assume that 6 m_i > c n _i. 

We again consider the function B(s) + C(s) — 5, where B and C are as in (2.13). 
It is ultimately negative, since M and N are finite. In fact, since now 6 m_i > c n_i 
and consequently 6 m_i > ra + n — 2, 

Bis) C(s) S for s bm-1 (3.39) 
On the other hand, because of (3.34), we have B(l) + C(l) > 1, and #(2) + C{2) > 2. 
Hence there is an integer j , with 2 < j < 6 m _i, such that B(s)-\-C(s) > s for 1 < s < j 
and B(j +1) + C(i +1) < j + I- Then B(j) + C(j) = j = 5 ( j +1) + C(j +1), whence 
? + 1 i M U N. And by Theorem 2.1, 

0,1,.…,j) M + iV (3.40) 
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If j > m 4- n — 4 then (1.11) is true, by the argument developed after (3.11). 
We may therefore assume that j < m 4- n — 5; then, j 4- 1 < 6 m _i by (1.9). With 
this assumption, let pi be such that & P l-i < j + 1 < bpi. By (3.34) and (3.35), 
2 < Pi < m — 2. Then, either c n_i < j ; 4- 1 < bPl or j 4- 1 < c n _i. 

If cn-i <j + KbPl then £ ( j + 1) 4- C(j 4- 1) = j yields 

j n 4- pi - 2 (3.41) 

The integers in (3.40), the b{ with pi < i < m — 1 and the 6m_i +Ck with 1 < < n — 1 
are distinct, and in M + iV. By (3.41) they are (j + l) + ( ra-pi) + ( n - l ) = ra + 2 n - 2 
in number; this implies (1.11). 

If j + 1 < c n_i, let p2 (2 < p2 < ^ — 2) be such that c P 2_i < j + 1 < c P 2 . Then 
(3.41) is replaced by 

j Pi + P2 - 2 . (3.42) 
We now distinguish three subcases, according to the sign of p\ — P2. Suppose first 

that pi = p2 = p, say. Then by arguing as for (3.27), we have 

M + N M'p+1 N'p+1 
M''m-p+1 N''n-p+1" a (3.43) 

where 

a 
4 if bp-i + cp bp + cp-i (3.44) 
3 else. (3.45) 

For the first member on the right side of (3.43), we have 

M'p+1 N'p+1 

3 p + l if bp-i + Cp bp + Cp_i (3.46) 
3p else (3.47) 

Indeed, 0,1,...,;? M'p+1 N'p+1 because of (3.40) and since 

bu ~h Cv min bp, cp j 
if u > p or v > p. And if bp + cp-i < bp-\ + cpi then the p + 2 integers fep + cv 

(^ = 0 , 1 , . . . ,p) and 6p_i + c p are distinct, in Mp+1 + iV p + 1 , and larger than j . This 
proves (3.46), since (j + 1) -fp+ 2 = 3p+ 1. (If bp + c p_i > 6p_i + c p , use the bv + c p 

with 0 < i/ < p, and 6P + c p_i.) To prove (3.47), use the same integers as for (3.46), 
except bp-i H- cp (or 6P 4- c p _i, as the case may be). 

For the second member on the right side of (3.43), we have 

M"''m-p+1 
N''n-p+1" 3 m — p 4-1 3 (3.48) 

by the induction hypothesis: condition (3.5) is verified since 6m_i — 6p_i and fem_2 — 
bp-i are consecutive integers, by (3.35); and (3.6) is met, since 

max bm-i — bp-i Cn-l Cp—1 
max bm—l-) Cn—1 max Òp_i, Cp_i 
m + n — 2 j m — p + 1 n - p + 1 2 

Now (3.43) through (3.48) imply (1.11). This settles the subcase in which p\ =P2-
Suppose now that p\ > P2 in (3.42). Because of (3.40) and since cP2 > j , 

M + iV (i + i) M CP25 P̂2 + l 5 · · · ? —1 (3.49) 
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whence with (2.12) 
M + N (i + i) M N" (3.50) 

The induction hypothesis applies to M and N„__p2, by (3.31) and (1.9), and since 
bm-i > Cn-i — cP2 and p2 > 2. With it and (3.42), (3.50) yields 

M + N Pi + P2 - 1 m + 2 (m — p 2 ) 3 3 m - 4 (Pi -P2) 

whence M + N 3 m - 3 . 
We must still treat the subcase in which 

Pi P2 (3.51) 
Arguing as for (3.50), we see that (3.40) and bPl > j imply that 

M + N (i + i) M" + N 
iy-Lm—pi • x Y 

(3.52) 

If max M" N M" N 2, that is, if 

max bm—l bp1 , Cn—\ 2m — pi — 2 (3.53) 

then by the induction hypothesis, 

\M" 
\±VJ-m— pi 

N 3(m - 1) - 2pi (3.54) 

With (3.54), (1.11) follows from (3.52), (3.42) and (3.51). 
In order to conclude the proof of Theorem XI, we must consider subcase (3.51) 

when, instead of (3.53), 

max bm—l bp1, Cn—\ 2m — pi — 3 (3.55) 

For this we use the sets M* and iV*, as defined in (2.3) and (2.4). In analogy to 
(2.13), let B* and C* denote the counting functions of the positive elements of M* 
and iV*, respectively. By (1.9) and (3.35) there is an integer j * with 2 < j * < 6m_i, 
such that B*(s) + C*(s) > s for 1 < s < j * and B*(j* + 1) + C*(j* + 1) < j * + 1. 
Then j * + 1 M* U N*, j * = J3*(j* + 1) + C*(j* + 1), and by Theorem 2.1, 

'0 ,1 , . . . , r M* +ÌV* (3.56) 

By a previous assumption, yn-i ·= c n_i < 6 m_i =: x m _ i . By the argument 
applied after (3.40), we may assume that j * + l < Xm-i- Then define pi (1 < p\ < m) 
by 

Xp'-l f + 1 xp1 
(3.57) 

If t/n-i < j * + 1 < xP*, we can prove (1.11) by reasoning as when c n_i < j + 1 < bPl 

(use (3.56), and replace (3.41) by j * = n+p\ — 2). Accordingly, let us assume that 

j * + 1 Cn-l (3.58) 

Because of (3.55), and since 6 m _i — bPl = x m _ P l _ i and c n_i = y m _ i , we have 
B*(2m-p1 - 3) + C*(2m - pi - 3) > (m - px - 1) -f (m - 1) > 2m - px - 3 . 

And 2m - px - 3 > c n_i > j * + 1 by (3.55) and (3.58). Thus, if (3.55) and (3.58) 
hold, then 

B*(s) C*(s) S for some s r + 1. 
Now 

B*(j* + 1) cru' + i) j* + 1 (3.59) 
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Hence (3.55) and (3.58) imply the existence of an integer g such that 

B*(s) •C*(s) S for f + i S 9-1 (3.60) 

and 
B* (g) C*(g) 9 

Then, 
B'(g-l) C*(g-1) ¿7-1, (3.61) 

B'ig) C*{g) 9 + 1 (3.62) 
and therefore g £ M* n N*. Furthermore, g > j* + 2 by definition, and g = j* + 2 is 
excluded by comparing (3.59) and (3.61). Thus g — 2 > j* + 1, and from (3.60), 

B*(g-2) C*(g-2) g-2 (3.63) 
with (3.61) this implies that g - 1 G M* U iV*. 

Now define ri and r2 by setting 

xr1 9 Vr2 
(3.64) 

then xri-i = 9 — 1 or y r 2 - i = # — 1· And from (3.62) and (3.64), 

9 ri + r 2 - 1+ (3.65) 

We now have a situation entirely similar to the one encountered in Case (I): com
pare (3.61) through (3.65) with (3.15) through (3.19). 

To complete the proof of (1.11) when (3.51) holds, it suffices to proceed as in Case 
(I). On replacing there M and N by M* and iV*, respectively, qi by ri (¿ = 1,2), each 
b by x and each c by i/, and remembering that |M* + N*\ = \M + N\, we dispose of 
this last subcase. 

This concludes the proof of Theorem XI. 
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