John Steinig
 On Freiman's theorems concerning the sum of two finite sets of integers

Astérisque, tome 258 (1999), p. 129-140
http://www.numdam.org/item?id=AST_1999__258__129_0

© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON FREIMAN'S THEOREMS CONCERNING THE SUM OF TWO FINITE SETS OF INTEGERS

by

John Steinig

Abstract

Details are provided for a proof of Freiman's theorems [1] which bound $|M+N|$ from below, where M and N are finite subsets of \mathbb{Z}.

1. Introduction

If M and N are subsets of \mathbb{Z}, their sum $M+N$ is the set

$$
M+N:=\{x \in \mathbb{Z}: x=b+c, b \in M, c \in N\}
$$

If a set $E \subset \mathbb{Z}$ is finite and non-empty, its cardinality will be denoted by $|E|$, and its largest and smallest element by $\max (E)$ and $\min (E)$, respectively. If A is some collection of integers, say a_{1}, \ldots, a_{k}, not all zero, their greatest common divisor will be denoted by $\left(a_{1}, \ldots, a_{k}\right)$, or by $\operatorname{gcd}(A)$.

Now let M and N be finite sets of non-negative integers, such that $0 \in M \cap N$, say

$$
\begin{equation*}
\left.M=\left\{b_{0}, \ldots, b_{m-1}\right\} \quad \text { with } \quad b_{0}=0 \quad \text { and } \quad b_{i}<b_{i+1} \quad \text { (all } i\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N=\left\{c_{0}, \ldots, c_{n-1}\right\} \quad \text { with } \quad c_{0}=0 \quad \text { and } \quad c_{i}<c_{i+1} \quad(\text { all } i) \tag{1.2}
\end{equation*}
$$

It is easily seen that

$$
\begin{equation*}
|M+N| \geq|M|+|N|-1 \tag{1.3}
\end{equation*}
$$

(consider $b_{0}, \ldots, b_{m-1}, b_{m-1}+c_{1}, \ldots, b_{m-1}+c_{n-1}$).
The following two theorems of Freiman's [1] give a better lower bound for $|M+N|$, when additional conditions are imposed on M and N.
Theorem X. Let M and N be finite sets of non-negative integers with $0 \in M \cap N$, as in (1.1) and (1.2). If

$$
\begin{equation*}
c_{n-1} \leq b_{m-1} \leq m+n-3 \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{n-1}<b_{m-1}=m+n-2, \tag{1.5}
\end{equation*}
$$

1991 Mathematics Subject Classification. - 11 B 13.
Key words and phrases. - Inverse theorems, sumsets of integers.
then

$$
\begin{equation*}
|M+N| \geq b_{m-1}+n \tag{1.6}
\end{equation*}
$$

If

$$
\begin{equation*}
c_{n-1}=b_{m-1} \leq m+n-3 \tag{1.7}
\end{equation*}
$$

then

$$
\begin{equation*}
|M+N| \geq b_{m-1}+\max (m, n) \tag{1.8}
\end{equation*}
$$

Theorem XI. Let M and N be finite sets of non-negative integers with $0 \in M \cap N$, as in (1.1) and (1.2). If

$$
\begin{equation*}
\max \left(b_{m-1}, c_{n-1}\right) \geq m+n-2 \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b_{1}, \ldots, b_{m-1}, c_{1}, \ldots, c_{n-1}\right)=1 \tag{1.10}
\end{equation*}
$$

then

$$
\begin{equation*}
|M+N| \geq m+n-3+\min (m, n) \tag{1.11}
\end{equation*}
$$

We remark here that if $\min (m, n) \geq 2$, then any sets M and N which satisfy (1.4) or (1.5) also satisfy (1.10). In fact, either of these conditions implies that $\operatorname{gcd}(M)=1$ or $\operatorname{gcd}(N)=1$. For if $\operatorname{gcd}(M)>1$, then M contains neither 1 , nor any pair of consecutive positive integers; that is, $b_{\nu}-b_{\nu-1} \geq 2$ for $\nu=1, \ldots, m-1$. Hence, by summing up, $b_{m-1} \geq 2 m-2$. Similarly, $c_{n-1} \geq 2 n-2$ if $\operatorname{gcd}(N)>1$. And these two lower bounds are incompatible if (1.4) or (1.5) holds.

Interesting applications of these two theorems to the study of sum-free sets of positive integers are given in [2] and [3].

The proof of Theorem XI in [1] is presented very succinctly, but divides the argument into many cases and is in fact quite long once the necessary details are provided. The aim of this paper is to give a detailed proof, separated into fewer cases than in [1]. As in [1], one proceeds by induction on $m+n$ and distinguishes two situations (called here, and there, Cases (I) and (II)), essentially according to the size of $\max \left(b_{m-2}, c_{n-2}\right)$.

Inequality (2.11) and Theorem 2.1 (below) are essential tools, here and in [1]. Case (I) requires fewer subcases here than in [1], and uses an argument which is applied again at the end of Case (II). Case (II) has been simplified by avoiding consideration of the sign of $b_{p}-c_{p}$ (cf. [1], after (26)), and of $m-p_{1}-p_{1}^{*}$ ([1], after (29)).

For completeness, Theorem X is also proved, since it is used to prove Theorem XI. We follow [1] here, but the formulation of Theorem X given above differs from Freiman's in including (1.5) and (1.7), which in [1] are embodied in the proof of Theorem XI.

I am grateful to Felix Albrecht, who helped me by translating [1] into English.

2. Preliminaries

We now introduce some more notation and three auxiliary results.
Part of the proof of Theorem XI exploits a certain symmetry between M and N and the sets

$$
\begin{equation*}
M^{*}:=\left\{b_{m-1}-b_{\nu}\right\}_{\nu=0}^{m-1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{*}:=\left\{c_{n-1}-c_{\nu}\right\}_{\nu=0}^{n-1} \tag{2.2}
\end{equation*}
$$

which we also write as

$$
\begin{equation*}
M^{*}=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\}, \quad \text { with } \quad x_{\nu}=b_{m-1}-b_{m-1-\nu} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{*}=\left\{y_{0}, y_{1}, \ldots, y_{n-1}\right\}, \quad \text { with } \quad y_{\nu}=c_{n-1}-c_{n-1-\nu} \tag{2.4}
\end{equation*}
$$

$\left(x_{0}=0, x_{m-1}=b_{m-1} \quad\right.$ and $\quad x_{i}<x_{i+1}$ for all $i ; y_{0}=0, y_{n-1}=c_{n-1} \quad$ and $y_{i}<y_{i+1}$ for all i).

The hypotheses of Theorem XI are met by M^{*} and N^{*} if they are by M and N, because

$$
\begin{equation*}
\left(b_{m-1}-b_{m-2}, \ldots, b_{m-1}-b_{1}, b_{m-1}\right)=\left(b_{1}, \ldots, b_{m-1}\right), \tag{2.5}
\end{equation*}
$$

$\left|M^{*}\right|=|M|,\left|N^{*}\right|=|N|$ and $\max \left(x_{m-1}, y_{n-1}\right)=\max \left(b_{m-1}, c_{n-1}\right)$. And the theorem's conclusion holds for $|M+N|$ if it does for $\left|M^{*}+N^{*}\right|$, since the two are equal.

For any r and s with $0 \leq r \leq m$ and $0 \leq s \leq n$, let

$$
\begin{equation*}
M_{r}^{\prime}:=\left\{b_{i} \in M: i \leq r-1\right\}, N_{s}^{\prime}:=\left\{c_{i} \in N: i \leq s-1\right\} \tag{2.6}
\end{equation*}
$$

and

$$
\left(M^{*}\right)_{r}^{\prime}:=\left\{x_{i} \in M^{*}: i \leq r-1\right\},\left(N^{*}\right)_{s}^{\prime}:=\left\{y_{i} \in N^{*}: i \leq s-1\right\}
$$

Theorem XI is proved by induction. Typically, one writes $M=M_{r}^{\prime} \cup\left(M \backslash M_{r}^{\prime}\right)$, then subtracts from each element of $M \backslash M_{r}^{\prime}$ its smallest element, b_{r}, in order to obtain a set with the same cardinality, which contains 0 . This set is, for $0 \leq r \leq m-1$,

$$
\begin{equation*}
M_{m-r}^{\prime \prime}:=\left\{0, b_{r+1}-b_{r}, \ldots, b_{m-1}-b_{r}\right\}=\left\{b_{\nu}-b_{r}\right\}_{\nu=r}^{m-1} \tag{2.7}
\end{equation*}
$$

and the corresponding set for $N \backslash N_{s}^{\prime}$ is

$$
\begin{equation*}
N_{n-s}^{\prime \prime}:=\left\{0, c_{s+1}-c_{s}, \ldots, c_{n-1}-c_{s}\right\}=\left\{c_{\nu}-c_{s}\right\}_{\nu=s}^{n-1} \tag{2.8}
\end{equation*}
$$

For any r and s with $0 \leq r<m$ and $0 \leq s<n$, we have

$$
\begin{equation*}
\left|M_{m-r}^{\prime \prime}\right|=m-r \quad \text { and } \quad\left|N_{n-s}^{\prime \prime}\right|=n-s \tag{2.9}
\end{equation*}
$$

Many of the estimates involving these sets will be combined with the following elementary inequality: if E_{1} and E_{2} are subsets of the finite set E, then

$$
\begin{equation*}
|E| \geq\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right| \tag{2.10}
\end{equation*}
$$

We shall use the following form of (2.10): if $k \leq r \leq m-1$ and $\ell \leq s \leq n-1$, then

$$
\begin{equation*}
|M+N| \geq\left|M_{r}^{\prime}+N_{s}^{\prime}\right|+\left|M_{m-k}^{\prime \prime}+N_{n-\ell}^{\prime \prime}\right|-\left|\left(M_{r}^{\prime}+N_{s}^{\prime}\right) \cap\left(\left(M \backslash M_{k}^{\prime}\right)+\left(N \backslash N_{\ell}^{\prime}\right)\right)\right| \tag{2.11}
\end{equation*}
$$

To obtain (2.11), set $E=M+N, \quad E_{1}=M_{r}^{\prime}+N_{s}^{\prime} \quad$ and $\quad E_{2}=\left(M \backslash M_{k}^{\prime}\right)+\left(N \backslash N_{\ell}^{\prime}\right)$ in (2.10), and observe that

$$
M_{m-k}^{\prime \prime}+N_{n-\ell}^{\prime \prime}=\left\{x \in \mathbb{Z}: x=b_{u}+c_{v}-\left(b_{k}+c_{\ell}\right), k \leq u \leq m-1, \ell \leq v \leq n-1\right\}
$$

so that if x runs through the elements of $M_{m-k}^{\prime \prime}+N_{n-\ell}^{\prime \prime}$, then $x+\left(b_{k}+c_{\ell}\right)$ runs through those of E_{2}; consequently

$$
\begin{equation*}
\left|M_{m-k}^{\prime \prime}+N_{n-\ell}^{\prime \prime}\right|=\left|\left\{x \in \mathbb{Z}: x=b_{u}+c_{v}, k \leq u \leq m-1, \ell \leq v \leq n-1\right\}\right| \tag{2.12}
\end{equation*}
$$

From (2.10) and (2.12) we get (2.11).
The following property of the counting functions

$$
\begin{equation*}
B(s):=\left|\left\{b_{i} \in M: 1 \leq b_{i} \leq s\right\}\right|, C(s):=\left|\left\{c_{i} \in N: 1 \leq c_{i} \leq s\right\}\right| \tag{2.13}
\end{equation*}
$$

follows from Mann's inequality ([4], Chap. I.4; [5]); we will apply it to choose the parameters in (2.11).

Theorem 2.1. If $B(s)+C(s) \geq s$ for $s=1, \ldots, k$, then $\{0,1, \ldots, k\} \subset M+N$.
We will use the following proposition in establishing Case (II) of Theorem XI. Its proof is suggested by an argument of Freiman's ([1], p. 152). There is an arithmetical hypothesis, different from (1.10), but no condition on the size of $\max (M \cup N)$. The conclusion is stronger than (1.11).

Proposition 2.2. If M and N are finite subsets of \mathbb{Z}, such that $0 \in M \cap N,|M| \geq 2$, $|N| \geq 2$ and $\operatorname{gcd}(N) \nmid \operatorname{gcd}(M)$, then

$$
\begin{equation*}
|M+N| \geq|M|+2|N|-2 \tag{2.14}
\end{equation*}
$$

Proof. - Set $d:=\operatorname{gcd}(N)$, and $N_{0}:=N \backslash\{0\}$. Since $0 \in M$ and $d \nmid \operatorname{gcd}(M)$, some, but not all elements of M are divisible by d. Let b_{r} and b_{s} be the largest integers in M such that, respectively, $b_{r} \equiv 0$ and $b_{s} \not \equiv 0(\bmod d)$. Then $M,\left\{b_{r}\right\}+N_{0}$ and $\left\{b_{s}\right\}+N_{0}$ are pairwise disjoint subsets of $M+N$ (for instance, $b=b_{r}+c$ for some $b \in M$ and $c \in N_{0}$ would imply both $b \equiv 0(\bmod d)$ and $\left.b \geq b_{r}+1\right)$. This proves (2.14).

Corollary 2.3. Let M and N be as in (1.1) and (1.2), and such that (1.10) holds. Assume also that $\min (m, n) \geq 3$. Then (1.11) is true, if any one of the following conditions is satisfied:

$$
\begin{align*}
\operatorname{gcd}(M) & >1 \tag{2.15}\\
\operatorname{gcd}\left(M_{m-1}^{\prime}\right) & >1 \tag{2.16}\\
\operatorname{gcd}\left(\left(M^{*}\right)_{m-1}^{\prime}\right) & >1 \tag{2.17}
\end{align*}
$$

Proof. - Because of (1.10), $\operatorname{gcd}(M) \nmid \operatorname{gcd}(N)$ if $\operatorname{gcd}(M)>1$; and then $|M+N| \geq$ $m+n-2+\min (m, n)$, by (2.14). Thus (1.11) follows from (1.10) and (2.15).

Now suppose that (2.16) is verified. We may assume that $\operatorname{gcd}(N)=1$, for if not, (1.11) is true (exchange M and N in Proposition 2.2 and argue as above). Then, $\operatorname{gcd}\left(M_{m-1}^{\prime}\right) \nmid \operatorname{gcd}(N)$ and by Proposition 2.2,

$$
\left|M_{m-1}^{\prime}+N\right| \geq 2(m-1)+n-2 \geq m+n-4+\min (m, n)
$$

This implies (1.11), since $b_{m-1}+c_{n-1} \notin M_{m-1}^{\prime}+N$.
Finally, (1.10) and (2.5) imply that $\left(x_{1}, \ldots, x_{m-1}, y_{1}, \ldots, y_{n-1}\right)=1$. The preceding arguments then show that (2.17) implies (1.11) for M^{*} and N^{*}, hence also for M and N.

3. Freiman's Theorems

3.1. Proof of Theorem X. - Consider the sets

$$
A:=\left\{b_{0}, \ldots, b_{m-1}, b_{m-1}+c_{1}, \ldots, b_{m-1}+c_{n-1}\right\}
$$

and

$$
B:=\left\{g \in \mathbb{Z}: 1 \leq g<b_{m-1}, g \notin M\right\}
$$

Since $A \subset(M+N)$ and $|A|+|B|=b_{m-1}+n$, (1.6) is true if $B=\phi$. If $B \neq \phi$, (1.6) is proved by constructing an injective mapping, say f, of B into $(M+N) \backslash A$, as follows. Let $g \in B$.

If $g \in N$, then $g \in M+N ; g \notin A$, since $A \cap B=\phi$. In this case, set $f(g)=g$.
If $g \notin N$, if $c_{n-1}<b_{m-1}$ and $c_{n-1}<g<b_{m-1}$, then the n integers

$$
\begin{equation*}
g-c_{0}, g-c_{1}, \ldots, g-c_{n-1} \tag{3.1}
\end{equation*}
$$

are in the interval $\left[1, b_{m-1}\right)$. Since $|B|=b_{m-1}-(m-1) \leq n-1$, some integer in (3.1) belongs to M, say $g-c_{s}=b_{r}$, whence $g=b_{r}+c_{s} \in M+N$. As before, $g \notin A$. Here also, set $f(g)=g$.

If $g \notin N$ and $g<c_{n-1}$, let $i(0 \leq i \leq n-2)$ be such that $c_{i}<g<c_{i+1}$. The $n-1$ integers

$$
\begin{equation*}
g+b_{m-1}-c_{\nu}(\nu=i+1, \ldots, n-2), g-c_{\nu}(\nu=0, \ldots, i) \tag{3.2}
\end{equation*}
$$

are distinct $\left(g+b_{m-1}-c_{n-2}>g=g-c_{0}\right)$, and in [1, $\left.b_{m-1}\right)$. If $b_{m-1}-(m-1) \leq n-2$, as in (1.4), one of them must belong to M. If $b_{m-1}-(m-1)=n-1$ and $c_{n-1}<b_{m-1}$ as in (1.5), we may include $g+b_{m-1}-c_{n-1}$ in (3.2) since $g+b_{m-1}-c_{n-1}>g$ in this case, and reach the same conclusion. Hence g or $g+b_{m-1}$ is in $M+N$. Neither is in $A ; g \notin A$ as before, and $g+b_{m-1} \notin A$ since $g+b_{m-1}>b_{m-1}$ and $g \notin N$. We set $f(g)=g$, or $f(g)=g+b_{m-1}$, so as to have $f(g) \in M+N$.

This f is injective. Indeed, $f(g)=g$ or $f(g)=g+b_{m-1}$ for each $g \in B$; and if $g<g^{\prime}<b_{m-1}$ then $g<g^{\prime}<g+b_{m-1}<g^{\prime}+b_{m-1}$.

This concludes the proof of (1.6). And (1.8) now follows on observing that if $b_{m-1}=c_{n-1}$ in (1.4), the roles of M and N may be exchanged.
3.2. Proof of Theorem XI. - The proof proceeds by induction on $m+n$. Since (1.3) implies (1.11) if $\min (m, n) \leq 2$, we may assume that $\min (m, n) \geq 3$. We shall show that (1.11) is true for M and N, if it is true for all finite sets A and B of non-negative integers which are such that

$$
\begin{gather*}
|A|+|B|<m+n \tag{3.3}\\
0 \in A \cap B \tag{3.4}\\
\operatorname{gcd}(A \cup B)=1 \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\max (A \cup B) \geq|A|+|B|-2 \tag{3.6}
\end{equation*}
$$

We consider separately the two cases

$$
\begin{equation*}
\max \left(b_{m-2}, c_{n-2}\right)<m+n-4 \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\max \left(b_{m-2}, c_{n-2}\right) \geq m+n-4 \tag{3.7}
\end{equation*}
$$

We first deal with
Case (I). Clearly, (3.7) implies that $M \cap N \neq\{0\}$. We proceed to make this remark more precise.

Let B and C be the counting functions defined in (2.13). Because of (3.7), we have

$$
\begin{equation*}
B(m+n-4)+C(m+n-4) \geq m+n-4 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
B(m+n-5)+C(m+n-5)>m+n-5 \tag{3.10}
\end{equation*}
$$

It follows from Theorem 2.1 that (1.11) is true, if also

$$
\begin{equation*}
B(s)+C(s) \geq s \quad \text { for } \quad s=1, \ldots, m+n-6 \tag{3.11}
\end{equation*}
$$

Indeed, Theorem 2.1 and (3.9) through (3.11) ensure that $\{0,1, \ldots, m+n-4\} \subset$ $M+N$. And if $b_{m-1} \geq c_{n-1}$, then the n integers $b_{m-1}+c_{\nu}(\nu=0, \ldots, n-1)$ are in the set $(M+N) \backslash\{0,1, \ldots, m+n-4\}$, because of (1.9); if $c_{n-1}>b_{m-1}$ we can find m integers in this set. Hence, $|M+N| \geq(m+n-3)+\min (m, n)$ if (3.7) and (3.11) are true.

It therefore suffices to consider the possibility that (3.11) fails to hold, say that

$$
\begin{equation*}
B\left(s_{o}\right)+C\left(s_{o}\right)<s_{o} \tag{3.12}
\end{equation*}
$$

for some $s_{o}, 1 \leq s_{o} \leq m+n-6$. Then,

$$
\begin{equation*}
B\left(s_{o}+1\right)+C\left(s_{o}+1\right) \leq s_{o}+1 \tag{3.13}
\end{equation*}
$$

It follows from (3.10), (3.12) and (3.13) that there is an integer i, with $s_{o}+2 \leq i \leq$ $m+n-5$, such that

$$
\begin{equation*}
B(s)+C(s) \leq s \quad \text { for } \quad s_{o} \leq s \leq i-1 \tag{3.14}
\end{equation*}
$$

and $B(i)+C(i)>i$.
Then,

$$
\begin{equation*}
B(i-1)+C(i-1)=i-1 \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
B(i)+C(i)=i+1 \tag{3.16}
\end{equation*}
$$

whence $i \in M \cap N$. And $i-2 \geq s_{o}$ by definition, hence from (3.14),

$$
\begin{equation*}
B(i-2)+C(i-2) \leq i-2 \tag{3.17}
\end{equation*}
$$

With (3.15), this implies that $i-1 \in M \cup N$.
We now define q_{1} and $q_{2}\left(1 \leq q_{1} \leq m-2\right.$ and $\left.1 \leq q_{2} \leq n-2\right)$ by setting

$$
\begin{equation*}
b_{q_{1}}=i=c_{q_{2}} \tag{3.18}
\end{equation*}
$$

then $\max \left(b_{q_{1}-1}, c_{q_{2}-1}\right)=i-1$.
From (3.16) and (3.18) we have

$$
\begin{equation*}
i=q_{1}+q_{2}-1 ; \tag{3.19}
\end{equation*}
$$

hence $q_{1}+q_{2} \geq 4$, since $i \geq 3$. And from (3.18) and (3.19),

$$
\begin{equation*}
b_{q_{1}}=c_{q_{2}}=q_{1}+q_{2}-1 \tag{3.20}
\end{equation*}
$$

We may invoke the induction hypothesis to obtain the following estimates: if $b_{q_{1}-1}=i-1$, then

$$
\begin{equation*}
\left|M_{m-q_{1}+1}^{\prime \prime}+N_{n-q_{2}}^{\prime \prime}\right| \geq m+n-\left(q_{1}+q_{2}\right)-2+\min \left(m-q_{1}+1, n-q_{2}\right) \tag{3.21}
\end{equation*}
$$

if $c_{q_{2}-1}=i-1$, then

$$
\begin{equation*}
\left|M_{m-q_{1}}^{\prime \prime}+N_{n-q_{2}+1}^{\prime \prime}\right| \geq m+n-\left(q_{1}+q_{2}\right)-2+\min \left(m-q_{1}, n-q_{2}+1\right) \tag{3.22}
\end{equation*}
$$

and in both cases,

$$
\begin{equation*}
\left|M_{m-q_{1}+1}^{\prime \prime}+N_{n-q_{2}+1}^{\prime \prime}\right| \geq m+n-\left(q_{1}+q_{2}\right)+\min \left(m-q_{1}, n-q_{2}\right) \tag{3.23}
\end{equation*}
$$

Indeed, (3.3) is verified each time because of (2.9) and since $q_{1}+q_{2} \geq 4$. Condition (3.4) is met, since $0 \in M_{m-r}^{\prime \prime} \cap N_{n-s}^{\prime \prime}$ by (2.7) and (2.8). Condition (3.5) is satisfied because by (3.18) we have $1=b_{q_{1}}-b_{q_{1}-1} \in M_{m-q_{1}+1}^{\prime \prime}$ if $b_{q_{1}-1}=i-1$, and $1 \in N_{n-q_{2}+1}^{\prime \prime}$ if $c_{q_{2}-1}=i-1$. To verify (3.6) we observe that by (2.7) and (1.9),

$$
\begin{aligned}
\max \left(M_{m-r}^{\prime \prime} \cup N_{n-s}^{\prime \prime}\right) & =\max \left(b_{m-1}-b_{r}, c_{n-1}-c_{s}\right) \\
& \geq(m+n-2)-\max \left(b_{r}, c_{s}\right),
\end{aligned}
$$

from which (3.6) follows in each case.
We shall also need two consequences of Theorem X, namely

$$
\begin{equation*}
\left|M_{q_{1}+1}^{\prime}+N_{q_{2}+1}^{\prime}\right| \geq q_{1}+q_{2}+\max \left(q_{1}, q_{2}\right) \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|M_{q_{1}}^{\prime}+N_{q_{2}+1}^{\prime}\right| \geq 2 q_{1}+q_{2}-1 \tag{3.25}
\end{equation*}
$$

To obtain (3.24) we observe that because of (3.20) the sets $M_{q_{1}+1}^{\prime}$ and $N_{q_{2}+1}^{\prime}$ satisfy (1.7) since

$$
\left|M_{q_{1}+1}^{\prime}\right|+\left|N_{q_{2}+1}^{\prime}\right|-3=q_{1}+q_{2}-1
$$

(3.24) is (1.8) for these sets.

For (3.25), we note that $M_{q_{1}}^{\prime}$ and $N_{q_{2}+1}^{\prime}$ verify (1.5) since by (1.1) and (3.20),

$$
b_{q_{1}-1}<c_{q_{2}}=q_{1}+q_{2}-1=\left|M_{q_{1}}^{\prime}\right|+\left|N_{q_{2}+1}^{\prime}\right|-2
$$

By (1.6) then,

$$
\left|M_{q_{1}}^{\prime}+N_{q_{2}+1}^{\prime}\right| \geq c_{q_{2}}+q_{1}
$$

and this is (3.25).
We proceed to apply (3.21) through (3.25). The argument in Case (I) is now separated into two subcases,

$$
\begin{align*}
b_{q_{1}-1} & =c_{q_{2}-1} \tag{Ia}\\
b_{q_{1}-1} & \neq c_{q_{2}-1} \tag{Ib}
\end{align*}
$$

Case (Ia). In this case,

$$
\begin{equation*}
|M+N| \geq\left|M_{q_{1}+1}^{\prime}+N_{q_{2}+1}^{\prime}\right|+\left|M_{m-q_{1}+1}^{\prime \prime}+N_{n-q_{2}+1}^{\prime \prime}\right|-3 \tag{3.27}
\end{equation*}
$$

To prove (3.27) we use (2.11) with $r=q_{1}+1, s=q_{2}+1, k=q_{1}-1, \ell=q_{2}-1$. For simplicity of notation, set $M_{1}=M_{q_{1}+1}^{\prime}, \quad N_{1}=N_{q_{2}+1}^{\prime}, M_{2}=M \backslash M_{q_{1}-1}^{\prime}$ and $N_{2}=N \backslash N_{q_{2}-1}^{\prime}$. We must show that $\left|\left(M_{1}+N_{1}\right) \cap\left(M_{2}+N_{2}\right)\right|=3$ in order to get (3.27) from (2.11). Indeed, $b_{q_{1}-1}+c_{q_{2}-1}, b_{q_{1}}+c_{q_{2}-1}, b_{q_{1}-1}+c_{q_{2}}$ and $b_{q_{1}}+c_{q_{2}}$ are in
$\left(M_{1}+N_{1}\right) \cap\left(M_{2}+N_{2}\right)$, and $b_{q_{1}}+c_{q_{2}-1}=b_{q_{1}-1}+c_{q_{2}}$ by (3.18) and (3.26). These are the only elements of $\left(M_{1}+N_{1}\right) \cap\left(M_{2}+N_{2}\right)$. For consider some $x \in M_{1}+N_{1}$, say $x=b_{u}+c_{v}$, with $u<q_{1}-1$ or $v<q_{2}-1$; then $x<b_{q_{1}-1}+c_{q_{2}}$, hence $x \in M_{2}+N_{2}$ only if $x=b_{q_{1}-1}+c_{q_{2}-1}$.
Return now to (3.27). On combining (3.27), (3.23) and (3.24) we have

$$
|M+N| \geq m+n-3+\max \left(q_{1}, q_{2}\right)+\min \left(m-q_{1}, n-q_{2}\right)
$$

and this implies (1.11). This concludes the proof in Case (Ia).
Case (Ib). The argument when $b_{q_{1}-1}<c_{q_{2}-1}$ is typical. Then, we have

$$
\begin{equation*}
|M+N| \geq\left|M_{q_{1}+1}^{\prime}+N_{q_{2}+1}^{\prime}\right|+\left|M_{m-q_{1}}^{\prime \prime}+N_{n-q_{2}+1}^{\prime \prime}\right|-2 \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
|M+N| \geq\left|M_{q_{1}}^{\prime}+N_{q_{2}+1}^{\prime}\right|+\left|M_{m-q_{1}}^{\prime \prime}+N_{n-q_{2}+1}^{\prime \prime}\right| \tag{3.29}
\end{equation*}
$$

To verify (3.28), set $r=q_{1}+1, s=q_{2}+1, k=q_{1}, \ell=q_{2}-1$ in (2.11) and observe that if $u \leq q_{1}-1$ and $v \leq q_{2}$, then $b_{u}+c_{v} \in M_{q_{1}+1}^{\prime}+N_{q_{2}+1}^{\prime}$ but $b_{u}+c_{v} \leq b_{q_{1}-1}+c_{q_{2}}<$ $b_{q_{1}}+c_{q_{2}-1}=\min \left(M \backslash M_{q_{1}}^{\prime}\right)+\left(N \backslash N_{q_{2}-1}^{\prime}\right)$. Hence $b_{q_{1}}+c_{q_{2}-1}$ and $b_{q_{1}}+c_{q_{2}}$ are the only elements of $\left(M_{q_{1}+1}^{\prime}+N_{q_{2}+1}^{\prime}\right) \cap\left(\left(M \backslash M_{q_{1}}^{\prime}\right)+\left(N \backslash N_{q_{2}-1}^{\prime}\right)\right)$. And (3.29) follows from (2.11) with $r=q_{1}, s=q_{2}+1, k=q_{1}, \ell=q_{2}-1$, since $b_{q_{1}-1}+c_{q_{2}}<b_{q_{1}}+c_{q_{2}-1}$ that is, $\max \left(M_{q_{1}}^{\prime}+N_{q_{2}+1}^{\prime}\right)<\min \left(\left(M \backslash M_{q_{1}}^{\prime}\right)+\left(N \backslash N_{q_{2}-1}^{\prime}\right)\right)$.

From (3.28), (3.22) and (3.24),

$$
|M+N| \geq m+n-4+\max \left(q_{1}, q_{2}\right)+\min \left(m-q_{1}, n-q_{2}+1\right)
$$

from which (1.11) follows if $q_{2}>q_{1}$.
If $q_{1} \geq q_{2}$ we use (3.29), (3.22) and (3.25) which together yield

$$
|M+N| \geq m+n-3+q_{1}+\min \left(m-q_{1}, n-q_{2}+1\right)
$$

and (1.11) follows.
This settles Case (Ib) when $b_{q_{1}-1}<c_{q_{2}-1}$. If $b_{q_{1}-1}>c_{q_{2}-1}$ the argument goes through as above on replacing (3.22) by (3.21) and similarly interchanging the roles of M and N in (3.25), (3.28) and (3.29).

This disposes of Case (I).
Case (II). This case is determined by condition (3.8). We may also assume that

$$
\begin{equation*}
\max \left(b_{m-1}-b_{1}, c_{n-1}-c_{1}\right) \geq m+n-4 \tag{3.30}
\end{equation*}
$$

for otherwise, by Case (I), the conclusion of Theorem XI holds for M^{*} and N^{*}, since $b_{m-1}-b_{1}=x_{m-2}$ and $c_{n-1}-c_{1}=y_{n-2}$.

Because of Corollary 2.3, it suffices to consider sets M and N such that

$$
\begin{gather*}
\operatorname{gcd}(M)=\operatorname{gcd}(N)=1 \tag{3.31}\\
\operatorname{gcd}\left(\left(M^{*}\right)_{m-1}^{\prime}\right)=1 \tag{3.32}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(M_{m-1}^{\prime}\right)=1 \tag{3.33}
\end{equation*}
$$

In Case (II), we may further assume that

$$
\begin{equation*}
b_{1}=c_{1}=1 \tag{3.34}
\end{equation*}
$$

and that

$$
\begin{equation*}
b_{m-1}-b_{m-2}=c_{n-1}-c_{n-2}=1 \tag{3.35}
\end{equation*}
$$

as we proceed to show. Consider (3.34) first. If $b_{1} \neq c_{1}$ then $0, b_{1}, c_{1}$ are distinct elements of $M+N$, not in $M_{0}+N_{0}$ (in the notation of Proposition 2.2). Hence if $b_{1} \neq c_{1}$,

$$
\begin{equation*}
|M+N| \geq\left|M_{0}+N_{0}\right|+3=\left|\left(M^{*}\right)_{m-1}^{\prime}+\left(N^{*}\right)_{n-1}^{\prime}\right|+3 \tag{3.36}
\end{equation*}
$$

$\left(b_{m-1}+c_{n-1}-x\right.$ runs through $\left(M^{*}\right)_{m-1}^{\prime}+\left(N^{*}\right)_{n-1}^{\prime}$, if x runs through $\left.M_{0}+N_{0}\right)$.
Inequality (3.36) also holds if $b_{1}=c_{1} \geq 2$. For if $b_{1}=c_{1} \geq 2$, let b_{u} and c_{v} be the smallest integers in M and N, respectively, such that $b_{1} \nmid b_{u}$ and $b_{1} \nmid c_{v}$ (they are well-defined, because of (3.31)). Then $u \geq 2$ and $v \geq 2$, whence

$$
\begin{equation*}
b_{0}+c_{0}<b_{1}+c_{0}<\min \left(b_{u}, c_{v}\right) \tag{3.37}
\end{equation*}
$$

And $\min \left(b_{u}, c_{v}\right) \notin M_{0}+N_{0}$. Indeed, say $b_{u} \leq c_{v}$, and suppose that $b_{u}=b_{k}+c_{\ell}$ for some $k \geq 1$ and $\ell \geq 1$. Then $b_{u}>b_{k}$ and $c_{v} \geq b_{u}>c_{\ell}$, whence $b_{k} \equiv c_{\ell} \equiv 0\left(\bmod b_{1}\right)$. This is impossible since $b_{1} \nmid b_{u}$. Hence with (3.37), we have (3.36) again.

Now the induction hypothesis applies to $\left(M^{*}\right)_{m-1}^{\prime}$ and $\left(N^{*}\right)_{n-1}^{\prime}$ because of (3.30) and (3.32). With it, (3.36) yields (1.11). This justifies assumption (3.34).

To justify (3.35), we use M^{*} and N^{*}; note that (3.35) is equivalent to $x_{1}=y_{1}=1$. By (2.5) and (3.31), $\operatorname{gcd}\left(M^{*}\right)=\operatorname{gcd}\left(N^{*}\right)=1$. By reasoning as for (3.34) we see that

$$
\begin{equation*}
\left|M^{*}+N^{*}\right| \geq\left|M_{m-1}^{\prime}+N_{n-1}^{\prime}\right|+3 \tag{3.38}
\end{equation*}
$$

except perhaps if $x_{1}=y_{1}=1$. And because of (3.8) and (3.33), we may apply the induction hypothesis to M_{m-1}^{\prime} and N_{n-1}^{\prime}; (1.11) then follows from (3.38).

Another restriction is possible in Case (II): we may assume that $m=n$. Indeed, suppose $m<n$. The induction hypothesis applies to M and $N_{n-1}^{\prime}:(3.5)$ is satisfied because of (3.31); so is (3.6) since by (1.9) and (3.35),

$$
\max \left(M \cup N_{n-1}^{\prime}\right)=\max \left(b_{m-1}, c_{n-1}-1\right) \geq m+n-3=|M|+\left|N_{n-1}^{\prime}\right|-2 .
$$

From the induction hypothesis we get

$$
\left|M+N_{n-1}^{\prime}\right| \geq m+(n-1)-3+\min (m, n-1)=m+n-4+\min (m, n)
$$

and (1.11) follows. If $m>n$ we can reason in the same manner with M_{m-1}^{\prime} and N.
Finally, since Theorem XI is symmetric in M and N, and since we have made no assumptions distinguishing M from N, we may assume that $b_{m-1} \geq c_{n-1}$.

We again consider the function $B(s)+C(s)-s$, where B and C are as in (2.13). It is ultimately negative, since M and N are finite. In fact, since now $b_{m-1} \geq c_{n-1}$ and consequently $b_{m-1} \geq m+n-2$,

$$
\begin{equation*}
B(s)+C(s)<s \quad \text { for } \quad s>b_{m-1} \tag{3.39}
\end{equation*}
$$

On the other hand, because of (3.34), we have $B(1)+C(1)>1$, and $B(2)+C(2) \geq 2$. Hence there is an integer j, with $2 \leq j \leq b_{m-1}$, such that $B(s)+C(s) \geq s$ for $1 \leq s \leq j$ and $B(j+1)+C(j+1)<j+1$. Then $B(j)+C(j)=j=B(j+1)+C(j+1)$, whence $j+1 \notin M \cup N$. And by Theorem 2.1,

$$
\begin{equation*}
\{0,1, \ldots, j\} \subset M+N \tag{3.40}
\end{equation*}
$$

If $j \geq m+n-4$ then (1.11) is true, by the argument developed after (3.11). We may therefore assume that $j \leq m+n-5$; then, $j+1<b_{m-1}$ by (1.9). With this assumption, let p_{1} be such that $b_{p_{1}-1}<j+1<b_{p_{1}}$. By (3.34) and (3.35), $2 \leq p_{1} \leq m-2$. Then, either $c_{n-1}<j+1<b_{p_{1}}$ or $j+1<c_{n-1}$.

If $c_{n-1}<j+1<b_{p_{1}}$ then $B(j+1)+C(j+1)=j$ yields

$$
\begin{equation*}
j=n+p_{1}-2 \tag{3.41}
\end{equation*}
$$

The integers in (3.40), the b_{i} with $p_{1} \leq i \leq m-1$ and the $b_{m-1}+c_{k}$ with $1 \leq k \leq n-1$ are distinct, and in $M+N$. By (3.41) they are $(j+1)+\left(m-p_{1}\right)+(n-1)=m+2 n-2$ in number; this implies (1.11).

If $j+1<c_{n-1}$, let $p_{2}\left(2 \leq p_{2} \leq n-2\right)$ be such that $c_{p_{2}-1}<j+1<c_{p_{2}}$. Then (3.41) is replaced by

$$
\begin{equation*}
j=p_{1}+p_{2}-2 \tag{3.42}
\end{equation*}
$$

We now distinguish three subcases, according to the sign of $p_{1}-p_{2}$. Suppose first that $p_{1}=p_{2}=p$, say. Then by arguing as for (3.27), we have

$$
\begin{equation*}
|M+N| \geq\left|M_{p+1}^{\prime}+N_{p+1}^{\prime}\right|+\left|M_{m-p+1}^{\prime \prime}+N_{n-p+1}^{\prime \prime}\right|-a \tag{3.43}
\end{equation*}
$$

where

$$
a= \begin{cases}4 & \text { if } \quad b_{p-1}+c_{p} \neq b_{p}+c_{p-1} \tag{3.44}\\ 3 & \text { else. }\end{cases}
$$

For the first member on the right side of (3.43), we have

$$
\left|M_{p+1}^{\prime}+N_{p+1}^{\prime}\right| \geq \begin{cases}3 p+1 & \text { if } b_{p-1}+c_{p} \neq b_{p}+c_{p-1} \tag{3.46}\\ 3 p & \text { else. }\end{cases}
$$

Indeed, $\{0,1, \ldots, j\} \subset M_{p+1}^{\prime}+N_{p+1}^{\prime}$ because of (3.40) and since

$$
b_{u}+c_{v}>\min \left(b_{p}, c_{p}\right)>j
$$

if $u>p$ or $v>p$. And if $b_{p}+c_{p-1}<b_{p-1}+c_{p}$, then the $p+2$ integers $b_{p}+c_{\nu}$ ($\nu=0,1, \ldots, p$) and $b_{p-1}+c_{p}$ are distinct, in $M_{p+1}^{\prime}+N_{p+1}^{\prime}$, and larger than j. This proves (3.46), since $(j+1)+p+2=3 p+1$. (If $b_{p}+c_{p-1}>b_{p-1}+c_{p}$, use the $b_{\nu}+c_{p}$ with $0 \leq \nu \leq p$, and $b_{p}+c_{p-1}$.) To prove (3.47), use the same integers as for (3.46), except $b_{p-1}+c_{p}$ (or $b_{p}+c_{p-1}$, as the case may be).

For the second member on the right side of (3.43), we have

$$
\begin{equation*}
\left|M_{m-p+1}^{\prime \prime}+N_{n-p+1}^{\prime \prime}\right| \geq 3(m-p+1)-3 \tag{3.48}
\end{equation*}
$$

by the induction hypothesis: condition (3.5) is verified since $b_{m-1}-b_{p-1}$ and $b_{m-2}-$ b_{p-1} are consecutive integers, by (3.35); and (3.6) is met, since

$$
\begin{aligned}
& \max \left(b_{m-1}-b_{p-1}, c_{n-1}-c_{p-1}\right) \\
& \quad \geq \max \left(b_{m-1}, c_{n-1}\right)-\max \left(b_{p-1}, c_{p-1}\right) \\
& \quad \geq(m+n-2)-j=(m-p+1)+(n-p+1)-2 .
\end{aligned}
$$

Now (3.43) through (3.48) imply (1.11). This settles the subcase in which $p_{1}=p_{2}$.
Suppose now that $p_{1}>p_{2}$ in (3.42). Because of (3.40) and since $c_{p_{2}}>j$,

$$
\begin{equation*}
|M+N| \geq(j+1)+\left|M+\left\{c_{p_{2}}, c_{p_{2}+1}, \ldots, c_{n-1}\right\}\right| \tag{3.49}
\end{equation*}
$$

whence with (2.12),

$$
\begin{equation*}
|M+N| \geq(j+1)+\left|M+N_{n-p_{2}}^{\prime \prime}\right| \tag{3.50}
\end{equation*}
$$

The induction hypothesis applies to M and $N_{n-p_{2}}^{\prime \prime}$, by (3.31) and (1.9), and since $b_{m-1}>c_{n-1}-c_{p_{2}}$ and $p_{2} \geq 2$. With it and (3.42), (3.50) yields

$$
|M+N| \geq\left(p_{1}+p_{2}-1\right)+m+2\left(m-p_{2}\right)-3=3 m-4+\left(p_{1}-p_{2}\right),
$$

whence $|M+N| \geq 3 m-3$.
We must still treat the subcase in which

$$
\begin{equation*}
p_{1}<p_{2} \tag{3.51}
\end{equation*}
$$

Arguing as for (3.50), we see that (3.40) and $b_{p_{1}}>j$ imply that

$$
\begin{equation*}
|M+N| \geq(j+1)+\left|M_{m-p_{1}}^{\prime \prime}+N\right| \tag{3.52}
\end{equation*}
$$

If $\max \left(M_{m-p_{1}}^{\prime \prime} \cup N\right) \geq\left|M_{m-p_{1}}^{\prime \prime}\right|+|N|-2$, that is, if

$$
\begin{equation*}
\max \left(b_{m-1}-b_{p_{1}}, c_{n-1}\right) \geq 2 m-p_{1}-2 \tag{3.53}
\end{equation*}
$$

then by the induction hypothesis,

$$
\begin{equation*}
\left|M_{m-p_{1}}^{\prime \prime}+N\right| \geq 3(m-1)-2 p_{1} \tag{3.54}
\end{equation*}
$$

With (3.54), (1.11) follows from (3.52), (3.42) and (3.51).
In order to conclude the proof of Theorem XI, we must consider subcase (3.51) when, instead of (3.53),

$$
\begin{equation*}
\max \left(b_{m-1}-b_{p_{1}}, c_{n-1}\right) \leq 2 m-p_{1}-3 . \tag{3.55}
\end{equation*}
$$

For this we use the sets M^{*} and N^{*}, as defined in (2.3) and (2.4). In analogy to (2.13), let B^{*} and C^{*} denote the counting functions of the positive elements of M^{*} and N^{*}, respectively. By (1.9) and (3.35) there is an integer j^{*} with $2 \leq j^{*} \leq b_{m-1}$, such that $B^{*}(s)+C^{*}(s) \geq s$ for $1 \leq s \leq j^{*}$ and $B^{*}\left(j^{*}+1\right)+C^{*}\left(j^{*}+1\right)<j^{*}+1$. Then $j^{*}+1 \notin M^{*} \cup N^{*}, j^{*}=B^{*}\left(j^{*}+1\right)+C^{*}\left(j^{*}+1\right)$, and by Theorem 2.1,

$$
\begin{equation*}
\left\{0,1, \ldots, j^{*}\right\} \subset M^{*}+N^{*} \tag{3.56}
\end{equation*}
$$

By a previous assumption, $y_{n-1}:=c_{n-1} \leq b_{m-1}=: x_{m-1}$. By the argument applied after (3.40), we may assume that $j^{*}+1<x_{m-1}$. Then define $p_{1}^{*}\left(1<p_{1}^{*}<m\right)$ by

$$
\begin{equation*}
x_{p_{1}^{*}-1}<j^{*}+1<x_{p_{1}^{*}} . \tag{3.57}
\end{equation*}
$$

If $y_{n-1}<j^{*}+1<x_{p_{1}^{*}}$, we can prove (1.11) by reasoning as when $c_{n-1}<j+1<b_{p_{1}}$ (use (3.56), and replace (3.41) by $j^{*}=n+p_{1}^{*}-2$). Accordingly, let us assume that

$$
\begin{equation*}
j^{*}+1<c_{n-1} \tag{3.58}
\end{equation*}
$$

Because of (3.55), and since $b_{m-1}-b_{p_{1}}=x_{m-p_{1}-1}$ and $c_{n-1}=y_{m-1}$, we have

$$
B^{*}\left(2 m-p_{1}-3\right)+C^{*}\left(2 m-p_{1}-3\right) \geq\left(m-p_{1}-1\right)+(m-1)>2 m-p_{1}-3 .
$$

And $2 m-p_{1}-3 \geq c_{n-1}>j^{*}+1$ by (3.55) and (3.58). Thus, if (3.55) and (3.58) hold, then

$$
B^{*}(s)+C^{*}(s)>s \quad \text { for some } \quad s>j^{*}+1
$$

Now

$$
\begin{equation*}
B^{*}\left(j^{*}+1\right)+C^{*}\left(j^{*}+1\right)<j^{*}+1 \tag{3.59}
\end{equation*}
$$

Hence (3.55) and (3.58) imply the existence of an integer g such that

$$
\begin{equation*}
B^{*}(s)+C^{*}(s) \leq s \quad \text { for } \quad j^{*}+1 \leq s \leq g-1 \tag{3.60}
\end{equation*}
$$

and

$$
B^{*}(g)+C^{*}(g)>g
$$

Then,

$$
\begin{gather*}
B^{*}(g-1)+C^{*}(g-1)=g-1, \tag{3.61}\\
B^{*}(g)+C^{*}(g)=g+1 \tag{3.62}
\end{gather*}
$$

and therefore $g \in M^{*} \cap N^{*}$. Furthermore, $g \geq j^{*}+2$ by definition, and $g=j^{*}+2$ is excluded by comparing (3.59) and (3.61). Thus $g-2 \geq j^{*}+1$, and from (3.60),

$$
\begin{equation*}
B^{*}(g-2)+C^{*}(g-2) \leq g-2 \tag{3.63}
\end{equation*}
$$

with (3.61) this implies that $g-1 \in M^{*} \cup N^{*}$.
Now define r_{1} and r_{2} by setting

$$
\begin{equation*}
x_{r_{1}}=g=y_{r_{2}} \tag{3.64}
\end{equation*}
$$

then $x_{r_{1}-1}=g-1$ or $y_{r_{2}-1}=g-1$. And from (3.62) and (3.64),

$$
\begin{equation*}
g=r_{1}+r_{2}-1 \tag{3.65}
\end{equation*}
$$

We now have a situation entirely similar to the one encountered in Case (I): compare (3.61) through (3.65) with (3.15) through (3.19).

To complete the proof of (1.11) when (3.51) holds, it suffices to proceed as in Case (I). On replacing there M and N by M^{*} and N^{*}, respectively, q_{i} by $r_{i}(i=1,2)$, each b by x and each c by y, and remembering that $\left|M^{*}+N^{*}\right|=|M+N|$, we dispose of this last subcase.

This concludes the proof of Theorem XI.

References

[1] Freiman G.A., Inverse Problems in Additive Number Theory, VI. On the Addition of Finite Sets, III (in Russian). Izv. Vyss. Ucebn. Zaved. Matematika, 3 (28), 1962, 151157.
[2] Freiman G.A., On the Structure and the Number of Sum-Free Sets, Journées Arithmétiques de Genève 1991, Astérisque 209, 195-203.
[3] Deshouillers J.-M., Sós V., Freiman G.A. and Temkin M., On the Structure of Sum-Free Sets, 2, this volume.
[4] Halberstam H. and Roth K.F., Sequences (second edition), Springer-Verlag, New York, Berlin, 1983.
[5] Mann H.B., A Proof of the Fundamental Theorem on the Density of Sums of Sets of Positive Integers, Ann. Math., 43, 1942, 523-527.

[^0]
[^0]: J. Steinig, Section de Mathématiques, Université de Genève, C.P. 240, 1211 Genève 24, Suisse E-mail : Peterman@ibm.unige.ch (qui transmettra)

