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LOCAL TAME LIFTING FOR GL(n) 
II: WILDLY RAMIFIED SUPERCUSPIDALS 

Colin J. Bushnell, Guy Henniart 

Abstract. — Let F be a non-Archimedean local field with finite residue field 
of characteristic p. An irreducible representation a of the Weil group Wp 
of F is called wildly ramified if dim a is a power of p and cr ^ x ® a for 
any unramified quasicharacter x # 1 of Wj?. We write Sm(^) f°r ^ e set °f 
equivalence classes of such representations of dimension pm. An irreducible 
supercuspidal representation n of GLn(F) is wildly ramified if n is a power 
of p and 7r ^ 7r ® (x o det) for any unramified quasicharacter x 7̂  1 of Fx. 
We write Am(F) for the set of equivalence classses of such representations of 
GLpm(F). In this paper, we do two things. First, we propose a definition of 
a base change map lK/F : A^(F) -» A^(K) for any finite tame extension 
K/F. The construction is explicit and local, being based on the classification of 
supercuspidal representations of GLn(F) (due to C. Bushnell and P.C. Kutzko) 
and a partial definition of (non-Galois) tame base change (due to the authors). 
The results apply to local fields F of positive characteristic. When F has 
characteristic zero and K/F is cyclic of degree prime to p we show that this map 
coincides with base change in the sense of Arthur and Clozel. Second, when 
F has characteristic zero, we construct a canonical bijection 7r̂  : S™(F) —> 
A^iF), for each m. We show that this has many of the properties demanded 
of a Langlands correspondence. 

Recently, M. Harris and R. Taylor have announced a proof of the local 
Langlands conjecture for GLn(F), using a global geometric method. This 
implies the existence of a canonical bijection Lm : Smr(^) ~* A™(F). If 
a G Qm(F), there is an unramified quasicharacter Xa of Wp of finite order 
dividing pm such that 7rm(cr) = £m(cr <g> x<r)-

We expect that the methods of this paper will lead to another proof of the 
local Langlands conjecture for GLn. 
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Résumé (Changement de base local modéré pour GL(n) II : représentations su-
percuspidales sauvages) 

Soit F un corps local non archimédien à corps résiduel fini de caractéristique 
p. Une représentation irréductible a du groupe de Weil Wp de F est dite 
sauvagement ramifiée si dim a est une puissance de p et a ^ x ® & pour tout 
quasicaractère non ramifié x 7̂  1 de W^. Notons S m (F) l'ensemble des classes 
d'isomorphie de telles représentations de dimension pm. Une représentation 
irréductible supercuspidale n de GLn(F) est dite sauvagement ramifiée si n est 
une puissance de p et TT ^ TT (g) (x ° det) pour tout quasicaractère non ramifié 
X 7̂  1 de Fx. Notons A™(F) l'ensemble des classes d'isomorphie de telles 
représentations de GLpm(F). Dans cet article, nous faisons deux choses. En 
premier, nous proposons une définition d'une application de changement de 
base IK/F : A™(F) -» A™(F), où K/F est une extension finie modérée. La 
méthode est locale et explicite, basée sur la classification des représentations 
supercuspidales due à C. Bushnell et Ph. Kutzko et une définition partielle du 
changement de base modéré (non galoisien), due aux auteurs. Les arguments 
s'étendent à des corps locaux de caractéristique non nulle. Si le corps F est 
de caractéristique nulle et que K/F est cyclique de degré premier à p, nous 
montrons que cette application coïncide avec le changement de base au sens de 
J. Arthur et L. Clozel. Deuxièmement, dans le cas où F est de caractéristique 
nulle, nous construisons une bijection canonique 7r̂  : S™(F) ~~̂  A™(F) qui 
possède beaucoup des propriétés exigées d'une correspondance de Langlands. 

Récemment, M. Harris et R. Taylor ont annoncé une preuve, par voie globale 
et géométrique, des conjectures de Langlands pour GLn(F). Leurs résultats 
impliquent l'existence d'une bijection canonique Lm : Smr(^) ~>A™(F). Pour 
<y G SmV)? il existe un quasicaractère non ramifié Xo- de W p̂, d'ordre fini 
divisant pm, tel que 7rm(a) = £jm(a ® Xa)-

Nous espérons que les méthodes du présent article mèneront à une preuve 
alternative des conjectures locales de Langlands pour GLn. 

ASTÉRISQUE 254 



Contents 

Introduction 1 

Notation and preliminaries 11 

1. Algebraic tame lifting 13 

2. Correspondence with Galois representations 21 

3. Central types 31 

4. Base field extension for central types 39 

5. Construction of the tame lift 45 

6. Automorphic local constants 53 

7. Gauss sums mod roots of unity 63 

8. Gauss sum relations 67 

9. Calculation of the commutator Gauss sum 75 

10. Comparison with base change 83 

Appendix: Representations of finite groups 93 
Al. Characters of certain group extensions 93 
A2. Glauberman correspondence 99 

Bibliography 103 





INTRODUCTION 

1. Let F denote a non-Archimedean local field with finite residue field of 
characteristic p. For the time being, we assume that F has characteristic zero, 
and so is a finite extension of Qp. We fix an algebraic closure F/F of F and 
let WF denote the Weil group of F/F. 

For an integer n ^ 1, let Sn(F) denote the set of equivalence classes of 
irreducible continuous (complex) representations of Wp of dimension n, and 
AN(F) the set of equivalence classes of irreducible supercuspidal representa­
tions of GLn(F). The local Langlands conjecture for GLn [30] predicts, for 
each n, the existence of a canonical bijection 

An : 3n(F) ~ ) AN(F) 

satisfying an extensive list of properties (see also [25]). In particular, Ai is the 
bijection implied by local class field theory. 

2. We are here concerned with the problem of constructing An in a special, 
but crucial and rather subtle, case. 

For an integer ra ^ 0, let Sm(^) denote the set of a G QP™(F) which remain 
irreducible on restriction to the wild inertia subgroup of Wp. (Equivalently, 
<T has dimension pm and a ^ a ® x f°r anY unramified quasicharacter \#1 
of Wp.) From the point of view of Galois theory, the set |Jm Sm(F) contains 
the "difficult" representations of W/?, including the primitive ones. 

On the other hand, let A^(F) denote the set of TT G Apm(F) with the 
property that n is not equivalent to the representation %7r : g i-» x(det g)n(g) 
for any unramified quasicharacter x # 1 of FX. 



2 INTRODUCTION 

The aim of this paper is to produce, for each m ^ 0 and each finite field 
extension F/Qp, a canonical bijection 

7rm : 9%{F) A™(F). 
The bijection we construct exhibits many of the properties demanded of a 
Langlands correspondence \vm. In particular, when m = 0, the map 7TQ is 
that given by class field theory. For m ^ 0, 7rm is natural with respect to 
topological isomorphisms of the base field. It respects contragredience and 
takes determinants to central quasicharacters. It is compatible with twist­
ing by quasicharacters. Its deepest properties concern local constants: for 
<7 G Sm(F). The Deligne-Langlands local constant e(<7, s,?/^) [39] equals the 
Godement-Jacquet local constant e(7rm(cr), s, ipp) [15]. (Here, tpp is a non-
trivial continuous character of the additive group of F.) 

3. Since the completion of the original version of this paper (November 1997), 
there has been considerable progress in this area. This stems from [16] in 
which, following ideas of Drinfeld and Carayol, Harris produces a canoni­
cal map (Tn from Jln(F) to the set of equivalence classes of semisimple n-
dimensional representations of Wp> An argument in [6] shows that, for each 
n, crn is in fact a bijection An(F) —» Sn(F)- Let us set An = a-"1. In [18], it 
is shown that the family {An} has all the properties required of a Langlands 
correspondence. In particular, it preserves local constants of pairs: 

e(ai <8> <j2,s, tpF) = e(7ri x TT2, S, ipF), 
for G{ G Sm(F) and TTi — \ni(<Ji). Here, the second e is the local constant of 
[24], [35]. (This property, in the case p \ n \ n ^ 2 was established earlier in [17].) 
However, the construction of crn in [16] is geometric and makes extensive use 
of global constructions. It gives no information whatsoever about the nature of 
the correspondence, especially the way it interacts with the structure theory of 
supercuspidals in [9]. The role of the present paper has thus become to make 
the correspondences An more explicit, at least in the important case to hand. 

A critical question in this regard is therefore whether our family of maps 
{7rm} preserves local constants of pairs. We do not answer that question here, 
but we do show that it preserves conductors of pairs: if <JI G S^(^) and 
fti — ^mi{^i)') i — 1?2, then the exponent f(a\ ® (72) of the Artin conductor 
of the tensor product o\ ® 02 is equal to the conductor /(71*1 x 7̂ ) of the pair 
(7Tl,7T2). 

From results here and properties of the {An} given in [6], it is straightforward 
to show that, for a G S™(F), there is an unramified quasicharacter Xa of Fx 
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INTRODUCTION 3 

such that Xpm(a) = Xa^mi^)- Moreover, Xa has finite order, strictly dividing 
pm. In particular, \p = tti on Sfr(F). 

We will return elsewhere to the exact relation between 7rm and \pm. 

4. Our approach is based on the fact that the representations in Sm(F) ex~ 
hibit a fairly uniform structure. We proceed by uncovering similar structures 
in A™(F) and constructing the map 7rm to preserve these. First, Sm(F) ^as 
a canonical subset Qc^(F) as follows: a representation a G S™r(̂ ) lies in 
Qc^(F) if and only if there is a tower of fields 

F = F0 C Fi C • • • C Fm 

with each Fi+i/Fi cyclic and totally ramified of degree p, and a quasicharacter 
X of F^, such that a is induced from the representation of Wjrm afforded by 
X-

There is an analogous subset Ac™(F) of A™(F)\ a representation TT lies 
in this set if and only if there is a tower of fields F = LQ C L \ C • • • C LM 
and a quasicharacter £ of L^, with each Li+i/Li cyclic and totally ramified of 
degree p, such that 

* = *Li/F ° *L2/Li ° ' * * ° *Lm/Lm_i (0-

Here, i denotes the operation of automorphic induction, as in [22]. One knows 
([20], [6] 3.8) that, in the notation above, 

° = Indw£m (X) •—> *Fi/F ° »F2/Fi ° * " * ° *Fm/Fro-i (x) 

induces a bijection c7rm between Sc^r(F) and Ac™(F). The maps C7rm exhibit 
a multitude of desirable properties; in particular, they preserve local constants 
of pairs. Our bijection 7rm is to be an extension of c7rm: 

*m(<r) = cnm(a), a € S C ( F ) . 

5. In general, given a representation a G Sm(F)<> there is a finite, tamely 
ramified, field extension K/F such that the restriction <JK/F of a to Wk lies 
in Sc^(F). There is a canonical choice of the extension K/F (up to isomor­
phism), such that the degree [K:F] is prime to p. We specify 7rm(cr) in terms 
of K/F and the representation ^mi&K/F)-

If the tame extension K/F is cyclic, there is an operation on the other side 
analogous to the restriction process a h» (JK/F- Base change, in the sense of 
[1], gives a map 

bK/F : A£(F) - > ^ ( K ) ; 
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4 INTRODUCTION 

one can easily extend the definition of b^/F to the case where the tame ex­
tension K/F is Galois (as in [5] 16.5). If the tame extension K/F attached to 
a G Qm(F) is Galois, then global considerations demand that the representa­
tion 7r = nm(a) satisfy CTT((JK/F) — ^K/F^)- Also, the central quasicharacter 
of 7r must correspond to det a via class field theory. These two conditions de­
termine 7r uniquely. The real problem is that the extension K/F given by a 
will not, in general, be Galois. We thus need to define a suitable operation 

IK/F : A%{F) - > AZ(K), 

for tame extensions K/F of degree prime to p, which generalizes base change. 
The explicit construction of the map IK/F is the main point of the paper. 

6. In fact, we shall define the algebraic tame lifting map IK/F f°r an arbitrary 
finite tame extension K of any non-Archimedean local field F, characteristic 
zero or not. 

The map IK/F is transitive with respect to the field extension K/F and 
natural with respect to topological isomorphisms of K. It respects contragre-
dience and twisting with quasicharacters. It "preserves" central quasicharac-
ters, Godement-Jacquet local constants and conductors of pairs, in the sense 
that its effect on these objects is precisely that predicted by the Langlands 
conjectures. We give a complete account of the image and the fibres of IK/F-
We further show that, for K/F cyclic of p-prime degree and F of character­
istic 0, we have IK/F M — ^K/F M f°r every TT G A^(F) and every m ^ 0. 
This refines some of the more general results of [5], and gives a complete local 
algebraic description of base change in these circumstances. 

A full list of those properties of IK/F needed for this paper is given in §1. 
The proofs of these occupy §§3-10. 

7. Once we have these properties of IK/F-> the construction of 7rm is fairly 
easy. We take a G Q^(F) with associated canonical tame extension K/F as 
above; thus GK/F lies in Sc^(K) and p \ [K:F], The representation 7rK/F — 
cTtm{°K/F) is defined. There is a unique TT G A™(F) such that IK/FM — 
TTK/F and whose central quasicharacter corresponds to deter via class field 
theory. We put n = 7rm(a). 

The details of the construction of 7rm, and the deduction of its properties 
from those of IK/F, are aU contained in §2. 

We note in passing that, using the maps 7rm and automorphic induction, it 
is an easy matter to produce a canonical bijection Qpn(F) -> Apn(F), n > 0. 
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INTRODUCTION 5 

8. It is a consequence of our constructions that, for given ir G Am(F), there 
exists an extension K/F of degree prime to p such that IK/F M € «̂ cm C*0-
This is not easy to prove directly: see [27], [29] for a very detailed analysis of 
the case pm = 2. 

One knows already from [21] (see also the discussion in [6] 3.2) that there 
is some tame Galois extension K'/F such that bKr/F(ir) G Ac^(K/). This 
weaker result underlies everything we do in §2, and also much of [16]. Indeed, 
the proof [6] that Harris's map <jn (as in paragraph 3 above) gives a bijection 
An(F) -> 9n(F) depends crucially on it. 

9. As noted above in paragraph 6, our construction of lK/F is purely al­
gebraic and works equally well in positive characteristic. Unfortunately one 
cannot use it to produce an explicit version of the characteristic p Langlands 
correspondences of [31] (the construction of which, we note, is again geometric 
in nature). The reason is simply that we start from the map c7rm. This relies 
for its definition on base change (or automorphic induction) and base change 
is not available in positive characteristic. (There is detailed discussion of such 
matters in [5].) 

Be that as it may, our construction of 7r makes no use of base change beyond 
the definition and basic properties of CTT. 

Also, while our construction of 7r from c7r can justly claim to be quite ex­
plicit, we say nothing concerning c7r itself. This seems to be quite a difficult 
problem: again see [27] for a detailed examination of the case pm = 2, and 
[33] for the case m = 1, p ^ 2. The explicit conductor formulae of [7] might 
yield further information in more general cases. 

10. We now review the arrangement and more technical aspects of the paper. 
Our definition of IK/F is necessarily quite novel. Global methods, of the sort 
used in [1], [22], yield no clues as to how to handle non-Galois extensions 
K/F. We therefore rely on the local methods of [9] and [5] to generalize the 
approach of [26], [28]. These methods have the incidental advantage of being 
characteristic-independent. 

Let us take TTF G A™(F), for some m ^ 1. The main results of [9] give 
a canonical presentation of trF as an induced representation, obtained as fol­
lows. We recall that a simple stratum [Stj^nj^O,/?] ([9] 1.5 or "Preliminaries" 
below) in AF = Mpm(F) defines a pair Hl(f3^F) C Jx(/?,21f) of compact 
open subgroups of GF — GLpm(F) and a distinguished finite set C(2lp,/?) of 
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6 INTRODUCTION 

abelian characters of H 1((3,%lp). (The elements of e(2lp,/3) are called simple 
characters.) 

We know from [9] that there exists [2lF,np,0,/?] such that irp contains 
some Op G 6(21^,/?), and that Op is thereby uniquely determined up to Gp-
conjugacy. (Our hypothesis np G A^(F) is then equivalent to the field E = 
F[/3] being of degree pm and totally ramified over F.) There is a unique 
irreducible representation r]p of J109,21/?) which contains 6p and so r]p must 
also occur in IT p. The representation rjp admits extension to a representation 
of the group Jp = ExJ1(/3,$ip) and some such extension, call it Ap, must 
occur in 7rp. We then have 

Trp^c-Indf^ (Ap). 

The representation (Ap, Jp) is an instance of what we call a "central type", 
and it is maximal in the sense that the underlying field E is a maximal subfield 
of the ambient matrix ring Ap. A representation np G A^(F) thus contains 
a maximal central type; this central type is determined up to conjugacy by ixp 
and the type in turn determines np. 

One can formulate a more general notion of central type: this we do in §3 
below. One has to start with a simple stratum [21, n, 0,/3] in A = Endp(V), 
where V is some finite-dimensional F-vector space, and, for technical conve­
nience, we always assume that the hereditary o^-order 21 is principal. A central 
type (attached to the given stratum) is then an irreducible representation of 
the group J(/?,21) = F[/3]x J1 (/3,21) whose restriction to H1^,®) contains 
some 6 GC (21,/?). 

These central types have a significant "funetorial" property. Suppose we have 
a maximal one Ap attached to [2lp, np, 0, /3] in Ap as above. Let [21, n, 0, /3] be 
a simple stratum in some A = Endp(V); the central type Ap then determines a 
central type A attached to [21, n, 0,/?], whose conjugacy class in G = Auti?(F) 
depends only on the G^-conjugacy class of Ap (i.e., only on the equivalence 
class of the irreducible supercuspidal representation irp induced by Ap). We 
write 9 for the simple character occurring in A, 6 G 6(21, /3). 

Now let K/F be a finite, tamely ramified field extension. In the preceding 
paragraph, we take for V the F-vector space KpTn = K <g>p Fpm\ there is then 
a unique choice of [21, n,0,/3] such that 21 is stable under conjugation by Kx. 
We next invoke a technique borrowed from the representation theory of finite 
groups, namely the Glauberman correspondence [14]. We set AK = Mpm(K), 
GK = GLpm(K), %K = 21H A*. We know from [5] that 

(i) [21k? 5̂ 0, /?] is a simple stratum in AK\ 
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INTRODUCTION 7 

(ii) ff1 (/?,*) flG* - HX{P&K) and Jl{(3^)nGK = J 1 ^ , * * ) ; 
(Hi) the character 0X = 6 \ #*(/?,%LK) lies in 6(21^,/?). 

The Glauberman correspondence then attaches to A an irreducible representa­
tion 9K/F(A) of the group EX J^ASlx), and this representation contains OK-

Let a;/? denote the central quasicharacter of 7rp; there is a unique irreducible 
representation AK of Jk = J({3,$IK) which extends 9K/F(A) and whose re­
striction to Kx is a multiple of uF ° NK/F- The representation (AK, JK) is 
then a maximal central type in GK\ the induced representation 

7TK = C-Ilid^(AK) 

is an irreducible supercuspidal representation of GK = GLprn(K), and we put 

1>K/F(KF) = TTtf. 

(A minor adjustment is necessary in the case p = 2, but we ignore that here.) 
The process A i-> ylx given by the Glauberman correspondence is quite 

explicit in some cases. Suppose that K/F is either unramified or totally tamely 
ramified. In the first case, let ( denote a root of unity in K, of order prime 
to p, such that K = F[(]; in the second, let ( be a prime element of K such 
that C^K:F^ G F. There is a canonical way of extending A to a representation 
of the group generated by C and ExJ1(fi,2i); for x € ExJ1{P,fHK), we then 

have the character relation 

tiAK(x) = ±trA((x). 

The sign here is a constant, independent of x. 

11. The construction of IK/F Just outlined is carried through in detail in 
sections 3-5 below. This part of the argument is straightforward in principle 
(given the extensive machinery of [5] and [9]), but one has to check that the 
various constructions are intrinsic in nature, and independent of the many 
choices made on the way. Once this is done, most of the main properties of 
IK/F are not hard to establish (or follow from results in [5]): for details see §5. 

It is the effect of IK/F on local constants which requires most effort. Using 
ideas from [4], one can attach a local constant e(A) to a central type A in 
any GLn(F). Indeed, this is a direct generalization of the local root number 
of Tate's thesis [37]. Apart from a straightforward exponential factor, e(A) 
is given by an explicit formula reminiscent of a classical Gauss sum: see §6 
for details. Further, if A occurs in an irreducible smooth representation n of 
GLn(F), then e(A) is the usual Godement-Jacquet local constant of TT. In 
the notation of paragraph 10 above, the relation between £(4f) and e(A) is 
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8 INTRODUCTION 

transparent. Using the explicit character relation furnished by the Glauberman 
correspondence, we can extract the relation between e(A) and S(AK) and hence 
that between e(7TF, s> ipF) and s(7rx, s, ̂ #) . These calculations are to be found 
in sections 8 and 9. 

Another application of this approach to local constants yields a congruence 
determining e modulo p-power roots of unity, analogous to a property [19] 
of the Langlands-Deligne local constant. This is stated as Theorem 1.4, and 
proved in §7. It gives the vital step of the proof that our map 7rm preserves 
local constants. 

12. In §10, we show that if K/F is Galois of degree prime to p (and F has 
characteristic zero), then IK/F is the same as base change: 

lK/F(n) = bK/F(n), 7T € A%(F). 
We already know from [5] that, given TTF G */l^r(F), there is an unramified 
character Xn of Kx such that bK/F{^F) = XTTIR/F^F)] the local constant 
calculations show (irrespective of the degree of K/F) that Xn has order strictly 
dividing pm. 

To establish that x?r is trivial when p \ [K\F\, it is enough to treat the 
case where K/F is cyclic of prime degree ^ p. We have to interpret the 
Shintani character relation, which defines base change, in terms of our direct 
representation-theoretic approach. When translated in terms of central types 
(and using the notation of paragraph 9 above), the Shintani character relation 
shows that the process nF b^/F^F) is given by composing a (metacyclic) 
Glauberman correspondence with an Adams operation. The Adams operation 
comes from the step Ap A in our construction. 

The argument breaks down when K/F is unramified of degree p, for a se­
lection of possibly complementary reasons. Nontheless, we can still establish 
the relation bK/F(7rp) = IK/F^F) for an interesting class of representations, 
as a consequence of the local constant calculations. 

In characteristic zero, some of the local constant relations proved in §§8 
and 9 may be regarded as consequences of the relation IK/F = bx/F- However, 
even in characteristic zero, one still needs virtually all of the apparatus of those 
sections to deal with the cases not covered by the base change approach. 

13. For the convenience of the reader, we have summarized the main prop­
erties of the Glauberman correspondence in a brief appendix. The first, and 
longer, appendix, contains an extremely detailed examination of the charac­
ters of cyclic extensions of extra-special p-groups of class 2. These calculations 
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INTRODUCTION 9 

are quite general and, in some sense, quite elementary. However, they are not 
trivial and are used repeatedly throughout the paper; in particular, the prop­
erties of these characters intertwine in an intricate and fascinating way with 
the Gauss sum computations of §§6-9. 

The arguments in the main parts of the paper involve a detailed knowledge 
of the internal structure of supercuspidal representations, as revealed in [9]. 
We have therefore summarized the main points at the beginning. Our earlier 
paper [5] also plays a crucial role; however, we do not often need to delve into 
its more technical aspects. 
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NOTATION AND PRELIMINARIES 

The following notation will be standard throughout. It is chosen to be 
consistent with [9] and [5], to which we shall often refer. 

F = a non-Archimedean local field; 
OF = the discrete valuation ring in F; 
pF = the maximal ideal of Oi?; 
kp = the residue field OF/PF'** 
VF — the additive valuation Fx -» Z; 
p = the characteristic of kp, qp = |ki?| < oc; 
ipF = a continuous character of the additive group of F with conductor 
pi?. (This means that ipp is trivial on pi? but not on Oi?.) 

If K/F is a finite field extension, we use similar notations OK etc. Also, 
e(K\F) denotes the ramification index, NJC/F the relative norm, and TrK/F 
the relative trace. 

Let V be a finite-dimensional F-vector space, A = Endi?(F). We put ^4 = 
ipF°toA/Fi where t?A/F is the reduced trace. For an element a E i , va denotes 
the function x 1-» ^(a(a;—1)), # G A, or (more usually) some restriction of it. 

Let 21 be a hereditary Oi?-order in Endp(V) with radical ^3. We write 
C/(2l) = 2tx for the unit group of 21, and £/m(2l) = l+*Pm, m ^ 1. In 
the case V = F, 21 = Oi?, we use the simpler notation U1(OF) = UF. 

Let [21, n,ra,/3] be a simple stratum in Endi?(^)- Thus 21 is a hereditary 
Oi?-order in Endjr(V), /5 G Auti?(F), and the algebra F[/3] is a field. Moreover, 
F[/3]x normalizes 21. Also, n > m are integers, /321 = ^3_n, and there is a 
technical condition "ra < — &o(/3,2l)". (These concepts are discussed fully in 
[9] Ch. 1.) 



12 NOTATION AND PRELIMINARIES 

As in [9] 3.1, a simple stratum [21, n,0,/3] defines a pair of compact open 
subgroups #(/3,21) C J(j8,a) of G = AutF(F), filtered by #m(/3,2l) = 
#(/3,2l)n£/m(2l), Jm(/3,2l) = J(/3,2l)n*7m(2l), m ^ 1. The simple character 
set 6(21, ra,/3) is as in [9] 3.2. The elements of 6(2l,ra,/3) are (very particular) 
abelian characters of the group Hm+1(/3,%1). For each 9 e 6(2l,ra,/3), there is 
a unique irreducible representation 77 of Jm+1(/3,21) such that rj | i?m+1 (/3,21) 
contains 0; indeed, this restriction is a multiple of 0. 

In this paper, we abbreviate 6(21,/3) = 6(21,0,/?). Also, when speaking of 
a simple stratum [21, n, ra,/3], say, we will always assume that the hereditary 
order 21 is principal. 

Warning. — A simple stratum [2l,n,0,/3] determines the group H1 (/3,21) and 
the simple character set 6(21,/3), but the converse is false. These objects to­
gether determine 21 and n, but not /3. Certain elementary properties of the 
field F[(3], e.g., its degree [F[/3]:F] and ramification index e(F[/3]\F) over F, 
are invariant. Such matters are discussed in some detail in [9] Ch. 3 and [10]. 
Thus, when treating simple characters, one has to check that the properties 
under consideration are independent of the chosen defining element /3. 

Supercuspidal representations. — We recall briefly some features of the 
classification of supercuspidal representations [9]. Let n be an irreducible su­
percuspidal representation of G. Thus n contains a maximal simple type (J, A), 
in the sense of [9] 5.5.10, 6.2. The pair (J, A) is uniquely determined up to 
G-conjugacy, by [9] 8.4.1. There are two slightly different cases. In the first, 
J = GLU(OF) and A is the inflation of a cuspidal irreducible representation of 
GLn(kp); in this case, we say n has level zero. (Representations of level zero 
will not feature largely here.) Otherwise, J is a compact open subgroup of G 
and A is an irreducible smooth representation of J as follows: there is a simple 
stratum [21, n, 0, ¡3] in A such that J = J(/3,21); the order 21 is principal, and is 
maximal for the property of being normalized by F[/3]x; there is a simple char­
acter 9 G 6(21, /3) such that the restriction of the representation A to iif1(/3,2t) 
is a multiple of 6. The representation TT determines this simple character 9 up 
to G-conjugacy. (There are further conditions on A which do not concern us: 
for the full definition, see [9] 5.5.10, 6.2.) Moreover, if we write iV^(A) for the 
G-normalizer of (J, A), there is a (unique) representation A of ATg(A) which 
extends A and induces n. 
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CHAPTER 1 

ALGEBRAIC TAME LIFTING 

Let V be a finite-dimensional F-vector space, and put G = Auti?(F), A = 
EndpCV). We write A(G) for the set of equivalence classes of irreducible 
smooth representations of G, and A°(G) for the subset of A(G) consisting of 
classes of supercuspidal representations. If we identify V with Fn, say, and G 
with GLn(F), we use the alternative notations An(F), A^(F). 

If 7T G An(G) and x ls a quasicharacter of Fx, we write x^ f°r the class of 
the representation 

X71" : 9 1—> x(detflf) n(g), g e G. 

1.1. We isolate a subset of A^(F). Let TT G A^(F)^ and assume first that 
it does not have level zero. Thus 7r contains a maximal simple type with 
underlying simple stratum [2l,n,0,/?] in Mn(F). We put E = F[(3]. When n 
has level zero, we unify the notation by setting /3 = 0, E = F. 

Proposition. — Let 7T G A^(F) and let E/F be a field extension attached to n, 
as above. The following are equivalent: 

(i) we have n ^ %7r, for any non-trivial unramified quasicharacter x of Fx, 
and n = pm for some m ^ 0; 

(ii) the field extension E/F is totally wildly ramified of degree n. 

Proof. — By [9] 6.2.5, there are exactly n/e(E\F) unramified quasicharacters 
X of Fx such that x^ — The result is now immediate. • 

We write A™(F) for the set of n G Apm(F) satisfying the conditions of the 
proposition. Note that A%r(F) = A%(F) = Ai{F). 
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1.2. In order to give a precise statement of the main result below (Theorem 
1.3), we need to briefly recall a concept from [5]. We consider the class of all 
simple characters in 6(21, /3), allowing [21, n, 0,/3] to range over all simple strata 
in EndF(V) and V over all finite-dimensional F-vector spaces. We impose on 
this class the equivalence relation of endo-equivalence, [5] §8. It is not necessary 
to recall the details, except to mention that if we have 9\ G 6(21, $ ) , for simple 
strata [21,7^,0,$] attached to the same order 21 in some Endi?(F), then the 
9{ are endo-equivalent if and only if they are Autjp(Vr)-conjugate. 

Suppose we are given an endo-equivalence class (or endo-class, for short) 0 
of simple characters over jF, and a finite, tamely ramified field extension K/F. 
In [5] §9, we showed how to attach to K/F and 0 a finite set LK/F(0) of 
endo-classes of simple characters over K. These are the K/F-lifts of 0. If 0 
contains 9 G 6(21, /3), the elements of LK/F(0) are in one-one correspondence 
with the simple components of the algebra K ®F F\j3]. 

Now take 7r G ./l^(F), and assume n does not have level zero. A maximal 
simple type occurring in n gives rise to a simple character 9n G 6(21,/3) occur­
ring in 7r, with 21 principal and maximal for being normalized by F[(3]x. The 
conjugacy class of 9n is uniquely determined by 7r, SO the endo-class 0(TT) of 
9n is uniquely determined. 

If we have n G A™(F), then 0(TT) has a unique If/F-lift, for any finite tame 
extension K/F: this is because the tensor product of a tame extension and a 
totally wildly ramified extension is a field. We shall see again in §4 how this 
lift is constructed. 

1.3. We now fix an integer m ^ 0 and a finite, tamely ramified field extension 
K/F. We shall define an algebraic tame lifting map 

(1-3.1) IK/F : AZ{F) A Z {K). 
The case m = 0 is easy; AQV(F) is the set of quasicharacters of Fx, and we 
define 

(1.3.2) IK/F(x) = XON K /f, x e A^(F). 

For the case m ^ 1, the construction of IK/F 1S given in §§3-5 below. In this 
section, we list the main properties of IK/F<> ^° be established later. 

Theorem. — Let K/F be a finite, tamely ramified field extension. The map 
1>K/F °f 1-3.1 has the following properties. 

(i) Let TTF G Am(F), and put TTK = IR/F^F)- Then 0(TTR) is the unique 
K/F-liftof0(7rF). 
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(ii) / / 1 : K LK is an isomorphism of local fields, the diagram 

A wr m (F) IK/F 
A wr m (К) 

A wr m (tF) 
1/K/tF 

A wr m (LK) 

commutes, the vertical maps here being induced by the isomorphisms 
GLpm(F) -> GLprn(iF), GLpm(K) -> GLpm(tK) given by i. 

(iii) If KDK' D F, then 

IR/F — IK/K1 ° IK'/F-

(iv) J/x ¿5 a quasicharacter of Fx, we have 

IK/F M = (x o NK/F) 1K/F(*), * e A™{F). 

(v) The map lxIF respects contragredience, i.e., 

1K/F(K)V = IK/F(K), 

for all 7r € Am(F). 
(vi) // 7T G A™(F) has central quasicharacter u)n, then IR/F^) has central 

quasicharacter con o N^/F-
(vii) For 7Ti,7T2 G ./i™r(F)? we Aawe IK/F^I) = IR/F^ T2) if and only if there 

exists a character a of Fx which is trivial on NK/F(KX) and such that 
7T2 = OL1T\. 

(viii) Let L/F be a normal closure of K/F. For TTK G A^(K), the following 
conditions are equivalent: 

(a) TTK = IR/F(KF), for some TTF G A™(F); 
(b) £fte representation TTL = IL/R^R) is invariant under the Galois 

group Gsl(L/F) and the central quasicharacter UJK of 7TK factors 
through N# /F-

(c) h/R^R) TK = h/F^F), for some nF G ^ ^ ( F ) . 

1.4, We now state a general result concerning the Godement-Jacquet local 
constant e(n,s,i/>F) [15] of a representation TT G A^(F). We first recall that 
the local constant takes the form 

e(ir,s,t/>F) =q F 
(l-s)f(n,ipF) E (TT l 

2 
W F) 

for an integer /(7r, ̂ p). 
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We need a variant of the classical Gauss sum (cf. [19]). Since the character 
ipF has conductor pp, it defines an additive character of the residue field kp = 
OF/PF of F. We continue to denote this character I^F-

Suppose first that p / 2. Let x G Fx have even valuation —2b, and fix a 
prime element w of F. We put 

<P(X)= i>F{xw2hy2m-
yeoF/pF 
i 2 

This only depends on x mod UFFX . 
In general, we put 

Q(x) =gF(x,tpF) = 
qFl^2(p(x) if vF(x) is even and p ^ 2, 
1 if p = 2 or vF(x) is odd, 

where qF = IKFI-
We write fjbpoc (C) for the group of all roots of unity in C of p-power order. 

Theorem. — Let n G A™(F), m > 1, and write u)^ for the central quasichar­
acter Of 7T. 

(i) There exists an G Fx, uniquely determined mod UF, such that 

e(v7r, s, ibF) = yfcu)-1 e(n, s, ibF), 
for all tamely ramified quasicharacters x of Fx. 

(ii) We have 

e(7r, J , ^ F ) = u<jr(air)~1/prn flW™ (mod fip0o(C)). 

(iii) If K/F is a finite tame extension and TTK — IK/F{^)J then a7rK = an 
(mod Ujc). 

This theorem is analogous to a known result concerning the Langlands-
Deligne local constant, which we recall in 2.5 below. 

Remark. — It is easy to identify the element an occurring in the theorem. If ir 
contains a maximal simple type with underlying simple stratum [21, n, 0, /3], we 
have an = HF\J3]/F(P) (mod Up): this follows easily from 6.1 Lemma 2 below. 

1.5. We need a short digression. We fix a separable algebraic closure Fsep/F 
of F, and let WF denote the Weil group of Fsep/F. We regard our finite tamely 
ramified extension K/F as a subfield of Fsep and WK as a subgroup of WF. 
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Let IK denote the trivial representation of W^, and let PK/F be the repre­
sentation of Wp induced by IK- This gives us a one-dimensional representation 
8K/F of Wp by 

SK/F : x i—> det(pK/F(x)), x € WF. 
We use the same notation for the corresponding character of FX given by class-
field theory. As such, SK/F 1S tamely ramified and has order at most 2. It has 
the transitivity property 

(1.5.1) SK/F = 0 K K ' 6 % p . { 6 K / K , \ F * ) , 

for an intermediate extension F c K' C K. 

1.6. If a is a finite-dimensional semisimple representation of Wp, we denote 
the Langlands-Deligne local constant [12], [39] of a by e(0 S,^F)- We form 
this local constant relative to Haar measure self-dual with respect to x/jp. We 
use the analogous notation relative to the base field K. Observe that, when 
K/F is tame, the character I\)K — WF ° T^K/F °f K has conductor p#. 

Theorem. — Let np G A^(F), m ^ I, let K/F be a finite tamely ramified 
field extension of degree d, and let TTK = IK/F^F)- Let [Sip,rip,0,/3] be a 
simple stratum underlying some maximal simple type in Tip, and write E = 
F[f3]. We then have 

е{7гк, s,грк) 
е(тгР, s,ipF)d = 6K/FWE/F(P)) 

е{7гк, s,грк) 
e(pK/F>8>*l>F) 

pm 

This relation is analogous to the behaviour of the Langlands-Deligne local 
constant under restriction of (suitable) representations from Wp to W^, as we 
shall recall in 2.6 below. 

The proof of Theorem 1.3 is given in §5 and that of Theorem 1.4 in §7. The 
proof of 1.6 occupies §8 and §9. 

Remark. — The theorem holds without change for m = 0 except in the fol­
lowing case: np is tamely ramified but not unramified, while TTK = TTF 0 ^K/F 
is unramified. 

1.7. In this paragraph, we let mi,m2 be non-negative integers, and take G 
Am.(F), i = 1,2. We consider the local constant e(7ri x 7T2,s,^p) of the pair 
(7ri,7T2), in the sense of [24]. This takes the form 

e(7ri x 7T2,5,̂ p) = q F 
(h-')f £(7Ti X 7T9, 1 

2 
, W F), 
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for an integer / = f(-K\ x 7T2,^F). 
The aim of this section is to investigate the behaviour of f(ni x 1*2, 4>F) 

under tame lifting, in the case where 7r̂  G A™, (F) i = 1,2. One case is a little 
exceptional, and has to be dealt with via the following result. 

Lemma. — Let TT G A™(F), m ^ 0. Let x be a tamely ramified quasicharacter 
ofFx. Then: 

/(?f x X^^F) = 
f(n x 7r, I/^F) if X LS unramified, 
f(n x 7r, ipF) + 1 if x is ramified. 

Proof. — See [7] 6.14. • 

Taken together with the next result, this gives us a complete account of the 
behaviour of the conductor under tame lifting. 

Theorem. — Let K/F be a finite, tamely ramified field extension, and let 7r̂  G 
A™ {F),i = 1,2. 

(i) Suppose that 7ri ^ X^2, for any tamely ramified quasicharacter x of Fx 
such that x ° ^K/F *s unramified. Then: 

f(lK/F(*i) X IK/F{*2),II>K) = /(TTI x Tr2,ipF)e(K\F). 

(ii) Let TTG JV%(F). We have 

f(lK/F(n) x IK/F{K)AK) + 1 = ( / (* x TT, VF) + l) e(K\F). 

We shall prove this result in 5.6 below. 

1.8. We assume in this paragraph that F has characteristic zero. Let F'/F 
be a finite cyclic extension. Base change, in the sense of [1], then gives us a 
map 

bF,/F:An(F)- +An(F'), 
for each n ^ 1. In this section, we compare bK/F(7r) with IK/FM f°r the case 
of a cyclic tame extension K/F and TT G A^(F). The main result is: 

Theorem. — Let K/F be a cyclic tame extension of degree d, and assume p 
does not divide d. Let n G A™(F). Then 

t>K/F(n) - IK/F{K)> 

The proof starts with the following general result, which requires no restric­
tion on the degree [K:F). 
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Lemma. — Let n G A^(F), and let K/F be a finite, cyclic, tamely ramified 
field extension. Then bK/F(n) G A^[(K). Moreover, there is an unramified 
character Xn of Kx, of order dividing pm, such that 

*>KIF{F) = XTTIK/F{^)' 

Proof — This follows immediately from Theorem 1.3(i), (vi) and [5] 14.21. • 

As we shall see later, Theorem 1.6 implies the following sharper version of this 
lemma. 

Proposition. — Using the notation of the lemma, the character X>K has order 
strictly dividing pm. Let [21, n, 0,/3] be a simple stratum underlying some max­
imal simple type occurring in n. If /3 is minimal over F, then 

l>K/F(n) - 1K/F{K). 

In the constructions of the next section, we only directly use the tame lift 
IK/F f°r extensions K/F of degree prime to p, although some of these exten­
sions are not Galois. 

The proofs of the proposition and the theorem will be given in §10. 
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C H A P T E R 2 

C O R R E S P O N D E N C E W I T H 
G A L O I S R E P R E S E N T A T I O N S 

We first describe a class 9mr(F) °f irreducible representations of the Weil 
group Wp of F analogous to the class Amr(F) introduced in 1.1. The aim of 
the section is to construct a canonical bijection between these sets, using the 
properties of the tame lifting map listed in 1.3-8. 

Before starting, we recall that local class field theory gives a topological 
isomorphism 

cF : Wf —Fx 

of the maximal abelian topological quotient W b̂ of Wp with Fx. We normalize 
this map so that geometric Probenius elements correspond to prime elements 
of F. 

Given a quasicharacter x of Fx, we often denote the corresponding one-
dimensional representation x ° CF of Wp simply by x-> as confusion is unlikely 
to arise. 

We write e(cr, 5,-0p) for the Langlands-Deligne local constant of a finite-
dimensional admissible representation a of Wp [12], [39], [38]. (We always 
define this using the Haar measure on F which is self-dual relative to xpp.) It 
takes the form 

e(a,s^F) = qF i 2 -s)f(a,ipF) e (0) l a W x). 

for an integer /(a, ^p). 

2.1. For each integer n ^ 1, we let Sn(F) denote the set of equivalence classes 
of irreducible admissible complex representations of Wp of dimension n. For 
n = 1, Ai(F) is just the set of quasicharacters of Fx; we therefore have a 



22 CHAPTER 2. CORRESPONDENCE WITH GALOIS REPRESENTATIONS 

bijection 

Tri : 9Ï(F) A\(F), 

x l _ > X o c F 1 . 

We recall that in this case, the Langlands-Deligne local constant of x ls 

e VC,s,V>F) = e(iri(Y),a,#-), 

by definition. 

2.2. We write Jp for the inertia subgroup of Wp and Pp for the first ("wild") 
ramification subgroup; thus Pp is the unique pro-p Sylow subgroup of 3p. We 
isolate a distinguished class of irreducible representations of Wp. 

Proposition. — Let (<J, V) be an irreducible representation o /Wp. The follow­
ing are equivalent: 

(i) a | 7p is irreducible; 
(ii) dimcr = pm, for some integer m ^ 0, and a ^ cr ®x-> for anV unramified 

quasicharacter % 7̂  1 of Fx. 

Proof. — For any irreducible representation (<J,V) of Wp, it is easy to see 
that the image of cr(Wp) in the projective group Autc(T^)/Cx is finite. This 
image is the Galois group of some finite Galois extension E/F. Let E\/F 
be the maximal tamely ramified sub-extension of E/F. The Galois group G± 
of E/E\ is the wild inertia subgroup of Gal(F/F); the restriction a | Pp is 
irreducible if and only if cr | Wp^ is irreducible. Thus, if (i) holds, dimcr must 
be a power of p, since G\ is ap-group. If, moreover, we have a®x — G f°r some 
non-trivial unramified character x of Fx , the restriction cr | Jp is reducible by 
Clifford theory. Thus (i) (ii). 

Conversely, (ii) implies that cr | 3p is irreducible. Suppose, for a contradic­
tion, that cr is reducible on Pp. Let CTQ be an irreducible component of cr | Pp. 
Since 3p/3V is pro-cyclic, CTQ admits extension to a representation <jf0 of the 
3p-stabilizer of cro- Call this stabilizer (K. Some choice of a'0 induces cr | 3p, 
giving us dimcr = (JF : %) dim<JQ. Since p cannot divide the index (3p : Jf), 
this forces % — 3p and so 00 = a, as required. • 

We write 9mr(F) for the set of equivalence classes of irreducible representations 
of Wp which satisfy the conditions of the Proposition and have dimension pm. 

Let (cr, V) G Sm(F). We establish, for later use, a system of notation like 
that above: 

Wp; = the kernel of Wp ^ Autc(F)/Cx; 
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G = WF/WE = Gsl(E/F); 
E\/F = the maximal tame sub-extension of E/F; 
Gi = Gal(F/Fi); 
P = a p-Sylow subgroup of G and F' = Ep; 
F"/F = the normal closure of F ' /F ; 
H = Gal(F/F"). 

(All of these objects depend on cr.) We observe that F'/F is tame of degree 
prime to p. Also, P D G\ and E\/F is Galois, so E\ D F". The extension 
Ei/Ff is unramified of p-power degree. 

Lemma. — Let a,a' G Qmr(F); suppose that a | WFt = af \ WFf and deter = 
det a'. Thenar a'. 

Proof. — If cr, cr' agree on Wpv, i.e., on P, we have cr' = cr ® x> for some 
character x of WF trivial on WFr. In particular, x has order prime to p. 
However, det cr' = yf*. det cr, whence % is trivial. • 

2.3. We come to the second of our main results. Since it depends on base 
change [1], we must now assume that F has characteristic zero. 

Theorem. — For each m > 0, there is a bijection (to be described in the proof) 

7T = 7T wr m,F : G wr 
m (F) A wr 

m 
(F). 

It has the following properties: 

(i) 7rmrF is natural with respect to topological isomorphisms of F; 
(ii) if x is a quasicharacter of Fx, then 7r(x ® cr) = x7r(cr)? a € S™r(F); 

(iii) N (o) = *{c)\ a € SZ'iF); 
(iv) £/ie central quasicharacter of it (a) is (deter) ocFl; 
(v) e(ir(a),s,i;F) = e(a,s,i>F), a €9™(F). 

(vi) /e£ if /F be a finite, tamely ramified, Galois extension of degree prime to 
p, let a G Qmr(F), and write <JK/F — ° I W^; we have 

*m,K(vK/F) = bK/F(^m,F(a))' 

(vii) for i = 1,2, Ze* cr* G Sm-(F); we ftavc 

L(TT((TI) x 7r(cr2), s) = L((ji ® a2,5), and 

/(7T((7I) X TT{G2)^F) = /(<Tl ® CT2,^F). 

In the remainder of this section, we deduce Theorem 2.3 from properties of 
the tame lifting map stated in §1. We state and prove some further results. 
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The first step is to define 7r™r((j), for a G Sm(-F). Our approach is based on 
[20]. 

Let n ^ 1 and write Sc^(F) for the set of a G 3%{F) with the following 
property: there exists a sequence of fields, 

(2.3.1) F = L0 C Li C • - - C Lm = L, 

with each L{jL{-\ cyclic of prime degree, and a quasicharacter x °f Lx such 
that 

a - I n d ^ ( x ) . 
Theoreme A of [20] defines a canonical map 

*°n(F) : Sc°n(F) ^ A°n(F) 

as follows. (We summarize here the arguments of [20] 7.2-7.6.) We put d{ — 
[L:Li] and define, by descending induction on i, a representation 7̂  G A^.(Li). 
We start with 7rm = x> and then 7r̂ _i is obtained from 7T̂  thus. The stabilizer of 
ni in F{ — Gal(Li/Li-i) is trivial, so the representation of GL^_1 (Li) parabol-
ically induced from the representation ®7G^ TT of the relevant Levi subgroup 
is the base change from Z^_i to Li of a (uniquely determined) supercuspidal 
representation of G L ^ ^ ^ - i ) ([1] I Prop. 6.6 and Lemma 6.10), which is de­
fined to be ni-i G A^^Li-i). (Equivalently, 7r̂ _i is automorphically induced 
from nf, see [6] 2.6 for a discussion of the relation between base change and 
automorphic induction.) The class of ^(F)(a) is then 7To G A^(F). 

Now put 
ScZ{F) = 9™(F) n 9c°pm(F), m>0. 

This is the set of a G Spm (F) for which there exists a sequence of fields 

F = L0 C Li C • • • C Lm = L 

and a quasicharacter x of Lx, as in 2.3.1, with the additional property that 
each Li/Li-i is cyclic of degree p and totally ramified. 

Lemma. — Let a G Sc™(F); then ^°(F)(a) lies in A™(F). 

Proof. — Since dim a = pm, the construction of *°(F) gives #°(F)(cr) G 
Apm(F). Moreover, the map ty°(F) is injective and compatible with twisting 
by quasicharacters [20] Theoreme B. In particular, since ax 7̂  & for any non-
trivial unramified quasicharacter x of Fx, the representation ty°(F)(a) has the 
same property and lies in A™(F) by 1.1. • 
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We write 
CTT = c7rm,F : Sc wr 

m 
(F) A wr m (F) 

for the map induced by *°(F). By [20] 7.2 Theoreme B it is compatible with 
twisting by quasicharacters and it preserves L- and e- factors for pairs, in 
the sense of [24]. Because base change is compatible with contragredience, 
c7r is also compatible with contragredience. Since base change is natural with 
respect to topological isomorphisms of the base field (see its defining relation 
[1] Defn. 6.1), it follows that cn is also natural: if i: F -» LF is an isomorphism 
of extensions of QP, then the following diagram, in which the vertical arrows 
are the natural identifications induced by 6, is commutative: 

Gc ,wr m (F) Cn •K!{F) 

Sc wr 
m 

(iF) <7r A wr m (u F). 
Finally, the map c7r is compatible with cyclic base change in the sense of [20] 
Th. 7.12. 

We now take a general (cr, V) G 9mr(F) and use the notation of 2.2. We also 
put op = cr | WF>. Thus op G Smr(Ff)i indeed, since it is effectively a repre­
sentation of a central extension of a finite p-group, it actually lies in 9cmr(Fr). 
Applying the foregoing relative to the base field F', the representation 

n' = c7r(aP)eAZI(F') 

is defined. 

Proposition. — There exists a unique n G AmT(F) such that Ipi/F(TT) = irf and 
having central quasicharacter UJ^ = det cr o c^1. 

Proof. — We use Theorem 1.3(viii). First, the central quasicharacter uv of 
nf satisfies uv — detcrp = deter o Np//F. Next, the representation TT" = 
bpn/F'W) is just c7r(a\H); it is therefore Gal(F'7F)-invariant. By Theorem 
1.3(ii) and Lemma 1.8, the same applies to lFnJFI (TT'). The existence of the de­
sired representation TT follows from Theorem 1.3(viii). The uniqueness follows 
from part (vii) of the same result. • 

In the notation of this proposition, we now put 

(2.3.2) 7r(o) = neA™(F). 
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We note that the naturality properties of c7r and IK/F imply that the defini­
tion of 7r(cr) is independent of the choice of p-Sylow subgroup P used in the 
construction. 

Thus we have a family of canonical maps 

t = wr M,F 9%(F) —• A%{F), m>0. 

Since 7r was obtained by combining algebraic lifting with base change (or au-
tomorphic induction), it inherits their common properties. In particular, it is 
natural with respect to isomorphisms of the base field and respects both con-
tragredience and twisting with quasicharacters. The map n therefore satisfies 
the requirements (i)-(iv) of Theorem 2.3. 

2.4. We now prove the bijectivity assertion and part (v) of Theorem 2.3 (along 
with the first assertion of part (vii)). 

Proposition. — The maps 7r are injective and preserve L-functions of pairs: 

L(a1^a2,s)=L(7r(a1) X7r(a2),s), a GS^(F ) . 

Proof — Suppose first that we have <7I,<T2 G Smr(^) w^h 7r(o"i) = 7r((j2). We 
use the same notation as above, appending subscripts 1 or 2 as necessary. We 
abbreviate m = 7r(a;). Let F"/F be the composite of the extensions F"/F\ 
this is a tamely ramified Galois extension, so the base change operation bFn/F is 
defined, cf. [5] 16.5. The representations bpn/pfa), lF"/F{^i)^ bFn/FrlFf/F(ni) 
differ from each other by, at most, unramified twist (1.8 Lemma). The last of 
these three is c7r(ai \ W^//), by the compatibility of c7r with base change. The 
injectivity of c7r now implies that the representations Oi \ WF" differ, at most, 
by an unramified twist, 

ai | WF// = ((72 | WF//) ® x,,« 

Now let Fo/F be the maximal unramified subextension of F"/F\ we compare 
the representations G{ \ WFo. These differ, at most, by a tamely ramified 
character, since they restrict to unramified twists of the same irreducible rep­
resentation of Wjr///F0- They have the same determinants, so the pm-th. power 
of this character is unramified, i.e., it is unramified. It follows now that the oi 
differ, at most, by an unramified character, 02 = o\ ® x-> saY- This gives 

7T((7I) = 7T(a2) = 7T((7i ® x) = X^(^l)-

Since 7r((7i) G ./l^r(F), this forces x — 1 and <J\ — 02, as required. 
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For the second assertion, we recall ([24] Prop. 8.1) that 

L(n(ai) x 7r(a2), s) = YlL(x, s), 
x 

where % ranges over those unramified quasicharacters of Fx such that 

Xn(ai) = 7r(<j2)v. 
There is an analogous description of L(G\ ® 02, s). However, by 1.3(vi) and 
what we have just proved, we have X7r(<7i) = 7T(G2)v if and only if G\ ®X — 2̂? 
and the result follows. • 

The next step of the proof is to show that the local constant relation 

(2.4.1) e(7r((7), s, t/>F) = e(a, s, fo), a € 9%(F), 
of Theorem 2.3(v) implies that TT is bijective for all m. 

We have 
e(cr,5,^F) = e(a,0,tl>F)qF -f{cr1tpF)s 

for an integer /(cr, ipF). Likewise for representations of GLn(F). Thus 2.4.1 
gives: 

(2.4.2) f{*(p),il>F) = fMF). 
Theoreme 1.2 of [20] now implies that 7r = nmrF is bijective. 

2.5. We remarked in 2.3 above that: 

(2.5.1) e(c7r(a),s,xl>F)=e(a,s,ipF), a € S C ( f ) . 
We need again the classical Gauss sum g defined in 1.4. 

Lemma. — Let a G 9m (F), m^l. Then: 
(i) There exists aa G Fx, uniquely determined mod UF, such that 

€(G ®(XO CF), 8, tpF) = xM~l S(G, S, ^F) , 

for all tamely ramified characters x °f Fx. 

(ii) We have 

e(cr, J , ^ F ) = deta(aa)~l/pm Q(aa)pm (mod /xp00(C)), 

w/iere /ipoo (C) denotes the group of all p-power roots of unity in C. 

(iii) If K/F is a finite tame extension, then aa\yqK = aa (mod U^). 

Proof — Part (i) is [13], (ii) is [19], and (iii) follows easily from [13]. • 

This lemma, we observe, is closely parallel to Theorem 1.4 above. 
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2.6. We deduce Theorem 2.3(v) from Lemma 2.5 and Theorems 1.4, 1.6. We 
take a £ Smr(F), and keep the notation of 2.2 used in the construction of 7r(a). 
We apply Lemma 2.5 and Theorem 1.4 to the tame extension F'/F. We set 
r = [Ff:F]; this is relatively prime to p. We write a' = a | Wj?/, n = 7r(<r), 
TT' = lF//F(ir). By definition, 7r' = c7r(<7p')- If x' is a quasicharacter of F/X, 
we thus have X'TT' = ^(cr' ® (x' ° cp')); by 2.5.1, therefore, 

e(xV, 5, ?/V) = e(<r' ® (x' ° cF'), s, ipF>). 

By Lemma 2.5 and 1.4, we get x'(a7r') = x'(a<rFf) for all tame x', whence 

â / = aat (mod ET /̂). 

Parts (iii) of Lemma 2.5 and 1.4 now give 

an = aa (mod UF). 

We recall the identity 

(2.6.1) 
e(<j',s,ibFi) 
e(<j,s,il>p)r 

e{lF',s^pi) 
e(PF'/Fisitl>F) 

pm 
Spf/F(aa). 

Here, p, S are as in 1.5, tpF' — ipF°T^F'/F> and IF ' denotes the trivial character 
of WFf. ((2.6.1) follows from the defining property of e and the Remarks in 
[38] §2.) The character 5Fi/F is tame, so the above congruence between aa 
and an gives 

e(7r,8,^F)R = e{a,s,ipF)r, 

by 2.6.1 and Theorem 1.6. In particular, these two local constants have the 
same exponential parts, 

£(7T,S,^F) 

e(7r, \,II)F) 

e(a,s,ibF) 
e{a,\^F) 

By construction, the quasicharacters un, det a correspond by class field theory, 
so now we have 

e(7r, \,ipF) = e(<r, \^F) (mod ppoo(Q). 

Since r is prime to p, we get e(7r, \^F) — ^(^ \-> ^F), and hence 

e(?r,s,^F) = e(a,s,V>F), 

as required to complete the proof of Theorem 2.3(v). • 
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2.7. We now prove Theorem 2.3(vi). It is enough, by transitivity, to treat 
the case where K/F is cyclic of prime degree £ ^ p. We start with the rep­
resentation <t, and denote its representation space by V. Let a denote the 
associated homomorphism WF -> Autc(V)/Cx and set WF = Kera, so that 
Ima may be identified with Gal(F/F), for some finite extension E/F. Choose 
a p-Sylow subgroup P of Gd(E/F) and let F' = Ep. Write aF,/F = a | WF/, 
and similarly for other field extensions. 

By definition, 7r = 7r(cr) is the unique element of Amr(F) with central qua-
sicharacter corresponding to det a and such that 

IF'/F(k(<7)) = M^F'/F)-

The assertion is thus obvious when K C F' (and, since K/F is normal, this 
condition is independent of the choice of p-Sylow subgroup defining Ff). 

We can therefore assume that the extensions K/F, E/F are linearly dis­
joint over F. Restriction of operators induces an isomorphism Gsl(KE/K) = 
Gdl(E/F), so F'K is the fixed field of a p-Sylow subgroup of the image of 
a K/F- Thus 7T((JK/F) IS the unique element TTK, say, of Amr(K) whose central 
quasicharacter corresponds to detaK/F — (deter) o NK/F such that 

I R F ' / K ^ T K) = ck(VKF'/F)' 

The representation IK/F(F) satisfies the first of these properties, by Theorem 
1.3(vi). On the other hand, by transitivity of tame lifting, 

IMF'/KIR/F^) TT = IK F'/F'1F'IF{^)-

Now, 1F'/F(TT) = c7r(aF//p); by Theorem 1.8, we have IKF'/F' — ^KF'/F'^ and 
base change commutes with c7r. In all, 

IKF'/KIK/F W — ̂ KF'/F'^^F'/F)) = TT ^{^KF'/F)-

This implies TTK = 1>K/F{'K), as required. • 

2.8. We now prove the second assertion of Theorem 2.3(vii), the first having 
been dealt with in 2.4 above. Thus, for i = 1,2, we are given an integer mi ^ 0 
and a representation 0{ G Qmr.(F). We set -k\ = 7r(<7i); we have to show that 
/(<Ti ® a2, Ipp) = /(7Ti X 7T2, fa). 

Suppose first that Oi G Scmr.(F), i = 1,2. Then, by definition, 7r̂  = C/K{ai)\ 
we have already observed that the family {c7r} preserves local constants of 
pairs, hence also conductors. 
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We reduce the general case to this one as follows. As in 2.7, we find a tame 
extension F[/F, of degree prime to p, such that 

h'jF^i) = M ^ / F ) e Acmv.(F). 
Let K/F be the normal closure of F^F^/F. The extension K/F is tamely 
ramified and, by 1.8 Lemma, there are unramified quasicharacters \% and Xi 
of Kx such that 

IK/F{^I) = iK/F^Fl/F^i) = XfipK/FllFl/F{^i) = Xi ^K/FMI i = 1,2. 
Thus 

/(IK/F M x IK/FMJM WF = f(t>K/F(*i) x bK/F(7r2),il;K). 
We have 

^K/F^i) = Xilx!ibK/F[h[/F{^i) 
= Xilx!i bK/F{c-K(<7i,F;/F) = Xilx!i CA°K/F), 

since, by [20] Th. 7.12, the map c7r is compatible with base change. So, by the 
first case, we have 

/CK/F(^I ) X IK/F(^2)^K) = f{°l,K/F®° OK 2,KlF,^K)-
Theorem 1.7 gives the relation between 

f^K/F^ TTi) x 1K/F{K2)^K) and /(TTI x 7T2, # 0 ; 

a simple exercise yields the same relation between 

/Ol ,K/F ® ^2,K/F7 ^K) and /((Ji ® (J2, ^ F ) . 

The result follows. 
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CHAPTER 3 

CENTRAL TYPES 

We now start the construction of the tame lifting map IK/F required by 
Theorem 1.3. To this end, we introduce a family of representations of open, 
compact mod centre, subgroups of general linear groups. We call these "central 
types". They should be regarded as refinements of the simple characters which 
play a pivotal role in [9] and [5]. This chapter is mainly concerned with 
extending important properties of simple characters to the class of central 
types. 

As with the simple characters which they refine, central types can only be 
described in terms of simple strata, but a simple stratum is not an invariant 
of the central types it defines. That is, some very different simple strata can 
give rise to the same families of central types. Thus, when treating central 
types, we have to take care that our arguments are invariant and, in particular, 
independent of the choice of simple stratum used to define the types. 

To start with, we are given a finite-dimensional F-vector space V; we set 
A = EndF(V), G = AutF(V). Let [2l,n,0,/?] be a simple stratum in A. Here 
and throughout, we assume that the hereditary Op-order 21 is principal. We 
write E = F[/3], B = EndE{V), and 93 = 2lnR In particular, 53 is a principal 
o^-order in B. 

When there is no fear of ambiguity, we abbreviate 

J = J(/?,2l), J1 = J1 (/3,21) - JflC/^St), H1 = H1((3,Vl)nU1(yL). 

3.1. We define an open compact mod centre subgroup J of G by 

J = J(/3,2t) =EXJ\ 

We can describe the group J in more intrinsic terms as follows. Choose 6 G 
G(2t,/?), and write X(6) for the group of g G G which normalize H1 and such 
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that 09 = 9. By [9] 3.3.17, we have X(9) = £(93) J1, where, we recall, £(93) is 
the 5x-normalizer of the order 95. In particular, this group depends only on 
e(2i,/3). 

Lemma 1. — In the notation above, the group J1 is the unique maximal normal 
pro-p-subgroup ofX(9). Moreover, J/J1 is the centre of the group X(6)/J1. If 
we have a simple stratum [2l,n,0,/?'] with 6(21,/?') = 6(21,/?), then J(/?',2l) = 
J(/?,2l). 

Proof. — Straightforward. 

This is a convenient moment to recall a remarkable property of simple charac­
ters. 

Lemma2. — Let #i,02 € 6(21,(3), and suppose that 9\ intertwines with 62 in 
G. There then exists x G U{%) which normalizes H1 and such that 62 — Of. 
Moreover, this element x normalizes the group J and conjugation by x permutes 
the set 6(21,/?). 

Proof. — The first and last assertions are given by [9] 3.5.11. The element 
x must conjugate the £(2l)-normalizer X{9\) of 9\ to that of #2- However, 
as above X(9\) = X(02) = .£(93) J1, so x normalizes this group. It likewise 
normalizes J1 and hence the centre J / J1 of X(6i)/J1. It therefore normalizes 
J. 

We recall ([9] 5.1.8) that, for 9 E 6(21,/3), there is a unique irreducible repre­
sentation T] = r]o of J 1 containing 9; indeed, 77 | i J 1 is a multiple of 9. 

Lemma 3. — There is an irreducible representation A of J such that A\ J1 = 

n. 

Proof — The representation r) admits extension to a representation K of the 
group J = J(/3,21) which is intertwined by every element of Bx [9] 5.2.2. In 
particular, n is normalized by X(9) = .8(93) J. The quotient X(9)/J is cyclic, 
so K extends to X(9). The restriction of this extension to J provides the 
desired extension of 77. • 

Since Ex is abelian, it follows that any irreducible representation of J con­
taining 77 on J 1 is an extension of rj. We refer to such a representation A as a 
central type, and to 9 as the simple character underlying A. We write 66(0) 
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for the set of equivalence classes of central types with underlying character 0 
and 

ee(*,/?) = |Jee(0) , 
9 

with 0 ranging over 6(21,/3). Observe that the class of an irreducible repre­
sentation p of J lies in 66(0) if and only if p \ H1 contains 0. Thus 66(21,/?) 
consists of equivalence classes of irreducible representations of J which contain 
some 0 G 6(21,/?) on restriction to Hl. 

We shall need to know about the intertwining properties of central types. 
Let Oi G 6(21,/?) and A{ G 66(0^), i = 1,2; if the Ai intertwine in G, so do the 
simple characters 0̂ . By Lemma 2, there is x G t/(2l) such that 02 = 0f, and, 
further, 66(02) = 66(0i)*. Thus we usually only need consider intertwining 
between elements of a given 66(0). At the moment, we can give only a partial 
result on this matter: it will be settled in 3.2 Corollary 1 below. 
Lemma 4. — Suppose that the Oe-order *8 is maximal; let 0 G 6(21,/?) and let 
A\,A<2 G 66(0). The representations Ai then intertwine in G if and only if 
Ax £ A2. 

Proof — This follows from [9] 6.1.2. • 

There is one other straightforward property which will be useful later. If 
A G 66(0), the restriction of A to Fx is a multiple of a quasicharacter u of 
Fx; since Fx fl Hl = Up, this must satisfy 

w\ujr = e\ujr. 
Given a quasicharacter lo satisfying this condition, we write 66(0, a;) for the 
set of A G 66(0) such that A \ Fx is a multiple of u). 

Lemma5. — The set 66(0,u>) has exactly (Ex : FXU%) = (J : FxJl) ele­
ments. 

Proof. — Immediate from Clifford theory. • 

3.2. We investigate relations between central types attached to different sim­
ple strata (in the same algebra A). This is weakly analogous to the theory of 
endo-equivalence of simple characters discussed in [5]. 

Suppose first that we have simple strata [21̂ , n ,̂ 0, /?], i = 1,2, in A attached 
to the same element /?. We recall from [9] §3.6 the existence of a canonical 
bijection 

r = 7*^ :6 (21! , / 3 ) ^ + e(2l2,/3). 
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As a consequence of [5] 8.7, this bijection respects intertwining. More precisely: 

Lemma. — Let 9,9' G G(2li,/3), and abbreviate r — r^^^p. The following 
are equivalent: 

(i) the characters 9, 9' intertwine in G; 
(ii) the characters T9,T9' G C(2l2,/?) intertwine in G. 

The central types of 3.1 have a similar property: 

Proposition. — For % — 1,2, let [2^,nz-,0,/?] be a simple stratum in A. Let 
9{ G 6(21 ,̂/?), and suppose 92 = r^1^2^(9i). There is a canonical bijection 

QT : ee(0i) — e e ( # 2 ) 

and hence a canonical bijection 

emM: ee (^f3) ee(2i2,/?). 

Moreover, representations A, A' G GC(2li,/3) intertwine in G if and only if the 
representations Gr(yl), Qr(A') G CC(2l2,/3) intertwine in G. 

Proof. — We proceed by examining a sequence of special cases. The first of 
these is: 

(a) 2li = % as OF-orders. 

The principal o^-orders 03* = 21* fl i? are then isomorphic. It follows that 
there exists b G Bx such that 032 = &-103i&. Conjugation by b then induces 
a bijection between the sets G(2t̂ ,/3) and another between the sets 66(21^/3). 
These bijections are in fact independent of the choice of b: if b' G Bx also 
conjugates 03i to 032, then bf = yb, for some y G £(03i). Each yl is the 
restriction of a representation of £(03i) J1^/?, 2li) (as in the proof of 3.1 Lemma 
3), and so conjugation by y fixes every A G 6S(2ti,/?). The conjugation map 
Ce(2li,/3) -> Ce(2l2,/3) is then the desired map Cr; it certainly preserves 
intertwining. 

We next treat the case: 

(b) 2li C 2I2 and 2I2 is maximal for the property of being normalized by Ex. 

This condition is equivalent to 032 being a maximal o^-order. It will be con­
venient to vary the notation: we set 2I2 = 21M, 332 = 03M > to emphasize their 
maximality. We then have a simple stratum [21M, ^M, 0,/?], for some integer 
nM. Take A G Ce(2li,/3) with underlying 9 G 6(2li,/3), and set 

0M = T2tl,2iM^(0)Ge(2lM,/?). 
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Let 7? (resp. T?M) be the unique irreducible representation of J\ = J1(/3,2li) 
(resp. JM = J1 (/3,21M)) containing 0 (resp. 0M)- By [9] 5.1.16, there is a 
unique irreducible representation f]M of the group JlAU1(^&\) such that T/M \ 
JM ~ nM and such that 77, T/M induce the same (irreducible) representation 
g of t/1(2ti): indeed, g contains both 77 and T/M with multiplicity one. The 
uniqueness property of T/M shows that it must be stable under conjugation by 
Ex. The same argument can then be taken a step further to establish the 
following: given A G 66(0), there is a unique irreducible representation AM of 
the group ExJy[Ul^Bi) which extends 77M and induces the same irreducible 
representation of ExUl(%\) as A. We put AM = AM \ EXJ]A, and then 
A *-> AM is the desired map 6 ^ , ^ , ^ . The construction shows it is bijective. 

This construction of 6r commutes with conjugation by Bx. If A, A' G 
66(2li,/3) intertwine, then so do the corresponding representations AM, A'M in 
66(2lM,/3). 

At this point, we interrupt the proof to give a corollary. 

Corollary 1 
(i) Let [21, n, 0,/?] be a simple stratum in A, let 9 G 6(21,/?), and let A\,A2 G 

66(0). Then A\,A2 intertwine in G if and only if Ai = A2. 
(ii) For i = 1,2, Ze£ [21, n, 0,/%] &e a simple stratum in A, and let Ai G 

66(21,$). Suppose that the Ai intertwine in G. There then exists x G 
[/(21) s?/c/i that conjugation by x maps 66(21,/?i) bijectively to 66(21, (32) 
and A2 = ilf. 

Proof — We first choose a hereditary order 21M containing 21, normalized by 
Ex and maximal for this property. We use notation analogous to that above. 

In part (i), if the Ai intertwine, the corresponding central types A^M inter­
twine. Then AI^M — A2^M by 3.1 Lemma 4; since 6r is a bijection, we have 
Ax ^A2. 

To prove part (ii), let 9i G 6(21,fy) be the simple character underlying 
Ai, i — 1,2. Since the Ai intertwine in G, so do the 0̂ . So, by [9] 3.5.11, 
there exists x G 17(a) such that 02 = Of and, further, 6(21, fa) = 6(21, (3f) = 
6(21, fa)*. This implies (3.1 Lemma 1) that J(/?2,2l) = J(/?f,2t) and then 
that 66(21,/?2) = 66(21,Pf) = 66(21, fa)x. This reduces us to the case where 
/?i = (32 and 0i = 02, and the result now follows from (i). • 

We return to the proof of the proposition. To treat the general case, we can 
replace 2l2 by a Bx-conjugate and assume that there is a maximal 0#-order 55M 
containing both 95̂ . Defining 21M to be the Ex-invariant principal o^-order 
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satisfying 21M H B = 95M ? we can then put 

CT u1, u2; B = CT -1 U2, Um, B er2Ci,2tM,/?' 

Any two choices of 95M are conjugate under both .£(95 )̂, and it follows that 
this definition is independent of 95M-

We now prove the second assertion of the proposition. We fix a quasichar­
acter u) of Fx and put 

ee(2i,/?,u;) = (Jee(0,u;). 

This set is finite. The bijection 6r takes 66(21,p,u>) to 66(2lM,A^)- By 
Corollary 1, intertwining is an equivalence relation on these sets, and it is 
respected by 6r. However, the number of intertwining classes in either of 
these sets is (Ex : FXUF) times the number of conjugacy classes of 9 G 6(21, /3) 
which agree with to on C/p, again by Corollary 1 and 3.1 Lemma 5. Thus 6r 
is bijective on conjugacy classes, and the result follows. • 

Comment. — The procedure used above to construct 6TgtM,2ii,̂  can also be 
used to give a direct construction of Gr^^^p whenever 2li D 212. It is an easy 
exercise (cf. [9] 5.1.18) to check that this gives the same result as above: 

6r "»1,212,0 = Gr Um, U2, B 6r -1 
aM,sii,0' 

where 21M contains 2li and 21M H 5 is maximal. 

Corollary 2. — Suppose we have simple strata [21̂ , n̂ -, 0,/3 ]̂ in A, i,j G {1,2}, 
with the property 

6(2li,/?1) = e(2l^,/?2), ¿ = 1,2. 

Abbreviate GTJ = Gr^1^2^j. Then, for any A G 66(2li,/?i) = 66(2li,/?2), tae 
representations GTJ(A) G 66(212,/?J) intertwine, and hence are conjugate, in 
G. 

Proof. — We choose a principal o^-order 21M containing 2li, normalized by 
F[(3i]x and maximal for this property. This order 21M is obtained as follows: it 
is attached to a uniform lattice chain, contained in that defining 2ti, of period 
e(F[/?i]|F), e here denoting ramification index. However, the equality of the 
6(2li,/3j) implies that the ramification indices e(F[(3j]\F) are equal [9] 3.5.1. 
It follows that 21M is also normalized by F[/32]x and maximal for this property. 

Let us assume first that 2t2 = 21M- By construction, the representations 
GTJ(A) both occur in the irreducible representation of the (j-independent) 
group F[/3j]xC/1(2ti) induced by A. They therefore intertwine, and indeed 
are E/(2lM)-conjugate, by Corollary 1. 

ASTÉRISQUE 254 



CHAPTER 3. CENTRAL TYPES 37 

We return to the general case and let 21^ D % be maximal for the property 
of being normalized by F[f3j]x. In particular, the orders 21^ are isomorphic. 
As we saw in the proof of the Proposition, the process of transferring central 
types between isomorphic orders is achieved by a conjugation, which certainly 
preserves intertwining. • 

Remark. — In the context of the last corollary, it is quite possible for the two 
maps Crgti,^,^- to be distinct; the corollary says that the maps they induce 
on conjugacy classes are the same. 

3.3. We need a way of forming a direct sum of copies of a given central type. 
We modify our notation slightly; we start with a vector space Vb, and set 
A0 = Endjp(Vb), Go = Autjr(Vb). We are given a simple stratum [2lo,no,0,/?] 
in AQ (and, as always, 2lo is assumed principal). We set E — F[(3]. We consider 
the vector space 

v = v0 e VQ e • • • e v0 (t copies) 
and put A = End^F), G = AutF(V). We let M be the Levi subgroup of G 
which stabilizes this decomposition of V, and choose a pair of mutually opposite 
parabolic subgroups Pu — MNU, Pi = MNi of G with Levi component M. 

Following the procedure of [9] 7.1, 7.2, we can find a simple stratum [21, n, 0, /3] 
in A , in which 21 is principal with period e(2t) = £e(2lo), and n = tno, having 
the following properties. (We abbreviate J9j = JJ^ftSlo), H1 = if1 (/3,21), 
and likewise for J.) First, 

H1 = H1 H N£ • H1 fl M • Hl H JVU, 

tf1 n M = ifo1 x H0 x • • • x Hi, 

and likewise for J. Next, given 0Q G C(2to,/3), there is a unique simple 
character 6 G 6(21, /?) which is trivial on AT1 fl Ni and H1 C) Nu, while 

(9 | if1 fl M = 0O ® 6>0 ® • • • ® 6>0. 

Indeed, 0o ^ 0 is the canonical bijection r^0^p of [9] 3.6. 
Let r/o be the irreducible representation of Jq which contains 0Q. We obtain 

the irreducible representation r) of J1 which contains 0 as follows. We form 
the group 

J1 = H1 H N£ • J1 fl M • J1 H ATU. 
This carries a representation 7/ which is trivial on the unipotent factors J1 fliV ,̂ 
J1 fl iVu while 

fj | J1 n M = 7/o ® % ® • • • ® 

The representation of J1 induced by 7/ is then 77 loc. cit. 
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Now suppose we are given AQ G 66(60). We define a representation A of 
the group EXJ1 by the following conditions: A is trivial on J1 fl Nl J1 fl iVu, 
while 

i I £x J1 H M = {AQ ® A^ ® • • • ® ^0) I EXJL fl M. 

The representation A of £"x J1 = J(/3,2t) induced by A then lies in 66(0). We 
denote it 

A = A (í) о • 
Proposition 

(i) If Ai G GG(2lo,/?i), i = 1,2, intertwine in Go, then the representations 
A^ intertwine in G. 

(ii) For integers r,s ^ 1 with rs — t, the representations AQ\ (A^)W are 
conjugate in G. 

Proof — As in the construction above, we obtain A^ by induction from a 
representation A4 of F[/3i]x J1 ($,21). Suppose the Ai intertwine, so there exists 
x G C/(2lo) such that A2 = Af. We view Go as embedded in M on the diagonal; 
the representations A2, A\ are then visibly intertwined by x. The induced 
representations A^ are then intertwined by x. 

In part (ii), the orders underlying the central types AQ\ (A^)^ are Bx-
conjugate, and any such conjugation takes AQ^ to (A^)(s\ • 

Remark. — The definition of A^ is motivated by the following considera­
tion. Let 7ro be an irreducible smooth representation of Go which contains 
ylo- Assume for simplicity that E is a maximal subfield of Ao, so that 7ro is 
supercuspidal. We can form the representation no <S> no ® • • • ® 7ro of M and 
parabolically induce to get an irreducible representation TT of G. The point is 
that 7r will contain the central type A$ (cf. [9] 7.3.14). 
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CHAPTER 4 

BASE FIELD EXTENSION 
FOR CENTRAL TYPES 

As in §3, we start with a simple stratum [21, n, 0,/3] in some EndF(V), with 
n > 0 and 21 principal. We set E = F[fi\. Throughout this section, we assume 
that the field extension E/F is totally wildly ramified. That is, the maximal 
tame sub-extension of E/F is F. 

We fix a simple character 0 G 6(21, /3), and choose a quasicharacter u) of Fx 
agreeing with 0 on Hl(/3,21) fl Fx = UF. As before, we write 66(0, a;) for the 
set of A € 66(0) which restrict to a multiple of u on Fx. 

We use our standard abbreviations J = J(/3,2l), J1 = J1(/?,2t), etc. 

4.1. We are now given a finite, tamely ramified field extension K/F. The 
algebra K ®F E is then a field, which we denote more briefly KE. We assume 
that the underlying vector space V is a K2£-space, this structure extending 
the given ^-structure on V. We also assume that 21 is normalized by (KE)X. 

We set Ax = End^(^), GK = Aut#(V). Following the procedures of [5] 
(especially sections 2 and 7), we form the principal o^-order 2lx = 21 fl ̂ 4^; 
this gives us a simple stratum [21^, n, 0, /3] in AK [5] (2.4). By [5] (7.1), the 
groups 

J)C = J1{P&K), H1K = H1((3,KK) 

are given by 
Hj( = iJ1 n Gx, JK — J1 N GK 

The character 0^ = 0 | HK then lies in 6(21^/3) ibid. (7.7). We write T/K for 
the unique irreducible representation of J\ which contains 0K-

Remark. — The character 0K is the tame lift of the simple character 0, in the 
sense of [5]. See especially ibid. §11. To use the precise language of that paper, 
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under our hypothesis that K ®p E is a field, the endo-equivalence class of 6K 
is the unique K/F-liit of the endo-equivalence class of 9. 

We use the obvious analogues of the notations above when working relative 
to the base field K. In particular, JK denotes the group {KE)X J\ (which, 
under our present hypotheses, equals KxExJj{). 

The groups J, J1, H1 are stable under conjugation by Kx, the groups of 
fixed points being respectively Exjj<, JK H]^. This action stabilizes 9 and 
Ker#; we have Ker0 fl JK — Ker#x. 

Lemma 1. — The group of fixed points for the natural action (by conjugation) 
ofKx on J/Ker9 is ExJlK/Kex9K. 

Proof. — We choose a prime element WK of K such that <4*'F) is of the 
form WFu where wp is some prime element of F and ¡1 G K is a root of unity 
of order prime to p. Let C denote the group generated by WK and the group 
l^p{K) of roots of unity in K of order prime to p. Then C acts on J via the 
finite quotient C/C fl Fx, which has order prime to p. The set of fixed points 
is E x JK We take the cohomology of the sequence 

1 -> Ker9 -> J -> J/KerO -> 1. 

The group Ker0 is a pro-p group; it has an obvious Kx-stable filtration, in 
which the factors are finite abelian p-groups. A routine filtration argument 
shows that the cohomology set H1(C/C fl Fx,Ker#) reduces to a singleton, 
and the result follows. • 

The action of Kx on J/Ker0 factors through the finite quotient Kx/FXU}C 
which, since K/F is tame, has order prime to p. 

We apply the Glauberman correspondence of Appendix A2 (see especially 
A2.2 and A2.4), first to the action of Kx on Jx/Ker 9. We thus get a canonical 
bijection gxKjF between (equivalence classes of) Kx-stable irreducible repre­
sentations of J1 trivial on Ker 6 and (equivalence classes of) irreducible repre­
sentations of j\R trivial on Ker OK-

Lemma 2. — The correspondence gxKjp takes rj to TJK-

Proof. — We first assume that there is an element £ G Kx such that the 
group (0 maps onto Kx/FXU}{. This will hold if, for example, K/F is either 
unramified or totally tamely ramified: in the first case we take for £ a root of 
unity of order prime to p such that K = F[(] and, in the second, £ is a prime 
element of K such that C[X:F] G F. 
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With this hypothesis, if r/ corresponds to 77, we have A2.4: 

trf/,(j)=ctrf/(0'), j e 4 

where e = ±1 and fj is the canonical extension of 77 to (£) tx J1, in the sense 
of A2.3. Taking j G H^, we get the relation trr]f(j) = etvfj(Q9(j), while 
0(j) = OK(J)- We deduce that rf is an irreducible representation of J\, whose 
restriction to HXK is a multiple of 0#. This implies r]' = TJK-

The general case of the lemma now follows by transitivity of the Glauberman 
correspondence. • 

Proposition. — Let COK be a quasicharacter of Kx such that UJK \ Ex = v and 
UK\UXk = OK\ ULK. 

(i) There is a canonical bisection (to be described in the proof) 

(4.1.1) gK/p : 66(0, u;) - ^ U 66(0*, WK). 

(ii) Let F C K' C K, and put 

u)K> = wk K X 0/r' = 0 I tf1 fl AutK>(V). 

Then QKIF i>s the composite map 

9K/F • ee{e,u) 
9K'/F 

CC (0K', WK') 
9K/K' CC (0K, WK) 

Proof — We first observe that AK AK \EXJ]C induces a bijection between 
QG(0K,WK) and the set of irreducible representations of EX J\ which extend 
TJK and restrict to a multiple of a; on FX. 

Choose a prime element zuF of F and write /aP(F) for the group of roots 
of unity in F of order prime to p. Assume to start with that u is trivial on 
the group generated by wF and /J>P(F). If wp is a prime element of J5, then 
GTJJT* G wpn'P(F)Ug. Any yl G 66(0, u;) is then effectively a representation of 
the finite p-group J"/'(Ker 6\wp, p!P(F)). The group of if x-fixed points here is 
Exj}{/(KeY91wp1/utFP(F)). We apply the Glauberman correspondence to get 
a bijection between 66(0, uo) and the set of equivalence classes of irreducible 
representations of EX j \ which extend 77* and restrict to a multiple of UJ on 
FX. This set, as we have seen, is in bijection with GQ(0K,WK), SO we get the 
desired bijection QKJF *n this case. 

In the general case, there is a tamely ramified quasicharacter xo of FX such 
that A ® xo 0 det satisfies the conditions of the special case above, for any 
Aeee(0,u)). We set 

gK/F(A) \ExJlK= gK/p{A ® Xo ° det) ® (x^1 o det) | GK-
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This has the desired properties (and is independent of the choices of wp and 
Xo). 

Part (ii) follows from the corresponding property of the Glauberman corre­
spondence A2.2. • 

One can set this up slightly differently, using "complementary subgroups". A 
complementary subgroup of FX is a subgroup Cp such that FX = Cp x Up. 
Obviously, to define such a thing, we need only choose a prime element vop 
and set Cp — (wp, jj!P{F)). Given a finite tame extension K/F, one can find 
a complementary subgroup CK of KX such that CK H FX is a complementary 
subgroup of FX. Indeed, one can arrange for CK^K,X to be a complementary 
subgroup of K/X, for every intermediate field F C K' C K. One can then 
define a Glauberman correspondence using the action of CK on J. This factors 
through CK/CK H FX. One obtains the same correspondence. 

4.2. Let us exhibit the Glauberman correspondence 4.1.1 in a particularly 
important special case, using the general character relation A2.4. 

Special case. — Suppose there is an element £ G KX whose centralizer in 
Jl/Kei 6 is JlK/Kev9K. Let A G 66(<9,u;)? and let AK = 9K/F(a)- Write 
A for the canonical extension (see (A2.3)) of A to (£) K J. We then have 

(4.2.1) tiAK(j) = etTA(CJ), 

for all j G EXJ]^. The factor e G {±1} depends only on the subgroup of 
KX/FXU]<: generated by £; it is, in particular, independent of the choice of 
representation A G 66(21,/?). 

As we observed in the proof of 4.1 Lemma 2, such an element ( will exist 
when K/F is either unramified or totally tamely ramified. 

Of the assertions above, only the last requires any comment. We can retrieve 
the 'Glauberman sign' e from the representations 77, T]K as follows. Let 7} denote 
the canonical (in the sense of (A2.3)) extension of 77 to ((} K J1. Then 

(4.2.2) e = tny(C)/dimr/x. 

Comment. — There is a procedure [14] for computing the sign e. Since we 
never need to know it, we do not pursue the matter. 
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4.3. We return to the situation of 4.1. We take a quasicharacter \ of ^x and 
set N = dimx(F), d = [K:F]. We put XK = X° ^K/F- There is an element 
a G F such that 0 ® x ° detG lies in 6(21,fi+a) {cf. [8] Appendix). Note loc. 
cit. that iî1(/3+a,2l) = H1 and likewise for J1. The procedure of 4.1 gives a 
bijection 

9K/F-W(0®X°detG,u>x Nd) 66(0* ® XK ° detGK,u^x£). 

Proposition. — Use the notation of 4.1. For any quasicharacter x of Fx, we 
have 

gK/F(A®X ° detG) =gK/F{A) ® XK ° detGK, A G 66(0,a;), 

where XK = X°^K/F-

One verifies this using transitivity and the trace relation 4.2.1. 

4.4. It will be useful to have a slightly different description of the map gx/F-
Here, it is preferable to use a complementary subgroup CK of KX (as at the 
end of 4.1) to define g^/F-

Let us take A G 66(0) C 66(21, /3) as above. The representation 77 induces 
an irreducible representation p of the group C71(2l), so A induces an irreducible 
representation R of EX J7x(2t) such that R | C/1(2t) = p. 

Likewise, AK \ EX J\ induces an irreducible representation RK of the group 
EXU1{%IK)- The restriction of RK to C/1(2lx) is the irreducible representation 
PK induced by r)K-

On the other hand, we can apply the Glauberman correspondence to the 
action of CK on EXU1{$V); we get a bijection GK/F between C#-invariant 
irreducible smooth representations of EXU1{<QV) and irreducible smooth rep­
resentations of EXU1{(QIK)- The Glauberman correspondence commutes with 
irreducible induction A2.6(i), so we have 

(4.4.1) RK = GK/F(R). 

4.5. We return to the situation of (4.1) and record two more useful technical 
properties of the Glauberman correspondence gK/F- The first concerns the 
"power operation" A t-» A ^ defined in 3.3. 

Proposition 

(i) Let A G 66(0, u), and t ^ 1. Then 

9K/F(A(t))=gK/F (A)(f). 
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(ii) Let [2l',n',0, /3] be a simple stratum in V with 21' principal and sta­
ble under conjugation by (KE)X. Let 6' = T0 G 6(21',/3), let A G 
ee(0,u>) and set A' = Gr(A) G 66(0', u;). ThengK/F(A') intertwines with 
QT{gKjF{A)), and so gKjF(A'), Qr{gK/F{A)) are conjugate in Autx(F). 

Proof. — (i) One has only to check that the Glauberman correspondence 
commutes with the induction step (from EyJ1 to EXJ1) in the definition 
(3.3) of A®. This, however, follows from A2.6(i). 

(ii) The construction 3.2 of the bijections 6r reduces us to two cases. In 
the first, the o^-orders 21, 21' are isomorphic. They are then conjugate by an 
element of the G-centralizer of the field KE, and such a conjugation respects 
our subsequent constructions. We can thus assume 21 D 21' and that 21 is 
maximal for the property of being normalized by (KE)x. We recall that A, 
A' are related as follows. Let 77 be the unique irreducible representation of 
J1 (/3,21) containing 0, and define r/ analogously. There is a unique extension 
fj to t/1(QS'), OS' = 21' fl B, such that fj and rjf induce the same representation 
of t/1(2l'). We extend A to a representation A of Jt/1(QS') via ry, and then A 
and A1 induce the same representation R of J5x[71(2t'). 

The variant construction 4.4 shows that the Glauberman correspondent RK 
of R is induced by gK/F(Af). However, it is also induced by some extension 
of <7K/F(^)> SO 9K/F(A) intertwines with gK/F^)-) as required. The final 
assertion follows from 3.2 Corollary 1 (ii). • 
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CONSTRUCTION OF THE TAME LIFT 

5.1. We arrive at the construction of the tame lifting map IK/F °f 1-3.1. We 
need to vary our notation a little. We start with a finite-dimensional F-vector 
space V, and set AF = EndF(V), GF = Autp(V). To avoid the trivial case 
1.3.2, we assume dimF > 1. 

Take 7rp G AWR(GF). Let [Sl^n^O,/?] be a simple stratum in AF underly­
ing some maximal simple type occurring in it p. Thus 2lp is principal and max­
imal for being normalized by F[(3]x. Set JF = J(/?,2lF). Let 0F G e(5tF,/3) 
be the simple character appearing in the maximal simple type. By definition 
(see 1.1), the field E = F[(3] is maximal in AF and totally wildly ramified 
over F. Moreover, there is a central type AF G QG(0F) occurring in TTF. The 
representation nF is induced by AFj and nF determines (JF,AF) uniquely, 
up to Gi?-conjugacy ([9] 6.2.4 or 3.2 Corollary 1 above). Indeed, the maximal 
simple type in nF is just the restriction of AF to JF — J(/3,2lp). 

We now abbreviate 

HXF = H\№F), JLF = J\№F), JF = Ex4 = Ex J(/?,2tF). 

We write r]F for the unique irreducible representation of JF such that rjF \ HF 
contains 0F. 

5.2. We use the notation of 5.1, and set dhnp V = [E:F] = pm. 
Let K/Fbea, finite, tamely ramified, field extension of degree d. We consider 

the F-vector space V ®F K, and set 

A = EndF(F ® K), G = AutF(V ® K). 
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Then KE = K ®F E is a field; indeed it is a maximal subfield of A and is 
totally wildly ramified over K. There is consequently a unique principal OF-
order 21 in A which is normalized by KEX. This gives rise to a simple stratum 
[2l,n,0,/3] in A, for which n - nFe(K\F). 

We take OF G 6(21/?, /3) and a central type Ap G GG(0F,UJF), for some 
quasicharacter u;j? of Fx agreeing with Op on Up. We put 

0 = mF^{eF) G e(2i,/?). 

Using the procedure of 3.3, we can form the central type A$ in G: there is 
a simple stratum [2lm,nm,0,/3] in A and 0m = T(#F) G C(2lm,/?) such that 
^ } G ee(0m,a;£)- We then put 

(5.2.1) A° = \0K/F(Ap) = eram,^(4d)) G ee(*,(4). 

Up to G-conjugacy, the central type A0 is independent of the choices implicit 
in its definition 3.3 Proposition and 3.2 Corollary 2. However, there is an 
extra element of structure, namely the conjugation action of Kx on the group 
J(/3,2t) which stabilizes A0. This is also independent of choices, as is implied 
by the following lemma. 

Lemma. — Let A\,A2 G 66(/3,2l) intertwine in G. There then exists x G 
C/(2l), commuting with K, such that A2 = Af. 

Proof. — Let 0{ be the simple character underlying A{. By [5] 7.19, 9.3 we 
have 62 = Of, for x of the required form. This same element x must then 
conjugate A\ to A2, by 3.2 Corollary 1. The lemma now follows. • 

5.3. We put 

AK = EndK(V ® K), GK = AutK(V ® K), f&K = 21 n AK, 

much as in §4. Thus we have a simple stratum [21^, n, 0, /?] in AK, and we can 
form the group HLK = H1^UK) = H1 n GK and likewise for JK (c/. 4.1). 
We also need JK = (KE)xJlK. 

The situation is now parallel to that of §4. We put 0K = 6 \ HLK G 6(21^, /?), 
and we let TJK be the unique irreducible representation of J\ containing OK-
We note that, in the language of [5] §9, the endo-class of OK is the unique 
K/F-liit of the endo-class of Op. 

Let up be the central quasicharacter of Ap. We set LOK — up o ~NK/F- The 
simple character OK agrees with U>K on Kx fl H]^ [5] 11.9, so we can form the 
set QG(0K,WK)- We now define a representation A°K G GG(0K^K) by 

(5-3.1) AK = gK/F(A°), 
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where A0 is defined by 5.2.1 and QKJF is given by Proposition 4.1. 
We recall at this point that we were given np G AWT(GF), and the central 

type Ap was chosen to satisfy 

7TF = C-Ind^Ap). 

Proposition. — Use the notation above, and define 

n% = c - I n d ^ ( ^ ) . 

The representation n^ then lies in AWV(GK), and its equivalence class depends 
only on that of np. 

Proof — The first assertion follows from the observation that KE is a max­
imal subfield of AK and is totally wildly ramified over K. We have already 
observed that the equivalence class of np determines the G^-conjugacy class 
of Ap. That class determines the G^-conjugacy class of 4̂°, taken together 
with its action by Kx (Lemma 5.2), and this conjugacy class determines the 
G^-conjugacy class of A°K by Proposition 4.5(ii). • 

We put 

(5.3.2) PR/F^F) = n°K-

We thus obtain a well-defined map 

l°K/F : A™(GF) —• AM{GK). 

This map l°K/p is not invariably the lifting map we seek; it can be thought of 
as a sort of "un-normalized lift". 

Remark. — Above, we excluded the case dimF = 1. In this situation, np is 
just a quasicharacter of Fx. If np is not tamely ramified, all of the above 
constructions apply without change, and yield n®K = np o NK/F. When np is 
tame, we use this relation to define 7r̂ , as in 1.3.2. 

We can identify J /J1 with Ex/UE thus, if we have A G 66(21,/?) and a 
tamely ramified character x of Ex. the representation A ® x is defined. We 
now set 

A = XK/F(AF) = i ° ® (SK/F o NE/Frm-\ 
where 8K/p is defined in 1.5. Thus XK/F differs from \°K/F only in the case 
where p = 2 and m ^ 1. 
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We define 

AK = 9K/F (A)> 
(5.3.3) Q 

1>K/F{KF) = TTK = c-Indj*(AK). 

This map 

(5.3.4) lK/F : A™{GF) —> AM(GK) 

is the algebraic tame lift, relative to K/F. 

Remark. — When K/F is of prime degree I ^ p, one can describe the process 
Ap AK somewhat differently and more directly: see Corollary 10.3 and 
Proposition 10.4. 

5.4. We now make a preliminary investigation of the fibres of the map IK/F 
of 5.3.4. Let us write A(6p1ujp) for the set of equivalence classes of irre­
ducible smooth representations np of GF which contain 6p and have central 
quasicharacter ujp. This is a subset of AWT(GF)', it is in canonical bijection 
with QG(6F,UF) and so has pm = [E:F] elements by 3.1 Lemma 5. 

Let X(F,pa) denote the group of unramified characters of Fx of order di­
viding pa, a ^ 0. For chosen np G A(0F,WF)I the map x ^ ^F * X gives a 
bijection (cf. 1.1) 

X(F,pm) A(dF,uF), 
i.e., A(9F^F) is a principal homogeneous space over X(F,pm). 

Likewise define A{0K, KK)- The tame lift IK/F restricts to a map 

(5.4.1) IK/F : A(0F,u>F) —> A(dK,u>K). 

Theorem 

(i) Le£ pa fee £/ie largest power of p dividing d = [K:F]. The fibres in 
A(0F,U>F) of the map IK/F then have order pa. Each is a principal ho­
mogeneous space over the group X(F,pa). 

(ii) / / we have an intermediate extension F C K' C K, then 

IK/F — IK/K* 0 IR'/F-

Proof. — If we take x G X(F,pm) and np G A(0F,U)F), we have IK/F{^F'X) = 

IR/F^F) ' (x ° NK/F), by 4.3. This can only be equivalent to IK/F^F) if the 
character x ° NK/F is trivial, by 1.1. This proves assertion (i). 

The second assertion follows from (4.2), (4.5) and the transitivity property 
1.5.1 of S. • 

ASTÉRISQUE 254 



CHAPTER 5. CONSTRUCTION OF THE TAME LIFT 49 

It is sometimes more convenient to consider simultaneously all quasicharacters 
u)' of Fx such that u/ o NK/F = UJK- Since K/F is tame, all such uJ agree 
on Up. Write xix/p = NK/F(KX) (which is also the group of norms from the 
maximal abelian sub-extension of K/F ([34] §2 Proposition 4)), and put 

d0 = (Fx : TiK/F), u)K/F = wF | nK/F. 

Observe that pa divides do- Let uF\ 1 ̂  i ^ do, be the quasicharacters of Fx 
which extend LVK/F- The quasicharacter LOK only determines WK/FI so we have 
a map 

(5.4.2) LK/F • ( J A{6F,uf) 
1 < i < d0 

А(6к,шк). 

Corollary 1. — The map lnK/F of (5.4.2) is surjective. Its fibres have order do, 
and are principal homogeneous spaces over the dual group of Fx/nKjF. 

Proof. — We first prove the assertion concerning fibres. Let 

7Г1,7Г2 € l \A(0F,u, (i) F 
i 

We show there is a tamely ramified character x of Fx such that 7T2 = TTI • x-
First, the central quasicharacters of the -K{ agree on UF. Since the 7Tj are 
representations of GLpm(F), we can choose a tame character xi s° that the 
central quasicharacters of TTI • xi> 2̂ agree on oF. We can then twist by an 
unramified quasicharacter to get the desired relation. 

If we have IK/F^I) — 'IC/FC7 )̂? we get 

IK/F(KI) - IK/F(KI ' X) = IK/FM • XK, 

where XK = X ° ^K/F- Comparing central quasicharacters, the character XK 
must be unramified, and then trivial, as required. 

A similar argument shows that, for nF G A{9F^uJF})^ the representations 
KF • X-, X € {FXI^K/F(KX)TI are distinct. This completes the description of 
the fibres. 

Each set A(9F, Up)) haspm elements. Likewise, A(9K,^K) haspm elements; 
it follows that lnK/F is surjective, as desired. • 

The set Awr(GF) is the disjoint union of the subsets A(9f,LOF), with 9F rang­
ing over conjugacy classes of simple characters attached to maximal totally 
ramified subfields of AF and UJF over quasicharacters of Fx compatible with 
9F. Similarly over K. Therefore: 
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Corollary 2. — The fibres of the map 

IKIF : AWR (GF)^A™(GK) 

are principal homogeneous spaces over the dual of the norm residue group 
F*/NK/F(K*). 

5.5. We can now prove Theorem 1.3. Parts (i) and (vi) are built into the 
construction. Part (ii) is immediate, (iii) follows from the transitivity of the 
Glauberman correspondence as in 4.1. Part (iv) has been proved in 4.3. The 
Glauberman correspondence certainly preserves contragredience (by 4.2.1 and 
transitivity), whence (v). Part (vii) is given by 5.4 Corollary 2. 

It remains only to prove (viii). We first treat the implication (b) (a). We 
choose a maximal simple type in TTK given by a simple stratum [93, n#, 0, /3K] 
in Mprn(K) and a simple character OK £ 6(53,/?x). There is then a central 
type AK G GG(6K, &K) which induces TTK- Likewise, we take a simple stratum 
[C, nL,0, /3L] in Mpm (L) and a simple character OL G 6(C, (3L) appearing in 
7TL. In fact, we can take (3L to be (3K and OL the unique L/K-Yiit of OK, up 
to endo-equi valence. (In our present language, OL is obtained from OK by the 
procedures of 5.2, 5.3.) The endo-class of OL is Galois-invariant by hypothesis; 
using [5] 9.13 et seq., there is a simple stratum [21, n,0, (3] in Mpm(F) and 
OF G 6(21, (3) such that, up to endo-equivalence, OL is the unique L/F-lift of 
OF- The field extension L[/3K]/L is totally wildly ramified, so the uniqueness 
of the lift implies that F[(3]/F is totally wildly ramified and then that OK is 
the unique K/F-\\it of Op, i.e., OK comes from Op as in 5.2, 5.3. Statement (a) 
now follows from 5.4 Corollary 1. 

Next, (a) (c) is trivial. Finally, if (c) holds, the representation TXL = 
IL/K{^K) is certainly Gal(L/F)-invariant and the simple character OK occur­
ring in TTK is lifted from a unique simple character Op over F, and Op occurs in 
7Tp. We write UJL, UK, up for central quasicharacters in the obvious way. We 
have UOL — W ° ^ L / K - The extension L/K is unramified, so the restriction of 
U)K to U(OK) is uniquely determined by LOL- By hypothesis, UOL is of the form 
ujp ONL/F, so UOK, up ° NK/F agree on units. Put another way, they differ by 
an unramified quasicharacter. We can therefore adjust irp by an unramified 
quasicharacter to ensure U)K = upoNK/F, and we have shown (c) (b). This 
completes the proof of Theorem 1.3. 

5.6. We now prove Theorem 1.7, using the explicit formula for the conductor 
given in [7] Theorem 6.5. 
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We first take some irreducible smooth representation n of GLn(F) and write 
its Godement-Jacquet local constant in the form 

e(n,s,il>F) = qF'fi*'*F)e(*,0,1,F). 

By Theorem 1.6, we have 

(5.6.1) / {lK/F(n),il>K) = /(TT,</>F) e(K\F), TT G A£(F). 

Also, for 7r G ./tJi(F), x G ̂ ?(F), we have f(n x x, V>F) = /(TT • X,V>F), SO we 
can ignore those cases of Theorem 1.7 in which some mi = 1. 

We now prove (i). Assume first that the representations 7ri, TC2 are com­
pletely distinct, in the sense of [7] 6.2. By Theorem 1.3 (i) and [5] Theorem 
3.5, the representations IR/F^I) and IK/F{/k2) — IR/F^V are also com­
pletely distinct. The result now follows from 5.6.1 and [7] 6.1.2, Theorem 
6.5(ii). 

We therefore assume that the representations 7ri, 7T2 are not completely 
distinct. Using the language of [7] 6.3, let ([yl, 771,0,7],/,$) be a best common 
approximation to this pair of representations. It is only the quantities / and 
7 which are significant; the method of finding them is given in ibid. 6.15. We 
first have to check that the corresponding quantities for IK/F^I), ^K/F(^2) 
are respectively le(K\F) and 7. However, this follows from Theorem 1.3(i) 
and [5] Theorem 9.8. 

Next, we need to know the behaviour under tame base field extension of the 
quantity C(7) [7] 6.4; here, we have to indicate the dependence on the base 
field, so we denote it CF(J)> Our result will follow from [7] Theorem 6.5(iii) 
once we show 

(5.6.2) CK(j) = CF(7)[*:F]. 

Since the field extension F[y]/F is totally wildly ramified and K/F is tame, 
the identity 5.6.2 is an immediate consequence of [7] 6.13. 

Similarly, part (ii) of the theorem follows from parts (i) and (v) of Theorem 
1.3, 5.6.2, and [7] Theorem 6.5(i). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 





C H A P T E R 6 

A U T O M O R P H I C L O C A L C O N S T A N T S 

We turn to the proofs of the two major results 1.4, 1.6 concerning the 
Godement-Jacquet local constant of 7r G A^(F). In this section, we develop 
general procedures for computing local constants in terms of central types and 
classical Gauss sums. The basic ideas are outgrowths of [4], [2] (but we use 
slightly different conventions here). 

6.1. Initially, we work in some generality. Let V be a finite-dimensional F-
vector space, and set A = Endj?^), G = AxitpiV). We set I^A — ̂ F0 ^A/F-

Let [21, n, 0, /3] be a simple stratum in A, with 21 principal and n > 0. For the 
time being, we make no assumption concerning the field extension F\fl]/F. Let 
0 G 6(21,/?) and A G 66(21,/?). We abbreviate UM = l/m(2l), J1 = Jx(/3,2t) 
etc., as in the earlier sections. We write 3̂ for the Jacobson radical of 21. 

Lemma 1. — Let W be the representation space of A. The quantity 

T{A,ß,t/>F) = 
xeJ1/un+1 

Ay(ßx)eA(ßx) 

is a scalar operator on Wy, 

T(A,(3^f) = T(A,(3^f)IWV, 

for some T(A,/3,II>F) G C. In particular 

т(Л,р,фР) = 1 

dim Л 
X 

irAV(ßx)il>A(ßx), 

with the same range of summation as before. 
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Proof. — For y E t/n+1, x G J1, we have ^A{(3xy) = tl>A(Px)> while UN+1 C 
Ker A It follows that the definition of T is independent of the choice of rep­
resentatives x for J1/C/n+1. For j G J1 and x ranging over J1 /C7n+1, we 
have 

T(yl, /?,</>FMv(j) = £ylv(/fey)^(/fc) = J ^ ^ W ^ ^ r 1 ) . 

However, ip^pxj-1) = rj)A{J-lPx) = ipAWkx), with k = ^'xj~x^ <E J1. Thus 

T(yl,/?,^)^v(i) = J^Av(/3k-lx)^A (px) = Av(j)T(A,P,*pF). 
X 

That is, T(A , /3,^F) commutes with ^ ( J 1 ) ; since ylv | J1 is irreducible, it 
follows from Schur's Lemma that T is a scalar, as required. • 

Lemma 2. — Letn be an irreducible smooth representation of G containing the 
central type A. We then have 

e(7r,e,V>F) = (íp-n:2l)' (|-s)/dimV r(A,p,tl,F) 
(21 : Bn + 1 

1 
12 

Proof. — Let (e X) be an irreducible representation of £(21) which occurs 
in 7T and contains A on restriction to the group J(/3,21) = F[(3]x J1. The 
representation g is then nondegenerate, in the sense of [4], and we have ibid. 
3.3.8 

6(TT,5,^f) = 0P"n : a)(§-«)/dimV T(Q, VF) 

(a : <pn+1) i 
12 Here, rig^ibp) is the unique eigenvalue of the scalar operator 

T(Q,*I>F) = 

xeu/un+1 
g(cx)ipA(cx). 

In this sum, c is any element of £(21) such that c2t = ty~n. In particular, we 
can (and shall) take c = {3. We evaluate the Gauss sum by realizing T(Q,IPF) 

as a matrix. We choose a basis of Xy starting with a basis of the representation 
space of Ay. Setting n" = [n/2] + 1, n' = [(n + l)/2] (where x h-> [x] is the 
usual greatest integer function), and arguing as in [4] 2.7, we get that r(^, ipp) 
is the (1, l)-entry of the matrix 

(UN" : t/n+1) 

xeun'/un" 

vQ(px)xpA((3x). 

We can apply exactly the same procedure to the sum T(yl, /3, ipp) to get a sim­
ilar result (noting that, by definition [9] 3.1, UN' = Jn'). Thus r(A,/3,<ipF) = 
T(Q,II)F) and the lemma follows. • 
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Remark. — Combining these last two lemmas, we see that, if x is an unrami­
fied quasicharacter of Fx, then 

e(X7r, 5, %I)F) = x(Nir[/3]/jp(/3))-1e(7r, s, 

thereby justifying Remark 1.4. 

As a consequence of the last argument in the proof of Lemma 2, we see that 
T(A, /3, xpF) is independent of the choice of the element /3 underlying A: we can 
replace /3 by any element /3' G EX J1 satisfying /3'2l = ^3-n without changing 
anything. We therefore drop ¡3 from the notation. 

We will have further use for one of the identities just uncovered. We therefore 
exhibit it: 

r(A^F) = c £ trAv(/foOV*(/fc), 
(6.1.1) xeU-'/u^" 

c > 0, ri = [{n + l)/2], n" = [n/2] + 1. 

The positive factor c is given by 

c = 
(UN" : UN+1) 

dim id 
(<pn": <pn+1) 

dirndl 
We can now read off a useful consequence of [4] 2.5.11. 

Lemma 3. — The complex number r(A,ipF) has absolute value 

(6.1.2) \T{A^F)\ = (21: «p«+i)i/2 M x ) l 

for any x € $(21) such that #21 = Bn . In particular, if A is unitary, we have 

|r(il,VF)| = (Sl:Vn+1)1/2-

Over the next few paragraphs, we give some more evolved versions of the 
formula 6.1.1. The first step is to choose a simple stratum [21, n, n—1, a] equiv­
alent to [21, n,n—1,/3], as we may, by [9] Theorem 2.4.1. In particular, the 
element a is minimal over F. 

The form of the result depends on the nature of a, so we have to treat two 
separate cases. 

6.2. We first assume that a G F. Set 7 = (3 — a. It may happen that in 
fact (3 G F, in which case we take a = /3, and we have Hl (/3,21) = C/1(2t). 
Otherwise, there is an integer 0 < n\ < n such that [21, ni,0,7] is a simple 
stratum; we then get ff1 (/?,&) = ^(7,21). Either way, we have Hl(j3^) D 
t/n'(2l). The definition of simple character [9] 3.2 shows that 6 \ UN' is of the 
form tpj.x o det, for a character x of Fx such that x 0 det | UN" = ipa. 
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Proposition. — With the notation above, suppose that a G F. We then have 

r{A^F) = ctr(^v(/?))X(a)diml/^(7)T(x,V'F)dimy, 

for some c > 0. 

Proof. — We start with the expression 6.1.1: 

T(A^F) = C £ trAv((3x)^A((3x). 
xeun'/un" 

However, Aw((3x) = Av(/3)6(x)-1. On the other hand, 

I/>A(PX) = il)A(ax)i/jA(jx) = tl>A(ax)il>i(x)'il)A('Y). 

We recall that 0(x) = ip^(x)x(detx), so the typical term in the sum is 

tr Av((3) ^A(7) X(det x)-1 ^A{ax). 

The sum therefore reduces to 

ctr Av((3) Vu(7) X(det a) ] T x(det(ax))_1 ipA(ax). 
xeun'/un" 

The inner sum is 
cr(X o det, # ) = cr(X,Wdimy, 

by [4] 2.8.13. The result now follows. • 

6.3. We continue with the notation of the beginning of 6.2, and now treat 
the case a £ F (although we will not use this hypothesis for a little while). 
We need some more notation for a subsidiary purpose. We write V = J1 /H1 
and denote by Vo the canonical image of Jn = Un in V. We also write Zv(/3) 
for the group of fixed points of /3 in V (with (3 acting by conjugation), and 
similarly for Vo-

When the integer n is odd, the group Un /Un is trivial, so we obtain 
(irrespective of the hypothesis on a): 

Proposition 1. — Suppose that the integer n is odd. We then have 

r(A^F) = 
(m(*+i)/2 . mn+i\ 

dirndl 
tilAvlB))fbA(3). 

We observe that, when A is unitary, this implies |tr ylv (/3) | = dim A. Invok­
ing A 1.8, this gives us 

|Zv(i8)|1/2 = dimil=|V|1/2. 

We deduce: 
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Corollary 1. — // the integer n is odd, the element /3 acts trivially on V = 
J l / H \ 1 . 

We therefore assume henceforward that the integer n is even, n = 21, say. 
We further assume that the field extension F[a]/F is not tamely ramified. 
This simplifies the situation, and is the only case we need. We start with the 
expression 6.1.1: 

r(A^F) = 
(Bl + 1 : B2l + 1) 

dim A 
xeul/ul+1 

ti(Av((3x))^A(f3x). 

Since the Gauss sum is not zero, we deduce there exists ho G Ul such that 
trylv(/3/i0) 7^0. 

Let us abbreviate E = F[(3]. The restriction of A to ExUl is a direct sum 
of irreducible representations Â . Each Â  | Ul is irreducible, and is the unique 
irreducible representation of Ul whose restriction to Hl = Hl(/3,$i) contains 
9 (cf. [9] 3.4). Appealing to A1.8, the term trAy(/3x) vanishes unless fix is 
of the form g(3hozg~l, for some z G Hl and some g G Ul. The volume of the 
L^-conjugacy class of /3hoz is independent of the element z G Hl so we can 
rearrange our sum as 

r{A,ibF) = c 
x E Hl/ Ul + 1 9eul/Hi 

tv(Av(gf3h0zg-1)) ^(gphozg-1), 

where 

c — 
(Bl + 1 : B2l + 1) 

dimyl \Zv0(P)\-\ 

and Zv0(/3) is the group of fixed points of /3 acting by conjugation on Vo- This 
expression simplifies further to 

T(A,ipF) = c 
zeHl/ul+1 

ti(Av((3hoz))ipA((3h0z), 

with 

c = 
Bl + l : B2l + 1 (Ul : Zvn (B)). 

dirndl 
where Zy0((3) is the inverse image in Ul of Zy0((3). In order to reduce the 
expression further, we need a lemma (which is where our hypothesis on the 
ramification of F[a]/F takes effect). 

Lemma 4. — Suppose that a £ F, that n = 21 is even and that the field exten­
sion F[a]/F is not tamely ramified. The map 

z 1—• ̂ Qho{z), z G H\ 
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is then a character of Hl agreeing with 6 on U1^1. 

Proof — Temporarily write B = EndF[a](Vr), %$ = %lnB,£l = y$r\B. We 
have Hl = 1 +#(/3,21), and #(/3,21) = Q' +q?/+1. 

We have to show that ippho(ziz2) = ^/10(^1)^0(^2), z{ G Hl Put z{ = 
1 + Xi + j/jj with xi G O*, j/j ^ qj/+1. Expanding, 

Z1Z2 = 1 + £1 + £2 + J/i + 2/2 + #1^2 (mod ?pn+1). 

We thus have to show that Vu(/3/io#i#2) = 1, i.e., that ^ ^ ( t ) = 1 for i E Hn. 
For such t, we have ^A(/3/IO*) = ^(crf). Choose a character ^[a] °f the 

field F[a] with conductor pF[a] and form vb — ipF[a] 0 *RB/F[a]- There is then 
a tame corestriction sa on A relative to F[a]/F (see [9] 1.3) such that 

if>A(ab) = ipB(sa(a)b), be B. 

However, since F[a]/F is not tamely ramified, we have sa(a) G £21_n (ibid. 
(1.3.8)(iii)), so i/)A{<xt) = 1, as required. • 

Returning to T(A^F), we have Av(/3hoz) = ylv(/3/io)^(^)_1, so the sum will 
vanish unless we have i/)ph0{z) = 9(z) for all z G Hl. In all, we have shown: 

Proposition 2. — With the notation o/6.2, suppose a ^ F, n = 21 and that the 
field extension F[a]/F is not tamely ramified. There exists ho G Ul such that 

(a) tvAv(/3h0) # 0 and 
(b) vb^ho(z)=0(z),forallzeHl. 

For any such ho, we have 

T(A,ibF) 

= tv(A"(ph0))rpA((3h0) 
(ojj+i . m2«+i) nji . ZVn(B)) (Hl : UL+1) 

dimyl 
Suppose for the moment that A is unitary. We then have 

\T(A,4>F)\ = (%:¥21+1)1/2. 

Thus 

\tTAy(f3hQ)\ = dim(^)|Zv0(^)|(2i:^)1/2 
(UL : UL+1) 

(Jl : H1)1/2\ZvM\(B) 
(21 : «P)V2 

In this situation, we recall from A1.8 that 

\tvA"/(f3h0)\ = \Zv((3)\1/\ 
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so we get the relation 

(6.3.1) \Zv(P)\1/2 (*:$)1/2 = |V|1/2|^0G9)|. 

We can apply this result to the element a; we have 

J ^ S Q / f f ^ a , * ) = j'(a,2l)/JT'(a,Sl) - J*(/3,2l)/tf'(/3,2l) = V0, 

and we obtain 

(6.3.2) |Zv0(a)| = (U : B) 
|Vo| 

= (Ul : H1). 

We have a = (3 (mod C/1(2t)) and so ZVo((3) = Zy0(a). Substituting the 
relation 6.3.2 in 6.3.1, we get: 

Corollary 2. — If a £ F, F[a]/F is not tamely ramified, and n = 21 is even, 
we have 

IM/?)| = (V:Vo)|ZvoG0)| 

w/iere V = J1 /H1 and Vq is the image of Jl/Hl in V. 

More informally, this says that the non-fixed points of /3 on V all appear 
already in the subspace Vo-

6.4. We record, for later use, a couple of general properties of the Gauss sums 
attached to central types. In this paragraph, we are given a vector space Vb5 
with Aq = End.p(Vb), Go = Autir(Vb), a simple stratum [2lo,no,0,/3] in Ao, 
a simple character 6o G G(2lo,/3), and a central type Aq G CC(0o)- We also 
assume that E = F[/3] is a maximal subfield of Aq. 

We take an integer t ^ 1 and, as in 3.3, form the central type AqK Thus we 
have the vector space V = Vb©Vb©---©Vfo (t copies); we put A = Endjp(F), 
G = Autjr(V). We have a simple stratum [2lm,nm,0,/3], a simple character 
0m e (2lm, /3), and A$ G Ce(0m). It will simplify the notation to set A$ = Am. 

Proposition. — We have r(Am,ipF) = CT(T1O,'0F)S for some c > 0. 

Proof — We use the notation of 3.3, where Am is defined (except that 2tm is 
there denoted 21). The representation Am is induced by the representation A 
of EXJ1. Abbreviating J1 = J1^,2lm) etc., and using the Mackey formula, 
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we have: 
r(Am^F) = c 

xeJ1/un+1 
txAU(3x)il>A((3x) 

= c 
х^/ип+1 y£ExJ1\ExJ1lExJ1, 

yf3xy-1eExJ1 

tvAy{y(3xy-l)xl>A{(3x). 

In the inner sum, we can take the coset representatives y from J1 D Afy. The 
element yf3xy~x then lies in Ex J1 if and only if y is a fixed point of (3 in 
J1 H Ni/H1 H N£. In this case, 

trA^yPxy-1) = triv(/3* [x-1, yB] [[/T1,*/]), 

where y@ = /?_1y/3 and [, ] denotes the commutator, [a, b] = aba~lb~x. The 
term [/?" \ y] lies in if1 D Nl C Ker 0, so we are reduced to 

tr iv fa/toy-1) = t r i v ( / f o ) % ~ \ / ] . 

The map 

Jl/Hl x J1 /H1 —> Cx , 

(x,y) i—• 0[x,y], 

is bi-multiplicative. For fixed x, the map Xx : V ^ [x-1, yB] is therefore a 
character of the group of fixed points of /3 on J1 D Ni/H1 fl A .̂ We can now 
write x = £o#i, with xo E J1 DM, xi E J1 DiVu. The character Xx0 is trivial; if 
Xxi is non-trivial, the sum over y vanishes, and otherwise contributes a positive 
constant factor. In all, 

T(Am,rl>F) =c trAv((3x)tl>A((3x), 
xe^nM/mnM 

for some c > 0. However, J1 flM is the direct product of t copies of J1(/3,2lo), 
and similarly for H1 fl M. It follows that 

r{Am^F) = CT(4),#0*> 

for some c > 0 as required. • 

Suppose next that we have a simple stratum [21, n, 0, (3] in A. We can form 

e = mm^(em) ee(a,/3), 

yi = er(yim) e ee(#). 

Corollary. — There are positive constants c, c' such that 

T{A,tpF) = cr{Am,il>F) = </T(A),^F)*. 
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Proof. — As we observed, 2lm is minimal for the property of being normalized 
by Ex. Thus, without loss of generality, we can assume 21 D 2tm. We use the 
variant construction (Comment, 1.2) of A from Am. This makes it clear that 
any irreducible smooth representation n of G which contains Am must also 
contain A. The result now follows from 6.1 Lemma 2. • 
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C H A P T E R 7 

G A U S S S U M S M O D R O O T S O F U N I T Y 

The object of this section is to prove Theorem 1.4. We therefore revert to 
the notation of paragraph 1.4. We are given n G A^(F) and we assume, to 
exclude trivial cases, that m ^ 1. There is then a simple stratum [21, n, 0, ¡3] in 
A = Mpm (F), a simple character 9 G 6(21,/?), and a central type A G 66(0), 
such that yl occurs in 7r. Moreover, the field E = FB is a maximal subfield of 
A, totally wildly ramified over F. We choose a simple stratum [21, n, n—1, a] 
equivalent to [21, n, n—1,/?]. For brevity, we put £'(71") = e(7r, |,^F)? and // = 
fipeo(C). 

7.1. Remark 1.4 (proved in Remark 6.1) tells us we may take an = NE/F(/3). 
For the same reason, the construction of TTK allows us to take 

This proves parts (i) and (iii) of the theorem. 

7.2. We now prove part (ii) of the theorem. We observe that, since the two 
sides of the desired congruence have the same absolute values 6.1.2, it is enough 
to verify it modulo /JL. We therefore use the symbol c to denote a positive 
real number whose value varies from line to line. 

We have to divide into cases, following the scheme introduced at the begin­
ning of 6.2. In this paragraph, we assume that a G F. We set 7 = /3 — a; we 
choose a character % of Fx such that 6 | Un = ^7 X°det, with n' = [(n + l)/2], 
as at the beginning of 6.2. Proposition 6.2 gives us 

апк = NK\0yK(ß) = ап. 

This proves parts (i) and (iii) of the theorem. 

7.2. We now prove part (ii) of the theorem. We observe that, since the two 
sides of the desired congruence have the same absolute values 6.1.2, it is enough 
to verify it modulo R+ /JL. We therefore use the symbol c to denote a positive 
real number whose value varies from line to line. 

We have to divide into cases, following the scheme introduced at the begin­
ning of 6.2. In this paragraph, we assume that a G F. We set 7 = /3 — a; we 
choose a character % of Fx such that 6 | Un = ^7 X°det, with n' = [(n + l)/2], 
as at the beginning of 6.2. Proposition 6.2 gives us 

т(Л,фР) = си(Л'/(Р))х(аГтфА(1)т(х,фЕ)рт. 
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We can write ¡5 = a(l + a-1 and the factor u = 1 + a 17 lies in H1 = 
H\p,%). Thus Ay{f3) =u«{a)-l6{u)--1ll. Substituting, 

e'(Tr) =CT(A,^f) =cu;7r(*r10(ur1ï>A(l) (x(«)r(x, 1>F))PM 

= uMV1 (x(<x)T(xM)pm (mod R*/i). 

Now we simply have to observe that x(a)r(x, ?AF) = fl(«) (which can be re­
garded as a special case of Lemma 2.5(H)) and that an = apm. 

This completes the proof in the case a G FX. 

7.3. We now assume that a £ F\ in this paragraph, we also assume that the 
integer n is odd. We then have (6.3 Proposition 1): 

e'(7r) = ctr(^v(/3))^(/3). 

Without loss of generality, we can assume that A is unitary. The restriction 
of A to the group D generated by /3 and H1 is then a direct sum of unitary 
characters oi 1 ^ i ^ dim A As in the proof of 6.3 Corollary 1, we have 
|AV(/3)| = dim A . It follows that the <\>{ are all the same, equal to some <\> , say. 
Thus 

e'(7r)=c<t>((3)-1^A(P)-

However, fP™ E FXH\ so <f>(/3) = uu^™)1'?™ (mod /x). Since E/F is totally 
wildly ramified, we have /3pTn = NE/F(P) (mod C/̂ ), giving us 

£'(7r) = ^(aTr)-1^"1 (mod /x). 

Since n is odd, 5(0^) = 1 by definition, and the result follows in this case. 

7.4. We now assume that n is even, n = 21 say, and a £ F. We first treat 
the special case in which ¡3 is minimal over F. We can therefore take a = (3. 
This combination of hypotheses, we observe, forces p ^ 2. 

We start with the formula T(A,I/>F) = ctr(AW (Pho))ipA(/3ho) given by 6.3 
Proposition 2. We use [36] Theorem 3.3.2. In our notation, this says 

(̂TT) = e(/3)_10 (modIR*/i), 

where © is some character of EXH1 agreeing with 9 on Hl and (j7ronFx, and 
(5 is a Gauss sum as follows. (Note that the precise choice of 0 is irrelevant: 
any two choices are congruent mod /1.) We identify the residue class fields 
kft = kp and choose a prime element WE of E. We write ip for the character 
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of kp induced by ibp. Then 

(5 = Ф(6хг/2), 
x EKf 

s = (-i)(pm-mß wn (mod PEy 

This simplifies to 0 = QF ((—l)̂ m 1̂ //2a7r), to use the notation of 1.4, and we 
have 

0F ( (-l)(p -1,/2aJ = - 1 
QF 

(pm-l)/2 
gF(An), 

where qp — |kp|. However, QF(O»K)2 = -1 
QF , so we obtain 

e'(ir)pm = cvn(an) 1 QF(a.n)p ™ (mod /x), 

as required. 

7.5. We now abandon the hypothesis that /3 is minimal over F. (This, we 
note, permits the case p — 2.) We continue to assume n — 21 is even. 

We first make some adjustments to the representation 7r, and hence to the 
central type A . We choose a prime element wp of F\ thus there is a root of 
unity Co in F, of order prime to p, such that 

ßP = (0wZn (modUk). 
The element a has the analogous property relative to the same prime wp. We 
next twist 7r by a tamely ramified quasicharacter of Fx to ensure that un is 
trivial on WF and on the group of p-prime roots of unity in F. This has no 
effect on the relation to be proved. 

Let S be the group generated by the kernel of the simple character 6 and 
the kernel of ujn. Set 3 = EXJ1/S, 31 = J1/5. Then A is effectively a repre­
sentation of the finite p-group J, which is itself a cyclic p-power extension of 
the extra-special p-group d1 of class 2. The value of the character of ylv, taken 
mod p-power roots of unity and positive reals, at the element /3/io depends 
only on the action of /3 on the alternating space V = J1/!!1 by ALIO. 

The subspace Vo = JL/HL of V is nondegenerate [9] 3.4. The alternating 
space V therefore decomposes as an orthogonal sum V = Vo J- Vi, and, by 6.3 
Corollary 2, /3 acts trivially on Vi. Let Xj denote the inverse image in 31 of Vj. 
There is a unique irreducible representation rjj of Xj whose restriction to (the 
image of) HL is a multiple of 6. We have a canonical surjection s : Xo x3Ci —» 31 
and rj o s = rjo ® r/i. We therefore abuse notation and write r\ — rjo ® r}\. We 
can similarly realize the representation A as a tensor product AQ ® A \ , where 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



66 CHAPTER 7. GAUSS SUMS MOD ROOTS OF UNITY 

Aj extends rjj to the group generated by (3 and %j. By A1.10, the values of the 
character of A\ lie in Mx /x. We need only concern ourselves with the character 
of A0. 

We now consider the group J (a, 21). We take some simple character 6a G 
6(21, a) and a central type Aa G 66(0a). We arrange for wp to act trivially as 
before. The definition [9] 3.1 of the groups J1 gives J* (a, 21) = J1 (/3,21) and 
J1 (a, 21) = tf1 (a, 21) J* (/3,21). Thus the alternating space J1 (a, 21)/ tf1 (a, 21) is 
canonically identified with Vo; moreover, the elements a and j3 induce the same 
automorphism of Vo. Choose an element k$ G Ul such that tv(A^(ako)) ^ 0. 
By A1.10 therefore, we have 

tv(Ay(/3h0)) = tT{A%(/3ho)) = tr(Ava(ak0)) (mod R*M). 
The result now follows from Corollary 6.4 and the minimal case 7.4. 

This completes the proof of Theorem 1.4. 
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GAUSS SUM RELATIONS 

We prove Theorem 1.6. The considerations of §6 reduce this to a comparison 
of Gauss sums of the kind introduced in 6.1. First, however, we have to 
introduce a new species of Gauss sum, formed relative to certain commutator 
relations. This is done in 8.1, where the main properties of this "commutator 
Gauss sum" are stated. It is explicitly related to the Gauss sums occurring 
in Theorem 1.6: see 8.2. The next step, in 8.3, is to prove an additivity 
property of the commutator Gauss sum. We can then complete the proof of 
Theorem 1.6, modulo the calculation of the commutator Gauss sum in certain 
fundamental cases. This is done in §9. 

Throughout this section, we shall mainly be concerned with computing the 
arguments of various complex numbers: for x,y E Cx, we write x = cy to 
mean x = y (mod 1R*). 

8.1. We first need a non-trivial totally wildly ramified field extension E = 
F[a]/F, generated by an element a which is minimal over F and of negative 
valuation. (In this situation, the minimality of a amounts to saying that the 
valuation VE(OC) is not divisible by p.) We also require a tamely ramified 
extension K/F of prime degree d. We abbreviate KE = K ®p E. 

We fix an element ( such that K = FC if K/F is unramified, we take £ to 
be a root of unity of order prime to p, and, if K/F is totally ramified, we let £ 
be a prime element of K such that xEF (Compare with the choice of £ in 
4.2.) 

We are given the following data: a finite-dimensional KE-vector space V and 
a simple stratum [21, n, n — 1, a] in A = Endi?(F) such that 21 is principal and 
normalized by (KE)X. We write x^ = C_1̂ C and Aa(ar) = axa~l — x, x £ A. 
If we write B for the radical of 21, we have (<pa)̂  = <#a and Aa(^Ja) C ^3a, for 
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all a G Z. We define 

0 ( a , a , o = 
X c Bl / Bl+1 

ФА{<ХХ{Х — Х^)) 

x-x<eAa(yl)+yl+1 
when n = 21 is even and 

<5(a,a,C) = l 
if n is odd. 

We consider the special case where V = KE\ let 2lo be the unique hereditary 
o^-order in EiiidF(KE) normalized by (KE)X. This gives a simple stratum 
of the form [2lo^o> ̂ o-1 A> allowing us to form (S(2lo,a,C) according to the 
formula above. 

The properties we need of these objects are: 

Lemma. — With the notation above, we have 

®(*,a,() = c<&m,a,(fmKB{V), 

6 2l0,a,C = c 
E (1 K, S, VK) 

E(PK / F, s, WF) 

-[E:F] 

oK/F (NE/F (a)) P. 

for (possibly different) positive constants c. 

The proof of the first statement will be given in 8.3, that of the second in 
§9-

8.2. In this section, we use the general set-up of §4. We are given an F-vector 
space V and a simple stratum [21, n,0,/3] in A = Endi?(y), with 21 principal 
and n > 0. We assume that the field E = F[/3] is totally wildly ramified over 
F of degree > 1. We take K/F as above, and assume that V is, in fact, a 
vector space over the field KE, this structure extending the given F-structure 
on V. Moreover, we assume that 21 is normalized by KEX. 

We choose 6 G 6(21,/3) and a central type A e 66(0). 
Now set AK = Endx(V), 2l# = 21 fl AK- This gives us a simple stratum 

[2l/r,n,0,/?] in AK, along with a simple character 6K £ 6(21^,/?) obtained by 
restricting 0, as in §4. We let AK = 9K/F(A) G 66(0^) (the choice of central 
quasicharacter for AK is irrelevant here.) 

The next step is to choose a simple stratum [21x^^—1^] equivalent to 
[2tx, n, n—1, /3]. By [5] 3.8, we can choose a so that [21, n, n—1, a] is also simple; 
it is certainly equivalent to [21, n, n—1,/3]. We further assume that a does not 
lie in F, (or, equivalently, in K). 
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Lemma. — With the notation above, we have 
T(A, rl>F) = CT(AK, I/>K) 0(21, a, C). 

Proof. — We extend AV to a representation of (() k J(/3,21) as in A2, and 
consider 

Tc = TC(A, V-F) = £ Av(C0x) iJ,A(0x), 
xeJ1/un+1 

where J1 = J1 (A 21) and Z7* = 17*(St), i ^ 1. This is an operator on the space 
of Av. Indeed 

Tc = ^v(C)T(yl,^), 
and hence 

trTc = r(^,^) tr(^v(C)) . 
We note that tr(ylv(()) ^ 0, as follows from, e.g., 4.2.1. 

Just as in 6.1, we can reduce the range of summation in the definition of 
T^; this gives the convenient form 

(8.2.1) r(A, # 0 = -£—r t r ( ^ v № ) ) V*(/fr). 
10 *ei/»'/c/»" 

Here, we have abbreviated nf = [(n + l)/2], n/; = [n/2] + 1. 
We now treat the case where the integer n is odd. Thus n' = nn. We are 

assuming that a £ F; it follows that a E K and we can use 6.1.1 to get 

T(AK,tl>K) = ctT(AVK(P))'pAK(P). 

Similarly, using 4.2.1, 

r(il ,^)=ctr(ilv(C))-1tr(Tc) 

= ctr(^v(C))-1tr(^v(C/9))^(^) 

= ctv(A^(C))-Hv(A)<((3))^A(f3) 

= cT(AK,ipK), 

which proves the lemma in this case. 
We now assume that n is even, n = 21 say. By 6.3 Proposition 2, we have 

(8.2.2) T(AK^K) = c t r ( ^ ( / ? / i 0 ) ) ^ ( ^ o ) , 

for a certain element ho G E/^ = L^(21K). 
We next evaluate 

tr(Tc(^,^F))=tr(ylv(C))T(AVF). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



70 CHAPTER 8. GAUSS SUM RELATIONS 

We have 
t rTc=c trylv(C/?x)^(^). 

xeul/ul+1 
Here, however, it will be more convenient to use UL/UN+1 as the range of 
summation: this only changes the value of c. There certainly exists h G UL 
such that 

zeHl/un+1 
tiAv((3hz)ibA(3hz) # 0, 

where Hl = if* (/3,21). Exactly as in 6.3 Lemma 2, the map 

* 1—> ^ph{z) = 
v A(Bhz) 
i>A(f3h) 

is a character of Hl and, since the last sum does not vanish, 

(8.2.3) ^h(z)=6(z), zeH1. 
Let us write H1 = 1 + fj; the last condition determines the coset (3h + h* 
where ft* denotes the lattice {x G A : ^ ( x y ) = 1, j /G^}. As before, write 
Aa for the map x H-» arra-1 — x G A. Let 3̂ denote the radical of 21. The 
definition of f) (c/. [9] 3.1) gives 

fl* = ^- 'n(AQ(il)+?p1-/) 

= ^1- /+(AQ(A)n^-z) 

= q31-z + Aa(^-z), 

after an easy calculation along the lines of [9] 1.4. Put another way, 

ft* = №+1 + AaCp')) a = (Bl+1 + Aa(«p*)) /3. 

We have already observed that 8.2.3 determines the coset /3h + $)*; since h* is 
invariant under conjugation by /?, the relation 8.2.3 therefore determines the 
coset h(l + Aa(*pz) + Bl + 1 = h(l + Aa(<pz))[/m. However, if h = 1 + x and 
we take y G 3̂Z, h! — 1 + x — AQ(a_1ya), we have 

f3h'Ul+1 = ̂ (l-y)/3hUl + 1(l-y)-1. 
On the other hand, we assert 

(8.2.4) Aa(%1) + <£m C ACa(¥l) + Bl + 1 

To prove this, we first observe that a acts on Bl / Bl+1 (by conjugation) as 
an automorphism of p-power order, while £ (which commutes with a) acts 
with p-prime order, r, say. Thus the fixed points of (a are the common fixed 
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points of a and £. A tame corestriction sa on A relative to F[a]/F (see [9] 
1.3) provides us with a surjection to the fixed points of a, whose kernel is the 
image of Aa. However, if we compose sa with the map x \-t S o ^ r - i CXC~\ 
we get a surjective map to the fixed points of (a whose kernel is the image 
of A^a. Hence, as endomorphisms of ^/?pl+1, we get ImAa C ImA^a, as 
asserted. 

The identity 8.2.4 shows that we can write h! = 1 + x + Ac^(a-1^^vaQ, 
v G 9$*, so that 

CPh'U1 = (1 - v)((3hUl+1(l - v)'\ 
Thus tiA(C(3hf) 7̂  0. In other words, the property 8.2.3 of h is shared by all 
elements of the coset h(l + Aa(^l))Ul+1. 

However, property 8.2.3 is also valid for the element /î , since 9^ = 0. We 
deduce that x = h - 1 is a fixed point of C on ^l/(Aa (Vl) + ^+1). We can 
therefore choose x to commute with £. We have shown: 

There exists ho G UlK such that 

] T trAv((Ph0z)ipA((3h0z)^0. 
zeHl/un+1 

We might as well, therefore, take this ho to be the same as the one in 8.2.2. 
Now we can use our support criterion A1.8. Arguing as in 6.3, we have 

trTc = c E tiA^gtp hozg-1) V*(C V / ^ j T 1 ) . 
zeHl/un+19eul/un+1 

It will be more convenient to write the second factor in the summand as 
^A(b_1, (~l]0hoz) (using square brackets to denote the commutator). We 
sum first over z. The contribution from g vanishes unless 

Mb-^C^Phoz) = i;A([g-\C1}Pho)e(z), 

for all z G HL. By our arguments above, this forces 

[g-\Cl] e {l + ka{^l))Ul+\ 

Our sum is thus reduced to 

trTc - ctiAv(((3h0) ^A(Pho) • 27, 

where 

27 = 
9 

vA ([g-1, C-1] Bho) 
vA (Bh0) 
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with g ranging over U /Un+ subject to the condition 

|^ -1 ,r1]€( l + Aa(«p,))I7'+1. 

If we write g = 1 — x, we get 

27 = Mfiho(x -x< + x{x - x^))) 
X 

with x now ranging over Bl/Bl + 1 subject to the condition 

x-x^ eAa{¥l) + yl+1. 

Since £ commutes with both /3 and /iq, we get ipA(/3ho(x — x*>)) = 1. Therefore 
only the quadratic term matters, and we find 

E = cJ£2tl>A(Ph0x(x-xt)) 
X 

= c ^2^A{OLX{X — X**)) 
x 

= c(»(a,a,C), 

as required for the lemma. • 

8.3. We now prove the first equality in Lemma 8.1. In the notation of that 
section, we choose 0° G Ce(2l0,a), A0 G e<2(0o), A°K = gK/F(A°)- BY Lemma 
8.2, we have 

(8.3.1) r(A°, 1>F) = CT(A°k, ipK) <5(2l0, a, C). 

Now let us use the notation of 8.1, and set dimKE(V) = t. We can form the 
central type AM — (A°)W as in 3.3; this is attached to a principal order 2lm 
minimal for the property of being normalized by (KE)x. We set 

A = eT%N0ijp(AM), 

and form AK — 9K/F(A). This is related to A°K in exactly the same way: it is 
the transfer (via a map CT) of the t-fold multiple of A°K, since the Glauberman 
correspondence QK/F commutes with these constructions 4.5. By 6.4 Corollary 
2, we have T(A,I/>F) — cr(A°,^F)* and T(AK^K) = cT(A°K^K)tj whence the 
assertion follows. 

As a consequence of this, we show: 

Lemma. — Suppose that p = 2. Then 0(21, a, £) is real and positive. 
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Proof. — Since a is minimal over F and F[a]/F is totally ramified of degree 
2m > 1, the valuation of a in F[a] is odd. Thus, in our standard notation, 
0(2lo,a, C) — 1 by definition, and the result follows from what we have just 
proved. • 

8.4. We now prove Theorem 1.6, modulo the second equality in Lemma 8.1. 
The notation of 1.6 is identical to that of 8.2 except that KE is now a maximal 
subfield of A and 1.6 allows a G F. We continue to exclude this possibility 
and treat it separately below. Moreover, in 1.6, the tame extension K/F is 
arbitrary. 

The identity we have to prove is: 

8.5. We still have to deal with the case of Theorem 1.6 in which a G F. We 
write (3 = a + 7 and assume that the stratum [21 j?, ni, 0,7] is simple, for some 
n\ > 0. (The contrary only arises in the uninteresting case m = 0.) We then 
have 6 I Un = ^7 (x 0 det), for some quasicharacter x of Fx. Replacing F 
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(8.4.1) e(7rF,s,ipF)d 
e(7rF,s,ipF)d 

S(PK/FISI*1>F) 
S(PK/FISI*1>F) 

pm 
SK/FWE/FW) (B)). 

The left hand side here is independent of s, as follows from a simple computa­
tion based on 6.1 Lemma 2. Since K/F is tame, the same applies to the right 
hand side. Next we observe that both sides of 8.4.1 are transitive in K/F, so 
can reinstate our hypothesis that [K:F] = d is prime. 

The left hand side of 8.4.1 is CT(AK ,IPK)/^{AF^FY!-d. On the other hand, 
Lemma 8.2 gives us 

T(AK, il>K) = CT(A, I/JF) 0(21, a, C)"1. 

We recall that A = A0 <g> < ^ ^ \ where pm = [E:F], by its definition in 
5.3, while T(A°,%I>f) = cr(AF,ipF)d by Corollary 6.4. Thus r(A,xpF) = 
r(AF,'ipF)DSK/F(NE/F(/3))prn~1. So far, we have 

r(AK,ipK) 
r{AF^F)d = cSd K /F(NE/F(ß)Y,-1e(%<*,0-\ 

recalling that m ^ 1 and that &K/F has order at most 2. Next we note that 

*K/FWE/F(P)) = < W N F M / F ( « ) ) [ * : F ] / № ] : F ] , 

since a = (3 (mod I/1 (21)). Theorem 1.6 now follows from Lemma 8.2. 
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by if, we have exactly the same situation, with XK = X ° ^K/F replacing x-
Proposition 6.2 gives us 

T{AK,fJ,K) = ctT(AvK(P))xK(<*ym ^AK(l)r(XK^K)pm, 

T(A,1>F) = ctv(A"(f3))X(a)dpm ^ ( 7 ) r ( x , VF)*"1, 

with possibly different values of c > 0. Comparing these expressions, we get 

T(A^F) 

T(AK, VK) 
= c 

T(X, VF)d 

T(XK,*I>K) 

pm 

Theorem 1.6 certainly holds for one-dimensional representations of GLi, so we 
have 

T(X.K,II>K) 

T{x,i>F)D 
= c 

e(lK,8,il)K) 
£{PK/F,S^F) 

^K/F{OL), 

whence 

T(PK/FISWK) 

T(A^F) = c 
E (PK/FISI*1>F) 

£(PKIF<>S^F) 

pm 
SK/FW- PM. 

We have &K/F(A)PM = 0K/F(N E/F (P)) since a = /3 (mod U1) and dK/F is 
tame quadratic. The theorem follows in this final case. 
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C A L C U L A T I O N O F T H E C O M M U T A T O R 
G A U S S S U M 

We have to calculate the Gauss sum (3(2lo,a, () of 8.1. Since 2to will now 
be fixed, we drop all the attached O's. We recall E = F[a] and set [E:F] = pm. 
It will also be simpler to put 

£(K/F) = E (1K, S, VK) 
e{pK/F,s,yJF) 

9.1. Suppose first that n is odd. Thus, by definition, (8 = 1, and we have to 
check that 

(9.1.1) E(K/F)-^mdK/F(NE/F(a)r = c > 0. 

Suppose first that K/F is unramified. The character SK/F is then unramified 
and SK/F(PF) = ( — S i n c e n = —VKE(OL) is odd, we have 

SK/F^EIF^(A)) = (-I)""1. 

On the other hand, since ipF has conductor p^, we get £(K/F) = c(—l)d-1 
and the result follows. Taking K/F totally ramified, since d divides n, we see 
that d is odd. By [3] 10.1.6, the character 8K/F LS unramified and 

^K/F(PF) = 
q 
d 

where (|) is the Legendre symbol. Also, loc cit., 

ElK/F) = c q 
d 

This proves 9.1.1. 
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9.2. We are thus left with the case in which n — —VKE(<X) — 2/ is even. Since 
a is minimal over if, this case cannot arise when p = 2. Thus, we assume from 
now on that p is odd. We need some preliminaries on classical Gauss sums. 

We are given a finite field k of odd characteristic and a non-trivial additive 
character ^ of k. We put 

02 (</>k) = 
x EK x 

X2(#)^kW, 

where \2 is the non-trivial quadratic character of kx. 
Now let V be a finite-dimensional k-vector space and Q : V -> k a quadratic 

form. We define 
g(V,Q,rpk) = Y,MQ(X))-

xev 
By a simple exercise, we have: 

Lemma 1. — Suppose that V has dimension n and Q has rank r. Let Qf denote 
the nonsingular part ofQ. Then 

g(V, Q, th) = X2(det Q') \k\n~r 02(^k)r. 

Another elementary result will be useful: 

Lemma 2. — Let V be a k-vector space of finite dimension n and let Q be a 
nondegenerate quadratic form on V. Let W be a subspace ofV of codimension 
r and suppose that the radical of Q \ W has dimension at least r. Then: 

(i) the rank of Q | W is exactly n — 2r; 

(ii) the determinant of the nonsingular part of Q \ W is (—l)rdetQ. 

9.3. We return to the commutator Gauss sum 
(5 = 0(21, a, C) = 

xewL/KL+1 
ibA{otx(x — r ) ) . 

x - xc E Aa (B') + Bl + 1 
Lemma 3. — There exists 7 G KE such that 72a is a root of unity [i G F of 
order prime to p. / / ^ ( a ) is even, we may choose 7 G E. 

Proof. — Since p is odd, the group Up is 2-divisible. If VE{OL) is even, we can 
therefore find 7 G E such that 72a is a p-prime root of unity \i G E. Since 
î /i*1 is totally ramified, we have [x G F. 

If, on the other hand, ^ ( a ) is odd, the extension if /F is ramified quadratic. 
As before, we can find 7 G KE with JJL = j2a a p-prime root of unity. Since 
KE/F is totally ramified, we have / iGF. • 
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This element 7 has KE-valuation /, so 72I = tyl and x \-> yx gives an isomor­
phism 21/̂ 3 = tyl Bl + 1 which commutes with the obvious conjugation actions 
of a and £. We thus have 

G = 

y EU/'B. 
2/-2/CGAa(2l)+<P 

il'AKWiy-yV). 

Since a and £ act on 21/̂ 3 with relatively prime orders and commute with each 
other, the condition y — G Aa(2l) + <)3 is equivalent to y G Aa(2l) + 2l# + <P, 
where 21^ = 21 fl End# (if£?). For z G 21^, we have ipA(fi>z(y - j/̂ )) = 1, so 

0 = c 
z€Aa(2l/<p) 

VA (uxy (x - xc)), 

where Aa(*/qj) is short-hand for (Aa(2l) + B) / B. 
We can now apply the elementary considerations of 9.2 to the field kp, the 

character ^ : x ^F(I^X) of ki?, the vector space V = Aa (21/̂ 3) and the 
quadratic form 

(9.3.1) Q(v) = tr(^7(i; - vf)), « 6 7 . 

Thus, in the language of 9.2, we have (3 = fl(V,Q,Vv*)- By 9.2 Lemma 2, we 
need to compute the rank and the determinant of the nonsingular part of Q. 

For the time being, it will be convenient to regard Q as being the restriction 
to V of a quadratic form QQ on 51/̂ 3 defined by the same formula 9.3.1: 

Q0(v) = tr(v^(v - «C)), v G a/qj. 

We first suppose that i f /F is totally ramified. The algebra 21/̂ 3 is then 
the direct sum of pmd copies of kp. The group (KE)X acts by permutation 
of the coordinates, or, if preferred, by permuting the set of indecomposable 
idempotents of 21/̂ 3. In particular, the action of x G (KE)X depends only on 
the valuation of x. Our element a has d orbits of length pm and £ has pm orbits 
of length d in this set of idempotents. The element 7 has the same orbits as a 
except in the case where z/#(a) is odd (and so K/F is ramified quadratic). In 
this exceptional case, the element 7 has a single orbit of length 2pm. 

Let us deal first with this exceptional case: 

(9.3.2) K/F ramified, d = 2, uE(a) odd. 

The element 7 acts transitively on the indecomposable idempotents (call them 
ei) of the algebra 21/̂ 3; we may as well number these so that ej = e$+i (taking 
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indices mod 2pm). Thus ef = ê _2, and the image of Aa consists of elements 
]T\ Xiei such that 

pm 

i=l 
Xoi = 0 = 

pm 

i=l 
X2i – 1. 

On the other hand, ( interchanges e\ with epm+i, 1 ^ % ^ pm. The £-fixed 
subspace of 21/̂ 3 is contained in the radical of Qo> so we need only look at 
the restriction of Qo to the space of x such that x^ — —x. Making an obvious 
choice of basis in this space, Qo is there given by 

Qo(̂ l?^25 • • • ,Xprn) = 4(̂ 2X1 + X3X2 H + XpmXpm_i — X\Xpm). 

A pleasant computation shows that this form is nondegenerate with determi­
nant — 1 (mod squares). The image of Aa in this space consists of vectors (XÌ) 
such that 

pm 

i=l 
(-lfxi = 0. 

where we have written -0k for the character of kp induced by tpp. We can 
re-write this as 

© = CX2(-/i)fl2(^k)pm. 
Now, we defined 7 G i fF by the relation 72a = µ nd / iGf . Thus 72 G £ 
while 7 ^ F (since 72 has odd valuation in F). Thus N#£/£(7) — ~72 = 
—//a-1. The character dK/F is the norm-residue character for the extension 
K/F [3] (10.1.6) so 

8K/F№E/F(<*)) = DK/F NE/F{-^KE/E(j-1))) 

= 8K/F (NE/F(-V>)) 

= X2(-/i)-
On the other hand, by direct computation from Tate's thesis [37] (3.2.6), we 
find that 

E(K/F) = c02O/>k). 
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In particular, ImAa contains the vector xi = (1 , -1 ,1 , -1 , . . . ) , which is or­
thogonal to all of Im Aa. On the other hand, the orthogonal complement of 
X2 = (1,0,0,..., 0) is spanned by X2 and a subspace of Im Aa of codimension 
one. The space spanned by x\ and X2 is nondegenerate with determinant — 1. 
We deduce that the nonsingular part of Q on Im AQ has determinant +1. 

In the case (9.3.2), we therefore get 

© = CX2(M)02(^Fm-2, 
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This gives the desired result in the present case (9.3.2). 
Now consider the case 

(9.3.3) K/F ramified, d = 2, i/E(a) even. 

This is very similar to (9.3.2), except that the form Qo : v \-> tr(«7(« — v**)) on 
Sl/^3 has determinant +1 in the £-skew part of Sl/^J, while Sx/E(NE/F(a)) = 
X2(A0: we leave the details as an exercise. 

Now we turn to the case 

(9.3.4) K/F ramified, d odd. 

To deal with the case 9.3.4, we need another digression. 

9.4. In this paragraph, we are given a finite field k with characteristic p ^ 2 
and a cyclic group C of odd prime order t ^ p. We consider pairs (V, /i), where 
V is a finite kC-module and / i r ^ x l ^ — > > k i s a nondegenerate symmetric 
bilinear form which is C-invariant: 

h(cvi,cv2) = h(vi,v2), vi e V, c e C. 

Such objects are semisimple. The simple objects of this kind are as follows, 
modulo the obvious concept of isomorphism: 

9.4.1 

(i) dimF = 1, and the action of C onV is trivial; 
(ii) there is a simple kC-module W, not isomorphic to its contragredient Wy, 

such that V = W 0 Wyand the form h is aiven by 

h((Wi,Wi), {W2,W2)) = \wi,w2) + {w2,wi}, 

Here, (, ) is the canonical C-invariant pairing W x Wy —> k. 
(iii) V is simple as kC-module and the action of C is non-trivial. 

In cases (ii) and (iii), the isomorphism class of the pair (V,h) is determined by 
that of the underlying module V, and the dimension ofV is even. In case (ii), 
we have det/i = ( - l )^1 ' /2 . In case (iii), det/i is of the form (-l)dimV/2^ 
where </> G kx is not a square. 

Any irreducible, self-contragredient kC-module appears in a pair (V,h) of 
type (iii). 

The description 9.4.1 is compatible with the following description of the 
irreducible kC-modules. We first fix a generator Co of C. We next fix an 
algebraic closure k/k and write r = Gal(k/k). Write ¿4 for the set of primitive 
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i-th roots of unity in k. The isomorphism classes of non-trivial simple kC-
modules are then in bijection with the set of F-orbits in /j,'t The underlying 
module V is simply the field extension k'/k generated by a primitive ^-th root 
of unity, and Co acts as multiplication by a root of unity £ in the given orbit. 
In this description, the self-contragredient modules are those corresponding to 
orbits containing both some ( and its inverse. 

All of these assertions are quite easy to establish; the analogous case of 
alternating kC-modules is treated fully in [3] §8.2. The ideas involved are so 
similar that we can omit the details here. 

9.5. We return to the case (9.3.4). The first step, as before, is to choose 7 G E 
and a p-prime root of unity /i G F such that 72a = \i. Since a is minimal 
over F, its valuation is relatively prime to e(F|F), whence Ada generates the 
image of Ad(F[a]x) in Aut(2l/^3). In particular, Ad7 is a power of Ada. We 
have to consider the restriction, Q, of the quadratic form 

Qo(x) = tv{x^(x - x^)), x G 2l/q3, 

to Im Aa. 
In this case, we can make a useful simplification. Let 2ta denote the unique 

AdF[a]x-stable hereditary o^-order in End/r (F[a]). Write *}3a for the radical 
of 2lQ. Likewise, let 21̂  denote the unique Ad Kx -stable hereditary o^-order 
in Endp(K)^ and ^ its radical. 

As kjr-algebra, we have 

U/B = Ua/Ba O Kf Uc / Bc. 
The first (resp. second) factor here carries a natural conjugation action 

by a (resp. £); the isomorphism of algebras is then also an isomorphism of 
(Ada,Ad£)-modules, where a (resp. Q acts trivially on the second (resp. 
first) factor. Our quadratic form decomposes as a tensor product: 

Qo = Qa ® Q<, 

Qa(x) =tl%3t/Va(x'Yx), 

QC(X) =tlqic/Vc{x(x-xt)). 

Here, for example, tr<aa/<pa denotes the algebra trace 2ta/^3a —• kp. Further, 

Aa(2l + «p/«p) = (Aa(2la + Va/Va)) ® Oc/Vc-
We can identify 2la/̂ 3Q with k^ in such a way that (xi,x2,... iXpm)^ = 
(#2, X3,..., Xi) we then have 

Qa(xii • • • iXpm) = X1X2 + X2X3 H + XpmXl, 
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and this form has determinant 1. Restricting to the image of Aa, it has rank 
pm — 2 and the determinant of its nonsingular part is —1, by (9.2) Lemma 2. 

On the other hand, Qç is null on the Ad£-fixed points in 2 1 ^ / ^ , but is 
nondegenerate on the image of A .̂ It is, moreover, Ad (^-invariant. The space 
21 /̂̂ 3^ is free of rank one over the kp-group ring of the cyclic group (of order 
d) generated by Ad(. Thus Qc has rank d — 1. 

In all, Q has rank (pm — 2)(d — 1), and, taken mod squares, the determinant 
of its nonsingular part is the determinant (call it A) of Qç on the image of A .̂ 
This gives us 

© = cX2(A)S2Wipm-2){d-l) = CX2(A)X2(-I){d-1)/2. 

On the other hand, appealing to [3] (10.1.6), we have 

£(K/F) =c qF 
d 

and the Legendre symbol ( ^ ) equals (—l)5, where s is the number of non-
trivial self-contragredient Galois orbits of d-th roots of unity over kp. Let 
k'/kp be the field extension generated by a primitive d-th root of unity, and 
set d' = [k':ki?]. If d' is odd, no Galois orbit here is self-contragredient. In this 
case, 5 = 0, and A — (—\)(d~l)l2d whence 0 = 1, as required. 

On the other hand, suppose that d' is even. All Galois orbits are then self-
contragredient, and s = (d — l)/d'. Thus, choosing a non-square <j) G k£, we 
get 

A = <j)s(-l)sd'l2 = ^(- l)^"1)/2, 

and 0 = (^f )*\ as required. 

9.6. We are left only with the case 

(9.6.1) K/F unramified, VE{&) even. 

We define 2la as in 9.5, and let 21̂  be the unique hereditary o^-order in 
EIHIF(K) stable under conjugation by KX. Again, 

Aa(2t + B/B) = (Aa(Oa + Va/Va)) ® Uc/BC 

The algebra $la/tya is k ,̂ , the same as before. But, this time, 2 1 ^ / ^ = 
M(d,kp) = EndicF(kx) with the natural conjugation action by £. 

The quadratic form QQ again decomposes as a tensor product QA®Q(- The 
first factor is as before. The second is Q^(x) = tr(x(x — x^)); this is null on 
the centralizer of ( and nondegenerate on the image of A .̂ Thus its rank is 
d2 — d, and that of Q is (pm — 2)(d2 — d). The determinant of the nonsingular 
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part of Qa is - 1 . Writing A for the discriminant of the nonsingular part of 
Qç, we therefore have 

0 = cX2(^2(VV)(pm-2)(d2-(f) = CX2((-l)(d2-d)/2zi). 
On the other hand, 

e(PK/F>8,*l>F) = c(-l)d~1. 
Take first the case d = 2. The space Im Ac is then k^, with action 

^ = С^(С)"Ч С e 14, Kx k 
where a is the non-trivial element of Ga^k^/k^). This space admits a unique 
nondegenerate symmetric bilinear form invariant under this action of k^ 9.4; 
the determinant of this form is — </>, </> a non-square in kj?. In other words, 
(3 = —c, as required. 

Now we take d odd. In this case, we identify 5 1 ^ / ^ = EndicF(k^) with the 
"twisted group ring" k ^ r , where r — Gal(kx/ki?). As left k^-vector space, 
this has a basis [cr], a G F, and multiplication [a]x = xa [<J], a G J\ We 
therefore have 

Ac (Uc / Bc) = 
crGGal(kx/kF), 

o#1 

kK [0] 

The action of Ad^ on the factor 1CK[C] is left multiplication by C_1Ĉ  • The 
kp-contragredient of k^[cr] is k^[a-1]; the form Qc is therefore hyperbolic, 
with determinant (—\)(d2~d)l2. This implies 0 = c, and we have completed 
the proof of Theorem 1.6. 
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CHAPTER 10 

COMPARISON WITH BASE CHANGE 

We now prove the proposition and theorem of 1.8. 

10.1. We start with the proof of Proposition 1.8. We are given a cyclic tame 
extension K/F and np G A™(F). The case m = 0 is trivial, so we exclude it. 
Let [21^,7^,0,/?] be a simple stratum underlying some maximal simple type 
occurring in 7Tp, and choose a simple stratum [21̂ ,77̂ ,77,̂ —1,0] equivalent 
to [21 ,̂77 ,̂7^—1,/?]. Since both tame lift and base change commute with 
twisting by quasicharacters of Fx, we can exclude the case a G F. 

Next, put TTK = IK/F{^F)\ this contains a maximal simple type with under­
lying stratum [2l#, nk 0, /3]. Also, [21^, n#, n#—1, a] is simple and equivalent 
to [21K, 77,^,72^-1,/?]. Again we have a £ if and [if [a]:if] = [F[a]:F] = pf > 
1. 

Lemma 1.8 gives us an unramified character x of ifx, of order dividing 
pm, such that TTK - X — ^K/F^F)- By Theorem 1.6 and its analogue for base 
change, we have 

e ^ K / F ^ ( N , F), s, *PK) = e{nK, s, ij)K). 
Thus e(7rx, 8, X/>K) — G{KK * X> 5> ^K) while, by Theorem 1.4, 

^ K - X ^ X S , V , ^ K ) = e(7rK,s,^j0x(det/?)_1. 
Thus 

x (de t / ? )=x(NK [a ] /x (^ ) r "^ l . 
However, since a is minimal over if, its valuation in if [a] is prime to p, so 
uK(^K[a]/K(a)) ls likewise prime to p. It follows that x has order dividing 
pm~l. In particular, if /? is minimal over F, i.e., pm —p1^ the character x must 
be trivial. 

This completes the proof of Proposition 1.8. 
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10.2. For the moment, let the characteristic of F and the finite tame extension 
K/F be arbitrary. The sort of argument used in 10.1 yields some strong 
uniqueness results when the underlying element /3 is minimal. For example: 

Proposition. — Let np G A^(F). Let [21, n,0,/3] be a simple stratum underly­
ing some maximal simple type occurring in irp, and assume that (3 is minimal 
over F. Let Op G 6(21,/3) occur in np, and let 0{np) denote the endo-class of 
Op. 

Let 7TK G A™(K), and define 0(TTK) similarly. Suppose: 
(a) 0(irK) is the K/F-lift O/<9(TTF); 
(b) the central quasicharacter of TTK is cop o N^/F? where cop is the central 

quasicharacter of irp; 
(c) e(nK,s,il>K) = e(lK/F(nF),s,il>K)-

Then TTK — IR/F^P). 

10.3. We reinstate our hypothesis that F has characteristic zero, and prove 
Theorem 1.8. (We remark that properties of local constants play no role in 
this proof.) 

We are given TTF G A^(F) and a cyclic tame extension K/F of degree d, 
with p\d. We have to show that bK/F(7rF) = IK/F^F)-

Both base change and tame lift are transitive in K/F, so we can assume 
that d is prime. We write KK — IR/F^F), and retain the notation of §5 used 
in the original definition of TTK> In particular, irp contains the central type AF 
and TTR contains the central type AK = 9K/F(A) constructed as there. Note 
that, under our present hypotheses, the character SPK^ is trivial and so, in 
the notation of 5.3, we have A = 1̂°. 

We choose prime elements zuF of F, wF of J5, so that wyE = wF mod 
Jj\. After twisting by a tamely ramified character, we can assume that the 
central quasicharacter up of TTF is trivial on wF and the group fJ>fp(F) of roots 
of unity in F of order prime to p. This means that the central type Ap 
is effectively a representation of the finite p-group JF/(KeY 9F, mF, fi'p(F)). 
Similar comments apply to the representations A and AK \ EXJ}{. 

We now write J1 = Gal(if/F), and fix a generator a of R . As in §5, we view 
JF as embedded in Ex J1 uon the diagonal". This image lies in Ex JK and is 
the set of cr-fixed points in Ex J]^. The restriction of 6K to Hp C H^ is then 
Op. Since d is prime to p, one shows easily (from the definitions in [9]) that 
the stratum [21̂ ,77̂ ,0,0?/?] is simple, and 6p G 6(21^,^/3). 
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These considerations lead us naturally to the Adams operation tpd. Ii X is 
a (say) finite group and x is a virtual character of X, then il>d(x) is the virtual 
character x i-» x{xd)- If X happens to be of order pn (and, as above, p does 
not divide d), any irreducible character x of X takes values in the field Q(a), 
where a is a primitive pn-th root of unity in C, and rfdx(x) = x(xV'-> where 7 is 
the automorphism a \-¥ ad of Q(a). In this case therefore, ij)d takes irreducible 
characters to irreducible characters (bijectively), and commutes with induction. 
(For a full discussion of the operator ipd, see, for example, [11].) 

Returning to the main argument, the Glauberman correspondence relative 
to the automorphism a then gives us a bijection ga between the irreducible 
representations of EX JK containing 6 K and the irreducible representations of 
Jp = ExJp containing the character 6pix\-^ 6p{xd). 

Lemma 1. — There is a unique A\ G £Q(6F,U>F) such that 

ga(AK\ExJ1K) = xl>d(A1), 

that is, 
tx(gcAK(g))=txA1{gd) 

for all g G JF-

Proof — Since d is prime to p, the operation ij)d gives a bijection between 
the sets QG(0F,VF)I C C ^ ' ^ F ) - The lemma then follows from the character 
relation A2.4. • 

Now let RK (resp. Ri) denote the (irreducible) representation of the group 
EXU1(f2LK) (resp. EXU1(^iF)) induced by AK (resp. Ai). We can use a to 
define a Glauberman correspondence between P-stable irreducible representa­
tions of EXU1($IK) with central quasicharacter LVK (restricted to FxUjc) and 
irreducible representations of EX Z71(2ljp) with central quasicharacter wf. The 
Adams operation and the Glauberman correspondence both commute with 
induction (cf. 4.4, A2.2). Under this bijection, RK therefore corresponds to 
Vd (R1). 

Lemma 2. — There exists u G U1(%F) such that 

tril>d{Ri)(wEu)£Q. 

Proof. — Let x range over the set of unramified characters of FX of order 
dividing pm; the representations R\ ®x°det are then distinct by 3.2 Corollary 
1. The same applies to their images under the Adams operation xj>d, and so 
the lemma follows. • 
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Now let 7Ti G Am{F) denote the representation of GF induced by A\. 

Lemma 3. — We have TTK = bK/F(^i)' 

Proof. — We extend AK to a representation of r K KExJj{ so that trylx(cr) 
is positive (cf. [5], remark following 14.21). This induces a representation TTK 
of r tx G/f, extending the original 7rx, whose character is given by 

(10.3.1) tiicK(ga) = 

xeJb\GK/JK y£JbxJK/JK 
trAK{y 1gvy), 

for appropriate elements g G GK (see, for example, [5] A. 14). We evaluate this 
expression for g = WEU, where u G J71(2ljp) satisfies Lemma 2. 

For y G GK<> the term tryl^(y_1#cry) is, by definition, zero unless y~lgcry 
lies in JK0. Thus, any y which intervenes in the sum 10.3.1 must conjugate 
gd = (gcr)d into JK- However, gd generates a maximal subfield of AK and is 
minimal over K. The condition y~~1gdy G £(2l#) then forces y G &(%IK)- We 
are allowed to adjust y by an element of J#, so we can assume y G L/*(2tx). 
We have y~xgdy G #dt/(2l#:) fl JK, whence y~1gdy = gdn>u, for some u G J\ 
and a root of unity ¡1 G if of order prime to p. Comparing determinants, we 
get /1 = 1. In particular, y~lgdy G 5FDC/1(2lx) and y G 17(21^). Since #d is 
minimal over if, this implies that y lies in the [/(21^)-centralizer of gd times 
t/1(2l/^). The centralizer of #d in C/(21X)/J71(21K) is exactly o * / ^ , and the 
cosets here are represented by the group of roots of unity in K of order prime 
to p. So, after adjusting y by an element of Jx, we can assume y G t/1(2lx)-
Thus the expression 10.3.1 reduces to 

tmK(g<j) = tri?K(#<r), 

for our element g. 

A similar argument yields 

tvn1(9d)=tvR1(gd). 

Invoking Lemma 2, we now have 

(10.3.2) tr7TKM=tr7Ti(^)^0. 
As in the proof of Lemma 1.8, the representations bK/Fi^i), NK can only 
differ by an unramified character of order dividing pm. The relation 10.3.2 
then implies TTK — ^/FC^I)? as required for Lemma 3. • 

To complete the proof of Theorem 1.8, it remains therefore to check that the 
representation Ai of Lemma 1 is equivalent to Ap. 
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The central type AK is obtained from the central type A = ^K/F(AF) € 

66(0) by a Glauberman correspondence relative to an element £ G K, just 
as in §5. (Recall that, in all cases to hand, we have A = A0.) However, the 
action of the automorphism group generated by £ and a gives us a Glauberman 
correspondence g = goc connecting GG(#) and GQ(6p). By the transitivity of 
the Glauberman correspondence, we need to check that 

(10.3.3) g^(A)*±tl>d(AF). 

We observe that there is a character % of Ex Jp/Fx Jp such that ga^(A) — 
i^d(Ap ® x); thus 10.3.3 holds at least up to a p-power root of unity. 

Let pa denote the order of the group 

9 = ExJ1/{wF,VL'p{F),Ker0). 

The representations A, Ap and AK \ Ex J1K can then all be realized over the 
field 

(10.3.4) C = Q ( e 2 * ) c C 

Suppose first that K/F is ramified. The group of automorphisms of S 
generated by a and £ then has order d2. By [14] Corollary 6 (applied twice), 
there is a representation A2 of J p and a sign e such that 

tryl I Jp = etrgA + dtrA2. 

We evaluate ti A(g), for an element g = m3Ehj, where hj G Jp is chosen so that 
tr Ap(g) y£ 0. We apply the Mackey formula for the character of an induced 
representation to the construction of A0 — A from Ap. This gives 

ti A(g) = tricar"1), 

xeJ^J1 
in the notation of 3.3. We can take the coset representatives x from J1 fl Ni 
(modulo Hl^Ni). The element xgx~l then lies in the inducing subgroup Ex J1 
if and only if x represents a fixed point of g, i.e., of m3E, on J1 fl N^/H1 fl Afy. 
For such x, we have [x, g] G H1 fl Afy, and so 

txA(xgx~l) = 0[x,g]tiA(g). 

However, 9 is null on H1 fl Nl (as in 3.3), so we have 

txA{g) = qp9)tvAF(g)d, 

where h(g) is the kp-dimension of the space of fixed points of wJE on the kp-
vector space J1/J1. The field F contains a primitive d-th root of unity, so we 
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have qF == 1 (mod d) and hence 

tiA(g) = trAF(g)d (mod d). 

The quantity trAp(g) is a sum of pa-th roots of unity; thus, reducing modulo 
a prime divisor D of d in the field C, we have 

trAF(g)d = trylF(^) (mod Z>). 

Thus 

trA (g) = trEEtr^(^)(#) (mod 8); 
reduction mod D is injective on the irreducible characters of the finite p-group 
S, so this is enough to give ij>d(AF) = gA, as required. 

In case K/F is unramified, we choose the root of unity ( G K to have 
prime order d' mod KFx In particular, qE = l (mod df). We can construct 
the representation A = A0 from yip in the same way as in the ramified case, 
using an Iwahori decomposition for J1. This comes about as follows. First, 
the identification FpTn ®F K = KpTn induces the algebra decomposition 

EndF(Kpm) = AF ®F EndF(K), 

where AF = EndF(Fpm); this in turn gives 

a = SlF ®oF EndOF(ox). 

Now write J1 = 1 + 31, J1F = 1 + 3^5 this last decomposition gives us 

Z1 = 3F ®OF EndOF(oK). 

We choose an ordered o^-basis of OK to identify End0F (OK) with 9Jt = Mpm (oF). 
We write 9JI — 9Jt_©9Jto©9Jt+5 where the factors are respectively strictly lower 
triangular, diagonal, strictly upper triangular matrices. We thus obtain a Levi 
subgroup L = (AF <g> 9Jto) PI G of G and unipotent radicals Nl = 1 + AF ® 
7VU = 1 + AF ® m+ This gives an Iwahori decomposition 

J1 = J1 f! Afy • J1 f) L • J1 f) iVu. 

Also, JxnL is identified with Jf x • • • x JE in the obvious way. We have a similar 
decomposition for H1. Thus we can form the group J1 = H1nN£-J1nL-J1r\Nu 
and construct A from AF as before. (This method is equivalent to the one used 
in §4.) We get 

trA(g)=qF{9HVAF(9)d, 
where h(g) is the dimension of the space of fixed points of g (or w3E) on J1 / J1. 
Writing jHĴ  = 1 + # F , we have 

J1/J1 * ZF/^F ® JW_ ^ (3F/i3F)^~1)/27 
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and g commutes with the factor 9Jt_. Thus h(g) = riF(g)d(d—l)/2, where 
npig) is the dimension of the space of fixed points of w3E on JE/Hp. 

We first apply [14] Corollary 6 to the Glauberman correspondence g^. Since 
AK — 9{{A), this gives us a representation A3 of Ex J]^ and a sign e' such that 

ixA\ExJlK = etiAK + d'tryl3. 

We note that As | H]^ is a multiple of 9K\ hence it is a sum of irreducible rep­
resentations of the form AK <8>X> where \ is an abelian character of Ex JK/JK-

We abbreviate Q(g) = qEF^'. For g G JF? we therefore have 

(10.3.5) Q(»)d(d-1)/2trylF(5)d = e'tvAK(g) + d'tvA3(g). 

We can rewrite this as 

Q(g)d^2tvAF (g)d = c(g) trAK(g); 

the quantity c(g) is a Z-linear combination of roots of unity in the cyclotomic 
field C of 10.3.4. By A1.4 below, we have 

|tr^F(5)| = Q{gfl\ \txAK{g)\ = Q{g)d'\ 

where | | is the ordinary complex absolute value, whence 

\c(g)\ = Q(g) d(d-1)2. 
Let 7 G Gal(C/Q); we have (by, for example, the defining character relation 
for the Glauberman correspondence) the relation A^K = g^A1). Consequently, 

c(gY /Q(g)d{d-l)/21 = 1, 7 e Gal(C/Q). 

Write pc for the unique place of C above p. The quantity c(g)/Q(g)d^d~1^2 
is integral at every finite place of C except possibly pc- We have just seen 
that it has absolute value 1 at every infinite place; by the product formula for 
valuations, it is an algebraic integer, and indeed a root of unity, in C. We have 
proved: 

Lemma 4. — For each g G JF as above, there is a root of unity co(g), of order 
dividing 2pa, such that 

tr AF{g)d = c0{g) trAK{g). 

Now we compare with the relation 10.3.5. Let Df be some prime divisor of 
d' in C. Since d' divides qj? — 1, we get 

tvAF(g)d = ±trAK(g) (mod D'). 
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The quantities tr Ap(g), tr Ax(g) are algebraic integers; by A1.4, their absolute 
values at infinite places of C are all powers of yjp, whence they are divisible 
only by pc- In particular, neither is divisible by Z)', so 

co(g) = ±1. 

We now apply a similar argument to the Glauberman correspondence ga. 
By [14] Corollary 6, there is a sign e and a representation A\ of Jp such that 

txAK | JF = etrga(AK) + dtrA4. 

Reducing modulo a prime divisor d of d in C, we now have 

tvAF(g)d = c^trg^ AK(g) (mod 0), 

for a function ci taking values ±1. We conclude that ga(AK) = cii/>d(AF). 
However, as we observed at the start, ga(AK), ij)d(AF) can only differ by a 
function taking values in p-power roots of unity. Thus, when p / 2, we have 
c\ — 1 and the result. 

Suppose now that p — 2. The integers d, d! are therefore both odd and ^ 3. 
Comparing dimensions above, we find e' = e = +1. Combining 10.3.5 with 
Lemma 5, we now have 

co(<7) = Q(3)d(d~1)/2 = ±1 (mod <*')• 
We have qE = 1 (mod d'), and (d—1)/2 is an integer. Thus co(g) = +1, and 
the result follows. 

This completes the proof of Theorem 1.8. 

We record as a corollary the conclusion of the last step of the proof above. 
Those arguments, we observe, are independent of the characteristic of F. 

Corollary. —Let K/F be cyclic of prime degree £^p, and write F — Gal(K/F). 
Let TTF G A™(F) contain a central type AF G GQ(6F). Let AK G GQ{0K) be the 
K/F-lift of AF. The Glauberman correspondence (relative to some generator 
of r) induces a map g : ee{6K)r -> 6 6 ( 4 ) . We have 

g{AK)=il>e(AF). 

10.4. We give a result complementary to Corollary 10.3, in which we can 
allow the extension K/F to be non-Galois. We assume that K/F is totally 
ramified of prime degree £ ^ p, and that I is odd. We are given -KF G A^(F) 
containing a central type (JF,AF) G QQ(6F). Let (JR,AK) be the K/F-\iit 
of this central type, as constructed in sections 4 and 5. (We use the notation 
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of those sections, especially 5.1-5.3.) As above, we can view Jp as embedded 
in J "on the diagonal", and hence in JK-

Proposition. — In the situation above, the representation AK \ JF is irre­
ducible, and lies in 66(0^). Indeed, 

AK \JF = *I>£{AF) ® vpTn~l, 

where v : JF -> ±1 is given by 

v{xj) = 
QF 
£ 

VE(X) 
, xeEx, j e J>. 

Proof. — We can first tensor irp with a tamely ramified quasicharacter to 
ensure that the central quasicharacter up of irp is trivial on a given prime 
element WF and on roots of unity in F of order prime to p, just as in 10.3. 

We use the notation of 5.3 for the construction of AK from Ap. In the case 
to hand, the character SK/F IS given by 

àK/F{x) = 
QF 
l 

VE (x) xeKx, 

as in 9.1. Thus 

AK = 9K/F(A), 

A = A0 ® 0pm_1, where 

v(xj) = QF 
l 

VE (x) 

for x e Ex and j e J1. 
One can compute the dimensions of the representations Ap, A, AK directly, 

using relations like 

Ap I JXp = rjp, dimrjF = {JXF : #F)1/2-

Since I is odd and K/F, E/F are totally ramified, we find 

dimyl^ = dim Ap, 
(10.4.1) , 

dim A = (dimyli?)*. 

Since AK \ JF contains the simple character 0̂ ,, the first assertion follows. 
Thus, in particular, AK \ JF is of the form ifr^Ap) ® X> where \ : JF -> CX 
is trivial on Jp = UEJF and on Fx. 

Note that this relation also shows that J1 = J1, and there is no induction 
step in the construction of A0 (see 5.2). 

Now we use the relation [14] 

trA | JK = etrAK + £trA2, 
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for some e = ±1 and some representation A2 of JK- Evaluating at the identity, 
we get € = 1. Now we choose a prime element wF of E and u G JF so that 

tvA(wEu) = (trAF(wEu)Y viwEf171'1 ^ 0. 
Evaluating at this element and arguing as in 10.3, we get the result. • 

Remark. — One can deal similarly with the case 1 = 2 provided the relation 
10.4.1 holds. This is equivalent to the jumps of /3 over F, as in [9], being all 
even. This will hold, for example, if F is a ramified quadratic extension of a 
field FQ and nF = lF/Fo(no), for some 7ro G AMR (FQ). 
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APPENDIX: REPRESENTATIONS 
OF FINITE GROUPS 

Much of the foregoing relies on adaptations of rather specialized results from 
the representation theory of finite p-groups. For convenience, we gather them 
here. 

Throughout, we use the following notational conventions. For a subgroup 
if of a group G, we set 

ClH(g) = {h-lgh :heH], g G G; 

NG(H) = {geG:g-1Hg = H}-

ZS(H) = {heH: s^hs = h,Vse 5}, S c NG(#), 

and we use the commutator convention 

[x,y] = xyx~ly~x, x,y G G. 

Al. Characters of certain group extensions 

In this section, we generalize the results of [5] §13. We are given the follow­
ing data. First, p is an arbitrary prime number (in particular, we allow the 
possibility p = 2), and G is an extra special finite p-group of class two. We set 
Z — %>G(G) (which is the centre of G); this group is cyclic, and we fix a faithful 
character x : Z —» Cx. We write V = G/Z, and g for the image in V of g G G. 
Thus V is an elementary abelian p-group; the commutator [g, h] G g,h G G, 
actually only depends on ¿7, h and has order dividing p. The pairing 

(,):VxV- +µp, 

(g,h) •-»• x[g,h], 
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(where fj,p is the group of p-th roots of unity in C) is a nondegenerate alter­
nating Fp-bilinear form on V. 

Let £ denote the unique irreducible representation of G containing X. 
To start with, we are given a cyclic group F of automorphisms of G which fix 

Z elementwise. We impose no restriction on the order of T. The representation 
£ then extends to a representation of the semi-direct product r K G = rG. 
There are exactly \r\ such extensions, and no two of these are equivalent, by 
Clifford theory. We fix some such extension, and continue to denote it by £. 
We write 

y »->trf(i/), y GTG, 
for the character of £. We are mainly concerned in this section with identifying 
the support of the character tr£; this set clearly does not depend on the choice 
of extension £. 

If 7 G r , we write 3(7) for the space {^7(f)_1 : v G V}; one sees that the 
orthogonal complement in V of 3(7) is the group Z1(V) of 7-fixed points in V. 

Proposition Al.l. — Let 7 G J\ Let h1 G G and suppose that tr£(/i77) ^ 0. 
The element h = /i7 then has the following property: if' v G Z1(V), there exists 
g G Zhj(G) such that g = v. 

Proof. — We have to prove that Zhj(G) maps onto Z1(V) under the natural 
map G —t V. For any g G G, we have ti^(g^h^g~l) = tr£(7/i7) ^ 0. Choose g 
so that g G Zy(V). We expand 

g-yhg'1 = g^yg"1^1 • 7^ • h~xghg~l 
= [g,j] - ih-{h 1,д]. 

The outer commutator factors here lie in Z, so 

HiQlhg-1) = xb,7№-1,9]tr£(7h). 

Since x is? by assumption, faithful, we have 

1 = [9,l][h-\g] = ging-1^h-1-ighg-1. 

Conjugating this expression by g^g~lwe get 

1 =1-1h-lghg-1 g1g-1 = [(hj)'1^}. 

Thus g commutes with /17, as required. • 

We do not yet assert the existence of an element /i7 G G satisfying the condi­
tions of Al.l: this will be established below. 
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Proposition Al.2. — For 7 G r, let /i7 G G satisfy Al.l. For an element 
g G G, the following conditions are equivalent: 

(i) tr£(7<7) # 0; 
(ii) 7*7 ¿5 conjugate in rG to an element of jh^Z; 

(iii) 75 ¿5 G-conjugate to an element of'yh^Z. 

Proof — The implications (iii) (ii) (i) are trivial. We therefore assume 
that (i) holds and deduce (iii). We fix an element h = /i7 G G as in Al.l. We 
take g € G and assume that 7/15 is not G-conjugate to an element of jhZ. 
The first point to observe here is that this implies g £ 3(7). For, if g G 3(7), 
there exist k G G and z G Z such that gz = (jh^k^hk"1-1, and this relation 
translates to 

7 % = k^hz~xk~l. 

Thus ¿7 ^ 3(7). In particular, ¿7 is not orthogonal to Z7(V), and by Al.l we 
can choose k G G, commuting with 7/1, such that fc) ^ 1. This gives us 

k^hgk'1 =^fhg[g~1,k], 

whence 

tr£(7%) - trE(kyhgk-1) = t r£(7%)(2- \£) . 
However, (g-1, k) = (g,k)~l 7̂  1. The only possible conclusion is that tr£(7%) 
= 0. Thus (i) =̂  (iii), and we have finished the proof. • 

Lemma AL3. — Let 7 G JT, and suppose there exists h = € G as in Al.l. 
Tften, for z\,Z2 G Z; tte elements jhzi, 7/12:2 are conjugate in rG if and only 
if zi = z2. 

Proof — For, if the ^hz\ are conjugate, we have 

x(*i)trf (7/1) = trf (7/121) = trf (7/122) = X(^2)tr^(7/i). 

This implies x(^i) — xO^)? whence 21 = z2 since x is faithful. • 

Let z G C; we write pH for the usual absolute value of z (since we are using 
\S\ for the cardinality of a set S). 

Theorem A1.4. — For each 7 G F, there exists h7 G G such that tr£(7/i7) is 
non-zero. For any such h^, we have 

||tr£(7MI = \UV)\1/2-
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Proof. — Fix a generator a of T, and let Cy, 0 ^ i < |JT| — 1, 1 ^ j < n ,̂ be 
the conjugacy classes in T G whose projection into r is cr*. The map a i-» atr£, 
a G f , induces an isometric injection of the character ring of r into that of 
rG. The argument given in [5] §13 applies in this situation to give us 

(¿1.5) 
Tli 

J'=l 
||tre(Cij-)|2lr|Cij-| = |G|, 0 < i < | r | - l. 

Thus, for each i, there exists hi G G such that tr£(<j*/ii) 7̂  0. This proves the 
first assertion. 

For each i, fix a choice of hi, and number the Cij so that C%\ — CXrG^hi). 
By A1.2, only those Cij which meet alhiZ contribute to the sum A1.5, i.e., 
those dj of the form zC%\ with z G Z. Of course, ||tr£(zCii)|| = ||trf (Cii)H, 
and the number of distinct conjugacy classes of this form is \Z\, by A1.3. 
Abbreviating Z = 2 ^ . , we get 

|Z|.||tre(Ca)||2. |G] 
|Z| 

= \G\, 

for each i. However, by Al.l, we have Z/Z = Zai(V), and the result follows. 
• 

Remarks Al .6 
(i) It is clear that Theorem Al.4 holds without change when r is replaced 

by any group of automorphisms of G and £ by an irreducible representation of 
r K G extending the given representation £ of G. 

(ii) Suppose that r is ap-group, and letpa be the exponent of TG. Number-
theoretic techniques, of the sort used in 10.3 above, allow one to deduce from 
Al.4 that 

tr£(7/>7) = C(7MM^)|1/2> 
where £ is a root of unity of order dividing 2pa (or even pa in the case p = 2). 

We now derive a more general version of Al.4. We need the following hy­
potheses: 

Notation A1.7 

(i) G is a finite group, G is a normal subgroup of G, r is an abelian subgroup 
of G, such that f n G c &G(G) and G = TG; 

(ii) there is a character x of Z = ZG(G), stable under conjugation by T, such 
that G/Ker x is an extra-special p-group of class 2, for some prime p > 2; 

(iii) let £ be an irreducible representation of G such that £ | G is irreducible 
and £ I Z is a multiple of x« 
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In this situation, we have: 

Corollary Al.8. — Use the notation A1.7. Then: 

(i) For 7 G r, there exists h1 G G such that tr£(7/i7) ^ 0. Moreover, 

| | t r«7MI = \Zy(G/Z)\1/2-

(ii) Le£ /i7 6e as in (i), and let g € G. The following are equivalent: 
(a) tr£(70) # 0; 
(b) C!G(7P) n ih^z ± 0 ; 
(c) ClG(7?)n7/i7Z#0. 

Proof. — We first remark that the restriction £ | G is the unique irreducible 
representation of G which contains %• Next we note that the presence of a 
non-trivial Ker x is irrelevant, so we may as well assume that % is faithful. 

We can form the groups 

G = r K G, 

G = 
r 

rnz 
K G. 

Note that we can apply Al.4 directly to the group G. We have canonical 
surjections 

(A1.9) 

G > G 

G 

We can inflate £ to a representation £ of G; if we choose an abelian character 
0 of r which agrees with x on r fl Z, the representation 0-1C (where we think 
of 6 as a character of G via the obvious map G —> r) is then the inflation of 
some representation £ of G. We have the character relation 

tr£(7<7) = 0(7)tr?(70), 7 € i1, 5 € G. 

The result now follows. • 

We continue with the situation of A 1.7, but we now assume that G is a finite 
p-group. We write fx = fxp0o(C) for the group of roots of unity in C of order a 
power of p. We define a function T^ : J1 Cx /fx by 

T€(7) = tr£(7<?) (mod/i), 
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where g G G is chosen so that tr£(7#) ^ 0. Observe that this is independent 
of the choice of g within the stated conditions, and also of the choice of £ 
extending the irreducible representation of G which contains %• 

The next result shows that the function T^ in fact only depends on the 
alternating space V = G/Z and the image of 7 in AutV. We assume given 
another set of data (G', G', Z', JT", £') satisfying the same hypotheses A1.7, with 
G' a finite p-group. Write V = G'/Z'. 

Theorem ALIO. — Let 7 G F, 7' G r1, and suppose there is an isomorphism 
of alternating spaces <$> : V —» V' such that 0(7^7_1) = 7/</>(̂ )7,~1. for all 
veV. Then 

T{(7)=T>(Y). 

Proof. — Let us work first with the data D = (G, G, Z, T, %, £). We set 

Gi = G/Kerx, 

Zi = Z/KerX, 
Ti - r / r n z, 

Gi = A K Gi. 

Let £1 denote some irreducible representation of Gi whose restriction to Z\ 
contains X- The last identity in the proof of A1.8 implies T^ = T^. We 
therefore simplify the situation by assuming G — Gi, G = Gi etc. 

We impose the analogous simplification on W = (G', G', Z', r", £'). 
We return to the (simplified) data (G, G,Z, F, x>£)- Now ^1 be some 

finite cyclic p-group and xi a faithful character of Z\\ assume there is an 
embedding Z —> Z\ such that xi extends x- We form the group 

G(ZX) = 
Gx Zi 

{{z,z-i) : z € Z} 

We define G(Zi) analogously; the representation £ of G extends uniquely to 
an irreducible representation £1 of G(Zi) containing xi- The system O(Zi) = 
(G(Zi),G(Zi),Zi,r,xi,£i) satisfies A1.7 and we have T€l = T€. 

Returning to the original data D, B/ as simplified above, we note that we 
can choose £ to be trivial on the kernel of F -> Aut V; we assume this done 
and likewise for ID/. That is, we can assume that F, F1 act faithfully on V, V. 

Now we use the given isometry 0 to identify V with V' and 7 with 7' (hence 
also F with J1'). This process also identifies the groups of values of x? x' on 
commutators. We can therefore find a finite cyclic p-group Z\ and a faithful 
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character XI of Z\, together with injections Z —> ZI, Z' —> Z\ so that XI 
extends both X and X'. We replace D by D(ZI) and ID/ by Uf(Zi). 

This reduces us to the case in which the groups G, G', are given by exact 
sequences 

1 ^ Z- + G^ V-> 1, 

1-> Z-+ G'-+ V-> 1, 

with X — X'- Prom these exact sequences, we obtain 2-cocycles a, a' G 
H2(V, Z) . These two cocycles induce the same alternating form on V: 

a{v1,v2)a{v2,v1)~1 = a'(vi,v2)a'(v2,vi)~x, 

for all V{ G V. The difference /3 = a/a' is thus symmetric, in the sense that 
P(vi,v2) — P(v2,vi), Vi G V. The cocycle (3 thus corresponds to an abelian 
extension H of V by Z: 

1 - > Z ^ # - * V ^ 1 . 

It is elementary to find an embedding Z -> Z\ of Z in a finite cyclic p-group 
ZI so that the sequence 

L ^ Z ^ # ( Z I ) ^ F - + L 

splits. Here, H(Z\) is defined as above. The splitting of this sequence implies 
that /3 becomes trivial in H2(V, Z\). Passing to D(ZI), (ZI), we are reduced 
to the case where the extensions G, GF of V by Z are isomorphic. This isomor­
phism extends to an isomorphism r \x G = G = Gf = T K G' which carries £ 
to an irreducible representation £" of G; extending the unique representation 
of G' containing X- We thus have T^ = Tgr = T^/, as required. • 

A2. Glauberman correspondence 

For the convenience of the reader, we summarize some facts from [14], of 
fundamental importance to the work above. We give them in their original 
context, but we use them in the slightly more general situation of A2.5 below. 

To start with, therefore, we assume given the following: 

Notation A2.1. — G is a finite group and r is a soluble subgroup of AutG 
such that |G|, \r\ are relatively prime. 

We can thus form the semi-direct product r \KG relative to the given action 
of r on G. We tend to abbreviate r K G = TG. We write Irr(G) for the 
set of equivalence classes of irreducible representations of G, and use a similar 
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notation for other groups. The group r acts on Irr(G) in the obvious way; we 
denote the set of fixed points here by Irr(G)r. 

In this situation, we have a fundamental result of Glauberman [14]. The 
following formulation of it is taken from [32] 0.15: 

A2.2. — There is a uniquely determined bijection 

g = gr>G:Irr(G)r ^ + br(Zr(G)) 

with the following properties: 

(i) If r is an t-group, for some prime number £ and p G Irr(G)r, then g(p) 
satisfies 

(trg(p),trp)Zr(G) ^ 0 (mod £), 

where (, )zR(G) denotes the inner product of characters of the group Zr{G). 
(ii) If A is a normal subgroup of F, then 

9r,G — 9r/A,zA(G) °9A,G-

In fact, in case (i), one has 

(tr g (p), tr p) Zr (G) = ± 1 (mod t), 

as follows from [14] Corollary 6. 
It will be useful for us to have a more explicit result in certain special cases. 

We first recall [14] Theorem 1: 

A2.3. — Let G be a finite group and T a subgroup of Ant G of order relatively 
prime to \G\. Let p G Irr(G)r. There exists an irreducible representation 
p = er(p) of TG such that 

(i) p\G = p, and 
(ii) detp(7) = 1, for all 7 G J1. 

These conditions determine the representation p uniquely, up to equivalence. 

We often refer to p as the "canonical" extension of p to FG. We next recall 
[14] Th. 3: 

A2.4. — Suppose that the group r above is cyclic. Let p G lrv(G)r and define 
p as in A2.3. The representation ( = ffr,c(p) satisfies the following; there is a 
sign e = e(p, r) such that 

tr£(ar) = etrp(7#), 

for all generators 7 of T and all x G Zr{G). 
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We emphasize that the sign e is independent of the elements 7, x in this 
relation. Also, it is possible to have a subgroup A of r such that ZA(G) = 
Zr{G)\ the correspondences grr, gA are then the same, but the signs e(p, J1), 
e(p, zA) need not be equal. 
Remark A2.5. — In the foregoing, it is just as easy to work with a triple 
(G,.T, <p), where ip : T AutG is a homomorphism with soluble image of 
order prime to |G|. Everything goes through without change. (The canonical 
extension of p to r K G in (A2.3) is now the inflation to rG of the canonical 
extension of p to </?(-T) K G.) 

Under certain circumstances, the Glauberman correspondence interacts well 
with induction and restriction. We use the notation A2.1, and let H be a in­
stable subgroup of G. The following is taken from [23] Theorem A: 

A2.6. — Let p G Irr(G)r, a G Irr(iJ)r, and abbreviate Z(H) = Zr(H), 
Z(G) = ZR(G). 

(i) If p^Ind%{a), then 

9r,a(p) ~ ^Indz^§)(9rMa))' 
(ii) Ifp\H<*a, then gr,G(p) \ Z(H) " gr,H(a). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 





BIBLIOGRAPHY 

[1] J. ARTHUR and L. CLOZEL - Simple algebras, base change, and the ad­
vanced theory of the trace formula, Annals of Math. Studies, vol. 120, 
Princeton University Press, 1989. 

[2] C. BUSHNELL - Hereditary orders, Gauss sums and supercuspidal repre­
sentations of GLN, J. reine angew. Math. 375/376 (1987), p. 184-210. 

[3] C. BUSHNELL and A. FRÖHLICH - Gauss sums and p-adic division alge­
bras, Lecture Notes in Math., vol. 987, Springer, Berlin, 1983. 

[4] , Non-abelian congruence Gauss sums and p-adic simple algebras, 
Proc. London Math. Soc. (3) 50 (1985), p. 207-264. 

[5] C. BUSHNELL and G. HENNIART - Local tame lifting for GL(N) I: simple 
characters, Publ. Math IHES 83 (1996), p. 105-233. 

[6] C. BUSHNELL, G. HENNIART and P. KUTZKO - Correspondance de Lang-
lands locale pour GL(n) et conducteurs de paires, Ann. Scient. Ecole 
Norm. Sup. (4) 31 (1998), p. 537-560. 

[7] , Local Rankin-Selberg convolutions for GLn: Explicit conductor 
formula, J. Amer. Math. Soc. 11 (1998), p. 703-730. 

[8] C. BUSHNELL and P. KUTZKO - The admissible dual of SL(N) II, Proc. 
London Math. Soc. (3) 68 (1992), p. 317-379. 

[9] , The admissible dual of GL(N) via compact open subgroups, An­
nals of Math. Studies, vol. 129, Princeton University Press, 1993. 

[10] , Simple types in GL(N): computing conjugacy classes, Represen­
tation theory and analysis on homogeneous spaces (S. Gindikin et al., ed.), 
Contemp. Math., vol. 177, Amer. Math. Soc, 1995, p. 107-135. 

[11] C. CURTIS and I. REINER - Methods of representation theory I, Wiley-
Interscience, New York, 1981. 



104 BIBLIOGRAPHY 

[12] P. DELIGNE - Les constantes des équations fonctionnelles des fonctions 
L, Modular forms in one variable II, Lecture Notes in Math., vol. 349, 
Springer, Berlin, 1974, p. 501-597. 

[13] P. DELIGNE and G. HENNIART - Sur la variation, par torsion, des con­
stantes locales d'équations fonctionnelles des fonctions L, Invent Math. 
64 (1981), p. 89-118. 

[14] G. GLAUBERMAN - Correspondences of characters for relatively prime 
operator groups, Canad. J. Math. 20 (1968), p. 1465-1488. 

[15] R. GODEMENT and H. JACQUET - Zeta functions of simple algebras, 
Lecture Notes in Math., vol. 260, Springer, Berlin, 1972. 

[16] M. HARRIS - Supercuspidal representations in the cohomology of Drin-
fel'd upper half-spaces; elaboration of Carayol's program, Invent. Math. 
129 (1997), p. 75-120. 

[17] , The local Langlands conjecture for GL(n) over a p-adic field, 
n < p, Invent. Math. 134 (1998), p. 177-210. 

[18] M. HARRIS and R. TAYLOR - On the geometry and cohomology of some 
simple Shimura varieties, Preprint (preliminary version) (1998). 

[19] G. HENNIART - Galois e-factors modulo roots of unity, Invent. Math. 78 
(1984), p. 117-126. 

[20] , La conjecture de Langlands locale numérique pour GL(n), Ann. 
Scient. École Norm. Sup. (4) 21 (1988), p. 497-544. 

[21] , Une conséquence de la théorie du changement de base pour 
GL(n), Analytic Number Theory (Tokyo, 1988), Lecture Notes in Math., 
vol. 1434, Springer, Berlin, 1990, p. 138-142. 

[22] G. HENNIART and R. HERB - Automorphic induction for GL(n) (over 
local non-archimedean fields), Duke Math. J. 78 (1995), p. 131-192. 

[23] I. ISAACS and G. NAVARRO - Character correspondences and irreducible 
induction and restriction, J. Alg. 140 (1991), p. 131-140. 

[24] H. JACQUET, I. PIATETSKII-SHAPIRO and J. SHALIKA - Rankin-Selberg 
convolutions, Amer. J. Math. 105 (1983), p. 367-483. 

[25] S. KUDLA - The local Langlands correspondence: the non-Archimedean 
case, Proceedings of the Summer Research Conference on Motives 
(U. Janssen, S. Kleiman and J.-P. Serre, eds.), Proc. Symposia Pure Math, 
vol. 55, Amer. Math. Soc, 1994, p. 365-391. 

ASTÉRISQUE 254 



BIBLIOGRAPHY 105 

[26] P. KUTZKO - The Langlands conjecture for GL2 of a local field, Ann. 
Math. 112 (1980), p. 381-412. 

[27] , The exceptional representations of GL2, Comp. Math. 51 (1984), 
p. 3-14. 

[28] P. KUTZKO and A. MOY - On the local Langlands conjecture in prime 
dimension, Ann. Math. 121 (1985), p. 495-517. 

[29] P. KUTZKO and J. PANTOJA - The restriction to SL2 of a supercuspidal 
representation of GL2, Comp. Math. 79 (1991), p. 139-155. 

[30] R. LANGLANDS - Problems in the theory of automorphic forms, Lectures 
in modern analysis and applications III, Lecture Notes in Math., vol. 170, 
Springer, Berlin, 1970, p. 18-86. 

[31] G. LAUMON, M. RAPOPORT and U. STUHLER - D-elliptic sheaves and 
the Langlands correspondence, Invent. Math. 113 (1993), p. 217-338. 

[32] O. MANZ and T. WOLF - Representations of solvable groups, London 
Math. Soc. Lecture Notes, vol. 185, Cambridge University Press, 1993. 

[33] C. MŒGLIN - Sur la correspondance de Langlands-Kazhdan, J. Math. 
Pures et Appl. (9) 69 (1990), p. 175-226. 

[34] J.-P. SERRE - Local class field theory, Algebraic number theory (J. Cassels 
and A. Fröhlich, eds.), Academic Press, London, 1967, p. 129-161. 

[35] F. SHAHIDI - Fourier transforms of intertwining operators and Plancherel 
measures for GL(n), Amer. J. Math. 106 (1984), p. 67-111. 

[36] T. TAKAHASHI - Characters of cuspidal unramified series for central sim­
ple algebras of prime degree, J. Math. Kyoto Univ. 29 (1989), p. 653-690. 

[37] J. TATE - Fourier analysis in number fields and Hecke's zeta-functions, 
Algebraic Number Theory (J. Cassels and A. Fröhlich, eds.), Academic 
Press, London, 1967, p. 305-347. 

[38] , Local constants, Algebraic Number Fields (A. Fröhlich, ed.), Aca­
demic Press, London, 1977, p. 89-131. 

[39] , Number-theoretic background, Automorphic forms, Representa­
tions and L-functions (A. Borel and W. Casselman, eds.), Proc. Symposia 
Pure Math., vol. 33 Part II, Amer. Math. Soc, 1979, p. 3-26. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 


