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TAMAGAWA MEASURES ON UNIVERSAL TORSORS AND
POINTS OF BOUNDED HEIGHT
ON FANO VARIETIES

by

Per Salberger

Abstract. — Let X be a Fano variety over a number field. An Arakelov system of
v-adic metrics on the anticanonical line bundle on X gives rise to a height function on
the set of rational points and to a new kind of adelic measures on the universal torsors
over X.

The aim of the paper is to relate the asymptotic growth of the number of rational
points of bounded height on X to volumes of adelic spaces corresponding to the uni-
versal torsors over X.

Introduction

One important but very difficult problem in diophantine geometry is to count the
number f(B) of rational points of height at most B on a projective variety over a
number field k£ and to study the asymptotic growth of the counting function when
B — oo. If A C P" is an abelian variety, then it was proved by Néron (cf. [62]) that
f(B)/(log B)kA(k)/2 converges to a constant depending on A C P and the height
function. There is a precise adelic conjecture about the rank of A(k), but this has
only been established for classes of elliptic curves E over QQ for which E(Q) is of
rank O or 1.

For Fano varieties there is a (mostly conjectural) theory of counting functions. This
theory was initiated by Manin who made some striking observations (cf. [23], [3],
[42], [43]) about the counting functions for special classes of Fano varieties X under
their anticanonical embeddings. Similar observations for other linear systems were
made by Batyrev and Manin [3]. The heights involved are the “usual” multiplicative
heights of Weil depending on the ground field k£ and the choice of coordinates (see
[37, p.50]). There may exist accumulating closed subsets with many rational points
(e.g. lines on cubic surfaces). Manin therefore counts the number fi7(B) of rational
points of height at most B on sufficiently small Zariski open k-subsets U of X. He
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92 PER SALBERGER

notices that for a number of Fano varieties X there are open k-subsets U of X such
that

(x) fu(B) = CB(log B)**F*X~1(1 + o(1))

for an anticanonical height function. Very recently Batyrev and Tschinkel [5] have
found that this cannot be true for all Fano varieties. But there are important classes
of Fano varieties (cf. [23], [52], [7], [4]) for which asymptotic formulas of the above
form have been established, and it is interesting to find common features of these re-
sults. The motivation for this paper is to obtain a better understanding of the constant
C in these formulas and to develop a framework which might be useful for the study
of counting functions of other classes of Fano varieties.

The first systematic attempt to understand the constant C in the asymptotic for-
mulas is due to Peyre [52], who introduced several new ideas. He defined Tamagawa
numbers for Fano varieties, thereby generalizing the classical Tamagawa numbers
studied by Weil [67]. To define these, Peyre uses a system of v-adic “metrics” for
the places v of k£ on the analytic anticanonical line bundle over X (k,) satisfying an
adelic condition. He associates to any such “adelic metric” a height function H on
X (k) and a measure on the adelic space X (Ay) and suggests that the constant C in
(*) should be equal to the product of the Tamagawa number 7(X) of X (Ax) and an
invariant a(X') depending only on effective cone in Pic X.

Peyre assumes that the Picard group of Xk for an algebraic closure K of k con-
tains a Z-basis which is invariant under the action of the Galois group Gal(K/k). It
is clear from the work of Batyrev and Tschinkel in [7] and [4] that some restriction
of this kind is needed. They prove (*) for toric varieties and obtain the constant

(%) C = o(X)7(X)h(X)

where h!(X) is the order of H!(Gal(K/k), Pic Xx).

We shall in the paper “explain” the appearance of k! (X) in () by means of a new
kind of Tamagawa numbers for universal torsors over X. The main idea is that the
constant C' is related to the volumes of some adelic spaces defined by the universal
torsors 7 over X. Universal torsors were introduced by Colliot-Théléne and Sansuc
[15] as a generalization of the classical descent varieties of elliptic curves studied
by Fermat, Mordell and Weil. The main applications of this theory so far have been
in the study of the Hasse principle and weak approximation for various classes of
rational varieties.

We shall use universal torsors as a natural tool when counting rational points on
Fano varieties. One central idea will be to extend the height function on X (k) to
suitable subquotients of the adelic spaces 7 (Aj) by means of certain adelic split-
tings associated to the universal torsors m : 7 — X. For toric varieties this reduces
the original counting problem to an adelic lattice point problem. We obtain thereby
another proof of the asymptotic formula of Batyrev and Tschinkel [4] for toric vari-
eties over Q.
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TAMAGAWA MEASURES ON UNIVERSAL TORSORS 93

We now give a description of the content of the 11 sections of the paper.

In the first section, we study in detail the analytic manifold structure X,y (k) on
X (k) and metrics (which we will call norms from now on) on analytic line bundles
on X,n(k,). For anticanonical line bundles with a norm we recall the measure con-
structed by Peyre and explain its relation to the classical construction of a measure
from a global differential form. For submersions

Yan(ky) — Xan(ky)
we give a relative version of Peyre’s construction and associate a positive linear map
A : Co(Yan(ky)) — Ce(Xan(ky))

to norms on relative anticanonical line bundles.

In section 2, we assume that v is non-archimedean and study norms for the com-
pact open subsets =,(0,) C Xan(ky) defined by models =, of X x k, over the
valuation ring o, in k,. We relate in (2.14) the volume of =, (o, ) with respect to
the measure determined by the above norm to the density of the reduction of £, (0,)
modulo finite powers of the maximal ideal m, in o,. As a consequence, we get an
explicit formula (cf. (2.14)(b)) for the volume of =, (0, ) with respect to any measure
defined by a norm on =, (0, ). This formula holds also when =, has bad reduction
and X is non proper. If X is proper, then =,(0,) = Xan(k,) and we get a formula
for the volume of X, (k, ). But there are also important applications of this formula
to universal torsors and other non-proper varieties.

In section 3, we study invariant norms over local fields on the relative anticanonical
line bundles for X -torsors 7 : 7 — X under arbitrary algebraic groups G. We then
concentrate on the norms defined by relative differential forms. If G is a torus T', then
there is a canonical norm of this kind which we will baptize the order norm. Now
using this relative norm we obtain for each norm on X,,(k,) an “induced” norm on
Tan(ky) which in its turn defines an “induced” measure on T,p (k).

In section 4, we consider varieties X over number fields £ and the adelic topo-
logical space X (Ay). We have not found any modern rigorous version of Weil’s
account [66] and we therefore explain how to use schemes of finite presentation in
EGA to develop the foundations for adelic spaces. We then generalize Peyre’s notion
of “adelic metric” and his adelic measures in many ways. We introduce e.g. relative
adelic norms for smooth morphisms 7 : ¥ — X over X and positive linear maps
A: C.(Y(Ar)) = Ce(X(Ag)). Itis thereby necessary to consider convergence fac-
tors which vary among the fibres and to consider fibres over Ay not defined over k
evenif m : Y — X is defined over k.

In section 5, we restrict to torsors p : 7 — X for varieties over number fields and
study adelic norms and measures for them. When X is smooth and proper with

H%ar(Xv OX) = H%ar(Xv OX) =0
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94 PER SALBERGER

and with torsion-free Néron-Severi group, then there is a notion of universal torsors
7 : T — X. The v-adic order norms form an adelic norm which in its turn gives rise
to a positive linear map

Az Co(T(Ag)) — Ce(X (Ap))-

This map depends on the choice of convergence factors. But one can choose these
to be inverse to the convergence factors for X (Ag) so that the induced measure on
C.(T (Ag)) requires no convergence factors. Using this measure on 7T (Ay), we de-
fine Tamagawa numbers for universal torsors.

In section 6, we recall the Brauer group and torsor obstructions to weak approx-
imation of Manin, Colliot-Thélene and Sansuc. By using their theory together with
results of Ono on the arithmetic of tori, we relate our Tamagawa numbers for univer-
sal torsors to the Tamagawa numbers of Peyre. The factor k! (X) enters naturally.

In section 7, we modify the original growth conjectures of Manin in order to ex-
clude the Fano varieties containing infinitely many weakly accumulating subvarieties.
This is not so original and closely related to notions of Manin and Peyre (cf. [51]).
We also generalize and refine Peyre’s Tamagawa conjecture for Fano varieties by
means of our Tamagawa numbers for universal torsors.

In section 8, we study the geometry of universal torsors 7 : 7 — X over smooth
complete toric varieties which are trivial over the unit element of the k-torus U in X .
We identify them with the toric varieties studied by Cox in his article [16] and find
that they are open subsets of affine spaces.

In section 9, we consider toric varieties over local fields k,. We give an explicit
description of the norms for universal torsors obtained by inducing the norms of
Batyrev-Tschinkel [7] and of the corresponding measures (cf. (9.12)). Another cen-
tral idea is the introduction of a canonical toric splitting

z[)1/ : X(ky) — T(kV)/T(kV)Cp

of the map
7ty T (k) /T (ky)ep — X (kv).
induced by the principal universal torsor 7 : 7 — X. Here T'(k,)cp is the maximal
compact subgroup of the analytic group 7T'(k, ) defined by the Néron-Severi torus.
In section 10, we consider toric varieties over number fields and the induced adelic
norm on the universal torsor obtained from the induced v-adic norms in section 9.
The product map of all ¢}, gives rise to a continuous canonical toric splitting

Pa: X(Ax) — T(Ar)/T(Ap)ep

of the map from 7 (Ag)/T(Ax)cp to X (Ay) induced by 7. By means of 1) we give
a new torsor theoretic interpretation of the heights of Batyrev-Tschinkel [7] and an
interpretation of the constant C' = «(X)7(X)h!(X). There are several analogies
with Bloch’s use of torsors. (cf. [8], [47]) to interpret the Néron-heights and the
Birch/Swinnerton-Dyer/Tate conjecture for abelian varieties. The universal torsors
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TAMAGAWA MEASURES ON UNIVERSAL TORSORS 95

over toric varieties play the same role as the biextensions do for abelian varieties.
The constant o(X)7(X)h!(X) is interpreted by means of the Laurent expansion of
an adelic integral which is a continuous approximation on the universal torsors of
the zeta functions for X considered by Manin, Batyrev and Tschinkel. We also indi-
cate how these zeta functions can be studied for toric varieties without making use of
group structure of the torus.

In section 11, we give a proof of the conjectures of Manin and Peyre for split toric
Fano varieties over Q (first proved in [4]). Our method is essentially an extension of
the method developed by Schanuel [56] for projective spaces and by Peyre [52] for
certain special blow-ups X — P" of projective spaces. But we make a more system-
atical use of the universal torsors than in [52] and we use geometric invariants of the
fans in the study of the main terms and the error terms. Our asymptotic formulas are
slightly more precise than in [52], [7], [4] and of the type

CB(log B)" ™' + O(B(log B)"~%/>*¢) r = rkPic X.

while the formulas in (op. cit.) are of the type CB(log B)"~1(1 + o(1)). But the real
motivation for giving another proof of the theorem of Batyrev and Tschinkel is that
many of the arguments can be used for other classes of Fano varieties like moduli
spaces of ordered sets of points on the projective line.

The use of universal torsors in the study of Manin’s conjectures is quite natural.
We used them to give an upper bound for the counting functions of del Pezzo sur-
faces of degree 5 in a talk at Bern at the Borel seminars in the summer semester 1993.
Some months later the author received a preliminary version of Peyre’s important pa-
per [52] which has had a strong influence on this paper. There he made implicit
use of descent varieties for some classes of toric varieties without emphasizing their
toric structure and without making use of the descent theory of Colliot-Théleéne and
Sansuc. Most of the theory of this paper has been developed in an attempt to use
universal torsors to count points on toric varieties and to refine Peyre’s Tamagawa
number conjecture for general Fano varieties. It is thus not surprising that Peyre him-
self recently considered universal torsors. We understood from his visit at ETH 1996
that he has also found that the use of universal torsors leads to a term h!(X) in the
conjectured asymptotic formula by means of adelic zeta-functions on the universal
torsors. His line of thoughts was somewhat different, however, and did not use the
induced measures of this paper. We refer to the paper of Peyre [51] in this volume
for his vision of the role of universal torsors in the theory of counting functions for
Fano varieties. We have only given some brief comments here about his work since
we received it when this paper was almost completed. There is some overlapping
between [51] and sections 5, 6 and 10 of this paper. But there are also many differ-
ences. Peyre consider certain equivariant partial compactifications of the universal
torsors while we systematically avoid compactifications. He does not consider adelic
splittings of the universal torsors, but uses instead the notion of “system of heights”
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96 PER SALBERGER

for arbitrary linear systems. He uses complete intersections as a prototype for Fano
varieties while we have chosen to dicuss toric varieties in detail.

We have learned much about the arithmetic of toric varieties from the impressive
papers of Batyrev and Tschinkel [7] and [4]. Their approach using adelic harmonic
analysis for Manin’s zeta functions is elegant and conceptual, but depends strongly
on the underlying group action on the toric variety. The advantage with universal
torsors is that they exist for all Fano varieties. One can e.g. prove the best upper
bound O(B(log B)*) for del Pezzo surfaces of degree 5 by means of the descent
theoretic approach in this paper.

We have after this paper was completed received the paper [6] of Batyrev and
Tschinkel. The measure theory of our paper (e.g. (1.22) and (4.25)-(4.28)) has ap-
plications to the theory of L-primitive fibrations in [6]. One can also avoid the use
of compactifications and the reference to Denef’s work in (op.cit.) and give more
intrinsic constructions of the measures involved by means of the results here.

We would like to thank Batyrev, Manin, Peyre and Tschinkel for discussions on
counting problems for Fano varieties.

1. Analytic manifolds over locally compact fields

Throughout this section & denotes a non-discrete locally compact field of charac-
teristic zero. It is well known (cf. [66]) that & is either totally disconnected (in which
case it is a finite extension of the p-adic number field () or connected (in which
case it is either R or C). Denote by | | : £ — R the absolute value normalized in the
following way. If k = R, let |a| = max(a, —«) and if kK = Q,, let |up!| = p~! for
units  in Z,,. If k is a finite extension of kg = Ror kg = Qp, let | | : k& — R be the
map obtained by composing the norm N : k — kg with | | : kg — R. The topology
of k is induced by the absolute value | | : k¥ — R and & is complete with respect to
|| : & — Rin all cases. We shall assume that all norms and all seminorms on vector
spaces over k are compatible with the normalized absolute values | | : £ — R under
scalar multiplication ([36, p. 33], [38, p.44]).

If k is a finite extension of kg = (), let o be the maximal Z-order (cf. [54]) in k.
Then o is a complete discrete valuation ring. The inverse different oP is defined by

oP :={a € k: Tr(aB) € Zy forall B € o}.

Denote by u the Haar measure on the additive locally compact group k normalized
in the following way. If & = R, let u be the usual Lebesgue measure dx and if
k = C, let u = dx be the measure 2dudv for the real (resp. imaginary) part v and
v. If k is a finite extension of (Q,, choose p to be self-dual as in [66, Ch. VII, §2].
This means that p(o)u(oP) = 1. Hence p(0) = 1 if and only if k is a unramified
over (Q,. The Haar measure is sometimes (cf. e.g. [67], [52]) normalized such that
p(o) = 1 for all finite extensions of (. The normalization chosen here implies that
we get no discriminant factors for volumes of adelic measures. If K is a number field,
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and Ak the adelic group [66] of K, then u(Ag/K) = 1 for the restricted product
measure of the local measures above (cf. [67, 2.1.3] for more details). Also, we get
no discriminant factor (cf. (5.21), (6.12)) in our definition of Tamagawa numbers.
Instead, we get a discriminant factor in the local results in (2.14) and (2.15).

Most of the theory of analytic manifolds over locally compact fields are obvious
generalizations of the theory of analytic manifolds over R and C in differential and
analytic geometry. We first recall some definitions (1.1)-(1.3) from Serre’s book [59,
Part II].

Definition 1.1. — LetV C k™ be open and let f : V — k be a function. Then f is
said to be analytic in V if for each point P = (a1, as,...,a,) € V C k", we may
find an open neighbourhood of P

Np, = {(z1,22,...,2p) €k" : |z; —a;j| <r, i=1,...,n}CV

such that f is defined by a convergent power series in k [z1 — a1,...,Zn — ay] On
Np,.

Definition 1.2. — Let T be a topological space.

(a) An n-chart (or n-coordinate map) on T' is a homeomorphism ¢ : U — V
between open subsets U C T and V C k™.

(b) Two n-charts ¢ : U — V and ¢' : U' — V' are compatible if the maps
¢ 0L d(UNU') and ¢ o ¢'~1|¢'(U N U’) are analytic.

(c) An n-atlas A on T is a family of n-charts ¢; : U; — Vj, 5 € J such that
T = UjecU; and such that ¢, and ¢;, are compatible for any j,,j2 € J.

(d) Two n-atlases

Ai1={'¢Yi:Ui—)Vi, ie[},AJ’ :={¢j:Uj—>Vj,j€J}
are said to be compatible if 1); and ¢; are compatible for any 1; € A;, ¢; € A;.

Compatibility of n-atlases is an equivalence relation (cf. LG 3.2 in op. cit.).

Definition 1.3. — Let T be a topological space. An analytic n-manifold structure
on T (over k) is an equivalence class of compatible n-atlases on 7.

Note that the analytic manifold structures considered in this paper are such that
the dimension n is the same at all points of the manifold.

Let M; and M; be two analytic manifolds (over k) of possibly different dimen-
sions. A continuous map f : M; — M is said to be an analytic morphism if it is
“locally given by analytic functions” (cf. LG 3.6 in op. cit. for a precise definition).

Definition 1.4. — An analytic vector bundle of rank r over an n-manifold M con-
sists of a family { Ep}peps of r-dimensional vector spaces over k parametrized by
M, together with an analytic (n 4 r)-manifold structure on E = Up¢ s Ep such that:
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98 PER SALBERGER

(i) The projection map w : E — M taking Ep to P is analytic.

(ii) For every Py € M, there is an open neighbourhood U C M of Py and an
analytic isomorphism ¢y : m~1(U) — U x k™ which restricts to a linear home-
omorphism from Ep to { P} x k" foreach P € U.

The tangent bundle Tan(M) — M and the cotangent bundle Cot(M) — M are
analytic bundles of rank n on an analytic n-manifold M (see [12], [38, Ch. XXII] for
the global properties and [59, Ch. 3, §8] for the local properties of these bundles).

Letp : E — M be a vector bundle and let f : N — M be an analytic morphism.
The fibre product

Nxpy E={(Q,s) € N xE: f(Q) =p(s)}
is an analytic submanifold of N x FE (see [89, LG 3.26]) and the projection map
PN : N XM EFE—N

is a vector bundle of the same rank as p : £ — M. (The trivializations of py : N X 5z
E — N and their transition functions are defined by pulling back the trivializations
of the bundle on M and their transition functions, cf. e.g. [25, p.68] for the case
k = C.) We shall in the sequel write f*F for N xp; Eandcallpy : N xpr E - N
the pullback bundle of p: E — M under f : N — M.

Operations on vector spaces induce operations on vector bundles (cf. e.g. [25,
pp. 66-67]). There exists thus for each vector bundle p : £ — M a dual vector
bundle p* : E* — M and exterior product bundles A°’E — M. The cotangent
bundle Cot(M) — M is dual to the tangent bundle Tan(M) — M. We shall write
det E for the line bundle A"E when r = rk E and call det Cot(M) the canonical
bundle and det Tan(M) the anticanonical bundle of M.

If 7y : B4 — M and my : Es — M are two analytic vector bundles, then there
are analytic bundles £y & Fs — M and E; ® E3 — M. The analytic manifold
E, & E» is equal to the fibre product E; x s E9 and hence an analytic submanifold
of 1 x Fs (see [59, LG 3.26]). If g : B4 — E» is an analytic map with m; = mag
such that corresponding maps between the fibres gp : 1 p — FE3 p are linear for
each P € M, then we define vector bundles ker g — M (resp. coker g — M) when
g is surjective (resp. injective).

Definition 1.5. — Letp : E — M be an (analytic) vector bundle over an analytic
manifold M (over k). A norm (resp. seminorm) on p : E — M is a continuous map

Il : B —[0,00)

such that the restriction to Ep is a norm (resp. seminorm) on the vector space Ep
(over k) for each P € M. A normed vector bundle is a vector bundle with a norm.
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Remarks 1.6

(a)

(b)

Silverman [63] and Peyre [52] define a metric
I+ B — [0,00)

on a line bundle p : E — M to be a collection of vector space norms

|z : Ex — [0,00), z€M
for which the map

PeU — |s(P)| €10,00)

is continuous for any local analytic section s : U — p~}(U) of p : E — M.
It is obvious that a norm on a line bundle p : E — M is a metric. Conversely,
each metric || || : £ — [0,00) is a norm. To see this, one works locally at M
and reduces to the case E = M x k by means of (1.4)(ii). Then use the fact

PeM—s(P)=(P1)€E
is an analytic section of p¢ : E — M with

(P, )l = lellls(P)]

foral P€ M, o € k.

Suppose we are given one norm || ||; and one seminorm || |2 on a line bundle
p : E — M over an analytic manifold M. Then there is a unique continuous
function r : M — [0, 00) such that

[Isll2 = r(p(s))llsl

for all s € E. If M is compact and || ||2 is a norm then there are positive
constants C' and D such that

Cllslly < lIsllz < Dllslx
forall s € E.

Any vector space norm on k" defines a norm on the trivial vector bundle M x k"
by means of the projection M x k" — k". We now give some further examples of
norms and seminorms on (analytic) vector bundles.

Examples 1.7

(@)

Letp : E — M be a line bundle and let w be a continuous global section of the
dual line bundle p¥ : EV — M. Then w may be regarded as a continuous map
E — M x k which restricts to the linear map Fp — P X k foreach P € M.
We obtain a seminorm || || : E — [0,00) by sending s € E to the absolute
value of the image of w(s) under the projection M x k — k. In particular, any
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100 PER SALBERGER

continuous differential form w of maximal degree on M defines a seminorm
on the anticanonical line bundle det Tan(M ). This seminorm is a norm if and
only if w vanishes nowhere.

(b) Letp; : E1 — M and py : E5 — M be two line bundles and

[l:Br —[0,00), |l ll2: B2 — [0,00)
be seminorms on Ej resp. Eo. Then there exists a product seminorm
Il : Er® Ey — [0,00)
such that

l[(s1 ® s2)[l = llsalla - [[s2]l2

for two sections s1 € Eq, sg € Fy with p1(s1) = p2(s2). This seminorm || || is
anorm if and only if || ||; and || [|2 are norms.

(c) Letp: E — M be a vector bundle and let pyy : N x s E — N be the pullback
bundle of p : E — M under f : N — M. Then there is a seminorm

Il : N xpy E—[0,00)

on the pullback bundle associated to each seminorm || || on p : E — M. This

is obtained by composing the projection map N xps E — E with || || : E —
[0, 00). The seminorm f*|| || is a norm if || || is a norm. We shall then call f*|| ||
the pullback norm of || ||.

In the next example we shall need the concept of a lattice in a vector bundle.

Definition 1.8. — Let o be a complete discrete valuation ring as above with quotient
field k. Let M be an analytic manifold over k£ and p : E — M be an analytic vector
bundle of rank r. An analytic lattice of p : E — M is a submanifold L of E such
that
(@) Lp := L N Ep is an o-lattice in Ep for each P € M.
(b) For every Py € M, there is an open neighbourhood U C M of P and an
analytic isomorphism Ay : L N p~}(U) — U X o which restricts to an o-
module isomorphism from Lp to {P} x o" foreach P € U.

Example 1.9. — Letp: E — M, L, o, k be as in (1.8) and let p be a uniformizing
parameter of 0. If P € M and s € Ep, let

|Is|| = inf{|#™| : #™s € Lp}.

Then,
[ 1I: E —>[0,00)
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is a norm. (The verification is local on the base so it suffices (see (1.8)(b) to treat the
trivial case where p is the projection from E = M X k"to M and L = M X 0".)

The following result is a reformulation of a result due to Peyre [52].

Theorem 1.10. — Let M be an analytic Hausdorff n-manifold and let || || be a
seminorm on the anticanonical bundle det Tan(M) of M. Then there is a unique
positive linear functional A on the vector space C.(M) of real valued continuous
Sfunctions with compact support on M such that for any n-chart

¢p:U—V CK",

¢()=(¢>1() bn(2)) = (T1,...,T0), 2 EUCM
and any f € C.(M) with support in U the followmg equality holds:

0
A oz Ao A —o
;= / P @) | Ao g
Moreover, if || || is a norm and f : M — R is a non-negative function in Cc(M),

then Af =0 ifand only if f = 0.

dzidzs - - - dxy,.

Proof. — Let ¢ : Uy — Vi, C K", ¢pg : Ug — V3 C k™ be two charts and suppose
that ¢ € C.(M) have support in U, N U,. Then Peyre (op.cit.) deduces from the
Jacobian formula for change of variables in a multiple integral ([67, p. 14]) that the
two integrals over V,, and V}, coincide so that A f is well defined. His argument uses
only that || || is a seminorm although it is formulated for a metric (cf. (1.6)(a)). Now
once the compatibility of integrals under transition of charts has been established, one
concludes by a standard argument with partitions of unity (see th. 5.1 in [38, Ch. IX]
and note that no paracompactness assumption is needed).

To prove the last statement, it suffices by partition of unity to consider the case
when there is an isomorphism ¢ : M — V onto an open subset V' of k™. But then the
assertion follows from the integral formula above, thereby completing the proof. [

Since M is locally compact and Hausdorff there exists according to Riesz repre-
sentation theorem [38, Ch.IX, §2] a unique positive Borel measure m on M such
that:

1.11 (1) If W is open, then
m(W) = sup Af,

where f € C.(M) runs over all functions with support in W such that
0< f(z) <1lforallz € M.
1.11 (ii) If B is a Borel set, then m(B) = inf m(W), W open D M.

This measure m has the following properties:
1.11 (iii) If K is compact, then m(K) is finite.
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1.11 (iv) If B is open or a union of countably many Borel sets of finite measure,
then m(B) = supm(K), K compact C B.
111 (v) Af = [,, fdm forany f € C.(M).

Definition 1.12. — We shall call m the positive Borel measure on M determined
by the seminorm || || : det Tan(M) — [0,00) and A : C.(M) — R the positive
functional determined by || || : det Tan(M) — [0, c0).

If || || is a norm, then it follows from (1.11) and the last assertion in (1.10) that
m(W) > 0 for all non-empty open subsets W of M.

Example 1.13. — Let || || : det Tan(M) — [0,00) be a seminorm defined by
a continuous differential form w on M (see 1.7). Then the measure m is just the
“usual” positive Borel measure |w| on M determined by w (see e.g. [38, Ch. XXIII,
§3]) for the case £ = R and [12, §10] for general locally compact fields k). The
construction of m in (1.10), (1.11) is thus a generalization of the classical volume
form construction.

Definition 1.14. — A positive Borel measure m on a locally compact Hausdorff
space M will be called o-regular if it satisfies the properties (1.11)(ii), (1.11)(iii) and
(1.11)(iv) in (1.11). It will be called regular if it satisfies (1.11)(ii), (1.11)(iii) and the
following stronger version of (1.11)(iv):

() If W is a Borel set, then m(W) = supm(K), K compact W.

The space M is called o-finite with respect to m if M is a union of countably
many Borel sets B C M of finite measure m(B).

Remarks 1.15

(a) It follows from the definitions that (cf. [38, p.257]) a o-regular positive Borel
measure m on M is regular if M is o-finite with respect to m. The o-finiteness
condition is satisfied (see (1.11)(iii)) if M is o-compact (i.e. a union of count-
ably many compact subsets). It is sometimes useful for integration with respect
to product measures.

(b) The positive Borel measure m determined by a seminorm

|'l| : det Tan(M) — [0, c0)

on an analytic Hausdorff n-manifold M is o-regular (by 1.11) and regular if M
is o-compact.

Lemma 1.16. — Let My and M be two locally compact Hausdorff spaces and let
my (resp. mz) be a o-regular positive Borel measure on M (resp. Ma). Then there
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exists a unique o-regular positive Borel measure m on M := M; x My such that

/ hdm = hidmq hadma
M My Mo

for any function h € C.(M) which is a product
h(Py, Py) = hi(P1)ha(P2)

of two functions hy € C.(My), hy € C.(Ms).
Moreover, if h(Py, Py) € C.(M), then

g(Pz) = /M h(Pl,Pg)dml (S Cc(Mg)

/ hdm = gdmz = / </ h(Pl,Pz)dm1> dmg.
M M2 M2 Ml

Proof. — This follows from [11, Ch. III, §5] and Riesz representation theorem. [J

and

Let M; and M, be two analytic manifolds over k. The topological space M :=
M; x M, carries a natural analytic manifold structure described in [59, p. LG 3.7].
Let pr; : M — M;, ¢ = 1,2 be the two projections and let pr} Tan(M;), i = 1,2 be
the pull back bundles (cf. (1.7(c)) of the tangent bundles on M; and M. Then there
exists a natural identification

Tan(M) = pr] Tan(M;) & pr; Tan(Ms)
of vector bundles over M which induces a canonical isomorphism
det Tan(M) = pri(det Tan(M;)) ® prj(det Tan(Ms)).
Suppose that we are given seminorms:
Il l|as; : det Tan(M;) — [0,00), =1,2.

Then there are pullback seminorms pry|| ||as; on pr}(det Tan(M;)), i = 1,2 (cf.
(1.7)(c)) which are norms if (and only if) || || as; are norms.

Theorem 1.17. — Let My and Ms be two Hausdorff analytic manifolds over k and
let M be the product manifold M = My X M. Let

Il llaz; : det Tan(M;) — [0,00), 1 =1,2
be two seminorms and let
Il | : det Tan(M) — [0, c0)
be the product seminorm of the two pullback seminorms

prill s : pri(det Tan(M;)) — [0, 00).
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Let m;, v = 1,2 (resp. m) be the o-regular positive Borel measures determined by
| Iz, @ = 1,2 (resp. || ||az). Then the following assertions hold.

(@
/ hdm = hldml / hgdmg
M My M,

for any function h € C.(M) which is a product h(Py, Py) = h1(P1)ha(P;) of
two functions hy € C.(Mji), ha € C.(M2).
(b) Ifh(P1, P2) € C.(M), then

9(P) = /M h(Py, P2)dm, € C(M>)

/ hdm :/ gdms = / (/ h(Pl,Pg)dml) dms.
M Mo Mo M,
Proof

(a) Using charts and partitions of unity and the definition of the functionals on
C.(My), C.(M3) and C.(M) corresponding to m;, i = 1,2 (see 1.10) it is clear that
it suffices to treat the case when My = k9 and Ms = k!, q,t € Z~,.

Let us choose coordinates (z1, . .., z4) for My and (zg41, ..., T¢4¢) for Ma. Then
by definition we have that

/ hdm =
M

/ h(z1,...,Tqtt) ‘ |
ka+t

where the seminorms should be read as || ||as, resp. || ||as,-

and

Io) el
m/\"'/\m”d(lﬁd(EQ”’diﬂq_’_t

ol Iél
G—MA"'/\E

Let ) ,
fi(@, .., 2q) = ha(z1, ..., 2q) Al 8_%
and
f (:L‘ X ) =h (:E T ) A A 0
2\Lg+1y -y bgtt) — I2\Lg41y- -+ 5 Lg+t axq—f—l 8xq+t .

Then (cf. (1.6)(a)) f1 € C.(k9) and fo € C.(k). Therefore, by an elementary
version of Fubini’s theorem it follows that

/ hdm
M

= [ fi(@,...,zq)dz1d32 - - - d3y / » fo(Tgy1,. o Tqye)dTgyr - drgys
kd ka
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where the right hand side is equal to || v, Pidma /, A, h2dms by definition.
(b) This follows from (a) and the previous lemma. O

Now let f : N — M be an analytic morphism from an m-manifold to an n-
manifold. Then f* Tan(M) = N xj; Tan(M) is an analytic vector bundle over N
of rank m. It is endowed with a canonical morphism (cf. [59, LG 3.12] and [12])

f': Tan(N) — N X s Tan(M)

of vector bundles over N. The analytic morphism N — M is called an immersion
(resp. a submersion) if it “locally looks like” a linear injection (resp. surjection) k" —
k™ (cf. LG 3.12-14 in (op. cit.) for the precise meaning of this phrase). There is also
a proof in (op.cit.) that f is an immersion (resp. a submersion) if and only if f’ is
injective (resp. surjective).

Definition 1.18
(a) If f : N — M is an immersion, then the normal bundle Nor(N/M) is defined
to be the cokernel of f’ : Tan(N) — N X Tan(M).
(b) If f : N — M is a submersion, then the relative tangent bundle Tan(N/M)
is defined to be the kernel of f(see [12, 8.1]). The relative cotangent bundle
Cot(N/M) is the dual vector bundle of Tan(N/M).

If f: N — M is a submersion, then det Tan(N/M) is an (analytic) line bundle
over IV, which we shall call the relative anticanonical line bundle of f : N — M.
The restriction of det Tan(N/M) to a fibore Np,P € M of f : N — M is equal
to the anticanonical line bundle det Tan(Np) of Np. There is also a canonical
isomorphism

(1.19) det Tan(N) = det(Tan(N/M)) ® f*(det Tan(M))

of line bundles over NV induced by the exact sequence of vector bundles over N

(1.20) 0 —s Tan(N/M) —s Tan(N) 25 N x p; Tan(M) —> 0.
Notation 1.21. — Let f : N — M be a submersion between two analytic Haus-
dorff manifolds and let

| |55z : det Tan(N/M) — [0, 00)
be a seminorm on det Tan(N/M) — N.
If P e f(N),let
Ap : CC(NP) — R
be the positive linear functional on the fibre Np of f : N — M at P determined by

the restriction
|l ||p : det Tan(Np) — [0, 00)
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of || ||v/ar to Np (see (1.10)) and let hp € C(Np) be the restriction of h € C.(N).
Then we denote by
the function with value Ap(hp) for P € f(N) and with value 0 if P & f(N).

A linear map

An/y i Co(N) — Ce(M)

is said to be positive if any non-negative function ~ € C.(/N;R) is sent to a non-
negative function g € C.(M; R).

The following result is stated (without proof) by Serre [61, p.83] in the special

case of seminorms || || y/as and || |[as defined by global sections of det Cot(N/M)
and det Cot(M) (cf. (1.7)(a)).

Theorem 1.22. — Let f : N — M be a submersion between two analytic Haus-
dorff manifolds. Let
Il l|v/as - det Tan(N/M) — N
Il llar : det Tan(M) — M

be seminorms and let
Il ||~ : det Tan(N/M) ® f* det(Tan(M)) — [0, 00)

be the seminorm on det Tan(N) — N obtained by taking the product of || ||n/m
and f*|| || (cf (1.7)(b), (1.7)(c) and (1.19)).
Then the following holds,
(@) Anyw is a positive linear map from Cc(N) to Cc(M).
(b) Let Apr : Co(M) — R (resp. An : C.(N) — R) be the positive functionals
determined by || ||z (resp. || |[v). Then Ax = Apr o Ay
(c) Let m resp. n be the positive o-regular Borel measures on M (resp. N) de-
termined by || ||ar (resp. || ||n. Let O(P), P € f(M) be the positive o-
regular Borel measure on Np (cf. (1.11)) corresponding to the positive func-
tional Ap : C.(Np) — R determined by the restriction to the fibre Np of
f:N— MatPof| |y to Np (cf (1.10), (1.21)). Then,

/N hdn = /M Anypr(h)dm = /P o ( /N P hpdo(P)) dm

for any h € C.(N). The integral over Np is defined to be 0 if Np is empty.

Proof

(a) It is obvious from the definition in (1.21) that A/ is linear and positive. It
thus remains to show that Ay (h) € C.(M) for h € C.(N). To show this, we
first note that f(N) is an open subset of M (since any submersion is open) and that

ASTERISQUE 251



TAMAGAWA MEASURES ON UNIVERSAL TORSORS 107

the support of A y/ps(h) is contained in the compact subset f(Supp k) of (V). Itis
therefore sufficient to prove that A/ (h) is continuous in an open neighbourhood
of P= f(Q) € M foreach @ € N.

Let ¢ resp. s be the dimensions of N resp. M. Then since f is a submersion
there exist open analytic neighbourhoods U of Q, V of P and W of 0 in k!¢ and
an analytic isomorphism 1 : U — V x W such that f(U) = V and the following
diagram commutes (cf. [59, LG 3.16])

(1.23) U I 1

’ﬁl%
VW

If we cover N with such subsets U and apply the linearity of Ap for all P € M,
then it is clear from the “usual” argument with partitions of unity [38, p.270] that
it suffices to show that g := Ay/pr(h) € Cc(M) for h € C.(N) with support in
an open subset of U as above. Further, if hy € C,(U) is the restriction of h, then
An/m(h) = Ayyy(hy) on V and Ay pr(h) = 0 outside V. We may thus assume
that N=Uand M = V.

Since %) is an isomorphism and (1.23) commutes and the constructions of Ap (see
(1.10)) are functorial under isomorphisms we may and shall further assume that U =
V xW and f = pr;. Then N = M x W and det Tan(N/M) = pr3(det Tan(W))
for the projection pro : M x W — W.

If || |n/ar : det Tan(N/M) — [0, 00) is the pullback pr3|| [l of a seminorm
| llw on det Tan(W) — W, then it follows from (1.17)(b) that A/, is a positive
linear map from C.(N) to C.(M).

In the general case, choose a norm || ||y on det Tan(W) — W, and let A/ be
the linear map C,(M) — C.(N) determined by the norm pr3|| ||w on

det Tan(N/M) — N.

Then there exists a unique continuous function 7 : N — [0, 00) such that |[s||x/as
is equal to r(Q)pr3||s||w for any section s € det Tan(N/M) above Q € N (see
(1.6)(b)). Therefore, An/nr(h) = Anyp(rh) for all b € Cc(N). Therefore, the
general case follows from the already known case where || || y/as = pr3l| llw.

(b) One reduces immediately to the case N = M x W and f = pr; by means
of the same arguments as in the proof of (a). If || [|n/as is the pullback pri|| [lw
of a seminorm || ||y on det Tan(W) — W, then it follows from (1.17)(b) that

An =Ap oAy
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In the general case, choose a norm || ||y on det Tan(W) — W and define the
linear map Ay/ps @ Ce(M) — Cc(N) as above. Letr : N — [0,00) be the
function described in the proof of (a) and let Ay : C.(N) — R be the functional
defined by the product seminorm || || arxw of pri|| ||ar and pr3|| ||w. Then ||s||ny =
r(Q)||s|| s xw for any section s € det Tan(N) above. Therefore Ay (h) = An(rh)
and Ay pr(h) = Ayyar(rh) for all h € C.(N) (see (a)). This combined with Ay =
Anm o Anypy (see (1.17)(b)) implies that Ay = Apr o Anypy-

(c) This follows from (b) and Riesz representation theorem. O

2. Measures and densities for algebraic varieties over local fields

Let k£ denote a non-discrete locally compact field of characteristic zero and let
X be a smooth k-variety. It is well known that the set of k-points X (k) on X can
be given a natural analytic manifold structure X, (k) and that this construction is
functorial. The best reference for the applications here seems to be chapter III of the
book [53].

We first define the underlying topology of X (k). If X is an affine k-scheme of
finite type, then the k-topology on X (k) is defined to be the coarsest topology for
which all maps X (k) — k defined by regular functions on X are continuous. We
shall say that a subset of X (k) is k-open (resp. k-closed) if it is open (resp. closed)
in the k-topology.

In the following result (2.1) we always refer to the k-topology when regarding the
set of k-points X (k) on an affine k-scheme X as a topological space.

Proposition 2.1

(@) Letg : X — Y be aclosed k-immersion of two affine schemes of finite type over
k. Then g induces a closed immersion X (k) — Y (k) of topological spaces

(b) Let Z = X Xy Y be a product of two affine schemes of finite type over k. Then
Z(k) = X (k) x Y (k) as topological spaces.

(¢) Letg : X — Y be an open k-immersion of two affine schemes of finite type over
k. Then g induces an open immersion X (k) — Y (k) of topological spaces.

(d) The k-topology on Ay, (k) is equal to the direct product topology on k™ = Aj, (k).

Proof. — (a) and (b) are obvious and the proofs left to the reader.

(c) X may be identified with the closed k-subvariety of Y x A} =Y x Spec k[T
defined by the equation hT = 1 for some invertible function h in the coordinate
ring of Y. By (a) and (b) one gets that X (k) is the closed subset of the product
space Y (k) x A} (k) defined by hT = 1. Now use the fact that the projection of
X (k) C Y (k) x AL(k) onto Y (k) is an open immersion of topological spaces.
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(d) It suffices by (b) to consider the case X = A} = Spec k[T’]. Then any regular
function on X is a polynomial in 7" with coefficients in k. This combined with the
fact that & is a topological ring implies that the k-topology on X (k) is the coarsest
topology for which 7' : X (k) — k is continuous. Hence T' : X (k) — kis a
homeomorphism, as was to be proved. |

Proposition and definition 2.2. — Let X be a separated scheme of finite type over
k. Then the family of all k-open subsets of sets of k-points on all Zariski open affine
k-subschemes form the base of a topology of X (k). If X is affine this topology is the
k-topology above. If X is not affine we call this topology the k-topology of X (k).

Proof. — The statement follows immediately from (2.1)(c). l

It is obvious from the definition that a k-morphism g : ¥ — X between two
separated schemes of finite type over k induces a continuous map Y (k) — X (k)
with respect to the k-topologies. It is also clear that the assertions in (2.1)(a)-(c) hold
in the non-affine case.

Proposition 2.3

(a) X (k) is a Hausdorff space with respect to the k-topology.

(b) There is a countable base of open subsets with compact support for the k-
topology. In particular, X (k) is o-compact and paracompact with respect to
the k-topology.

(c) If X = Py, then the k-topology of X (k) is the quotient topology arising from
the canonical map k™ 1\(0) — Pp.

(d) If X is a closed k-subscheme of Py} for some n, then X (k) is compact with
respect to the k-topology.

(e) If X is a smooth, proper and geometrically connected k-scheme, then X (k) is
compact with respect to the k-topology.

Proof
(a) X is Zariski closed in X X X by assumption. The diagonal of X (k) x X (k)
is therefore closed in the k-topology.

(b) It suffices to prove this for a finite set of open affine subvarieties in a covering
of X. To show this, use (2.1) and the fact that the locally compact field k£ has such a
base.

(c) This is checked locally using the standard covering of P! by n + 1 affine
n-spaces.
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(d) It suffices by the non-affine version of (2.1)(a) to prove this in the case X =
PP, Then use the fact that the compact subset of k"*1\(0) consisting of (n + 1)-
tuples (2o, 1, ...,Z,) With sup; |z;| = 1 is mapped onto P} under the canonical
map from "1\ (0) to PP

(e) There exists by Chow’s lemma [32, p 107] a proper k-morphism g : ¥ — X
from a projective k-variety Y and a Zariski non-empty open k-subvariety U of X
such that g induces an isomorphism of g~!(U) to U. This implies by (a) and(c) that
g(Y (k)) is a k-closed subset of X (k) containing U (k). But X is smooth and hence
U(k) dense in X (k) (cf. [53, lemma 3.2]). Therefore g(Y (k)) = X (k), thereby
completing the proof. O

The smoothness condition in (2.3)(e) is not necessary, but will be satisfied for all
the applications in this paper. One can prove that any proper morphism g : ¥ — X
between k-varieties gives rise to a proper continuous map Y (k) — X (k) between
topological spaces as remarked by Serre in [61, Ch.2].

Next, let o be a complete discrete valuation ring and ® : = — Spec o be a separated
morphism of finite type. We shall in the sequel write =(o) for the set of o-morphisms
o : Speco — = such that ®o is the identity morphism on Spec o.

Proposition 2.4. — Let k be the quotient field of a complete discrete valuation ring
0. Let L : 1 — =g be a closed immersion of separated o-schemes of finite type over
o and let 51 — =5 be the closed immersion of their generic fibres. Then the natural
maps Z;(0) — X;(k), 1 = 1,2 are injective and Z1(0) = X1(k) N Ea(0) in X2 (k).

Proof. — The assertion follows from Grothendieck’s valuative criterion for sepa-
rated resp. proper morphisms (cf. e.g. [32, Ch.2 §4]). If Z; — Ej is an arbitrary
proper o-morphism between separated schemes of finite type over o, then the dia-
gram

is set-theoretically cartesian. O

Corollary 2.5. — Let k be a finite extension of Qp, and let o be the maximal Z-
order in k. Also, let E be a separated scheme of finite type over o. Then the following
holds.
(a) Z(o) is a compact and open subset of X (k) in the k-topology.
(b) Let X be the scheme theoretical closure of X in E. Then the natural map from
X.1(0) to Z(o) is bijective.
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Proof

(a) There is a covering of = by finitely many Zariski open affine o-schemes. We
may therefore assume that = is affine over o and choose a closed o-immersion ¢ :
E — A”. We may then by (2.1) and (2.4) reduce to the obvious case = = A7.

(b) X, is also separated and of finite type over o with X as generic fibre. The
assertion therefore follows from (2.4). O

We shall not need (2.5)(b) in the sequel, but it makes it possible to reduce to the
case of reduced models over o.

Definition 2.6. — A k-variety X is a geometrically connected, separated scheme
of finite type over k.

We shall in this paper use the word k-variety in this sense also for other fields
than locally compact fields. Thus a smooth k-variety will always be assumed to be
geometrically integral in this paper.

The definition of the k-topology works for arbitrary separated schemes of finite
type over k. For the definition of an analytic manifold structure on X (k) we assume
from now on that X is a smooth k-variety.

To define an n-chart (n = dim X) around a k-point X of X (k) choose an affine
neighbourhood U equipped with an étale k-morphism h : U — A}. It follows from
the inverse function theorem [59, part II, Ch. 3, §9] that there is a k-open neighbour-
hood N, in U (k) of X such that the restriction of i to N, defines an homeomorphism
between N, and a k-open neighbourhood of y = h(z) in k™ = A} (k). Moreover,
any two such n-charts defined in this way are compatible (see [53, p. 111]). Also,
any two n-atlases consisting of such n-charts are compatible (in the sense of (1.2)).
There is therefore a (canonical) analytic manifold structure on X (k) (see p. 112 in
op.cit.). If k is a complete discrete valuation field, then it follows from (2.3)(b) and
a result of Serre [58] that X,, (k) is a disjoint union of “balls”.

Each k-morphism g : Y — X gives rise to a (unique) analytic morphism ga;, :
Y (k) — X (k) between the corresponding analytic manifolds so that one becomes
a covariant functor from the category of smooth algebraic k-varieties to the category
of analytic manifolds over & (cf. e.g. [62] for the case k = C).

The following result is well-known.

Proposition 2.7

(@) Letg : Y — X be a smooth k-morphism between smooth k-varieties of con-
stant relative dimension d. Then gy, : Y (k) — X (k) is a submersion of relative
dimension d. In particular, g,y is open.

(b) Letg: Y — X be a closed immersion of smooth k-varieties of codimension d.
Then gay : Y (k) — X (k) is a closed immersion of codimension d.
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Proof
(a) Let Qy,/x (resp. Qy/;) be the relative cotangent sheaf of Y/ X (resp. Y/k).
Then the natural sequence

0— Q*QX/k — QY/k — QY/X —0

is an exact sequence of locally free coherent sheaves on Y which corresponds to an
exact sequence of vector bundles over Y (cf. [30, 16.5.12 and 17.2.3])

0— V(Qy/x) — V(Qy/k) — V(QX/Ic) XxxY —0

where V' (£) means the spectrum of the quasi-coherent symmetric algebra S(€) on £
asin [29, 1.7.8]. Now note that the analytic tangent bundle Tan(Yy, (k) — Yan (k) is
equal to the analytic morphism V (€0y/x)an(k) — Yan(k) associated to the algebraic
tangent bundle V(Qy/;) — Y [S3, p.113]. Hence the last sequence gives rise to
an exact sequence of analytic vector bundles as in (1.20) with N = Y,,(k) and
M = X,n(k). This implies that g is a submersion by the criterion mentioned just
before (1.18).

(b) The proof is similar, but one uses the exact sequence (cf. [30, 17.2.5])
0— V(Qy/k) — V(Qy/k) XxY — V(Cy/X) —0

where V(Cy, x) is the normal bundle of Y/ X corresponding to the algebraic conor-
mal sheafof g : Y — X. O

The main application of (2.7)(a) will be in connection with the integral formula in
(1.22).

For the rest of this section we assume the following:

(A) k is a finite extension of QQ,, o is the maximal Z-order in k
(B) E: X — Specois a separated morphism of finite type (e.g. a proper morphism)
such that the generic fibre X is smooth and geometrically connected.

Then, by (2.5)(a) there exists a natural compact analytic manifold structure over k
on the k-open subset =(0) of X, (k). We shall denote this compact analytic manifold
by Ean(0).

Next, let {2z, be the relative algebraic cotangent sheaf of ® : = — Speco. Itis a
coherent (but not necessarily locally free) sheaf on X and one may form the spectrum
V(Q2z/,) of the quasi-coherent symmetric Oz-algebra S(Q2z/,) of 2=/, [29, 1.7].
Following [30, 16.5.12] we will write Tz/, = V(Q2z/,). The morphism Tz;, — E
is affine, hence separated. The composite map 7=/, — Speco is thus also separated
and its generic fibre is equal to the algebraic tangent bundle T'x/, = V(Q2x/x) of
X/k.

The analytic tangent bundle Tan( X,y (k)) — Xan (k) is equal to the analytic mor-
phism T'x /i (k) — X (k) associated to the algebraic tangent bundle T’x/, — X (cf.
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[53, p. 113]). Also, the analytic tangent bundle Tan(]T/f ) over M= Ean(0) is equal
to the inverse image of the analytic tangent bundle Tan(X,,(k)) — Xan(k) over M.
One may therefore regard T=/,(0) as a compact open subset of the analytic manifold

Tan(ﬁ ).
Proposition 2.8. — Let E/o be as in (A) and (B) and let Tan(JT/f ) — M denote
the analytic tangent bundle of M = Eay(0) € Xan(k). Then L := Tz /o(0) is an
analytic o-lattice of Tan(M) in the sense of (1.18).
Proof. — The question is local so we may reduce to the affine case. Choose a closed
o-immersion ¢ : & — A7 and make use of the natural epimorphism (see [32, I1.8])

L*QA{,”/O — QE/O‘
This defines in its turn (cf. [30, 16.5.12]) a closed immersion

TE/o — TAg‘/o X Am E
and hence by (2.5) an equality of subsets of TA;n Jk
Tz/o(0) = Tx (k) N Tam o-

But it is noted in [57, 3.3] that the right hand side is “un champ localement constant
de résaux” for affine k-varieties X C A7® X, k. This means in our language that it is
an analytic o-lattice in Tan(M ). The proof is thus complete. a

By taking exterior products of L one gets an analytic o-lattice det L in det Tan(M).

Definition 2.9. — We shall call

det L C det Tan(M)
the analytic o-lattice defined by = /o. The norm

||| - det Tan(M) —s [0, 00)

determined by det L C det Tan(M ) (cf. (1.9)) will be called the model norm de-
termined by =/o. The positive Borel measure (see (1.12)) m on M defined by the
model norm

|| | : det Tan(M)|0, co)
above will be called the model measure on M = Ean(0) determined by E/o.
Remark 2.10. — 1t follows from simple functoriality properties of algebraic cotan-
gent sheaves that the analytic o-lattice in Tan(M) is uniquely determined by the

closllfe X of X in =. This implies that the model norms and the model measures
on M = E,,(0) = X¢1,an(0) determined by Z/0 and X /o coincide (cf. (2.5)(b)).
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We now partition E (o) into congruence classes. Let 7 be a uniformizing parameter
of o and let o, := o/(n") for each positive integer r. Denote by =(o,) the set of
morphisms o, : Spec(o,) — Z such that ®o, : Spec(o,) — Spec(o) corresponds
to the reduction map o — o,.. We shall also write F for o; and Z(F') for =(o0y).

Lemma 2.11. — Lety € E(F). Then there is a natural bijection between sections
o € Z(o) which are sent to y € E(F) under the reduction map =(0) — E(F') and
morphisms Speco — Spec Oz, which are sections of the morphism Spec Oz, —
Speco induced by ®. This is also true if we replace the stalk O= y by the completion
along its maximal ideal.

Proof. — By definition of morphisms of schemes any morphism o : Speco —
= which is a lifting of y € Z(F') factorizes over an affine morphism Speco —
Spec OQy which is a section of the morphism Spec O=; — Speco induced by ®.
This proves the first statement. The second follows from the first and the fact that o
is complete. O

We shall need the following explicit version of the inverse function theorem on

power series h(y1,...,Ym) € 0[y1,-..,ym]. We will write y = (y1,-..,Ym),
y* =TI, y5i fore = (e1,...,em) € Z(™) and deg(e) for the degree £1 + - - - + €.

Lemma 2.12. — Let
hi(yiy- - Ym) €0lyt,--syml, F=1,...,m

be formal power series of the form
hi(y) =y + Y oy’
where o, € (198E)1) and ¢ € Z(™ runs over exponents € = (e1,...,em) with

€1y...,Em = 0 of degree > 2.
Then there are unique formal power series

YiW) =y + By €olyr,- . yml
such that:
hi(m (- Ym)s- - Ym (Y- -+, Ym)) = yj
forj=1,....,m.
Moreover, £ € 7.(™ only runs over exponents € = (€1,...,Em); €1,-.-,6m 2> 0
of degree €1 + - - - + €, > 2 and the coefficients [3; € (wde8(©)=1Y In particular, all
power series converge.

Proof. — This is an immediate consequence of a more general result proved on
pp. 11-12 in chapter LG 2 of [59]. See in particular the statements 1. and 2. on the
top of page LG 2.12. O
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Theorem 2.13. — Let ® : £ — Speco be a separated morphism of finite type with
smooth geometrically connected generic fibre of dimension d and let m be the model
measure on M = Zan(0). Let og € E(0) and let e be the largest integer such that
HO(Speco, o}Qz /o) contains a torsion subgroup isomorphic to o/ (r¢). Finally, let
D(09,Z,7) C Ean(0) be the k-open subset of all o € Z(o) with the same reduction
as og in E.(oy).
Then,
m(D(00,E,7)) = (p(0)/ Card(or))?

forr > e.

Proof. — Tt follows from (2.11) that D(og,E, 1) is contained in (o) for each
Zariski open neighbourhood ) of o in E. It is therefore sufficient to treat the
affine case and we shall choose a closed immersion ¢ : & — A7" and coordinates
T1,...,2Tm such that

oot : Speco[zy, ..., Tm]/(Z1,...,2m) — Speco[z1,...,Tm)

is the obvious morphism. Then F' := H°(Speco, (oot)*Q Am /o) 1s a free o-module
generated by dzy,...,dzy,.

Let (f1,..., fx) € o[z1,...,Zm],k > m — d generate the ideal defining =. Then
W := H°(Speco, a}Q= /o) is the quotient module F'/R of F' by the o-submodule R
generated by the k elements:

The generic fibre is smooth of dimension d and the o-module R is therefore generated
by m — d of these elements, say dfy, ..., dfn—q. By the elementary divisor theorem
we may after a linear coordinate change of write:

(11) fj(l‘lv"'amm) :We(j)xd+j+Z§Exs7€E €o

where € = (£1,...,6m) € Z™) runs over exponents €1, .. .,m > 0 of total degree
g1+ +em>2and wheree =¢(1) > €(2) > .- > e(m —d) > 0.

The polynomials f;(z1,...,2m), j = 1,...,m — d define = C A" in an open
Zariski neighbourhood of oy, which by (2.11) contains D(oyp, 1,=). We may and
shall therefore assume that = C A} is defined by the polynomials

fi(®1,...,om) =0, j=1,....,m—d.
We now consider the analytic map

p: D(Uo,E,'I‘) — D(07 Ag,'f‘)
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obtained by projecting onto the d first coordinates x1, ..., z4. Let us first show that
this map is an analytic isomorphism when r > e by means of an explicit construction
of the implicit functions involved.
Consider the morphism H : A7* — A7 sending (y1,...,Ym) to (h1,...,hpy)
where
hi(yr, - ym) =v5 1<j<d
hj(yl, ce ,ym) = ﬂ_e(])_rfj_d(ﬂryl, ... ,wrym) d+1< 7<m
Then each h;(y), 7 = 1,...,mis of the form

(i) hi(y) =yj+ D 0=y € oy, ym

where a,3(7rdeg(E )=1) and ¢ € Z(™) runs over non-negative m-tuples of degree > 2.
We may thus apply the inverse function theorem described in (2.12) and find
unique convergent power series

ij(ylv"wym)eoﬂ:ylv'”vym]]v j=1,...,m

such that

(iv) 1Y) =yi+ D By

where . € (19¢8()~1) and ¢ € Z(™) runs over non-negative m-tuples of degree > 2
V) hin, - ym)s-- o m (Y15 Ym)) =y
fory=1,...,m.

We now consider I : A" — AT sending (y1,...,Ym) to (71,...,7¥m). Then
(v) says that HT is the identity map. By applying (2.12) to I' instead of H one
gets an analytic map ¥ : A7" — A7 such that I'V is the identity map. But then
H = HI'U = ¥ such that:

(Vl) /Y](h’l(ylv7ym)77hm(ylvaym)) =Yj
fory=1,...,m.

From h;(y1,...,ym) = yj for j = 1,...,d and (vi) one deduces further that:
(vii) ’Yj(yl?"-aydaoa”'?o):yj? jzlv"'vm
so that hj(y1,...,ym) =0forj =d+1,...,m. Set

dj(x1,...,zq) ="y (r "1, ..., m " 24,0,...,0)
for j = 1,..., m. Then, from (iv) (resp. (v), resp. (viii)) it follows that:
(viii) f; is analytic on D(0, A4, r) with image in D(0, A}, r).

(iX) fj(qﬁl(:cl,...,:Ed),...,qu(wl,...,xd)) =0fOI'j = 1,...,m—d.
(x) ¢j(z1,...,2q) =xjforj=1,...,mand (z1,...,2n) € D(00,E,1).
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Let
(D(LL']_, v ’:L'd) = (d)l(ml’ .. 71‘(1)7 s ad’m(xb .. 7$d))'
Then from (viii), (ix) and (x) it follows that ® defines a bijective analytic map
D(0, A3, ) — D(00,Z,7)
which is inverse to the projection map
p: D(007 E,?”) — D(07 Agar)'

We now prove that the analytic isomorphism given by ® and p between D(oy, Z, )
and D(0, A4, r) is an isometry.

Let ¢ € D(0g,Z,r). Then it follows from (i) that H°(Speco,0*Qg/,) is the
o-module generated by dz1, ..., dz,, with relations

dfj = (8f3/8m1)da:1 +- 4+ (afj/axm)dm'ma j=1...,m—d.

Moreover, by (ii) we obtain that
(xi) df; = Fe(j)dil?d+j (modulo 7"), j=1,...,m—d.

where by assumption r > e(j) for j = 1,...,m — d. This implies that the isomor-
phism between the analytic tangent bundles of D(cy, =, r) and D(0, A%, r) induced
by p and ® preserves the o-lattices of these tangent bundles described in (2.8). Hence
(see (2.9)) the analytic isomorphism induced by p and ® respects the model mea-
sures on D(0g,Z,7) and D(0, A4, r). It is therefore sufficient to prove the theorem
for £ = A% and oy = 0. But then m(D(0, A%, 7)) = (u(0)/ Card(o,))? for r > 0.
This completes the proof. O

Theorem 2.14. — Let ® : £ — Spec o be a separated morphism of finite type with
smooth geometrically connected generic fibre of dimension d and let m be the model
measure on M = Z,,,(0). Then there is an integer E such that the torsion part of

H°(Speco, 0" Qz/,)
is annihilated under multiplication by ©% for all o € Z(0). Moreover, if r > E, then
(@
m(Zan(0)) = Card(Im(E(0) — X (0,))) (u(0)/ Card (o))"
W)
L, pm= 3 P Carden)’

= PeIm(Z(0)—X(or))
for any h € C.(Ean(0)) which is constant on the fibres of the reduction map from
=(o) to E(oy).
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Proof. — The first statement is an obvious consequence of the assumptions on ®
and the reader may find a proof of a stronger result in [10, 3.3.3]. The fact that (a)
and (b) hold is a consequence of the previous theorem. O

It follows from (1.6)(b) that any measure on M = E,,,(0) determined by a semi-
norm on Z,,(0) on det Tan(M) is of the form hdm for a non-negative continuous
function h € C.(Xan(0)). We may thus use (2.14)(b) to compute the volume of
Zan(0) with respect to any such measure.

The theorem (2.14)(a) is due to Serre [57, p. 147] (cf. also [47]) in case = is affine
and o = Z,. He proves that the equality holds for all sufficiently large r without
giving any explicit bound for those . The following result is due to Peyre [52, 2.2.1]
in case P is projective and r = 1.

Corollary 2.15. — Let ® : = — Spec o be a smooth separated morphism of finite
type with geometrically connected generic fibre of dimension d. Then,

m(Ean(0)) = Card(E(o,))(u(0)/ Card(o,))*

forallr > 0.

Proof. — It follows from the smoothness of ® that H°(Spec 0, 6*Qx;,) is torsion-
free for all o € =(o) (see [10, 3.3.1]). Therefore the equality (*) above holds for
all » > 0. To complete the proof, note that Z(0) — E,(o,) is surjective by Hensel’s
lemma. O

Our next goal is to study families of measures along the fibres of an analytic mor-
phism 7, : Yan(k) — Xan(k) associated to a smooth morphism 7 : ¥ — X
of k-varieties. We shall thereby write {0y, x for the relative cotangent sheaf and
Ty;x = V(y,x) for the relative tangent bundle (cf. [30, 16.5.12] and [29, 1.7.8]
for the affine morphism V' (£) — Z associated to a coherent sheaf £ on a scheme 7).

Proposition 2.16. — Let X (resp. Y ) be a smooth separateid o—sciieme of finite type
with geometrically connected fibre X (resp. Y). Let T : Y — X be a smooth o-
morphism of constant relative dimension d and let m : Y — X be the corresponding
k-morphism between the generic fibres. Then the following holds.

(a) The relative cotangent sheaf () /% is locally free of constant rank d and its

restriction to the generic fibre of Y /o is equal to Qy x.
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(b) The relative tangent bundles define a commutative diagram with injective ver-
tical maps

Ty, 53(0) — Y (o)

L]

Ty x (k) — Y (k)

(c) Let N := Yon(k), M := Xan(k) and man : N — M be the analytic map
defined by m. Then myy, is an analytic submersion of relative dimension d and
the relative analytic tangent bundle Tan(N/M) — N is equal to the algebraic
map Ty x (k) — Y (k) in (b).

(d) Let N = Y (o) and let M = X (o). Then N (resp. M) is a compact open subset
of N (resp. M) and o, restricts to an analytic submersion Tap : N-o>M of
relative dimension d. Further, T} /% (0) is an analytic o-lattice of the relative

analytic tangent bundle Tan(N / M ).

Proof
(a) This is well known (cf. [30, Ch. XVI]).

b) V(Qy / z) — Y is separated since it is affine and Y is separated over o by as-
sumption. Hence Ty 5 := V(Qy / ) is also separated over o. Further, V(Qy,x) =

V(Q}N’/)?) X}"} Y by (a)

(c) The submersion statement follows from the implicit function theorem. The last
assertion follows from a straightforward comparison of the definitions of algebraic
and analytic relative tangent bundles.

(d) The first assertion is proved in (2.5)(a) and the submersion statement also fol-
lows from (2.5)(a). The o-lattice statement is local and easy to deduce from (a) and
(b). It suffices thereby to treat the case where 7 : Y — X is an affine o-morphism
between two affine o-schemes. O

Now set L = T;,

anticanonical line bundle det Tan(N / M ) = N.

/ 5(0). Then det L — N is an analytic o-lattice of the relative

Definition 2.17. — Let 7:Y — X and Tan : N — Mbeasin (2.16) and let L=
Ty, 5(0). Then det L will be called the analytic o-lattice of det Tan(N /M) — N

defined by 7 : Y — X. The norm

Il 557 : det Tan(N /M) — [0, 00)
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determined by this cl-lattice (cf. (1.9)) will be called the relative model norm deter-
minedbyw:Y — X.

Note that the restriction of || || 5 o the tangent bundle of a fibre Ty : N — M
is equal to the (absolute) model norm for this fibre.

Proposition 2.18. — Let7:Y — X and %oy : N — M be as in (2.16) and let
Il % g be the relative model norm determined by 7 : Y — X. Further, let

| |7 : det Tan(N) — [0, 00)

|| I7 - det Tan(M) — [0, 00)
be the model norms determined by Y /o resp. X /o and
Tanll ll37 : Wan(det Tan(M)) — [0, 00)

be the pullback norm of || || 7. Then || || 5 corresponds to the product norm of || || 5 i
and 7, || ||57 under the canonical isomorphism (cf. (1.19))

det Tan(N) = det Tan(N /M) ® 7, (det Tan(M)).

Proof. — The smoothness of 7 : ¥ — X and X /o implies that the canonical se-
quence of coherent sheaves on:

(2.19) 0— 7Q — Q5

X/o Y/o
is exact and that all sheaves involved are locally free.
There is therefore a “dual” exact sequence of (algebraic) vector bundles over

——)Q)‘;/)‘g—>0

(2.20) 0— Tp5 — Ty — Tigjp Xz ¥ —0
and an exact sequence of analytic o-lattices over
2.21) 0 — Ty 5(0) — Ty ,(0) — (T x5 Y)(0) — 0

inside the canonical exact sequence of analytic vector bundles over N described in
(1.20). The assertion is now an obvious consequence of the compatibility between
these two exact sequence. O

Corollary 2.22. — Let7:Y — X and 7an : N — M be as in (2.16). Let

A=:C.(M) — R

M
ANCC(N) — R

be the positive functional (cf. (1.10)) defined by the model norms (|| |37 resp. || |l 5)
and let

g7 : Ce(N) — Co(M)
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be the positive linear map (cf. (1.22)(a)) defined by the relative model norm || || i
Then,

Ay =Agrolga

Proof. — This follows from (2.18) and (1.22)(b). O
The following corollary of (2.15) will be useful in the theory of adelic measures.

Corollary 2.23. — Let7:Y 5 X, m:Y = X, %M:N%ﬁandwan :NN—>M
be as in (2.16) and hence of constant relative dimension d. Let A5 : C.(N) = R

Ay C.(M) — R and Ay
defined by the model norms.

Let F be the (finite) residue field of o and 15 € C.(N) resp. 137 € CC(M) be
the constant functions with value 1. Suppose that all fibres of ™ are geometrically

connected and that all fibres of T over F-points have the same positive number r of

¥/% ¢ Co(N) = Co(M M) be the positive linear maps

F-points. Then,
Az (1) = r(p(o)/ Card(F))"137 = (A5 (15) /A5 (1) 157

Proof. — LetP € M = )Z'( 0), Np be the fibre of 7oy : N — M over P. Then
the restriction of det Tan(N /M M) over Np is equal to det Tan(N p) — Np and the
restriction of the relative model norm || || 5 /i 0 det Tan(Np) is equal to the model

norm defined || ||p by the smooth o-model Yp of Yp. This implies (cf. (1.21)) that
the value of A 5 / 77(15) at Pisequalton p(ﬁ p) for the model measure np on Np
determined by Yp. But it follows from (2.15) and the assumptlons that n p(N p) =
r(u(0)/ Card(F))?. Hence Ay N/t (1 N) is constant on M and it is then a formal
consequence of (2.22) that it is equal to (A5 (15)/A57(157)) 157 This completes the

proof. U

3. Invariant norms on torsors over local fields

The purpose of this section is to study norms and measures on torsors which are
invariant under the group action. The word K -variety will always mean a geomet-
rically connected separated scheme of finite type over a field K. We shall use the
following assumptions and notations throughout the section.

3.1 (a) K is an arbitrary field with separable closure K.
3.1 (b) X is a smooth K -variety with structure morphism h : X — Spec K.
3.1 (c) G is a smooth K-variety which is an algebraic group over K.

We shall write e : Spec K — G for the unit section and
c:GxgG— G
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for the morphism defining the group multiplication. We shall for a K -scheme Y write
ey:Y — GxgY

for the morphism obtained from e by base extension.

Definition 3.2

(a) Let 7 be a K-scheme. A K-morphism o : G xx T — T is a (left) G-action
on 7 if the following conditions hold.
(i) The composition oeg : T — T is the identity map.
(ii) The following diagram commutes

GxKGxKTId—XU>G><KT

c X idl la
GxxT—2 7T

(b) Let 7 : T — X be a K-morphism. Then a K-morphism o : G X T — T
is a (left) G-action on the fibres of 7 : 7 — X if (i) and (ii) hold and if the
following diagram commutes:

(iii) GxpgT 25T

2 lﬂ

T— =X

The map pr; is the projection map onto the second factor.

Definition 3.3. — By a (left) X-torsor under G (with respect to the fppf-topology)
we shall mean a K -morphism

m: T —X

endowed with a G-action
c:GxgT —T

on the fibres of 7 : 7 — X satisfying the following conditions.

(a) The structural morphism 7 : 7 — X is faithfully flat and locally of finite
presentation.
(b) The morphism

p=(o,pre) :GxgT —TxxT

is an isomorphism.
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Let £ be a locally free sheaf on 7 endowed with an isomorphism ¢ : 0*& —
pr3€ of sheaves over G xx T (cf. (3.2)(iii)). From ¢ we get the following three
isomorphisms of sheaves over G X G X T

(c x id7)*¢: (idg x0)*(6*E) = (¢ x id1)*(0*E) — (c x id7)* (pr3€)
(idg x0)*¢ : (idg x0)*(0*E) — (idg x0)*(pri€) = pia(0*€) (cf. (3.2)(i))
P33® : P33(07E) — pa3(pr3€) = (¢ x id7)* (pr3€)

where pog3 is the projection onto the last two factors of G x g G X T.
¢ is called an S-linearization of £ (see [45, Ch I §3]) if

(¢ xid7)*¢ = (p33¢) © (idg X0)*¢.
The symmetric algebra S(€) on & is a quasi-coherent O -algebra and defines a vec-
tor bundle
q:V(E):=SpecS(E) —T
(see [29, 1.7.8] or [32, pp. 128-9]). The isomorphisms
¢:0"E — pry€

of locally free sheaves over G X g T corresponds canonically to vector bundle iso-
morphisms over G X g T

D: (GxgT)xTV(E) — (GxgT)x7 V()
where the maps from G X g 7T to T in the fibre products
(G xkx T) x7V(E)
are given by prg resp. o. Let
Y:G@xgV(E) — V()
be the composition of ® with the projection onto V' (£). Then there is a commutative

diagram

(3.4) G xx V(E) =5V (€)
id xwl lq
GxgT ——L——> T

The cocycle condition on ¢ is equivalent to the condition that ¥ is a G-action
on V(£). This gives (see [45, p.32]) a bijection between G-linearizations of £ and
liftings of the G-action on 7T to G-actions on V ().

The isomorphism

p=I(o,pra):GxxgT —TxxT
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defines a bijection between covering data 7 of £ (cf. [10, p. 133]) and isomorphisms
¢=p'n:o*E — pr;

such that 7 is a descent datum (cf. [10, 6.1]) if and only if ¢ is an G linearization
of £. There exists therefore by Grothendieck’s theory of faithfully flat descent [28,
exp. VIII] an equivalence between the categories of G-linearized locally free sheaves
(€,¢) on T and locally free sheaves ¢ on X (this is indicated at the end on p.32 in
[45]). Alternatively, one may use descent for vector bundles [45, 1. 2.23] and establish
the following result.

Lemma 3.5. — There is an equivalence of the category of vector bundles

q: V(&) —T
endowed with a G-action

L:GxgV(E)— V()
lifting
0:GxgT — T(cf. (3.4)

and the category of vector bundles

p:V(F) — X.

The pair (q,X) is obtained from (p, o) by means of base extension under 7 : T —
X. Conversely, V (F) is the geometric quotient V()]G (cf. [45, p.4]) and p is the
map

V(E))G —T/G
induced by q.

We shall in the sequel by a G-vector bundle over 7 mean a vector bundle g :
V(€) — T endowed with a G-action X as in (3.5).

Example 3.6. — Let Jx (resp. J7) be the ideal sheaves of the closed immersions
ex : X —G@xgX
er: T —GxkgT
and let
g GXg X —GxgX
be the morphism induced by 7 under the base extension from K to G. Then
exm = TGeT

and

I/ It = 76(ITx | T%)-
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The conormal sheaf
£ = e5(Ir/T7)
of er is therefore equal to the inverse image £ = 7*F of the conormal sheaf
F=ex(Ix/T%)
of ex. The corresponding G-linearization
¢:0"E — pr3€
of sheaves over G X i T is the identity map beetween the inverse images of Jx /J. }%
along mgeyo = wgerpra.
Since w : T — X is locally of finite presentation it is also separated. Write J for
the ideal sheaf on 7 x x T of the closed diagonal immersion
0:T —TxxT

and Q7 x for the relative cotangent sheaf 6*(J/J 2). Then the following identities
hold.

3.7 @) d = per
3.70) p"(T/T?) = TIr/T? = n&(Ix/T%)
3.7 Qpyx = ep(Ir/IF) = (X (Ix/T%))
We now consider the tangent bundle (cf. [30, 16.5.12]) V(QT/ x)ofm: T — X.

Proposition 3.8

(a) There exists a canonical isomorphism

V(Qr,x) = V(e (TIr/TF))

between the tangent bundle of 7 . T — X and the normal bundle of er : T —
G x K T.

(b) There exists a canonical T -isomorphism
V(e (TIx/T%) =T xx V(ex(Ix/IT%))
for the normal bundle V (% (Jx | J%)) ofex : X — G x g X.

Proof. — This follows from (3.7)(c) and the contravariant equivalence between lo-
cally free sheaves and “geometric” vector bundles described in [32, p. 129]. O

It follows from (3.8) that there is a natural G-action on the tangent bundle
V(QT/ X) T
given by the G-linearization of e*-(Jr/J2) = n*(e% (Tx/JT%)) in (3.6).
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Proposition 3.9. — Let J be the ideal sheaf of the closed immersion e : Spec K —
G and let

V(e"(T/T%)
be the tangent space of G at e regarded as a K -variety. Then there is a canonical
isomorphism

V(ex(Ix/T%)) = X xx V(e*(T/T?))
from the normal bundle of ex : X — G x g X.

Proof. — Let hg : G X X — G be the first projection map. Then Jx/J )2( =
he(J/J?) and hgex = eh. Hence e% (Jx/J2) = h*(e*(J/J?)) as was to be
proved. O

Now let £ denote a non-discrete locally compact field of characteristic zero and let
7 : T — X be a torsor over a smooth k-variety X under an algebraic k-group G as
in (3.1).

The algebraic morphism 7 gives rise to an analytic morphism 7, : Tan(k) —
Xan(k). Set

N = En(k)v
M = man(Tan (k).

Then M is a k-open subset of X,, (k) by the implicit function theorem. It is thus
endowed with a natural analytic manifold structure. We shall from now on change
notation and write

Tan : N — M
for the surjective analytic morphism sending Q € N to ma,(Q). This map is a

submersion in the sense of [59, LG 3.16].
The fibre product

N xpy N :={(Q1,Q2) € N X N : man(Q1) = man(Q2)}

is an analytic submanifold of N x N since 7y, is a submersion (cf. [59, LG3.26]). It
is the analytic immersion defined by the algebraic immersion 7 xx T — T X; T.

Let I' = Gan(k). The group law ¢ : G Xy G — G gives rise to an analytic
morphism

Can:I'xI' — T

which makes I to an analytic group in the sense of [59, Chap.IV] with e € G(k) as
neutral element.

The G-action o : G X T — T (cf. (3.4)) induces an analytic (left) G-action

Opn : I'X N — N

as in [59, LG 4.11]. This I-action satisfies man(0an(g,n)) = 7an(n) and we shall
therefore say that o,, is a I'-action on m,, : N — M (cf. (3.2)(iii)).
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Definition 3.10. — A submersion
a:N— M
between analytic manifolds with an analytic G'-action
B:I'x N— N
on « is called an analytic M-torsor under I' if the map
y:I'XxN— NxyN
sending (g,n) to (5(g,n),n) is an isomorphism.

The torsor isomorphism p : G X T — T x x T induces an analytic isomorphism
Pan : I XN — N Xy N

such that the pair (73, : N — M, oan : I' X N — N) obtained from the pair
(m:T — X,0:G xi T — T)is an analytic M -torsor under I".

Proposition 3.11. — Let oo : N — M be an analytic M -torsor under the I'-action
f:I'xN— N.

(a) There exists for each P € M an analytic section s : U — N of «a for some
open neighbourhood U C M of P.

(b) Let V = a~Y(U) for the open subset U C M in (a). Then the restriction of 3
to ' x s(U) defines an analytic isomorphism between T x s(U) and V.

Proof
(a) This follows from the implicit function theorem (cf. [§9, LG 3.1.6]).

(b) pan restricts to an analytic isomorphism between I' x s(U) and V Xy s(U)
which preserves the second coordinate. The projection map V' xy s(U) — V is also
an isomorphism. This completes the proof. O

By (3.11) any analytic M -torsor under I is a locally trivial analytic principal G-
bundle over M as defined in [59, Ch.IV]. The converse is also true. Note that (3.11)
implies that M as a topological space is homeomorphic to the quotient space N/T'.

Let ¢ : V(£) — T be an (algebraic) vector bundle as in (3.5) equipped with a
G-action X : G x, V(E) = V(E) lifting o : G x kT — T. Let E = V(E)an (k)
and let go,, : £ — N be the analytic vector bundle defined by ¢q. Then X defines an
analytic G-action

Yan:I'XE— FE

which lifts the I'-action on N. We shall in the sequel write gs instead of ¥, (g, 3)
for each pair (g, s) € I' x E whenever it is clear what the I'-action is. A seminorm

Il B — [0, 00)
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on Gan : E — N (cf. (1.5)) will be called G-invariant if ||gs|| = ||s|| for all (g,s) €
I'x E.

Let p : V(F) — X be a vector bundle corresponding to the G-vector bundle
q : V() — T under the equivalence of categories in (3.5) and let us identify V()
and T x x V(F). To p one may associate an analytic vector bundle

Pan ¢ V(F)an(k) — Xan(k).

Let F C V(F)an(k) be the inverse image of M := 7, (Tan(k)) under p,,. Then
Pan Testricts to an analytic vector bundle pan as : ' — M. The following result is
trivial.

Proposition 3.12

(a) The analytic bundle q,, : E — N is the pullback bundle of panpr : F — M
under man : N — M.

(b) The pullback seminorm on @y : E — N (cf. (1.7)(c)) of a seminorm on pap pr :
F — M is G-invariant.

(¢) Any G-invariant seminorm (resp. norm) on quy : £ — N is the pullback of a
unique seminorm (resp. norm) on pan pr - F'— M.

Now recall that V (7, x) = T x; V(e*(J/J?)) is endowed with a G-action (cf.
(3.5), (3.8)). As a corollary of the corresponding algebraic results result we obtain:

Corollary 3.13. — The analytic tangent bundle
Tan(N/M) — N
is canonically isomorphic to the pullback of the analytic normal bundle
Nor(M/T' x M) — M

along man : N — M.
There is a natural analytic G-action on Tan(N/M) — N. The normal bundle

Nor(M/T'x M) — M
is canonically isomorphic to the constant bundle
MxV —M
for the analytic tangent space V of G at e.

By considering the corresponding determinant bundles one deduces immediately
the following result.

Main proposition 3.14. — Let 1, : N — M be an analytic torsor under the
analytic group G as above and let V' be the analytic tangent space V of I at e. Then
the following holds:
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(a) The analytic anticanonical bundle
det Tan(N/M) — N
is canonically isomorphic to the constant bundle
N x detV — N.

(b) Let
| llar : M x det V — [0, 00)
be anormon M x detV — M. Then the pullback norm

Tanll 132 : N x det V. — [0, 00)

is a I'-invariant norm on det Tan(N/M) — N.
(c) Any T-invariant norm on det Tan(N/M) — N is the pullback norm of a
unique normon M x detV — M.

Definition 3.15. — A constant norm on det Tan(N/M) — N is a pullback norm
of a vector space norm on det V' under the projection

det Tan(N/M) = N x detV — det V.

The constant norms on det Tan(N/M) — N are clearly I'-invariant and unique
up to multiplication by a positive real number.

Remark 3.16. — Let wy be a non-zero section of det V'V for the cotangent space
VV of T" at e. Then wy defines a vector space norm || || : det V' — [0, 00) (cf. (1.7))
and any norm on det V is obtained in this way. Further, the bundle

det Cot(N/M) = N

is canonically isomorphic to the constant bundle N x det VV — N by (3.14)(a).
There is thus a global I'-invariant section w of det Cot(IN/M) — N corresponding
to the pullback of wy along the projection N x det V¥V — N. The constant norm
on det Tan(N/M) — N corresponding to || || : detV — [0,00) is the norm
associated to w in (1.7).

We now formulate an analog of (3.7) for schemes satisfying the following hypoth-
esis.
3.17 (a) ois a henselian discrete valuation ring, 0°" is a strict henselization of o.
3.17(b) h : X — Speco is a smooth separated morphism of finite type with geo-
metrically connected fibre.

3.17 (c) G is a smooth separated group scheme of finite type over o with geometri-
cally connected fibres.
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There is thus a unit section € : Speco — Ganda morphism
c: G Xo G—G
defining the group multiplication. We denote by J the ideal sheaf on G of the closed
immersion € and by T+ < the ideal sheaf on G of the closed immersion
€z : X —G Xo X
Let7: T — X bean o-morphism between o-schemes. A G-action
5:G Xo T—T
on the fibres of 7 : T — X is defined just as in (3.2)(b). A (left) X -torsor under G
(with respect to the fppf-topology) is an o-morphism

7T — X
with an action
0:Gx, T —T
on the fibres of 7 : T — X satisfying the following conditions.

3.18 (a) The structural morphism 7 : T = Xis faithfully flat and locally of finite
presentation. L ~
3.18 (b) The morphism p = (7, pra) : G X, T — T Xz T is an isomorphism.

Proposition 3.19. — Assume (3.17) and let 7 : ”7‘ — X be an X -torsor under G.
Then there is a canonical T -isomorphism

V(Qz3) =T x5 V(e (Jxz/Iz2)
and a canonical X -isomorphism
V(@%(Jz/T52) = X %0 V(E(T/T?).
Proof. — The proofs are almost identical to those of (3.8), (3.9). O

We now add the following hypothesis to (3.17).

3.20 (a) k is a finite extension of (Y, o is the maximal Z,-order in k.

320 (b) 7: T — X is an X -torsor under with action 5:G Xo T —T.

3.20 (c) The restrictions to the generic fibres of h, 7 and o are equal to the k-
morphisms h : X — Speck, 7 : T — Xando : G xgT — T in
(3.1) and (3.3).

Then N = 7 (o) (resp. I’ = G(0)) is a compact open subset of N = Ty (k)
(resp. I' = Gan(k)) in the k-topology (cf. (2.5)(a)). Also, M=X (o) is a compact
open subset of X,n(k). This provides M and N with analytic manifold structures
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and I‘ with an analytic group structure. The algebraic morphisms 7 : : T — X and
.G Xo T — T induce analytic morphisms

an ¢ N —

M
Oan : I' X N —

~

Lemma 3.21
(@) Tan : N — M is a surjective submerswn

(b) Tan : N — Misan analytic M -torsor under the T-action given by 0.
(c) There is a canonical isomorphism of analytic vector bundles over N:

Tan(N/M) =N x V

for the analytic tangent space of " at e € T'(k). This isomorphism is compatible
with the isomorphism

Tan(N/M) =N xV
in(3.14).

Proof

(a) The pullback of 7 : T — X with respect to a section Spec o — X is a torsor
over Spec o under G. The closed fibre of such a torsor is a torsor under the connected
algebraic group G X 0/m and therefore trivial by a well-known result of Lang (cf.
e.g. [64]). It follows from Hensel’s lemma that 7y, : T( ) — X (o) is surjective. It
is thus a submersion since 7 : 7 — X is smooth.

(b) The torsor isomorphism p = (0 pTz) GxoT = T x X T (cf. (3.18)(b))
induces an analytic isomorphism g,y : I'xN—> N X35 N.

(c) This follows from the fact that the relative analytic tangent bundle Tan(N / M )
is equal to the inverse image over N of Tan(N/M) — N. O

Definition 3.22. — The tangent lattice of G /o at & € G(0) is the o-module
Ly :=V(E(J/T*)(0)
of sections Speco — V(¢*(J/J2)) of V(&*(J/J?)) — Speco.

Note that L; is an o-lattice of the k-vector space V = V(e*(J/J?)).

Now let T /% =V(Qz y %) and recall that T> / 5 (0) is an analytic o-lattice of the

vector bundle Tan(N' / M ) (see (2.16)(d)).
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Proposition 3.23. — Aisume (3.17) and (3.20) and let N, M be as above. Let Ly
be the tangent lattice of G [o at € in the tangent space V of G [k at €. Then T / z(0)

is mapped isomorphically onto N x Ly under the canonical isomorphism
Tan(N/M) =N x V.
of analytic vector bundles over in (3.21)(c).

Proof. — This follows from (3.19). Od

Corollary 3.24. — Assume (3.17) and (3.20) and let N , M be as above. Then the
relative model norm

Il 57,57 : det Tan(N/M) — [0, 00)
determined by T : T X (cf- (2.17)) is equal to the constant norm
N x detV — [0, 00)

obtained by pulling back the vector space norm on detV given by det L for the
tangent lattice L1 of G/o at e.

Proposition 3.25. — Assume (3.17) and (3.20). Let p be the model measure on
Agan(0) determined by A /o for any of the three smooth o-schemes A = X, G or T.
Then

w(T (0)) = u(X(0))u(G (o).

Proof. — Let N = T(0), M = X(0), T = G(0) and T : N — M be as above.
Then it follows from the theorem of Lang already used in (3.21) that each fibre of 7
over a F'-point contains the same number of F'-points as G. This implies by (2.23)
that u(N)/u(M) is equal to Card G(F)(u(o)/ Card(F))¥ ™G which in its turn is
equal to u(é (0)) by (2.15). This finishes the proof. O

We now restrict to the case when G is a K -torus. This means that G is a commuta-
tive algebraic group which after a finite separable base field extension is isomorphic
to the product of a finite number of G,,. The K-torus is said to be split if there is
such an isomorphism defined over K.

Let G be the group of characters defined over K. Then there is a homomorphism:

(3.26) dlog : G — H°(G,Qp/k)

which sends a character f : G — G, to the G-invariant differential form df / f.
If G is a product of r copies of Gy, , then G is a free Z-module of rank r and one
obtains by taking the r-th exterior products a homomorphism

r r
(327 Ndlog: \G — H°(G, 94 k).
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Definition 3.28. — Let G be a split K-torus of dimension . Then the image of
any generator of A" G under /A" dlog is called an algebraic differential r-form of
minimal dlog-type. We shall also say that the corresponding analytic differential
r-form is of minimal d log-type.

Proposition and definition 3.29. — Let k be a non-discrete locally compact field
and let G be an r-dimensional k-torus. Then there exists a unique vector space norm
| | on A" (TG e(k)) for the tangent space T (k) of G at e defined as follows.

Let E be a finite field extension of k such that the absolute Galois group of E acts
trivially on \"(T') and let w; be an differential r-form of minimal dlog-type on Gg.
Then if s € N (Tg,e(k)), put

lIsll :== ¥lwi(s)|e
where d := dimy, E and | |g is the normalized absolute value of E.

This definition does not depend on the choice of E and wi. The number ||s|| will

be called the order of s and

I - A(Tae(k)) — R

the order norm.

Proof. — The proof of the independence statement is obvious and left to the reader.
O

Definition 3.30. — Let k be a non-discrete locally compact fieldand let 7w : T — X
be a torsor under a k-torus GG. Then the constant norm (cf. (3.15))

ll7/x : det Tan(T (k)/ X (k)) — [0, 00)

obtained by pulling back the order norm on A" (7 (k)) is called the order norm on
det Tan(7 (k)/ X (k)). If

Il llx : det Tan(X (k)) — [0, 00)

is a norm for X, then the product norm on det Tan(7 (k)) of the order norm || ||/ x
and the pullback norm 7*|| ||x (cf. (1.19)) is called the norm on det Tan(7 (k))
induced by || || x.

We shall in the sequel write || || x —,7 for the norm induced by || || x.

Remark 3.31. — Let k be the quotient of a complete discrete valuation ring o. Sup-
pose that G extends to a commutative group scheme @ and that 7 extends to a torsor
7:7T — X under G as in (3.20). Then the order norm

I ll7/x : det Tan(T (k)/ X (k)) — [0, 00)
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restricts to the model norm on det Tan(7 (0)/X (0)). (To see this, use (3.24).)
Hence, if a norm || || x restricts to the model norm on det Tan(X (o)), then the in-
duced norm || || x. 7 restricts to the model norm on det Tan(7 (0)) by (2.22).

4. Adelic norms and measures

The aim of the section is to define norms and measures on the adele spaces of
varieties over number fields. This section is inspired by [52] but our adelic notions
are more general than in that paper.

We shall in this section use the following notations.

Notations 4.1

(a) k denotes a number field and o denotes the maximal Z-order in k.

(b) If v is a non-archimedean place of k, then o, denotes the complete discrete
valuation ring corresponding to v and F,, the residue field of o,.

(c) If ¥ is a finite closed subset of Spec o, then o(x) denotes the Dedekind domain
of elements in £ which are integral with respect to non-archimedean places
outside .

(d) W denotes the set of all places v of k and W, the subset of all archimedean
places of k.

(e) Wgn denotes the set of all non-archimedean places of k, which we will identify
with the set of closed points of Speco.

(f) If X be a finite subset of Wg,,, then

AR) = 4E) = [k x ] o T:=TUWe.
veT veW-T

(g) A = Ay is the adele ring
= h_n;A(S), S C Whn

where S is finite. _ _
(h) Let ¥ C S be finite subsets of Wgy, 0 = o(x), A = Ak(X) and X (resp. E) be
a scheme over o (resp. ,21')‘ Then

X(S) = Xr XgO(S),

and
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(i) Let X C S be ﬁNnite subsets of Wg,, and f’, X (resp. II, ) be schemes over
0 = o(y) (resp. A = Ag(S5)). Then,

Homys)(P(s), X(s))
is the set of all o(s)-morphisms from 13( s) to X (s) and
Hom 45y (IT4(s), Ea(s))
the set of all A(.S)-morphisms from I 4(g) to Z 4(g).
We shall in the sequel also consider the embedding k¥ C Ay obtained from the
inductive limit of the embeddings o(5y C A(s) for all finite subsets S of Wy.

Proposition 4.2

(a) Let X be a scheme of finite type over k and let X 4 be a scheme of finite pre-
sentation over Ay. Then there exists a scheme X (resp. Z) of finite presentation
over 0 = o(x) (resp. A= Ay (X)) for some finite closed subset ¥ of Spec o,
such that

X = X ng‘
and
X A= = X i A.

(b) Let ¥ be a finite closed subset of Spec o. Let ﬁ, X be two schemes of finite type
over 0 = o(z) with generic k-fibres P and X and let 11, = be two schemes of

finite presentation over A = Ay (%) with
Py =TI x7 A,
Xa=ExzA
Then the obvious maps
e : lim Hom s)(Ps), X(5)) — Homg(P, X), % C S C Wan,
ea: 1i_n>1HomA(S)(HA(S),EA(5)) — Hom4 (P4, X4), X CSC Wgy,

over finite subsets S are bijective.
(c) Let
(p(s)) € li_ngﬂom(S)(ﬁ(S)’X(S))
resp.
(ma(s)) € limHom (s (ILa(s), Eacs))

be the element corresponding to

p € Homg (P, X) resp. w4 € Homy (P4, X4)
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under the bijection e (resp. e 4) in (b). Let P be any of the following properties.

(i) p resp. T4 is an isomorphism,

(ii) p resp. w4 is an open immersion,

(iii) p resp. w4 is a closed immersion,

(iv) p resp. T4 is separated,

(V) p resp. w4 is surjective,

(vi) p resp. w4 is affine,
(vii) p resp. w4 is proper,
(viii) p resp. w4 is projective,

(ix) p resp. w4 is quasi-projective,

(X) p resp. w4 is smooth.
Then there exists a closed subset T' 2 3 of Spec o such that P holds for p(s)
resp. T 4(s) for all finite closed subsets S of Wy containing T.

Proof. — Let R be a Noetherian ring. Then a scheme of finite type over R is also
of finite presentation over R (cf. [31, 6.3.7]). Therefore, (a) resp. (b) is a special
case of part (ii) resp. (i) of Théoreme 8.8.2 in [30] and part (i)-(ix) of (c) is a special
case of Théoreme 8.10.5 in (op. cit.) and (x) is a special case of Proposition 17.7.8 in
(op.cit.). O

Lemma 4.3. — Let X be a finite closed subset of Spec o and let f : X > Speco(x)
be a morphism of finite type. Then there exists a finite closed subset T' O ¥ of Speco
such that the morphism _

f(S) : X(S) — Speco(s)
is flat for all finite subsets S C Wgy containing T.

Proof. — See Théoréeme 6.9.1 in [30]. O

Definition 4.4

(a) Let X be a separated scheme of finite type over k and let 3 be a finite closed
subset of Speco. An o(x)-model of X is an o(z)-scheme X which is separated
and of finite type over o(x) and for which the generic fibre of X /o(x) is equal
to X. A model of X is an o(x)-model of X for some finite subset % C Win.

(b) Let X 4 be an Ag-scheme which is separated and of finite presentation over Ay.
Let ¥ be a finite closed subset of Speco. An Ag(X)-model of Xa/Ay is an
Ay (3)-scheme X which is separated and of finite presentation over A (X). A
model of X 4 /Ay is an Ax(2)-model of X 4 for some finite subset 3 C Wyp.
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Remarks 4.5
(a) It follows from (4.2)(a) that any k-scheme X (resp. any Ag-scheme X) in (4.4)
has a model. Also, by (4.3) there exists a model X of X which is flat over its
base ring. If X/k (resp. X 4/Ag) is smooth, then there exists a model which is
smooth over the base ring (cf. (4.2)(c)(x)). The models are not unique, but any
two such models become isomorphic after a base extension to o(g) resp. Ag(S)
for a sufficiently large finite subset

S C Wﬁn
(see (b) and (c)(i) in (4.2)). _
(b) Let X be a separated scheme of finite type over k£ and let X be a model over
0= o(x) of X. Further, let

A= Ay(®),
E=X xaﬁ
for the diagonal embeddings o C Ak C Aand
X4a=X xka.

Then Z is a model of X 4 /Aj.

The adele ring Ay, is a locally compact topological ring. The underlying topologi-
cal space is the restricted direct product

Ak‘ = HVEW ky
of the locally compact fields &, with respect to the compact integer rings
0o, C k]/, Ve Wﬁn'

The subspace topology of Ay (%) for finite subsets ¥ C Wy, is the product topol-
ogy of the v-adic topologies. The topology of Ay is therefore the inductive limit
topology of the product topologies of A () for finite subsets ¥ C Wy,,.

Let X 4 be an Ag-scheme such that X 4 /Ay is separated and of finite presentation.
Write X 4(k,) (resp. X a(Ay)) for the set of all Aj-morphisms

Speck, — X4a,
Spec A, — X4.

AkCHk,,

vew

The embedding

induces an injection

Xa(Ap) C [T Xak).
vew
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IfE/A, A = Ay(Z) is a model of X 4, then E is the direct sum (cf. [31, 3.1]) of
the o,-schemes
vi=E XZ70u, VE Wian\Z
and of the k,-schemes

X, :=XaXak,, veXUW.
The set Z(o,) of all A-morphisms
Speco, — X

form a compact open subset of X 4(k,) for v € Wy, \ X (cf. (2.6)).

Lemma 4.6. — Let X4 be an ~A;c-scheme such that X /Ay is separated and of
finite presentation and let £/ A, A = Ay (X) be a model of X 5. Further, let
HVEW X A(ku)

be the set of elements

{P} e ] Xalk)
veWw
such that P, € Z(oy) for all but finitely many places. Then X 4(Ay) is mapped onto

!

[1,cw Xa(ky) under the embedding
Xa(Ar) € ] Xa(ky)
veWw
e / Oz I8 another model of X 4, then

E(0,) = E (0y)
in X (k,) for all but finitely many places.

Proof. — The first statement is a consequence of the isomorphisms e 4 (see (4.2)(b))
between lim Hom 4 () (Spec A(S),E 4(s)) and Homa(Spec A, X 4). To prove the
second assertion we may replace ¥ and ¥ by X U >’ and reduce to the case & = ¥
Then the assertion follows from (4.2)(c)(i) for IT = = O

Definition and proposition 4.7. — Let X 4 be an Ay-scheme such that X 4/ Ay, is
separated and of finite presentation and let E/Ay(3) be a model of X. The adelic
topology on X 4(Ay) is the restricted product topology on

Xa(a) =]

vew XA(kI/)

with respect to the compact open subsets

E(oy) C X(ky), ve Wgy\Z.

ASTERISQUE 251



TAMAGAWA MEASURES ON UNIVERSAL TORSORS 139

This topology is independent of the choice of model.
If X is a separated scheme of finite type over k and X (Ay) is the set of all k-
morphisms
Spec A, — X,
then we define the adelic topology on X (Ay) to be the topology induced by the adelic
topology on X 4(Ay) for
X A= X x k Ak
under the obvious bijection between X (Ay) and X 4(Ay). The adelic space of X is
the topological space X (Ay,) endowed with the adelic topology.

Proof. — The restricted topological product

!

HV€W X(k,,)

does not change if we change or omit X (o, (resp. Z(o,)) at finitely many places. It
therefore follows from (4.6) that the adelic topology is independent of the choice of
model. (|

Examples 4.8
(a) Let X be a separated scheme of finite type over & and let X / 0o(x) be a model of

X. Ifv e W (tesp. v € Wgp\X), let X 4(k,) (resp. X (0,)) denote the set of
all k-morphisms

Speck, — X
resp. o(x)-morphisms

Speco, — X.

Let
X(4x) c IT x (k)
vEW

be the injection induced by the embedding

Ay, C H k.

vew
Then, the adelic space of X is equal to the restricted topological product of
all X (k,), v € W with respect to the compact open subsets X (0,) C X (k)
(cf. (2.5)) for all v € W5, \X. In particular, X (Ay) is locally compact.
(b) Let X = A} and choose Z = A as o-model of X. The adelic space X (Ay)
may be identified with the topological product A,(:) of r copies of Ag. If X is
an affine k-variety, then the adelic topology of X (Ay) is the coarsest topology
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such that all the maps X (Ax) — Ay determined by regular k-functions on X
are continuous.

(c) Let X4 be a smooth proper A-scheme. There exists (cf. (4.2)) a proper model
E/Ak(X) of X over o(x for some finite subset ¥ of Wy,. Moreover,

E(oy) = X (k)
for all v € W, \ ¥ by Grothendieck’s valuative criterion for properness so that
Xa(Ap) =[] X%
veWw
as a topological space. By Tychonoff’s theorem we conclude from (2.3)(b) that
Xa(4) = [ X (k)
vew
is compact if X is smooth and proper.

Remarks 4.9
(a) Let X 4 be an Ag-scheme such that X 4 /Ay, is separated and of finite presenta-
tion and let =/A;(X) be a model of X. Then it follows from the definition of
the adelic topology that the sets of the form:
[Tv. x[[E0.), TuWecCSCW
veS vEgS
for finite S and open subsets

U, C X(k)), vesS

form an open base for the topology on X 4(Ag). Also, there exists for each
place v € W a countable base F,, of open subsets with compact support for the
k., -topology on X (k, ) (cf. (2.3)). Let F be the family of open subsets of X (Ay)
as above with the additional condition that U, € F for all v € S. Then F is
a countable base of open subsets with compact support for the adelic topology
on X 4(Ay). It follows that the adelic space X 4(Ayg) is a locally compact, o-
compact, paracompact Hausdorff space.

(b) Let 4 : P4 — X4 be an A-morphism between two Ag-schemes as in (a).
Then 74 determines a map

ma(Ax) : P(Ag) — X(Ag)

between the adelic spaces. It is an easy consequence of (4.2) and the continuity
of the maps
P(ky) — X(ky)

that this map is continuous.
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We now define adelic norms for A-schemes X 4, thereby generalizing Peyre’s no-
tion of adelic metrics [Pel]. If X4 = X X Ay, for a k-variety X, then
XA XAkl,:Xka,,
and X 4(k,) corresponds bijectively to the set X (k,) of all k-morphisms
Speck, — X.
We shall by abuse of notation write
XI/ = XA XA kl/a
X (ky) = Xa(ky)
also in the case where X 4 is not a fibre product X xj Ay for a k-variety X.

The scheme X 4 will from now on be smooth, separated and of finite type over A.
This implies that X 4 is of finite presentation over A since any smooth morphism is
locally of finite presentation by definition. Hence there exist smooth models of X 4
by (4.2).

The set X (k,) := X 4(k,) is canonically isomorphic to X, (k, ) and will always be
endowed with a manifold structure. We shall write X, (k) for this analytic manifold
over k,. If X is an Ay (3)-model of X and v € Wy, \ ¥, then the compact open subset

E(oy) € X(ky)

inherits an analytic manifold structure from X (&, ), which we denote by Z,,(0,).

Definition 4.10
(a) A smooth Ag-variety is an Ag-scheme which is smooth, separated and of finite
type over A = Ay, such that X, is geometrically connected for all v € W.
(b) Let X 4 be a smooth A-variety. An adelic norm for X 4 is a family of norms

” ” = {” ”V : det Ta'nXan(kV) — [0700), Ve W}

on the analytic tangent bundles of Xy, (k, ), v € W with the following property.
There exists a finite subset ¥ of Wy, and an A (3)-model = of X such that the
restriction of || ||, to the analytic anticanonical line bundle on Z(o,) is equal to
the model norm determined by X, /o, for all v € Wy, \X.

If X4 = X Xy, A for a smooth k-variety X, then || || is said to be an adelic
norm for X.

It is clear from (4.2) that the last condition in (4.10) is true for any model of X as
soon as it is true for one model of X. We may therefore assume that = is a smooth
model.

Let M be a topological space. We shall in the sequel write C(M )~ for the vector
space of all continuous functions

f:M — (0,00).
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Definition 4.11. — Let X 4 be smooth A-variety and let
v={m € C(X(k,))>0, v € w}

be a set of positive continuous functions. Then v is called a set of convergence factors
for X 4 if the following condition holds.
There exists a finite subset ¥ of Wy, and an Ay (3)-model = of X such that the

product
II ( / %duy)
Z(ov)

Wen\Z
converges absolutely to a positive real number for the model measures x,, on Z(o,)
determined by =, /0, (see (2.9)).
If all functions v, are constant, then v = {v,, v € W} is called a constant set of
convergence factors for X 4(Ay) if

H Yot (E(0y))
Wan\Z

converges absolutely to a positive real number.
If X4 = X xj Ag for a smooth k-variety X, then

v ={nw € C(X(ky))>0, v € W}

is said to be a set of convergence factors for X.

Remarks 4.12

(a) The absolute convergence of the product is not affected by a change of finitely
many y,. We shall therefore use the term “set of convergence factors” also in
cases where -, is not defined for a finite set .S of places of k. One can then put
v, =1lforveSs.

(b) It is clear from (4.2)(c)(i) that the absolute convergence of the products above
only depends on y and not on the choice of model.

(c) If X is a smooth £ variety and X is a model over 6 = o(x), then X’(ol,) is
non-empty for almost all v € Wy, \ X (cf. (4.19)). One may thus find a set of
constant convergence factors for X with

T = ,u,,()?(o,,))-l

for almost all v. This is not true for arbitrary smooth Ag-varieties since there
are smooth Ag-varieties such that X 4(k,) = @ for infinitely many places.

Definition 4.13
Let X 4 be an A-variety as in (4.10).
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(a) Let S be a finite set of places of k. Then X is the topological space
Xs =[] X(k.)
veS

endowed with the product topology of the analytic k,-topologies, v € S. A
subset Bs of X is said to be decomposable if it is of the form

Bg = H B,
veS
for some Borel subsets

B, C Xan(ku), veES.
(b) A decomposable subset of X 4(Ay) is a subset B of the form

B:= [] B,
vew

for Borel subsets

By C Xan(kv)
such that

B, = E(Ou)
for all v € Wg,\X for some model Z/0o(5) of X.
(c) Let B = [],cw By be a compact decomposable subset of X (A). For each
veWw,let
fvo:X(k) —R

be a continuous function with support in B,,. Suppose that there exists a finite
subset ' C W such that f, is (strictly) positive on B, for all v € W\T and

such that
IT »

W\T
converges absolutely to a strictly positive function on HW\T B,. Let f €
C¢(X a(Ay)) be the function with support in B, such that

f: Hft/
veW

on B. Then f is called the restricted product of {f,, v € W} and any such
function f € C.(X 4(Ag)) is said to be decomposable. If f,, can be chosen to
be the characteristic function of B,, for almost all v € W, then f is said to be
finitely decomposable.

We now define adelic measures following Weil [67] (cf. also [61] and [52]).
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Theorem 4.14. — Let X 4 be a smooth A-variety as in (4.10) and let
v=A{w € C(X(k))>0, v € W}
be a set of convergence factors for X (Ay). Let
Il =A{ll'll. : det Tan X (k,) — [0,00), v € W}
be an adelic norm for X 4 and let
{m,, ve W}

be the regular positive Borel measures on X (k,) determined by these norms (see
(1.12), (1.14)). Then the following holds.

(a) Let T be a finite subset of W. Then there exists a unique o-regular positive
Borel measure m, on X (k,) such that

mr,(B) = [ ( / ’yudmu)

veT By
for any decomposable subset

B=HB,,

veT
of X (k).
(b) There exists a unique o-regular positive Borel measure m 4, on X s(Ay) such
that
(*) mA,’y(B) = H (/ '71/de>

veWw v
for any decomposable subset

B:HB,,

veWw
of X 4(Ay) for which all m,(B,) are finite.
(c) Let {f, € Co(X(ky)), ve W}, T CW, f € Co(X(Ag)) be as in (4.13)(c).

Then,
11 ( / fy'yudmu>
X (ky)

WA\T
converges absolutely to a positive real number and

fdma, = / fovdmy | .
/X<Ak) =11 ( X(ky)

vew
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Proof

(a) Let || ||, : det Tan X (k,) — [0,00), v € W, be the new norms obtained by
multiplying || ||, with «y,, and let m, be the Borel measure on X (k,) determined by
|| |- Then,
/ Ydm, = m,(B,).

v

The assertion is therefore equivalent to the existence and uniqueness of the product
measure of m,, over all v € T. This follows from repeated use of Theorem 8.2 in
[38, Ch. VI] (the reader can also consult Chap. III, §5, No 4 in [11]).

(b) Let = be an Ag(X)-model of X 4 for some finite subset S of Wy, such that
|| || restricts to the model norm on det Tan Z(o,) for all v € Wy, \ X. We shall call
a set of functions

{gu € Ce(X(ky), v € W}

adelic if g, is the characteristic function of
E(oy) C X (ky)

for all but finitely many v € Wg,\Z. It is then by Riesz’ representation theorem (cf.
(1.11) and the references there) sufficient to show that there exists a unique positive
functional A on X 4(Ay) such that:

") Ag) =11 ( /B V gu%dmu>

vew

for the restricted product g of any adelic set {g, € C.(X(k,)), v € W}.

The product of two finitely decomposable function is again finitely decompos-
able. This implies that finite sums of decomposable functions form a subalgebra .4
of Co(X(Ag)). Also, if g1, ..., g, are finitely decomposable functions on X 4(A)
with non-negative sum, then it follows from (a) that

Ag1) +---+Algn) 2 0.

There is thus a unique well-defined positive functional A on A satisfying (").
Next, let f € C.(X 4(Ag)). There is then an open decomposable neighbourhood

v= 1] U

veWw
of the support of f with compact closure

J=HJ,,

vew
in HVEW X(kl/)
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The restrictions to J of functions in C(X (Ag)) form a subalgebra
A(J) € Ce(J)

which separates points and contains the constant functions. There exists therefore by
the Stone-Weierstrass theorem [38, p.52] a sequence (g;)$2; of functions in A(J)
which converges uniformly to f on J. There exists further by Urysohn’s lemma [38,
IX. 2.1] a finitely decomposable function H € C.(X (Ag)) such that

0<HKI1 on X 4(Ag)
H=0 outside U
H=1 on Supp f.

Hence
(fo)iZ1 = (Hgi)Za

is a sequence of functions in .4 with support in J which converges uniformly to f
on X (Ayg). The same is true for (H2g?)°, with respect to f2. We may thus for
non-negative f assume that all functions in the sequence (f;)2, are non-negative.

Now let (f;)$2; be an arbitrary sequence of functions in .4 which converges uni-
formly to f on X (Ag) and such that there exists a compact subset K of X (Ay)
containing the supports of all f;. There exists then by Urysohn’s lemma a finitely
decomposable non-negative function G such that G = 1 on K. Then,

—Gsup|fi — f| < (fi = f;) < Gsup|fi — fj]
on X 4(Ag) so that:

[A(fi) = A(f)| = |A(fi — f3)| < A(G) sup | f; — f;]

by the linearity and positivity of A for functions in .A. Also,
|A(fi)| < A(G) sup | fil

by the same argument.

This implies that (Af;)$2, is a Cauchy sequence in R for any sequence (f;)52; as
above and that (Af;)$2, converges to zero if (f;)$2; converges to zero. There exists
therefore a unique extension of the positive functional A on A to a positive functional
A on C.(X (Ag)). This completes the proof of (b).

(c) Choose a bijective function Z~o — W\T and write W; for the image of
{1,...,i}. Let g; € Cc(X(Ag)), i € Zso be the restricted product of f, for
v € T U W; and of the characteristic function of B, for v € W\(T' U W;). Then
(9i)2; is a sequence of functions of finitely decomposable functions with supports
in B such that (g;)$2; converges uniformly to f on X (Ay). Therefore, (Ag;)%2,
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converges to A f so that the result follows from the validity of the formula for finitely
decomposable functions established in (b). This completes the proof. O

Remarks 4.15

(a) All the Borel measures in (4.14) are regular since X 4(Ag) is o-compact (see
(1.15) and (4.9)).

(b) Suppose that X 4 := X X A;. We may then regard m 4, as a measure on the
adelic space X (Ay) for X (cf. (4.7) and (4.8)(a)).

The following example is due Peyre [52, 2.2] except for the fact that (2.15) makes
it possible to consider non-projective varieties as well.

Example 4.16. — Let X be a smooth proper k-variety. Then there exists a smooth
proper model X/ o(z) of X (cf. (4.2), (4.4)) such that all reductions

Y,:=ExF,, ve&W\X
are gecEletrically integral (cf. [30, 12.2.1] or (4.18) below).
Let F', be an algebraic closure of F,,, and let
Y,=ExF,, veWsu\Z
Then the geometric Frobenius Fr, acts on PicY ® Q and one defines the local
L-function for v € Wy, \X by:
L,(s,PicY,) =1/det(1 — ¢, *Fr, | PicY, ® Q).
Now let H}, (X,0x) = HZ, (X,0x) = 0. Then
H}0 (Y0, Oy,) = H7o (Y, Oy,) = 0

for all but finitely many v € Wy, \E. Hence Deligne’s theorem [19, 3.3.9] implies
that (cf. [52, p. 117])

Card(Y, (F,))/qd™X = 1 + Tx(Fr, | PicY, ® Q)/q, + O(1/¢>/?)
for v € Wgn\ 2.
Moreover, by (2.15) one has

1 (E(0,)) = Card(Yy (F,)) (1 (0y) /g ) 3™ X

with 1, (0,) = 1 for all but finitely many v € Wg,.
Set
. 1/L,(1,PicY,) forve€ Wg,\Z
T 1 forv € Wy U X.

Then it follows from the equalities above that (7, ) is a set of convergence factors
for X.
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Example 4.17. — Serre [61, p. 655] applies Deligne’s theorem [19, 3.3.4] to smooth
(not necessarily proper) varieties X for which the first two Betti numbers

B; := dimg H§;(Xan(0),Q), i=1,2
vanish (for some embedding £ C C). He concludes that any model Z/o(x;) of X
satisfies
Card(E(F,))/qd™ X =14+ 0(1/¢%?), ve Wan\Z.

One may thus choose A, := 1, v € W as a set of convergence factors for such
X.

It is possible to formulate a result for smooth (not necessarily proper) varieties
with B; = 0 which contains the results of Peyre and Serre as special cases. The
convergence factors are given by 1/L,, (1) for local L-functions L, (s) defined by the
means of the second /-adic cohomology groups for a fixed £. One expects that the
local L-functions L, (s) are independent of the choice of £, but this is known only in
the proper case (cf. [34, pp. 27-28]).

Our next goal is to describe a relative version of theorem (4.14) for families of
smooth varieties. We first need some results on models.

Lemma 4.18. — Let X be a finite subset of Wy, and let P, X be two schemes of fi-
nite type over o(x) with generic fibres P resp. X. Letp : P — X be a morphism such
that all geometric fibres of p are irreducible (resp. connected, reduced or integral).
Then there exists a finite subset S C Wy, containing 3 and an extension of p :
P — X to a morphism. ~ ~
p(s) - Fls) — Xs)

for which all geometric fibres are irreducible (resp. connected, reduced or integral).

Proof. — Let

ps) : Psy — 7}(5), Y.CSC Wan
be a morphism in the inductive limit (cf. (4.2))
(p(s)) € lim Hom(s)(P(s), X(5)), £ CSC W
corresponding to p and let E be the set of closed points ) of X (s) such that the

geometric fibre of p(g) over () is irreducible (resp. connected, reduced or integral).

Then p(s) is of finite presentation since: P(s) and X (s) are of finite presenta-
tion over o(s [31, 6.3.7-8]. Hence by [30, Th. 9.7.7], E' must be a locally con-

structible subset of X (s)- Then it follows from a theorem of Chevalley [31, 7.1.4]
that X 5)\E is mapped onto a locally constructible subset of Spec o(s) under the
structure morphism of Xg) / o(s). But any locally constructible subset of an affine
Dedekind scheme is either an open or closed subset. Thus since X(g)\E and the
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generic fibre of X (S) / 0(s) are disjoint by assumption we conclude that X )\ E is
contained in finitely many closed fibres. This completes the proof. O

Recall that a k-variety X in this paper means a geometrically connected separated
scheme of finite type over k. Hence if X is smooth, then it is geometrically integral.

Lemma 4.19. — Let X be a smooth k-variety and let m : Y — X be a smooth k-
morphism of constant relative dimension on X with geometrically connected fibres.
Then there exists two smooth models Y, X over some integer ring 0 = o(x) and an

extension of T to a smooth o-morphism 7 : Y — X with the following properties:

(i) all fibres of T : Y — X are smooth and geometrically integral,
(i) 7 : Y > Xis of constant relative dimension on )N’
(iii) the map from )7(0,,) to X (0,) defined by composition with T is surjective for
all places.

Proof. — 1t follows from (4.2) that 7 has an extension to a smooth o-morphism
7 :Y — X between smooth models over some integer ring 0 = o(z). We now prove
(1)-(ii1)

(i) It follows from (4.18) that the fibres of 7 are geometrically integral after an
enlargement of ¥ since the fibres of 7 : Y — X are geometrically integral

(ii) It follows from the irreducibility of Y and the fact that 7 is flat and of locally
finite presentation that 7 is of constant relative dimension on Y (cf. [30, 14.2.2 and
2.4.6)).

(iii) We may (and shall) assume that (i) holds and that there exists a prime number
¢ which is invertible in all residue fields F), of 0. Then by the Lefschetz formula of
Grothendieck and Deligne (cf. [34]) one has for each variety Z over F,,, v € Wg,\Z
an equality

Card Z(F,) =Y (—1)' Te(F", H{(Z x F,,Q)) = Y _(-1)'af;

i ¥J
where H(Z,Q;) are the ¢-adic cohomology groups 0 < i < 2dim Z with compact
support and ; ; are the eigenvalues of the Frobenius endomorphsim on H:(Z, Q).
Moreover, by the fundamental result of Deligne [19, 3.3.4] one has that |o; ;| < q,i,/ 2
for ¢, = Card F,, with a unique eigenvalue o; = +¢%™Z when i = 2dim Z (use
Poincaré duality and the integrality of Z x F,). Finally, since (cf. [18, 6.2]) R‘Tm\F
is constructible for any constructible sheaf F on Y it follows that the dimensions of
the ¢-adic cohomology groups

H{(ZxF, Q)
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are uniformly bounded for the closed fibres Z of 7 : Y — X. Therefore,
Card Z(F,) >0
for all F,-fibres Z of 7 if g, is sufficiently large (cf. [62, p. 184] for the case X = k).

To complete the proof, use Hensel’s lemma. O
It is worth noting that it follows from (4.19) and (2.7)(a) that the map
A - Y(Ak) — X(Ak)

between adelic spaces is open for 7 : Y — X as in (4.19).

Definition 4.20. — Let X be a smooth k-variety and let # : Y — X be a smooth
k-morphism with geometrically connected fibres. An adelic norm for w : Y — X is
a family of norms

Il = {Il'll : det Tan(Yan (ky)/ Xan(kv)) — [0,00), v € W}

on the relative analytic anticanonical bundles of 7, o : Yan (ky) = Xan(ky), v € W
with the following property.
There exists a finite subset ¥ of Wy, and an extension of 7 to a smooth o(z)-

morphism 7 : Y — X between two smooth models Y and X over & = o(x) such that

the restriction of || ||, to the relative analytic anticanonical line bundle of Y (0,) —
X (0,) is equal to the model norm determined by 7 : Y — X (cf. (2.17)) for all
Vv E Wﬁn\E.

The notion of adelic norms is similar to notions in Arakelov theory and it is possi-
ble to use (4.2) to define adelic norms for arbitrary vector bundles. Here we introduce
adelic norms only in order to define adelic measures.

Definition 4.21. — Let X be a smooth k-variety and 7 : ¥ — X be a smooth
k-morphism with geometrically connected fibres. Then a set

B = {IBV S C(Y(ku))>07 Ve W}

of positive continuous functions is called a set of convergence factors forw : Y — X
if the following holds.
There exists an extension of 7 : Y — X to a smooth o(x)-morphism

7Y — X
as in (4.19) satisfying the following condition:

(*) The product
H (/ ,Bud/‘u>
Zy(ov)

VVf-‘m\2
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converges absolutely to a positive real number for the model measure 1, on the o,-
schemes
Zua ve Wﬁn\z
obtained by base extension of 7 : Y 5 X along any
{Pre [[ X
VVﬁn\2
Remarks 4.22

(a) The condition () is clearly valid for all smooth morphisms 7 satisfying the
conditions in (4.19) as soon as it is valid for one such morphism.
(b) Let v € Wg, \X. Then the map

P, — ﬂudﬂu
Zy (ou)

is a continuous real-valued function on the compact space X (0y) (cf. (1.22)(a)
and (2.5)). The product of integrals in () defines therefore a continuous func-

tion on
IT X().
Wan\Z
(c) One may construct constant sets of convergence factors for 7 : ¥ — X when
the first two Betti numbers By and B; vanish for all geometric fibresof 7 : ¥ —
X. This follows from the arguments in the proofs of (4.17) and (4.19)(ii).

Example 4.23. — Letw : Y — X be as in (4.21) and suppose in addition that X
is proper. There is then an extension of 7 : ¥ — X to a smooth o(x)-morphism
7:Y - Xasin (4.19) such that X is proper over o(x). For v € Wian\Z, let

A, : Ce(Y(0,)) — Co(X(0,))

be the positive linear map of 7 : ¥ — X (cf. (1.22)(a)) defined by the relative model
norm (2.17) and let
€y € CC(X(OI/)) = CC(X(kV))
be the image of the constant map on }N’(o,,) with value 1.
Then,
€y € C(X(k‘,,))>0
since
7 Y(0,) — X(00)
is surjective (cf. (4.19) and the last part of (1.10)). Hence any set

B=A{B, € C(Y(ky))>0, vE W}
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with
/81/ = 1/(51/ o 7Tu)

for all v € W, \ X form a set of convergence factors for : Y — X.
Note also that

By =1/(eyom,), vE Wgy\Z

is constant on Y (k,) if the number of F,-points in the F,-fibres of 7 is a constant
function on X (F,).

Notation 4.24. — Let X be a smooth k-variety and let 7 : Y — X be a smooth
k-morphism with geometrically connected fibres. Let

I I = {Il ll : det Tan(Yan (kv )/ Xan(kv)) — [0, 00), v € W}
be an adelic norm and let

B=A{B, € C(Y(k)))>0, vEW}

be a set of convergence factors for 7 : Y — X. If P € 7n(Y(Ax)) C X(A4k),
let Zp be the smooth Ag-variety which is the fibre product of 7 : ¥ — X and
P : Spec Ay — X(Ag). Then (P) is the positive o-regular Borel measure on
Zp(Ay) determined by the restrictions of || || and 8 to Zp (cf. (4.14)(b)).

Theorem 4.25. — Let X, 7, || ||, B, 6(P), Zp, P € w(Y (Ag)) be as in (4.24). Let
fp be the restriction of f € Cc(Y (Ay)) to Za(Ay) and let Ag(f) : X(Ai) — R be
the function such that
Ms(FNP) = [ fodd(P)
Zp(A)
for P € (Y (Ayg)) and such that Ag(f)(P) = 0 for P € n(Y (Ag)).
Then Ag is a positive linear map from C.(Y (Ag)) to Ce(X (Ag)).

Proof. — The proof is very similar to the proof of (4.14)(b) and we shall use the
notions introduced there without further comments. In particular, .4 will denote the
subalgebra of C.(Y (Ag)) of finite sums of finitely decomposable functions. It is
obvious from the definition that Ag is positive and linear. It is thus sufficient to
prove that Ag(f) € C.(X(Ag)) for all f € C.(Y(Ag)). Moreover, since w4 :
Y (Ax) — X (Ayg) is continuous it suffices to show that Ag(f) is continuous for all
f € Ce(Y (Ar)).

We first treat the case where f € C.(Y (Ag)) is the restricted product of an adelic
set

{fv € Ce(Y(ky)), ve W}
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Choose a finite subset ¥ C W5, and two smooth models 17, X over = o(x) and
an extension of 7 to a smooth o-morphism
7Y — X
satisfying all the conditions of (4.19) and such that f, is the characteristic function
of
Y(o,) CY(ky)
for all v € W\ Z.

Let
Ay : Ce(Y (ky)) — Ce(X (k)

be the positive linear map corresponding to || ||, and let

P={Plew € X(A4((D) = [] X()x [] X
VVﬁn\2 WooUX

Finally, let Z,,, v € Wg,\X be the o, -scheme obtained from 7 : Y — X after
base extension along P, and let y, be the model measure on Z, (o, ). Then,

Aﬁ(f)(P) = H (/ ,Budl"fv> X H Ay (B fo)-
Wan\o \’Zv(ov) WeooUS
Hence by (4.22)(b) and (1.22)(a) we get that the restriction of Ag(f) to X (Ax(T))
is continuous. Moreover, since Ag(f) = 0 outside the compact open subset

X (Ax(2)) C X (Ap)

we obtain that Ag(f) € C.(X (Ax)) for all decomposable functions f € C.(Y (Ag)).
Moreover, by the additivity of Ag, one has the same result for any function f in A.

For arbitrary f € C.(Y (Ag)), there exists by the proof of (4.14)(b) a compact
subset K of Y (Ay) and a sequence (f;)s2; of functions in A with support in K
which converges uniformly to f. There exists also a continuous decomposable non-
negative function G in C.(Y (Ay)) such that G = 1 on K. From the linearity and
positivity of Ag one gets (cf. the proof of op. cit.) an inequality:

sup [Ag(f) — Ag(fi)| = sup[As(f — fi)| < sup A(G) sup|(f — fi)]
for all positive integers 7. Therefore (Ag(f;))52;, is a sequence in C(X (Ax)) which

converges uniformly to Ag(f). Hence Ag(f) € Cc(X(Ag)), thereby completing the
proof. a

Now recall the canonical isomorphism described in (1.22):

(4.26)
det Tan(Yan(k,)) = det Tan(Yan (ky )/ Xan(kv)) ® 7 o, (det Tan(Xan (K,)))
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Lemma 4.27. — Let X be a smooth k-variety and let 1 : Y — X be a smooth
k-morphism with geometrically connected fibres. Let

Ix={lllxy, veW}
and

I ly/x = {ll ly/x, v € W}
be adelic norms for X resp. m: Y — X.
Finally, forv € W, let

v = I llyyxw - 7 anll lxv
be the product norm of || ||y, x,, and the pullback norm w}, .. || || x,» (cf. (1.7)(a), (b)
and (4.26)). Then

Iy ={ll llyw, v € W}
is an adelic norm forY .

Proof. — ltis clear from (1.7) and (4.26) that || ||y, is a norm on det Tan(Yan (k.))
for each v. Moreover, if 7 : Y — X is an extension of 7 to a smooth o(g)—morphism
7:Y — X between two smooth models Y, X over o = o(x), then

Il lly,, : det Tan(Ya,(k,)) — [0, 00)

restricts to the model norm on det Tan(Ya,(0,)) for each v € Wg,\X by (2.18).
This completes the proof. O

Theorem 4.28. — Let X be a smooth k-variety and let w : Y — X be a smooth k-
morphism with geometrically connected fibres. Let || || x (resp. || |ly,x) be an adelic
norm for X (resp. an adelic norm for m :' Y — X ) and let

v={n € C(X(ky))>0, v € W}

resp.
B={B, € C(Y(k.))>0, v € W}
be a set of convergence factors for X (resp. m: Y — X).
Let m 4, be the positive o-regular Borel measure on X (Ay,) determined by || || x
and v and let
Ag : Co(Y (A1) — Co(X(A))
be the positive linear map determined by || ||y, x and 3 (cf. (4.26)).
Finally, let
Iy = {ll ly/xpm anll lIx,0, v € W}
be the adelic product norm for Y constructed in (4.27).
Then the following holds.
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(a) The products
Qy = /61/(’71/ ° 771/)» veW

form a set o of convergence factors for'Y .
(b) Letn 4 o be the positive -regular Borel measure on'Y (Ay,) determined by || ||y

and o. Then,
[ gdnaa= [ Ap(yima,
Y (Ag) X(Ax)

forany f € C.(Y (Ag)).

Proof

(@) Let 7 : Y — X be a smooth o(x)-morphism between smooth o(x)-schemes
which extends 7 : ¥ — X and satisfies all the conditions in (4.19) and such that
the restriction of || ||, to det Tan(Yan (0,)/Xan(0,)) is the model norm for each
v € Wan\Z.

Let v € Wgp\ X, and write p,, for all model measures. Let

A, : C(Y(0,)) — Ce(X(0,))

be the positive linear map defined by the relative model norm. Then, by (2.22),

/~ aydpy, = /~ K(al/)dﬂv = /~ ’vav(ﬁu)d/‘t/-
Y(ov) X(ov) X(ov)

Choose P, € X (o) for each v € Wg,\Z such that [log(A, 8, (P,))| is maximal.
Then,

< + |10g(AV:6u(Pt/))|

log / YAy

X(ov)

log / a,diy,
Y (ov)

by the positivity of the model measure on X (oy)-
Now sum over all v € Wg,\E and use the assumptions on {7, } and {3, }.

(b) First, let f be finitely decomposable. One may adapt the choice of Y, X and 7
in (a) to f such that in addition f is the restricted product of an adelic set

{fv € Ce(Y(ky)), v € W},
where f, is the characteristic function of
Y (0,) C Y (ky)

forall v € Wgp\ E. Now combine the calculation of Ag(f) in the proof of (4.25) with
the formula in (4.14)(c) for the integral over X (Ay) for a decomposable function.
Then the formula for finitely decomposable functions follows from the corresponding
assertion over local fields established in (1.22)(c).
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Let A denote the subalgebra of C.(Y (Ay)) of finite sums of finitely decomposable
functions. By additivity of the integrals and A g, we get the formula also for functions
fin A.

Finally, let f be an arbitrary function in C.(Y (Ag)). Then, by the proof of (4.25),
there exists a sequence (f;)?2; of functions in A which converges uniformly to f on
X (Ag) and such that the supports of all f; are contained in one common compact
subset K of X(Ay). Also, by (op.cit.), (Ag(f:))$2; is a sequence in C.(X (Ag))
with supports in f(K) converging uniformly to Ag(f). The uniform convergence
and the compactness statement now implies that

/ fdna o = lim fidna o
Y(Ak) 120 JY (Ak)
/ Ag(f)dmay = lim Ag(fi)dma
X(Ak) 120 JX(Ak)
so that the formula also holds for arbitrary functions f € C.(Y (Ag)). This com-
pletes the proof. O

5. Torsors over global fields and Tamagawa measures

The purpose of this section is to define Tamagawa measures on universal torsors.
It is thereby important to generalize some of the constructions of Colliot-Théleéne and
Sansuc in [15] and to define universal torsors over schemes. We shall keep the no-
tations in part 4 and use the word k-variety for a geometrically connected, separated
scheme of finite type over k. Also, k£ will denote a number field and K a general
field.

Hypothesis 5.1

(a) k is a number field

(b) X is a smooth k-variety with structure morphism h : X — Speck

(c) G is asmooth k-variety which is an algebraic group over k

(d) = : T — X is a (left) X-torsor under G (with respect to the fppf-topology)
with G-action o : G X, T — T (cf. (3.3))

Lemma 5.2. — Assume (5.1). Then there exists schemes X,GT of finite presenta-
tion over 0 := o(x) for some finite set . of closed points of Spec o with the following
properties.
(a) X is a smooth 5-model of X (see (4.4)(a)).
(b) h: X — Speco is a smooth separated morphism with geometrically connected
fibres.
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©) G is a smooth separated group scheme over o with geometrically connected
ﬁbres

d 7: T > Xisa (left) X -torsor under G with G-action & : G Xo T =T

(¢) The generic fibres of - X, G, T are equal to X, G and T and the restrictions to
the generic fibres of h, 7 and G are equal to the k-morphisms h, 7, o in (5.1).

Any other set of such o-schemes and 0-morphisms are related to the given ones
by means of a canonical isomorphism after base extension to o) for some finite set
S D X of places of k.

Proof. — This result is a formal consequence of (4.2). The reader may also consult
[45, 111.4.3] and [1, VILS]. a

We denote the unit sections of G/k and G /o by e resp. e. There is thus a commu-
tative diagram

Specd —— G

L, |

Speck BN

We shall in the sequel consider o,-schemes and o,-morphisms obtained by base
extension from the o-schemes and o-morphisms in (5.2). We will add a lower index v
for places defined by prime ideals of o to indicate that we have made a base extension
to the v-adic completion o, of o and 0. We denote by F), the residue field of o, for
v € Wan.

Letm : 7 — X be an X -torsor under G as in (5.1) with G-actiono : Gx;T — T.
Then o determines a (continuous) left G (Ay)-action

oa: G(Ag) x T(Ax) — T (Ag)
on the fibres of
w4 T(Ag) — X(Ag)

(cf. (3.2)(iii)).

Let

T(Ak) xx(a) T(Ar) C T(Ax) x T(Ax)
be the inverse image of the diagonal under
(ma,ma) : T(Ag) x T(Ax) = X(Ax) X X(Ag).

It is a closed subspace of T (Ay) x T (Ag) since X (Ay) is a Hausdorff space. The
condition (3.3)(b) for torsors implies that the map

(5.3) pa = (0a,pr2) : G(Ax) x T(Ag) — T (Ax) Xx(4) T (Ax)

is a homeomorphism of adelic spaces.
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Proposition 5.4. — Let 7 : T — X be a (left) X -torsor under G as in (5.1) and let
A : T(Ax) = X (Ag) be the continuous map induced by w : T — X. Then
(a) 4 is open.
(b) wa(T (Ag)) is homeomorphic to the homogeneous space
T (Ar)/G(Ag)
of T (Ay,) with respect to o 4.

Proof _ _
(@ Letw™ : T — X be a torsor of o(z)-schemes as in (5.2). Then the open
decomposable sets of the form

B:=][B.=|]]T(ov) x(HBV), SDOTUW,

veEW vgS ves
for finite subsets .S of W form a base for the adelic topology. Also, by Lang’s theorem
(cf. (3.21)(a)) one has
m(By) = X(o,,)
for all places outside .S. This combined with the openness of 7, for v € S (cf.
(3.11)(b)) implies that 7 4(B) is open in X (Ag).

(b) w4 is open and continuous. A subset U of m4(7 (A)) is therefore open in
X (Ay,) if and only if 7} (U) is open in X (A) (cf.[38, p.311]). a

We shall now consider positive Borel measures on 7 (Ag) which are invariant
under the left action of G(Ay).

Recall (cf. (3.8), (3.9)) that the relative algebraic tangent bundle T/ x — T is
equal to the fibre product

T x k TG,e — T
for the fibre T . at e € G(k) of the algebraic tangent bundle of G. There is also a
canonical isomorphism where T . is the fibre at € € G(0) of the algebraic tangent

bundle of G/& = o(x). The o-points of T - form an o-lattice T -(0) in the tangent
space T (k) of G ate.

Definition 5.5. — A constant adelic norm for 7 : 7 — X is a set of constant norms
(cf. (3.15)

= {ll llo - det(Tan(Tan(kv)/ Xan (k. ))) — [0, 00),v € W}

such that || ||, is the pullback of the v-adic norm on det(Tg ¢(k,)) determined by
the o, -lattice det (T ;(o,)) for all but finitely many places in W, \X.
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Example 5.6. — Let wg be a local non-zero section at e of the canonical line bundle
of G. Then wy defines v-adic vector space norms on det(7T¢ .(k,)) for all places v
which are equal to the lattice norms given by det(T5 ;(0,)) for almost all v. The
constant norms

Il | : det(Tan(Tan(kv)/Xan(ky))) — [0,00), veEW
therefore form an adelic norm for 7 : 7 — X.

To define adelic measures, we shall need sets of convergence factors.

Lemma 5.7. — Letw:T — X be an X-torsor under G as in (5.1) and let
,6 . W — R>0

be a set of constant convergence factors for G. Then B is also a set of convergence
factors form : T — X.

Proof. — Choose 0 = o(x), C~¥/5, 7:T — X asin (5.2) and let v € Wg,\X. Then

7(T (0,)) = X (0y) (cf. (3.21)). Moreover, if P, € X (0,), then
T x 5 P, = G X5 0y
as o,-schemes by the torsor isomorphism (3.18)(b). This completes the proof. O

The following result is fundamental for the applications of torsors to problems
concerning counting functions of rational points.

Theorem 5.8. — Let m : T — X be an X -torsor under G with left action o :
GxT — Tasin(5.1). Also, let

{Hllyy vew}

be a constant adelic norm for w : T — X defined by a local differential form wy # 0
of G at e and let

{Ay : Co(T (k) — Co(X(ky)), veEW}
be the positive linear maps defined by these norms. Finally, let
;3 : W — R>0

be a set of constant convergence factors for G. Then there exists a unique positive
linear map

Ap 2 Ce(T(Ar)) — Ce(X (Ar))

which is independent of the choice of wg such that

(++) As(fa) = T] BoA(S)

veWw
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for the restricted product

!

fa= HueW fv

of any adelic set of functions
{fu € Cc(Y(ky)), vV E W}

Moreover, if 6(g) : T(Ax) — T (Ag) is the left translation defined by an element
g € G(Ay,), then
Ag(f) = Ag(foalg))
for any f € Ce(T (Ag)).

Proof. — The existence and the uniqueness of Ag follows from (4.25) and (5.7).
To prove that Ag is independent of the choice of wy, let & # 0 be an element of
k. Then the corresponding adelic norms is given by {|a|,|| ||, v € W} and the
corresponding v-adic linear maps (cf. (1.21)) by |a|,A,. The independence therefore
follows from the formula

IT lel, =1.

veWw
To prove the last assertion use (xx) to reduce to the statement

Au(fv) = Au(fvoo(gy))
for the left translations

o(gv) : T(ky) — T(kv)
defined by g, € G(k,). The equality follows from the fact that || ||, is invariant under
the left action of g, € G(k,) (cf. (3.15)), thereby completing the proof. O

Remarks 5.9

(a) It is immediate from the definitions of A, that Ag(f) has support in the open
subset w4 (7 (Ax)) of X (Ag). Therefore (cf. (5.4)) Ag may also be seen as a
positive linear map

Ag : Ce(T (Ag)) — Ce(T (Ar)/G(Ag))-

This can be used to give another construction of A starting with a Haar measure
on G(Ay) (cf. [11, Ch. VII, §2, n°2]), thereby avoiding the general result in
(4.25).

But we shall in other papers give applications of (4.25), which cannot be
deduced from the theory of homogenous spaces in (op. cit). The results (4.25)-
(4.28) can e.g. be used to answer a question in [6] about L-primitive fibrations.
Also, even for torsors it is useful to consider measures which are not invariant
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under the group action and to define measures on (partial) compactifications of
torsors (see [S1]).

(b) Let G be an r-dimensional k-torus and let 7 : 7 — X be an X -torsor under G.
Let

Ill7/x, : det(Tan(T (k,)/ X (k,)) — [0,00), veW

be the order norms (see (3.30)). It follows from (3.31) that these v-adic norms
form an adelic norm. There is, therefore, for each set {3,, v € W} of constant
convergence factors for G a unique positive linear map

Aﬂ : CC(T(Ak)) — Cc(X(Ak))

satisfying the same property (k%) as in (5.8). This map coincides with the
positive linear map in (5.8) for split k-tori G (since the order norms are de-
fined by means of a differential form of minimal d log-type). The two maps
also coincide for non-split k-tori G since [[,cyy |5, = 1 for the order norms
Il : A"(Te,e(ky)) = R of asection s # 0 of A" (Tg e(ky)).

Definition 5.10

(a) A torus T over a scheme B is a commutative group scheme of finite type over
B which locally in the fpqc-topology (cf. [21, exp. VIII]) is isomorphic to the
group scheme

Gm,BXB** XBGmB
over B for a finite number of copies G, p. The torus is said to be split over B
if T' is isomorphic to

Gm,B XB -+ XB Gm,B-

(b) A finitely generated torsion free twisted constant group scheme Il over B is a
commutative group scheme over B which locally in the fpqc-topology (cf. [21,
exp. VIII]) is isomorphic to the constant group scheme

Zp Xp - XBZp
over B for a finite number of copies Zpg. The f.g. torsion free twisted constant
group scheme IT over B is said to be split over B if T is isomorphic to

ZB XB"'XBZB-

It is known by a theorem of Grothendieck (cf. [21, exp. X]) that any torus and
any twisted constant torsion free group scheme split after some surjective étale base
extension. One can therefore replace the fpqc-topology by the fppf-topology or by
the étale topology in the definition above. In particular, if B = Spec K for a field
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K, then all tori and all f.g. torsion free twisted constant group schemes split over a
separable closure K of K.

Notations 5.11. — If T is a B-torus, then
T = Homg, (T, Gm,B)
If I1is a f.g. torsion free twisted constant B-group scheme, then
D(II) := Homg,(II, Gyn B)-

Here Homg, (-, Gr,,B) means the group scheme representing the Hom-functor in
the category of group schemes. It is easily seen that Tisa f.g. torsion free twisted
constant B-group scheme and that D (M) is a B-torus in (5.11).

These two constructions are inverse to each other in the sense that they define
a contravariant equivalence of categories between tori 1" over B and f.g. twisted
constant torsion free group schemes II over B (cf. [21, X.5]).

If the base scheme B is a field K, and K is a separable closure over K, then
the functor sending II to the Gal(K /K )-module P = II(K) defines an equivalence
between the category of f.g. torsion free twisted constant group schemes over K
and the category of f.g. torsion free continuous discrete Gal(K /K )-modules (see
[45, p.52]). There is therefore in this case a contravariant equivalence between
the category of K-tori and the category of f.g. torsion free continuous discrete
Gal(K /K )-modules for which a K-torus is sent to its character Gal(K /K )-module
T := Hom(T, G,,x)- Conversely, if M is a f.g. torsion free continuous discrete
Gal(K /K)-module, form the K-Hopf algebra K[M]¢ of Gal(K /K )-invariant ele-
ments in K[M] and let D(P) = Spec K[M]€. Then D(P) is an K-torus (cf. Ch.III,
§8 in Borel’s book [9]).

Now assume the following:

5.12 (a) B is a Noetherian scheme.

5.12(b) f : X — B is a smooth proper surjective morphism of constant relative
dimension with geometrically connected fibres.

5.12 (¢) R%2f.Ox =0.

5.12 (d) The relative Picard functor (cf. [10, Ch.8]) of f is representable by a f.g.
torsion free twisted constant B-group scheme Picy,p.

It follows from more general results of Grothendieck and Murre (cf. [10, pp. 210-
211)) that Picy,p is representable when f is projective or B is the spectrum of a
field. It is easy to show that the assumptions in (5.12) also hold for smooth proper
toric schemes over B.

Let g : T — B be a B-torus. Let Fr (resp. Gr) be the fppf-sheaves of abelian
groups on (Sch /B)°PP associated to the functor:

Y — Hp (X xp Y, Ty)
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resp.
Y — HomZ(Homy (Ty, Gm,y), Hf}ppf(X XB Y, Gm’y))

where Homy means the abelian group of Y -homomorphisms in the category of group
schemes over Y. The covariant functoriality of Hflppf(X x g Y, ) under homomor-
phisms of commutative group schemes over X X p Y gives rise to a morphism of
functors:

F—g.

It is easy to verify that this is an isomorphism of functors since 7' is locally isomor-
phic to Gy, X - -+ X Gy, in the fppf-topology. One can also according to a theorem of
Grothendieck [27, pp. 171-183] define Fr (resp. Gr) by means of the étale topology
instead of the fppf-topology.

If T = Gy, then Fr coincides with the relative Picard functor. We may thus for
an arbitrary torus g : T' — B regard Gr as the fppf-sheaves of abelian groups on
(Sch /B)°PP, where

Y — HOHIY(TY, (PiCX/B)Y)

There is also an interpretation

Fr(Y) = H'(Y,R'g.(T))

where the right hand side can be read both with respect to the fppf-topology and the
étale topology (cf. [10, p.202-203]). The isomorphism Fr(B) = Gr(B) may thus
be interpreted as an isomorphism:

H°(B,R'g,(T)) = Homp(T, Picx/p).
There is further by Leray’s spectral sequence an exact sequence
0— HY(B,T) - HY(X,T) - H°(B,R'¢,.(T)) - H*(B,T) - H*(X,T)

of cohomology groups in the fppf-topology or the étale topology, which reduces to a
short exact sequence

0 — HYB,T) — HY(X,T) — H°(B,R'¢,(T)) — 0

if thereisasections: B — X to f : X — B.
There are thus isomorphic exact sequences generalizing the sequence of Colliot-
Théleéne and Sansuc (cf. [15, 2.0.2])

5.13 (a)

1 — HY(B,T) —» HY(X,T) 5 Homp (T, Picy,5) — HZ(B,T) — HZ(X,T),
5.13 (b)

1 — Hboe(B,T) — Hb (X, T) — Homp(T, Picy/5) —
Hfgppf(B’T) — Hf2ppf(X, T)
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The following definitions are equivalent to those of Colliot-Théléne and San-
suc [15] when B is the spectrum of a field. We shall write [7] for the class in
H(X,T) = Hi (X, T) of an X-torsor 7 : T — X under T

Definition 5.14. — Assume (5.12).
(a) Letm: T — X be atorsor under T'. Then the image

t([7T]) € Homp(T, Picx/p)
is called the type of m: T — X.
(b) The B-torus
g :D(Picx/p) — B
is called the Néron-Severi torus of f : X — B.
(c) Let T = D(Picy,p) be the Néron-Severi torus of f : X — B. A universal

torsor over X 1is a torsor
Tm: T — X

under T of identity type ¢([T]) : T — Pic X/B-
(We use here the reflexive property of the group scheme Picy/p, cf. [21,
Exp. VIII)).

The following result in (op. cit.) is an easy consequence of (5.13)(a)

Proposition 5.15. — Suppose that there exists a sections: B — X to f : X — B.
Then there are universal torsors over X. The isomorphism classes of the universal
torsors over X are parametrized by the HY, (B, T)-orbit in H},(X,T) defined by
t=1(id).

Proof. — The map HZ (B, T) — HZ(X,T) in (5.13)(a) is the contravariant func-
torial map. There is also a contravariant map H2(X,T) — HZ (B, T) induced by
s. There are thus classes in H} (X, T) = Hflppf(X ,T) of identity type. It is well-
known that these classes are represented by torsors (cf. [45, p. 121]). This completes
the proof. O

For the rest of this section let £ be a number field and let X be a smooth proper
k-variety as in (5.13). Denote by T' the Néron-Severi k-torus of X. The following
result shows a remarkable property of universal torsors.

Lemma 5.16. — Let k be a number field and let X be a smooth proper k-variety
satisfying H}. (X,0x) = H2, (X, Ox) = 0 and such that the Néron-Severi group
of X := k x X is torsion-free. Let T be the Néron-Severi k-torus of X and let
7w : T — X be a universal torsor or an arbitrary X -torsor under T'. Then

{a, =1, v € W} form a set of convergence factors for T.
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Proof. — Choose & = o(s), T/6, @ : T — X as in (5.2). The image H of the
representation
p: Gal(k/k) — GU(T)
is finite and the subfield K C k of H-invariant elements is unramified over k at all
places v € Wy, \X. For these places, define the local L-function by
Ly(s,T) = 1/ det(1 — ;°p(Fr,) | T).

The reduction T x F,, is an F,-torus for each v € Win \X and T (Fy) of cardinality
(Card F,,)¥™T /L, (1, T) by a result of Ono [49, 3.3]. Further, by (2.15) one has

~ ~ - dimT
#(T(0,)) = Card(T(R,)) (1(T(0,))/(Card Fy) )

for v € Wgy, \ 2. Therefore,
ﬁ - LV(]'?T) = I/MV(T(OV))V Ve Wﬁn\z
Y 1, veEWoUX

form a set of convergence factors for 7' (this is due to Weil [67]).
Hence by (5.7) one gets that § : W — Ry is a set of convergence factors for
7:T — X.ButT = Pic(X) by assumption. Therefore,

YL(L,T), v€Wan\S
1, veEW,oUX

Y =

form a set of convergence factors for X by (4.16). Hence {,7,, v € W} form a set
of convergence factors for 7, as was to be proved. U

Theorem 5.17. — Let k be a number field and let X be a smooth proper k-variety
as in (5.16). Let T be the Néron-Severi k-torus of X and let m : T — X be a
universal torsor or an arbitrary torsor under T. Let

I llx = {Il llx, : det Tan X (k,) — [0,00), v € W}
be an adelic norm for X and let
I x»7 = {ll ll7 : det Tan(7 (k,)) — [0,00), v € W}
be the induced adelic norm for (cf. (3.30), (3.31)). Let
Ay :C(T(k)) —m R, veWw

be the positive functionals determined by the norms || ||, (cf. (1.10)). Then there
exists a unique positive linear map

A CC(T(Ak)) — R
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such that
A(fA) = H Au(fu)
veWw
for the restricted product
fA - HVEW fl’

of any adelic set of functions
{fy S Cc(Y(ku)), vV E W}

Proof. — 1t follows from (3.31) that the order norms {|| ||7/x, : v € W} form
an adelic norm for # : T — X. The assertion therefore follows from (5.8) and
(5.10). O

The group of characters of the Néron-Severi torus 7" of X defined over & is canon-
ically isomorphic to Pic X. Therefore, the map

{au}uew € Gm,k(Ak:) — 1Og( H |a|,,) eR
vew
induces a pairing T'(Ay) x Pic X — R which we may reinterpret as a continuous
epimorphism
T(Ax) — Hom(Pic X, R).
Let T (Ay,) be the kernel of this map. Then there is an exact sequence:
(5.18) 1 — TY(A;) — T(Ag) — Hom(Pic X,R) — 0

where T'(k) C T (Ay) by the Artin-Whaples product formula for number fields.

We now define a Haar measure @}g on TY(A;)/T (k). To do this, we recall the
following resuit.

Lemma 5.19. — Let G be a locally compact group and let N be a closed normal
subgroup of G. Let © N be a Haar measure on N and let f € C.(G). Then there
exists a unique function fN € C.(G/N) such that

fV(gN) = / f(gn)d®y
N

forallg € G.
Moreover, if Oy is a Haar measure on H := G /N and O is a Haar measure on
G, then there exists a unique positive real number ¢ > 0 such that

* — N

(%) /G f(g)dOG = ¢ /H N (hydon

forall f € C.(G).

Proof. — See [38, Ch. XII]. O
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We shall say that the three Haar measures O¢, O v, © i are compatible if (x) holds
withc = 1.

Now endow T'(k) with the counting measure and

V :=T(A;)/T*(Ay) = Hom(Pic X, R)
with the unique Haar measure such that Vol(V/L) = 1 for the Z-lattice
L := Hom(Pic X, Z)
in V. Then apply (5.19) twice to the chain of normal closed subgroups
T(k) C T'(Ax) C T(Ay).

This defines a bijection between Haar measures on T (Ay)/T (k) and Haar mea-
sures on T'(Ay).

Proposition 5.20. — Let X be as in (5.1) and let B 4 be a compact open subset of
X (Ag). Let T be the Néron-Severi torus and let m : T — X be a universal torsor
under T. Let || || x be an adelic norm for X and let m,, v € W (resp. n,, v € W)
be the Borel measure on X (k,) determined by by || || x &) (resp. || |l x (k)—7(k))-

Choose %, o, X , T" 7T = X asin (5.2) and such that there exists a compact
open subset

BsC [[ X(k), S=WeoUE
vesS

Jor which
(%) B4 = Bg x H X (o).

veEWgn,—%
Let ©g be the Haar measure on T'(Ay) given by the adelic order norm (cf. (5.9)(b)

and the convergence factors

By =1/ (T(0))), v E Wpn\E
By =1, veW,oUX

and let @; be the corresponding Haar measure on T*(Ay)/T (k) under the bijection
above. Also, let m 4z be the Borel measures on X (Ay) determined by || ||x and
v = {1/Bv}vew. Then the following holds.

(@) ma(T (Ag)) is a compact open subset of X (Ay)
(b) The product

7e(X, Ba, |l |1x) := Og (T (A%)/T(k)) - mas(Ba N wa(T(Ar)))

is independent of the choices of ¥ and T : T - X.
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(c) Suppose that %, 6, X satisfy the additional condition that || || X (k,) iS the model
norm defined by X v/oy for v € Wgp\Z. Then,

7.(X, B, || IIx) = Ox(T5/T(R)ms(Bs Un((T5)))  [] nu(T(0)).
vEWgE,—2

Proof

(a) It follows from the implicit function theorem that 7 (7 (k,)) is an open subset
of X (k,). By twisting the torsor with elements in H, gt(k,,, T,) one concludes (cf.
[15]) that the functorial map X (k,) — H, ét (ky,T,) defined by T, is locally constant.
Therefore, since H} (k,,T,) is finite, it follows that (7 (k,)) is a closed subset of
X (k).

Also, X (k,) is compact since X is proper (see (2.3)) so that (7 (k,)) is compact
for all places v of k. Hence m4(7 (Ay)) is a compact open subset of X (Ag).

(b) It suffices by the last assertion in (5.2) to show that the product does not change
if we replace X by ® = X U {w} and 7 by T x o(g) for w € Wg,\E. It follows

from the definitions of Oy and Oy, that

O3 (T (Ay)/T(k)) = Ox (T (A) /T (k)i (T (0w))-

It is therefore sufficient to show that:

max(BaN7ma(T(Ax))) = mas(BaNma(T(Ak)))tw(T(0w)).
To show this, we first note that
(T (o) = X(0,),  X(o,) = X(ky)
for v € Wg,\ X by (3.21) resp. the properness of X /ow. Hence
(T (ky)) = X (0y)
for v € Wgp\E and

Banma(T(A4p) =Bsnn(Ts) x  [[ X(ov)

VEWg,—E
for
n(Ts) := [ #(T (k).
ves
Now from (%) and the definition of mi,g, we get
(5.21)
mas(BaNma(T(Ap)) =ms(BsNn(Ts)) [I  m(T(0n)mu(X(0.))

vEWREL—2

where mg is the product measure of m,, for v € S.
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Let F = SU{w} = ®UW and let mf be the product measure of m,, forv € F.
Moreover, let

n(Tr) = [[ 7(T(k,)),  Br = X(ow) x Bs.
vEF

Then, by the definition of m 4 ¢, we get

mas(BaNma(T(Ar) =mpBr Nn(Tr)) [ m(T(00)) - mu(X(0y)).
veEWg,—@
Now note that
BrnN F(Tp) = X(Ow) X (BS n 7T(7?9))
mp(Bp N7(Tr)) = my(X (0w))ms(Bs N7 (Tr)).
Hence,
mas(BaNma(T(Ar)) = mas(BaNwa(T(Ar))) (T (0w))

thereby completing the proof of (b).

() Letv € Wgp\X. Then || || x(k,)—7(k,) restricts to the model norm on
det Tan(7 (0,)) by (3.21). Hence m,, n,, are equal to the model measures on X (ov)
(resp. 7T (o,)) and

Hv (f(o,,))m,,(X(o,,)) =n,(T (ov))
by (3.25). Now apply (5.21) and the equality above. This finishes the proof. O

Definition 5.22. — Let X be as in (5.1) and let B4 be a compact and open subset
of X(Ay). Lete € H} (X, T) be the class of a universal torsor 7 : 7 — X and let
|l llx be an adelic norm for X. Then the Tamagawa number 7.(X, B4, || ||x) is the
product

—1
7e(X, Ba, || x) = O5(T" (A)/T(k))ma,s(Ba N wa(T (Ax)))
in (5.20).
In order to understand this definition we shall need the following corollary of

(4.28).

Corollary 5.23. — Letn: T = X, || |lx, | Ixo7. B8 = {Bv}vew be as in (5.20).
Let

Ag : Co(T(Ak)) = Ce(X (Ar))
be the positive linear map described in (5.8) and let m 4 resp. n 4 be the Borel mea-

sures on X (Ay) resp. T (Ay) determined by || ||x and v = {1/8, }vew (cf. (4.14),
(4.16)) resp. || || x—7 and the convergence factors 1 (cf. (5.17)).
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Let
Tr : Co(T (Ax)) — Co(T (Ax)/T(k))

be the trace map obtained by summing over all T (k)-translates of a function in
C.(T (Ag)). Then the following holds.

(a) There exists a unique, positive o-regular Borel measure Tz on T (A)/T (k)

with the following property:

If M is a Borel subset of T (Ag) with tM N M = @ forall t € T(k)\{1}
and M is the image of M in T (Ay,)/T(k), then
na(M) = na(M).
(b) There exists a unique positive linear map
Ag : Ce(T (AR) /T (k) — Ce(X(Ag))

with Aﬁ = Kﬁ o Tr.

©

[ gana= [ Ry,
T(Ax)/T (k) X(Ag)
foreach f € C.(T (Ax)/T(k)).

Proof
(a) This follows from the T'(k)-invariance of ny4 (cf. e.g [11, Ch. VII, §2 prop. 4
b)).

(b) It suffices by the usual argument with partitions of unity [38, p.270] to prove
the existence and uniqueness of such a map C.(M) — C.(X(A)) for each open
subset M C T (Ax)/T (k) of the type described in (a).

(c) One reduces again to the case f € C.(M) and applies (4.28)(b). O

Remark 5.24. — The motivation for the definition (5.22) is the following. The
continuous map

ma: T(Ag) — X(Ak)
and the continuous 7T'( Ay )-action
o4 T(Ag) x T(Ag) — T (Ag)
determine (cf. (5.4)) a continuous map
T(Ax)/TH(Ar) — ma(T (Ax))
and a continuous T'(Ay) /T (A)-action
T(Ar) /T (Ar) x T(Ar)/T*(Ak) — T (A)/T" (Ar)
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such that 7 (A) /T (Ax) becomes a topological 74 (7 (Ay))-torsor under
T(Ag)/T'(A) = Hom(Pic X, R).
Now assume that there exists a continuous section
W ma(T(Ar)) — T(Ax)/T(Ax)
of this map. This gives rise to an isomorphism:
I:74(T(Ag)) x Hom(Pic X, R) — T (Ag)/T*(Ag)

of topological 7 (7 (Ag))-torsors under T'(Ay)/T*(Ax) = Hom(Pic X, R).
Let
Fo C Hom(Pic X, R)

be a fundamental domain (cf. e.g. [53, p. 163]) with respect to
Hom(Pic X,Z) C Hom(Pic X, R)
and let U/ be the inverse image of
I((BaN7a(T (Ax))) x Fo)
under the rest class map
T(Ar)/T(k) — T(Ak)/T*(Ak).

Then U is a Borel subset of T (Ay)/T(k) which is invariant under T (Ay)/T (k) for
the action
G4 T(Ap)/T(k) x T(Ax)/T (k) — T (Ax)/T (k)

induced by o 4. Moreover,
Assertion 5.25. — We have
Te(X, Ba, || [ x) = na(id).

To see this, one can assume that 5y has compact closure in Hom(Pic X, R). Then
U has compact closure U, in T (Ag) /T (k) with

ﬁA(u) = ﬁA(uc)'
The characteristic function of
U. C T(Ax)/T (k)

is the infimum of the set J of all T!(A)/T (k)-invariant non-negative functions in
C.(T(Ax)/T(k)) which are equal to 1 on U, (cf. [38, p.256]). Now regard these
functions as functions on 7 (Ay)/T*(Ax) and make use of (5.23)(c). Then,

ﬁu=inf/ hdh‘:/ inf K5(h))dma.
A =085 Ly " T gy WS A0 EImAs
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Moreover, from the isomorphism I above, it follows that

inf Ag(h) = {@12 (T*(Ay)/T(k)) on By Nma(T(4))
heJ 0 otherwise.
Hence,
ﬁA(u) = @;(Tl(Ak)/T(k)) . mA,E(BA N FA(T(A]C)))
as asserted.

We shall in section 10 construct a canonical “toric” section ) as above for universal
torsors over toric varieties. One can more generally construct a continuous section
as above for varieties with a “system of heights” in the sense of Peyre [51].

6. Reciprocity conditions and Tamagawa numbers

The aim of this section is to relate the Tamagawa numbers for the universal torsors
defined in the previous section to the Tamagawa numbers defined by Peyre [52]. To
do this, we shall need Manin’s reciprocity condition for adelic points on X which is
defined by means of étale cohomology.

If R is commutative ring and F' is an abelian sheaf on the étale site of Spec R (cf.
[45]), we shall write H gt(R, F) instead of Hgt(Spec R, F). If Gy is a commutative
group scheme over a scheme Y we let Gy denote also the abelian sheaf F' on the
étale site Yy associated to this group scheme (cf. [45, p. 52]). In particular, we shall
write Hgt(Y, Gy) = Hélt(Y, F).If Gy = G,y we omit the index Y.

There is a canonical isomorphsims of schemes:

Spec Ay, = li{in Spec Ak (%)

where 3 runs over all finite subsets of Wy;,. Since “étale cohomology commutes with
inverse limits of schemes” (cf. [1, VIL.5.9]) we get:

H (A, Gm) = lim HE (A (Z), Gm)-
Next, note that Spec A (X) is a direct sum (cf. [31, 3.1]) of schemes
Spec A(3) = (@ver Speck,) ® (B, ew\1 Specoy,)
where T := 3 U W,. Hence:
Hé?t(Ak(E)aGm) = (@VeTHZt(vaGm)) ©® (@VGW\THézt(OV’Gm)) .
Moreover, H ézt(Spec oy, Gp) = 0 for v € Wy, (see [45, p. 108]). Hence,
HZ(Ak,Gp) = @vew H (ky, Gpn).

The Hasse invariant
Iyt HéQt(kvaGm) — Q/Z
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is defined as follows. If k, is the quotient field of a complete discrete valuation ring
o, with residue field F,, then the Hasse-Witt residue map (cf. [27, IIL.2]) gives a
canonical isomorphism

Hézt(kw Gm) = Hélt(Fw Q/Z).
The map 1, is obtained by evaluating
H}(F,,Q/Z) = Hom(G,, Q/Z)

at the Frobenius element of the absolute Galois group G, of k,,.
If k, = R, then 4, is the group monomorphism

HZ (ky,Gp) = Z./27 — Q/Z.

If k, = C, then Hgt(k,,,Gm) =0.
There is a fundamental exact sequence of Albert-Brauer-Hasse-Noether (cf. e.g.
[65, p, 196])

6.1) 0 — H2(k,Gp) — HZ(Ag,Gp) —= Q/Z — 0.

The map from HZ (k,Gp,) to HZ(Ak,Gp) is the functorial map and the reci-

procity map

i EDVEWHgt(kVaGm) — Q/Z
is the sum of the Hasse invariants. The fact that the sum of the Hasse invariants is
zero for elements in H ézt (k, Gyy,) is called the reciprocity law.

The other ingredient in Manin’s reciprocity condition is the (cohomological) Brauer
group HZ (X, Gy,) of X. The contravariant functoriality of HZ (-, Gy,) yields pair-
ings:

6.2 () X(k,) x H3(X,Gy) — HZ(ky,Gyp)
6.2 (b) X(Ax) x HZ(X,Gy) — HZ (Ak, Gp).

Notation 6.3. — Let A € H2(X,Gy,) be an element of the Brauer group of X.
(@) If Q, € X(k,), then A(Q,) € HZ(ky,Gp,) is the element defined by the
pairing (6.2)(a).
() If Qa4 € X(Ax), then A(Q4) € HZ (A, Gp,) is the element defined by the
pairing (6.2)(b).

Proposition 6.4. — Let X be a smooth variety over a number field k and let A €
HZ?(X,Gy,). Then the following holds.

(a) The map which sends Q, € X (k,) to A(Q,) € HZ(ky,Gy,) is locally con-
stant for all places v € W of k. It has finite image if X is proper.

(b) The map which sends Q4 € X (Ay) to A(Qa) € HZ(Ax,Gp,) is locally con-
stant. It has finite image if X is proper.
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Proof

(a) We change notation and write £k =
H?Z (k,Gy,) and choose B € HZ (X, Gy,
under the contravariant map

Hézt(ka Gm) — Hé2t(X7 Gm)

ky, X = X,, A = A,. Also, let § €
) such that B — A is equal to the image §

corresponding to the structure morphism from X to Spec k.
Then the subset of Q € X (k) with A(Q) = § is equal to the kernel of the special-
ization map

X (k) — Hg(k,Gpm)
defined by B. To study this kernel, represent B locally (in the Zariski topology) by
Azumaya algebras (cf. [45, IV.2.16]) and apply the implicit function theorem to the
associated Severi-Brauer schemes. It then follows that the kernel of the specialization
map defined by B is open in the k-topology (cf. sec.2), thereby proving the first
assertion.
The second assertion follows from the first and the fact that X (k) is compact (see

(2.3)(d)).

(b) Each element A € H gt (X, Gp,) is the restriction of an element AecH gt (X' ,Gm)
for some smooth o(x)-model X of X (cf. [45, II1.1.16]). This combined with the
vanishing of HZ (0, Gy, ) implies that

A(Qv) =0
for
Q. € Im(X(0,) — X(k,)), v € Wgy\Z.

Hence by (a) the map from X (Ag) to H, é2t(Ak, Gy, ) is locally constant. The finite-
ness of the image follows from the fact (see (4.9)(c)) that X (Ay) is compact. O

The pairing in (6.2)(b) is part of a commutative diagram:
X(Ax) x HZ,(k,Gy) — HZ,(k,Gp,)
(6.5) l l
X(Ax) x H3(X,Gp) — HZ(Ak,Gp)

where the top map is the projection onto the second factor.
By the reciprocity law (6.1), one deduces from (6.5) a pairing

(6.6) X (Ap) x H%(X,Gy,)/Im HZ, (k,Gy) — Q/Z

which is a homomorphism with respect to the second factor.
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Corollary 6.7. — Suppose that H% (X, Gy,)/ Im HZ (k, Gy, ) is a finite group. Then
the map
X(Ax) — HomZ(Hgt(X’ Gm)/ Im Hé2t(k7a Gm) — Q/Z)

induced by (6.6) is locally constant. In particular, if X is proper, then the inverse
image of any element of group on the right hand side is a compact open subset of
X (Ap).

Proof. — This is an immediate consequence of (6.4)(b). O
Notation 6.8. — X (A;)? C X(Ayg) is the inverse image of 0 under the map in
6.7).

We now examine the group HZ (X, Gy, )/ Im HZ,(k, Gy, ).

Notation 6.9
(@) HZ(X,Gp)alg == ker(HZ(X,Gy) — HZ(X,Gp))
(b) Hgt (Xv Gm )trans = Hézt(X$ Gm )/Hézt (Xv Gm )alg
(C) Hging(X((C)an ) Z)tors
is the torsion subgroup of H3 . (X (C)an,Z) where X (C) depends on the choice
of an embedding & C C.

It follows from HZ (k, Gp,) = 0, that the image of HZ (k, Gy,) in HZ (X, Gy, is
a subgroup of H gt(X , Gm)alg. The following result is well-known (cf. [40], [41] for
()
Lemma 6.10. — Let k be a number field and let X be a smooth (geometrically
connected) proper k-variety satisfying H}, (X,Ox) = HZ, (X,0Ox) = 0 and for
which the Néron-Severi group of X := k x X is torsion-free. Then
@) HZ(X,Gp)aig/ Im H (k, Gy ) = H'(Gal(k/k),NS(X))
(b) HE(X,Gp) = H, (X (C)an, Z)tors for any embedding k C C.
(¢©) H3(X,Gp,)/Im HZ (k,Gy,) is a finite group.
Proof
(a) The spectral sequence (cf. [27, 11.2.4])

HP(Gal(k/k), H(X,Gm)) = HE (X, Gp)
of Hochschild-Serre gives rise to an exact sequence
HE,(k,Gp) = HE (X, Gm)ag — HY(Gal(k/k), Hy(X,Gp)) — H, (k,Gp,).

For global fields £ it is known from class field theory that H3, (k, Gy, ) = 0. Hence
it only remains to note that Pic(X) = NS(X) by the assumption on X.

SOCIETE MATHEMATIQUE DE FRANCE 1998



176 PER SALBERGER

(b) This follows from results of Grothendieck (cf. [45, V1.4.3], [27, 1.3.1] and [26,
1.35]). It is also known from the work of Artin-Mumford [2].

(c) This follows from (a) and (b). O

Peyre makes use of the following lemma (cf. [52, 2.1.1]) in his definition of Tam-
agawa numbers.

Lemma 6.11. — Let k be a number field and let X be a k-variety as in (6.10). Then
there is an o(x)-model = of X for some finite set ¥ C Speco such that = is smooth
and proper over Specosy. Let Y, := 2 x F,, and let (cf. (4.16))
L,(s,PicY,) =1/det(1 — ¢, *Fr, | PicY, ® Q),v € Wg,\.
Then,
Ls(s,PicX):= [[ Lu(s,PicY,)
vEWgL\Z
converges absolutely and uniformly on compact subsets of s > 1 and defines a
holomorphic function for Rs > 1.

The function Lx (s, Pic X) has a meromorphic continuation to C with a pole of
order r :==rkPic X ats = 1.

Definition and proposition 6.12. — Let k be a number field and let X be a k-
variety as in (6.10). Let
Ilx =A{ll lx,) : det(Tan X (k,)) — [0,00), v € W}

be an adelic norm for X. Then there is an o(s)-model E of X for some finite set
¥ C Wy such that E is smooth and proper over Spec o(sy and such that || || x ) is
the model norm determined by E, /0, for v € Wg, \ 2.

Let m,, v € W, be the positive Borel measure on X, (k,) defined by the v-adic
norm || || x (k) and let

1/L,(1,PicY,) forv e Wg,\Z,
7V:{l forve Wy UX.
If X(Ag) # O, then (X, || ||) is defined to be the product:
lim (s — 1) 7% Ly (s, Pie X) (ma s (X (41)"))

where m 4 s, := m 4 is the regular positive Borel measure described in (4.14)(b).
This number is positive and independent of the choices of ¥ and =.

Proof. — The proof of the statement is clear from the definitions of Ly(s, Pic X)
and m 4 , (compare [52, 2.2.4], but note that there is an additional discriminant factor
there due to differences in the normalization of the Haar measures). O
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Remark 6.13. — Peyre [52] uses the topological closure X (k) of X (k) instead of
X (Ag)? in his definition of Tamagawa numbers. It follows from the reciprocity law
that X (k) is mapped into X (Ax)° under the functorial embedding X (k) C X (Ag)
(cf. [40], [41)).

X (Ay)? is a closed subset of X (Ay) (see (6.7) and (6.10)(c)). Therefore, m -
X (Ag)°. It has been conjectured in [15] that X (k) = X (Ax)° when X is rational.
We shall in (7.8) explain why we find it more natural to consider m 4 (X (Ax)°) than
ma(X(k)).

The following result is due to Colliot-Théléne and Sansuc [15, §3] in the case of
rational varieties.

Lemma 6.14. — Let k be a number field and let X be a k-variety as in (6.10). Let
(Qu)vew € X(Ag) be an adelic point on X. Then the following assertions are
equivalent

(i) > in(AQy) =0 forall A€ HE(X,Gpm)ag
veWw
(ii) There exists a universal torsor w : T — X such that

(Py)vew € ma(T (Ag)).

Proof. — This is proved in [15, §3] for rational varieties by means of an explicit
computation of cocycles. An examination of the proof in (op.cit.) reveals that it
works also under the weaker hypothesis in (6.10). For a conceptual proof, which
does not use brutal force, see [55]. O

Lemma 6.15. — Let k be a number field and let X be a k-variety as in (6.10). Let
7w : T — X be a universal torsor. Then the restriction to

(T (Ak)) x Hg(X, Gm)
of Manin’s pairing (6.3) factorizes to give a pairing
(T (Ar)) X Hz (X, Gm)trans — Q/Z
Proof. — This is a corollary of the previous lemma. O
Notation 6.16

Ul (k, T) := ker(Hg(k, T) — [] Hé (k.. T)).
vVEW

It is known from class field theory that this (Shafarevich) group is finite.
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Lemma 6.17. — Let k be a number field and let X be a k-variety as in (6.10) with
X(Ay) # @. Let

Illx = {ll llx(k,) : det Tan X (k) — [0,00), v € W}

be an adelic norm for X and let m 4 , be the Borel measure on X (Ay,) (cf. (4.14)(b))
determined by || || x and the convergence factors ~ in (6.12). Let I C H}(X,T) be
the subset parametrizing isomorphism classes of universal torsors w : T — X such
that (T (Ag)) N X (Ag)° # @. Then the following holds.

(a) I is finite

() (T (Ax)) N X (Ag)° is a compact open subset of X (Ay,).

©

Card(II} (k, T))ma (X = may(me(Te(Ar) N X (A)°)).
eel

Proof

(a)Let J C H, G%t(X ,T') be the subset parametrizing isomorphism classes of uni-
versal torsors m : T (Ag) — X such that T(A;) # @. It then follows by a weak
Mordell-Weil argument (cf. [15, Th. 2.7.3]) that J is finite. Hence I C J is also
finite.

(b) It was shown in the proof of (5.20) that =(7 (k,)) is a compact open subset
of X (k,) for all places v of k and that 7 (7 (k,)) = X (k,) for all but finitely many
places. Hence (7 (Ayg)) is a compact open subset of X (Ay). By (6.7) X (Ag)? is
also a compact open subset of X (Ay). Therefore m(7 (Ax)) N X (Ax)° is a compact
open subset of X (Ayg).

(c)Let 7y : Ta = X, mg : T3 — X be two universal torsors and «, /3 their classes
in H; t(X T). Then from (5.13), (5.15) it follows that:

To(Ta(Ar)) = m3(T3(4Ax)) < a—p€ImI'(k,T) - Hi(X,T)),
To(Ta(AR) N7s(Ta(Ar) =@ < o—f ¢ Im(IIT'(k,T)).

This combined with (7T (A4;)?) = 7(T(Ax)) N X (Ag)° implies that

Card (LI (k, T))mAﬂ,( Y me AT(AR)Y) =D may(me a(To(AR)°)).
eel

But
X(4)° = U mea(Te(4)°

by (6.14). This completes the proof. O
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Definition 6.18. — Let X be as in (6.10) and let ¢ € H (X, T) be the class of a
universal torsor 7 : 7 — X. Let || || x be an adelic norm for X. Then the Tamagawa
number 7. (X, || ||x) is the number 7. (X, X (Ax)°, || ||x) defined in (5.22).

The following theorem is one of the main results of this paper.

Theorem 6.19. — Let k be a number field and let X be a k-variety as in (6.10). Let
Illx = {Il llx(k,) : det(Tan X (ky)) — [0,00), v € W}

be an adelic norm for X. Then T(Ax) = @ and 7.(X,|| ||x) = O for all but
finitely many isomorphism classes € € H, ét(X , T') of universal torsors . : T — X.
Further,
(%) > 7(X, ]l lx) = Card H'(Gal(k/k), Pic X)7(X, || |x)

3

where € € H ét (X, T) runs over all elements of identity type x () in
Homg (T, HL(X,Gn)).

In particular, if Pic(X) is a direct summand of a permutation Gal(k /k)-module,
then
(XD = (X 01D

for the unique element ¢ € H}, (X, T) of identity type.

Proof. — Let I C H}(X,T) be the subset parametrizing isomorphism classes of
universal torsors 7 : 7 — X such that (7 (A))® # @. Then I is finite by (6.17)(a).
To prove (*), choose X, 0 := o(x), Z, T, 7. : T. — E as in (5.2) for each repre-
sentative . : 7. — X of an isomorphism class € € I of universal torsors with
T(Ag) # 2.

We may clearly choose the same finite set ¥ and 0 = o(x) for all € € I since [
is finite. Also, by the definition of adelic norms, we may assume that || || x ) is the
model norm determined by =, /o, for vWg,\X and by (6.7) we may chose the finite
set > C Wgn such that

X(Ar)° = Xs(Ap)® x [ X (kv)
vgS
for some compact open subset

Xs(A)° C [[ X (ky), S:=TUWs.
veS
By definition of 7. (X, || || x) we have (cf. (5.20), (6.18)):

7e(X, || 1x) = O%(T" (4k) /T (k)) - ma,s(me(Te(Ak)°))-
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Hence by (6.17)(c) we get:
D (X | lx) = O%(TH(Ak) /T (K)) - ma (X (Ag)°) - Card(IIT (K, T)).
eel

By the main theorem of Ono [50, §5] on Tamagawa numbers for tori we have
firther

O3 (T (Ax)/T (k) = (h(T)/ Card IT* (k, T)) lim(s — 1)*PeX L5 (s, Pic X)
where
h(T) := Card H!(Gal(k/k),T) = Card H'(Gal(k/k), Pic X).
Hence,
> (X x) = h(T)(lim (s — )P X Ly (s, Pic X)ma 5(X (Ar)°)

eel
as was to be proved. O

7. Counting functions of Fano varieties

We shall in this section study the asymptotic growth of the number of rational
points of bounded anticanonical height on Fano varieties X over number fields. This
theory was initiated by Manin. He suggested (cf. [23], [3], [42], [43]) that the asymp-
totic growth of the counting function should be of the form

CB(logB)rkPicX—l(l +0(1))

on sufficiently small Zariski open subsets of X.

Peyre [52] gave a conjectural interpretation of the constant C' by means of his
Tamagawa number 7(X, || ||) and a geometrical invariant o(X) depending only on
the effective cone in Pic X. His interpretation of the constant C' concerns the case
where Pic X is a permutation module. It does not cover the case of general toric
varieties which have recently been studied by Batyrev and Tschinkel ([7], [4]). The
aim of this section is to use the Tamagawa numbers of universal torsors over X to
reinterpret and to refine the conjecture of Peyre on the value of C.

Definition 7.1. — Let k be a field and let X be a smooth proper geometrically
connected scheme over k. Then X is said to be a Fano variety if the anticanonical
sheaf w;{l of X is very ample. A Fano variety of dimension 2 is called a del Pezzo
surface.

It is usually only required that w}l is ample in the definition of Fano varieties and
del Pezzo surfaces. In particular, “our” del Pezzo surfaces are always of degree > 3
and we do not consider surfaces of degree 1 or 2 (cf. [41], [44]). It is known (cf. e.g.
[52, 1.2.1]) that Fano varieties satisfy all the conditions in (6.10) and (5.12). We can
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therefore apply all the constructions and results made in the previous two sections to
them.

We now turn to the arithmetic of Fano varieties and assume for the rest of this
section that k is a number field. Let

Il ={ll |l : det Tan X (k,) — [0,00), v € W}

be an adelic norm for X. It is well-known (cf. e.g. [63]) that || || defines a height
function
H: X (k) — [0, 00)

although the “metrics” || ||, usually only occur explicitly for the archimedean places.

Definition 7.2. — The height function H : X (k) — (0, 00) defined by || || is given
by
H(P) = [] Is@)II;*
veWw
where s is a local section of wy" at P with s(P) # 0.

This function is well defined since H (P) does not depend on the choice of s by
the product formula for number fields.

Remarks 7.3

(a) It follows from the compactness of all X (k,) that log H; — log Hs is bounded
on X (k) for the height functions H; and H; defined by two adelic norms || ||1,
|| ||2 for X (cf. (1.6)(b), (2.3)(e) and (4.10)).

(b) Let X be a Fano variety. Then

C(B) :={P e X(k) : H(P) < B}

is finite for any height H defined by an adelic norm. It suffices by (a), to prove
this for one adelic norm on X and it is natural to consider a norm defined by
means of a finite set of global sections generating w}l (cf. [52, pp. 107-8)).
One can then apply the classical arguments for heights defined by projective
coordinates (cf. e.g. [37, Ch. 3, §1]).

Notation 7.4. — Let X be a Fano variety and let H be a height defined by an adelic
norm || ||. Let U be a constructible subset defined over k. Then,

(@
Cu(B, || ||) = Card{P € U(k) : H(P) < B}.

(b)
By = lilx?nsuplogCU(B, 1)/ log B.
—00
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©
Yo (|| ||) := limsupCy(B)/B(log B)’"_1 >0

B—00

forr =rkPic X.

It is clear from (7.3)(a) that Sy is independent of the choice of adelic norm || ||. It
also follows from (7.3)(a) that the condition -y (]| ||) > 0 is independent of the choice
of adelic norm and we shall therefore write vy > 0 for this condition. The function
sending B to Cy (B, || ||) will be called the counting function of U with respect to || ||
and [y the growth order of U.

The following definitions are inspired by notions of Manin (cf. [42]) and [51]). But
the reader should observe that our definitions are not identical with the definitions in
(op. cit.) and that we only consider Fano varieties.

Definition 7.5. — Let X be a Fano variety.

(a) A closed proper subset F' C X of X is said to be accumulating if for each
non-empty subset V of F' one has By > 1.

(b) A closed proper subset F' C X of X is said to be weakly accumulating if
~y > 0 for each non-empty open subset V of F'.

We are now in a position to formulate a version of Manin’s conjecture on Cy(H)
(cf. [23], [3], [42], [43], [52], [51]).

Conjecture 7.6. — Let X be a rational Fano variety over a number field k for
which X (Ay)? is non-empty and let || || be an adelic norm for X. Suppose that
the complement U in X of the union of all weakly accumulating (proper) subsets
is a Zariski open non-empty set defined over k. Then there is a positive constant
C=C(||l) > 0 such that

lim Cy(B, || |)/B(logB)"'=C forr =r1kPicX.
B—oo

Manin assumes that X (k) is Zariski dense instead of just assuming that X (Ay)° is
non-empty. To compensate this we have added the condition that X is rational. This
excludes cubic three-folds which are unirational but not rational. A more optimistic
version of (7.6) would be to assume that X is unirational. This is still a restriction
since some Fano varieties are not even uniruled [35, V.5].

We have in our definition of U used weakly accumulating (proper) subsets instead
of accumulating (proper) subsets. It has recently been shown (cf. [S]) by Batyrev and
Tschinkel that (7.6) is false when U is defined as the complement of the union of all
accumulating subsets. The counterexamples are given by smooth hypersurfaces in
P3 x P? of bidegree (3,1).
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To formulate a conjecture for the constant C'(|| ||) > 0, Peyre [52, p. 120] defines
for Fano varieties an invariant (X)) which we will often denote by apeyre(X). It
depends only on the effective cone in Pic X. To describe this invariant, let

L = Homg,(Pic X, Z)

V = Homgz(Pic X, R)
and let dv be the unique Haar measure on V such that volume Vol(V/L) = 1.
Further, let geg(X) C V be the cone of all homomorphisms
p:PicX — R

such that
o([D]) 20
for the class [D] € Pic X of each effective divisor on X. Let A : V' — R be the
linear form obtained by evaluating at the anticanonical class and let V,, = A\~!(z) for
z € R and note that X : V' — R is a trivial analytic torsor under Vj.
There is then a unique positive linear map A : C.(V) — C.(R) such that:

/V gdv = /R Ag)dz

for any function g € C,(V'). A restricts to a positive functional A, on V,, = A\71(x)
for each z € R. Let dv,, be the corresponding positive Borel measure on V;,. Then,

aPeyre(X) :=/ dvy forB:=W; ﬂaeg(X).
B

Batyrev and Tschinkel [7] define a similar invariant which they also call a(X),
but which we will denote by apr(X). It follows from one of the lemmas in [7] that
their invariant

apr(X) = (r — 1)! - apeyre(X).
The apr-invariant is multiplicative (see [Pel, lemme 4.2])

apr(X xY) =apr(X)apr(Y)

for varieties as in (6.10). It is more natural when one considers Manin s zeta-functions
(see [7] and [4]).
The following conjecture is due to Peyre [52, 2.3.1].

Conjecture 7.7. — Suppose that the assumptions in (7.6) are satisfied and suppose
that Pic X has a Z-basis which is invariant under the action of the absolute Galois
group Gy, of k. Then the constant C(|| ||) in Manin’s conjecture is of the form:

CI') = apeyre(X) (X, || ).
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Remark 7.8. — Peyre defines (cf. (6.13)) “his” 7(X, || ||) by means of m (X (k))
instead of m (X (Ax)?) as we have done. The two definitions are expected (cf.
(6.13)) to be identical when X is rational and perhaps also when X is unirational.
We find it more natural to give an adelic interpretation of C' (with an extra twist given
by reciprocity pairing of Manin).

It is not difficult to compute m 4 (X (A)°). The group

Hgt(Xv Gm)/Im Hgt(k’ Gm)

is finite (cf. (6.10)) and it is clear from the proof of (6.4)(b) that it can be decided if
an adelic point belongs to X (A)° by looking at finitely many places S C W. Also,
if || || is the model norm of a smooth model X /o,, then

my(X,) = Card(X (F,))(my(0,)/ Card(F,))dmX

by (2.15). It is thus possible, in principle, to compute m 4 (X (A%)°) in finitely many
steps although the answer is given as an infinite product.

The only reasonable way to compute m 4 (X (k) ), however, is to prove that X (k) =
XY and then use the computation for m (X (Ax)°). This is a much more difficult
problem than the computation of m 4 (X (A)°).

Fraenke, Manin and Tschinkel [23] proved (7.6) for generalized flag spaces (using
Langlands’ Eisenstein series). They also noticed that one can deduce (7.6) for smooth
complete intersections whenever asymptotic results on the affine cone are available
by the Hardy-Littlewood circle method. In these cases the asymptotic formulas hold
for X itself. Peyre (op.cit) completed their results and proved his conjecture (7.7)
for these varieties. He also proved (7.6) and (7.7) some toric surfaces over Q. The
open subset U is then the open subset defined by the underlying torus. These results
are proved for counting functions defined by one special adelic norm.

Peyre formulates his conjecture (7.7) in the case where Pic X is permutation G-
module. It is natural to weaken this condition and also allow varieties for which
Pic X is a G-direct summand of a permutation G-module.

One cannot expect to omit such a condition completely. Batyrev and Tschinkel
study in two recent papers [7], [4] Cy(H) for smooth projective U-equivariant com-
pactifications X of tori U. They choose a natural adelic norm (cf. (9.2) of this paper)
and make strong use of the group action. Using the abstract Poisson formula, they
conclude that (7.6) holds with the constant

(7.9) C(Il ) = apeyre(X)7(X, || A (Pic X)
where h!(Pic X) = Card H'(Gy, Pic X). - -
This does not contradict (7.7) since H'(Gy,Pic X) = 0 when Pic X is a G-

direct summand of a permutation Gx-module. It is tempting to reformulate (7.7) and
conjecture that (7.9) holds for general Fano varieties satisfying (7.6). Numerical work

ASTERISQUE 251



TAMAGAWA MEASURES ON UNIVERSAL TORSORS 185

of Heath-Brown [33] on the two diagonal cubic surfaces defined by 2+ + 23 +2w3
and 22 + y° + 23 + 3w? seems to indicate that such a generalization of (7.9) is true.
Note that

HY(Gy,PicX) #0

for both these surfaces.

Definition 7.10. — Let G be a profinite group. Let M be a finitely generated
torsion-free G-module and let N = Hom(M,Z). Then M is said to be flasque
[14] if

HY'(H,N)=0
for each closed subgroup H of G.

It is known from work of Colliot-Théleéne /Sansuc [14] and Voskresenskii that
Pic X is a flasque G-module for toric varieties. It is obvious that Pic X is flasque
if it is a Gg-direct summand of a permutation G-module. The conjecture (7.6) has
sofar only been verified for classes of k-varieties X for which Pic X is a flasque G-
module. This is not surprising since there are only finitely many isomorphism classes
of universal torsors for such varieties. The asymptotic formulas obtained by Batyrev,
Fraenke, Manin, Peyre and Tschinkel all satisfy the following conjecture:

Conjecture 7.11. — Suppose that the assumptions in (7.6) are satisfied and suppose
that Pic X is a flasque G-module for the absolute Galois group Gy, of k. Then the

constant C(|| ||) in Manin’s conjecture is of the form:
cl ) = aPeyre(X)T(X, I ||)h1 (PicY).

This conjecture is compatible with products. To see this, one uses the arguments
in [23] and [52] to prove compatibility of (7.6) and (7.7) under products. The only
new ingredient needed is the equality

h!(Pic X X Y) = h}(Pic X)h!(PicY)
which follows from the canonical isomorphism
PicX x Y = (PicX) x (PicY)

already used in [52, 4.1].
The following refinement of (7.6) and (7.11) is natural even if there is not much
evidence for it.

Conjecture 7.12. — Let X be a rational Fano variety over a number field k and
suppose that Pic X is a flasque G-module. Let || || be an adelic norm for X and let
H be the height function on X (k) defined by || ||. Lete € H} (X, T) be the class of a
universal torsor m : T — X such that T (Ay) # O. Suppose that the complement U
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in X of the union of all weakly accumulating subsets is Zariski open and non-empty
and defined over k and let

Cue(B) = Card{P € n(T(k)) : H(P) < B}.

Then

Bli—{%oCU’E(B)/B(log B)r—l = aPeyre(X)Te(X, ” “)

where r = rk Pic X.

It follows immediately from theorem (6.19) that (7.12) implies (7.11). If Pic X is
a direct summand of a permutation Gx-module, then there is only one isomorphism
class of universal torsors since H}, (k,T) = 0 (see (5.4)). Thus in this case (7.11)
and (7.12) are equivalent by (6.19). If one examines the proof of conjecture (7.11)
for toric varieties in [7] and [4] then it is likely that (7.12) will follow if the Poisson
formula is applied to smaller discrete subgroups than in (op. cit.).

All numerical work on Manin’s conjecture on (7.6) so far concerns surfaces. For
surfaces the intersection pairing

Pic X x PicX — Z
is perfect and induces a canonical isomorphism
Hom(Pic X,Z) = Pic X
of G-modules. In particular,
HY(G},PicX) =0
if X is a surface and Pic X is flasque. L
The numerical work to date is insufficient to make any conjectures when Pic X

is not flasque The only work known to the author concerns the two diagonal cubic
surfaces of Heath-Brown [33] described above.

8. Torsors over toric varieties

We shall in this section study universal torsors 7 : 7 — X over toric varieties X.
The aim is to prove that the universal torsors are the toric morphisms described by
Cox in [16]. We shall in this section use the word complete instead of proper for toric
varieties corresponding to complete fans.

Let M be a free finitely generated abelian group of rank d > 1 and let N :=
Hom(M,Z) be the dual lattice, with dual pairing denoted by ( , ). Let us recall
some basic facts on toric varieties and refer to [24] and the references there for more
background.

Definition 8.1. — A finite set A consisting of convex rational polyhedral cones in
Ngr = N ® Ris called a fan if the following conditions are satisfied
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(i) Each cone in A contains 0 € Ng;
(ii) Each face of a cone in A is also a cone in A;
(iii) The intersection of two cones in A is a face of both cones

A fan A in N is called complete (resp. regular) if

(a) Ng is the union of cones in A resp.
(b) Each cone in A is generated by a part of a Z-basis of N.

Each cone ¢ in A determines a finitely generated commutative semigroup:
Sy =6NM={meM:(m,n)>0foralln € o}.

The group ring Q[S, ] is a finitely generated commutative Q-algebra correspond-
ing to an affine Q-variety U, = Spec Q[S,]. If 0 = {0}, then S, = M is an abelian
group and Q[S,;] a Hopf algebra. This provides U, with a natural structure of alge-
braic group when o = {0} (cf. [9]) and we shall denote this Q-torus by U. It is by
definition the Q-torus D (M) mentioned in section 5 and there is a canonical isomor-
phism between M and the group U of characters of U. We shall in the sequel write

™ . U — Gy, for the character corresponding to m € M.

There is a natural U-action on U, for each cone o in A and any inclusion p C o of
cones corresponds to a U-equivariant open -immersion U, C U,. By gluing these
one obtains for each complete regular fan A in N := Hom(M, Z) a smooth complete
Q-variety XA containing U = Spec Q[M] as an open Zariski-dense subvariety. This
Q@-variety X is equipped with a Q-morphism U x XA — X extending the group
multiplication on U.

Itis poisible to do the whole construction over Z (cf. [20]) and start with the affine
schemes U, = SpecZ[Sy]. If 0 = {0}, then 0 = SpecZ[M] and any inclusion
pCo of cones gives rise to an open embeddlng U C U We may therefore glue
U, for all cones o € A and obtain a scheme X A which is smooth (resp. proper) over
Z if A is regular (resp. complete). The open affine scheme U = Spec Z[M] of Xa
has a canonical structure of a Z-torus which comes from the canonical isomorphism
(cf. [21, exp.], 4.4]) between Spec Z[M] and D(Mz) = Homg,(Mz, Gy,) for the
constant group scheme (cf. [45, p. 52])

Mgz, = H SpecZ.

The group scheme morphism U X7, U — U extends to a (left) U- action
[7 X7 5(: A — X A-
We shall call a 1-dimensional cone a ray. If A is complete, then the set A(1)
of rays of A spans Ng. We shall for a given p € A(1), let n, denote the unique

generator of p N N. We shall write o(1) for the set of one-dimensional faces of o for
any cone o € A.
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The affine toric variety U, defined by aray p of A has two U-orbits. Let D, denote
the Zariski closure of the orbit given by the complement of U in U,. This defines a
bijection between rays p € A(1) and irreducible U-invariant Weil divisors D, in
XA. The free abelian group of U-invariant Weil divisors will be denoted by ZA(1).,

Any U -invariant Cartier divisor on the affine toric variety U, o € A is represented
by a character Xm(") : U — Gy, m(0) € M which is unique up to an element in
M (o) = o-NM. This defines a canonical isomorphism between the group Divy (X))
of U-invariant Cartier divisor and lim. M /M (o). If we order the maximal cones o;,
1 <% < s then the latter group is equal to (cf. [24, 3.3])

ker(®;M /M (o;) — GBi<jM/M(0'i N Uj)).

If A is complete, then all maximal cones of A are of the same dimension as Ng.
Hence m (o) is unique for each maximal cone o of A in this case.
There is a commutative diagram with exact sequences [24, 3.4]

(8.2) 0 — QUJ*/Q* — Divy(X) —— Pic X —— 0
ll JZ ll
0 » M » 784(1) —— CHY(X) — 0

The maps are defined as follows. The map from Q[U1* /Q* to Divy (X) is defined
by representing a class in QU]* /Q* by the unique character x™ belonging to this
class.

The map from Divy(X) — Pic X is the standard map (cf. [32, 2.6]) sending a
U-invariant Cartier divisor represented by x™(?) : U — G,, on U,, 0 € A to the
subsheaf of the constant sheaf k(X)* on X generated by x™(?). We shall denote
this invertible sheaf by O(D) where D is the associated Weil divisor of the second
vertical map. If D is effective, then O(D) is the inverse of the ideal sheaf of D.

The map from M to Z2(1) is defined by sending m € M to 2 pen(n)(m,np) Dy

and the map from Z2(1) to CH! (X)) sends a divisor to its linear equivalence class.

The first vertical map is defined by sending x™ € QU|*/Q* tom € M.

The second vertical map sends a U-invariant Cartier divisor defined by characters
Xm(”) : U = G, onU,, 0 € A to the Weil divisor A = ZPGA(I) a,D, where
a, = (m(o),n,) for any cone o € A for which p € o(1). (This map is well-defined
since (m(o), n,) is independent of the cone o for which p € o(1).) The map is the
same as the “usual” map from Weil divisors to Cartier divisors [32, 2.6] since the
order of vanishing of the Cartier divisor along D, is equal to (m(c),n,) by [24, 3.3].
Any toric variety X is normal, so the map from Divy (X) to ZA(1) is injective. It is
also surjective when A is regular.

The third vertical map is defined by the exactness of the rows and the commuta-
tivity of the first square.
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Definition 8.3

(a) Let ¢ : N' — N be a homomorphism of lattices and A be a fanin N, A’ be a
fan in N’ satisfying the condition:
For each cone ¢’ in A/, there is some cone o in A such that ¢(c’) C o.
Then ¢ is called a morphism of fans.
(b) Let 7 : X' — X be a morphism of toric varieties and let U’ — U be the
corresponding homomorphism of tori obtained by restricting . Then 7 is said
to be a toric morphism if  is equivariant with respect to the toric actions of U’
and U. This means that the following diagram commutes

UIXXI____)XI

|

UxX—X

It is easy to see that any homomorphism ¢ : N’ — N of lattices with ¢(c’) C o
for two rational strongly convex polyhedral cones o' C N and o C N determines a
toric morphism between affine toric varieties U,s — U,,. It follows by gluing (cf. [24,
p.23]) that any morphism (N'; A’) — (N, A) of fans gives rise to a toric morphism
from X' = Xarto X = Xa.

There is also a notion of toric morphism for toric schemes defined just as in (8.3)(b)
and it is clear that the proof in (op.cit.) implies that any morphism of fans defines
not only a toric morphism between toric varieties but also a toric morphism between
toric schemes over Z.

We now consider torsors over X = X for a regular complete fan A in N :=
Hom(M, 7). We shall by DY, p € A(1) denote the basis of Hom(Z*(!), Z) which
is dual to the base D, p € A(1) of irreducible Weil divisors in Z2(). Note that D;
is sent to n, under the map from Hom(Z*(),Z) to N = Hom(M, Z) induced by
the inclusion M C Z2M) in (8.2).

Proposition 8.4. — Let My C Z2(") be a sublattice containing M and let Ny =
Hom(My, Z). Let ng , € No, p € A(1) be the image of D;,/ under the restriction map
Hom(Z2("), Z) — Ny. Moreover, if o € A, let o be the cone in Nor generated by
ng,p for all one*dimensional faces p of . Then the following holds.

(@) The set of all these cones o9 C Ny form a regular fan A of Nor and any
oo € Ay is sent isomorphically onto the cone o € A defining it under the
restriction map from Hom(My, R) to N = Hom(M, R).

(b) Let Uy := Spec[Sy,), Ssy = do N My be the affine toric variety defined by
o0 € Agandlet my : Uy ; — U, be the toric morphism defined by the map from
og to o. Then these toric morphisms glue to a toric morphism m© : Xg — X
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from the toric variety X defined by (Ag, Ny) to the toric variety X defined by
(A, N). This morphism is a torsor under the the torus D(M /My).

Proof
(a) This is a consequence of the fact that each cone o € A is generated by its
one-dimensional faces.

(b) The last assertion is essentially a special case of the exercise on p.41 in [24].
See also [46, §1.5]. O

Proposition 8.5. — Let A be a complete regular fan in N := Hom (M, Z) and let
(Ag, No) be the fan defined in (8.4) by a sublattice My C ZAW), Let Py be the image
of My in Pic X and let Sy = D(Py) be the dual Q-torus. Then the corresponding
morphism Xy — X of toric varieties is an torsor under Sy of type Py C Pic X. In
particular, if My = ZA(”, then Xo — X is a universal torsor.

Proof. — The type of an Sy-torsor over X is uniquely determined by the types of
the G, -torsors induced by the characters Sy — G,,, of Sy. Using this and the functo-
riality of the construction of Xy under restriction of the lattice M, to smaller lattices
containing M, one reduces to the case Sy = G, . Now note that by the completeness
of A one may extend any group embedding n : G,, — U to an equivariant closed
embedding P! — X of toric varieties. Since the one-parameter subgroups corre-
sponds bijectively to elements of N := Hom(M, Z) it follows that a class in Pic X
is determined by its restriction to these closed subschemes.

It may happen that Py is sent to zero under some of these restrictions, in which
case the pullback of the G, -torsor is trivial for trivial reasons. It this is not the case,
then we reduce to the case when M is of rank 1 and X = IP’(b and Py = Pic X. Then
(Ao, Ny) simply defines the affine cone of IF’(}I and it is known and easy to prove that
the affine cone of IP’(b is a universal torsor. This completes the proof. O

Remarks 8.6

(a) One can also give a proof of (8.5) based on purity and look at the restriction of
the torsor over a toric variety defined by the cones in A of dimension < 1.

(b) There is a version of (8.5) for smooth proper toric Z-schemes X A obtained by
gluing the affine schemes U, = Spec Z[Sy| for the complete regular fan A
in N. In particular, one can construct a universal torsor )NCO — X (cf. (5.14))
which extends the homomorphism of Z-tori Uy = D(Myz) — U= D(Mz)
associated to the monomorphism M C M, = 7ZA(1) We leave the details to
the reader since the statement and the proof is almost identical to (8.5). One can
now make base extensions and obtain versions of (8.5) for toric schemes over
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arbitrary base schemes B. One can e.g. choose B = SpecZ/pZ and consider
toric varieties over Z /pZ.

We shall in the sequel fix an arbitrary field k£ and let X = X be the k-variety
determined by the complete regular fan (N, A).

Let My = ZAM) in (8.4). The fan A and the morphism (Np, Ag) — (N, A)
of fans described there defines a toric variety Xy and an equivariant morphism 7 :
Xo — X which according to (8.5) is a universal torsor. We shall call this universal
torsor 7 : Xg — X the principal universal X -torsor.

Let Ny = Nj and let A; be the fan in NV; consisting of all cones generated by
no,, = D), for p belonging to any subset of A(1). Then the toric variety X; deter-
mined by (N1, A;) is the affine n-space A", n = Card A(1) and the morphism of
fans (No, Ag) — (N1, A1) defines an open equivariant embedding X, C Xj.

We now give a more concrete description of this embedding following Cox [16].
We introduce one variable x, for each p € A(1) and extend this to a bijection be-
tween monomials

= [ =. reaq
pEA(1)
and effective Weil divisors
Z apD, € 7AW
pEA(L)

with support outside U. For a cone o € A, let g be the divisor
o= > D,
pga(l)

Then Uy, (cf. (8.4)(b)) is the open subvariety of X; = Speck(z,], p € A(1) for
which zZ # 0.

The open affine toric subvarieties Up 5, 0 € Apax form a covering of Xy. Hence
Xp is the open subvariety in X; = Speck[z,], p € A(1) for which not all the
monomials zZ, 0 € A ax vanish.

Proposition 8.7. — Let A be a complete regular fan and let Ay = pea() Do

Let o be a maximal cone of A and let x™), m(c) € M be the unique character of
U such that x~™°) generates O(Dy) on U,. Let

=Dy + Z D,.
peEA()
Then the following holds for any maximal cone o of A.

(a) If O(Dy) is generated by its global sections, then X‘m(" ) is a global section of
O(Dy) and D(0) is an effective divisor with support contained in Upgo(1) D
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(b) If O(Dy) is ample, then O(Dy) is very ample and D(c) an effective divisor
with support U,q;(1)D,.

Proof

(a) If O(Dy) is generated by its global sections, then there exists for each o € A
a global section of O(Dy) which generates O(Dg) on U,. But U, is an affine space
for maximal cones ¢ in a complete fan A. There is thus up to multiplication with an
element in k* only one local section which generates O(Dy) on U, for 0 € Apax.
This implies that for maximal cones o, X_m(") is not only a local section on U, but
a global section of O(Dy).

The Weil divisor of the rational function x ™) is > peaq)(—m(o),np) D, (cf.
[24, p.61]). Therefore, since x ™) is a global section of @(Dy) we must have
that (—m(o),n,) > —1 for all rays p of A [24, p.68]. Also, (—m(0),n,) = —1
for p € o(1), since x ™) generates the fractional ideal O(Dgy) on U, so that
(=m(o),n,) = —1. Hence A(0) is effective with support contained in U,g,(1)D,.

(b) The very ampleness of O(Dy) is part of a more general result of Demazure
[24, p.71]. Also, if Dy is ample, then the function 1) : Ng — R defined by ¢(n) =
(—m(o),n) is strictly convex [24, p.70] and (—m(o),n,) > —1 forall p ¢ o(1).
This completes the proof. O

Corollary 8.8. — Let A be a complete regular fan such that Dy = ) pEA(L) D,
is ample. Let D(0), 0 € Amax be the U-invariant Weil divisors on X described in
(8.7).

(a) If O(Dy) is generated by its global sections and o a maximal cone of A, then
2P £ 00nUp, C Xo (cf (8.4)).

(b) If O(Dy) is ample and o a maximal cone of A, then Uy, is the open subset
of X, = Speck[z,], p € A(1) defined by xP@) £ 0. Hence X, is the open
subvariety in X1 = Speck|z,], p € A(1) for which not all 2P, o € Apax
vanish.

Proof. — This follows from (8.7) and the description of Uy, C X; by means of
<. O

The following lemma will be used to prove (9.10) and in the proof of the asymp-
totic formulas in section 11. Recall that a facet 7 of a cone o is a face of codimension
one (cf. [24, Ch. 1]).

Lemma 8.9. — Let A be a complete regular d-dimensional fan and let o be
a maximal (and hence d-dimensional) cone of A with facets W 7@ Then
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there exist unique d-dimensional cones o). .. oD such that 7 = 60 N o0 for
i=1,...,d
Moreover, for any such set of cones the following holds:
(i) There exists exactly one 1-dimensional face p(i) of o) such that p(i) Nol =
{0} for each i = 1,...,d. Moreover, any one-dimensional face of 7\®) is equal
1o p') for exactly one integeri =1,...,d.
(ii) Let {n¥) : 1 < i < d} be the Z-basis of N defined by the generators of the rays
pW, ... p\D € o(1) and let {m® : 1 < i < d} be the dual Z-basis of M. Let
b; be the multiplicity of D; in D(0\)), 1 < i < d. Then,

m(o®) = m(c®) =b;m, ie{1,...,d}.

(iii) Letm = m®) + ... + m(@ and let Dy = 3 ,cp 1y D,- Then,

Do— D)= > (m,n,)D,.
peEA()

(iv) Suppose that Dy = ZpGA(l) D, is ample. Then b; > 0 fori € {1,...,d}.
(v) Suppose that there is only one 1-dimensional cone n(®) € A not contained in
o(0). Then n® 4 nM) ... 4 n(@ =,

Proof. — Let 7 € A be a cone of dimension d — 1 and let H; be the hyperplane
generated by 7 and —7. Then 7 is part of the boundary of any d-dimensional cone
o € A containing 7 [24, p. 10]. Hence any such cone o € A must lie in one of the
closed half spaces of N defined by H. Let R be one of these closed half spaces and
let 2 C R be the open subset of interior points of R which do not lie on any cone of
dimension < d. Then 2 is contained in the union o; U - - - U o5 of the maximal cones
o1,...,0s with a point in {2 by completeness of A. Hence the closure R of €2 is also
contained in the closed subset o1 U---Uogsothat 7 = 7N (01 U---Uoy) is a finite
union of cones (TNoy)U---U(TNoy). Therefore, 7 = 7No for some d-dimensional
cone 0 € A with 0 C R. This cone is clearly unique since any such cone o must
contain O N R for any sufficiently small neighbourhood O around an interior point
of 7. There are thus exactly two d-dimensional cones o € A containing 7.

The statement (i) is a trivial consequence of the regularity assumption on A. To
prove (ii), let m(c) € M be the unique element such that the character x~™() of U
generates O(Dg) on U,. Then (cf. (8.7)):

D(o):= Y (1+{-m(0),n,)D,

pEA(1)

where (—m(o),n,) = —1 for any maximal cone o € A and any ray p of .
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Hence
(m(e®) = m(o®), 1) = b
and
(m(6®) = m(c®),n)) =0
for the generators n9), j € {1,...,d},j # i of the rays of 7). This proves (ii).
To show (iii), note that the multiplicity of the D; in
Dy — D(U(O)) = Z (m(a(o)),np)Dp
pEA(L)
and
Z <m7nP>DP
pEA(L)
is equal to 1 for 1 < i < d. But then (m(c(?)),n,) = (m,n,) for all rays p of A,
since {n(?) : 1 < i < d} is a Z-basis of N.
To show (iv), use the fact that 1 + (—m/(c),n,) > 0 for any maximal cone o € A
and any ray p of o if Dy is ample.

To show (v), note that any subset of d elements in {n(®), n(D . n(@} form a
Z-basis of N by the regularity of the maximal cones {a(o),a(l), .. ,a(d)}. Hence
we have (m(®) n(0) = +1for 1 < i < d. Also, since 09 # (%, we must have
(m(®,n(0) £ 1 for 1 < i < d. This completes the proof. O

Proposition 8.10. — Let Dy = 3, A1) D, and let wxyy, be the canonical sheaf.
Let du be a non-vanishing U-invariant section of wx on U. Then there exists a
unique extension of du to a global section of wx, ® O(Dy). This global section
generates wy, ® O(Dy).

Proof. — This is proved in [24, 4.3] when du is of minimal d log-type (cf. (3.28)).
If dv is another U-invariant section, then dv/du is a U-invariant regular function on
U and hence dv = adu for some « € k. This proves the assertion. [

We end this section with some comments on twisted toric varieties.

Suppose that My = Z~(1) and let G be a finite group of automorphisms of (A, N).
Then G acts also on the fan (A, Np) so that we get a morphism of G-fans from
(Ao, No) to (D, N). This implies that the corresponding morphism 7 : Xg — X is
a G-equivariant morphism between toric varieties with G-actions.

An important case is when G is the Galois group of a finite Galois extension
k C K of fields. If we regard X = XA as a variety over the base field K, then
the G-actions on (A, N) and K define a G-action on X which is compatible with
the G-action on K. This may be interpreted as a descent datum (see [10, pp. 139-
1411). The descent datum is effective if and only if each Galois orbit is contained in
a quasi-affine variety (e.g. if X is projective). It then follows from results of Weil
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and Grothendieck (cf. op. cit) that there is a k-variety X with a G-equivariant K-
isomorphism A between X G % K and X. The G-action on X G x K is induced by
the Galois action on K. The pair (X, \) is unique up to unique isomorphism.

There is also a G-action of X which defines a k-variety X§ and an isomorphism
Ao between X§ x; K and Xg. The corresponding descent datum is always effective
since X is quasi-affine. By Galois descent there exists further a unique k-morphism
7% . X§ — X such that the induced K -morphism 7¢x K : X§x; K — X%xx K
belongs to the following commutative diagram of G-morphisms

¢y K
8.11) XG xy K —— 225 X6 5, K
)\oJ} 2J,)\
XO Ul > X

Let my : Uy — U be the restriction of 7 corresponding to the morphism of fans
from ({0}, No) to ({0}, N). Then 7 restricts to a homomorphism (/)¢ : U§ —
U€ of k-tori which may also be obtained directly from the G-morphism of fans from
({0}, No) to ({0}, N). This morphism is nothing but the map from D (M) = U§ to
D(M) = U€ dual to the G-monomorphism from M = ker(Z2(!) — CH!(X)) to
My = ZAW), The kernel of (7)€ is thus the Néron-Severi k-torus T'¢ dual to the
G-module Pic X = CH(X).

The k-torus UOG (resp. U @Y acts on Xg; (resp. X @) so that XOG and X € become
twisted toric varieties. The k-morphism 7€ : XOG — X© is equivariant under these
torus actions. It is clear from the G-equivariant commutative diagram (8.11) that
¢ X, 6; — X is a torsor under T'¢. The type of this torsor is uniquely determined
by the type of the torsor after a base extension. It must therefore be a universal torsor
since 7¢ : X§ — X is a universal torsor. The fibre of this torsor at the neutral
element e of U C X© is trivial since it contains the neutral element eg of UOG .
We have thus (cf. (5.13)) determined the isomorphism class of the universal torsor
7% X (? — X©. We shall call this universal torsor the principal universal torsor.

9. Norms on toric varieties over local fields

Let X = XA be a smooth complete toric variety over a locally compact field.
There is a natural norm || ||p for each U-invariant Weil divisor D on X described
in [7]. We shall in this section give a new interpretation of these norms by means
of a “canonical toric splitting” for the principal universal torsor Xo — X. This
interpretation may be seen as an analog of Bloch’s (cf. [8], [48]) approach to local
Néron heights for abelian varieties. We shall also show that the induced norm on X
of || || p for the anticanonical system is very natural and simpler than || ||p.
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We shall keep all the notations in section 8. We shall thus by X denote the smooth
complete k-variety defined by a regular complete fan A in N = Hom(M, Z). The
only difference is that ¥ will denote a non-discrete locally compact field of character-
istic O throughout the section.

Let | | : k* — Ry be the normalized absolute value defined in section 1. The
additive valuation log | | : £* — R induces a homomorphism

L:U(k) = Hom(M, k*) — Ngr = Hom(M, R)

from the multiplicative group U (k) to the additive group Ng. If 0 € A is a cone,
then L~!(—0) is a closed subset of U (k) in the k-topology.

Notation 9.1. — Let o € A. Then C, (k) is the closure of L™!(—0) in X (k).

Batyrev and Tschinkel [7] use the compact subsets C,;(k), 0 € A to define a norm
| ||p on the line bundle O(D) for any U-invariant Weil divisor D. We now give a
slightly different, but equivalent, definition of their norm.

Proposition and definition 9.2. — Let D be a U-invariant Weil divisor on X and
let s be a local analytic section of O(D) defined at P € X (k). Then any P € X (k)
belongs to Cy(k) for some cone 0 € A. Let x™) be a character which on U,
represents the Cartier divisor with Weil divisor D. Then the expression

Is(P)llp := [s(P)x™ (P)|
is independent of the choice of cone o with P € C, (k). It defines a norm in the sense
of (1.5) on the analytic line bundle V (O(—D))an(k) — Xan(k) of sections of O(D).
If D is effective, then
X™(P)| <1
and

Is(P)llp < [s(P)]-

Proof. — 1t suffices to prove the first two statements for the dense subset U (k). To
show the first, use the completeness of A. For the second, note that

Ix™)(P)| = exp(m(o), L(P))
for P e U(k). If P € Cy(k) N T(k) for two cones o and 7, then there are unique
non-negative real numbers \,, p € (o N 7)(1) such that
—L(P) = Z ApTip.
pE(onT)(1)

Therefore |x"(?)(P)| and |x™)(P)| are equal since (m(c),n,) = (m(7),n,) is
the multiplicity of D along D, for each ray (cf. (8.2)). The third statement is obvious
since |s(P)x™)(P)| is a norm for the line bundle over C, (k) for each cone o. To
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prove the inequality, note that (m(c), L(P)) < 0 since (m(c),n,) > 0 for each
p € o(1). This completes the proof. O

Let T be the Néron-Severi torus of X andlet 7 : 7 — X, T = X be the principal
universal X -torsor constructed from the fan (Ny, Ag) (see (8.5)). There is an analytic
torsor

Tan * 7-aun(k) — Xan(k)

under Ty, (k) associated to 7. In particular, we may identify the topological space
X (k) with the quotient space X (k)/T (k) (cf. (3.11)).

Notation 9.3

(@) T'(k)cp (resp. Up(k)cp) is the maximal compact subgroup of the locally compact
group T'(k) (resp. Uy(k)).

(b) 7 : Xo(k)/T(k)cp — X (k) is the unique continuous map sending the T'(k)cp-
orbit of a point Q € T (k) to m(Q).

The existence of the norms in (9.2) is related to the existence of a canonical split-
ting of 7 : Xo(k)/T(k)ep — X(k). To construct such a splitting, we first define
local splittings of m,p,.

Lemma 9.4. — Let 0 be a maximal cone of A and let X, = Speck[z,], p € A(1).
If D, is a U-invariant Weil divisor on X corresponding to a ray p € A(1), let X:,"(a),
0 € Amnax be the unique character on U which generates O(—D,) on U,. Let
Yo : Uy — X1 be the affine k-morphism such that }x, = X:,n(a), p € A(1) and let
7y : Up,s — U, be the open affine toric morphism described in (8.4)(b).

Then, 15 (Uy) C Up,o and mg 0 15 : Uy — Uy, is the identity morphism.

Proof. — X:,n(a) generates O(—D,) on U,. Therefore, 2, # 0 on U, for all p ¢
o(1). This proves the first statement since Uy, is the open subset of X; such that
z, # 0 for all rays p € A(1) notin o.
The ring k[U,] of regular functions is generated by characters ™ € Uforme M
in the dual cone oV of 0. Let
D= Z a,D, € Z2V, a, = (m,n,)
pEA(1)

be the corresponding Weil divisor (cf. (8.2)) and let

¥ k[U,] — k[Uo,],
V¥ k[Uo,] — k[U,]
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be the homomorphisms defined by 7, and v,. Then,

) =aP = ] =i

PEA(L)
and
v#EP) = T "% =xm
PEA(L)
This completes the proof. O
Proposition 9.5

(a) There exists a unique continuous map v : X (k) — Xo(k)/T(k)cp such that
W(P) is the class of 1,(P) € Xo(k) in Xo(k)/T(k)cp for P € Cy(k), o €
Amax-

(b) The map ) is a section of the continuous map 7 : Xo(k)/T(k)cp = X (k).

Proof

(a) Suppose that P € C,(k) N C;(k) for two maximal cones o, 7 of A. It then
follows from the proof of (9.2) that |X;,n(a) (P)| = |XT(T)(P)| for each ray p of A.
This is equivalent to the existence of an element u € Uy(k)cp such that 1, (P) =
ut, (P) under the toric action of Uy(k) on X (k). But 7(¢,(P)) = n(¢-(P)) = P
by the previous lemma. Therefore, since 7 is a toric morphism, P = (u)P for the
toric action of U (k) on X (k). Hence 7(u) = 1 in the group U (k) and « an element
of T'(k) = ker(Up(k) — U(k)). But then u € T(k) N Up(k)ep = T'(k)cp so that
Yo (P) = 4, (P) in T (k)/T(k)cp. This proves that ¢} is well defined.

The continuity of ¢ is immediate from the continuity of 9g,an for each maximal
cone o of A.

(b) This follows from the corresponding property of ¢, (cf. (9.4)). d

We shall in the following sections call 9 : X (k) — Xo(k)/T (k)cp the canonical
toric section (or splitting) of 7 : Xo(k)/T(k)cp — X (k).

Notation and remark 9.6

(@ Let D = 3 ca) @Dy € Z2W) be a U-invariant Weil divisor on X. Then
| |p : X1(k) — R is the map which sends the n-tuple (5,), p € A(1) in X1 (k)
to | 3P| where pP = [Leaq B, . We shall also write | |p for the restrictions
of this map to 7 (k) = Xo(k) and Up(k).

®) | |p : X1(k) — R is constant on the Up(k)cp-orbits under the toric action
of Up(k) on X;(k). Therefore | |p : T(k) — R factorizes to give a map
T (k)/T(k)cp — R which we also denote by | |p by abuse of notation.
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Proposition 9.7. — Let Dy, Dy € Z2W be two effective U-invariant Weil divisors
on X and let D = Dy — Dy. Then 1 is a local section of O(D) at each k-point
P € X (k) outside the support of Ds. Moreover,

I1(P)llp = [4(P)Ip

for each k-point outside the support of Ds.

Proof. — Let 0 € A be a maximal cone such that P € C,(k) and let D =
2 pe A1) @p D). Further, let x™) resp. XT(”), p € A(1) be the unique character
on U which generates O(—D) resp. O(—D,) on U,. Then,

IP)o = Ix" @) =] [ " =1(P)p
PEA(L)

as was to be proved. O

Proposition 9.8. — Let D be a U-invariant Weil divisor on X such that O(D) is
generated by its global sections. Let x ™), 0 € Apax be the unique character
on U which generates O(D) on U,. Then x~™) is a global section of O(D) and
x~™9)(P) # 0 for points P € U, (k). If o is a local section of O(D) defined at
P € X (k), then

Is(P)llp = inf |s(P)x™)(P)|

where o runs over all maximal cones in A.
Moreover, if D is ample and o is a maximal cone in A, then C,(k) is equal to the
subset of P € X (k) such that

™ TmI(P)| < 1

for all maximal cones T € A.

Proof. — 1t follows from the proof of (8.7)(a), that x ™) is global section of
O(D).
Next,let D = 3 c 7 (1) @p D). Then, by [24, p. 68], one has

@) (m(o),n,) <a,forallo € Apax, p € A1),

(ii) (m(o),n,) = a,forall o € Apax, p € o(1).

Here (i) follows from the fact that x ") is a global section of O(D) while (ii)
follows from the assumption that x~™(?) generates O(D) on U,.

To prove the formula for ||s(P)]||p it suffices by continuity to treat the case P €
U(k). Let 0 € Amax and suppose that P € C,(k) N U(k). Then —L(P) is a linear
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combination pea(l) Apn, with non-negative real coefficients A, (cf. (9.1)). By (i),
(ii) we get that

(m(o) = Y A(m(o),np) = D My, € Amax,

peo(1) pEa(l)

(m(r),~L(P)) = Y Ap(m(r),mp) < D \oap, 0,7 € Aax.

pea(l) pea(l)
From this we conclude that if P € C,(k) N U(k), then

™) (P)| = exp(m(a), L(P)) < exp(m(r), L(P)) = |x™(P)|

for any other maximal cone 7 of A. This proves the first statement. Further, if
P € C,(k), it follows by continuity that

|Xm(a)—m(7') (P)| <1

for all maximal cones 7 € A.
Now assume that D is ample and that

™D (P) < 1
for all maximal cones 7 € Apax (cf. (8.9)). Then (cf. [24, p. 70]),
(iii) (m(7),n,) < a,forall T € Amax, p & 7(1).
Therefore, if P € C,(k) NU(k) and 7 € Apax, then
IX™)(P)| = [x™)(P)| & A\, = 0forall p € 0(1)\7(1) & P € C,(k).

Hence by continuity if P € Cy,(k) then |x™)~"™")(P)| = 1 if and only if
P € C;(k). This completes the proof of the last assertion. |

We now concentrate on the anticanonical system.

Definition 9.9. — Let A be a complete regular fan and o be a maximal cone. Then
another maximal cone 7 of A is said to be adjacent to o if o N 7 is a facet of 0.

Lemma 9.10. — Let A be a complete regular fan such that Dy = ), peA(L) D,
is ample. Let o be a maximal cone in A and let P be a k-point on Xa(k). Then
P € C,(k) if and only if

™= (P)| < 1

for all maximal adjacent cones T € A.
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Proof. — —L(P)is alinear combination }_ (1) Apn, with real coefficients A, and
P € C,(k) if and only if A, > 0 for all rays p of . Let {m,, p € (1)} be the Z-
basis of M dual to the Z-basis {n,, p € o(1)} of N. Let o, be the maximal adjacent
cone corresponding to p € o(1) under the bijection in (8.9). Then (cf. op. cit.) there
exists a positive integer b,, such that
bym, =m(o,) — m(o).
Hence,
log [x™ =™ (P)| = (m(0) — m(0,), L(P)) = =b,\,

so that A\, > 0 if and only if | ™M)=} (P)| < 1for T = o,. This completes the
proof. U
Proposition and definition 9.11

(@) Let X = XA be a smooth k-variety defined by a regular fan A and let D =
> pEA(L) D,. Then there exists a unique extension of the order norm (3.30) on
det Tan(Uyn(k)) — Uan(k) to a norm

| 1|7 : det(Tan Xan (k) ® V(O(D))an(k) — R
which we shall call the order norm on
det(Tan Xun(k)) ® V(O(D))an(k) — Xan(k)

and denote by || ||*.
(b) Let X = XA be a smooth complete k-variety defined by a regular complete fan
Aandlet D =3 51y D, Then we define the toric norm on

det(Tan Xy, (k)) — Xan(k)

to be the product norm of the order norm in (a) and the norm || || p on
V(O(=D))an(k) — Xan(k)

described in (9.2).

Proof. — The uniqueness follows from the density of U (k) in X,y (k) (cf. (1.6)(b)).
To show the existence, let du be an analytic differential form of minimal dlog-
type on Uy, (k) (3.28). Then du extends to a global nowhere vanishing section on
det(Cot X,y (k) ® V(O(—D))an(k) by (8.10). We may thus define ||s||# to be the
absolute value of du(s) € k (cf. (1.6)(a)). This completes the proof. O

The toric norm depends on the toric structure of X = Xa, but is otherwise a
“canonical” norm.
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Choose an ordering p;, . . . , pp of the one-dimensional cones in A and let x4, ..., x,
be the corresponding variables. Recall that (8.7) the principal universal X -torsor X
is the open subset of X; = Speck[z1, ..., z,] for which not all the monomials
z% = H Tp, 0 € Amax
pga(1)
vanish.
Theorem 9.12. — Let k be a non-discrete locally compact field of characteristic

zero and let X = XA be a toric variety over k obtained from a regular complete
fan (N, A) such that the anticanonical sheaf is generated by its global sections. Let
D =3 caq) Dy and let

D(o) =D + Z (—m(o),n,)D,, 0 € Amax
pEA(L)

be the effective anticanonical U -invariant Weil divisors described in (8.7).

Let T be the Néron-Severi torus of X andletnw : T — X, T = X be the universal
torsor constructed from the fan (No, Ag) (see (8.4)).

Let || || : det Tan(Xan(k)) — [0, 00) be the toric norm on the analytic anticanon-
ical line bundle and let || ||o : det Tan(Tan(k)) — [0,00) be the induced norm on
Tan(k). Then,

ls(P)llo := 1f (P)I/(sup |zP@)(P)]), o € Amax
0

0
for any local analytic section s = f(x1,...,%n)=— A -+ N —— defined at P €
Tn

8.’1,‘1 15)
Tan (K)-

Proof. — Let du be a U-invariant global section of det Q}j Ik of minimal d log-type
(see (3.28)) and w be a T'-invariant global section of det QIIJ Ik of minimal d log-type
(cf. (3.16)). Then dug := w ® 7*du is a Uy-invariant global section of det Q}JO Ik of
minimal d log-type. The order norm of det Tan(Up an(k)) is therefore (cf. (3.30))
the product norm of the order norm on

det Tan(Up an (k) /Uan (k)

and the pullback norm of the order norm on det Tan(Upy,(k)). Also, by defini-
tion, || ||o is the product norm on det Tan(7an(k) of the order norm || [|7/x on
det Tan(7zn(k)/Xan(k)) and the pullback norm 7*|| || on 7}, (det Tan(Xan (k))).
Hence by the definition of || || (cf. (9.11)) one concludes that the restriction of || ||
to det Tan(Up an(k)) C det Tan(Xg an(k)) is the product norm of the order norm
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Il |1 on det Tan(Upan(k)) and the restriction of 7}, || || p to the trivial line bundle

over Up an (k).
Therefore, since dz; A - - - A dz,,/zP is of minimal d log-type it follows that:
0 0 p 0 0 »p
— N —2zx" (P = [|=—A---A=—z"(P (P
ge N gt P = g A P TPl
= 7Tzi:,n”l(l_-’)lID'
Hence, if s = f( )—8~/\ /\—Q—isdeﬁnedatPeU(k) then
ence, 11 s = L1y.e.yTp 61171 8.’1:n 0 ,
sP)lo = 1F(P)] | o Ao A 5o=aP(P)| [la®(P)
0 or oz, 0

= [f(P)IL(man(P))lp/|2” (P)|

where ||1(7(P))||p means the norm of 1 regarded as a section of the analytic line
bundle V(O(—D))an (k) — Xan(k) at the point 7(P) € U (k). But it follows from
(9.8) that

(= (P)lip = inf [x™) (x(P))| = inf|«® (P) /=" (P)|

where o runs over all maximal conesa in A. 3
Therefore, if s = f(z1,...,2Zp)=— A+ A =— is defined at P € Uy(k), then
ory 0Ty,

Is(P)llo = | (P)linf [1/zP)(P)|, o € Amax.

The same statement for P € X (k) follows by continuity since Uy(k) is dense in
Xo(k) and both sides define a norm on the anticanonical line bundle on 7, (k). This
completes the proof. O

The preceding proposition is related to the following description of the canonical
splitting ¢ : X (k) — Xo(k)/T(k)cp of 7 : Xo(k)/T(k)ep — X (k) (cf. (9.5)) for
non-archimedean fields k.

Proposition 9.13. — Let k be a finite extension of Qp, let o be the maximal Z,-
order in k and let (A, N) be a complete regular fan. Let T : Xo — X be the toric
o-morphism of toric o-schemes defined by the obvious morphism (Ao, Ny) — (A, N)
of fans (cf. (8.6)). Then the following holds.
(@) T'(k)cp is the image of T (o) under the natural embedding of T (o) in T'(k).
(b) The obvious maps Xo (o) /f(o) X (o) and X (o) = X (k) are isomorphsisms.
P : X (k) = Xo(k)/T (k)cp is the unique map such that the following diagram
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commutes _ _ _
X (0) +—— Xo(0)/T (o)
L
X (k) — Xo(k)/T(k)ep
Proof

(a) This is true for any split o-torus T= G X - X Gy, with generic fibre T'.

(b) 1t follows from the assumptions on A that X is a smooth proper scheme over
o and hence that X (o) = X (k). The morphism 7 : Xo — X is a (universal) torsor
under Gy, X - - - X G,. Thus, by Grothendieck’s version of Hilbert 90, it follows that
7(Xo(0)) = X(o) and Xo(0)/T(0) = X(0). The map ¢ is defined (cf. (9.5)) by
gluing the restrictions of the maps

"paan : U, ( ) — UOa(k)

to Cyy(k) modulo elements in T'(0). But the algebraic maps v, : U, — Up,» and
Y : Ups — U, are actually defined over o (i.e. they extend to toric morphisms
between affine toric schemes over o). Therefore, 1), sends a point in U, (k) to a
lifting to X (0) C Xo(k) of the corresponding point in X (0) = X (k). But this
defines its class in Xo(k)/T'(k)cp uniquely, thereby proving the assertion. d

Proposition 9.14. — Let k be a finite extension of Q, and let X, o, X be as above.
Then the following holds.
(@) The toric norm (cf. (9.11)) of the analytical anticanonical line bundle on X (0) =
X (k) is equal to the model norm determined by X /o.
(b) The restriction to Xo(0) of the induced norm || ||o for Xo(k) of the toric norm
|| || coincides with the model norm for Xo(o).

Proof
(a) The quotients of two norms on the analytical anticanonical line bundle on X (k)
define a continuous function f : X (k) — (0,00) (cf. (1.6)(b)). Hence it suffices to
prove that the two norms coincide for the local section 1 of O(D) on the dense set
U (k). Then, ~
I1(P)llp = [¢(P)Ip

by (9.7) so that the statement is an immediate consequence of (9.13)(b).
(b) This follows from (a) and (3.31). O
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Remarks 9.15

(a) It follows from (9.14)(a) that the toric v-adic norms on a smooth complete
(split) toric variety over a number field form an adelic norm which we shall
call the toric adelic norm. Also, by (4.7) or (9.14)(b) we have that the induced
v-adic norms on the universal torsor form an adelic norm on the principal uni-
versal torsor which we shall call the induced toric adelic norm.

(b) One can define toric norms on twisted toric varieties (cf. sec.8) over locally
compact fields. Batyrev and Tschinkel [7] define their norms || || p for arbitrary
(twisted) toric varieties by means of the corresponding norms for the (split)
toric varieties obtained after a base extension. It is also clear that one can define
order norms (cf. (9.11)(a)) on twisted toric varieties by means of d log-forms
of minimal type over a splitting field (cf. (3.29), (3.30) for the case of non-split
tori). We may therefore, just as in (9.11)(b), define toric norms on twisted toric
varieties over locally compact fields as a product of the Batyrev-Tschinkel norm
|| || p and the order norm. One can deduce from (9.14) that the toric norms form
an adelic norm also for twisted toric varieties.

(c) One can construct a canonical toric splitting of the map 7 (cf. (9.3)) for principal
universal torsors over twisted toric varieties (cf. the end of section 8).

Proposition 9.16. — Let X = X be a toric variety over k defined by a regular
complete d-dimensional fan (N, A) and let m be the Borel measure on X (k) deter-
mined by the toric norm. Then,

(@) m(X (k) = 29mA Card(Apax) for k =R,

(b) m(X(k)) = (2m)4™ A Card(Ampax) for k = C.

Proof. — Let 0 € A be a maximal cone and let {m{), 1 < j < d} be the Z-
basis of M which is dual to the Z-basis {n\9), 1 < j < d} of N, consisting of
generators of the rays py, ..., pg of 0. Then the d characters () € k[U],1 < j <d
corresponding to {m(/), 1 < j < d} form a set of coordinates (21, ..., zq) for the
affine toric variety U, = Speck[z1,...,z24] with U = Spec k[z, zl_l, ey Zd, zd_l].
Moreover, by definition (cf. the proof of (9.10))

Co(k) = {(21,--,24) €KD : |zj] < 1forj=1,...,d}.

Finally, note that H?:l 2 = x ™) by (8.9)(iv).
The norm || ||p for D = Dy + - - - + D, is defined by (cf. (9.2))

d

Is(P)llp = |s(P)x™(P)| = |{ s [T | (P)
j=1
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for alocal section o of O(D), D = Dy+---+D,, defined at P € C,; (k). This implies

that the toric norm (cf. (9.11)) of the section % Ao A % of det Tan X,, (k) is
1 d

equal to 1 for all P € C,(k). Hence the Borel measure m determined by the toric
norm (cf. (1.12)) is given by dz; - - - dzq, so that
d

(9.17) m(C,(k)) = H/ dzj = (/ dz)? = 2%(resp. (2m)%)
j=17lz1<1 lz]<1
for k = R (resp. k = O).
We now show that
(9.18) m(Cy(k) N Cr(k)) =0
for any pair of (different) maximal cones o, 7 of A. This implies that
(9.19) m(X (k) = Y m(C,(k))

0E€Amax
since U, en,,, Co(k) = X (k).

Let X_m(“) (resp. X_m(T)) 0, T € Apax be the unique character on U which
generates O(D) on U, (resp. U;). Then Xm(”)"m(T) is a Laurent monomial in
(21, zl_l, ey 2d, zd_l) with |x"™@) =) | = 1 on Cy (k) N Cyr(k) (cf. (9.2)).

Now suppose that o # 7. Then x"(@)~™(7) £ 1 50 that one of the variables, say
21 occurs in the Laurent monomial x™(?)~"™()_ Letr; = |z;| forj = 1,...,d. Then
there are rational numbers «; for j = 2,.. ., d such that

d
o
ri =[]
j=2

for each point on C,; (k) N C; (k) with ]—[?:1 zj # 0. This implies that in case k¥ = R
there exists finitely many bounded subsets A; of R¥~! and finitely many C'-maps
fi + Ai = C;(R) N C;(R) satisfying a Lipschitz condition (cf. [39, Chap. XI, §1])
such that
Co(k) NC: (k) = | fi(4d).
7

Therefore, m(C, (k) N C;(k)) = 0 by lemma 1.3 in (op. cit).

For k = C, we regard U,(k) = C? as a real analytic manifold R?? with co-
ordinates z; = Rz, y; = Jz; and introduce polar coordinates z; = r;cos6;,
yj = r;sin6;.

There is then a parametrization of the real analytic subset C, (k) N C, (k) C R%¢
by finitely many Lipschitz C'-maps f; : A; — C, (k)N C; (k) from bounded subsets
A; of R?4-1 5o that m(C, (k) N C;(k)) = 0 by lemma 1.3 in [39, Chap. XI]. Hence
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(9.19) holds also for £ = C. To complete the proof of the proposition, combine (9.17)
and (9.19). O

Note that m(Cy(k) N Cr(k)) # O in the non-archimedean case. The volume
m(X (k)) can then computed by means of (2.15) and (9.14)(a). We shall in (11.50)

consider these volumes in a concrete case.

10. Toric height functions and Tamagawa volumes of universal torsors

Let X = XA be a smooth complete toric variety over a number field k defined by
a complete regular fan. We shall in this section use the canonical toric splittings of
universal torsors over such varieties to define heights and to interpret the main term
a(X)71(X, || ||) in the conjectured asymptotic formula (7.12) as an adelic volume
using the induced measures on universal torsors. We shall not need to assume that
X = XA is a Fano variety. In (10.14) we assume that the anticanonical sheaf of
X = XA is generated by its global sections. This is used to give a very concrete
description of the anticanonical height function and of the adelic volume correspond-
ing to the main term a(X)7¢(X, || ||). But the remaining arguments of the section go
through without this assumption if one works with the original definition (10.4) of
the anticanonical height function.

We shall in this section let £ denote a number field and o denote the maximal
Z-order in k. Otherwise we will keep the notations in section 8. We shall thus
by A denote a complete regular fan in N = Hom(M,Z) and put My = ZAM),
Ny = Hom(My, Z). We denote by A the “pullback” fan in Nj described in (8.4)
and by A; the fan in Ny = Ny described after (8.5). There is a morphism of fans
from (Ag, Ng) to (A, N) which defines a toric k-morphism 7 : Xy — X of split
toric k-varieties. This morphism is defined over (Q, but we shall in this section let
X = XA denote the corresponding (geometrically integral) k-variety obtained by
base extension. The morphism 7 is by (8.5) a universal torsor over X and we shall
also write 7 instead of X.

The morphism of fans from (Ag, No) to (A, N) defines also a toric morphism
T XO — X of toric schemes over Z. But we shall in this section let 7 : XO — X be
the toric o-morphism obtained by base extension (cf. (8.6)(b)). The restriction of 7 to
the generic fibres over & is thus the morphism 7 : Xo — X of toric varieties over k.
The morphism 7 is by (8.5) a universal torsor over X under the Néron-Severi o-torus
T = D(Picy %/o ) as defined in (5.14). We shall call @ : Xo — X the principal
universal torsor.

Recall (cf. (8.2)) that there is an exact sequence of finitely generated free Z-
modules

(10.1) 1— M — 720 5 PicX — 1.
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We may endow Hom(L,Z) with the trivial fan consisting of the cone {0} for
each of the three lattices L = M, ZAM), Pic X. The morphism between these fans
defines toric k-morphisms between toric varieties over k as well as toric o-morphisms
between toric o-schemes. We obtain thereby an exact sequence of split k-tori:

(10.2) 1—T—Uy—U—1

as well as an exact sequence of split o-tori G o X -+ X G ot

(10.3) 1—T —Uy— U — 1.

The exact sequence of f.g. torsion-free abelian groups in (10.1) gives rise to
an exact sequence of constant group schemes over k (resp. o). The sequences in
(10.2) (resp (10.3)) are the “dual” exact sequences of tori over k (resp. o) under the
contravariant equivalence between torsion-free constant group schemes and tori de-
scribed in section 5. _

The assumption that A is complete and regular implies that X /o is proper and
smooth. There is a natural ﬁo—equivariant open toric immersion of toric schemes
5(,0 C X corresponding to the inclusion of fans Ay C A;. It was shown in section
8 that the generic fibre X; of X is canonically isomorphic to an affine space A} =
Speck[xz,] where n is the cardinality of A(1) and the variables are indexed by the
rays p of A. Moreover, Xo C X1 = A} is the open complement of the closed
subscheme defined by the monomials

2 = H Zp, 0 € Amax.
pgo(1)

There is a similar description of X’O C X. The latter scheme is equal to A} =
Speco[z,] where p runs over A(1) and X, is the open complement in X; of the
closed subscheme defined by the monomials z%, 0 € Apax.

Let W be the set of places of £ and denote by || ||,, v € W the toric v-adic norm
(see (9.11)) of the analytic anticanonical line bundle of X,,(k,). It follows from
(9.14) that the toric norms || ||, v € W form an adelic norm || || for X, which we
shall call the adelic toric norm for X = Xa.

The adelic toric norm || || gives rise to a height function H : X (k) — (0, c0) with

(10.4) H(P) =[] lIs(P)I;!

veWw

for a local section s of wy" at P € X (k) with s(P) # 0 (cf. (7.2)). We shall call this
function the toric anticanonical height function or simply the toric height function
when it is clear that we consider the anticanonical linear system.
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We now give alternative descriptions of the toric height function. We first represent
wx as the tensor product of the invertible sheaves

wx = O(=Dy) ® (wx ® O(Dy)), D Z D,.
PEA(1)
Let || ||p,v, v € W be the v-adic norm on
V(O(_DO))an(ku) — Xan(ku)
described in (9.2). The toric norm || ||, on det Tan X,,(k,) — Xan(k,) is by
definition the product of this norm and the order norm (cf. (9.11)) || ||,:éE on
det(Tan Xy, (k) ® V(O(Do))an (k) — Xan(ky).

Proposition 10.5. — The toric height function H : X (k) — (0, 00) is equal to the

product
IT lsi(P)li5s,
veWw

where s1 is a local section of O(D) for D = Dy at P € X (k) with s1(P) # 0.

Proof. — Choose local sections s; resp. so at the k-point P (defined over k) of
O(D) resp. wy' ® O(—D) and put

=[] Is:(®)li5h.

veWw

=TT lsa(P)IE™
veWw

Then H,(P) and Hy(P) are independent of the choice of s; and s and give well
defined height functions H; : X (k) — (0,00) and Hy : X (k) — (0, 00) such that
H(P) = Hi(P)H2(P).

The invertible sheaf wy' ® O(—D) is trivial and we may choose s to be the dual
of an algebraic dlfferentlal form du of minimal d log-type on Uy, (k) (cf. (3.28)) for
all points P € X (k). Then ||52(P)||’j = |du(s2(P))|, = 1forallv € W (cf. the
proof of (9.11)(a)) and Ho(P) = 1 for all P € X (k). This completes the proof. [

Definition 10.6
(a) Let D € Z2M) be a U-invariant Weil divisor on X and P € X (k). Then,

= [T ls(P)I,

veEW

hp(P) :=log Hp(P) = = Y _ log||s(P)|.,
vew
where s is a local section of O(D) at P € X (k) with s(P) # 0.
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(b)
Ha : X (k) x 21 — (0, 0)
resp.
ha: X(k) x 220 5 R
is the pairing
HA(P,D) := Hp(P)
resp.
ha(P, D) := hp(F).
Note that h is additive on the right hand side.

One can extend the restriction of Hp to U (k) to a height function
Fp,a:U(Ag) — (0,00)

by choosing s = 1 as local section. To see this, we make use of the local v-adic
sections

Yy X(ky) — Xo(kv)/T(kv)ep
of
7ty Xo(kv)/T (kv)ep — X (ky)
in (9.5) and the map
| 1D : Xo(ky)/T(ky)ep — R
described in (9.6). Then (cf. (9.7)):
(10.7) 1P = 190 (Po)lps

forall P, € U(k,).

Let X be the smooth proper toric o-model above and let 7 : )?0 — X be the
principal universal torsor. This model can be used to define the splitting ), at non-
archimedean places v (see (9.13)). It is the unique map for which the following
diagram commutes:

(10.8) X (0,) ¢—— Xo(0,)/T(0,)
[
X (k,) — Xo(k,)/T (ky)ep

There is further an obvious commutative diagram:

(0v) < Us(0,)/T(0)

i l

X (o) +— Xo(ky)/T(ov)

N

(10.9)
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Hence, if P, € Im(U(0,) — U(k,)), then
P(P,) € Im(U(o,,) = T(k)/T(kv)ep)
so that ||L(P,)|I5}, = |4v(P,)|5,, by the remark in (9.6)(b). This implies the fol-

lowing result:

Proposition 10.10. — Let Py € U(Ay) be an adelic point and let
{PV}VEW € H U(k
vew
be the corresponding set of k,-points. Then the products

Fp,a(Pa) : H 11(P, ”DV H [0 (Po)p),

veWw vew
are absolute convergent with at most finitely many factors different from 1.

Let

fp,A(Pa) =log Fp a(Pa) = Z log |1(P) v
vew
It is an immediate consequence of the definition that the pairing
(10.11) faa:U(Ag) x 220 - (0, 00)

with fa 4(Pa, D) := fp a(Pa) is additive on the right hand side. One has also the
following result:

Proposition 10.12. — Let P € U(k). Then hp(P) and Hp(P), D € Z2M) depend
only on the linear equivalence class of D in Pic X.

Proof. — ha is additive with respect to 7AW 1t therefore suffices to prove that
Hp(P) = 1 for principal divisors
D= Z a,D, € 7AW a, = (m,n,), m € M.
PEA(L)
But 22 (¢, (P)) = x™(P) for all v since ), is a section to 7, (cf. the proof of

9.4)).
This implies in its turn that |v),(P,)|p, = |x™(P)|, and hence that

= [T @l = IT 1@loh, = IT k@)l

veW veWw vew
by the product formula in algebraic number theory. This finishes the proof. O
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Remarks 10.13

(a) The properties (10.11) and (10.12) of the height functions are essentially due to
Batyrev and Tschinkel [7] (cf. also [4]) although they state them in a somewhat
different language. They make essential use of these properties in their study of
Manin’s zeta functions for counting functions on U (k) (cf. the comments after
(10.28)). We shall not use the pairing in (10.11) further. Instead, we will extend
the restriction of ha to

U(k) x ZAW = Uy (k) /T (k) x 20

to a pairing
ha,a: Xo(Ar)/T(k) x 22V — R
which factorizes over X (Ax)/T (k) x Pic X.

(b) The treatment of Tamagawa volumes and local heights by means of universal
torsors and the canonical toric splitting of

Py : Xo(ky)/T(ky)ep — X ()

has some similarities with Bloch’s torsor theoretic approach to the Birch-Swinn-
erton-Dyer conjecture and to the local Néron symbols (cf. [8], [48]) for abelian
varieties. The analogy is not perfect since the pairing Ha 4 : U(Ay) x ZAW) —
(0, 00) is not multiplicative on the left hand side. But it is still suggestive to
think of universal torsors for toric varieties as the analog of biextensions for
abelian varieties.

Proposition 10.14. — Let X = X be a smooth complete k-variety defined by a
regular complete fan A. Let D =) peA(L) D, and suppose that O(D) is generated

by its global sections. Let X™\%)(P), 0 € Ampax be the unique character on U such
that x~"™%) generates O(D) on U, and let

D(e)=D+ Y (-m(0),n,)D,
pEA(1)

be the effective Weil divisors in (8.7). Let
HO : XO(k) — (07 OO)

be the composition of 7 : Xo(k) — X (k) and the toric anticanonical height function
H : X (k) = (0,00). Then,

Hy(Py) = H sup |CL'D(0)(P0)|V.
VGWUEAmax
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Proof. — Let P € X (k) be the image of Py € X((k) and let 7 € Apax be chosen
such that P € U;. Further, let du be a U-invariant global section of w5 of minimal
dlog-type regarded as a global section of wx/; ® O(D) (cf. (8.8)). Then x™7 du is
a local section of wyx/; which does not vanish at P. Let s be local section of w;(l at
P which is the inverse of x™)du. Then, by definition of the toric v-adic norm || ||
(cf. (9.11)) and (9.8)), we have:

Is(P)llv = Ix ™ (P)llp, = ,uf ™D (P,

for any P € X (k).
From P € U, it follows that (") (Py) # 0 (cf. (8.8)(a)). Hence
2P (Py) /zPT (Py)
is defined and equal to x™(7)=™(?)(P). We may thus rewrite the preceding formula

in the following form:
Is(P)ll,* = sup [&P@ (Po)lu/|zPD (Po)l-

VEAmax

By the Artin-Whaples product formula for number fields we have:

I1 1222y, = 1.

vEW
The assertion follows from the last two equalities. O
Notation 10.15
(a) Let B be a positive integer. Then
¢(B) := Card{P € U(k) : H(P) = B}.
(b) Let B > 1 be a real number. Then
C(B) := Card{P € U(k) : H(P) < B}.

(c) Let B > 1 be a real number. Then
(B]
D(B) := Y c(m)/m.
m=1

These numbers are finite (cf. the proof of (10.28) below).

Since X is a split toric variety, it follows that the Néron-Severi torus 7" is a split k-

torus T = G\%) and that H, & (k,T) = 0. The principal universal torsor 7 : Xo — X
is thus the only universal torsor up to isomorphism. In particular, 7(Xo(k)) = X (k).
The conjecture (7.12) is therefore equivalent to the conjecture:

(10.16) C(B) = a(X)7e(X, || ) B(log B)" (1 + o(1))
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where 7 = 1tk Pic X, a(X) = apeyre(X) is the constant of Peyre (cf. the lines
before (7.7)) and 7.(X, || ||) is the Tamagawa number defined in (6.18) for the trivial
(and only) class € in H (k, T).

Moreover, 7.(X, || ||) = 7(X, | ||), since Pic(X) is a Galois permutation module
(cf. (6.19)). Therefore (cf. (5.21))

10.07) (X, ]| ) = Og(T(AR)/Tk)ms(n(Ts)  []  nu(T(0n).

vEWg,—X

Peyre [52] verified that (7.12) for holds for some classes of toric varieties over
and Batyrev and Tschinkel [4] establish a version of (7.12) for arbitrary toric varieties.
Their proof depends on the claim that any effective divisor on X is linearly equivalent
to an effective divisor with support outside U. This fact is well-known (cf. e.g. the
lemma on p. 66 in [24]). We may therefore use the following equivalent definition of
a(X) for smooth complete toric varieties.

Definition 10.18
Let V = Homgz(Pic X, R), let L be the Z-lattice Homz(Pic X,Z) in V and let
dv be the unique Haar measure on V' such that Vol(V/L) = 1.

Let A : V — R be the linear form obtained by evaluating at the anticanonical class
and let A : C.(V) = C.(R) be the unique positive linear map such that:

/ gdv = / A(g)dzx
1% R
for each function g € C.(V).

Let V, = A7!(z) for z € R and let dv, be the positive Borel measure on V, corre-
sponding to the restriction A, : C¢(V;) — R of A to V.. Finally, let oeg(X,U) C V
be the cone of all homomorphisms ¢ : Pic X — R such that ¢([D]) > 0 for the
class [D] € Pic X of each effective divisor on X with support outside U. Then,

a(x) = [ gdn
Dy
for D1 = oeg(X,U) N V1.

Remark 10.19. — Let x > 0 and let D, = oeg(X,U) N V,. Then an easy substi-
tution of variables implies that:

dv, = 2" la(X)
D,
forr = rk Pic X.
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Therefore, if Ej, is the set of all ¢ € oeg(X,U) with 0 < A(¢) < b, and g is the
characteristic function of Ej, then

Vol(Ep) = / gdv = / )/Ob "t = a(X)b" /r.

In particular, a(X) = Vol(E1)/r. This completes the remark.

Now suppose that (10.16) holds. Then, by partial summation we get that:

B
D(B) = C(B)/(B+1)+ Y C(m)/m(m+1)

m=1
= Zc )/m? + (log B)"to(1).

Also, when (10.16) can be proved one usually has enough information to deduce
that

B B
Y C(m)/m* = a(X)re(X, || [I) Y_ (logm)™* /m + (log B)"o(1).
m=1
We may further replace
B B
d
> togm)tm by [ (ogay 1Y
m=1 1 z

and still have an error term of order (log B)"o(1). This suggests the following con-
jecture, which in a sense is a weak version of (10.16):

(10.20) D(B) = Vol(E1)7(X, || [|)(log B)™ X (1 + o(1)).

One advantage with this alternative conjecture is that it is easy to give an interpre-
tation of

Vol(E1)7e(X, || ||)(log B)"
as an adelic volume (cf. (10.22)) of a compact subset of X(Ax)/Xo(k). To see this,
we need some further notations.
Notations 10.21
(a)

T(Ak)cp = H T(ku)cp

vew
is the maximal compact subgroup of T'(Ag).
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(b)
pa: X(Ax) — Xo(Ar)/T(Ak)ep
is the continuous product map of all ¢, : X(k,) — Xo(ky)/T(ky)ep (cf.
(10.8)).
©
Gy : T(ky) /T (ky)ep x Xo(kv) /T (kv)ep — Xo(kv)/T (kv )cp

is the continuous map induced be the analytic action
oy : T(ky) x Xo(ky) — Xo(ky)

(cf. the lines before (3.10)).
(d
pv = (6v,pr2) : T(ky) /T (kv )ep X Xo(ky)/T (Kv)ecp

— Xo(ko)/T(kv)ep X x(ky) Xo(kr)/T (Ev)ep
is the homeomorphism induced by the analytic isomorphism
pv = (0u,pr2) : T(ky) x Xo(ky) — Xo(kv) X x(k,) Xo(kv)
(cf. (3.3)(b) and the lines before (3.11)).

©)
gv : XO(kV)/T(kV)cp — T(kV)/T(kV)Cp

is the continuous map composed of (cf. (9.5))
(), id) : Xo(kw) /T (kv)ep — Xo(kw) /T (kv )ep X x (k) Xo(ku) /T (kv )ep
pyt and pri s T(ky)/T(kv)ep X Xo(kv)/T(kv)ep — T(k) /T (kv )cp-
®
o4 :T(Ar)/T(Ak)cp X Xo(Ak)/T(Ak)ep —> Xo(Ax)/T(Ak)cp
is the continuous map induced by (cf. (5.3))
o4 T(Ak) x Xo(Ak) — Xo(Ak).
(®
pa = (Ga,pr2) : T(Ar)/T(Ak)ep X Xo(Ar)/T(Ak)cp
— Xo(Ak)/T(Ak)ep X x(4,) X0(Ak)/T(Ak)ep
is the homeomorphism induced by the homeomorphism
pa = (oa,pr2) : T(Ax) X Xo(Ax) — Xo(Ak) X x(4,) Xo(Ax)
in (5.3).
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()
€4 : Xo(Ak)/T(Ak)ep — T(Ar)/T(Ag)cp
is the continuous composite map obtained by replacing all the maps in (e) by
their adelic counterparts.

@
&4+ Xo(Ar) /T (Ax) — T(Ak)/T"(Ar)
is the unique continuous map such that
€4+ Xo(Ar)/T(A)ep — T(Ar)/T(Ak)ep
&4+ Xo(Ar)/TH (Ax) —— T(Ar) /T (Ax)
commutes.
)

€4 : Xo(Ar)/T (k) — Hom(Pic X, R)
is the map obtained by composing the obvious map
Xo(Ag)/T(k) — Xo(Ax)/T"(Ax)
with
&4t Xo(Ar) /T (Ax) — T(Ar)/T"(Ar)
and (cf. (5.18))
T(Ax)/T(Ax) = Hom(Pic X, R).

Proposition 10.22. — Let B be a positive real number, b = log B and let K g be the
inverse image of E, C Hom(Pic X, R) under £ 4 : Xo(Ax)/T (k) — Hom(Pic X, R).
Let n,, v € W be the Borel measure on X(k,) determined by the induced norms of
the toric norms on X (k) (cf. (9.12)) and let n 4 be the (restricted) product measure
on Xo(Ag) (cf. (5.16)) of these measures. Finally, let i 4 be the quotient measure of
na on Xo(Ag)/T (k) (cf. (5.23)). Then,

na(Kp) = Vol(E1)7:(X, || ||)(log B)".

Proof. — The translation invariance of n4 under o4 : T'(Ag) X Xo(Ax) — Xo(Ax)
implies that 74 is translation invariant under the action of T'(Ay)/T (k). Let F C
Hom(Pic X, R) be a fundamental domain with respect to

Hom(Pic X,Z) C Hom(Pic X, R).
Then,
n4(Kp)/Ma(€4 (F)) = Vol(Eiog 8)/ Vol(F) = (log B) Vol(E}).
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Also, 7.(X, || ||) =74 (EZI(}' )) by (5.24). This completes the proof. a

Thus, by (10.22), (10.20) is equivalent to the conjecture:
(10.23) D(B) =ma(Kp)(1 4 o(1)).

To understand the relation between the adelic volume 714(K ) and the counting
function

D(B) := > 1/H(P)

{PeU(k):H(P)<B}
we extend the toric height function
H:U(k) =Uy(k)/T(k) — R

to a function on Xy(Ag)/T (k) by means of the following result.

Proposition 10.24. — Let P € U(k) = Uy(k)/T (k) C Xo(Ax)/T (k) andlet D €
7AW be a U-invariant Weil divisor. Let V = Homgz(Pic X, R) and let \p : V — R
be the linear form obtained by evaluating at the class of D in Pic X. Then,

hp(P) = Ap€4(P).
In particular, £ 4(P) € oeg(X,U).

Proof

Hp(P) = [] I&v(P)I5L, = ] I(P)IIBE

veWw veWw

by (10.7) and (10.10). Let Py € Uy (k) be a lifting of P. Then Py = £,(Py)%, (P) in
Uo(ky)/T (ky)cp for each place v of k by the definition of &,. Therefore, since

II 1Rl5., =1

veWw
(cf. (9.6)), we conclude that

HD(P) = H |£V(P)|D,V'
vew
Hence,
hp(P) =log Hp(P) = Ap (€ 4(P))

by the definitions of | | p , (cf. (9.6)) Ap and £. To prove the last statement, it suffices

to show that log Hp(P) > 0 for all effective divisors. But this follows from the first
formula for Hp(P) since ||1(P)||p < 1 by (9.2). This completes the proof. d
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To understand the conjecture limp_,o, D(B)/74(Kp) = 1 in (10.23), recall that
the measure 14 on Xo(Ag)/T (k) is the quotient measure of the measure n4 on
Xo(Ag) which is the restricted product of the measures

dz1dzs - - - day [ (sup |£P) (By)],), 0 € Amax, Po € Xo(ky)
g

with notations as in (9.12). Here we make use of the toric open embedding
Xo C X1 = Speck[z,] = A}

and an ordering of the rays o € A(1).
Recall that

D(B) := Y _1/Hy(Py)
where Py runs over all classes in Up(k)/T' (k) such that (cf. (10.14)):

(") T1To - Ty # 0,
(") Hy(P) = [[ sup [P (R)l, <B.
VEW O'EAmax

These two conditions can be reformulated by means of (10.24). Since £ 4(Py) €
oef(X,U) for all Py € Uy(k)/T (k) one gets the following equivalent conditions:

10.25 (1) z1z2- -2y # 0,

10.25 (ii)) Py € Kp.

One can therefore regard 14(Kp) as an adelic integral approximating the sum
D(B). To understand the link recall that the local measures in this paper are normal-
ized (cf. sec.1) such that u(Ay/k) = 1 for the adelic product measure on Ay. This
implies that the volume of the additive quotient group X; (Ag)/X1 (k) with respect
to dx1dxs - - - dx, is equal to 1.

One can now modify this discussion to give a similar interpretation of C(B) by
means of (10.19)-(10.20). But it is better to introduce generating Dirichlet series
following Manin, Batyrev and Tschinkel [3], [7], [4].

Notation 10.26
(a) Let{1,...,n} — A(1) be abijection (i.e. an ordering of the rays of A) sending
1 to p;. Then we shall write
H;: X(k) — (0,00)

for the height function defined by the irreducible U-invariant Weil divisor D;
(cf. (10.6)). If D € CA(M) is a formal sum s1 D1 + - - - + $p. Dy, S1,- .., 8n € C
and P € U(k), put

hp(P) = sihi(P),
i=1
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Hp(P) = || Hi(P)* = exp hp(P).
=1

(b)
ha : X (k) x 2 — ¢,
Ha:X(k)xCAM — ¢
are the pairings for which
ha(D, P) = hp(P),
Ha(D, P) = Hp(P).
Remarks 10.27
(a) The pairings in (10.26)(b) extend the pairings
ha: X(k) x 220 — R
Ha: X (k) x 22V —  (0,00)

defined earlier.

(b) Suppose that D = s1 Dy + - -+ + s, D, comes from Mc = M ®yz C under the
map induced by (8.2). Then Ha (D, P) = 0 by the proof of (10.12). Therefore,
the pairings in (10.26)(b) factorize over

U(k) x (PicX)c — C
for (Pic X)¢ := Pic X ®z C. We shall by abuse of notation write
ha : U(k) X (PiCX)(C — C

and
Hp :U(k) x (PicX)c — C

also for these pairings.

Proposition 10.28. — Z(s) := ZPEU(k) HA(P,—s1D1—- - -—sp,Dy) converges
absolutely and uniformly in the domain Rs = (Rsy,...,Rs,) € Ry 4 for any
6> 0.

Proof. — This is due to Batyrev and Tschinkel [4, Ch. 4]. First note that

n
IHA(Pv 81Dy — -+ — SnDn)l = H |Hi(P)|—§Rsi
i=1

< ] Hi(p) -0+
=1

— H(P)—(1+5)
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where H : X (k) — (0,00) is the toric height function. Then choose a finite closed
subset .S of Spec o, such that o s) 1 is a principal ideal domain and consider the toric
o( S)-morphlsm T(s) : XO( 5) — X (s) obtained by base extension from the toric o-
morphism 7 : Xo — X. The natural map from Xo(o( s)) to X (k) is surjective and

HyP) = [[ sw [P @)= [ suwp [zPO@)L > [ I=°h
vew 7€Amax SUW,, 7 EAmax SUWeo

for D = Dy + - -+ + D, (cf. (11.20) for the inequality). Also, z1z3-- -z, # 0 for

any lifting to Xo(o(s)) of a k-point in U (k). Therefore,

1ZaG) < Y CIT l=b=2)"

ZGO(S)\{O} SUWoo

so that the desired assertion follows from standard results on S-integers of bounded
height (cf. e.g. [37, th. 5.2(i)] for the case S = O). O

The deepest contribution of the authors of [7] and [4] is the construction of a
meromorphic continuation of Z (s) to a region with s € R, _; for some § > 0.
They also prove that the function (a(s) := Za(s,...,s) has no other poles in the
region Ns € R.1_s than at s = 1 where it has a pole of order r = rkPic X. Now
once this is known it follows from the Tauberian theorem of Delange [17] that

(10.29) C(B) = ¢B(log B)" (1 + o(1))

where ¢ = a_, /(r — 1)! for the leading coefficient in the Laurent expansion

o0

Cals) = a(s— 1"

k=—r

Batyrev and Tschinkel prove that ¢ = a_,/(r — 1)! is equal to the constant
a(X)7:(X, || ||) in (10.17). We shall here give an interpretation of the leading con-
stant as an adelic density and describe an alternative approach to derive the mero-
morphic continuation of Za (s) which apart from the use of multidimensional zeta
functions is closer to the method of Schanuel [56] and Peyre [52].

To describe the differences between the two methods, recall that there are (at least)
two methods to find a meromorphic continuation of Riemann’s zeta function

o)
=2
n=1

to a region s > 1 — 4. The most elegant and group theoretic approach is to use
the Poisson formula and integral transforms. This method was formulated in an
adelic language by Tate and Iwasawa and this is the route followed by Batyrev and
Tschinkel. But the use of harmonic analysis on U (A ) depends strongly on the group
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structure of U (Ag) and it is hard to see how this “idelic” method can be applied for
varieties without a transitive group action.

An alternative method to prove that {(s) = >.-° ; n~* has a meromorphic contin-
uation is by means of the integral representation

(10.30) En 32/ z]” sd:v—/loox_sdx+i(/ ([2]7° — 27%)dx)
n=1 "

where the last sum converges absolutely and uniformly on compact subsets with
Rs > 0. It defines therefore a holomorphic function in the right half plane. This
should be seen as the “error term” while the main term [[° 2™ *dz = 1/(s — 1).
The idea is now to apply a multidimensional version of the last argument and
approximate sums over lattices by integrals. This suffices over (Q and the reader will
find some of the techniques to bound the error terms in the next section although
we shall not consider zeta functions there. Over arbitrary number fields, it is more
systematical to use an adelic approach and approximate sums over the discrete set
U(k) = Uy(k)/T(k) by integrals over Xo(Ag)/T (k). To find the adelic integral
approximating Za (s) we extend the restrictions to U (k) x (Pic X )¢ of the pairings
ha : X(k) x (PicX)c — C,
HA = exphA : X(k') X (PiCX)(c — C
in (10.27)(b) to pairings:
ha,a: Xo(Ag)/T(k) x (PicX)c — C,
HA,A = exp hA,A : Xo(Ak)/T(k) X (PiCX)(c — C
To define these, we use the canonical toric splitting. Let
€4 : Xo(Ag)/T (k) — Homgz(Pic X, R)
be the continuous map described in (10.21)(i) and let (Pic X )g = Pic X ®R. The ob-

vious R-linear pairing Homz(Pic X, R) x (Pic X)g — R of dual real vector spaces
extends uniquely to a pairing:

(10.31) (,):Homgz(Pic X,R) x (PicX)c — C
which is C-linear on the right hand side.
Notations 10.32. — Let (Py,[D]) € Xo(Ax)/T(k) x (Pic X)c. Then,
ha,a(Po, [D]) = (€4(Po), [D]),
Ha,a(Po, [D]) = exp(€ 4(Py), [D]).

Proposition 10.33. — The pairings

ha,a : Xo(Ag)/T(k) x (PicX)c — C,

Ha 4 : Xo(Ag)/T(k) x (PicX)c — C
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coincide on Uy (k) /T (k) = U (k) with the pairings

ha : X(k) x (PicX)c — C,
Hp: X (k) x (PicX)c — C

in (10.27)(b).

Proof. — The pairings ha 4 and h are C-linear on the right hand side. It is there-
fore sufficient to prove that ha 4(P,[D]) = ha(P,[D)), P € Uy(k)/T (k) = U(k)
for D € ZA(1), But this has already been established in (10.24). O

Remark 10.34. — The restriction of ha 4 to
Xo(k)/T(k) x (Pic X)c = X (k) x (PicX)c

does not coincide with ha outside U (k) x (Pic X)c. This is not surprising since the
conjectures of Manin and Peyre according to our reinterpretation will give a link be-
tween the counting functions on U (k) and adelic integrals on X (Ay)/T' (k) whereas
on X (k)\U (k) there are accumulating subsets (cf. (7.5)).

To study the adelic integral which approximates Za (s), we shall need a positive
linear map

Ap : Ce(Xo(Ag)/T(k)) — C.(Hom(Pic X, R))
obtained by integrating along the fibres of
€4 : Xo(Ar)/T (k) — Hom(Pic X, R).
To define this map we choose (cf. the proof of (5.16)) two sets
{By, veW},

{w, veWw}
of convergence factors for 7" resp. X such that 8,, = 1 forall v € W. Let Og
be the Haar measure on T'(Ag) given by the adelic order norm (cf. (5.9)(b)) and

the convergence factors {3,, v € W} and let _6; be the corresponding Haar mea-
sure on T!(Ay)/T (k) under the bijection between Haar measures on T'(A}) and
TY(Ag)/T (k) described after (5.19). Finally, let m be the measure on X (Ay,) given
by the toric adelic norm and the convergence factors {vy,, v € W}.

Then, there are two positive linear maps

Mg : Ce(Xo(Ar)/T(k)) — Ce(Xo(Ax)/T (Ax)),
Ay : Co(Xo(Ar)/TH(Ar)) — C.(Hom(Pic X,R))
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defined as follows. Let f € C.(Xo(Ag)/T(k)) and z € Xo(Ax)/T (k) be a lifting
of z* € Xo(Ag)/T*(Ay). Then

(10.35) Ks(f)(z") = f(tz)dOy,.

/T 1(Ax)/T (k)

Here we integrate with respect to t € T*(Ay)/T (k). The notation tz € Xo(Ax)/T (k)
refers to the the translation

T (Ag) /T (k) x Xo(Ay)/T (k) — Xo(A)/T (k)
induced by
o4 T(Ag) x Xo(Ar) — Xo(4x)
(cf. (5.3)). This map makes
Xo(Ak)/T (k) — Xo(Ax)/T" (Ax)

into a topological torsor under the compact group T (Ay)/T (k). We may there-
fore apply the results in [11, Ch. VI, §2 n°2] and conclude that Ag(f)(z!) is a
T'(Ayg)/T(k)-invariant function on Xo(Ayg)/T (k) with compact support. It is clear
that Kﬁ is a positive linear map.

To define A, we make use of the canonical splitting

&4 Xo(Ag)/T*(Ar) — Hom(Pic X, R)
in (10.21)(i) (cf. also (5.24)) and the corresponding canonical isomorphism
(10.36) Xo(Ar)/T (A) = X (Ar) x Hom(Pic X, R).

Then each g € C,(Xo(Ax)/T(Ax)) can be regarded as a function on X (A) x
Hom(Pic X, R). Further, by (1.16) and [11, Ch. III, §5], the integral

/ g(P,\)dm, X € Hom(Pic X,R)
PEX(Ap)

defines a continuous function on Hom(Pic X, R). There is, therefore, a positive
linear map

(10.37) A : Co(Xo(Ag) /T (Ax)) — Ce(Hom(Pic X, R))
with
MW= [ gPim
PeX(Ag)
for A € Hom(Pic X, R).
Definition 10.38. — The toric positive linear map
An : Co(Xo(Ay)/T(k)) — C(Hom(Pic X, R))

is the composition of Az and A,.
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The map A does not depend on the choice of the convergence factors as long as
Buyy = 1forall v € W. It depends only on the fan A.

Lemma 10.39. — Let n 4 be the measure on T (Ay) = Xo(Ag) determined by the
induced adelic norm (cf. (5.16)) of the toric adelic norm on X (Ay) and let i 4 be the
quotient measure of n4 on Xo(Ag)/T (k) (cf. (5.23)). Let

V = Homgz(Pic X, R), L =Homyz(PicX,Z)CV

and dv be the unique Haar measure on 'V such that the volume Vol(V/L) = 1. Then,
the following holds.

(a)
/ gdng = / Aa(g)dv
T(Ax)/T(k) Hom(Pic X,R)

forany g € Ce(T (Ax)/T (K))-
(b) Leth € C.(V). Then,

hofy € Ce(T(Ax)/T()),
Aa(ho€y) = 7e(X, ]| |1)h.
Proof

(a) Let
Tr : Ce(T (Ak)) — Ce(T (Ax)/T(K))

be the trace map obtained by summing over all T'(k)-translates of a function in
C.(T (Ag)). It suffices to prove the equality in the case f = Tr(g) for each g €
Co(T(Ag)). Let

B={B, veW}, v =A{w, veW}

be two sets of convergence factors for T resp. X such that 8,7y, = 1 forallv € W
and let

Aﬂ : CC(T(Ak)) — CC(X(Ak))

be the positive linear map defined by the adelic order norm on 7" and S (cf. (5.9)(b)).
Then, by (5.23) and (4.28) there are equalities:

(10.40) / gdng = / fdna = / Ag(f)dma
T(Ax)/T(k) T(Ax) X (A)

for the measure m 4 on X (Ay) defined by the toric norm and +.
Now make use of the canonical isomorphism

T (Ag)/T*(A) = X (Ag) x Hom(Pic X, R)
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in (10.36). Then by (1.16) we obtain a positive linear map
Al Co(T(AR)/TH(Ar)) — Co(X(Ar))

by integrating over the fibres of the projection 7 (Ay)/T!(Ax) — X (Ax). We may
also change the order of integration (cf. op. cit.) such that

(10.41) / At (h)dmy = / A (h)dv
X(Ag) Hom(Pic X,R)
for any h € C.(T(Ag)/T*(Ag)). Finally, the following positive linear maps are
equal:
(10.42) Ag=A'oAzoTr.
This is a consequence of the compatibility of the Haar measures of
T(Ar), T(Ax)/T"(Ar), T"(Ax)/T(k) and T(k)

(cf. the discussion after (5.19)) and the alternative description of Ag. Now let h =
Aj(g). Then, by (10.40) and (10.42) it follows that:

(10.43) / gdna :/ Ag(f)dma :/ At (h)dma.
T(Ay)/T (k) X (Ar) X(Ax)

Therefore, (a) follows from (10.43) and (10.41) and the identity A, (k) = Aa(9).
(b) It is clear that h o €, € C.(T (Ax)/T(k)) since & 4 : Xo(Ax)/T(k) — V is

continuous and proper (in the topological sense). The equality is a direct consequence
of the definitions of Aa and 7. (X, || ||) (see (5.24) for more details). This completes
the proof. O

Notation 10.44. — Let o (X,U) C V = Hom(Pic X — R) be the (dual) effec-
tive cone described in (10.18) and let £ 4 : Xo(Ay)/T (k) — Hom(Pic X, R) be the
map described in (10.21)(j). Then,

(Xo(Ap)/T(k))egt = E4 (0o (X, U)).

Definition and proposition 10.45. — Let n 4 be the (restricted) product measure on
Xo(Ay) of the induced adelic norm (cf. (5.16)) for Xy of the toric adelic norm for X
and let T 5 be the quotient measure on Xo(Ay)/T (k) (cf. (5.23)). Then,

IA(S) = /_ HA(Fo,—SlDl — —SnDn)dﬁA
Po€(Xo(Ax)/T(k))est
converges absolutely in the domain Rs = (Rsy, ..., Rs,) € RL,. Moreover, if dv is

the normalized Haar measure of V = Hom(Pic X, R) in (10.18), and
(,):Vx(PicX)c—C
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is the obvious pairing (cf. (10.31)), then

(10.46)  Ia(s) =7.(X, || II)/ exp(X, [-s1D1 — -+ — s Dy])dv
Ao (X,U)

in the domain %s = (Rsy,...,Rsy) € RL;.

Proof. — Fix s € RZ; and let f; : V — R be the function with support in

oef (X, U) such that fs(\) = exp(),[—s1D1 — -+ — spDy]) for A € oeg(X,U).
Then,
5 Ha(Po,—81D1 — -+ — suDp)  if P € (Xo(Ax)/T(k))esr,
s Py)) = —
Fiealfo) {o P & (Xo(Au)/T(k) s
so that

Ia()= [ (fy 0 E4)dia.
Xo(Ag)/T(k)

Now recall that C.(V) is dense in L*(dv) (see [38, Ch.IX, §3]). There exists
thus an L'-Cauchy sequence (h;)$2; in C.(V) converging to h. Hence, by (10.39),
(hi 0 £4)$2, is a L'-Cauchy sequence in C.(Xo(Ag)/T (k)) converging to fs o0 &4
with

Jim (hi0€a) = O ) Jim | hido = 7.0 1) [ fud

1—00 XO(Ak)/T(k) 100 Jy \%

Hence I (s) converges absolutely and takes the value:

Ia(s) = 70611 /V fodv

TE(X’ ” ”) exp()\, [‘SIDI — SnDn]>dV
A€oen(X,U)

for s € RZ, . But then Ja(s) converges absolutely for s € C* with
(Rs1,...,Rsp) € R,
since
|HA(Po,—81D1 — +++ — 8, Dy)| = Ha(Po, —(Rs1)Dy — - -+ — (Rs,) Dy,).
It is also clear how to extend the proof to complex s by means of complex valued

L!'-Cauchy sequences (h;)$2, in C..(V, C). This completes the proof. O

Corollary 10.47. — Let Ia(s) be as above and let Qa(s) be a product of lin-
ear forms defining the codimension one faces of the cone in Pic X, generated by
the classes [D] € Pic X of effective U-invariant Weil divisors D € Z2(). Then
IA(s)QAa(s) is a polynomial in s1, . . . , sp.
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Proof. — This follows from a result of Batyrev and Tschinkel [4, prop. 5.4] applied
to the characteristic transform:

/ exp(A, [—s1Dy — - -+ — sp. Dy])dv
)‘eaeﬂ'(X,U)

of the effective cone in Pic X. Od

Now recall that U(k) = Uy(k)/T' (k) is a discrete subset of (Xo(Ag)/T(k))est
(cf. (10.24)) and that the volume of the additive quotient group X; (A)/X1 (k) with
respect to dx1dzs - - - dzy, is equal to 1, because of the normalizations of the Haar
measures in section 1. It is therefore reasonable to regard

Ia(s) == /_ HA(Py,—51D1 — -+ — sy, Dy )dmig
Po€(Xo(Ak)/T(k))est
as a continuous approximation of
Za(s):= Y Ha(P,—s1D;y—---—s,Dp)
PeU(k)

in the domain Rs = (Rsy,...,Rs,) € R,

To make this precise, one has to choose a fundamental domain in X(A) under
the action of T'(k). Suppose for simplicity that the o is a principal domain. Then the
natural map from 7'(k) to the direct sum @7'(k,) /T (k,)cp over all non-archimedean
places v of k is surjective. This together with the canonical isomorphisms in (10.8)
implies that there is a canonical isomorphism:

IT Xo(0.) x TT Xo(.) / T(0) = Xo(Ax)/T (k)
Weo

Wein

so that we are reduced to a choice of a fundamental domain modulo 7'(0). We refer to
the papers of Schanuel [56] and Peyre [52], [51] for more details about the choice of
fundamental domains. The zeta function Zx (s) may be reinterpreted as a sum over
a subset of Uy(k) lying in the fundamental domain F and the goal is to approximate
this by the corresponding integral over the subset of F defined by the inverse image

of (Xo(Ak)/T(k))est-

If we restrict to the diagonal s; = --- = sy and put {a(s) := Za(s,...,s)
for Rs > 1, this leads to proving that (a(s) — Ia(s,...,s) is small compared to
Ia(s,...,3).

Batyrev and Tschinkel prove in [7] that the characteristic transform in (10.46) has
a pole of order r and that the leading coefficient in the Laurent expansion is equal to
(r — 1)!' - apeyre(X). If one applies the Tauberian theorem in [D] to (A (s), one thus
concludes that if

(s —1)""1(a(s) — Ia(s,-..,3))
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has a holomorphic continuation to a right half plane Rs > 1 — §, § > 0, then (7.6)
and (7.7) holds for the counting function defined by the toric height. (This is how
Batyrev and Tschinkel proceeds in [7] and [4] although there is no volume-theoretic
interpretation of I there.)

We shall in the next section prove (7.6) and (7.7) for toric varieties over (Q without
making use of Manin’s zeta function {a(s). But the bounds of the error terms in
section 11 can be reinterpreted as bounds for (A (s) — Ia(s, ..., ).

11. Asymptotic formulas for counting functions on toric (Q-varieties

We shall in this section study the asymptotic growth of counting functions for
(split) toric varieties X A over Q defined by complete regular fans A. We shall assume
that the base field £k = Q, but otherwise keep the notations in section 10. We will
thus write H for the toric (anticanonical) height function and C(B) for the number of
rational points of toric height at most B on the open Q-torus U in X = Xx. Also, r
will denote the rank of Pic X as in the previous sections. Hence r = Card A(1) —
dim A by (8.2). We assume throughout this section that w;(l is generated by its
global sections.

The aim of this section is to prove the asymptotic formula

(LD C(B) = CB(log B)"! + O(B(1 + log B)"~3/2*¢)

where

C=aX)r(X,[|)>0
is the constant of Peyre (cf. (7.7)) and ¢ > 0 is a positive number which may be
arbitrarily small. This improves somewhat upon the earlier results of Peyre [52] for
special classes of toric QQ-varieties and the results of Batyrev and Tschinkel [7], [4]
for arbitrary toric varieties. They prove asymptotic formulas of the type

C(B) = a(X)7(X, || )B(log B)" (1 + o(1))

Batyrev and Tschinkel deduce this result from the meromorphic continuation of the
Manin zeta function (a(s) (cf. the end of sec. 10). By using their estimates for the
growth of {a(s) along suitable vertical strips with Rs < 1 and a method of Landau
(cf. [60]), one can probably deduce the more precise result

C(B) = BP(log B) + O(B*79)

for some real polynomial P and some positive number 4.

Our proof of (11.1) has its origin in the papers of Schanuel [56] and Peyre [52] on
projective spaces resp. certain special blow-ups of projective spaces. The main idea
is to count integer points on models of finite type over Z of universal torsors over
X instead of rational points on X. If r = 1, then Xao = P" (cf. (8.9)(v) and [24,
p.22]) and the toric height is equal to the standard height. There is, then, only one
(isomorphism class of) universal torsors given by the affine cone A"\ (0, ...,0) of
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P™, Hence our method reduces to Schanuel’s method when » = 1. We shall therefore
omit this trivial case in some lemmas.
Let W be the set of places of Q and let

=L, vew}

be the toric adelic norm for X . This adelic norm gives rise to the toric height function
H on X (Q) defined by

(11.2) = 1] 1s@)II;"

veWw

where s is a local section of the anticanonical sheaf wy' at P with s(P) # 0 (cf.

(7.2)). ~ _
Let 7t : Xog — X (resp. m : X9 — X) be the principal universal torsor over
(resp. Z) described in the beginning of section 10. Let

ZD

pEA(L

If o is a maximal cone of A, let ™), m(c) € M be the unique character of U
such that x~™(?) generates O(Dy) on U,.
Let

= Dy + Z —m(o 0 € Amax
PEA(1)
be the Weil divisors described in (8.7) and recall that these are effective divisors when
w;(l is generated by its global sections. Let

= II =~

PEA(1)

be the monomial in the indeterminates z,, p € A(1) corresponding to the effective
Weil divisor

pEA(L)
We now give a concrete description of the composite map Hy = H o7 from X(Q)
to R in the case where O(Dy) is generated by its global sections.

Proposition 11.3. — Let Py be a Q-point on X which extends to a Z-point on X 0-
Then

Ho(Py) = sup [2PO(Ry)]
0E€Amax

for the usual archimedean absolute value | | of R
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Proof. — Let ]30 € X (Z) be the extension of Py and let XoC X; = SpecZ[z,),
p € A(1) be the toric open immersion described after 10.3. Let p be a prime and let
Yo C SpecZ/pZ[z,), p € A(1) be the reduction modulo p of Xo. Then, by applying
(8.8)(a) to Yy, we conclude that 2 (@) (}30) # 0 in Z /pZ for some maximal cone o
of A. Hence the product formula for Hy(P,) in (10.14) reduces to its archimedian
factor. This completes the proof. O

Lemma 11.4
(a) Let ¢(m) = Card{P € U(Q) : H(P)
co(m) = Card{Py € Xo(Z) N Up(Q) : Hy(Po) = m}.

Then, ¢(m) = co(m)/ Card T(Z).
(b) Let Up(R)™ be the real connected component of Uy(R) containing 1 and let

Uo(Q" = Up(Q) NUo(R) ™,
co(m)t = Card{Py € Xo(Z) N Us(Q)* : Ho(P) = m}.
Then,

=m} and

co(m) = Card(Up(R)/Uo (R) " )eo(m) ™

Proof

(a) It follows from Grothendieck’s version of Hilbert 90 (cf. [45, p. 124]) and the
fact that Z is a principal ideal domain that H; ! . (SpecZ, T) = 0. The fibres of 7 :
XO - X at Z-points on X are therefore trivial Spec Z-torsors under T. Hence
7(Xo(Z)) = X(Z) and there are exactly Card T(Z) points in Xo(Z) with a given
image in X (Z).

(b) We regard Uy(Z) as a subgroup of Uy(Q). Then, since the group action Up X
Us — U, extends to a toric action Uy x Xg — Xo we conclude that Xo( )N Up(Q)
is a union of Up(Z)-cosets in Uy(Q). Also, each Uy(Z)-coset in Up(Q) contains
exactly one element in Up(Q) ™ and the height function H, takes the same value for
each Q-point in a Up(Z)-orbit of Xo(Q). Hence co(m) = co(m)* Card Up(Z). T
complete the proof, note that there is a canonical group isomorphism between UO(R)
and Up(Z) x Up(R) ™. O

We may thus instead of counting (Q-points on U count Z-points on the univer-
sal torsor X such that the corresponding Q-points lie on 7~Y(U). The number of
such Z-points on the universal torsor Xo of a given height is the same in each real
connected component of Uy.

To study co(m), let py, ..., p, be an ordering of the rays in A. Let Dy,...,D,
be the corresponding U-invariant irreducible Weil divisors and let 1, ..., z, be the
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variables corresponding to these prime divisors. Each 2P(?), o € A, is a mono-
mial in z1,...,z, with exponents €1, ..., &, corresponding to the multiplicities of
D(o) along Dy,...,Dp. If r = (r1,...,7,) is an n-tuple with components in an
arbitrary commutative ring R and 0 € Apay, let 7P(@) be the element in R obtained
by evaluating 2°(?) at z = r.

Now recall (cf. the comments after (8.6) and (10.3)) that the open toric embedding

XoC X = SpecZ[z1, ..., Zy)

is the complement in X, of the closed subscheme defined by the monomials z,
0 € Apax- This implies that Xo(Z) C X1(Z) = 7™ is the subset of n-tuples q of
integers for which the greatest common divisor

ged (g%) =1.
0E€Amax

Hence, by (11.3) it follows that cy(m) is the number of n-tuples q of non-zero inte-
gers satisfying the following two conditions

11.5 () sup |qP| =m,
0€Amax
11.5 (ii) ged (%) =1.
0€Amax

Moreover, co(m)* is the number of n-tuples q of positive integers satisfying
(11.5).

If O(Dy) is generated by its global sections, then we have seen in the proof of
(11.2) that (11.5)(ii) implies that

11.5 @iy SXP |qP@)| =1,
0E€QAmax

If O(Dy) is ample, then these two conditions are equivalent (cf. (8.8)(b)).

It is difficult to make use of (11.5)(11.5 (ii)) directly. We shall therefore first study
a simpler counting function A4(H) and then make use of Mobius inversion. This
idea is central in the papers of Schanuel [56] and Peyre [S2].
Notation 11.6

(a) a(m) is the number of n-tuples q of positive integers such that

sup [q”7)] =m
0E€Amax

A(B) is the number of n-tuples q of positive integers such that

sup |qP| < B.
€ Amax
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(b) Letd be an n-tuple of positive integers. Then, aq(m) is the number of n-tuples
q of positive integers such that
sup |g”|=m, dl|q
0€Amax
(i.e. d; divides ¢; fori = 1,...,n) whereas Aq(B) is the number of n-tuples q
of positive integers such that
sup |qP?)| < B, d|aq
0E€Amax
(c) Co(B) (resp. Co(B)™) is the set of all n-tuples q of non-zero integers (resp. the
set of all n-tuples q of positive integers) such that
(i) SUP,eA . 9P| < B,
(i) gedyen,,,, (@%) = 1.
(d)

n
() =[] d;
i=1
for any n-tuple of integers d = (dy,...,dy).

All the cardinalities above are finite since (cf. (11.20))

sup |qP?] > [T(q)|
UEAmax

Lemma 11.7. — Let d be an n-tuple of positive integers. Then,
0 <I(d)Aq(B) < A(B).

Proof. — We introduce an equivalence relation ~ on the set of all positive n-tuples
q = (q1,-..,qn) such that

sup |q”(?)| < B.
O'EAmax
Let

q:(q17°"7qn) ~Tr= (rlv---arn)
if and only if

(g1 — 1)/da], .., [(gn —1)/dn]) = ([(r1 — 1)/di],...,[(rn — 1)/dn])-

An equivalence class consists of II(d) elements if and only if it contains a positive
n-tuple q € Z%, such that d | q. Also, no equivalence class contains more than
one such n-tuple. Therefore, Aq(B) is the number of equivalence classes with I1(d)
elements. This implies the assertion. |
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Notations 11.8
(@
x: 2% — {0,1}
is the function such that x(e) = 1 if and only if the greatest common divisor of
alle?, 0 € Apax is 1.
(b)
x®) 2% — {0,1}
is the function such that x(?)(e) = 1 if and only if the greatest common divisor
of all eZ, 0 € Apax is not divisible by p.
(c) Letd € Z%,. Then,
Xa : Z% — {0,1}
is the function such that x4(e) = 1 if and only if d | e.

We have also denoted characters of tori by x. But no confusion should occur since
the indices are not the same.
We now define a Mobius function

piZ% — Z

recursively with respect to the relation |. This Mobius function was defined by Peyre
[52, 7.1.7] for special classes of toric varieties.

Definition and proposition 11.9. — There exists a unique function
w:Z% — 7

such that

x(e) =) u(d)
dle
for d running over all n-tuples of positive integers dividing e € Z2,

Proof. — Use the finiteness of the set {d € Z2: d | e} forall e € ZZ,, O

It is unfortunate that we also use the letter 1 for measures, but it will be clear from
the context if x4 is a measure or a M&bius function.
From the definition of y, it follows that:

(11.10) x=Y_ n(d)xa
d

where d runs over all n-tuples of positive integers. Now consider the sum of the
values of all q € (Z0)" such that Hy(q) = m. Then,

(11.11) co(m)t =" p(d)aa(m),d € Z2,.
d
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The sum is finite since aq(m) = 0 if sup(dy, . ..,d,) > m.

Notation 11.12. — Let p be a prime number. By
()

bD

d
we shall mean a sum over all n-tuples d of positive integers of the form

d = (p“,...,p™)
for non-negative integers ey, ..., ey.

There is a local version of (11.10)

(p)
(11.13) X® =>"u(d)xa
d

where u(d) = 0 if p? | d; for some component of d = (dy, ... ,dp).

The values of the functions x(?)(q) and xq4(q) for n-tuples d as in (11.12), depend
only on the residue class of @ = (q1,-..,¢n) in (Z/pZ)". We can therefore compute
the cardinality of

Xo(Z/pZ) = {r = (r1,...,mn) € (Z/PZ)" : 0 € Amax With rZ # 0}

by means of (11.13). If we consider the sum of the values of all r € (Z/pZ)", then
we obtain
()

(11.14) Card Xo(Z/pZ) = p(d)(p"/TI(d)).
d

Now write
de .= (dlel, oo ,dnen)

for n-tuples d = (dy,...,dy), e = (e1,...,e,) of integers.
The following result is due to Peyre for special classes of toric varieties (cf. [52,
Ch. 7)).

Lemma 11.15
(@) Letd = (dy,...,d,), e = (e1,...,ey) be n-tuples of positive integers.
Let
0 =ged(d?), o € Amax,

e =ged(e?), o0 € Amax

and suppose that § and ¢ are relatively prime. Then

p(de) = p(d)u(e).
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(b) Let (e1,...,e,) be an n-tuple of non-negative integers. Then u(pc,...,p°")
is independent of the prime number p.

(c) Let (e1,...,e,) be an n-tuple of non-negative integer, not all 0 and suppose

that there exists a cone o € A such that e; = 0 for all rays p; € A outside o.
Then

w(p®,...,p") = 0.

(d) Let f be the smallest integer such that there exist f rays of A not contained in
a cone of A. Then the product

H Zlu )|/TI(d)*

over all prime numbers p is absolute convergent for s > 1/ f.
(e) The sum

Zlu )|/I(d)®, dezr,

is convergent for s > 1 / f and equal to

(p)

IT | Do (u(@/ma)y’

p d

fors>1/f.

(f) The product [], (ng ) p(d)/ H(d)) over all prime numbers p is absolute con-
vergent and equal to 4 pn(d)/II(d).

Proof. — (a) and (b) are easy consequences of the definition of .

(c) Letq = (p',...,p°"). Then the greatest common divisor of all integers qZ,
0 € Amax is 1if and only if there exists a cone o0 € A with e; = 0 for all rays p; € A

outside o (cf. the discussion before (11.5)). The desired statement now follows from
the recursive definition of u.

(d) It follows from (b) and (c) that there is a polynomial (") with non-negative

integer coefficients such that ng)(|u(d)|/ﬂ(d)3) =1+4p~/2Q(1/p?) for all prime
numbers p. Now use the fact that the sum of all p~fQ(1/p) < p~2Q(1) is absolute
convergent.

(e) This follows from (d) and the multiplicativity of (|u(d)|/TI(d)?) (cf. (a))
(f) This follows from (e) and the multiplicativity of u(d)/II(d). O
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Lemma 11.16. — Let f : Z > 0 — R be a function such that f(B) > 0 for all
sufficiently large integers B > 0 and such that

I(d)Aa(B) = f(B)(1 +o(1))

foralld € 7%,
Then there exists a positive constant

(»)

r= 111D (w(@/1(d)

p \ d
such that
Co(B)T = kf(B)(1 +o(1)).
Proof. — Choose k > 0 such that f(B) is positive for B > k and let

9(d, B) = |u(d)Aa(B)/ f(B) — p(d)/I1(d)]
forall B > k and all d € Z%,. Then

ICo(B)t/f(B) — K| = ZAd — K| <Y g(d,B)
d
for B > k. It is therefore sufficient to prove that
li B) =0.
Jim ;q(d, )=0

Also, since 0 < II(d)Aq(B) < A(B) there exists a constant F/ > 0 such that

HI(d)Aa(B)/f(B) — 1| < |A(B)/f(B)| + |A(B)/f(B) = 1| < E

foralld € Z%, and all B > k.

Hence by (11.15)(f), it follows that ) g(d, B) converges uniformly with respect
to B > k (this means that it for each € > 0 exists a finite subset S of ZZ such that
ngsg d, B) < ¢ for all B > k).

Therefore,

Jim Zdjg(d, B) = de( Jim g(d, B)) =0
as was to be proved. O

We can now extend the method of Peyre [52] for certain blow-ups of projective
spaces to arbitrary toric varieties. It can be described as follows. One first proves
asymptotic formulas of the type

(11.17) I1(d)Aq(B) = wB(log B)""1(1 4+ O(1/ log B))
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with the same positive constant w for all d € Z%; and compares @ with a volume.
Then from (11.16) one gets the asymptotic formula

(11.18) Co(B)T = kwB(log B)"}(1 4 o(1))

with k as in (op. cit.).

Peyre computes the main term « f (B) by Mdbius inversion as in (11.11)-(11.15).
He bounds the error term by means of an argument with uniform convergence as in
(11.16) although he never mentions the role of uniform convergence. His proof of
(11.17) is less direct than here (cf. his comment at the end of p. 171 in op.cit.). It
also makes use of special properties of the class of blow-ups of projective spaces he
considers.

We shall in this paper apart from the generalization to arbitrary toric varieties
improve the treatment of error terms under Mobius inversion in [52]. One of the
tools to do this will be the following result about the Mdbius function p : Z%; — Z
introduced in (11.9).

Lemma 11.19. — Let f be the smallest integer such that there exist f rays of A not
contained in a cone of A. Let € be any posititve real number. Then the following
holds.

@ Ymay<s ()| = O(BFF9)
0) Yrayss(I#(d)]/T(d)) = OB/ ~1F)

Proof
(a) This follows from the fact (cf. (11.15)(e)) that the sum Y4 |p(d)|/TI(d)® over
all d € Z% converges for s > 1/ f (cf. e.g. [68, p. 5]).

(b) Let y(m) = > py(qy=m |1(d)| where d € Z%. Then we have to prove that
S y(m)/m = O/ ~1+)
y>b

for any € > 0.
To show this, put y(0) = 0 and Y (m) = y(0) + - - - + y(m) for m > 0. Then, by
partial summation we obtain:

> ym)/m==-Y(b-1)/b+ > Y(m)/m(m+1)

m>b m>b

for any positive integer b.
But Y (m) = O(m!/f*¢) by (a). Hence

Y(b—1)/b=O(b'/F~1F%)
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and
Z Y(m)/m(m +1) < Z Y (m)/m? = O(Z ml/f=2+e) = Q(pi/I-1+e).
This completes the proof. O

Proposition 11.20. — Let Do = 3 ,c o (1) D, and suppose that O(Dy) is generated
by its global sections. Let a = (a1, . ..,a,) € Up(R) be an n-tuple of real numbers
different from 0. Then,

()| < sup [P,
0€ Amax

Proof. — Let P € Uy(R) be the image of a € Up(R) and let ¢ be a maximal cone
such that P € C,(R) and let Xm(") be the character which on U, represents the
Cartier divisor with Weil divisor Dg. Then |x"™?) (P)| < 1 (cf. (9.2)). Now note that
x™)(P) = aPo /aP() by the definition of D(c). This completes the proof. O

Note that the argument is valid for arbitrary locally compact local fields.

Notation 11.21

(a) Let R an : Xo(R) — X(R) be the analytic map defined by m : Xy — X and
let C;(R) C X (R) be the compact subset defined in (9.1). Then, Cp () is
the inverse image of C,(R) under 7R ap.

(b) Let p;, 1 < ¢ < n be the rays of A, let D;, 1 < ¢ < n be U-invariant ir-
reducible Weil divisors corresponding to these rays and let x;, 1 < ¢ < n be
indeterminates indexed by the rays. Let

D=uLDi+---+1,D,, l1,...,l, €Z
be a U-invariant Weil divisor on Xa. Then xP denotes the Laurent monomial
l;
[ =3
Proposition 11.22. — Let 0 € A be a maximal cone of the complete regular fan A
and let
(P1y- -+ s Pr+d)

d =dimA, r + d = Card A(1) be an ordering of the rays of A such that
(Pr15-- -5 Pred)
are the rays of 0. Let
{n¥),1<j<d)
be the Z-basis of N, consisting of the generators of the rays p,; of o and let
{mY, 1<j <d}
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be the dual Z-basis of M. Finally, let

D(J) = Z (m(j),np)Dp
PEA()

forl <53 <d.
Then Cy(R) is the subset of Xo(R) of real n-tuples x = (x1,...,Zpr4q) for
which

(+) PO <1, je{l,...,d}.

Proof. — Tt suffices by continuity to show that an R-point Py on Uj satisfies
xPO(P)| <1 for 1<j<d

if and only if P = 7(Fp) € C,(R). To see this, let

d
—L(P)=>_xnW, ) eR
j=1

Then P € C,(R) if and only if
(m9,L(P)) > 0

for 1 < 7 < d(cf. (9.1)). Now note that
xP0)(Py)| = exp(m?), L(P))

by the definitions of m(), D(j) and L. This completes the proof. a
Remark 11.23. — Let 7 = 0(%) be the (unique) adjacent maximal cone with
TOPryj = {0},

and let b; be the multiplicity of D, ; in D(7). Then,
D(7) — D(o) = b;D(j)

by (8.9) so that
|xD(T)—D(0)| =[x,

Also, if x € Cp,(R), then [xP(")=P(9)| < 1 for all maximal cones 7 € A by
(9.8).

If ZpGA(l) D, is ample, then b; > 0 for 1 < j < d (cf. (8.9)). We may therefore
in this case (cf. also (9.10)) replace (x) by the condition:

(+") xP=PO)| <1, 7€ Amax.
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Sublemma 11.24. — Let (e1,...,e,;) be non-negative integers and let e be a posi-
tive integer. Let

,
S(B,e;eq,...,e) = Z(Hg;:,-/e—l)
=1

be the sum over all r-tuples (g1, . . ., gr) of positive integers satisfying

ng' <B

and
max(g1,...,9r) < B.
Then,
S(B,e;eq,...,e) = O(BY¢(1+log B)' ).

Proof. — Suppose that e, = 0. Then,

S(B,e;eq1,...,er—1) (Zgi]l 1/z) ifr>1
(Zﬂ 1 /i) ifr=1.

We may and shall therefore assume that (ej,...,e,) is a positive r-tuple. The
statement is easy to verify for » = 1 by means of a comparison with an integral.
Suppose r > 1 and put m = g, a = e,. Then

[VB]
S(B7e§ €1,... 7a) = Z ma/e_ls([B/maLe; €15 767‘—1)'

m=1

S(B,e;eq,...,ep) <

The induction assumption for S([B/m?], e;e1,...,e,_1), 1 < m < [V/B] gives

[¥B]
S(B,e;e1,...,a) =0 Z ma~Y(B/m®)Y¢(1 + log(B/m®)"~?) | ,
m=1
S(B,e;eq,...,a) = Bl/eZm (1 + log(B/m®)™~2)
and the desired result follows. a

Lemma 11.25
(a) A(B) =O(B(1 +log B)" ).
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(b) Let
up = (0,...,0,1,0,...,0), 1<k<n

be the k-th unit vector in the standard basis for R" and let 6y, (B) be the set of
n-tuples g of positive integers such that

(i) SUPea,, 1877 < B,

(i) SUPeA o |(8 + 1) P(7] > B.
Suppose that Card A(1) — dim A > 1. Then,

Card §(B) = O(B(1 + log B)"2).

Proof
(a) Let 0 € A be a maximal cone and let A, (B) be the number of positive n-tuples
g of integers such that
g=1(91,---,9n) € CO,O’(R)
and

sup |gP@)| < B.
0E€Amax

It suffices to prove that
A, (B) = O(B(1 +1log B)™™1)

for each maximal cone o of A.
Fix 0 € Apax and let (p1, ..., pn) be an ordering of the rays of A such that the
last d = n — r rays are the one-dimensional faces of o. Then

r
D(o) =) eD;
i=1

for some non-negative integers ey, ..., e,. (We use here the assumption that O(Dy)
is generated by its global sections.)
Let {mU) € M, 1 < j < d} be the Z-basis of M in (11.22) and let

E(j) = Dryj— > (mP,n,)D,, jef1,....d}.
pEA(L)

Then each xF(9) is a Laurent monomial in (21, ..., 2;).
Moreover, by (11.22)-(11.23) it follows that A, (B) is the cardinality of the set of
r + d-tuples g = (91, - - , gr+q) Of positive integers such that

(#) gPl) = Hgf’ <B
i=1
(##) gr <gPY), jef1,...,d}
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Now note that by (8.9)(iii):
d
D(o) = (D1 +---+Dp) = > E(j)

and hence that

r

There is, therefore, for each r-tuple (g1,...,9r) € ZLyat most [[;_; gfi_l d-tuples
satisfying (#+#). Hence,

4,8) < ([T g™
=1

where in the sum (g1, ...,g,) runs over all r-tuples of positive integers satisfying
[T;=, 9;* < B. Finally, note that

max(g1,...,g-) < |I(g)| < sup g < B
0E€QAmax

by (11.20). Hence A,(B) = O(B(1 + log B)"2) by the sublemma above.

(b) It suffices to count the set d,(B) of n-tuples g = (91,.-.,9n) satisfying (i)
and (ii) and the additional condition

(iii) g+ uk € Cp 0 (R)

for some maximal cone o € A.
Now order the rays as in (a) with

T
gD(a) — ngf?i
i=1

and recall that
g”) < (g +u)P

by (i)-(iii). Then k € {1,...,r} and e; > 0. After a permutation of the first r rays
we may thus assume that £ = 1. Moreover, from the arguments in (a), it follows that
d,(B) is the number of n-tuples g of positive integers satisfying:

(I) SupUeAmax |gD(U)| S B
(D) gr4j < (g +w)PY), je{1,...,d}
) (g1 + 1) [T_p 95 > B
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Also, by (8.9)(iii) we have just as in (a) that

d

T T
[[e+uw)9 =@+ [[ort <22 [[o5
=2 i=1

j=1
There are therefore for each r-tuple (g1, ..., gr) € Z7at most 26171 ]T_, gf"'l

d-tuples satisfying (II). Moreover, from (I) and (III) we conclude that
T T
g =B/ [T g1 < B/ ] 95) .
j=2 i=2

Hence,

Carddy(B) < 27137 <<B/f[gfi)1—”‘“ Hg)
1=2 1=2
— 261—131—1/61 Z (ﬁ g:i/€1—1>

=2

where in the sums (go, . . ., gr) runs over all r-tuples of positive integers satisfying

T
[l < B
=1
We therefore obtain from the sublemma above that
Card §,(B) = O(B(1 + log B)"?)
as was to be proved. O

Lemma 11.26. — Suppose that r > 1. Then there exists for each € > 0 a positive
constant C = C(g) > 0 depending only on ¢ such that

0 < A(B) — Aq(B)TI(d) < CTI(d)B(1 + log B)" 2
foralld € Z%yand all B > 1.
Proof. — Fixd € Z%;and B > 1. Then (cf. the proof of (11.7)) A(B)—Aq(B)II(d)
is equal to the cardinality of the set (B) of q € ZZ such that
(i) SUPeAmy (@ +d—(1,...,1)P)| > B
(i) SUPye A (477 < B
But there exists for each q € Q(B) an n-tuple e of positive integers with

ei<d;, i1€{l,...,n}
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and an integer k£ € {1,...,n} such that q + e belongs to the set dx(B) in (11.25).
Hence

Card Q(B) < II(d ZCardJk

so that the desired assertion follows from the prev1ous lemma. O

Main lemma 11.27. — Let A be a complete regular d-dimensional fan with n rays
such that r :=n—d > 1 and let f be the smallest integer such that there exist f rays
of A not contained in a cone of A. Then the Euler product

1% =] card Xo(Z/pZ)[p"
p ¥4

converges absolutely to a positive constant k and
Co(B)* — kA(B) = O(B(1 + log B)"~2+1/f+¢)
for each e > 0.
Proof. — The first assertion about « is just a restatement of (11.15) since

(»)
kp =Y _(u(d)/TI(d))

d
by (11.14). To prove the last assertion, we fix ¢ > 0 and use the identity (cf. (11.11))

= u(d)4a(B), deZzZ
d
Then,
Cy (B) — kA(B Zﬂ(d )Aa(B ZH JA(B)/II(d), de€Z3,

where the last sum is absolute convergent by (1 1.15).
It is therefore sufficient to prove that

> |u(d)|(A(B)/TI(d) — Aa(B)) = O(B(1 + log B)"~t1/1+¢),
d

But there exists by (11.26) a constant C' such that
0 < A(B)/TI(d) — A4(B) < CB(1 + log B)" 2

foralld € Z%and all B € Z,.
Hence by (11.19)(a) we get that

> Iu(d)|(A(B)/I(d) — Ag(B)) < CB(1+logB)%) Y |u(d)
d d

= O(B(1+log B)"~2t1/f+¢)

SOCIETE MATHEMATIQUE DE FRANCE 1998



246 PER SALBERGER

for the partial sum of all d € ZZ, such that II(d) < (1 + log B).
Ford € Z%, with TI(d) > (1 + log B), we use the fact that (cf. (11.25))
0 < A(B) — Aa(B)II(d) < A(B) = O(B(1 +1og B)"}).
Hence, by (11.19)(b) we get that
> Iu(d)|(A(B)/TI(d) — Aa(B)) = O(B(1+1logB)" ")) |u(d)|/TI(d)
d

d
= O(B(1 +log B) " #+1//+¢)

for the partial sum of all d € ZZ such that II(d) > (1+1log B). We therefore obtain
the desired upper bound for the sum of all d € Z%; by combing the two partial sums.
This completes the proof. a

Let m, be the Borel measure associated to the toric norm on X (R) (cf. (9.11)(b))
and let ny, be the Borel measure on X((RR) determined by the induced norm of the
toric norm (cf. (3.30) and (9.12)).

Notation 11.28. — Let B > 1 be a real number. Then,
(@) D(B) C Up(R) is the set of n-tuples x = (z1,...,Ty,) such that
() inf(a:la s 11"n) > 1,
(11) SupO‘EAmax IxD(U)l S B'
(®) I(B) = [p() SUPseAmay X7 |dnco.
Lemma 11.29. — We have
A(B) = I(B) + O(B(1 + log B)" ).
Proof. — Let X; = Spec Zlz,), p € A(1). Then X1(Z) is a Z-lattice in X;(R) =
X1(R) = R™. Let
dx =dzy---dx,

be the Haar measure on X;(R) such that the volume of a fundamental domain of
X1(Z) € X1(R) is equal to 1. Then (cf. (9.12)) the following equality holds on
Xo(R) C X1(R)

[ gane= | (f(x)/ sup |xD<”>|) dx
Xo(R) Xo(R) 0€Amax

for any continuous function f on Xy(R) with compact support. It is therefore also
true for the characteristic function g of D(B) C X,(R) since there exists an L'-
Cauchy sequence (f;)32; in C.(X1(R)) converging to g (cf. [38, ChIX, §3]). Hence,

I(B) = /D - dx.

ASTERISQUE 251



TAMAGAWA MEASURES ON UNIVERSAL TORSORS 247

while A(B) is the number of lattice points in D(B). Let y(B) be the set of n-tuples
g = (g1, .., 9n) of positive integers such that
(i) SUPseA,, 87 < B,
(i) supgea,., |(8 +1)P@| > Bforl=(1,...,1).
Then, D(B) contains a union of of A(B) — Card~y(B) disjoint n-dimensional
unit cubes and is contained in a union of A(B) n-dimensional unit cubes. Hence, by
an argument due to Archimedes one has

0 < A(B) — I(B) < Card~(B).

There is for each g € -y(B) a binary n-tuple e such that g + e belongs to one of
the sets dx (B) described in (11.25). Therefore,

n
Cardy(B) < 2" ) _ Card 6(B)
k=1
so that the desired assertion follows from (op. cit.). (]
Let n, be the measure on Xy(Q,) determined by the induced norm of the toric
norm on X (Q,). Then,
Card Xo(Z/pZ) [p" = np(Xo(Zy))

by (9.14) and (2.15). We may thus summarize the results obtained so far as follows.

Theorem 11.30 (preliminary form). — Let A be a complete regular d-dimensio-
nal fan with n rays such that r :=n —d > 1 and let X = X be the toric Q-variety
defined by AA. Suppose that the anticanonical sheaf of X is generated by its global
sections. Let H be the height function on X (Q) defined by the toric adelic norm || ||
for X and let C(B) be the number of Q-points on U of toric height at most B.

Let m : Xo — X be the principal universal torsor of X and let n, and n, be the
Borel measures on Xo(Qp) resp. Xo(R) determined by the induced norm of the toric
norms. Finally, let D(B) C Uy(R) be as in (11.28) and let f be the smallest integer
such that there exist f rays of A not contained in a cone of A. Then,

I 7 (Xo0(Zy))
p

converges absolutely to a positive constant  and

 Card(Uo(R) /Uy (R*) /
Card T(Z) D(B)

sup [xP)|dng,
0E€Amax

= O(B(1 + log B)"~#*+1/f+¢)

C(B) -

forany e > 0.
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Proof. — We have
e(m) = co(m)/ Card(T(Z))
= co(m)* Card(Uo(R)/Us (R)*)/ Card(T(Z))
(cf. (11.4)) and hence
C(B) = Card(Uo(R) /Us (R)*) Card(T(Z))""Co(B)*.
The theorem is therefore a consequence of (11.27) and (11.29). |

It remains to study the integral:

/ sup lxD(”)|dnoo:/ dx.
D(B) 0E€Amax D(B)

We shall do this by means of the toric canonical splitting over R.

Notation 11.31. — Let B > 1 be a real number, 0 € A be a cone and D(B) be as
in (11.28). Then,
D(B,0) = D(B) N Cy(R).
It follows immediately from the definition of C,,(R) that
D(B,oc)ND(B,7) =D(B,ocNT)

for any two cones o, 7 € A.

Proposition 11.32. — We have

™ 2 (s )

0€Amax

where dx is the Lebesgue measure on X1 (R) = R'+4 normalized by X,(Z) = Z"+4.

Proof. — 1t follows from the definition that the sets D(B,0), 0 € Apax form a
covering of D(B). It is therefore sufficient to prove that

/ dx =0
D(B,oNT)

for each pair (o, 7) of maximal cones in A. But this is done exactly as in the proof
of m(C,(R) N Cr(R)) = 0in (9.16). O

Now fix a maximal d-dimensional cone o € A and choose an ordering (p1, .. ., pr)
of the rays in A such that the last d rays are the one-dimensional faces of ¢ and such
that (cf. (8.7))

T

D(o) = E eiD;
i=1
for some non-negative integers ey, ...,e,, r =n —d.
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Let {m{), 1 < j < d} be the Z-basis of M which is dual to the Z-basis {n(), 1 <
j < d} of N, consisting of generators of the rays p,;;, 1 < j < dof 0. Also, let

E(j)=Drrj— > (mY,n,)D,, je{1,...,d}
peEA()

as in the proof of (11.25). Recall that x¥(), 1 < i < d is a Laurent monomial in
(€1,...,2,) and that (cf. (8.9)(iii))

d T
(11.33) [Ix59 =xP9/[] =
j=1 i=1

D(B, o) is then by (11.22)-(11.23) the set of x = (21, ..., Zr4+4) such that
() min(zy,...,2Tr4q) > 1

(i) [Tj=, z7 <B

(iti) zr4; < xPO),j€{1,...,d}
Notations 11.34. — (B, o) is the set of all real r-tuples (z1,...,z,) such that
(i) min(zy,...,z,) > 1,
(i) x°() < B,
Gii) xF0) > 1,5 € {1,...,d}.
We now first integrate with respect to (2,41, ..., Zr+4) and then with respect to
(z1,...,z,). By Fubini’s theorem it follows that:

d

(11.35) / dx=/ H(XE(ﬂ_l dzy -+ - dz,
D(B,0)

and by (11.33) that

d
(1136) / dx:/ X0 [ [[(1 - %20 | 42 dar
D(B,0) Q(B,0) I Ty

j=1

d d
We may regard w = il S
T Iy

T(R) C Up(R). Moreover, since D(c) — Do and D, ; — E(j) are principal divisors
one has

as a global T-invariant differential form on

xD(U) — xDo

and
xEi =y, JjE€{1,...,d}
on T'(R).
Let F(B) C T(R) be the subset of T'(R) C Up(R) satisfying
(%) min(zy,...,ZTrq) > 1,
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(%) xPo < B.

Then the projection onto the r first coordinates defines an analytic isomorphism be-
tween (B, o) and F (B, o). Hence from (11.36) we deduce that

d
d:cl
(11.37) / dx=/ Do |1/ | %L
D(B,0) F(B,o) H( / +]) T

j=1

dx,

Ty

Lemma 11.38. — We have

/ dx:/ xDOﬁ---dmr + O(B(1 + log B)"?)
D(B,0) F(B) I Ty

for B > 1.

Proof. — Tt suffices by (11.37) to show that

dzq dx,

/ (XDO/xr-}-j)—_ - = O(B(l + log B)r_z)
F(B) 1 Lr

d d
for j = 1,...,d. But the measure |w| on T'(R) defined by w = % o

(cf.
Ma
(1.13)) does not depend on the maximal cone o used to define {z1, . .. }xr} WZ: may
thus in the description of |w| replace the coordinates (zy,...,z,) by any set of r
coordinates corresponding to the rays outside a given maximal cone 7 of A. We shall
choose 7 such that —n,,; € 7. Then D, ; has multiplicity > 2 in D(7) (cf. (8.7)).
After a permutation of the rays we may change the index of p,; to 1 and assume
that (p1, ..., p,) are the rays not in 7. Then it suffices to show that

/ (xD(T)/xl)Slﬂ... dzr _ O(B(1 +log B)"™2).
F(B)

T Ty

We shall in fact consider the integral over the larger subset G(B) defined by

Iy Z 0
i > 1, i€{2,...,r}
xP(M < B.

We shall also assume that » > 2 and leave the trivial case » = 1 to the reader.
Now note that

D(r) = fiD1+--- + frDy

for some non-negative integers e = f1 > 2, fa,..., fr (cf. (8.7)). Let E(1) =
D(7) — f1D; and let H(B) be the subset of R"~! defined by

xE() < B and min(zg,...,z,) > 1.
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Then by integrating with respect to z; € [0, (B/xF(®))1/¢] we obtain

RGN B[ eopedez do
G(B) T Ty e—1 Jus) To T,
— 1 Bi-t/e / xE(T)@ - %
e—1 JuBi/e) To Ty

The latter integral can be calculated by means of the variable substitution y; =
filogx;, 2 < i < n. This gives (cf. (11.39)-(11.40) below):

/ KB 922 AT o opive(y 4 1og B2y
(Bl/e) €

I Ty
thereby completing the proof. O

Now let b = logB > 0 and y; = logx; for¢ = 1,...,n. This gives an
analytic isomorphism between T'(R)* and V = Hom(Pic X, R) which sends the
subset T(R)>; C T(R)' with all coordinates zi,...,2,44 > 1 onto the cone
et (X, U) C V described in (10.18).

Let Ej be the set of all p € oeg(X,U) with 0 < (D) < b and let dv be
the unique Haar measure on V such that Vol(V/L) = 1 for the Z-lattice L =
Homyz,(Pic X, Z) in V. Then, by the variable substitution y; = log x;, we get

/ dx = / exp(y1 + -+ + Yn) H (1- exp( yr+j))dy
D(B,0) Ep j=1

d d
(11.39) / xP &8 G =/ exp(y1 + - + yn)dv.
(B) Z1 Ty E,
Let A : V — R be the linear form A\(y1,...,Y,) = y1 + -+ + y, obtained by
evaluating at the anticanonical class. By integrating along the fibres of A (cf. (10.18)-
(10.19)), we obtain

b
(11.40) / exp(y1 + -+ + yn)dv = a(X)/ exp(y)y"~'dy
E(b) 0
where a(X) is Peyre’s constant. The integral on the right hand side is equal to
1)! ~1-k
B — (1 " .
Z r—l—k)!(OgB)

We therefore conclude from (11.38)-(11.40) that

(11.41) / dx = a(X)B(log B)" ! + O(B(1 + log B)"?)
D(B,0)
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for any maximal cone o of A and hence by (11.32) that
(11.42) / dx = a(X) Card(Amax)B(log B)"~! + O(B(1 + log B)"2).
D(B)

If we combine this with (11.30) then we obtain the asymptotic formula
(11.43) C(B) = CB(log B)" ! + O(B(1 + log B)"~2+1/f+¢)
for any € > 0 with the constant
C = (Card T(2))~* Card(Us(R) /Us (R) ) X) Card (Amax) Iy (Xo(Zp)).
We now verify that this result is compatible with Peyre’s conjecture (7.7)
(11.44) C(B) = apeyre(X)7(X, || [)B(log B)" "} (1 + o(1))

This is by theorem (6.19) (cf. also (5.21)-(5.22)) true if the following identity
holds:

(1145) B0} (T (AQ)/T(Q))meo (X (R))
= (Card T(Z))~* Card(Uy(R) /Uy (R) ) Card(Amax)-

Here @ioo} is the Haar measure on T'(Ag)/T(Q) corresponding to the Haar
measure @{oo} on T'(Ag) given by the adelic order norm (5.9)(b) and the conver-
gence factors 8, = u;,,(f"(Z,,))_1 and B. = 1 under the bijection described after
(5.19). Hence if K C T(R) is a Borel set, and K the image of I, JN“(Z,,) x K in
T(Ag)/T*(Ag) = Hom(Pic X, R), then

6{00} (H T(Zp) X K) = /_dl/
p

K

for the Haar measure dv on T(Ag)/T*(Ag) = Hom(Pic X, R) used in (11.38)-
(11.40).

Now recall that the bijection betwen measures on T (Ag)/T(Q) and T(Ag) is
established by applying (5.19) twice to the chain of normal closed subgroups

T(Q) C T"(Ag) C T(Ag)

with the counting measure on 7'(Q) and the measure dv on T'(Ag)/T*(Ag). Note

also that T(R)* [T, T (Zyp) is a fundamental domain for the T'(Q)-action on T'(Ag).
It is straightforward from this description that:

(1146)  B(o)(T"(40)/T(Q)) = Card(T(R)/T(R)*)(Card T(Z))
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which is equal to 1. It is easy to verify that there is a commutative diagram with exact
sequences

(11.47) 11— TR — Ug(R)T — U(R)T —— 1
1 —— T(R) —— Up(R) - U(R) 1

where the upper +-index means the subgroup given by the real connected component
containing 1. One can e.g. make use of the fact that the subgroups in the first row are
generated by squares of elements in the groups below.)

Finally, by (9.16) we have:

(11.48) Moo(X (R)) = Card(U(R)/U(R) ") Card(Amax)

Therefore, (11.45) follows from (11.46)-(11.48). We have thus given a new very
different proof of the following result of Batyrev-Tschinkel [4].

Theorem 11.49. — Let A be a complete regular d-dimensional fan with n rays and
let X = X be the toric Q-variety defined by A. Suppose that the anticanonical
sheaf of X is generated by its global sections. Let H be the toric anticanonical
height function on X (Q) defined by the toric adelic norm || || for X (cf. (11.2)) and
let C(B) be the number of Q-points on U of toric anticanonical height at most B. Let
apeyre(X) and 7(X, || ||) be the numbers in (7.7) and let f be the smallest integer
such that there exist f rays of /A not contained in a cone of A. Then,

C(B) = apeyre(X)7(X, || [I) B(log B)" ™" + O(B(1 + log B)"*+1//+¢)
forany e > Q.

The following toric surface has been discussed in talks by Batyrev and Tschinkel:

Example 11.50. — Llet N = Z2,n; = (1,0), ng = (0,1), n3 = (=1,2), ng =
(-=1,1), n5 = (—1,0), ng = (—1,—-1), ny = (0,—1), ng = (1,—1), ng = (2, -1).
Then there exists a unique complete regular fan (IV, A) with 9 two-dimensional cones
oi, 1 <1 < 9 and 9 one-dimensional cones p;, 1 < i < 9 where oy, ¢ € Z/9Z is
generated by n;4+4 and n;45 and p; is generated by n;.

Let
Z D,

pEA(1)

and let U;, 1 <4 < 9 be the affine toric plane defined by o;. Let X, m; = m(o;) €
M be the unique character of U C Xa which on U; represents the Cartier divisor
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with Weil divisor Dy and let
D(o;) := Do + Z (—=m(0i),n,)Dp.
pEA(L)

Finally, let D; be the prime divisor which corresponds to p;. Then,
D(0i-1) = D(0i) = D(0441) = Di—2 +2D;_1 + 3D; +2D; 11 + Di2

for all s € Z/9Z with ¢ = 0 mod 3.

There exists thus for each closed point P on X a divisor D(0), 0 € Apax With
P & Supp D(o) so that O(Dy) is generated by its global sections. Also, it is easy to
see that m = 0, mg, mg, mg are the only elements m € M such that

Do+ Y (—m,n,)D,
PEA()

is effective. Therefore, by [24, p. 66] it follows that:
H*(X5,0(D) =Q& Q™ & Q™ & Q™.

This means that the morphism g : Xp — lP’(?@ defined by the linear sytem |Dy|
restricts to the open immersion restriction

gu:U =P} definedby (1,x™2,x 7", x ™).

If we introduce projective coordinates (zg, 23, 26, 29 ) for P3, then the scheme-theoretic
image X' of g is given by the closed subscheme with equation zg' = 2326%9. The
morphism g : X — X' is a toric morphism corresponding to a morphism of fans
(N,A) - (N,A’). The fan A’ is the complete non-regular fan with three two-
dimensional cones 73;, ¢ = 1,2, 3 generated by ng; ;3 and ng;t6.

Therefore, the number C(B) of Q-points on U C X of toric height at most B is
equal to the number of integral points (29, 23, 26, 29) € P?(Z) with 2§ = 232629 # 0
of height:

max(|zol, |23/, |26], |20]) < B.

The Picard group of X is of rank r = Card A(1)—dim A =9-2=7 '(cf. (8.2)).
Further, if p is a prime number, then we can determine the cardinality of Xa (Z/pZ)
by means of the bijection between U (Z/pZ)-orbits under the action of U (Z/pZ) on
X A(Z/pZ) and the cones in A (see [24, p. 94]). This gives

Card)z'A(Z/pZ) =1(p—12+9p-1)+9=p> +Tp+1.
Therefore, the principal universal torsor X, over X = X satisfies

Card Xo(Z/pZ) = Card X (Z/pZ) Card T(Z/pZ) = (p* + Tp + 1)(p — 1),
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and (cf. (2.15))
np(Xo(Zp) = (1+7/p+1/p*)(1 —1/p)".

Also, Peyre’s constant a(X) is easily seen to be equal to the Vol(P)/9, where P
is the polytope in RS, with coordinates (y1, y2, ¥4, ¥s, y7, ys) defined by

max(y1 + 2y2 + 2ys + Y5, Ya + 2ys + 2y7 + ys, y7 + 2ys + 2y1 + y2) < 1

and a further calculation gives a(X) = 1/25920.
Hence by (11.43) we get that

(11.51) C(B) = CB(log B)® + O(B(1 + logB)6_1/2+5)

for any € > 0 with
1

C =TI +7/p+ 10 - 1/p)"

P
This asymptotic formula was first established by Batyrev and Tschinkel as a corol-
lary of [4] (cf. [6] which we received after completing this paper). Another treatment
of this asymptotic formula, but without a discussion of the value for C, can be found
in the paper of Fouvry [22]. We have also after the completion of this paper received
the paper [13] of de la Bretéche on the counting function for zg = 232629 # O.
He obtains a more precise asymptotic formula than in (11.51). He has also just be-
fore this book goes to press improved the estimates of the error terms for other toric
varieties.
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