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Introduction 

Let i: W —* V be an embedding of smooth complex manifolds. Let 5 be a complex 
manifold. Let ity - V —> S be a holomorphic submersion with compact fibre X, which 
restricts to a holomorphic submersion ttw • W —> 5, with compact fibre Y. Then we 
have the diagram of holomorphic maps 

(0.1) Y W 

i i 
7TW 

X V 
7t v 

S 

Let rj be a holomorphic vector bundle on W. Let (£, v) be a holomorphic complex of 
vector bundles on V, which together with a holomorphic restriction maps r : £o|vk —» 
77, provides a resolution of the sheaf 2*77. 

Let i?7iv*£, R7rw*V be the direct images of £, 77. We make the assumption that the 
Rl7tw*'n are locally free. Then Rttv*£ is also locally free, and moreover we have a 
canonical isomorphism of Z-graded holomorphic vector bundles on S 

(0.2) - i (i*vLx>2PTYz.pN 

Also for any s G 5, 

(0.3) 
- i (i*vLx>2PTYz.pNr'xei) 

(Rirw*v)s ^ i?(y s, 77|yJ 

(here H(X s,£\x s)
 a n d ^ O ^ ^ m ) denote respectively the hypercohomology of £|xs> 

and the cohomology of 77|ys). 
Let u j v ,u j w be real (1,1) forms on V,W which are closed, and which, when 

restricted to the relative tangent bundles TX, TY> are the Kahler forms of 
Hermitian metrics g T X , g T Y on TX,TY. Let . . . , g^™,^ be Hermitian metrics 
on £o,...,£m,?7. 

Let (0(Y, r)\Y),d ) be the family of relative Dolbeault complexes along the fibres 
Y, whose cohomology is equal to H(Y,t]\y). 
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2 Introduction 

Let Td(TY,g T Y) be the Todd form in Chern-Weil theory which is associated to 
the holomorphic Hermitian connection V T y on (TY,g T Y). Other Chern-Weil forms 
will be denoted in a similar way. In particular ch(?7, g v) denotes the Chern character 
form of the Hermitian holomorphic vector bundle (77, g^). 

Let P s be the vector space of smooth real differential forms on S which are sums 
of forms of type (p,p). Let Pq be the subspace of the a E P s , such that there exist 
smooth forms ¡3 and 7 on 5, with a = d/3 + #7. 

By identifying H(Y, t)\y) to the corresponding fibrewise harmonic forms in 
J1(Y, V\y), the Z-graded vector bundle H(Y,t]\y) is naturally equipped with a L2 
metric, whose unambiguous normalization is given in equations (2.22), (2.23). 

Let T{u w \g^) be the form in P s contructed by Bismut-Gillet-Soule [14] and 
Bismut-Kohler [18], using Quillen's superconnections [32], such that 

(0.4) ^ . T ( u , w , g " ) = ch(H(Y,r , l Y ) ,g»( Y ^) - J Td(TY,g T Y)ch(r/,g v). 

The forms T(ujw

1g' n) are called higher analytic torsion forms. The component of 
degree 0 of T{ujw ^g71) coincides with the Ray-Singer analytic torsion of the relative 
Dolbeault complex [34], which is used to define the corresponding Quillen metrics [33], 
[13], [15] on det R7rw*V- By the same procedure, for 0 < i < m, we can construct 
forms T{u v ,g^) (0 < i < m) in P s . 

Let (£)(X, £|x)>d + v) be the family of relative Dolbeault double complexes, 
whose cohomology coincides with the hypercohomology if(X, £|x)- Let g H ( x ^\x) be 

m 
the corresponding L 2 metric on H(X, C|x)- Put ch(f,<^) = ^T (̂—1)* ch(&, <7̂ ). By 
the same procedure as in [14], [18], we construct in Section 3.2 analytic torsion forms 
T(u ; v , ^ ) G P s , such that 

(0.5) ^LT{u>v,<j*) = ch(ff(X, t i x ) , g H < x > W ) - J Td(TX, g T X ) ch(£, / ) . 

An important property of these analytic torsion forms is that, as shown in [18, 
Theorem 3.10 and 3.11], their variations in p s / p s > ° with respect to (lj w .g 7 1) or 
(u; v,#^) is expressed in terms of the Bott-Chern classes [13] of the corresponding 
holomorphic Hermitian vector bundles. These Bott-Chern classes are secondary 
invariants of Hermitian vector bundles, one can think of as complex analogues of 
Chern-Simons classes. In particular , it follows from [18, Theorem 3.11] that the 
classes of the analytic torsion forms in p s / p s ^ ° only depend on c j v , l j w through 
gTX gTY ]sj0te that in degree 0, these anomaly formulas of [18] specialize to the 
anomaly formulas for Quillen metrics established in [15]. 

Before we proceed, we make certain restrictions on the various metrics. By 
identifying the normal bundles N w / V ~ N Y /x to the orthogonal bundle to TY in 

Astérisque 



Introduction 3 

TX\y, Ny/x inherits a metric g N y r / x . We will assume that the metrics g^°,... 
verify assumption (A) of [5, Definition 1.5] , with respect to g N Y I X , g r ) * This 
assumption is a compatibility assumption on the metrics g^°,..., g^m to the metrics 
g v , g N Y / x > which is briefly described in Section 3.3. By [5, Proposition 1.6], one can 
always find metrics <^°,..., <^m verifying (A). Let P]y be the vector space of sums 
of real (p,p) currents on V, whose wave front set is included in N^/yn- Let P^° be 
the obvious analogue of P 5 , 0 . 

Let T(£, gt) e P& be the Bott-Chern current of [16] such that 

(0.6) 2 i ^ r ( ^ ) = T d - ^ N Y / x ^ ^ / ^ c h ^ g ^ w y - ch(£,<7«). 

By [17], the dependence of the class of T(£,(^) in P ^ / P ^ ' 0 can be described 
in terms of Bott-Chern classes. Since T(£,#*) € P ^ , by [30, Theorem 8.2.12], 

f T d ( T X , g T X ) T & g S ) e P s . 
Jx 

Let Td(TY,TX l w ,g T X \w) e P w / P w # be the Bott-Chern class of [13], such that 

(0.7) — T d ( T Y , T X \ w , g T X ^ ) = 

T d ( T X \ W j g ^ x ^ ) - T d ( T Y , g r Y ) T d ( N Y / x , g N Y ^ x ) ^ T d ( , 

Since H(X,£\x) - H(Y,r)\y),gH(<x£\x) an(j gH,Y,VlY) can be c^g^ered ^ metrics 
on the same vector bundle. Let ch(H(X^\ x , 9

H ( X ^ ] X \ 9 H ( Y , V ] y ) ) £ P s /P s >° be the 
Bott-Chern class of [13] such that 

(0.8) ^ c h ( H ( Y , V \ Y ) , g H ^ x \ g » ^ M ) = 

c h ( H ( Y , n \ Y ) , g H ^ ^ ) - c h ( H ( X ^ \ x ) , g H ^ M ) . 

Let £(s) be the Riemann zeta function. Let R{x) be the power series introduced by 
Gillet and Soule [26], 

gtm 

(0.9) R(x) = 
n>l 
nodd 

/ n 

1 

1 
3 

2 
C(-n)y 

C(-n) y 

C(-n 
x n 

nl 

We identify R to the corresponding additive genus. 
The purpose of this paper is to prove an extension of a result of Bismut-Lebeau 

[19, Theorem 0.1], which corresponds to our main result when S is a point. This 
extension is stated in two Theorems. 
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4 Introduction 

Theorem 0.1 — The following identity holds 

(0.10) с к ( Н ^ \ д н ^ М , д н ^ М ) - T(u>w,gO) + T(u v,gS) 

'x 
Td(TX,gTX),gt)-tT(t;,gt)-t 

y 
Td(TY,TX\w,gTX\TX^) 

Td(NY/x,gNY/x

Nr/x) ch(77,9") 

'x 
Td{TX)R{TX) ch(£) + 

>y 
Td(TY)R(TY) ch(T)) = 0 in p s / p s ' ° . 

Assume now that for j > 0, R^ttv*^ = 0 (0 < k < m), B?-Kv̂ r\ = 0. Then 
H(X,£\X) — H(Y,t]\y) is concentrated in degree 0. Moreover, we have an acyclic 
complex of holomorphic vector bundles % on S, 

(0.11) % : 0 -> ff0(X,Ém) ^ H°(X,Cm-i) ̂ >°(X,Cm-i) ̂ > - H°(X,fa) -» 0. 

Let ^ be the obvious L 2 metrics on X Let ch(3C,g^) G pS/pS,o b e t h e Bott-Chern 
class of [13] such that 

(0.12) 
dd 

2Ï7; 
Â(3C,o*) = c h ( H 0 ( X , b x ) , 9 » ° ( x ^ ) 

m 

i=0 

( - i y c h ( H 0 ( X , ^ x ) , g H ° ^ ^ ) . x ) , g H ° ^ ^ 

Theorem 0.2 — The following identity holds 

(0.13) T{u v ,gt)u v 
m. 

2 = 0 
{-iyT{uov,g^) -ch{%,g%) = 0 in P 5 / P 5 ' 0 . 

Our version of Theorems 0.1 and 0.2 is much more precise. In fact, we produce 
explicit forms 7 and <5, which are local on the base such that the left-hand side 
of (0.10) or (0.13) is exactly cfy + 85. Of course this fits with the construction of 
Bott-Chern classes [13] on V or W or 5, where the P v ' ° , P w ' ° or P 5 ' 0 ambiguity are 
local and universal, and with the construction of the analytic torsion forms of [6] and 
[18], where the anomaly formulas are themselves local on S. 

Note that when S is a point, Theorem 0.1 is exactly [19, Theorem 6.1], and 
Theorem 0.2 is a special case of [19, Theorem 2.1]. In [19], the results are stated 

in terms of Quillen metrics on detP7iv*£ ~ ($Z)(det Rttv^CY"1^ — detRirv*V' 

We now list the already known results which are compatible with Theorems 0.1 

and 0.2. First, when applying wFF- to both sides of (0.10) or (0.13), we get a trivial 
identity. Also using [18] and [17], one verifies easily that (0.10) and (0.13) are 
compatible to variations of all the metrics involved. 
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Introduction 5 

Using the transitivity properties of the currents °(X,Cm-i) ̂ > established in [17], one 
verifies that (0.10) is compatible to composition of immersions. 

If S is compact and Kahler, since DD/2uo applied to the left-hand sides of (0.10) or 

(0.13) gives a known identity, a simple application of the dd lemma of [28, p. 149] 
shows that the left-hand side of (0.10) or (0.13) is the sum of (p,p) cohomology classes 
on S. 

If S is compact and Kahler, then V and W are compact and Kahler. In [11], 
Berthomieu and Bismut have calculated the behaviour of the Quillen metric on the 
determinant of the cohomology by a proper submersion in terms of higher analytic 
torsion forms. If S is compact and Kahler, we deduce from [11] that if A is the 
left-hand side of (0.10), the integral of A on a smooth complex submanifold of S 
vanishes, or almost equivalently, that the pairing of A with the Chern character of 
a holomorphic vector bundle on S gives 0. However the Hodge conjecture would be 
needed to deduce from this fact that A vanishes in Ps /Ps>°. 

Let us assume that A is the ring of integers of a number field k. Suppose that 
V, W, S are arithmetic varieties over Spec (A), and that 

(0.14) W 

i 
rw 

V 
TTv 

s 

is a diagram of morphisms over A. We assume that ity and 7Tw are smooth and 
projective, and that i is a closed immersion. Let X,Y be the fibres of irv,irw 

Let E be the finite set of complex embeddings of k in C. If a £ X, let be 
the complex variety obtained by extending the scalars from A to C. Let V̂ o the 
complex manifold Voo = LUGE ^ * We define Woo? Soo in the same way. Let i7^ be 
the conjugation map. 

Let 77 be an algebraic vector bundle on W', let (£, v) be a complex of algebraic 
vector bundles on V which resolves i*rj. 

We suppose that at 00, i.e. over Voo? . . . , objects we have considered before 
have been introduced, i.e. forms uiVo°,uw°°, metrics g€°,... ,g^m,gv, which are Foo-
invariant. 

Let CH(V),CH(W)... be the arithmetic Chow groups of Gillet and Soule [24]. 
Let APP(VR) be the vector space of real smooth forms a on of type (p,p), with 

F ^ a = {-l)pa. Let AP*(V*) be the quotient A™(Vu) = App(Vn) 
Imd + Imd 

Let a be the 

embedding 
V 

App(Vji) -> CH(F). If (£", is an algebraic Hermitian vector bundle 

over V, let Td(E,gE), ch(EJgE) € CH(V) be the corresponding characteristic classes 
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6 Introduction 

of Gillet and Soule [25]. Let Td A (TX,g T X ) € CH.(V) be the modification of the class 
Td introduced by Gillet and Soule in [26]. 

Let us recall that in [26], Gillet and Soul6 have defined ch(7rw\('0ig11)) € CH(5) by 
the formula 

(0.15) Mnwifag")) = MR*w*V,9 R*W m r i) - aT{ujw,g^). 

Similarly, we can define ch(7rv!(£t50^O)»Cn(7rvr!(£»5^))-
In [26], Gillet and Soul6 formulated the conjecture that the following Riemann-

Roch-Grothendieck formula holds 

(0.16) ch(7r^«(r7,^)) = 7T* [Td A (TY,g T Y )dn( V ,g^ . 

In [27], by using [19], they proved (0.16) for the first Chern class. In [22], Faltings 
has given a proof of (0.16) for arbitrary Chern classes, based on a deformation to the 
normal cone technique. 

By using [17, Theorem 4.13], we see that Theorem 0.1 implies that 

(0.17) ch(7rv.(£,0«)) - &(*w\(n,9v)) = ttv. [TdA(TX,gTX)dL(Z,gSJ\ 

-7T W . [Td A (TY,g^Mvig") ] • 

Also from Theorem 0.2, we get 
m 

(0.18) ch(7rv!(£,<?«)) - X)(- 1 ) i *("Vi(6,ff C l )) = a & W g * ) . 
i=0 

So (0.17)-(0.18) are compatible with the conjectured formula (0.16) of Gillet-Soule. 
Let us now briefly describe the strategy which is used in this paper for the proof 

of Theorem 0.1. 

1. The case where S is a point and the general case 

The general strategy of the proof of Theorem 0.1 is roughly the same as the one in 
[19] for the case where 5 is a point. Namely, in the context of the local families index 
theorem of [4], and in the formalism of Quillen's superconnections [32], we produce a 
differential form (3u,t on R+ + R+ x S, such that if d u ,r denotes the partial exterior 
differential with respect to T, then 

(0.19) d u , T P = d i + d6. 

If r is a closed rectangular contour in R+ x R+, which bounds a domain A, we obtain 
the basic identity 

(0.20) / / ? = 5 / j + d f s, 
Jr J A J A 

Astérisque 



Introduction 7 

so that J ¡3 e P 5 ' 0 . 

Theorem 0.1 will be obtained by deforming T in R+ x R+ to its boundary in R 2 . 
This strategy is formally the same as in [19]. Also since the construction of the 

analytic torsion forms in [18] is, roughly speaking, a perturbation of the construction 
of the Ray-Singer torsion [34] using the infinitesimal deformations of the fibres X or 
Y, most of the intermediate results or techniques of [19] are used in the present paper. 
Therefore we refer to the introduction of [19] for a description of the techniques which 
are used there, while we concentrate on some of the essential differences with [19]. 

2. The right-hand side of (0.20) 

If S is compact and K&hler, Ps>° is closed in P s . In this case, if one is just interested 
in establishing a non local form of (0.10), i.e. just the existence of non explicit (i.e. 
non universal and non local) forms 7 and 5 such that the left-hand side of (0.10) 
is $7 + 9(5, one can skip the technically heavy Sections 5.7-5.9, 6.6-6.8, 11.11, 12.7 
and 13.13-13.14. 

In the general case, because S is non compact and also because we want to obtain 
the best result as possible, i.e. a local universal explicit form of the right-hand side of 
(0.10), we need to study the right-hand side of (0.20) in much detail. The estimates 
on this right-hand side are much harder to obtain (we have to control double integrals 
in u^T and not only integrals in u ov T). 

3. Relative local index theory 

While local index theory was used in [19], and in particular the local index 
theory rescaling technique of Getzler [23], here we work in the context of the local 
relative index theorem of [4]. In particular the standard Levi-Civita connection of a 
Riemannian manifold is replaced by the Levi-Civita super connection of a fibration 
[4]. 

In this paper, we adapt in our context the rescaling techniques developed by 
Berline-Getzler-Vergne [3] to establish the local families index theorem of [4]. 

The algebra of the families index theorem of [4] being more demanding that 
the algebra for the standard local index theorem, this introduces unavoidable 
complications with respect to [19]. 

As explained in [4], [12], [11], the Levi-Civita superconnection of a fibration [4] 
can be thought of as the adiabatic limit of the Levi-Civita connection of the total 
space, when the metric is blown up horizontally, and the horizontal Clifford variables 
are properly rescaled in the sense of Getzler [23]. Roughly speaking, our proof of 
Theorem 0.1 can be understood, to a certain extent, as the adiabatic limit of the 
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8 Introduction 

proof of [19]. Still this analogy provides us only with a partial intuition of the analysis 
which is needed in the proof. 

4. The horizontal vector bundles T H V and T H W 

Using the anomaly formulas of [18], we can reduce the proof of Theorem 0.1 to the 
case where u w = i*ujv. 

Let T HV, T H W be the orthogonal subbundles to TX, TY in TV, TW with respect 
to u) v,u>w. In general, T H V \ W and T H W do not coincide. As explained in Section 7.5, 
there is a cohomological obstruction to finding uj v such that THV\w = T H W . We 
are thus forced to work in the general case where T H V \ W ^ T H W . This is in dramatic 
contrast with the situation one meets in the C°° category, where one can always 
assume that TgV\ w = TgW. 

In [4], [14], the bundles q^HyrpH^ are use(j to construct unitary connections 
V n< x '*i*\ V " * 1 ^ ) on to(X,£\x), Q(Y,filY). Also in [19], for T > 1, a family of 
embeddings J t ' 0(Y,77|y) —» Q(X,£\X) is constructed. Roughly speaking, in [19], 
fi(Y, t)\y) is viewed as a subcomplex of currents on X, localized on Y. Here, because 
T H V j w ^ T H W , the connection V 1 7 ^ ^ ) does not "preserve" v " ^ 1 ^ . This has 
dramatic analytic consequences. In particular, when written in matrix form as in [19], 
our operators do not have the prefered asymptotic structure, which plays a key role 
in the analysis of [19]. 

To deal with this difficulty, we construct in Chapter 7 an extension of x H W to 
the whole manifold V, and we conjugate the Levi-Civita super connection of V by 
an operator which measures the non coincidence of T H V with T H W . Because of 
the need to control various local cancellations, the extension of T H W to V is non 
arbitrary. 

After conjugation, the Levi-Civita superconnection of V becomes analytically more 
pleasant, but it contains many more extra terms. As a deformation parameter T tends 
to infinity, the fact that these terms vanish asymptotically follows from mysterious 
identities established in Chapter 1. 

5. The Levi-Civita superconnection B U i T and its curvature B \ T 

Put D x = 5 X + 5 X * , V = v + v*. In [19, Sections 8 and 9], the analysis of 
the supertraces of operators like exp(—u2(Dx + TV) 2) as T —> -hoo was done 
for u > uo > 0 by writing the operator D x + TV in matrix form. Still, because 
local cancellations had also to be controlled as u —-> 0, these cancellations not being 
property understood on the operator u ( D x + TV), in [19, Section 13], for u e]0,1], 
T > 1, the operator u 2 { D x + TV) 2 had to be written in matrix form, and the local 
cancellations mechanism controlled on this matrix form. 
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Here, the analogue of D x 4- TV is a superconnection ^4i,t- Only its square A 2

 T is 
a fibrewise elliptic operator along the fibres X. Even when u > uq > 0, we are thus 
forced to deal with the operator A 2

T and not with A\,t itself. 
Still some features of [19, Sections 8 and 9] are preserved. Namely, in Chapters 8 

and 13, we calculate the asymptotics as T —> +oo of the conjugate superconnection 
A i t T in two different trivializations of n^A(T^S) 0 A(T^°^X) ® £ near W. This 
extends corresponding results of [19, Section 8]. 

6. The lower par t of the spectrum of D x + T V and the asymptotics of the 
Chern character superconnection forms as u —»+oc 

In [19, Section 9], it was shown that as u —> +oo, the supertraces of operators 
involving exp(—u2(Dx + TV) 2) converge like cexp(—Cu2), with c > 0, C > 0 
uniformly in T G [1, +oo[. The proof uses in particular the fact that as T —> +oo, the 
nonzero eigenvalues of ( D x 4- TV) 2 stay away from 0. 

Here, by result of Berline-Getzler-Vergne [3, Section 9], for a given T > 1, the Chern 
character superconnection forms associated to a superconnection B u , t converge as 
u —• -foo like O(^). Obtaining the required uniformity in T G [1, +oo[ is more difficult. 
In effect the control of the superconnection Chern character forms as u —• 4-oc 
or T —> +oo involve two distinct matrix decompositions of the curvature B 2

T , 
which have to be shown to be compatible. The corresponding arguments are given in 
Chapter 9. 

7. The genus R and the higher analytic torsion forms of the exact sequence 
0 ^ T Y ^ T X \ W - * N Y / x — 0 

As in [19], the genus R of Gillet-Soule [26] appears in Theorem 0.1 through the 
explicit computation in [6] of higher analytic torsion forms associated to the exact 
sequence of holomorphic Hermitian vector bundles on W 

(0.21) 0 TY -> T X l w N Y / X 0. 

As explained in Chapter 15, some of the computations of [6] and of [19, Section 14] 
appear to be just a special case of the arguments used in this paper, when applied to 
the family of embeddings TY —+ TX\ W . 

As explained in the introduction to [19], an alternative strategy to the proof of 
the main result of [19] or of Theorem 0.1 is the deformation to the normal cone 
technique of Baum-Fulton-MacPherson [2], [17, Section 4]. Arguments in support 
of the main steps of such a program have been described by Faltings in [22]. The 
deformation to the normal cone replaces the embedding i: W —> V by the embedding 
i1': W —> ~P(NW/V ® 1) and the complex (£?^) by a canonical Kozsul complex on 
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I?(N\y/v ® 1). The deformation to the normal cone technique replaces a smooth 
fibration by a singular fibration, and the whole point is to control the analytic torsion 
forms through the singularity. To overcome this difficulty, Faltings replaces the given 
Kahler metric on the smooth fibre by a metric on the log tangent space, which is not 
Kahler, hence the need to control non explicit anomaly formulas. Once the reduction 
to T?{Nw/y 0 1) is done, the strategy of [22] is to use a relative version of [11], 
(sketched in [22, p. 75-76]) which reduces the problem to the explicit computation 
of the higher analytic torsion forms of the fibration ~P(NW/V 0 1)—* W. This final 
computation is obtained by using the results of Gillet and Soule [26], and explains 
the appearance of R in (0.10). 

In some sense, the program of [19] and of the present paper is an analytic version 
of the deformation to the normal cone technique, in which the three steps described 
before are reduced to one step. In particuler the analysis wipes out the intermediate 
P ( N W / V 0 1) —» W and replaces it by the exact sequence 0 —• TY —» TX\ W —+ 
Ny/x 0, whose analytic torsion forms were calculated in [6]. 

Needless to say, the deformation of the normal cone technique was used in [17] 
to evaluate the current T(£,#^) in terms of the arithmetic characteristic classes of 
[24]-[25], but the analysis of [17] only involves finite dimensional objects. 

This paper has been written as a companion paper to [19], to which the reader is 
referred when necessary. In particular, most of the technical comments in [19] apply 
also to this paper, and have not been repeated. Let us also point out that as in 
[19], finite propagation speed for solutions of hyperbolic equations [21], [35] plays an 
important role in the proofs. 

This paper is organized as follows. In Chapter 1, we establish various results on 
the differential geometry of families of smooth embeddings, in the C°° category. In 
Chapter 2, we recall the result of [14] and [18] on higher analytic torsion forms. In 
Chapter 3, we describe the basic geometric setting of (0.1), and also the objects which 
appear in (0.10) and (0.13). 

In Chapter 4, we construct the form (3 in (0.14), and we establish (0.20). 
In Chapter 5, we recall the results of [6] on the higher analytic torsion forms 

associated to a short exact sequence. 
In Chapter 6, we prove Theorem 0.1. The proof is based on several intermediate 

results, whose proof occupies Chapters 7-13. This Chapter corresponds to [19, Section 
6]. 

In Chapter 7, we extend T H W to V. 
Chapters 8-13 are devoted to the proofs of the intermediate results which were 

alluded to, and correspond roughly to [19, Sections 8-13]. In Chapter 8-9, we 
calculate the asymptotics of supertraces involving exp(—B\ T ) (where B U i t is the 
superconnection version of u ( D x + TV)), in the range u > 1, T > 1. In Chapter 1*0, 
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we give a description of the bundles over S of the kernels of D x + TV, as T —• +00. 
In Chapter 11, we establish uniform estimates on supertraces involving e x p ( — T ) 
(where A u , t is the superconnections analogue of u D x +TV) in the range 0 < u < 1, 
1 < T < 1/u. If u —• 0, T ~ 1/u, the corresponding supertraces are studied in 
Chapter 12, and for u —> 0, T > 1/u in Chapter 13. 

In Chapter 14, we establish Theorem 0.2 by exchanging the roles of u and T. The 
proof is much simpler than the proof of Theorem 0.1, and is just briefly sketched. 

Finally, in Chapter 15, we show that the objects appearing in [6] in the construction 
of the higher analytic torsion forms of a short exact sequence are a toy model for many 
of the arguments used in Chapters 8-13, even though the results of [6] are used in the 
proof of Theorem 0.1. 

The results contained in this paper have been announced in [10]. 
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1. Families of immersions and connections on the 
relative tangent bundle 

Let 7r: V —> S be a submersion of smooth manifolds with compact fibre X. Let 
TX be the relative tangent bundle, and let T H V be a subbundle of TV such that 
TV = T H V © TX. Let g T X be a metric on TX. 

In this Chapter we recall the construction in [4] of a connection y T X on TX, 
which is canonically associated to these datas, and of various corresponding tensors. 

Also let i: W —» V is an embedding of manifolds which both fibre on 5, let 
i : Y —• X be the corresponding fibres of W and V over S. Let g T V be a metric on 
TV, let T H V, T H W be the subbundles of TV, TW which are orthogonal to TX, 
TY. Let # T X , g T Y be the metrics induced by g T V on TX, TF. Let V r x , V T y be the 
associated connections on TX, TF. The main purpose of this Chapter is to establish 
various relations between the tensors associated to TX and TY. 

1.1 A canonical connection on the relative tangent bundle of a fibration 
Let 7r: V —• S be a smooth submersion of smooth manifolds with compact fibre 

X. Let TX = TV IS be the relative tangent bundle to the fibres X. 
Let T H V be a smooth subbundle of TV such that 

(1.1) TV = T H V ® T X . 

Let P T X be the projection TV = T^V © TX —• TX. 
Let be a metric on TX. It was shown in [4, Section 1] that the datas 

(7T, g T X , T H V) determine an Euclidean connection V T X on (TX, g T X ) . Let us briefly 
describe the construction of [4]. 

Let g T S be an Euclidean metric on TS. Let V T S be the Levi-Civita connection 
on (TS,g T S ) . We equip TV = T H V © TX with the metric g T V = 7r*gTS © g T X . Let 
v t v , l be the Levi-Civita connection on (TV,g T V). Set 

(1.2) V T X = P T X V T V ' L . 
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14 Families of immersions and connections 

Let V T V be the connection on TV = T H V 0 TX 

(1.3) v T V = 7 r * v T 5 e v T X . 

Let T be the torsion of V T V . Set 

(1.4) S = V T V ' L - V T V . 

Then S is a 1 form on V with values in antisymmetric elements of End(TV). 
Classically, if A, B, C € TV 

(1.5) 
S(A)B - S(B)A + T(A,B) = 0, 
2 (S(A)B,C) + (T(A,B),C) + (T(C, A),B) - (T(B,C), A ) = 0 . 

Then by [4, Theorem 1.9], we know that 
- The connection V T X preserves g T X . 
- V T X , T and the (3,0) tensor (S(.),.) do not depend on g T S . 
- T takes its values in TX, and vanishes on TX x TX. 
- For any 4̂ e TV, S(A) maps TX into T H V. 
- For any A, B e T H V, S{A)B e TX. 
- If A = T H V, S(A)A = 0. 

Only the last statement is not proved explicitly in [4]. However it immediately follows 
from (1.5) and from the fact that T takes its values in TX. 

From (1.5), we derive easily that if A G T H V, B,C G TX, then 

(1.6) (T(A,B),C) = (T(A,C),B) ^- (S(B)C,A) . 

If U e TS, let U H € T H V be its lift in T H V, so that tt*U h = U. If U is a smooth 
vector field on B, the Lie derivative operator L v h acts naturally on the tensor algebra 
of TX. In particular, if U € TS, ( g T X ) ~ 1 LjjHg T X defines a 1-form on B, with values 
in self-adjoint endomorphisms of TX. 

Theorem 1.1 — The connection V T X on (TX,g T X ) is characterized by the following 
two properties : 

- On each fibre X, it restricts to the Levi-Civita connection of (TX,g T X ) . 

- IfU e TS, then 

(1.7) v££ = l v h + | ( » T * ) - 1 i W TX 

The following identities hold : 
- i f A , B e T H v , 

(1.8) T(A,B) pTX [A,B\. 
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An identity on the connection on the relative tangent bundle 15 

- i f U e T S , A e t x , 

(1.9) T(U H ,A) = l i g T ^ L u H g - r x A . 

Proof. From its construction, it is clear that the restriction of V T X to a fibre X is 
the Levi-Civita connection of the fibre. Let A be a smooth section of TX, let U be a 
smooth section of TS. Then 

(1 10) U»{A,A)=2(V% X A,A), 
U H (A, A) = 2 (L U H A, A) + ((gTX^LuHgTXA, A) . 

Since V ^ V U H = 0, from (1.10), we obtain 

(1.11) (T(UH,A),A) = \ { { g T x r i L u H g T X A A ) . 

By (1.6), both sides of (1.11) define symmetric bilinear forms on TX. So we get from 

( l .n ) 

(1.12) T(U H ,A) = ± ( g T X ) - i L u H g T X A . 

Also 

(1.13) VJjhA = [UH, A] + T(U H , A). 

From (1.12), (1.13), we get (1.7), (1.9). Finally if U, V are smooth sections of TS, 

(1.14) T(U H , V H ) = V l v

H V H - V l v

H U H - [UH, V H ) = 
{ V l s V ) H - { V l s U ) H - [UH, V H ) 

= \u, V) H - [UH, V H ] = - P T X [ U H , V H ] . 

The proof of Theorem 1.1 is completed. • 

1.2 An identity on the connection on the relative tangent bundle 

Let now g T V be a metric on TV which has the following properties: 
- g T V induces the given metric g T X on TX. 
- T H V is exactly the orthogonal bundle to TX in TV with respect to g T V . 

Let V T V , L be the Levi-Civita connection on (TV,g T V). We denote by ( , ) g T v the 
scalar product with respect to g T V . Still (S(.).,.) denotes the tensor associated to 
T H V, g T X which was described in Section 1.1. 

Now we recall a result of [14, Theorem 1.2]. 
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16 Families of immersions and connections ... 

Theorem 1.2 — The following identity holds 

(1.15) V T X = P T X V T V ' L . 

Moreover if A, A' are smooth sections ofTS, ifU,U' are smooth sections ofTX, if 
Y = U' + A H , Y' = A ' H , then 

(1.16) ( v l v > L Y , Y ' ) g T V ~ ( v Z v ' L Y ' , Y ) g T v =2(S V (U)Y,Y') . 

Remark 1.3. Formula (1.16) shows in particular that the second fundamental form 
of the fibres X with respect to g T V can be evaluated in terms of S v . 

1.3 Families of immersions and the corresponding connections on the 
relative tangent bundles 

Let i: W —> V be an embedding of smooth manifolds. Let ny'- V —• 5 be a 
smooth submersion with compact fibre X, whose restriction ttw • W —> S is a smooth 
submersion with compact fibre Y. Thus we have the diagram 

(1.17) Y W 
i i ttw 

X V 7Tv S 

Let TX = TV/S, TY = TW/S be the relative tangent bundles to the fibres X, Y. 
Let N w / v be the normal bundle to W in V, let N Y /x be the normal bundle to Y in 
X. Clearly 

(1.18) N w / V = N Y / X . 

Let T H V be a smooth subbundle of TV such that 

(1.19) TV — T H V © TX. 

Let Ny/x D e a smooth subbundle of such that 

(1.20) T X \ W = N Y / X ® T Y . 

Clearly 
THV~n*n,TS~n,TS, 

(1.21) 
Ny/x ^ N Y /x • 

By (1.19), (1.20), we get 

(1.22) T V \ W = T H V \ W ® N Y / X ® T Y . 
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Families of immersions and the corresponding connections ... 17 

By (1.22), we see that there is a well-defined morphism 

(1-23) T W / T Y - > T H V \ W ® N Y / X , 

and this morphism maps TW into a subbundle of TW. 
Definition 1.4- Let T H W be the subbundle of TW which is the image of p̂p- by the 
morphism (1.23). 

Clearly 

(1.24) TW = T H W @ T Y . 

Remark 1.5. The simplest case is of course when 

(1.25) T H y \ w = T H W . 
However in general this assumption is not verified. 

Let now # T 1 / be a metric on TV. Let g T W be the induced metric on TW, let 
gTX gTY k e the induced metrics on TX, TY. Note that even is g T V is of the type 
considered at the very beginning of Section 1.1, in general, g T W is not of this type. 

We identify N Y /x with the orthogonal bundle N Y /x to TY in T X ^ with respect 
to g T X \ w . Let g N v ' x be the induced metric on N Y / X . 
Definition 1.6. Let T H V (resp. T H W) be the subbundle of TV (resp. TW) which 
is the orthogonal bundle to TX (resp. TY) in TV (resp. TW) with respect to g T V 

(resp. g T W ) . 
Since the splitting 

T V \ W = T H V \ W © N Y / X © TY 

is orthogonal, one verifies immediately that T H W coincides with the bundle defined 
in Definition 1.4, associated to T H V and N Y / X = N Y / X . In particular 

T H W G T H V \ W ® N Y / X . T 

Remark 1.7. The manifold W intersects the fibres X orthogonally if and only if 
T H V \ W = T H W. 

To the triples ( i rv ,g T X ,T H V) (resp. (nyy, Q T Y ,T H W)), we can associate the 
objects we constructed in Section 1.1. 

In particular TX, TY are now equipped with connections V T X , V T Y which 
preserve the metrics g T X , gTY ^ e ajso denote by T v (resp. T w ) , the ten­
sor T constructed in Section 1.1, which is associated to {TTy,THV,gTX) (resp. 
(7r w ,T H W,g T Y ) ) . Recall that T H W C T H V \ W 0 N Y ' X . If A G TB, let A H , V € 
T H V, A H > W e T H W be the horizontal lift of A in T H V, T H W, so that 7rv*AH>v = 
A,7Tw*AH>w = A. 

Let P t y , P n y / x be the orthogonal projections TX\ Y —• TY, TX\ Y —• A^r/X. 
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18 Families of immersions and connections 

Definition 1.8. If A G TS, let Ah'Ny'x e NY/x be such that 

(1.26) AH<W = AH>V + AH,Nyr/x . 

Theorem 1.9 — The connection VTY is given by 

(1.27) VTY = PTYVTX\- . 

Proof. Let VTV'L (resp. VTW'L) be the Levi-Civita connection on (TV,gTV) (resp. 
(TW,gTW)). Let PTW be the orthogonal projection operator TV\W —• TW. Clearly 

(1.28) VTW'L = PTWVTV'L . 

Let PTX,PTY be the orthogonal projections TV = THV 0 TX -> TX, = 
T ^ e T y - ^ TY. By Theorem 1.2, 

yTX = pTX^TV.L ^ 
C1'29) yTr _ pTYyqTW,L 

Prom (1.28), (1.29), we get (1.27). • 

Let VNy'x be the connection on NY/x, 

(1.30) S7Nyr/x = Pn^ /x^ tx 

Then VN*/x preserves the metric gN^/x. 
Put 

(1.31) OyTXlw = VTY e VNY/X m 

Then °yTX\w is a metric preserving connection on TX\w = TY © NY/x- Set 

(1.32) A = VTX|w - °VTX|vv . 

Then A is a 1-form on W with values in antisymmetric elements of End(TX|w) 
exchanging TY and NY/x-

Since VTX restricts to the Levi-Civita connection of the fibres X, if B € TY, 
C € TY, 

(1.33) A{B)C - A{C)B = 0. 

To keep in line with our previous notation, we denote by ( , ) the scalar products 
which only depend on the datas {ny ,THV,gTX) or (7Tw,THW, gTY), while using the 
notation ( , ) rv, ( , )gT\v for the scalar products on TV, TW associated to the 
auxiliary gTV, gTW. 
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Theorem 1.10 — If B e TY, C GTS, D g TS, 

(1.34) {S V (B)C H < W , D H > W ) = ( S W ( B ) C H ' W , D H > W ) 
- \ ( V l x C H ' N r / x , D H > N ^ x ) + \ ( C H < N Y ' x , V l x D H < N r / x ) . 

If B G TY, C e T S , 

P T Y T V ( B , C H ' V ) = T W ( B , C H ' W ) + A(B)C H > N ^ X , 
(1.35) 

V % Y , X C H ' N * ' X = P n y / * T v ( B , C h > v ) + A(C H > W )B. 

Proof. Take B G TY, C,D G TS. Then using the properties of S v listed in 
Section 1.1, we get 

(S V {B)C H > W ,D H < W ) = {S V (B)(C H ' V + C H ' N r ' * ) , D H > v + D H ' N * 'x ) = 
(S V (B )C H > V ,D H ' V ) + ( S V ( B ) C H ' V , D H ^ X ) + 

( S V ( B ) C H > N ^ X , D H ' V ) . 

Let V T V > L be the Levi-Civita connection on (TV,g T V). By construction T H V is 
orthogonal to TX with respect to g T V , and g T V induces the metric g T X on TX.Then 
using Theorem 1.2, we get 

(1.36) (S V (B)C H > W , D H ' W ) = \ ( ( v l v ' L C H ' v , D H ' V ) t v 

- ( C H ' V , V T

B

V ' L D H ' V ) t v + ( v l v ' L C H ' v , D H < N r / x ) t v  

- ( c H ' v , V l v ' L D H - N ^ * } ^ + ( v T

B

v > L C H ^ / * , D H > v ) t v 

_(^ C H,N V / X V TV,L D H,V^ ^ 

Equivalently, using (1.15), and (1.29), we obtain 

(1.37) (S V (B)C H > W , D H > W ) = I ( ( v l v ' L C H ' w , D H > W ) t v 

- ( c H ' w , V l v ' L D H ' w } t v - ( v l x C H ' N Y / x D H ' N ^ x ) 

+ ( c H ' N * ' x , V T

B

X D H ' N ^ X » . 

Let V T W ' L be the Levi-Civita connection on (TW,g T W ) . Then 

(1.38) ( y l v ' L C H > w , D H ' w ) t v = ( v l W ' L C H ' w , D H > w ) t w . 
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By construction, THW is orthogonal to TY with respect to gTW, and moreover gTW 
induces the metric gTY on TY. By reapplying Theorem 1.2, we obtain 

(1.39) (Sw(B)CH'W, DH>W) = \ (VTBW'LCH'W, DH'W\ -

(cH>w,VTBw>LDH>w) tw . 

From (1.37)-(1.39), we obtain 

(1.40) (SV(B)CH<W, DH'W) = (SW(B)CH>W,DH'W) 
+ I (_ (yTXcH,nY/XDH,ny/x_ssddd̂  

+ (cH>Nv/x, vIxdh'Ny/x » , 

which coincides with (1.34). 
Using Theorem 1.9, we get 

(1.41) PTYTV(B, CH'V) = PTY ( - V ^ . v B - [P, CH'V}) 

= PTY {-V™WB + vTcUY/xB - [P, CH'W] + [P, C H ^ * \ ) 

= -Vtcyh,wB - [B,CH'W] + p t y v t x c h , n y / x 

= TW(B, CHyv) + A(B)CH^X , 

which is the first identity in (1.35). 
Now we use the notation of Section 1.1. By (1.2), (1.3), we get 

(1.42) v*y'xCh>Ny'x = P ^ / x v txch ,ny/x = pny /xv tvch ,w 

Also 

(1.43) VTBVCH'W = Vtcx,WB + [B,CH'W) + TV{B,CH'W). 

Since [B,CH>W] e TY, we deduce from (1.42), (1.43) that 
(1.44) pny/xv^y/xch,ny/x = pNY/xTv(B,CH>w) + A{CH'W)B, 

which is the second identity in (1.35). 
The proof of our Theorem is completed. • 

Let / i , . . . , fm be a locally defined smooth basis of TP, let . . . , fm be the 
corresponding dual basis of T*B. 

Theorem 1.11 — The following identity of tensors holds on W 

(1.45) f A / ^ A f j {&Ny/x , VT£W fi>NY/x ) 

+ i {/Z'Ny/x,tv (f?'V,f«-v) +i {/Z'Ny/x,tv (f?'V,f«-v) X= 0. 
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Moreover, if B 6 TY, then the following identities of tensors holds on W 

(1.46) +2 (vTÄwf"^x,B) + I (Tw (f«W,f»>wfff»>w)+2 (vTÄwf"^x,B) 

+2 ( v T Ä w f " ^ x , B ) + I (Tw (f«W,f»>w) , B ) \ = 0. 

Proof In the sequel, gTS denotes an Eucli+++dean metric on TS. Also we use the notation 
of Section 1.1. Clearly 

(1.47) 
tjTX rH,NY/x _ yjTV fH,W T-rTV rH,V v fh,wJ*y — v fh,w j ~ — v ,h,w j~y 

+2 (vTÄwf"^x,B) + I (Tw (f«W,f»>w) 

Using (1.47), we get 

(1.48) V!Zwf?'NY'x-VTJ.wf?'NY'x 

= [f*'w,f*'w] +Tv(f»'wJ?-")-[fWjW]Tv(fZ>v,f»>v).-Tv(fZ>v,f»>v). 

Also, by Theorem 1.1, 

(1.49) f / r , f"'W] = [fa, f ^ W ~ TW(f»'W, f»>W) , 
№ v , f ? ' v ] = [f*,f,]H>v-Tv(f?'v,f»'v). 

Using the fact that Tw(f£'w,f?'w) € TY, we deduce from (1.48), (1.49) that 

(1.50) f A / A p (f"'NY/x,VTÄwf?'NY/x) = 

f A / " A r h ({fß'N¥/X,TV(f^W, f f ) + [fa,i {/Z'Ny/x,tv (f?'V,f«-v). 

Also 

(1.51) /"A/^A p (fß'NY/X, TVUS 'VA p (fß'NY p (fß'/X,ß'NY/X TVUS 

/ " A / ^ A p (fß'NY/X, TVUS 'V + f?'NY/X, f?V + f?'NY/X)) • 

By (1.6), (1.50)-(1.51), we get 

(1.52) f A / " A f ( f?'NY'x, VTÄW f"'NY'x ) = 

/ " A / ^ A / I ((f£'NY/X,Tv(f?'V,f?>v) + [ / a , / 7 r ^ ) ) , 

which is exactly the identity (1.45). 
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22 Families of immersions and connections ... 

Take B € TY, C € TS, D G TS. Then using Theorem 1.10, we get 

(1.53) < V££, wDDDDDB) = ( A ( C H ' w ) D H < N ^ x , B ) 

= - ( A ( C H ' w ) B , D H ' N r / x ) 
= _ (yTX c H,N Y / x ^ D H , N Y / X ̂  

+ ( T v ( B , C h ' v ) , D h ' n y ' x ) . 

Prom (1.5),(1.53) and from Theorem 1.10, we obtain 

(1.54) ( V ^ , w Z ) f l ' % - - V ^ U S ) 

+ 2 ( V l x C H ' N r / * , D H ' N r / x ) 

- \ ( C H ' N v x , V l x D H ' N r / x ) - I (T V (C H > V ,D H < V ) ,B) 

+ l ( T w ( C H ' w , D H ' w ) , B ) 

= - 5 ( V % x C H ' N r ' * , D H ' N r ' x ) + | ( C H ' N Y ' x , V l x D H ' N r / x ) 

- ( S v ( B ) C H ' v , D H ' N v x ) + { S v { B ) D H ' v , C H ' N v x ) 

- ( S V ( B ) C H > V , D H ' V ) + ( S W ( B ) C H > W , D H ' W ) 
= _ I ( y T X C H , N Y / X i D H , N Y / x ) 
+2 (vTÄwf"^x,B)+I (Tw(f«W,f»>(f«Ww) 

- ( 5 V ( B ) C / / ' I V , + ( S ^ ^ J C ^ , ^ ) = 0, 

which is equivalent to (1.46). 
The proof of Theorem 1.10 is completed. 
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2. Kahler fibrations, higher analytic torsion 
forms and anomaly formulas 

In this Chapter, we recall various differential geometric properties of Kahler fibrations 
7r: V —> S [14]. Also we explain the local families index theorem of [4] in this context, 
we recall the construction in [14], [18] of analytic torsion forms, and we explain the 
anomaly formulas of [18]. 

This Chapter is organized as follows. In Section 2.1, we introduce the Kahler 
fibrations. In Section 2.2, we recall elementary results on Clifford algebras and 
complex vector spaces. In Section 2.3, we introduce the Levi-Civita superconnection 
of a fibration [4] and we state some of its properties established in [14]. In Section 2.4, 
we describe the superconnection forms of [4] and [14], which depend on u g]0, +oo[, 
and the corresponding transgression formulas. In Sections 2.5 and 2.6, we recall the 
results of [4], [14], [3] on the asymptotics of these forms as u —• 0 and u —» +oo. In 
Section 2.7, we construct the analytic torsion forms of [14], [18]. Finally in Section 2.8, 
we give the anomaly formulas of [18]. 

In this Section, we use the notation of Chapter 1. 

2.1 Kahler fibrations 
Let 7r: V —• S be a holomorphic submersion of complex manifolds, with compact 

fibres X. 
We use the notation of Section 1.1, except that now TV,TS,TX = TV/S denote 

the corresponding holomorphic tangent bundles, and TrV\TnS,TrX = T-rV/S the 
associated real tangent bundles. 

Let J T X be the complex structure on T r X . Let T H V be a smooth subbundle of 
TV such that we have the smooth splitting 

(2.1) TV = T H V ® T X . 

Let g T X be a Hermitian metric on TX. 
We recall the definition of a Kahler fibration, given in [14, Definition 1.4]. 

Société Mathématique de France 



24 kahler fibrations, higher analytic torsion forms . . . 

Definition 2.1. The triple (7r,# T X, T h V ) is said to define a Kahler fibration if there 
exists a smooth real 2-form uj of complex type (1,1) over V which has the following 
properties : 

a) uj is closed. 
b) Tj[V and Tj-[X are orthogonal with respect to uj. 
c) If A, B G TgX 

(2.2) «>(A,B) = ( A 9 3 T X B ) g T X . 

Let us now recall a simple result from [14, Theorems 1.5 and 1.7]. 
Theorem 2.2 — Let uj be a real smooth 2-form on V of complex type (1,1), which 
has the following 2 properties : 

a) uj is closed. 
b) The bilinear map A,B G Tj[X —> uj(J t x A, B ) g R defines a Hermitian metric 

g T X on X. 
For x G V, set 

(2.3) T**V = {Ae TXV, for any B G TXX , u x(A,B) = 0} . 

Then T H V is a subbundle of TV such that TV = T H V 0 TX. Also {<ir,gTX ,T H V) 
is a Kahler fibration, and uj is an associated (1,1) form. 

A smooth real (1,1) form oj' on V is associated to (7r, g T X ,T H V) if and only if 
there is a real smooth closed (1,1) form r\ on S such that 

(2.4) u - u = 7r*r). 

Under the assumptions of Theorem 2.2, let o j t x , u j h the restriction of uj to T r X , 
TgV so that 

(2.5) uj = u j t x + u j h . 

Let V T r X be the connection on ( T r X , # T r X ) constructed in Theorem 1.1, which is 
associated to {ir ,g T l l X \T$V). Let V a ( T r X ) be the connection induced by V T r X on 
A(T^X). Since TnV = T^V 0 T R X, there is an associated identification 

(2.6) MT*.V) = 7T* A(T nS) § A(r^X). 

Let a V be the obvious action of V a ^ T r X ^ on smooth sections of A(TpV'), so that if 
a,/3 are smooth sections of A(TpS), A(T^y), then 

(2.7) aV((7r*a)/3) = (7r*da)/3 + ( - l ) d e g a 7r*a A V a ( T r X ) / 3 . 
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kahler fibrations 25 

Theorem 2.3 — Assume that (7r,gTX\THV) is a Kahler fibration, and let uj be an 
associated (1,1) form. Then : 

a) The connection VTrX on T r X constructed in Theorem 1.1 preserves the 
complex structure ofTnX. It induces the holomorphic Hermitian connection 
VTX on (TX,gTX). 

b) As a 2-form, T is of complex type (1,1). Also if A G THV, B G TX (resp. 
A € THV, B G TX), then T(A, B) G TX (resp. TX). 

c) For any A € Tr,X, the 2-form (S(A).,.) on V is of complex type (1,1). Also if 
A e t x , b g t x 

(2.8) S(A)B = 0 , S(B)A = 0. 

d) The following identities hold 

(2.9) 

for any A G TUS, Lahujtx = 0, 
yTXjrx = o. í t x ^ t x = o on t h v x t r x x j ^ x 5 

«Vcjh = 0 on TgV x TgV x TgV, 

aVuH + it0jtx = 0 on TgV x TgV x TRX. 

Proof. Only the second part of b) is not explicitly proved in [14, Theorem 1.7]. 
However if A G T^V, B G TRX, by (1.5), 

(2.10) T(A, B) = PTXS(B)A. 

Since (S(B).j.) is of complex type (1,1), T(A, B) is of the same complex type as A. 
Our Theorem is proved. • 

Remark 2.4- The second identity in the second row of (2.9) is also a consequence 
of the fact that T is of type (1,1) and also of (1.6). The last identity in (2.9) says 
that if A, B G TjiS, uH{AH,BH) is a Hamiltonian function whose corresponding 
Hamiltonian vector field in Tj&X with respect to the fibrewise symplectic form ujtx 
is T(AH,BH). 

In [14, proof of Theorem 1.14], as a consequence of (2.8), it is shown that if 
ei, • • • j is an orthonormal basis of T r X , 

2£ 
(2.11) ^5(c<)ci = 0. 

i 

Consider the exact sequence 

(2.12) 0 —> TX —• TV —• n*TS -> 0. 
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26 Kahler fibrations, higher analytic torsion forms ... 

By identifying n*TS and T H V, let E G T * ^ V ® Hom(T"V, TX) be the extension 
which defines the holomorphic structure on TV. 

We extend E to a skew-adjoint section of T^V^End^ rv ) , which exchanges T r X 
and Tj[V. 

Theorem 2.5 — If A e TgV, B G T R X, then 

(2.13) E(B)A = T(A,B). 

Proof. Clearly the statement (2.13) is local on the base S. So we may as well assume 
that S is Kahler. Let u s be the Kahler form of a Kahler metric g T S on TS. Replacing 
u) by u;+^7r*u;5, which does not modify T H V or g T X , we may assume that V is Kahler, 
and that uj is the Kahler form of a Kahler metric g T V on TV. Then the Levi-Civita 
connection V T V , L on (TrV, <7T r V) induces the corresponding holomorphic Hermitian 
connection on (TV,g T V ). By Theorem 1.2, if A is a smooth section of T R V and if 
2?, C are smooth sections of TrX, we get 

(2.14) ( V ^ ' M , c ) - ( v ^ C , A) = 2 <SVCB)A, C> . 

Prom (2.14), we obtain 

(2.15) {E(B)A,C) = (S V(B)A,C) . 

Using (1.5), (2.15), we get 

(2.16) (E(B)A,C) = {T(A,B),C) , 

which gives (2.13). 

Remark 2.6. Of course (2.13) gives an essentially equivalent proof of most of the 
properties of T stated in part b) of Theorem 2.3. 

2.2 Complex Hermitian vector spaces and Clifford algebras 

Let E be a complex Hermitian vector space. Let E be the conjugate vector space. 
If z G 22, z represents Z = z + z G En, and \Z\2 = 2 \z\2. 

Let c(JSr) be the Clifford algebra of En, i.e. the algebra generated by 1, U G En, 
with the commutation relation UU' + U'U = - 2 (U, U f). Then A(E*) and A(E*) are 
Clifford modules. Namely, if X G E, X' G 2?, let X* G 25*, X'* G £"* correspond to 
X, X' by the metric. Set 

(2.17) 
c(X) = \/2X*A , c(X') = -V2ix>, 

c(X) = V2i x , c(X') = -V2X'* A . 
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The Levi-Civita superconnection of the fibration 27 

Then if £/, U' e £ r , 

c(U)c{U') + c{U')c(U) = - 2 (U, U') , 
( 218 } c(U)c{U') + c(U')c(U) = - 2 <E/, £/') . 

Also c{U),c{U') acts as odd operators on A(E*) 0 A(Z?*), and 

(2.19) c(U)c(U') + c(f/0c(t/) = 0. 

Let J be the complex structure of JEJr. Note that with respect to [19, Section 5 a)], 
our c(U) would be c(JU) in [19]. 

2.3 The Levi-Civita superconnection of the fibration 

The metric gTX induces a metric gMT*(0,1)x̂  on A(T*^0,1^X), and the connection 
VTX lifts to a unitary connection VA<T*(°'1)x) on K{T<°^X). 

Let £ be a holomorphic vector bundle on V, let g$ be a Hermitian metric on £. Let 
be the holomorphic Hermitian connection on (£, (^). 

We equip A ^ * ^ ' 1 ^ ) 0 £ with the tensor product of the metrics gMTm(0jl)x̂  an(j 
g*. Set 

(2.20) v a < t - < ° . 1 > = vA^(°,1)x) 0 1 + 1 0 V* . 

Then VA(T*(O'1)X>0* is a unitary connection on A(T<°^X) 0 £. 
Definition 2.7. For 0 < p < dimX, s G 5, let be the vector space of smooth 
sections of (AP(T*(°'1)X) 0^)|Xs over the fibre Xs. Set 

dim X 
(2.21) £s = © EJ , £s,+ = © , Es,- = © £J . 

p=0 p even p odd 

We regard the i£s's as the fibres of a smooth Z-graded infinite dimensional vector 
bundle over 5. Smooth sections of E over S will be identified to smooth sections of 
A(T*^o'1)X)0Cover V. 

Let *TX be the star operator acting on A(TpX), associated to gTX. We equip Es 
with the Hermitian product 

(2.22) a, a' € Es —> (a, ct)B, = (2ir)Lx <a A *TX(*')9t • 

Let dvx9 be the volume element in the fibre Xs. Then if a ,a ' £ ES1 

(2.23) (2ir)Lx _1_ 
2tt 

dimX 

DV 
+2 (vTÄwf"^x,B) + I (Tw (f«W,f»>w) 
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28 kahler fibrations, higher analytic torsion forms 

Definition 2.8. If U G Tr,!?, if s is a smooth section of E over 5, set 

(2.24) Vßs = V f r ( 0 , 1 ) *«* 5 . 

Clearly, is a connection on Let V e ' and V^" be the holomorphic and 
antiholomorphic parts of V^. 

Fors € S, let d s be the Dolbeault operator acting on i? s, and let d 3 be its 
formal adjoint with respect to the Hermitian product (2.22). 

The following result is proved in [14, Theorem 1.14]. 

Theorem 2.9 — The connection V E preserves the Hermitian product (2.22) on E. 
Its curvature V^' 2 is of complex type (1,1). Also 

(2.25) [V E ", d X ] = 0 , [V E ' , dX*] = 0. 

By (2.1), we have the identification of Z-graded vector bundles 

(2.26) A(T* ( 0 , 1V) <g> £ = 7r*A(r*(°'1)5) § K{T*^X) ® £. 

y 
Let d be the Dolbeault operator acting on the vector space of smooth sections of 
A(T*(°^V)<S>€ over V. By (2.24), (2.26), the operator V E " + d * also acts naturally 
on this vector space. 

The following result is established in [14, Theorem 2.8]. 
Theorem 2.10 — We have the following identity of operators acting on smooth 
sections of A(T*(°>VV) <g> £ over V, 

(2.27) d V = V E " + d X . 

Definition 2.11. Set 

(2-28) <T) = \ r f + 2 (vTÄwf"^x,B) + I (Tw  

Then c(T) is a section of 7r*A(T^5) ® End(A(r*(°>1>X) ® 0- We also define c { T ^ ) , 
c(T 0 ^) by formulas similar to (2.28). By (2.17), 

( ooo, cCT ( 1'0 )) T ( l l 0 ) . A <T(o») 
(2.29) —-j=— = 1 ' A , —-j=— - -z r ( 0 , i ) • 

By [14, eq. (1.41) and Theorem 2.6] 

(2.30) 

c( r(i,o)) 

V2 
= — i a , uj , 

c( r(o,D) 

V2 
= г lo ,ш . 
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Definition 2.12. For u > 0, set 

+2 (vTÄwf"^x,B) + I (Tw  c( t(1,0)) 

2y/2u 

(2.31) +2 (vTÄwf"^x,B) + I (Tw 
C(T(0,1)) 

2^2u ' 

B u = yfr(d x + d x * ) + v E - c(T) 
2V2u 

Then B u = B% + B f

u is a superconnection on in the sense of Quillen [32]. By [14, 
Section 2], B u is exactly the Levi-Civita superconnection of the fibration in the sense 
of [4, Section 3]. 

Let iVv be the operator defining the Z-grading on E, i.e. N\r acts by multiplication 
by p on E p . 
Definition 2.13. Set 

(2.32) N u = Nv 
i u H 

u 
Then N u is a section of tt* A(T£S) ® End(A(T*(°'1)X) 0 £). 

The following result is proved in [14, Theorem 2.6]. 

Theorem 2.14 — The following identities hold, 

(2.33) 

B ' J = 0 , B ? = 0, 
,b2

u] = o,[b'u,b
2

u] X 

[b':,b2

u] = o , [b ' u ,b
2

u ]=o , 

[BZ, N u] = - l u ^ - K , [B'u, N u] = 2u^-B' u . 

By (2.9), we get 

(2.34) [V E " ,u H } = 0 , [ V e ' , u j h ] = 0 . 

From (2.30), (2.31), (2.34), we get the formulas 

(2.35) 
Bl = e - ^ ^ v / 2 ( V E " + d x \ u - ^ e % r , 

B'u = e ^ u - ^ ' 2 ( v E ' + d X *) u"v/2 e-i*£ 

2.4 Superconnection forms and transgression formulas 

Definition 2.15. Let P s be the vector space of real forms on S which are sums of 
forms of type (p,p). Let P s ' ° be the vector space of the forms a e P s such that there 
exist smooth forms ¡3,7 on S with a = d/3 + cfy. 
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30 KAhler fibrations, higher analytic torsion forms ... 

We define P v , P v ' ° in the same way. 

Let * : A e v e n(T£S) —• A e v e n(T£S) be the map a -+ { 2 m ) - d e ^ 2 a . 
If A is a square matrix, set 

(2.36) 

Td(A) = d e t ( î - A ^ ) , 

Td'(A) = ^ T d ( A + 6)|6=o, 

(Td- 1)'(A) = y b T d - 1 ( A + b)\b=o 

ch{A) = Tr[exp(A)]. 

The genera associated to Td and ch are the Todd genus and the Chern character. 
Let P be a real ad-invariant power series on square matrices. If (F,g F ) is a 

holomorphic Hermitian vector bundle on V, let V F be the corresponding holomorphic 
Hermitian connection, and let R F be its curvature. Set 

(2.37) W r f - p ^ r y 

Then P(F,g F ) is a closed form which lies in P v , and its cohomology class P(F) does 
not depend on g F . We still denote by P(F) the classes of P(F,g F ) in P s / P 5 ' 0 . 

By [4, Theorem 3.4], we know that the forms <& Trs[exp(—jB^)] are closed, and that 
their cohomology class is constant and equal to ch(i?7r*£). 

By [14, Theorems 2.2 and 2.9], the forms $ Trs [exp(-s2)] a n d * ^ [Nu exp(-B*)] 
lie in P s . The following result is established in [14, Theorem 2.9]. 
Theorem 2.16 — For u > 0, the following identity holds 

(2.38) J U l Y s [ eM-BD] = ~ l ^ * T * > [N uexp(-B 2

u)} . 

If ( a u ) u > o is a family of smooth forms on 5, we will write that as u —• 0, 
a u = C(u k + 1 ) if for any compact set K C 5, and any p € N, there is C > 0 
such that the sup of a u and of its derivative of order < p on K are dominated by 
Cti* + 1 . 

2.5 The asymptotics of the superconnection forms as u —>0 

Now we recall a result established in [4, Theorems 4.12 and 4.16] and in [14, 
Theorems 2.11 and 2.16]. 

Theorem 2.17 — As u —• 0, 

(2.39) $ TYS [exp(-p2)] = / Td(TX, g T X ) ch(£, ̂ ) + €(u). 
Jx 
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There exist forms C_i, Co,.. . , Cfc,... g P s such that for k g N, as u —• 0, 

(2.40) *Tr 8 [N u eM~Bl)] = 
k 

-1 
C> J ' +©(u f e + 1 ) . 

Moreover 

C_i = a; 
2tt 

Td(TX,0 T X )ch(£ , / ) , 
(2.41) 

C 0 = (dimXTd(rA')-Td / (rX))ch(0 in P s / P s > ° . 

2.6 The asymptotics of the superconnection forms as u —> +oc 
dimX 

For s g 5, let if f | x ) = 0 # P ( X S , £ | x j be the cohomology of the sheaf of 
holomorphic sections of £ restricted to X s . 

We make the basic assumption that for 0 < p < dimX, the dimension 
of H P (X S , £ \ X ) is locally constant. Then the H(X s ,£ | X s ) ' s are the fibres of a 
holomorphic Z-graded vector bundle H(X,£\ X) on S. 

For s g S, set 

(2.42) k 8 = {/ g # s , a x 7 = o, a X a * / = o} . 

By Hodge theory, K s ~ jff(X s,^|X a). Since the H p (X s , £ \ X g ) have locally constant 
dimension, the K s 's are the fibres of a smooth Z-graded vector bundle K on 5, and 
moreover we have the identification of smooth vector bundles on 5, 

(2.43) H(X,S \ x ) c iK . 

As a subbundle of (E,g E ) , the vector bundle K inherits a smooth metric g K . Let 
gH(X£\x) k e t; n e corresponding smooth metric on H(X,£). 

For s g 5, let P K s be the orthogonal projection operator from E 8 on JFCS. Then 
P K s depends smoothly on s. 
Definition 2.18. Let V K be the unitary connection on (K,g K ) 

(2.44) V K = P K . 

Using the identification (2.43), the connection V K determines a unitary connection 
VH{X£\x) on H(X,$\ X). 

We now have the following result in [18, Theorem 3.2]. 

Theorem 2.19 — The connection V H ^ X ^ X ^ is exactly the holomorphic Hermitian 
connection on (H(X,£\ x), g H ( x & x ) ) . In particular, ^ H ( x ^ \ x ) only depends on the 
(1,1)-form uj via the metric g T X on TX. 
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Put 

(2.45) c h ( H ( X ^ \ x ) , g H ^ ^ ) = 
dim X 

i=0 
( - i r c h ( ^ ( X , e | x ) , ^ i ( X ' € | x ) ) . 

The operator iVV induces the obvious Z-grading on H(X,£\ X ) . 
By definition v^*'* 1**' 2 is the curvature of V ^ ( x ' ^ | x ) . Also as u —> +00, we 

use the same notation as for u —> 0. We recall a result of Berline-Getzler-Vergne [3, 
Theorem 9.19], also recalled in [18, Theorem 3.4]. 

Theorem 2.20 — As u —-> +00, 

(2.46) $Tr s [exp(-J32)] = <£>Trs exp f - V H ( * ' * | x ) ' 2 j ] + © 1 
dvr 

$Tr s [N uexp(-Bl)] = $Tr s [ iVvexp( -V K ( J f , € | j c ) ' 2 J J + 0 1 
vrd 

2.7 Higher analytic torsion forms 

For s G C, Re(s) > 1, set 

(2.47) C\s) = - 1d 
T(S) /o 

ve 
^ - ^ ( T r s f ^ e x p C - S 2 ) ] 

— Trs [AT v exp( -V / / ( x ' € | x ) ' 2 ) ] ) du. 

In view of (2.40), it is clear that C*(s) extends to a meromorphic function of s € C, 
which is holomorphic for |Re(s)| < ^. 

Similarly, if s € C, Re(s) < | , we define C 2( s) 8 5 m (2.37), replacing by f^°°-
In view of Theorem 2.20, it is clear that C 2( s) is a holomorphic function of s € C, 
Re(s) < I . 
Definition 2.21. For s € C, |Re(s)| < i , set 

(2.48) C(s) = C1(s) + C2(s). 

Then £(s) is holomorphic on its domain of definition. 
Definition 2.22. Set 

(2.49) +2 (vTÄwf"^x,B) d 
ds C(0). 

Observe that the component of degree 0 of T{uj,g^) is exactly the Ray-Singer 
analytic torsion [34] of the complex (E, d ). By analogy, the forms T{uj,g^) are 
called higher analytic torsion forms. 
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By (2.40), 

(2.50) 7V, 5 «) = - £ (*Tr 8 [N u eM~BD] - ^ - C 0 ) ^ 

- ^ + 0 ° $ ( l V s [ iV u exp(-^)] - I t . [ i V v e x p ( - V ^ i - ) - 2 ) ] ) ^ 

+ C_ i+r ' ( l ) (Co-^Trs [ A T v e x p ( - V H ^ ^ ) ' 2 ) ] ) . 

We recall the result of [14, Theorem 2.20], [18, Theorem 3.9]. 
Theorem 2.23 — The C°° form T{ui,g^) on S lies in P s . Moreover 

(2.51) | ^ T ( W , / ) = ch (H(X, C| x), g * x * M ) - jf Td(TX, g™) ch(£, <?«). 

2.8 Anomaly formulas for the analytic torsion forms 
Let now (ui',g'Z) be another couple of objects similar to (ui,g^). We denote with 

a ' the objects associated to (a/,g'^). 
Let f d ( T X , g T X , g ' T X ) e P v / P v ' ° , ch(£,<7«,<^) e P v / P v ' ° be the Bott-Chern 

classes constructed in [13, Section If)], such that 

(2.52) 
^ T d { T X , g T X , g ' T X ) = TA(TX,sT x) - Td(TX,g T X ) , 

^ c h ( £ , ^ , < / e ) = ch(£, </«) - ch(£ , / ) . 

Similarly we construct the class ch (H(X,^ \ x ) ,g H ( - x ^ x \ g ' H ( - x ^ x ^>) e P s /P s >°. 
Now we recall the anomaly formulas of Bismut-KOhler [18, Theorems 3.10 

and 3.11], which extend in arbitrary degree the anomaly formulas for Quillen metrics 
of [13], [15]. 
Theorem 2.24 — The following identity holds 

(2.53) Т(ш',д*)-Т(ш,д*) = с Ъ ( н ( Х ^ \ х ) , д н ^ М , д ' н ^ М ) 

- / (та(ТХ,д т х ,д™)сЦС,д*) + Та(ТХ,д™)&&к^Н*)) 

in P s / P s > ° . 

In particular, the class ofT{<jj,gt>) in P s /P s >° depends only on (g T X ,g^). 
Remark 2.25. For the component of degree 0 of T(u,g£), the content of Theorems 
2.23 and 2.24 is essentially equivalent to the curvature Theorem for Quillen metrics 
established in [13], [15]. 
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3. Kahler fibrations, resolutions, and Bott-Chern 
currents 

In this Chapter, we describe our basic geometric setting, i.e. the embedding i: W —> 
V, and the holomorphic submersion ny: V —> 5, ttw ' W —» S. Also 77 denotes a 
holomorphic vector bundle on W, and is a resolution of i*r] by a complex of 
vector bundles on V. We make the basic assumption that Rttw+V is locally free. 

In this Chapter, we construct the analytic torsion norms of the family of double 
complexes (E,d + v) along the fibres X, and we describe the Bott-Chern currents 
of [16], [17]. 

This Chapter is organized as follows. In Section 3.1, we give our geometric setting. 
In Section 3.2, we construct the analytic torsion forms of the family of double 
complexes, and in Section 3.3, we describe the Bott-Chern currents of [16], [17]. 

3.1 A family of double complexes 

Let i : W —» V be an embedding of smooth complex manifolds. Let S be a complex 
manifold. Let 7r| y : V —* S be a holomorphic submersion with compact fibre X, whose 
restriction ir\w • W —• S is a holomorphic submersion with compact fibre Y. 

Then we have the diagram of holomorphic maps 

(3.1) Y W 

i i rw 

X V 1tv 
s 

Let 77 be a holomorphic vector bundle on W. Let 

(3.2) (£,«): 0 ^ £ m ^ tm-i -» • • • -» £0 -> 0 

/ft 
be a holomorphic complex of vector bundles on V. We identify £ with Let 

0 
i". £,o\w —* be a holomorphic restriction map. We make the assumption that (£,v) 
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36 Kahler fibrations, resolutions, and Bott-Chern currents 

is a resolution of i*rj, or equivalently that we have the exact sequence of Gy sheaves 

(3.3) О -> Ov(ím) -» <V(ím-i) - > . . . - » Ov(£o) -» *.Ow(t/) -» 0. 

Then for every s E S, (£,v)\xa provides a resolution of i*r]\Ya-
Definition 3.1. For s G S, 0 < p < dimX, 0 < i < m, let Ff s be the vector space of 
smooth sections of (A(T*(0,1)X) <g> £i)\x. on the fibre X s . Set 

(3.4) 
ET. = t B EL, Er = m E?„ Ei,a = ET. © E r , 

p even p odd 
F + , s = 0 E? s , F_, s = 0 ^ ^ ^ . e ^ . 

p—i even p—i odd 

Then the objects in (3.4) are the fibres of infinite dimensional vector bundles on 
S. 

The Dolbeault operator d acts fibrewise on E. Also the chain map v acts on £ as 
an odd operator. We extend v to an odd operator acting on A(T*(0,1^X) ® £, so that 
if a € A*(T<0>VX), / € £, 

(3.5) v(ot <§) / ) = ( - l ) p a ® vf . 

Then we have the identities 

д х ' 2 = о , v 2 = о , d x v + v d x = о, 

and so 

(3.6) (d X + v ) 2 = 0. 

Let N$ , JVh be the operators acting on A p (r* ( 0 , 1 )X), & by multiplication by p, i. 
The operator iV^ — Nn acts naturally on F, and defines a Z-grading on E, for which 
d +v increases the degree by 1, i.e. d + v is a chain map. 
Definition 3.2. For s € 5, 0 < q < dimF, let Fj* be the vector space of smooth 
sections of (A«(r*<0,1)y) ® rj)\Y. over F s . Set 

(3.7) F + , s = 0 F*, F_, s = 0 F*, F s = F + , s 0 F_, s . 
<? even q odd 

Again the objects in (3.7) are the fibres of corresponding infinite dimensional vector 
bundles over S. The Dolbeault operator d acts fibrewise on F. 

Let N$- be the operator acting on A^(T*^Y) by multiplication by q. Then N$ 
—Y acts naturally on F, and defines a Z-grading for which d increases the degree by 1. 
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Let H(X a j £\ X a ) be the hypercohomology of (G x Mx a ) , v ) 9 let H(Y s,rj\Y s) be 
the cohomology of Gys(v\ys)- Then since (3.3) is exact, for any s G S, the map 
r: €x 3(€\x s) —> ®ys(v\ys) - s a quasi-isomorphism, and so 

(3.8) H(tr,\Y.).Xa,t\x.tr,\Y.).)c~H(Y.tr,\Y.). 

By a result of Dolbeault and by [19, Proposition 1.5], for every s € 5, 

(3.9) 
H ( E s , d X + v)~H(X s y t ; \x s ) , 

H(F s ,d )~H(Y„r , \ X m ) . 

We extend r to a morphism £|v^ —• rj, with r = 0 on i > 0. For s G S , let r s be 
the restriction map 

(3.10) r* : a G £7a (z* ® r)a G F s . 

Now we recall a result in [19, Theorem 1.7]. 

Theorem 3.3 — For any s G S, the map r s : (E s ,d + v) —> (.Fs,d ) is a quasi-
isomorphism of Z-graded complexes. It induces the canonical identification 

(3.11) H ( E s , d X +v) ~ H { F s , d Y ) . 

In the whole paper, we assume that dimU(X, £|x) is locally constant. Then the 
if(X s ,£|x s) 's are the fibres of a holomorphic vector bundle H(X,£) on S. By (3.8), 
the dimension of the H(Ys,rj\ysys is locally constant, and so the H(YS, ̂ |y-3)'s are the 
fibres of a holomorphic vector bundle H(Y, rf) on S. By (3.8), (3.9), (3.11), we get the 
identification of holomorphic Z-graded vector bundles on S 

, , H(X,Z\ x)czH(Y,ri\Y), 
(3-12) _ x _ Y 

H(E,d + v ) ~ H ( F , d ). 

3.2 The analytic torsion forms of the double complex 

Let u>v, o j w be real smooth (1,1) forms on V, W which have the properties a) 
and b) indicated in Theorem 2.2. 

To uj v , u w , we associate the objects considered in Chapter 2. To distinguish them 
from one another, we will often denote them with a superscript V or W. Also g T X , 
g T Y denote the Hermitian metrics on TX, TY induced by lu v , u j w . 

Let N W / V be the normal bundle to W in V, let N Y /x be the (fibrewise) normal 
bundle to Y in X. Clearly N W / V ~ N Y / X - We identify N Y / X to the orthogonal bundle 
to TY in TX\w with respect to g T X \ w . Let g N v / x be the corresponding metric on 
Ny/x-
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38 Kahler fibrations, resolutions, and Bott-Chern currents 

As in Section 1.3, one verifies easily that T™W is obtained from T^V by the 
construction indicated in Definition 1.4. 

Let g€°,..., ĝ ™, g v be Hermitian metrics on £o> • • • > £m ? V- We equip £ = @ & with 

the metric = ® g^. Let v* be the adjoint of v with respect to g^. Put 
¿=0 

(3.13) V = v + v*. 

We equip the fibres of E (resp. F) with the Hermitian product (2.22) associated to 
9 T X , 9^ (resp. g T Y , g11). 

For u > 0, let (0 < z < m), P ^ be the superconnections on Ei, F associated 
to (uj v\g^) and to (uj w\g v), whose construction was given in Definition 2.12. 

Then we can construct the analytic torsion forms T(uj v\g^) and T(u>w,g v) as in 
Definition 2.20. By Theorem 2.23, 

(3.14) | r ( ^ , j ' ) = ch(P(F, t , \ y ) , 9 H ™ y ) ) - J Td(TF, g T Y ) chfa, g*). 

To describe the analytic torsion forms associated to (a;^,^), we modify the 
constructions of Chapter 2. Set 

(3.15) 

B ' ? = V ï ( d x

 + v) + v E " 
C(T(1,0)) 

2V2u 

B'Y = J Ï Œ X * +v*) + V e c(T(o,D) 
2V2u 

B u = B U

V + B„ 

As in (2.5), we write u v in the form 

(3.16) u v = u v , t x + u j v , h _ 

Définition 3.4- For u > 0, set 

(3.17) K = N$ - N H 4 
iu v > H 

U 

The différence with respect to (2.32) is that the number operator N * has been 
replaced by the new number operator N$ — Nu. 

Then by [14, Theorem 2.6], B^ ,N^ verify the obvious analogue of Theo-
rem 2.14. By [14, Theorems 2.2 and 2.9], the forms $Tr s |exp(-I?^'2)j and 

$Tr s |]V^exp(-B^' 2)] lie in P s . Also by [14, Theorem 2.9], the analogue of Theo­
rem 2.16 holds, i.e. for u > 0, 

(3.18) ^-ФТг 8 ехр ( -БГ) = - ^ Ф Т г 8 К е М - К П 
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Put 
m 

ch(£,ff«) = £ ( - 1 ) ^ ( 6 , ^ ) , 

(3-19) r 

ch'(S,gS) = J2(-l) iich(Z i,gS<). 

Then by [14, Theorems 2.2 and 2.16], the following analogue of Theorem 2.17 holds. 

Theorem 3.5 — As u —> 0, 

(3.20) * Trs [exp(-B* 2)] = f Td(TX, g T X ) ch(£, / ) + 0(ti). 

There exist forms DY.X,D%,..., D \ . . . G P 5 sucft that for h e N, as u —• 0 

(3.21) * TVS expf-B^ 2)] = Yl D Y U J + ° ( u f c + 1 ) • 

Moreover 

D% Ĵ Td(T)ch&X,gTX)ch&)ch&gS)ch&), 

(3.22) D% = f (dimXTd(TX)-Td'(TX))ch(0 
Jx 

- f Td(TX)ch'(0 in P s / P s > ° . 
Jx 

For s G 5, set 

(3.23) K s = {/ G E s , (S* + t;)/ = 0, (d** + v*)/ = o} . 

Then by Hodge theory, KY ^ H(X a ,£ \ X a ) . Since the ff(Xs,£|xJ's have locally 
constant dimension, the KY are the fibres of a smooth Z-graded vector bundle K on 
S, and moreover 

(3.24) H ( X , £ \ X ) ~ K . 

As a subbundle of E, K inherits a smooth metric g K . Let gH(x>ZM the corresponding 
metric on H(X^\x)- The arguments of [18, Theorem 3.2] show that the obvious 
analogue of Theorem 2.19 holds. 

Put 

(3.25) ch (H(X,£ \x ) ,g H ( x > & x ) ) = ^ ( - l ) i c h ( ^ ( X f ^ ) , f f f r i ( ^ > ) . 
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40 Kahler fibrations, resolutions, and Bott-Chern currents 

Then by proceeding as in [3, Theorem 9.23], the obvious analogue of Theorem 2.20 
still holds. 

By replacing in (2.47) B u by B u , N u by N u , as in Definition 2.22, we construct 
a form T{ujv,g^) G P s such that the analogue of Theorem 2.23 holds, i.e. 

(3.26) ^ - T { u v , g t ) = ch ( H ( X , S \ x ) , g H ( x * M ) - J Td(TX,g T X ) ch(£,^). 

A simple modification of the arguments of [18] shows that the analogue of 
Theorem 2.24 still holds. 

3.3 Assumptions on the metrics on £, rj 

In the sequel we assume that the metrics . . . ,g^m verify assumption (A) of [5, 
Section lb)] with respect to g N y r / x ^g11. We describe this assumption in more detail. 

Recall that N W / V = N Y /x- On W, we have the exact sequence of holomorphic 
vector bundles 

(3.27) 0 —• TW —• TV\v —• N Y / X —• 0. 

For y G W, let H(£,v) y be the homology of the complex (^^v)y. Then by [5, 
Section lb)], the H(£, v) y

1s have locally constant dimension. So they are the fibres of 
a holomorphic vector bundle H(£,v) on W. 

If y G W, U G TV\w, let duv{y) be the derivative of v with respect to any given 
holomorphic trivialization of £ near y. Then by [5], duv(y) acts on if(£,t>)y, and the 
action depends only on the image z of U in N W / y = N Y /x- So we will write dzv(y) 
instead of duv{y). By [5], (d zv(y))2 = 0. 

Let 7r be the projection N Y / X —> W. By [5, Theorem 1.2], we have the canonical 
identification of complexes on N Y /x 

(3.28) (n'Hfov^dzv) ^ (n*(A(Nl / x )®ri) ,V=li x ) . 

Recall that V was defined in (3.13). By finite dimensional Hodge theory, 

(3.29) H(t ,v)<z{aet \w , Vs = 0 } . 

Let gH(€>v) be the smooth metric on H(£,v) associated to the right-hand side of 
(3.29), considered as a vector subbundle of £\w-

Both sides of (3.28) are now equipped with a Hermitian metric. We say that 
assumption (A) is verified if (3.28) is an isometry. 

By [5, Proposition 1.6], given g N y r / x ,g v , there exist gt°, . . . verifying assump­
tion (A) with respect to g^ '*^* 1 . 
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A Bott-Chern current 41 

3.4 A Bott-Chern current 

Let = 0 be the holomorphic Hermitian connection on (£,#^) = ©(£i,<7^)-
For u > 0, put 

(3.30) c u = v t + yftiv. 

Then C u is a superconnection on £ in the sense of Quillen [32]. 
By [32], the forms ft Trs[exp(—C%)] are closed and their cohomology class is equal 

to ch(£). By [13, Theorem 1.9], the forms ft Trs[exp(-C2)] and ftTrs[iVHexp(-C2)] 
lie in P v . If if is a compact subset of V, let || Hci(vo ^e a norm on the Banach 
space of C 1 forms on V with support in K. 

Nowe we recall result of [5, Theorems 3.2 and 4.3]. 
Theorem 3.6 — For any compact set K C V, there exists C > 0 such that if 
/i G C x (y) has compact support in K, then 

(3.31) |^/z$Tr s[exp(-C2)] - l ^ № à T \ N Y i X ì 9
N * i * ) < M n , 9 * ) 

c 
< ^ = Memo > 

\ f »*Tr s [N H exp(-Ct)}+ J r M ( T d - 1 ) ' ( i V y / x , 5

N v - / x ) c h ( j ? ^ r , ) 

\Jx Jy 
Q 

< ^ = \\iA\chk) • 

Definition 3.7. Let P ŷ be the set of real currents on V which are sums of real currents 
of type (p,p), whose wave front set is included in iV"^yVR — ̂ y/x,H',b2

u] = o,b2

u]^
e 

set of currents a G P^r such that there exist currents /3,7 on V, whose wave front set 
is included in i V ^ V R , with a = d/3 + $7. 

Let 5{vr} be the current of integration on W. Then S{w} £ ^w-
Definition 3.8. For s G C,0 < Re(s) < 1/2, let R(£,gc)(s) be the current on V 

-i r+oc 
(3.32) R[(:igZ)(8) = — J u - ^ S T ^ n e x p C - C S ) ] 

+(Td" 1 ) ' ( iV y / x , ^ / * ) chfa,,b2

u] = o,[b'u,b
2

u]} . 

Clearly by Theorem 3.6, the map s —• i?(£,#^)(s) extends to a map which is 
holomorphic at s = 0. 
Definition 3.9. Let T(£,#^) be the current on V, 

(3.33) T(£,<7«) = ^i?(£,«7«)(0). 
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42 Kahler fibrations, resolutions, and Bott-Chern currents 

By [16, Section 4a)], we know that T(£, #£) is given by the formula 

(3.34) T(£,gt)= [ \ T r s [Afc(exp(-C*) - exp(-C0

2))] — 
.70 u 

+ / {$Tr s [NueM-CD] + (Td- 1) '(iV y / x , 5^)ch( 77,5 7 ?)5{VK}} — 

- f'(l) { c h ' ( ^ ) + {Td- 1 y(N Y / x ,g
N r '* )ch(r i ,g ' ' )6 { w } } . 

The following result is proved in [16, Theorem 2.5]. 

Theorem 3.10 — The current Tfahfi) lies in P\y* Also the following equation of 
currents holds on V 

(3.35) 2 ^ r & 0 * ) = ^ W y / X ' ^ ' ^ M V i W i W } ~ ch(C^) . 

Remark3.ll. Since Tfag*) e Py£, it follows from [30, Theorem 8.2.12] that 

/ Td(TX,g T X ) Tfagt) is a smooth form on 5. Of course this form lies in P s . 
Jx 
Also by [17, Theorem 2.5], the dependence of the class of T(f in P ^ / P $ ° with 
respect to ĝ  can be calculated in terms of Bott-Chern classes. 

Astérisque 

http://Remark3.ll


4. An identity on two parameters differential 
forms 

The purpose of this Chapter is to construct a differential form ¡3 on R+ x R+ x S and a 

contour T in R+ x R+ depending on three parameters e, -A, To such that J (3 € P 5 ' 0 . 

To prove Theorem 0.1, we will later push T to the boundary of R+ x R+. 
This Chapter is the obvious extension of [19, Section 3] to the case of a general 

S. As in [19], our results can also be obtained from general results of [5] on the 
dependence of the superconnection forms on the given metrics. 

This Chapter is organized as follows. In Section 4.1 we construct a basic form a 
on R+ x R+ x 5. In Section 4.2 we obtain the form /3 by a change of coordinate 
of coordinates. In Section 4.3 we describe the contour T. Finally in Section 4.4, we 
establish elementary identities which will be used in Chapter 6. 

In this Chapter, the assumptions and notation of Chapter 3 will be in force. 

4.1 A basic identity of differential forms 

For u > 0, T > 0, set 

(4.1) 
A u . t = BX2+TV: 

NX = AT* 
tu,*" 

u 
Then A U i t is a superconnection on E. Put 

(4.2) du.T — dix 9 ,rr, 9 
d u ' d r 

Then dUiT is the standard de Rham operator acting on smooth forms on R^ x R?j_. 
We prove an extension of [19, Theorem 3.3]. 

Theorem 4.1 — Let a u t be the form on R I x RT x S, 

(4.3) a u , T = ^ Trs [JV^ e x p ( - ^ T ) ] - ^ Trs [ N H e x p ( - ^ t T ) ] 
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44 An identity on two parameters differential forms 

Then 

(4.4) dUtTau,T = 

dTdu \д— { Trs —!¿ ехр(-Л2>т - íw*) 

+ Trs ^ e M - A l r - b i - B Z ) . „ 

+DDD DS - ^ - e x p ( - £ T - b v ) 

,b2u] = o,[b'u,b2u],b2u] = o,[b'u,b2,[bb2u DD D D] 

Proof. By the analogue of (2.33), we get 

(4.5) All/r — L4 т Л,,^], \A-.-n Л,, — 0, \А,.Т, А..--] — О. 

Prom (4.5), we obtain 

(4.6) 1_A2 _ \ A „ ^ L ] + \A' ^ 1 

Using (4.5), (4.6) and the fact that supertraces vanish on supercommutators [32], 
(4.6), we get 

(4.7) ATrs[iVy2exp(-<T)] = 

I Trs [ n $ exP ( - < T - 6 [ < T , ^ ] - b \A'UtT, ^ ] ) ] 

= d - Trs [<2 e x p ( - < t - 6«*)] b=0 

+ 0 ^ Trs [<2 e x p ( - < t - H ] ^ 

- ̂ T r s , b 2 u ] = o , [ b ' u , b 2 u ] e x p ( - < T - bv*)]b=o 

- g TVS [ [в&, n £ \ е х р ( - < т - bV)\ . 
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Using Theorem 2.14, we have 

(4.8) - A Trs [ [B$ ' ,N¿ \ е х р ( - < т - bv*)]b=o 

-%-Trs B $ , N $ е х р ( - < г - о г , ) 

= — TVS u—A'It exp(-AltT - bv*) db l du ' \ь=0 

- 4-Trs u-^-A' T ex.p(-Al T - bv) db l du jb=0 

By (4.7)-(4.8), we find that 

(4.9) ^ T r s f ^ e x p ( - < r ) " = a l i u 

|-TÏS d§S dkle < T e x p ( - < r - ^ ) 

- — TrsDDD DDDE ехр(-Л£)Г - òu) 
ob duDD DSD. n 

+ д|-Т*8 - ¡ ¿ e x p C - ^ r - o t ; * ) 
ob I u Jb=0 

+ d%r Trs № e x p ( - < T - H 
do L u Jb=o 

Similarly 

(4.10) ^ T r s [ATHexp(-^T)] = 

| Trs [iVH exP ( - < r - 6 [ < T , A < r ] - 6 [ < r , ± < r ] ) ] fe=o = 

=,b2u] = o,[f K t - ^ h ] exp ( - < t - ^ K . t ) ] 

- I ; Trs f K>T, iVH] exp ( - < t - & ^ < t j j 

+ 5 ^ Trs [iVH exp (-A2U)T - ^ < , r ) J b=o 

+ 9 i ^ [ ^ « p ( - < r - ^ < t ) ] • 
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Moreover 

(4.11) - | TV, [ [ < „ ЛГ„] exp ( - Al,T - 6 ¿ * , ) ] ^ 

- ¿ TV. [ К Т > Л н ] « ф ( " < г - ' ! ; < r ) j _ 

= - t l l v - [ l ; < ' ' e x p ( - < t - 6 " * ) ] 1 = „ 

+ D DFDD Trs ^ < , t exp(-^ tT - H ^ . 

From (4.9)-(4.11), we get (4.4). 
Remark 4-2. As in [19, Remark 3.4], Theorem 4.1 can be also considered as a 
consequence of [5, Theorem 2.2]. 

4.2 A change of coordinates 
For u > 0, T > 0, set 

(4.12) Ви,т = В%2 + uTV. 

Equivalently 

(4.13) Ви,т = В%2 + uTV. 

Theorem 4.3 — Let ßUir be the form on R̂ j_ x Rl!j_ x Sf 

(4.14) 0u,t = ^ T r s [ ( N ^ - N H ) e x p ( - B l T ) ] - ^Trs[NHexp(-BlT)] . 

The following identity holds 

(4.15) du,Tßu,T = udTdu DSSDD Í t t8 № exp(-BliT - bv*) 

+ d£rSDDD ¡Trs № eH] +xp(-52,t - rs № eH] 

+ d£r ¡Trs № exp(-52,t - H ] + 

+ d£r ¡Trs № eH] +xp(-52,t - rs № eH +xp(-52,] 

Proof By making the change of variables u —> u, T —• txT, our Theorem follows 
from Theorem 4.1. • 
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4.3 A contour integral 

We fix constants e, A, T0 such that 0 < e < l < A < +00, 1 < T0 < +00. Let 
r = T£ia,t0 he the oriented contour in R+ x R+, 

u 

A 
r2 

r3 T1 

s 
r4 

0 1 T0 T 

As indicated in the figure above, T is made of four oriented segments Ti , . . . , T4. 
Also r bounds an oriented rectangular domain A. 
Definition 4-4- Let 7, S be the forms on 5 

(4.16) 

7 = 
A 

a 
db 

Tis fjvX exp(-BlT - bv*] 

+ Trs 
DD 
T 

exp -BlT - b 
d 

du 
TDV' 

6=0 
dTdu, 

6 = 
d 

DV 
Tra\NX2exp(-BZ.T-bv)\ 

+ Trs DD 
T exp | a\NX2ex 

du 
BU2 

6=0 
dTdu. 

Theorem 4.5 — The following identity holds 

(4.17) 
r 

8 = d-y + dô 

Proof. Identity (4.17) follows from Theorem 4.3 and from Stokes formula. 

Put 

(4.18) Âk — 
V 

$3 1< k < 4. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 



48 An identity on two parameters differential forms 

Then identity (4.17) can be put in the form 

(4.19) 
4 

fc=l 
1°к = Ф(д-у° + до0). 

As in [19], the proof of Theorem 0.1 will consist in making A —• -foo, To —> +oo, 
e —> 0 in this order in identity (4.19). 
Remark ^.6. In Chapter 14, we will construct a form /?' which is the analogue of /3 
when interchanging u and T. This way, we will prove Theorem 0.2. 

4.4 Some elementary identities 

Now, we will eliminate the differential operators ddu BBu2 in the expression (4.16) 
for 7, ô. This will prove to be useful in Chapter 6. 
Proposition 4.7 — The following identities hold 

(4.20) 
d , 
db 

IVS 
dd 
uT exp ~BU,T — 

a 
du 

B«2 
I 6=0 

dr 

d d 
db 

dd DD 
uT 

xp(-B2iT - bv* 1. Il2 
u 

4-
dr 
db TVs 

dx 
u 

exp(-B2iT - bv* 
6=0 

dd 
56 

TVS d 
d 

exp xp(-B2iT - bv* d 
du 

dx 
6=0 

1 6=0 
s 

-d d 
db 

TVS d 
uT 

xp(-B2iT - bv* dx 
u J 6=0 

+ 
d 
db TVS dd 

u 
xp(-B2iT - bv* 

6=0 

Proo/. We write BU,T in the form BUjT = B^T + B'uT. By Theorem 2.14, 

(4.21) 
d 

du 
dv 
l2 dv 

d1 
u 

B'u,TiNu* 
dv 
du 

r>Vf _ — 
1 

U 
xp(-B2iT - bv* 

V = 
1 

uT xp(-B2iT - bv* V* = - 1 
uT 'KT,Nn] 
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From (4.21, we get 

(4.22) 9 
db 

Nu2. 
Nu2. 
u7 exp Bu,T ~ 1 

Nu2. 
du 

B Z ' 
6=0 

d 
db 

TVs 
Nu2. 
uT exp ~ Bu,T b 

u 
B 'u,T' Nu 2 . Nu 2 . 

6=0 
= d d 

db 
TVs 

Nu2. 
uT exp - B l , T - b 

Nu2Nu2.. 
u 6=0 

d 
db 

TVs B'u,T> 
Nu2. 
uT exp b u , t ~ ftNu2. 

Nu2. 
u 6=0 

= 0 
Nu2. 
9ft 

TVs 
Nu2. 
uT 

exp - B * T - b 
Nu2. 
u 6=0 

d 
db 

TVs exp - B i rp — b 
NY 

u 6=0 
= 9 d 

db 
TVs iVH 

uT exp ( - B i T - 6 
Nu2. 

u 6=0 
9 
96 TVs NY, 

U e x p ( - B * - b v * ) N u 2 . N u 2 . 
6=0 

So we get the first identity in (4.21). The second identity has a similar proof. 

Definition Let 77, (9, A be the forms on 5, 

(4.23) 

7? = 2 
'a 

9 
96 

TVs NY 
u 

exp(-B^ T - buTv*)Nu2. 
6=0 

Nu2.Nu2. 
Tu 

6 = 2 
/a 

9 
96 

TVS 

NY 
u 

e x p ( - B l T - buTV 
6=0 

dTdu 
Tu 

A = 
a 

9 
96 

TVs [ iV H exp(-S2 T _ bN%)] b = o

Nu 2 . dTdu 
Tu 

fi = 2 
'a 

9 
96 

TVS A T H e x p ( - ^ T - buNu2. 9 
9u 

Nu2. 
6=0 

dTdu 
Tu 

v = 2 
a 

9 
96 

TVS Afa exp(—B% T —Nu2. bu 9Nu2. B V J) dTdu 
Tu 9u 

Proposition 4.9 — The following identities hold, 

(4.24) •y = n + d\ = u — dX 
5 = 6 -dX = v + dX. 

Proof. Equation (4.24) follows from Proposition 4.7. 
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50 An identity on two parameters differential forms 

Then we can rewrite (4.17) in the form 

(4.25) 'r 
P = dn + d9 + 2dd\, 

S 
/3 = dn + d i s - 2ddX, 

and (4.19) can be rewritten as 

(4.26) 

a 

k=l 
i l = Hdr? + do°) dd$\° 

in 
4 

k=l 
i l = *{dn 0 + dv 0) ддФ\° 

in 
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5. The analytic torsion forms of a short exact 
sequence 

In this Chapter, we recall the main results of [6] on the construction and the evaluation 
of the analytic torsion forms associated to a short exact sequence of holomorphic 
Hermitian vector bundles. Also we establish non trivial identities on such generalized 
supertraces which will be needed in Chapter 6. 

This Chapter is organized as follows. In Section 5.1, we give a formula for the 
curvature 28̂  of the superconnection S8U considered in [6]. In Section 5.2, we introduce 
two conjugate superconnections ^,2)^5 whose curvatures reappear in Chapters 12 
and 13, and whose geometric interpretation will be given in Chapter 15. In Section 5.3, 
we introduce the generalized supertrace Trs [exp(—95 )̂] of [6]. In Section 5.4, we recall 
the transgression formulas of [6] and the results of [6] on the behaviour as u —> 0 
or u —• +00 of the generalized supertraces. In Section 5.5, we construct the analytic 
torsion forms of the exact sequence. In Section 5.6, we recall the explicit evaluation in 
[6] of these analytic torsion forms. In Section 5.7, we construct equivariant analogues 
of these analytic torsion forms, with respect to the obvious action of the complex 
structure. In Section 5.8, we establish non trivial identities on generalized supertraces, 
which will be needed in Chapter 6. Finally in Section 5.9, we give a formula for a 
conjugate of a curvature operator which will be used in Chapter 13. 

5.1 Short exact sequences and superconnections 
Let B be a complex manifold. Let 

(5.1) 0 - * L - > M - > i V - * 0 
i 3 

be a short exact sequence of holomorphic vector bundles on B. 
Let g M be a Hermitian metric on M. Then g M induces a Hermitian metric g L 

on L. We identify N with the orthogonal bundle to L on M. Therefore N inherits a 
metric g N . Let P L , P N denote the orthogonal projection operators from M on L, N 
respectively. 
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52 The analytic torsion forms of a short exact sequence 

Definition 5.1. For y G B, let Iy be the set of smooth sections of (A(M*) ® A(N*))y 
along the fibre Mr,)2/. 

Then Jy is a Z-graded vector bundle on B. Let I = J+ 0 I~ be the corresponding 
splitting of / into its even and odd part. 

Let dvM be the volume form on the fibres of M. We equip Iy with the Hermitian 
product 

(5.2) f,g e l y ^ (f,g) = 1 > 
2tt 

dim M 

M 
(/, g) dvM • 

Let dMy be the Dolbeault operator acting on Iy, and let QMy* be the formal adjoint 
of dMy with respect to (5.2). Put 

(5.3) D ? = дМ»+дМу\ 

If z' G N, the operators izi and i*, act as odd operators on A(M*) ® A(iV*). II 
Z; = y + ^ € JVr, put 

(5.4) V(Z') = VZi(tz, - i * , ) . 

Equivalently, with the notation of Section 2.2, 

(5.5) V(Z') = ^ ^ f 1 • 

Let VL, VM, be the holomorphic Hermitian connections on L, M, AT and let i?L, 
jRM, i?^ be their curvatures. 

The connection VM defines a horizontal subbundle THM of TM. If *7 € TR£, let 
UH be the horizontal lift of U in TpfM. 

Let vA(ir)§A(isr) be the connection induced by VM and on A(M*) <§> A(Af*). 
Definition 5.2. If U £ T r S , il 5 is a smooth section of / , put 

(5.6) V ^ = v£(F)§A(Ar)s-

Then VJ is a connection on J, which preserves the Hermitian product (5.2). 
Definition 5.3. For u > 0, let 98u be the superconnection on I 

(5.7) mu = DM + Vu~V(PNZ) + v1 - c ( ^ y . 

Of courses 9JU splits as 

(5.8) au = »2 + a« -
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Short exact sequences and superconnections 53 

As in (2.33), 

a f = 0 , ^ = 0,9^ = [ s e » ; , ] , 

(5.9) [ai', a y = o, [a i , a y = o, 

[ai', jvh] = 2 « ^ a i ' , [ai , jvH] = - 2 « ^ a i . 

Let e i , . . . ,e2n be an orthogonal base of ÏVr. As before, we use the notation of 
Section 2.2. 
Definition 54. Let S G Endeven(A(J\T) ® A(N*)) be given by the formula 

/—y 2n 
(5.10) 5 = v_çc(sei№ssss). 

Note that taking into account the change of notation on the c(ei)'s with respect 
to [19, Section 5 a)] which was described in Section 2.2, our S is exactly the S of [19, 
Definition 5.1]. 

Classicaly [31, Propositions 6.4 and 6.5], we know that 

(5.11) 
VL = PLVM, 
yiV = pNvM ^ 

Let RA(N*) denote the natural action of RN on A(N*). Then i2A(Ar) acts like 
1 ê R A ^ on A(M*) ® A(AT*). 

Let °VM = VL 0 be the connection on M which is the direct sum of the 
connections VL and V^. Set 

(5.12) A = VM — °VM . 

Then A is a 1-form on B which takes its values in skew-adjoint elements of End(M) 
which interchange L and N. 

Let / 1 , . . . , f2k be a base of Tr£?, let . . . , /2fc be the dual base of T&B. 
Definition 5.5. If Z G Mr, set 

(5.13) 

2fc 
c ( ^ Z ) = - J 2 fac(A(fa)PLZ), 

1 
2k 

c(APLZ) = - £ rc{A{fa)PLZ). 
1 

Let Tr[JRM] denote the (1,1) form on £ which is the trace of RM. The following 
result was proved in [6, Theorem 3.10]. Let e i , . . . ,e2m be an orthonormal base of 
Mr. 
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54 The ANALYTIC TORSION FORMS OF A SHORT EXACT sequence 

Theorem 5.6 — F o r u > 0, 9&1 € (A(T&B) § End(J))even is given by 

(5.14) 
^ 1 = - \ Т Л ^ ^ + ( \ я м г , е о У 

+ H Ip^zl2 + V^S + ^ c ( A P ^ Z ) + i Tr[i2M] +Ss lsl ld dl. 2 y2 
Definition 5.7. If y £ B, Jy denotes the set of smooth sections of Ay(iV^) = 
(A(i\T) § (A(^*))y over the fibre MR,y. 

Since A(iV^) is Z-graded, it is also Z2-graded. If y E B, let J+j2/ (resp. J-,y) be the 
set of smooth sections of A*ven(iV£) (resp. A£dd(iV£)) over the fibre Mn,y Clearly 

Here J = J+ © J_ will be considered as an infinite dimensional Z2-graded 
vector bundle over B. Our calculations will be done in the Z2-graded algebra 
A(T£J3) ® End(J). Observe that <&2U lies in fact in (A(T£JB) § End( J))even. 

7. If y £ B, Jy 

5.2 The conjugate superconnections %u and 2).̂  

Now we recall identities of [6, Theorem 4.12] and [19, Theorem 5.6]. 

Theorem 5.8 — For u > 0, set 

(5.15) 

%u = exp 
e(APLZ) 

s/2 
a „ exp -c(APLZ) 

V2 

2)U - exp c(APLZ) 
v2 

( R M P N Z , P L Z ) 

2 

S8U exp 
-c(APLZ) 

V2 
(RMPNZ, PLZ) 

2 

Then the following identities hold 

(5.16) 

4l = - \ E ( v ^ + è <(ДМ - PLA2PL)z, ei) -
c(APLeù\2 

л/2 

+ U\P"Z\ +V^S+\Tr[RM] + iïA^*), 

з £ = - \ У (Ve. + è <(ям - p l a 2 p l ) z , ei) 

+ I (RMPNZ,PLei) - i (RMPLZ,PNei) c(APLkù 
V2 

2 

u \PNZr 
2 

y/ÛS+hTr[RM]+R^Nm). 
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Generalized supertraces 55 

Remark 5.9. In Chapter 15, we will give a geometric interpretation of the identities 
(5.15), (5.16). 

5.3 Generalized supertraces 

Let dvMidvN be the volume forms on the fibres of Mr, JVr respectively. All the 
smooth kernels along the fibres of Mr will be calculated with respect to the form 
d v M ( Z ) / ( 2 n ) d i m M . 

We denote by Nu the operator in End(A(iV*)) which defines the Z-grading of 
A (AT*), i.e. Nh acts by multiplication by p on AP(N*). Then Nu acts like 1®Nh on 
A(iV*)§A(iV*). 

For u > 0, let Q\(Z, Z')(Z, Z f G Mr j 2 /) denote the smooth kernel associated with 
the operator exp(—SS^). The existence and uniqueness of Q%(Z, Z f) are standard. 

Observe that Q%(Z,Z') € (A(lftB) § End(A(iV*) § A(AT*)))even. We use the 
conventions of Quillen [32] described in Section 4.2. In particular Trs[Q^(Z, Z')] lies 
in A e v e n (T£B). 

By [6, Theorem 4], we know that for u > 0, there exist c > 0, C > 0 such that if 
y EjB, Z e N n,y, then 

(5.17) \Qy u(Z,Z)\<cexp(-C\Z\ 2). 

Note that in (5.17), it is crucial that Z is restricted to vary in Nh j v . 
In view of (5.17) and following [6, Definition 4.4], we now set the following 

definition. 
Definition 5.10. For u > 0, set 

(5.18) 
lV s[exp(-aî)] y = 

Z,Z) 
Tr8[Qy(Z,Z)] 

dvN(Z)Z 
l(2w)dimJV 

T^HexpC-»*)] , , = 
Z,Z) 

TVs[iVHQ^(Z,Z)] dvNZ)(Z) 
l(27r)dimiV 

Note that Tr s[exp(—a2)^ and Tr8[JVH exp(—a£)]j, are only generalized super-
traces. In fact the operator exp(—a£) is in general not trace class. 

Using (5.15), and the fact that supertraces vanish on supercommutators [32], it is 
clear that exp(—%2), exp(—2)£), JVr exp(—<€£), iVHexp(—2s£) also have generalized 
supertraces Trs[exp(-<e2)]; Trs[exp(-2)2)], Tr s[JVHexp(-^ 2

u)], Trs[NHexp(-9>2)] 
and that 

(5.19) 
Tr s[exp(-a£)] = Tr8[exp(-^2)] = Tr s[exp(-2£)], 

Tr s[N H exp(-»*)] = TÏS[ATH exp(-<«£)] = Tr a[N Hexp(-3£)]. 
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56 The analytic torsion forms of a short exact sequence 

5.4 Transgression formulas and convergence of generalized supertraces 

We now recall several results of [6, Theorems 4.6, 4.8 and 7.7]. 
Theorem 5.11 — For any u > 0, the forms ^Trs[exp(—95^)] are closed, lie in PB, 
and their cohomology class does not depend onu > 0. The forms <& Trs[iVH exp(-SS^)] 
lie in PB. Moreover, for u > 0, 

(5.20) д 
du 

l>Trs [exp(-aS)] = ^Trs ^ e x p ( - ^ ) . 

As u —• 0, 

(5.21) 
*Trs[exp(-®2u)} = Td"1(iV,^)Td(M)5M) + 0{u), 

$ TrB[Nu exp(-®2u)] = - ( T d - 1 ) ' ^ , gN) Td(M, gM) + 0{u). 

As u —• +oo, 

(5.22) 
$TVs[exp(-a2)] = Td(L,gL) + O ( - ^ , 

*Trs[NHexp(-®l)] = ? ^ T d ( L , g L ) + o ( ^ . 

Remark 5.12. In [19, Section 14], another proof of (5.22) was sketched, using the 
expression (5.16) for 3)^. In Chapter 15, we will sketch a "simpler" proof of (5.22), 
based on the explicit form of 2>U, and on some ideas of the present paper, when 
applied to a toy case. 

5.5 Generalized analytic torsion forms 

We now reproduce the construction in [6, Section 8] of generalized analytic torsion 
forms. 
Definition 5.13. For s G C, 0 < Re(s) < 1/2, let B(s) be the form on B, 

(5.23) B(s) = 1 
r(s) 0 

foo 
(-®l) $Trs[Nnexp(-®l)}- dim JV 

2 
T d ^ , ^ ) du. 

One verifies in [6, Section 8a)] that B(s) extends to a function of s which is 
holomorphic near s — 0. 
Definition 5.14- Let B(L,M,#M) be the form on B 

(5.24) B(L,M,9M) ww 
' ds (0) 
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By [6, eq. (4.37), (8.2)], the following identity holds 

B(L,M,gM) = 
f1 

Jo 
[# Trs[JVH exp(-aä)] + Td(M, g^iTd-'YiN, gN)\ du 

u 
(5.25) + 

ddv 

1 
$Trs[Nuexp(-®l)}- dimiV 

2 
rd(L,oL) du 

u 
+ r'(l) \ Td(M,gM)(Td~1y(N,gN) + dimiV 

2 Td(Lj9L) 

The following result is proved [6, Theorem 8.3]. 
Theorem 5.15 — The form B(L, M,gM) lies in PB. Also 

(5.26) dd 
2i7T 

B(L,M,^M)=Td(L^L)- Td(M, ffM) 
Td(iV,^ 

5.6 Evaluation of the generalized analytic torsion forms 
We now describe the main results of [6] concerning the evaluation of the form 

B(L,M,(7M). Recall that the Hirzebruch polynomial A(x) is given by 

(5.27) A{x) = x/2 
sinh(x/2) 

We identify A to the corresponding multiplicative genus. 
Let Td(L, M, gM) be the Bott-Chern class in PB/PB>° associated to the exact 

sequence of holomorphic Hermitian vector bundle (5.1), which is constructed in [13, 
Theorem 1.29] and is such that 

(5.28) dd; 
2iir 

rd(L, M, gM) = Td(M, gM) - Td(L, gL) Td(AT, gN). 

The class Td(L, M, gM) is normalized by the fact that if the exact sequence (5.1) splits 
holomorphically (and here also metrically), then fd(L,M,#M) = 0 in PB/PB'°. 

Let C(s) be the Riemann zeta function. 
Definition 5.16. Put 

R(x) = 
n>l n odd 

n 

I 

1 

J 
2C(-n) 
a-n) a-n) 

xn 
d+d 

(5.29) 
D(x) = 

n>l 
n odd 

r '(i) + 
n 

1 

1 
3 

2C'(-n) 
a-n) a-n) 

d+d 
'n! 
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58 The analytic torsion forms of a short exact sequence 

By [6, Remark 8.8], 

(5.30) D(x) = R(x) + r ' ( l ) £ ( x ) . 
A 

The power series R(x) was introduced by Gillet-Soule [26] and the power series D(x) 
in [6]. 

We identify -D(x), R{x) with the corresponding additive genera. In particular 
Td(L)D(N) is a well-defined element of PB/PB>°. 

The following result has been proved in [6, Theorem 8.5] and in [6, Appendix], 

Theorem 5.17 — The following identity holds 

(5.31) B(L,M,#M) = -Td-1(N,gN)fd(L,M,gM) + Td(L)D(N) in PB/PB'°. 

5.7 Equivariant generalized analytic torsion forms 

In this Section, we discuss briefly the construction of equivariant analytic torsion 
forms associated to short exact sequences. These torsion forms are distinct from the 
ones of [8], which are constructed in the context of the Lefschetz fixed point formula. 

Let JM be the complex structure of MR . Observe that JMZ is a holomorphic 
Killing vector field acting along the fibres of M , which preserves L and N. In particular 
the Lie derivative operator LJMZ acts naturally on the vector bundle A ( M )<§>A(N*). 

Then for h € C, 

(5.32) 
sd+d 

hc(z) 
2V2 

2 
= 0, » . -

hc(z) 
2V2 

2 
= 0 

s+s1d1d+r1dd+dr hc(z) 
2V2 

= 0 ^ + è^+ihJ^Z) heiz) 
2V2 = 0. 

Theorem 5.18 — For u > 0, h € R, the following identity of operators in (A(T^B) 
®End(/))even holds 

(5.33) 

— LihJMz + a« -
c(ihJMZ) 2 

2V2 
d6++d1rd+d 

2m 

1 
(V^ + è ^ + i h J ^ Z ) , ^ » 2 

+ -
u 
dvr 

PNZ\2 + v^5 + ddr1dd 
2 

c(APLZ) + i Tr [ÄM - /1] + AA(iNr*) + /iiVH 

Proof. Formula (5.33) can be proved directly. Another proof is to use Theorem 5.6 
(for the case where h = 0) and to check that the coefficients of h and h2 coincide in 
both sides of (5.33). A still more sophisticate proof is to observe that (5.33) is in fact 
a consequence of Theorem 5.6, where —hiJM is itself part of an enlarged "curvature" 
RM + hiJM. This point is discussed in more detail in [4, Remark 3.2] (in relation 
with [9]) in the context of the local families index theorem. • 

ASTÉRISQUE 



Equivariant generalized analytic torsion forms 59 

Remark 5.19. Of course we have the identity 

(5.34) ± T r { R M - h ] = ± T * [ R M } - ™ ^ . 

At least formally, the right-hand side of (5.33) is just the operator 2S„ where R M , 
R N are replaced by R M - h, R N - h. 

By proceeding as in [6], for u > 0, h 6 R, one can still define the generalized 
supertraces Trs [exp ( - ( - L i h j m z + (® u - ^ ( i h J M Z ) ^ ) ) ] and Tr s [ jV H exp(-

( - L i h j m z + ($&u - -^={ihJM Z)̂ j Note here that it is essential that l i e R 
for the generalized supertrace to be well-defined. Using (5.32) and proceeding as in 
[6, Theorem 4.6], the obvious extension of Theorem 5.11 is still valid. In particular 

(5.35) ^ T r s exp ^ - ( - L i h j M z + ( ® u - JL=( ih J M z f ) ^ 

= ddTr s ^ exp ^ - i ç L i h J M Z + ( ® u - - ^ = ( i h J M Z ^ j ^^j . 

If A is a (q, q) matrix, set 

(5.36) 

Tdh(A) = Td(A + h), 

Td'h(A) = ^ T d ( A + h) 

(Td^1)'(A) = |^(Td^ 1 )(A). 

By noting that the right-hand side (5.33) is the obvious modifications of which 
was just described, we find that the extensions of (5.21), (5.22) hold, where Td, T d - 1 , 
(Td - 1 ) ' are replaced by their obvious analogues Td^, Td^ 1, (Td^ 1)'. 
Definition 5.20. For h € R, s € C, 0 < Re(s) < 1/2, let B h(s) be the form on B 

(5.37) B h(s) = 
1 

r(s) 
+00 

'0 
t í 8 " 1 1 Ф Trs Nu exp - - L i h j m z + ( a u - c 

2y/2 
( ihJ M Z) 

2' 

— dim N 
2 

Td h(L,g L du. 

Again B/,(s) extends to a holomorphic function near s — 0. 
Definition 5.21. Put 

(5.38) B h (L ,M,g M ) = d B h 

ds (0). 

The obvious extension of Theorem 5.15 is as follows. 
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Theorem 5.22 — The form Bh(L, M, gM) lies in PB ®R C. Also 

(5.39) dd. 
2m 

lh(L,M,gM) = Tdh(L,gL) Tdh(M,gM) 
Tdh(N,g») • 

Again, we can define the Bott-Chern class Tdh(L, M,gM) as in (5.28). 
By [6, Appendix], the series R(x) and D(x) converge for \x\ < 2TT. Put 

(5.40) flh(x) = R(x + h) Dh(x) = D(x + h). 

Theorem 5.23 — For h € R, \h\ < 2ir, the following identity holds 

(5.41) Bh(L, M,gM) = - TdZ1 (N, gN)Tdh(L, M, gM 
+ Tdh(L)Dh(N) in PB/PB>° <g,R C. 

Proof. The proof of (5.42) is formally the same as the proof of [6, Theorem 8.5]. 
Remark 5.24- From (5.39), we deduce that 

(5.42) dd dBh. 
2in dh 

0)/i=o = Td'(L,gL) — Td'(M,gM)Td~1(N,gN) 

-Td(M,gM)(Td-1)'(N,gN). 

By differentiating (5.41) at h — 0, we get a non trivial identity for ^^(0)^=0- Of 
course (5.40)-(5.42) make sense for arbitrary h € R. This is because by [6, Appendix], 
Dh extends to a meromorphic function on C, whose poles lie on the imaginary axis. 

5.8 Some identities on generalized supertraces 

Let da be the canonical generator of C*. Then da, da generate R2* (g>R C. If 
a € A(Tj^B) <S> A(R2*), then a can be written in the form 

a = X 4- dafi + dav + dadâo, À, //, z/, o G A(Tj^B). 

Put 

(5.43) _ do, .. _ (To, . „ dauci „ 
a — a , or = v , a = o. 

First, we extend identities of [13, Theorems 1.10, 1.12], [14, Theorem 2.13] to 
generalized supertraces. 
Proposition 5.25 — The following identity holds, 

(5.44) d 
du Irs exp(-2&2 + cATH) = 

c , 
u 

dd exp(-2ô2 - da2u dm" 
du 

— dâ2u 
sdxv 

du 
+ cATH 

I dada 

dd, 
uc Irs [exp(-®l + cNn)] 
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Proof. Recall that we consider only generalized supertraces. As in [6, Proof of 
Theorem 4.6], one has to be quite careful in the formal manipulation of such 
supertraces, especially when using the fact that the supercommutator of supertraces 
vanish. For more details we refer to [6]. We have 

(5.45) d 
di 

Trs [exp(-2&2 + CNH)] = 
Fi 
db 

d+d exp(- d+d+d K 
d+d 

du + cNH) 

d 
+ db 

d+ exp(-®2 _ j K d+d5 
du + c N n ) 

5=C 

I 6=0 

= dTrs exp( d+d - dâ-d+d 
du 

+ cNH) 
dâ 

+ dTrs exp(-35?, -da 
d+d 
du 

f cNn] 
I da 

-cTrs exp(- d+ - dâ d®L 
du 

-da[&Z,Nn] + cNn) 
dada 

-cTrs exp(-28^ - da m" 
du 

+ dâ№:.,Nu] + cNr, 
dada 

From (5.9), we get 

(5.46) Trs exp(-2ô2 - da-d№' 
du 

+ ciVH) 
dâ 1 

2uc 
9Trs [exp(-^2 + ciVH)J , 

d+d exp(-2fc?. dâ-dd 
du 

+ ciVH 
1 da 

d 
- 1 , 
2ttc 

Trs [exp(-^n + ciVH)] 

Using (5.45), (5.46), we get (5.44). The proof of our Proposition is completed. 

Proposition 5.26 — The following identities hold, 

d r 
du 

Trs [ J V H E X P ( - ® S ) ] = 
1 
u 

Ir. exp(-Sa^ - da2u 
d+d 
du 

— dâ2u-
d+d 
du ' 

dd, d2 . 
u 2 de2 

Iïs [exp(-&2 + ci\rH)l =0 , 

(5.47) à i 
du 2 de* 

d* Tr8[exp(-®2U+ cNH)]„ = 

-Trs 
d+d 

u 
exp(-a? - da2u d+d 

du 
dâ2u 

d+d5 

du 

dadâ 

ddl d3 

u b dey 
Irs [exp(-S82 + c N n ) d+d 
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Proof. We obtain (5.47) by differentiating (5.44) at c = 0. Note in particular that by 
[6, Theorem 4.6], we have the identity of generalized supertraces 

(5.48) ^ Trs [exp(-»£ + bNH)] = Trs [NH exp(-»2)] . 

The proof of our Proposition is completed. 

As before, we only consider generalized supertraces in the sense of Section 5.3. 
Definition 5.27. For u > 0, put 

(5.49) 

&u -
a 
db 

Tr8 exp - - à 
2m 

1 
Ve< +dd+dkld+dld" iJMdado)Z,ei))2 d+d 

\PNZ\2 

2 

(APLZ) + day/^û-c 
:(APLZ) + day/^û-

c 

V2V 
(P^z) + dïï -u 

c 
d+d1 

d+d1d 

— dadâ-
dim M 

2 
(APLZ) + day/^û-PLZ) + day/^û-

I dada 

6=0 

An = Trs exp(-2fc2 da 
-c(z) 

u—•= -
s/2 

dd d+d1 
V2 

nL = Trs Afa exp - ( 36* + d â v ^ cm 
d+d1 

n;' = Trs iVHexp - ['MÌ + daV-^û--c(z) \ ' 
s/2 

da 

dadci 

By proceeding as in [6, proof of Theorem 4.6], one verifies easily that Ou and Au 
are sums ofdd ddddforms, IIU a sum of (p + forms, and 11^ a sum of 4- 1) 
forms. 
Proposition 5.28 — For u > 0, 

(5.5C 
+d1d+dd1e+d d2 

dc2 
n8[exp(-»2+cWH)L=0, 

II" = - d 1 
d2 
dc2 

TVS [ e x p ( - ^ + cJVH)]c=0 

Proof. Clearly 

(5.51) 
n; = Trs [NHexp(-®l + dà[&u,Na})]^ ., 

K = Trs [Nn exp(-aS - A» [»«, * H ] ) ] • 

Using (5.51), and proceeding as in [6, Theorem 4.6] (we are considering only 
generalized supertraces), we get (5.50). • 
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Theorem 5.29 — As u —* 0, 

(5.52) 

$ e u = ( - Td'(M, g M ) + dim M Td(TM, g™))(Td- 1)'(N, g N ) + 0(u), 

$AU = 0(u), 
$AU = 0(u),AU 

*nj :=0(«) . 

j4s « —> +oo, 

(5.53) 

* e u = Ì dim AT(Td'(L,fl

L) - (dimL + ^ - ) Td(L,gL)) + 0(-±=), 

фAu = € ( - = ) 
* /ii. 

фп; = о (^=) , 
y/U 

• n : . o ( - , ) . 

Proof. Let 7T be the projection N —> B. Clearly V A ^ + \Z^T^p- is a supercon-
nection on 7r*A(iV*). By proceeding as in [6, Theorems 4.8 and 4.9], we see that as 
u —• 0, 

(5.54) Q u = - I A(R M + d a d ä ) e - ^ l R M ] ( ^ f ™ N 

1 z7t 
r a(at) r ft 

J n Tr s [jVHexp(-(V A^) + y ^ - ^ ( Z ) ) 2 

^ v̂. 'ч ctaaa 
- d a y / ^ J ^ i z ) - dây/^ï-^=(z) + dadä -^—)j > + G(u). 

Also, one has the easy formula 

(5.55) Trs [ ì V h « p ( - ( V a ^ > + v ^ î - ^ ( Z ) ) 2 

— dav/—1-^(2:) — dâV^Ï-^(^) -f- ^^^-darfä)j = 

((1 + däh)(l + dai z) + a îE^dads^ Tï s N n e x p ( - ( V A ( i V ^ + v^T-^(Z) ) ) 2 

Let A' be the genus obtained from A as Td' is from Td in (2.36). Using (5.54), (5.55) 
and proceeding as in [6, proof of Theorem 4.8], we see that as u —• 0, 

(5.56) 0 U = (A'(RM) + d i m ^ A ( i 2 M ) ) e - ^ [ « M ] ( T d - 1 ) ' ( - J R
J V ) +0(«) . 
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Since Td(-RM) = Â(RM)e-^Tr[RM], we get 

(5.57) Td'(-RM) = (-Â'(RM) 
dim M 

2 
4(i?M))e-^[«Ml. 

Prom (5.56), (5.57), we get the first identity in (5.52). The proof of the second identity 
is essentially the same and is left to the reader. 

By proceeding as before, we see that as u —• 0, 

(5.58) Wu = Td(-i?M) l\dimN 
2TTJ JN 

Trs ^rHexp(-(VA(N*) 4 
•v2(Z)x2 

V2 

— dâ\J —\ c(z) 
W2' 

+ 0(u). 

Using the following identity (which can be derived from (5.55)), 

(5.59) Trs iVHexp(-(VA<JV*) + -rc(Z),2 
y/2 ' 

- day/ —1 
^z)Y~a 
V2'\ 

= %Trs iVHexp(-(VA(N*)+ 
d+d4 

d+d4d+d 

or the fact that the integrand in the right-hand side of (5.58) is odd in Z, we get the 
third identity in (5.52). The proof of the fourth identity in (5.52) is similar. 

Now we establish (5.53). Clearly 

(5.60) eu = d 
db exp - ( è 

2m 

1 
(Vei + I {{RM - ibJdadâ)Z, a))2 

dr 
\PNZ\2 

2 
y/ÛS + \f—u-c 

V2" 
(APLZ) + da 

r-^c(PNz) 
V2 

-h dâ\ 
—c(PNz) 

V2 

+ ±Tr[RM} + RA(N*) +bNH 
dada 

J 6=0 

dim M d 
2 db 

Trs [ e x p ( - ^ + 6iVH)]b=0 

By 16, Theorem 7.7], asi t -> +oo 

(5.61) 
d 

db 
Tr8[exp(-aS + ^H) ]K=0 = 

dim JV 
2 

Td(-RL) + G( 
1 

Let JK be the differential operator ^ acting on S\. By using the notation and the 
techniques of [6, proof of Theorem 7.3], one finds that the first term in the right-hand 
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side of (5.60) is given by 

(5.62) - d_ 
db 

e - | T r ^ l + b ^ d i m N ^ ^ _ {RN + b)J-l _ uJ-2) 

det^x(l - (RM + daaa)^1 - uPLA{J2K - (RN + b)JK - u) '1 

A P L J ^ - %(PLA + daPN + daPN){J2K - (RN + b)JK - u)~l 

(APL - daPN - a a P " ) ^ 1 - uPN J«2) 
dada 

The precise interpretation of (5.62) is that (5.62) is an infinite product over Jk € 
2f7rZ* of determinants over M or N (in [6], determinants over Mr , JVr are 
considered, and this explains the power 1/2). 

By proceeding as in [6, Theorems 7.6 and 7.7], as u —• +oo, the asymptotic 
expansion of (5.62) is given by 

(5.63) i dimNÂ'(RL)e-ï + 0 ( -L) . 
1 yju 

Prom (5.60)-(5.63), we find that as u —• +00, 

(5.64) eu = 
dim JV 

2 
dimM 

2 
Tà{-RL) - Â'{RL)e-x'2^R^ 

Using (5.57) and (5.64), we get the first identity in (5.53). An obvious modification 
of the previous argument shows that the last three identities hold. 

The proof of our Theorem is completed. • 

Remark 5.30. Prom (5.50), it is easy to give another proof of the last two identities in 
(5.52), (5.53), by showing that the limit as u —> 0 or u —» +oo of Trs[exp(—28u+cATH)] 
is a closed form. 

Put 

(5.65) 
0O = lim @u , 

u—>0 
Goo = lim @u. 

u—>+oo 

The forms ©o and 0QO have been calculated in (5.52), (5.53). They are d and d closed. 
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Theorem 5.31 — The following identities hold, 

(5.66) Td'(L, gL) + Td'(M, 5M) Td"1 (JV, <?") + Td( 

( Л j-г c(idadöJMZ)\2 Л» c(idadöJMZ)\2 
Nu exp I - MjM^ + I 2Й„ odäLijM^ + IЙ„ + ——=¿1 

= dimM(Td(£,^) - Td(M,gM)Td-1(iV,9;sr)) 
- Td'(L, gL) + Td'(M, 5M) Td"1 (JV, <?") + Td(M, 5M)(Td-1)'(N, gN). 

Proof. By Proposition 5.28, we find that 

(5.67) dU'u + OK = dd^ TVS [exp(-28* + cJVH)]c=0 

From (5.33), (5.49), we find easily that 

(5.68) eu = -Trs ( Л j - г Л» c(idadöJMZ)\2 Nu exp I - ModäLijM^ + I 2Й„ + — — ^ = ¿ 1 
dada 

- dim M Trs [ATH e x p ( - ^ ) ] + Tr8 [JVh exp(-g&£ + dadäNH)] dada 

Trs Nu exp ( - (»2 + 2 d a u ^ + 2 d ä u ^ 
dada 

By (5.35) 

(5.69) ddTrs ^ e x p ( - (dadäLijMz + (9&„ + c(lda^_ ^ Y ) ) 
dada 

= ^ Trs exp ( - (dadäLijMz + (ößu + c ( ì d a ^ ^ ) 2 ) ) 
dada 

By Theorem 5.11, 

(5.70) aöTY8 ^ e x p ( - a £ ) = ^ T r . [«p(-»*)] 

Also one has the trivial, 

(5.71) Trs [Afa ex.p{-®l + dodöA/H)]dad5 = ¿ ^ 3 [exp(-a2 + cATH)]c=0 

By Proposition 5.26, 

(5.72) " t L A S DD SD [exp(-S82 + сЛГн)]с=0 = 

- ddTra № exp(-®l - d a 2 u ^ - d ä 2 u ^ ) L « du du 

dada 
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From (5.67)-(5.72), we obtain 

(5.73) - (dn'u + dn£ - ddGu) = 
u 

du 
exp ( - (dadaLijMz + (&u + c(lda<^j_ z^)2)) 

+ d i m T r s [exp(-a»)] - < ? d | ^ Trs [ e x p ( - ^ + cNH)]c=0 

As we just saw, Oo and Oqo are d and 9 closed. Moreover by (5.50), (5.52), 
(5.53), or by a simple direct proof, the limit as u —• 0 or u —• +oo of 
WWd2 dc2 Trs [ e x p ( — + cA/h)]c=0 is 9 and d closed. By Theorem 5.11 and its extension 
stated after (5.36), and by (5.73), we get (5.66). The proof of our Theorem is 
completed. • 

5.9 A conjugation formula 

If X e MR let X*1'0), A"*0'1) be the component of X in M,M, so that X 
X^°) +X(°'1>. 

Proposition 5.32 — For u > 0 , the following identity holds 

(5.74) exp^-^da (APLz, PNz) - \dâ(APLz, PNz) + -j=(APLZ) 

+ da^{PNz) + dâ^={PNz) 
(RMPNZ, PLZ) 

2 

_ 1 
2 

2m 

1 

yei + \ ((RM - iJMdada)Z,ei))2 + 
u\PNZ\2 

2 
s/û~S 

+ V=u~-^=(APLZ) + daV=û~-^=(PNz) 
v2 V2 

+ rfâv^ïï^^ - d a d â ^ - + I Tr [RM] + R ^ ' A 

expf\da{APLz,PNz) + \dâ{APLz,PNz) - ~^{APLZ) 

— da-c [PNz) - dâ c 
V2 

(PNz) + 
(RMPNZ. PLZ 

2D 
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_ _1 
— 2 

2m 

1 
Vei + è ((RM - PLA2PL - sf=ÏPLJMPLdadâ)Z, e/ 

DV RMpNz pLe. -h(RMPLZ,PNei) 
+ da (APLei, PNz) + dâ (APLeu PNz) 

с(АРъеЛ 
V2 

+ 1 
v/2 v 

(PNe\lfi))da- 1 
л/2 

(PNe?'V)dä) 
ч 2 

u\pNzr 
2 

- \fuS — dado limiW 
2 

H-lTr[i?Ml+i?A^) 

Proof. When da = da = 0, formula (5.74) is exactly the second identity in (5.16). 
Put 

(5.75) K = -j={APLZ) + da^={PNz) + dä^={PNz). 

Observe that if X 6 iVR, 

(5.76) K,-^=(X) = (APLZiX) -da (PNz ,X) -dä (PNz ,X) . 
v2 J 

From (5.76), we deduce that 

(5.77) 
exp(K) ( s + ^ ( A P L Z ) + da^=(PNz) + o a - | ( P " z ) ) 

exp(-AT) = 5 . 

Also 

[K,Vei] = - ^ = ( A P L e i ) - d a ^ = ( P N e ^ ) - d ä - ^ ( P N e ^ ) , 

(5.78) 
[K, [K, VeJ] = - (APLZ, APLei) + (APLz, PNei) da 

+ (APLz, PNei) dâ + da (PNz, APLa) + da (PNz, APLe{) 

+ dadä{ - (pNz,PNef,'1)) + ( p N z , P N e ^ ) ) . 

Also the higher commutators in (5.78) vanish. From (5.78), we get 

(5.79) exp(K)Vei exp(-Ä-) = Vei - A=(APLei) - da^=(PNe\l'0)) 

- d ä - ^ ( P N e f ^ ) + l{(-PLA*PLZ,ei)) 

- ±da({APLz,PNei) - (APLei,PNz)) - \dä{(APLz,PNd) - (APLei,PNz)) 

+ \ (y/^ÏJMdadâPNZ,PNei) . 

From (5.77)-(5.79), we get (5.74). The proof of our Proposition is completed. 
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6. A proof of Theorem (LI 

The purpose of this Chapter is to establish Theorem 0.1, which is an identity relating 
the higher analytic torsion forms T(uj v, g )̂ and T(uj w , g v) to integrals along the fibre 
X of certain Bott-Chern currents on W. 

In (4.26), we established an identity of forms in P 5 , ^ 4 ° = $(d^° + du°) -

—#A°, these forms depending on e, A, To. In this Chapter, we study the various 
in 
terms in this equality, by making A —• -foo (step a), To —> H-oo (step /?), e —• 0 (step 

7). Divergences appear at one or more of these stages. The final identity / | € P s ' ° 

will then be shown to be equivalent to Theorem 0.1. 
When 5 is a point (which is the case studied in [19]), P 5 ' 0 = {0}. So in [19], 

the right-hand side of the above equality is identically 0. Also, in general, P s , ° is 
not closed under uniform convergence. Finally, as explained in the introduction, our 
purpose is to obtain a local universal equality in P s /P s >°. So in contrast to [19], we 
have to study in much detail the right-hand side of the equality. 

The organization of this Chapter is closely related to the organization of [19, 
Section 6]. As in [19], we state several intermediate results, whose proof is delayed to 
Chapters 7-13. 

The Chapter is organized as follows. In Section 6.1, we state our main Theorem. In 
Section 6.2, we introduce a rescaled metric on £, which depends on a parameter T > 0. 
In Section 6.3, we state seven intermediate results concerning the left-hand side of 
the equality. In Section 6.4, we study the asymptotics of the /J^s. In Section 6.5, 
we summarize the divergences in the right-hand side of the equality. In Section 6.6, 
we state five intermediate results needed in the study of the right-hand side of the 
above equality. In Section 6.7, we calculate the asymptotics of the right-hand side. 
In Section 6.8, we crosscheck our computations, by verifying that the diverging terms 
of both sides of the equality coincide. In Section 6.9, we obtain a local equality in 
P s /P s >° . Finally, in Section 6.10, we show that this equality is just Theorem 0.1. 

The general outlook of the computations of this Chapter being quite similar to 
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[19, Section 6], the reader is referred to [19] for a more detailed discussion of some 
computations. Also as explained at the end of Chapter 6, if S is compact and Kahler, 
and if we are just interested in a non local equality in ps/p5>°? the reader can skip 
the rather heavy Sections 6.6-6.8. 

In this Chapter, we use the assumptions and notation of Chapters 3, 4 and 5. 

6.1 The main Theorem 

Consider the exact sequence of holomorphic Hermitian vector bundles on W 

(6.1) o —> TY —* TX\W -> NY/x 0. 

Let fd(TY,TX\w,gTX\w) G pW/pw,o be the Bott-Chern class constructed in [13, 
Theorem 1.29] such that 

(6.2) ^ fd (TY,TX\w,gTX^) = 

Td(TX\w,gTX^) - Td(TY,gTY)Td(NY/x,gN^x). 

Note that the construction of [13] is local and universal. 
Recall that by (3.12), we have the canonical isomorphism of holomorphic Z-graded 

vector bundles on S 

(6.3) H(X,S\X)~H(Y,V\Y). 

Also, in Sections 2.6 and 3.2, smooth Hermitian metrics gH(x^M and h(Y, t)\y) were 
constructed on H(X,£\x) and H(Y,r)\y). Because of (6.3), we may regard gH(x>£\x) 
and gH^Y^W) metrics on the same Z-graded bundle H(Y,t)\y)> 

For p € N, let ch{H{Y,7]\Y),gH^x^x\gH^M) e Ps /Ps# be the Bott-Chern 
class of [13, Theorem 1.29], such that 

(6.4) ^ c h ( H { Y , V \ y ) , 9 H ^ M , 9 ^ M ) = 

ch (H(Y,V\Y),gH<Y^) - c h ( H ( X ^ \ x ) , g H ^ M ) . 

+00 ^ 
Let C(s) = ~ ^e tne Riemann zeta function. Now we introduce the Gillet-Soule 

power series R [26]. 
Definition 6.1. Set 

(6.5) R(x) = 
n>l 

n oaa 

n 

1 

1 

DD 
I- 2 

C'(-n) 
<(-») , 

a-n) 
DD 

'ni 
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We identify R with the corresponding additive genus. 
The main result of this paper is stated in Theorem 0.1. For convenience, we state 

again this result, which extends [19, Theorem 6.1]. 

Recall that by Remark 3.11, the integral along the fibre / Td(TX,g T X)T(£,gt) 
Jx 

lies in P s . 
Theorem 6.2 — The following identities hold. 

(6.6) 
MH<r>'iM,g Hl x¿M,g»<r*M) - T{u w ,g*) + Т{шу ,д*) 

x 
Td(TX,g T X)T(Ç,gS)-T(gS)-Ç,g 

y 

Td(TYTX\aTX^)w.a
TX^) 

Td( Ny/x > g N v / x ) 
ch(77,5") 

Jy 
Td(TY)R(NY/x)ch(n)gS)- in P s / P s ' ° , 

c h { H ^ \ g H ^ ^ \ g H ^ M ) - T { u ; w , g ^ ) + T{u J

v ,g^ 

]x 
Td(TX,gTX)T(Z,gt)T(Z,g-

y 

Td(TY,TXgTX^)\w,g
TX^) 

Td(NY/g
Nvx)x,g

Nvx)gNvx) 
chfag«) 

'x 
Td(TX)R(TX) ch(£) -

Jy 
Td(TY)R(TY)ch(r)) in P s / P s ' ° . 

6.2 A rescaled metric on E 

By the anomaly formulas of [18] stated in Theorem 2.24, one verifies easily that 
we only need to establish Theorem 6.2 for one single choice of u>w. In the sequel, we 
will assume that u j w = i*u>v, and we will prove Theorem 6.2 in this case. 
Definition 6.3. For T > 0, we denote by ( , ) T the Hermitian product on E 
associated to the metrics g T X , g^°, $¡4-,..., f̂ sr on TX, £o» • • • > Cm- Set 

(6.7) K T = { s e E , {d x + v)s = o, (ô x * + r V ) s = o) . 

Let P t be the orthogonal projection operator from E on K t with respect to ( , ) T . 
In (3.24), we saw that for any T > 0, there is a canonical isomorphism of Z-graded 

vector bundles 

(6.8) KT*H{Z\X)Z\XZ\XX,Z\X). 

Let g ^ X ^ x ) be the metric on H(X,£\x) inherited from the metric ( , ) T 

restricted to Kt- Let V^ X ' ^ ' X ^ be the holomorphic Hermitian connection on 
(H(X,S\x),

(x*g?(x*M)(x*M.(x*M 
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Put 

(6.9) 
D x = d x + d x \ 

D Y = d Y + d Y*. 

Recall that V = v + v*. For T > 0, set 

(6.10) K T = {s e E , ( D x + TV)s = 0} . 

Let P t be the orthogonal projection operator from E on K t with respect to the 
Hermitian product ( , ) = ( , ) 1 on E. 

Then we have the easy formula in [19, eq. (6.5)] 

(6.11) T - N » ( d X + v + d X* + T 2v*)TN» = D x + TV. 

By (6.11), we get 

(6.12) P T = t ~ N M P t T N m . 

The map s G K t —• T ~ N l i s G K t is an isomorphism of Z-graded Hermitian vector 
bundles. So K t is also isomorphic to H ( X , £|x)« 

The operators P T N $ P T and P T N U P t act on i*TT. We still denote by P T N $ P T 

and P t N m P t the corresponding operators acting on H(X)£\x) — H(Y 1tj\y)' 
Let Q be the orthogonal projection operator from F on K' = ker(DY). 

6.3 The left-hand side of (4.26): seven intermediate results 

Now we state seven intermediary results contained in Theorems 6.4-6.10, which 
are the obvious extension of [19, Theorems 6.3-6.9]. They will permit us to study the 
left-hand side of (4.26). The proofs of Theorems 6.5-6.10 are deferred to Chapters 7-
13. 

We use the same notation as in Theorem 2.17. Also we use the notation of Chapter 5 
with respect to the exact sequence of holomorphic Hermitian vector bundles (6.1) on 
W. 

Theorem 6.4 — There are forms D]^ 1 ,Dq in P S that as u —> 0, 

(6.13) * Trs [ a £ exp(-BÏ 2 ) ] = £ ^ 1 + D 0 + 0(u). 

Moreover 

(6.14) 

D+DLMD+ 
D+D 

x 2* 
Td(TX,gTX)ch{t,gt), 

uQ — 
JX 

(dim X Td(TX) - Td'(TX)) ch(£) 

D+D 
'x 

Td(TX) ch'(0 in pS ipSfi 
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There are forms J ^ Td(TF in P s such that as u —• 0, 

(6.15) Trs [N? exp ( -B^)} = ^ J ̂  Td(TF+ 0™+ 0(«) • 

Moreover 

(6.i6) 

p w 
С™ = J ^ Td(TF, 9J ̂  T d ( T F T Y ) chfo, 9 V ) , 
°0 = / (dim Y Td(TF) — Td'(TF)) ch(r)) in P 5 / P 5 ' 0 . 

/V 
Proof Our Theorem follows from Theorems 2.17 and 3.5. • 
Theorem 6.5 — For any compact set K C S, for any uq > 0, there exist C > 0, 
8 €]0,1] such that for u > u®, T > 1, 

(6.17) Tr s [ « 2 - ^ H ) exp( - J B 2

) T ) ] - Tr s [ jV#exp( - i# 2 ) ] | < ^ on K, 

Trs [JVHexp(-i? 2

i T)] - Idimtfy/xTr. [exp(-B^' 2)] | < ^ on if. 

Theorem 6.6 — For any compact set K C S, there exist C > 0 sucft £/ia< /or 
u > 1,T > 1, 

(6.18) Tr s exp(- JB
2

> r)] J ̂  Td(TF- Trs [ p r ^ P T e x p ( - V ^ ( X ^ | x ) ' 2 ) ] | < £ on K, 

Trs [ATHexp(-B 2

> T)] - T r s [Pr iVHPrexp(-V^ ( X ' € U ) ' 2 ) ] | < £ on X . 

Theorem 6.7 — For any compact set K G S, there exist C > 0, 7 e]0,1], such that 
for u e]o, 1], 0 < T < l/u, 

(6.19) *Tr s [Ar Hexp(-A 2

] r)] - f Td(TX,g T X )*Tr s [N H exp(-C 2

2 ) ] 

< C(u(l + T)) 7 on K. 

For any compact set K <Z S, there exists C > 0 such that for u e]0,1], 0 < T < 1, 

(6.20) |Trs [ATH exp( -^ 2

) T ) ] - Tr s [iVH exp(-^l 2

) 0)] \ < C'T on K. 

Theorem 6.8 — For any T > 0, the following identity holds, 

(6.21) lim $Tr s [A^ H exp( -^ 2

T / u ) l = / $ Trs [Afa exp(-SB^)] ch(n, g"). 
u—>0 L ' J 

Theorem 6.9 — For any compact set K C S, there exist C > 0, 6 €]0,1], such that 
for u e]0,1], T > 1, 

(6.22) Trs [ jV H exp(- .4 2 , r / j ] - id imAT r / x Tr s [exp(-B^' 2)] | < ^ on if. 
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Let Yî,..., Yd be the connected components of the fibre Y. Then we have the local 
holomorphic splitting 

(6.23) 
d 

H(Y,V\Y) = @H(Yj,rl\Yj) 
3=1 

and the splitting (6.23) is orthogonal with respect to gH(Y,vW) We will write metrics 
on H(Y, tj\y) in matrix form with respect to the splitting (6.23). 

Recall that since H(X,£\x) ~ H(Y,rj\y), the metric g^X,^x^ can be considered 
as a metric on H(Y, tj\y)• 

In the sequel, we will write that a smooth function / on S is €(T~°°) as T —> +oo, 
if for any compact set K C 5, k G N, p € N, there is C > 0 such that if T > 1, the 
sup over K of / and its derivatives of order < p is dominated by CT 

Theorem 6.10 — 4s T —• +oo, 

(6.24) ^ (x^ |x ) = 

t~ dim / ̂ W d dld ) +c(^)) 

c(t-°°) 

c(t-°°) T- dim iVVd/x Ĥ(Vd ,„|Yd ) +c( _^ ^ 

Theorems 6.5 and 6.6 will be proved in Chapters 8 and 9, Theorem 6.10 in 
Chapter 10, Theorem 6.7 in Chapter 11, Theorem 6.8 in Chapter 12, and Theorem 6.9 
in Chapter 13. 

6.4 The asymptotics of the J° 's 

Recall that by (4.18), 

(6.25) J° = / Ф/3 , l < f c < 4 . 

By (4.26), 

(6.26) ^ / j ? = *(â/i0 + ^ ° ) - ? ^ $ a 0 . 
k=l ^ 

In the discussion which follows, we will assume for simplicity that S is compact. If 
S is non compact, the various constants C > 0 depend explicitly on the compact set 
K C S on which the given estimate is valid. 
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The term if 

Clearly 

(6.27) if = J * » Trs [ « 2 - N H ) eM-Bl , T o )} ^ • 

a) A —• +00 

By the obvious analogue of Theorem 2.20, as A —• +00 

(6.28) if - *Tr s f(JV# - i\TH)exp ( -V£ 0

( * '« | x ) > 2 ) l log(To) 

^ i \ = f $ T r s [ « 2 - i V H ) e x p ( - ß ^ T o ) ] ^ 

/
+oo 

* (Tr s [(NY, - N H ) exp ( -B l T o ) ] 

- T r 8 [ ( ^ - i V „ ) e x p ( - V ^ > - 2 ) ] ) ^ . 

ß) T 0 -> +00 

By Theorem 6.5, as To —• +00 

(6.29) jT 1 $Tr s [ « 2 - iV H ) exp( -^ , r o ) ] ^ 

/ ^ T r . ^ e x p ^ 2 ) ] ^ . 

By Theorem 6.6, for 1 < u < +00, T 0 > 1, 

(6.30) |Tr.[(7Vi;-/VH)exp(-52 f r o)] 

- Tr8 [(JV* - ATh) e x p ( - V ^ 1 ^ 2 ) ] | < £ . 

Also since the identification (3.12) preserves the Z-grading, 

(6.31) Tr s \ (N X - 7V H )exp(-V^ ( X , C | x ) ' 2 ) ] = 

Tr s [jV£exp(-V£ o

( x ' € | x ) , 2)~ . 

Let V^ V , ' J ' y ^ be the holomorphic Hermitian connection on H(Y, r}\y) associated to 
the metric g % x * U ) . Using (3.12), we find that v" o

( * '* | x ) corresponds to Vr 0

( K ' " l v ) -
By Theorem 6.10, as T 0 —> +00, 

(6.32) vH(y,tj|y) _^ v H(y, n | v ) 
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Using Theorems 6.5 and 6.6 and (6.31)-(6.32), we see that as T 0 —• +oo, 

(6.33) 
/

+оо 
Ф (Trs [ « 2 - N n ) e M - B i T o ) } -

Tr s - i V „ ) e x p ( - V ^ ^ 2 ) ] ) £ 

^ ^ + ° ° ф ( Т г з [ ^ е х р ( - ^ 2 ) ] -

T r s [ ^ e x p ( - V H ^ I - ) ' 2 ) ] ) ^ . 

From (6.28, (6.29), (6.33), we find that as T 0 -+ +00, 

(6.34) I\ -^ I? = £ $ T r s [ i V ^ e x p ( - ^ 2 ) ] ^ 

+ ^ + 0 0 * ( T r s [ A r 5 e x p ( - ^ 2 ) ] 

- Tr s [n% exp(-V H(^l>') ' 2)] ) ^ . 

7) £ -+ 0 

Using Theorem 6.4, we find that as s —• 0, 

(6.35) ^ - à C - ^ + c r i o g ( e ) - i ? = 

= £ { ^ s j ^ e x p ( - ^ 2 ) ] - ^ - c 0 } ^ 

+ ^ + 0 ° * ( T r s [ i V j e x p ( - J B ^ 2 ) ] 

- T r s [ A # e x p ( - V " ( ^ ) > 2 ) ] ) ^ - \C™X. 

Ô) Evaluation of if 

Theorem 6.11 — The follovnng identity holds 

(6.36) I* = - \ \ T ( u w , 9 * ) - Y ' ( l ) 

(C™ - $Tr s [jV-£exp(-V"( y '^>- 2)])] . 

Proof. Equation (6.36) is a trivial consequence of (2.50) and (6.35). 
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The term 1$ 
The term I® is given by 

(6.37) i 2 _ $Tr s [N u exp( -B% T ) ] ? f . 

a) A —* +00 

By Theorem 6.6, as A —> +00 

(6.38) ФAu = €(-= 
•To 

/1 
$Tr s [ F T 7 V H P r e x p ( - V ^ > ' 2 ) ] f . 

/3) T 0 -» +00 

By making u —• +00 in Theorem 6.5, and using Theorems 2.20 and 6.6, we get for 
T > 1 

(6.39) T r s [ p T i V „ P T e x p ( - V ^ ^ > - 2 ) ] 

- I d i m i V y / x T r s [ e x p ( - V " ^ > ' 2 ) ] | < £g . 

From (6.38), (6.39), we see that as T 0 —• +00, 

(6.40) l \ - I dim J ^ Td(TF [exp (_у я( к>^),2~) j l o g ^ 

^ Ф (Tr s [ p T N H P T exp ^ _ v ^ ( ^ ' ^ ) ' 2 ^ j 

-jdimAV/^Trs [ e x p ^ - V " ^ ' * - ) - 2 ^ dTT 

7) e - ^ 0 

The term Jf remains constant and equal to Jf. 

<5) Evaluation of If 

Theorem 6.12 — The following identity holds 

(6.41) if = |ch (ff(^lv) j f f»(X,€|x) j f fff(^lv)) i n pS / p S,0 

Proof. Let dimiVy/x be the operator acting on if(Y, 77|y) by multiplication by 
dim N Y i /x on H(Yi,rj\Yi) (1 < i < d). Set 

(6.42) H(Y,V\YY _rpdimNY/XnH(Y,r,\y) 
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78 A proof of Theorem 0.1 

Then by Theorem 6.10, as T —» +oo 

(6.43) g ^ w y = g*<r«W) + € ( 4 = ) • 

By Hodge theory, the map s G K\ —» Pts G K t is the canonical isomorphism of K\ 
with Kt , these two bundles being identified to H(X,£\x)- In particular if s € Ki, 
1 < T < T \ 

(6.44) PT,PTs = PT>s. 

Using (6.44), if G Ki, we get 

(6.45) A <Prs,PzV>r = ( f f ^ P r ^ 

+ ( p t s , ^ P r s ' ^ l - I (iVHPrs, PTs')T . 

Since P£ = Pr, then 

(6.46) _ _ P T + P T _ _ = _ _ . 

From (6.46), ssswe see that maps into its orthogonal Kj; with respect to ( , )T. 
Therefore (6.45) is equivalent to 

(6.47) 
d 

dT [PTs, PTS')^ = 
2 

T 
{NUPTS,PTS')T . 

From (6.47), we deduce 

(6.48) 9T 
DD+DKD+DN dg?X*M 

dT 
2 
T PTNHPT • 

By [13, Corollary 1.30], we know that for a given To > 1, 

(6.49) li = l&(H{DX,t\x),g"<x*M DD 
D+DHD+D 

Equivalently 

(6.50) l\ = ^h(H(Y,V\Y),g»^M,g%Y^ 

By (6.43) and by [SD13, Corollary 1.30], as T0 —• +oo, 

(6.51) ch (H{YMYUDD%YMY)^H{XMY)) 
VRD 

- dim NY/X® Trs [exp ( _vH^"ly>'2 ) log(T0) + 0( 
1 

•y/T' 
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From (6.50), (6.51), we see that 

(6.52) l\ - i dim Ny/хФ Trs [exp ( - V я* 1™*>' 2)] log(T0) 

= ± с Ъ ( н ( ¥ , г , \ у ) , д » ^ М , д " ^ М ) + 0 ( - ^ ) . 

From (6.40), (6.52), we get (6.41). • 

The term 1% 
We have the identity 

(6.53) 7° DDD= - J \ t t s [Nl, exp(-B^ 2)] ^ • 

a) A —> +oo 

By Theorem 6.6, as A —• +oo, 

(6.54) 1$ + $Tr s [(N$ - JVH)exp ( - V " ^ 1 * ) ' 2 ) ] log(^) 

/J = - j f * l Y . [ i V r 2 e x p ( - ^ 2 ) ] ^ 

+ ^ + ° ° * (Tr s DDDD e x p ( - ^ 2 ) ] 

- T r s [(AT* - Afe)exp ( - V ^ « l - ) > 2 ) ] ) ^ 

/?) T 0 +oo 

The term /3 remains constant and equal to /3. 

7) £ ^ 0 

By Theorem 6.4, as e —• 0, 

(6.55) l i + l D ^ - D X l o g ( e ) 

I i = - / \ ФТг8 < 2 ехр(-Б;Г) - SSSSS - D l -

- $ ( t t s [ < 2 exp(-<2 2)^ 

- T r s \{N* - N H )exp ( - V ^ l ^ ) - 2 ) ] ) — + \ D V

X . 
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S) Evaluation of if 

Theorem 6.13 — The following identity holds 

(6.56) l l ^ \ { T { u v , g ^ ) - T ' { l ) { D y Ф A 

-*Tr s [(N* - i V H ) e x p ( - V H ( x ^ > - 2 ) j } . 

Proof. This follows from the obvious analogue of (2.50) and from (6.55). 

ФAu = €(-=)gsdgs 
We have the identity 

(6.57) i4 — 
•To 

1 
5>Tr s [ JV H exp( - i ? 2

T ) ]^ . 

a) a —• H-oo 

The term I4 remains constant and equal to l \ . 

(3) To +00 

By Theorem 6.5, we find that as To —» -foo 

(6.58) Il + | d i m A T y / x * l r s [exp(-B£' 2)l log(T0) 

. r2 _ _ »4-oo 

'1 
$ (Tr s [AT Hexp(-£ 2

T)] 

- I d imiV y / x Tr s [ exp( - s^ 2 ) l ) ^ . 

7) e ->0 

We proceed as in [19, p. 651. Set 

(6.59) 

J? = - ФТг3 [ЛГ нехр(-Л 2

т)1 Ц- , 

J2° = - / *>Trs [iV Hexp(-A £

2

) r / £)l ^ 

J3° - - / $ ( Trs [tVh exp(-yl 2

 £)1 

- i d i m i V v / x $ T r s [ e x ^ - B j ' 2 ) ! ) ^ 
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Clearly 

(6.60) I l = J? + J2° + jo - dimAV/x^Trs [exp(-J5j' 2)] log(e). 

1) The term Jf. 

We have the identity 

(6.6i) j ° = -
fi 

Je 
$ (Trs [iVHexp(-A 2

i T)] - Trs [iV Hexp(-A 2

0)]) dT 
T 

+ # Trs [ n u exp(- J4 2

) 0)] log(e). 

By Theorem 6.7, we find that as e —> 0 

(6.62) J01 
x 

Td(TX,g T X)cti(t,gt)\og(e)ФAu = €(-=) 

—* J} = -
•l 

o x 
Td(TX,g T X )Td(TX 

$Tr s [ATH(exp(-C2

2) -exp(-C 0

2))] dT 
T 

2) The term J%. 
As in [19, p. 66], we write J 2 in the form 

(6.63) 7° - -j 2 — 
•l 

<e 
| $ T r s [iVHexp(-A 2

T / e)l 

x 
Td(TX, 5

T X ) $ Trs [jVH exp (-C* (

2

T / £ ) 2) 
dT 

T 
• l/e 

1 fx 
Td(TX,g T X )*Tr s [jVHexp(-C 2

2)] 
dT 
T 

By Theorem 6.7, there is C > 0, 7 e]0,1] such that for 0 < e < T < 1 

(6.64) $Tr s AT H exp ( -^ 2

r / £ ) - / Td(TX,g T X ) 

$ Trs \ n „ exp(-C (

2

T / £ ) 2 )1 < C(e + < C(2Ty . 
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We now combine Theorems 3.6, 5.8, 6.8 and (6.64). We thus find that as e —> 0 

(6.65) J$ + fTd iTXigTXXTd-^NY/x ig^ ' ^d i iV ig^ ìog ie ) 

• J ¡ = - / Г Tr s [N H exp(-® 2

T a )] + T d ( T X , / ^ ( T d " 1 ) ' 
./y 

( Л Г у / х , ^ ) } ^ ^ , ^ ) 

- ^ + ° ° Td(TX, g T X ) $ Tr s [N H exp(-C^)] 

+ J Td(TX,g T X ){Td- 1 )'(iV y- / x,g"v,*) c h ( / ? ,</")} ^ . 

3) 77ie Jerm Jf. 

Using Theorems 2.17, 6.8 and 6.9, we find that as e —• 0 

(6.66) J3° -> J31 = - jT+°° | ^ (* Tr s [N H exp(-&| 2 )] 

- I d i m i V v / x T d ^ F , ^ ) ) ^ , ^ ) } ^ . 
4) The asymptotics of l \ . 

By Theorem 2.17 and by (6.60), (6.62), (6.65), (6.66), we find that as £ —• 0, 

(6.67) 

/? + jdim N Y / X jf Td(TF, g T Y ) ch(r,, 5 ") - ^ Td(TX, fl

T*) ch'(£, <?«) 

+ j ^ T d ( r X , p r x ) ( T d - 1 ) ' ( i V K / x , 3

J v ^ ) c h ( 7 7 , ^ ) } l o g ( £ ) • l \ = 

- £ j j ^ Td(TX,g T X )9Tr . [ N H ( e M - C h ) ~ exp(-Cg))] } ^ 

- ^ + ° ° { Td(TX, </™)<I>Trs [JVH(exp(-C?,)] + jT Td(rX, </™) 

( T d " 1 ) ' ^ / * , g ^ " ) chfa, 9 " ) } ^ 

- f f {$Tr s [ATH exp( -S^) ] + Td(rX,<? T X) 
./y Jo 

( T d - l ) ' ( N Y / x , g N - ' x ) } ?fch(r,,gO) 

- jf y {$ Trs [JVH exp(-OÔ2,2 )] 

i d i m i V y / x T d ( r Y , 9 " ' ) } ^ c h ^ f l " ) . 
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S) Evaluation of /£ 

Theorem 6.14 — The following identity holds 

(6.68) I l = - è { ^ T d ( T X , p T X ) r ( ^ ^ ) 

+ J B(TF, T X \ W i g
T X ^ ) ch(r/, g«) 

+T'(1) (^f Td(TX,gT X)<ti(Ç,!fi) 

- J dim N Y / X J Td(ry, y r y ) chfa, g")^ J 

iVro/. Using formulas (3.34) for T(£,^), (5.25) for B ( T F , T X | ^ , ^ T X | w ) and (6.67) 
for Jf, we get (6.68). • 

6.5 The divergences of the left-hand side of (4.26) 

4 
Now we will summarize the divergences of ^T^ I® as A —• +00, Tb —» +00, s —• 0. 

k=l 
As should be the case, the diverging terms lie in P 5 ' 0 . 

a) A —• +00 

By (6.28), (6.54), which concern if, /3, the diverging term 

(6.69) {-ST*. [(N* - i V H ) e x p ( - V ^ X ' € l x ) ' 2 ) ] 

+$Tr s [(iV^ ^Ar H )exp(-V f f ( x ^^) ' 2 )]}log(A) 

appears. By [20], [13, Theorem 1.27], this term lies in P 5 ' 0 . 

ß) To +00 

By formulas (6.40), (6.58), which concern I\, /4, we get the diverging terms 

(6.70) j - | d i m i V y / x $ T r s [ e x p ^ - V ^ ' 7 7 ^ ) ' 2 ) ] + 

\ dim N Y / X 9 TVS [exp(-BJ' 2)] } log(T0). 

By Theorems 2.16, 2.20, 2.23, this term lies in P s ' ° . 
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7) e —• 0 

We get a first sort of terms in formulas (6.35), (6.55) which concern J 2 , J 2 , 

(6-71) H - ^ i + ^ i } ? -

Since uj v is closed, it follows from (3.35), (6.14), (6.16) that -C l^ + DY-i lies in Ps>°. 
By equations (6.35), (6.55), (6.67) which concern l\ , 1$, if, we also get the 

diverging terms 

(6.72) [C™ - D% + dimNy/x J y Td(TY, g T Y ) Ch{ V , g") 

- f Td(TX,g T X )ch'(£,gt)+ f Td{TX,g T X ) 
JX JY 

( T d " 7 ( i V r / x , ^ / * ) ch(77,^)} log(e). 

Using (6.14), (6.16) and the arguments of [19, p. 70, 71], one verifies easily that (6.72) 
lies in Ps>°. 

If S is compact and Kahler, Ps>° is closed under uniform convergence. In this case, 
4 4 

it is not difficult to see that since I® G P 5 ' 0 , then ^ if G P 5 ' 0 . The reader who 
k=i l 

is only interested in this case can skip Sections 6.7 and 6.8. 
In the case of a general S, P 5 , 0 is no longer closed. Also recall that our final 

purpose is to obtain a local equality in P s / P 5 , 0 . This is why in Sections 6.6 and 6.7, 
we discuss in detail the right-hand side of (4.26). 

Finally observe that since in general, exact forms are closed under uniform 
convergence, part of the discussion of Sections 6.7 and 6.8 can be eliminated, if we 

4 
just want to show that ] P i l G P 5 , 0 . 

fc=i 

6.6 The right-hand side of (4.26): five intermediate results 

Now we will state intermediate results, which are needed in the study of the 
asymptotics of $(d/i° + du°) - ff $A°, which appears in the right-hand side of (4.26). 

If hu,T is a function of (u,T) G R+ x R+, we denote by /io,r the limit (when 
it exists) of h u , r as u —> 0. Also /io,<x> denote the limit (when it exists) of ho,r as 
T —» H-oo. Similar conventions apply to functions /i*. 

Let da be the canonical generator of C*. Then dada span R2* ®r C. If a G 
H T n S ) ®r A(R2*) we write a in the form 

(6.73) a = s 0 + daa d a + dna^ + dadaa d a < m , <t0, a
d a ', o m , a d a < m G A(T&S). 
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Put 

(6.74) 

K"-T = d\ ^ 1Nh exp( -^kVT - bNu)] b=0, 
< = - 1 dim JVy/JC Trs [(iVf + I dimiVy/xJexpC-Sf-2)] , 

eu,t = wb Trs [exp(-A2AV? - 2dau—A'^lVT - 2dâu—A'^iVT, 

•] dada 
+ dadâ—(uNy)-bNIl) 

OU Jfc=0 ^ = - i dimNY/x Trs [expC-S^-2 - da2u—B™" - dâ2u—B™' 

-j dada 
+ dadâ{—{uN™) + \ dimNY/x) 

Vu,t = f DDD Trs [expC-A2^^ + c<)]c=o , 

< = SSS SS Trs [expt-i?^2 + c(JV^ + idimiVy/x)]c=0 , 

AL,t = ^ Trs [ e x p t - ^ ^ + 2dâu-BY' - bVTv)\ ^ , da 

< r = ^ Trs expC-A2^ ^ + 2 d a u - S r " - 6vfiV) , da 

Al* = 0 , 
Ar = 0 , 

< t = DDDD T1- [^h e x p ( - ^ ^ - 2 d â « — , da 

q Q da 
< T = ^ T r s iYHexp(-^2Av/5;-2dan—A"^) .. 

<* = i dim iVy/x Trs exp(- i^ '2 - 2dâu—B^') da 
L au j 6=0 

<̂  -j da 
< * = idimJVV/xTr. exp(—B^'2 — 2dau—B™") 

L au j b=0 

Observe that by (2.33), 

(6.75) 
< = дк*и, 
< * = -дк*и 
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Computations on the model of [14, Theorem 2.16], and Theorem 3.6 show that 

(6.76) 

$0o,t = -
x 

(d imXTd(TX,g T X ) -Td ' (TX,g T X ) )*Tr a [JVH «*p(-C#)] , 

$0*Q = - (dim X Td(TX, g T X ) - Td'(TX, 5

T X ) ) ( T d - 1 ) ' 

( Y / x,9 N Y / x )ch(r) ,$0 9 i ) ,$0 

$0*Q = -
•y 

i dim N Y / X ((dimTY + \ dim N Y / X ) Td(TV, 5

T y ) 

- T d ' ^ y , ^ ) ) ^ , ^ ) , 

i dim NY/X ((dimTY + \ dim NY/X) 
i dim NY/X ((dimTY + \ dim NY/X)TY + X)dimTY\ dim 

Again, we use the notation of Chapter 5 with respect to the exact sequence of 
holomorphic Hermitian vector bundles (6.1) on W. 

Put 

(6.77) 

Xj1 = 1 
2m 

dimY 

Y 
e T l r [ e x p ( - V ^ 2 ) ] , 

Xj1 = 1 
2ni 

dimY 

Y 
ATTr [exp(-V' 2)] , 

\rp — 1 
27T2 

dimY 

x 
A T Tr[exp(-V^ 2 )] , 

Xj1 = 1 
2m 

dimY 

x 
A T Tr[exp(-V^ 2 )] , 

7T ji = 1 
\2m 

dimY 

'y 
E^Tr[exp(-V^ 2)] , 

7Tj1 =Tj1 1 
2m 

dimY 

x 
E^Tr[exp(-V^2)] ,-V^2)] 

Observe that by Theorem 5.29 and by (6.76), (6.77), 

(6.78) $0O,oo =$00, 
$01 = $000 . 

Similar trivial equalities hold for A', A", 7r;, 7r". 
Now we state five intermediate results contained in Theorems 6.15-6.19. They will 

be used to study the right-hand side of (4.26). The proofs of Theorems 6.15-6.19 are 
deferred to Chapters 7-13. 

Astérisque 



The right-hand side of (4.26): five intermediate results 87 

Theorem 6.15 — For any compact set K C S, for any uq > 0, there exist C > 0, 
s e]0, | ] such that for u > uq, t > 1, 

1 1 Tr8 [iVH e M - B l r - ^ B V J ' ) 
6=0 

- 5 dimNy/xJ^J Trs [exP(-P^2 - b u ^ - B ^ " ) ^ ^ | < £ , 
(6.79) 

^ T r s f i V H e x ^ - S ^ - f t ^ ) ] 

+ \ dim iVy/x Trs [(JV# + \ dim JVy/*) exp(-P$2)] | < ^ on if. 

Theorem 6,16 — For any compact set K C S, for any uq > 0, there exists C > 0 
sucft that for u > uq, T > 1, 

(6.80) 

^ Trs [jVH exp(-JB2>T - bu^Bvu:'") 
6=0 

- ^ Trs [pTJVHPr e x P ( - v £ ^ * ) ' 2 - / + 6 v ^ i - ) ' / " P r i V x p r ) j i < Ç ^ 

^ T r s [JVHexp(-P.2T - W\£)]6=0 

- I Trs [pTiV„PT exp( -V^ '*>>2 - 6 p r ^ P T ) ] ddd < £ on K 
J 6=0 

Theorem 6.17 — For any compact set K C S, for any Tq > 0, there exist C > 0 
sucft that if huyt is one of the functions 0u,t> ^, t> dddd for 0 < u < l , Q < T < T o , 

(6.81) |^u,t — ^o,t| S dddd on K. 

For any compact set K C S, there exist C > 0, 7 G]0,1] such that if hu,t w one of 
the functions 0u,t, n'u t> nu t> for ® < U ^ 1 > ® ^ T < l/ut 

(6.82) \hu,t - h0,T\ < C(u(l + T))7 on X. 

Theorem 6.18 — For any compact set K C S, there exist C > 0, (3 €]0,1], p €]0,1] 
such that if hu,t is one of the functions Ou t̂, ^u,t> ^u,t> nu,t> xxxx for u G]0,1] 0, 
T € [u, 1], 

(6.83) \K,t/u - hT\ < ^pj - ssss on K, 

and for u G]0,1], T > 1, 

(6.84) |̂ w,T/ti - sss < CV ss on if. 
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Theorem 6.19 — For any compact set K C S (resp. and given uq E]0,1)), there 
exist C > 0, 8 €]0,1] such that if hu,r is one of the functions Qu,t, ^u,ti ^u,t> nu,t> 
nu,t (resp. tju,t), for u e]0,1], T > 1 (resp. for u e [u0j 1],T > I), 

(6.85) \ h u , T / u - K \ < ^ on K. 

Theorems 6.15 and 6.16 will be proved in Chapter 9, Theorem 6.17 in Chapter 11, 
the first half of Theorem 6.18 in Chapter 12, the second half of Theorem 6.18 and 
Theorem 6.19 in Chapter 13. 

6.7 The asymptotics of the right-hand side of (4.26) 

a) A —> -foo 

By Theorem 6.16, we see that as A —• +oo, 

(6.86) u e j t 
•To 

DR 
| l Y s [pTNHPTeM-^TiX'iM'2oV 

-6V^A,Ç|X) PTNXPT) 
\b=o T 

dT 
ïog(A) -

u1 =2 
£<U<1 

D+D54 

d 
db Trs JVH exp(-Bl T - bu d 

du 
DR dTdu 

6=0 Tu 

+ 2 
L<u<+oo 
L<T<X0 

RE 
db 

DR Nu exp(-E>l T — bu 
d 

du 
TJV'\ 

DR 
d 

00 
RE PTNUPT exp(-V"(X'€l*)>2 

- &v£(X'Clx) PTN$PT] 
\b=Q 

\ dTdu 

b=0 

Tu 
A similar result holds for replacing v"(x'€lx)'PTN$PT by -V"(X'*M" PTN$PT. 

Finally by Theorem 6.16, 

(6.87) A0 -
DV 

Ji 

d 

db 
IVs PTNHPT exp(-V£(*'*|x)'2 

-bPTN$PT] 
6=0 

dT 
T 

log(A) — A1 = 
' £<U<1 
1<T<T0 

d 
db 

Tra [Nuexpi-BlT-bNY*)]. 
6=0 

dTdu 
Tu 

+ 
l<u<+oc 
1<T<T0 

VR 
96 

Br. [NueXp(-Bi9T-bN&) J 6=0 

9 
a t 

Irs \PTNuPTexp(-VZiX^x)>2 - bPTN$PT dTdu 
Tn 
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From (6.86), (6.87), we see that as A —* +oo, 

(6.88) ®(du° + dv°) -
dd 

VR 
*A° - *2d 

To 

RD 

d 
db 

Trs [pTNHPTexp(-V^X'IM'2 

-6V£(* '€LX) PTN*PT)\ 
dT 

\b=o T 

+ $2d 
DR 

fi 

d 
db 

DR PTiVHFrexp(-V^(x'ç|x)'2 

+ bV%(x'î[x)"PTN$PT) 
dd 
i-ïï 

D 
To 

DD 
DR 
db 

Trs PTNnPT exp(-V£(X'$|X)'2 

- bPTN$PT) 
dT-

b=o T . 
log A -» ^{dn1 +du1} 

dd 
SA1 

/?) T0 -» +00 

By proceeding as in [3, Theorem 9.23], one finds quite easily that as u —• +00, 

(6.89) 
d 
db Tra exp(- BW22 — feu 

0 
du 

DR 
16=0 

= 0 
1, 

DD 

By using (6.80), (6.89) and making u —• +00 in (6.79), we get for T > 1, 

(6.90) 
d 
db 

Trs \pTNHPTeM-V?(X'iM'2 ~ bV?X>*M' 

PTN-ÇPT) 
16=01 

< c 
y<5 

By (6.79), (6.80), (6.89), (6.90), we find for u > 1, T > 1, 

(6.91) 
1 d 

\db 
VC Nu exp(-BlT - bu 

d_ 
du 

DKD+ 

d 
db 

Trs PTNHPT exp(-V"(x'*|x)'2 - 6V"(X,*|X) PTN$PT) 
6=0 

- idimiVyyx a 
5 6 

Trs exp(-
-,W,2 
VR — bu 

d 
du 

QW 

J 6=0 
< C 

(uTsy/2 
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Using Theorem 6.15 and the above inequality, we find that as Tq —+ +oo, 

(6.92) a1 - 2 
I- + 00 

le 
±à\m.NY/x 

d 
db 

Trs exp(-£$2 - bu 
d 

du 
ED+DE du . 

u 
log lb 

-»M2 = 2 
£<U<1 

1<T< + 00 

/ d 
^db 

D+D NH exp(-.B2 T - bu-, 
d 

du 
D+D 

16=0 

6=0 

-\à\mNY/x 
d 
db 

Tr. exp(-B™'2 - bu 
d 

du 
S+D 

+ 2 
Ku<+oo 
l<T<+oo 

d 
di 

Trs Nu exp(-B2. rr-bu-
d 

J 6=0 

du 
D+D 

.dTdu 
Tu 

I 6=0 
d 

db 
Trs IPrNnPTeM-^T 

!(X,Ç\X),2 _ hVH(X,t\x)> „Nx p 
/1=0 

- ±dïmNY/x 
d 

db 
Irs exp(—i 1W2>2 bu 

d 

du 
D+D 

Jb=0y 

dTdu 

Tu 

A corresponding result holds for i/1. By Theorems 2.20, 6.15 and 6.16 and by 
proceeding as before, we see that as 

(6.93) A1 -
RE 

D 
-\ dim NY/X TVS (N% + \ dim NY/X) exp(-B^2) du 

u 

- I 
•+oo 

-|dimiVK/^ 1rs (iV5 + I dim JVWx) expf-I?^2) 

- Trs KiVv + § dim ATyy*) expC-V"^1^'2)" 
du 

u 
log(r0) 

^ A 2 = 
£<U<1 

l<T<+OC 

d 
db 

Trs [Nn exp(-B2 T - bNK] J 6=0 

+ \ dimNY/X Trs \(N$ + i dim ATy/x) exp(-B^'2) 
dTdu 
Tu 

+ 'l<U< + 00 
l<T<+oo 

d 

db 
Trs \NH exx>(-B2 r - bNY»] 

6=0 

BR 
d 

db 
Trs PrNnPr exp(-Vr(*'îU)'2 - bPTN^PT] 

I 6=0 

+ § dim iVr/x Trs (JV# + i dim SSS DD exp(-f?£'2) 

- Trs (N$ + I dim NY/X) eXp(-Vff(v'"ly)'2; 
CCX+XCN 

TJ/. 
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By (6.92), (6.93), we see that as T0 —> +oo, 

Mdu1 +ÔU1) 
dd 
D+D 

iX1 

2&d 
r+OQ 

DR 
±dimNY/x 

d 

'db 
D+D D+D14D+D bu 

d 
du 

Ou2 
du 

6=0 u 

D+D 
+00 

1 
RE 

±dimNY/x 
d 
db 

Trs e x p ( - ^ 2 bu 
d 

du 
'ttU2 

I 6=0 

du 

u 

(6.94) 
R+E14D 

Z7T 

D+D 

£SD 
\ dim NY/x Trs (N$ + h dimNY/X) exp(-B%* du 

u 

+ 
-00 

+ 

-D 

r 
1 

±dimNY/x Trs N% + kdimNY/x)exp(-B^2) 

- Trs (N$ + \ dim;VV/x) E X P C - V ^ " ^ ) ' 2 ) du 
u 

log(To) 

N$ + \ dim;VV/x) EXPC-dd 
D+D 

$A2 

7) e 0 

1. The terms u2 and v2 Clearly 

(6.95) 
£<U<1 

l<T<+oc 

a 
db 

Nnexp(-BlT - bu 
d 

dv 
D+D 

6=0 

- ±dimNY/x 
a 
db 

Trs exp(-B"a" - 6u-
d 

du 
D+D 

I 6=0 

dTdu 

Tu 

Then 

— I 
"~ 4 

r-1 

f£2 

du 
u 

r- + 00 

RE 
D+D41D+D 

dT 
T ' 

(6.96) 
f1 du 

Je* u 

r+00 

u 
N$ + \ dim;VV/x) EXPC-

dT 
T 

rl 

J£2 u 

du RE 

Ju 
Ku,T ~ *u ) 

dT 
T 

+ 
au 

le2 u u 

r+00 
(*'u,T/u ~ O 

dT 
T 

Also by using the techniques of [14, Theorem 2.11], we get the counterpart as 
u —> 0 of (6.89), i.e. as u —• 0, 

(6.97) < * = C ( U ) , T T " * = C ( U ) 
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By (6.76), Theorem 6.17 and (6.97), as e —» 0, 

(6.98) 
1 

e2 

du 

u 

.1 

u 
(r'u,T - r u'*u) 

dT 
T 

•1 

/0 

dU 
16 

l 

it 
(r'u,T - r u'*u) 

dT 

T 

Also, using Theorem 5.29, we get 

(6.99) 
.1 

f£2 

du 

u 

00 

It 
(r'u,T - r u'*u) 

dT 
T 

1 

fe2 u 

ri 

j 
(r'u,T r u'*u) - r u'*u) 

dT 
T 

.1 

Je* 

du 

u 

+00 

/1 
/ / _/ _/*> 

dT 
T 

1 

fe2 

dw 
e 

+oo 

tu 
Tïrp 

dT 
T 

By Theorem 5.29 and by (6.76) and Theorem 6.17, for 0 < u < 1, u < T < 1, 

(6.100) 
-oV?™ C(u + T ) 7 < C 'T 7 , 

r'T CT. 

Also by Theorem 6.18, for 0 < u < 1, u < T < 1, 

(6.101) r' u,T/u 
Cu<* 
T b 

Prom (6.100), (6.101), we deduce that there is a' €]0,1], such that for 0 < u < 1, 
u < T < 1, 

(6.102) r' u,T / - R' T Cu a ' 

By (6.97), (6.102), we find that as e —> 0, 

(6.103) 
l 

re2 

dit 
U 

1 

a 
(r' u, T/u - r'T - rU' * 

dT 
T 

-1 

Jo 

du 

u 

l 

x 
(r' u, T/u - r'T - rU' * 

dT 
T 

By Theorem 6.18, for 0 < u < 1, T > 1, 

(6.104) (r' u, T/u - r'T - rU' * Cu p 

Also by Theorems 5.29 and 6.19, for 0 < u < 1, T > 1, 

(6.105) 
nu,T/u n u 

c 
Ts 

7Tj> 
c 

VT 
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By (6.97), (6.104), (6.105), we see that for 0 < u < 1, T > 1, 

(6.106) /TNnPTexp(-_/ DD _/* < 
Cu?'2 
T6/2 

Using (6.106), we see that as e —» 0, 

(6.107) 
r1 

U2 

du 
u 

•+oo 
'1 

TNnPTexp(-+XI9DDD dT 
T 

RE 

R 

du 
u 

•foo 

D 
TNnPTexp(- XC+XX+X dT 

T 

By Theorem 5.29 and by (6.99), (6.103), (6.107), we find that as e —• 0, 

(6.108) 
R 

e2 
du 
u 

r»-fOO 

u 
TNnPTexp(-+XX+ dT 

T + 
/»+oo 

'o 
7Tj> 

D 
T 

D+D1D 

r1 

./o 

du e+oo 
Ju 

TNnPTexp(-X++XD?NX 
dT 
T 

+ 
RE 

oD 
TTlog(T)-

dT 
T ' 

By (6.92), (6.95), (6.108), we see that 

(6.109) n2 + 
r+oo 

lo 
VRD dT 

T 
log(e) -» /i3 = 

l 
2 Jo 

du 
u 

>+oo 

DR 
(TT,, TV,, — 1Ггг — 7Г„ ) 

dT 
T 

RE 
*1 

*T log(T) 
dT 
T 

+ 2 'l<u<+oo 
l<i <+oo 

9 
DV 

RE N-H exni—Bf. г — bu 
d 
du 

BY,;) 

d 
G db 

PTNnPTexp(- TNnPTexp(- +DXPD+ TNnPTexp(-+ POD I 6=0 

6=0 

- h dim Ny/x 
d 

VRD 
lis exp(-B^'2 -

R 
9ii 

D+D1 
6=0 

dTdu 
Tu 

A similar result holds for v2, so that as e —* 0, 

(6.110) D+D4D 
+ 00 

0 
BR dT 

T 
log(e) -» i/3 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 



94 A proof OF Theorem 0.1 

2. The term A2 Clearly 

(6.111) 
l<T<+oo 

Tr s [Nn e x p ( - < T - WV$)] 6 = 0 

+ 1 dim AT y / x Trs [N% + \ dim i V y / x ) exp(-B^ 2 )" dTdu 
Tu 

- I 
" 4 

.1 

e2 

dU 

u 

+oo 

u 
-oV?™*Yp 

dT 
T 

As this stage, one would like to proceed as in (6.96)-(6.110). However as u —• 0, 
k u , t has a singular expansion of the type 

(6.112) ku,T 
j4t 
u 

+ B T + 0(ti). 

Also k u,t/u has a singular expansion of the same type. So we use integration 
by parts to overcome this difficulty. 

Clearly 

(6.113) 
f1 

'e* 

du 

u 

+00 

u 
-oV?™*)^ 

dT 
T 

l 

e2 
du 
u 

•+oo 

u 

d 
du 

(u(k u , t - <)> 
dT 
T 

l 

e2 
-oV?™*og(A)^ dit 

u 

•foo 

re2 
ACe2 y — ê"2 dT 

T 
•+oo 

'1 
«1,T - «Ï 

dT 
T 

We will not control the right-hand side of (6.113) directly, but the dd of this 
right-hand side. To do this, we will establish intermediate useful formulas, whose 
purpose is to eliminate the diverging term in (6.113). 

Proposition 6.20 — The following identity holds, 

(6.114) 2T 
a 

dT 
Tr s 

-oV?™*YpTNXpT)]b=Q — a u , t a u , t 

-oV?™*YpTNXpT)]b=Qflog(A)^(A) 

Proof. This identity follows from (4.9) and (4.20). 
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Theorem 6.21 — The follovnng identities hold, 

(6.115) 

a 
du 

(uKu) = eu + ddr,u, 

Kl 
du 

(ukUiT) = Ou,t + T a 
a r 

Tr« \e 

Tr« \e 
a3 

d2cdb 
Tr« \exv>(-A2 Tr« \e •cNY -bNn) 6=0 c=0 

Tr« \e a3 

'•d2cdb 
Tr8 [exp(-A2 Tr« \e •f cNX + bVfv* 

6=0 
c=0 

Tr« \e 
03 

Tr« \e 
Trs exp(-A2 Tr« \e •f cNX + bVfv* 6=0 

c=0 

Proof. The first identity in (6.116) was proved in [14, Theorem 2.14]. Now we prove 
the second identity. Clearly, 

(6.116) 
d 

du 
TV. uN^)exp(-A2 ^-bNndd d = Trs 

a 
du 

uN^)exp(-A2 ^-bNn 

+ 
a 
de 

Trs uN^ exp(—Â\ û,VT-c A'1 REG 
a 

du 
•A' DD 

— c A d 
uNX)exp(-A'< KD+ 

-bNn) 
Jc=0 

= Trs d 
du 

uNX)exp(-A'< 
D+D1D -bNH) 

+ dTrs \ uN¿ ехр(-Л^ «, - dà 
d 

du 
uNX)exp(-A'< 

RE 

+ dTrs uN¿ ехр(-Л%- - da 
d 

du 
A", 
D+D ; - bNn) 

da 

+ Trs uNX)exp(-A'< X exp(-A2/ïï.v/T - dE d 
du 

4 ' 
VÏ,VT 

-bNn. 
dà~ 

+ Trs uNX)exp(-A'< exp(-A2 
D+D — da d 

du 
A" ^Sr-bNn] 

da 

+ 6-
d 
dc 

Trs uN% exp(-A2/ïïy= - da d 
du A'vt,VT-bN»-c 

uNX)exp(-A'< 
dâ 

c=0 

+ 6 
ifc 

RE uN% exp(-A2 jf-da-d 

du 
uNX)exp(-A'< uNX)exp(-A'< 

da 

I c=0 
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By (2.33), 

(6.117) Trs « < e x p ( - A 2 dâ 
d 

du 4 U . ^ - b N » 

I dâ 

= |Trs < e x p ( - A 2 - d â A'^NÏ -bNn 
dâ 

(uNÏ)exp 
d2 
dé Trs exp(-A2 ,= + cA^-WV„) 

c=0 

(uNÏ)exp 
a3 

(uNÏ)exp TVs exp(->l2 (uNÏ)exp 
(uNÏ)exp - bNn + 6 .Л1 -v/T' н c=0 

6'=0 
In the corresponding equality with da-§^A"^- signs are changed in the right-hand 
side of (6.117). 

By differentiating (6.116) at b = 0, and using (6.117), we get 

(6.118) RD 
DV - bVfv - 2b a 

ab Irs a 
du 

(uNÏ)exp(-A2 ^-bNn) 

-dd\ 
a3 

dc2db 
Trs exp(-^42 D+D5 cN% - bNn) 

16=0 

6=0 
Rc=0 

+D+D1 a3 
dc2db 

Trs exp(-A2 « + cNX + bVfv*) 

(uNÏ)exp a3 
dc2db 

D+D exo(-A , D+D5 +• CNY + bVTv) 
6=0 
c=0 

+ 
a 
db 

Trs exp(-^2 +D4D - 2dau 
a 
du 

D+D+ 

— 2 dan 
RD 
du 

" bNn 
] dada 
6=0 

+ 
RE 

56 
TVS tziV^ exp(-^2 ^ - dc _ d 

dti 
= + cA^-WV„) = + cA^-WV„) 

RE 

6=0 

+ RE 
db 

TVs uAT̂  exp(-A2yïïv/^ - do 
a 

au 
= + cA^-WV„) - bVfv - 2b 

I da 

6=0 

Also, as in (6.118), we get 

(6.119) TVS uN% expi-A2-- dâ 
a 

du 
= + cA^-WV„) A" - bVfv - 2b 

RD 

= -d 
,d2 
4 ac2 

TVs expf-^l2, D+D4 ciV̂  - bVfv 
6=0 
c=0 

+ 1* 
a3 

?2ca&' 

Trs exp I = + cA^-WV„) c N l - bVfv - 2b"I A' 77 *Fri 
d 

dT D+D4 c=0 
6=0 
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By differentiating (6.119) at b = 0, we get 

(6.120) a 
db Trs UNY exp(- ciVuv + bVTi VRD 

du 
ciVuv + bVTi ciVuv + bVTi X 

da 

6=0 

= dh d3 
d2cdb 

VR ЕИФ(-Л' + ciVuv + bVTi 6=0 
c=0 

+ 1 
Ô3 

1 ^ryW 
Trs exp -A* ^ + cNvu-2b'T 4'DR+D+R 

d 
ciVuv + bVTi b'=0 

c=0 
In the corresponding equality with da-§-A!' r=, d is replaced by d, VTv by y/Tv* 

and A! DD+DR ciVuv + bVTiD by RE 
ciVuv + bVTiXX+XS? 

D+D 
Now using Theorems 6.19 and 6.21, we get 

(6.121) dd 
tl du 

J£2 U 

•4-00 

fu 

d 

du 
ciVuv + bVTi dT 

T 

do 
f1 du 

J£2 u 

+00 

lu 
(0u,T — 0U) 

dT 
T 

D 

R 
-rju^u + Vu) 

dui 
u 

To the first term in the right-hand side of (6.122), we apply the trick already used 
for /i2, v2. Namely we write 

(6.122) 
RE 

J* 

du 
u 

foo 

Ju 
ßu,T — @u) 

dT 

1 e2 
du 
u 

ri 

lu 
(0U,T — 0U) 

,dT 
T 

D+D 
rl du 

Je2 u fu 

.+00 
ciVuv + bVTiDD 

dT 
T ' 

Also 

(6.123) 
-1 du 

D+DR 

D+D 

Ju 
ßu,T — 0U 

dT 

' T 

1 du 

)£2 U 

*1 

fu 
ßu,T — 0o,T ~~ Qu + #0 

dT 
T 

+ 
f1 dv 

£2 U 

1 

J u 
(0O,T — OQ) 

dT 

T 
One verifies easily that as u —> 0, 

(6.124) e: = 9*0 + û(u). 

By Theorem 6.17 and by (6.123), (6.124), we see that as e —• 0,D 

(6.125) 
r1 d« 

Je' u 
'0«,T — 0U] 

dT 
T 

+ h(—#o,o + öS) ! 2/ 2> 

+ 
•l 

Jo 
{0O,T — &o,o) 

dT 
T 

log(e2) 

f1 du 

Jo u 

.1 

<u 
(OU,T - 0O,T - 0U + 0Q)-

iT 
T Jo 

Ô0,R-Ô0,O)LOG(r) 
dT 
T ' 
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Also by Theorem 5.29 and (6.78), 

(6.126) 
a du 

J£2 u 

+00 

fu 
(Ou,T/u - K) 

iT 
T 

rl du fi 

J£2 U 
r1 du 

By Theorems 5.29 and 6.17, for 0 < u < 1, u < T < 1, 

r1 

ÌOU,T/U — OQ,T/U — OT + Oo) 
dT 
T 

OU,T/U — OQ,T/U 
,dT f1 du 

T Je* u 

rl/u 
0Q,T 

iT 
T 

ri 
+ 

D 
OU,T/U — OQ,T/U du 

u 
+ 

J£2 U 

ml du r+00 

1 
{QU,T/U — 0T — 9U + 6Q) 

dT 
T 

VR 
»+00 

li 
($T — #00 

dT 

T 
log(e2). 

(6.127) 
K t / u ~ Oo,t/u\ < C(u + T p < C'T<, 
\0T -0o\ < C'T. 

By Theorems 3.6 and 6.18, and by (6.78), for 0 < u < 1, u < T < 1, 

(6.128) 
\0u,t/u-0t\ < gsdfgf 

\e0,T/u-ôo\<c(^y/2gs 

From (6.127), (6.128), we find that there exists a' €]0,1] such that for 0 < u < 1, 
u < T < 1 

(6.129) \Kt/u - o0,t/u - e t + e0\< cua ' . 

By (6.129), we see that as e —• 0, 

(6.130) 
-oV?™*YpTNXpT)]b=Qflog(A)^-oV?™*YNXpT) 
-oV?™*YpTNXpT)]b=Qflog(A)^-oV?™*YNXpT) 

J — J (0u,T/u - &0,T/u - 0T + ö0)^r . 

By Theorems 5.29, 6.18 and 6.19, for 0 < u < 1, T > 1, 

(6.131) 

0u,t /u-0T\ < Cup, 

-oV?™*YpTNXpT)]b=Q 

| f r - « o o | < - S . 

Astérisque 
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Using (6.78), from (6.124)-(6.131), we see that for 0 < u < 1, T > 1 

(6.132) OuF/u - Ot - 0U + #o| -
Cu<* 
TP 

Prom (6.132), we find that as e —• 0, 

(6.133) 
l 

e2 

d?z 
e 

+oo 

f 
-oV?™*YpTNXpT) 

dT 
T 

rl 

'0 

dw 
u 

•+oo 

t 
]b=Qflog(A)^]b=Qflog(A)^ dT 

T 

Using (6.126), (6.130), (6.133), we see that as e —• 0, 

(6.134) 
ri 

'e 2 

dti •+oo 

/ti 
(0u,T/u - 0£) 

dT 
T 

+ è(*S-0O,œ)logV) 

•+oo 

m 
(#0,T — #0,00 ] 

dT 
T 

.1 

o 
(0t — Oq) 

dT 
T 

•foo 

'l 
]b=Qflog(A)^ dT 

T 

log(e2) 
rl 

r0 

dtz 
г¿ 

m 

/ti 
(0u,T/u — 0Q,T/u — UT + #o) 

dT 
T 

»i 

/o 
du 
u 

•+oo 

1 
{Ou,t/u - Qt - Ou + #o) 

dT 
T 

e 

o 
(0 T -0 0 ) log(T) 

dT 
T 

•+oo 

1 
(0o,T~0o,oo)log(T) 

dT 
T 

By (6.122), (6.125), (6.134), we see that as e —• 0, 

(6.135) 
r1 

F£2 

dix 
u 

+oo 

ti 
(vti.T — 0..)' 

dT 
T | ( 2 ^ - 0 o > o - 0 o , o o ) l o g V ) 

rl 

'0 
(#o,t — #o,o) 

dT 
T 

(•+00 

1 
(0Q,T — #0,oo) 

dT 
T 

l 

0 
(0t — Oo) 

dT 
T 

•+00 

1 
]b=Qflog(A)^ 

dT 
T 

log(e2) 

•i 

0 

du 
u u 

(Qu,T — &0,T — Oil + 
dT 
T 

r.1 

0 
du 
u 

e 

ti 
{Qu.T/u - &0,T/u - #T + 0o) 

dT 
T 

l 

'o 

du 
u 

+oc 

a 
(^u,T/« — Ot — 0U + #o) 

dT 
T 

•l 

o 
(0o,T-0o,o)log(T) 

dT 
T 

ttt 

'1 
(0o,t - eo,oo)log(T) 

dT 
T 

•l 

'0 
(0 T-0o)log(T) 

dT 
T 
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Clearly 

d 2 r l 
(6.136) KU t U + r] U t U = | ^ Tr s [ e x p ^ A 2 ^ ^ + c(NX - N H ) \ c = Q 

" 1 ^ Trs [ e x p t - A 2 ^ + dVH)] c = o • 

Now by [14, Theorems 2.14 and 2.16], we know that there are forms if_2,i?-i, 
Ho £ P s such that as u —> 0, 

(6.137) # T r s [ e x p ( - ^ > v r + DDGRF - N n ) ] c = o = 

H-2 
и 2 

#-1 
U 

Н 0 + 0(«), 

and moreover, 

dd _ dd 
2 ! ^ - 2 - ° ' 2 l ^ - 1 - 0 ' 

(6.138) | ^ t f 0 = - i t f + ^ ( d i m X Td(TX, 5

T X ) - Td'(TX, g T X ) ) ch(£, <?«) 

- / TÛ{TX,gT X)cti{Z,gt). 
Jx 

Also by proceeding as in [4, Section 4], we see that as u —> 0, 

(6.139) ^ ^ T r s [ e M - A 2 ^ + c N n ) ] c = Q 

= 1 / Td(TX^ T X )$Tr s [ iVâexp(-V^ 2 ) ]+©(^) . 

Clearly the constant coefficient of (6.139) is d and d closed. From (6.136)-(6.139), we 
find that there are forms K-i , K^\,Kç G P s such that as u —> 0, 

K K 
(6.140) *(* t t | t 4 + 77W,W) = — ^ + — 1 1 + K 0 + 0(u), 

and moreover 

» * _ 2 = 0 , f* * _ , = ( , , 
2lTX 217T 

(6.141) | ^ K o = -DX + J x {dimXTd(TX,g T X ) - Td'(TX,g T X))ch(t,gt) 

- f Td(TX,g T X)ch'(Z,gt). 
Jx 
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Clearly 

(6.142) < + < = * 5 3 ^ [*M-B™'2 + c i O l e - o 

- i ^ T r s [exp(-S^2 + f dim^Wx)]c=0 • 

By using again [14, Theorems 2.14 and 2.16], we see that there are forms 
L-2, L - i , L q € P S , such that as u —• 0 

(6.143) * « + о = sssss + + L o + а д > 

and that 

(6.144) 
]b=Qflog(A)^]b=Qflog(A)^]b=Qflog(A)^ 

^ L o = - C T + jf (dim y Td(TY,gTY) - Td'(TY,gTY)) ch(n,g»). 

By (6.140), (6.143) we see that as it —» 0, 

(6.145) * 
ri 

Je* 
\TY,g™))&{n,9 

du 
u /£2 

r1 
{-r)u,u + Vu] du 

u 

+ (K__2 - L_2) 1 
2e2 f- (K-i — L-i) i -2(K0-LQ)log(e) 

\TY,g™))&{n,9 
rl 

/0 
\TY,g™))&{n,9 

#-2 
U2 

D 

u 
-Ko) RE 

D 

+ 
R 

RE 
\TY,g™))&{n,9 L-2 

DD 
RE 
RE 

RE 
DV 
RE 

+ i(Jft:_2-L_2) + (K_1-JL_1; 

From (6.141), (6.144), (6.145), we find that as u —> 0, 

(6.146) 
dd 
2in ' 

r1 

Je2 
1 * 

~f^>u,u i 

rial 

U 
+ 

D 

Je2 
~Vu,u + O 

1i 
\TY,g™))&{n,9 

XS 
dimXTd(TX,gTX] -Td'(TX,gTX))ch(e,gt) 

+ 
Jx 

Td(TX,gTX)cW(Ç,gt)-C™ 
JY 

(dimYTd(TY,gTY) 

-Tà\TY,g™))&{n,9v))\og{e) 
SD 

2Z7T Ai. 

By (6.75), we get 

(6.147) a a < = i(a7r,'r + a<*) . 
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Using Theorems 6.5 and 6.19, Proposition 6.20 and (6.147), we get 

(6.148) дд / (кв*,т - к*£2)Щг = Trs [N% ехр(-Л2>£)] 

- Trs [(JVjT + i dimiVy/x) exp(-Bj'2)" 

i f °° // i dT 
+ 2y2 (K2,T ~* ^2,r)"jT 

]b=Qflog(A)^]b=Qflog(A)^]b=Qflog(A)^]b=Qflog(og(A)^ 

Clearly 

(6.149) 
Tr8 [i\#exp(-A2)£)] = Trs [(N% - iVH)exp(-A2£)] +Tr8 [7VHexp(-A2£)] . 

Using [14, eq. (2.71)] and Theorem 6.4, as e —• 0, 

(6.150) 
*Tr8 [(N% - 7VH)exp(-A2)£)] = Dv_^ + D% + €{e2), 

*Trs[jVHexp(-yl2i£)] = / Td{TX,gTX)cti(Ç,gt) + Q(e2). 

Also by Theorem 2.17, as e —• 0 

(9.151) $ Tr8 [(N$ + I dim NY/X) exp(-B£T'2)] = 

-^L + C™ + ídimNy/x / Td(TY,gTY)ch(n,g*>)+ü(e2). 

Using (6.97), Theorems 6.18 and 6.19 and proceeding as in (6.59)-(6.67), as e —» 0, 

(6.152) 

1 
2 

-hOO 

e2 
(K2,T ~ K2,T) 

dT 
T 

foo 

RE 
dT 

F T 

I 
2 

/•-foo 

e2 
(UDKDKDKD_/* > RE 

T 
I 
2 

RE 

RE 
7Tj> 

V 
T 

î 
2 

+oo 

R 
VH)exp(-A2)£)] 

dT 
X 

1 
2 

+oo 

VR 
V dr 

T 
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From (6.148)-(6.152), we see that as e —• 0, 

(6.153) aa 
2in 

+00 

e2 
KKe2,T -

dT 
' T 

4- (CÎTx - ^ ) 
1 

- (CÎTx -
•/y 

r d ( T X , f l r * ) < * ^ ) - C ^ 

- |dimiVV/x 
'y 

Td(TF, ) ch(r/, p11) 

+ 
+00 

S 
$A7 

RED 
RD 

- (CÎTx -r»+oo 

'o 

dT 

T 
D+D4D 

r+oc 

'0 
rr" RE 

TR 

Now by using Theorem 3.10, (6.141), (6.144), one finds easily that there is a universal 
form Bi € Ps such that 

(6.154) D% + 
'X 

Td(TX,gTX)ch'(£,gt)-C0* 

- ^dimNy/x Td(rr,5TK)ch(»7,p'') = 
IY 

UdimNY/xTd{TY,gTY) 

+ Td(TX, g^iTd-'YiNy/x, g»-'* )) ch(„, g*)) 
dd 

D+D 
Bi). 

By Theorem 5.11 and Proposition 5.26, we find that there is a universal formCi € Pw 
such that 

(6.155) 
•+oo 

0 
R2 

dT 
T 

= -±dimNY/xTd(TY,gTY) 

- Td(TXtgTX)(T<rx)'{.NY/XtgN*'*) 
dd 
2i7Tv A ) . 

Also by Proposition 5.28, there is a universal form C2 6 Pw such that 

(6.156) D+D r+00 

'0 
VR dT 

T 
REVR 

•+oo 

/0RV 
B 

iT 

T 

dd„ 
2f7TV 

C2). 

From (6.153)-(6.156), we deduce that there is a universal form A2 € Ps such that 
when e —• 0, 

(6.157) 5d 
2f7T 

•+00 
*(«e»,T-«^) 

dr 
RE 

- (CÎTx - D+D dd 
'A2). 

2Z7TV 

Ultimately, from (6.93), (6.111), (6.113), (6.121), (6.135), (6.146), (6.157) and using 
the fact that 0Q, #O,O> #O,OO axe closed, we see that as there is a canonical form H € Ps 
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such that as e —• 0, 

(6.158) 
an 

in 
$A2 + \{C^-DV_X) 

1 

e2 

+ 
dd 
2m 

ri 

R 
QQ,T — #o,o) 

dT 
T 

r+oo 

RE 
(0O,T — 0O,oo) 

dT 
T 

RE 
/0 

{6T — OQ) 
dT 

T 
.+oo 

'1 
(OT-00*) 

dT 

T 

+ W -
'x 

[dimXTd(TX,gTX) -Td'(TX,gTX))ch(Ç,gt] 

+ 
Jx 

Td(TX,gTX)ch'(^g^)-C^ + / (dimYTd(TY,gTY) 

-Td'(TY,g1Y))ch(v,9V) log(£)-
dd, 

H. 

So by (6.109), (6.110), (6.158), we see that there are universal forms /x3, u3, A3 such 
that as e —• 0 

(6.159) $(du? + du2) -
dd 

ITT 
*A2 + i m r , -cZ)-

- (CÎTx - -hoo 
0 7Tj-

dT VRD 
VR 

c+oo 

Jo 
VR 

dT 
T 

R 
dd_ 
2in /0 

•l 
HOT - 00) 

.dT 
T 

BRD 

71 
$(0T " 0oo) 

dT 
T 

dd 
2in 

/-1 

0 
- (CÎTx -

dl 
T + 

f+oo 

'1 
*(#0,T — 0O,oo. 

dT 
T 

- (CÎTx - DDD 
Jx 

(dimXTd(TX,gTX )-Td'(TX,oTX))ch(£,o«) 

RE 
x 

Td(TX,gTX)ch'(e,gS)-
V 

{dimYTd{TY,gTY) 

- T d ' f T Y i ^ c h f a , ^ ) D D D D og(e) 

-> ^(d/j,3 + du3) 
dd 

£A3 
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6.8 Matching the divergences 

a) A —> +00 

Clearly N-X—Nh defines the Z-grading of H(X, £\x)- Therefore for T > 1, it coincides 
with Pt (Nx — Nh)Pt. In particular 

(6.160) V%{x'ÇIx)PtN$Pt = V ^ ' ^ P t N h P t • 

From (6.160), we get 

(6.161) 2 | T r s [pTN»PTeM-V?(X*M'2 ~ bvFx*M'pTN$PT)} 

= d^r Trs fpTiVHJPrexp(-V^|x)'2 - bPTNHPT)} 
Ou L J 6=0 

2 | - Trs Ï P t N u P t exp(-v£(*'*u)'2 + b V ^ x ' ° " P T N $ P T ) ] 
00 L J 6=0 

= -d-^Tra \PtNhPtexp(-V£(*'€|x)'2 - bPTNHPT)\ 
OO L J 6=0 

By (6.161), we obtain 

(6.162) 

-&2d 
-To 

'1 

d 
dl 

REV PTNHPT E X P C - V ^ 1 ^ ' 2 - 6 V P T N X P T ) 
Jb=0 

dT 

T 

- (CÎTx - i 
•To 

'1 

VRD 
db 

RE PriVuPT expl _V£(*,«|*),2 + bV»(Xt\x)"pTNXpT 
6=0 

D+D 
D+D5R 

•To 

J1 

RE 
56 

rrs PTJVH.PT E X P L •V^XÂ]x)'2-bPTNxPT)D 
6=0 

dT 
T 

V+R 
dd 
2Ï7T 

R+E 
To 

Jl 
V+R 

L 
iV^-iVH)exp(-V^ r(X,4|x),2 26 

PTNHPT 

T 
dT 
T 

Using (6.48) and [5, Theorem 2.1], we find that the right-hand side of (6.162) is equal 
to 

(6.163) - * Trs UN$ - Nu) exp( ,H(X,£|x),2> 
To 
+ $Trs \(N$ - JVH)exp(-VH^̂ )'2)l 

By (6.69), (6.88), (6.162), (6.163), we find that, as should be the case, as A —> +oo, 
the divergences of both sides of (6.26) coincide. Therefore 

(6.164) 
4D+D 

k=l 
rl = Qid/j,1 + dv1) -

dd 
DD+ 

27T 
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/3) T0 -» + 0 0 

By (2.33), 

(6.165) 
^ T r 8 [exp(-B^2 - to^Bg)] = - a i r 8 [iV^exp(-B^2)] , 

| Trs [ e x P ( - ^ 2 - b u ^ B Z " ) ] bQ = âTrs [N$ e x P ( - ^ 2 ) ] . 

Using (2.38), (2.39), (2.46), (2.51), (6.165), we find that the coefficient of log(T0) in 
the left-hand side of (6.94) coincides with (6.70). So we get 

(6.166) £ i 2 = * ( V + 0 « ' 2 ) - ^ * A 2 . 
fc=l 

7 ) e —» -hoc 

Clearly, the coefficients of ^ in (6.71) and (6.159) coincide. For the coefficients of 
log(s) in (6.72) and (6.159) to coincide, we should have the identity 

(6.167) ®d 
r+OQ 

JO 
Krp-

dT 
T 

+DRED 
RE 

'0 
VRE dT 

T 
dd 
2in 

f1 

J0 
<Ss>(eT-e0) dT 

T 

r+oo 

Jl 
$(0T ~ 0oc) 

dT] 
T 

dd 
2m 

ri 

'0 
&(0O,T — 0o,o) 

dT 
T 

+ >+oo 
/1 

$(0O,T " #0,00 ) 
RE 
T 

VR 

lY 
(dim X Td(TY, gTY) - Td'(TF. gTY) 

+ Td(TX, gTX)(Td-l)'{NY/x,gN^)) ch(V, g") 

Jx 
RE (dim X Td(TX, gTX) - Td'(TX, gTX)) ch(£, g*). 

Now we give a direct proof of (6.167). By (3.34), (3.35), (6.76), 

(6.168) 
dd 
2m 

r1. 

/o 
00, T — 0o,o) 

dT 
D 

•+oo 

/1S 
$(0O,T — 00,00. 

REX 
DV RE 

RE 
(dim X Td(TX, e?™) - Td'(TX, 5TX)) ch(£, g*) 

RE 
JY 

(dimXTd(TX,gTX) - Td'(TX,gTX))Td-1(NY/x,gNr'*)<ii(ri,g'') 

ASTÉRISQUE 



An identity on Bott-Chern classes and Bott-Chern currents 107 

Also by Theorem 5.31, 

(6.169) Фд 
'0 

+ 00 
DV dT 

T f Фд 
Ja 

foo D dT 
T 

dd 
2m 

rl 

Jo 
Ф(вт - вп) dT 

T 

+ 
Jl 

f+OO 
Ф(0т - воо) 

HT 
T Y V 

dimX(Td(TY,gTY) - Td(TX,gTX) 

Td-^Ny/x,^*'*)) - Td'(TY,gTY) + Td'(TX,gTX)Td-1{NY/x,gN*'x) 
+ Td{TX,gTX)(Td-1y(NY/XtgN^)) cnfoc?" 

Then (6.167) follows from (6.168), (6.169). 

Thus we find that there are explicit universal forms fj,3, u3, X3 such that 

(6.170) 
4 

k=l 
Il = Ф(д/л3 + du3) 

aa 
Ì7T 

PX3 

6.9 An identity on Bott-Chern classes and Bott-Chern currents 

Recall that A(x) x/2 
sinh(x/2) 

We identify (A'/A)(x) with the corresponding 
additive genus. 
Theorem 6.22 — The following identity holds, 

(6.171) ch ( H ^ Y \ g H ^ x \ g H ^ M ) 

-T(uw,g*) + T(ujv,gi) 

= f Td(TX,gTX)T(Ç,gt)+ f B(TY,TX\w,gTX\")ch(r/,p") 
JX JY 

- r ' ( l ) / Td(ry)4^(AV/x)ch(r/) in PS/PS'°-
JY A 
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108 A proof of Theorem 0.1 

Proof. Using Theorems 6.11-6.14 and (6.170), we obtain the equality, 

(6.172) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY) 

- T{uw,g*>) + T(uj v, <?*) - / Td(TX, gT X)T{Ç, gfi) 
Jx 

- J B ( r r , T X | w , p T X | , v ) c h ( ï , , ^ ) 

+ r ' ( l ) [c™ - *Tr s [ n y e x p ( - V " ^ " ^ ' 2 ) ] 

- Dl 7 + $Tr s [(JV# - N H ) e M - Ç V H { x ' î M ' 2 ) 

- f Td(TX, g T X ) ch'(£, «7«) + \ dim N Y / X 

I Td(TY,gT Y)ch(7?,g v)\ G P s ' ° . 

By Theorem 3.3 and by [20], [13, Theorem 1.27], it is clear that 

(6.173) * ( T r s \{N$ - AT H )exp(-(V / f ( x '« | x ) ' 2 ) l 

- Trs [ n y e x p ( - v h ^ ^ 2 ) ] ) e p s ' ° . 

Using (6.154), (6.173) and proceeding as in [19, p. 72], we get (6.171). 

6.10 Proof of Theorem 6.2 

By Theorem 5.17 and by (5.30), we get 

(6.174) B ( T Y , T X \ w , g T X \ w ) = - T d - 1 ( N Y / x , g N r ' x ) T d ( T Y , T X \ w , g T X ^ ) 

+ Td(TF) ^R + r ' ( l ) ^ ( N Y / X ) in P w / p w # . 

From Theorem 6.22 and from (6.174), we get the first equality in (6.6). Using (3.35), 
we see that 

(6.175) J Td(TX)R(TX) ch(£) - J Td(TY)R(TY) ch(r)) = 

J Td(TY)R(NY / x)ch(ri) in P s / P s ' ° . 

By (6.175), we thus obtain the second equality in (6.6). The proof of Theorem 6.2 is 
completed. • 

Astérisque 



7. A new horizontal bundle on V^and the 
conjugate superconnection A u p 

In general T H V\ W ^ T H W. This is a potential source of difficulties. In effect, by [19, 
Section 9 and Section 13], we know that as T —+ -f-oo, in one given fibre X, the heat 
kernel of exp(—u(Dx + TV) 2) evaluated on the diagonal concentrates on Y like a 
gaussian. Here we have a family of such fibres X. Implicitly, our study involves the 
variation of the concentration of the heat kernel of exp(—u(Dx + TV) 2) along the 
fibres X s when s € S varies infinitesimally. The connection V"67, which provides a 
local trivialization of E near a given s € 5, is not adequate for such a study, because 
since in general THV\w ^ T H W , the fibres Y are not preserved by this trivialization. 
Thus, we are forced to modify the horizontal bundle T H V near W. 

In this Chapter, we construct an extension of j i H W to a horizontal subbundle 
of TV, which coincides with T H V away from a neighborhood of W in V. Then by 
conjugating the superconnection Au^t, we obtain a new superconnection A u , t , in 
which the annoying term / a V ^ ( ° , 1 > X ) ^ is replaced by / a V ^ T ^ ( ° ' 1 ) X ) § ^ 

foe ' fa 
Still, once this difficulty is eliminated, a new one appears. In fact, in Chapter 13, 

we also need to use local index theoretic techniques in a situation where u —• 0, 
T —> -f-oo. This forces us to determine T H W more rigidly than described before. In 
effect the jet of order 1 of T H W in directions normal to the fibres Y is also important. 

This Chapter is organized as follows. In Section 7.1, we recall the expression of 
D x and D Y as Dirac operators [29]. In Section 7.2, we describe the exact sequence 
0 —• TY —+ TX\w —• Ny/x —• 0. In Section 7.3, we obtain a global coordinate 
system on a neighborhood of W in V. In Section 7.4, we recall the construction in [5] 
of a splitting £ = £ + 0£~ near W. In Section 7.5, we give a cohomological obstruction 
to the identity THV\w = T H W . In Section 7.6, we construct an extension of T H W 
to V. In Section 7.7, the conjugate superconnection A U j t is introduced. Finally in 
Section 7.8, we give generalized Lichnerowicz's formulas for A^ T and A 2

 T . 

In this Chapter, the assumptions and notation of Chapters 3, 4 and 6 are in force. 
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110 A NEW HORIZONTAL BUNDLE ON V . . . 

7.1 A formula for D x and DY 
As explained in Chapter 6, to avoid notational difficulties, we suppose that V, W 

and S are compact. 
We use the notation of Section 2.2. If U 6 T&X (resp. TRY), the Clifford operator 

c(U) acts naturally on A(T*l°'VX)®€ (resp. on A(T*WY)®tj). 
Let vA(T*(°,l,x>®« (resp. V^7"'0,1^)®") be the connection on A ( T * ^ X ) § £ 

(resp. A(T,*(°'1)y) (8)7/) induced by VTX and V€ (resp. by VTY and V ) . Recall that 

(7.1) Dx =dX + dX* , DY = dY + dY* . 

Proposition 7.1 — Let e\ , . . . , e2i (resp. e'ly..., e^,) be an orthonormal basis ofTnX 
(res. TvtY). Then 

R+D 
2£ 

1 

c(ei) 
л/2 

T*l°'VX)®€ 

(7.2) 
T*l°'VX)®€ 

2£' 

i 

c(eî). 
V2 D 

T*l°'VX)®€ 

Proof. Since the metrics gTX and gTY are fibrewise Kâhler, our Proposition is a 
result of Hitchin [29, p. 13], [19, Proposition 8.5]. • 

7.2 The canonical exact sequence on W 

We now consider the exact sequence of holomorphic Hermitian vector bundles on 
W 

(7.3) 0 -+ TY TX\W -+ NY/x -> 0. 

Recall that Ny/x is identified to the orthogonal bundle to TY in TX\w 
Let PTY, PNy/x be the orthogonal projection operators from TX|v^ on TF, Ny/x-

Let VNy/x be the holomorphic Hermitian connection on (Ny/x,gNY/x)-
Proposition 7.2 — The following identities hold 

(7.4) 
VTy = pTYyTX\w ^ 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYT 

Proof This result follows from (5.11). 

Definition 7.3. Let °VTX|w be the connection on TX\W = TY © Ny/x, 

(7.5) 
- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd( 
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A coordinate system on V near W 111 

Set 

(7.6) A = VTXlw - °VTX|vv . 

Then A is a 1-form on W with values in skew-adjoint endomorphisms of TX\w which 
exchange TY and NY/X. Since VTX is fibrewise torsion free, if J7, V G TrY 

(7.7) i 4 ( t f ) V - ¿ 0 0 ^ = 0-

Definition 7.4- If e i , . . . , e2*' is an orthonormal basis of TrY, set 

(7-8) v = ± ^ 2 A M e t . 
1 

Then i/ is a section of Ny/xja.* It is called the mean curvature of the fibre Y. 

7.3 A coordinate system on V near W 

If y e W , Z € iVy/x,r,y, let £ € R —• xt = expx(tZ) € W be the geodesic in the 
fibre -X^y with respect to gTX, such that xo = y, if|t=oZ = ZZ 

For 0 < e < +oo, set 

(7.9) B£ = { Z e N Y / x ^ \ Z \ < e } . 

For eo > 0 small enough, the map (y, Z) € NY/X,n —> expx Z £ W is a 
diffeomorphism from I?2eo on a tubular neighborhood 6U,2e0 °f W m V- ^om now 
on, we use the notation x = (y, Z) instead of a: = expx(Z). We identify y £ with 
(y,0) €iVy/x,r. 

Recall that dvx, dvy are the volume elements of the fibres X, Y with respect to 
9TX, 9TY • Let dvNy/x he the volume element of ATy/XjR with respect to gNv/*. Let 
fc(y, Z) be the smooth positive function on BCo such that 

(7.10) <fox(y, Z) = fc(y, Z)dvY(y)dvNY/x (Z). 

The function fc(y, Z) has a positive lower bound on °lteo. Also 

(7.11) k = l on W. 

7.4 A splitting of £ near W 

We use the identification (3.29), so that H(£,v) is considered as a subbundle of 
£\w Let -H""L(£,v) be the orthogonal bundle to H(£,v) in £|vp. Now we recall the 
construction in [5, Section 3f)] of a splitting £ = 0 £~ near which extends the 
splitting £|w = H(£,v) 0 ^ ( ^ v ) . 
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112 A new horizontal bundle on V . . . 

We have the identity 

(7.12) H(t,v) = { f e t \ w ; v2f = o} 

For y G W, let /x(y) be the smallest nonzero eigenvalue of the self-adjoint operator 
V2(y). Since H(£, v) is smooth vector bundle, the function fi: W —• R+ is continuous. 
Since W is compact, the function /x has a positive lower bound 26 on Ŵ . 

We may and we will assume that Sq > 0 is small enough so that if or € °U,2eo -> b *s 
not an eigenvalue V2(x). 
Definition 7.5. For 0 < k < m, x G ^ x (resp. C^x) denotes the direct sum of 
the eigenspaces of the restriction of V2{x) to £&,x corresponding to eigenvalues which 
are smaller (resp. larger) than 6. 

For 0 < k < m, the £ĵ x are the fibres of smooth vector subbundles of over 
°ll£o. Clearly on %0, for 0 < k < m, 

(7.13) - [ Td(TX,gTX)cb.' 

Set 

(7.14) - (dimYTd(TY,gTY) [ Td(TX,gTX)cb.'{Z,gt)- f (dim 
k=0 к even A: odd 

In (7.13), (7.14), the various splittings are orthogonal. We equip f ̂  with the metric 
g€ induced by g^. 

Then v,v* preserve Let be the restriction of V to £±. We will often 
write F in matrix from with respect to the splitting £ = © £~, 

(7.15) v = \ v + ° " 
L 0 v~. 

By (7.12), 

(7.16) C\w = H(t,v)=)serV\w. 

From (3.28), (7.12), we get 

(7.17) £ \w =ANY/X®T]. 

Let P^* be the orthogonal projection operators from £ on £±. Let V^* be the 
Hermitian connection on = P^ V^. 

Now we recall result of [5, Proposition 1.8]. 

Proposition 7.6 — The connection i*V^ on £~\w — H(£,v) is exactly the holomor­
phic Hermitian connection on (H(£, v),gH^,v^). 
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A cohomological obstruction to the equality THV\w = T H W 113 

Definition 7.7. Let be the connection on = £ + © £ , 

(7.18) V* = V*+ © . 

Set 

(7.19) B = V * - V*. 

Then the connection preserves the metric g ,̂ and B is a 1-form on °lle0 which 
takes values in skew-adjoint endomorphisms of £ which exchange and £~. 

By Section 2.2, if Z e N Y/x,n, c ( z ) a c t s o n H n y / x ) ® 
Proposition 7.8 — J/y € W, Z € N Y /x,n, y then 

(7.20) V|F"(2/) = ^ c ( Z ) . 

Proof Taking into account the discrepancy in the notation of [19, Section 5 a)] and 
our Section 2.2, our Proposition is just [19, Proposition 8.13]. • 

Remark 7.9. Clearly 

(7.21) V%V = V%V + [B{Z),V]. 

Since £~\w = kerV|wiC+|v = ImV\w, we deduce from (7.21) that 

(7.22) P r V % V P r \ w = P r V % V P i ~ \ W -

7.5 A cohomological obstruction to the equality T H V \ W = T H W 

Let p be the restriction map H\V,T*V) -> H ^ W ^ V ^ ) -+ H l(W,T*X\W). If 
a € friViT+V), ( p a ) d i m r + 1 € H d i i n Y + 1 { W , A d i m Y + 1 ( T * X l w ) ) . 

Clearly T H V\ W = T H W if and only if T H W and TX|vk are orthogonal with respect 
to u^ w . 

Let [ujv] be the class of u v in i f 1 ^ ? 1 * ^ ) - Then if T H V\ W = T H W , 

(7.23) ( p [ a ; v ] ) d i m K + 1 = 0 in H d i m Y + 1 ( W , A d i m Y + 1 ( T * X l w ) ) . 

Then (7.23) provides us with a cohomological obstruction to the equality T H V \ w = 
T H W. In particular if V,W are compact and Kàhler and if H l(V,T*V) is one 
dimensional, the class [ujv] is nonzero and fixed up to a constant. If (7.23) does 
not hold, we cannot find uj v such that T H V\ W = T H W. 

This is in dramatic constrast with the situation one meets in the C°° category, when 
trying, say, to establish a formula similar to Theorem 0.1 for the rj forms of Bismut-
Cheeger [12]. In this context, one can always assume that Tj[V\w = Tj[W. One does 
not need to proceed the way we do in the present paper for the rj forms, essentially 
because the image of K{S) ®q Ta by the Chern character map spans i f e v e n (5 , Q). 
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114 A new horizontal bundle on V 

7.6 An extension of TH W to V 

Up to now, THW is a subbundle of TW. It will be important to extend THW to 
a subbundle of TV on V. 

Let V71^7^ be the trivial connection on TTyTS along the fibres X. We equip 
TV = TH V 0 TX with the connection along the fibres X, 

(7.24) VTV = Vn-VTS ф v t x 

Observe that our notation fits with (1.3). 
Definition 7.10. If (y, Z) G NY/x,b., if A € TrS, let A' G T r F be the solution of the 
differential equation along t G R —• xt = exp^(tZ), 

(7.25) 
v y A ' + r - ( A ' , f ) - 0 , 

A'0 = AH>W. 

Since TV = THV 0 TX, we can write A' in the form 

(7.26) A' = A'H,V + A'TX , A'H>V e TrV, A ' t * e TRX. 

Theorem 7.11 — T/ie follomng identities hold, 

(7.27) 

А>ну = AH,v 5 

V C A " + 7 ¡ : ( S D D D a - . v . ! ) - 0 , 

4,™ = A"SD'""/* 

Moreover the map A € T r S —• A£ € (TrV)x, is a complex map. 

Proof. By Section 1.1, T{A'TX, ) = 0, and so 

(7.28) ^SDD + tvSDDDDDD(a».",|)-o. 

Since T£(A'"^, f ) G TRX, we get (7.27). 
By Section 2.1, Tv is a (1, l)-form, and moreover if U G THV, V G TX (resp. 

1/ G THV, V G TX), then TV(U,V) G (resp. TX). Prom (7.26), we find that 
if A G TS, then A'TX G TV, and that if A G TS, then AfTX G TV, i.e. the map 
A G T r S —• A!t G (Tr^Jx, is complex. • 

Using the identification (y, Z) ~ exp*(Z), if 4̂ G TS, (y, Z) G °U£o, we can define 
the corresponding Af̂ yẐ  G TV. 
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Let 7: R —• [0,1] be a smooth function such that 

(7.29) 
7(a) = 1 for a < 1/2, 

0 for a > 1. 

Then 7 can be considered as a C°° function on V with values in [0,1], which 
vanishes on V \ °lteo. 
Definition 7.12. If A <E TS, set 

(7.30) - [ Td(TX,gTX)cb.'{Z,gt)-YTd(TY,gTY f (dimYT 

By Theorem 7.11, A H > W € TV, and 

(7.31) cb.'{Z,gt(di)- f ( 

Definition 7.13. Let T H W be the smooth subbundle of TV which is the image of TS 
by the map A —• A H " W . 

Using (7.25), it is clear that T H W extends the given vector bundle T H W on W 
to the whole V. 
Definition 7.14. If A e TS, set 

(7.32) a h , n y / x = a h , w _ a h , v 

By (7.31), A h ' n y / x € TX. Again, our definition of A h > N y / x extends to V our 
initial construction of A H ' N y / x given in Definition 1.8, which was only valid on W. 
Remark 7.15. It is natural to ask why we did not use, instead of (7.25), the simpler 
equation 

(7.33) V™A' = 0. 
dt 

In effect we could use as well equation (7.33) instead of (7.25) in Chapters 8-11 but 
not in Chapters 12-13. 

Equation (7.24) should have a clear interpretation. In effect if g T S is an arbitrary 
metric on TS whose Kahler form is u s f o r e > 0 small enough, ouv + ^n*u s is 
the Kahler form of a metric g j v on TV. Let V j v be the holomorphic Hermitian 
connection on (TV, g j v ) . Then one verifies easily that as e —• 0, the connection A TV 
tends to a connection V q v on TV. Using (2.10), equation (7.25) is equivalent to 

(7.34) V ^ A ' = 0. 

Of course, we can replace everywhere the holomorphic Hermitian connections by the 
corresponding Levi-Civita connections. Equation (7.34) is a way of encoding the Levi-
Civita connection in the "adiabatic limit" process where e —* 0, which, as we know 
by [4], [12], [11] is crucial in understanding the local families index constructions of 
[4]. 
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7.7 The conjugate superconnection AUIT 

Let / 1 , . . . , fm be a locally defined smooth basis of Tr5 , and let Z1 , . . . , /m be the 
corresponding dual basis of Tj^S. Let e i , . . . , e<ii be an orthonormal basis of T r X . 

Definition 7.16. For u > 0, T > 0, set 

Â~U,T = exp +DRD C 

V2u 
(fH,NY/x) 

AUYT exp 
D+DRD 

\/2u 
fH,NY/x" 
Jot 

(7.35) 
iV£ = exp < -r c 

V2u 
'H,NY/X 
Trw 

N% exp RE c 
V2u 

' H,NY/Xy 
Jot 

Clearly AU,T is a superconnection on E. Also the expression in (7.35) does not 
depend on the local basis /1, . . . , /m. For convenience, we assume that /1 , . . . , /m are 
such that 

(7.36) [fctJ0]=O. 

In particular the forms . . . , /m are closed. 
Theorem 7.17 — For u > 0, T > 0, the following identity hold 

AU,T = uDx + TV + r A (VAX°A)X)^ -hc{ei)c(VlXf?'NY/X) 

+ lf«fe ( - ± ( T ^ ( / f ^ / ^ ) , e / > (fZ'NY/x,vlSSSxf^x) 

+2 (VTI,W fH,NY/x T*l°'VX)®€ 
T*l°'VX)®€ 

(7.37) 
f<*fPp 

2u* 
' ,H,NY/X 
D+DR 

iTX j>H,NY/x 
D+D4RD 

VRE ?H,NY/X rpVfrHy rH,V\ 
Ot \J ft jj-v ) 

NY>=Në+iu,v(e^f*>w\ te 
W2 

RE 

+ » ..v 
2«2-

T*l°'VX)®€+ PSD+ DS 
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Proof. By (2.31), (4.1), (7.2) and by [14, Proposition 2.4], 

AUiT = u 
c(ei) 
V2 

,A(T.(o,i)x)§€ RDDD ̂  

(7.38) D+DFR l(r.(o,i)x)g^ 
fS<v 

c(Tv) 

Nw = 2^V{ei,ej)c(ei)c(ej) -+ 
dim* 

2 

Clearly, if U e TRX, 

(7.39) r<fH,NY/X)AU) = - 2 fa'NY/X,U fa-

Prom (7.39Ì, we deduce that 

(7.40) -f e 1 
S+DJDLD 

—*m 
V2u 

c(U)ef° 
o(fa Y/X 

V2u = c(U) + 
V2 

u 
a(f"'NY/x,u 

Let VTrS be the locally defined flat connection on TRS , such that VTRS fa = 0. In 
the sequel, we implicitly differentiate tensors in the /Q's with respect to VTRS. 

If U' E TRV, 

(7.41) \ r c ( f ^ x ) , v ? r ( 0 - 1 ) x m S D e * ^75Z SDR c(U)efT*l°'VX)®€  

and so 

(7.42) f0c{fs'NY/X): e * ^75Z c(U)efT*l°'VX)®€  

= 2^V{ei,ej)c(ei)c(ej) rjTX fH,NY/x 

Of course, the higher order commutators vanish. Prom (7.41), (7.42), we get 

(7.43) e _ fa Çi IsaDJKRI 
y/2u urDDRED+DJRD6De 

D+D1RD 
V2u RE 

\rc(f^x),v?r(0-1)xm C 
V2u 

V7r?f?'NY/x) 

_ l 
2 

faf* 
U2 

fH,NY/x TX rH,NY/x\ 
Jot iwU'JR I 

Finally 

^ ( e i , / f i V ^ ) = ^ ( e i , / f ^ ) , 
(7.44) 

, ,V/fH,W fH,W^_ V(fH,V fHy^ , y(iH,NY/x fH,NY/x, 
u UCL ita ) — v (/« IJR )+u [Jot i J ft ) • 

From (7.38), (7.40), (7.43), (7.44), we get (7.37). The proof of our Theorem is 
completed. • 

Remark 7.18. The most remarkable feature of (7.37) is that fa A V^TV ' x m has 

been replaced by f<* A VA(£W ' X)®\ Of course f*>w\w € TgW. 
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7.8 A Lichnerowicz formula for A \ T and A ^ T 

Set 

(7.45) Rf* = R* + ±Tr[RTX]. 

Let K be the scalar curvature of the fibres (X, gTX). Let /* , . . . , /m be a basis of T r £ , 
let Z1 , . . . , /m be the corresponding dual basis. Let e i , . . . , ê t be a locally defined 
smooth orthonormal base of T r X . 

If C is a smooth section of T ¿ X ® End(7r^A(T¿S) ® AÍT**0»1^) § 0» Put 

2¿ 
(7.46) ( v ^ < 0 - 1 > ^ + C(EI) )2 = £ ( V ^ ' * 0 ' 1 ^ ) ^ + C(EI) )2 

1 
2¿ 

- V ^ - C E v ™ e , ) . 

Then the operator (7.46) does not depend on the choice of the basis e\ , . . . , ê e-

Theorem 7.19 — For u > 0, T > 0, the following identity holds 

(7.47) AltT = -
-u2 

2 
= 2^V{eiDREED+DRD 3,ej)c(ei)c(ej) 

/nC(ej) 
u 

D+DR1 (sV{ei)fS'V fH,V ++D1R 2 

U2 

U2K 
8 

u2 
à. 

(ei)c(eJ)i?'€(ei,ei) 4 uciei) 
y/2 

DR 

= 2^V{ei,ej)c(ei)c(ej) LMED+DKRE 

+ uT c(ei) 
V2 

7\.V + TfaV*V + T2V" 

Proof. Formula (7.47) follows from [4, Theorem 3.6] and from the commutation 
relation 

(7.48) 
[c(U),V}=0 

[fa,V}=0. 

UeTnx 
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Theorem 7.20 — For u > 0, T > 0, the following identity holds 

(7.49) A2DRE DR -
U2 

2 
e J V2u yj~r 1>^ +D C(DRDEI))2 = + l(Sv(ei)ei,f^ 

V2c(ej] 
RE 

U 
GF £ (V^'*0'1^)^ + C(EI)) 

EDE4 
DD+ 

| çf"1 DRv̂ u C'Y ' 
v 2 

DDD5 
+ 8 

u2 
4 

:(ei)c(e,)i2'€(ei,ei) tt 
DD 

1>^0'1^)^ + C(EI)) 

1>^ + C(EI))2 = £ (V^'*0'1^)^ + C(EI)) -uT-
DD+45DR 

V2 
+DR TfaV\„,wV + T2V2 

Ja 
Proof. Identity (7.49) follows from (7.40) and (7.47). • 

Remark 7.21. With respect to (7.47), note that in (7.49) , TfaV*HiVV has been 
fa 

changed into TfaV*HiWV. 
fa ' 
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8. A Taylor expansion of the superconnection 
A\p near W 

The purpose of this Chapter is to give an asymptotic expansion as T —+ -f oo of 
the superconnection A\^T in a neighborhood of W in V, after a change of variable 
in NY/x,n, Z —> ^L. This Chapter is the obvious extension of [19, Section 8]. In 
particular the remarkable identities of Theorems 1.10 and 1.11 play a key role in the 
description of the asymptotic expansion. 

This Chapter is organized as follows. In Section 8.1, we give a trivialization of 
A(T*(0,L^X) ®£ near W along geodesies in the fibres X, which are normal to Y. In 
Section 8.2, we calculate the Taylor expansion of AI 5T- Finally in Section 8.3, we give 
a remarkable algebraic identity which relates the constant term in the asymptotic 
expansion of A\,T to the superconnection . 

In this Chapter, the assumptions and notation of Chapter 7 are in force. 

8.1 A trivialization of A ( T * ( 0 1 ) X ) <§) £ along geodesies normal to Y 

In this Section, we use the coordinate system on V near W constructed in 
Section 7.3. Also recall that the connection on £\uyo was defined in Definition 7.7. 

Take x = (y, Z) G °lte0 • We identify £x to £y by parallel transport with respect to 
the connection along the geodesic t G [0,1] —• (y,tZ). Under this identification, 
£^ is identified to and the identification preserves the metrics and the Z-grading 
of £. Also if x = (y, Z), V(x)1 V+(x)1 V~(x) act as self-adjoint operators on £y, £+, 

ST-
If x = (y,Z) G °lt£0, we identify TXX, K(T<°^X)X to TXY, K{T<°^X)Y by 

parallel transport with respect to VTX, vA(T*(°'1)x) along t G [0,1] -+ (y,tZ). This 
identification preserves the metrics and the Z-grading. 

If x = (y, Z) G °Ueo, (A(T*WX) § f )* is thus identified to (A(T*^X) ® f )v> 
and this identification preserves the metrics and the Z-gradings. 
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122 A Taylor expansion of the superconnection Âi,t near W 

8.2 A Taylor expansion for AXiT near W 

Recall that n is the canonical projection NY/x —* W- For a > 0, s G 5, set 

(8.1) Ba,s — ^€JVy/XfR.y, \Z\<a} 

If 0 < a < so y let °Ua5s be the corresponding tubular neighborhood of Ys in X5 
constructed in Section 7.3. 
Definition 8.1. Take a > 0. Given s G S, let Es(a) (resp. Es) be the set of smooth 
sections of 7r*((A(T*(05l)X) § on <̂*,s (resp. on the total space of NY/X\YS)-

The Es(a)'s, E5's are the fibres of vector bundles E(a), E on S. If 5 G 5, / , # G Es 
have compact support, put 

(8.2) </,.<7> = 
1 

,2TT 

dim* 

Y, NV/X,R,y 
(f,g) (y,Z)dvNY/x(Z) dvYa(y). 

By using the construction of Section 7.3, if / G Es has compact support in Beo,s, we 
may and we will identify / to an element of Es with compact support in ^0,8-

The holomorphic Hermitian connection VNY'X induces a splitting TNy/x — 
Ny/x © THNy/xi where THNy/x is the horizontal part of TNY/x with respect 
to VNy'x. HUe TnW, let UH G TgNy/x be the corresponding lift of U, so that 
nmUH = U.UU G TRS, then (UH>W)H G TgNY/x is well-defined. 

Recall that the connection °VTX|vv on T X | ^ was defined in (1.31). Let 
oVA(T*^x)\w be the corresponding connection on A(T^°^X)\W. Let o^(A(T^x)^)\^ 
be the connection on (A(T^0tl)X) § associated to OyA(T*(01)x)|w and to y£. 
This connection lifts to a connection on 7r*((A(T*^°^X) §>£)\w), which we still note 
0y(A(T*<°'l>X)§O|,va 

Let e i , . . . , e^i* be an orthonormal basis of TRY, let e2£'+i,..., e%t be an 
orthonormal basis of iVyyx,R- Then e i , . . . , i s an othonormal basis of ( T R X ) ^ . 

Now we follow [19, Definition 8.16]. 
Definition 8.2. Set 

(8.3) 

d+9d41r 
21' 

d+d 

c(ei) 
V2 vr 

A(T.(o,i)x)gc)|w 

£)NY/x = 
21 

i=2£' + l 

c(ei) 

V2 
-(A(T.(o,Dx)g0|w 

Ci 

Then the operators DH, DNy/x act naturally on the fibres of E. 

To simplify the exposition, we will assume that TRS is equipped with a Hermitian 
metric and that VTrS is the corresponding Levi-Civita connection. 
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A Taylor expansion for Âi,t near W 123 

HUE TnNY/x, (irw*)M = 0, then ov(ACr'(0'l)x)§OI»r actg naturally on sm0oth 
sections of 7r*(7r^(A(T^5)) 0 (ACT**0'1 )̂ ® 0ur choice of vTr5 makes that 
this action extends to the general case, where U € TuNy/x-

For T > 1, let QT be a first order differential operator acting on smooth sections 
of 7r*(7r^A(T^S) ® (ACT**0'1)*) ® f )lw) over ATy/x,R. Then QT can be written in 
the form 

(8.4) QT = 
21' 

1 
a.(T,y,Z)°V^<M,*>*>'"' 

+ 
it 

d+d1r 
W r , y , z ) ° v i r ( 0 , l ï ^ 

+ 
2m 

1 

^ + è^+ihJ^Z) 
d+d1rd+d1 
(̂A(T.(o,i)x)g0|w 

+ d(T,y,Z), 

where ai(T,t/,Z), &i(T, Y, Z), ca(T,y, Z), d(T,y,Z) are endomorphisms depending 
smoothly of (y, Z). 

Assume there is C > 0, p G N such that if (t/, Z) G BEQy/r-> then 

(8.5) 

|oi(r,u,Z)| <C|Z | , 1 <i<2(', 

\bi(T,y,Z)\<C\Z\2 , 2£' + l<£<2£, 

\ca(T,y,Z)\ < C\Z\ , l<a<2m, 

\d(T,Y,Z)\<C(\Z\ + \Z\p). 

We will then use the notation 

(8.6) QT = 0(\Z\2 dNY'x + \z\ dY + \Z\ ds + \Z\ + \Z\P). 

Let AAi-T'i0A)x"> be the obvious action of A on A(T*^X). This action extends to 
A(T (0,1) XOE 

Take y € W, Z € Ny/xji,y Let be the covariant differentiation operator with 
respect to along t —* (y,tZ). In the sequel, we use the notation 

(8.7) V|V|F(y) = 
D2 
Dt2 V(y,tZ)\t=0 

Then V^V^V^y) depends quadratically on Z. 
Definition 8.3. For T > 0, if / <E E(e0), let FTf € E(e0\/r) be given by 

(8.8) FTf(y,Z) = f y, 
z 

dd1r 
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124 A Taylor expansion of the superconnection Ai,t near W 

Using the trivialization of (A(T*(0,1)-X")®£)|°tleo along geodesies normal to Y, 
we find that the restriction of Au^r to °lleo acts naturally on smooth sections of 
A(Tj^S) ® E(£:o), and so it defines a superconnection on E(£o)- Then for T > 1, 
Frk1/2 Au^k^1/2 Fyl is a superconnection on "E(eoVT). 
Definition 8.4- Let 93 be the superconnection on E, 

(8.9) S8 = DH + 
21 

1 

c(ei) 

V2 
Byte) + \V%V%V{y) 

+ faA d+d1er+d 
(fH,w)H 

X)&)\w+B ,fH,W 

sd+ihJ^Z) c 
2V2 

pNY/XTV{fH,W^ fH,W) _ TW{fH,W^ fH,W)\ 

Now we prove the relevant extension of [19, Theorem 8.18]. 

Theorem 8.5 — As T —* +oo, 

(8.10) Frk^A^Tk-^F^1 = TV+(y) + VT(DNY'X + V|V(y)) 

+ S3 + 1 
Vf 

€ (\Z\2 dN*'x + \z\ dY + \Z\ ds + \z\ + \zf) 

Proof. Let fx,. •., fm be a locally defined smooth basis of TRS, such that 

(8.11) [/«,//?] = 0. 

We use Theorem 7.17, which gives a formula for AUIT- We will establish (8.10) by 
considering the various term of degree 0,1, 2,3 in the Grassmann variables of A(T^S). 
By [19, Theorem 8.18], (8.10) holds in degree 0. 

Recall that A was defined in (1.32). Then for U G TnW, A{U) e End(TX). Let 
AA(T*^X) be the obvious action of A on A(T<°^X)\W. Recall that vA<T*(°'1)x^ 
and ov(A(T^01)x)®e)l̂  can be considered as connections on n*((A(T<0>VX)®£)\w). 
Set 

(8.12] r = fvA(T*(0,1)x)8c-°v(A(T*(0,1)x)Sc)|w 
fy 

Clearly on W, 

(8.13) Fy = AMT^x) + By, 

Then on W, 

(8.14) /aA A(T.(o,i)x)ĝ  
Jot 

fS'w)-H^lxf"'N 

= faA Fy = AMT^x) + 
,H,W 
Jot 

-nfS'w)-Hddddddd^lxf"'Ny/x 
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Take 2/0 € W. Let (y1,.. . be a holomorphic system of coordinates on a 
neighborhood W of yo G in We assume that NY/x,n — ^w/v,n is trivialized 
over W, so that t t " 1 ^ ) = W x R2(*-*'). Set V = B£Q n t t " 1 ^ ) . The map 
(y,Z) e T exp*(Z) G V identifies T with an open neighborhood of t/o in V, 
on which T r V splits into 

(8.15) - [ Td(TX,gTX)cb.'{Z,gt)- f (mYZ,gt)di 

Of course R2(<'+m),R2(f-£') axe integrable subbundles of T r V I t . Moreover on W, 
the splitting (8.15) coincides with the splitting 

(8.16) TnV = TRW®NY/XtR. 

Let pi,p2 be the projection operators from T r V on R2(̂ '+m)? R2(̂  O respectively. 
Clearly, 

(8.17) Frk1 '2г л °v(A(7;(0,1)xSoi,vifc-i/2Ff1 = 

f* л (o&MT-t°'l)XêC)\w ,0^(AlT-i°^Xêii\w _ Vf"-Wk(,, 7 / . / тЛ 
' PI fS-w (уф) •vTp2fâ (Уф) 2к 

Since on W, G TRW, we find that as T —• +00, 

(8.18) P 2 V T f ^ (y, = | p a / ^ w r ( y , t Z ) | « + ^=0(|Z|2). 

Let VTrV be the connection on TRV = T$V © TRX, 

(8.19) - [ Td(TX,gTX)cb{Z,gt)- f.,gt)- f 

Recall that by Section 1.1, TV is exactly the torsion of VTrV\ 
Let C be the Christoffel symbol of VTrV in the trivialization of T r V considered 

above. Then 

(8.20) p? 'w(y , tz ) l t=0 = -Cy{Z)fS>W + v ? v f Z f . 

Now by definition 

(8.21) -Cy{Z)fS'w = -Cy(f^w)Z + T?(f«'w, Z). 

Also by (7.25), 

(8.22) Vl«VfZyw + T?(fZ>w,Z) = 0. 

Using (8.20)-(8.22), we obtain 

(8.23) p ? ' w ( y , t z ) = -cy(f?>w)z. 
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126 A Taylor expansion of THE superconnection Ai,t near W 

Also by Proposition 7.2, VNy'x = Pny/xt^txiw and ^ with respect so the local 
trivialization of Ny/Xi 

(8.24) (f?<W)H = f?>w-P2Cy(fW)Z. 

Finally, since = 1 on W, 

(8.25) - [ Td(TX,gTX)cb.'{Z 

By (8.13)-(8.25), we obtain 

(8.26) F T V " r A (v^ï"'1>x80 - *c(eOc(v™/^ '*) ) Jb-^IÇ1 

= A ( 0 V ^ ; 1 , X ^ > ' - + A W ' ™ * \ f W ) + By{fS'w) 

- h c ( e i ) c ( v l x f ^ x ) ) + - L 0 ( | Z | 2 A ^ / - + + \z\as + \z\). 

By (1.35), on W 

(8.27) 
2«' 2<' 
£c(eOc(V™ssss/f'^) = E ^ c ^ e O / i ^ ' * 
i I V 

+ pny/xtv{eufh,v) + a{fh,w)e^ 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(TX,gTX)c 

2*' 2£' 

= £ c(ei)c(T̂ sssss(ei, - 53 c(ei)c(T^(ei, / f ^ ) ) 

Ki<2£' 
2£'+l<j<2£ 

^ ( / f ^ J e ^ e , ) ^ ) ^ ) . 

By (7.26), on W 

(8.28) 
Il 2t 

E ^nvr/«h,isssvv/x) = E o(ei)c(^(ei , / f^)) . 
2£'+l 2<'+l 

Also since A(f"'w)\w interchanges TY and Ny/xi on IV 

(8.29) a a ( t ^ x ) { f ^ w ) = i £ ^ , W ) e t t ej) c{ei)c(ej} 
1<*<2*' 

2*'+l<j<2£ 
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By (8.27)-(8.29), we find that on W, 

(8.30) H«)c<tlxf?'liv'*) d • H«)c<tlxf?'liv'*) -

_ 1 
2 

21 

1 
c(ei)c (Tv(ei,f?'v) + i 

2£' 

1 
c ( e i ) c ( r w ( e f , / ^ ) ) . 

Now using (1.6) and (2.11), we get 

21 

l 
~{ei)c{Tv{ei,№v)) = 

q+qs1z+q1 
H«)c<tlxf?'liv'*) + x+xdfsz+zcs 

(8.31) 
s+s1es 

2i 

1 
H«)c<tlxf?'liv'*) 

dr 
2* 

1 
H«)c<tlxf?'liv'*) 

d+r5 fH,V J a 5 
2£ 

1 
H«)c<tlxf?'liv'*) 

By the same argument, 

(8.32) 
2£' 

1 
c(ei)c(Tw(ei,f?>w))=0. 

So from (8.30)-(8.32), we obtain 

(8.33) AMT-™X) „,w _ !Fy = AMT^x) + тХ H,NY/X = 0_ 

By Theorem 7.17, (8.26) and (8.33), we see that (8.10) holds in degree 1. 
Now we consider the term of degree 2 in (7.37). By Theorem 1.11, on W, we get 

(8.34) 
21' 

i=l 
\ r f { - \ H«)c<tlxf?'liv'*) dr _/fH,NY/x TX fH,NY/x\ 

+ 2 ryTX fH,NY/x V fH.wJg d+d4rd 
d+d1 

V2 
H«)c<tlxf?'liv'*) + H«)c<tlxf?'liv'*) 
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Moreover using (1.6), (7.27), and the fact that [fa, fp] = 0, \f*'w, f"'w] G TRW, 

(8.35) 
21 

t=2e'+i 
hfaf0 H«)c<tlxf?'liv'*) +x1xex 

dv fH,NY/x jriTX fn,NY/x Jot ? VE JQ + 2 H«)c<tlxf?'liv'*) c(ei) 

V2 
2£ 

i=2ê'+l 

H«)c<tlxf?'liv'*) TV(f^V,f^V),ei) + 

(f?'NY/x,Tv(f?'v,ei)) + 2 TjTX (fH,W fH,V^ v 
V fH.wyjp — Jp ),ei 

c(ej) 
V2 

d+d 
21 

i=2£' + l 

H«)c<tlxf?'liv'*) +xdxx+xdx+x H«)c<tlxf?'liv'*) 

+ Tv(f?>w,f?'w),ei c(ej) 

= hrf3-. c 
2V2 

(P^xTV{fH,WfH,W)) 

Using Theorem 7 .17 and (8,34), (8.35), we find that (8.10) also holds in degree 2. 

Finally by Theorems 1.11 and 7.17, (8.10) holds in degree 3 . The proof of our 
Theorem is completed. • 

8.3 The projection of the superconnection 93 

Definition 8.6. HseS, let E± be the set of smooth sections of n* ((A(T*(0>V X) 
S^OIY*) on NY/X,H\YS. 

Then Es splits into 

(8.36) H«)c<tlxf?'liv'*) 

The operators DH and DNY/X preserve E±. Let D*1^, DNY/X>± be the restriction of 
DH, DNY/X to E1*1. Let E ,̂ E^'° be the Hilbert spaces of square integrable sections of 
7T* ((A(T«°>»X)êÇ) |y5), 7T* ((A(T«°>VX)®Ç±) \ys) on NY/XTBNYM. We equip E°, 
g±,o tne Hermitian product (8.2). Then E^ splits orthogonally as 

(8.37) E° = Ej"'° © E7'° . 

Let JFJ be the Hilbert space of square integrable sections of (A(T*(0,1)y) ®rj)\Ya over 
Ys. We equip with the Hermitian product constructed in (2.22). 

Of course the E^Ef'0,. . . are the fibres of corresponding vector bundles 
E^E*'0.... over S. 
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Using (3.28), (3.29), (7.17), we have the identity of smooth Hermitian vector 
bundles on W 

(8.38) (A(T*^X) § C)\w = A(T*l°>VY) ® A(NY/X) § (A(iV*/x) ® r,). 

If y e Y, let 0y be the Kahler form of the fibre NY/x,n,y More precisely, if JNY/*>V 
is the complex structure of NY/x,n,y, if />/ ' £ NY/x,n,yi then 

(8.39) 0y(f,f') = (f,JNY/x^f) • 

Then 0y is a (1,1) form on the fibres of Ny/x,R-
If y€W, Z € NY/X,n,v, set 

(8.40) /3y - exp |Z|2 
2 

d+d1r 

Then Py G (A(iVy/XiR) ® A(iV^/XiR))^. 
By [6, Theorem 1.6] or [19, Theorem 7.4], for any y e W, f3y spans the 1-

dimensional L2 kernel of the elliptic operator DNy'x + V~-ls^ acting on the 
vector space of L2 smooth sections of TT* (jL(Ny/x) ® M-^y/x)) on Ny/x,R,Y, and 
moreover v 

(8.41) 
/ NY/x,n. 

№\2 dvNY/x 
(27r)dìmNY/x 

= 1. 

Definition 8.7. Let ip be the linear map 

(8.42) H«)c<tlxf?'liv'*) +xd H«)c<tlxf?'lds 

Let E''° be the image of F° by ip. Then E''° C E~'°. 
By [19, Theorem 7.4] or by (8.41), ip is an isometry, and so it identifies isometrically 

the vector bundles F° and E''° on 5. 
Let p be the orthogonal projection operator from E° on E''°. Let q be the 

orthogonal projection operator from (A(T*(0^X)®Ç)\W on A(T*(°^Y)e{exp(6)}® 
77. By [19, eq. (8.91)], if 5 € E°, 

(8.43) 

ps(y, Z) = 
1 

d̂im NY/x 
exp 

\z\2 

2 
Q 

NY/X,B.,y 
exp I 

\Zf 
2 

\s(y,Z')dvNY/x(Z'). 

Now we prove the obvious extension of [19, Theorem 8.21]. 
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Theorem 8.8 — The following identities hold, 

(8.44) 

- [ Td(TX,gTX).'{Z,g 

mYTd(TTX,gTXY,gTY)(TX,g 

%jj 1pNnpip = \ dim NY/x • 

Proof. We will establish the first identity in (8.44), by comparing the terms of verious 
degrees in A(T^S). In degree 0, this was already established in [19, Theorem 8.21]. 

Clearly, if U G T r W , since the identification (8.38) identifies the metrics, 

(8.45) - [ Td(TX,gTX)cb.'{Z,gTd(TYt)(dimYTd(TY,gTY)- f (dim 

Also because B(f",w) exchanges £ and £+, 

(8.46) ip-1pBy(f?'w)pil, = 0. 

If U G Ny/x,n,yi C(U) is ^ne sum of two operators, one which increases the degree 
in A(NY/x) ^ 1> and the other which decreases the degree by 1.Since /3 is of total 
degree 0, 

(8.47) pc(U)p = 0. 

By (8.47), we get 

(8.48) n f a f ß ^ P N Y , x T v { f ^ w , f ^ w ) ) P = 0. 

Prom (8.10), (8.45)-(8.48), we get the first identity in (8.44). 
By [19, Proposition 8.4], the second identity in (8.44) holds in degree 0. Since TrY 

and Tj[W are orthogonal with respect to ujv, using (7.37), (8.47), the second identity 
(8.44) also holds in degree 1, i.e. both sides vanish in degree 1. In degree 2, the second 
identity (8.44) follows from (7.37). 

The third identity in (8.44) was already established in [19, Proposition 8.4]. The 
proof of our Theorem is completed. • 

Remark 8.9. Related forms of Theorems 8.5 and 8.8 are also established in Theorems 
13.16 , 13.17 and 13.32, 13.34. In particular, in Theorem 13.16, a more complicate 
trivialization produces a simpler expansion than the one in Theorem 8.5. 
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9. The asymptotics of supertraces involving the 
operator exp(—B\ T ) for large values of u, T 

The purpose of this Chapter is to establish Theorems 6.5, 6.6 and 6.15, 6.16. It is the 
obvious extension of [19, Section 9], where the case where S is a point was considered. 

In Theorems 6.5, 6.6 and 6.15, 6.16, we calculate the asymptotics of supertraces 
involving the operator exp(—B2

 T ) when u or T tend to +00. The corresponding 
problem studied in [19, Section 9] involved the operator exp(—(u(Dx + TV)) 2). The 
basic difficulty with respect to [19] is that while D x + TV is a standard elliptic 
differential operator, B U j t is a superconnection, and it is only when taking its square 
B 2

T that we get a standard elliptic operator acting fibrewise. We are thus forced to 
deal directly with the operator B 2

 T , while in [19, Section 9], the analysis was done 
directly on the simpler operator D x + TV. 

Still in [19, Section 13], when establishing Theorem 6.9 in the case where S is 
a point, i.e. when proving the uniform convergence as T —> +00 of supertraces 
involving exp(—(u(Dx + TV))2) for u € [0,1[, because the analysis involved local 
index cancellation techniques which could not be applied to the operator D x + TV, 
the analysis was also done on the square ( D x 4- TV) 2. 

This is why, to prove Theorems 6.5, 6.6 and 6.15, 6.16, we essentially use the 
techniques of [19, Section 13], i.e. we prove the required convergence by establishing 
suitable estimates on the corresponding smooth kernels, these estimates being derived 
by a Lax-Milgram technique to control the resolvent in a functional analytic sense, 
together with commutator estimates to prove uniform regularity for the corresponding 
kernels. Needless to say, the results of Chapter 8 on the asymptotics of A\,t as 
T —*• +00 play a key role in the identification of the limit of the supertraces as 
T —> +00. 

Another basic difference with respect to [19, Section 9] is that for a given T > 0, 
in [19], the rate of convergence as u —• +00 of the considered supertraces was 
€(e~ c u )(this result being obtained by a trivial argument of spectral theory), while 
here, the convergence is only O(^), and is less easy to obtain (it follows from the 
result of [3, Theorem 9.19] explained in Theorem 2.20). While in [19, Section 9], the 
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corresponding uniformity argument was obtained by showing that as T —• +00, the 
module of the nonzero eigenvalues of D x + TV has a positive lower bound, here this 
argument breaks down. 

To solve this difficulty, we observe that the spectrum of B\ T and (u(D x + TV)) 2 

are identical. We then express exp(—B2

 T ) as the sum of two contour integrals, one 
along a contour in {A € C, Re(A) > 0}, and the other on a small circle centered at 0. 
To the first contour, we are able to apply arguments inspired from [19, Section 9]. As 
to the second contour, we prove that the corresponding supertrace is analytic in u 
near u = +00. The proof of uniformity of the convergence in T —> +00 as u —•> +00 
then follows from Cauchy's residue formula. 

This Chapter is organized as follows. In Section 9.1, we describe the spectrum of 
B 2

T , and we express exp(—B 2

T) as a sum of two contour integrals. In Section 9.2, 
we give a simple scaling formula for the first contour integral. In Section 9.3, we state 
two intermediate results, from which Theorems 6.5 and 6.6 follow easily. Part of the 
remainder of the Chapter is devoted to the proofs of these intermediate results. 

In Section 9.4, we show that P r f a V^ H , w VP^~ is €(\Z\2) near W. In Section 9.5, 
by following [19, Section 9], we construct an embedding J t of F into E. In Section 9.6, 
we construct a family of Sobolev norms | | T 1 on the Sobolev bundle E 1 , and we 
show that A 2

 T verifies elliptic estimates with respect to these norms, which follow 
essentially from [19, Section 9]. It is at this stage that we find most useful to have 
replaced A\,t by A\^t- In Section 9.7, we give functional analytic estimates for the 
resolvent of A\ T . In Section 9.8, we establish regularizing properties of the resolvent of 
A\ T with respect to higher Sobolev spaces. In Section 9.9, we prove uniform estimates 
for the kernel of F u ( A l T ) (which is the first contour integral described before). In 
Section 9.10, by using Theorem 8.5, we obtain the matrix structure of A 2

 T with 
respect to a natural splitting of E, as T —> +00. In Section 9.11, we calculate the 
asymptotics of the operator F U (A\ T ) as T —• +00. In Section 9.12, we prove our 
first intermediate result of Section 9.3. Note that the argument of Sections 9.7-9.12 
are already related to [19, Section 13]. 

In Section 9.13, we introduce a suitably rescaled version of A? u T , which depends on 
three complex parameters, and we show that a corresponding operator obtained by 
a contour integral on a small circle is a polynomial function of these parameters. 
In Section 9.14, we prove the second intermediate result of Section 9.3. Finally 
in Sections 9.15 and 9.16, we show how to use the above techniques to prove 
Theorems 6.15 and 6.16. 

In the whole Chapter, we use the assumptions and notation of Chapters 3-8. 
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9.1 The spectrum of B \ T 
For T > 1, set 

(9.1) At = ^ i , t • 

Let A ^ be the piece of At of partial degree 0 in A(TpS). Then 

(9.2) A ^ = DX + T V . 

Recall that K1 = ker DY is a smooth vector bundle on S. 
If s G S, let 1/(5) be the smallest nonzero eigenvalue of DYs>2. Then s € S —> 

1/(5) G R+ is a continous functions. Since S is compact, f has a positive lower bound 
2c2 > 0. 

If C is an operator, let Sp(C) be the spectrum of C. 
Theorem 9.1 — There exists T0>1 such that for s G 5, T >T0, 

(9.3) Sp(^0)'2) n {a G , a < c2} C {0}. 

Proof For a given s G 5, (9.3) is exactly [19, Theorem 9.25]. Since S is compact, a 
trivial uniformity argument shows that (9.3) holds. • 

Set 

(9.4) Ru,T = vB - c(TVY 
2y/2u 

2 
•f ti VE- c(TV) 

2\/2u 
DX + TV 

Then 

(9.5) B2uT=u2A^2 +RU,T. 

By [4, Theorem 2.5], RU,T is a sum of forms of positive degree in A(T^S) with values 
in first order differential operators acting along the fibre X. 

For any s G 5, the operators B2T and are unbounded operators acting on Es, 
with domain the obvious Sobolev spaces of order 2. 
Proposition 9.2 — For any u > 0, T > 0, 

(9.6) S p « r ) = Sp(u240)'2). 

Proo/. Take A ^ Sp(u2A^? '̂2). Then we have the formal identity 

(9.7) {X-BlT)-l = (x-u2A^) -1 

+ (\-u2A^2 -1 i^,T (\-u2A^'2' 
-1 

+ ... 
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the key point in (9.7) being that since Ru,t has positive degree in A(TpS), the 
expansion contains only a finite number of terms. Since u 2 4 0 ) ' 2 is elliptic of order 2, 
(A — u2ASp2)~ l increases the Sobolev regularity by 2. Since Ru,t is of order 1, 
(A — B^t)~~x a c ^s as a bounded operator on the Sobolev space of order 0. Therefore 
A g Sp(J32

 r ) . By exchanging the roles of B 2

 T and u 2 A^' 2 : , we find that if 
A £ Sp(£ 2

 r ) , then A £ Sp(u2A^?)'2). Our Proposition follows. • 

Let D = S U A be the contour in C 

+1 

0 

C2 
2 

S 
3c2 

4 

- 1 
A 

By Theorem 9.1 and Proposition 9.2, it is clear that for u > 1, T > T 0 

(9.8) exp(-B^ ) T) = 2ni % 

exp(—u2A) 
' л - ^ 

exnf—Ài 1 
2m 

exnf—Ài 
exnf—Ài dX. 

9.2 A scaling formula 

For u > 0, let ^ t t : A(TrS) —» A(T£S) be the map 

(9.9) a e A{T^S) -» u - d e g a a € A(T£S). 

Then ^ u acts like tpu ® 1 on A(T£S) ® 

Proposition 9.3 — For u > 0, T > 0, ifoe following identities hold 

(9.10) 

Ви ч Т = иф и А т ф и

 1 , 
NU2 = VuiV^V-1, 
B% = ифиВ^ф- 1 , 

NU2 V^V= VuiV^V-1, 
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Proof. By (2.31), 

(9.11) s £ = u ^ b X ^ z 1 • 

Since Bu<t = B 2̂ + uTV, the first identity in (9.10) follows. The second identity is 
trivial. The proof of the other identities in (9.10) is similar. • 

Proposition 9.4 — For u > 0, T > 0, the following identities hold 

(9.12) 

TV MV I f ехр ( -п2Л) ,л _ , _ f ^ l / ехр(-ц2А) ^ ] 

" s р ' 2 т г г . / д A - ^ J L 2тгг Уд Л - A% J ' 

m xr 1 / ехр( -ггА) ,x , r~w-\ / e x p í - г г Л ) _x 
Ъ а 2^Уд =ФИТ1А ^ А - А Ь Г ^ • 

ЛЬо, /or гл > О, 

(9.13) 

Tr n w — f exP(-"2A)dA _w, tv \ n w — f eXp{~u2X)d\ 
IVs 2m JA A _ ^ 1 J " *U 8 [ 1 2ttc JA X - B?>2 j ' 

1 f exp(-ti2A)JX / rpy [" 1 /• exp(-ti2A) " 
8 p A A _ ^ ! dAJ p 7 A A - S P ' 

Proof Our Proposition follows from Proposition 9.3. 

9.3 Two intermediate results 

In the whole Section, uq denotes a fixed positive constant. 
Theorem 9.5 — There exist 6 e]0, 1], C > 0 such that for u > u 0 , T > T0, 

(9.14) 

\ , * T V ЛГ Ч 1 í exp(-tt2A) J J 

I " ' ! 1 1 " H,^¡JA A - А 2 UA 

_ _rW, 1 / ехр(-ц2А) лл i С 
" ' Г 1 2тгг /д А — SÍ*''2 I T * ' 

iTt-h¿IÍTí^rdA]-idim^ 

Trs J L / « P ^ ^ d A < £ . 
2тгг Уд A - ß,"7-2 - Г* 
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There exist c > 0, C > 0 such that for u > uq, T >Tq 

(9.15) 
TVs NY 

1 

2m 
exp(—u2X) 

d+d1r+d1r+d dA < cexp(—Ctt2), 

Trs dx+dr 1 
2m 

exp(—u2A) 
\ A.rp 

dX < cexp(—Cu2) 

Theorem 9.6 — There exist S e]0,1], C > 0 swc/i that for u>u0,T> T0, 

Trs d+d41rd+ Afa) 
1 

27TÌ 
exp(—A) 

h ^ - B 2 
dX -

(9.16) 

Trs dvr 1 
27TZ 

exp(—A) 
s X - BZ'2 

•dX < C 
d+r1d 

Trs vrd 1 

2m 

exp(—A 

'S*-BI,T 
•dX - h dimNv/x 

Trs 
1 

2m 
exp(—A) 

IsX- B%2 
•dX < c 

d+d1r 

There exists C > 0 such that for U>UQ,T>TQ, 

d+d1r l 
2m 

exp(—A) 
'a Bu,T 

dX\ -

(9.17) 
H«)c<tlxf?'liv'*) +x1 H«)c<tlxf?'liv'*) c 

< 
u 1 

|TT8 
1_ 

2m . 
exp(—A) 

I s ^ - B 2 dX\ 

-Trs \pTNaPTexp(-V^x'îix)'2)\ I < 
C 
u 

Proof. The proof of Theorems 9.5 and 9.6 will occupy the remainder of the 
Chapter. • 

Remark 9.7. Now we show how to derive Theorems 6.5 and 6.6 from Theorems 9.5 
and 9.6. If a € A(T£S), for u > u0, 

(9.18) \i/>*a\ <C\a\. 

By Proposition 9.4 and Theorems 9.5 and 9.6, and by (9.18), we find that for u > UQ, 
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T>T0, 

(9.19) 

Trs [(NY, - NH)] 
1 

27гг 
exp(—u2A) 

H«)c<tlxf?'liv 
dA-

Trs d+d1r 1 
27гг A A-

expf—ÎÎ2A) 
B^2 

«2 

¿A < С 
rp5 ' 

Trs (N% - ЛГН) 
1 

'2тгг 
r exp(-A) 

d+d1rd+dr1d+d 
dX -

Trs vrd 1 
27тг 

exp(—A) 
h A - frv dA 

С 
—-. 

— 
Using (9.8) and the obvious analogue identity for B™'2, we get the first inequality in 
(6.17). The proof of the second identity in (6.17) is similar. We have thus established 
Theorem 6.5. Using (9.15) and (9.17), we also obtain Theorem 6.6. 

9.4 A formula for f a V \ h w V P ^ \w and its normal derivative 

Theorem 9.8 — If Z e NY/x r , then 

(9.20) 
Pr fav{H.wvpt - \w = o, 

P r v i v i „ w v p t ~ \ w = o. 

Proof. Since V,w = 0, ̂ ,H,wV\W — 0- By proceeding as in (7.21), we obtain 

(9.21) P r f a v i H ,wvp?w = faviH,wv- = 0. 

To prove the second identity, we proceed as in the proof of [19, Theorem 13.19, eq. 
f13 92̂ 1 OWrlv. nn o»i._. 

(9.22) p*~v*h,wvix~ = p t ' v t v p t ' , 

and so 

(9.23) - [ Td(TX,gTX)YTd(TY,gTY)cb.'{Z,gt)- f (dim 

Moreover 

(9.24) v | v « ,WV = V* V | F - Vf H,w V 

+ [(Vtf(Z,fZ>w),V . 
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Using Proposition 7.8 and (9.24), we obtain 

(9.25) Pt-V%V)s,wVF*-\w = p t - ^ c ( v " f p Z - P N - < * [f*'w,Z]) . 

By Proposition 7.2, 

(9.26) v " Z g Z = PN*'*VTf$wZ. 
Jot Jot Using (1.3), (7.25), (9.26), we get 

(9.27) V % Ç Z - P » " * [f?>W,Z} = 
Jot P"v/x ( v p 7 f 'w + Tv(f?>w, z)) = о. 

From (9.25), (9.27), we get the second identity in (9.20). 

9.5 An embedding of F in E 
Clearly 

Trs (NY - NH) 1 
2-ïïi 

exo(—u2X) 
H«)c<tlxf?'liv'ls 

iX = 

(9.28) 

Trs (Nf-Nn) 1 
'2ni 

exp(—u2X) 
A X — A2 T 

•dX\ 

Trs Nu: 
1 

2m 
exp(—u2X) 
H«)c<tlxf?'liv' 

dX\ = 

Trs dvr 
1 

27TZ , 
exp(—Î/2A) 
H«)c<tlxf?'liv'*) •dA 

So in our proof of Theorem 9.5, we may as well introduce ~ in the left-hand sides of 
(9.14), (9.15). 
Definition 9.9. For s G 5, /z G R, let E% (resp. E£, resp. F£) be the set of sections 
of A(T*(°^X) ® £ over Xs (resp. of vr* ((A(T*(°»1>A') § O M over NY/X,B.\Y., resp. 
of A(T*(°'1)y) ® 77 over 1̂ ) which lie in the /ith Sobolev space, and let || \\E» (resp. 
|| ||EM, resp. || ||Fjx) be the corresponding Sobolev norm. We will assume that 
|| ||̂ o (resp. || ||Eo) is associated to the Hermitian product (2.22) (resp. (8.2)). 

Recall that eo > 0 was defined in Section 7.3. We take e e]0, In the sequel 
the constants in our estimates depend on e. In Theorem 9.14, we will choose e small 
enough so that the corresponding estimates hold. Otherwise e can be assumed to be 
fixed. 

Let 7 : R —• [0,1] be taken as in (7.29). If Z G NY/xtn, set 

(9.29) p(Z)=7 
dvr 
e 
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Let ax be the locally constant function on W 

(9.30) out = 
d+d1r 

exp(-T\Z\2)p2(Z) dVNY/x 
(2ir)dimNY/x ' 

Now we follow [19, Section 9 a)]. 
Definition 9.10. For ¡1 > 0, T > 0, let I t be the linear map 

(9.31) a e F » ITo(y,Z) = (2dimN^*aT)-1/2p(Z) 

exp 0 -
T\Z\2 

2 
( j (y )eW. 

Let Ej, be the image of F^ in EM by It- Then I t is an isometric embedding of F° 
into E°. 

Let JS^± be the orthogonal space to E^ in E°, let pt , Pt be the orthogonal 
projection operators from E° on E^, E^"1 respectively. Recall that q is the orthogonal 
projection operator from (A(T<°^X) § Ç)\w on A(T^°^Y) <g> {/3} <g> r/. 

We recall a result of [19, Proposition 9.2]. 

Proposition 9.11 — I f s e E ° , i f y e W , Z e NY/x r y, 

(9.32) pTs(y, Z) 
o(Z) 
olt 

exp 
T\Z\2 

2 
a 

NY/X,y 
o(Z') 

exp T\ZT 
2 

s(y,Z' 
dvNY/x(Z') 
(2ir)dimNY/x 

If a € FM, we can consider k xI*Ito- as an element of E*1. 
Definition 9.12. For y, > 0, T > 0, let J r be the linear map 

(9.33) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd 

Then J t is an isometric embedding from F° into E°. Let .E^ be the image of in 
E». Let E'y'-1- be the orthogonal bundle to E% in E°. 

For /x > 0, set 

(9.34) ES."1 = n E ^ 

Let Pt ,Pt De *ne orthogonal projection operators from E° on E^, E^' . By [19, 
Pror>osition 9.51. 

(9.35) pT = k-^prk1/2 , p£ = k '^p^k1/2 
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9.6 A Sobolev norm on E l 

Let e i , . . . , e2e be a locally defined smooth orthogonal basis of T r X . We assume 
that on W, e i , . . . , e2i* is an orthonormal basis of T&Y and e2£'+i,. • •, e>ii is an 
orthonormal basis of Ny/xjct-

Recall that if U G T r W , Uh G TgNY/x was defined in Section 8.2. In particular 
for 1 < i < 2€', ei\w G T r F and so e^w G T^Ny/x- Using the identification 
B£o ~ described in Section 7.3, e^w is a locally defined vector field on UE0 

If s G put 

(9.36) Mo = IMU« > 
(5, sf)q — (5, s ' ) ^ • 

Definition 9.13. For T > 1, s G set 

(9.37) Nt,i = M o + t \pts\1 + r2 | v ^ * | J 

+ 
21 

1 

H«)c<tlxf?'liv'*) I2 

• u 
+ 

if 

î 

H«)c<tlxf?'liv'*) +xd1x+x1d 
<+w<1+w<1 

I2 

lo 

Then (9.37) defines a Hilbert norm on JE71. Also (J5?1,! |T1) is continuously 
embedded in (E°, | |0). We identify E° to its antidual by ( , )0. Then we can 
identify E~x to the antidual of E1. Let | \T-i be the norm on E~x associated to 
I \T i- Then we have the continuous dense embeddings with norms smaller than 1, 

(9.38) E1 —» E° —• E"1 . 

For convenience, we introduce a metric gTS on TS. Then the definition of |s|0, \s\T x 
obviously extends to A(T£ S) ® E. 

Put 

(9.39) AT = A\T T • 

Let AP (resp. ^(>0)) be the piece of AT which has degree 0 (resp. positive degree) 
in A(T£5). Then 

(9.40) H«)c<tlxf?'liv'*) sq+s 

By (3.15), (4.1), (6.9), 

(9.41) A$ = Dx + TV. 

ASTÉRISQUE 

file:///pts/1


A sobolev norm on E1 141 

Set 

(9.42) £ R = [ 4 0 ) , I ( > 0 ) ] + l ( > 0 ) ' 2 . 

Then Rt is a first order differential operator and moreover 

(9.43) Ï2 _ 7(0) ,2 + R.t-

Theorem 9.14 — Ife €]0, eo/4] is small enough, there exist constants C\ > 0, Ci > 
0, Cz > 0 such that forT > l , s,s' e A(7rS) ® E, 

(9.44) 

A.rp s > C i M ^ f l - c 2 M g , 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimY 

(áTs,S ' )J < C3 (|e|T>1 Is'lo + \s\0 |s'|T,i) 

Proof. In the whole proof, C,C . . . are positive constants, which may vary from line 
to line. 

To establish the first inequality in (9.44), we may as well assume that s € E. If 
s € F, then 

(9.45) A.rr> ̂  s \pTA^s + \p^A^>s > 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimY 

p̂p-Âp ̂  P'jp s prpApi ̂  P'jpS 

• 

By [19, Theorem 9.8], since J t is an isometry and since S is compact, there exist 
C > 0, C > 0 such that for T > 1, a € F, 

(9.46) pTA^pTJTcf > C ||cr||Fi — C' ||cr||Fo 

Prom (9.46), we deduce that 

(9.47) pTA^pTs > C\\JT 1pTs\\F1 - C \pTs\Q . 

By (9.32), (9.35), if a G F, 

(9.48) \Q^(A(T^0^x)êo\w JT(T < C \ M f1 P(f)e.V 
1 
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Prom (9.48), we obtain 

(9.49) 
21' 

1 
'1)A') ® £±. 
'1)A') ® £±. 

sssd:s 

о 
< С Jrp^prpS „J 

Using (9.47), (9.49), we get 

(9.50) .'{Z,gt)- f (dimYTd(TY 
if 

1 
0̂ (Л(Т °̂-1>А-)®£ WPTS 

lo 
- С \pTsL . 

If s G E, on °ll£0, we can write s = s + + s~, s ± e A(T*(°'1)A') ® £±. By [19, 
Proposition 8.14], if s is supported in °tt£o, 

(9.51) C(j*+| + \Z\ \a-\) < \Vs\ < C'(\s+\ + \Z\ \s-\). 

By [19, eq. (9.52), (9.87)] and by (9.51), if e €]0,e0/4] is small enough, if s € E ^ T is 
supported in then 

(9.52) |4°>*£ > C | | 5 | |
2

E l + C'T 2 j ^ 2 , + C T | S |
2 - C " \s\l . 

By [19, eq. (9.93)], if s € E vanishes on then 

(9.53) \Â^s\l > C \\sfB1 + C'T 2 \s\l - C" \s\l . 

Using (9.52), (9.53) and proceeding as in [19, p. 115,116] and specially [19, eq. (9.97)-
(9.99)], we find that if s € E i ' x , 

(9.54) | 4 0 ) a [ > C \\s\\2

El + CT 2\Vs\ 2

Q + C"T\s\l - C " \s\l 

By [19, Theorem 9.10], 

(9.55) 

P t Â P p t s \ o < C ( J & g E . + |p T S |o) , 

p T Â ^ p è s \ o < C flfe^k + Ip^ Io ) • 

Using (9.54) and the second inequality in (9.55), for T > 1 large enough, 

(9.56) p £ 4 0 ) p ^ | * > C Wpt-sWv + c ' t 2 № s l o 

+ C"T \pr-s\l - C " \pr-s\l . 
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By (9.32), (9.35) 

(9.57) \\Pts\\ei < C 
21' 

1 

0 ( A ( T . ( o , i ) x ) g c ) | w 

p(Z/2)e»w 

p T s 
0 

+ C 'Vr\p T s \ 0 . 

Using (9.45), (9.50), (9.55)-(9.57), for T > 1 large enough, we obtain the first 
inequality in (9.44). Of course small values of T > 1 do not matter here. 

Now we prove the second inequality in (9.44). Clearly 

(9.58) a ^ s < A ^ p r s + Â^pks . 
0 0 0 

By (9.41), 

(9.59) 4 0 ) P t * | 0 < Cf l lpHI^ + T\Vp^s\ 0) . 

By [19, Theorem 9.8], 

(9.60) P t Â ^ P J - S < C \ \ J T

l p T s \ \ F l . 

Using (9.32), it is elementary to verify that 

(9.61) Jrp PrpS pi 
21' 

1 

0̂ (A(T*(°>VX)§>Ç)\W  Wp{Z/2)e»w ?T S 

0 
+ C \pTs\o • 

Prom (9.55), (9.57)-(9.61), we get the second inequality in (9.44). 
Now we prove the third inequality in (9.44). Put 

(9.62) h = b x , I ( > ° ) ] + l ( > 0 ) ' 2 . 

Then H is a fibrewise first order differential operator, and moreover 

(9.63) r t = h + t [v, a(>v . 

Clearly if s, s' € A(T£S) ® E, 

(9.64) \(Hs,s') 0\ < C ( | s | T i I |s ' | 0 + |«|0 | a ' | T i l ) + \(Hp Ts,p Ts') Q\ . 

Observe that 

(9.65) 

Ny/x 
TZ ip 2(Z)exp(-T\Z\ 2)-p 2(Z)exp 

d v N y (Z) 

(27r ) d i m N Y / x A i 

NY/x 
T Z i ( p 2 ( Z ) - l ) e M - T \ Z \ 2 ) p 2 ( Z ) - l 

d v N y / x (Z) 
(dimYTd(TY,gTY) 

: 0 (e - c T ) 

'NY/x 

T\zyP\z)\2yP\z)\z)\2y 

OCT 
exp(- r |Z | 2 ) 

dvN Y / x (Z) 
( 2 i r ) A i m N Y / x A i 

0(1), p > 0 
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Moreover, if U is a smooth section of T r X , using (9.32) , (9.65) we get 

(9.66) \Z\vVT'(°'1pTs
)xpTs\o<^pTs\o< 

c 
2? 

1 

'1)A') ® £±. '1)A') ® £±. 
p(Z/2)e%w 0 

\Pt s\o 

By (9.65), (9.66), 

(9.67) \(Hp T s,p T s') 0 \ < C ( \ s \ T 1 \ a \ +\a\ 0 |«' | T )i) • 

Also 

(9.68) v,A=rAO°A=rv=r.*fS,wv=r. 
j Jot 

By (9.20), 

(9.69) P r V * VP*' = 0(\Z\ 2). 
Ja 

By (9.37), (9.51), (9.69) 

(9.70) \ ( T r V ^ w V s , s ' ) o \ < - T X 

C ( | s | T ; 1 Is'lo + |s | 0 |s'|T,i + T \ ( r V ^ , w V p T s , p T s ' ) o \ ) . 

Using (9.20), (9.65), we get 

(9.71) T \ { f a ^ f H , w V p T s , p T s ' } o \ < C\p T s\ 0 \p Ts'\ 0 . 

From (9.69), (9.71), we obtain 

(9.72) ( r r v t f „ , w V s , s ' ) o \ < C (|*| T i l | S ' | 0 + |s | 0 |s ' | T > i) • 

Prom (9.62)-(9.64) and from (9.72), we get the third inequality in (9.44). The proof 
of our Theorem is completed. • 

9.7 Estimates on the resolvent of A \ 

Now we fix e > 0 as in Theorem 9.14. 
If A € £(E°,E°) (resp. A € ^ ( E ' 1 ^ 1 ) ) , let (resp. HAI^1 , 1) be the norm 

of A with respect to the norm | | 0 (resp. the norms | \ T _ 1 , | | T 1 ) . 

Theorem 9.15 — There exist T 0 > 1,C > 0,p <E N, such that for T > T0,A e A, 
the resolvent (A — A 2 ^) - 1 is such that 

(9.73) (a — A 2*)' 1 1 , 1 < c ( 1 + |a|)p. 
t 
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Proof. Recall that A ^ = D x + TV. For S > 0, A > 0 set 

(9.74) *7={AeC,Re(A)<5Im 2 (A)-A} . 

Using the first two inequalities in (9.44), and by proceeding as in [19, Theorems 11.26 
and 11.27], we find that if 6 is small enough, and is A is large enough, for T > 1, 
A G U, 

(9.75) 
\ ( \ - Ä ^ 2 r l ( ' ° < C , 

|(A - ^ w ' 2 ) - 1 ! ^ 1 ' 1 < c ( l + |A[)2 . 

Take A e A. By Theorem 9.1, for T > To, (A - l ^ ' 2 ) " 1 exists and moreover 

(9.76) I f A - ^ 2 ) - 1 ! 0 , 0 ^ . 

If A0 e U, A e A, T > To, then 

(9.77) (A - 4 0 ' ' 2 ) - 1 = (Ao - 4 0 ) ' 2 ) - 1 + (A - 4 0 ) ' 2 ) - 1 (Ao - A)(A0 - JS™' 2)" 1. 

From (9.75)-(9.77), using obvious notations, we get 

(9.78) |(A - A ^ ' 2 ) - 1 1 ^ 1 ' 0 < c ( l + |A|). 

Also 

(9.79) (A - A™' 2 ) ' 1 = (Ao - Ä ^ 2 ) - 1 + (Ao - l T

3 ) ' 2 ) - 1 (Ao - A)(A - Ä ^ ' 2 ) - 1 . 

By (9.75), (9.78), (9.79), we obtain 

(9.80) |(A - ^ ° ) ' 2 ) - 1 | | ^ 1 ' 1 < c ( l + |A|)2 . 

Moreover, if À € A, then 

(9.81) (A - A%)~1 = (A - I P ' 2 ) ' 1 + (A - 4 0 ) ' 2 ) - 1 Ä T ( A - l ^ ' 2 ) - 1 

+ .. . 

and the expansion terminates after a finite numbers of terms. By Theorem 9.14, 

(9.82) 
~ 1,-1 
R T < C. 

T 
Using (9.80)-(9.82), we get (9.73). The proof of our Theorem is completed. 
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9.8 Regularizing properties of the resolvent of A 2

T 

Since W is compact, there exist a finite family of smooth functions / 1 , . . . , fq on 
V with values in [0,1], such that 

(9.83) W = 
q 

j=1 

{xev , f j (x) = o } , 

and that on {xev,fj(x) = o dfq span N y ^ x n . 
Similarly, there exists a finite family of smooth sections C/i,..., U r of T&X (resp. 

U[,...,U^, of T R F) such that for any x G V (resp. y £ W), Ui(x),..., Ur(x) (resp. 
U[,...,U^, U[,...,U^ spans (T R X) X (resp. (T R F) y ) . 
Definition 9.16. For T > 1, let 2/r be the family of operators acting on E 

(9.84) 22T = V(l-p(Z/2))C/i > Wp(Z/2)Ui{xev,fj(x) = oPT > 

0«(a(t^ u- l 'a-)®O|W /K-X, -Xl 
V o<z/2\u'.n > v*PtJJPT f • 

For A: € N, let Qj, be the family of operators Q acting on E which can be written in 
the form 

(9.85) Q = Qi . . .Qk, Q e a T . 

If k e N, we equip the Sobolev fibres E k with the Hilbert norm || \\T k such that if 
s e E, 

(9.86) ||s|| 2 T, k = 
fc 

¿=0 Q€Sie

T 

\Qs\t,q • 

Theorem 9.17 — Take k e N. There exists Ck > 0 such that for T > 1, 
<?i,..., Q k e %r, s, s' e A(T£S) § E, 

(9.87) | ( [ Q i , [ q 2 ) . . . [ Q f c , i 4 ] ] ] « y ) o | < C f c M r i l K | T > 1 . 

Proof. First, we consider the case when k = 1. 

a) The case where Q = ^Z P {z/2))u^ • 

Observe that p(Z/2) = 1 for \Z\ < e, p(Z) = 0 for \Z\ > 2e. In particular, if 

p(Z) > 0, then 1 - p(Z/2) = 0. Also, [D x ,V] = i 
V2 

2£ 

1 
c(ei)V|. V is of order 0. One 

then finds easily that (9.87) holds 

b) The case where Q = sdklsdd ;(A(T*(0'1)x)§c)lw 
p(Z/2)Ui 

redxd 

A S T É R I S Q U E 



Regularizing properties of the resolvent of A? 147 

The proof of the corresponding estimate is local on W. By [19, Theorem 13.30], 
we get 

(9.88) | ( [ Q , 4 0 ) ' 2 ] s , * , ) o | < C | s | T f l | a ' | r > i -

Note that in [19], some special properties of the operators Q of [19, Section 13] are 
used, say in [19, eq. (13.203)], but the corresponding estimates still hold, by replacing 
these Q's by our Q's. 

Now we will prove that 

(9.89) \([Q,Rt] 8,a')Q\ < C H T | 1 H i ­

Note that if s and s' lie in A(Tp5) <§> then 

(9.90) ( [ q , R t ] * , * ' ) o = 0. 

To establish (9.89), we only need to consider the case where s and s' lie in A(T L̂S)'S>E^ 
or A(T£S) <g> E ^ and do not lie both in A(T£S) ® E\,. 

We use the notation of (9.62), (9.63). As we saw before, H is a first order differential 
order operator acting fibrewise. If P = - [ Td(TX,gTX)cb.' 

' p(Z/2)Ui 

(9.91) q = 
l 

VT 
(p + p T P p T - p T p - p p T ) . 

From (9.32), (9.91), we find that if s, s' are taken as indicated before, 

(9.92) \ ( [Q,H]s,s ' ) 0 \<C\s\ T A |* ' | T f l . 

By (9.20), we find that near W, 

(9.93) P*~ rV* t«.wVP*- =€(\Z\ 2 ) . 
Joe 

Using (9.32), (9.91) and (9.93), we obtain 

(9.94) \ ( [ Q ^ f a V ^ , w v ] s,*')J < C \ a \ T t l \ s ' \ T i l . 

Prom (9.64), (9.92), (9.94), we get (9.89). Therefore, we have proved (9.89) for this 
choice of Q. 

c) The case where Q = Td(TX,gTX)cb.'{Z,gt)-
p(Z/2)U[H 

By [19, Theorem 13.30], we find that 

(9.95) ( [ q , 4 0 ) ' 2 ] a y ) J < c | , | r > ' | T , i -
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Also [Q,H] is a first order differential operator acting fibrewise. Using (9.65), (9.66), 
we find easily that it verifies the obvious analogue of (9.92). 

Clearly 

(9.96) [q, Tfa ssss v] = Tfavl(z/2)U,H v*jS,wv. 

By (9.20), near W, 

(9.97) **~ r ^ U z / w r * * / ^ 1 * ' = Ü(|Z|2) • 

From (9.97), we find that Q,TfaV% ,WV also verifies the analogue of (9.94). 

d) The case where Q = y/Tp^fjp^ . 

Put 

(9.98) 
- [ Td(TX,gTX)cb.'{Z,gt)- f (di 

Q2 = Vfp(Z/2)p^fjp^. 

Clearly 

(9.99) Q = Q1 + Q2. 

As we saw in part a) of our proof, 

(9.100) Pr(l - p{Z/2)) = (1 - p(Z/2))pT = 0. 

Therefore 

(9.101) 
Qi = Vf(l - p(Z/2))fj , 

Q2 = ^Tp^p{Z/2)fjp^ . 

Clearly, £(1 — p(Z/2))fj, AT̂  is a first order differential operator not depending on 
T, whose coefficients vanish when p(Z) > 0. Then we find easily that 

(9.102) \(\Qi,ssssssAi s,s')\<C\s\TA\s'\TA. 

By [19, Theorem 13.30], 

(9.103) ([q2,40)'2] s,s')o\ <C\8\Ttl \s'\TA . 

We will show that 

(9.104) |([Q2,Ät] s, s')I < CMT)1|*'|T)1 . 
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As before we take s, s' in E \ or E j , x , and 5, s f not lying both in E^. Set P = p(Z/2)fj. 
Then we write the obvious analogue of (9.91), i.e. 

(9.105) Q 2 = Vf(P + p T P p T - p T P - P p T ) . 

Since |p, is an operator of order 0 which does not depend on T, y/T jp, is 
harmless in our estimates. Moreover near W , 

(9.106) / i ^ 0 ( | Z | ) . 

Using (9.66), (9.106), we find that if s € £ ^ X , 

(9.107) Vfp T Pp T Hs < C \ s \ T 1 . 

Prom (9.107), we deduce that \^/TpTP
rpT^ jETJ is also harmless. The same argument 

shows that the other commutators of the remaining terms in the expression (9.105) 
for q2 with H are harmless. 

Finally 

(9.108) [ p , T r v * f „ , w v ] = 0 . 

Using (9.93) and (9.108), we control the commutators Q2,Tf a V* H , w VTf a V 
Jol This completes the case of commutators of length 1. 

e) Higher order commutators. 

As we saw in a), if 1 — p(Z/2) > 0, then p(Z) = 0. Therefore in the commutators 
containing one of the V ^ i p £ Z / 2 ^ ^ , we can replace everywhere pj; by 1. The 
corresponding estimates are then trivial in this case. 

For commutators not containing the V^5p(^/2^)^^'s' contribution of A ^ ' 2 

to the corresponding estimates was already obtained in [19, Theorem 13.30]. More 
generally, by using formulas of the type (9.91) repeatedly, one verifies that the 
estimates needed to prove (9.87) for k > 1 are exactly of the same nature as before. 

The proof of Theorem 9.17 is completed. • 

If A e £e(j5m ,£ , m /), we denote by 111̂ 4111̂ '™' the norm of A with respect to the 
norms || | | T m , || | | T ? m / . 

Theorem 9.18 — For any m E N ; there exist pm G N, C m > 0 such that for T > To, 
A € A. 

(9.109) - [ Td(TX,gTX)cb.'dimYTd(TYgTY),gTY) 
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Proof. Clearly for T > 1 

(9.110) \ \ s \ \ T A < C \ s \ T A . 

When m = 0, our Theorem follows from Theorem 9.15 and from (9.110). 
Using Theorems 9.15 and 9.17 instead of [19, Theorem 11.27 and Proposi­

tion 11.29], the proof of our Theorem proceed as the proof of [19, Theorem 11.30]. 

If a £ A, put 

(9.111) F u(a) = 
1 

2m 
exp(—u2X) 

X — a 
dX. 

Then 

(9.112) 
Fu{o) = exp(—u2a) if a lies inside the contour A, 

= 0 if a lies outside A. 

Put 

(9.113) FU(A 2

T) 1 
2m 

exp(—u2X) 
X Â> 

dX. 

Definition 9.19. Let Fu(A^)(x, x') (x,x' G X) be the smooth kernel associated to 
the operator FU{A^) with respect to j ^ & L \ -

9.9 Uniform estimates on the kernel F u {Aj ) 

Theorem 9.20 — For any a > 0, m G N, there exist C > 0, C > 0 such that if 
x e V , d x (x , Y) > a, for u > u Q , T > T 0, 

(9.114) F u(Al){x,x') < 
Cexpf-CV) 

Tm 

For any m € N, there exist C > 0, C > 0 such that for y € W, u > uq, T > To, 

(9.115) 

sup 
|Z|<fVr 

(i + \ z \ r 
1 

gndim Ny/x 
FU(A2

T) y, 
z 

Vf. m 
z 

Vf 
< Cexp(-C'u 2 ) . 
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For any m e N, there exist C > 0, C > 0, such that for y G W, u > uq, T > To, 

(9.116) sup 
\cx\<m' ,\oc'\<m' 

\Z\<%VT 
\Z'\<%y/T 

sup 
ôm+M i 

- [ Td(TX,gTX)cb.'{Z,gt)-

FU{A2

T) y 
z 

VT 
y' 

z 1 

VT 
< Cexp(-C"tz2). 

Proof Clearly for any p € N, 

(9.117) 1 
2ni 

A 

exp(—-u2A) 
A A î 

dX = ( - I ) 2 ?" 1 (2p- l ) \ 
-Td(TX,gTX)cb.'{Z,gt A 

exp(—u2\) 
(A - À\yp 

dX. 

By Theorem 9.18, we know that there exists C > 0, q e N such that if A € A, 
Q€°L2 T ,e<p, 

(9.118) Q(X - A T )~ P i0,0 

t 
< c ( i + \x\y. 

By introducing the obvious adjoint operator with respect to the Hermitian product 
( , ) 0 , we also find that if A e A, Q' e £ < p, 

(9.119) (X-A 2

T)-PQ' 0,0 
T 

<C(1 + |A|)«. 

From (9.118), (9.119), we see that if A € A, Q e & T, Q' e &£, 1,1' < p, 

(9.120) Q(X - A 2

T)- 2PQ' 
0,0 
Ir 

<C(1 + |A|)2«. 

From (9.117), (9.120), we find that if Q e £ T , Q' e there exist C > 0, C > 0 
such that 

(9.121) QFU(Â T)Q' 0,0 

It 
< Cexp(-C"u 2). 

By (9.121) and by Sobolev inequalities, we get (9.114). Using (9.120) and proceeding 
as in [19, proof of Theorem 13.32], we obtain (9.115), (9.116). 

The proof of our Theorem is completed. • 
Now we establish an analogue of [19, Proposition 13.33]. 

Proposition 9.21 — There exist C > 0, p e N such that for T > T 0 , X e A U 5, then 

(9.122) (X - A2

T)-
2PQ' ) -1 

C 
VT 

(l + |A|y. 
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Proof. This follows immediately from Theorem 9.15. • 
At this stage, we are in a situation formally very similar to the one described in 

[19, Section 13 o)]. Note that here, contrary to what was done in [19], the Hermitian 
product ( , ) 0 does not vary with T. In particular, none of the subtleties involved in 
the proof of [19, Proposition 13.34] does appear. 

If A is an bounded operator acting on E, we write A in matrix form with respect 
to the splitting E°: E% 0 E% ± 

A = Ax A 2 

A 3 A 4 

so that Ai = p T A p T j  

Now we give an analogue of [19, Proposition 13.35]. 
Proposition 9.22 — There exist C > 0, p G N, T 0 > 1 such that i f T > T 0 , \ G A , 
the resolvent (À — A j , 4 ) _ 1 exists and moreover 

(9.123) ( \ - A ' T A ) '2 \ - l -1,1 
T <C(1 + |a|)*\ 

Proof. By Theorem 9.14, it is clear that Ar? 4 verifies inequalities similar to (9.44). 
Therefore by using the notation in (9.74), for 6 > 0 small enough, and A > 0 large 
enough, if a E [7, then 

( Л - Л ^ ) " 1 

(9.124) 
i0,0 < C , 

( A - ^ ) - 1 -1,1 
T 

<C(1 + |A|) 2. 

• 
By Theorem 9.14, for T > 1 large enough, if s € ET'~ 

(9.125) ( a { P ' 2 s , > CT \p^.s\l . 

By (9.125), we find that there is C > 0, T 0 > 1 such that for T > T 0, A G A U S, 

(9.126) (A - 1 ^ 2 ) - 1 0,0 < C. 

Using (9.124), (9.126), and proceeding as in (9.75)-(9.80), we get for T > To, A G AUô, 

(9.127) (a - m * r * -1,1 
T < c ( 1 + |a | ) 2 . 

Then if A <E A U 5, 

(9.128) (A - a \ a ) - 1 = (A - A ^ ' 2 ) - 1 + (A - 4° )

4 ' 2 ) - 1 5 r , 4 (A - l ^ ' 2 ) " 1 + • • 
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By Theorem 9.14, we get 

(9.129) Rt,4 1,-1 
T 

< c . 

By (9.128)-(9.129) and by proceeding as in (9.81)-(9.82), we obtain (9.123). 
Now we give an analogue of [19, Theorem 13.39]. 

Theorem 9.23 — There exist C > 0, C > 0 such that for u > l , T > T 0 ? 

• 

(9.130) 

p£Fû )p£(A )̂p£ 

PtF{AT)PU{At)pt 

PtFAt)pu(At)pt 

0,0 < 

0,0 < 

0,0 < 

С 

с 
VT ' 
с 

у/Т' 
Proof In view of Proposition 9.21, we can proceed exactly as in [19, p. 264-267]. 
Note that contrary to [19, Section 13 o)], we do not need to introduce the operator 
p of [19, Section 13] (at least for the moment!) and this simplifies the discussion 
considerably. • 

9.10 The matrix structure of as T —+ +00 
Recall that the operator D N y / x acting on E was defined in Definition 8.2. Let 

] j N Y / x - be the restriction of D N y / x to E". Similarly let V*1 be the restriction of V 
to £± 

Now we will use the notation of Chapter 8. Let E ' 0 ' - 1 ' - be the orthogonal bundle 
to E' ' 0 in E ° T h e bundle E° splits orthogonally as 

(9.131) E° = E''° 0 E ' ' 0 ^ ' - 0 E+'° . 

We write F r k 1 / 2 A ^ k " 1 / 2 F ^ 1 as a (3,3) matrix with respect to the splitting (9.131), 

(9.132) 
At B t C t 

Dj1 E t F t 

Gt Ht I t 

By squaring (8.10), we obtain the asymptotic expansion of (9.132). Since E ; ' 0 © 
E/,o,x,- = ker V+Ih', and since by Section 8.3, E ; ' 0 = ker ( D N y / x ~ 4- v 7 3 ! ^ ) C 
E 0 ' - , we deduce from (8.10) that 

A T = A + G ( ^ ) , B T = VTB + 0(1), C T = TC + 0(VT), 

(9.133) D T = VTD + 0(1), E T = TE + 0(1), F t = TF + 0(1), 

G T = TG + 0(y/T), Ht = TH + 0(Vr), I t = T 214- 0(T 3 / 2 ) . 
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From (8.10), we get the analogue of [19, eq. (13.356)], 

(9.134) 

A = p')82p, 

B = p £)Ny/X,- + ^/Zl'. c(Z) 
V2 

33 P x , 

C = p A = p')82p, p« + 

D = p x P * A = p')82p,A = p')82p, •c(Z) 
V2 P, 

E = p^-pZ A = p')82p,A = p')82p, c{Z) 
V2 

2 
A = p')82p, 

G = P* + [Vj+,®]p, 

/ - V + ' 2  
1 v\w • 

Definition 9.24- Let E be the second order differential operator acting on F 

(9.135) E = ip-^A - BE~ XD - C / _ 1 G)v • 

Now we extend [19, Theorem 13.43]. 

Theorem 9.25 — The following identity holds, 

(9.136) B ? 2 = 3 . 

Proof. By (9.134), (9.135), we find that 

(9.137) E = rp~1 (p%2p - pS&p^P^ S&p - pS&P^ 93p) V, 

and so 

(9.138) s = v _ 1 (pW</>-

Now we use Theorem 8.8 and (9.138), and we get (9.136). The proof of our Theorem 
is completed. • 

We give an analogue of [19, Theorem 13.41]. 

Theorem 9.26 — There exist p G N, C > 0 such that for X G A, T > T 0, 

(9.139) Aj^i + A^2 ~ At,*) -^t,3 — P t ^ t ^ J t ^Pt 
1-1 

It 

C 
T l / 4 ' 

Proof. In view of (9.133), the proof of (9.139) is the same as the proof of [19, 
Theorem 13.41]. • 
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Set 

(9.140) FU(BY'2) 
1 Г е х р ( - и 2 Л ) 

(X - A2

T)-2PQ'dx+s 

Let Fw(B^' 2)(î/,i/ /) {y,y* G F) be the smooth kernel of f u ( b ^ 2 ) with respect to 
dvY(y') 

(27r)dlmV • 

9.11 The asymptotics of the operator F u {Aj) as T —• + 0 0 
The analogue of [19, Theorem 13.42] is now. 

Theorem 9.27 — There exist c > 0, C > 0 such that for u > uo, T > 1, 

(9.141) \\fu(A$) - p T J t f u (pY*) j t X P t 
°>o cexp(-Ctz2)  

- r i / 4 

Proof In view of Theorem 9.26, the proof of (9.141) is the same as the proof of [19, 
Theorem 13.42]. • 

9.12 Proof of Theorem 9.5 
Clearly 

(9.142) Trs (N? - Nu) 1 
2m 

exp(—tt2A) 
exp(—tt2A) 

dX 

x 
Tr s (N? - N H Fu{Al){x,x) dv x(x) 

(2Tr) d i m X 

By Theorem 9.20, for any m e N 

(9.143) 

Xn{x(X,Y),Dx(x,Y)>e/4} 
Trs UN? - N H )F u (A T )(x,x) dvx(x) 

( 2 n ) d i m X 

C 
Tm 

exp( -CV) . 

Also 

(9.144) 

Xn{x,dx(x,Y)<e/4}x(x,Y)< 
Tr s \(N? -N u )F u (À%)(x,x) dv x(x) 

(27r)dimX 
dvY(y) 

' Y (2 i r ) d i m Y 

zeNY/x,\z\<%Vx,\z\<T 
Tr8 (N-NH)?-NH) 

FU(A2

T) 
Fu{Al){x,Al){x) y 

z 
Vf y, 

7. 

Vf 

k y, 
z 

Vf. 
dvNvr,v(Z) 

f 2n\di™ Ny/x 
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Using Theorems 9.20 and 9.27 and proceeding as in [19, Section 13 q)], we find that 
there exist c > 0, C > 0, S e]0,1/2] such that if y € W, Z e N Y / x ^ , y , \Z\ <Vf 

(9.145) 1 
2tt 

dimX 1 
-(dimYTd(TY,gTY) FU{Ä T) y 

Z 
Vf y 

z 
Vf 

k y, 
Z 

Vf 

p 2 Z 
v t exp(- \Z\Z) 

a T T d i m N Y / x (27r)d i inNY/x 
1 

Tm 

dimF 
Fu(Br>')(v,v)q cexx)(—Cu2) 

By (9.115), (9.145), we find that for any p e N, there is c > 0, C > 0 such that if 
y e W . Z e N y / x ^ y , | Z | < ^ , 

(9.146) 1 
2tt 

dimX 1 
rp dim Ny/x 

FU(A 2

T) y 
z 

Vf, y-
z 

Vf 
k y, 

Z 
Vf 

p 2 7. exp(- \Z\À) 
OCT

r]pà\Ta.NY/x (27r)d imiV*Vx 

1 
2tt 

dimF 
F u (B^ 2 )(y,y)q cexp(—Cir) 

(1 + \Z\)PT6/2 

Finally there is C > 0 such that 

(9.147) out 1 
( 2 T ) d i m i V y / x hO(e" c ' T ) . 

Prom (9.146), (9.147), we deduce that there exist c > 0, C > 0, 6 e]0,1/4] such that 

(9.148) dvY(y) 
J Y (27T)dimV NH)FU(A2

T) 

Trs (NY - N H)F U(A 2

T) y, 
z 

Vf y 
z 

VT, 
k y, 

z 
Vf 

d v N y / x (Z) 
( 2 i r ) d i m N Y ' x 

Trs \q(NY - NH)qF u(B™' 2) cex.p(—Cu2) 
ce 

So by Theorem 8.8 and by (9.142)-(9.144), (9.148), we obtain 

(9.149) Trs [(NY - Nn)F u(A 2

T)\ - Trs N™F U (B^ 2 ) cex.p(—Cu2) 
ce 

Also by (9.111), we get for u > txo, 

(9.150) Trs N ^ F U ( B ^ 2 ) <cexp(-Cu 2 ) 

Using (9.149), (9.150), we get the first inequality in (9.14) and the "difference" of the 
inequalities (9.15). Also, by using Theorem 8.8 again, we get the second inequality in 
(9.14) and also the full (9.15). 

The proof of Theorem 9.5 is completed. • 
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9.13 The operators Hbajb&T 

Definition 9.28. For a G C*, b G C, c G C, T > 1, set 

(9.151) Rb,c,r = 
AO),2 

a 2 
V e bc(T v) 

2V2 

2 
cV E c(T v ) 

2y/2 
AO) 

Rb,c,r = V e bc(T v 

2V2 

2 
cV E c(T v ) 

2a/2 
4(0) 
Jl.rj-1 

For T > 1, recall that K t = kerAj?' and that P t is the orthogonal projection 

operator E —• i^t with respect to ( , ) = ( , ) 1 . Let ^4y? '̂2] be the operator in 

End(2£) which vanishes on Kt , and coincides with the inverse of A K

T

h On Kql . 

Theorem 9.29 — For a G C*, \a\ < 1, b G C, c G C, T > T 0, then 

(9.152) 1 
2m 

exüC—À) 
A — ^a,&,c,t 

dA 
2 dim 5 

p=0 1<гп<ю+1 
Jl H hjp+1-го <ÌQ dsd 

Jl H h j p + 1 - г о <ÌQ — 1 

- [ Td(TX,gTX)cb.'{Z,gt)-
(¿0 - 1 ~ i i . . . -jp+i-io)! 

CiRb,c,TC2Rb,c,T • • • Rb,c,TCp+i, 

where in the right-hand side of (9.152), io of the Cj's are equal to Pt , and the other 

Cj's are respectively given by a 2 
A(P)fi - 1 ' i+ii 

a 2 AO),2 -1 l+ip+i-t0 

In 

particular each term in the right-hand side of (9.152) is a monomial in a and a 
polynomial in 6, c. 

Moreover if C\, . . . Cp+i are chosen as indicated before. 

(9.153) 

degc{C1Rb,c,TC2Rb,c,T • •. Rb,c,TCp+1) < 2(p + 1 - i 0 ) , 

deg a(C 1R b^TC 2Rb,c,T •.. ä&,c,tCp +i) = 2(p + 1 - i 0 + ji + h j P+i-» 0) • 

T/ie inequality in the first line of (9.153) is an equality if and only if ]^V E,Aj^ 
appears exactly 2{p + 1 — ¿0) times in sequences of the form 

1+ifc 
(9.154) Pt [cV* 4 0 ) ] U [ 4 0 ) 1 " j [cV* 4 0 ) 1 ^ , 

the other Ci's being equal to P t 
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Proof. Clearly Rb,c,T lies in A(T£S) <§> End(E) and its partial degree in A(1rS) is 
positive. Using Theorem 9.1, we find that 

(9.155) 1 
A — 'Sa.b.cT 

1 

A - ^%3-

1 

{Z,gt)- f (dimYTd(T 
Rb.c.T 

1 
aw),* 

A - % -
and the sum in (9.155) is a finite sum with at most 2 dim S + 1 terms. 

Also 

(9.156) exp(—A) 
Y,g 

:(-i)fc 
TY) 

Y,g 

By Theorem 9.1, for T > To, \a\ < 1, 0 is the only eigenvalue of A^'2/a2 lying inside 
6. Using (9.155), (9.156) and the residue theorem, we get (9.152). Clearly each term 
in the right-hand side of (9.152) is a polynomial in a, b, c. 

If 5 is a smooth section of Kt , then 

(9.157) A ^ s = 0 

and so 

(9.158) Ve,A™ s - A W v E s = 0. 

Prom (9.158), we deduce that 

(9.159) PT\VE,A^]PT = 0. 

Therefore in the right-hand side of (9.152), expressions of the form Pp \cVE, -Aĵ J Pr 

never appear. Now we list the other sequences of terms where ^cV£, -Aĵ J can appear, 
and their partial degree in a and c. Clearly 

(9.160) 

dega | a2 [40)'2 
_ 1 \ 1+Jfc 

Rb,c,T > 2 , 

d e g j a 2 ^ 0 ) ' 2 
Rb,c,T > 2, 

Rb,c,T > 2, 

degaPTiî6,c,T (a2 [40)'2l 
Rb,c,T > 2, 

Rb<c,T > 2 , 

degcPTi26)C,T (a2 [40)'2l 
s+6x1d 

Rb,c,T = 2 , 

degaPTi2M,T ( a2 [40)'2l 
d+d1r1 

> 2 , 

degcPTi26 ,c ,T(a2 [40)'2 
d+d12rd+d 

= 1. 
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In the right-hand side of (9.160), the even rows are dominated by the odd rows. 
Therefore we deduce that the degree in c of C\Rb,c,tc2 • • • Rb,c,rCp is dominated by 
2(p -f 1 — io), i.e. we obtain the first inequality in (9.153). The second equality in 
(9.153) is trivial. 

The case where there is equality in (9.153) corresponds to the case where the even 
and odd right-hand sides of (9.160) are equal, and only terms of the highest degree 
in c appear. This excludes the first and third sort of terms in (9.160). 

Our Theorem follows. • 

Prom Theorem 9.29, we deduce that if N is one of the operators iV$, JVh, c j v , h 

then 

(9.161) Tr« N 
1 

2m 
exp(—a) 

a — ¥ia,b,c,T 
iX 

0<n<£<4dimS 
0<m<4dimS 

0 £ , m , n ( T ) a V V \ 

where the 0*,m, n(T) lie in P s . 
Theorem 9.30 — If N is taken as in (9.161), there exist forms Oe i T n j n(oo) G P s and 
C > 0, S G]0,1/2] such that for T > T 0, 0 < n < I < 4dimS, 0 < m < 4dimS, 

(9.162) |0*,mfn(r) ~ 0*,m, n(00)| < 7=r . 

Proof. We will show that there is a smooth form on 5, /i(a, fe, c), depending 
holomorphically on {a £ C, b € C, c G C, \ < \a\ < 1/2, |fr| < 1/2, \c\ < 1/2}, 
C > 0, and 6 G]0, \] such that for T > T 0, 

(9.163) (TX,gTX) 
1 

2m 
exp(—a) 

'à X — ^Scd.cT 
dX — /i(a, 6, c) C 

Using (9.161), (9.163) and Cauchy's residue formula, we get (9.162). 
In view of (3.15), (9.151), we see that ^a.b^T is obtained from A?r by scaling 
- the piece of degree 0 by 
- the piece of degree 1 by c; 
- the piece of degree 2 is unsealed; 
- the piece of degree 3 by 6; 
- the piece of degree 4 by b 2. 

Put 

(9.164) ^a,b,c,T = exi - a 2 c r 
c ( f ^ x ) 

V2 
^a,b,c,T exp a 2 c / a 

Td(TX,gTX)cb 

V2 

As in (7.49), the essential effect of this transformation is to replace in the expression 
(9.151) for <8 0 ) 6 > C i T the term [cVE,TV] = cTf<*V\„,vV by c T f a V * V . 

Joe fa 
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The proof of (9.163) proceeds otherwise exactly as in Sections 9.6-9.11. The fact 
that | < \a\ < 1 makes that all the considered quantities are well-defined. Then 
the discussion of the previous Subsections can be exactly reproduced. In particular, 
because of Theorem 9.1 and Proposition 9.2, in Theorem 9.15, we can replace A E A 
by A E 8. 

The previous scaling considerations show easily that as T —> -foo, Fxk 1 / 2 

^ a ^ ^ r k ^ ^ F ^ 1 has a matrix structure similar to (9.132)-(9.134). 
By the procedure indicated in Definition 9.24, we produce a second order elliptic 

operator Sa?&jC acting on F such that the obvious analogue of Theorem 9.26 holds. 
Of course this operator does not has as simple an expression as the expression given 
for E in Theorem 9.25. 

Prom these arguments, we obtain easily (9.163). The proof of our Theorem is 
completed. • 

9.14 Proof of Theorem 9.6 

Clearly 

(9.165) - [ Td(TX,gTX)cb.'{Z 

Prom (9.161), we see that if N is one of the operators N$, N n , u v ' H , then 

(9.166] Trs N 
2ni 

exp(—A) 
(dimYTd(TY,gTY) dX 

0<n<e<4dimS 
0<m<4dim S 

O t , m A T ) u - e - m + n . 

Clearly if u > uo, for 0 < n < 0 < ra, 

(9.167) (dimYTd(TY,gTY) 

Using Theorem 9.30 and (9.166), (9.167), we find that for u > u 0 , T > 1, 

(9.168) gTY) N 
2m 

exp(—À) 
(dimYTd(TY, 

dX 
0<n<e<4dimS 
0<m<4dim5 

0 , , m , n ( o o ) n - ^ m + " 
C 

Ts 

For a given u > 0, we can calculate the limit as T —> +00 of Tr s [N£- fs ^ a

A > d\] 
by the recipe already indicated in Section 9.12. We get 

(9.169) lim Trs 

T—»+oc 
N 1 

2m 
exp(—À) 

(dimYTd(TY, 
dX = Trs gTY) 

2ni 

exp(—A) 

'« A - b № 
dX 
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Prom (9.168), (9.169), we see that 

(9.170) 
0<n<K4dim5 0<ra<4dim S 

O i , m , n ( o o ) u - e - m + n = Trs qNq 1 
Egg 

exp(—A) 
hX-B%> 2 

dX 

Ultimately from Theorem 8.8 and from (9.168), (9.170), we find that for u > Uo, 
T > 1, 

(9.171) 

Trs 
(NK - JVh) 1 

'2m 
' exp(—A) 

' exp(—A) 
dX 

- T r s 
N w

2 

1 
2?ri 

exp(—A) 
' exp(—A) 

iX C 
tm 

Trs gsdfgh 1 
2ni 

exp(—A) 
Is A - B 2 . r 

dX - AdimiVy/x 

Trs 
1 

2m 
exp (—A) 

Is A - B ^ 
dX C 

Tm 

i.e., we obtain (9.16). 
Take again N as before. By Theorem 9.30, the Oe,m,n{T) are uniformly bounded. 

Using (9.166), we see that for u > 1, T > T0, 

(9.172' Tr s N 1 
2m 

exp (—A) 
exp (—A) 

dX 
0<n<4dimS 

©n,0,n(T) c 
u 

On the other hand, by [3, Theorem 9.19], for a given T > To, 

(9.173) 

lim Tr s 

u—>+oo 
A 1 

2ni 
exp(—A) 

Js A - B l T 

dX = Trs P t N P J 1 
2tt: 

exn(- X) 
- [ Td(TX,gTX)cb.'{Z,gt)-

dX 

Since the spectrum of V T ' | x ' is reduced to 0, we can rewrite (9.173) in the form 

(9.174) lim Trs 

u—>-+oc 
1 

2m 
exp(—A) 

' * A - i ^ r 

dX = Trs \ p T N P T e M - ^ X A x ) , 2 ) \ • 

Using (9.172), (9.174), we get for u > u 0 , T > 1, 

(9.175) Trs N 1 
2m 

exp (—A) 
Js A — B , , T 

dX - T r s \ p T N P T e M - ^ t i x ^ x ) ' 2 ) } 
C 
u 

From (9.175), we get (9.17). The proof of Theorem 9.6 is completed. 
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9.15 Proof of Theorem 6.15 

Let z be an odd Grassmann variable, which anticommutes with all the other odd 
variables. Put 

(9.176) K t = a u , t + zN% . 

Then C u , t is a superconnection, with A(Tp5) replaced by A(Tp£)®A(R*). Moreover, 
using Theorem 2.14, we get 

(9.177) 4°>2 _ a 2 + 7 u 
d 

du 
a" u 

d 
du 

Al,Tex] 

Also we can apply to the superconnection A ^ T the techniques we used in Chapters 7 
and 8 when dealing with A u t- In particular as in (7.35), put 

(9.178) A° u T = exi r ac'N Y /(f"'N Y / X) 
y/2u 

Al,Tex]Tex 
rac(f"'NY/

ac(f"'X) 

y/2u 

By Theorem 7.17 and by (9.178), 

(9.179) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTimY) 
Al,Tex] 

uV2 
2u< 

2u< (f?*w,f?'w)rffi)w,f?'w)rf-

By Theorem 8.5 and by (9.179), as T -+ +oo, 

(9.180) F r k ^ A l T J T ^ F f 1 = TV+{y) + y/T(D N r ' x + V%V{y)) + 93 

+ zNY + -T= C ( \ z \ 2 q N y / x + \ z \ d Y + \Z\ d s + \Z\ + \Z\3) 

By Theorem 8.8, we find that 

(9.181) ^"^(93 + zNY)pil> = BY + z (N^ + I dim N Y / X ) . 

Finally by using Theorem 2.14 again, we get 

(9.182) (BS + z (N? + i d h n N Y / x ) ) 2 = B y + z u 
t 
du 

vdsqgq u 
a 

ou 
dw2 

Now it is quite clear that the techniques used above also apply to the superconnection 
A ^ T . In particular we find that given uo > 0, there exists C > 0, 5 g]0, such that 
for u > uo, T > 1, 

(9.183) by: N H e x p ( - B * T - b z 
a 

du 
by* u 

d 
di 

by: 

- I dim N Y /x Trs exp(-£^T - bz u 
a 
du 

by: u-
a 
du 

by: c 
by: 
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By taking the components in (9.183) which are sums of forms of type (p,p + 1) or 
(p+ l,p), we get the first inequality in (6.79). The second inequality in (6.79) follows 
from Theorem 8.8 and from the techniques of the preceding Subsections. 

The proof of Theorem 6.15 is completed. 

9.16 Proof of Theorem 6.16 

Using (9.177) and proceeding as in Section 9.15, we find that there exists C > 0 
such that for u > uq, T > 1, 

(9.184) Trs iVHexp - B l T - z u 
a 

du 
VU2 - u 

a 
di 

-BlT - z 

- T r s P riVHPTexp h 7 m x 4 M + z P T N x p \ c 
u 

Also 

(9.185) V £ ( x ' ç | x ) + z P T N $ P T 

- [ Td(TX,gTX)cb.'{ZgTX)cb,gt)- f (d(TY,gTY) 

Prom (9.184), (9.185), we get the first inequality in (6.80). The second inequality in 
(6.80) can be proved as before. • 
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10. The asymptotics of the metric g T

 K ' v l Y ) as 
T —H-oo 

Recall that g" ( X ' ^ x > is the metric induced by ( , ) T on H{X, and that g £ K r , m Y > 

is the metric on H(Y,i]\y) associated to g ^ x ' ^ x ^ via the canonical identification 
H(X, t \ x ) ~ H(Y, V \ Y ). 

The purpose of this Chapter is to prove Theorem 6.10, i.e. to calculate the 
asymptotics as T —* H-oo of g ^ Y ^ Y ^ and its derivatives over S. In the case where 5 
is reduced to a point, Theorem 6.10 was already established in [19, Theorem 10.9]. 
Here the main point is to show that the techniques of [19, Section 10] allow us to 
control the derivatives of the metric. 

This Chapter is organized as follows. In Section 10.1, we lift sections of kevDY to 
sections of ker A^- In Section 10.2, we use the results of Section 10.1 to lift sections 
of kevDY to fibrewise harmonic sections of E with respect to ( , ) T . Finally in 
Section 10.3, we prove Theorem 6.10. 

Here, we use the notation of Chapters 3, and 6-9. 
We take sq > 0 as in Chapter 7. As before we assume that V, W and S are compact. 

Also we may and we will assume that S is connected. 

10.1 The lift of sections of ker D Y to sections of ker AT

(0) 

Let Y = \jf Yj be the decomposition of Y into nonempty connected components. 
Note that since S is connected, d is constant over S. However the labelling of the Yj 
is only defined locally over S. By replacing S by a small compact neighborhood of 
so € 5, we may as well assume that the decomposition Y = (J^ Yj is defined globally 
over S. Let W = (Ji Wj be the corresponding decomposition of W. 

For 1 < j < d, set 

(10.1) B j f C o / 2 = { z e N Y j / x ^ \Z\ < eo/2} . 

As in Section 7.3, we identify B j^ Q / 2 to a tubular neighborhood °liji£o/2 of Wj in V. 
Since °U£o is a tubular neighborhood of W in V, for j ^ j ' , GlLj,£Q/2 H °U,j',eo/2 = 0-
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For 1 < j < d, let Fj be the vector bundle over S of smooth sections of 
A ( r . (o , i )y^ q v ^ o v e r y j t let D y i be the restriction of D Y to Fj. Then 

(10.2) F = 
d 

i=i 
Fi D Y 

d 

3=1 

D Y j . 

Also ker D Y = 0 ker D Y j , and for 1 < j < d, ker D Y j ~ H(Yj, rj\Yj) is a smooth vector 
bundle on 5. Let Q be the orthogonal projection from F° on ker D Y . 

We establish the following extension of [19, Theorem 10.1]. 

Theorem 10.1 — For any k g N, for any smooth sections U\, . . . , Uk of TrV, for 
any smooth section a of ker D Y j (1 < j < d), and for any q g N, tAere exist C > 0 
suc/i £/ia£ /or T > 1, 

(10.3) sup 
x€V\%,e0/2 

A(T*(o,i)x)g^ - [ Td(TX,gTX)cb.'{Z,gt)-(x) 
c 
rpq • 

For any k' € N, for any smooth sections U[, . . . , U'k, ofT^W, and any smooth section 
a ofkeiD Y , there is C > 0 such that 

(10.4) sup 
yew 

A(T*(o,i) F )§ 7 ? 

rrt 
A(T*^l)Y)®rf 1TV 

QdimN^xa7rPT(2
dimN^xa7Q

di 1/2 
J T < r - a (y) 

C 
Vf 

Proof. When S is a point, the case where t / i , . . . , Uk G T r X , . . . , U'k, G T r F was 
already considered in the proof of [19, Theorem 10.1]. 

Les c2 be the positive constant constructed in Section 9.1. By definition 

(10.5) Sp(£>y) D {A € C, |A| < v ^ } C {0} . 

Also by Theorem 9.1, for T > T 0 > 1, 

(10.6) Sp(A r

3 )) D {A € C, |A| < v ^ } C {0}. 

Let 8 be the circle in C of center 0 and radius y/c^. Then for T >Tq, 

(10.7) P t 
1 

2iri 
dY 

J s X - A™ 

Using (10.7), it is not difficult to extend the arguments of [19] to obtain uniformity 
in s g S in the estimates of [19, Theorem 10.1], i.e. to get (10.3), (10.4) when 
u u . . . , u k e T n x , u[ , . . . ,u r

k , g t r f . 
Take e > 0 as in Theorem 9.14. Let e ° ( x \%-, e) be the Hilbert bundle of sections 

of A(r*(°'1)X) § £ over x \ % i £ which are square-integrable. We equip e ° ( x \ %, e ) 
with the Hermitian product induced by the Hermitian product of e ° . 
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We will show that if B is a smooth section of T r S , if a is a smooth section of 
kerD yj, 

(10.8) Vf P t J t o X-A^^JradX. = C(T-°°). 

By (10.7), 

(10.9) PtJT& = 
1 

2wi 
( X - A ^ ^ J r a d X . ^ 

To prove (10.8), we only need to show that uniformly in A G 5, 

(10.10) V e

b { X - A P ) - 1 J t c A P ) - 1 

E°(X\%,€) 
= 0(T-°°). 

In [19, proof of Theorem 10.1], for A G 5, T > To, given m G N, an explicit 
construction of sm(A,T) G £m(A, T) G F is given so that 

(10.11) 
tm(A, T) = (A - 4 0 ) ) s m ( A , T) - J t ° , 

sm(A,T) = 0 on V \ % , £ , 
I M A , r ) | | B 0 = 0 ( r - » / 2 ) . 

By (10.11), 

(10.12) (A - A ^ ^ J t o = sm(X,T) - (A - A$>)-H M (X,T) . 

From (10.11), it is clear that 

(10.13) V ^ ; < O , 1 ) X ) § ^ m ( A , r ) = 0 on V \ % , £ . 

So by (10.12), (10.13), we get on V \ % > £ 

(10.14) Vf (A - A™)- 1 Jt<? = Vf (A - A ^ r H M ( X , T ) . 

Also 

(10.15) Vf (A - A ^ ^ M A . T ) = (A - A™)- 1 Vf ,A™ 

(A - A^)-H m (X,T) + (A - A ^ r ' V f tm(X,T) o n V \ % i £ 

In [19, proof of Theorem 10.1], tm(X, T) is constructed by an explicit universal 
algorithm, and is calculated in [19, eq. (10.19)]. It is then not difficult to obtain 
the estimate 

(10.16) | | v f t m ( A , r ) | L 0 = 0 ( r - ( " 1 - 1 ) / 2 ) . 
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Clearly, I Vg, AT' j is a first order differential operator acting fibrewise. In particular 
for T > 1, s e E, 

(10.17) V | , 4 0 ) s ^ <C( | |S | |B1+T | | s | | £0 ) . 

Also by [19, eq. (10.34)], if T > T0, A € S, s € E, 

(10.18) ( a - 4 0 ) r ' « „ < C T 1 / 2 \ \ s \ \ e o -

By (10.15)-(10.18), we find that 

(10.19) Vf (A - A™)-Hm(\ ,T) o < C T = ^ 

Using (10.14), (10.19), we obtain 

(10.20) Vf (A - A Z ^ J t o Jl H hjp+1-го <ÌQ < C T " 1 ^ ^ . 

Since m is arbitrary, we get (10.10). So we have established (10.8). 
More generally, by an obvious recursion argument, using (10.11), we find that given 

k £ N, if B i , . . . , Bk are smooth sections of Tr.5, 

(10.21) Vg1 . . .VgkiWrf f hjp+1-го <Ì =G(T-°°) 

As in [19, Theorem 10.1], we will convert (10.21) into pointwise estimates. First by 
[19, eq. (10.37)], given p e N, there is Cp > 0 such that if s € E, 

(10.22) \\s\\EP < CT*>( 4 0 ) s si_i + \\s\\Eo). 

Clearly 

(10.23) AX 'PtJTO- = 0. 

Using (10.21) with k = 0, (10.22), (10.23) and a trivial truncation argument, we find 
easily that on V\<U. xx dx 1., for p e N , the E? no rm oiPTJTa is 0(r_0°). By Sobolev 

embedding, on U dldl ldldldl PTJTa and its fibrewise derivatives are 0(r_00), which 

is a result already established in [19, proof of Theorem 10.1]. 

By (10.23), if B is a smooth section of T r S , then 

(10.24) V%A(°>PtJto- = 0, 

and so. 

(10.25) Vf, A("> PTJTa + A(">V%PTJTa = 0. 
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Now jVff,Aj?^j is a fibrewise first order differential operator. Using (10.21) with 

fc = 1, (10.22), and also the previous estimates on the fibrewise derivatives of PtJT&, 
we find that on X\°lL. i_ ± , VqPTJTS and its fibrewise derivatives are 0(T~°°). 

jf,e(l-f- 2 4- 4) 
By using (10.21) and by differentiating (10.25) again, we ultimately see that given 

k £ N, if B \ , . . . , Bk are smooth sections of Tr5, V%x . . . V^ f c PtJT& and its fibrewise 
derivatives are 0(2"-°°) o n I \ %,2e> Finally recall formula (2.24) for V E . Since 
2e < eo/2, from the previous estimates, (10.3) follows trivially. 

Now we will establish (10.4). Let a r j be the restriction of a r to Yj. Put 

(10.26) 
s'm(A,T) = ( 2 ^ ^ x a T A sm(A,T), 

4 ( A , T ) = 2 a i m ^ / - a T J t m (A,T). 

By [19, eq. (10.25)], s^(A, T) has an explicit expression given by 

(10.27] 
8 ' (\,T) = k- 1 ' 2 pF~ 

ra+l 

n=0 
/n(A)T _ n / , 

and moreover by [19, eq. (10.22)], 

(10.28) /o(A) = 
ipcr 
A 

From (10.27), (10.28), we get 

(10.29) 1 
2ni 1 

- [ Td(TX,gTX)cb.'{Z,Td(TY,gTY) mgmfdt-s 
m+l 

n=l S 
f„(X)dX T ~ n / 2 

Since on W, k = 1, p = 1, 

(10.30) Qr 
1 

2m s'(X,T)dX\ a + 
m+l 

n=l 
Qr /„(A)dA r ~ n / 2 . 

As explained before, the construction of the /n(A)'s is given by an explicit algorithm. 
In particular, one sees easily that they depend smoothly on s € S. By (10.30), we 
find that for k e N, if B \ , . . . , Bk are taken as before, 

- [ Td(TX,gTX)cb.dimYTd(TY,gTY) 
2m s'(X,T)dXX,T)-a\ 

and its fibrewise derivatives of any order are 0 ^^==J. 
In view of (10.9), (10.12), (10.30), to prove (10.4), we only need to establish a 

similar uniform estimate for r(A - A^yH '^X.T) . By (10.11), 

(10.31) C(A,T) = (A - A ^ ) s U K T ) - J T ( 2 d i m ^ / * a r )
1 / 2 * . 
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Again, as explained before, t'm(X,T) is given by an explicit algorithm. By proceeding 
as in [19, eq. (10.32)], we find that given p > 0, 

(10.32) vf, • • • v% h t ' m {\,T)\ \ E P < c т 1 / ^ p + * - d l I n i V l v x - m , . 

By [19, eq. (10.38)], for T > T 0, A e 6 

(10.33) (A - A)f )~ 1s ^ < C T P \ \ s \ \ E P ^ . 

From (10.32) with k = 0 and from (10.33), we obtain 

(10.34) (A - A$>)-H'm{\,T) < CTlH-l/^p-dimJVY^-m-l, . 

By taking p > 2 dim X and using fibrewise Sobolev embedding, we deduce that given 
q £ N, for m € N large enough, (A — A^)~H' m {\ , T) and its fibre derivatives of order 
< q are ®{~jf)- In particular 

(10.35) r ( A - ^ ) - 1 C ( A , T ) C 
VT 

Since Q is fibrewise regularizing, from (10.35), we see that Qr(X — Aj.') 1t'm(X,T) 
and its fibre derivatives are ®(^f0-

Clearly 

(10.36) Vf (A - A ^ ) - H ' ( \ T ) = (A - A ^ ) - 1 Vf , 4 0 ) 

(A - A^)-H' m {\ ,T) + (A - A ^ r ' V f t>m(\,T) 

By (10.32), (10.33), 

(10.37) (A - 4 ° ) _ 1 V f C(A,T) < C T p + 2 i p - d i m N Y > ' x - m ) . 

Since [Vfj-Aj^J is a fibrewise first order differential operator, by (10.32), (10.33), 
we get 

(10.38) ( A - 4 V 1 v f , A 0 ) ( A - 4 W . D _ 

< (77 i 2 î > + 1 +2( p ~ 1 _ d i m i V Y i / x ~ r n ) 

So using (10.36)-(10.38), we find that 

(10.39) Vf (A - A ° ) _ 1 4 ( A , T ) < Cr2p4-l/2+2(P-dimiVv. /x-m) ^ 
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By proceeding as before, we deduce that given q € N, for m large enough, 
Vf (A - A^)~H ' M (X ,T) and its fibre derivatives of order < q are Recall 
that after (10.34), we found that for m 6 N large enough, the fibre derivatives of 
(A - A^) -H ' M (X,T) are also © ( ^ ) - We thus find that on W, 

(10.40) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY) 

Since Q and [V#,Q] are fibrewise regularizing, we deduce from (10.40) that 
VgQr(A - A^)~ 1 t ' m ( \ ,T) and its fibre derivatives are 0 (^ - ) . 

By combining the previous estimates and a simple iteration argument, we get 
(10.4). The proof of our Theorem is completed. • 

10.2 The lift of sections of ker D Y to harmonic forms in E for the metric 

( , ) t 
Recall that by (6.12), 

(10.41) P t = T N l i P T T ~ N " . 

Definition 10.2. For T > 0, let Bt be the linear map 

(10.42) a 6 F _ B Ta(y, Z) = fc-1/2(y, Z)p(Z) exp \ T9 - T^-J- \ a{y) E E . 

Observe that 

(10.43) B T a = T N h ( 2 d i m N ^ x a T ) 1 J t ° . 

Also recall that \?h(ymW) l s a connection on H(Y,rj\Y) — ker D Y . 
Now we extend [19, Theorem 10.3]. 

Theorem 10.3 — For T > 0 let Ct be the linear map 

(10.44) a G ker(jDY) —• CT<J = Q r P T B T a G kei(D Y). 

For any k £ N, if B \ , . . . , Bk are smooth sections of Tr5 , there exists C > 0 such 
that for T > 1, 

(10.45) v T ' m Y ) - - - < Y ' m Y \ c T - i ) \ \ < ± = . c T - i 

If . . . , Bk are taken as before, given q G N, there exists C q > 0 such that if 
1 < j < d, ifT > I, and i f a e ker(DY*), then 

(10.46) sup 
yew\Wj 

'H(Y, m Y ) 
B 1 

.'{Z,gt)- f (dim sgstn c n 

Ti W\\Fo 
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There exists To > 1 s^c/i #ia£ /or T > To, Cy is invertible and C T

X is uniformly 
bounded. Then for T > T 0 , s € K, 

(10.47) P T s = P T B T C ^ x Q r s . 

If k ,B\ , . . . ,Bk are taken as before, if q G N, £/iere exists C q > 0 /or T > To, 2/ 
a<Eker(£>^)> 

(10.48) sup 
Td(TX, 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)cb.'{Z 

Proof. By (10.41), (10.43), 

(10.49) C T a = Q r P T ( 2 d i m N Y / x a T ) 1 / 2 J T * . 

So (10.45) follows from (10.4). Equation (10.46) follows from (10.3). 
By (10.45), for T > 1 large enough, Ct is invertible, and 1 is uniformly bounded 

together with its derivatives. Then equation (10.47) was established in [19, Theorem 
10.3]. 

Recall that ker D Y = ^^ker D Y j . Let Dt, E t be the diagonal and non diagonal 

oarts of Ct with resDect to this splitting:. Using (10.46), we find that 

(10.50) v f Y ^ Y K . . v H

B

{ Y ^ Y ) E T =o ( r - ° ° ) . 

Also by (10.45), for T > 1 large enough, Dt is invertible and moreover 

(10.51) C" 1 =Z?~ 1(l + £fr£C 1 ) - 1 . 

By (10.50), (10.51), we see that if E r

T is the non diagonal part of C T , then 

(10.52) v f i

( y ' 7 7 | y ) . . . v f ( y ' 7 ? | y ) ^ = o ( r - ° ° ) . 

Since the norms of finite dimensional bundles are equivalent, from (10.52), we get 
(10.48).The proof of our Theorem is completed. • 

Recall that by Theorem 3.3 and by (6.23), 

(10.53) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYT 

Definition 104. For 1 < j < d, let H* (E, d + v) be the subbundle of H* (E, d +v) 
corresponding to H*(Yj,7i\Yj) via the canonical isomorphism (10.53). 
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Definition 10.5. For 1 < j < d, let K(j) be the subbundle of K corresponding to 
Hj(E, d +v) via the canonical isomorphism K ~ H*(E, d +v). 

For s G E, 1 < j < d, let VjS G Fj be the restriction of rs to Yj. For 1 < j < d, let 
Qj be the orthogonal projection operator from F° on K'j = ker(Dyj). 

First we recall the result of [19, Proposition 10.6]. 

Proposition 10.6 — For 1 < j < d, the following identity holds 

(10.54) K(j) = { s e K , Q r r r a = 0 for f ^ j} . 

Now we establish the obvious extension of [19, Theorem 10.7]. 
Theorem 10.7 — Let keN, le tUi , . . . ,Ukbe smooth sections ofTnV. I f l < j < d , 
if s is a smooth section of K(j), i /gGN, there exists C q > 0 such that for T > 1, 

(10.55) sup 
xew\% > £ 0 / 2 

v h t ^ x m . . . v ^ f ( ° ' 1 , x ) ^ P T s | (x) < § . 

Proof By Theorem 10.3, for T > 1 large enough, if s E if (j), 

(10.56) P t S = P T B T C r l Q r s . 

By Proposition 10.6, Qrs vanishes except on Wj. Therefore by (10.41)-(10.43), 
(10.56), for T > 1 large enough, 

(10.57) P T s = 
d 

j> = l 
T N » P T ( 2 d i m N Y i ' / x a T d > ) 1 / 2 J rQrC^Qj r j s , 

Clearly Qj depends smoothly on s € S. By Theorem 10.3, for T > 1 large enough, 
C^ 1 is bounded together with its derivatives. By using Theorem 10.1, we find that 
in the right-hand side of (10.57), the term corresponding to j f = j verifies the bound 
(10.55). 

By Theorem 10.3, if we fix f ^ j>, Qj'C^QjfjS and its derivatives of arbitrary 
order with respect to ^/ h( y^\y) are G(T~°°). By Theorem 10.1, P TJ TQj'C^}QjrjS 
and its derivatives are 0(r~°°) on V \ °ll?',£o/2- However this argument excludes 
°Uj/5eo/2 itself. Still, we can reproduce the proof of Theorem 10.1, with j = j ' , 
and a = Qj'C^QjrjS. Then t^(A,T) is estimated exactly as in the proof of 
Theorem 10.1. Here, since a and its derivatives are 0(T~°°), it is trivial to verify 
that 5^(A, T) and its derivatives are also 0(T - O °) . This way, we find that for f ^ 

T N h P t (2 d i m N Y i ' / x aT, j>) JrQj'C^QjrjS and its derivatives are 0(T-°°) on W. 
The proof of our Theorem is completed. • 
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10.3 Proof of Theorem 6.10 

By definition, if s, s' are smooth sections of K(j) and K(f) respectively, then 

(10.58) 

( P T s , P T s ' ) T (x) = ( T - N " P T s , T - N » P T s ' ) (x) 

= ( P T T - N " s , T - N « P T s ' ) (x) 

= ( T - N h P t s , P t T - n » s ' ) (x) . 

Also if P t is the norm of P t with respect to ( , ), 

(10.59) P t < 1. 

Using Theorem 10.7 and (10.58), (10.59), we recover the result of [19, Theorem 10.9] 
that if j ^ f 

(10.60) ( P T s , P T s ' ) T = C(T-°°). 

Also if B € TrS, by (10.7), 

(10.61) v i f l r = é ¡ l { x - ^ 0 ) ) _ 1 [ v i ' 4 0 ) ] (a - 4 0 ) ) _ 1 ^ -

By (10.17), (10.18), (10.59), (10.61), we get 

(10.62) V f P T < C T . 

By (10.58), 

(10.63) 

B ? ' v (PTS,PTs')r (x) = ( V % ( P t T - n » s ) , T - n « P t s ' ) (x) 

+ ( P T T - N » s , V%(T- n »P t s ' ) ) (x) 

= (V%{T- N "P T s), P t T - n » s ' ) (x) 

+ ( t - n " P t s , V % ( P t T - n « s ' ) ) (a?). 

Using (10.59), (10.61)-(10.63) and Theorem 10.7, we find that i i j ^ f , 

(10.64) V B (P t s ,P t s ' ) t = C(T-°°). 

More generally, if j17^ j ' , if B i , . . . , Bk are smooth sections of TrS, the same argument 
as in (10.63) shows that 

(10.65) V B l • • • V B f c (P T s, P T s ' ) T = C(T-°°). 

Astérisque 



Proof of Theorem 6.10 175 

Take now s 6 Then by Theorem 10.3, for T > 1 large enough, 

(10.66) (PTs,PTs)T = (P tBTC^Qts , BTC^1Qrs)T . 

Equivalents by (10.41)-(10.43), (10.65), 

(10.67) {PTs,PTs)T= P t T - N " B T C T X Q t s 

Take a <E K{j). We define s'm(X, T), t'm(X, T), which are associated to a as in (10.26). 
We will estimate 

(10.68) PTT-N»BT* = ¿ 7 / \s 'm(\T)-(X-A^)-H'm(X,T) dX 

Using (10.34), (10.39) and more generally the extension of (10.39) to arbitrary k G N 
(where k counts the number of derivatives V j ^ , . . . , Vj|fc), we find that for k G N, 
q G N, for m large enough, (A — ^4^? )̂~1t̂ n(A,T) and its derivatives on V of order 
< & are €(T~q). Using (10.29), one finds easily that a for given q G N, for m large 

enough, ^J^ (A,T)dA,^(A - A ^ y H ^ X . ^ d X ^ and its derivatives of order < k 
on S are C(T~9). Finally, by (10.29) 

(10.69) 
1 

2m 
s'm(\T)dX 

|2 

\E° 

1 
jidim JVŷ  /x 

dvYi (y) 
ly (2Tr)d™Y 

d6+d1r 
P2< 

z 
d+d 

d+dr 
m+1 

n=l 

1 
2iri s 

fn(X)d\ T~n'2 
i2 
d+d1re 

dvNYj/x(Z) 
Rb,c,T > 2,6+d1r1er 

From the previous considerations, one deduces that for any k E N, TdimNY*/x 
II ¿7 /<5 s'm(\T)d\\\2Eo — ||cr||̂ 0 and its derivatives on S of order < k are 0 ( -^ ) . 

Therefore as T —• +oo, T*mNYi'x PTT-N"BT<T Q - \\cr\\2Fo and its derivatives on 
5 a r e © ( ^ ) . 

Using Theorem 10.3 and (10.67), we see that if s € K(j), TdimNYi'x (PTs, PTs)T-
(Qrs,Qrs)Fo and is derivatives on 5 are 0(-j=). 

The proof of Theorem 6.10 is completed. • 





11. The analysis of the two parameter 
semi-group exp(—A2

U T ) in the range u e]0,1], 
T € [0,1] 

The purpose of this Chapter is to prove Theorems 6.7 and 6.17. The main point of 
Theorem 6.7 is to show the existence of C > 0, 7 e]0,1] such that for u e]0,1], 
0 < T < 1/u, then 

^ T r s [ i V H e x p ( - ^ T ) ] - / Td(TX,^ T X )*Tr s [iVHexp(-C| 2 )] 
Jx 

< C(u(l + T)P . 

This Chapter is the obvious extension of [19, Section 11], where Theorem 6.7 was 
established when S is a point. 

To establish this result, the main idea is to replace A u , t by A U i r, and to apply to 
A 2

 T the functional analytic machinary of [19, Section 11]. Of course, the local index 
techniques used in [19] in the case of a single fibre, are now replaced by relative local 
index techniques. We follow the approach by Berline-Getzler-Vergne [3] to the proof of 
the relative local index theorem of [4]. This permits us to apply to the present problem 
the techniques of [19, Section 11], to which the reader is referred when necessary. 

This Chapter is organized as follows. In Section 11.1, we prove (6.20), which is the 
easy part of Theorem 6.7. In Section 11.2, we show that the proof of Theorem 6.7 is 
local on the fibres X. In Sections 11.3 and 11.4, we construct a coordinate system near 
W and a trivialization of iTyA(T£S) §> A(T*(°^X) §) £. In Section 11.5, we introduce 
the conjugate superconnection B^ 2, and we calculate the Taylor expansion of B^i2 as 
u —• 0 in the given trivialization. In Section 11.6, we reduce the proof of Theorem 6.7 
to an equivalent problem on (TnX) y o (yo G W). In Section 11.7, and following [3], 
we make a Getzler rescaling on the operator A^ T , and in Section 11.8, we describe 
certain key algebraic features of the new rescaled operator L ^ ^ ! T . In Section 11.9, 
we introduce graded Sobolev with weights. In Section 11.10, we show briefly how the 
results of the previous Subsections permit us to reduce the proof of Theorem 6.7 to 
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the problem already considered in [19, Section 11]. Finally in Section 11.11, we show 
how to prove Theorem 6.17 along the same lines as Theorem 6.7. 

Here, we use the notation of Chapters 3 and 6-9. 

11.1 The limit as u 0 of $ Tr s [ N u exp( -A 2

U T ) ] 
For u > 0, T > 0, let P u,t{x,x') (x,x r G X) be the smooth kernel of e x p ( — T ) 

with respect to ^ffifc' \c • 
If a G if C/i,..., C/2dimX € T R X, then %U x... i u 2 d i m X a G A(T£S). Let 

amax e A(T&S) be such that 

(11.1) i V l .. A U 2 d i m X a = ( i V l .. .% 2 d i m X c fox)a m a x . 

In particular, if a is a smooth section of A(T^Vr), the integral along the fibre / a is 
given by 

(11.2) / a = f a m a x <fc x . 
Jx Jx 

Proposition 11.1 — Let To G [0, +oo[. There exists C > 0 stic/i that for any u G]0,1], 
T G [0,7b], tfien 

(11.3) 
$ T r s [ A r H e x p ( - < T ) ] - / Td(TX,p T X)#Tr s[iVHexp(^C|, 2)] 

|#TVS [JVHexp(-AjfT)] - < № [ a t H e x p ( - ^ 0 ) ] | < CT. 

< Cu, 

Proof By using the local families index theorem of [4] as in [14, Theorem 2.16], one 
finds easily that for any T > 0, x G V, as u —* 0, 

(11.4) *Tr s [N H P U t T (x ,x)} d V x ( x ) • 
(27r)dimX 

{Td(TX,g T X )*Tr B [ N H e M - C h ) ] } T X • 
Take To > 0. The arguments in [4] show that there exists C > 0 such that for u e]0,1], 
T € [ 0 , r o ] , x e v , 

(11.5) * T r s [ i V H P u , T ( x , x ) ] ^ ^ . 

{Та(ТХ,д т х)ФТт 3 [ЛГ н ехр( -С 2

2 ) ]} т а Х 

Finally 

(11.6) ФТг.[ЛГнехр(-< г )] = J ^ T r s [ N H P u , T ( x , x ) ] - ^ 

< Cu. 

dvxjx) 
dim*" 

• 
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The first inequality in (11.3) follows from (11.5), (11.6). 
Also 

(11.7) A T r s [ i V H e x p ( - ^ r ) ] = 

^ {Trs [NH e x p ( - < T - b [AU,T, V})] }6=Q . 

The arguments of [4], [14] show that for T < To, as u —» 0, the right-hand side of 
(11.7) remains uniformly bounded. Thus we get the second inequality in (11.3). • 

11.2 Localization of the problem 
Let ax (resp. aY) be the inf of the injectivity radius of the fibres X (resp. Y). We 

take so > 0 as in Section 7.3. Let e € R+ be such that 0 < e < ^inf(ax ,aY ,eq). If 
x E F , let J5x(x, a) be the open ball of center x and radius a. 

Let / be a smooth even function defined on R with values in [0,1], such that 

fit) = 1 for \t\ < a /2 , 
(11.8) JKJ 

0 for \t\ > a. 

Set 

(11.9) = ! - / ( * ) • 

Definition 11.2. For ?x €]0,1], a € C, set 

(11.10) 
Fu(o) = 

.+00 

'-00 
exp(itaV2) exp -t2 

2 
d+d1r dt 

/2K' 

Gu(a) = 
/» + 00 

— OO 
exp(ita\/2) exp(--*2 

2 d+de1r dt 
V2TT 

Clearly 

(11.11) Fu (a) + Gtt(o) = exp(-a2) . 

The functions Fu{a),Gu(a) are even holomorphic functions. Therefore the exist 
holomorphic functions Fu{a),Gu(o) such that 

(11.12) 
Fu(a) = FJa2) 
GJa) = GJa2) 

From (11.11), (11.12), we get 

(11.13) Fu(a) + Gu(a) = exp(-a). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 



180 The analysis of the two parameter semi-group exp(-A^ r) ... 

The restrictions of F U ,G U to R lie in S(R). Therefore the restrictions of F U ,G U to 
R also lie in S(R). 

Prom (11.13), we deduce that 

(11.14) e x p ( - < r ) = F u ( A l T ) + G u(AI,t) • 

Theorem 11.3 — There exist c > 0, C > 0 such that for u e]0, 1], T > 0, then 

(11.15) Trs i V H G u « T ) U c e x p f - ^ . 

Proof. Set 

(11.16) Hu{a) = 
+oo 

i —oo 
exp(ztv2a) exp 

- i 1 

2u2 
uy/2'K dt 

uy/2'K 

Then 

(11.17) Gu{a) = H u { - ) . 

By [19, eq. (13.23)], we find that for any c £ R+, m G N, there exist c m > 0, C m > 0 
such that 

(11.18) sup 
aec 

|Im(a)|<( 

|a | m \Hu(a)\ < c m exp uy/2'K 
u 2 

Again there is a holomorphic function H u(a) such that 

(11.19) H u(a) = H u{a 2) 

and so by (11.17), (11.19) 

(11.20) Gu{a) = H u 
a y 

<u2 > 
Let A' be the contour in C 

i A' 

- 1 0 

—i 
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Prom (11.18), we deduce that 

(11.21) sup 
a€a' 

i m 
a I 

H u(a) cexp 
- C 
u 2 

Let H u p(a) be a holomorphic function such that 

(11.22) 
lim a_^ + 0 0iî w ,p(a) = 0, 
i7(p-l)/„\ 

(p-1)! 
= H u p(a). 

By (11.18), we see that for any m € N, 

(11.23) sup i i m 
\a\ 

Hu,p{o) < cexp 
- C 
u 2 

By Proposition 9.3 and by (11.20), 

(11.24) Trs [ iV H G u ( ^ i T ) l = V>«Trs \ n h H u ( A ^ / u ) . 

Also 

(11.25) Tr s [ n h H u ( A $ / u ) \ = Trs [ n„H u (A 2

t / u ) . 

Clearly 

HuÌAt/u) 
1 

2m 

HU(X) 

/a' A - A 2 , 
-dX. 

Equivalently 

(11.26) HuiAÌjr/u) 
1 

HuiAÌjr/u) 
HUtV(X) 

a' (A - 4 )p 
dA. 

Using (11.21), (11.26) and proceeding as in Chapter 9, we find easily that for u e]0,1], 
T > 1, 

(11.27) Tr s [ iV H J ï u ( l^ / u ) ] I < cexp 
HuiAÌj 
u 2 

Using (11.24)-(11.27), we get (11.15). The proof of our Theorem is completed. 

By (11.10), we see that 

(11.28) Fu(Al T ) = 
Fu(A 

— oo 
cos(t 2 K . t ) e x P 

- t 2 

2 
f(ut) 

dt 

Fu(A 
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Also A^t is a second order elliptic operator whose principal symbol is given by u 2 ^ - . 
Let F u (A 2

T ) (x ,x ' ) {x,xf G X) be the smooth kernel of F U(A 2

 T ) with respect to 
dvx(x') Then 

(11.29) Trs [ j V h V « t ) ] = / Tr s [N n F u (Al t T )(x,x)] t S S t • 

Using finite propagation speed [21], [35] and (11.28), we see that if x € V, 
F U(A 2

 T)(x,a/) vanishes for x' ^ B x (x , a) and only depends on the restriction of 
A 2

U j T to B x (x , a ) . 
By Theorem 11.3, we find that the proof of (6.19) has been reduced to a local 

problem on a given fibre X, A probabilistic proof of this fact can also be given along 
the lines of [19, Proposition 11.10]. However the argument is slightly more complicate 
than in [19], because the Lichnerowicz formula in (7.47) is more involved than the 
formula for one given fibre used in [19]. 

11.3 A reseating of the normal coordinate z 0 

Definition 11.4- For T > 0, let /3t(x) be the smooth section of 7r*A(TpS) such that 

(11.30) (3T(x)dvx(x) = {Td(TX,g T X )*Tr B [AT„exp(-C2 2)]}" a x 

The key result of this Chapter is the following extension of [19, Theorem 11.13]. 
Theorem 11.5 — There exist 7 e]0,1] such that for anyp £ N, there is C p > 0 such 
that ifu e]o, 1], T € [1, A], y 0 € W , Z 0 e N Y / x , R > y o , \z 0\ < F T 

(11.31) 
1 

rp2 dim Ny/x $Tr s N H F u (A 2

U t T ) Vo 
Z 0 

T 
2/0, 

Zo 
T 

<CP(1 <CP(1 
Zo 
T 

< C p ( l + \Zo\)-*(u(l + T))i . 

Remark 11.6 . Prom Theorem 11.5, one derives (6.19) in the same way as in [19, 
Remark 11.14] using [19, Theorem 11.13]. In particular one has to apply Theorem 11.5 
in the case where Y = 0. Using also Proposition 11.1, we have thus proved 
Theorem 6.7. 

11.4 A local coordinate system near W and a trivialization of try A ( T P 5 ) 
®A(T*l°)®Z>»X)®Z 

Let v*vMT£S)®A(T*^x) be the connection on 7r^A(T£S) § A(T^°^X) along 
the fibres X, which is induced by V A ( T * ( ° ' 1 > X ) . 

Let e i , . . . , e2£ be an orthonormal basis of TrA\ Let / 1 , . . . , /2™ be a basis of T r S , 
let Z 1 , . . . , fm be the corresponding dual basis of 7 r 5 . 
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a local COORDINATE SYSTEM NEAR W and A trivialization 183 

Definition 11.7. Let ^ v H T ^ S ) ® \ ( T ' ^ x ) be the connection on 7r£A(T£S) 
®A(T*(°-1)X) along the fibres X given by 

(11.32) lV7rt-A(TâS)®A(T*(°'1)X) _ y7rî,A(T^S)êA(T*(°'l'X) 

+ è (S** , f ? ' V ) V2c ( e i ) r + J ( S v f * v , f g ' v ) f a f • 

Let 2V7r^A(r^5)®A(T-<01>x) be the connection on 7r^A(T£S) § A(r*(°>1)X) along 
the fibres X 

(11.33) 2V^A(T^5)§A(T*<°-1)X) = e - f ^ ( f y ' Y / X ) 

- [ ,gTX)cb.'{Z,gt)Td(TXcb f (dimYTd(, 

Recall that by the results of [4] stated after (1.5), 

(11.34) - [ Td(TX,gTX)cb.'{Z,gt)- f ( dim 

By (7.40), (7.43), (11.34), we get 

(11.35) 2y7r^A(t^s)§A(t*(0'1)x) _ yirî,A(t^s)®A(t*(0'l)x) 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(- f (dimYTYX)cY) 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimTY,gZ,gt)- f (dimYTTY)X,gT 

From (11.35), it is clear that if A, B are smooth sections of T r X , then 

(11.36) 2v7ÇA(T£S)êA(T*^1>X) c{B) = 

c(V T X B) 
V2 

( (s v (A)B,f?> v ) - ( v Y f ï N y / x , B \ ) r . 

Let ^ (TrX) ~ T n X be the set of elements of length 1 in c(TRX). It fol­
lows from (11.36) that parallel transport along the fibres X with respect to 
2v<a(7£S)<§a(t*<°-1>x) maps c 1 ( t r x ) into c 1 (T RX) ® T£S, while leaving a ( t £ s ) 
invariant. 

Let P T X be the projection operator TV ~ T H V ® TX -* TX. 

Proposition 11.8 — The following identity holds 

(11.37) iv^A(TiS)SA(T-(».«x),2 = I ( (v T X ) 2 e i , e i ) c ( e i ) c ( e i ) 

+ iTr \{V T X ) 2 ] + è U S V P T X S V + V T X S v ) f ? ' v , f » ' v ) 

f a f + \ ( V T X S v e i , fS> v) V2c{ e i ) r • 
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Also 2 v^a(t£s)§a(t"<°»x),2 ^ obtained from the expression (11.37) for 
iv^a(t£S)§a(t-«>.»x),2 by replacing c(e.) by c(e.} + V 2 ( / " , J V y / x , e « ) fa. 

Proof. U A e End(TX), the action of A on A ( T * ^ X ) is given by 

(11.38) i (Aa, ej) c(e i)c(eJ) + ± Tr[A]. 

So we find that 

(11.39) va(t-«m>*),2 = i < ( v ^ ) 2 e i , e i ) c ( e i ) c ( e , ) + iTr [(V™) 2] . 

Using the identity 

[ c ( e i ) f a , c ( e j ) f ] = 2 S i j f
a f , 

(11.37) follows easily. Using (7.40) and (11.33), one obtains the corresponding formula 
for (2V^ A ( T ^)® A ( T * ( 0 , 1 ) ^) ) 2 . • 

Recall that for u > 0, i\)u: A(T£S) —• A(T£S) was denned in (9.9). 
Definition 11.9. For u > 0, let 2V7r^A(T^5)®A(T^01)x),t, be the connection 0n 
tt^A(T£S) § A(T^°^X) along the fibres X, 

(11.40) 2v7t̂ A(T£S)®A(T*<0'1>X),<u = ^2v7t^A(T^5)0A(T^°'1>X)^-1 ^ 

In the sequel, we will use trivializations with respect to the connection 
2y7r^A(T£S)§A(T*(01>x),tx It wiU be often more convenient to trivialize with respect 
to 2y7r̂ A(T£S)§A(T*<°'1>x)) and to appiy afterwards the operator tyu. 

Take yo € W. If Z e (T n X) y o , £ e R —» x t = exp*(tZ) € X n v y o is the 
geodesic along the fibre X n v y o such that xq = x, |*=o = Z. If \Z\ < e, we identify 
Z e ( T u X ) y o to exp*(Z) € X n v y o . Let Bj o

x (0,a) be the open ball in (T n X) y o of 
center 0 and of radius a. The ball By* (0, a) is then identified to B x(yo, a). 

Let dvTx(Z) be the volume element in (TnX) y o . Let k'{Z) be the positive smooth 
function on B y

x (Q,e) such that 

(11.41) dv x(Z) = k'(Z)dv Tx(Z). 

Then fc'(O) = 1. 
We fix Z 0 G Ny/x^yo, \Z0\ < a/2. Take Z € JVy / A-,R,,,0, |Z| < a/2. The curve 

i G [0,1] -> Z 0 + <Z lies in B™(0 , a ) . We identify (7r^A(rRS') ® A ^ ^ 0 ' 1 ^ ) ) ^ to 
(7r£A(TRS) ® A(T*(°' 1 )X))Z o (resp. £ z to £z0) by parallel transport with respect to 
the connection 2^ ' v a ( t ^ s )®a( t ' ^x ) (regp y£) along t e ^ y _^ Z q + t z 

When Zo € N Y /x , r , y o , < a/2 is allowed to vary, we identify (iryA(TRS) 
êA(T*(°^X)) Z o (resp.'Czo) to ( ^ A ^ ê A ^ 0 ' 1 ) ^ ) ) ^ (resp. £ y o) by parallel 
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transport with respect to t?*vMt rs)®a(t • >x) (resp. v « j S dl dl e t e [ 0 ; X] _» tZ0 
Therefore the fibres of ir̂ AÇT-̂ S) ® A^** 0 ' 1)*) at Z 0 + Z and y 0 are identified by 
parallel transport along the broken curve t G [0,1] —• 2tZ0, 0 < t < 1/2, Z 0 +(2t- l )Z, 
\ < t < \ . 

11.5 The Taylor expansion of the operator B^f 

Definition 11.10. For u > 0, set 

(11.42) B 2̂ = exp - r 
c 

V2u 
, f H,N Y / x  (Ja B%2 exp fx c 

s/2u 
C N y / x ) y / x 

Then 

(11.43) Au,t = B & + T V . 

Also by Proposition 9.3, 

(11.44) - [ Td(TX,gTX)cb.'(di 

In the sequel, B^i2, A^ T are considered as differential operators acting on smooth 
sections of (7r£A(T£S) ® (T*№X) ® £)z0 which depend smoothly on Z e (T R X) y o , 
|Z| < a/2. 

If ¿7 e ( T r X ) ^ , let Vu be the standard differentiation operator acting on smooth 
functions on (TjiX) y o. Let ei,...,e2* be an orthonormal basis of (TrX)z 0 - For 
1 < i < 2 ,̂ let ref°(Z) be the parallel transport of with respect to V T X along the 
curve t e [0,1] —• Z 0 + *Z. 

Let Op be the set of scalar differential operators on By*(0, a/2). It is clear that, 
in the considered trivializations, 

< t » ^ 2 € (tt^A(7£S) § c(TRX) 0 End(£))yo ® Op. 

For p e N, g e N, ©g(|Z|p) will denote an expression in (tt^A(T4S) ® c(T nX) 
® End(£))y0, which has the following two properties: 

- For k e N, Jfc < p, its derivatives of order are ©(|Z|p~fc) as |Z| —• 0. 

- It is of total length < q with respect to the obvious Z-grading of (7rJ^A(TpS) 

®c(TRX)®End(0)yo-
Theorem 11.11 — Take yo e W, Zq e NY/x,n, y o> \ zo\ < ol/2. Then in the given 
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186 The analysis of the two parameter semi-group exp(-A^T) 

trivialization of 7TyA(T^S) ® c(TrX) <§> £ near (y0> ^o), 

2 2£ / 9 
(11.45) b^2 = - y ^ E (Vei+0(|Z,) + è ( ^ v ^ M ^ ^ S m t ^ o . ^ ) ) ^ 

(Z,ei) +02(|^|2) +00(1))2^-1 +«200(1) + ^c(ei)c(ej) 

(i?|0(ei;ej) + 00(|Z|)) + ^ c ( e , ) Ç + 00(|Z|)) ss+ / * ̂ ) + 00(|Z|)) + A/" /" 

(# i ( f? 'W,f" 'W) +Co(\Z\j) +u2VGo(z) + u ^ M \ Z \ 2 ) ^ Z l • 

Proof. By Proposition 11.8, (2V^A(rçs)®A(t-<01>x)^2 is a 2-f0rm on X with val­
ues in elements of length < 2 in tt£A(T£S) § c(TRX). Let 2r^C.A(r^s)§A(t*(°'1)x),z0 
be the connection form for 2v,rv'a(7rs)®a(t*<0'1>x) near Z0 in the trivialization of 
tt^A(T^5) ® A(T*(°>1)X) with respect to ^ K M t ^ s ) ^ a ( t ' ^ x ) by the consider. 
ations we made after (11.36), we find easily that 2r^^A(t^s)®A(t*(01)x) is a j.foj-m 
with values in elements of length < 2 in (nyA(T^S) ® c(trx))zo. Using [1, Propo­
sition 3.7], we see that 

(11.46) 2Tn'vA(T^S)êA(T'^ x),Zo(Z) 

= 1 (2v4A(^s)®a(r<^)x)\2 + 00(|Z|)) + 02(|Z|2) . 

Now we use formula (7.47) for + 00(|Z|)) = Al0 and also (11.46), and we obtain 
(11.45). ' • 

Let FU(A^ T)(x, x'), (x, x' G X) be the smooth kernel associated to Fu(A^lT) with 
respect to (gffifflx • Clearly 

(11.47) Tr [iVHFu(^T)(x, x)] = Trs [jVHFu(^fT)(x,x)] . 

So in Theorem 11.5, we may as well replace A^ T by A^ T. 
Take yo G W. For Zq G NY/x,n,y0i \%o\ < e/2 , it will be very useful to identify 

(tt* A(T£S) ® A^^0'1)^) ® 0z0 to (tt* A(T£S) § ACT1*0'1)-*) § f )vo as indicated in 
Section 11.4. 

11.6 Replacing X by (TRX)yo 

Definition 11.12. Let be the vector space of the smooth sections of (7r^A(T]^S')® 
A(T*<-0>»X) ® 0«o over (TRX)yo. 
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Let ATX be the ordinary fiat Laplacian of TrX. Then ATX acts naturally on Hyo. 
Let 7(a) be the smooth function of a g R considered in (7.29). If Z g T r X , put 

(11.48) p(Z) = 7 ( J g ) . 

Then 

p(Z) = 1 if \Z\ < 2a, 
(11.49) HK J ~ 
v ' 0 i f | Z | > 4 a . 
We now fix Zq g iVyyx,r,i/o> l̂ ol < <*/2. As indicated in Section 11.4, the trivialization 
under consideration of n^A(T&S) §> A(T*(°'1)X) ® £ depends explicitly on Z0. 
Therefore the action of Dx also depends on Zq. 
Definition 11.13. For u > 0,T > 0, let L^f?M^'z° be the operators acting on Hyo 

^ f ? = (1 - P2(^)) f~T"^TX + T2P^o) + p2(Z)^)T(Z0 + Z), 
(11-50) V 2 ' 

Ml>z° = -u2{l - p 2 ( Z ) ) ^ - + p\Z)BvJ . 

Let Fu(Ll'%?)(Z,Z') (Z,Z' e (TnX)yo) be the smooth kernel associated to 
FU(L^^?) with respect to k'(Zo) p™*™^ • By using finite propagation speed [21, 
Section 7.8], [35, Section 4.4], we see that for any yo € W, Zq € nY/x,TH,y0i \^o\ < &/2, 

(11.51) Fu(AlT)((yo,Zo)Ayo,Zo)) = Fu(Llf)(0,0). 

In the next Subsections, we will show that there exist 7 g]0, 1], such that for any 
p g N, there is C > 0 such that if u g]0, 1], T g [1, ¿1, y0 E W, Z0 € NY/xHvoi 
\Zo\ <\Zo\ 

(11.52) 1 
rp2 dim Ny/x 

*TVS [iVHF„(L^°/T)(0,0)] - p T ( y 0 , ^ ) < 

c 
(i + IZoD* 

which, by (11.51), is equivalent to (11.31), i.e. establishes Theorem 11.5. 

11.7 Rescaling of the variable Z and of the Clifford variables 

For u > 0, let Fu be the linear map 

(11.53) h g ttyo Fw/i g Hyo ; Fttfe(Z) = h ( ^ ) . 

(u(l + T)r 
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188 The analysis of the two parameter semi-group exp(—AlT) ... 

For u > 0, T > 0, set 

(11.54) 
L2,Zo Tp—lrl,Zojp 

- [ Td(TX,gTX)cb.'{ZdTd(T 

Then, we see that 

(11.55) Ljf?, M 2 ^ G (7r^A(r^5) g c(TRX) ® End(^))y o . 

Let e i , . . . , e<it' be an orthonormal oriented basis of ( T R y ) y o , let e2£'+i,..., e î 
be an orthonormal oriented basis of Ny/x,n, y 0 ' Let e 1 , . . . , e 2 £ and e 2 £ + 1 , . . . , e 2 £ 

denote the corresponding dual basis of (T^Y) y o and Np^ x R y Q . Then e i , . . . , e<n and 
e 1 , . . . , e 2 £ are orthonormal oriented basis of (TnX) y o and (T^X) y o . 
Definition 11.14- For u > 0, T > 0, set 

(11.56) 
cUir{ej) 

V2ejA 
u 

u 
V2 V2 l < j < 2£', 

Cu,T(ej) 
V2ejA 

uT 
V2ejA 
let let 2f + l < j <2£. 

Definition 11.15. For u > 0, T > 0, let £ ^ m u , t ° € (tt^A(T^5) 
§ End(A(T£.X)®£))s/o ®°P be the operators obtained from L^f?, z ° by replacing 
the Clifford variables c(e^) by the operators cu^r(ej) considered in Definition 11.14. 

Let FU(L^^?)(Z, Z') be the smooth kernel associated to the operator Fu(L^'f,°), 
calculated with respect to k f ( Z 0 ) d

( ^ d ^ . Then FM(L^fP)(0,0) can be expanded in 
the form 

(11.57) F u,T(L 3

u[
z°)(0,0) = 

l<ii<i2...<ip<2£ 
l<jl<J2---<jq<2e 

e h A.- .J* A i e . . . . i e j q 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,g 

Set 

(11.58) „ _ -i max ^ ^ 
^ , t (^ ' , t ° ) (0 , 0)J = Qi,...,2£ € (»r&,A(2£S) ® End(A(T£X) ® 0)y 0 , 

so that (11.58) is the coefficient of e 1 A . . . Ae 2 t in (11.57). 

Proposition 11.16 — The following identity holds, 

(11.59) 
1 

rp2 dim Ny/x 
Trs NnF u (Al T )((yo, Z 0), (y0, Z0)) 

( - i ) d i m X T r s 

XTr Fu,t(LÌ' zt°№0) 
i max 
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Proof. Equation (11.59) follows from (11.51) and from [19, Proposition 11.2]. • 

Let N N y / x be the number operator of A(Np / x R ) . Then N N y / x acts naturally on 
A(T^X) l w . 

Put 

è i = re0

i{Zo) , l < i < 2 t . 

Then ¿ 1 , . . . , ¿21 is an orthonormal basis of (TrX)^ 0 . 
By using Proposition 11.8 and Theorem 11.11, can be extended by continuity 

at u = 0. More precisely we have the formula 

(11.60) r3,Z0 _ r r - N N Y / x 

1 
' 2 

2/ 

1 
= re0

i{Zo) 
= re0

i{Zo) 
( V T X Xsv)Zo(s

v)Zoz,èis
v)Zo 

(e* + ( f r N Y / x , è 3 ) D i e * + + 00(|Z|)) dkd+dr d é j)ff>) 

+ i ( { s v p T X s v + v T X s v ) Z o ( z , è i ) f ? > v , f» ' v \ r f 

+ \ { V T X S v ) Z o (Z, ddd „ f S ' V ) (e j + ( C N y / x , e<) f P ) r 

- [ Td(TX,gTX)cb.'{Z,gt)- f (TX)cb.'{Z,gtdimYTd 

- [ Td(TX,gTX)cb.'{ZimYcb.'{ZiT 

+ T 
l<j<2i' 

e j A V|.V(Z 0) + 

gt)-gt) gt) 

gt)- f (d,gt)- f (d 

+ r r V ^ , w F ( Z 0 ) + T 2 V 2 (Z 0 ) . 
Jot 

By the fundamental identity of [4, Theorem 4.14], [7, Theortoie 2.3], if A, A' e (T RX), 
if B, B' € TnV, then 

(11.61) ( C V T X ) 2 ( A , A ' ) P T X B , P T X B ' ) + ( (S V P T X S V ) (A,A ' )B ,B ' ) 
+ ( (V T X S v ) (A i A

f )B ,B f ) = {(V T X) 2{B,B')A,A') 

Prom (11.60), (11.61), we deduce that 

(11.62) r3,z 0 _ rp-N^/x _ 1 
2 

21 

1 
((^TX)zo(è 

((^TX)zo(è 
((^TX)zo(èJ,èr)Z,èzèr)Z,o(èJi) 

W + ( dddd ssd dd è,) /«)(</ + ( f s ' N Y / x • / ' ) 

+ i ( v ^ ) I 0 ( / ^ , / f v ) z , e i ) r / ^ 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gf (mYTd(TYTY)- di 
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- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTX,gTX)cb.'{ 

+ e*ff'B!£0iet,f»>w)}T»HY'*+T £ e*AVfv(Zb) 
l<j<2£' 

2£'+l<j<2£ 
A Vf, V(Z0) + T/<*V* F(Z0) + T2F2(Z0). 

Recall that we have the C°° splitting 

(11.63) TV = TH'WV © TX. 

The splitting (11.63) induces the identification 

(11.64) A(T£V) ^ ir*vA(T^S) ® A(TAA-). 

Using the identification (11.64), we can rewrite I/q't0 m *ne f°rm 

(11.65) r3,Z0 _ rp-N^Y/x i j 
9/ 

1 
> ) + < 

è <(VTX)|0^ *> ) + < + TV«V(Zo) + r V 2 ( Z 0 ) } r ^ ^ / x 

11.8 The matrix structure of I ,JJo/ t 

By Proposition 11.8, Theorem 11.11 and (11.62), we get an asymptotic expression 
for M °̂rpT as u —> 0 very similar to [19, eq. (11.59)], which we do not rewrite, because 
of its sheer length. Note that in [19], the e» were noted ê . 

Observe that 

(11.66) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,g 

uTc(TZ°èi)VÎZo,V + TV2)(Z0 + Z) + T2(l - p2(Z))pC0 

If C G (7t^A(r^)êc(rRX)®End(0)Zn+z, let + 00(|Z|)) x G d ( t t ^ A ^ ) 

®End(A(T]^J5f) ® £)) be the operator obtained from C by the trivialization in-

dicated in Section 11.4, and by making the Clifford rescaling indicated in Definition 
11.15. By (11.66), we get 

(11.67) LuZT/T = M3uf/T + p2{uZ)\Trv\H,wV + 

uTc(T2o/Té.)v€ddd dd ddy + T2V2){Zq/t + u Z ) | + T2(1 _ p2(uZ))p4+ . 

Astérisque 



The MATRIX STRUCTURE of L?'~ o / t 

11,1 
191 

Clearly 

(11.68) - [ Td(TX,gTX)cb.'{Z,gt)-
(3) 

Z0=0 
Z=0 

- [ Td(TX,gTX)cb.'{Z, 

By Theorem 9.8, 

(11.69) f (dimYTd(TY,g (dimY 

and so 

(11.701 P r V * W V Z 0 

T 
-uZ dimYTd(TY,g ( '\Zo\ 

T 
•\uZ\ 

Now we expand first ^ ( r e f o / r ( Z 0 / T + uZ)) as u -> 0 by first using the 

trivialization associated to the connection 2y7r^A(T^s)®A(r*(01>x) B y {1135), 

(11.71) c 
V2 

( t Z o / T è H Z Q / T + uZ) c 
V2 

(êi)z0/T + 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(TX,gTX)cb.'{Z,gt)-

The corresponding expansion of filJ!—6 (^°/ r+" z)) as u q with respect to the 
trivialization induced by 2 y r £ ' A ( T R s )® A ( T * < 0 ' 1 ) x ) ' u

 i g s i m p i y obtained from (11.71) by 
replacing f a by So for 1 < i < 2f, we get for u e]0,1], T € [1,1/«], 

(11.7s c(rZ0/Téi) 
c ( r Z 0 /T é i ) 

c(rZ0/Téi) 
Zo 
T 

uZ 
3 

uZ 
T(e i A u 

2 
T(ei A + 0(uT|Z|), 

and for 21' + 1 < i < 2£, 

(11.73) uT 
c ( T z 0 / T è i ) 

V2 
,Z 0 

T 
¥uZ) 

3 

u,T 
e l A 

u 2 T 2 

2 
•i e i + €(uT\Z\). 

Prom (11.72), (11.73), we obtain for 1 < i < 2£', u e]0,1], 

(11.74) uT 
c( TZo/T éi : 

V2 
Yiei)vlZo/T.V Zo 

T 
uZ 

(3) 

u.T 

T{é A - Y i e i ) v l Z o / T . V 1 ^ + U Z \ + G(uT |Z|), 

and for 21' + 1 < i < 2£, 

(11.75) uT 
c ( T Zo/T é i ) 

v/2 
v Tz0/Tei 

Z a 

T 
uZ 

(3) 

Tz0/Tei 

(e* A -
u 2 r 2 

2 
+ 0(t*r|Z|). Zo 

E 
uZ + 0(t*r|Z|). 
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Since V\w — 0, by proceeding as in (9.21), for 1 < i < 2£', we get 

(11.76) Rb,c,T > 2,+cxlkdx+ mpd+dr 

and so for 1 < i < 2£', 

(11.77) Rb,c,T > 2, Z0 
T 

ruZ Pç =Ü \Zo 
T 

+ \uZ\ 

11.9 A family of Sobolev spaces with weights 

Clearly 

(11.78) MT¿X)yo = A(T¿Y)yo ® A(Nl/x^)yo . 

For 0 < p < 2£', 0<q<2£, set 

A<™>(2£X) = A*>(T¿Y)YO ® A*(N¿/X<R)YO. 

The various A^(T£X)yo are mutually orthogonal in A(T^X)yo. 

Let Iyo (resp. I^0) be the set of smooth (resp. square integrable) sections of 

( 7 r ^ A ( r ¿ S ) § A (T¿X) § €)yo. For p < d i m T R y , q < dim NY/X^r < dim TRS, 

let I(p,g,r),2/0 (resp. I(pgr) yo) be the set of smooth (resp. square integrable) sections 

of (*frAr(T£S) § A*ÍT$Y) ® A*(Np/XtR) ® Oyo over (TNX)YO. 

Let gT,s be a Hermitian metric on TS. Then all the previously considered vector 

bundles are equipped with a Hermitian metric. Pu t t1 — d i m T Y , n = dimNY/Xi 
s = dim T S . 

Definition 11.17. For u e ]0 , l ] , T e y0 e W, Z0 e NY/x^yo, \Z0\ < ^ , 

S e I(p,g,r)t/o' PUT 

(11.79) l5L,T,Z0,0 ~~ 
(TRX) i /o 

| s | 2 ( l + ( |Z | + |Z0|)p< 
sd+se 

2 ; 

2 ( 2 £ ' + 2 s - p — r ) 

i + 
\z\ 
T 

ruZs 

2 

2 ( 2 n - q ) 

dVTx(Z) . 

For n € R, let I£o, be the set of sections of (TT^A(T^S) ® A ( T £ X ) ® £)yo, 

(7r^A(T^,S') ® A(T£X) ® C±)y0I which lie in the fith Sobolev space. If s G I£0, we 

write s in the form 

(11.80) s = s + + s - , s±el±f. 
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Definition 11.18. l îu G]0,1], T € [1, £], y 0 € W , Z 0 € JV y / J r f R i I W , \Z0\ < s € 
set 

(11.81) lSlu,r,Z0,l - \S\u,T,Zo,0 + T lS+L,T,Zo,0 + 

T 2 \ p ( u Z ) V - ( ^ + uZ)s-
2£ 

i=l 
№eiS\u,t,zo,0 * 

11.10 Proof of Theorem 11.5 
The Sobolev norms (11.79), (11.81) are the obvious analogues of the corresponding 

norms in [19, Definitions 11.23 and 11.25]. At least formally, the problem treated 
here is the obvious analogue of the problem considered in [19], with extra Grassmann 
variables f aA. However, these Grassmann variables come with no variable which, 
in some sense, makes them easier to deal with. 

Also the estimates in (11.68)-(11.77) are the obvious analogue of the corresponding 
estimates in [19, Section 11 j)]. In particular the estimates (11.70), (11.77) should be 
compared with [19, eq. (11.66)]. 

One can then proceed formally as in [19, Section 11] and obtain (11.52). As in [19], 
the Sobolev norms (11.79), (11.81) play a key role in proving the required estimates. 
Of course here we deal with the kernel of F u(L^^?)(x 1x f) 1 while in [19, Section 11], 
we considered directly the kernel exp(—L '̂̂ ?). However observe that by (11.10), by 
proceeding as in [19, eq. (13.23)], for any m G N, 

(11.82) sup \u\ \Fu(a) - exp(-ûT) < cexp(-^-). 
|Im(a)[<c 

It is then very easy to incorporate the estimates (11.82) in the arguments of [19] to 
obtain (11.52). • 

11.11 Proof of Theorem 6.17 

The proof of (6.81) is essentially similar to the proof of Proposition 11.1. 
To establish (6.82) when Ji u )t = #u,t, we use the Lichnerowiz formula for 

(11.83) A U,VT + 2 d a 7 ) 7 , A ' k v T + 2 ( m ^ A U v T ~ d a d â - i u N Ï ) 

given in [14, Theorem 2.15], and also in (12.39), together with the arguments given 
above. Details are left to the reader. 

The cas where h U i r = n ' u T or h u,x = n'^x *s obtained from the above by making 
da or dâ equal to 0. 
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12. The analysis of the kernel of Fu(A?u T^ u) for 
T > 0 as u -> 0 

The purpose of this Chapter is to prove Theorems 6.8 and the first half of 
Theorem 6.18. This Chapter is the obvious extension of [19, Section 12], where the 
case where S is a point was treated. 

As in [19], to prove Theorem 6.8, we exploit results already established in 
Chapter 11, and also we establish certain key algebraic identities, which extend 
corresponding identities of [19, Section 12]. That apparently complicate computations 
simplify dramatically is related in particular to the fact that we made the "right" 
construction of T H W in Chapter 7, and also that we chose the adequate trivialization 
of the vector bundles. Once this is done, we are able to adapt the analytic framework 
of [19, Section 12] to prove Theorem 6.8. The proof of the first half of Theorem 6.18 
involves the control of the speed of convergence of the considered quantities as u —• 0, 
for T e]0,1]. This problem was not considered explicitly in [19]. This is why we have 
to give a more precise form to the estimates of [19, Section 12]. 

This Chapter is organized as follows. In Section 12.1, we show that the proof of 
Theorem 6.8 is local on X. In Section 12.2, we construct a coordinate system near yo € 
W, and also a trivialization of A(T£S) §> A i T ^ ^ X ) near y 0. In Section 12.3, 
we replace the fibre X by (TftX)y o. In Section 12.4, we rescale the coordinate Z in 
(TuX)y0 and also the Clifford variables. In Section 12.5, we calculate the asymptotics 
of the operator I^'^y^, which was obtained from A?u T ^ u by such a rescaling. As in 
[19, Section 12 f)], the building blocks of the operator SS|,2 of Chapter 5, which 
is associated to the exact sequence 0 —• TY —• TX —• Ny/x 0? appear in 
this process. In Section 12.6, we briefly indicate how to establish Theorem 6.8 along 
the lines of [19, Section 12]. Finally, in Section 12.7, we establish the first half of 
Theorem 6.18. 

In this Chapter, we use the assumptions and notation of Chapters 3-5, 6-9 and 11. 
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196 The analysis of the kernel of Fu(A* t / u ) for T > 0 as u —• 0 

12.1 Localization of the problem 

Clearly 

(12.1) Tr s i V H e x p ( - ^ ) =Tr s N H F u { A l T / u ) + Trs JVHG„(i4^> T / t t) . 

By Theorem 11.3, there exist c > 0, C > 0 such that for u €]0,1], T > 0, 

(12.2) Tr s N H G u ( A l t T / u ) <cexp( 
- c 
« 2 

By (12.2), we see that to establish Theorem 6.8, we just need to show that as u —> 0, 

(12.3) $Tr s N u F u ( A l T ) — / *IV s [ iVHexp(-^ 2 ) ]ch(r ? ,^ ) . 

As in Chapter 11, using finite propagation speed, the proof of Theorem 6.8 has been 
reduced to a local problem on X. 

Clearly 

(12.4) Tr s N HF U(A 2

U T / u ) =Tr s N H F u ( A 2

U t T / u ) . 

Let FU(A^ T / U )(x, x')(x, x' € X) be the smooth kernel associated to F^A^ T ^ u ) with 

respect to ffijfc'lt • Then 

(12.5) Tr s U V H F u « r / J 1 = / Tr 8 f jV H F u (^ ) T / t , )(x,a;) 
dvx(x) 

(27r)dimX 

12.2 A local coordinate system near y 0 € W and a trivialization of 
A(T*(o,Dx) ®£ 

Take yo € W. If Z G ( T r X ) ^ , t € R - ^ i t = exp* (tZ) still denotes the geodesic 
in X, such that x 0 = yo, | ( = 0 = ^- If \Z\ < «, we identify Z G ( T r X ) X o with 
exp* 0 (Z)eX. 

Take u > 0. If |Z| < a, we identify (tt^A(T r5) § A ^ ^ 0 ' 1 ) ^ ) ) ^ , £z to 
(nyVA(T^S)®A(T*^°'1^X))yo, £ y o by parallel transport with respect to the connection 
2VW*(A(T^S)®A(r-(01)x),U) along the curve t € [0, i] ^ *Z. 

If € ( T r X ) ^ tJ7(Z) € (TrX)z denotes the parallel transport of U along the 
curve t € [0,1] —• tZ with respect to V T X . 

12.3 Replacing the fibre X by ( T R X ) y o 

Let A T X be the ordinary flat Laplacian on (TnX) y o . 
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Definition 12.1. For u > 0, T > 0, yo &Y, let L ^ / u be the operator acting on H V Q 

(12.6) 
- [ Td(TX,gTX)cb.'{ZYTd(TY,gTY) 

u 2 

2 
p2(Z)AlT 

rp2 
U2 

P̂ vo + p 2 ( Z ) A l T / u , 

m1,v0 = _ u 2 ( 1 _ p 2 ( z ) ) 

cb.'{Z 

2 
P 2 ( Z ) B y . Z ) B y 

With respect to the notation in (11.50), our ¿ 3 % ' ^ u V o a r e exactly the operators 
ri,o ^1,0 

Clearly 

(12.7) rl,î/o = M}'%?. + P2(Z) ( —/" V^w.iv V 

+ T ^ V i ^ + 7-5-V"2) + sdssc - p 2 (Z))^v 0 . 

Let F u {L]^ / u ){Z,Z') {Z,Z' € ( r R X ) y o ) be the smooth kernel associated to 

F"( L ujr /J calculated with respect to gfflffl. 

12.4 Rescaling of the variable Z and of the horizontal Clifford variables 

For u > 0, T > 0, set 

(12.8) 
r 2,2/o zt»— l r l,2/o rp 

M 2 , î / 0 = F~ l M}. , y o F u . 

As in (11.55), 

(12.9) Lt'%,„M2'y° e (tt^A(T£S) § c ( r R X) § End^) y o ® Op. 

Let ei,...,e2^' be an orthonormal oriented basis of (TrK)^ , let e2i'+i,,e2e be an 
orthonormal oriented basis of NY/x,n,yo Let e 1 , . . . , e 2 £ , and e 2 £ + 1 , . . . , e 2 £ be the 
corresponding dual basis of (T^Y) y o and ( N p ^ X I l ) y o . 
Definition 12.2. Let K y o , K * be the sets of smooth sections of (7t^A(TrS) 
®A(T£Y)®A(N*Y/x)®Oyo, (^A(T^5)§A(T^F)gA(iV^ x)§e ±)2/o over (T n X) y o . 

Then K y o = K + 0 K - . 
Definition 12.3. For u > 0, set 

(12.10) 
cYe;) = V2— A =t„, , 1< i < 2r 

cfe*) = ciei) , 2r + 1< i < 2£. 

Société Mathématique de France 



198 The analysis of the kernel of F u ( A l T / u ) for T > 0 as u —• 0 

For u > 0, T > 0, let Lf;K?/M, M033s € End(K„0) be the operators obtained from 
f2,yo M^ y° by replacing the variables c(e*) by cu{ei) for 1 < i < 2£\ while leaving 
unchanged the operators c(ej) (2£r + 1 < j < 2£). Then 

L*$/u>M*9V0 € ( ^ A ( T R 5 ) ® End(A(TRF)) <§ c(JVV/x,r) ® End(£))y o ® Op. 

Let F t t (L^ / t t ) (Z ,Z ' ) (Z,Z ; € (T R X) y o ) be the smooth kernel associated to 

F u {L^ y ° / u ), which is calculated with respect to u(L^°/u)(Z,. Then F u (L^° / u ) (Z , Z) can 
be expanded in the form 

(12.11) 

Fu(L 3™ / u)(Z, Z ) = ¿ 2 e*1 A .. . A e i p A i e j i . . . i e j q ® < f c £ ( Z , Z) , 
l<»i<...<ip<2€' 
l<Ji<...<i«<2*' 

q£; ; ;J(z ,z) e (tt^A(T£S) §End(A(iV^ / x) § o ) y o . 

Set 
r „ •] max 

(12.12) [F U (L S ^ / U )(Z,Z)\ = Q i . . M Z , Z ) e 

(tt^A(2^5) § End(A(N Y / x ) § fl)^ • 

Proposition 12.4 — For any u > 0, T > 0, yQ G W, Z 0 € iVy/x,r,y o, l-̂ ol < ^, the 
following identity holds 

(12.13) u 2 d i m N ^ Trs [ iV H F u (22 ! T / u )((y 0 , «Z 0), (w>,«Z0))] fc'(u^o) 

H ) d i m ^ s [JVH [ F u ( L ^ / J ( Z 0 , Z 0 ) ] m a X ] . 

Proof. Since for |Z| < 2a, p(Z) = 1, using finite propagation speed, we see that if 
Z 0 € -Wy/x,r,y05 |Zo| < a, then 

(12.14) F u ( A l T / u ) ( Z 0 , Zo)fc'(Zo) = ^ ( ^ J ( Z 0 , Z 0 ) . 

Identity (12.13) follows from (12.14) and [19, Proposition 11.2]. • 

12.5 The asymptotics of the operator L 3

u ^^ u as u —>0 

Definition 12.5. Set 

(12.15) M0

3^° = - i (V e i + \ (i*{VT XY y oZ, e t ) ) 2 + r (V«'2 + ±Tr[V™'2]). 

Then 

(12.16) M^' y o e (A(T%W) § End(0)»o ® Op. 
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The splitting TW = THW 0 TY induces an identification 

(12.17) A(1%W) * <K*WA(T£S) ® A(T£Y). 

Prom (12.16), (12.17), we find that 

(12.18) M^yo € (TT^A(T£S) § A(TiY) ® c(NY/x,n) ® End(0)yo ® Op. 

Of course the contribution of C(NY/X,R) to Affj 2/0 *s trivial-

Then we have the obvious extension of [19, Theorem 12.10]. 

Theorem 12.6 — As u —• 0, 

(12.19) '(2e,g*) + cX(e) - DY) 

Proof. We proceed as in the proof of (11.60)-(11.65). The main difference is that 
because the Clifford variables c(e*) (2£'-i-l < i < 2£) are not rescaled, they ultimately 
disappear in the limit. As in (11.62), to calculate the limit MQ'VO explicitly, we still 
use the identity (11.61). The proof of our Theorem is completed. • 

In what follows, we will calculate the expansion as u —• 0 of the remaining terms 
in T3>yo 

If C is a smooth section of 7TyA(T^S) ® C(TRX) ® End(£), if x G Xnwyo is close 
to i/o, we denote by C*(x) the element of (TT^A(T^5) § End(A(T^F)) § c(NY/x,n) 
® End(£))yo which is obtained by using the trivialization of 7TyA(T^S) ® C(TRX) ® £ 
associated to 2Y7r̂ A(T]̂ S')êA(T*(0'1)x),u and as jn Section 12.2, and by applying 
the transformation on the elements of c(TnX)yo of Definition 12.3. In the sequel, we 
still use the identification (12.17). 

Let S G End(A(ÎV*) ® A(N*)) be given by 

(12.20) S = / - I 
2 

21 

21'+ 1 
c(ei)c(ei). 

Then S extends to an operator acting on A(Tj^Y) ® A(NY/x) ® M^y/x) ® *̂ ^lso 
by (7.17), f = AiV£/x ® 77. Therefore 5 acts on A(T£y) ® A(JV^/X) ® 

We use the notation of Section 5.1. In particular c(APTYZ), c(APTYZ) € 
A(T£W) ® End(A(iVy/x) ® A(N$/X)) are defined as in Definition 5.5. 

Now we extend [19, Theorem 12.12]. 
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Theorem 12.7 — As u —• 0, 

(12.21) 

1 
u' 

d+dr •fHtWV(uZ) + 
Tot 

21 

i 

c(rei), 
V2 

7Ìe.V(uZ) 

drd 

vrd 

1 

u 
W + Г Л V Í V ^ w F -

dvr 
f"-NY'X +TV US-V ,PTV Z) 

21 

V l(yo) + 
2«' 

i=l 
е*Л VÍV* .V(t/ö) + 

c(et), 1^(yo) + c (u( l + |^|2)) 
21'+1 

1 
«2 

(F+(uZ))2 = 1 
u2 y+)a(lto) + 

1 
u2 

C(|tiZ|), 

1 
u2 

F-(«Z))2 = (v%V-(y0)+C(u\Z\2))2 

Moreover the following identities hold 

(12.22) 

i*V*VPt = 0 , 

PC"( /aA(v |V« V - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYT) 

2̂ ' 

1=1 
e*AV|V«e4V)(jto)P«~ 

y0)Pr = 
y0)Pr = 

pt-c(APTYZ)pt~ , 

c(e»), 2« 

i=2«'+l 

c(e»), 
V2 

Vf.V (y0)Pr = P«~SÎ,0P«~, 

(vi^-)20/o) 
y0)Pr = P«~SÎ,0P«~, 

2 
i*(V«")2 = i* (i*~(V*)2i*~ -P«~V*VP« [(V+)2]_1P«+V^P« ) . 

Proof. Clearly 

(12.23) 1 
x 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(T 

/Qviv« l/(y0) + 0(«|^|2). 

Also, by using (11.71) at Zq = 0, we get, in the trivialization induced by 
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- [ Td(TX,gTX)cb.'{Z,gt)- f (dimY 

(12.24) cirei). 
V2 

Vi e iV(uZ) = c(ei) 

^2 
- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gT)- f 

/ a + 0i(|«Z|2))(ViV(îto) 

+ «Vlvf e i y(y 0 ) + Co(|«Z|2)). 

To calculate the corresponding - [ Td(TX,gTX)cbTd(TY,gTY) we replace in the right-hand 

side of (12.24) f a by Ç and c(e*) by Cu(e*). We get 

(12.25) 

c(Tei) 
V2 

bTd(TY,gT 
3 

u 

i 
u l<i<2t' 

bTd(TY,gT U2 

2 
bTd(TY,gbTd(TY,gTT 

2£'+l<»<2« 

cfev) 
V2 

ViF(yo) 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ T 

viv(ito) + 
l<i<2<' 

bTd(TY,gT u 2 

2 
^ ) V l V « e i y ( y 0 ) + 0(n |Z| 2 ) . 

By (1.5), 

bTd(TY,gTbTd(TY,gT ( S v { Z ) f ^ v , e i ) 

•<TV(y 0) + 0(n|Z| 
(12.26) 

Using (7.27) and (12.26), we get 

(12.27) ( S l ( Z ) e u ^ V ) 
\jTX f H,N Y / x  v Z Joi.yo t^t •TV(y0)<TV(y0) + 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [,gTX)cb.' Td(TX,gTX)cb.'{Z) 

By (12.25), (12.27), we obtain 

(12.28) 
V$e^(«Z) 

V2 
V$ e ^(«Z) 

3 

u 

1 

xc l<i<2£' 
c*AVtV(jto) 

c*AVtV(jto) 
c*AVtV(jto) 

- [ Td(TX,gTX)cb.'{Z,gt)-

Ki<2£' 
e i AV|V$ e j y(y 0 ) 

2r+l<i<2€ 

c(e,-1 

i.F(y 
Vi .F(yo)+CKl + |Z| 2)). 
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Finally 

(12.29) i*V*V(yo) 
l<i<2£' 

e* Л Vf, У («о) + Г Ve я.иг У (ito). 

By (12.23), (12.28), (12.29), we obtain the first identity in (12.21). The second and 
third identities in (12.21) are trivial and were already obtained in [19, Theorem 12.12] 
by Taylor expansion. 

By proceeding as in (9.21), we get the first identity in (12.22). By Theorem 9.8, 
P*~ V{h.wVP*~ = 0 on W, and so 

(12.30) PrV%TYzVtH,wV(y0)pt- = 0 . 

Also by Theorem 9.8, 

(12.31) ^ ~ V * V« wV(yQ)Pt- = 0 . 

From (12.30), (12.31), we get 

(12.32) ^ ~ V l V * 1/(y0U*~ = 0 . 

Using Theorem 1.10 and Proposition 7.8, we find that 

(12.33) (TX,gTX) 
x7tx f 

- [ Tdcb.'{Z,gt)- f (dimYTd(T) 

x7tx f 

V2 
( p * ™ {vTPxYzfS'NY/x + t v u S ' v , p t y z ) ) 

= p«~ 
tvuS'V, 

л/2 
n A ( f ? ' w ) P T Y Z ) p t - . 

From (12.33), we obtain 

(12.34) dvr -fa A V* 
p*™ {vTPxYzfS'NY/x + tvuS'v, ptyz)) 

dd d+d 

= pt-
V2 

c(faA(f»'w)PTYZ)pt- . 

Also by [19, Theorem 12.12], 

(12.35) d+r1 
it' 

i=l 
e<AV|V«eiV(îto) = P€" 

d+d1r 

V2 -c 
2£f 

i=l 
é AA(ei)PTYZ 

From (12.34), (12.35), we get the second identity in (12.22). The last three identities 
in (12.22) were already proved in [19, Theorem 12.12]. The proof of our Theorem is 
completed. • 
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12.6 Proof of Theorem 6.8 

Recall that we reduced the proof of Theorem 6.8 to the proof of (12.3). 

We claim that using Theorems 12.6 and 12.7, the proof of (12.3) is essentially 
identical to the proof of [19, Theorem 6.7] given in [19, Section 12]. In effect, by 
using the arguments of Chapter 11, the obvious analogue of [19, Theorem 12.14] 
holds. Namely, we obtain uniform estimates on the kernel Fu(L^^^u)(Z, Zf) and its 
derivatives. Also using Theorem 12.6 and Theorem 12.7, the same arguments as in 
[19] show that the analogue of [19, Theorem 12.16] holds. Namely put 

(12.36) U = {a € C, Re(a) < 6Im2(a) - A} . 

Then the analogue of [19, Theorem 12.16] asserts that if A is large enough, and if S 
is small enough, for T > 0, yo 6 W, a € [/, as u —• 0, 

(12.37) 

(a - L ^ J ' 1 -> P*vo (a - »*#° - (V7*)^)"1 in the sense of distributions. 

Note that the operator SB^0 appears in (12.37) because of Theorem 12.6 and of the 
algebraic identities of Theorem 12.7. 

The proof of (12.3) then continues as in [19, Section 12 i)]. • 

12.7 Proof of the first half of Theorem 6.18 

To establish the first half of Theorem 6.18, we will first show how to prove that if 
hUyr is any of the functions 9Ujt, X*,t> ^u,T' X*,t> ̂ u,T' sù ̂ or ^ > »̂ 

(12.38) lim hUjT/u = hT . 

Then we will explain how to obtain the estimate (6.83). 

Clearly, the most complex expression is 0u,t> the others expressions being obtained 
from 6u,t by making da or da = 0, so in our proof of (12.38), we just consider the 
case where hu^r — 0U,T-

If A E TRX, let A ^ ° \ A ^ be the component of A in TX,TX. By [14, Theorem 
2.15] (and keeping in mind that -§^N^ = ^v)> we have the following extension of 
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Theorem 7.19, 

(12.39) 

A l , t + d a u f i - a u t -h d â u — a f

u t - dadâN$ = 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gT 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY 

c(eP l ) )da cU) 0 ' 1 ') da\* u 2 K 
y/2 ti y/2 u J 8 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)imY 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,g 

+ T f a V{ H , v V + T 2 V 2 - d a d n ^ ^ - . 

Letc^ 1- 0)), c(S°<V) e T^X§End(A(r*(°'1)X)begivenbyX e T n X -» cpf* 1' 0)), 
c^C- 1 )) e End(A(T*(°-1)X). 

Now we define the fibrewise connection on iv^A(T&S) <g> A(R2*) <§> A(r*(°'1)X), 

(12.40) i v , r * ' a ( t r s ) ® a ( r 2 * ) ® a ( t * ( g ' l ) x ) = 

lyn-î,A(T^S)§A(T*<0'1»X) lyn-î,A(T^S)§A 

V2 
da 

lyn-î,A(T^ 
V2 

da. 

By comparing (7.47) and (12.39), it is clear that in the analysis of d U j T / u , 
i v*' va(T£S)®a(t-^x) ig replaced by iv^ A< T**> S A< R a*) S A< T* < 0 , l >-*). Let u>i, . . . ,w e 

be an orthonormal basis of TX, let w 1 , . . . , we be the dual basis of T*X. In particular 

(12.41) 
c(M^)=w i c(w i ) ,) 
c(S°'1)) = w ic(w i). 

A trivial computation shows that 

(12.42) lyTr^AOr^SOSACR^gAtT*'0'1'*)^ _ 

lV«'vA(TZS)êA(T'^X),2 + e i ( w k r d a ( S ( e i ) w k , f">V\ + 

w kf adâ(S( e iWk, f S y ) ) + wt tdada. 

By (2.8) and (12.42), we obtain 

(12.43) lT7it̂ A(T£S)®A(r.2')§>A(T'<-°-1'>X),2 _ 

1™-J.A(T£S)®A(T*(0,1)X),2 

+ w ' w T d a (S(wi)wk, f ? ' v ) + w^f a dS(S(Wi)w k , f " ' v ) + w'vfdadâ. 
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By (1.5) and by Theorem 2.3, which asserts that Tv is of complex type (1,1), we 
obtain from (12.43), 

(12.44) iv";'a(trs,®a(r2',®a(r(0'1)x)'2 = 

lvn-vA(T^S)®A(T-^X),2 + wi A g ^ g . 

We define 2V^a(t£S)®a(r2*)®a(t*<°'1>x) from iv7rî,a(t£S)®A(r2*)®A(r-^x) ag in 

(11.33). By (7.40), 

(12.45) 2v7r^a(t£s)®a(r2*)®A(T*<0'L>A-) _ 2v^a(t^s)®a(t*<0'1»x) 

+ 4= W-(1,0)) +X*,t> ̂ u,T' xk X*,t> ̂ u,T'fa)da 

+ - k * ( 0 , 1 ) ) + V 2 (fS'NY/\ •(0'l)) m 

By (12.44), 

(12.46) 2V7r̂ A(T^S)®A(r2-)§A(T-(°'l'X),2 = 

2V^A(7£S)®A(T-<°.1>X),2 + ^ d a d â . 

To establish (12.38), we proceed exactly as in Sections 12.1-12.6, by replacing A(TR5) 
by A(TR5) <§> A(R2) and 2v^a(t£S)®A(r-<°.1>x) by 2V^a(t^5)®A(r2-)®a(t*^1'x)-

In particular, trivializations are now done with respect to the connection 
2y5r^a(T^5)®A(r2*)®A(T*<°'1'X),u 

In view of (12.46), the operator M$'Vo in (12.15) should now be 

(12.47) A#*° = - \ (Vei + \ ((i*{VTX)2yo - V=ÏJTXdadâ)Z, a))2 

+ i*(V«>2 + ±Tr[V™'2]) - dadâ 
dimX 

2 

Also using (11.71) at Zq = 0 and (12.46), we see that the analogue of (11.71) at 
Zq = 0 is now 

(12.48) -Wre,) = -^(e,) + u( < ^ 0 ( Z ) e i , / ^ ) 

- ( ^ V U m ^ i ) ) r + da{z,ei)+dâ(z,ei) +01(|uZ|2). 

Using (12.48) and proceeding as in (12.23)-(12.35), we find that the obvious 
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206 The ANALYSIS OF THE KERNEL OF FU(A^ t/u) for T > 0 as u —• 0 

extension of the first identity in (12.21) is 

(12.49) 7 . r * \ ' " v + CJZw-vUy{uZ) = V v ^ ( y o ) + 

/ - M ^ ^ V -V*X*, t> ̂ u,T' X*,t> ̂ u,T' X*,t> ̂ u,T' V (yo) 

+ £ c* A V|vieiF(y0) + daVf F(y0) + daVfV%0) + 0(«(1 + \Z\2)). 

By(12.49), the obvious extension of the second identity in (12.22) is 

(12.50) Pi (faA V|V$e.F + daSt\V 
J%V)(y0)P "•ny/x+tvuS-v,ptyz) 

it' 

i=\ 
é A V|V$e.F + daSt\V + daSJ%V)(y0)Pç 

= P* ' ( ^ c { A P ^ Z ) + d a S = m + d s V = i ^ ) ^ -

By (12.47), (12.49), (12.50) and by proceeding as in Sections 12.1-12.6, we find that 
given T > 0, as u —• 0 

(12.51) 6U,T/u —• @T • 

To establish (6.83), for greater clarity of the references, we will instead show that 
there exist C > 0, a > 0, /3 > 0 such that for u e]0,1], T G [u, 1], 

(12.52) $TYS ATHexp(-<T/J - / #TVS [iVHexp(-S6|2)] chfa,^) < qkqkqkq . 

Given the considerations we made before (12.51), the proof of (6.83) for hu,t = 0u,t 
will just be the obvious analogue of our proof of (12.52). 

Using (12.2), (12.4), it is clear that to prove (12.52), we only need to show that 
for ii€]0, l ] ,Te K 1], 

(12.53) <&Trs \NHFu(AlT/u) - *Trs[Nnexp(-®2T2)]ch(r,,g*>) < —J-

By Proposition 9.3, 

(12.54) Trs [NHFu(A2UtT/u)\ =^1/V?Tr. [ ^ h ^ T A ^ ^ j . 
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Also one verifies easily that 

(12.55) $Tr s [ iV H exp( -^ 2 ) l s ss s 9V) = 

JVHexp(-T»?)] $ *Tr [JVHexp(-T»?)] $Tr [exp(-TV^ 2)] . 

By (12.54), (12.55), we see that (12.53) is equivalent to 

(12.56) ^ 1 / V T ( ^ T r s N u F u ( T Ä l / V T V T / u ) \ 

/ $Tr s [ iVHexp(-r^f)]$Tr[exp(-rV r 7 ' 2 )]) Cu a 

Tß 
Observe that for u e]0,1],T e]u, 1], then ^ - e]0,1]. Then to prove (12.56), we only 
need to show that there exist C > 0, a > 0, (3 > 0 such that for u g]0,1], T g]0, 1], 

(12.57) $Tr s N u F u ( T A 2

u l / u ) - / $Tr s [i\TH exp(-TS&2)] 

$Tr [expf-TV7 7'2)! pf-TV 
pf-TV 

To establish (12.57), we need to refer in some detail to the estimates [19, Section 12]. 
To make our references to [19] easier, we will work exactly in the context of [19], i.e. 
when S is a point. The arguments given before make the extension to the general 
case quite easy. 

Let ^ ( T L ^ J , (Z, Z') (Z, Z' € (T n X) y o ) be the smooth kernel of F u ( T L 3 ^ / u ) 
with respect to ^ k ) ^ h • By using the arguments of [19, proof of Theorem 12.14], 
one finds easily that for any m g N, there exist C > 0, p € N such that for 
u e ] 0 j 1],T€]0,1], 

(12.58) sup z0eY/x,rNY/x,r,y0 

\Z\<e/0\<e/4u 

(1 + \ Z o \ r F u ( T L 3 ^ J ( Z 0 , Zo) < — , 

and that given M > 0, ra' e N, there exists C" > 0, n' e N that for u g]0,1], T g]0, 1], 

(12.59) sud 
Z,Z'e(TnX)Z'e(Tyo 

\P T Y Z\\P T Y Z'\<M 
\pN Yl*z\\pN YiXZ'\<-tpN 

\a\,\a'\<m'\a'\ 

Q\a\ + \<*'\ 
dZ a dZ' a ' a d 

Fu{TL^/uTL^){Z,Z') a 
pf-TV 

Put 

(12.60) 
- [ Td(TXb.'{Z,gt,gTX)cb.'{Z,gt)- f (dimYTd(TY,g 

- [ Td(TX,b.'{Z,gtgTX)cb.'{Z,gt)- f (dimYTd(TY,g 
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208 The ANALYSIS OF THE KERNEL OF Fu{A^ t/u) for T > 0 as u —• 0 

Theorem 12.8 — There exist C > 0 , n 6 N such that for u e]0,1], T e]0,1], yo € W, 

(12.61) 
pt+Fu(TL3S/u)Pt+ „ < ^ 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYT 

Proo/. By [19, eq. (12.79)], 

(12.62) S+L,l/«,0,0 — CU lSlw,l/«,0,l • 

By [19, eq. (12.71)], for u e]0,1], A € U, 

(12.63) \\Eu\\:\'i0<c(i + \x lu,l/u,0 
lu,l/u,0 

<C(1 + |A|)2. 

From (12.62), (12.63), we deduce that if s G 1° , 

(12.64) \\Eu\\:\'i0<c(i + \x 
u,l/u,0,0 

< Cu(l + |A|)2 |a|u,T/tt)o,o 

Put 

(12.65) Eu — A — Lu,i ~~ Lu ~ Lu a) ^Lus 

By [19, eq. (12.71), (12.84)] 

(12.66) \ \Eu \ \ : \ ' i 0<c( i + \x\f. 

By [19, eq. (12.85)] 

(12.67) J*" (A - Lf/f, )-1P«+ = S~1.LU,2(A - L,,,*)-1 • 

By proceeding as in [19, eq. (12.86)-(12.88)], we obtain 

(12.68) \\E-iLu,2(\ - L - > + | | u,l/u,0,0 < C(l + |A|)4« |S+|Uil/Ui0]0 • 

Recall that the contour T in C was denned in [19, eq. (11.115)]. Then by [19, Theorem 
11.30], 

(12.69) Fu{TL^/u) 1 
2m 

Fu(T\) 
\ T ̂ >Vo 

d\. 

Also by [19, Proposition 13.10], given c > 0, m e N, there is C > 0, such that for 
u e]o, l] 

(12.70) sup|a|m Fu(a) \<C. 
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Prom (12.64), (12.67), (12.68), (12.70), we get (12.61) easily. 
If s G Iyo has compact support, if k = 0,1, k' € N, put 

• 

(12.71) \S\u,T,0,(k,k') — l^aslu,t,0,i 
|a|<fc' 

Now we establish a refined version of [19, Theorem 12.16], closely related to [19, 
Theorem 11.35] and [19, Theorem 13.41]. 

Theorem 12.9 — There exists C > 0 such that if a e I~0 has compact support, for 
u €]0,1], A 6 r , 

(12.72) |(LUfi + LUl2(A - LuA)-lLuj - ®>\'yo - Vyf)a 

< C ( l + \\\ru\a\uA/uMlt4) 
u,l/u,0,-l 

2„ 

Proof. The proof of (12.72) will consist in following in detail the inequalities in [19, 
eq. (12.93)-(12.118)]. In particular the dependence of the constants on A € C will be 
made more explicit. The precise version of [19, eq. (12.95)] is 

(12.73) 
r—T pNY/x Z 2 

(LU)1 - pSoM*» - ± ± ^ A P T y Z ) - Syo )<x 
«,l/u,0,-l 

^ CU kl«,l/tt,0,(l,4) 
In the right-hand sides of [19, eq. (12.99), (12.100), (12.103)] C should be replaced 
by C(l + |A|)2. Also from [19, eq. (12.111)], we get 

(12.74) |L£2(A - LuA)-xL'uA(\u2 - <4)-1^o>|u,1/tt,0,-1 

<C( l + |A|)2uHUil/Ui0>1 . 

Finally, instead of [19, eq. (12.115)], we have 

(12.75) |(L£2(Au2 - L ' ^ L l , + ^ W ^ M u . x / u . o . - i 

<C( l + |A|)«HUil/t,>0f(0|1) . 

Using (12.73)-(12.75), and proceeding as in [19, eq. (12.117), (12.118)], we get 
(12.72). • 

If s G Iyo has compact support, let |s|0 0 be the limit as u —> 0 of |s|Uji/U]o,o-
in [19, Definition 12.15], if s G I~0, put 

(12.76) I-'2 
10,1 

l*lo,o + 
PNy'*Z s* 

2 

2£ 

¿=1 
Veis|o.o • 
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210 The analysis of the kernel of Fu{A\t/u) for T > 0 as u —• 0 

If k = 0,1, k' G N, if s e I " , set 

(12.77) No.rfc.fc'ì 
H<fc' 

Z\ìkas\ìk 

Then by using the notation of [19, p. 195], by [19, eq. (12.72)], if A G U, 

(12.78) ( A - a ^ - V f t 2 ) - 1 <C(1 + |A|) -1,1 

Also by proceeding as in [19, Proposition 11.34], given k G N, there is p G N such 
that 

(12.79) (A - a2'"° - V&2)-1* " < C(l + |A|)* ||S||-(0)fe) . 

Theorem 12.10 — There exist C > 0, q € N sucft /or u e]0,1], T €]0,1], 
yo G y , A € 17, if s el~0 has compact support, 

(12.80) | [ P « - ( A - L » * ^ - ^ " - ( A - a î ^ - V * 2 ) - 1 ] * ! u,l/u,0,0 < 

Cu(l + |A|)«|* 10,(0,4) • 

Proof. Recall that Eu was defined in (12.65). By [19, eq. (12.82)] 

(12.81) E-1 = f*~(A- 3,yo 
d+d1r 

d+d1r+d 

Then 

(12.82) E-1 - (A - a2'*0 - V^2)-1 -
E-\LuA + Lu>2(\ - LU;4)-1LU;3 - a?'1'0 - V^2)(A - - Vft2)"1 

Using (12.66), (12.72), (12.79), (12.82), we get (12.80). 

Clearly 

(12.83) P«~FU(T2%$U)I*- - Fu(T(a2'yo + V&2)) = 

1 
27TÎ 

FU(T\) ((A - r3,y0 \ - l 
•̂ u.l/u-' 

-(A-a2'№ - V^2)_1)dA. 

By (12.70) and by Theorems 12.8 and 12.10, we find that there exist C > 0, k > 0 
such that il s G I~0 has compact support, 

(12.84) (Fu(TX^/u) -1 Pt~Fu(T{<3i>\>yo + V£,2)P« )s 
w,l/u,0,0 

< CU\S\QAOA) 
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Take A G NY/x,n,yo- Let Jy0 b6 the Hilbert space of L 2 sections of (A(T<°^X) 
<8>Oyo over i z ^ (T R X) y o , \Z — A\ < 3/2}. We equip J*Q with the natural obvious 
L2 Hermitian product. 

If 26 G &(Jy0), let H&ll̂  be the corresponding norm. By (12.84), we get 

(12.85) \Fu(T3%™) - P ^ ~ F u ( T ( ^ y o + V^2))P*~ A Cu(l + \A\)2 e + 4 

Tk 
Using (12.58), (12.59), (12.85) and proceeding as in [19, Section 11 p)], we find that 
if Z 0 € N Y / x ^ y o , | Z 0 | < £ , 

(12.86) {F u {T^ u f / u ) - pt-F u(T(mîy° + V^ 2 ))PO(Zo, Zo) 

CV*(l + |Z 0 ] ) 2 r + 4 

TP 
Also from (11.10), one gets the easy estimate 

(12.87) ( f u ( T ( ^ ° + V^ 2)) - exp(-T(2&^° + V^ 2))) (Zo, Zo) 

^ Cexp(-l/?x2) 
Tn 

Finally using (12.70) and proceeeding as in [19, Theorems 11.27-11.31], we see that 
for any m G N, there exist C > 0, m! G N such that for u G]0,1], T G]0,1], 

(12.88) sup 
ZoÇ:Ny/x,It,y0 

(1 + \Z 0 \ )
m F u {T(ml^ + V£, 2))(Z 0,Z 0)| < c 

r£mt 

and that given M > 0, n' G N, there exist C" > 0, ra' G N such that for u G]0,1], 
TG]0,1], 

(12.89) sup z,z '€(t r x) v 0 

\P T Y Z\\P T Y Z'\<M 

ÔM+|«'| 

d Z a d Z ' a 
F u (r(2ô 2 ^° + V^ 2 )) (Z,Z') 

C 
Tn' 

By (12.58), (12.59), (12.86)-(12.89), we find that for any m e N, there exist C > 0, 
a > 0, /3 > 0 such that for y 0 €Y, Z 0 e N Y /x r «0> l̂ ol < e/8«, 

(12.90) ftrtdddddd?,) - P r exp i -T tâ™ + VÏ 2 ))(Z 0 , Zo) 

Cu a 

Tß{l + \Z 0 \ ) m ' 

Finally by making u —• 0 in (12.87), and using (12.88) (or by a direct proof) for any 
m G N, there exist C > 0, m' € N such that if Zo G N y / x r,y0> 

(12.91) (1 + \ Z 0 \ r exp(-r(»?>«» + VJ^WZo, Zo) C 
nrm' 
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212 The analysis of the kernel of F u {A^ t , u ) for T > 0 as u —* 0 

Using (12.13), (12.90), (12.91), we get 

(12.92) 
V IZ 0€NY / X~ 

\Z0\<e/8 
№ NuF u (TAl l / u ) (Zo,Z 0 ) 

dvyox(yojZ0) 
(27T) d i m X 

Y 
$ Trs [exp(-ra?)l $ Tr |exp(-V 7 7 ' 2)! < Cu a 

TP 

By also using (12.92) in the case where Y = 0 as in [19, Remark 11.14], (12.57) 
follows easily from (12.92). 

We have then completed the proof of the first half of Theorem 6.18. • 
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13. The analysis of the two parameter operator 
exp(—A\ T ) in the range u e]0,1], T > 1/u 

The purpose of this Chapter is to prove Theorems 6.9, the second half of Theorem 6.18 
and Theorem 6.19. This Chapter is the extension of [19, Section 13], where 
Theorem 6.9 established when S is a point. 

For 0 < uo < u < 1, the techniques of Chapters 8 and 9 can be used. However, 
here, one of the main points is to obtain uniformity of the convergence in (6.22) 
for u G]0,1], T > 1/u. We are thus forced to use relative local index techniques. 
In particular, while in Chapter 9, the bundle A(T*(°'1^X) in directions normal to 
W was trivialized using the connection v A ^ T * ( ° ' 1 ) x \ here we have to trivialize the 
bundle 7TyA(T^S) §> A(T*^0^X) in directions normal to W using a connection which 
is essentially the fibrewise connection 2 V 7 r v A ( T R s ' )§ A ( T * ( 0 , 1 ) x ) already considered in 
Chapter 11. The algebra is more involved than in [19, Section 13], but once the 
right coordinates and trivializations are found, the functional analytic machine of 
[19, Section 13] can be used without any substantial change. Still, inequality (6.84) 
in Theorem 6.18 gives a bound on a speed of convergence as u —> 0, which is uniform 
in T G [1, H-oo[. Such a problem was not considered in [19], but the techniques of [19] 
can also be used to solve this problem. 

The organization of the Chapter is closely related to the organization of [19, 
Section 13]. In Section 13.1, we show that the proof of Theorem 6.9 is local on a fibre 
X. In Sections 13.2 and 13.3, we construct a coordinate system and a trivialization 
of tt^A{T^S) §) A(T*(°>VX) 0 £ near y0 G W. In Section 13.4, we replace X by 
(TnX) y o . In Section 13.5, we rescale the coordinate Z G (T^X) y o , and we use a 
Getzler rescaling [23], [3] on certain Clifford variables. The operator T ^ u is then 
replaced by an operator Tsd In Section 13.6, we give an explicit formula for L3u, y0T 
in the considered trivialization. In Section 13.7, we study the asymptotics of j? as 
u WWd> 0. This permits us to recover the results of Section 12 in a different trivialization. 
In Section 13.8, we study the asymptotics of the operator ¿£̂ '2? as T —• +00, when the 
operator <2̂ 'j? is written as a (3,3) matrix with respect to a natural splitting of the 
vector space K^0 on which <££̂ 'j? acts as an unbounded operator. In Section 13.9, we 
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T) ... 

calculate the asymptotics as T —» +00 of F x ^ ^ A i ^ k X ^ 2 F T

 1 in the trivialization 
of tt^A(T^S) ® A(T*(°'1)X) which was described before. While the trivialization is 
more complicate than in Chapter 8, the asymptotics is simpler. Then we relate the 
asymptotics of as T —> +00 to the asymptotics of { F T k x l 2 A u ^ T k - l l 2 F ^ * ) 2 . 
In Section 13.10, we introduce a new family of Sobolev norms depending on u, T, 
which extend corresponding norms already constructed in [19, Section 13 k)]. These 
Sobolev norms incorporate the grading of the Grassmann variables in -Ky A(TpS), so 
as to permit an analysis of ¿£̂ '2? very similar to the one given in [19, Section 13]. In 
Section 13.11, we introduce a fibrewise elliptic differential operator which is the 
analogue of an operator introduced in [19, Section 13 o)]. 

In Section 13.12, we take advantage of the formal similarities with [19, Section 13] 
to give a short proof of Theorem 6.9. 

In Section 13.13, we prove Theorem 6.19, and in Section 13.14 we establish the 
second half of Theorem 6.18. The algebra involved in the proofs of both Theorems 
is more complicate than before. The fact that ultimately, the algebra simplifies is a 
little miracle. The organization of Section 13.13 reproduces the organization of the 
whole Chapter. In Section 13.14, in our proof of the second half of Theorem 6.18, we 
explain how to adapt the techniques of [19] to establish a result which has no explicit 
analogue in [19]. 

In this Chapter, we use the assumptions and notation of Chapters 3, 5, 6-9 and 11-
12. 

13.1 A proof of Theorem 6.9: the problem is localizable on W 

We fix e > 0 such that e e]0, | i n f ( a x , a r , e 0 ) ] . Let a e]0, | inf(a x , a Y , e 0)]. The 
precise value of a will be determined in Section 13.3. 

We use the notation of Section 11.2. 

Theorem 13.1 — There exist c > 0, C > 0, S €]0,1], such that for u G]0,1], T > 1, 

(13.1) - [ Td(TX,gTX)cb.'{Z,gt)-
dim N Y /x 

2 
f (dimYTd(TimYY,gTY) 

c 
T<> 

exp( 
-C 
u 2 

Proof By (11.24), (11.25), we get 

(13.2) Tr s NuG u (A 2

U j T / u ) = ip u Tr s NnH u {A 2

T / u 2 ) 

Using (11.21), (13.2), and proceeding as in Chapter 9, we find that there is C > 0, 
C > 0, 6 e]0,1] such that for u e]0,1], T > 1 

(13.3) Tr s N U H U ( A 2

T , 2 ) \ - Tr s q N M q G u ( B ^ ) < C 
u2 
T 

S 
exp 

- a 
u2 
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By Theorem 8.8 and by (13.2), (13.3), we get (13.1). • 

In view of Theorem 13.1, to prove Theorem 6.9, we only need to show that there 
exist C > 0, S > 0 such that 

(13.4) Tr8 N H F u ( A 2

/ u ) 
dim Nyix 

2 
Tr s FU{B™'2) C 

Ts 

Let F^A^ T / U )(x, x') (x, x' € X) be the smooth kernel of F^A^ T / , u ) with respect to 
(2 )̂̂ m^ • As we saw after (11.29), F u (A 2

l T ^ u )(x,x) depends only on the restriction 
o f Al,T/u t o B x (x , a ) . 

By (7.10), we get 

(13.5) 
Ue/s 

Trs [ N H F u ( A l T / u ) \ dv x(x) 
(27r)d.mX 

1 
2̂7t 

dim X 

Jy W|Zo|<h? 
u 

V T , 

2 dim Ny/x 

Trs N u F u ( A l T / u ) [ ( y 0 

Vt 
VT 

(yo, uZ 0 s 

VT 

k yo, uZQ 
VT 

d v N v / x (Z0) >dvY(yo) • 

Now we state an extension of [19, Theorem 13.6]. 

Theorem 13.2 — If e E]0, \ inf(eo, a x , a Y )] , a e]0, | inf(eo> a>x> oly)] are small 
enough, for any p G N , there exist C > 0 such that for u E]0,1], T > 1, yo £ W, 
Zo e N Y / x ^ y o , \Z0\ < then 

(13.6) 

(l + \Zo\r 
a. 

VT 

2 dim NY/x 
I r s N u F u ( A l T / u ) ((yo, uZQ 

VT 
(yo, 

uZn 
VT 

< c . 

There exist C > 0, 8' €]0,1/2] such that for any u e]0,1], T > 1, y0 € W, 
Zo e N Y / x ^ y o , \Z0\ < s f f , then 

(13.7) 
1 

2tt 

dimX ii. 
.y/T 

2 dim Nv i y 
Trs N H F u ( A 2

U t T / u ) (y0 

UZ0 
VT >(î/o, 

uZo, 
VT 

-expf- Zn DdimiVwx 
^dimNY/x 2 

1 
,2tt 

dim y 
Trs F U(B n (yo,yo) 

C 

Ts 

Remark 13.3. By proceeding as in [19, Remark 13.7], from Theorem 13.2, one gets 
(13.4) easily. 

We will then concentrate on the proof of Theorem 13.2. 

Société Mathématique de France 



216 The analysis of the two parameter operator exp(—A* i T ) 

13.2 An orthogonal splitting of T X and a connection on T X 

On W, we have the splitting of C°° vector bundles 

(13.8) TXxW = TY 0 N : y/x 

Definition 134 • If 2/o € W, Z 0 € N Y / x ^ y o , \Z0\ < e, let T X ] x p x ( Z o ) , T X ^ ( Z q ) 

be the subspaces of TX e x p x (Z o) which are obtained from TY y o l NY/x,y 0 by parallel 
transport with respect to V T X along the curve t G [0,1] —» exp y o(tZ). 

Then TX 1 , TX 2 are smooth vector subbundles of T X ^ such that 

TX} W = TY, 
(13.9) '2 

T X | W = N Y / x • 

Moreover on TX splits orthogonally into 

(13.10) TX = TX 1 © T X 2 . 

Let P T x l , p ^ * 2 be the orthogonal projection operators from TX on TX 1 , TX 2 . Let 
V T X \ V T * 2 be the connections on TX 1 , TX 2 , 

(13.11) v T X l = p t x 1 v T X , v T x 2 = p ^ 2 V T X . 

By Proposition 7.2, on V T X \ V T X * restrict to V T r , V N y ' x . 
Set 

(13.12) ° v T X = v T X l e v T X . 

Put 

(13.13) A' = V T X - ° V T X . 

Then A' is a 1-form on °U£ with values in endomorphisms of TX exchanging TX 1 

and TX 2 . 

By construction 

(13.14) i*A' = A. 

Moreover if y 0 €W, Z 0 € NY/x,-R.,y0» then 

(13.15) A ' y o (Z 0 )=0 . 
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A local coordinate system near yo € w and a trivialization . . . 217 

13.3 A local coordinate system near y 0 e W and a trivialization of 
tt£A(T£S) ® A ( T * W X ) ê £ 

Take y 0 € W. If U £ (T nY)y 0, let t G R —• y t = expY

Q(TU) be the geodesic 
in the fibre Y n w y o such that y\t=o = 2/0? ^|t=o = U. Since e < %r, the map 
(7 G 2?Jo

y(0,e) —* expy([7) G l^^yo is a diffeomorphism. 
If U G ( r R F ) y o , \U\ < e , V e N Y / X ,r,y 0> ^t T uV G NY/x,r,expjf0((7) be the parallel 

transport of y with respect to V ^ / * along t G [0,1] -* expY

Q(tU). 
Recall that 7r is the projection N Y /x —• W. Then the map 

(13.16) (U,V) G Bl Y (0,e) x N Y / X t B n V 0 - (exp£(l7),^V) G TT-^Gfo,*)) 

is a trivialization of N Y / X r v over BY(yo, e). 
If Z e (TrXU, Z = U + U ' , U e (T R Y) y o , U' e J W r . * , , M < e, l^'l < e, 

we identify Z to exp*. y rm(TuU f) G °Ug:. This identification is a diffeomorphism 
PyQ v / 

from B^K(0,e) x B ^ v / X ( 0 , e) on an open neighbourhood "^(yo) of j/o in X n w y o . In 
particular 
(13.17) ° W £ ( y o ) n Y n w y o = B l Y ( 0 , e ) x {0}. 

Clearly there exists a 0(e) > 0 such that for y 0 € W, Z 0 € N y / x , r , y o , \Zo\ < s/8, 
the open Riemannian ball B x (Zo, ao(e)) is contained in <We/2(yo)- In particular 
0 < ao(e) < e/2 < 6/4. 

Now we take a e]0, inf(ao(e), §ay> g^o)]-
Let ov A ( T * ( ° 1 ) x ) be the connection induced by ° v t x on A(T*(°'1)X). Then 

oyA(r*<01»A-) i n (j U Ces the corresponding fibrewise connection ov*v A ( T £ s )§ A ( T * < 0 , x ) *) 
on tt^A(T rS) § ACT**0'1)*)-
Definition 13.5 . Let 3 V r ^ a ( t r s ) ® a ( t * ( 0 1 ) x > be the connection on ^ ( T ^ g A ^ ^ 0 - 1 ^ ) 
along the fibres X over °Ue, 

(13.18) 3^^a(t^s)0a(t^°^x) = o^7t^a(t^s)0a(t^°^x) 

+ ( v t x £ > n y / x + t v ( f ? ' v , . ) - a ' { f S > W ) P T X ' . , ei) f-^0t 

+ è ( ( s v { . ) № w , f j ! > w ) - ( f ^ N Y / x ^ T X f f N Y / x ) ) r f • 

In view of (1.6), (11.35), (11.38), (13.18) and using the fact that Tr[A'] = 0, it is 
clear that 

(13.19) 2v77r^A(TiS)®A(T* '̂1,X) _ 3Y7?r;>A(X£,S,)®A(T**u'1>x) 

+ i (A'(.)eu et) cieMei) + ( A ' U " > W ) P T X ., e, f ac(ei) 
V2 
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218 The analysis of the two parameter operator exp(—A^t) ... 

Let us observe that by (1.34), (1.35), (13.18), we have the equality of fibrewise 
connections on W, 

(13.20) •*3Vtt̂ A(T£S)®A(T* '̂̂ X) = .*0V7r̂ A(T^S)<8)A(r*̂ '̂ X) 

+ 
l<i<2£f 

(T,W H,W(fH,W H,W , s fac(eù 
y/2 

+ k ( s w ( . ) f » ' w , f ? ' w ) r f / ' . 

By (1.6), (13.20), we get 

(13.21) f.3V7rC.A(T̂ 5)(8>A(T*(0'1»X)=i.0V7rt-A(r̂ T*(0'1S)®A(r*(°'1'A-) 

+ 
1<г<2Г 

\{Sw{.)fS'W,ei)V2rV2c{eW,ei)V2i) 

+ h ( S w ( . ) f " > w , f ? ' w ) r f e 

i.e. i*3v*vMTnS)®A(T' • x) js verv cioseiy related to the fibrewise connection 
iv^A(^s)®A(r(«.»y) attached to (nw,THW,gTY). 

Put 

(13.22; 3r7irt.A(T^S)®A(r*(0'1)X),u ^3V7r^A(T^5)®A(T*lu'"A-)^-l _ 

Take u e]0,l]. If Z G (TRX)yo, Z = U + U',U G (TRY)yo, U' G NY/XRyo, 
\U\ < e, \U'\ < e, we identify (n^A(TRS) ® A(T*(°-1)X))Z (resp £z) to (7r^A(7£S) 
®A(T*(°'1)X))yo (resp. £yo) by parallel transport with respect to the connection 
3V^A(^S)êA(T-«>.»X),U (resp ^ ) ^ the curve t 6 [Q> _- [ Td(TX,gTX)cb.',g(dimY 
C/ + (2t - l)£/'(± < t < 1). 

1JCU L zA(T£S)®A(T*(0,1>*),_ A(T£S)®A(T*(0,1>*),, r^, TV be the connection 
forms o f ^ v A ( r . W - " x ) , 3V<A(TA5)®A(r-(o.1)x)) ^ ^ in the trivialization 
associated to 3V^A(T£S)®A(T*(0,1>*), V*. By (13 j g ^ 

(13.23) 
2^A(TÍ,S)§A(T^0'^X) 3^bA(T¿_S)eA(T^°^X) \̂{Aj)zcei'(.)j)zcei,ej)zc(ei)c(ei) 

+ ( A ' ( / ^ ) P ^ 1 . , e i 
/ac(ei) 

V2 

As in (11.36), we find that parallel transport with respect to 3y7r̂ A(T^S)®A(T*(01'x) 
maps cl{TRX) into cx{TRX) 0 TRS. 

By (13.18), it is clear that the curvature oi3V<A^s)®A(-T'(0'1)x^ is of length < 2 
in iryA(TRS) <§>c(TRX). By proceeding as in the proof of Theorem 11.11, we see that 
3T*'vmtzs)®a(t-<°^x) is of iength < 2 in ir*va(TRS) § c(TRX). 

Astérisque 



Replacing X by (T RX) y o 219 

By [1, Proposition 3.7], and by proceeding as in (11.46), we get 

(13.24) Sp^ACT^êACr-f0'1)*),^ = i /3V7rî,'(°.1)A:)yA(T̂ S)§A(T'(°.1)A:)ymYTd(T{ 

+ G2(\Z\2)U i£Z,Ue (T R Y) y o or if Z,U G N Y / x > R > y o . 

By construction 

(13.25) - [ Td(TX,gTX)cb.' (dimYTd(T{Z,gt)- f (dimYTd(TY,gTY)- [ Td( 

Also by using the definition of curvature, we find easily that 

(13.26) 3 r n' v \(T^S)®A(T'^X) ( m 
- f (dimYTd(dim(TY,gTY) 2 

'vo 
(Z,U) 

+ € 2(\Zf)U if Z G N Y / X t B . > V o t U G ( r R y ) y o . 

13.4 Replacing X by ( r R X ) y o 

If C/ G ( T r X ) , ^ Z G TVeCito), let 0ri7(Z) be the parallel transport of U 
with respect to ° V T X along the curve t G [0,1] 2 t P T Y Z , 0 < t < 1/2, 
P T Y Z + (2t - l )P N r /*Z, i < t < 1. 

if » o e r , C/G (T R F) y o , put 

(13.27) M£0 = 7 
4 UV 
4 UV 

Then 

(13.28) 
M(C/) = 1 if \U\ < 

3a Y 

8 

= 0 if \U\ > 
3a Y 

4 

Let A r y be the Euclidean Laplacian on (TrY) y o . Let e\ , . . . , e2«' be an orthonormal 
basis of (T n Y) y o . 
Definition 13.6 . Let L be the differential operator on (Tr.X)V o, 

(13.29) L = (1 - M 2 ( P T y Z ) ) A r y + fJ?(P T YZ. 
if 

i 
PTyZ))Ary + fJ?( 

Let (a, 6) G R 2 —> k(o, b) G [0,1] be a smooth function such that 

(13.30) 
k(o,6) = 1 if |a| < 1/2, |6| < 1/2, 

= 0 if |a| > 3/4 or |6| > 3/4. 
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220 The analysis of the two parameter operator exp(-A^T) ... 

if z e ( r R x ) y o , put 

(13.31) <p(Z) = , 
\ P T Y Z \ 

e 
pNY/x Z 

e 
Then 

(13.32) 
<p(Z) = 1 if \ P T Y Z \ < e/2, \ P N v * Z < e/2, 

= 0 if \ P T Y Z \ > 3e/4, or \P N y /*Z\ > 3e/4. 

Let A N y / x be the Laplacian on NY/x,r,y0- We still define the vector space H y o as in 
Definition 11.12. 
Definition 13.7 . For u > 0, T > 0, let ^ ' r ° , il*' i X

0 be the operators acting on H y o , 

(13.33) 

- [ Td(TX,gTX)cb.'{Z,gdimYTd(TY,gTY) - u 2 

2 
[L + A N y ' x ) + TP* S y opt~ 

,gdi 
U2 

,gdi \pNY/xZ\2 

2 
pt-)) + < p 2 { Z ) A 2 , 

Ml** = - (1 - ip2(Z))^-(L + A N y ' x ) + <p2(Z)BY.? 

Let k"(Z) be the function defined on <We(yo) hy 

(13.34) dvx(Z) = k"(Z)dvTx(Z). 

Then M'w = 1. 
By construction, <p2(Z) is equal to 1 on<We/2(j/o)- Also if Zo e Ny/x,r,v0^ \Zo\ < §, 

then B x ( Z 0 , a ) C <We/2(yo)- By using finite propagation speed, it is clear that if 
Zo G N Y / X t R , y o , \Z0\ < e/8, 

(13.35) Tr s \NnF u{A 2

/ u){{yo,Zo),{yo,Zo))\ k"(yo,Z0) 

= Trs U V H F u ( » ) ( Z o , Z 0 ) . 

13.5 Rescaling of Z and of the horizontal Clifford variables 
For u > 0, T > 0, let G u , t be the linear map H y o —* H y o given by 

(13.36) G^.Th(Z) = h 
pTY Z 

u 
J t p ^ y / x z 

u 

Set 

(13.37) 
Cp2,y0 _ /or—1 cpl,2/0î r m 

- [ Td(TX,gTX)cb.'{ZYTd( 
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Then 

^Ì yT^u VT° € K,A(T¿S) § c(TrX) § End(0) y o ® Op 

Let e i , . . . , e2 '̂ be an orthonormal oriented basis of (TR.y)yo, let e2t+1,.. . , be 
an orthonormal oriented basis of Ny/x,n,yo> Let e 1 , . . . e 2 € and e2^ + 1 , . . . , e 2 £ be the 
corresponding dual basis of (TjtY)yo and NY/XjL,y0* 

Recall that the vector spaces K y o , K^0 were defined in Definition 12.2 and that 
the operators Cu(e») were defined in Definition 12.3. 

Definition 13.8 . Let ^ , 1 ^ ° € End(K y o) be the operators obtained from 
£uyT>MuVT b y replacing the Clifford variables c(e») by Cufe) for 1 < i < while 
leaving unchanged the c(ei) for 2£' + 1 < i < 2£. 

Let F U ( £ ^ ) ( Z , Z ' ) {Z,Z* € (TrX)^) be the smooth kernel associated to 

Fu(£3uvt) with respect to gfflffi. We still define [ F w ( ^ ° ) ] m a X as in (12.12). 

Proposition 13.9 — For any u > 0, T > 0, Z 0 £ NY/x,n.,y0, \Z0\ < ^ , tfte 
following identity holds 

(13.38) 

u 
VT 

2 dim NY/x 
Trs N H F u ( A l > T / u ) ( (y0 

uZ n . 
'y/7 

• (Vo, 
UZ0 
VT 

k" y0 

uZ c 

VT 
= ( - i ) d i m Y T r s [Nn \Fu(<e%$)(Zo,Z0) i max-i 

Proof. Using (13.35), the proof of our Proposition is the same as [19, Proposi­
tion 13.17]. • 

If C is smooth section of 7TyA(T£S) ® c(TnX) ® End(£), if a; € X n y Q is close 
enough to y 0, let C*(x) be the element of (7r^A(T£S) ® End(A(T^F)) § c(NY/x tn) 
®End(^)) y o, which is obtained by using the trivialization indicated in Section 13.3, 
associated to v^ A ( T * 5 )® A ( T * ( ° ' 1 ) x ) , w , and by applying the transformation of the 
elements of c(TnX) y Q of Definition 13.8. 
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13.6 A formula for £z'y° 

Observe that 

(13.39) X*™ = My* + tfiuP1 * Z + - ^ p n r / x z ) 

Z f a ^ V + T ^ W - ^ V i u P ^ Z + - ^ P N ^ Z ) 

f ±^V2{uPTYZ + ^ = p % ^ ) ) + (1 - cp2(uPTYZ + -^Pny /*Z) ) 

Tpt-syopt- + ^ p t + + T y , A(T£S)®A(T*(0,1>*), pe-

Now we establish an extension of [19, Theorem 13.18]. 

Theorem 13.10 — The following identity holds 

(13.40) • < t = " 5 1 - ¥>2(«ptv^ + -j=PN^*Z) (LUPTYZ + TA»*'*) 

+ ^ { u p t y z + A(T£S)®A(T*(0,1>*), z ) - \ £ (vtvpNY/X0TeiiupTYZ+j_pNY/xz) 

+vA(T£S)®A(T*(0,1>*), jv ^ + « rsr,rvA(T"*s)®A(T*(0,1>x)f0Te-'i 

+ i <a'(orei)0TeJ-,0refc>C(ore,)C(0Tefe) 

+ / « ( a ' ( / ^ w ) p r x l ° r e i ) + I*(0re«) ( u P ^ Z + ^ Z ) 

+ 2 VrVpJVy/x vg.y „Te.(uptyz+_^_pny/x z) 

+ uVpTY VTX 0Te . (uPTY Z+ u p"y/X Z) ) 
„2 
2 

(2rnvA(T¿S)<8>A(Tml°'1>X) , Г£\ 

( v ^ V e ^ ^ p ^ z + ~ ^ P N ^ Z ) + ^K(uPTYZ + ~^=PN^Z) 

+ и2 \Ы0теЛс(0теЖ'Ч0те^теЛ + Г^J^UtfÇffH.w о л 

+ i r f ß B * № w , fï>w)] (uPTYz + - ^ p " ^ ) яг1 

Proof. Formula (13.40) follows from Theorem 7.20, from (13.19) and from (13.33). • 

Recall that 5 was denned in (12.20). Since £ ^ ~ ANp^x <g> 77, S acts naturally on 
MT*(°>VX) ® £_W. Now we extend [19, Theorem 13.191. 
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Theorem 13.11 — For any y0 E Y', u e]0,1], Z G (TnX)yo such that \PTYZ\ < 
3e/Au, then as T —• +oo, 

(13.41) T - Г a v « V 
21' 

1 

c(°rei) 
x/2 (uPTYZ+ 

3 

u 
TX,gTX)cb.'{Z,gt)dimYTd 

t 
u 

Г a v « ¡WV + 
9 '̂ 

1 
u 

c(°reA 
y/2 

3 

u 
(uPTYZ+ (uPTVZ) 

+ Vf Г л у * V* Vds+d11d+Rb,c,T > 2, 
21' 

1 
li 

c(°rei) 
V2 

, 3 

z 
(uPTyZ) + 0(u |P^/*Zr), (uPTyZ) + 0(u | P ^ / * Z r ) , 

T 
2*'+l 

c(°re-
V2 

3 

U 
TX)cb.'{Z,gt)-dimYTd(TY,gTY) 

= t 
2e 

2e'+i 

r.(p.A 
V2 

( V Î V ) ( u P t y Z ) + uVt 
uZ 

2e>+i 

de A 

V2 

f7« 
pNY/X z 

T7« 
°rei 

V(uPTYZ) + 0(u | P ^ / ^ Z r ) 

j>2 
U2 

(V-)2(uPTYZ + U 
d+dr 

pNY/x Z) = T-
pNY/xZ 2 

2 
pt~ 

+ u 
d+d 

2 
d+dr 

V2 
S(PN^Z),V*Z ^pNY/xV-{uP^Z) + ®{v?\PNv'xZ\A). 

Moreover 

(13.42) Pç faAV\„,wV + 
Jot 

21' 

1 
U 

d+dr+d1r+d4 

V2 
d+d1r+dd (uPryZ)P«~ = 0 , 

P«_ J V pNY/XZ <fH,wV + 
21' 

1 
d+d4r 

dd1+d1r 
v̂ 2 Ju 

Rb,c,T > 2,+d1r+df1r («PrKZ)P«~ = 0 

p«-
21 

+dr+d1r 

C(ei) rr£ 
vo™< 

F(uPrKZ)P«~ = P«~S„0P«~ . 
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Proof. Clearly, as T —• +00 

(13.43) - f a A ViHWV(uPTYZ + J L p N r / x z ) = 
U foe ' y^T 

| / A A V^,w V(uPTy Z) + v ^ f A V*p„Y/x z V^,wV(uPTYZ)+0(u\PN^Z\2). 

Also since Vtpny/xz°rei{uPTYZ) = 0, using (7.27), (13.18) and by proceeding as in 

(11.36), the expansion as T —» +00 of Tc(°^(uPTYZ + -J~Pny/xZ) with respect 
to 3v"vMTZS)®A(T*^x) is given by 

(13.44) T S ^ l ( u p T Y z + JLpNr/xZ) = 
v2 VT 

T ^ I p l ^ p ^ Z ) + 0l(t42 | p ^ / x Z | 2 ) . 
v2 

Prom (13.44), we see that as T —> +00, 

(13.45) J r ^ L - l ^ L ( U p r i - Z + - ^ P ^ Z ) = 

T 
d+d1r+dr 

y/2 

3 

u 
(uPTYZ) + 0(u \PNY'XZ\2) 

Since for 1 < i < 21, °V^rz°Tei(uPTYZ) = 0, by (13.20), we get for 1 < i < 2?, 

(13.46) 

3 •ir̂ A(TiS)®A(T*<0,1Jx) 
PTYZ 

c(°rei) 
V2 

(uPTYZ) = - (Tw(fS>w,PTYZ),°TEI) (uPTYZ)fa 

From (13.46), we deduce that in the trivialization associated to 3v*vA(7£s)®A(T*(0'1)*), 
for 1 < i < 2?, c(°rei) lies in C{TBX) ® T^S. In particular 

(13.47) {«c(°rei)(nPT1'Z)};=0(l). 

From (13.43), (13.45), (13.47), we get the first identity in (13.41). 
Since °V^Yz0Tei(uPTYZ) = 0, using (13.20), it is clear that for 2£' + l<i<2£ 

(13.48) 3, ^l(upTYz + JLpNr/xZ) 
PTYZ 

c(°Tei)(uPTY Z) = 0 . 

Therefore for 21' + 1 < i < 21, 

(13.49) \c(°rei)f(uPTYZ) = c(ei). 
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Prom (13.45), (13.49), we get the second identity in (13.41). The third identity was 
already proved in [19, Theorem 13.19]. 

The first identity in (13.42) follows from the fact that = 0, and also from 
(7.21) and Theorem 9.8. By [19, Theorem 13.19] and by Theorem 9.8, we get the 
second identity in (13.42). By Proposition 7.8, 

(13.50) P* 
21 

2e'+i 

d+d1r 
V2 

VÎTe.V(uPTYZ)pt-

d+d1d+ +d1d+ 
21 

21'+1 
c(ei)c(°rei) d+d1r 

Now since ~ KNy/x ® V *s an identification of holomorphic Hermitian vector 
bundles, one finds easily that for 2£' + 1 < i < 2£, c(°rei) is identified to c{ei). 
Prom (13.50), we get the third identity in (13.42). The proof of our Theorem is 
completed. • 

13.7 The algebraic structure of the operator as u —> 0 

By (13.45), (13.46), (13.49), we see that as u -> 0, if 1 < j < 21!, 

(13.51) u 
c(°re,)l 

y/2 

3 

u 
(uPTYZ + u 

dv+rd 
pNY/x y\ 

= ej A -
u2 
2 e> 

_u(TW(fH,W pTYz) )fa 

+ G[u2(\PTYZ\2 + 
\pNY/xZ\2 

T 

and if 2£' + 1 < j < 2£, 

(13.52) c(°re,) 
V2 

3 

u 
(uPTYZ+^PNr/*) = 

c(e,) 
V2 

+ 0 
vr 
vrd 

pNY/xZ\2) . 

By construction the 0Te* (1 < * < 2£') span TRX1 and the °rei (2£' + 1 < j < 2£) 
span TRX2. Since A' exchanges TX1 and TX2, 

(13.53) i < '̂0Te„ °refe> c(0Tej)c(0refc) = 

I 
2 +d1r+d1r+dra 2£'+l<fc<2£ 

<^0re,-,0Tefe>c(0re,)c(0^fc)-
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226 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(-A£T) ... 

Moreover 

(13.54) A ' ( f ^ w ) P T X l ° r e i e T n X 2 . 

From (13.51), (13.52), (13.54), we see that as u —• 0, 

(13.55) {«1 (A'Creifrej^Tek) c ^ r e ^ r e u ) 

+ r A = ( A ' { f S ' W ) P T X l ° r e t ) } ( u P T Y Z + -^=P N - /*Z) 

2£'+l<k<2£ 

(А'(е,)е,,е к)е> A - ^ -

A'{fS'W)PTXl°ret) } (A'{fS'W)PTXl°ret) 

From (1.33), (13.14), (13.15), we find that 

(13.56) 

1l.'+\<k<2t 

(A ' y o ( e i ) e j , e k ) é l A ^ + r - j g ( K 0 ( f ^ W ) P T Y e,) = 

1<7<2£' 
2£'+l<k<2£ 

ei A dddv ( A y o ( e j ) P T Y

e i ) + f ' A V * . ™ ) ! " * * , 

which is equivalent to 

(13.57) 

2£' + l<j<2£ 

( ^ ( e i ) e i , e f c ) e ^ A ^ 

+WX К о ( / ^ ) ^ ) = - j g i A P ™ « ) 

As we saw after (13.23), ^ v ( M T ^ s ) § A ( T ^ x ) is of length < 2 in tt£A(T£S) 
®c(T rX). By (13.24)-(13.26),it is clear that asu -> 0, { u ^ T u p T Y z + ^ _ p n y / x z ^ " 1 } ^ 

has a finite limit given explicitly in terms of the curvature of 3V7rvA(T^5)§A(T*(0'1)x) 
restricted to W, where only the ddd sd (1 < i < 2£') replaced by eiA and the f a survive. 

Clearly 

(13.58) 2y7T^A(T£S)§A(T*<°'1>X),2 = 3V7rt,A(T^5)§A(T*<°'1>X),2 

, r3r77r^A(T^5)§A(T*(0'1)X) 2™-^A(T£S)§A(T*(0'1)X) _ 3vtt^A^5)§A(T* ( 0'1 )X)1 

+ f2^7t^A(T^S)êA(T^°^X) _3vnlrA(T^S)§iA(T<0^X)\ 
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The algebraic structure of the operator £ ĵj? a s u - » 0 227 

By (13.19), 

(13.59) 
/2V^A(7£S)§A(T*«M>X) _ 3vn-vA(TZS)®A(T^X)\ = I ^ , 2 ^ ^ c { e . ) c { e j ) 

+ 4 ( A ' 2 ( f " ' w , C w ) P T X l . , p T X \ ) r f 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYT) 

By [19, eq. (13.61)], if Z, Z' € (T R X) y o , if U, U' G T R F , 

(13.60) {A'l{Z,Z')U,U') = (A 2

y o (U,U' )P T Y Z,P T Y Z' ) . 

Also by (1.33), (13.14), (13.15), if Z,Z' € (T R X) y o , U € (TgW) y o , U' € (T R Y) y o , 

(13.61) 

(A'vo(Z)AVo{U)Z> ,U>) 

= {A y o{P T YZ)A y o{U)Z',U') 

= -{A y o {U)Z' ,A y o {P T Y Z)U') 
= ~ {A y o {U)P T Y Z', A y o (U ' )P T Y Z) 
= (A y o (U)A y o (U ' )P T Y Z,P T Y Z' ) 

= (A y o (U ' )A y o (U)P T Y Z ' ,P T Y Z) . 

Moreover, by (13.18), (13.19), 

(13.62) 
r3y7rt,A(T^S)§A(T*(0'1)X) 2y^A(T^S)§A(T*(0'1'X) _ 3^n^A(TiLS)êA(T'̂ 1'>X)l = 

["OyTrî-A^SjgACT'̂ '̂ X) 2yirî,A(T^S)®A(T'<0'1>X) _ 3y7i-;,A(T£S)§A(X*<°'1>X)1 

+ f a 4 ( A ' ( . ) ( V ™ / f + T v ( / ^ , . ) - A{fS> w )P T x l . ) ) 

+ ( A ' { f ^ w ) P T X l . , V T X f r N Y f x + T v { f f v , . ) - A ' ( f ? W ) P T X l • ) r f • 

Now we briefly explain how to calculate the limit as u —* 0 of | u 2 ^ u

3 

V ^ A ( T ^ S ) § A ( T * < ° ' 1 > X ) , 2 ( Z , e i ) V - 1 ) 3 . We use (13.58)-(13.62). We claim that no 
term in (13.62) contributes to the limit. In effect ° V T X preserves the splitting 
TX = TX 1 0 TX 2 . Then by (13.19), it is clear that [o v"vMt£S)®a(t*^x)^ 
2V^A(T^)gA(T*<01>x) _ 3V7rC,A(T^5)§A(T*(01)x)j does not contribute to the limit. 
Using the second identity in (1.35) and (7.27), we find that the remaining terms in 
(13.62) do not contribute to the above limit. 
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228 The analysis of the two parameter operator exp{—Â ,tT) ... 

By Proposition 11.8, (11.61)-(11.65) and (13.58)-(13.61), we see that as u -> 0, 

(13.63) - [ Td(TX,gTX)cb.'{Z,gt)(dimYTd(TY,gTY)-) 

«i*(V™)iZ,ei> - (AlPTYZ,P™ei)) 

From (13.24), (13.26), (13.40), (13.55)-(13.57), (13.63), we see that as u -» 0, the 
operator M̂ 'Vp converges to an operator Mq'^ given by the formula 

(13.64) X,gTX)cb 1 
2 

2£ 
- [ Td(TX,gTX)cb.'{Z,gt)-

+ 
1 

2 
(i*(VTX)L-PTYAtPTY) PTYZ + 

pNY/x Zs 

d+d1r ,ei ) 

+ 
1 

2 
wx+e1d+r1e pNY/x Z 

Vf 
,PTYe, 1 

2 
[i*(VTX)lPTYZ,PNr'xei) 

vr 
c(APTYei) 

V2 

2 
dr+d (V*)2 + i Tr ( V " f 

I/o 

Also using (13.51), (13.52), we find that as u —> 0, 

(13.65) 
1 

u 
d+d1r+d1rd+d 

2£ 

1 

c(°rei) 
V2 

<+<1<+s1 
3 

u 

(uPTYZ + u pNyr/x Z) 

d+d21 
1 

u 
*V*V(vn) - ; d+d1r+d 

d+d1<+<1<+<1z zss s 
2t 

2£'+l 

d+d1r 
V2 

ViV(yo) 

d+d1r+d1r 
PTYZ+ 

PNY/X z 
VT 

T7Ï cH,W oc V(y0) 

+ 
21' 

2£'+l 

d+d1<+<1 
pTYZ+E ,NY/X z 

~7¥ 
7ÎreiV(yo) 

+ 0 u(|PTyZ|2 + 
d+d1<+<1w1 

T 
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Now by [19, eq. (13.102)], by (7.21) and by Theorems 9.8 and 12.7, 

(13.66) 

- [ Td(TX,gTX)cb.'{Z,gt)- (df (dimYTd 

PE-
2« 

2£'+1 

c(e¿) 
V2 

V iV(yo )P r =Syo, 

p í /<*у€ 
p ty z + pHI^Ls. V%H,wV(yQ)P^~ = 0 , 

i*" 
2£' 

1 
é N V € 

ptyz+pHI^Ls. 
ViF(yo)P € " = 0 . 

Identity (13.64) now plays the role of identity (12.15). Identity (13.65) replaces 
(12.21), and the identities (13.66) replace (12.22). 

For u > 0, let 2)̂ ; be the operator defined in Theorem 5.8, which is associated 
to the exact sequence of holomorphic Hermitian vector bundles on W, 0 —• TY —• 
TX\w Ny/x 0- Using the previous formulas, the second identity in (5.16) and 
proceeding as in [19, Section 13 i)], we find that given T > 0, 

(13.67; lim $Tr s NHeM-A 2u,T/u)\ = 

/ $Tr s [ N H e x p ( - G ^ ^ G h T ) ] chfag"). 

Equivalently 

(13.68) lim $Tr s i V H e x p ( - A 2 r . ) = / $Tr s [Afc exp(-2^ 2)] chfoc?"). 
u—>0 L J Jv 

Identity (13.68) is compatible with Theorem 6.8, because of (5.19). 

13.8 The matrix structure of the operator ¿£?/í¡? as T —•> +oc 

For convenience, we introduce a Hermitian metric g T S on TS. This metric induces 
a corresponding metric on A(T¿5). 
Definition 13.12. Let F y o (resp. F° o) be the vector spaces of smooth (resp. square 
integrable) sections of (tt^A(T¿S) ® A(T¿F) ® r¡) over (T R F) y o . Let K° o , K±'° be 
the vector spaces of square integrable sections of (tt v̂A(T^S)<S>A(T^Y) ®A(Ny/x)® 

(7r^A(TR5)® A ( T R r ) § A ^ ^ ) ® ^ ) ^ over (T R X) y o . 

We equip F° 0 with the Hermitian product 

(13.69) a, a' GF° -» <<t,ct') = 
(TRY)y0 

(а.а'\(7Л cIVTY(Z) 
(27r)dimy 
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230 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(-A£ ;T) ... 

We equip K y o with the Hermitian product 

(13.70) s,s 'EK° y o — <*,*'> = 
(TRX)j,0 

(s,s') (Z) vrxdvrx(Z) 
vrxdvrx(Z) 

We now use the notation of Chapters 7 and 8. In particular 9 y o denotes the K&hlei 
form of the fiber NY/x,r,y 0- Set for Z € (T R X) y o , 

(13.71) ßvo(Z) =exp Oyó ' 
y/x\P"y/xZ\ 2 

2 

Here f3y0(Z) is considered as a section of (^(Nyj X ) ® M^y/x)) • R- e c a^ ^ a t 

*Vo = ( A N P / X ® V ) y 0 ' 
Definition 13A3. Let ^ be the linear map xjj : a G F° —> cr/?yo G K^0. 

Let K* be the image of F° 0 in K"' 0 . By [19, Theorem 7.4], or by (8.41), ip is an 
isometry from F^ o onto . 

Let K*'-1-, K^'- 1 '- be the orthogonal vector spaces to in K° 0 , K^' 0 

respectively. We then have the orthogonal splittings 

(13.72) 
к 0 — к ' 0 m К70'-1-

к--° = к ; > к ; у . -

Let p , p x denote the orthogonal projection operators from K° 0 on K^, K^'1- with 
respect to the Hermitian product (13.70). 

Set 
(13.73) 

А и , т = р â £ f р , W W W Б и , г - p 2 l f р ± P i" , WWW C u , r = р DD Р« + , 

D u , t = Р € ~ Р х DW р , Su,t = Р €~ Р Х ^ Р Х Р € ~, Fu,t = Р г Р х ^ Р* + , 
G u , t = Р« + 3%$ р , WW Я Ü > T = Р* + Se£*? р х P*", WW 1 и , т = Р« + W Р« + . 

Then we write the operator WW as a (3,3) matrix with respect to the splitting 
K y o = K ; ° o © K y o x ' - © K y + o 0 > 

(13.74) LuT03 
^4u,t J3«,t Cw,t 
Ax,T ^u,T -Pu,T 
G U j t Hu,t Iu,t 

By proceeding as in Section 8.2, we know that for u G ]0,1], as T —• -foo, the 
differential operator WW has an asymptotic expansion of the form 

(13.75) o>3,y0 

«<4 
\®u,kTk'2 . 
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The MATRIX STRUCTURE OF THE OPERATOR SS AS T —» +00 231 

Therefore as T —* +00, the operators A u , t , B u , t , • • • have asymptotic expansions 
similar to (13.75). Put 

(13.76) v = 
1 

2 dim Y 

21' 

1 
A(ei)ei. 

Then v G N Y /x,n is the mean curvature of Y in X. 
We now prove one of the central results of this Section. 

Theorem 13.14 — For u G ]0,1], there exist operators A 5DL +DLR +°D u , E, F U I G u , 
H u , I u such that asT —• +00, 

(13.77) 

A u , t = A u + € ^ ) , B U , T = VTB u + 0(1), C u , t = TC U + 0(VT), 

D u , t = V f D u + €(l) , E u , t = T E + 0( \ / t ) , F U , T = T F u + 6(Vt) , 

G u , t = T G U + €(Vf), H U , T = T H U + €(y/f), / u , r — T 2 I U + ©(T 3 ' 2 ) . 

Let Çf>u be the operator acting on K y o 

(13.78) <3>u = uF*~ \ t p 2 ( u P T Y Z ) V A i m Y u { u P T Y z ) -
21 

2£' + l 

c(e*) 

V2 
s 
pNY/Z Z 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dd(TY,gTY) 

+ 7; V i „ v / x (<pV-){uP T YZ), V* „ V« , (<pV-)(uP T Y Z) 

- { V d n y / x ^ 2 ) ( u P t y Z ) [ s + -
\pNY/xZ\2 

2 
PE-

Then the following identities hold 

(13.79) B u = p g > u p x P € 

C u = p P t - <p 2 (uP T Y Z) 1 
и 

21' uc(°rei) * 
V2 

3 

lu 
- [ Td(TX,gTX)cb.'{Z 

+ - / a ( v € . „ , w ^ ) ( « P r y z ) + 
?l In. 

2l 

2t'+l 

cUi) 
V2 

* o r e t V ) { u P T Y Z ) \ p t \ 

D u = p t p ± ® u p , 

E = p x I * ' I — i A N y ' x + i \PNy<*Z\ 2 + 5 J P«~ p x , 
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232 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—A^t) ... 

G u = PS + 4> 2 (uP T Y Z 1 
u 

2£' 

dd1 

(ttc(°re¿) 
V2 

3 

ddu 
V Î r e V ) ( u P T Y Z ) 

+ \ r { V ) „ , w V ) { u P ™ Z ) + J 2 ^ ( v î r e i v ) ( u P ^ z ) ) p , 

I U = L_ p€ + (fo, V + f + (1 - у>2) P« + ) (t. P T Y Z ) P i + 

Proof. Using formulas (13.15), (13.25), (13.39)-(13.42), the proof of our Theorem is 
the same as the proof of [19, Theorem 13.22]. • 

13.9 The asymptotics of F r f c 1 / 2 ^ 1 T f c - 1 / 2 F f 1 

We use temporarily the same notation as in Section 8.1. 
Take x = (y, Z) € °lle0. We identify £ x to in the same way as in Section 8.1. Also 

we identify (ttJ>A(7£S) ® h (T*WX)) x to (tt^A(7£S) § A ( T * ^ X ) ) y by parallel 

transport with respect to the connection3Vy^A^T^5^®A^T X^ along the geodesic in 
x , t e [o,i] ->(y,tz) . 

Then the restriction of Ai,t to °tleo acts naturally on smooth sections of A(TRS) §> 
E(eo), and so it defines a superconnection on E(eoVT). 
Definition 13.15 . Let © be the superconnection on E, 

(13.80) ® = D H + 
21 c(ef) 

V2 
Bv{ei) + \V%V%V{y) 

- [ Td(TX,gTX)cb.'{Z,gt)- f (d(TXdimYTd) 

- [ Td(TX,gTX)cb.'{ZdimYTd( 
2 ' ' 2x/2 

Now we give another version of Theorem 8.5. Of course the difference is that 
we have used a different trivialization of 7TyA(T^S) ® A(T*(°'1^X). In what follows, 
Z € N Y / X , n 

Theorem 13.16 — As T —• +00, then 

(13.81) F r k ^ A ^ T k - ^ F ^ 1 = TV+{y) + V T ( D N ^ X + V%V{y)) 

+ & + - i=o ( | z | 2 a"*-/* + |z | a y + \z\ d s + \z\ + \ z f ) 

Proof. Inspection of the proof of Theorem 8.5 shows that the only term in 
F T ^ ^ A r k ^ ^ F ^ 1 which may eventually modify the expansion in (8.10) is 
F T k 1 ' 2 D x k - 1 l 2 F ^ \ - 1 
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1 

233 

Clearly 

(13.82) D x 
if 

i 

- [ Td(TX,gTX)cb.'YT 
y/2 T e i 

Using (13.82), we find by a formal argument that with respect to [19, Theorem 
8.18] or to (8.10), there is an extra contribution in the present expansion of 
F T k 1 / 2 D x k - x ' 2 F ^ 1 given by 

(13.83) 
OÛ 

2£'+\ 

(Zyq^A{T^S)%A{T<°̂ X) __ 0^7r^A(T^S)êA(T*{0A)X) 
y 

(Z), 
c(e/ 
V2 

V e i 

29. 

2£' + l 

cleA 
V2 

fOyr77r;rA(T^S)êA(T^0^X) 3r7̂ A(T£S)®A(T*(°>iy>X) 
y 

{eu 

U3^A(T^S)êA(T'(°^X) _ 0V7rï,A(7£,S)®A(r*<0'l>X)\ ( Z ) , D N y / x \ 

Now by (7.27), (13.15), (13.18), it is clear that for 2£' + 1 < i < 21, 

(13.84) <3-̂ -k̂ A(T Ŝ)§iA(T'l(-0-1'>X) _ OiçirlA(T£S)®A(T*(0'1'>X) (Z) 
c(ei) 
V2 

= 0. 

Also by (13.18), 

(13.85) 
21 

2e'+i 

cieA 
V2 

<0V^A(T^S)§A(T*<°'1)A-) _3tjnlra(n^S)®A(T'(°'1'>X)\ ^ 

2£ 

2i' + l 

d a ) 

V2 
' * Z x f ? ' N i r ' x + T v { f ? ' v , e t ) ; e i 

f ac(ej) 
V2 

2£ 

2£'+l 

c(ei) 
2y/2 

' q V \ fh,w fh,w 
° \ ei)Ja ->J(3 

f h , n y / x —tx f h , n y / x jot , v e . Jq 
y 

fa fb 

Using (7.27) again, the first expression in the right-hand side of (13.85) vanishes on 
W. Also by (1.6), (7.27), we get for 2£' + l < i < 21, 

(13.86) 
, f H , N Y / X ì V T X f H , N Y / x X = _ ( f Z ^ * t t v , f * , v t e i ) \ 

- [ Td(TX,gTX{Z,gt)- f (dimYTd(TY,gTY) 
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Moreover using (1.5), (1.6), we obtain 

(13.87) - [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY) f (d 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(TX 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(TX,gT 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dim 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(TX,gTX)cb.'{Z,gt)- f 

From (13.85W13.87), we find that 

(13.88) 
2t 

2£'+l 

c(ei) 
V2 

/0Vir^A(TAS)êA(T*<o'l>Jf) _ 3V7rî.A(T^S)§A(T*<0'1)X)\ ^ 

= - k r F 
d(TX,gTX)cb.'{ZdimYTd(T 

2s/2 

From (8.9), (8.10), (13.83), (13.84), (13.88), we get (13.81). The proof of our Theorem 
is completed. • 

Theorem 13.17 — The following identity holds 

(13.89) - [ Td(TX,gTX)cYT 

Proof. The proof of our Theorem is the same as the proof of Theorem 8.8. Note that 
here, the identity (8.48) is not needed. • 

Using [19, Proposition 8.9] and Theorem 13.16, we find that a sT-> +oo, 

(13.90) f t a h t f ^ = t v + ( y ) + V t ( D N y ' x + V%V{y)) 

C dim V 
V2 

c(v) + 0 
1 

y/T' 

Also 

(13.91) 
\ d h , d n y / x ] - 0 

fa A °V A ( r . ; 'X>®t D^v/x L n 

By squaring (13.90), using (13.91) and comparing with (13.77), one gets an 
explanation for the simplicity of formula (13.78) for 9V 
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13.10 A family of Sobolev spaces with weights 

Let q be the orthogonal projection operator from (7rJ^A(T¿5) §> A(T^Y) 
e A ( Ñ y / x ) <g> £) y o on (tt^A(T¿S) ® A(T¿Y) ® {exp(0)} ® rç) . Recall that p is the 

orthogonal projection operator from K^0 on and that p x = 1 — p. By an obvious 
analogue of (8.43), we know that if 5 G K^0, 

(13.92) ps(Z) = 
1 

ndimNY/x exp 
- pNY/x Z 2 

2 

q 
NY/X,r,y0 

exp 
- m 2 

2 
s ( P T Y Z + Z ' ) d v N Y / x ( Z ' ) . 

Let be the adjoint of the map ip : Fq —• K° 0 denned in Definition 13.13 with 
respect to the Hermitian product (13.69), (13.70). Then 

(13.93) tp* = xf> 1 p . 

Definition 13.18. If Z 6 (T R X) y o , U € (T Ry)j, 0 , set 

(13.94) 

9u,t(Z) = ! + ( ! + P 1 r Z r \ 
1/2 

<0 
1 
2 

u P T Y Z 

+ 1 + 
\pNY,xZ\2 

T 

1/2 
q u 

.2VT 
p N y / x Z 

gu{U) = 1 + ( l + |C/|2 1/2 
L 

wi7 
2 

The algebra (w^A(T^S) ® A (T£F))j,0 splits into 

(13.95) (7r^A(T¿5)§A(r¿F)) y o = 
2(dimVr+dim 5) 

0 
(7r^A(T¿5)(8)A(r¿F)^ 0 

This sphtting induces corresponding splittings 

(13.96) 

K0yo 
2(dim Y+dim 5) 

0 
K0r,yo, 

K0yo 
2(dimY+dimS) 

0 
K0r,yo, 

Definition 13.19. If 5 € K ° y o , set 

(13.97) \S\u,T,y0,0 
(TrX)V0 

I i2 r 12(2dimy+2dim5-r) / ~\ » , / ~\ 
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236 The analysis of the two parameter operator exp(—A^t) 

Let ( , ) u T ? / 0 ) o ^ e Hermitian product on K.yo which is the direct sum of the 
Hermitian products on the Kj! jJ /0's associated with formula (13.97). 

If ¡1 € R, let K^0, K^'^ be the Sobolev spaces of order /x of sections of 
(ir^A(T^S) ® A(T^Y) ® A(N*Y / X) § e ) ^ , ( ^ A ( T £ S ) ® A(2£Y) § A(AT*/X) § £ ± ) ^ 
over (T R X) y o . If s € K£ 0, we write s = s+ + s~, s ± e K*-". 
Definition 13.20. If s G K j 0 , set 

(13.98) | < T t y o > 1 = g k + | ^ 0 ) 0 + ^ |P X ^l ! ,T , y o ,o 

2̂ ' 
+ T | | P ^ / - Z | P ^ s - l ^ + \ p s \ l M + £ I** sl',T, y o,o 

1 
2£ 

+ T E l v ^ i s l ! x , , o 
2£'+l 

Then (13.98) defines a Hilbert norm on K*0. Let K^ 1 be the antidual of K^0 and let 
I L,T,2/0,-i ^e ^ e norm on ^yo associated with the norm | \U yT,y o,i on " J 0 . ^ e 

identify K.ya with its antidual by the Hermitian product (, }UiT,yo,o' 
We have the family of continuous dense embeddings with uniformly bounded norms 

(13-99) K£0 - K° 0 -> K " 1 . 

In view of Theorems 13.11 and 13.14, it should now be clear that the functional 
analytic arguments of [19, Sections 13 k)-13 o)] can be used without any change. 
In effect, the asymptotic structure of as T —» +oo is exactly the same as in 
[19, Section 13]. Of course, we have the extra Grassmann variables / a , but these are 
exactly of the same nature as the e% (1 < i < 2£f). 

Details are left to the reader. 

13.11 The operator E y o 

Definition 13.21 . For u > 0, y 0 G Y, let be the operator from F y o into itself 

(13.100) ™» = ^ ( A u - B U E~ X D U - CuI^Gu)^ . 

In view of (13.79), one verifies easily that Ef[0 is a second order elliptic differential 
operator. 

H U E Bj o

y(0,e), we identify (tt^A(T^5) § A(T*WY))u, rju with (tt^A(T£S) 
®A(T*WY)) y o , rj y o by parallel transport with respect to iv*wA(T£S)§A(T*<01>y),^ 
V77 along the geodesic in Y t € [0,1] —• tU. 
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Let G u be the linear map 

(13.101) h € —• G u h € F y o , Guh(U) = /i(~), U E T n Y y o . 

Let Y%yo be the operator acting on smooth sections, of (7r̂ A(T£S)<§> A(T*(°>l)Y) § 

*»))vo 

(13.102) =GZ 1 B% 2 G U . 

Let E^'y o be the operator obtained from E^'y o by replacing the Clifford variable c(e*) 
(1 < i < 21') by - Then E ^ 0 is a differential operator acting on smooth 
sections of (nfoA(T&S) § A(T£Y) § r?))yo over jBjo

y(0,£/tx). 

Now we prove the obvious extension of [19, Theorem 13.43]. 

Theorem 13.22 — Over 13^(0, e/2u), the following identity holds 

(13.103) Y%y° = Ey

u° . 

Proof Using Theorem 13.17 and (13.90), the proof is formally exactly the same as 
the proof of [19, Theorem 13.43] and of Theorem 9.25. • 

13.12 Proof of Theorem 13.2 

Using Theorems 13.11, 13.14, 13.22, the proof of Theorem 13.2 proceeds as the 
proof of [19, Theorem 13.6] in [19, Section 13 q)]. • 

13.13 A proof of Theorem 6.19 

Now, we will establish (6.85). Namely we show that if hU ix is one of the fonctions 
#u,t, A;5t, A2, t, < > t , < t , then for u e]0,1], T > 1, 

(13.104) \ K t / * - K \ < § 6 ' 

To make the discussion simpler, we will take hu^r = #u,t> the discussion for the other 
cases being much easier. Also the proof of (6.85) for h U y r = Vu,t (with u > uq > 0) 
is essentially similar. 

An evaluation of the limit of 0 U i t as T —*• +oo 

First we will show that for u > 0, 

(13.105) lim 0 u , t = 0*. 
t—>+oo 

We will recall a few identities from [14, Theorems 1.7, 1.14 and 2.6], which are more 
precise than Theorem 2.14. Recall that u v ' H was defined in (3.16). 
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238 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(-A„iT) ... 

Theorem 13.23 — The following identities hold 

(13.106) 
V£"'2 =£''2 = 0, 0,V£''2 = 0, 

[v*",dx]=o,[vE',x*}=o,dx*}=o, 

[vE",u>v]=0,[vE',u>H]=0,[vE',u,v>H]=0, 

- [ Td(TX,gTt)- (d(TY,gX)cbt)- (d(TY,g.'{Z,gt)- (d(TY,g 
V2 ' | _ - ' - j ^ 

V 5 " , ^ 1 ' 0 ) ) ] = [dX,c (Tv^) ] = 0 , [ v E ' , c ( T v ^ ) ] = [dx*,c(TyW)] = 0 . 

Proof. These results are proved in [14]. In particular the third identity was established 
in [14, Theorem 1.7 and eq. (2.21)]. Of course, the reader should keep in mind that 
d in [14] is V2dX. • 

For a € C * , t i > 0 , r > 0 , set 

(13.107) 

au[t = audX + Tv + VE" + da d 
da 

i ^ H 
2u2aa2 

c(TnhO) 

2y/2ua 

A^T = aud * + Tv* + VE' + da d 
da 

ivv>H 

2u2aa2 
c(rv(o,i)) 

2y/2ua 
a1 - a1" -4- a1' 

Then A\ T is a super connection on E over S x C * . 
Proposition 13.24 — The following identities hold, 

(13.108) 
Au',T = EXP 

-tu,™ 
2u2 Id2 

ad + Tv + Ve" + dâ 
d 
dâ 

exp 
dd1r+dr 

2u2 lai2 t 

AÏ,T = exp 
iu>v>H 

2u2 |a|2 
âôX* + Tv* + V£' + da 

d 
da. exp 

d+d2r+dr 
2u2 \a\2 . 

Proof. This identity immediately follows from (13.106). 

Theorem 13.25 — The following identities hold, 

(13.109) 
¿1 '2 — n A1 '2 — fl 

Al'2Tla=1 = Al,T + dau^~Au,T + tàu-ërA'u,T + dadïï 
d+d1rd+d 

U2 
Proof. By Theorem 13.23, 

adX+Tv + VE" + dû 
d 
da, 

2 
= 0. 

(13.110) 
{ ad** + Tv* + Ve' + da 

d 
da 

2 
= 0. 
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Prom (13.108), (13.110), we get the first two identities in (13.109). Then, 

(13.111) ¿1,2 _ \a1" Al' 1 

By (13.107), (13.110), (13.111) we get 

(13.112) 
^«, t | 0 = 1 — -^u,t + da ud X \dxA^H\dxA \̂ 

2u 

+ dei ud X \ d X \ i u v > H ] 
2u 

dada .гиг 
u 2 

Using Theorem 13.23 and (13.112), we obtain 

(13.113) 
Air*. . = A i T + do u d X c(TvWc(Tv) 

2V2u 

+ da udX* c(Tv(ic(TvA 
2y/2u 

- dado iüJv>" 
u 2 

which is exactly the last identity in (13.109). The proof of our Theorem is 
completed. • 

Remark 13.26. It should be pointed out that the identities in (13.109) are not special 
cases of (13.106). In fact there are associated with the fibrations V x C* —• S x C*, 
and V x C* is equipped with the (1,1) form j ^ c j v , which is not closed over V x C*. 

By Theorem 13.25, it is clear that 

(13.114) e U i T = - Trs N M exp -Л 1 ' 2 

У4л/т| а = 1 

- dadaNY 
dada 

To study 6 u ,t as T —• +oo, we will proceed as in Chapters 8-9. However the situation 
is subtler, because the holomorphic and antiholomorphic directions in V have now 
been made in some sense independent. 

Let / i , . . . , fm be a locally defined smooth basis of T r S . Similarly, g i , . . . , # m 

denotes a locally defined smooth basis of T.S, g^ . . . , # m the corresponding conjugate 
basis of TS. Of course Z 1 , . . . , / 2 m (resp. g 1 , . . . , # m , resp. g 1 , . . . ,g r n ) denote the dual 
basis of T^S (resp. T*S, resp. T*S). 

Instead of Definition 7.16, we now define. 
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240 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—A*iT) ... 

Definition 13.27. Set 

(13.115) 

Au',T = exP 
a<* c(a"'Nv/x) 

ua y/2 
q*c(qZ'Ny/x) 
ua a/2 

Au,T exP 
9<* c ( a ^ x ) 
ua y/2 

q<* c(a"'NY/x) 

ua y/2 

Au,T = exP 
9« c(o^ny/x) 

ua a/2 
AtT = exp «• [ad + TV 
ua y/2 

Au,T 
2u2 Id2 A y p 1 2u2 lal2 / 
ua J 2 

â<*c(â"'NY/x) 
ua y/2 

Au,T = au\t + Au,T 

Clearly, A}uT is a superconnection on E over S x C * , which is conjugate to -A* T. 
Now we will give a formula for A^'T, which extends Theorem 7.17. 

As in (7.36), we will assume that 

(13.116) 
f/a,/al = 0, 

\9oli90] = °, [9*1 9b] = 0 . 

Let w±,...,Wi be an orthonormal basis of TX, let w1, . . . , w£ be the corresponding 
dual basis of T*X. 

Theorem 13.28 — The following identity holds 

(13.117) A\[T = ad* + Tv + T A ( ^ T " X m ' H w ù c ( V l * g » ^ x ) ) 

-~9ahc(Wi)c V Z x a ^ x ) + 

dâ 
Fi 

da 
oa c(a^Y/x 
a2 72 

i q^qP 
2 aâ2 

u,v(q»>w<7I»>w] 

AtT = 
a 

exp «• [ad + TV + + da— exp 
u't I 2u2 Id2 A y p 1 2u2 lal2 / 

+ 1 ( IqÏn* '* .1ZXtE'n* '*\ - të'N*'*.Tfcx<£'N*'*\\ 

- [ Td(TX,gTX)cb.'{Z,gtTd(TY,gTY) clwi) 
y/2 

X D+DN?R 
a a/2 

yrjTX -H,NY/X\ 

â Œ a ^ 

2 |a|2 
h,ny/x TX -H,ny/x\ 

ti,isY/x TX h,imy/x\ / h,ny/x V( H,V -H,V\\\ 
- \ 9 i iv-">ny/x9d ) — \9a ,1 \9r i9i ) / ] -

Astérisque 

file:///9oli90


A proof OF Theorem 6.19 241 

Proof. Clearly 

(13.118) 9Q 
a 

c(ga 
h,ny/x ga 

a 
c(ga .h,ny/x d 

da 
ga 
a? c(ga 

h,ny/x. 

ga 
a c(9c 

h,ny/x 9° 
a C(9a 

m,ny/x 9* 
a CKQot 

h,ny/x 

-~ot 
9 a c(ga 

m a m d 
da 

2gagb 
ao? 9ot 

h,ny/x 
9f3 
M,NY/X > 

Prom (13.118), we deduce that 

(13.119) exp 
- [ Td(TX,gTX)(TY,gTY) 

a \/2 
T c(9a'NY/X] 
a V2 

dà (TX,gTX)(TTX,g 
da Inn? 

exp 
a" rla?'NY/xi 
a y/2 

9<*c(g^Y/x) 
a x/2 = da 

- [ Td(TX,gTX)cb.'gTY) 

da a2 V2 

iga gb 
2aâ2 

(wv(g<* Ddddd ,ge ddddd ) + " {9oc,9a) 

By (7.44) and by (13.119), we find that the coefficients of da coincide in (13.117). 
Also 

(13.120) dX = c(Wi) 
V2 

f (dimYTd(TY,gTY) 

Using (13.120) and proceeding as in the proof of Theorem 7.17, we obtain the full 
(13.117). The proof of our Theorem is completed. • 

Remark 13.29. Needless to say, a strictly similar formula holds for A* T. In both 

formulas ga A V^J(0,1>X)S€, pa A ^ ^ ^ ^ have been replaced by g<* A 
A(T*(o.i)x)g€ " A(T*^X)§>£ 

v-h,w j £/ A V H,w 

Now we suppose that w\,...,W2i> is an orthonormal basis of TY, and u^'+i , 
. . . , W2e is an orthonormal basis of Ny/x-
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242 The ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—Ai T ) ... 

Definition 13.30. Put 

(13.121) 

AH 
2£' 

1 

c(Wi) 
V2 

Td(TX,gTX)cb.'{Z,g 

fîny/x 
2£ 

2£'±l 

c(Wi) 
V2 

- [ Td(TX,gTX)cb.'{ 

X,gTX)c 
21' 

1 

c(wi) 
V2 

- [ Td(TX,gTX)cb.'{Z 

q ny/x 2P 

2£' + l 

c(Wi) 
V2 

- [ Td(TX,gTX)cb.'{ 

With the notation of Definition 8.2, 

(13.122) 
D H = "d 4- d . 

] j N Y / x = q"y,x + q"y,x* 

Definition 13.31. Put 

(13.123) S81" = a d H + a 
£ 

1 

c(Wi) 
V2 

Td(TX,gTX)cb.X,gTX)c'{ 

+ 5°A Td(TX,gTX)cb.'{Z,gt)-
<S5-W)» 

Td(TX,gTX 

Td(TX,g 
Td(T 
da 

Td(TX,gTX)cb.'{Z,gt)-
a z V2 

iuj w > H 

2 aa 2 

y 
qaqP c 

a 2x/2 
pNY/xTl,Q)̂gH,WV{l,ssssQ)̂gH,Wl,Q)̂gH,W TWihW-H,WO)(gHihW-H,W,W-H,W 

y 

We define S31' is a similar way. Then 

(13.124) 931 = 931" + 931' 

is a superconnection on E over S x C*. 

Now we use the same trivialization of (A(T*(°,l^X) ® £)We as in Chapter 8. 

Theorem 13.32 — As T —• +oo. 

(13.125) F r k ^ A ^ k - ^ F - 1 = Tv+(y) + y / T ( r i " Y ' x + Vf *,(</)) 

+ 231" + -±=o ( |z | 2 a ^ / * + jz| d Y + \z\ d s + \z\ + \ z f ) 
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Proof. To prove (13.125), we will use as much as we can the results already established 
in the proof of Theorem 8.5. 

By (13.117), (13.120) and by Theorem 8.5, it is clear that (13.125) holds in degree 0. 
Now we consider the terms of positive degree in A(Tp5) not containing da. The term 
of degree 1 in formula (13.117) for A \ T , not containing da, is the sum of 

- a factor of (f*A, which preserves the total degree in A(T*(0,1)X) 0 £. 

- a factor of g aA which increases by 2 the total degree in A(T^X) 0 £. 

Similarly the term of degree 1 in A ^ T not containing da is the sum of 

- a factor of <f*A, which decreases by 2 the total degree in A(T^X) 0 £. 

- a factor of p aA, which preserves the total degree in A(T<°^X) 0 £. 

If we make a = 1 in (13.118), we find that the term of degree 1 in A^'T, which does 
not ontain da, can be read off from the corresponding term in A u , t by selecting those 
terms which can be described as indicated before. 

Now in the right hand side of formula (8.9) for 95, the term of degree 1 in A(TpS) 
preserves the total degree in A(T*(0,1^X) 0 £. Thus we find easily that when making 
da = 0, (13.125) holds in degree 1 in A(T^S). 

The identity (13.125) for the term containing da is trivial. Prom now on we exclude 
this term, together with the corresponding term in A ^ T which contains da. 

In degree 2 in A(T^S'), in A*"T, we have sums of 

- terms with g^g^, which increase the degree in A(T*^°'1^X) 0 £ by 1. 

- terms with ~gOL~ĝ \ which decrease the degree by 1. 

Similarly in degree 2, in A^ T , we have 

- terms with g^g^ which decrease the degree by 1. 

- terms with g ag^ which increase the degree by 1. 

Again this shows that these terms can be detected from the expression (7.37) for 
A u,t- By noting that in 33, we only have terms containing pa<7^, from (8.10), we find 
that (13.125) holds in degree 2. 

In degree 3, A^ T is proportional to the piece of type (1,2) in A u,t- Using Theorem 
8.5 again, we find that (13.125) holds in degree 3. The proof of our Theorem is 
completed. • 

Remark 13.33. A corresponding result holds for A][ T. 

Put 

(13.126) DNY/x,a = a d
N r / x + a d N Y / x * . 

Let a 1 / 2 be the natural square root of a € C* near a = 1. 
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For a G C*, put 

(13.127) 0 a -
1 

^ dim NY /x 
exp 

\Z\2 aO 
2 Id Id 

Then by proceeding as in [6, Theorem 1.6] or [19, Theorem 7.4], one verifies very 
simply that for y € W, f3y spans the one dimensional L2 kernel of the elliptic 
self-adjoint operator D N y / x , a + x/T^^ acting on the vector space of L2 sections 
of 7T*(A(Ny/X) ® A(Ny-/X)) over Ny/x,n,yi and moreover, 

(13.128) 
ny/x,r 

11/3*11 
,gYTd(TY,gTY 

2ir)dimNY/x 

We define ipa as in Definition 8.7, by replacing /3 by /3 a. More generally, all the 
objects introduced in Chapter 8 now depend explicitly on a G C*, so that the whole 
construction is fibered over W x C*. 

Put 

(13.129) 

- [ Td(TX,gTX)cb.'{Z,gYTd(TY,gTY) a i u j w ' H " 
oE lunnr 

c ( T w { i m 

,gYTd(T 

Td(TX,gTX)cb.'{Z,gYTd(TY,gTY) ,gYTd(TY,gTY) 
da 2uaa2 

c ( T w ( i m 
2V2ua 

Td(TX,gTX)cb.'{Z,gYTd(TY,gTY) 

Needless to say, B ^ 1 " and B™1' verify identities similar to (13.108). 
Now we prove the following non trivial extension of Theorems 8.8 and 13.17. 

Theorem 1334 — The following identity holds 

(13.130) 
t/T W o t * = B F 1 " . 

^ - y g 1 jnl> = B™1 

Proof Clearly on W x C*, (3 is of total degree 0 in A(Ny / x ) ® A(N$ / X ) . Then the 
argument of the proof of Theorem 8.8 show that the terms not containing da or eta 
coincide in both sides of (13.130). By the same arguments as in Theorem 8.8, 

(13.131) d(TX,gTX) 
-za. --h,Ny/x \ . w h 

a y / 2 2 aa z 
d(TX,gTX) 

i ^ H 

2 aa 2 

So to establish the first identity in (13.130), we only need to show that 

(13.132) d(TX,gTX) 
a 
do b 

a 
da 
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Equivalently, we have to show that 

(13.133) dß a 

da A ) = 0 . 

Clearly 

(13.134) dB 
di 

\z\ 2 

(dimYTd 
i a 
lâ\a\ •0/3«. 

Then 

(13.135) dß a 

da ßa 1 
(dimYTd(TY,gTY) (dimYTd 

exp 
izi 2 

\a\ 
', l^l2 

4 | a | a 

exp (dimYTd 
a 

|2 i a 
2 a lai 

öexp aJB. 
\a\ 

expl a0 
(dimYTd 

dvjvw v. (Z) 
I (27r) d i m i V*v x 

One has the easy 

(13.136) 
exp( 

(dimYTd 
(dimYTd 

.9 
Qdim Ny/x 

öexp /i.a. 
> l 

,exp( 
aO. 
\a\ 

dim Nv/ y a 
2 \a\ 

r̂ dim Ny / x 

Moreover 

(13.137) (dimYTd 
exp(- \Z\À) 

d v N Y / x 

-Tj-dim Ny/x = i , 

(dimYTd 
|Z | 2 exp(- |Z | 2 dVNY/x 

(diYTdmYTd = dim Ny/x • 

From (13.135)-(13.137), we get (13.133). 
To complete the proof of the last identity in (13.137), we only need to show that 

(13.138) YTd YTd 
dt 

YTd 
d 

da ' 

or equivalently that 

(13.139) 'dß a 

da Ä, > = 0 . 

This identity can be proved as before. We can also use (13.128) and (13.133), from 
which (13.139) follows. • 
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Since A\£T does not contain differentiation operators in the a or a direction (it is 
a curvature, i.e. a tensor), by (13.115), 

(13.140) < T l a = 1 = exp 
F c U " ' N y / x ) 
u y/2 < T | a = 1 exp 

F 

u 
c ( / ? ' n y / x ) 

i.e., -4„ iT | a = 1 is obtained from ^4„' 2

r | o = 1 by the same conjugation as A \ T is obtained 
from A \ T in Chapter 7. By (13.140), we get 

(13.141) Tr s [jVH exp {-AX*T + dadUN^ }} = 

Tr s UVHexp ( - Â 1 * + dadâÂfë )1 . 

By using the Lichnerowicz formula (12.39), Theorems 13.32 and 13.34, (13.141), and 
by proceeding as in Chapter 9, it should now be clear that given u > 0, as T —• +oo 

(13.142) Trs [JVH exp (-Al ' 2

T + daaaN%) 
dada 

-h. Ì dimJV y / x Tr s [exp ( - B ^ 1 , 2 + dadâ(N$ + Ì dimN Y /x)) ' dada 

By using (13.114) and the analogue of (13.113) for B ^ 1 , we see that (13.142) is 
equivalent to (13.105). 

The connection 3v"vA(ris)®A(R!,)®A(T,(°'1'x) 

We use the notation of Chapter 12. First we extend Definition 13.5. 
Definition 13.35. Let 3V7rj,A(T^s)§A(R2*)§A(T*(01)x) be the conneCtion on 
tt{>A(T£S) ® A(R2*) § A(T*(°-1)X) along the fibres X over <HLe, 

(13.143) 3y7r̂ A(T^S)§A(R2*)®A(T*<°-1)A') 0y7r̂ A(T^5)®A(R2*)§A(T*<0'1>X) 

+ ( v T X f ? ' N Y / x + T v ( f ? > v , . ) A > U H , w ) p T X > \ r c { e i ) 

+ l { ( s v { . ) f S < w , f f > w ) d(TX,gTX)cb.imYTY,gd(TY,gTY) 

+ - L ( c ( ^ 1 . C i . o ) ) TX)cb.'{Z,gt)dimYTd(TY,gTY) 

+ - L ( ^ ' ( 0 . 1 ) ) + V2( f ? ' N ^ x , S °>») f ) dà. 

In view of (12.45), (13.18), (13.143), we see that the obvious analogue of (13.19) 
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is now 

(13.144) 2 îrlrA(T£S)êA(n.2*)êA(T*(0>1)x) 3y tt̂  A(T£S)§A(R2" )®a(t*(0) x ) X) 

- [ Td(TX,gTX)cb.'{Z,gt)(TY,gTY) - [ Td(TX,gTX)cbTd(TY,gTY) / t tc(ei) 
a/2 

1 
V2 

c ( P T * - . v m d a + - ^ c ( P T * . ^ ) d a . 

Our fibrewise trivialization of tt^A(T£S) <g> A(R2*) <g> A(T*^°'1>X) is now done with 
respect to ^ v A ( T ^ s ) m n ^ A ( T ^ x ) ̂  

We define the operators Wd dd = ^ u y o as in (13.33), where the operator A^ T ^ u is 
replaced by 

exp 
- f a c 

u a/2 
H,NY / X. Jot J - [ Td(TX,gTXmYTd(TY,gTY) <9 

5w A 
u,T/u 

dâu a 
du 

a 
u,T/u 

- dadâNv exp 
fa 

u 
c ( C N y / x ) 

The operators i£2'^0, M ^ 0 are defined as in (13.37), and S ^ ^ . M ^ as in Defini­
tion 13.8. 

Using the Lichnerowicz formula (12.39) and (13.144), we get an analogue of 
Theorem 13.10. Theorem 13.11 remains formally unchanged, essentially because in 
(13.143), P T X \ vanishes on NY/xfL-

The algebraic structure of xxxd a s u ~* 0 

As in Section 12.7, we briefly explain the behaviour of ££3'jr as u —+ 0. The 
argument given in this Subsection will be used later in establishing estimates on 
\9u,t/u — &t\- For 1 < 3 < 2£\ equation (13.51) is now 

(13.145) u 
[ Td(TX,gTX) 

V2 j u 

( u P T Y Z + ^ = P N ^ x Z ) = 

e> A ~ i e , ~ u (T w ( fZ> w , P T Y Z ) , eA /« + u ( P T Y z , eA da 

+ u ( p T Y z , e i ) dâ + € [ u 2 { \ p t y z \ 2 
- [ Td(TX,gT 

T 

and for It! + 1 < j < 2£, equation (13.52) is formally unchanged. Equation (13.55) is 
also unchanged. 
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Equation (13.58) still holds. Equation (13.59) is now 

(13.146) /2ynlA(T£S)®A(Il2m)§>A(T*<0>VX) _ 3^n{rA(T£S)®A(n2*)§>A(T*(°>Vx)\2 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dimYTd(TY,gTY)- [ Td(T f (dimYTd(TY,gTY) 

+ r ~ M ' ^ ' U S ' W ) P T X l . ) + 4 t ( A ' ( . ) P T x 2 S 1 ' ° \ e i ) c( e j)da 

+ - l U ' u p ™ 9 . ™ ^ ) ^ ) * - ( A ' ( f ^ ) P T X \ , P t x 2 m ^ ) r d a 

- ( A ' { f S ' W ) P T X l . , P T x 2 • ( 0 ' 1 ) ) f a d ä + ( p T X \ W \ P T X \ W ) d a d ä . 

Also observe that if Z, Z' € (T R X) y o , if U € T RY, 

(13.147) 
(ALAZ)P I f*'*Z',U) = ( A ' ( P T Y Z ) P N ^ X Z ' , U ) 

= - ( A ' ( P T Y Z ) U , P N ^ X Z ' ) 

= - ( A ' ( U ) P T Y Z , P N v/*Z') . 

Put 

(13.148) 
d2/3 _ 2/3v7ir^(A(T^S)§A(R2*)®A(T*(0'1)X) 

_ 2/3r77rC,A(T£S)®A(T*<0'1>X) 

Clearly, 

(13.149) f3V7r^A(T^S)gA(R2*)§A(T*(0'1)X) 2v77r̂ A(T^S)®A(R2*)§A(T*<°'1'X) _ 

3r7ir̂ A(T^S)§A(R2*)®A(T*<°'1'X)l [3^7^ A(ï£S)§A(ï,*(0'1) X) 

2V7rC,A(T^5)§A(T*(0'1>X) _ 3v̂ A(TiS)®A(T*<°-l>X)l 

, [ŝ Tr̂ ACT ŜjSACT-C.̂ X) R 2 _ p3l 

+ [i?3 2V7r̂ A(T^S)§A(T*(°'1)-X) _ S y ^ A ^ S ^ T * ' 0 ' 1 ) * ) ] , Tp3 d2 _ p3] 

Observe that since TX 1 and TX 2 are orthogonal, 

(13.150) r i ? 3 . ^ 2 - ^ 3 ! - 0 . 

Now we explain how to calculate the limit of { u ^ J v ^ M T Z S ^ n ^ M T ^ x ) ^ 
(Z, e ^ " 1 } ^ as u —> 0. We use the analogue of (13.58). Again we claim that 
no term in the right-hand side of (13.149) contributes to the limit. We already 
saw this after (13.62) for the first term. To see that the second term does not 
contribute, we use the expression (13.18) for 3y7r^A(T^5)§A(T^01)x) The term 
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0y7r^A(T^5)§A(T*(o'1)X) R2 _ R3 does not contribute, since R2 — R3 only contains 

ClifTord variables in TX2, and °VTX preserves TX2. As to the second term in the 
right-hand side of (13.18), its bracket with R2 — R3 does not contribute to the limit, 
because of the second identity in (1.35) and (7.27). The third term in the right-hand 
side of (13.149) does not contribute to the limit, because Af(.) exchanges TX1 and 
TX2. 

By Proposition 11.8, (11.61), (12.46), (13.63) and by (13.146)-(13.150), we find 
that as u —> 0, 

(13.151) iu2^3uV^A(T]15)8A(R»-)SA(T-(o.i)X)>2(Z) ^ - 1 J . 

<(t*V™'2 - V^PTYJTXPTYdadâ - PTYA2PTY) Z, a ) 

- da ( a P t y . , P ^ / x d , o ) \ _ ¿5 /^pry#> pivv/x(o,i) \ 

By (12.39), (13.151), we see that as u —> 0, the operator ^H '̂i° converges to ^Iq'j? 
given by 

(13.152) 443,1/0 _ _ 1 
2̂  

1 
Vi Vpivv/Xe + VpTYe. 

+ 3 ( (**(V™'2 - V^ÎPTK JTXPTFdada - P ^ < P*^) P ^ Z + — - ¡ = 1 ) , e< \-

d+d1r i* TX,: d+d1r+dd 
Vo Vf 

pTYei __ 1 
2 

-*vTX,2pTFz pNY/xe\ 
yo 

4- APryei; 
d+d1r+d1 

d+dr 
4- d+d1g+er1 d+d1r+dr1dr 

Vf 

vrd 
c(APTYeA 

V2 
1 

d+dr 
^l(upTYz + JLpNr/xZ) 1 

y/2 
dP^/xe^dâ 

i 

+ i* (V**2 + ± Tr rvTX-2D- vrd+d dimX 

2 

Using (13.145) and the considerations which follow, we see that to the right-hand 
side of (13.65), we should add 

(13.153) daV%TYzv(y) + dâV^pTY-v* (y). 

Together with the identities (13.66), there is now the obvious 

(13.154) P« (daViTYv(y) + dâViTY^v*(y))P^ = 0. 

Then by (13.152), (13.154), and by proceeding as in Section 13.7, we find that as 
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u -» 0, 

(13.155) 

@u,T/u —• — 
1 

i 27t2 

dim y 

Iy 
dim y - [ Td(TX,gTX)cb.'{Z,gt)-

f (dimYTd(TY,gTY) 

2 
±TS+± Tr [R T X ] 

f (dimYTd(TY,gTY) Tr [exp^V7*'2)] 

By using Proposition 5.32, (13.155) is equivalent to 

(13.156) f (dimYTd(TY 

a result we already established in Section 12.7. The techniques of this Subsection will 
be used in Section 13.14 to establish the second half of Theorem 6.18, i.e. to obtain 
the estimate (6.84). 

An estimate on \0U^ T/U — 0* 

By the previous considerations, we find that the obvious analogue of Theorem 13.14 
remains true for the new operator ¿£ '̂2?. In fact, we have verified that the arguments 
of the proof of Theorem 13.14 apply verbatim to our new problem. In particular the 
new operator 9^ is still given by (13.78). 

Now we explain how to extend Theorem 13.16. First we redefine the connection 
3V7r^A(T^5)§A(r2*)®A(T^01)x) in formula (13.143) by keeping 
oV7r^A(T^5)§A(r2*)®A(T*(01)x) unchanged, and by scaling g<* into Ç , g<* into ge / a , 
da into # , dâ into 
Definition 13.36. Put 

(13.157) = a d H + a 
A clwi) 

V2 
- [ Td(TX,gTX)cb.'{Z,gt)-

+ T A f (dimYTd(TY,gTY) 
<32-w)» 

BJ-a«>w) 

+ dâ d 
dâ 

T c Ç g ï " Y / x ) 
â 2 y/2 

d(TX,gTX) 
2aâ2 

c( tw(1,0)) 
2V2â 

We define S 1 ' in a similar way. 
Now we prove an analogue of Theorem 13.32, where we use the trivialization 

associated to 3V^A(TA5)âA(r2*)0A(T*(°'1)x) instead of ov**vA(TZS)§A(T*Mx)m For 

more details, we refer to Section 13.3. 
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Theorem 13.37 — As T —» +00, 

(13.158) F T k ^ A ^ ' k - ^ F - 1 = Tv +(y) + ^ ( a d " Y / x + Vf v(y)) 

+ s 1 " + - ^ o ( | z | 2 dN*/x + |z | a r + \z\ d s + |z | + \z \ 3 ) . 

Proof. Given Theorem 13.32, we proceed as in the proof of Theorem 13.16, where we 
used Theorem 8.5. With respect to (13.125), we have an extra contribution given by 

(13.159) \ 
2£ 

2£' + l 

[c{PTY-z)dä,c{wi)} V W i + I 
21 

2£'+\ 
c(wi)c(P T Y Wi)dä 

- [ Td(TX,gTX)cb.'{Z,gt)-(dimYTdY) 
a 2y/2 

Since Z £ NY/x,Hi tne firs* two terms in (13.159) vanish identically. Our Theorem 
now follows from Theorem 13.32. • 

The obvious analogue of Theorem 13.34 is now. 

Theorem 13.38 — The following identity holds 

(13.160) 
<T W "mi> = BY 1 

- [ Td(TX,gTX)cb.'{Z,gt) 

Proof. Our Theorem follows immediately from Theorem 13.34. • 

It should now be clear that the same methods as in Sections 13.1-13.12 show the 
existence of C > 0, 6 <e]0, 1] such that for u e]0,1], T > 1, 

(13.161) &u,T/u — @u 
C 
j1ô 

13.14 A proof of the second half of Theorem 6.18 

Now we will prove the second half of Theorem 6.18, i.e. we establish the existence 
of C > 0, p > 0 such that for u e]0,1], T > 1, 

(13.162) 0u,t/u~0t\ < C u p . 

In Section 12.7 and Subsection 13.13, we gave two proofs of the fact that for T > 0, 
as u —• 0 

(13.163) 0u,t/U~0t\ <Cup. 

We will show how to use the formalism of the present Section 13.13 to prove (13.162). 
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By the previous arguments, it is clear that the analytic formalism of the whole 
Chapter 13 is very close to the one of [19, Section 13]. To simplify the references, we 
will prove, in the context of [19, Section 13], i.e. when 5 is a point, that there exist 
C > 0, p > 0 such that for u €]0,1], T > 1, 

( 13.164) Trs [ n u e x p ( - ^ T / j ] - J $ Trs [N H exp(-2fc|2)] chfa, g r < Cu p , 

The extension of (13.164) to the case where S is arbitrary or to the proof of (13.162) 
will then be essentially the same. 

So now we assume for simplicity that S is a point. By (11.21), (13.2) and by 
proceeding as in Chapter 9, we get for u g]0, 1], T > 1, 

(13.165) Trs [N»G u {Al T / u ) ] j < cexp (-jïp) 

So to establish (13.164), we only need to show that 

(13.166) Trs 
N H F u ( A l T / u ) ] - J $Tr s [JVH exp(-2ST2)] ¿1(77,gn) < Cu p . 

Take yo e Y. We replace F u ( A ^ T / u ) by Fu(<£%$!) as in [19, Section 13 g)] or in 
(13.38). By [19, Theorem 13.32], we know that given m > 0, there exist c > 0, 
C > 0, such that for u €E]0,1], T > 1, we have the uniform bounds 

(13.167) 

sup 
ZENY/x,ii,oENY/x,ii,y0 

NY/x,iENY/x,ii, 

(1 + \Zo\)m \ f u ( ^ ) ( Z o , Z 0 ) \ < c , 

sup 
Z,Z,€(TrX)V0 , 

\PT YZ\\PT YZ'\<M 
I p ny/x z J} J p ny/x Z ' J < £ ^ 

|a|, |c/1 <rn' 

dimYTdimYd 
d Z a d Z ' a 

{Z,gt)- f (dimYTd(TY,g 

By [19, eq. (13.143)] or by (13.98), if s e K*0, 

(13.168) s + 

u,T,y0,l 

Cu\*Lt,vo,o 
T 

By [19, Theorem 13.28], we get for A G U, u €]0,1], T > T 0, 

(13.169) \ cp3,yo dimYTd(TY,gTY) 

dimYTd( 
<C(1 + |A|)2. 
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Using (13.168), (13.169), we obtain easily 

(13.170) 

p « + ( a - i £ ^ ? ) p«+ 
0,0 

u,T,y0 

Cu(l + iad2 

T 

p«+ ( a - ^ ) _ 1 p « -
i0,0 

u,T,y0 

Cn(l + |a|)2 
T 

p*~ (a - x 3 ^ ) pt+ 
|0,0 

tu,T,y0 

c«(1 + |A|)2 

T 

By [19, eq. (13.241)], for T > T0, 

(13.171) - i (i*vLx>2PTYz.pNr'xei)- i (i*vLx>2PTYz.pNr'xei) 

Prom (11.10), (13.171), we get 

(13.172)de 

P*+Fu cp3,2/o 
vrd 

p«+ 0,0 

d+d1d 
< Cu 

T 

P*+Fu dvr 
dvr 

dd+ 0,0 
lu,T,j/o 

< Cu 
T 

PC Fu £>3,V0 
d+dr1e 

p«+ H 0,0 
\\u,T,y0 

< 
Cu 
T 

If s e K , has compact support, put 

(13.173) \s\*,=T p S 
.2 
IO,T,y0,0 

+ T\\PNZ\p±S\l lo,T,yo,0 

^l(upLpNr/xZ) 
21' 

1 
eiSlo.T.wn.O + T 

2£ 

2t' + l 

Yz + JLpNr/xZ) 

Observe that 

(13.174) I I2dldlm +dklrdkr— lim 
u—>0 

i2 
S\u,T,y0,l 

Let K°r> be the obvious Hilbert spaces associated to the norms | |0 T yo 0 and 

I ll,T,2/o,0* 
If k = 0,1, A;' G N, if s G K~ has compact support, put 

(13.175) l l2d+ss+s+ d+ss+s+s+s+zs — 
Pl0,T,2/o,(fc,fc') ™ \ot\<k' 

\ZOls\o,T,y0,k ' 

Recall that for yo £ u > 0, the operator 2)2,2/0 (which is attached here to the exact 
sequence 0 —» TT —> TX\w —> NY/x 0) nas been described in Theorem 5.8. Also 
GU,T has been defined in (13.36). 

Now we prove an analogue of Theorem 12.9. The whole point is that while in 
Theorem 12.9, T = 1, here T > 1. 
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Theorem 13.39 — There exist C > 0, p e N such that if u e]0,1], T > T0, A e U, 
i / s e K " has compact support, 

(13.176) d+d1r d+d1r+d 
d+d1r 

p£ o>3,i/o p£+ 
vrdd 

fA- P ^ ^ P ^ V 1 
vrt 

<C«(l+|A|)*'|s|o xcm +<C«(l+|A|)*'|s|o 
d+dr1d+rd 

<C«(l+|A|)*'|s|oIT,vo)(l,4) • 

Proof. Consider the operator J/lg T° m (13.152), with da = 0, da = 0. First, we claim 
that 

(13.177) P* -P* idj'*° d -P* i d j ' * ° - P * idj'*°P* ~TSyo 
rp pNY/x Z 2 

2 s 
\u,T,yo,-l 

< Cu |«|0,T,yo,(l,4) * 

First we consider the contribution of M?u^ to (13.177). Recall that WWW is given by 
[19, eq. (13.87)], which corresponds to (13.40). Clearly for 1 < i < 2£', 

(13.178) °TeAuPTYZ + 
u 

VT 
:P*Y/XZ) = °TeAuPTYZ)+G 

u pNy/xZ 
VT 

From (13.178), we find that since 0rei(uPTYZ) e (TRF)yo, 

(13.179) 
VTPN^x°Tei(uPTYZ + u 

VT 
pNY/xZ\ = 0(7/. \PN*/XZ\) . 

PTY\ei{uPTYZ + u 
VT 

pNY/xZ) = °Tei(0) + 0 u PTYZ\ + 
u 

d+d1r 
pNY/xz\ ) 

Also by [19, eq. (13.122)], for 2£' + l<i< 2£, 

(13.180) °rei(uPTYZ + u 

d+<10 
PNY/XZ) = 0Tei(uPTYZ) + 0 

u2 \pNY/xZ\2' 

T 

Moreover, in the considered trivialization of X, 

(13.181) 
2£ 

2£' + l 
72 
/orei(uPTYZ) • 

+1s+s1e+s 
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Also by [19, Theorem 13.19] (which corresponds to Theorem 13.11) 

(13.182) f (dim 
2£ 

2£'+l 

c 
,gTY) 

(°rei)VÎTeV(uPTYZ+^=PN-^Z)P^ = 

- [ Td(TX,gTX)cb.'{Z,gt)-Y 
21 

2£' + l 

c&)Vp»Y/xzVKeiV(uPTYZ)pt- +C(u2PN-/x \Z\2), 

YTd(T 
u 

21' 

1 
!(e* A-\iei)VÎTeiV{uPTYZ + -!L;Pny/xZ)PZ~ = C(u \PNr '*Z\) , 

p r I-v2{uPTYz + - ^ p N ^ * z ) p s - = I \ p N ^ z \ 2 + HX£ 

V=1^=(PN-'*Z), v«ddrdd s x V* drd dx V-{uPtyz) + C(u2 \ p n ^ z \ 2 ) . 

From (13.179)-(13.182), we get (13.177) easily. 

As in [19, eq. (12.74)] and in (12.60), put 

(13.183) 
- i (i*vLx>2PTYz.pNr'xei) Lu,2 = Pt-<£s'y£ps+, 

Lu,3 = P t + £ ^ P Z ~ LuA = f ^ X R ^ • 

Also we define L'u2/3, L'^2/3, L'uA, L^A, LfA as in [19, eq. (12.97), (12.104)], so that 

(13.184) 
Lu,2/3 — Lu,2/3 ' 

•̂ «,2/3 
U 

Lu,4 — ^uA + 
T" 
j-/, , a u 

Till 

U2 

Observe that our iE^y^ corresponds to ^'îjyu in Chapter 12. 

Take <t G K~0 with compact support. Then [19, eq. (12.99)] is now 

(13.185) 

¿;,2(A - LuA)^L'UtZa <C(1 + |A|)A < CT |(Л - Ьи^)~1 Ьщ3а\ т <C(1 + |A|) 
d(TX,gTX)cb.'{Z,gt)dTXb.'{Z,gt))i 

<C(1 + |A|)A«|LL,3a|tif:rf0i_1 

<C( l + |A|)2«HUimi 

(in the first and last inequalities, we used the fact that scalar differential operators 
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preserve £j" and £:;). The analogue of [19, eq. (12.100)] is 

- [ Td(TX,gTX)cb.'{Z 
Z,mYTd( 

u ltfc,T,2/o,-l 
< C ( l + |A | ) 2 |L ' ' a 

\u,T,y0,-l 

C(l + |A|)2u 
T 

Z,mYTd( u,T/u,yOì0 
C(l + \X\)2u\a\ 

w,T,2/o,0 ' 
Z,mYTd( 

u 
(A-L w , 4 )

 lL' u^o 
u,T,y0-l 

CT 
u 

(A - L U i 4 )
 1 L ' u 3 a 

u,T,yo,0 

Td(TX,gTXgt)-mYTd(TY,gTY) u,T,y0,l 

< C ( l + |A|)2|L^3<r 
u,T,y0,-l 

Cll + \X\)2u 
T 

Z,mYTd( 
u,T,yOl0 

< C ( l + \ \ \ ) 2 u \ * \ u ^ y o A , 
(13.186) T" 

U 
(A — LUi4) 1 T" — T" 

u 
a 

u,T,2/o,0 
CT 

ct 
- [ Td(TX,gTX)cb.'{Z,mYTd(TY,gTY) Z,mYTd( 

C(1 + |A|)2 

U 
(A-L„,4)- 1 ( i» ,3- io,3V| u,T,y0,l 

. C(1 + !A|)2 

u 
(Lu,S ~ £0,3)°" Z,mYTd( 

g( l + |Al)2 

T (^u,3 - ^0,3)^ u,T,yo,0 
C(l + \X\)2u\(l + \Z\)a\ u,T,yo,0 ' 

The analogue of [19, eq. (12.101)-(12.103)] is 

(13.187) 

Til Til 

U 
(A — LUi4) Til 

-1^0,3^ 16 Z,mYTd( 
CT 

u 
- [ Td(TX,gTX)cb.'{Z,gimYTd(TY,gTY) 

u,T,y0,0 
Td(TX,gTX)cb.Z,gimYTd'{Z,gimYTd(TY,gTY) 

\u,T,y0A 
:C(1 + \X\Y {\ + \Z \ 2 f ' 2 L^cj 

\u,T,y0,-l 
C(1 + |A|)p« 

T 
(1 + | Z | 2 ) 1 / 2 ^ > 

u,T,y0,0 
с(1 + |л|)*и|(1 + | а д )cb.'{Z,gim 

(to establish the third inequality, some manipulations on commutators similar to the 
ones in [19, Proposition 11.34] are needed). 
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The analogue of [19, eq. (12.107)] is 

(13.188) 

- [ Td(TX,gTX)cb.'{Z,gt)-Til 
U 

f (dimYTd(TY,gTY) 
u,T,y0,-l 

Cu 2 

T 
(A — L u^) 1 dfhd 

U 
Au2 - -1 Til _ 

^0,3^ u,T,y0,l 

<C(1 + |A|)2 u
2 

T 

T" 

U 
f (dimYTd(TY,gTY) 

u,T,y0,-l 
C(1 + |A|)V 

rp2 
d(TX,gTX)cb.'{Z,gtimYTd(TY,gTY) 

2£1gTX) 
C(l + |A|)2tZ2 

rp2 
a\u,T,yo,0 • 

The analogue of [19, eq. (12.108)] is 

(13.189) 

£o,2(A - L ^ y ' L ^ X u 2 - L ' l ^ L ' ^ a 
u,T,y o-l 

(TX,g 
T 

(A - L u A ) - x L ' u A { \ u 2 - L ' ^ L ^ a 
u,T,y0,l 

C(l + \X\)2u2 

T 
L' u A {\u 2 - L ' : A ) - 'L l z a \ 

it,T,y0,-l 

If r 6 K4" has compact support, put 

(13.190) |T|~,2 _ - ,2 
\T\u,T,yoA ~ »u,T,y0,0 

2£ 

1 

(TX,gTX)cb.'{ 

Then 

(13.191) lTL,T,2/o,l — lTlu,T,2/o,l * 

Let i <C(1 + |A|)A i be the corresponding dual norm. From (13.189)-(13.191), we obtain 

(13.192) 

\ L " ( \ - L ^ L ' A X u 2 - L"' 4)- 1L'' ,al 
u,T,0,-l 

. C(l + |AI)2u2 

T 
L'AXu 2 - L ' " ) - 1 ^ 

u,T,y0,-l 
< C(l + |A|)2u2 |(Au2 - L ' z j - 'L"*- u,T,y0,l 

C(l + \X\)2u2 

T 
i ̂  

a\u,T,y0,l 

C(l + \X\)2u2 

T \a\u,T%yo,l 

Bv (13.188W13.192), we get 

(13.193) 

(TX,g 

U 
(À — LUi4) 

Til 
.1 ^0.3 u 

- [ Td(TX,gTX)cb.mYTd(TY,gTY) 
ix,T,y0,-l 

C(l + |A|)2u 
T 

a\u,T,y0,l ' 
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Also 

(13.194) 

- [ Td(TX,gTX)cb.'{Z,gt)- f (dX)cb.'{Z,gt)imYTd(TY,gTY) 
u,T, 3/o,-l 

< CT I ((Au2 - L -4 ) - 1 + (L '^)- 1 ) ^ o > u,T,y0,0 
C 
T 3 

|( |A|W

2 + r 2 « | Z | ) ^ > u,T,yo,0 
TX)cb. ulAI 

T 2 laL,T,i/o,0 l^lu.T.t/o.O 

By (13.177), (13.185)-(13.187), (13.193)-(13.194), we get (13.176). The proof of our 
Theorem is completed. • 

Using (13.167) and Theorem 13.39, we proceed as in [19, Sections 11 p) and 13 q)] 
to get (13.166). 

The proof of the second half of Theorem 6.18 is completed. • 
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14. A proof of Theorem 0.2 

In this Chapter we establish Theorem 0.2. The proof is much simpler than the 
corresponding proof of Theorem 0.1. At a formal level, it simply consists in exchanging 
the role of the parameters u and T in the proof of Theorem 0.1. Because of the formal 
similarities, we simply sketch the main steps in the proof of Theorem 0.2, leaving the 
details to the reader. 

The Chapter is organized as follows. In Section 14.1 we establish an identity 
4 

^ Jj(.0 = $(d7 / 0 + cM'°), which depends on parameters e,A,T0 with 0 < e < 1 < 
k=l 
A < -f-oo, 1 < To. In Section 14.2, we briefly study the asymptotics of the J£°. In 
Section 14.3, we show that the divergences of the I'® add up to 0 in P 5 / P 5 , 0 . Finally 
in Section 14.4, we prove Theorem 0.2. 

In this Chapter, we use the notations of Chapters 3, 4, 6. Recall that H(X, — 
H(Y, r]\y) is a vector bundle on S. Also, here, we assume that for i > 1, 0 < k < m, 
H ^ X ^ ^ x ) = 0. This implies that for i > 1, H^Y.^y) = 0. Also the H°(X^ k \ X ) 
(0 < k < m) are holomorphic vector bundles on S. 

14.1 A closed form on R+ x R+ 

Put 

(14.1) B ^ T = A u T , u . 

Let f? T be the form on R+ x R+ x S 

(14.2) 

PL,t = ^ T r s [ n v u t ) 2 exp( -K 2

T ) ] + ^ Trs [(Nf u T ) 2 - N H ) exp(-P£ T )] . 

Using Theorem 4.1, we obtain the obvious analogue of Theorem 4.3, i.e. a formula of 
the type 

(14.3) du.T&.T = d0 u , T + d# U y T . 
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Let T = r£iA,T0 be the contour considered in Section 4.3. By (14.3), we obtain the 
obvious analogue of Theorem 4.5, i.e. 

(14.4) J (3' = fry' + dS'. 

For 1 < k < 4, put 

(14.5) I' k°= / Ф/3'. 

Then (14.4) is equivalent to 

4 
(14.6) ] t i'k° = $(dy° + d6'°). 

k=l 
We will make A —-> +oo, To —• H-oo, e —• 0 in this order in identity (14.6). We will 
just sketch the study of the behaviour of the terms I'® (1 < k < 4), without studying 
in detail the right-hand side of (14.6). 

14.2 The asymptotics of the J f ' s 
The term J[° 

We have 

1 du 
u 

(14-7) I{° = J * <& Trs [(iV£ T ) 2 - JVh) exp(-#; 2

T o ) 

a) A —> +oo 

By Theorem 6.6, since H(X,£\X) is concentrated in degree 0, 

(14.8) J{° -> J? = * Trs [ ( N V T ) 2 - N H ) exp(-B; 2

T o)] ^ . 

P) TQ -» +oo 

Clearly 

(14.9) { B ' l ^ = u \ T 0 D x + Vf . 

Over 5, we have a holomorphic complex of Hermitian vector bundles 

(14.10) (ft,«): 0 -> #°(X> £m) — • tf°(X,&,)—(>, 
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.ker D x \r Dker D x 

Let be the holomorphic Hermitian connection on 3€. By proceeding as in Chapter 9 
(in a much simpler situation), we find that for a given u > 0, as T —* +00, 

(14.13) Tr s [(AT£T)a - ATH) exp(-B£ T o )] ^ - Trs [jVHexp(-(V* + uV)2] . 

Since for 1 < i < dimX, 0 < k < ra, JEP(X,£fc|x) = 0, the spectral sequence 
associated to the complex (J5, d + v) and the partial grading by N$ degenerates at 
jB2. In particular 

(14.14) H (X, f 1*) ~ ker V* - H (3C, v). 

By proceeding as in [19, Section 9], one derives easily from (14.13), (14.14) that as 
T 0 — +00, 

- the spectrum of T q D X + V converges to ±00 and to the spectrum of (counted 
with multiplicity). 

- The nonzero eigenvalues of TqD X + V stay away from 0. 

These two facts allow us to establish the required uniformity in the integral in the 
right-hand side of (14.8). Using (14.13), as T 0 —• +00, 

(14.15) I? -+I{ 2 = - J*™ $ TVS [Nk exp(-(V^ + tiV)2)] ^ . 

7) e -+0 

Put 

whose pointwise homology is concentrated in degree 0. Let v^* be the adjoint of v 
with respect to the L2 Hermitian metric on 7H induced by (2.22). Put 

(14.11) V* = v + v**. 

Using the identification %C ~ ker D x , we get 

(14.12) v x = p torD x

V pi 

(14.16) 

ch(ae,0*) 
m 

2=0 

( - i r c h ( ^ ° ( x , ^ | x ) , ^ ° ( ^ i - ) ) , 

ch ,(*,0*) 
771 

¿=0 

- i (i*vLx>2PTYz.pNr'xei)- i (i*'xeiv 
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Clearly 

(14.17) I[ 2 -ch'CM,9^)log(e)^ 

i ? = (Tr s [aTh exp(-(V* + uV)2)] - Trs [ n h exp(-V*' 2)] ) ^ 

- $ Trs [JVH exp(-(V* + uV)2)] ^ . 

S) Evaluation of i f 

We have an exact sequence of holomorphic vector bundles on s 

(14.18) 0 -> H°(X,U) — • • • — Co) — ^°(3«, v) — 0. 

Clearly the H°(X,£i) (0 < i < ra), whose direct sum is are equipped with the L2 
Hermitian metric induced by (2.22). Also since H°(^€,v) ~ kerT^, H°{Vt,v) is also 
equipped with a Hermitian metric g H (^»v). 

Let c h { { ^ g ^ ) , { H { ^ g ^ ) , g H ^ ^ ) ) e P s / P s # be the Bott-Chern class of [13, 
Section If)], such that 

(14.19) ^ - с Ъ ( ( Ж , д ж ) , ( Н ( Ж , д * ) , д н ^ ) ) = 

cb{H(-X,g*)tg)))-àbH<-*«*)))-àbÇX,g*)<-*«. 

Proposition 14.1 — The following identity holds 

(14.20) 

I ' 3 = - \ (&({X,g*),{H(?e,v),gHl*rtj) + r ' ( l ) c h ' ( ^ , ^ ) ) in P S / P S ' ° . 

Proof. By using the transgression formulas of [13, Theorem 1.15], one finds easily 
that H|(—2J{3) is just the right-hand side of (14.19). By deforming the complex 
(14.18) to a split complex over P 1 as in [13, Section If)], and using the axiomatic 
characterization of Bott-Chern classes in [13, Theorem 1.29] as in [13, Corollary 1.30], 
we get (14.20). • 

The term I$> 

Clearly 

(14.21) I " = - £ * Trs [Nfap e M - B ' l T ) ] . 
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a) A —• -foo 

By Theorem 6.6, 

(14.22) I ? -> J*1 = - £ *Tr s [ p 1 / T iV*P 1 / r exp ( - V j ? * * ) l 2 ) ] ^ . 

¿9) T 0 -» +oo 

Take s € S. By (6.12) 

(14.23) ( P 1 / T s , P i / t * ) 1 / t = ( P i / t T n " s , P 1 / t T
n " s ) . 

Since H(X, ^|x) — H(%£,v), we can represent any class in if(X, £|x) by s G kerV^, 

so that s e n°(X,^ 0 |x), 9 X s = 0, v^* = 0. Prom (14.23), we get 

(14.24) (Pi/tS, Pi/ ts) ± = (P i / T s , P i / T s ) . 

Let Po be the orthogonal projection operator from E on ker V*. Using the arguments 
after (14.14), we find easily that as T —• +oo, P x / r = Po + O(^). In particular if s is 
taken as before, 

(14.25) (Pi/ tS,Pi/ ts)^ = (s,s) + 0 ( i ) . 

From (14.25), we find that as T —• +oo, 

(14.26) 9 ^ X ) = 9 H ^ V ) + ^ ) , 

and so 

(14.27) v#(x,£ix) = sç?H(w,v) + G ^ a 

• 
By (14.22), (14.27), we find that as T 0 —• +00, 

(14.28) - i^2 = - ^ + ° ° *T3r. [ p 1 / t 7 V * P 1 / t exp { - V f f i * x ) ' 2 ) ] ^ . 

7) £ — 0 

I2 remains constant and equal to IRR 
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S) Evaluation of I ? 

Proposition 14.2 — The following identity holds 

(14.29) I'i = |ch ( H ( X , ^ x ) , g H ^ \ g « ^ ) in P S / P S ' ° . 

Proof. Since H(X, £\x) is concentrated is degree 0, 

(14.30) i ? = - / *Tr s \ P 1 / T N l l P 1 / T e x P ( - V f ? ^ > ' a ) l % . 

By (6.49) 

(14.31) J? = èch ( H ( X , e | x ) , ^ № € | x ) , 5 f / ? ' C | x ) ) • 

Using (14.26), (14.28), (14.31), we get (14.29). 

The term I3° 
This term was already studied in Section 6.4. 

The term I ? 
We have the identity 

(14.32) I f = f ° № [ a £ t ) 2 e M - B ^ T ) ] % . 

a) A —* +oo 

/4° remains constant and equal to j41. 

/3) To -» +00 
By proceeding as in (14.13), we find that as To —• +00, 

(14.33) I? - J? = l + 0 ° * Trs [Nfa , exp(-B* T)] ^ . 

•y) e О 
Clearly 

(14.34) = * Trs № e x p ( - ^ ; £ ) ] ^ . 
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(14.36) 
СГг(е) = J ^ T d ( T X , g T X ) * T r s [ехр(-С£)] , 

СХ(е) = I (dimXTd(TX) - Td'(TX)) ch(£) in Ps/Ps>°. 
Jx 

In particular the classes of C¥i(e), Cq(s) in ps/ps>° do not depend on e. 
Also by proceeding as in (14.13), one can prove that for e € [0,1], as T —*• +oo, 

the integrand in (14.34) is uniformly bounded by C(^g-). Using (14.35), we find that 
as e —• 0 

(14.37) I ? - ±CZx{e)± + C0v(e) log(e) - i f = 

By [14, eq. (2.126)], we know that given e G [0,1], there are forms CYi(e), C% (e) in 
P5, depending smoothly on £, such that as T —» 0, 

(14.35) < № exp( -^£ ) ] = ^ C r i ( e ) + Cgf (e) + €e(T2) 

and €e(T2) is uniform in e € [0,1]. Moreover by [14, Definition 2.25], 

/ $ ( t t s [ < 2 exp(-^)0)] - £ ^ - C j T ( 0 ) ) ^ 

/
4-0 № [JV£ e x p ( - ^ 0 ) ] ^ - iCÏ^O). 

Evaluation of I f 

Theorem 14.3 — 77ie following identity holds 

(14.38) / ? = è < - 5 I ( - l ) f c <C(1 + |A|)A <C(1 + |A|)A <n P*/P5'0. 

Proof The identity (14.38) follows from (2.50) and (14.37). 

The right-hand side of (14.6) 

As in Sections 6.7 and 6.8, one establishes the equality 

(14.39) 
a 

1 
1'* = Ф(д14 + д64). 

Of course, one needs to study in detail the right-hand side of (14.6). The situation 
being much simpler than in Chapter 6, we leave the details to the reader. 
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14.3 Matching the divergences 

We will only check that the divergences of the l£'s vanish in PS/PS,°. When 
A —• +00 there are no divergences (including in (6.54)), because H(X, £|x) is 
concentrated in degree 0. When To —• +00, no divergence appears. When e —* 0, 
we get the diverging terms in (14.17), (6.55), (14.37) which refer to 7{2, /32 and J42 

(14.40) ( - ch'(2e,g*) + cX(e) - DY) log(e) + h(DZ, - Cv_, (e)Y 1 
;£2 

By (2.51), (6.14), (14.36), using the fact that UJV is closed, (14.40) vanishes in 
pS JpSfi 

14.4 Proof of Theorem 0.2 

By (6.56), (14.20), (14.29), (14.38), the identity (14.39) can be written in the form 

(14.41) - ich ({K,g*),(H{K,v),gH^A) + 

'(2e,g*) + cX(e) - DY) log(e) + hd+dr 

d+d1rd+d1r+d1r 1 
o 

m 

k=0 
(-l)fcT(o;v)^) + i r ( l ) ( - c h / ( ^ ^ ) 

+ CX(0) — DQ) = 0 in PS/PS>°. 

As we saw in (14.40), the term after r'(l) in (14.41) vanishes in PS/PS>°. Also by 
the universality of Bott-Chern classes [13, Section If)], using the notation in (0.11), 
one has the identity 

(14.42) ch ({K, g*), (H(X, '(2e,g*) + cX(e) - DY) log(e) + h + x 1 e d 9 H ^ ) 

= ch(%,g%\ in PS/PS'°. 

Prom (14.41), (14.42), we get (0.13). 
The proof of Theorem 0.2 is completed. 
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15. A new derivation of the asymptotics of the 
generalized supertraces associated to a short 

exact sequence 

In [6], to a short exact sequence 0—> L —• M —> iV —> 0 of holomorphic 
Hermitian vector bundles, we associated a superconnection 9&t5 whose curvature 28^ 
was calculated in [6, Theorem 3.10] and in Theorem 5.6. Also in [6, Theorem 7.7], 
we established (5.22) in Theorem 5.11, by calculating explicitly the generalized 
supertraces as infinite determinants. 

In [19, Section 14], we briefly sketched another derivation of Theorem 5.11 by 
showing that as T —> H-oo, the operator 2)^2 defined in (5.16) can be written as a 
(2,2) matrix whose asymptotic structure is closely related to the matrix structure of 

described in Theorem 13.14 (with £+ =0). Still in [19, Section 14], we did not 
use the fact that 2J^2 is itself the square of the superconnection 2)t introduced in 
(5.15). Moreover the proof of [19, Section 14] was purely computational. 

In this Chapter, we come back again to the problem considered in [6] and in [19, 
Section 14]. More precisely, we show that if V and W are the total spaces of M and 
L, and if i: W —• V is the corresponding embedding, then the superconnection 0&t is 
just a special case of Ax The superconnection %t is just the analogue of 
and 2>t is the superconnection A 1 ^ in the trivialization of Section 13.9. Then we 
show that the asymptotics of 2)|,2 obtained in [19, Section 14] is a consequence of 
Theorems 13.16 and 13.17. 

In other words, it should now be clear that the main result of [19, Section 14] 
should be thought of as the prototype of some of the results we proved in the context 
of a general family of immersions, for the simplest such family, which is the embedding 
of L in M. 

This Chapter is organized as follows. In Section 15.1, we introduce the family of 
immersions i = L —» M. In Section 15.2, we construct the superconnections 2&t5 and 
we relate the conjugate superconnections %t and 2>t to A 1 v/^. 

We use the assumptions and notation of Chapter 5. 

cp3,yo 

A1, VT, 
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15.1 A family of immersions 

Let V, w be the total spaces of M , l and let ity: v —* B, 7Tw :• W —> J3 be the 
obvious projections. Then we have the diagram 

(15.1) l *- W 
\ . kw 

m — ^ v — ^ b 

which is the obvious analogue of (3.1). Moreover, with the notation of Section 3.2, 

(15.2) Nw/V = N]w . 

Let z be the generic point of M. Then the Koszul complex (7TyAiV*, y /^ l i j^ ) 
provides a resolution of the sheaf i*€\y, and restricts fibrewise to a resolution of 
i*€L. 

Now we use the notation of Chapter 3, with £ = 7iyAiV*, v = y/^ìij^zy In 
particular, if b E B, Eb denotes the vector space of smooth sections of 7Ty(A(M ) 0 
A(iV*)) along the fibre Mr^, and F), denotes the vector space of smooth sections of 
7r^A(L*) on Lr)6. 

Let t h v be the horizontal subbundle of t v associated to the connection VM. 
Using the splitting t v = t h v © 7rJ>M, we get the identification 

(15.3) A(7£V) = TTy- (A(2£B) 3 A(M£)) . 

Put 

(15.4) ujv=idd\z\2M . 

Let u;M the K&hler form along the fibres of Mr. Using (15.3), we see that uM can 
be identified to a real (1,1) form on v . Then a simple computation shows that 

(15.5) uv = ojm + ì ( r m * , ^ m . 

From (15.5), we see that ojv restricts to the Kahler form u>M along the fibres M, and 
moreover t h v is exactly the orthogonal bundle to t v with respect to ljv . 

Put 

(15.6) ujw = i*uv . 

Then by (15.4), 

(15.7) uw = idd\z\2L . 
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Let THW be the horizontal subbundle of TW associated to VL. Using the splitting 
TW = THW 0 7r^L, we get the identification 

(15.8) A(T£W) = **w (A(2££) § A(2£)) . 

Then we have the analogue of (15.5), i.e. 

(15.9) u w ^ + i i*L%2lL. 

Now to the previous datas on V or W\ we can construct the objects which we 
considered in Chapter 3. In particular if A, Af G TrJ3,Z G M r , 

(15.10) TV{AH'V, A,H>V) = RM(A, A')Z, 

the other components of Tv vanishing identically. Also £ = TTyAN* is naturally 
equipped with a Hermitian metric, and the adjoint v* of v = \f^lij(z) is given by 

(15.11) v* = - V ^ j W A . 

If V = v + v*,if Z = z + z, then, with the notation of Section 2.2, 

ic(Z) 
(15.12) F = v/2 

15.2 The superconnection s6t 

Let DM = #M + <?M* be the obvious Dirac operator acting on E along the fibres 
of B. In view of (2.31), (4.1), (15.10), the analogue of At which we note by 3&t> 
is given by 

(15.13) ®T = DM + VfV + V* - C<<RMZ) ? 
2v 2 

which fits with (5.7). 
If U G T r B , let Uh>Nl/m be defined as in Definition 1.8. Then one finds easily 

that on W, 

(15.14) ijH,nl/m =A(p)Z . 

If we extend Uh'Ny'x to the whole V by formula (7.30), where 7 is taken to be 1, we 
get 

(15.15) uH,nl/m = a(u)PLZ 
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Let V be the trivial connection along the fibres of M. Using (11.32), (15.10), we see 
that along the fibres of M, we have the identity of connections 

(15.16) lyirî,(A(7£B)®A(M*)) = y + 1 (RMZ \ 

By (15.16), we find that the parallel transport operator r from PLZ to Z along 
t € [0,1] -» PLZ + tPNZ with respect to ^V(A(T^B)®A(M')) IS GIVEN BY 

(15.17) r = exp(±(RMPNZ,PLZ)) 

By (11.33), (13.18), (15.15), formula (15.17) also gives the parallel transport operator 
with respect to 2VTTC,(A(T£B)®A(M*)) AND 3V**v(MTAB)®A(M')) _ 

By (7.35), (15.15), the analogue of A1 ^ is given by 

(15.18) %T = exp 
c(APLZ) 

y/2 
Sir exp '-c{APLZ)\ 

V2 

Now in view of (15.17), we see that when trivializing 7iyA(M*) by parallel transport 
with respect to 3y7r^(A(T£S)®A(M*)) jn directions of N (which are normal to L), 
%T is replaced by 2)T given by 

(15.19) aT = exp ( - \ (RM PN Z. PLZ)) %T exp (\ (RM PN Z. PLZ)) 

Equivalently, 

(15.20) 3 r = exp 
'c{APLZ) 

J5 
\{RMPNZ, PLZ) 

28T exp 
c(APLZ) 

V2 
±h(RMPNZ,PLZ)\ . 

As the notation indicates, formulas (15.18), (15.20) are compatible with (5.15). 
Prom (15.20), we see that when denning FT as in (8.8), the expansion as T —> -f-oo 

of FT^TF^1 is given by the right-hand side of (13.81). 
The analogue of BY is the superconnection on F 

(15.21) <&Y = DN + VF -
c{RNZ) 

2^2 

Then if (£ is given by the analogue of (13.80), by Theorem 13.16, 

(15.22) '(2e,g*) + cX(e) -

Note that in [19, Theorem 14.6], we calculated directly the expansion of 2)^ as 
T —• +00, by using (5.16). 

In retrospect, formula (5.16) for 2)^ and the asymptotic result of [19, Section 14] 
appear just as special cases of results we proved in full generality for families of 
immersions. 
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The superconnection Bt 271 

Remark 15.1. By (15.4), the form l j v is dd exact. If we use the notation in (7.23), 
we thus find that even though in general, T H W ^ THV\w, 

(15.23) P([uv]) = 0. 

This gives a (sophisticate) confirmation to the possibility (exploited in [6]) of 
deforming the complex (5.1) over P 1 to a split situation, where T H W = T H V\w 
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