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Introduction

Let i: W — V be an embedding of smooth complex manifolds. Let S be a complex
manifold. Let 7y : V — S be a holomorphic submersion with compact fibre X, which
restricts to a holomorphic submersion Ty : W — S, with compact fibre Y. Then we
have the diagram of holomorphic maps

(0.1) Y —W

I
1 k2
X—V A

Let n be a holomorphic vector bundle on W. Let (£, v) be a holomorphic complex of
vector bundles on V, which together with a holomorphic restriction maps 7: {ojr —
7, provides a resolution of the sheaf i.7.

Let Rmy.&, Rmw.n be the direct images of £, 7. We make the assumption that the
Rimw.n are locally free. Then Rmy.£ is also locally free, and moreover we have a
canonical isomorphism of Z-graded holomorphic vector bundles on S

(0.2) Rﬂ'V*f ~ R’II'W*'I].
Also for any s € S,

(Rmv«€)s ~ H(Xs,€x,),

(0.3)
(RWW*"’)S = H(Y‘H nIYs)

(here H(X;,§x,) and H(Ys,n)y,) denote respectively the hypercohomology of ¢ x,,
and the cohomology of 7y, ).

Let w",w" be real (1,1) forms on V,W which are closed, and which, when
restricted to the relative tangent bundles T'X, TY, are the Kéihler forms of

Hermitian metrics g7%,g”Y on TX,TY. Let gé°,..., gé, g" be Hermitian metrics

on &,...,&m,n.
Let (Y, ny), 5},) be the family of relative Dolbeault complexes along the fibres
Y, whose cohomology is equal to H(Y,nyy).
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2 INTRODUCTION

Let Td(TY,g”Y) be the Todd form in Chern-Weil theory which is associated to
the holomorphic Hermitian connection V7Y on (TY, g7Y). Other Chern-Weil forms
will be denoted in a similar way. In particular ch(n, g") denotes the Chern character
form of the Hermitian holomorphic vector bundle (7, g").

Let PS be the vector space of smooth real differential forms on S which are sums
of forms of type (p,p). Let Py be the subspace of the o € PS, such that there exist
smooth forms B and v on S, with a = 83 + 0.

By identifying H(Y,ny) to the corresponding fibrewise harmonic forms in
Q(Y,ny), the Z-graded vector bundle H(Y,7n)y) is naturally equipped with a Lo
metric, whose unambiguous normalization is given in equations (2.22), (2.23).

Let T(w",g") be the form in PS contructed by Bismut-Gillet-Soulé [14] and

Bismut-Kohler [18], using Quillen’s superconnections [32], such that
(0.4) %T(ww,g") = ch(H(Y,nyy), g" ")) — /Y Td(TY,g"Y)ch(n, g").
The forms T(w",g") are called higher analytic torsion forms. The component of
degree 0 of T'(w", g") coincides with the Ray-Singer analytic torsion of the relative
Dolbeault complex [34], which is used to define the corresponding Quillen metrics [33],
[13], [15] on det Rrw«n. By the same procedure, for 0 < ¢ < m, we can construct
forms T'(wY, ¢%) (0 < i < m) in PS.

Let (2(X,¢ X),_B_X + v) be the family of relative Dolbeault double complexes,
whose cohomology coincides with the hypercohomology H (X, §x). Let gH(X:&x) be

the corresponding Lz metric on H(X,§ x). Put ch(¢, %) = Z(—l)ich(fi,ggi). By
i=0
the same procedure as in [14], [18], we construct in Section 3.2 analytic torsion forms

T(wY,g%) € PS, such that
80
(05) %T(va gﬁ) = Ch(H(X’ ng)i gH(X,El)()) - /X Td(TXv ng) Ch(Ea g€) .

An important property of these analytic torsion forms is that, as shown in [18,
Theorem 3.10 and 3.11], their variations in PS/P5° with respect to (w",g") or
(WY, g%) is expressed in terms of the Bott-Chern classes [13] of the corresponding
holomorphic Hermitian vector bundles. These Bott-Chern classes are secondary
invariants of Hermitian vector bundles, one can think of as complex analogues of
Chern-Simons classes. In particular , it follows from [18, Theorem 3.11] that the
classes of the analytic torsion forms in PS/P5?0 only depend on wV,w" through
gTX, gTY. Note that in degree 0, these anomaly formulas of [18] specialize to the
anomaly formulas for Quillen metrics established in [15].

Before we proceed, we make certain restrictions on the various metrics. By
identifying the normal bundles Ny, =~ Ny,x to the orthogonal bundle to TY in
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INTRODUCTION 3

TX|y, Ny,;x inherits a metric gNY/x . We will assume that the metrics g%,..., gé
verify assumption (A) of [5, Definition 1.5] , with respect to g"Vv/x, g". This
assumption is a compatibility assumption on the metrics g, ..., g™ to the metrics
g",gNY/x  which is briefly described in Section 3.3. By [5, Proposition 1.6], one can
always find metrics g%, ..., g% verifying (A). Let Py be the vector space of sums
of real (p,p) currents on V, whose wave front set is included in Ny, v Let PV‘(;O be
the obvious analogue of P50,
Let T(¢, g%) € P, be the Bott-Chern current of [16] such that

88 _
(0.6) 2 T(€:6°) =Td Y(Ny/x,gN¥/*) ch(n, g")é(wy — ch(&, g°).

By [17], the dependence of the class of T(£,¢¢) in PY,/Py° can be described
in terms of Bott-Chern classes. Since T'(¢,g%) € Pj, by [30, Theorem 8.2.12],

/ TA(TX, g")T(£, ¢f) € PS.
X

Let TA(TY, TXw,g"Xw) € P /PW be the Bott-Chern class of [13], such that

(0.7) %ﬁ(TY,TxM,gTXIw):
Y
Td(TX|w, g"*™) - Td(TY, g") Td(Ny,x, g""*).
Since H(X,{x) ~ H(Y, ”IY)agH(X’g'X) and gF'¥'""v) can be considered as metrics

on the same vector bundle. Let ch(H (X, &x, gl X8x) gHYmy)) € pS /P50 be the
Bott-Chern class of [13] such that

90 ~
(08) %Ch (H(YvnlY)agH(X,fl)()agH(y’nlY)) =

ch (H(Y,nly),g" ")) — e (H(X, lx), g"*10)) .

Let {(s) be the Riemann zeta function. Let R(x) be the power series introduced by
Gillet and Soulé [26],

(0.9) R(z)= ) (

n>1
nodd

“.1 "(—n x"
21: H +2Cc((—n))) (=)= .

We identify R to the corresponding additive genus.

The purpose of this paper is to prove an extension of a result of Bismut-Lebeau
[19, Theorem 0.1], which corresponds to our main result when S is a point. This
extension is stated in two Theorems.
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4 INTRODUCTION

Theorem 0.1 — The following identity holds
(0.10) &I(H(Y,WJY),gH(X,§|x),gH(Y,77|Y)) —TW",g") + T(W", g%

T TX|
X Y

Td(Ny,x,g"Nv/x)
- / Td(TX)R(TX) ch(¢) + / TA(TY)R(TY)ch(n) =0 in P5/PSO,
X Y

ch(n, g”)

Assume now that for j > 0, Riny.& = 0 (0 < k < m), Riny.n = 0. Then
H(X,{x) ~ H(Y,ny) is concentrated in degree 0. Moreover, we have an acyclic
complex of holomorphic vector bundles ¥ on S,

(0.11)  H:0— H%X,&m) = HO(X,€m-1) = H°(X,&) — H°(X,§x) — 0.

Let g% be the obvious L; metrics on . Let ch(¥X, g%) € PS/PS? be the Bott-Chern
class of [13] such that

(0.12) @ch(% g%) = ch(H°(X, € x), g7 X&)y
= Y (=1 ch(HO(X, x), g X))
=0
Theorem 0.2 — The following identity holds
(013)  TWY,¢%) =Y (-)'Tw",¢%) ~ch(@,g)=0 in P5/PSO.

i=0

Our version of Theorems 0.1 and 0.2 is much more precise. In fact, we produce
explicit forms « and 6, which are local on the base S, such that the left-hand side
of (0.10) or (0.13) is exactly 0y + 8. Of course this fits with the construction of
Bott-Chern classes [13] on V or W or S, where the PV:0, PW:0 or P50 ambiguity are
local and universal, and with the construction of the analytic torsion forms of [6] and
[18], where the anomaly formulas are themselves local on S.

Note that when S is a point, Theorem 0.1 is exactly [19, Theorem 6.1], and
Theorem 0.2 is a special case of [19, Theorem 2.1]. In [19], the results are stated

in terms of Quillen metrics on det Ry & ~ ®(det Rmy.£9) (- D' ~ det Ry 4.
=0
We now list the already known results which are compatible with Theorems 0.1
2]
and 0.2. First, when applying 2—6 to both sides of (0.10) or (0.13), we get a trivial
i

identity. Also using [18] and [17], one verifies easily that (0.10) and (0.13) are
compatible to variations of all the metrics involved.
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INTRODUCTION 5

Using the transitivity properties of the currents T'(¢, g¢) established in [17], one
verifies that (0.10) is compatible to composition of immersions.

If S is compact and Kihler, since % applied to the left-hand sides of (0.10) or

(0.13) gives a known identity, a simple application of the 90 lemma of [28, p. 149]
shows that the left-hand side of (0.10) or (0.13) is the sum of (p, p) cohomology classes
on S.

If S is compact and Kihler, then V and W are compact and Kéhler. In [11],
Berthomieu and Bismut have calculated the behaviour of the Quillen metric on the
determinant of the cohomology by a proper submersion in terms of higher analytic
torsion forms. If S is compact and Kéhler, we deduce from [11] that if A is the
left-hand side of (0.10), the integral of A on a smooth complex submanifold of S
vanishes, or almost equivalently, that the pairing of A with the Chern character of
a holomorphic vector bundle on S gives 0. However the Hodge conjecture would be
needed to deduce from this fact that A vanishes in P5/PS0.

Let us assume that A is the ring of integers of a number field k. Suppose that
V,W, S are arithmetic varieties over Spec(A), and that

(0.14) w

AN

V=S5

is a diagram of morphisms over A. We assume that 7y and my are smooth and
projective, and that ¢ is a closed immersion. Let X,Y be the fibres of wy, mw .

Let X be the finite set of complex embeddings of £ in C. If ¢ € X, let V, be
the complex variety obtained by extending the scalars from A to C. Let V., the
complex manifold Voo = J, 5 Vo We define Wo,, So in the same way. Let Foo be
the conjugation map.

Let n be an algebraic vector bundle on W, let (£,v) be a complex of algebraic
vector bundles on V' which resolves 7.7.

We suppose that at oo, i.e. over Voo, W ..., objects we have considered before
have been introduced, i.e. forms wV>,wW= metrics g, ..., gé, g", which are F,-

invariant.
Let CH(V),CH(W)... be the arithmetic Chow groups of Gillet and Soulé [24].
Let APP(VRr) be the vector space of real smooth forms a on V,, of type (p,p), with

. ~ 7 APP(VR)
F*a = (—=1)Pa. Let APP(VR) be the quotient APP(VR) = Im3 + Imd Let a be the
m m

embedding @ APP(VR) — Eﬁ(V) If (E, g¥) is an algebraic Hermitian vector bundle

P
over V, let Td(E, g¥), ch(E, g¥) € CH(V) be the corresponding characteristic classes
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6 INTRODUCTION

of Gillet and Soulé [25]. Let Td*(T'X, g7X) € CH(V) be the modification of the class
Td introduced by Gillet and Soulé in [26].

Let us recall that in [26], Gillet and Soulé have defined &l(ﬂ'W! (n,g™) € ﬁ(s ) by
the formula

(0.15) ch(mwi(n, g")) = ch(Rmw.n, g"™ ") — aT (W%, g").

Similarly, we can define ch(my1(&;, g&)), ch(mvi(€, g%)).
In [26], Gillet and Soulé formulated the conjecture that the following Riemann-
Roch-Grothendieck formula holds

(0.16) ch(nwi(n, ") = m. |[TA*(TY, g™ )eh(n, g")] -

In [27], by using [19], they proved (0.16) for the first Chern class. In [22], Faltings
has given a proof of (0.16) for arbitrary Chern classes, based on a deformation to the
normal cone technique.

By using [17, Theorem 4.13], we see that Theorem 0.1 implies that

(017)  ch(mvi(€, 9°)) — ch(mwi(n, g") = v [TA(TX, g™X)ch(€, o))
— mw. [TA*(TY, g™ )h(n, g")] -

Also from Theorem 0.2, we get

m

(0.18) ch(mvi(€,9%)) — Y _(=1)'ch(mv1(&, 9%)) = ach(¥, g%) .

1=0
So (0.17)-(0.18) are compatible with the conjectured formula (0.16) of Gillet-Soulé.

Let us now briefly describe the strategy which is used in this paper for the proof
of Theorem 0.1.

1. The case where S is a point and the general case

The general strategy of the proof of Theorem 0.1 is roughly the same as the one in
[19] for the case where S is a point. Namely, in the context of the local families index
theorem of [4], and in the formalism of Quillen’s superconnections [32], we produce a
differential form 8, 7 on R} + R’ x S, such that if d,  denotes the partial exterior
differential with respect to u,T’, then

(0.19) dyrB=038y+86.

If T is a closed rectangular contour in R} x R, which bounds a domain A, we obtain
the basic identity

(0.20) /Fﬂ=5/Av+a/A5,

ASTERISQUE-



INTRODUCTION 7

so that /,B € P59,
r

Theorem 0.1 will be obtained by deforming I' in R} x R} to its boundary in R2,

This strategy is formally the same as in [19]. Also since the construction of the
analytic torsion forms in [18] is, roughly speaking, a perturbation of the construction
of the Ray-Singer torsion [34] using the infinitesimal deformations of the fibres X or
Y, most of the intermediate results or techniques of [19] are used in the present paper.
Therefore we refer to the introduction of [19] for a description of the techniques which
are used there, while we concentrate on some of the essential differences with [19].

2. The right-hand side of (0.20)

If S is compact and Kihler, P50 is closed in PS. In this case, if one is just interested
in establishing a non local form of (0.10), i.e. just the existence of non explicit (i.e.
non universal and non local) forms v and é such that the left-hand side of (0.10)
is Oy + 89, one can skip the technically heavy Sections 5.7-5.9, 6.6-6.8, 11.11, 12.7
and 13.13-13.14.

In the general case, because S is non compact and also because we want to obtain
the best result as possible, i.e. a local universal explicit form of the right-hand side of
(0.10), we need to study the right-hand side of (0.20) in much detail. The estimates
on this right-hand side are much harder to obtain (we have to control double integrals
in u,T and not only integrals in u or T).

3. Relative local index theory

While local index theory was used in [19], and in particular the local index
theory rescaling technique of Getzler [23], here we work in the context of the local
relative index theorem of [4]. In particular the standard Levi-Civita connection of a
Riemannian manifold is replaced by the Levi-Civita superconnection of a fibration
[4].

In this paper, we adapt in our context the rescaling techniques developed by
Berline-Getzler-Vergne [3] to establish the local families index theorem of [4].

The algebra of the families index theorem of [4] being more demanding that
the algebra for the standard local index theorem, this introduces unavoidable
complications with respect to [19)].

As explained in [4], [12], [11], the Levi-Civita superconnection of a fibration [4]
can be thought of as the adiabatic limit of the Levi-Civita connection of the total
space, when the metric is blown up horizontally, and the horizontal Clifford variables
are properly rescaled in the sense of Getzler [23]. Roughly speaking, our proof of
Theorem 0.1 can be understood, to a certain extent, as the adiabatic limit of the
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8 INTRODUCTION

proof of [19]. Still this analogy provides us only with a partial intuition of the analysis
which is needed in the proof.

4. The horizontal vector bundles 77V and THW

Using the anomaly formulas of [18], we can reduce the proof of Theorem 0.1 to the
case where w" = i*wV.

Let THV, THW be the orthogonal subbundles to TX, TY in TV, TW with respect
tow",w" . In general, T#Vjy, and TH¥W do not coincide. As explained in Section 7.5,
there is a cohomological obstruction to finding w" such that T Viw = THW. We
are thus forced to work in the general case where 77 Viw # THW . This is in dramatic
contrast with the situation one meets in the C'°°° category, where one can always
assume that T Vi = TEW.

In [4], [14], the bundles TV, THW are used to construct unitary connections
VUK LX) YY) on Q(X, € x), QY,my). Also in [19], for T > 1, a family of
embeddings Jr: Q(Y,ny) — Q(X,€x) is constructed. Roughly speaking, in [19],
Q(Y,n)y) is viewed as a subcomplex of currents on X, localized on Y. Here, because
TH Vw # THW , the connection V¥ (X:€1x) does not “preserve” V(Y:mv) This has
dramatic analytic consequences. In particular, when written in matrix form as in [19],
our operators do not have the prefered asymptotic structure, which plays a key role
in the analysis of [19].

To deal with this difficulty, we construct in Chapter 7 an extension of THW to
the whole manifold V, and we conjugate the Levi-Civita superconnection of V' by
an operator which measures the non coincidence of T#V with TH#W. Because of
the need to control various local cancellations, the extension of THW to V is non
arbitrary.

After conjugation, the Levi-Civita superconnection of V' becomes analytically more
pleasant, but it contains many more extra terms. As a deformation parameter 7" tends
to infinity, the fact that these terms vanish asymptotically follows from mysterious
identities established in Chapter 1.

5. The Levi-Civita superconnection B, r and its curvature B2 ;.

Put DX = 3" + EX*, V = v + v*. In [19, Sections 8 and 9], the analysis of
the supertraces of operators like exp(—u2(DX + TV)?) as T — +oo was done
for u > ug > 0 by writing the operator DX + TV in matrix form. Still, because
local cancellations had also to be controlled as u — 0, these cancellations not being
property understood on the operator u(DX + TV), in [19, Section 13|, for u €]0, 1],
T > 1, the operator u?(DX + T'V)? had to be written in matrix form, and the local
cancellations mechanism controlled on this matrix form.
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Here, the analogue of DX + TV is a superconnection A; r. Only its square A%,T is
a fibrewise elliptic operator along the fibres X. Even when u > ug > 0, we are thus
forced to deal with the operator A} ;. and not with Ay r itself.

Still some features of [19, Sections 8 and 9] are preserved. Namely, in Chapters 8
and 13, we calculate the asymptotics as T' — 400 of the conjugate superconnection
A; 1 in two different trivializations of 73 A(T5S) ® A(T*®VX) & ¢ near W. This
extends corresponding results of [19, Section 8].

6. The lower part of the spectrum of DX + TV and the asymptotics of the
Chern character superconnection forms as © — 400

In [19, Section 9], it was shown that as u — +o00, the supertraces of operators
involving exp(—u?(DX + TV)?) converge like cexp(—Cu?), with ¢ > 0, C > 0
uniformly in T € [1, +oo[. The proof uses in particular the fact that as T' — +o0, the
nonzero eigenvalues of (DX + TV)? stay away from 0.

Here, by result of Berline-Getzler-Vergne [3, Section 9}, for a given T" > 1, the Chern
character superconnection forms associated to a superconnection B, T converge as
u — +oo0 like 0(1). Obtaining the required uniformity in 7' € [1, +oc[ is more difficult.
In effect the control of the superconnection Chern character forms as 4 — 400
or T — +oo involve two distinct matrix decompositions of the curvature BZ,T’
which have to be shown to be compatible. The corresponding arguments are given in
Chapter 9.

7. The genus R and the higher analytic torsion forms of the exact sequence

As in [19], the genus R of Gillet-Soulé [26] appears in Theorem 0.1 through the
explicit computation in [6] of higher analytic torsion forms associated to the exact
sequence of holomorphic Hermitian vector bundles on W

(0.21) 0—-TY -TX\w — Ny;x — 0.

As explained in Chapter 15, some of the computations of [6] and of [19, Section 14]
appear to be just a special case of the arguments used in this paper, when applied to
the family of embeddings TY — T X .

As explained in the introduction to [19], an alternative strategy to the proof of
the main result of [19] or of Theorem 0.1 is the deformation to the normal cone
technique of Baum-Fulton-MacPherson [2], [17, Section 4]. Arguments in support
of the main steps of such a program have been described by Faltings in [22]. The
deformation to the normal cone replaces the embedding i: W — V by the embedding
i': W — P(Nw,v @ 1) and the complex (£,v) by a canonical Kozsul complex on
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P(NW/V @ 1). The deformation to the normal cone technique replaces a smooth
fibration by a singular fibration, and the whole point is to control the analytic torsion
forms through the singularity. To overcome this difficulty, Faltings replaces the given
Ké&hler metric on the smooth fibre by a metric on the log tangent space, which is not
Kahler, hence the need to control non explicit anomaly formulas. Once the reduction
to P(Nw,v @ 1) is done, the strategy of [22] is to use a relative version of [11],
(sketched in [22, p. 75-76]) which reduces the problem to the explicit computation
of the higher analytic torsion forms of the fibration P(Ny,y © 1) — W. This final
computation is obtained by using the results of Gillet and Soulé [26], and explains
the appearance of R in (0.10).

In some sense, the program of [19] and of the present paper is an analytic version
of the deformation to the normal cone technique, in which the three steps described
before are reduced to one step. In particuler the analysis wipes out the intermediate
P(Nw,v ® 1) — W and replaces it by the exact sequence 0 — TY — TX; —
Ny,;x — 0, whose analytic torsion forms were calculated in [6].

Needless to say, the deformation of the normal cone technique was used in [17]
to evaluate the current T'(£, %) in terms of the arithmetic characteristic classes of
[24]-[25], but the analysis of [17] only involves finite dimensional objects.

This paper has been written as a companion paper to [19], to which the reader is
referred when necessary. In particular, most of the technical comments in [19] apply
also to this paper, and have not been repeated. Let us also point out that as in
[19], finite propagation speed for solutions of hyperbolic equations [21], [35] plays an
important role in the proofs.

This paper is organized as follows. In Chapter 1, we establish various results on
the differential geometry of families of smooth embeddings, in the C'°° category. In
Chapter 2, we recall the result of [14] and [18] on higher analytic torsion forms. In
Chapter 3, we describe the basic geometric setting of (0.1), and also the objects which
appear in (0.10) and (0.13).

In Chapter 4, we construct the form 3 in (0.14), and we establish (0.20).

In Chapter 5, we recall the results of [6] on the higher analytic torsion forms
associated to a short exact sequence.

In Chapter 6, we prove Theorem 0.1. The proof is based on several intermediate
results, whose proof occupies Chapters 7-13. This Chapter corresponds to [19, Section
6].

In Chapter 7, we extend THW to V.

Chapters 8-13 are devoted to the proofs of the intermediate results which were
alluded to, and correspond roughly to [19, Sections 8-13]. In Chapter 8-9, we
calculate the asymptotics of supertraces involving exp(—Bﬁ’T) (where B, 1 is the
superconnection version of u(DX + TV)), in the range v > 1, T > 1. In Chapter 10,
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we give a description of the bundles over S of the kernels of DX + TV, as T — +o0.
In Chapter 11, we establish uniform estimates on supertraces involving exp(—Aﬁ,T)
(where A, 1 is the superconnections analogue of uDX +TV) in the range 0 < u < 1,
1<T<1/u.Ifu — 0, T ~ 1/u, the corresponding supertraces are studied in
Chapter 12, and for u — 0, T' > 1/u in Chapter 13.

In Chapter 14, we establish Theorem 0.2 by exchanging the roles of v and T. The
proof is much simpler than the proof of Theorem 0.1, and is just briefly sketched.

Finally, in Chapter 15, we show that the objects appearing in [6] in the construction
of the higher analytic torsion forms of a short exact sequence are a toy model for many
of the arguments used in Chapters 8-13, even though the results of [6] are used in the
proof of Theorem 0.1.

The results contained in this paper have been announced in [10].
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1. Families of immersions and connections on the
relative tangent bundle

Let m: V — S be a submersion of smooth manifolds with compact fibre X. Let
TX be the relative tangent bundle, and let 77V be a subbundle of TV such that
TV =THV @ TX. Let g7% be a metric on TX.

In this Chapter we recall the construction in [4] of a connection VT¥ on TX,
which is canonically associated to these datas, and of various corresponding tensors.

Also let i: W — V is an embedding of manifolds which both fibre on S, let
i: Y — X be the corresponding fibres of W and V over S. Let g7V be a metric on
TV, let THV, THW be the subbundles of TV, TW which are orthogonal to TX,
TY . Let g7X, gTY¥ be the metrics induced by g7¥ on TX, TY . Let VIX, VTY be the
associated connections on T'X, TY. The main purpose of this Chapter is to establish
various relations between the tensors associated to X and TY.

1.1 A canonical connection on the relative tangent bundle of a fibration
Let m: V — S be a smooth submersion of smooth manifolds with compact fibre

X. Let TX =TV/S be the relative tangent bundle to the fibres X.
Let THV be a smooth subbundle of TV such that

(1.1) TV =TV oTX.

Let PTX be the projection TV =TV o TX — TX.

Let g7X be a metric on TX. It was shown in [4, Section 1] that the datas
(7,97, THV) determine an Euclidean connection VIX on (TX, g7X). Let us briefly
describe the construction of [4].

Let g7° be an Euclidean metric on T'S. Let V7S be the Levi-Civita connection
on (TS, gT5). We equip TV = THV & T X with the metric g7¥ = 7*g75 @ gTX. Let
VTV:L be the Levi-Civita connection on (T'V, gTV). Set

(1.2) VX = pTXyIVL,
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14 FAMILIES OF IMMERSIONS AND CONNECTIONS ...

Let VTV be the connection on TV = THV ¢ TX
(1.3) VTV = 7*vT5 g vTX |
Let T be the torsion of VTV, Set

(1.4) S =vTVL _yTv,

Then S is a 1 form on V with values in antisymmetric elements of End(TV).
Classically, if A, B,C € TV
S(A)B - S(B)A+T(A,B) =0,

(1.5) 2(S(A)B,C) + (T (A, B),C) + (T(C, A), B) — (T(B,C), A) = 0.

Then by [4, Theorem 1.9], we know that
— The connection VTX preserves g7X.
— VTX T and the (3,0) tensor (S(.),.) do not depend on g7*.
— T takes its values in T X, and vanishes on TX x TX.
— For any A € TV, S(A) maps TX into THV.
— For any A,BeTHV, S(A)B € TX.
-IfA=THV, K6 S(A)A=0.
Only the last statement is not proved explicitly in [4]. However it immediately follows

from (1.5) and from the fact that T takes its values in T'X.
From (1.5), we derive easily that if A € THV, B,C € T X, then

IfU € TS, let U¥ € THV be its lift in THV, so that 7, UH = U. If U is a smooth
vector field on B, the Lie derivative operator L;;# acts naturally on the tensor algebra
of TX. In particular, if U € T'S, (¢7X)"'LyugTX defines a 1-form on B, with values
in self-adjoint endomorphisms of T'X.

Theorem 1.1 — The connection VIX on (T X, gTX) is characterized by the following
two properties :

~ On each fibre X, it restricts to the Levi-Civita connection of (T X, gT*X).

- IfU €TS8, then

(1.7) Vi = Lyn + 5(¢"%) ' Lyng™.
The following identities hold :
- IfA,BeTHV,
(1.8) T(A,B) = —PTX[A, B].
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-IfUeTS, AeTX,
(1.9) T(UH, A) = 1(¢T*) 'Lyng™A.

Proof. From its construction, it is clear that the restriction of VZX to a fibre X is
the Levi-Civita connection of the fibre. Let A be a smooth section of X, let U be a
smooth section of T'S. Then

UH (A, A) =2(V{EAA),

(1.10) H TX\—1 TX

UH (A, A) =2(LynA,A) +{((g7*) ' Lyng™ A, A) .
Since VLVUH = 0, from (1.10), we obtain

(1.11) (T(UH,A4),A) = 1 {(g"*) 'LyngT™™ A, A) .

By (1.6), both sides of (1.11) define symmetric bilinear forms on T'X. So we get from
(1.11)

(1.12) T(UH, A) = L(¢TX) 'LyngT*A.
Also
(1.13) VIiA=[U" A +TUH"A).

From (1.12), (1.13), we get (1.7), (1.9). Finally if U, V' are smooth sections of T'S,

(1.14) TWUH,vE) =vVIYVvHE —VIYU? - [U¥,VvH] =
(VEEH — (Vi) — [U",vH)
= [Uy V]H - [UH, VH] = _PTX[UHa VH] .

The proof of Theorem 1.1 is completed. O

1.2 An identity on the connection on the relative tangent bundle
Let now g7V be a metric on TV which has the following properties:
— g7V induces the given metric g7X on T'X.
— THYV is exactly the orthogonal bundle to T'X in TV with respect to g7 .

Let VTV:L be the Levi-Civita connection on (T'V, gT"). We denote by ( , ) grv the
scalar product with respect to g7Vv. Still (S(.).,.) denotes the tensor associated to
THV, g7X which was described in Section 1.1.

Now we recall a result of [14, Theorem 1.2].
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16 FAMILIES OF IMMERSIONS AND CONNECTIONS ...

Theorem 1.2 — The following identity holds
(1.15) VX = pTXyTVE,

Moreover if A, A’ are smooth sections of T'S, if U,U’ are smooth sections of TX, if
Y =U+AH)Y' = A'H | then

(1.16) (VEVty, Y’>9TV - <V5V'LY',Y>9TV =2(SV(U)Y,Y").

Remark 1.3. Formula (1.16) shows in particular that the second fundamental form
of the fibres X with respect to g7V can be evaluated in terms of SV .

1.3 Families of immersions and the corresponding connections on the
relative tangent bundles

Let i: W — V be an embedding of smooth manifolds. Let 7y: V. — S be a
smooth submersion with compact fibre X, whose restriction my : W — S is a smooth
submersion with compact fibre Y. Thus we have the diagram

(1.17) Y — W

i

X—V—

Let TX =TV/S, TY = TW/S be the relative tangent bundles to the fibres X, Y.
Let Nw,v be the normal bundle to W in V, let Ny,x be the normal bundle to Y in
X. Clearly

(1.18) Nw/v = Ny;x .
Let THV be a smooth subbundle of TV such that
(1.19) TV =TV e TX.

Let 1\~fy/ x be a smooth subbundle of T X IW such that

(1.20) TX|y = Ny)x ®TY .
Clearly

THY ~ 7*T8S,
(1.21) ~

Ny/x o>~ Ny/X .

By (1.19), (1.20), we get

(1.22) TV|y =THV|,, ® Ny,x ®TY .
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By (1.22), we see that there is a well-defined morphism

T™W

. -
Ty — T"V|w ® Ny/x,

(1.23)

and this morphism maps % into a subbundle of TW.
Definition 1.4. Let THW be the subbundle of TW which is the image of %;.% by the
morphism (1.23).

Clearly

(1.24) TW =THwW e TY.
Remark 1.5. The simplest case is of course when
(1.25) THv|, =THW.

However in general this assumption is not verified.

Let now g7V be a metric on TV. Let g% be the induced metric on TW, let
97X, gTY be the induced metrics on TX, TY. Note that even is g7V is of the type
considered at the very beginning of Section 1.1, in general, g% is not of this type.

We identify Ny,x with the orthogonal bundle 1\~/y/ xtoTY inTX |W with respect

to gTXIw . Let g'v/x be the induced metric on Ny, x.
Definition 1.6. Let THV (resp. THW) be the subbundle of TV (resp. TW) which
is the orthogonal bundle to TX (resp. TY) in TV (resp. TW) with respect to g7
(resp. gT%).

Since the splitting

TV|y =T%V|y, ® Ny/)x ® TY

is orthogonal, one verifies immediately that 75 W coincides with the bundle defined
in Definition 1.4, associated to 77V and Ny,x = Ny;x. In particular

THW c TH*V|,, ® Ny/x .

Remark 1.7. The manifold W intersects the fibres X orthogonally if and only if
THEV|,, = THW.

To the triples (my,g7X,THV) (resp. (mw,gT¥,THW)), we can associate the
objects we constructed in Section 1.1.

In particular TX, TY are now equipped with connections V7X, V7Y which
preserve the metrics g7X, g7¥. We also denote by TV (resp. T%), the ten-
sor T constructed in Section 1.1, which is associated to (my,THV,gTX) (resp.
(mw, THW, gTY)). Recall that THW c THV|,, & NY/X. If A € TB, let A"V €
THV, AH:W ¢ THW be the horizontal lift of A in THV, THW, so that my, ATV =
A,?TW*AH’W = A.

Let PTY, PNv/x be the orthogonal projections TX |y — TY, TX|Y — Ny/x.
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Definition 1.8. If A€ TS, let AH:Nv/x ¢ Ny,x be such that

(1.26) AW _ AHV | AHNy/x
Theorem 1.9 — The connection VTY is given by
(1.27) vTY = pTYVyTXly

Proof. Let VTV'L (resp. VTW:L') be the Levi-Civita connection on (T'V,gT") (resp.
(TW, gTW)). Let PTW be the orthogonal projection operator TV |y — TW. Clearly

(1-28) VTW,L -— PTWVTV,L .

Let PTX PTY be the orthogonal projections TV = THV ¢ TX — TX, TW =
THW ® TY — TY. By Theorem 1.2,
VTX — PTXVTV’L

(129) VTY — PTYvTW,L .

From (1.28), (1.29), we get (1.27). O

Let VNv/x be the connection on Ny/x,

(1.30) VNvix = pNy/xgTX
Then VVv/x preserves the metric g™Vv/x,

Put
(1.31) oyTXiw — gTY g vNv/x

Then °VTXIw is a metric preserving connection on TX|w = TY & Ny, x. Set
(1.32) A =vVTXlw _0gTX|w

Then A is a 1-form on W with values in antisymmetric elements of End(7T'X |w)
exchanging T'Y and Ny, x.

Since VTX restricts to the Levi-Civita connection of the fibres X, if B € TY,
CeTy,

(1.33) A(B)C — A(C)B =0.

To keep in line with our previous notation, we denote by ( , ) the scalar products
which only depend on the datas (my, THV, gTX) or (mw, TEW, gTY), while using the
notation ( , ) rv, (,) grw for the scalar products on TV, TW associated to the

auxiliary gTV, gTW.
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Theorem1.10 — IfBeTY,CeTS, DeTS,

(1.34) (SY(B)CHW DHWY = (sW(B)CHW, D"W)
_ % <V£XCHyNY/X, DHvNY/X> + % <CHvNY/X’V£XDHyNY/X> .

IfBeTY,CeTS,

PTYTV(B,C?V) =TW(B,C*W) + A(B)CHNv/x

1.35
( ) vgy/xcH,Ny/x — PNY/XTV(B,CH’V) +A(CH’W)B.

Proof. Take B € TY, C,D € TS. Then using the properties of SV listed in
Section 1.1, we get

<SV(B)CH,W,DH,W> = <SV(B)(CH,V + CH,Ny/x),DH,V + DH,NY/X> _
<SV(B)CH’V,DH’V> + <SV(B)CH’V,DH’NY/X> +
(sV(B)CHNyix, DIV

Let VTV:L be the Levi-Civita connection on (T'V,gTV). By construction THV is
orthogonal to T'X with respect to g7, and g7V induces the metric g7 on T"X.Then
using Theorem 1.2, we get

(L36) (s¥(BCHW, DIy =y (VErrCmy, puvy

_ <CH,V,V£V,LDH,V> o + <V§V,L0H,V,DH,Ny/x>
g9

_ CH,V,VTV,LDH,NY/X + VTV,LCH,NY/x,DH,V
B gV B

gTV
gTV
H,N TV,L nH,V
— (crmerx yIVEDRY )
gTV

Equivalently, using (1.15), and (1.29), we obtain

(137) (SV(B)CHW,DHWY) 1 ((vg"vLchW,DHyWLTV
_ <CH,W, VgV,LDH,w>gTV — (VEXCHNy/x DHNy/x)
+(CHNy/x gTX DHNv/xY) |
Let VIW.L be the Levi-Civita connection on (TW, gT%). Then

(1.38) <V£V,LCH,W’DH,W> _ <V£W,LCH,W,DH,W> Y
g9

g’I‘V
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By construction, T# W is orthogonal to TY with respect to g”", and moreover g7T%W
induces the metric g7¥ on TY. By reapplying Theorem 1.2, we obtain

w HW HW\ __ TW,L ~H,W HW
(1.39) (SW(B)CHW,D )_§<v3 CcHEW D >gTW_

<CH,W’ VEW,LDH,W>

gTW
From (1.37)-(1.39), we obtain
(1.40) (SY(B)CHW DHW) = (sW(B)CHW DHW)
+ % (_ <V£XCH’NY/X,DH’NY/X>
+ <CH,Ny/x , VEXDH’NY/X >) ,
which coincides with (1.34).
Using Theorem 1.9, we get
(1.41) PTYTV(B,CcHV)=PTY (-VLX.B - [B,C?VY))
= PTY (=VEXw B + Vi¥ny,x B = [B,C*W] + [B,CHNv/x])
= —VihwB —[B,C™W] + PTYVEX CHNvix
=T"(B,C*W) + A(B)CHNv/x |

which is the first identity in (1.35).
Now we use the notation of Section 1.1. By (1.2), (1.3), we get

(1.42) VX CHNy/x = pNvixgTXCHNy/x = pNvix gLV oHW
Also
(1.43) VEVCeEW = vIX B+ ([B,c*Y]+TV(B,C*W).

Since [B,CH:W] € TY, we deduce from (1.42), (1.43) that
(1.44) PNy /x Y/ X cHNy/x = pNv/xTV(B,CHW) + A(CHW)B,

which is the second identity in (1.35).
The proof of our Theorem is completed. O

Let fi,...,fm be a locally defined smooth basis of T'B, let f!,..., f™ be the
corresponding dual basis of T*B.

Theorem 1.11 — The following identity of tensors holds on W
H,N H,N
(145) £ A S8 A F7{ (A5 VR w )

(RN TY (Y ) U £ = 0.

ASTERISQUE



FAMILIES OF IMMERSIONS AND THE CORRESPONDING CONNECTIONS ... 21

Moreover, if B € TY, then the following identities of tensors holds on W

(146) 7= ASP{=3(TV (F2V, 55V, B) — (g X OFX g e
Ny/x w ( (HW H w _
+2 <st,wfﬂ B)+ (T (127 £5) B) } =0,
Proof. In the sequel, g7 denotes an Euclidean metric on T'S. Also we use the notation
of Section 1.1. Clearly
V H Nyy/x _ VTVW HW VTV fH ,V

(1.47) Z’i w TV HYV
_fowf')‘ —Vfol:l,vf.y’ .
Using (1.47), we get

(148)  VIEw £y ™% — VT g1

= [ oV ]+ TV(ffW,ff’W) = [FV 5PV =TV (Y Y.
Also, by Theorem 1.1,

[fEW, FEW] = [fo, ]V =TV (fEW fHW),
[FEV, FEV] = [far IV =TV (FEY, £57Y).

Using the fact that TV (fZ:W, W) € TY, we deduce from (1.48), (1.49) that

(1.49)

(1.50) FEAfPAf7 <fH Ny/x VT £ NY/X> _
FENFEAPL (<f;f Ny/x v (fHW. HW) | [fa’f’y]H,Ny/x>) .

Also

(L51) f2 AN TS5 TV (SR S =
FENIEN LTSN TV (G 4 iR IV g )

By (1.6), (1.50)-(1.51), we get

(152) F5A£2 N (SR TR N
fENFEAfIL (<f;{’N"/",TV(ff*V,ff’V) + [fa,fv]H,Ny,x» ’

which is exactly the identity (1.45).
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Take BeTY,C € TS,D € T'S. Then using Theorem 1.10, we get

(1.53) (VEXwDHNv/x By = (A(CHW)DH:Nv/x B)
= — (A(CHW)B, DH:Nv/x)
— (ngCH,Ny/x , DH,Ny/x>
+(TV(B,CH:V), DH:Nv/x} |

From (1.5),(1.53) and from Theorem 1.10, we obtain

(1.54) (VLIXwDHNvx _vIX , CcHNvx B)
+ % <V£XCH,Ny/x,DH,Ny/X>
_ % (CH,NY/X’VngH,Ny,x> _ %<TV(CH,V,DH,V),B>
+ 3 (TV(CHW, DHW), B)
_% <V£XCH,NY/X,DH,Ny/x> + % <CH,Ny/x,V§XDH,Ny/x>
_ <SV(B)CH,V’DH,Ny/x> + <SV(B)DH,V,CH,NY/X>
_ <SV(B)CH’V,DH’V> + <SW(B)CH’W,DH’W>
_ _% <V£XCH,NY/X,DH,NY/X>
+1 <CH,Ny/X, VEXDH,NY/X>
—(sV(B)C"W,DHW) + (sW(B)CHW, DFW) =0,

which is equivalent to (1.46).
The proof of Theorem 1.10 is completed.
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2. Kaihler fibrations, higher analytic torsion
forms and anomaly formulas

In this Chapter, we recall various differential geometric properties of Kahler fibrations
m: V — S [14]. Also we explain the local families index theorem of [4] in this context,
we recall the construction in [14], [18] of analytic torsion forms, and we explain the
anomaly formulas of [18].

This Chapter is organized as follows. In Section 2.1, we introduce the Kéhler
fibrations. In Section 2.2, we recall elementary results on Clifford algebras and
complex vector spaces. In Section 2.3, we introduce the Levi-Civita superconnection
of a fibration [4] and we state some of its properties established in [14]. In Section 2.4,
we describe the superconnection forms of [4] and [14], which depend on u €]0, +o0|,
and the corresponding transgression formulas. In Sections 2.5 and 2.6, we recall the
results of [4], [14], [3] on the asymptotics of these forms as u« — 0 and u — +o00. In
Section 2.7, we construct the analytic torsion forms of [14], [18]. Finally in Section 2.8,
we give the anomaly formulas of [18].

In this Section, we use the notation of Chapter 1.

2.1 Kaihler fibrations

Let m: V — S be a holomorphic submersion of complex manifolds, with compact
fibres X.

We use the notation of Section 1.1, except that now TV, TS, TX = TV/S denote
the corresponding holomorphic tangent bundles, and TRV ,TrS,Tr X = TrV/S the
associated real tangent bundles.

Let JTX be the complex structure on TrX. Let THV be a smooth subbundle of
TV such that we have the smooth splitting

(2.1) TV =THVeTX.

Let g7 be a Hermitian metric on T'X.
We recall the definition of a Kéhler fibration, given in [14, Definition 1.4].
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Definition 2.1. The triple (7, g7, THV) is said to define a Kihler fibration if there
exists a smooth real 2-form w of complex type (1,1) over V which has the following
properties :

a) w is closed.
b) THV and T X are orthogonal with respect to w.
c) fA,BeTEX

(2.2) w(A,B) = (A,JTX B) rx -

Let us now recall a simple result from [14, Theorems 1.5 and 1.7].

Theorem 2.2 — Let w be a real smooth 2-form on V of complex type (1,1), which
has the following 2 properties :

a) w 1s closed.

b) The bilinear map A, B € TH# X — w(JTX A, B) € R defines a Hermitian metric
g% on X.

Forxz eV, set
(2.3) THY = {A € T,V, for any B€ T, X, w.(A,B) =0}.

Then TEV is a subbundle of TV such that TV = THV & TX. Also (m,gTX,THV)
is a Kdhler fibration, and w is an associated (1,1) form.

A smooth real (1,1) form w' on V is associated to (m,gT*,THV) if and only if
there is a real smooth closed (1,1) form n on S such that

(2.4) W —w=m*n.

Under the assumptions of Theorem 2.2, let wTX, wH the restriction of w to Tr X,
THV so that

(2.5) w=uwl* 4+,

Let VT®rX be the connection on (Tr X, g"®*X) constructed in Theorem 1.1, which is
associated to (m,gTRX T V). Let VA(TRX) be the connection induced by VIRX on
A(T3 X). Since TRV = TV & Tr X, there is an associated identification

(2.6) A(T{V) = m* A(TrS) ® A(THX) .

Let ®V be the obvious action of VA(TRX) on smooth sections of A(T%V), so that if
a, B are smooth sections of A(TgS), A(TgV), then

(2.7) “V((r*a)B) = (r*da)B + (—1)*E*r*a A VATRO 5.
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Theorem 2.3 — Assume that (m,g7%,THV) is a Kéhler fibration, and let w be an
associated (1,1) form. Then :

a) The connection VIRX on TrX constructed in Theorem 1.1 preserves the
complex structure of TrX. It induces the holomorphic Hermitian connection
VTX on (TX,gTX).

b) As a 2-form, T is of complex type (1,1). Also if A € THV, B € TX (resp.
AecTHV,BeTX), then T(A,B) € TX (resp. TX).

c) For any A € TrX, the 2-form (S(A).,.) on V is of complex type (1,1). Also if
AeTX,BeTX

(2.8) S(A) B=0 , S(B)A=0.
d) The following identities hold

for any A € TRS ,LanwT™* =0,
VIXWTX = 0;iFXwTX =0 on TV x Tr X x Tr X,
aWwH =0 on THV x TH#V x TV,

WwH +i7wTX =0 on THV x THV x Tr X .

(2.9)

Proof. Only the second part of b) is not explicitly proved in [14, Theorem 1.7].
However if A € TV, B € Tr X, by (1.5),

(2.10) T(A,B) = PTXS(B)A.

Since (S(B).,.) is of complex type (1,1), T'(A, B) is of the same complex type as A.
Our Theorem is proved. O

Remark 2.4. The second identity in the second row of (2.9) is also a consequence
of the fact that T is of type (1,1) and also of (1.6). The last identity in (2.9) says
that if A,B € TrS, w(A¥,B¥) is a Hamiltonian function whose corresponding
Hamiltonian vector field in Tr X with respect to the fibrewise symplectic form w?X
is T(AH, BH).

In [14, proof of Theorem 1.14], as a consequence of (2.8), it is shown that if

ei,-..,ege is an orthonormal basis of Tr X,
2¢

(2.11) > " S(ei)es =0.
1

Consider the exact sequence

(2.12) 0->TX -TV - 7*TS — 0.
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By identifying 7*T'S and THV, let E € T*(®VV @ Hom(THV, T X) be the extension
which defines the holomorphic structure on TV.

We extend E to a skew-adjoint section of T V ® End(Tr V'), which exchanges Tr X
and THV.

Theorem 2.5 — If A€ TII{V, B € TrX, then
(2.13) E(B)A=T(A,B).

Proof. Clearly the statement (2.13) is local on the base S. So we may as well assume
that S is Kahler. Let w® be the Kihler form of a K#hler metric g7% on T'S. Replacing
w by w+1n*w?, which does not modify TV or g7X, we may assume that V is Kahler,
and that w is the Kahler form of a Ki#hler metric g7¥ on TV. Then the Levi-Civita
connection VTV:L on (TrV, g™®") induces the corresponding holomorphic Hermitian
connection on (T'V,gTV). By Theorem 1.2, if A is a smooth section of TV and if
B, C are smooth sections of Tr X, we get

(2.14) <V§V’LA, c> - <V£V’LC, A> =2(SV(B)A,C) .
From (2.14), we obtain

(2.15) (E(B)A,C) = (SV(B)A,C) .

Using (1.5), (2.15), we get

(2.16) (E(B)A,C) = (T(A, B),C) ,

which gives (2.13). O

Remark 2.6. Of course (2.13) gives an essentially equivalent proof of most of the
properties of T stated in part b) of Theorem 2.3.

2.2 Complex Hermitian vector spaces and Clifford algebras

Let E be a complex Hermitian vector space. Let E be the conjugate vector space.
If z € E, z represents Z = z + Z € ER, and |Z|2 =2|z|%.

Let ¢(Er) be the Clifford algebra of ER, i.e. the algebra generated by 1, U € FR,
with the commutation relation UU’ + U'U = —2 (U,U’). Then A(E”) and A(E*) are
Clifford modules. Namely, if X € E, X' € E, let X* € E', X'* € E* correspond to
X, X' by the metric. Set

e(X) = V2X*N, (X)) = —V2ix:,

210 aAX) = V2ix , &X') = —V2X" A .

ASTERISQUE



THE LEVI-CIVITA SUPERCONNECTION OF THE FIBRATION 27

Then if U,U’ € ERr,

c(U)e(U’) + c(U')e(U) = =2(U,U") ,

(218) SUYAU') +aqUeU) = —2(U, U’y .

Also c(U),&(U’) acts as odd operators on A(E™) ® A(E*), and
(2.19) o(U)3(U") + &U")e(U) = 0.

Let J be the complex structure of Er. Note that with respect to [19, Section 5 a)],
our ¢(U) would be ¢(JU) in [19].

2.3 The Levi-Civita superconnection of the fibration

The metric g7X induces a metric g"T"“"X) on A(T*(®1 X), and the connection
VTX lifts to a unitary connection VA(T.(O'I)X) on A(T*©OV X).

Let ¢ be a holomorphic vector bundle on V, let g¢ be a Hermitian metric on £. Let
V¢ be the holomorphic Hermitian connection on (£, g¢).

We equip A(T*©®V) X) ® ¢ with the tensor product of the metrics ghT* @YXy and
g¢. Set

(2.20) VAT OVX)@E = gAT"OVX) g1 41 @ VS,

Then VAT ®VX)®¢ j5 a unitary connection on A(T*ODX) ® £.
Definition 2.7. For 0 < p < dim X, s € S, let EP be the vector space of smooth
sections of (A?(T*(®1X) ® €)| . over the fibre X,. Set

dim X
(2.21) E,= P E?, E.+ = P E?, E,- = P E?.
p=0 p even p odd

We regard the E;’s as the fibres of a smooth Z-graded infinite dimensional vector
bundle over S. Smooth sections of FE over S will be identified to smooth sections of
AT*OVX) ® € over V.

Let *TX be the star operator acting on A(TjX), associated to g7X. We equip E;
with the Hermitian product

1
(222) «, a' € FE;, — (a,a')Es = W /X <a A *Txa’>gs .

Let dvx, be the volume element in the fibre X,. Then if a,a’ € E,,

dim X
1
(2.23) (a, a’)Ea = (5;) /X (e, al>gAT*(0-1)x®gs dvx, .
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Definition 2.8. If U € Tr B, if s is a smooth section of F over S, set
(2.24) VEs = AT OV Xet

Clearly, VZ is a connection on E. Let VE' and VE" be the holomorphic and
antiholomorphic parts of VZ.

Fors € S, let —6_X” be the Dolbeault operator acting on E;, and let 5% be its
formal adjoint with respect to the Hermitian product (2.22).

The following result is proved in [14, Theorem 1.14].

Theorem 2.9 — The connection VE preserves the Hermitian product (2.22) on E.
Its curvature VE-2 is of complex type (1,1). Also

(2.25) [VE",'a'X] —0, [VE’,EX ] =0.
By (2.1), we have the identification of Z-graded vector bundles
(2.26) AT* OOV @ € = A(T* OV AT*OVX) @ €.

Let 5‘/ be the Dolbeault operator acting on the vector space of smooth sections of
A(T*ODV)® ¢ over V. By (2.24), (2.26), the operator VE” +37% also acts naturally
on this vector space.

The following result is established in [14, Theorem 2.8|.

Theorem 2.10 — We have the following identity of operators acting on smooth
sections of A(T*OVV) ® ¢ over V,

(2.27) 3" =vE' +5°.
Definition 2.11. Set
(2.28) oT) = 3£ fPe(T(f3, £5)) -

Then ¢(T') is a section of 7*A(T%S) ® End(A(T*OV X) ® £). We also define c(T'(1:9),
c(T%V) by formulas similar to (2.28). By (2.17),

M:T(I’O)*A w=—i 0,1) -
7z Cove

By [14, eq. (1.41) and Theorem 2.6]

(2.29)

)~ if5wr]
A i[5 ]

(2.30)
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Definition 2.12. For u > 0, set

’ T(I,O))
B! = vag* +ve ~ )
w= VY 2v2u
. , T©:1)
2.31 B = a4 v - )
( ) . U + o
=X mXx* c(T)
B, =vu(@ +98 ) +VF- L.
Vu( ) o

Then B, = B!/ + B, is a superconnection on E in the sense of Quillen [32]. By [14,
Section 2], B, is exactly the Levi-Civita superconnection of the fibration in the sense
of [4, Section 3].

Let Nv be the operator defining the Z-grading on F, i.e. Ny acts by multiplication
by p on EP.
Definition 2.13. Set
(2.32) N, = Nv + % .
Then N, is a section of 7* A(TgS) ® End(A(T*(®VX) ® €).

The following result is proved in [14, Theorem 2.6].
Theorem 2.14 — The following identities hold,

B?=0, Bl*=0,

Bﬁ = [Bz’n B‘:l{] )
(2:33) [BY, B2 =0, [B,, B =0,
[Bll,N,] = —~2u£B" [Bl,N,] = 2uiB'
u? u 6u uw u u au uw
By (2.9), we get
(2.34) [VE' wH] =0, [VF,wf]=0.
From (2.30), (2.31), (2.34), we get the formulas
H i H

B;Z = e_izu_uqu/2 (VE" + 5)() u_ﬂzcet;u y
(2.35)

iwH —_ iwH
B! =%y Nv/2 (VEI + 3X*) uNV/2e= %0

2.4 Superconnection forms and transgression formulas

Definition 2.15. Let P° be the vector space of real forms on S which are sums of
forms of type (p,p). Let P50 be the vector space of the forms o € PS such that there
exist smooth forms 3, on S with a = 948 + 9.
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We define PV, PV in the same way.
Let &: A®Ver(T34S) — A®¥en(T34S) be the map a — (2ir)~ de&2/2q,
If A is a square matrix, set

Td(A) = det (%) ,

Td'(A) = % Td(A + b)|e=0,

(Td1Y(4) = 5 Td™ (A + B)lomo,

ch(A) = Tr[exp(A)].

(2.36)

The genera associated to Td and ch are the Todd genus and the Chern character.

Let P be a real ad-invariant power series on square matrices. If (F,gF) is a
holomorphic Hermitian vector bundle on V, let V¥ be the corresponding holomorphic
Hermitian connection, and let RF be its curvature. Set
(2.37) P(F,¢gF)=P (~§i)

' 9= 2in )
Then P(F,g¥') is a closed form which lies in PV, and its cohomology class P(F') does
not depend on g¥. We still denote by P(F) the classes of P(F,g) in PS/PS?,

By [4, Theorem 3.4], we know that the forms ® Trs[exp(—B2)] are closed, and that
their cohomology class is constant and equal to ch(Rm.&).

By [14, Theorems 2.2 and 2.9], the forms ® Tr, [exp(—B2)] and & Tr, [N, exp(—B2)]
lie in P°. The following result is established in [14, Theorem 2.9].

Theorem 2.16 — For u > 0, the following identity holds
0 2 100 2
(2.38) E‘-‘D Trs [exp(—B2)] = _;ﬂq) Trs [Ny exp(—B3)] .

If (aw)u>0 is a family of smooth forms on S, we will write that as u — 0,
a, = O(uF*t1) if for any compact set K C S, and any p € N, there is C > 0
such that the sup of a, and of its derivative of order < p on K are dominated by
Cuk+l_

2.5 The asymptotics of the superconnection forms as u —0

Now we recall a result established in [4, Theorems 4.12 and 4.16] and in [14,
Theorems 2.11 and 2.16].

Theorem 2.17 — Asu — 0,

(2.39) ® Tr, [exp(—B2)] = /x Td(TX, gT*) ch(£, g¢) + O(u) .
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There ezist forms C—1,Co,...,Ck,... € PS such that for k € N, as u — 0,

k
(2.40) & Tr, [Nyexp(—B2)] =) Cju? + O(u*+1).

-1

Moreover

c_1=/ =~ Td(TX, g7¥) ch(¢, ¢%),
b'e 2

(2.41)
Co = / (dim X Td(TX) — Td'(T X)) ch(§) in PS/P50.
X

2.6 The asymptotics of the superconnection forms as © — +00

dim X
For s € S, let H(X,,£|x) = € HP(X,,£|y.) be the cohomology of the sheaf of
0 8

holomorphic sections of £ restricted to X;.

We make the basic assumption that for 0 < p < dimX, the dimension
of Hp(Xs’élx,) is locally constant. Then the H(Xs,£|xs)’s are the fibres of a
holomorphic Z-graded vector bundle H(X, & | x)onsS.

For s € S, set

(2.42) Ks={feEs,5x’f=0,3X’*f=0}.

By Hodge theory, K, ~ H(X,,{| x,)- Since the HP(X,, ¢ | x,) have locally constant
dimension, the K,’s are the fibres of a smooth Z-graded vector bundle K on S, and
moreover we have the identification of smooth vector bundles on S,

(2.43) H(X,¢|x) >~ K.

As a subbundle of (E, g¥), the vector bundle K inherits a smooth metric g¥. Let
gH(X€1x) be the corresponding smooth metric on H(X, ).

For s € S, let PX+ be the orthogonal projection operator from E; on K,. Then
PXs depends smoothly on s.
Definition 2.18. Let V¥ be the unitary connection on (K, g¥)

(2.44) vEK = pKvE,

Using the identification (2.43), the connection VX determines a unitary connection
VHX LX) on H(X, &)

We now have the following result in [18, Theorem 3.2].

Theorem 2.19 — The connection VHE(XEIx) is exactly the holomorphic Hermitian
connection on (H(X,§|X), gHXElx)) | In particular, VH(X£1X) only depends on the
(1,1)-form w via the metric g7 on TX.
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Put
dim X .
(2.45) ch(H(X,€|x), g# X410y = Y™ (1) ch(H' (X, €| x), g™ (£
=0

The operator Nv induces the obvious Z-grading on H(X, ¢ | x)-

By definition V#(X:£1x):2 ig the curvature of VH(X:€1x) Also as u — +o0, we
use the same notation as for u — 0. We recall a result of Berline-Getzler-Vergne [3,
Theorem 9.19], also recalled in [18, Theorem 3.4].

Theorem 2.20 — As u — +00,

(246) & Tr, [exp(—B2)] = ®Tr, [exp (—VH(Xvﬁlx%z)] +0 (:/Lﬂ) ,

Ty, [N, exp(~B2)] = @ Tr, [Ny exp (- vHX€l0)2)] 10 (%) :
2.7 Higher analytic torsion forms
For s € C, Re(s) > 1, set

(247) ¢6) =575 |, w10 (Tr, [V exp(-B2)]
— Tre [Nv exp(—VH(X’El")’z)] ) du.

In view of (2.40), it is clear that ¢!(s) extends to a meromorphic function of s € C,
which is holomorphic for [Re(s)| < 3.

Similarly, if s € C, Re(s) < %, we define ¢?(s) as in (2.37), replacing fol by f1+°°.
In view of Theorem 2.20, it is clear that ¢?(s) is a holomorphic function of s € C,
Re(s) < 1.

Definition 2.21. For s € C, |Re(s)| < 3, set

(2.48) ¢(s) = ¢ (s) + ¢3(s).

Then ((s) is holomorphic on its domain of definition.
Definition 2.22. Set

0
€y —
(2.49) T(w,g%) = 5-C(0).
Observe that the component of degree 0 of T'(w,g®) is exactly the Ray-Singer
analytic torsion [34] of the complex (FE, c'_ix). By analogy, the forms T'(w,g®) are

called higher analytic torsion forms.
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By (2.40),
(2.50) T(w,g%)=— /01 (q; Trs [Ny exp(—B2)] — % — C’0> ‘i—u

- /+°° i3] ('I‘rS [Nu exp(-Bﬁ)] — Trg [Nv exp(—VH(X’5|X)’2)]) du
1 u
+C_1+T'(1) (co — T, [Nv exp(——VH(X’ﬂX)’z)]) .

We recall the result of [14, Theorem 2.20], [18, Theorem 3.9].
Theorem 2.23 — The C> form T(w, g%) on S lies in P°. Moreover

(2.51) %T(w,gﬁ)mh (H (X, €] ), g 7810 — /X Td(TX,g"™) ch(&, g*) .

2.8 Anomaly formulas for the analytic torsion forms

Let now (w’, g’*) be another couple of objects similar to (w, g*). We denote with
a ' the objects associated to (w’, g’¢).
Let Td(TX,gTX,g'TX) € PY/PY0, ch(¢,g%,g"%) € PV/PV? be the Bott-Chern
classes constructed in [13, Section 1f)], such that
99 —~ TX _ITX ITX TX
—Td(TX,g" *,9" ") =Td(TX,g" ") -Td(TX,9" "),
2im
(2.52) -
5i-ch(& 6% %) = ch(¢, ") — ch(&, 6%).
i
Similarly we construct the class ch (H(X,&|y), gl Xt g HX L)) ¢ pS/pSo,
Now we recall the anomaly formulas of Bismut-Kohler [18, Theorems 3.10
and 3.11], which extend in arbitrary degree the anomaly formulas for Quillen metrics
of [13], [15].
Theorem 2.24 — The following identity holds

(2.53) T(W',g"¢) — T(w,g%) =ch (H(X,§|X)’gH(Xyﬁlx)’g’H(Xélx))
- / (TA(TX, g7, g7) ch(¢, g) + TA(TX, g7 )ch(€, b, 1))
zZ
in  PS/PS9,

In particular, the class of T'(w, g®) in PS/PS59 depends only on (g7X, g¢%).

Remark 2.25. For the component of degree 0 of T'(w, g%), the content of Theorems
2.23 and 2.24 is essentially equivalent to the curvature Theorem for Quillen metrics
established in [13], [15].
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3. Kiihler fibrations, resolutions, and Bott-Chern
currents

In this Chapter, we describe our basic geometric setting, i.e. the embedding i: W —
V, and the holomorphic submersion ny: V. — S, nyy: W — S. Also 1 denotes a
holomorphic vector bundle on W, and (£, v) is a resolution of 7.7 by a complex of
vector bundles on V. We make the basic assumption that Rmy.n is locally free.

In this Chapter, we construct the analytic torsion norms of the family of double
complexes (E, 5" + v) along the fibres X, and we describe the Bott-Chern currents
of [16], [17].

This Chapter is organized as follows. In Section 3.1, we give our geometric setting.
In Section 3.2, we construct the analytic torsion forms of the family of double
complexes, and in Section 3.3, we describe the Bott-Chern currents of [16], [17].

3.1 A family of double complexes

Let :: W — V be an embedding of smooth complex manifolds. Let S be a complex
manifold. Let w|y : V' — S be a holomorphic submersion with compact fibre X, whose
restriction 7|w : W — S is a holomorphic submersion with compact fibre Y.

Then we have the diagram of holomorphic maps

(3.1) Y —W

A

X—V—

Let n be a holomorphic vector bundle on W. Let

3.2) (§,'u):0—>§m:>§m_17... 7&;—»0

m
be a holomorphic complex of vector bundles on V. We identify { with @ &;. Let
0

r: {olw — n be a holomorphic restriction map. We make the assumption that (£, v)
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is a resolution of i,7, or equivalently that we have the exact sequence of Oy sheaves
(3.3) 0 — Ov(&m) - Ov(&m-1) e Ov (&) — 0w (n) — 0.

Then for every s € S, (§,v)|x, provides a resolution of 7.7|y,.

Definition 3.1. For s€ §,0<p <dim X, 0<i<m, let E{:s be the vector space of
smooth sections of (A(T*(®VDX) ® &;)|x, on the fibre X,. Set

Ef,= @ E,, E,=E, E.=E,L0E,,

(3 4) p even p odd
E+’s = @ Ezs’ E_’s = @ EﬁsES = E+1'5 @ E_vs :
p—1i even p—i odd

Then the objects in (3.4) are the fibres of infinite dimensional vector bundles on
S.

The Dolbeault operator 5X acts fibrewise on FE. Also the chain map v acts on £ as
an odd operator. We extend v to an odd operator acting on A(T*(®1)X) ® £, so that
if @ € AP(T*OVX), f €€,

(3.5) v(@® f) = (-1)Pavf.

Then we have the identities

X2

5 0, v®=0 , 3 v+vd: =0,

and so
(3.6) @ +v)2=0.

Let N{f, Ny be the operators acting on AP(T*(®VX), & by multiplication by p,s.
The operator N\),‘ — Ny acts naturally on F, and defines a Z-grading on F, for which
=X . . =X . .

0" + v increases the degree by 1, i.e. 8 + v is a chain map.

Definition 3.2. For s € S, 0 < q < dimY, let F? be the vector space of smooth
sections of (AY(T*OVY) ® n)|y, over Y. Set

(3.7) Fi.= @ Fi, F..,=@F!, F,=Fy,0F_,.

q even q odd

Again the objects in (3.7) are the fibres of corresponding infinite dimensional vector
bundles over S. The Dolbeault operator 3" acts fibrewise on F.

Let Ny be the operator acting on AY(T*(®VY") by multiplication by g. Then Ny
acts naturally on F, and defines a Z-grading for which 3" increases the degree by 1.
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Let H(X,,£&|x,) be the hypercohomology of (Ox,(£|x,),v), let H(Ys,nly,) be
the cohomology of Oy, (7n]y,). Then since (3.3) is exact, for any s € S, the map
r: Ox,(€|x,) — Oy, (nly,) is a quasi-isomorphism, and so

(3.8) H(X,€lx,) =~ H(Y;,nly,) -

By a result of Dolbeault and by [19, Proposition 1.5], for every s € .S,

H(E,, 5" +v) ~ H(X,,&|x,) »

(3.9) =Y
H(F,,d )~ H(Y.,nlx,)-

We extend r to a morphism &|w — 1, with r =0 on &, ¢ > 0. For s € S, let 5 be
the restriction map

(3.10) re:a€E, —» (i*@r)a € F,.

Now we recall a result in [19, Theorem 1.7].

Theorem 3.3 — For any s € S, the map r,: (E3,5X +v) — (Fs,gy) is a quasi-
isomorphism of Z-graded complexes. It induces the canonical identification

(3.11) H(E,, 3" +v)~ H(F,,3").

In the whole paper, we assume that dim H(X,£|x) is locally constant. Then the
H(X,,&|x,)’s are the fibres of a holomorphic vector bundle H(X, &) on S. By (3.8),
the dimension of the H (Y}, n|y,)’s is locally constant, and so the H(Ys,n|y,)’s are the
fibres of a holomorphic vector bundle H(Y,n) on S. By (3.8), (3.9), (3.11), we get the
identification of holomorphic Z-graded vector bundles on S

H(X,¢|x) =~ H(Y,nly),

(3.12) H(E, 3" +v)~ H(F,3").

3.2 The analytic torsion forms of the double complex

Let wY, w" be real smooth (1,1) forms on V, W which have the properties a)
and b) indicated in Theorem 2.2.

w

To wV,wW, we associate the objects considered in Chapter 2. To distinguish them

from one another, we will often denote them with a superscript V or W. Also g7X,
gTY denote the Hermitian metrics on X, TY induced by w", w%W.

Let Nw,v be the normal bundle to W in V, let Ny,x be the (fibrewise) normal
bundle to Y in X. Clearly Ny /v ~ Ny, x. We identify Ny, x to the orthogonal bundle
to TY in TX|w with respect to g7X!w. Let gV¥/x be the corresponding metric on

Ny/x.
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As in Section 1.3, one verifies easily that THW is obtained from TEV by the
construction indicated in Definition 1.4.

m
Let g%, ..., g%, g" be Hermitian metrics on &, . .., &n,n. We equip € = @) & with
1=

m

the metric g¢ = € g% . Let v* be the adjoint of v with respect to g¢. Put
=0

(3.13) V=v+v".

We equip the fibres of E (resp. F') with the Hermitian product (2.22) associated to
97%, g* (resp. g7, g").

For u > 0, let BY¢: (0 < i < m), BY be the superconnections on E;, F associated
to (wY,g¢%) and to (w", g"), whose construction was given in Definition 2.12.

Then we can construct the analytic torsion forms T'(w", ¢g%) and T'(w", g") as in

Definition 2.20. By Theorem 2.23,
80
(314) S _T(w",g") = ch(H(Y,nly),g" ")) - /Y Td(TY,g"" ) ch(n, g").

To describe the analytic torsion forms associated to (w,g%), we modify the
constructions of Chapter 2. Set

. 4 173 C(T(lvo))
=Vu(@ +v)+VEF - 2,

vl ) 2v2u
(3.15) _ 7 o) 2 VE o(TOD)

Vu(@© +v") + Wik

E _ —B—IIV + B
As in (2.5), we write w" in the form
(3.16) WY =V TX 4 VI
Definition 3.4. For u > 0, set
. V,H

(3.17) Ny = N& - Ng+ =

The difference with respect to (2.32) is that the number operator N(’,{ has been
replaced by the new number operator N{f — Ng.

Then by [14, Theorem 2.6], _B_L/ ,NL/ verify the obvious analogue of Theo-
rem 2.14. By [14, Theorems 2.2 and 2.9|, the forms & Tr [exp(—?,‘:’z)] and

® Tr, [W: exp(——B_:’z)] lie in PS. Also by [14, Theorem 2.9], the analogue of Theo-
rem 2.16 holds, i.e. for © > 0,

(3.18) %@’I‘rs [exp(—ﬁ,‘f’z)] = —%%?;@Tr [N exp(~B.” )] :
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Put
ch(¢,6%) =) _(~1)*ch(&, g%),
(3.19) =0
ch'(§,6°) = ) (~1)'ich(&,g%).
=0

Then by [14, Theorems 2.2 and 2.16], the following analogue of Theorem 2.17 holds.
Theorem 3.5 — Asu — 0,

(3.20) & Tx, [exp(-B, ")) = /X TA(TX, g7X) ch(€, ¢§) + O(w).

There exist forms D‘_’l,D(‘)’,...,D,‘c/... € PS such that fork € N, asu — 0
—V V,2 k :
(3.21) ® Tr, [Nu exp(—B,’ )] = ZD;/'U,] + O(ur+?).
-1

Moreover

\%
DY, = / ©_ Td(TX, gTX) ch(€, ¢f),
X 27T

(3.22) DY = / (dim X Td(TX) — Td'(T X)) ch(¢)
X
- / Td(TX)ch'(¢) in PS/PSO,
X

For s € S, set
(3.23) Ks={feEs,('5X+v)f=o,(5x*+v*)f=o}.

Then by Hodge theory, KY ~ H(X,,£|x,). Since the H(X;,£&|x,)’s have locally
constant dimension, the KY are the fibres of a smooth Z-graded vector bundle K on
S, and moreover

(3.24) H(X,¢lx)~K.

As a subbundle of E, K inherits a smooth metric g¥X. Let g#(X:£1x) the corresponding
metric on H(X,&|x). The arguments of [18, Theorem 3.2] show that the obvious
analogue of Theorem 2.19 holds.

Put

(3.25) ch (H(X, €lx), "X 2)) = $(=1)" ch(H(X, €] ), g X)),

SOCIETE MATHEMATIQUE DE FRANCE



40 KAHLER FIBRATIONS, RESOLUTIONS, AND BOTT-CHERN CURRENTS

Then by proceeding as in [3, Theorem 9.23], the obvious analogue of Theorem 2.20
still holds.

By replacing in (2.47) B, by P_Z , Nu by NL/ , as in Definition 2.22, we construct
a form T'(wY, g¢) € PS such that the analogue of Theorem 2.23 holds, i.e.

(3:20)  FoT(Y g9 = ch (H(X,€lx), ") = [ Ta(rX, g7 che, ).

i

A simple modification of the arguments of [18] shows that the analogue of
Theorem 2.24 still holds.

3.3 Assumptions on the metrics on &, 7

In the sequel we assume that the metrics g%, ..., g*" verify assumption (A) of [5,
Section 1b)] with respect to gV¥/x, g". We describe this assumption in more detail.

Recall that N,y = Ny,x. On W, we have the exact sequence of holomorphic
vector bundles

(3.27) 0 ->TW —TV|y — Ny;x —0.

For y € W, let H(§,v), be the homology of the complex ({,v),. Then by [5,
Section 1b)], the H (&, v),’s have locally constant dimension. So they are the fibres of
a holomorphic vector bundle H(§,v) on W.

Ifye W,U € TV|w, let Oyv(y) be the derivative of v with respect to any given
holomorphic trivialization of £ near y. Then by [5], Suv(y) acts on H(&,v)y, and the
action depends only on the image z of U in Nw,v = Ny, x. So we will write 9,v(y)
instead of dyv(y). By [5], (8.v(y))? = 0.

Let 7 be the projection Ny,x — W. By [5, Theorem 1.2], we have the canonical
identification of complexes on Ny, x

(3'28) (W*H(f, U), azv) = (7"* (A(N;’/X) ® 71), Vv "'17:2) .
Recall that V was defined in (3.13). By finite dimensional Hodge theory,
(3.29) Hv)~{s€é&w, Vs=0}.

Let gH(¢v) be the smooth metric on H(&,v) associated to the right-hand side of
(3.29), considered as a vector subbundle of &|w .

Both sides of (3.28) are now equipped with a Hermitian metric. We say that
assumption (A) is verified if (3.28) is an isometry.

By [5, Proposition 1.6], given g™V¥/x g", there exist g%, ..., g% verifying assump-
tion (A) with respect to g™Vv/x, g".
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3.4 A Bott-Chern current
m m
Let V¢ = @ V4 be the holomorphic Hermitian connection on (£, 9°) = @ (&, 9%).

=0 =0

For u > 0, put
(3.30) Cy = VS +/uV.

Then C, is a superconnection on £ in the sense of Quillen [32].

By [32], the forms ® Trs[exp(—C?)] are closed and their cohomology class is equal
to ch(€). By [13, Theorem 1.9], the forms ® Trs[exp(—C?2)] and @ Trs[ Ny exp(—C?2)]
lie in PV. If K is a compact subset of V, let || ||, (1) be a norm on the Banach
space of C! forms p on V with support in K.

Nowe we recall result of [5, Theorems 3.2 and 4.3].

Theorem 3.6 — For any compact set K C V, there exists C > 0 such that if
u € CY(V) has compact support in K, then

(3.31) / §® Tryfexp(—C2)] — / #* W Td~ (Ny, x, g™/ ch(n, ")
X Y

< C
= W ||H||CI(K) )

/ 4 Tr,[Naz exp(—C2)] + / #*u(Td™YY (Ny,x, /%) ch(n, ")
X Y

< C
S Ta luller k) -

Definition 3.7. Let P}, be the set of real currents on V' which are sums of real currents
of type (p, p), whose wave front set is included in IVj;, VR S Ny JX.R- Let Pv‘(,’o be the
set of currents a € Pv‘(, such that there exist currents 3,y on V, whose wave front set
is included in N;V/V,R’ with a = 88 + 87.

Let d{w) be the current of integration on W. Then d(w) € pPY.
Definition 3.8. For s € C,0 < Re(s) < 1/2, let R(&, g%)(s) be the current on V

+o0
(432) RE)S) =g [ v {2 TrlNuexp(-CE)
+(Td™Y) (Ny,x, g™¥/%) ch(n, g")6wy } du.

Clearly by Theorem 3.6, the map s — R(£,g%)(s) extends to a map which is
holomorphic at s = 0.
Definition 8.9. Let T'(&, g%) be the current on V,

(3.33) T(¢,¢%) = -(%R(E,gi)(O)-
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By [16, Section 4a)], we know that T'(£, g%) is given by the formula

(3:30) T(€.69 = [ ®Tn [Nua(exp(~C2) - exp(~CR)] 2

e 2 —1y/ N du
+/1 {® Trs [Nu exp(—C3)] + (Td™") (Ny/x,9"¥/*) ch(n, 9")oqwy } -
~T'(1) {ch’ (&, k%) + (Td™') (Ny,x, g™¥/*) ch(n, g")é(wy } -

The following result is proved in [16, Theorem 2.5].

Theorem 3.10 — The current T(&,h) lies in Py,. Also the following equation of
currents holds on 'V

00 —
(3.35) %T(g,gﬁ) = Td™!(Ny,x,9"¥/*) ch(n, g")6;wy — ch(£, g°) .

Remark 8.11. Since T'(£,9¢) € Py, it follows from [30, Theorem 8.2.12] that
/ Td(T X, gTX) T(£,¢%) is a smooth form on S. Of course this form lies in PS.
b's

Also by [17, Theorem 2.5], the dependence of the class of T'(¢, ¢¢) in P,/ Pv“/,’o with
respect to g¢ can be calculated in terms of Bott-Chern classes.
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4. An identity on two parameters differential
forms

The purpose of this Chapter is to construct a differential form 3 on R} xR’ xS and a
contour I' in R’} x R’ depending on three parameters €, A, Ty such that / B € PSO.

To prove Theorem 0.1, we will later push I" to the boundary of R’ x Rf,_r

This Chapter is the obvious extension of [19, Section 3] to the case of a general
S. As in [19], our results can also be obtained from general results of [5] on the
dependence of the superconnection forms on the given metrics.

This Chapter is organized as follows. In Section 4.1 we construct a basic form o
on R} x R} x S. In Section 4.2 we obtain the form 8 by a change of coordinate
of coordinates. In Section 4.3 we describe the contour I'. Finally in Section 4.4, we
establish elementary identities which will be used in Chapter 6.

In this Chapter, the assumptions and notation of Chapter 3 will be in force.

4.1 A basic identity of differential forms
For u > 0,T > 0, set

A,7=BL +TV;

(4.1) : VH
NY =N+ &

Then A, r is a superconnection on E. Put

0 0
4.2 dyT = du— e
(4.2) ur = dus +dT
Then d,, T is the standard de Rham operator acting on smooth forms on R} x R}.

We prove an extension of [19, Theorem 3.3].

Theorem 4.1 — Let oy, T be the form on R} x R} x S,

du ar
(4.3) Oy T = - T [N,‘fz exp(—AZ,T)] -T Tr, [NH exp(——Aﬁ,T)] .
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Then

(4.4) du,Tau,T=
v
2 exp(— A -—bv*)]

N
deu[ ab{Tr {
Na 42 9 Ly
+ Trg [ T exp( Ayt bauBuz) }b=0
15) NY,
8%{ [T“2 exp(——Aﬁ,T — bv)]
NH 2 V/I
+’I\l‘s [T exp(—Au’T B w2 )] } ]

Proof. By the analogue of (2.33), we get

(4.5) A r=[A, 1, AL 1), [Au 1, A% 7] = 0,[AL 1, A2 7] = 0.

From (4.5), we obtain

o " aAL,T , GAZ’T
(4.6) 6TA [ wT» g wT) g | -

Using (4.5), (4.6) and the fact that supertraces vanish on supercommutators [32],
(4.6), we get

0
(47) 55 Tre [N exp(- A% 7)] =
a [ \% ( 2 [ " aA;TJ [ ’ 6AZT:|>:|
— Tr Nuzexp "Au -b u, T ’ -b Au ’ .
ab s , I T aT T BT b=0
0 *
— 88b Trg [N,‘Yz exp(—Aﬁ,T - b )] b=0
0
+ aab Trs [N 2 exp(— A bv)]z,:o
Io} rNV 2 *
~ 3 Trs [[Bu2 » Vy ] exp(— Ay — bv )] b=0

’I‘r [[Buz, ]exp( A2 —bV)]lb:o
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Using Theorem 2.14, we have

(4.8) - % [[BV" N,‘LZ] exp(— A7 7 — bv* )] b0
- Bab [[Bu2 , N,l/z] exp(—AZ 1 — b'U)] b0
o

= 'a—b FI‘I'S [U%AZ’T exp(—Ai’T - bv*):l

b=0
- % T [u%Au’T exp(—Ay T — bv)} -

By (4.7)-(4.8), we find that

) NY
(49) 5= Trs [ uT)]
a 6 " *
Z?_b [6 Au exp(— Az = bu )] b=0
0 0
- Bt [ S rexp(- AL bv)]
b=0
.y NY, 2 .
+8%Trs[ " - u,T_bU )]bzo
) NY,
+8—T&*s[ Y2 exp(—AZ 7 — bv)
ob u o b=0
Similarly
0 2
(4.10) a—'I‘r [Nexexp(—A4% 1)] =

P 0
" 9 _ ’ AN —
[NH eXp ( u T — b [ U7T, au u’T:| b [ ‘U.,T’ au u’T] )] b=0

5 o}

T Trs [[AZ,T’ Ni] exp (_Ai’ ba u’T)]bzo
5 1o}

_ %’I‘rs [[ uT7NH] exp( A _ba u’T):|b=0

1s) 9 0
+ 6% [NH exp (——Au’ ba " T)] -

a 2 a ”"
+ aab Tr, [NH exp (—Au,T — b% %T)] o
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Moreover

8 o
(4.11) —%Trs [[ uT,NH]exp( A? -b-é— "T)L=o

_ % Tr, [[A:L’T, NH] exp(—Ai, bEa—A" T)] .
o [ o

= —T— Ty, Al rexp(—AZ ;. — Iw*)]
b ou T b0

+ T2 Tr, [%A;,T exp(—AﬁyT - b'v)]

b b=0

From (4.9)-(4.11), we get (4.4). O

Remark 4.2. As in [19, Remark 3.4], Theorem 4.1 can be also considered as a
consequence of [5, Theorem 2.2].

4.2 A change of coordinates
For u > 0,T > 0, set

(412) Bu,T = Au,uT .
Equivalently
(4.13) B,r =Bl +uTV.

Theorem 4.3 — Let B, 1 be the form on R} x R} x S,

du dr

(4.14) Bur = — Trs [(N}2 — Nu)exp(—B2 1)] — = Trs [Nu exp(—B2 1)] .
The following identity holds

NY
(4.15)  dy,7Bur = udTdu {Ir [ : -B2 - bv*)]

0
&z
e [M

0 ’
o)
( ’T Ou b=0

T
g—{ [—exp(B —bv)]+

N 2 6 V"
+ T [—Te"" (‘Bw ~ by B )] },,J '

Proof. By making the change of variables ©u — u, T' — uT, our Theorem follows
from Theorem 4.1. O
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4.3 A contour integral

We fix constants ¢, A,Tp such that 0 < e <1 < A < 400, 1 < Ty < +00. Let
I' =I'c a,1, be the oriented contour in R} x R},

|
Iy
AfF-- -€
Y I's %Fl
Ef= — i p————
| 'y |
1 1
1 1
1 ] )
0 1 To T
As indicated in the figure above, I' is made of four oriented segments I'y,...,T'y.

Also I bounds an oriented rectangular domain A.
Definition 4.4. Let 7,3 be the forms on S

d
oy = /A = { T, [N exp(—B2 7 — bv)]
+ Tr, [& exp (—B,%,T - b%B}f;)] }b_ dTdu,
(4.16) 5 =0
- A %{ Tr, [N,“lfz exp(—-B,th — bv)]

NH 2 a v/
+ Tr, [ =L exp (—BH’T b5-BYs }szdeu.

Theorem 4.5 — The following identity holds

(4.17) /,6:57+86.
r
Proof. Identity (4.17) follows from Theorem 4.3 and from Stokes formula. O
Put
(4.18) R=[ o83 , 1<k<4
| P
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Then identity (4.17) can be put in the form

4
(4.19) Y IR =23y +85°.

As in [19], the proof of Theorem 0.1 will consist in making A — +oo, Tg — +o00,
€ — 0 in this order in identity (4.19).

Remark 4.6. In Chapter 14, we will construct a form 3’ which is the analogue of 3
when interchanging v and T'. This way, we will prove Theorem 0.2.

4.4 Some elementary identities

Now, we will eliminate the differential operators auB 2 in the expression (4.16)
for 7, 4. This will prove to be useful in Chapter 6.

Proposition 4.7 — The following identities hold

(4.20)
%m [%-T‘iexp ( 2 - b——a—B )]
i

NY, NY,
M exp(-Blr—b0)| 4 o [ e B2 -0t
uT b=0 u b=0

0
8% Trs

8 NH 2 VI’
BbTrs[uTexP< B, r b B )} »
0
ob

Nu N 0 NY, 9
— -H - = “Tu? —B2,.. —
0— Tre [uT exp(—B T " ]b o + 5% Trs [ " exp(—B, r — bv)

b=0

Proof. We write By, T in the form B, r = B, 1 + B, 1. By Theorem 2.14,

a " 6 ’ 1
(4 21) %BXZ = [BuTaNX?] ) %Bl‘l,/z = Z[ uTaN ’
) 1 . —1
’U:ﬁ[ uT,NH] y v =u_T[ v NH] -
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From (4.21, we get

(4.22) % Tr, [% exp (—BZ,T 2 BY )] =
'_; exp (—B’%’T - % [ ’I"T’NXZ])] b=0
=05, T [% exp (-B'z"T B bj\gfz )] b=0
{B;,T’ JZ_;] €xp (ﬁB?"T B b]\:;tvz )] b

8. [Nu , N4
_85-b-T‘I‘S -ﬁexp( Bu,T’-b b0

=0

u

+ 2w, [ B’ bNJé
b s _v exp u,T " o

8 ... [Nu ) NY,
= 0= Trs | — ~B2_ —p—u
aab * L uT P ( wT U b=0

NY,
+ % Trs [ 2 exp(—B2 r — bv*)

u b=0
So we get the first identity in (4.21). The second identity has a similar proof. O
Definition 4.8. Let 1,0, X\ be the forms on S,
d .. [NL - dTdu
=2 [ =T [—2 —B2 ;. — buTv*
" /./_\. ob | u exp(=By,r — buTv )] peo Tu ’
0 [NY o dTdu
6= 2/A % T‘I’s _T exp(—Bu,T - b’U,TV] o Tu
o} dT'du
4.23 = — —-B2,. — v -
( ) A A b Trs [NH eXP( Bu,T bNu2 )] b=0 Ty
_ a [ 2 (9 v’ dT'du
u=2 /A 5 Trs _NH exp(—B, r — bu £ B, )] oo Tu
0 [ 0 n. | dTdu
=2 | =Tr |V —B2 . — bu—B), i
v /A a5 = | uexp(—B, r — bu 5 B, ] Tu
Proposition 4.9 — The following identities hold,
=n+0A=pu—0A
(4.24) TEATOAEHMT A
d=60—-0\=v+I\.
Proof. Equation (4.24) follows from Proposition 4.7. O
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Then we can rewrite (4.17) in the form
[.6=3n+00+ 3301,
r

(4.25)
/ﬂ=5u+au—256,\,
r

and (4.19) can be rewritten as

4 0
> IR =30 +06°) + —— aaq»\
k=1

(4.26) 4 68<I>A°
D R =20u +0°) - —

k=1
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5. The analytic torsion forms of a short exact
sequence

In this Chapter, we recall the main results of [6] on the construction and the evaluation
of the analytic torsion forms associated to a short exact sequence of holomorphic
Hermitian vector bundles. Also we establish non trivial identities on such generalized
supertraces which will be needed in Chapter 6.

This Chapter is organized as follows. In Section 5.1, we give a formula for the
curvature 32 of the superconnection ®,, considered in [6]. In Section 5.2, we introduce
two conjugate superconnections 6,,%,, whose curvatures reappear in Chapters 12
and 13, and whose geometric interpretation will be given in Chapter 15. In Section 5.3,
we introduce the generalized supertrace Trs [exp(—%2)] of [6]. In Section 5.4, we recall
the transgression formulas of [6] and the results of [6] on the behaviour as u — 0
or u — +o00 of the generalized supertraces. In Section 5.5, we construct the analytic
torsion forms of the exact sequence. In Section 5.6, we recall the explicit evaluation in
[6] of these analytic torsion forms. In Section 5.7, we construct equivariant analogues
of these analytic torsion forms, with respect to the obvious action of the complex
structure. In Section 5.8, we establish non trivial identities on generalized supertraces,
which will be needed in Chapter 6. Finally in Section 5.9, we give a formula for a
conjugate of a curvature operator which will be used in Chapter 13.

5.1 Short exact sequences and superconnections

Let B be a complex manifold. Let

(5.1) 0—-L—-M—>N-—>0
i J
be a short exact sequence of holomorphic vector bundles on B.

Let g™ be a Hermitian metric on M. Then g™ induces a Hermitian metric g~
on L. We identify N with the orthogonal bundle to L on M. Therefore N inherits a
metric g%V. Let PL, PN denote the orthogonal projection operators from M on L, N
respectively.
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Definition 5.1. For y € B, let I, be the set of smooth sections of (A(M ") ® A(N*)),
along the fibre Mg 4.

Then I, is a Z-graded vector bundle on B. Let I = I'* @ I~ be the corresponding
splitting of I into its even and odd part.

Let dvpr be the volume form on the fibres of M. We equip I, with the Hermitian
product

(5.2) frg€l, — (f,g) = (2—17r-)dimM/M(f,g)de.

Let 3 be the Dolbeault operator acting on I, and let 3" be the formal adjoint
of 3" with respect to (5.2). Put

(5'3) D?IJW :gMy +‘8‘My*.

If 2/ € N, the operators i,, and i%, act as odd operators on A(M") & A(N*). 1l
Z' =2’ +%Z € Nr, put

(5.4) V(Z') = V—-1(iy — i%).
Equivalently, with the notation of Section 2.2,

az)
5.5 v(z') = v=12Z) |
(5.5) ) 7

Let VL, VM ¥V be the holomorphic Hermitian connections on L, M, N and let RE,
RM_ RN be their curvatures.

The connection VM defines a horizontal subbundle THM of TM. If U € Tr B, let
U* be the horizontal lift of U in T M.

Let VA )®A(N®) e the connection induced by VM and VV on A(M ™) ® A(N*).
Definition 5.2. If U € Tr B, il s is a smooth section of I, put

(5.6) Vis = VAMOBANT

Then V7! is a connection on I, which preserves the Hermitian product (5.2).
Definition 5.3. For u > 0, let &B,, be the superconnection on I

c(RMZ)

(5.7) B, = DM + VuV(PNZ) + V! - Ve

Of courses &, splits as

(5.8) B, =B + B,
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As in (2.33),
B2 =0,B7 =0,R; = B, B],
(5.9) [, B2) =0, [®B,,B2] =0,
[, Nox] = 2u o B, [, Nax] = —2u -8,
Let e1,...,e2, be an orthogonal base of Nr. As before, we use the notation of
Section 2.2.

Definition 5.4. Let S € End®"**(A(N") ® A(N*)) be given by the formula
VI s
(5.10) §=-"5— 21: c(e:)é(es) .

Note that taking into account the change of notation on the ¢(e;)’s with respect
to [19, Section 5 a)] which was described in Section 2.2, our S is exactly the S of [19,
Definition 5.1].

Classicaly [31, Propositions 6.4 and 6.5], we know that

vl = ptvM,

(5-11) vV = pNyM

Let RAMMN") denote the natural action of RN on A(N*). Then RAN") acts like
1Q RAMN) on A(M™) @ A(N*).

Let VM = VI @ V¥ be the connection on M which is the direct sum of the
connections VX and V. Set

(5.12) A=vVM_ogM,

Then A is a 1-form on B which takes its values in skew-adjoint elements of End(M)
which interchange L and N.

Let fi1,..., for be a base of TrB, let f!,..., f?* be the dual base of T B.
Definition 5.5. If Z € Mg, set

2k
c(AP'Z) = =" f*c(A(fo)P"Z),

(5.13) ;k
QAPLZ) = =" f*2(A(fa)P"2).

1

Let Tr[RM] denote the (1,1) form on B which is the trace of RM. The following
result was proved in [6, Theorem 3.10]. Let ey, ..., ez, be an orthonormal base of
Mg.
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Theorem 5.6 — For u > 0, B2 € (A(T3,B) ® End(I))®Ve" is given by
2m 9

Be=—13> (Ve + (3R Z,e:))
1

vV—u
V2
Definition 5.7. If y € B, J, denotes the set of smooth sections of Ay(Ng) =
(A(N") & (A(N*)), over the fibre Mg,,.

Since A(Ng) is Z-graded, it is also Zy-graded. If y € B, let J , (resp. J_ ) be the
set of smooth sections of ASY*"(Ng) (resp. A94(Ny)) over the fibre Mg . Clearly
Jy=J+y @ J-y-

Here J = J; @ J— will be considered as an infinite dimensional Zj-graded

vector bundle over B. Our calculations will be done in the Zj-graded algebra
A(Tg% B) ® End(J). Observe that B2 lies in fact in (A(T% B) ® End(J))ever.

(5.14)

+ g 1PNz + VuS + Y 2a(APEZ) + L TY[RM] + RANT)

5.2 The conjugate superconnections €, and %,

Now we recall identities of [6, Theorem 4.12] and [19, Theorem 5.6).
Theorem 5.8 — For u > 0, set

L RMPNZ, L
(5.15) D, = exp (C(A\]/Di 2) _ { D) L Z>)

— L RMpNz pLz
%uexp<c(.:x/{;_2>+< : >)_

Then the following identities hold

2m
@2 =—1 (vei + 1 ((RM — PLA’PL)Z,e;) —
1
LY |PNZ|2
2

2m

(5.16) @2 =~ 13 (Ve, + 1 ((RM — PLAPP)Z, e;)
1

c(A\]/J;e,-))2

+ vuS + 3 Te[RM] + RANT) |

APLe)\?
+ 3 (RMPNZ, Ple;y — 1 (RMPYZ, PNe;) — 5(\/_—2))

pNz|? .
u|—2|— +VuS + L TY[RM] + RANT)
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Remark 5.9. In Chapter 15, we will give a geometric interpretation of the identities
(5.15), (5.16).

5.3 Generalized supertraces

Let dvps, duny be the volume forms on the fibres of Mr, Ngr respectively. All the
smooth kernels along the fibres of Myr will be calculated with respect to the form
dup(2)/(2m)dim M,

We denote by Ny the operator in End(A(/N*)) which defines the Z-grading of
A(N*), i.e. Nu acts by multiplication by p on AP(N*). Then Ny acts like 1 ® Ny on
A(N") @ A(N*).

For u > 0, let Q¥%(Z,2')(Z,Z' € Mr,y) denote the smooth kernel associated with
the operator exp(—®2¥). The existence and uniqueness of Q¥%(Z, Z’) are standard.

Observe that QY(Z,2') € (A(TEB) ® End(A(N") & A(N*)))*¥*". We use the
conventions of Quillen [32] described in Section 4.2. In particular Trs[QY(Z, Z’)] lies
in Aeven(Ty B).

By [6, Theorem 4], we know that for u > 0, there exist ¢ > 0, C' > 0 such that if
y € B, Z € Nry, then

(5.17) 1Q4(Z, Z)| < cexp(~C|Z]?).

Note that in (5.17), it is crucial that Z is restricted to vary in Nr .
In view of (5.17) and following [6, Definition 4.4], we now set the following
definition.
Definition 5.10. For u > 0, set
Trfe(-al, = [ Tiuz 21,
(5.18) ey

TN xp(-a))y = [ TulNaQUZ 2] g

Note that Trs[exp(—%B2)], and Trs[Nu exp(—%B2)], are only generalized super-
traces. In fact the operator exp(—2) is in general not trace class.

Using (5.15), and the fact that supertraces vanish on supercommutators [32], it is
clear that exp(—%2), exp(—%2), Ny exp(—%2), Ny exp(—D2) also have generalized
supertraces Trs[exp(—%2)], Trs[exp(—D2)], Trs[Nu exp(—%62)], Trs[Ny exp(—D2)]
and that

Trs[exp(—B3)] = Trs[exp(—%2)] = Trs[exp(—D3)],

(5.19)
Trs [N exp(—B)] = Trs[Ne exp(—62)] = Trs[Nu exp(—D2))].
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5.4 Transgression formulas and convergence of generalized supertraces

We now recall several results of [6, Theorems 4.6, 4.8 and 7.7].

Theorem 5.11 — For any u > 0, the forms ® Trs[exp(—®2)] are closed, lie in PB,
and their cohomology class does not depend on u > 0. The forms ® Trs[Nyg exp(—®32)]
lie in PB. Moreover, for u > 0,

(5.20) %Q Trs [exp(—B2)] = 2—1,—7;@ Tr, [T exp(—%u)] .
Asu—0,
620 ® Tr,fexp(~2)] = T4~ (N, ™) Td(M, g) + O(w),

@ Trs[Nps exp(—=R3)] = —(Td™")' (N, g") Td(M, g™) + O(u) .

As u — 400,

® Tr[exp(—B2)] = Td(L,g*) + O (\/iﬁ) ,

1
Td(L,d"Y+0( —=) .
s +0(77)
Remark 5.12. In [19, Section 14|, another proof of (5.22) was sketched, using the
expression (5.16) for @2. In Chapter 15, we will sketch a “simpler” proof of (5.22),
based on the explicit form of %,, and on some ideas of the present paper, when
applied to a toy case.

(5.22)

@ Tr, [N exp(~98)] = T2

5.5 Generalized analytic torsion forms

We now reproduce the construction in [6, Section 8| of generalized analytic torsion
forms.

Definition 5.13. For s € C, 0 < Re(s) < 1/2, let B(s) be the form on B,

dim N
2

+o0
(5.23) B(s) = % /0 w1 {@ﬁS[NHexp(—%i)] - Td(L, gL)}du.

One verifies in [6, Section 8a)] that B(s) extends to a function of s which is
holomorphic near s = 0.

Definition 5.14. Let B(L, M, gM) be the form on B

(5.24) B(L, M, g™) = 63—1:(0)-
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By [6, eq. (4.37), (8.2)], the following identity holds

B(L,M,g™) = [ {@ o Nex oxp(~B2)] + TA(M, g™)(Ta ™ (¥, ™)} 22

400
(5.25) + / {<I>Trs[NHexp( ) - = racz, L)}
1
’ M —1y/ N dlmN L
+ I'(1)  Td(M, g™ )(Td™")'(N,g™) + Td(L,g")
The following result is proved [6, Theorem 8.3].
Theorem 5.15 — The form B(L, M, gM) lies in PB. Also
(5.26) B(L M,g™) =Td(L,g") Ta(N, gV

5.6 Evaluation of the generalized analytic torsion forms

We now describe the main results of [6] concerning the evaluation of the form
B(L, M, gM). Recall that the Hirzebruch polynomial A(z) is given by

z/2

We identify A to the corresponding multiplicative genus.

Let 'f‘&(L,M, g™) be the Bott-Chern class in PB/PB0 associated to the exact
sequence of holomorphic Hermitian vector bundle (5.1), which is constructed in [13,
Theorem 1.29] and is such that

(5.28) g‘sz(L M, gM) = Td(M, gM) — Td(L, g*) Td(N, g"V).

The class ’f&(L, M, gM) is normalized by the fact that if the exact sequence (5.1) splits
holomorphically (and here also metrically), then Td(L, M, g™) =0 in PB/P5B0,

Let {(s) be the Riemann zeta function.
Definition 5.16. Put

(5.29) n odd

D)= (r’ (1) +Z Ly 2&( n?) g(—n)%';-.
n>1
n odd
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By [6, Remark 8.8],
(5.30) D(z) = R(z) + I"(l)%(z) .

The power series R(z) was introduced by Gillet-Soulé [26] and the power series D(x)
in [6].

We identify D(z), R(z) with the corresponding additive genera. In particular
Td(L)D(N) is a well-defined element of PZ/PB-?0.

The following result has been proved in [6, Theorem 8.5] and in [6, Appendix].

Theorem 5.17 — The following identity holds
(5.31) B(L,M,gM) = —Td"}(N,g")Td(L, M,g™) + Td(L)D(N) in PB/PB°,

5.7 Equivariant generalized analytic torsion forms

In this Section, we discuss briefly the construction of equivariant analytic torsion
forms associated to short exact sequences. These torsion forms are distinct from the
ones of [8], which are constructed in the context of the Lefschetz fixed point formula.

Let JM be the complex structure of Mr. Observe that J™Z is a holomorphic
Killing vector field acting along the fibres of M, which preserves L and N. In particular
the Lie derivative operator L jm z acts naturally on the vector bundle A(M~)QA(N*).
Then for h € C,

(%Z+ hc(z))2 _o, (%; B hc(z))2 _o

(532 W e M
Lz, B! + 22 ] =0,[L,- B — 282 ] =0.
[ JMZ u 2\/5 JMz u 2\/'2‘
Theorem 5.18 — For u >0, h € R, the following identity of operators in (A(T{ B)
®End(I))eve™ holds
(5.33)
_ c(thJMZ)

2 2m
—Lipgmz + (%u ) =-3 Z (Ve + 5 (R +ihJM 2), ei>)2
1

2v2

+5 [PV 2| + vus + Yo—e(AP"Z) +  Tx [RM — ] + RM™) + hNg.

Proof. Formula (5.33) can be proved directly. Another proof is to use Theorem 5.6
(for the case where h = 0) and to check that the coefficients of h and h? coincide in
both sides of (5.33). A still more sophisticate proof is to observe that (5.33) is in fact
a consequence of Theorem 5.6, where —hiJM is itself part of an enlarged “curvature”
RM 4 hiJM. This point is discussed in more detail in [4, Remark 3.2] (in relation
with [9]) in the context of the local families index theorem. a
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Remark 5.19. Of course we have the identity
hdim M
—
At least formally, the right-hand side of (5.33) is just the operator %2 where RM,
RY are replaced by RM — h, RN — h.

By proceeding as in [6], for u > 0, h € R, one can still define the generalized
supertraces Trg [exp (— (—LthMz+ (%u — ;&;(thMZ))z))] and Trg [NH exp (—-

( — Lijpgmz + (%u - =< (thMZ))z))]. Note here that it is essential that h € R

(5:34) 1T [RY — h] = } T{RM) -

2v2
for the generalized supertrace to be well-defined. Using (5.32) and proceeding as in

[6, Theorem 4.6], the obvious extension of Theorem 5.11 is still valid. In particular
(5.35) 2L, [e L + (B — —==(hJM Z) ’
. ou s Xp thJMZ v oV3

= 00T, [-—1\’%—{- exp (—- (‘—LthMZ + (%u - é%(ih‘]MZ)) ))] .

If A is a (g, q) matrix, set
Tdh(A) = Td(A + k),
(5.36) Td},(4) = 2~ Td(A+ h)
(T (4) = 5-(Td;)(4).

By noting that the right-hand side (5.33) is the obvious modifications of %2 which
was just described, we find that the extensions of (5.21), (5.22) hold, where Td, Td ™%,
(Td™!) are replaced by their obvious analogues Tdy, Td; !, (Td;')’.

Definition 5.20. For h € R, s € C, 0 < Re(s) < 1/2, let By(s) be the form on B

(5.37) Bhp(s) =

1 too c 2
F-(;—)‘/O U 1{¢I>Trs [NHGXp (— (—LthMz-l- (%u_m(thMZ)) ))}
— dim % Tdn(L, gL)}du,

Again Bj(s) extends to a holomorphic function near s = 0.

Definition 5.21. Put
(5.38) B(L, M, gM) = 6—?}(0)-

The obvious extension of Theorem 5.15 is as follows.
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Theorem 5.22 — The form By (L, M, gM) lies in PB ®gr C. Also
80 Tdp(M, gM)

5.39 —Bu(L, M, gM) = L,gt) - 1227,

(5-39) im oI My g7) = Tdn(L07) = 75 5 oy

Again, we can define the Bott-Chern class ﬁh(L, M, gM) as in (5.28).
By [6, Appendix], the series R(z) and D(z) converge for |z| < 27. Put

(5.40) Rp(x) =R(zx+h) , Dp(z)=D(z+h).
Theorem 5.23 — For h € R, |h| < 27, the following identity holds
(541) Ba(L, M,g™) = — Tdy' (N, g")Tdn(L, M, g™)

+ Tdp(L)Dr(N)  in PB/PBOggx C.
Proof. The proof of (5.42) is formally the same as the proof of [6, Theorem 8.5]. O
Remark 5.24. From (5.39), we deduce that

80 0B -
(542) 5“5 (0)n=o = Td'(L,g") — Td'(M, ") Td™}(N, ")

— Td(M, g™)(Td™1)' (N, g").

By differentiating (5.41) at h = 0, we get a non trivial identity for Q%(O)hzo. of
course (5.40)-(5.42) make sense for arbitrary h € R. This is because by [6, Appendix],
D}, extends to a meromorphic function on C, whose poles lie on the imaginary axis.

5.8 Some identities on generalized supertraces

Let da be the canonical generator of C*. Then da, da generate R** ®gr C. If
a € A(T3B) ® A(R?*), then a can be written in the form

a = A + dap + dav + dadao, A p,v,0 € A(TRB).
Put
(5.43) a® =y , a®® =y |, a®@=p,

First, we extend identities of [13, Theorems 1.10, 1.12], [14, Theorem 2.13] to
generalized supertraces.

Proposition 5.25 — The following identity holds,
0
(5.44) 5u Trs [exp(—®B2 + cNu)| =
dada
c 2 oR. _ O%R!,
- Trs |exp(—RBZ — da2u 5u d62u-——au + cNu)

+ % Trs [exp(—B2 + cNu)] -
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Proof. Recall that we consider only generalized supertraces. As in [6, Proof of
Theorem 4.6], one has to be quite careful in the formal manipulation of such
supertraces, especially when using the fact that the supercommutator of supertraces
vanish. For more details we refer to [6]. We have

—(z Tr, [exp(—%i + cNH)] =

(5.45) £
a 2 n 8%:‘
% Trs [exp(—%u —-b [%u, u + cNu) -
2 2 , OBy
+ 55 Trs [exp(—%u -b [975“, Du + ¢cNu) -
' da
= 0Tr, [exp(—%i - ddagiu + cNH)}
" da
+ 0Trs [exp(—%i - daaagz‘ + cNH)]
2 B%L " dada
— ¢Trs |exp(—RBz; — da 9 da (B, , Na] + cNu)

" dada
—cTrg [exp(—%i - daaagi” + da [B.,, Nu] + cNH)]

From (5.9), we get

1

2uc

%R/,

Bu 0Tr, [exp(—%ﬁ + cNH)] ,

da
(5.46) Trs [exp(—%ﬁ —da + cNH)] =

"

R o 1
Trs [exp(——%ﬁ —da 6uu + CNH)] = 2—ucc9TrS [exp(—BZ + eNu)] -

Using (5.45), (5.46), we get (5.44). The proof of our Proposition is completed. O

Proposition 5.26 — The following identities hold,
5 oy 1 ) OB ORB,,
ou Trs [Nu exp(—B2)] = T u s [exp(—%u ~ da2u ou dazu Ou ]
00, &>
+ 7%@ Trs [exp(—B2 + cNu)] ., »
sar) 219 By, + N
(5.47) =357 Trs [exp(=, + cNu)] ., =
” 1 7dada
— Trs Na exp(—®B, — da2u P dazu S
" ou ou
001 9 2
+ u 603 Trs [exp(—By, + cNu)] e=0 "
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Proof. We obtain (5.47) by differentiating (5.44) at ¢ = 0. Note in particular that by
[6, Theorem 4.6], we have the identity of generalized supertraces

(5.48) % Tr, [exp(~9B2 + bNys)] = Tr, [Nax exp(—32)] .
The proof of our Proposition is completed. O

As before, we only consider generalized supertraces in the sense of Section 5.3.
Definition 5.27. For u > 0, put

(5.49)
2m 2
O, = %’I‘rs [exp ( - (“ %Z(Ve,. + 1 ((RM - iJMdada)Z, e;))* + ulig—
+ VuS + \/-—_u\/_(APLZ) + da\/—_uT(PNz) + d_\/:-_u\/_(PNE)
. dada
- dadﬁdm;M + 1 TY[RM] + RANT) 4 bNH)>] )
b=0
- -~ — dada
A, =T -exp(—%ﬁ - da\/zﬂc—(\/%) - d‘d\/——da(7z_)-)] ,
r_ [ X 2 ()
I, = T, _Nne p( (.% +d-¢_f))] ,
" __ [ _ 2 — c(z)
I = Tre -NHexp ( (978 + dav/—u—>= /s ))]

By proceeding as in [6, proof of Theorem 4.6], one verifies easily that ©, and A,
are sums of (p,p) forms, II,, a sum of (p + 1,p) forms, and II, a sum of (p,p + 1)
forms.

Proposition 5.28 — For u >0,
1 62 2
(5.50) =05+ 52 [exp(—%u + cNH)] =0
. 82
I, = -903— 502 Tr, [exp(—B2 + cNH)]c=0

Proof. Clearly
(5.51) I, = Tr, [Ne exp(—B2 + da (B, Nu])] ©
' I’ = Tr, [Ny exp(—B2 — da [B, Nu])] ™

Using (5.51), and proceeding as in [6, Theorem 4.6] (we are considering only
generalized supertraces), we get (5.50). O
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Theorem 5.29 — Asu — 0,
20, = (— Td'(M,g™) + dim M Td(T M, g"™))(Td")' (N, g") + O(u),

PA, = O(U) ’
(5.52) ,
@Hu = @(’U.) 9
®II,, = O(u).
As u — 400,
26, = § dim N(Td'(L, %) - (dim L+ Z57) Td(L,g1) + 0(72).
1
(I’Au = 0(_)
(5.53) \{E
®II, = 0(7) ,

Proof. Let m be the projection N — B. Clearly VAN 4 \/—lg\/z—,z2 is a supercon-
nection on m*A(N*). By proceeding as in [6, Theorems 4.8 and 4.9], we see that as
u — 0,

(5.54) ©y = —{A(RM+dad—)e 3 Te[R™ ]( )dme
/ "Tr. [N exp(—(VAN) 4 T2 (2))?
N s H \/i
- da\/_\/_(z) \/—

Also, one has the easy formula

dim M dada
d‘\/_ (2) + dada——— i )] } +O(u).

(5.55) Trs [NHexp( (VAN 4 /15 \/_(Z))z

—-da\/_— d—\/_ dlmM

\/_(z) f( 7) + dada)| =

m M dad“d) Tr, [NH exp(-(v’“”‘) + \/—_1\%(2)))2] .

((1 + daiz)(1 + dai,) + 3

Let A’ be the genus obtained from A as Td' is from Td in (2.36). Using (5.54), (5.55)
and proceeding as in [6, proof of Theorem 4.8], we see that as u — 0,

d1m M ~

(5.56) = (A (RM) + —— (RM))e—E“lR (Ta=')'(=RM) + O(u).
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- 1
Since Td(—RM) = A(RM)e~2 ™R"] we get

d1m M ~

(5.57) Td'(—RM) = (-A'(RM) + ——A(RM))e"2 3 TH(RM]

From (5.56), (5.57), we get the first identity in (5.52). The proof of the second identity
is essentially the same and is left to the reader.

By proceeding as before, we see that as u — 0,
76(2) %
V2

C(Z)
— dav—122 f] +0(u).

(5.58) I, = Td(-RM)(5 )d"“”/ Trs [NHeXp(—(V“(”')+\/_
N

Using the following identity (which can be derived from (5.55)),

(5.59) Trs [NHexp(_(vA(N*)+\/——C(Z))2 d—\/—c(z))]

V2 V2 5
= iz 1T [NH eXp(—(VA(N‘) + \/:—1-2\(/%))2)]

or the fact that the integrand in the right-hand side of (5.58) is odd in Z, we get the
third identity in (5.52). The proof of the fourth identity in (5.52) is similar.

Now we establish (5.53). Clearly

2m
(5.60) ©, = % Tr, lexp ( - (% Z (Vei + % <(RM — ibJdada)Z, ei))2

IP” |

PNz) c(PNz)
+ VS + V- (APLZ) + day/=TS +day/—12—2
=S(4PL2) - -
et dimM 0
* l
+ L Tr[RM] + RAYD 4 bNH) — S5 5 T [exp(~9B% + bNa)]
b=0
By [6, Theorem 7.7], as u — +00
dlmN

2— Trg [exp(—%ﬁ + bNH)]b

(5.61) 5

——— Td(—R%) + 0( \/_)

Let Ji be the differential operator % acting on S;. By using the notation and the

techniques of [6, proof of Theorem 7.3], one finds that the first term in the right-hand
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side of (5.60) is given by

1 .
(5.62) — % [e—i Te[RE)4+b/2dim N gor! (1 — (RN + b)J5! — uJi?)

[detgglu — (RM + dada)Jg;' — uPTA(JE — (RN + b)Jx —u)™!
APL g - g(PLA +daPV + daPV)(J% — (RN + b)Jk — u)~?

dada
(APY — daP"N — daPV)Jg! —uPV J,;z)] } .

The precise interpretation of (5.62) is that (5.62) is an infinite product over Jx €
2i7Z* of determinants over M or N (in [6], determinants over Mg , Ngr are
considered, and this explains the power 1/2).

By proceeding as in [6, Theorems 7.6 and 7.7], as u — +o00, the asymptotic
expansion of (5.62) is given by

. i L —lTr RL 1
(5.63) —1dim NA'(RF)e™2 ™ )+@(7{7)‘

From (5.60)-(5.63), we find that as u — +o0,

(5.64)

o _dimN _dimM
v 2

Td(—R") - 2'(RL)e—1/2“lRL1) :

Using (5.57) and (5.64), we get the first identity in (5.53). An obvious modification
of the previous argument shows that the last three identities hold.

The proof of our Theorem is completed. O

Remark 5.30. From (5.50), it is easy to give another proof of the last two identities in
(5.52), (5.53), by showing that the limit as u — 0 or u — +00 of Trs[exp(—B2+cNg)]
is a closed form.

Put
@0 = lim @u s
(5.65) u0
O = lim ©,.
u—>+00

The forms ©¢ and O, have been calculated in (5.52), (5.53). They are 0 and 0 closed.
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Theorem 5.31 — The following identities hold,

(s.66) 5 [ ', d—“ + 30 11""3‘

+oo
- ’a_q (/ q)(eu. - 60)—’ + Q(eu - eoo)d_u)
0 u 1 u

21T
= dim M(Td(L,¢") — Td(M, g™) Td~* (N, g"))
—Td' (L, g") + Td' (M, gM) Td"' (N, g") + Td(M, gM)(Td~ ) (N, gV).

Proof. By Proposition 5.28, we find that
(5.67) oII,, + OIT;, = 99 : 5 Trs [exp(—B2 + cNu)] __,
From (5.33), (5.49), we find easily that

. M 2 dada
(5.68) ©, = —Tr, [Nn exp (— (dadeL,- Mz + (%u 4 Slidada] ™ Z) )> ))]

2v2
— dim M Tr, [Ng exp(—B2)] + Tty [Nes exp(—B2 + dadaNg)] "
8BI dada
— _ 2 u u
Trs [N uexp (— (B, u qu— ] .

By (5.35)

(5.69) 00 Tr, [NT exp ( - (dadﬁLuMz + (Bu + c(zdad_JMZ)) ))]

M dada
c(zda;i\ﬁ/; Z)) ))] .

0
= -é-’;j,- rIYS [exp ( - (dad&Lumz + (%u +
By Theorem 5.11,
(5.70) 80 Tr, [N— exp(—%B2 )] = —'I‘r [exp(—9B2)] .

Also one has the trivial,

]dad— 02

(5.71)  Trs [Nuzexp(—B2 + dadaNy) ]

Tr, [exp(—B2 + cNu)) ,_,

By Proposition 5.26,

=. 0, 02
(5.72) 865_1:%_6?5 Trs [exp(—B2 + cNu)] o
” n 1dada
— 00 Trs J\;H exp(—®B2 — da2u%‘- - dﬁ2u6%“ ] .
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From (5.67)-(5.72), we obtain

(5.73) %(En; + 01 — 39O,) =

o c(idadaJM Z)\ 2
30 Tre [eXP ( - (dadaLiJMZ + (%u + T o ) ))]
) o 6 , 62 2
+ dim Mé-’l; Trs [exp( —op2 )] 503 Trs [exP(_%u + CNH)] =0

As we just saw, ©9 and O, are d and O closed. Moreover by (5.50), (5.52),
(5.53), or by a simple direct proof, the limit as « — 0 or u — +oo of
%6%25 Trs [exp(—B2 + cNu)] eeo 18 0 and 9 closed. By Theorem 5.11 and its extension
stated after (5.36), and by (5.73), we get (5.66). The proof of our Theorem is
completed. O

5.9 A conjugation formula

If X € Mg let X190, X(01) be the component of X in M, M, so that X =
X(I,O) + X(Ovl).

Proposition 5.32 — For u > 0, the following identity holds

(5.74) exp| —ida(APLz PNz) — lda(APLz, PNZ) + APLZz
2 \/§

+ da%(PNz) + dd%(PN‘z') -

2m PN
( - %Z(Ve,- + 1 ((RM — iJMdada)Z, €;))? + ulPYz I + vuS
1

(RMPNz, PLZ))
2

—u L av—u—(PV z
+\/_‘/_(AP Z)+d \/_(P)

N
C(l:/_z) — da d—d‘mM +1Tx [RM] + RA(N‘>)

exp(%da (APLz, PN z) + Lda (APY2z, PNz) — —j—ﬁ(APLZ)

+ dav/—u——=-=

PNz +

(RMPNZ,PLZ) )
2

N
\/—(P z) = \/—(
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2m

=1 Z (vei + 2 ((RM — PLA?PY — V=1PYJM Pldada)Z,e;)
1

+ 1 (RMPNZ,Ple;) — L (RMPLZ, PNe,)
+ da (APLe,-, PNz) + da(AP"e;, PNz)

_ (AP ez) N o(1.0) 1 N _(0,1) )2
—_—r P da + P%e: " da
V2 f ol Ja+ Jme(PTer)da
PNz M «
_’lil_.__l_}_\/—s dad—dlm + %’I‘l‘[RM] +RA(N ).

2

Proof. When da = da = 0, formula (5.74) is exactly the second identity in (5.16).
Put

(5.75) K= \/_(APLZ) + daT(PNz) +da— \/_(PNZ)
Observe that if X € Ng,
(5.76) [K, %(X)] =(AP*Z,X) — da(P"Nz,X) —da(P"z, X) .

From (5.76), we deduce that

exp(K) (S + —(APLZ) + da\/_(PNz) + d_\/_(PNE))

(5.77) \/_

exp(—K) =
Also

[K, Ve,v] — \/_(APLez) PNegl,O)) _ da?/c___i(PNeEO,l)) ,

=
s
) (K, [K, V]| = —(APYZ, AP e;) + (APLz,PNe;) da
+ (AP*z,PNe;)da + da (PN 2z, APYe;) + da (P"Nz, APTe;)
+ dad&'( - <PNz, PNe§0’1)> + <PN?, PN€£1’0)> ) .

Also the higher commutators in (5.78) vanish. From (5.78), we get

(5.78

(5.79) exp(K)V, exp(—K) = V,, (APLe,) — da— (pN @, 0))

T2 V2
— da s (PNe™) + §((-PLA*PZ, i)

— 1da({AP*z, PNe;) — (AP"e;, PN 2)) — 1da((AP"z, PNe;) — (AP"e;, PNz))
+ 1(V-1JMdadaPN Z, PNe;) .

From (5.77)-(5.79), we get (5.74). The proof of our Proposition is completed. a
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6. A proof of Theorem 0.1

The purpose of this Chapter is to establish Theorem 0.1, which is an identity relating
the higher analytic torsion forms T'(w", g¢) and T'(w", g") to integrals along the fibre
X of certain Bott-Chern currents on W.

4
In (4.26), we established an identity of forms in PS, ZI,? = &0’ + a°) —
k=1

Q_QQ)\O, these forms depending on ¢, A,Tp. In this Chapter, we study the various
T

i
terms in this equality, by making A — +oo (step a), Top — +oo (step 3), € — 0 (step
4

). Divergences appear at one or more of these stages. The final identity Z I} e p5°
k=1
will then be shown to be equivalent to Theorem 0.1.

When S is a point (which is the case studied in [19]), P5® = {0}. So in [19],
the right-hand side of the above equality is identically 0. Also, in general, P50 is
not closed under uniform convergence. Finally, as explained in the introduction, our
purpose is to obtain a local universal equality in PS/P5°. So in contrast to [19], we
have to study in much detail the right-hand side of the equality.

The organization of this Chapter is closely related to the organization of [19,
Section 6]. As in [19], we state several intermediate results, whose proof is delayed to
Chapters 7-13.

The Chapter is organized as follows. In Section 6.1, we state our main Theorem. In
Section 6.2, we introduce a rescaled metric on &, which depends on a parameter 7' > 0.
In Section 6.3, we state seven intermediate results concerning the left-hand side of
the equality. In Section 6.4, we study the asymptotics of the I)’s. In Section 6.5,
we summarize the divergences in the right-hand side of the equality. In Section 6.6,
we state five intermediate results needed in the study of the right-hand side of the
above equality. In Section 6.7, we calculate the asymptotics of the right-hand side.
In Section 6.8, we crosscheck our computations, by verifying that the diverging terms
of both sides of the equality coincide. In Section 6.9, we obtain a local equality in
PS /PS50, Finally, in Section 6.10, we show that this equality is just Theorem 0.1.

The general outlook of the computations of this Chapter being quite similar to
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70 A PROOF OF THEOREM 0.1

[19, Section 6], the reader is referred to [19] for a more detailed discussion of some
computations. Also as explained at the end of Chapter 6, if S is compact and Kibhler,
and if we are just interested in a non local equality in PS/PS9, the reader can skip
the rather heavy Sections 6.6-6.8.

In this Chapter, we use the assumptions and notation of Chapters 3, 4 and 5.

6.1 The main Theorem

Consider the exact sequence of holomorphic Hermitian vector bundles on W

Let Td(TY, TX|w,gT*!w) € PW /PW:0 be the Bott-Chern class constructed in [13,
Theorem 1.29] such that

Td(TX|w, g"X!%) — TA(TY, g7¥) Td(Ny,x, g"¥/X).

Note that the construction of [13] is local and universal.

Recall that by (3.12), we have the canonical isomorphism of holomorphic Z-graded
vector bundles on S

(63) H(X7€|X) = H(Y’UIY)

Also, in Sections 2.6 and 3.2, smooth Hermitian metrics g”/(X¢€1x) and h(Y,7|y) were
constructed on H(X,¢|x) and H(Y,n|y). Because of (6.3), we may regard g (X:¢lx)
and gH#(¥'7l¥) as metrics on the same Z-graded bundle H(Y,7n|y).

For p € N, let ch (H(Y,nly), gHXtlx) gHX:mlv)) ¢ pS/PSO be the Bott-Chern
class of [13, Theorem 1.29}], such that

(6.4) gﬂch (H(Y, nly)’gH(X,EIx),gH(Y,nlv)) =

ch (H(Y,nly), g" ")) — ch (H(X, £]x), g"X410) .

+o00
Let ¢(s) = Z % be the Riemann zeta function. Now we introduce the Gillet-Soulé

power series R [26].
Definition 6.1. Set

(6.5) R@) = Y (Z 2$ "’) (-2

n>1 1
n odd
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We identify R with the corresponding additive genus.

The main result of this paper is stated in Theorem 0.1. For convenience, we state
again this result, which extends [19, Theorem 6.1].

Recall that by Remark 3.11, the integral along the fibre / TAd(TX, g"*)T (¢, ¢°)
X
lies in PS.
Theorem 6.2 — The following identities hold,

(6.6)
ch(HYly) gH(X&lx) oHYmly)y _ (W, g") + T (WY, ¢°)

Td TX|w
=/ Td(TX,gTX)T(ﬁ,gg)—/ Td(TY,TX|W;5; )
X y Td(Ny,x,g"v/*)

ch(n, g")

+ f Td(TY)R(Ny,x)ch(n) in  PS/P5°,
Y
&I(H(Yﬂllv),gH(Xyﬁlx),gH(YJIIY)) _ T(ww,g") + T(wv,g’s)

Td(TY, TX |w,gTXI")
= TdTX,gTXT,f—/ : :
[ ma TES) = [ =gy 275)

ch(n, g")

+ / Td(TX)R(TX) ch(¢) — / Td(TY)R(TY)ch(n) in  PS/PS°.
X Y

6.2 A rescaled metric on F

By the anomaly formulas of [18] stated in Theorem 2.24, one verifies easily that
we only need to establish Theorem 6.2 for one single choice of w". In the sequel, we
will assume that w"% = i*wV, and we will prove Theorem 6.2 in this case.
Definition 6.3. For T > 0, we denote by ( , ); the Hermitian product on E

associated to the metrics g7X, géo, 9;;—, ey ‘;f;‘,,- onTX,&,...,&m. Set

(6.7) Kr= {s €EFE, (5x +v)s=0, (_5X* +T%*)s = 0} .

Let Pr be the orthogonal projection operator from E on K7 with respect to ( , ).

In (3.24), we saw that for any T > 0, there is a canonical isomorphism of Z-graded
vector bundles

(6.8) Kr = H(X,¢|x).
Let gqu(X,flx ) be the metric on H(X,{|x) inherited from the metric ( , )p

restricted to Kr. Let V¥ (X€1x) pe the holomorphic Hermitian connection on
(H(X,&lx).g7 ).
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Put

DX =3 +3"",

DY =3 +9 ".

Recall that V = v + v*. For T > 0, set

(6.10) Kr={seE, (DX +TV)s=0}.

(6.9)

Let Pr be the orthogonal projection operator from FE on K7 with respect to the
Hermitian product ( , ) =(, ); on E.
Then we have the easy formula in [19, eq. (6.5)]

(6.11) T~VMu(@* 4y +5 " +T2*)TNe = DX 4. TV
By (6.11), we get
(6.12) Pp =T NupTNu,

The map s € K — T-Mug e I?T is an isomorphism of Z-graded Hermitian vector
bundles. So K7 is also isomorphic to H(X,&|x).

The operators PTN\)}' Pr and PrNyPr act on K7. We still denote by PTN\),( Pr
and PrNyPr the corresponding operators acting on H(X,§{|x) ~ H(Y,nl|y).

Let Q be the orthogonal projection operator from F on K’ = ker(DY).

6.3 The left-hand side of (4.26): seven intermediate results

Now we state seven intermediary results contained in Theorems 6.4-6.10, which
are the obvious extension of [19, Theorems 6.3-6.9]. They will permit us to study the
left-hand side of (4.26). The proofs of Theorems 6.5-6.10 are deferred to Chapters 7-
13.

We use the same notation as in Theorem 2.17. Also we use the notation of Chapter 5
with respect to the exact sequence of holomorphic Hermitian vector bundles (6.1) on

w.

Theorem 6.4 — There are forms DY, DY in PS that as u — 0,
— — DY

(6.13) ®Tr, [NL’ exp(—B,‘fz)] = == + Do +0(u).

Moreover

wV
DY, = [ 5-TATX,gTF) ehie ),
x «T
(6.14) DY = / (dim X Td(TX) — Td'(T X)) ch(¢)
X

- / Td(TX)ch'(¢) in  PS/PSO.
X
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There are forms CW,,CY¥ in PS such that as u — 0,

CW
(6.15) Trs [NY exp(—BY?)] = —;l +C¥ +0(u).
Moreover

wW TY
cH = / 55 Td(TY,g7") ch(n,g"),
(6.16) y =%
oy = / (dimY Td(TY) — Td'(TY))ch(n) in PS/P5°.
Y

Proof. Our Theorem follows from Theorems 2.17 and 3.5. O

Theorem 6.5 — For any compact set K C S, for any up > 0, there exist C > 0,
d €]0,1] such that for u > uo, T > 1,

(6.17) I’Ik‘s [(N}2 — Nu) exp(—B2 1)] — Trs [NQYZ exp(—Bg’2)]| < :’% on K,

C
Tr, [Nu exp(—B2 1)] — 1 dim Ny, x Tr, [exp(—Bz;”2 ] | <75 on K.

Theorem 6.6 — For any compact set K C S, there exist C > 0 such that for
u>1,T2>1,

on K,

c
(6.18) ’Trs [Nz exp(—B2 )] — Trs [PTN\’,(PT exp(—Vg(X,Elx)z)]l <2

"IYS [Nu exp(—Bﬁ,T)] — Trs [PTNHPT exp(—Vg(X’glxm)” < % on K.

Theorem 6.7 — For any compact set K C S, there exist C > 0, v €]0,1], such that
forue€l0,1],0<T < 1/u,

(6.19) '@ Trs [Nu exp(—AZ 1)] — /X Td(TX, g7*)® Trs [Ny exp(—C32)]

<Cu(1+T)) on K.
For any compact set K C S, there erists C' > 0 such that for u €]0,1],0< T < 1,
(6.20) | Trs [Nu exp(—AZ 7)] — Trs [N exp(—A2)]| < C'T on K.

Theorem 6.8 — For any T > 0, the following identity holds,
(6.21)  lim ®Tr [NH exp(—A2 T,u)] = / @ Tr, [N exp(—B22)] ch(n, g") .
u—0 ’ Y

Theorem 6.9 — For any compact set K C S, there exist C > 0, § €]0, 1], such that
forue€l0,1], T > 1,

(6.22) l'ns [NH exp(—A2 1 /u)] — Ldim Ny, x Tr, [exp(—Brz/’z ]| < % on K.
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Let Y3,..., Y4 be the connected components of the fibre Y. Then we have the local
holomorphic splitting

d
(6.23) H(Y,nly) = @ H(Y;,nly;)

i=1

and the splitting (6.23) is orthogonal with respect to g”(Y:7lv) We will write metrics
on H(Y,n|y) in matrix form with respect to the splitting (6.23).

Recall that since H(X,§{|x) ~ H(Y,n|y), the metric gg (X:£1%) can be considered
as a metric on H(Y,n|y).

In the sequel, we will write that a smooth function f on S is 6(T~°°) as T — +o0,
if for any compact set K C S, k € N, p € N, there is C > 0 such that if T > 1, the
sup over K of f and its derivatives of order < p is dominated by -7—9,,-

Theorem 6.10 — As T — +oo,

- dim Ny /x (gH(Y,nIY).*_o(?l?))

O(T—)
H(X,
(6.24) gT( e

o(T—)

T dim Nyd/x (gH(de'rle)_*_O(ﬁ))

Theorems 6.5 and 6.6 will be proved in Chapters 8 and 9, Theorem 6.10 in
Chapter 10, Theorem 6.7 in Chapter 11, Theorem 6.8 in Chapter 12, and Theorem 6.9
in Chapter 13.

6.4 The asymptotics of the I’s
Recall that by (4.18),

(6.25) I°=/ o3 , 1<k<4.
Tk
By (4.26),
(6.26) i: I} = ®(0u° + 0v°) — @@\0.
k=1 (s

In the discussion which follows, we will assume for simplicity that S is compact. If
S is non compact, the various constants C > 0 depend explicitly on the compact set
K C S on which the given estimate is valid.
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The term I?
Clearly
o A v 2 du
(6.27) = / @ Tr, [(Nyz — Nu) exp(—Byr,)] — -
€

a) A— +oo

By the obvious analogue of Theorem 2.20, as A — +00
(6.28) I? — &Tr, [(N\’,‘ — Ny) exp (—V;‘fo (xvﬁ'x)’z)] log(To)

1 du
-1 =/ ® Trs [(NY> — Nu) exp(— B2 1,)] o

€

+ /1+°° q’('I\”s [(N32 — Nu)exp(—B2 1,)]
—Tr, [(N\?,f — Ngg) exp (_V;fb(x,ax),z)] )éﬁ

B) To — +oo

By Theorem 6.5, as Ty — 400

(6.29) /1 ® T, [(N2 — Nu) exp(—B2 1,)] (%u

1
——>/ ® Tr, [N:‘Z’ exp(—Ber)] d_u
. u

By Theorem 6.6, for 1 < u < +o00, Tp > 1,
(6:30) |Tr, (N2 — Nu) exp(— By 1,)]

— v, [(VF = Na) exp(- V5403 | <
Also since the identification (3.12) preserves the Z-grading,

(6.31) Trs [(N\),‘ — Nu) exp(—Vﬁ(xvﬁ'x)"")] _

H(X, ,
Tr, [N\}; exp(-—VTo( ¢lx) 2)] .

" .

¢
=

75

Let V;{(Y’"l") be the holomorphic Hermitian connection on H (Y, 7|y ) associated to
the metric gf.o (X:&lx) Using (3.12), we find that V%‘X’ﬂx ) corresponds to Vﬁ(y"’l‘”) .

By Theorem 6.10, as Tp — +o00,
(6.32) vA®ly) _, GHYmly)

To
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Using Theorems 6.5 and 6.6 and (6.31)-(6.32), we see that as Ty — +o00,

+o00
(6.33) / ® (Trs [(N)2 — Nu) exp(—BZ 1,)] —
1
Tr, [V — Nag) exp(~ v eb0)2)] ) 2
+o0
. / ) (’I‘rs [N,EZ exp(—BX‘éz] -
1
Tr, [V exp(~ v 1012))) du

u
From (6.28, (6.29), (6.33), we find that as Ty — +o0,

1 w.2 du
(6.34) I} —1I? =/ ® Trs [erl exp(—B,2 )] o

+ /1+°° <I>('1'irS [er/ exp(—Br;,l’z)]

— Tr, [N\’; exp(—VH(Y"’h’)*z)] )‘%u )

v) €—0

Using Theorem 6.4, we find that as ¢ — 0,
1
(6.35) I? — %CX‘{E—Z +C¥ log(e) — I =
1 CW
= / {<1> Tr, [N,YZ exp(—BX‘z/’z)] - - oo} du
0 u u
+oo
+ / @ (Tr, [NY exo(-B5?)]
1

— Trg [N\},/ exp(—VH(Y""")’z)]) dzu — %CKVI .

5) Evaluation of I3
Theorem 6.11 — The following identity holds
(636) I} =—3 [T(W",g") ~T'(1)
(Cgv — & T, [N\),, eXp(—VH(ley),z)D] .

Proof. Equation (6.36) is a trivial consequence of (2.50) and (6.35).
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The term I2

The term I3 is given by

To ar
(6.37) n =/ ® T, [Nu exp(—B% 1)] T
1

a) A— +oo
By Theorem 6.6, as A — 400

ar

To
(6.38) Ig — 1'21 = / & Tr, [PTNHPT exp (__vg(x,ﬁlx)ﬂ)] =
1

B To — +oo

By making u — +o0o in Theorem 6.5, and using Theorems 2.20 and 6.6, we get for
T>1

(6.39) ITrS [PTNHPT exp (-v? “‘*“’"’2)]

—1dim Ny, x Tr, [exp (-vH")2) ]| < .
From (6.38), (6.39), we see that as Top — +00,
(6.40) I: — 1dim Ny, x®Tr, [exp (-v* (Y’"‘Y%?)] log(To)

+o00
I = / @ (Tr, [PrNuPr exp (—v3 1))
1
dT

—1 dim Ny, x Tr [exp (—v”“’v"'ﬂ’?)]) =

v) €—0

The term I2 remains constant and equal to I3.

5) Evaluation of I3
Theorem 6.12 — The following identity holds

(6.41) I3 =1L (H(Y,nly)’gH(X,Elx),gH(Y,nlY)) in PS/PSO.

Proof. Let dim Ny,x be the operator acting on H(Y,7n|y) by multiplication by
dim Ny,;x on H(Y;,nly;) (1 <i < d). Set

(6.42) gHonly)" _ pdim Ny /x gHVmly)
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Then by Theorem 6.10, as T — +o00

' 1
6.43 HYmly)' _ (H(Ynly) 4 (—=).
( ) gr g (\/T)

By Hodge theory, the map s € K; — Prs € Kr is the canonical isomorphism of K,
with K7, these two bundles being identified to H(X,£|x). In particular if s € K;,
1<T<T,

(644) PTIPTS = PTIS .
Using (6.44), if s, s’ € K, we get

OPr

9 ,
(6.45) 5-T— (PTS,PTS )T = < T

PTS PTS >
T

OPr 2
<PTS, oT P ’>T - -1—,, (NHPTS,PTS'>T .

Since PZ = Pr, then

OPr
oT

OPr OPr

(6.46) a7 Pr+Prp- =50

From (6.46), we see that QET— maps K into its orthogonal K3 with respect to { , ).
Therefore (6.45) is equlvalent to

1o} 2
(647) 6_T (PTS, PTSI)T = —T (NHPTS, PTS’)T .

From (6.47), we deduce
F) H(X£|x) 2
(6.48) gH (Xt~ ‘_QT = —=PrNuPr.

By [13, Corollary 1.30], we know that for a given Ty > 1,

(6.49) I} = Lch (H(X,élx),gH(nylx)’g;{o(x,ﬁlx)) .
Equivalently
(6.50) I} = Lch (H(y’ aly), gH(X,EIx),gg)(Y,nlv)) .

By (6.43) and by [13, Corollary 1.30}, as Tp — +o0,
(651) b (H(Y,nly), gh"™™), gHm0) =

— dim Ny, x ® T¥, [exp (—VH(Y”’|Y)'2)] log(To) + @(%) .
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From (6.50), (6.51), we see that

(6.52) I} — 1dim Ny, x® Tx, [exp (—VH(Y’"’Y)"")] log(To)

~ 1
=1 H(X£|x) oH(Ymly) —_
2Ch (H(Y’WIY)’Q g ) +O(\/T)

From (6.40), (6.52), we get (6.41). O

The term I3
We have the identity

A
(6.53) 9= / & Tr, [Nuz exp(~Bs )]
£
a) A— 4o
By Theorem 6.6, as A — +00,
(6.54) I? + ®Tr, [(N{,‘ — Np)exp (-V”‘X’ﬂx)’z)] log(A)
I = -/ & Tr, [N,,z exp(~Bos )]
€
+00
+ / ® ('I‘rs [N ,‘:2 exp(——EZéz)]
1

— T, [(N\)}’ — Ng) exp (—VH(X’fl")’z)D du .

(7

B Tp — +oo

The term I} remains constant and equal to I%.

v) €—0

By Theorem 6.4, as € — 0,
1
(6.55) I2+ %DYIE—2 — DY log(e) —
1 _ - DY d
B=- / {«p Tr, [Nf; exp(—B,‘f{")] =1 _pY } Y
0 ’u, u

- /1+°° ( [N,uz exp(— Buz )]

— T [(N\),( — Nu) exp (—VH(X’5’X)’2)]) %ﬁ +1iDV,.
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§) Evaluation of I3

Theorem 6.13 — The following identity holds

(6.56) I3 = 1{T(w",¢%) —T'(1)(DY
—® Ty, [(N{,‘ — Nu)exp (-v"‘xélx)ﬂ)]} .

Proof. This follows from the obvious analogue of (2.50) and from (6.55).

The term I3
We have the identity

To dT
(6.57) g =- / ® T, [Nu exp(—BZ r)] = -
1

a) A— 4o

The term IJ remains constant and equal to I}.

ﬁ) TO — 400

By Theorem 6.5, we find that as Top — +o00
(6.58) I + 2dim Ny;x® Tr, [exp(—B:;/’z)] log(Th)

+o00
Ny / ®( T, [Nu exp(—B2 )]
1

— 1 dim Ny, x Trs [exp(—Bg’z ] )g '

v) €—0

We proceed as in [19, p. 65]. Set

1 daT
J{’ = ——/ P Tr, [NH exp(—Ag’T)] T

€

dr

1
Jg = —/ @’I‘I‘S [NH exp(—AgyT/E)] ?
(6.59) e

Jo— _ /1+°o <I>(Trs [NH eXP(—Ag,T/e)]
ar

~ } dim Ny, x @ Tr, [exp(~BY?)] ) =
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Clearly
(6.60) 12 = JO 4+ J2 + J? — dim Ny, x® Tr, [exp(—Bg’2)] log(e) .

1)  The term JY.
We have the identity

1
(6.61) JO =— / @ (Txs [Nu exp(— A2 )] — Trs [N exp(—AZ)]) %

+ & Trg [NH exp(——Agyo)] log(e) .

By Theorem 6.7, we find that as e — 0

(6.62) JY — / Td(TX, gT*) ch’ (¢, g°) log(e)
X

1
—at=- [ [ marx,gm)
0 X
, oy dT
® Tro [Nex(exp(—CFa) — exp(—Cp))] = -

2)  The term J3.
As in [19, p. 66], we write JJ in the form

(6.63) J3 = — /1 {*I) Trs [NH exp(_Ag,T/e)]

~rsesarrem s ()]} £

_ /1 Y { /X Td(T X, g7X)® Tr, [NHeXP(—C%z)]}%Z'

By Theorem 6.7, there is C > 0, v €]0,1] such that for 0 < e <T <1

(6.64) th)Trs [NH exp(—Ag,T/E)] - /X TA(TX, g7X)

& Tr, [Nut exp(—Clyryepa)] | < Cle + T) < C2T)7.
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We now combine Theorems 3.6, 5.8, 6.8 and (6.64). We thus find that ase — 0
(6.65) J3 + / TA(TX,g"*)(Td™!) (Ny,x,g"¥/*) ch(n, g") log(e)
Y
1
—s=—[ [{em[Va exp(—%%z)] +Td(TX, g7X)(Td" 1Y
Y
(Ny/x, g™/ ")} L ch(n, g7)
+o00
- / { /X Td(T X, 9" *)® Trs [Nu exp(—C3-)]
1
TX —1y/ N- aT
[ Td(TX,g" " )(Td™") (Nyyx, 97"*) ch(n,9") ¢ —

3)  The term J3.
Using Theorems 2.17, 6.8 and 6.9, we find that ase — 0

+oo
(6.66) J? — Jl=— / { / (® Trs [N exp(—B3.)]
1 Y
. dT
—$ dim Ny, x Td(TY,¢")) ch(n,g")} — -

4) The asymptotics of I3.
By Theorem 2.17 and by (6.60), (6.62), (6.65), (6.66), we find that as € — 0,

(6.67)
IZ + {dimNY/x / Td(TY, g"Y) ch(n,g") — / Td(T X, g7*) ch’ (€, ¢°)
Y X

+/ Td(TX,gTX)(Td_l)'(NY/x,gN"”‘)Ch(n,g")}log(é‘) — I =
/ { / Td(TX, g7X)® Tr, [Nyx(exp(—C2a) — exp(— c?))]}df
_ / +°°{ / Td(TX, g7¥)® Tr, [Nex(exp(—C2a)] + / Td(TX, gT%)
1 X Y
(Td™) (Nyyx,"7/x) ch(n, g } -
- / / 1 {®Trs [Nu exp(—%%g)] + Td(TX, g¥%)
Y
(Td™) (Ny/x, g™/ x)} Ch(ﬂ, q")
+00
—// {<I>Trs [NHexp(—%%z)]
Y J1

_ dT
—1dim Ny, x Td(TY, ¢"¥)} T ch(n, g").
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5) Evaluation of I}
Theorem 6.14 — The following identity holds
(6.68) I3 =—1 { /X Td(TX,g"*)T (¢, 4%)
+/YB(TY,TX|w,gTX'W)ch(n,g")
+T'(1) ( /X Td(T X, g7X) ch' (€, g°)
~4dim Ny [ Ta@yg™)enn,gm) }

Proof. Using formulas (3.34) for T'(¢, g¢), (5.25) for B(TY, T X |w, g7%!%) and (6.67)
for I}, we get (6.68). O

6.5 The divergences of the left-hand side of (4.26)

4
Now we will summarize the divergences of Z I ,? as A — +o00, Tg — 400, € — 0.
k=1
As should be the case, the diverging terms lie in P50,

a) A— +oo
By (6.28), (6.54), which concern I?, I9, the diverging term

(6.69) {-@Tx, [V - NH)exp(—V;{o(X"SIX)’z)]

+@ Tr, [ (N — Nar) exp(—VAXE1)2) | L 10g(a)
appears. By [20], [13, Theorem 1.27], this term lies in PS50,

B) To — +oo

By formulas (6.40), (6.58), which concern I}, I}, we get the diverging terms

(6.70) {—%dimNy/th'I‘rs [exp (_vH(Y,my),z)] +

L dim Ny, x® Tr, [exp(——B:Z’z)] } log(To) .
By Theorems 2.16, 2.20, 2.23, this term lies in P50,
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v) €—0

We get a first sort of terms in formulas (6.35), (6.55) which concern IZ, I,
1
(6.71) {-chi+D} 5.

Since wV is closed, it follows from (3.35), (6.14), (6.16) that —C%, 4+ DY lies in PS?°.

By equations (6.35), (6.55), (6.67) which concern IZ, I2, I?, we also get the
diverging terms

(6.72) {Cg" — DY + dim Ny, x /Y TA(TY, gT¥) ch(n, g")

- / Td(T X, g™ %) ch’(¢,¢%) + / Td(TX, gT*)
X Y
(Td™") (Ny,x, g™¥/*) ch(n, g") } log(e) .

Using (6.14), (6.16) and the arguments of [19, p. 70, 71], one verifies easily that (6.72)
lies in PS50,

If S is compact and Kihler, P50 is closed under uniform convergence. In this case,
4 4

it is not difficult to see that since Z I? € PS5O, then Z I} € P5°. The reader who

k=1 1
is only interested in this case can skip Sections 6.7 and 6.8.

In the case of a general S, P50 is no longer closed. Also recall that our final
purpose is to obtain a local equality in PS5 /PS50, This is why in Sections 6.6 and 6.7,
we discuss in detail the right-hand side of (4.26).

Finally observe that since in general, exact forms are closed under uniform

convergence, part of the discussion of Sections 6.7 and 6.8 can be eliminated, if we
4

just want to show that Zlg € P59,
k=1

6.6 The right-hand side of (4.26): five intermediate results

Now we will state intermediate results, which are needed in the study of the
asymptotics of ®(0u’ + ov°) — ?—f@)\o, which appears in the right-hand side of (4.26).

If hy,r is a function of (u,T) € R% x R, we denote by hor the limit (when
it exists) of h,,r as u — 0. Also hg,. denote the limit (when it exists) of hor as
T — +4o0. Similar conventions apply to functions h},.

Let da be the canonical generator of C*. Then dada span R?>* ®g C. If 0 €
A(T3,S) ®r A(R?*) we write o in the form

6.73 o = 8o + dao®® + dac™ + dadac?®%®, oy, 042, 0% 09998 ¢ A(THS).
R
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_ 0 2 \4
KuT = o Trs [NH exp( Az v — BNy )] b=0
Ky = —117' dim Ny, x Trs [(NZV + -%dim NY/X)exP(“B":Vyz)] ’
o 0 " 9 4
eu,T = % ’I‘I’ [exp( A \/— 2daua A\/_,\/_ - 2@“%14\/5’\/7’
dada
+ dad-—(uN y) - bNH)]
0,: =—3 1 dim Ny/x Trg [exp(—BXm — da2u5%BXV~ _ da2u%BXV/
P w . dada
+ dada(%(uNu ) + 3 dim NY/X)] ’
1 a v
T,T = 352 Trs [exP( —A; \/_+CN )] ’
* 6 i
= T oA
9 -
- [ XP(”Af/E,\/T + 2ddu8—B,‘{ - b\/Tv)] b_ )
" =2’ﬁ exp(— 42— -+ 2dau-2-BY" — bV/Tv*)
u, T b " vV, VT ou ’
da
u, T 8b ‘/— \/— vT ’
R 9 Trs | Ny exp(—A2 — 2dau— o A" ) -
u, T 3() \/ﬂ,ﬁ ou ﬁ ’
* 3 8 , dE
7|':L — %dlm Ny/x Trg {exp(—Br”z — QdEU—a'aBZV )] o ’
da
= %dim Ny, x Trs [exP("BZV'z - 2dau—a—BXV”)]

Observe that by (2.33),

(6.75)

= 0K,
T = —0K .

ou

b=0
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Computations on the model of [14, Theorem 2.16], and Theorem 3.6 show that
(6.76)
®0pr = — /X (dim X Td(T X, g™*) — Td' (T X, g"*))® Trs [Nz exp(—C%)] ,
B0 00 = /Y (dim X Td(T X, gT*) — Td'(T X, g7X))(Td~')
(Ny;x,g"¥/%)ch(n,g"),
05 = — /Y 1 dim Ny, x ((dim TY + % dim Ny, x) Td(TY, g"")
~ Td(TY,g™)) eh(n, g"),

)‘6,T =0, g,T =

W{),T=0, 7r(I)I,T=0,7T(/)*=0, 71'(’),*:0.
Again, we use the notation of Chapter 5 with respect to the exact sequence of
holomorphic Hermitian vector bundles (6.1) on W.

Put
1 dimY
or = (57) / Or Tr [exp(—-V™%)] ,
1 dimY
A = (%) / A7Tr [exp(=V™?)] ,
, 1 dimY 2
Mp = — 3 / A1 Tr [exp(—V™?)] ,
(6.77)

i)dle/ Az Tr [exp(— V"’z)]

(
dimY
T = (2m) / iy Tr [exp(=V"5)]
dimY
E gy E——
Observe that by Theorem 5.29 and by (6.76), (6.77),

®0p,00 = o,

(6.78)
P03 = Poo

Similar trivial equalities hold for X', \", «/, n".

Now we state five intermediate results contained in Theorems 6.15-6.19. They will
be used to study the right-hand side of (4.26). The proofs of Theorems 6.15-6.19 are
deferred to Chapters 7-13.
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Theorem 6.15 — For any compact set K C S, for any up > 0, there exist C > 0,
6 €]0, 1] such that for u > up, T > 1,
a 2 V /'l
|— Trs | Nu exp(—B, r — bu B )
b T b=0

9 & _w C
— L dim Ny, x = Tr, [exp(—BW’2 —bu—B )] | <=,
(6.79) 2 X" v Bu v ] 1T T
0
|55 T, [Nag exp(= B2 1 — bNY)]
. . C
+ 1 dim Ny, x T, [(N:Z + 1 dim Ny/x)exp(—B:g’z)] I < 75 on K.
Theorem 6.16 — For any compact set K C S, for any up > 0, there exists C > 0

such that for u > ug, T > 1,

(6.80)
|% Tr, [NH exp(—B2 1 — buaiB" / ")] .
_ §,; Tr, [PTNHPT exp(~VHXEx)2 _ bvqff("’ﬁ'x)'/"PTN{,‘PT)] - | < %
| =+ Trs [Nuexp(=B2 1 — BN )], _,
- a% Tr, [PTNHPT exp(—vfr’("’f"‘)’2 — bPp N PT)] b=0| < % on K.

Theorem 6.17 — For any compact set K C S, for any Ty > 0, there exist C > 0
such that if hy T is one of the functions 0, T, “;,T: wZ,T, for0<u<1,0<T<Ty,

(6.81) | P, — hor| < Cu on K.

For any compact set K C S, there exist C > 0, v €]0, 1] such that if hy T is one of
the functions 6y T, T, 7, T 1, for0<u<1,0<T < 1/u,

(6.82) lhu,r — hor| < Cu(1+T))" on K.

Theorem 6.18 — For any compact set K C S, there exist C > 0, 8 €]0,1], p €]0,1]
such that if hy,T is one of the functions Ou,r, X, 7, N, 1, T 1, Ty 1, for u €]0,1],
T € [u,1],

Cu®
(6.83) Ihu,T/u - < T8 on K,
and for u €]0,1], T > 1,
(6.84) |hu,T/u —hy|<Cu” on K.
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Theorem 6.19 — For any compact set K C S (resp. and given uo €]0,1]), there
exist C > 0, 6 €]0,1] such that if h, T is one of the functions 6, r, X Ts Mus T
Ty 7 (Tesp. nu,r), for w €]0,1], T > 1 (resp. for u € [ug,1],T > 1),

. C
(6.85) |Pu, 7/ — BY| < 75 on K.

Theorems 6.15 and 6.16 will be proved in Chapter 9, Theorem 6.17 in Chapter 11,
the first half of Theorem 6.18 in Chapter 12, the second half of Theorem 6.18 and
Theorem 6.19 in Chapter 13.

6.7 The asymptotics of the right-hand side of (4.26)
a) A— +oo

By Theorem 6.16, we see that as A — +oo,

To a
(6.86) u —2 : o5 T [pTNHpTexp(_vg(x,ax),z

/ dT
— bV PN Pr)| S log(4) —

b=0
; 9 v dTdu
'= ar s | IV; _n2 0 Ly
K 2/5951 55 X [ uexp(—B2 1 buauBuz) d
1<T<To _
o . o
" /15u5+°o (% e [NH exp(—By,r — buz-B,; )] b=0
1ST<To _
o
— % ’I‘rs [PTNHPT exp(_vg(xyﬂx)yz

’ de
_ pyHKelx) pTN{’,‘PT)] b-—O) Tuu '

A similar result holds for 1°, replacing V;I(X’ﬂxyPTN\)}’ Pr by —V;{(x’ﬂ")" PrN3f Pr.
Finally by Theorem 6.16,

To
(6.87) X0 — % Ty, [PTNHPT exp(—Vg(X"EIX)'z
1
dT
— bPr N PT)] T
0 g v dTdu
log(A) — A\! = ccus: B T [Nuexp(—B2 7 — bN,2)], _, e
1<T<T,
(2 Trs [Nu exp(—B2 1 — bN,2)]
1<u<4oo \ @b = ° u,T u?/1b=0
1<T<To

dT'du
Tr, [PTNHPT exp(—V¥(X,£|X)Y2 - bPTN‘};PT)]) Tu -~

_9
b
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From (6.86), (6.87), we see that as A — +o0,

— o
(6.88) ®(Au® + a°) — Q%AO - <1>25 / g—b Tr, [PTNHPT exp(—VHXx)2

dT

va(X £lx)’ P NXPT)] T

To
+ 820 / 55 T [PTNHPT exp(— VHXLlx):2
1

” aa To a
+ oV PN Pr)| - 0 T | PrNu Pr exp(- v %6102
— bPr N PT)]b dT] log A — ®(Fp! + ov') — af

B To— +oo
By proceeding as in [3, Theorem 9.23], one finds quite easily that as u — +o0,

ﬁfn [exp( ~B? —bu iB ) =@(%).

(6.89) = - .

By using (6.80), (6.89) and making u — 400 in (6.79), we get for T' > 1,

H X H X ’
v )] b—O’ = TZC'5 )

By (6.79), (6.80), (6.89), (6.90), we find foru >1,T > 1,

0 o /
(6.91) |55 Trs [NH exp(—B2 p — bu-a—uBXz )]
b=0
o /
- 5 Tr, [ PrNuPp exp(—VEXA)2 _ pgHX X b X PT)] .

6 a ’ C
1 _gW2_ . 9 pw -
5 dim Ny, x ETA Trs [exp( B, buauBuz ]b=0 l < W57z
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Using Theorem 6.15 and the above inequality, we find that as Ty — +oo0,

+oo ,
(6.92) p!-2 / 1 dim Ny, x% Tr, [exp(—B:Z’z - buiBrz' )] d—-“ log(To)
€ b=0

Ou
0 7]
2 _ = —-B2,_ _
— pf = 2/€Susl (Bb T [NH exp(—B; r bua BY, )] oo
1<T<+4o0 =
1 9 _pw2 _ 9 w
3 dim Ny, x 3% Trs [exp( B,>" —bu Ew B, )] b=0) Tu
0 0
2ﬁ5u<+w (35 ™ [NH exp(—BZ r — buz—BY; )] .
1<T<+o0 =

6 ’
— 55 Trs [ PrNuaPr exp(- V5 6102 _ gAY prv pr) | o

. 9 0 ’ dT'du
— 1 dim Ny/X%- Trs |:exp(——B::‘2/’2 — bu%Br{ )] b—o) Tu

A corresponding result holds for v!. By Theorems 2.20, 6.15 and 6.16 and by
proceeding as before, we see that as

1 ) . du
(6.93) A! — [/ —3 dim Ny, x Tr, [(NXZ + 3 dim NY/X)eXP(—B,%’z)] o
€
+o0
_/ —4 dim Ny,x | Tro [(N + § dim Ny, x) exp(~BI? ]
1

— Txg [(Nv + 3 dim Ny, x) exp(— ~vHEly), 2)] ) ] log(T5)

—»,\2=/

<1 (Bb NH exp(— B — bNY )]bz0
+
+ 3 dim Ny, x Tr [( w2 + %dim Ny/x)exp(—BE[;’2 ] )

e<u

1<T<

dT'du
Tu

0
+ /1Su<+oo ([ab [NH exp( B bNXz)] b=0
1<T<+00
0o

H(X, )2
) T [PTNHPT eXP(—VT( )2 _ bPTN{;PT)]b:O

+ %dim Ny,x ('I‘rS [(er/ + :} dim Ny/X) exp(—B:‘;’z)]

dTl'du

~ Tr, [(V + } dim Ny/x) exp(—VH 12| ) s
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By (6.92), (6.93), we see that as Ty — +o00,

®(Op! +ovt) — %?Q/\l

= [t 7} o / du
- 2<I>3/ L dim Ny, x— Tr [exp(—BZV’2 — bu—BY )] —
[ e 2 Xgp " ? v, o

u
+ 0 w,2 0 " du
14 - — — by—BW =
+ 2<I>6/ 3 dim Ny, x e Ty, [exp( Bu2 bu,a B, )] U

. du
+oo e
+/ 3 dim Ny, x | Trs [(Ng+%dimNy/X)exp(_Bu2, ]
1

— T, [(NV + = dlmNy/x)exp( VHEly), 2)] ) " )] log(To)

00

— ®(Ou? + 0v?) — —BA2.
in
7)) €—0
1. The terms p? and v2? Clearly
(6.95) Ny exp(—B2 . — buiBV)
: sgust HEXPL=Bur du |, o
1<T< =

, 9 w2 9 _w dT'du
— %dlm Ny/xa)- Trs [exp(—Buz - bua—Buz o Tu

du +o00 .
/ e AR A
5-2
Then

1 +o00 dT
690) [ 2 [Titp-mnE [ d“/(”—rru =
e2 U Ju ' €2
+/ gq/+°° o gmdT
2 ou J, u,T/u T .

Also by using the techniques of [14, Theorem 2.11], we get the counterpart as
u — 0 of (6.89), i.e. as u — 0,

(6.97) my = 0(u),n"* = 0(u).
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By (6.76), Theorem 6.17 and (6.97), as ¢ — 0,

1 1 1 1
du o aT du waT
(6.98) _/52 U/U (Tur = )+ —*/O T/u (mur =70 = -
Also, using Theorem 5.29, we get
1 +00 1 1
du o aT du a7
(6.99) /52 T/u (o7 — T )'T_ = /. 7/u (T Ty — T — Ty, )—17
1 +o00
du o aT
+/€2‘17/1 (W;,T/u—wér—ﬁ;)?
+/1 _d_u/+oo ﬂ_l l_iz
e2 U w T T )
By Theorem 5.29 and by (6.76) and Theorem 6.17, for0 < u <1, u < T <1,

lﬂ;,ml <Cu+T) <C'T,
|mp| < CT.

(6.100)

Also by Theorem 6.18, for0 < u <1, u<T <1,

Cu*
/ /
(6101) I’/Tu,T/u — T < —CTT .
From (6.100), (6.101), we deduce that there is &’ €]0, 1], such that for 0 < u < 1,
u<T <1,
(6.102) .ﬂ:"T/u - m{,| < Cu® .

By (6.97), (6.102), we find that ase — 0,

Vdu ! a7
(6.103) /627/1‘ (Tur/u = 70 = ™) 7

1 1
du o T
—*/O —u—/u (WL,T/U—W%—WL)?-

By Theorem 6.18, for 0 < u <1, T > 1,
(6.104) L | < Cue.

Also by Theorems 5.29 and 6.19, forO<u <1,T > 1,

IW;,T/'U. -y | < T3
(6.105) o
|nr| < T
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By (6.97), (6.104), (6.105), we see that for0 <u <1, T > 1,

. Cup/2
(6.106) ﬂ':l.,T/u - 7T'IT - 71'.:‘ S —:I-_'E/T .

Using (6.106), we see that as ¢ — 0,

(6.107)
Bl . du +°° . T
/ / (ﬂuT/u_ ,)_ / / uT/u_ u _ﬂ',)
€2

By Theorem 5.29 and by (6.99), (6.103), (6.107), we find that as e — 0,

ld'u, +o00 , ,* +o00 2
(6.108) / T / (TuTju =T )—+ / ﬂT log(E)
€ u
1 +00
du , T ar
\/0 u /u (ﬂ-u,T/u - 7rT ) T

1
+ / 7 log(T) %,Z .
0

By (6.92), (6.95), (6.108), we see that

2 tee , dT 3
(6.109) p°+ A 7rT——log(s)—>,u, =

/ du /+°°(7ru - ,*)

1
0 8 v
1 ’ 9 n2 _ 3.9 pv
+ 2/0 T log(T)—T + 2/11$u<+°o (8b Trs [NH exp(—B; buauBuz )] o

<T<+o0
0

_ % rI\rs [PTNHPT exp(_vg()(yflx)q2 _ bvg(X’ﬂX),PTN\)I{PT)] b0

dl'du
Tu

. o w,2 0 ’
— 2 dim Ny, x 3 Trs [exp(—Buz - bugaBZZ )] oo )

A similar result holds for 2, so that as ¢ — 0,
+o0
(6.110) v+ / Wéﬁ%,z log(e) — 3.
0
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2. The term )2 Clearly

(6.111) /

+ § dim Ny/x Tr, [N}% + } dim Ny, x) exp(~B5?)] )

Sy

As this stage, one would like to proceed as in (6.96)-(6.110). However as u — 0,
Ky, has a singular expansion of the type

0
<us (ab Trs [Nu exp(—B2 1 — bN.%)] b0
+

I/\m

dT'du

(6.112) KT = %T— + Br + O(u).

Also Ky, 1/ has a singular expansion of the same type. So we use integration
by parts to overcome this difficulty.

Clearly

Vdu [t dTr ldu [t o dT
11 = T — K - = - — wT — KX))—
©113) [ F [ kur—sd) = [ ke — )
“+o00 dT
/ ( Ky + K,u)— +/ (KEZ,T 5.2)—17

+oo a7
- ) (ﬂl,T"'ﬁ)?-

We will not control the right-hand side of (6.113) directly, but the 89 of this
right-hand side. To do this, we will establish intermediate useful formulas, whose
purpose is to eliminate the diverging term in (6.113).

Proposition 6.20 — The following identity holds,
6.114) 272 Tx [N exp(— A2 )] — N,
orT vuvT
+ Bw,',,T + 07y, — 200K, -
Proof. This identity follows from (4.9) and (4.20). a
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Theorem 6.21 — The following identities hold,

a *\ __ p* aQ..*
%(’U’K’u) - eu + aanu ’
a 17}
a_u'(unu,T) u T+ Tﬁn‘u,T
_591-2_ [ (-A2_ —+cNY —bN; )]
(6.115) 252096 s PV Ava,vT T N H) |y

c=0
i Tr, [exp( —-A? +cNY + b\/fv*)]
d%cob  ° Vi vT b=0

63
+ 9355055

+ 03
Tre [exp(—Af/E’ vt cNY + b\/Tv)] b=

Proof. The first identity in (6.116) was proved in [14, Theorem 2.14]. Now we prove
the second identity. Clearly,

(6.116)

d 8
= Tre [uN,Y exp(— A% oz — bNH)] = Tr, [;,E(uzv;’ )exp(—A2 o — bNH)]

0 \4 2 " 9 ’
+ 50-’1‘1'5 [uNu exp(——Aﬁ,ﬁ—c [Aﬁ,ﬁ’% JENT
0
__c[ / vF' Ba A:’/—, ] bNH)]czo

= Tr, [%(uN,Y ) exp(—Af/t_h VT~ bNH)]

da
8 da
+ 0 Txg [uN exp(—A2 ENT daa A’\'/_\/——bNH)]
1o}
v 2
+ T [[ ENT uNu]exp(—Aﬁ,ﬁ—da%A"/t_‘,ﬁ—bNH)]
da
+rI‘1' [[ \/—ﬁ,uNu]exp( A\/—\/— daaa A” \/— bNH)]
b6 NY —A? d‘a bN, A N
+ & uN,] exp(— vavT 45 \/_\/— H—c[ \/_‘/—,NH]) .

da

) v \ P
+b% Tre [uNu exp(—Aﬁ,ﬁ - daa A" T~ ONH - [A:/E,\/T’ NH] )]

c=0

O
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By (2.33),

a da
(6.117) T [uN,Y exp(—Af/E’ﬁ - dEEIA,ﬁ»/T - bNH)]
= 1 Tr, [N,Y exp(——A2 VT~ d&[ VaT ] bNH)]
32
- ——6‘1‘8 5 [exp( —A? avt cNY bNH)]
o3

~ Yo [exp( A2 ot eNY —bNH+b[ \/_\/—NH])]

c=0

b=0

In the corresponding equality with da g 2 A'\'/_ VT signs are changed in the right-hand

side of (6.117).
By differentiating (6.116) at b = 0, and using (6.117), we get

8

ab
A
8628 5% [exp( A\/_\/—+cN —-bNH)]
1 O
4 8c20b

3
Trs [exp( A\/—\/—+ch+b\/Tv)]

(6.118) %(unu’T) [ (uNY) exp(— A2 ﬁ—bNH)]

b=0

0
0

— || II

+0

[exp( —A? \/—+cN + bVTv*)

)
1
+ 935205

c—O

4

0
Trs [exp(—Af/l_M/T — 2dau—3—17 wT
] dada

9 .
— 2dauz-Alr —bNu)|
d

8
+ 55 Tr [uN exp(~A%g = dag Al r— b[’\’ﬁ,ﬁ,NH])]

8 8
+ 55 Tr [uN exp(— A2y 7 —das-Aly o b[ 'ﬁ,ﬁ,Nn])]

+ 2
ob

da

b=0
da

b=0

Also, as in (6.118), we get

9 da
(6.119) Tr, [uN exp(— A% o — dag-Al g r—b [A’\’/I_‘Y ﬁ,NH] )]
, & 2 V _ /T y, 0°
= —83@ Tre [exp(——Aﬁ,ﬁ +cN, —b Tv)]c + Zbazcab/
8

2
ns[eXp(—Aﬁ’ﬁ'i‘CN b\/T'U'—2b, |: \/_\/_6T ’\1/—7‘/_])](;:0'
b'=0
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By differentiating (6.119) at b = 0, we get

) ) da
(6120) - Tv, [uN exp(— A2 yr— g Al - b[ '\'/i,\,T,J\rH])L=0
83
=0 ——Tr v/
_6482c8b [exp( A\/_\/—+cN +b T'v)]

c-—O

03 7]
+‘182 o0 [exp( A\/—\/—+CN u—2b/T[ VaNT BT :’/_ ])]b’:O'

\/._ Nid 9 is replaced by 9, VTv by vVTv*
and [A' 2 Ar ] by [A" 2 4 ]

Va, VT’ 8T “*\/u VT Va,vT? T fu VT
Now using Theorems 6.19 and 6.21, we get

u [T
(6.121) aa/ d/ —a—(u(nuT ;))‘%T:

= du [+ o dT ! o du
3o [ 2 [ Our -0+ [[runr %],

To the first term in the right-hand side of (6.122), we apply the trick already used
for u?, v?. Namely we write

Vdu [+o° o daT Ldu [* a7
6122 [ T[T er-oF= [ T [ -0

+o00
/ / (au T/u — u)_ .
Also

1 1 d dT
(6.123) / 93/ (Out — e*)——/ “/ (Our — b0 — 0% + 03) =
e2 U Jy 2 T

du waT
+/€27L (OO,T——HO)—T—.

In the corresponding equality with daz; a

One verifies easily that as u — 0,
(6.124) 0;, =65 + O(u).
By Theorem 6.17 and by (6.123), (6.124), we see that as e — 0,

(6.125) / d“/ (Ou,r — 0*)—+é( f0,0 + 65) log®(¢?)
/(90T—9oo)—10g(€2)
—-)/ du/ (GuT 90T—9*+00)—+/ (GOT—G()‘Q)lOg(T)d—qT-.
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Also by Theorem 5.29 and (6.78),

Ly [reo ..dT
©126) [ G [T Guru- 00T

Ydu 1 ar
/ — / (Ou,r/u — 00,7/u — 0T + 90)—1':
& u

2 U

1 1 1 1/u

du aT du daT

— Or — 6p)— — 6o —

+/€zu/u(T 0)T+€zu/1 oT T

1 1 +o00
. du du . T
+L2 9ulog(u)-a—+/€2 7/1 (ou,T/u—gT—ou-{-ao) T
+oo aTr
- / (6 — ooo)? log(e?) .
1
By Theorems 5.29 and 6.17, forO < u <1, u<T <1,

|‘9u,T/u - 00,T/u| <Cu+T)<CT",

6.127
(6.127) |0r — 60| < C'T.

By Theorems 3.6 and 6.18, and by (6.78), forO < u <1, u<T <1,

Cu®
ou, u 0 S R
(6.128) 1wz = b T
|60,7/u — 60| < C('j:)l/z-

From (6.127), (6.128), we find that there exists o’ €]0, 1] such that for 0 < u < 1,
u<T<1

(6.129) |0u,7/u = 0,770 — 01 + 60| < Cu®'.

By (6.129), we see that as ¢ — 0,

1 1
du dT
(6.130) / o /u (Ot = B0,/ = Or + 00) 2 —

1 1
du dT
/0 - /u (Ou,T/u — O0,7/u — OT + 00)—T .
By Theorems 5.29, 6.18 and 6.19, for 0 <u <1,T > 1,

|0u,T/u - 9T| < Cu’ ’

e
(6.131) |6u7/u — 0% < 75
c
Or — o] < —=.
|T 001-- \/T
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Using (6.78), from (6.124)-(6.131), we see that for 0 <u<1,T>1

Cu®
(6.132) |6u7/u — 61 — 6, + 65| < =5

From (6.132), we find that as ¢ — 0,

o219 .
du [*°° v e dT du [T%° v e dT
/e2 ‘17/1 (0u,T/u_0T_eu+00)? —’/0 ?/1 (0u,T/u_eT_0u+00)?
Using (6.126), (6.130), (6.133), we see that ase — 0,
Vdu [*+o° waT .
(6.134) / o / Oz — 02) 5 + 3(05 ~ Bo,00) 108%(<7)
& u
+o00 dT +o0 dT
+ (/ (Bo.r ~ 0,00 = +/ (Or — 00) 5 +/ (61 — 8o0) = )
1
du
2 — — — —
log(e®) — /0 " /u (Ou,7/u — Oo,1/u — 0T + 90) T
1 +o00
d dTr
+/ "‘y'/ (eu,T/u—aT_9:+05)_
+oo ar
(9'1' — 00) log(T)— - (00 T — 00,00) IOg(T)—— .
T
By (6.122), (6.125), (6.134), we see that as e — 0,
1 +o00
(6.135) du O — O d—T + 1(268 — 60,0 — 00,00) log?(e?
3 2 ) )
e2 U Jy
1 ~+o00
+ (/ (6o, — 6o o)—- +/ (6o, — 6o oo)
0

+00

1
_ hainll _ il 2
+ [(or -0+ [T (6r - 0) ) o(e?)
Ydu ! v e dT
- /0 7/“ (Bu,r = bo,7 — O, + 65)
1 1
du dar
+ /0 o /u (6u,7/u = b0,7/u = 61 + 60) 7
1 +o00
d daT
+/ _u/ (ou,T/u - HT - 9:; + 06)?
1 +o0 dT
+ [ Gor— o) os@ T — [ (Guir — b0.) loBT) -

1
+ /0 (Or — 00) log(T) -
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Clearly

52
(6.136) Kuyu + Nuu = %_302 Trs [exp(—Af/a’ﬁ +c(NY - NH)] o
1 0%
— 58c2 [exp( A? VAT + cNH)]

Now by [14, Theorems 2.14 and 2.16], we know that there are forms H_o, H_;,
Hy € PS such that as u — 0,

(92
(6137) @}y Tr [exp( —A% ot o(NY - NH)] =
H., H
u2
and moreover,
90 80
-2—{7';H_2 =0 2——H._1 = 0
(6.138) @HO =-DY + / (dim X Td(T X, g7*) — Td' (T X, g7¥)) ch(¢, ¢°)
X

- / TA(TX, g7X) ch' (€, g°).
X

Also by proceeding as in [4, Section 4], we see that as u — 0,

2

8
(6:139) @} Tr [exp( A? \/—+cNH)]

~1 / Td(TX, g7X)® Tr, [NZ exp(—VE2)] + O(u).
X

Clearly the constant coefficient of (6.139) is 0 and 8 closed. From (6.136)-(6.139), we
find that there are forms K_,, K_1, Ko € P such that as u — 0,

K_ K_,
(6.140) Q(’iu,u + nu,u) =
and moreover
99 90
2—-—K_2 = O 2'71'K_1 - 07
(6.141) 3_3 —Ko = -DY + / (dim X Td(TX, g7X) — Td' (T X, gT*)) ch(¢, ¢°)
X

- [ Ta@x, g e (e, o).
X
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Clearly
, &2
(6.142) &y + 7 = 373

e Trs [exp(—BY2 + cNJY)]

c=0

EEREN [exp(—-BW’2 + $dim Ny X)]
2 602 s u 2 / c=0

By using again [14, Theorems 2.14 and 2.16], we see that there are forms
L_3,L_1,Lo € PS5, such that asu — 0

Lz L_,

(6.143) ®(ky +1n,) = —F5 +—— + Lo +0(u),
and that
%L 2=0, 63 L 1=0,
6.144
( ) 90

7L0 =-C¥ / (dim Y Td(TY, gT¥) — Td'(TY, g7¥)) ch(n, g").
Y

By (6.140), (6.143) we see that as u — 0,

1 d 1 d
(6.145) & (/ (—Kuu + n:;)——u +/ (—u,u + n&)—u)
€2 €2 u

+ (K2 — 2) 5+ (K-1— —1)l — 2(Ko — Lo) log(e)

K_ K_ du
— A /(I)(Kuu+nuu)__2__£_K0)—'
0 u? u
1
«, x« L2 Lo du
+[) (‘I)(K,u-i—nu—?z————u——Lo)_

+ %(K-z - L_2) + (K——l - L—l) .
From (6.141), (6.144), (6.145), we find that as u — 0,

50 ! d ! d
(6.146) —® [/ (—Kuu + K5) = +/ (—Nuu +m‘:)—u]
2 2 U €2 U

T
+ 2<D(‘,/ ~ / (dim X Td(T X, g7X) — Td (T X, g¥¥)) ch(¢, ¢°)
X
+ /X TA(TX, g™ *)ch'(¢,4%) — CF + /Y (dim Y Td(TY, ¢™¥)
— Td'(TY, gTY)) ch(n,g")) log(e) — QAl .
2T

By (6.75), we get
(6.147) 90k, = L (O +oml*).
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Using Theorems 6.5 and 6.19, Proposition 6.20 and (6.147), we get

Y dT
(6.148) 9 / ] (Kezp — ngz)-j,- = Tr, [N% exp(—AZ,)]
(3

— T, [(szv + 1 dim Ny, x) exp(—BvZ’2)]

+o00 dT
+3 /2 ()\52 T — A2 T)_

15/ (7l p — 16/4-00(# ”*)——
2 2 e2.,T 2T —

Clearly

(6.149)
Tr, [N% exp(—A2,)] = Tr, [(N% — Nu) exp(—A2,)] + Tr, [Nu exp(—A42,)] -

Using [14, eq. (2.71)] and Theorem 6.4, as € — 0,

Tr, [(Ne‘; — Ny) exp(—Ag’E)] = _1 = + Do +0(e?),

(6.150)

® T, [N exp(—A2,)] = / Td(TX, g7%) ch’(&, g¢) + O(e?).
X

Also by Theorem 2.17,as ¢ — 0
(9.151) @ Ty, [( o2 + 3 dim Ny, x) exp(— B"Z’Z)] =

w
—_71- + CY¥ + 1dim Ny, x /Y Td(TY, g"") ch(n, g") + O(£?).

Using (6.97), Theorems 6.18 and 6.19 and proceeding as in (6.59)-(6.67), ase — 0,

ar too 4T
1[0~ &a—ef wi,
€ 2

+o0 +oo
(6.152) 1 / (o g —18) 9L /
52

+o00 . dT
[t /0 .
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From (6.148)-(6.152), we see that as e — 0,

80 [t . a7 1
(6153) m ‘I)(K,sz,T - K«ez)'qT + (C_V_Vl - Dyl)e—j
— DY + [ Tawx, )t (€,66) - O
Y

— 1 dim Ny, x / Td(TY, g™ ch(n, g")

+o00 +oo +oo
+/ <I>)\T—+ 1@3/ T 1@3/
0 T

Now by using Theorem 3.10, (6.141), (6.144), one finds easily that there is a universal
form B; € PS such that

6.154) DY + / Td(TX, gT) ob'(€, g¢) — CW
X
~ jdim Ny/x [ TATY.g™)cb(n,g") = [ (4dim Ny TATY,g™)
70
+Td(TX, g™)(Td™Y (Ny/x,g™¥/%)) ch(m, g")) + 5-—(B1).

By Theorem 5.11 and Proposition 5.26, we find that there is a universal form C; € PW
such that

oo ar 1 3; TY
TX —1ys N 99
~ TA(TX, g7X)(Td) (Ny/x, gV¥/%) + 2=(C1)..

Also by Proposition 5.28, there is a universal form C, € PW such that

ar dT 38
1 i 1 "
(6.156) 2<1>a n T + 520 n = +5—(Ca).

From (6.153)-(6.156), we deduce that there is a universal form A2 € P% such that
when € — 0,

00

2im

0 . dT 30
®(Ke2, 7 — K’ez)—f- +(CH - Dvl)_ — —(A42).

(6.157) o

Ultimately, from (6.93), (6.111), (6.113), (6.121), (6.135), (6.146), (6.157) and using
the fact that 65, 60,0, 60,00 are closed, we see that as there is a canonical form H € PS
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such that as ¢ — 0,

(6.158) @®A2+ (cEV - DY)5

+o0
2z1r /(90T 900)£+/ (6o, — 9000)
+o00
Or — 60) >~ 07 — Oo0)
+ [+ [T or-0)%]
+(D¥ - / (dim X Td(TX,¢7X) — Td'(TX,g7X)) ch(¢, ¢°)
X
+ / Td(T X, gTX)ch’(¢,¢%) — CF + / (dimY Td(TY, ¢T¥)
X Y

00
— Td'(TY, gTY)) ch(n, g")) log(e) — FH

So by (6.109), (6.110), (6.158), we see that there are universal forms u3, v3, A3 such
that ase — 0

664)

— 1
(6:159) ®(@u? +0v%) — 8N + 3(DY, - C¥)

= [T dT too 4T
+ {(@8/ 7r'T—:-Z—,—+<I>3/ 7'(",1,1?

—E.Q(/O @(oT—eo)——+/+°°q>(oT oo)dT)

i

_23_(/0 ‘I’(GOT—eoo)—+/+°°‘I)(90T 90m)dT)

21

+c¥ - DYy + / (dim X Td(TX, gT*) — Td'(T X, g7%)) ch(¢, ¢°)
X
- [ Tawx g™y a6, - [ (@imY TATY, ™)
X Y

— Td'(TY,¢"")) ch(n, g")} log(e)

— ®(0u® + 0v®) — 8_6_(1))\3.
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6.8 Matching the divergences
a) A— +oo

Clearly N\’,{ — Ny defines the Z-grading of H (X, £|x). Therefore for T' > 1, it coincides
with Pr(Ni¥ — Nu)Pr. In particular

(6.160) vHXE) ppNE Pr = VEXAX) prNg Pr .

From (6.160), we get

6.161) 22 T, [PTNHPTexp( —vHXEx)2 _ bvg(x’ﬂ")’PTN"fPT)]

ob
0

= 05 T, [PTNHPTexp( —vEX .2 bPTNHPT)]b=O,

a ”n
2% Trg [PTNHPT eXP(—Vg(X’ElX)’2 + bv¥(x’€) PTN‘)’(PT)] b=0
o

= —95; Trs | PrNuPr exp(~ Vg © 0% bPrNuPr)|

By (6.161), we obtain

(6.162)
dT

~ [T a " ,
- i (X.&lx),2 H(X,£|x) X aL
329 / 5 [PTNHPT exp(—V A v PrN PT)] -

To
_ @26/ 6 PTNHPTeXp( VH(XE'X) 2 +va(X €lx)" P NXPT)]

dT

T

PrNuPr] dT
T )] T

To
q> / O PTNHPTexp( vHXEx)2 _ppr NX PT)]

= aacb/ [(Nv — Ng) exp(— VEXAx)2 _ g
1

T %m

Using (6.48) and [5, Theorem 2.1], we find that the right-hand side of (6.162) is equal
to

(6.163) —@Tr, [(Nv — Ng) exp(— Vi 8 2)]
+@Trs [(N\)r( — Nn) exp(—VH(X»EIx)ﬂ)] )

By (6.69), (6.88), (6.162), (6.163), we find that, as should be the case, as A — +oo,
the divergences of both sides of (6.26) coincide. Therefore

4
= 00
1 1 1 1
(6.164) k_s_=1 Ii = ®(0u +0vY) - (>3
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B To— +oo
By (2.33),
O oy, lexp(-B%? —u2BE)| = _om [NW (—BW’2)]
ab s p u2 au u2 - 8 u2 exp u2 )
(6.165) 5 5 b=0
—_ - w2 — w’” =~ w,2
5 Trs [exp( B, b’u(9 B, )] e =0Tr [ w2 €Xp(—B,; )] .

Using (2.38), (2.39), (2.46), (2.51), (6.165), we find that the coefficient of log(7p) in
the left-hand side of (6.94) coincides with (6.70). So we get

4
(6.166) Y IR =2o@p?+ov?) -
k=1

63‘1))‘2
v) € — +oo

Clearly, the coefficients of % in (6.71) and (6.159) coincide. For the coefficients of
log(e) in (6.72) and (6.159) to coincide, we should have the identity

+o0
(6.167) (I>6/ 7rT = +<I>a/ "dT

63 dT
— [ /0 ®(0r — eo)? + ®(0r — 900)—T—]

29 [ ! daT +oo dT
- [/ ®(6o,r — 90,0)? + / ®(6o,1 — 90,oo)"17] =
0 1

+o0

21
/ (dim X Td(TY, gTY) — Td'(TY, ¢7Y)
Y
+TA(TX,g"*)(Td™") (Ny;x,g"¥/*)) ch(n, g")

~ [ (dim X TA(TX, g7X) - T&(TX, §7X)) (e, 99).
X
Now we give a direct proof of (6.167). By (3.34), (3.35), (6.76),

EL) dT B aT
(6.168) o~ [/ (60,7 — 6o,0) = + : Q(Oo,r—ao,w)—]—,] =

/ (dim X Td(T X, g7X) — Td'(TX, g7X)) ch(¢, ¢°)
X

- /Y (dim X Td(TX, ™) — Td'(TX, g™*)) Td™" (Ny,x,g"¥/*) ch(n, g").
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Also by Theorem 5.31,

+o0 +o0 1
(6.169) @5/ 4L A <1>a/ "ﬂ - 253(/ ®(0r — 00)%
0 0

2im
+o00
+/ ®(07 — ow)—,_’-,—) = / (dim X(Td(TY, g™¥) — TA(TX, g¥¥)
1 Y

Td™}(Ny;x,9"¥/%)) = Td'(TY,¢™") + Td'(T X, ¢"™) Td™ (Ny;x,9"¥/*)

107

+ Td(TX, g7%)(Td™") (Ny,x, g"¥/¥)) ch(n, g")..

Then (6.167) follows from (6.168), (6.169).

Thus we find that there are explicit universal forms u3, v3, A3 such that

4
(6.170) Y I} =2@u®+ 00 - 2‘2@,\3

k=1

6.9 An identity on Bott-Chern classes and Bott-Chern currents

z/2

Recall that A\(.'B) = m—z—).

additive genus.
Theorem 6.22 — The following identity holds,

(6.171) ch ( HY) | gH(X€lx), gmy,nly))
~TW",g" +T(w",¢°)

= / Td(TX, gT*)T (¢, ¢%) + / B(TY,TXlw,gTX""’)ch(n,g")
X

—T(1) / Tary)A (Ny/x)ch(n) in PS/PSO.

We identify (A’/A)(x) with the corresponding
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Proof. Using Theorems 6.11-6.14 and (6.170), we obtain the equality,
(6.172) ch (H(Y, nly), gHEIx) gH(lev))
- T, + T, 6) - [ TATX,TTE )
- [ B@Y.TXIw, g™ ) ch(n, g")

+T7(1) {CX" — @ Tr, [NQ,’ exp(_vH(Y,nly),z)]

— DY + @ Tr, [(IV3F — Nar) exp(—(VHX€1x).2)]
- /X Td(TX, g"*) ch’(¢, ¢°) + L dim Ny, x
/Y Td(TY, gT¥) ch(n, g")} e P50,
By Theorem 3.3 and by [20], [13, Theorem 1.27], it is clear that

(6.173) @ (Tx, [(N%,‘ - NH)exp(~(VH(X’£|")’2)]
— Trg [N‘},’ exp(—VH(Y""Y)’z)] ) € P50,

Using (6.154), (6.173) and proceeding as in [19, p. 72], we get (6.171). 0O

6.10 Proof of Theorem 6.2
By Theorem 5.17 and by (5.30), we get

(6.174) B(TY,TX|w,gTXW) = - Td"Y(Ny,x, g"¥/*)TA(TY, T X |w, g7X%)

A
+ Td(TY) <R + 1"(1)%) (Ny/x) in PV /PW0.

From Theorem 6.22 and from (6.174), we get the first equality in (6.6). Using (3.35),
we see that

(6.175) /X Td(TX)R(TX) ch() — /Y TAd(TY)R(TY) ch(n) =
/ Td(TY)R(Ny,x) ch(n) in P5/P5°,
Y

By (6.175), we thus obtain the second equality in (6.6). The proof of Theorem 6.2 is
completed. O
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7. A new horizontal bundle on V~and the
conjugate superconnection A, r

In general TH Viw # THW. This is a potential source of difficulties. In effect, by [19,
Section 9 and Section 13|, we know that as T'— +o00, in one given fibre X, the heat
kernel of exp(—u(DX + TV)?) evaluated on the diagonal concentrates on Y like a
gaussian. Here we have a family of such fibres X. Implicitly, our study involves the
variation of the concentration of the heat kernel of exp(—u(D* + TV)?) along the
fibres X, when s € S varies infinitesimally. The connection V£, which provides a
local trivialization of E near a given s € S, is not adequate for such a study, because
since in general TH Viw # THW , the fibres Y are not preserved by this trivialization.
Thus, we are forced to modify the horizontal bundle 77V near W.

In this Chapter, we construct an extension of T#”W to a horizontal subbundle
of TV, which coincides with THV away from a neighborhood of W in V. Then by
conjugating the superconnection A, r, we obtain a new superconnection A, r, in

AT O XV& AT*OD X8
vfé"’v )®E Vfé('l.w )®€_

which the annoying term f¢ is replaced by f¢

Still, once this difficulty is eliminated, a new one appears. In fact, in Chapter 13,
we also need to use local index theoretic techniques in a situation where u — 0,
T — +o00. This forces us to determine T”W more rigidly than described before. In
effect the jet of order 1 of THW in directions normal to the fibres Y is also important.

This Chapter is organized as follows. In Section 7.1, we recall the expression of
DX and DY as Dirac operators [29]. In Section 7.2, we describe the exact sequence
0 - TY — TX;w — Ny;x — 0. In Section 7.3, we obtain a global coordinate
system on a neighborhood of W in V. In Section 7.4, we recall the construction in [5]
of a splitting £ = £+ @£~ near W. In Section 7.5, we give a cohomological obstruction
to the identity TH Viw = THW. In Section 7.6, we construct an extension of THW
to V. In Section 7.7, the conjugate superconnection A, r is introduced. Finally in
Section 7.8, we give generalized Lichnerowicz’s formulas for AZ’T and AV?LT

In this Chapter, the assumptions and notation of Chapters 3, 4 and 6 are in force.
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7.1 A formula for DX and DY

As explained in Chapter 6, to avoid notational difficulties, we suppose that V, W
and S are compact.

We use the notation of Section 2.2. If U € T X (resp. TrY), the Clifford operator
¢(U) acts naturally on A(T*©@DX) ® £ (resp. on A(T*©VY) ® 7).

Let VAT *VX)8¢ (resp. VA(T‘(O'I)Y)@') be the connection on A(T*(®VX) ® ¢
(resp. A(T*(®VY) ® ) induced by VTX and V¢ (resp. by V7Y and V"). Recall that

(7.1) DX =3 +3 DY =3" +3"".

Proposition 7.1 — Lete,,..., ez (resp. €},...,e5, ) be an orthonormal basis of TR X
(res. TRY ). Then

Z C(ez) VA(T'(O 1>X)®e
(7.2)
(resp. DY = Z c(e T‘(o’l)y)@').

Proof. Since the metrics g7X and gTY are fibrewise Kihler, our Proposition is a
result of Hitchin [29, p. 13|, [19, Proposition 8.5]. O

7.2 The canonical exact sequence on W

‘We now consider the exact sequence of holomorphic Hermitian vector bundles on
w

(7.3) 0 —TY — TX|w — Ny;x — 0.

Recall that Ny, x is identified to the orthogonal bundle to TY in T X |w .
Let PTY, PNv/x be the orthogonal projection operators from T X |y on TY, Ny,x.
Let VV¥/x be the holomorphic Hermitian connection on (Ny;x, ghv/x),

Proposition 7.2 — The following identities hold

VTY — PTYvTX|W ,

(7'4) vNv/x = PNy/xgTXlw

Proof. This result follows from (5.11). a
Definition 7.3. Let °VTXIw be the connection on TX|w = TY & Ny/x,

(7.5) OgTXiw — gTY g yNv/x |
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Set
(7.6) A=VTXlw _0gTX|w

Then A is a 1-form on W with values in skew-adjoint endomorphisms of T'X |y which
exchange TY and Ny, x. Since VTX is fibrewise torsion free, if U,V € TRY

(7.7) AU)YV - A(V)U =0.
Definition 7.4. If e1,..., ez is an orthonormal basis of TrRY, set
(7.8) v= L Zz": Alei)e;.

20 4

Then v is a section of Ny, x r. It is called the mean curvature of the fibre Y.

7.3 A coordinate system on V near W
Ifye W,Z € Ny)xpy,lette R — = expi"(tZ) € W be the geodesic in the

fibre X, with respect to g7X, such that zo = y, ‘;—fltzo =2Z.
For 0 < € < +00, set
(79) B, = {Z S Ny/X,R, lZl < E} .

For o > 0 small enough, the map (y,Z) € Ny;xmr — exp;;( Z € W is a
diffeomorphism from Bj., on a tubular neighborhood Uz., of W in V. From now
on, we use the notation z = (y, Z) instead of z = expif (Z). We identify y € W with

(,0) € Ny/x R-

Recall that dvx, dvy are the volume elements of the fibres X,Y with respect to
g7%, g™ Let dun,,,, be the volume element of Ny,x r with respect to g"v/*. Let
k(y, Z) be the smooth positive function on B, such that

(7.10) dvx (y, Z) = k(y, Z)dvy (y)dvny, x (Z) -
The function k(y, Z) has a positive lower bound on U,,. Also

(7.11) k=1 on W.

7.4 A splitting of £ near W

We use the identification (3.29), so that H(&,v) is considered as a subbundle of
&|w. Let HL(£,v) be the orthogonal bundle to H(¢,v) in &|w. Now we recall the
construction in [5, Section 3f)] of a splitting £ = £+ @ £~ near W which extends the
splitting &|lw = H(&,v) @ HL(€,v).
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We have the identity

(7.12) H(v)={fetw ; V2f=0}.

For y € W, let u(y) be the smallest nonzero eigenvalue of the self-adjoint operator
V2(y). Since H (£, v) is smooth vector bundle, the function u: W — RY is continuous.
Since W is compact, the function u has a positive lower bound 2b on W.

We may and we will assume that €9 > 0 is small enough so that if z € Uy, b is
not an eigenvalue V?2(z).
Definition 7.5. For 0 < k < m, z € Ue,, &, (resp. f,jm) denotes the direct sum of
the eigenspaces of the restriction of V2(z) to &k . corresponding to eigenvalues which
are smaller (resp. larger) than b.

For 0 < k < m, the 5,01’1 are the fibres of smooth vector subbundles §,:ct of & over
WUe,. Clearly on AU.,, for 0 < k < m,

(7.13) e =6 @& .

Set

(7.14) @ék =P &, E=P ¢
k even k odd

In (7.13), (7.14), the various splittings are orthogonal. We equip £+ with the metric
induced by g¢.
Then v, v* preserve £+,£~. Let V* be the restriction of V to £*. We will often
write V in matrix from with respect to the splitting £ = £t @ &,

(7.15) V= [V+ 0_] .
0 Vv
By (7.12),
(7.16) £ |lw = H(£,v) = ker Vl]w .
From (3.28), (7.12), we get
(7.17) £ lw = AN x ® 1.

Let P¢* be the orthogonal projection operators from & on ¢*. Let V¢ be the
Hermitian connection on &+, V¢ = P§* V¢,
Now we recall result of [5, Proposition 1.8].

Proposition 7.6 — The connection i*V¢ on £~ |w = H(,v) is ezactly the holomor-
phic Hermitian connection on (H(&,v), gH(&),
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Definition 7.7. Let V¢ be the connection on 5!"“:0 =¢toe,

(7.18) VE=VE @ V6.
Set
(7.19) B =Vt - V¢,

Then the connection V4 preserves the metric g%, and B is a 1-form on U,, which
takes values in skew-adjoint endomorphisms of £ which exchange ¢t and £

By Section 2.2, if Z € Ny, x r, ¢(Z) acts on A(N}*,/X) .
Proposition 7.8 — Ifye W, Z € Ny;x r,y then

7.20 VeV (y) = Y=2(2).

(7.20) zV~(¥) 7 (2)

Proof. Taking into account the discrepancy in the notation of [19, Section 5 a)] and
our Section 2.2, our Proposition is just [19, Proposition 8.13]. O
Remark 7.9. Clearly

(7.21) V4V = V5V + [B(2),V].

Since £~ |w = ker V|w, ¥ |y = Im V|w, we deduce from (7.21) that

(7.22) P VSVPY |w = PEVLVPE .

7.5 A cohomological obstruction to the equality 77V |y, = THW
Let p be the restriction map HY(V,T*V) — H(W,T*Vjw) — H'(W,T*X|w). If
a € HI(V, T*V), (pa)dimY+1 c HdimY'H(W, Adimy-'-l(T*Xlw)).

Clearly TH Viw = THW if and only if THW and TX |w are orthogonal with respect
%

to wyy -
W
Let [w"] be the class of w¥ in H'(V,T*V). Then if THVy, = TEW,
(7'23) (p[wV])dim Y+1 _ 0 in Hdimy+1(VV, AdimY+l(T*X|W)) .

Then (7.23) provides us with a cohomological obstruction to the equality T Vw =
THW. In particular if V,W are compact and Kahler and if H(V,T*V) is one
dimensional, the class [w"] is nonzero and fixed up to a constant. If (7.23) does
not hold, we cannot find wY such that TH Viw = THW.

This is in dramatic constrast with the situation one meets in the C'°° category, when
trying, say, to establish a formula similar to Theorem 0.1 for the 7 forms of Bismut-
Cheeger [12]. In this context, one can always assume that Tg Viw = TEI{ W. One does
not need to proceed the way we do in the present paper for the 7 forms, essentially
because the image of K(S) ®q Z by the Chern character map spans H¢V*"(S, Q).
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7.6 An extension of T7W to V

Up to now, THW is a subbundle of TW. It will be important to extend THW to
a subbundle of TV on V.

Let V™vTS be the trivial connection on wy TS along the fibres X. We equip
TV = THV @ TX with the connection along the fibres X,

(7'24) VTV — vﬂ;,TS ® VTX .

Observe that our notation fits with (1.3).

Definition 7.10. If (y,Z) € Ny xR, if A € TrS, let A’ € TRV be the solution of the
differential equation along t € R — z; = exp;\ (tZ),

dzr
Vie A +Ty (A, =) =0,
(7.25) RS dt

Ay = AW
Since TV = THV @ T X, we can write A’ in the form
(7.26) A = ARV L ATX  AHY c THY ATX ¢ TrX .

Theorem 7.11 — The following identities hold,

AHYV — gAHV

& T dt

(7.27) VIXATX 4TV (AH v d““') =0,

Moreover the map A € TpS — A} € (TrV )z, is a complex map.

Proof. By Section 1.1, T(A'TX, 42) = 0, and so

(7.28) VIV A + T, (A'H v ‘i—f) 0.
Since Ty (A'H:V, 42} € Tp X, we get (7.27).

By Section 2.1, TV is a (1,1)-form, and moreover if U € THV, V € TX (resp.
UeTHV,V € TX), then TV(U,V) € TX (resp. TX). From (7.26), we find that
if A e TS, then A’TX € TV, and that if A € TS, then A’”7X € TV, i.e. the map
A €TrS — A} € (TRV);, is complex. O

Using the identification (y, Z) ~ exp* (2), if A € TS, (y, Z) € WUe,, we can define
the corresponding A(, ;) € TV.
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Let v: R — [0, 1] be a smooth function such that

v(a) =1fora <1/2,

(7.29)
Ofora>1.

Then v (%l) can be considered as a C* function on V with values in [0, 1], which
vanishes on V' \ AU,,.
Definition 7.12. If A€ TS, set

(7.30) ARV = ('—E-Z;)—') A+ (1 -7 (%)) ARV

By Theorem 7.11, AW € TV, and
(7.31) Ty AW = A,

Definition 7.13. Let THW be the smooth subbundle of TV which is the image of T'S
by the map A — AT:W,

Using (7.25), it is clear that TH W extends the given vector bundle THW on W
to the whole V.
Definition 7.14. If A€ TS, set

(7.32) AH:Ny/x — AHW _ gAHV

By (7.31), A#:Nv/x € TX. Again, our definition of A#'Nv/x extends to V our
initial construction of A#»Nv/x given in Definition 1.8, which was only valid on W.
Remark 7.15. It is natural to ask why we did not use, instead of (7.25), the simpler
equation

(7.33) vIVA =o.
dt

In effect we could use as well equation (7.33) instead of (7.25) in Chapters 8-11 but
not in Chapters 12-13.

Equation (7.24) should have a clear interpretation. In effect if g7° is an arbitrary
metric on T'S whose K#hler form is w®, for ¢ > 0 small enough, wY + %ﬂ*ws is
the Kahler form of a metric g7¥ on TV. Let VIV be the holomorphic Hermitian
connection on (T'V, gTV). Then one verifies easily that as e — 0, the connection VIV

tends to a connection V"V on TV. Using (2.10), equation (7.25) is equivalent to
TV gl _
(7.34) Vi A =0,

Of course, we can replace everywhere the holomorphic Hermitian connections by the
corresponding Levi-Civita connections. Equation (7.34) is a way of encoding the Levi-
Civita connection in the “adiabatic limit” process where ¢ — 0, which, as we know
by [4], [12], [11] is crucial in understanding the local families index constructions of
[4].
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7.7 The conjugate superconnection .ZU,T

Let fi,..., fm be a locally defined smooth basis of Tr S, and let f1,..., f™ be the
corresponding dual basis of TgS. Let e, ..., ez be an orthonormal basis of Tr X .

Definition 7.16. For u > 0, T > 0, set

Aur =exp{—f°‘ om (ff’””")}
urexp{ HN"”‘)},
(7.35) . 3 HoNy)x
Nuz=exp{ —f \/_ (a )}
Nl exp { st (5}

Clearly Zu,T is a superconnection on E. Also the expression in (7.35) does not

depend on the local basis f, ..., fm. For convenience, we assume that fi,..., f;, are
such that

(7.36) [fo, fol =0.

In particular the forms f1,..., f™ are closed.

Theorem 7.17 — For u > 0, T > 0, the following identity hold

Avu,T — UDX +TV + fa A (Vlf\gl'"‘;/(o’l)X)éﬁ _“C(C',,)C(V H yNy,x ))
H,N H N
+ 3108 (<3 (TV Y 5D ) = (da 0% IR 1)

(e )

(7.37) _ [ (<f” Ny/x VTX £ Ny/X>

2u?

+4 (T (5 :’*V)>),

N —N + \'4 i f,W C(ei) «
2 v w (e f )U\/if

WY (FEW, 58P
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Proof. By (2.31), (4.1), (7.2) and by [14, Proposition 2.4],

AyT = uC(Li)Vg(T'(O’”X)@g TV

%
x TV)
(7.38) + pegh@enxge ()
f fcfrv 2\/§u
1 dim X
Ny = Zwv(ei,ej)C(ei)C(ej) -

Clearly, if U € Tr X,

o H,N H N a
(7:39) [foe(fa™ 1), e(U)] = —2 ("%, U) £2.
From (7.39), we deduce that

Ny x .

c o a C H,NY/X
(140) e ) e o)+ L e (2 1)

Let VRS be the locally defined flat connection on Tr S, such that VRS f, = 0. In
the sequel, we implicitly differentiate tensors in the f,’s with respect to VT®rS,

IfU' € TrV,
(T41)  [fre(at ), O OR] = — pao(VEK £,
and so
) [P [ g0
= —2fafP <ff»NY/x,V fH N,,/x>
Of course, the higher order commutators vanish. From (7.41), (7.42), we get

ac fH'NV/X =(0,1) a2 ac fH’NY/x
(7.43) " AT gTTONX0Be 17 M

*(0,1) ¥\&
VgST 0 X)®§+fa\/_ (VTXfHNY/X)

_ %fafﬁ <fH Ny/x TX ;LNY/X> )
Finally
‘V(e,, HNY/X) — wV(ei,f;I,W),
(7.44) HW V(fHV ¢HV v ¢HNy,x H,Ny/x
w (fa’ »J B )=w (fa’ 1fﬁ )+ (f )f )
From (7.38), (7.40), (7.43), (7.44), we get (7.37). The proof of our Theorem is
completed. 0O

Remark 7.18. The most remarkable feature of (7.37) is that f* A VA(T OV X8 has

been replaced by f* A VA(T‘(O D X)8¢ . Of course fHW |y, € THW.
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7.8 A Lichnerowicz formula for A2 ;. and Zﬁ,T

Set
(7.45) R* = R® + I TY[RTX].

Let K be the scalar curvature of the fibres (X, g7X). Let f1,..., f™ be a basis of Tr S,
let f1,..., f™ be the corresponding dual basis. Let e;,..., ez be a locally defined
smooth orthonormal base of Tr X.

If C is a smooth section of T X ® End(n}, A(TS) ® A(T*®VX) ® £), put

(7.46) (VQI.(T*(O’I)X)@& 4 C(ei))2 _ ‘22‘ (Va(ju(o.l)x)éE " C(ei))2
1

AT O x
- Vzggl v;_r,xe.-mE C(Z VTX

Then the operator (7.46) does not depend on the choice of the basis e, ..., ez.
Theorem 7.19 — For u > 0, T > 0, the following identity holds

a2

(7.47) AuT—- 3

»*(0,1) S
(VATEDXBE 1 1 (SV (er)es, £EV)

o 2
Vit ey g (¥ ieostv iy L)
+ _28£ + u_zc(e,)c(eJ)R §(e,,ej) + uige_z)fa

RE(es, fEVY + 37 fPRE(FEV, £50V)

+ uT%e%;)ng + Tf"‘Vf‘,,,VV +T%v2.

Proof. Formula (7.47) follows from [4, Theorem 3.6] and from the commutation
relation

[c(U),V]=0 , UeTrX,

(7.48) (7, V] =0.
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Theorem 7.20 — For u > 0, T > 0, the following identity holds

H NY/X

(149) A2p=-% { SR (VMR8 4 L(SY (es)es, £V

* o fB R4 HNYX 2
Vaeles) L+ 3 (87 (e siv, iy LI ) i ’}

K 2
+ = + olei)c(e; )R (eire5) +

2 T3 R (e, S5

c(e,-)VS',V
V2
Proof. Identity (7.49) follows from (7.40) and (7.47). O

Remark 7.21. With respect to (7.47), note that in (7.49) , T f“ViH,VV has been
changed into T faviﬂ,wv.

+ 37 fPRE(FEW, £50Y) T +TfVinwV +T?V2,
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8. A Taylor expansion of the superconnection
A;r near W

The purpose of this Chapter is to give an asymptotic expansion as T — +o00 of
the superconnection gm‘ in a neighborhood of W in V, after a change of variable
in Ny,xr, Z — VZ? This Chapter is the obvious extension of [19, Section 8]. In
particular the remarkable identities of Theorems 1.10 and 1.11 play a key role in the
description of the asymptotic expansion.

This Chapter is organized as follows. In Section 8.1, we give a trivialization of
A(T*OVX) ®¢ near W along geodesics in the fibres X, which are normal to Y. In
Section 8.2, we calculate the Taylor expansion of Zl,T. Finally in Section 8.3, we give
a remarkable algebraic identity which relates the constant term in the asymptotic
expansion of Avl,T to the superconnection B}'V .

In this Chapter, the assumptions and notation of Chapter 7 are in force.

8.1 A trivialization of A(7T*®V X) ® ¢ along geodesics normal to Y

In this Section, we use the coordinate system on V near W constructed in
Section 7.3. Also recall that the connection V¢ on & lu,, was defined in Definition 7.7.

Take z = (y,Z) € U,,. We identify &, to &, by parallel transport with respect to
the connection V¢ along the geodesic t € [0,1] — (y,tZ). Under this identification,
¢F is identified to {,j:, and the identification preserves the metrics and the Z-grading
of & Also if z = (y, Z), V(z), V*t(z), V~(z) act as self-adjoint operators on &,, 5;‘,
£, -

If z = (y,2) € WU, we identify TX,, A(T*OVX), to TX,, A(T*OVX), by
parallel transport with respect to VTX, VAT *VX) along t € [0,1] — (y,tZ). This
identification preserves the metrics and the Z-grading.

Ifr=(y2Z) € MU, (AT*OVX) ® €), is thus identified to (A(T*OVX) & €),,
and this identification preserves the metrics and the Z-gradings.
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122 A TAYLOR EXPANSION OF THE SUPERCONNECTION Z;,T NEAR W

8.2 A Taylor expansion for ;{1,1* near W

Recall that 7 is the canonical projection Ny,;x — W. For a > 0,s € S, set
(81) Ba,s = {Z € NY/X,RIy,’ 'ZI < a} .

If0 < o < g, let Uy s be the corresponding tubular neighborhood of Y; in X,
constructed in Section 7.3.

Definition 8.1. Take a > 0. Given s € S, let E;(a) (resp. E;) be the set of smooth
sections of m*((A(T*®VX) ® £)|y,) on Ba,, (resp. on the total space of Ny, x|y, )-

The E;(a)’s, E,’s are the fibres of vector bundles E(a), Eon S.If s€ S, f,g € E;
have compact support, put

6 vo=(5) | ’ { L, 9w Z)vay/x(Z)}dvy,(y).

By using the construction of Section 7.3, if f € E, has compact support in B, s, we
may and we will identify f to an element of E; with compact support in U, s.

The holomorphic Hermitian connection VV¥/x induces a splitting TNy;x =
Ny;x & TH Ny,x, where TH Ny,x is the horizontal part of T'Ny,x with respect
to VNv/x If U € TrRW, let UH € TRHNy/x be the corresponding lift of U, so that
mUH =U. If U € TrS, then (UFW)H € T Ny, x is well-defined.

Recall that the connection °V7XIw on TX|w was defined in (1.31). Let
OyAT* Y X)lw be the corresponding connection on A(T*©D X)|y . Let 0V AT P X)) 1w
be the connection on (A(T*©VDX) & £)|w associated to OVAT @V X)Iw and to VE.
This connection lifts to a connection on 7*((A(T*(®V X) ® £)|w), which we still note
O (AT OV X)E) lw

Let ej,...,ezer be an orthonormal basis of TRY, let eze41,...,e2¢ be an
orthonormal basis of Ny, x r- Then e, ..., ez is an othonormal basis of (T X)w-

Now we follow [19, Definition 8.16].

Definition 8.2. Set

Z C(ez) oV(A(T‘(" DX08OIw

(8.3)

DNvix = Z c(e‘)ov(A(T““)X)@E)lw
1=20'+1 \/_

Then the operators D, DNv/x act naturally on the fibres of E.

To simplify the exposition, we will assume that TrS is equipped with a Hermitian
metric and that V7®S is the corresponding Levi-Civita connection.
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If U € TR Ny,x, (twm).U =0, then Oegx(r‘myl)x)@gnw acts naturally on smooth
sections of 7* (7}, (A(T%S)) ® (A(T*©®VX) ® &)w). Our choice of V=S makes that
this action extends to the general case, where U € Tr Ny, x.

For T > 1, let Qr be a first order differential operator acting on smooth sections
of ™ (my A(T3S) ® (A(T*®VX) & £)|w) over Ny, x r. Then Qr can be written in
the form

2¢
*(0,1) ¥\&
(84) Qr=1 a(T,y,2)°VGT VS
1

2¢
+ 37 (T, y, 2)° VAT XIBOIw
20'+1

2m

«(0,1)
+an(T y, 2)°9OL 0% (T, y, 2),

where a;(T,y, Z), b(T,Y,2Z), ca(T,y,Z), d(T,y,Z) are endomorphisms depending
smoothly of (y, Z).
Assume there is C > 0, p € N such that if (y, Z) € B_ 7, then

la;(T,y,Z2)| <C|Z| ,1<i<2¢,
6:(T,y, Z2)| <C|Z*, 20 +1<£<2¢,
lea(T,y,2)| < C|Z| , 1 < a<2m,
|d(T,Y, Z)| < C(1Z| + |Z°).

(8.5)

We will then use the notation
(8.6) Qr =0(|Z2)?Nv/x +|Z|8Y +|2|8° + |Z| +|ZP).

Let AMT @V X) pbe the obvious action of A on A(T*(®1X). This action extends to
AT*ODX) B €.

Takey € W, Z € Ny, x Rr,y- Let be the covariant differentiation operator with
respect to V¢ along t — (y,tZ). In the sequel, we use the notation

D?
V(y7 tZ)‘t—

(8.7) VEVEVW) = 5

Then 6’; 6%V(y) depends quadratically on Z.
Definition 8.8. For T > 0, if f € E(eo), let Frf € E(eoVT) be given by

(8.8) Frf.2)=f (y, \%) .
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124 A TAYLOR EXPANSION OF THE SUPERCONNECTION ZLT NEAR W

Using the trivialization of (A(T*(%)X)®¢)|AU,, along geodesics normal to Y,
we find that the restriction of Zu,T to U, acts naturally on smooth sections of
A(T3S) ® E(eo), and so it defines a superconnection on E(go). Then for T > 1,
Fr_rlcl/zlzl’u,Tk"1/2F,IT1 is a superconnection on E(goVv/T).

Definition 8.4. Let B be the superconnection on E,

(89) B=DH 4 Z c(e') By(e:) + 19595V (y)

~ *(0,1) '\ &
+feA (oV(AgW D X)) |w +By(ff’w))

)H
+ 3N IS (BT (S ) = TV (S 1))

B

2v/2

Now we prove the relevant extension of [19, Theorem 8.18].

Theorem 8.5 — AsT — +oo,

(8.10) Frk'/2A, rk~Y2F;t = TV* (y) + VT(DNY/x + V5V ()

L 2 gN Y S 3
+%+ﬁ@(1Z| ONv/x +12|0¥ +1216° + |2] +|2I°) .

Proof. Let fi,..., fm be a locally defined smooth basis of Tr.S, such that

(8.11) [far 5] = 0.

We use Theorem 7.17, which gives a formula for Avu,T. We will establish (8.10) by
considering the various term of degree 0, 1, 2, 3 in the Grassmann variables of A(T{.S).
By [19, Theorem 8.18], (8.10) holds in degree 0.

Recall that A was defined in (1.32). Then for U € TrW, A(U) € End(TX). Let
AMT*®VX) e the obvious action of A on A(T*(D X)|W. Recall that VATV X)8¢
and OVAT VX)W can be considered as connections on m* ((A(T*©D X) &) |w).
Set

(8.12) r, = (VA(T"“’"’X)@:: _ oe(A(T*(O-Ux)@gnw)
y
Clearly on W,
»(0,1)
(8.13) Ty =AM X 4 B,
Then on W,

@ #*(0,1) o HN
(8.14) f /\(v?c,f,’{"w X)BE _ 1e(e;)o(VTX Y/X))

= oA (PTG T RBOW L p(fEW) — Le(en)e(VIX f277X))
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Take yo € W. Let (y,... ,¥¥) be a holomorphic system of coordinates on a
neighborhood W of yo € W in W. We assume that Ny, x r ~ Nw/v,Rr is trivialized
over W, so that 7r‘1(°W') = W x R28), Set ¥ = B, N 7~ }(W). The map
(¥,2) € ¥V — expy X(Z) € V identifies ¥V with an open neighborhood of yo in V,
on which TpV sphts into

(8.15) TRV = R2¢E+m) g R2(6-1)

Of course R2(¢+m) R2(¢~¢) gre integrable subbundles of TrV|y. Moreover on W,
the splitting (8.15) coincides with the splitting

(816) TRV =TaW & NY/X,R .

Let p1,p2 be the projection operators from TrV on Rz(el*’"‘), R2(¢-¢) respectively.
Clearly,

(817) Frk'/2fe A oGOV X8O -1/2p01

o AT OV X)W | 0SAT OV XBe)w _ Vsawk
f A(V % (v, %) + V\/szff‘w(y,%) 2k @ Z/VT)) -

Since on W, f2W ¢ TR W, we find that as T — +oo,

©18)  pVTEY (002 ) = Sl Wt Demo + =021,

Let V=V be the connection on TrV = TV & Tr X,
(8.19) VIRV = 11 vTRS g YTRX

Recall that by Section 1.1, TV is exactly the torsion of VIRV,
Let C be the Christoffel symbol of VIRV in the trivialization of TrV considered
above. Then

(8.20) HW (4 1Z) =0 = —Cy(Z) fEW + VIRV fHW

o,y

at’
Now by definition

(8:21) —Cy(2) W = -Cy ()2 + T (137, 2).
Also by (7.25),
(8.22) VEVIEW LTV (fEW,Z)=0.

Using (8.20)-(8.22), we obtain

(8.23) D EW (,12) = ~C (M) 2.
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Also by Proposition 7.2, VVNv/x = PNy/xyTXiw  and so with respect so the local
trivialization of Ny, x,

(8.24) (FEW)H = fIW —paCy (F2W) 2.
Finally, since kjwy =1 on W,
(8.25) fo,w kw =0.

By (8.13)-(8.25), we obtain

(826) FTk1/2fa A (VA(Tt(O,l)X§E) C(ez)c(V H Ny/x)) k_l/zF’;l
a AT OV X *(0,1)
= foA ( oA ®)w A{/\(T X)(ff’w)+By(ff’W)

(fa""HH

— de(e)e(VIX fay ™)) + —-0(12? 8%/ +12|07 + 12|05 +|2]).

vT
By (1.35), on W

2¢ 2¢

(8:27) 3 cle)e(VEX FM1%) = 3 clene(Alea i
1

1
+ PNy/xTV(e;, fEV) + A(ff'w)e,-)

2¢’

=) C(ei)C(TV(eia V) =T (e, 7)) + A(ff’w)ei)
1

2¢' 2¢

= Zc(ei)c(TV(ei, ff’v)) - Zc(ei)c(Tw(ei’ f;{,w))
1

1

+ > (AU e e5) clei)ele;) -

1<i<2¢!
2¢'+1<j<2¢
By (7.26), on W
2¢ HN 2¢
(8.28) D cle)e(VIX fu ") = Y eles)e (TV (es, FV))
20 +1 20'+1

Also since A(fH2 ’W)|W interchanges TY and Ny,x, on W

=(0,1)
(8.29) AMTTEEX(FEWY = L N (A(fEW)es, €5) clei)ele;) .
1<i<2¢’
2£'+1§j52£
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By (8.27)-(8.29), we find that on W,

(8:30) AMTTPO(FIW) — fe(en)e(VEX fa M) =
2¢ 20

c(ei)c (TV(e,, i V) + 3 E c(ei)c (Tw(eu e W))

1
Now using (1.6) and (2.11), we get

2¢

Zc(ei)c(TV(ei,ff’V)) = Z (Tv(ei, v, e;) c(ei)c(e;)

1 1<i,j<2¢

20
=-Y (TY(ei, £V, i)
(8.31) !

2¢
Z(Sv(ei)ff’v,ei>
' 2¢
= —< i"",zs"(ei)ei> =
1

By the same argument,

2¢

(8.32) > cle)e (T (es, fEW)) =0

1

So from (8.30)-(8.32), we obtain
(8.33) A;\(T-(O,l)x)(ff,W) _ %C(ei)c(vz:.xff’wa) =0

By Theorem 7.17, (8.26) and (8.33), we see that (8.10) holds in degree 1.
Now we consider the term of degree 2 in (7.37). By Theorem 1.11, on W, we get

2¢

®30) D30 (— 3 (TVUEY 1) e) = (£ VER £ )
=1

+2<VfHW :NY/X,€i>)C$%) =—%fafﬂ

55TV, ).
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Moreover using (1.6), (7.27), and the fact that [fa, fg] =0, [fZW, ;{W] € TrW,

(8.35) fej 1o (= 3 (TV Y, 557 ) -
l=2iz;f’NY/*,v X pab NY/"} +2 <v HNv/x o >)%l _
3 A (-4 )
(ST ) 4 2 (T — 1)) )
| ; 1rofo (( = 3TV GEY V) + TV (Y g2 )

FTV(FEW, ;”W),e,))cfj;_')

S(PMYXTV (FEW, fHV)).

=LlfapB
Using Theorem 7.17 and (8.34), (8.35), we find that (8.10) also holds in degree 2.
Finally by Theorems 1.11 and 7.17, (8.10) holds in degree 3. The proof of our
Theorem is completed. ]

8.3 The projection of the superconnection B

Definition 8.6. If s € S, let EX be the set of smooth sections of =* ((A(T*1X)
®¢&*)ly,) on Ny x rly,-
Then E; splits into

(8.36) E;=EloE;.

The operators DH and DNv/x preserve EX. Let DH:* DNv/x.x be the restriction of
DH DNv/x to E*. Let E?, EX:0 be the Hilbert spaces of square integrable sections of
7 (AT ODX) B€) Iy,), 7 (AT"OVX) 8 €*) ly,) on Ny/x,my,. We equip E,
EZ0 with the Hermitian product (8.2). Then E? splits orthogonally as

(8.37) E!=EroE;"°

Let F9 be the Hilbert space of square integrable sections of (A(T*©1Y)®n)|y, over
Y,. We equip F? with the Hermitian product constructed in (2.22).

Of course the EJ,EF: ... are the fibres of corresponding vector bundles
E°, E+0 ... over S.

ASTERISQUE



THE PROJECTION OF THE SUPERCONNECTION B 129

Using (3.28), (3.29), (7.17), we have the identity of smooth Hermitian vector
bundles on W

(838)  (A(TOVX)B € )|lw = AT*OVY) ® A(Ny/x) ® (A(Ny,x) ®n).

If y €Y, let 6, be the Kshler form of the fibre Ny, x r - More precisely, if J Ny/x,y
is the complex structure of Ny, x Ry, if f, f' € Ny;x Ry, then

(8.39) 0y(f, ') = (f, INv/xmafy

Then 6, is a (1,1) form on the fibres of Ny, x r-
IfyeW, Zc NY/X,R,'_w set

2
1Z]

(8.40) By = exp (—ZT + Hy) .

Then Sy € (A(N;/X,R) ® A(N;f/x,n))y-
By [6, Theorem 1.6] or [19, Theorem 7.4], for any y € W, By spans the 1-
dimensional Lo kernel of the elliptic operator DVNv/x + \/——lﬂ\/%2 acting on the

vector space of Ly smooth sections of 7* (A(N;/ x) ® A(Ny / X)) on Ny, x Ry, and
moreover v

vaY X
(8.41) [ 18P i =1
Ny;x,r (27r)d Nyrx

Definition 8.7. Let 1 be the linear map
(8.42) Y:0 € F* - n*0B € E°.

Let E”© be the image of F° by 1. Then E"° c E~°.
By [19, Theorem 7.4] or by (8.41), % is an isometry, and so it identifies isometrically
the vector bundles F° and E"° on S.

Let p be the orthogonal projection operator from E° on E’°. Let q be the
orthogonal projection operator from (A(T*©D X)®¢)|w on A(T*@DY)® {exp(0)} ®
n. By [19, eq. (8.91)], if s € E?,

(8.43)
1 VAR z'?
ps(y,Z) = —Jim Ny % ©XP (-%) Q/ exp (—l 2' ) s(y, Z")dvny, 5 (2").

Now we prove the obvious extension of [19, Theorem 8.21].
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Theorem 8.8 — The following identities hold,

Vv 'pBpy = BYY,
(8.44) Y7 'p(NY — Nu)pyp = NV,
¥~ 'pNupy = 1 dim Ny, x .
Proof. We will establish the first identity in (8.44), by comparing the terms of verious

degrees in A(TR.S). In degree 0, this was already established in [19, Theorem 8.21].
Clearly, if U € TrW, since the identification (8.38) identifies the metrics,

(8.45) D lpfe A A OGAT OV X)&E) lw = fEA VA(T~<° DY)en

(fa"")H
Also because B(fH'W) exchanges £~ and ¢,

(8.46) b By (f5"" )y = 0.

If U € Ny, xRy, c(U) is the sum of two operators, one which increases the degree
in A(TV—*Y/ x) by 1, and the other which decreases the degree by 1.Since S is of total
degree 0,

(8.47) pc(U)p =0.
By (8.47), we get
(3.48) PRI 105 (PR TY (11 1 )p =0,

From (8.10), (8.45)-(8.48), we get the first identity in (8.44).

By [19, Proposition 8.4], the second identity in (8.44) holds in degree 0. Since TRY
and TF W are orthogonal with respect to w"', using (7.37), (8.47), the second identity
(8.44) also holds in degree 1, i.e. both sides vanish in degree 1. In degree 2, the second
identity (8.44) follows from (7.37).

The third identity in (8.44) was already established in [19, Proposition 8.4]. The
proof of our Theorem is completed. O

Remark 8.9. Related forms of Theorems 8.5 and 8.8 are also established in Theorems
13.16 , 13.17 and 13.32, 13.34. In particular, in Theorem 13.16, a more complicate
trivialization produces a simpler expansion than the one in Theorem 8.5.
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9. The asymptotics of supertraces involving the
operator exp(— B2 ;) for large values of u, T

The purpose of this Chapter is to establish Theorems 6.5, 6.6 and 6.15, 6.16. It is the
obvious extension of [19, Section 9], where the case where S is a point was considered.

In Theorems 6.5, 6.6 and 6.15, 6.16, we calculate the asymptotics of supertraces
involving the operator exp(——Bﬁ,T) when u or T tend to +o0o. The corresponding
problem studied in [19, Section 9] involved the operator exp(—(u(DX +T'V))?). The
basic difficulty with respect to [19] is that while DX + T'V is a standard elliptic
differential operator, B, T is a superconnection, and it is only when taking its square
BZ’T that we get a standard elliptic operator acting fibrewise. We are thus forced to
deal directly with the operator B?‘,T, while in [19, Section 9], the analysis was done
directly on the simpler operator DX + TV.

Still in [19, Section 13], when establishing Theorem 6.9 in the case where S is
a point, i.e. when proving the uniform convergence as T — +oo of supertraces
involving exp(—(u(D* + TV))?) for u € [0, 1], because the analysis involved local
index cancellation techniques which could not be applied to the operator DX + TV,
the analysis was also done on the square (DX + T'V)2.

This is why, to prove Theorems 6.5, 6.6 and 6.15, 6.16, we essentially use the
techniques of [19, Section 13|, i.e. we prove the required convergence by establishing
suitable estimates on the corresponding smooth kernels, these estimates being derived
by a Lax-Milgram technique to control the resolvent in a functional analytic sense,
together with commutator estimates to prove uniform regularity for the corresponding
kernels. Needless to say, the results of Chapter 8 on the asymptotics of ZLT as
T — 400 play a key role in the identification of the limit of the supertraces as
T — +4o0.

Another basic difference with respect to [19, Section 9] is that for a given T > 0,
in [19], the rate of convergence as u — +o0o of the considered supertraces was
O(e_cuz)(this result being obtained by a trivial argument of spectral theory), while
here, the convergence is only 0(1), and is less easy to obtain (it follows from the
result of [3, Theorem 9.19] explained in Theorem 2.20). While in [19, Section 9], the
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corresponding uniformity argument was obtained by showing that as T' — +o00, the
module of the nonzero eigenvalues of DX 4+ TV has a positive lower bound, here this
argument breaks down.

To solve this difficulty, we observe that the spectrum of B2 . and (u(DX +TV))?
are identical. We then express exp(——Bﬁ,T) as the sum of two contour integrals, one
along a contour in {\ € C,Re()\) > 0}, and the other on a small circle centered at 0.
To the first contour, we are able to apply arguments inspired from [19, Section 9]. As
to the second contour, we prove that the corresponding supertrace is analytic in u
near u = +00. The proof of uniformity of the convergence in T' — +o00 as u — +00
then follows from Cauchy’s residue formula.

This Chapter is organized as follows. In Section 9.1, we describe the spectrum of
BﬁvT, and we express exp(—Bﬁ’T) as a sum of two contour integrals. In Section 9.2,
we give a simple scaling formula for the first contour integral. In Section 9.3, we state
two intermediate results, from which Theorems 6.5 and 6.6 follow easily. Part of the
remainder of the Chapter is devoted to the proofs of these intermediate results.

In Section 9.4, we show that P¢~ f"‘ViH,W VP& is 6(|Z|*) near W. In Section 9.5,
by following [19, Section 9], we construct an embedding Jr of F into E. In Section 9.6,
we construct a family of Sobolev norms | |1, on the Sobolev bundle E', and we
show that Z{T verifies elliptic estimates with respect to these norms, which follow
essentially from [19, Section 9]. It is at this stage that we find most useful to have
replaced A; r by Avl,T. In Section 9.7, we give functional analytic estimates for the
resolvent of Z%T In Section 9.8, we establish regularizing properties of the resolvent of
‘Z%,T with respect to higher Sobolev spaces. In Section 9.9, we prove uniform estimates
for the kernel of Fu(Z%’T) (which is the first contour integral described before). In
Section 9.10, by using Theorem 8.5, we obtain the matrix structure of g%,T with
respect to a natural splitting of E, as T — +o00. In Section 9.11, we calculate the
asymptotics of the operator Fu(}lv%T) as T — +o0o. In Section 9.12, we prove our
first intermediate result of Section 9.3. Note that the argument of Sections 9.7-9.12
are already related to [19, Section 13].

In Section 9.13, we introduce a suitably rescaled version of Ki’T, which depends on
three complex parameters, and we show that a corresponding operator obtained by
a contour integral on a small circle is a polynomial function of these parameters.
In Section 9.14, we prove the second intermediate result of Section 9.3. Finally
in Sections 9.15 and 9.16, we show how to use the above techniques to prove
Theorems 6.15 and 6.16.

In the whole Chapter, we use the assumptions and notation of Chapters 3-8.
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9.1 The spectrum of BZ ;.
For T > 1, set

(9.1) Ar = Ay r.
Let A(T? ) be the piece of At of partial degree 0 in A(T{S). Then
(9.2) AP =DX TV,

Recall that K’ = ker DY is a smooth vector bundle on S.

If s € S, let v(s) be the smallest nonzero eigenvalue of DY->2. Then s € § —
v(s) € R is a continous functions. Since S is compact, v has a positive lower bound
2¢ce > 0.

If C is an operator, let Sp(C) be the spectrum of C.

Theorem 9.1 — There exists Ty > 1 such that for s € S,T > Ty,
(9.3) Sp(AP?) N {A e R, A< e} C {0}.
Proof. For a given s € S, (9.3) is exactly [19, Theorem 9.25]. Since S is compact, a
trivial uniformity argument shows that (9.3) holds. a
Set
c(TV))2 [ (1Y)
9.4 Rur= (V¥ - +u|VF— , DX +TV| .
(9-4) T ( 2v/2u 2v/2u
Then
(9.5) B2 1 =u?AP? + Rur.

By [4, Theorem 2.5], R, r is a sum of forms of positive degree in A(Tg S) with values
in first order differential operators acting along the fibre X.

For any s € S, the operators BZ . and A%} are unbounded operators acting on Ej,
with domain the obvious Sobolev spaces of order 2.

Proposition 9.2 — For anyu >0,T >0,

(96) Sp(B 1) = Sp(u* A7),

Proof. Take A ¢ Sp(uzAg(? )’2). Then we have the formal identity
_ -1

01 (- B2r) = (3 uiAD?)

+ ()\ - uzAS_,E))’z)_l R, 1 (/\ - u2A§9)’2)_1 +...

SOCIETE MATHEMATIQUE DE FRANCE



134 THE ASYMPTOTICS OF SUPERTRACES ...

the key point in (9.7) being that since R, r has positive degree in A(TR{S), the
expansion contains only a finite number of terms. Since uzAg? )2 is elliptic of order 2,
A= u2Ag:2)‘1 increases the Sobolev regularity by 2. Since R, r is of order 1,
(A= B2 1)"! acts as a bounded operator on the Sobolev space of order 0. Therefore

A ¢ Sp(B2r). By exchanging the roles of B2, and u2A?, we find that if
A ¢ Sp(BZ 1), then X ¢ Sp(uzAg) )’2). Our Proposition follows. O

Let D =6 U A be the contour in C

A
) <

\y T i
J 1
Y
-1

___________ >
7

A

By Theorem 9.1 and Proposition 9.2, it is clear that foru > 1, T > Tp

1 [ exp(—u2)) 1 [ exp(=)\)
B2, )= — | =22~ 4 5 :
(9.8) exp(—B; r) 2mi Jo y _ Bir dA+ 2mi Js A — B2 ?

9.2 A scaling formula
For u > 0, let ¢, : A(TRS) — A(TRS) be the map

(9.9) a € A(TRS) — u~9%8> o € A(TRS).

Then 1, acts like ¢, ® 1 on A(TS) ® E.
Proposition 9.3 — For u >0, T > 0, the following identities hold

Bur = uwpu ATy,
JVu2 = "/’uva'/%:l y
BY, = up, By,
NY =y NPy t.

(9.10)
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Proof. By (2.31),
(9.11) BY: = uw,BY y3t.

Since B, T = B + uTV, the first identity in (9.10) follows. The second identity is
trivial. The proof of the other identities in (9.10) is similar. O

Proposition 9.4 — For u > 0, T > 0, the following identities hold

1 exp(—u? ) 1 exp(—u?X)
v exp(—u”A) A s A nC )
T‘l‘s Nu 27”’/; A B:T :| ¢u [ 1 27TZ A A—A%-. dA ’

(9.12) -
2 a2
Tr, NHL,/ 3‘_?_(__11_)‘) d\| = ¥, Trs [NH-}——/ Md’\] )
27t Ja )\_Bu’r 2mi Jo A— AT
Also, for u > 0,
1 exp(—u /\) 1 exp(—u?))
w w_1
S Py — = u N 7 72 )
ﬂ Nu2 2 A A BW2 ¢ 1 27TZ A A _ B]W!2 dA
(9.13) -
- 2
| _<__*-> & =vum, [_ el
I mJa oy _ T Ja A— B
Proof. Our Proposition follows from Proposition 9.3. O

9.3 Two intermediate results

In the whole Section, uo denotes a fixed positive constant.

Theorem 9.5 — There exist § €]0,1],C > 0 such that for u > uo, T > T,

exp(—u2)) d/\]

1
|’]}s I:(NIV—NH)E;I; /\-—A%.

1 exp(—u?\) C
— w___ e 2 Wi A < =
m[Nl 2mi Jo A — B2 l"T5’
(9.14) )
EXPATU A) | — L gj
|Tr [Nﬂzm e d,\] L dim Ny, x

1 exp(—u?2)\) C
—_ RN 2T < =
s [2711‘ a A—BY? A “T"
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There exist ¢ > 0, C > 0 such that for u > ug, T > T

2
[NV 1 Md/\] ‘ < cexp(—Cu?),
(9.15) 2mi Jo A — A%

1 exp(—u2)) 2
o [Na— [ 2222 V|| < —~Cu?).
Tr [NH2m A AZ d\|| < cexp(—Cu?)
Theorem 9.6 — There exist § €]0,1], C > 0 such that for u > ug, T > T,
_ exp(—A)
|’I‘rs l(N Ni ) By BﬁTd'\]
1 exp(—A) C
w_1 [ exp(—A) <L
Tr, [Nu hr / /\_B“Z,,zd,\] | <75,
(9.16)

1 exp(—A)
Trs | Nu— [ ————
l s { H27I'i /\ Bu TdA“ dlm NY/X

1 exp(—2A) C
s|lo= | — w3 €=
Tr [27” i /\—B,f‘z”zd/\

There exists C > 0 such that for u > ug, T > Tp,

1 exp(—A)
NV, — [ =222 -
| [ W omi Js A — Bﬁ,Td/\

I

Tr, [PrNGS Prexp(-vi X602 | < %

1 exp(—A)
ITIS [NH 2mi /5 A—BZ . d)‘]

- Tr, [PTNHPTeXp(—-Vg(XvEIX),Z)] I <

(9.17)

c.
u

Proof. The proof of Theorems 9.5 and 9.6 will occupy the remainder of the

Chapter.

Remark 9.7. Now we show how to derive Theorems 6.5 and 6.6 from Theorems 9.5

and 9.6. If o € A(TgS), for u > uo,

(9.18) lYua| < Claf .

By Proposition 9.4 and Theorems 9.5 and 9.6, and by (9.18), we find that for u > uo,
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[+ 3

T2T07
| T [V — V)] 5 /erudA_
s 2mi Ja ) B?;!T
2
[l [ ] |2 g
2mi Ja )\___Bz' T
(9.19) —
exp(—A)
|TrS [(N )27rz s A\— B2 d/\j|

exp(—A) C
fhieie A WAV < = .
Tr [N 27”/6/\_3%2(1,\][_ =5

Using (9.8) and the obvious analogue identity for BXZ’Z, we get the first inequality in
(6.17). The proof of the second identity in (6.17) is similar. We have thus established
Theorem 6.5. Using (9.15) and (9.17), we also obtain Theorem 6.6.

9.4 A formula for P¢" f °‘V§ #wV P |w and its normal derivative

Theorem 9.8 — If Z € Ny,x R, then

P& favi,,,w VP |w =0,

(9.20) my o _
Pt \7’=’va,£,,WVPg lw =0.

Proof. Since VIW =0, 65,”‘, w = 0. By proceeding as in (7.21), we obtain

(9.21) Pt fav§H wVPSy, = foaV f,, wViy =0.

To prove the second identity, we proceed as in the proof of [19, Theorem 13.19, eq.
(13.92)]. Clearly, on U,

(9.22) P& vig,,WVPﬁ‘ = p¢ 6§g,WVP€‘ ,
and so

(9.23) Pﬁ'ﬁﬁzviﬂ,vaﬁ‘ = Pﬁ‘ﬁﬁﬁi,,,vaﬁ‘
Moreover

(9.24) vzvf wV = v*E wVsV — v[fé,w ns

+[(V82(z, 15%),v] .
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Using Proposition 7.8 and (9.24), we obtain

(925)  PEVEVEL W VP |w = PE %a (V)aks z — PNvrx [fBW 7] .
By Proposition 7.2,

(9.26) VZ,‘,’/J,‘ Z=PNxviEez.

Using (1.3), (7.25), (9.26), we get

(9.27) V3 Z — PNvix [fHW 7] =

Pvx (VZV M + TV (MY, 2)) =0.
From (9.25), (9.27), we get the second identity in (9.20). O

9.5 An embedding of F'in E

Clearly
v _ 1 / exp(—u?}) _
s [(Nl Na)5s A A—AZ dA| =
s 2
T | (WY - N, [ SN0
L 2mi Ja )\_A%T
(9.28) '

1 exp(—u?)\)
Trs [NH'Z}E A A— AZ

i a2
Tr, NH_I'/ exp(—wA) |
2miJa A— A2,

So in our proof of Theorem 9.5, we may as well introduce ~ in the left-hand sides of
(9.14), (9.15).
Definition 9.9. For s € S, u € R, let E* (resp. E¥, resp. F}) be the set of sections
of A(T*®VX) ® £ over X, (resp. of 7 ((A(T*®VX) ® &)|lw) over Ny, x rjy,, resp.
of A(T*(®1Y) ® 1) over Y,) which lie in the ut® Sobolev space, and let || || gu (resp.
| llgs, resp. || |[Fx) be the corresponding Sobolev norm. We will assume that
Il llgo (resp. || |Igo) is associated to the Hermitian product (2.22) (resp. (8.2)).
Recall that €9 > 0 was defined in Section 7.3. We take € €]0, £¢]. In the sequel
the constants in our estimates depend on €. In Theorem 9.14, we will choose € small
enough so that the corresponding estimates hold. Otherwise € can be assumed to be
fixed.
Let v: R — [0, 1] be taken as in (7.29). If Z € Ny, x g, set

(9.29) o(Z) =~ (‘eﬂ) .

d/\] =
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Let ar be the locally constant function on W

va
_ —T|2)p?(Z)—eNvix__
(9.30) ar = /N - exp(=T|Z[")p"(2) Grdm Ny x -

Now we follow [19, Section 9 a)].
Definition 9.10. For 4 > 0, T > 0, let It be the linear map

(9.31) o€ F* — Iro(y, Z) = (24™Nv/xqr)~12p(Z)

2
exp (0 - %—) o(y) € E*.

Let Ef be the image of F# in E# by Ir. Then Ir is an isometric embedding of FO
into EO.

Let E" be the orthogonal space th_; E2 in EO, let pr, p+ be the orthogonal
projection operators from E° on ES., E,(}.’ respectively. Recall that q is the orthogonal
projection operator from (A(T*®VX) ® &),w on A(T*VY) ® {8} ® n.

We recall a result of [19, Proposition 9.2].

Proposition 9.11 — Ifse€E° ifye W, Z € Ny/x Ry,

032) prow,2) = B exp (—Zﬂ)q [ w2
Y/X,y

2
T\Z' 2 dv Z'
exp( I I )8(y,Z')—NY/X( )

2 (27r)d|m Ny/x °

If o € F*, we can consider k~/2Irc as an element of EX.
Definition 9.12. For p > 0, T > 0, let Jr be the linear map

(9.33) o€ F* — Jro =k"Y2%Iro € E*.

Then Jr is an isometric embedding from F° into E°. Let E%. be the image of F* in
E*. Let E%™ be the orthogonal bundle to E$ in E°.
For pu > 0, set

(9.34) Eft = EFNEX*t.

Let Br,P3+ be the orthogonal projection operators from E° on EQ, Ex'. By [19,
Proposition 9.5],

(9.35) pr =k~ 2prk'/? | pf = k™ ?pFk!/2.

SOCIETE MATHEMATIQUE DE FRANCE



140 THE ASYMPTOTICS OF SUPERTRACES ...

9.6 A Sobolev norm on E!

Let e;1,...,e2¢ be a locally defined smooth orthogonal basis of Tr X. We assume
that on W, ej,...,ez¢ is an orthonormal basis of TRY and egpy1,...,€2¢ is an
orthonormal basis of Ny, x Rr.

Recall that if U € TRW, UH € T{{ Ny, x was defined in Section 8.2. In particular
for 1 < i < 20, eyw € TRY and so e;."llW e TH Ny,x. Using the identification
B., ~ %, described in Section 7.3, eﬁ’w is a locally defined vector field on U, .

If s € E, put

Islo = lisll o »

(9.36) (5,89 = (8,8 o -

Definition 9.18. For T > 1, s € E, set

2 _ 2 _1 2 2
(9.37) |slpy = Prslo+T |pf,:s|0 +T? |Vp%s|0

2¢
AT OV X)@e—L |
+ Z .Vei( )‘2’5st|0 +
1
<. (AT O X)B¢)| :
Z Ovp(—z-)e.H WﬁT'S :
1 2 /7w 0

Then (9.37) defines a Hilbert norm on E'. Also (E',| |r,) is continuously
embedded in (E®,| |,). We identify E° to its antidual by ( , ),. Then we can
identify E~' to the antidual of E'. Let | |, _; be the norm on E~! associated to
| |r;- Then we have the continuous dense embeddings with norms smaller than 1,

(9.38) E! - E° - E!.

For convenience, we introduce a metric g7 on T'S. Then the definition of |s|,, 8|7 1
obviously extends to A(TjS) ® E.
Put

(9.39) Ar=Ar.

Let Zg? ) (resp. ;1'(>0)) be the piece of A7 which has degree 0 (resp. positive degree)
in A(T§S). Then

(9.40) Ap =AY + 4C0),
By (3.15), (4.1), (6.9),

(9.41) A =pX 4TV
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Set

(9.42) Rr = [ggﬁ), g<>o>] + AC02

Then Rr is a first order differential operator and moreover
(9.43) A2 =297 Rr.

Theorem 9.14 — If € €]0,e0/4] is small enough, there exist constants C, > 0,Ca >
0,C3 > 0 such that for T > 1, s,s' € A(TRS) R E,

~ 2
|A§9)3|0 > Ci |slz,, — Calsly
(9.44) (AR5, AP s") | < Clslpy 15'I1
|<ﬁTs,s'>0| < Cj (IsIT,1 18']o + |slo |s’|T,1) .

Proof. In the whole proof, C,C’ ... are positive constants, which may vary from line
to line.

To establish the first inequality in (9.44), we may as well assume that s € E. If
s € FE, then

~ 2 ~
(9.45) |A§9)s|o=|ﬁTA§9)s| l (°)|

‘—J_A(O)st|

'PTAT PTSI
2 2
- = =1 3(0)=
- |prAPphs| - [pFAPPrs|,
O

By [19, Theorem 9.8], since Jr is an isometry and since S is compact, there exist
C>0,C">0suchthatforT>1,0 € F,

(9.46) [pr AL BrIre| = Cliollp = C' llollpo -
From (9.46), we deduce that
(9.47) [PrARPrs| > C |97 Brs|| g — C' Prslo -

By (9.32), (9.35), if 0 € F,

~ o ( )
(9.48) OFGAT EVXBOW 15| < Clloflps -

P( )e,|w 0
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From (9.48), we obtain

2¢

(9.49) >
1

Using (9.47), (9.49), we get

0F(AT* OV X)B¢) |lw
Vp(é )e{fw prs

< C|l9z'prs||p -
0

0FAT OV X)BO)Iw= | _ i
Vp(g)eiﬁ'w prs C’ [prslo -

20
9.50 |— A0 l >
( ) DrAr DTS 0= 021: o

If s € E, on U, we can write s = s* + s, s* € A(T*®VX) ® £¢*. By [19,
Proposition 8.14], if s is supported in U,

(9.51) C(|s+| + |Z| |s'|) <|Vs| < C'(|s+| +|Z| |s_|) .

By (19, eq. (9.52), (9.87)] and by (9.51), if € €]0,£0/4] is small enough, if s € Ej' 1. is
supported in Uy, then

~ 2
(9.52) |A§9)s|0 > Clsli3 + C'T2 |Vs|2 + C"T |s|2 — C" |s|? .
By [19, eq. (9.93)], if s € E vanishes on U, then
~ 2
(9.53) |APs|_ > Clislizs +C'T? lslg = " 1sl;

Using (9.52), (9.53) and proceeding as in [19, p. 115, 116] and specially [19, eq. (9.97)-
(9.99)], we find that if s € Ex™,

~; 2
(9.54) |A§9)s|0 > Cls|% + C'T2 |Vs|2 + C"T |s|2 — € |2 .

By [19, Theorem 9.10],

=1 7(0) prs =
[Pt A0prs| < C (m + |pT3|o) ,

VT
(9.55) ~(0) Iz 2
‘ﬁTAT 5%-‘3'0 <C (_‘—\/T_E + |ﬁ%s|o) :

Using (9.54) and the second inequality in (9.55), for T' > 1 large enough,

~ 2
(956) |[pFADPEs| > C|lpts|y + C'T? [VPFs|,

+C"T [pEs|> - C" |ps] -
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By (9.32), (9.35)

2¢'
(9.57) IBrsll g < CZ 0F AT D X)BEIw
1

’ —
P(Z/2)e.| DTS o +C \/TIPTS'O .

Using (9.45), (9.50), (9.55)-(9.57), for T > 1 large enough, we obtain the first
inequality in (9.44). Of course small values of T' > 1 do not matter here.
Now we prove the second inequality in (9.44). Clearly

(9.58) |X$)3|0 < |Z§9)'ﬁ | IA(O)stl
By (9.41),
(9.59) |A(79)stl < C(||prsll g + T |VPrs],) -

By [19, Theorem 9.8],
(9.60) [PrALPrs| < CllJz Prs]l -

Using (9.32), it is elementary to verify that

2¢’
(9.61) ”JT st”Fl < Z vAT (o, 1)X)®£)lw—

o(Z/2elly, Pré

+ C' |ppsl, -
0

From (9.55), (9.57)-(9.61), we get the second inequality in (9.44).
Now we prove the third inequality in (9.44). Put

(9.62) H= [DX , Z<>0>] + AC0.2
Then H is a fibrewise first order differential operator, and moreover
(9.63) Rr=H+T [V, Z(>°>] .
Clearly if s,s’ € A(T3S) ® E,
(9.64) |(Hs,s')| < C (lslT,l 5"l + Islo ISIIT,1) + [(HPrs,Prs’)ol -
Observe that
, d’UN (Z)
i 2 _ 2 Y/X —
/. | TZR@ el -TIZ) G
. duny . (Z)
i 2 2 Y/X _ —cT
(965) Ay/x TZ (p (Z) - 1) exp(——T|Z| )Wﬁ;/—x = O(e c )
(T |Z|2)pp2(z) NY/X( ) _
/Ny/x B —— xp(=T|Z|° )W 6(1), p>0
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Moreover, if U is a smooth section of Tr X, using (9.32) , (9.65) we get

+ wTslo) .
)

*(0,1) ¥\ 3
(9.66) ||1Z| VAT X’®5ﬁTs|0<

O AT D X)BE) w
Voz/oer,,  Prs

5

By (9.65), (9.66),

(9.67) (HB7s, 508l < C (Islzy 15'lo + Islo I5'17:1 ) -
Also

(9.68) [V, Z<>°>] = 1oV V.

By (9.20),

(9.69) P& Vi{,,WVPg_ =0(z)).

By (9.37), (9.51), (9.69)
(9.70) |<Tfavf,;,,st,s'>O|s
C (Islr I8'lo + Islo I8'ly + T |(*V i VBrs,Brs') |) -

Using (9.20), (9.65), we get

(9.71) T (VS nw VPrs,prs’) | < Clprslo Brs'lo

From (9.69), (9.71), we obtain

(9.72) l<Tf°‘V§f,W Vs,s’>0} <C (lslT,1 1"l + Islo |s'|T’1) .

From (9.62)-(9.64) and from (9.72), we get the third inequality in (9.44). The proof
of our Theorem is completed. O

9.7 Estimates on the resolvent of A2

Now we fix € > 0 as in Theorem 9.14.
If A€ L(E° E°) (resp. A € L(E~1,EY)), let ||A||>° (resp. | Al|7"") be the norm
of A with respect to the norm | |, (resp. the norms | |1 _,,| |7,)

Theorem 9.15 — There exist To > 1,C > 0,p € N, such that for T > Tp, A € A,
the resolvent (A — A%)~! is such that

(9.73) - E%)—IH:’I < C(L+ADP.
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Proof. Recall that Zg,q) =DX +TV.Ford >0,A >0 set
(9.74) U={X€eC,Re(N) <6Im?(\) — A} .

Using the first two inequalities in (9.44), and by proceeding as in [19, Theorems 11.26
and 11.27], we find that if § is small enough, and is A is large enough, for T' > 1,
AevU,

~ 0,0
Jo- a2 <

(9.75) oo —11
o= 2P| < ca+ 2.
O
Take A € A. By Theorem 9.1, for T' > Tp, (A — .Zg? )’2)‘1 exists and moreover
~ 0,0
(9.76) H()\ - A§9)’2)‘1” <cC.
IfNeU, e A, T > Ty, then
9.77) (A= AV = (A9 — AP+ (A = AP 29 — A) (Ao — AP
From (9.75)-(9.77), using obvious notations, we get
~ -1,0
(9.78) “(,\ - A‘T")’2)~1||T <O+ ).
Also
(9.79) (A= AP = (Ao — AP+ (Ao — APP) (o — N)(A — AQ?)71
By (9.75), (9.78), (9.79), we obtain
~ -1,1
(9.80) H(,\ - A§,°’*2)‘1||T < C(L+ )2,
Moreover, if A € A, then
981) (A—A2)"1=A-AP?) T+ (A =- AP IRp(A - AP
+ ...
and the expansion terminates after a finite numbers of terms. By Theorem 9.14,
~ ql,-1
(9.82) ”RT” <cC.
T
Using (9.80)-(9.82), we get (9.73). The proof of our Theorem is completed. O
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9.8 Regularizing properties of the resolvent of Z%

Since W is compact, there exist a finite family of smooth functions fi,..., f; on
V with values in [0, 1], such that

q

(9.83) W =) {z eV, ) =0},
j=1

and that on W, df,,...,df; span Nx*//x,n'

Similarly, there exists a finite family of smooth sections Uj, ..., U, of TR X (resp.
Ui,..., Ul of TRY) such that for any z € V (resp. y € W), Ui(z),...,Ur(z) (resp.
Ui(y),---,UL(y)) spans (TrX)z (resp. (TRY)y).

Definition 9.16. For T > 1, let 21 be the family of operators acting on E

_Jormenx)@e 1 _LogA@ OV X)8) w1
(084) ar = {V(l—p(2/2))Ut ’ﬁpT VP(Z/2)Ui “PT

SAT* O X)® -

For k € N, let Q% be the family of operators @ acting on E which can be written in
the form

(9.85) Q=Q1...Qx, QE€2r.

If k € N, we equip the Sobolev fibres E* with the Hilbert norm || Iz s such that if
seE,

k
2 2
(9.86) sl = Z Z |Qs|rp -
£=0 Qeat
Theorem 9.17 — Take k € N. There exists Cx > 0 such that for T > 1,

Q1,.--,Qx €21, 5,8 € A(TRS) R E,

(9.87) |<[Q1, [Qz, ... [Qk,g%]]] s,s'>0| < Cklslpy 18|71 -

Proof. First, we consider the case when k = 1.
A Tt(O,l)X @
a) The case where Q = V(l(—p(Z/2));]i£'

Observe that p(Z/2) = 1 for |Z| < €, p(Z) = 0 for |Z| > 2e¢. In particular, if
2¢
p(Z) > 0, then 1 — p(Z/2) = 0. Also, [DX,V] = 715 Zc(ei)VgiV is of order 0. One
1
then finds easily that (9.87) holds

~ =(0,1) S
b) The case where Q = g?ﬁ%(’vfj(‘gz); X)@0lwpl
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The proof of the corresponding estimate is local on W. By [19, Theorem 13.30],
we get

(9.88) |< [Q, Z(qf’)’z] s, 5/>0‘ <C |3|T,1 |3,lT,1 .

Note that in [19], some special properties of the operators @ of [19, Section 13] are
used, say in [19, eq. (13.203)], but the corresponding estimates still hold, by replacing
these Q’s by our Q’s.

Now we will prove that

(9-89) K[Q, RT] S, 3’>0| <C |3|T,1 ISI|T,1 .
Note that if s and s’ lie in A(T%S) ® EL, then
(9.90) <[Q ET] s, s'>0 =0.

To establish (9.89), we only need to consider the case where s and s’ lie in A(Tj S)@EL
or A(T%S) ® Ep* and do not lie both in A(TS) ® E}.

We use the notation of (9.62), (9.63). As we saw before, H is a first order differential

~ *(0,1) ¥\ S
order operator acting fibrewise. If P = OVE,/(\?/;) U: X)®€)|W,

(9.91) Q= T/I—T(P + Pr PPy — PP — Ppr).

From (9.32), (9.91), we find that if s, s’ are taken as indicated before,
(9.92) K@, H]s,s)ol < C |3|T,1 |3I|T,1 .

By (9.20), we find that near W,

(9.93) Pt favf‘é,,WVPf‘ =0(|12%).

Using (9.32), (9.91) and (9.93), we obtain

(9.94) |<[Q,T favjf,wv] s,s'>0| < Clslpy 18]y -

From (9.64), (9.92), (9.94), we get (9.89). Therefore, we have proved (9.89) for this
choice of Q.

c) The case where Q = 062'(\55)(33,)()@5)'“’ .

By [19, Theorem 13.30], we find that

(9.95) ([@ AP 5,) | < Clslpy I/l -

SOCIETE MATHEMATIQUE DE FRANCE



148 THE ASYMPTOTICS OF SUPERTRACES ...

Also [Q, H] is a first order differential operator acting fibrewise. Using (9.65), (9.66),
we find easily that it verifies the obvious analogue of (9.92).

Clearly
(9.96) (@ T1 VS w V] = D1V 5y ViV
By (9.20), near W,

(9.97) Pt faei(z/z)u,-'”vf‘f’vag_ =0(121").

From (9.97), we find that [Q, T f"‘Vf‘H,WV] also verifies the analogue of (9.94).
d) The case where Q = VThx f;Px -

Put

(9.98) Q1 = VT - p(2/2))Pt fi5F
Q2 = VTp(Z/2)P% §iPr -

Clearly

(9.99) Q=Q:1+Q2.

As we saw in part a) of our proof,

(9.100) Br(1 - p(2/2)) = (1 — p(Z/2))Pr = 0.
Therefore
Q1 =VT(1-p(2/2))f;,

9.101
(9.101) Qs = VTBEp(2/2) f155

Clearly, [(1 —p(Z/2))f;, Z%] is a first order differential operator not depending on
T, whose coefficients vanish when p(Z) > 0. Then we find easily that

(9.102) |<[Q1,A%~] s, s’>0| SClslpy I8l -
By [19, Theorem 13.30],

7(0),2
(9.103) K[Qz,Agp) s, s’>0| < Clslp, 18|17, -
We will show that

(9.104) '< [Qz, ﬁT] 5,5)

<C |3|T,1 ISIIT,I .
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As before we take s, s’ in EL or Ex™, and s, s’ not lying both in EL. Set P = p(Z/2) f;.
Then we write the obvious analogue of (9.91), i.e.

(9.105) Q2 = VT(P + By PPr — BrP — PPr).

Since [P, ET] is an operator of order 0 which does not depend on T', VT [P, ﬁT] is
harmless in our estimates. Moreover near W,

(9.106) fi =0(|Z]).
Using (9.66), (9.106), we find that if s € E}™,

(9.107) I\/TﬁTPI_’TH3|O <Clslg, -

From (9.107), we deduce that [\/’T'p'TPp?T, H ] is also harmless. The same argument
shows that the other commutators of the remaining terms in the expression (9.105)
for Q2 with H are harmless.

Finally

(9.108) [P, T favfg,wv] =0.

Using (9.93) and (9.108), we control the commutators [Q2, T f"‘Vf, H,WV].
This completes the case of commutators of length 1.

e) Higher order commutators.

As we saw in a), if 1 — p(Z/2) > 0, then p(Z) = 0. Therefore in the commutators
*(0,1) 3\
containing one of the V?l(_Tp( z /2;()}}?5, we can replace everywhere ﬁ% by 1. The

corresponding estimates are then trivial in this case.
For commutators not containing the VA(T*(OYI)X@E’S the contribution of A"
& (1-p(2/2))U; > T
to the corresponding estimates was already obtained in [19, Theorem 13.30]. More
generally, by using formulas of the type (9.91) repeatedly, one verifies that the
estimates needed to prove (9.87) for k > 1 are exactly of the same nature as before.

The proof of Theorem 9.17 is completed. O

If A e $(E™ E™), we denote by |||A|||$ml the norm of A with respect to the

norms || |l | Nz

Theorem 9.18 — For anym € N, there exist p,, € N, Cp, > 0 such that for T > Ty,
AEA,

~o 1 m,m-+1
(9.109) l“()\ _ A2y |“T < Co(1+ )P .
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Proof. Clearly for T > 1

(9.110) sllzy < Clslp;y -

When m = 0, our Theorem follows from Theorem 9.15 and from (9.110).

Using Theorems 9.15 and 9.17 instead of [19, Theorem 11.27 and Proposi-

tion 11.29], the proof of our Theorem proceed as the proof of [19, Theorem 11.30].
(]

Ifa ¢ A, put
_1 exp(—u?))

(9.111) Fu(a) = 5— /A LY
Then
(9.112) F,(a) = exp(—u2a) if a lies inside the contour A,

. =0 if a lies outside A.
Put

= 1 exp(—u2))
2 = ——

(9.113) Fu(A%) = 5— /A vt

Definition 9.19. Let F,(AZ)(z,z') (z,z’ € X) be the smooth kernel associated to

the operator F,(A%) with respect to (g:’)‘ -

9.9 Uniform estimates on the kernel F,, (AZ2)

Theorem 9.20 — For any a > 0, m € N, there exist C > 0, C' > 0 such that if
T € V; dx((l,',Y) Za, fO”' u > Uo, T > TO:

C exp(—C'u?)

(9.114) Fu(A7)(z,2") < ——

For any m € N, there exist C > 0, C' > 0 such that fory e W, u > ug, T > T,

(9.115)
1 - z z
sup (14 |Z)™ e |Fu (2 (( _)(y_))‘ < Cexp(~C"a?).
|z|5§pﬁ( )" e [FlAn) (\% 75 vT ( )
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For any m € N, there ezist C > 0, C' > 0, such that fory e W, u > uo, T = T,

a|a|+|a'| 1
11 s - —
(O-110) |a|<msﬁf:/|<m, P | 5zadz'e” Tdim Ny, x
|ZI<$VT
|z’|<$vT

~, Z z’
w0 (v 7). (v 7)) | s comiona
Proof. Clearly for any p € N,

1 exp(—uz)\)d)‘= (—1y2°-1 (2p — 1)! / exp(—u?\) Y
A

(9.117) 2mi Ja A- A2 2mi(u?)2P~1 J5 (A — AZ.)2P

a

By Theorem 9.18, we know that there exists C > 0, ¢ € N such that if A € A,
Q €2, L<p,

~, 0,0
(9.118) ||Q(,\ - A%)‘P“T < C(1+|A)9.

By introducing the obvious adjoint operator with respect to the Hermitian product
(', )o» we also find that if A € A, Q' € 9%, £ < p,

(9.119) |- B)re| " < ca+ e,

From (9.118), (9.119), we see that if A\ € A, Q € 9%, Q' € 2%, £,¢' < p,

(9.120) e - @)@ < o1+ xy=.

From (9.117), (9.120), we find that if Q@ € 2%, Q' € 91{,:, there exist C > 0, C’' > 0
such that
0

< Cexp(—C'u?).

(9.121) |er.(a3)e’ ;

By (9.121) and by Sobolev inequalities, we get (9.114). Using (9.120) and proceeding
as in [19, proof of Theorem 13.32], we obtain (9.115), (9.116).
The proof of our Theorem is completed. O
Now we establish an analogue of [19, Proposition 13.33].

Proposition 9.21 — There exist C > 0, p € N such that for T > Ty, A € AUSJ, then

(9122) [pron - 07" < =+ e
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Proof. This follows immediately from Theorem 9.15. O

At this stage, we are in a situation formally very similar to the one described in
[19, Section 13 o)]. Note that here, contrary to what was done in [19], the Hermitian
product ( , ), does not vary with T'. In particular, none of the subtleties involved in
the proof of [19, Proposition 13.34] does appear.

If A is an bounded operator acting on E, we write A in matrix form with respect
to the splitting E°: E3 @ EX*

so that A; =P APp7, . ...
Now we give an analogue of [19, Proposition 13.35].

Proposition 9.22 — There exist C > 0, p € N, Ty > 1 such that if T > Tp, A € A,
the resolvent (A — A% ,)~! exists and moreover

(9.123) “(A - ZZTA)*‘H:’I <O+ |A)P.

Proof. By Theorem 9.14, it is clear that ‘Z%"A verifies inequalities similar to (9.44).
Therefore by using the notation in (9.74), for § > 0 small enough, and A > 0 large
enough, if A € U, then

o A0 <

(9.124) ~ i
|- 2207| " <ca+ne.
O

By Theorem 9.14, for T' > 1 large enough, if s € ETIJL ,

+(0),2 —1 42
(9.125) <A'(1“) s,s>0 >CT |p%s|0 .
By (9.125), we find that there is C > 0, Ty > 1 such that for T > Ty, A € AU,

~ 0,0

(9.126) ”(,\ - A§221’2)“1“ <cC.

Using (9.124), (9.126), and proceeding as in (9.75)-(9.80), we get for T' > Tp, A € AUJ,
~ -1,

(9.127) | (A — AQQZ)—IHT < O+ |\)2.

Then if A € AUJ,

(9128) (A—A2,)7 = (A= AR + (A - AR T Rra(A - AR T+
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By Theorem 9.14, we get
1,-1

: R <cC.
a0 [ <
By (9.128)-(9.129) and by proceeding as in (9.81)-(9.82), we obtain (9.123). a
Now we give an analogue of [19, Theorem 13.39].
Theorem 9.23 — There exist C > 0, C' > 0 such that foru>1, T > Ty,
~ 0,0 (¢
—J.Fu A2 =1 < —_—
b ( T)pT = \/T
~ 0,0 (C
9.130 prF.(A%)P < —,
( ) pr u( T)pT = \/T
~ 00 (O
prFu(A%)Dr <
pr u( T)pT = \/T

Proof. In view of Proposition 9.21, we can proceed exactly as in [19, p. 264-267].
Note that contrary to [19, Section 13 o0)|, we do not need to introduce the operator
p of [19, Section 13| (at least for the moment!) and this simplifies the discussion
considerably. O

9.10 The matrix structure of A2 as T — 400

Recall that the operator DVv/x acting on E was defined in Definition 8.2. Let
DNv/x:~ be the restriction of DVY/x to E~. Similarly let V* be the restriction of V'
to £+,

Now we will use the notation of Chapter 8. Let E’®1:~ be the orthogonal bundle
to E’0 in E%~. The bundle E° splits orthogonally as

(9.131) E°=E 9E" "+~ oE"".

We write Frkl/2A2.k~1/2F=1 as a (3,3) matrix with respect to the splitting (9.131),

AT BT CT
(9.132) Dy Er Fr
Gr Hr Ir

By squaring (8.10), we obtain the asymptotic expansion of (9.132). Since E"* @
E"%L~ = ker V*|w, and since by Section 8.3, E'0 = ker (DNv/x:— \/—1—6(7?) C
E®%~, we deduce from (8.10) that

Ar=A+0(Jz), Br=vTB+0(l), Cr=TC+0(T),
(9.133) Dr =+TD+0(1), Ep=TE+0(1), Fr =TF +0(1),
Gr =TG +0(VT), Hr=TH+0O(J/T), Ir=T2I+0(T%?).
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From (8.10), we get the analogue of [19, eq. (13.356)],

A =pBp,
a2)
B - DNy/x'_ _lc( ] J_
P [ Ay, Sl F A
C=p [Vl"v;,,%] =3
_ a2)
D =p*pt [DNY/Xv- V& ]
(9.134) p + /3 B p,

20\ 2
E = pJ_PE* (DNY/X,— + ﬁ@) Pﬁ_pJ. ,
V2
+
G = P* [vain %] P,
+,2
I=Vy".
Definition 9.24. Let = be the second order differential operator acting on F'

(9.135) E=¢y (A-BE'D-CI'G)y.

Now we extend [19, Theorem 13.43].
Theorem 9.25 — The following identity holds,

(9.136) B? =g,

Proof. By (9.134), (9.135), we find that

(9.137) E=qy7! (p%zp — pBpt PS¢ Bp — p%P£+%p) Y,
and so
(9.138) E =19 (pBp)*y.

Now we use Theorem 8.8 and (9.138), and we get (9.136). The proof of our Theorem
is completed. O

We give an analogue of [19, Theorem 13.41].
Theorem 9.26 — There exist p € N, C > 0 such that for A€ A, T > Ty,

1,—-1
C

~ ~ ~, -1 -
(9.139) B+ By (\=-A3,) A -PrIrSIT'Pr| <o
T T /

Proof. In view of (9.133), the proof of (9.139) is the same as the proof of [19,
Theorem 13.41]. a
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Set
—u?
1 exp(—u?\) A

w2y _
(9.140) Fu(B") =5 | e

Let Fu(BY*)(y,v') (y,¥' € Y) be the smooth kernel of F,(B}'*) with respect to
duy (y'

(21!') im

9.11 The asymptotics of the operator F: (A )as T — +o00
The analogue of [19, Theorem 13.42] is now.

Theorem 9.27 — There exist ¢ > 0, C > 0 such that for u > ug, T > 1,
0,0 —Cu?
~ _ w2\ j—1— || cexp(—Cu?)
(9.141) ||Fu(A§") — PrJrFy (B1 ) TlpT” < — i

Proof. In view of Theorem 9.26, the proof of (9.141) is the same as the proof of [19,
Theorem 13.42]. a

9.12 Proof of Theorem 9.5
Clearly

(9.142) Tr, [(N1 —NH)2m A?i/\’i(—i—z—ldA]

[T [ = N (@) 1)) i

By Theorem 9.20, for any m € N

(9.143)
~ dvx (z) C ;2
Tre [(NY — Nu)Fu(A2) (2, 7)| o2l | < = exp(—C'u
/X oy ™ [ N Fu(BD) e, 2)] 500 | < o exn(-Cu).
Also
(9.144)
=~ T dvx () dvy (y)
Trs |(NY — Ny)F,(A%)(z, 4-:/————.——
/Xn{x,dx(x,y)gsM} [( 1 H)Fu(AT)(z z)] (27)dim X y (2m)dimY

/zerx,|Z|si-\/TTrs l(ﬁlv - )Ti"sf"’/)" ((y\/ii'—") ’ (y’ %))

k _é_ vay/x (Z)
Y /T (2r)dm Ny/x °
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O
Using Theorems 9.20 and 9.27 and proceeding as in [19, Section 13 q)], we find that
there exist ¢ > 0, C > 0, § €]0,1/2] such that if y € W, Z € Ny;x ry, |Z| < %T,

o [(2)"" i () ) )
_” (%) exp(—|2]%) (i)dimyFu(BfV’2)(y,y)q < cexp(=Cut)

aTTdim Ny/x (27T)dlm Ny/x 21 T&

By (9.115), (9.145), we find that for any p € N, there is ¢ > 0, C > 0 such that if
yeW,Z e Ny;xry |Z] < %1@,

(&) mmmnn (v ) (v 2)) £ (o 7)

2 (< im
_ P ( VT) exp(_ |Z|2) i dim ¥ F (BW,2)( )
arTdim Ny/x (27r)dimNY/X on u\Dg Y.9)a

(9.146)

< cexp(—Cu?)
S W+ 2T

Finally there is C’ > 0 such that

1

+0(e~°T).

From (9.146), (9.147), we deduce that there exist ¢ > 0, C > 0, § €]0, 1/4] such that

(9.148)

/ dvy (y)
y @mamY f i o

it - (o) () )

~ cexp(—Cu?
— Trg [(I(NIV - NH)un(B1W’2)] l < P:(ré ) .
So by Theorem 8.8 and by (9.142)-(9.144), (9.148), we obtain
cexp(—Cu?)

(9149) | Trs [(WY - Nu)Fu(A3)] - T, [NV Fu(B?)] | < 225

Also by (9.111), we get for u > wuy,
(9.150) lTrs [N}”Fu(BIW’z)] | < cexp(—Cu?).

Using (9.149), (9.150), we get the first inequality in (9.14) and the “difference” of the
inequalities (9.15). Also, by using Theorem 8.8 again, we get the second inequality in
(9.14) and also the full (9.15).

The proof of Theorem 9.5 is completed. O
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9.13 The operators Y, . r
Definition 9.28. Fora e C*, b€ C,ce€ C, T > 1, set

A2 be(TV)\* «T)
9.151 Gpor =L 4 (vE- ) [ vE 22 A )] :
( ) b,e,T e + ( Wi + le 203 AT

bc(Tv) ) 2 [ E C(TV) (0)]
Rper = VE - ——=~ vE - AY .
bt ( 2vz ) T I° 2v2 T

For T > 1, recall that I?T = ker AS_,? ) and that IST is the orthogonal projection
- -1
operator E — Kr with respect to ( , ) =( , );. Let [Ag? )’2] be the operator in

End(E) which vanishes on Kr, and coincides with the inverse of Ag? 2 on K.
Theorem 9.29 — Forae€ C*, |a|<1,b€eC,ce C, T > Ty, then

2dim S

(9.152) %/Mw= 3 3

A—%
s abeT p=0 1<io<p+1

0<J1,.sdp+1—ig >
JitFIpr1—ig<io—1

(_1)P—jl~~~—1p+1—io

(io -1 —-jl P _jp+1—i0)!

C1Ryc,7CoRy e - - - Ry, 7Cpy1 s

where in the right-hand side of (9.152), ig of the C;’s are equal to ﬁT, and the other
1 1471 1+jp+1-ig

ooy (az [Ag)’z]—l) . In

particular each term in the right-hand side of (9.152) is a monomial in a and a
polynomial in b, c.

Cj’s are respectively given by (a2 [ Agp")&]

Moreover if Ci,...Cpy1 are chosen as indicated before,

(9.153)
deg.(C1Rp,c,rC2Ro,c,T - - - Rp,e,7Cp+1) < 2(p+ 1 — o),
deg, (C1Rp,c,7C2Rp,c,T - - - Rb,e,7TCpt+1) =2(p+ 1 —do + j1 + -+ + Jp+1-4o) -

The inequality in the first line of (9.153) is an equality if and only if [cVE,ArE,? )]
appears exactly 2(p + 1 — ig) times in sequences of the form

_1\ ik
(9.154) Pr [ove,aP] (@ [407]) ) [ovm AP e,

the other C;’s being equal to Pr.
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Proof. Clearly Ryt lies in A(TS) ® End(E) and its partial degree in A(TgS) is
positive. Using Theorem 9.1, we find that

. L + R ! +
— = ©,2 ©.2 1tb,e,T @z T
A=%abeT A — _era A — __zi_Aa A — —TT-Aa
and the sum in (9.155) is a finite sum with at most 2dim S + 1 terms.
Also

/\k
(9.156) exp(—\) = go(_l)kﬁ'

(9.155)

By Theorem 9.1, for T' > Ty, |a|] < 1, 0 is the only eigenvalue of A,(19 )2 /a? lying inside
4. Using (9.155), (9.156) and the residue theorem, we get (9.152). Clearly each term
in the right-hand side of (9.152) is a polynomial in a, b, c.

If s is a smooth section of I~(T, then

(9.157) APs =0
and so
(9.158) [vE, A§9’] s— AOVEs = 0.

From (9.158), we deduce that
(9.159) Pr [VE, Ag’)] Pr=o0.

Therefore in the right-hand side of (9.152), expressions of the form Pr [cVE , Ag,? )] Pr
never appear. Now we list the other sequences of terms where [CVE , A;? )] can appear,
and their partial degree in a and c. Clearly

—1\ 1+ik
deg, (a2 [A(79)’2] ) Rycr 2> 2,

—1\ 1+Jk
deg, <a2 [A§9),2] ) Rper =1,
- _ 0).2 -1 1+]k
deg, PrRyc T (02 A ] ) Rycr 22,

(9.160)
degc .ISTRb,QT (0,2 LA’(IP)J

- _ 0).2 —1 1+
deg, PrRy.1 a? A(T’*] ) > 2,

~ r -1
degc PTRb,c,T (a2 A§9),2]
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In the right-hand side of (9.160), the even rows are dominated by the odd rows.
Therefore we deduce that the degree in c of C1 Ry ¢ 7C2 . .. Ry c,7Cp is dominated by
2(p + 1 — ip), i.e. we obtain the first inequality in (9.153). The second equality in
(9.153) is trivial.

The case where there is equality in (9.153) corresponds to the case where the even
and odd right-hand sides of (9.160) are equal, and only terms of the highest degree
in ¢ appear. This excludes the first and third sort of terms in (9.160).

Our Theorem follows. O

From Theorem 9.29, we deduce that if N is one of the operators N{f, Ny, wV'#
then

(9.161) Tr, [N'é?lr‘z / %’\)_d,\] = Z Ot mn(T)ab™c",
s a,b,c,T 0<n<f<4dim S

0<m<4dim S

where the O 1 »(T) lie in PS.

Theorem 9.30 — If N is taken as in (9.161), there exist forms Og,m n(c0) € P and
C >0, 4 €]0,1/2] such that for T >Tp, 0 <n<£€<4dimS, 0 <m <4dim S,

c
(9.162) 10¢,m,n(T) = Ot,m,n(0)| < 5 -

Proof. We will show that there is a smooth form on S, h(a,b,c), depending
holomorphically on {a € C, b€ C,c € C, 1 < [a| < 1/2, o] < 1/2, |¢| < 1/2},
C >0, and ¢ €0, %] such that for T > Ty,
1 exp(—2A)

I [Nk

9.163
( ) 2mi 5 A— (ga,b,c,T

C
Si:g-

d,\] — h(a,b,c)

Using (9.161), (9.163) and Cauchy’s residue formula, we get (9.162).
In view of (3.15), (9.151), we see that G, p . T is obtained from A% by scaling

— the piece of degree 0 by ;1,-;
— the piece of degree 1 by c;

the piece of degree 2 is unscaled;

the piece of degree 3 by b;

|

the piece of degree 4 by b?.
Put

N H,Ny/x) HvNY/X)
(9.164) Yo e = exp {—a2cf°‘c(—fg—\/7——)} Ya.b,c, T €XP {ach“%——)} .

As in (7.49), the essential effect of this transformation is to replace in the expression
(9.151) for G e, the term [cVE,TV] = T faviﬂ,vv by T fav’j,,,wv.
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The proof of (9.163) proceeds otherwise exactly as in Sections 9.6-9.11. The fact
that % < Ja| £ 1 makes that all the considered quantities are well-defined. Then
the discussion of the previous Subsections can be exactly reproduced. In particular,
because of Theorem 9.1 and Proposition 9.2, in Theorem 9.15, we can replace A € A
by A € 6.

The previous scaling considerations show easily that as T — oo, Frk!/?
@a,b,c,Tk‘l/ ’Fn ! has a matrix structure similar to (9.132)-(9.134).

By the procedure indicated in Definition 9.24, we produce a second order elliptic
operator Zqp . acting on F' such that the obvious analogue of Theorem 9.26 holds.
Of course this operator does not has as simple an expression as the expression given
for Z in Theorem 9.25.

From these arguments, we obtain easily (9.163). The proof of our Theorem is
completed. O

9.14 Proof of Theorem 9.6
Clearly

(9.165) Bir=%i1ur-

From (9.161), we see that if N is one of the operators N, Nu,w""#, then

(9166) Tr |:N_1‘ 2("_ﬁd/\jl = Z Ol,m,n(T)u—e_m+n .

- — 5
2mi J5 A u,T 0<n<t<4dim S
0<m<4dim S

Clearly if u > ug, for 0 < n < ¢, 0 <m,
(9.167) utmtr < O

Using Theorem 9.30 and (9.166), (9.167), we find that for u > uo, T' > 1,

(9.168)

1 - c
'I‘I‘s |:N2—— ;e\z(%z)'dA:I - E Oz,m,n(OO)U_evm_Fn < Tg .
T Js A~ Bu,r 0<n<f<4dim S
0<m<4dim S

For a given u > 0, we can calculate the limit as T — +oo of Trg [N ﬁ /. 5 ix—_pBg:;—’\Tzd)\]
by the recipe already indicated in Section 9.12. We get '

) 1 exp(—A) 1 exp(—A)
. — | =/ _Ld\| =Trs |gNq— | ——=5d)\| .
(9.169)  lim Try [N 3 )y 3= By } [q 5mi Jy - B2
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From (9.168), (9.169), we see that

(9.170) > O¢ m,n(00)u™t"™+" = Tr, [qui / Md,\] .
o

27 — BpW:2
0<n<£<4dim S A Bu"’
0<m<4dim S

Ultimately from Theorem 8.8 and from (9.168), (9.170), we find that for u > wuo,
T>1,

1 exp(—A)
V —_— —_— —_—_—
Trs [(Nuz Net)5— /5 s Bgde’\]

w 1 exp(—A) C
—_ _ —_— < —
s lNuz 2mi /5 A— BZ‘;’z A= T8’

1 exp(—A)
Tre [Nﬂzm s A\— B2

Trs [i exp(=A) d/\]

27t Js X — BZ‘;’Z

(9.171)

dz\] - % dim Ny/X

C
Sﬁ‘

i.e., we obtain (9.16).

Take again N as before. By Theorem 9.30, the O¢,m »(T") are uniformly bounded.
Using (9.166), we see that for u > 1, T' > Ty,

1 exp(—A)
Tre [N omi /5 - BZ, d’\] D Onon(T)

0<n<4dim S

<=,

(9.172)

2]Q

On the other hand, by [3, Theorem 9.19], for a given T' > Tp,
(9.173)

) 1 exp(—A) _ 1 exp(—A)
T [N27Ti sA—Bir d/\] - [PTNPT 2mi /5 A= Vg A2 .l

Since the spectrum of V? (X812 i reduced to 0, we can rewrite (9.173) in the form

(9.174)  lim Tx, [Ni SPEN | = T, [PriVPr exp(~vEX 0]

u—r 400 27 S5 A— Bﬁ T

Using (9.172), (9.174), we get for u > ug, T > 1,

1 exp(—A) H(X,£1x),2 C
. I _ 7 — —_ ! < -,
(9.175) |Trs [N27ri /6 X BZ,T d)\} Trs [PTNPT exp(—V )] "
From (9.175), we get (9.17). The proof of Theorem 9.6 is completed. O
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9.15 Proof of Theorem 6.15

Let z be an odd Grassmann variable, which anticommutes with all the other odd
variables. Put

(9.176) A p=Aur+ 2Ny
Then C,, 7 is a superconnection, with A(T5.S) replaced by A(T5S)®A(R*). Moreover,

using Theorem 2.14, we get

b) d
07
(9.177) Auf,, =A2r+2 (ua—Au T~ ups ;,T> .

Also we can apply to the superconnection A2 1 the techniques we used in Chapters 7
and 8 when dealing with A, 7. In particular as in (7.35), put

H,Ny,x H,Ny,x
—-——c o
o A= ( (fﬁu )) fez e (f = V2u )) '
By Theorem 7.17 and by (9.178),
(9.179) ‘;{10‘ T = A’U,T + Z(N‘),{ + in(ei,fé{,W)c(ei)f
+ B S 59).

2u?
By Theorem 8.5 and by (9.179), as T — +o0,
(9.180) Frk'/2A3 pk~V2F: = TV*(y) + VT(DN¥/x + V4V (y)) + B
~ 1
v, 1 2 9Ny, x Y S 3
+ 28 + =0 (|Z| Nvix 1+1Z|8" +|2|0° + 12| + | 2| ) :

By Theorem 8.8, we find that

(9.181) Y~ 1p(B + 2NY )pyp = BY + 2(NYY + L dim Ny, x).

Finally by using Theorem 2.14 again, we get

ou ou

Now it is quite clear that the techniques used above also apply to the superconnection
Ag,T. In particular we find that given uo > 0, there exists C' > 0, § €]0, 3], such that
foru > ug, T > 1,

7 8 ’
(9.182) (BY +2(NY +1 dlmNy/X)) =B% + ( aBW —u—Bf},’).

(9.183) I'I‘rs [NH exp(—B2 1 — bz ( (;9 BY —u 5% BXz')]

. o p o / C
— %dlm Ny, x Trg [exp(—B::‘z”2 — bz (U%Buz - u—aBW )] < =
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By taking the components in (9.183) which are sums of forms of type (p,p + 1) or
(p+1,p), we get the first inequality in (6.79). The second inequality in (6.79) follows
from Theorem 8.8 and from the techniques of the preceding Subsections.

The proof of Theorem 6.15 is completed.

9.16 Proof of Theorem 6.16

Using (9.177) and proceeding as in Section 9.15, we find that there exists C > 0
such that for u > ug, T > 1,

(9.184) I'I‘I‘s [NH exp (—Bﬁ,T -z (U%B,‘fz" _ U%BX;))]

2
— Tr, [PTNHPT exp (_ (V;yx,ax) + 2Pr N PT) )] ] < %
Also
2
(9.185) (quf(xyﬁlx) + zPTfoPT) — (Vg(xyﬁlx)ﬂ _ zvg(xélw)PTN\),(PT) .

From (9.184), (9.185), we get the first inequality in (6.80). The second inequality in
(6.80) can be proved as before. a
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10. The asymptotics of the metric g:,I{ ¥omly) ag

T —+o00

Recall that g:,{I(X’HX) is the metric induced by ( , ) on H(X,§|x), and that g,_,If(Y’"IY)
is the metric on H(Y,n|y) associated to g;{ (X£1%) yia the canonical identification
H(X,€|x) ~ H(Y,nly).

The purpose of this Chapter is to prove Theorem 6.10, i.e. to calculate the
asymptotics as T' — +oo of g;{ (¥ml¥) and its derivatives over S. In the case where S
is reduced to a point, Theorem 6.10 was already established in [19, Theorem 10.9].
Here the main point is to show that the techniques of [19, Section 10] allow us to
control the derivatives of the metric.

This Chapter is organized as follows. In Section 10.1, we lift sections of ker DY to
sections of ker AS_,? ), In Section 10.2, we use the results of Section 10.1 to lift sections
of ker DY to fibrewise harmonic sections of E with respect to ( , ). Finally in
Section 10.3, we prove Theorem 6.10.

Here, we use the notation of Chapters 3, and 6-9.

We take g > 0 as in Chapter 7. As before we assume that V, W and S are compact.
Also we may and we will assume that S is connected.

10.1 The lift of sections of ker DY to sections of ker A\

Let Y = U'li Y, be the decomposition of ¥ into nonempty connected components.
Note that since S is connected, d is constant over S. However the labelling of the Y}
is only defined locally over S. By replacing S by a small compact neighborhood of
sg € S, we may as well assume that the decomposition ¥ = U‘li Y; is defined globally
over S. Let W = U‘f W; be the corresponding decomposition of W.

For 1 <j <d, set

(101) Bj,so/2 = {Z € NY]-/X,R'/ |Z| < 60/2} .

As in Section 7.3, we identify B; /2 to a tubular neighborhood U .,/2 of W; in V.
Since AU, is a tubular neighborhood of W in V, for j # j’, W; co /2 N Wjr o2 = 0.
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For 1 < j < d, let F; be the vector bundle over S of smooth sections of
A(T*OVY;) @ nyy, over Yj, let DYi be the restriction of DY to F;. Then

d

(10.2) F=F , D'=D%.
Also ker DY = @ ker DY4, and for 1 < j < d, ker DY >~ H(Yj, nyy,) is a smooth vector
bundle on S. Let Q be the orthogonal projection from F° on ker DY .
We establish the following extension of [19, Theorem 10.1].
Theorem 10.1 — For any k € N, for any smooth sections Ui,...,Ux of TRV, for

any smooth section o of ker DYi (1 < j < d), and for any q € N, there ezist C > 0
such that for T > 1,

=(0,1) y\& *(0,1) y\Big ~ C
(10.3) sup VgﬁT X)®e ...V‘z\,iT XS P Jro () < =.
zGV\“]Lj,EO/g Tq
For any k' € N, for any smooth sections Uy, ...,U;, of TRW, and any smooth section

o of ker DY, there is C > 0 such that

U,

“«(0,1)y13 “«(0.1)11S
(10.4) sup |V$§T UVI®n  GAMTTODY)Rn
yeW 1 k

(QTﬁT(T’im Nv/xaT)) 12 Jro — al (y) < % .

Proof. When S is a point, the case where Uy,...,Ux € TrX, U{,...,U;, € TRY was
already considered in the proof of [19, Theorem 10.1].
Les c2 be the positive constant constructed in Section 9.1. By definition

(10.5) Sp(DY)N{X € C,|A| < \/cz} C {0}.

Also by Theorem 9.1, for "> Tp > 1,

(10.6) Sp(A) N {Xx € C,|A| < V& } C {0}.

Let 6 be the circle in C of center 0 and radius ,/cz. Then for T > Tp,
~ 1 dX

Using (10.7), it is not difficult to extend the arguments of [19] to obtain uniformity
in s € S in the estimates of [19, Theorem 10.1], i.e. to get (10.3), (10.4) when
Uy,...,Ux € TaX, U},...,Ul, € TRY.

Take € > 0 as in Theorem 9.14. Let E°(X \ U, ) be the Hilbert bundle of sections
of A(T*(®V X) ® ¢ over X \ WU, . which are square-integrable. We equip E°(X \ U; )
with the Hermitian product induced by the Hermitian product of E°.
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We will show that if B is a smooth section of Tr.S, if o is a smooth section of
ker DYi,

Ep — —oo
(10.8) ”VBPTJTa poca,y = 0T )
By (10.7),
5 =1 _ A©y-1
(10.9) PrJro=— [ (A= Ay’) " JrodA.
2mi Js

To prove (10.8), we only need to show that uniformly in A € 4,

(10.10) “vg(,\ — AN o

=0(T—).
EO(X\Uj )

In [19, proof of Theorem 10.1], for A € 6, T > Tp, given m € N, an explicit
construction of s, (A, T') € E,t,,(A,T') € E is given so that

tm(AT) = (A = AD)s (A, T) = Jro,
(10.11) $Sm(AT)=0 on V\uU;,,
tmX Tl go = O(T~™/?).

By (10.11),
(10.12) A = AN 1Jro = s;m(A,T) — (A — A 1t (A, T).
From (10.11), it is clear that
(10.13) VAT XBE (A T) =0 on V\%U,.
So by (10.12), (10.13), we get on V' \ U; .
(10.14) VEO - AN "VJre = VE(A - AD) "1t (A, T).
Also
(10.15) VE - AD) 1t (\T) = (A — AD)-1 [vg,Ag‘,’)]
A=A (AT + (A= A IVEL (A, T) on V\ U, .

In [19, proof of Theorem 10.1], ¢,,(A\,T) is constructed by an explicit universal
algorithm, and is calculated in [19, eq. (10.19)]. It is then not difficult to obtain
the estimate

(10.16) [95tn(0 T 5o = 0@~ 072).
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Clearly, I[VE, A.(19 )] is a first order differential operator acting fibrewise. In particular
forT>1,s€EFE,

(10.17) I[75, 49) 5|, < C sl +Tllsllzo) -

Also by [19, eq. (10.34)],if T > Tp, A€ 4, s€ E,

(10.18) ||(,\ - Ag9>)—13||E1 < OTYV2 ||s|| go -

By (10.15)-(10.18), we find that

(10.19) “vg(,\ — A1t (A, T)”Eo <52,
Using (10.14), (10.19), we obtain

Ery _ A(0)y—1 < =(m=2)
(10.20) “VB(A AD) JTal pox, o SCTTE

Since m is arbitrary, we get (10.10). So we have established (10.8).
More generally, by an obvious recursion argument, using (10.11), we find that given
k € N, if By,..., By are smooth sections of Tr.S,

(10.21) “vgl .. ngﬁpJTUI

= 0(T~).
EO(X\Uj,e)

As in [19, Theorem 10.1], we will convert (10.21) into pointwise estimates. First by
[19, eq. (10.37)], given p € N, there is C, > 0 such that if s € E,

(10.22) lsll g < CT?(| AP, + sl o).
Clearly
(10.23) AQ Priro =o.

Using (10.21) with £ = 0, (10.22), (10.23) and a trivial truncation argument, we find

easily that on V\Ouj casly for p € N, the EP norm of PrJro is 0(T~°°). By Sobolev
ety

embedding, on V\Ouj casly
S
is a result already established in [19, proof of Theorem 10.1].
By (10.23), if B is a smooth section of TrS, then

PrJro and its fibrewise derivatives are O (T—°°), which

(10.24) VEAD Priro =0,
and so,
(10.25) [vg, Ag9>] Priro + AQVEPriro = 0.
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Now [Vg,Ag? )] is a fibrewise first order differential operator. Using (10.21) with

k =1, (10.22), and also the previous estimates on the fibrewise derivatives of PrJro,
we find that on X \°uj caslply VEPrJrs and its fibrewise derivatives are O(7'~°°).
' 2+1%

By using (10.21) and by differentiating (10.25) again, we ultimately see that given
k € N, if By, ..., By are smooth sections of Tr.S, Vgl - ng ﬁTJTo and its fibrewise
derivatives are 6(7~°) on X \ WU . Finally recall formula (2.24) for VE. Since
2¢ < €9/2, from the previous estimates, (10.3) follows trivially.

Now we will establish (10.4). Let oz, ; be the restriction of ar to Y;. Put

. 1/2
S;n()\, T) = (2d1m NYJ' /X aT,j) Sm()\, T) )
(10.26) . 12
t;n(Aa T) = (2d1m NYj/xaT,j) tm()‘a T) .

By [19, eq. (10.25)], s/,,(A, T') has an explicit expression given by

m—+1

(10.27) SmONT) =kV2pFp! 3 fa(NT T2,
n=0

and moreover by [19, eq. (10.22)],

(10.28) folN) = ‘bT"

From (10.27), (10.28), we get

1 m+1
(10.29)  o— /5 s\ T)dA = k™2 pFp ! (¢a+ > /5 Fa(A)dA T-n/z) .
n=1

Sinceon W, k=1,p=1,

m+1

(10.30) Qr [%As;(A,T)dA] =0+ ; Qr/éfn()\)d)\ T-"/2

As explained before, the construction of the f,,())’s is given by an explicit algorithm.
In particular, one sees easily that they depend smoothly on s € S. By (10.30), we
find that for k € N, if By,..., By are taken as before,

1
VE, ---VE, (Qr% /6 s (A T)dA —a)

and its fibrewise derivatives of any order are 0 (%)

In view of (10.9), (10.12), (10.30), to prove (10.4), we only need to establish a
similar uniform estimate for r(\ — A(T(.)))“lt;n (A, T). By (10.11),

(10.31) . (ANT) = (A= AD)sl (A, T) — Jp (4™ Nirx ar)/2g
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Again, as explained before, t/ (), T) is given by an explicit algorithm. By proceeding
as in [19, eq. (10.32)], we find that given p > 0,
(10.32) |VE, ... VE t (A T)|| g, < CT/2@Hk=dimNyy/x=m)

By [19, eq. (10.38)], for T > Tp, A € 6
(10.33) “(A - A§,9))-ls||m < OT” |13l go -
From (10.32) with £ = 0 and from (10.33), we obtain

0)\— —dim Ny x —m—

(10.34) ||(,\ — AD) 1t;n(,\,T)”Ep < CTPHV/2p—dim Ny, x—m—1)

By taking p > 2dim X and using fibrewise Sobolev embedding, we deduce that given
g € N, for m € N large enough, (A— A,(19 ))‘lt;n(/\, T) and its fibre derivatives of order
<gqare0 (71?) In particular

_ c
(10.35) r(A— A (A, T)| < ok

Since Q is fibrewise regularizing, from (10.35), we see that Qr(\ — Ag? ) )L (AT
and its fibre derivatives are O(%)
Clearly

10.36) VEOA— A1 (A, T)= (- AD) ! |VE, 4D
B T m T T
A= AU, (A T) + (A — AR)IVEL (A T).

By (10.32), (10.33),
1 .
(10.37) ”()\ _ Ag_,?)‘lVEtin(A, T)”E < CTP+§(P—dlmNYj/x—m) .
P

Since [Vg,Af}) )] is a fibrewise first order differential operator, by (10.32), (10.33),
we get

(10.38) ||(,\ — AD)-1 [vg,A<T">] (A — Ag?)—lt;n(A,T)”Ep

< CT2p+1+%(p~l—dim Ny, /x—m)
So using (10.36)-(10.38), we find that

1 .
(10.39) ||V5(A—A§?)_ltin()\,T)||EP < OT2Pt1/2+5(p—dim Ny, x —m)
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By proceeding as before, we deduce that given ¢ € N, for m large enough,
VEO - Ag))‘ltﬁn(/\,T) and its fibre derivatives of order < ¢ are O(#) Recall
that after (10.34), we found that for m € N large enough, the fibre derivatives of
(A= ALYt/ (A, T) are also 0‘(717) We thus find that on W,

Fooy _ A@y—1y <
(10.40) |VBT(A AP ML OT)| <

Since @ and [VS, Q] are fibrewise regularizing, we deduce from (10.40) that
VEQr(A — A§9))‘1t;n()\, T) and its fibre derivatives are @(%)

By combining the previous estimates and a simple iteration argument, we get
(10.4). The proof of our Theorem is completed. (]

10.2 The lift of sections of ker DY to harmonic forms in E for the metric

<’>T

Recall that by (6.12),
(10.41) Ppr =TNap7~Nu

Definition 10.2. For T > 0, let Bt be the linear map
|12*
(10.42) o€ F — Bro(y,Z) =k~ Y2(y, Z)p(Z) exp{ TO — T—2—— o(y) e E.

Observe that
(10.43) Bro = TN (24mNy/xq )2 g1

Also recall that VH#X11¥) js a connection on H(Y,ny) =~ ker DY
Now we extend [19, Theorem 10.3].

Theorem 10.3 — For T > 0 let Cr be the linear map
(10.44) o € ker(DY) — Cro = QrPrBro € ker(DY).
For any k € N, if By,...,Bx are smooth sections of TrS, there exists C > 0 such
that for T > 1,
H(Y,ny) H(Y,myv) 9
(10.45) “VBI VR (o - 1)” <7
If k,By,...,Bg are taken as before, given q € N, there exists C; > 0 such that if
1<j<d,ifT>1, and if o € ker(DY7), then

H(Y,ny) H(Y,my) ‘ < &
(10.46) sup |(v31 Vg ™er) a(y)| < g lollpo -
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There exists To > 1 such that for T > Ty, Cr is invertible and Cr b ois uniformly
bounded. Then forT > Ty, s € K,
(10.47) Prs = PrBrC;'Qrs.

If k,By,...,By are taken as before, if ¢ € N, there exists Cq > 0 for T > T, if
o € ker(DY7),

H(Y, Y, C,
(10.48) sup ’(VB,( Kies VB( 7"Y)C'T )a‘(y)' < T—Z lloll Fo -
yEW\W;

Proof. By (10.41), (10.43),
(10.49) Cro = Qrf’T(2di“‘ NY/XC!T)I/ZJTO'.

So (10.45) follows from (10.4). Equation (10.46) follows from (10.3).

By (10.45), for T' > 1 large enough, Cr is invertible, and C’;l is uniformly bounded
together with its derivatives. Then equation (10.47) was established in [19, Theorem
10.3].

d
Recall that ker DY = @ker DYi. Let Dy, Er be the diagonal and non diagonal

Jj=1
parts of Ct with respect to this splitting. Using (10.46), we find that

(10.50) [vaT ™) I Br || = 6(T).

Also by (10.45), for T' > 1 large enough, D is invertible and moreover
(10.51) C;' = D;'(1+ ErD;Y) 1.

By (10.50), (10.51), we see that if E}. is the non diagonal part of C', then

(10.52) HVH(Y”"Y’ V) gy

| =o(@—).

Since the norms of finite dimensional bundles are equivalent, from (10.52), we get
(10.48).The proof of our Theorem is completed. ]

Recall that by Theorem 3.3 and by (6.23),

d
(10.53) H*(E, " +v) =~ @ H*(,my,).
1

Definition 10.4. For 1 < j < d, let H;} (E,EX +v) be the subbundle of H*(E,gx +v)
corresponding to H*(Yj,nyy,) via the canonical isomorphism (10.53).
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Definition 10.5. For 1 < j < d, let K(j) be the subbundle of K corresponding to
H;(E ,5X + v) via the canonical isomorphism K ~ H*(FE, %+ v).

For s € E, 1< j <d, let r;s € F; be the restriction of rs to Y;. For 1 < j < d, let
Q; be the orthogonal projection operator from F? on K} = ker(DY?).

First we recall the result of [19, Proposition 10.6].
Proposition 10.6 — For 1 < j < d, the following identity holds

(10.54) K()={s€K , Qyrys=0  forj' #j}.

Now we establish the obvious extension of [19, Theorem 10.7].

Theorem 10.7 — Letk € N, let Uy,...,Ux be smooth sections of TRV . If 1 < j < d,
if s is a smooth section of K(j), if ¢ € N, there exists Cq > 0 such that for T > 1,

AT X)® AT*ODX)® C.
(10.55) eWS\l"lup VUE ) E...Vui )¢ prs| (z) < T%'
i j,€0/2

Proof. By Theorem 10.3, for T' > 1 large enough, if s € K(j),
(10.56) Prs = PrBrCr'Qrs.

By Proposition 10.6, Qrs vanishes except on W;. Therefore by (10.41)-(10.43),
(10.56), for T' > 1 large enough,

d ~ . 1/
(10,57) Prs = Z TNHPT (2d1m Nyj, /xaT,j’)

i'=1

2
JTQJ‘/ CEIQ]'T]'S .

Clearly Q; depends smoothly on s € S. By Theorem 10.3, for T' > 1 large enough,
Cr ! is bounded together with its derivatives. By using Theorem 10.1, we find that
in the right-hand side of (10.57), the term corresponding to j' = j verifies the bound
(10.55).

By Theorem 10.3, if we fix j' # j, Q;+Cr lerjs and its derivatives of arbitrary
order with respect to VZ(¥mv) are 6(T~°). By Theorem 10.1, ﬁTJTQj:Cq‘ZIerjs
and its derivatives are G(T"*°) on V \ AU; .,/o. However this argument excludes
WUj co/2 itself. Still, we can reproduce the proof of Theorem 10.1, with j = 7,
and ¢ = Q;C;'Q;r;s. Then t/,(\,T) is estimated exactly as in the proof of
Theorem 10.1. Here, since o and its derivatives are O(7'~°°), it is trivial to verify
that s/,(\,T') and its derivatives are also O(T'~*°). This way, we find that for j/ # j,

o . 1/2
TNH Pr (2dlm NYJ"/XOAT,J") JrQ;Cr'Q;ris and its derivatives are O(T~°) on W.

The proof of our Theorem is completed. O
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10.3 Proof of Theorem 6.10
By definition, if s, s’ are smooth sections of K(j) and K(j') respectively, then

(PTS, PTS’)T (:L') = <T—NHPTS, T_NHPT8,> (.’l?)
(10.58) = <ﬁTT_N"s, T_NHPTS,> (z)

= <T'N“PT3, ﬁTT_N“s’> (z).
Also if ||13T” is the norm of IST with respect to ( , ),

(10.59) “ﬁT” <1.

Using Theorem 10.7 and (10.58), (10.59), we recover the result of [19, Theorem 10.9]
that if j # j’

(10.60) (Prs, Prs')p = O(T~%).
Also if B € TrSS, by (10.7),
(10.61) VEPr =5 / (A — AW)-1 [V A‘T")] (A= AD)~1dx,

By (10.17), (10.18), (10.59), (10.61), we get

(10.62) ”VEISTII <CT.

By (10.58),

BHV (Prs, Prs') ;. (z) = <vg(ﬁTT-Nﬂs),T—NHPTs'> (z)
+ <13TT"N"3, vg(T-NHPTs')> (z)

(10.63) -

= (vg(T—NHPTs), PTT"N“s’> (z)

+ <T‘N"PTs, vg(ﬁTT—NHs')> (z).

Using (10.59), (10.61)-(10.63) and Theorem 10.7, we find that if j # j’,

(10.64) Ve {(Prs,Prs')y = 0(T~>).

More generally, if j#j', if By, ..., Bx are smooth sections of Tr S, the same argument
as in (10.63) shows that

(10.65) Vs, ... ka <PTS, PTS,)T = @(T—-oo) .

ASTERISQUE



PROOF OF THEOREM 6.10 175

Take now s € K(j). Then by Theorem 10.3, for T > 1 large enough,
(10.66) (Prs, Prs)p = <PTBTC:,TIQrs,BTC;1Qrs>T .

Equivalently by (10.41)-(10.43), (10.65),

~ 2
(10.67) (Prs, Prs)y = ”PTT“N“BTC;lQrs| o

Take o € K(j). We define s,,(A, T), t,,(A, T), which are associated to o as in (10.26).
We will estimate

2

1

(10.68) ||1~>TT—NHBTU| oPT

2

/6 [s:n()\, T) — (A — AD)~1¢ (), T)] dA

Using (10.34), (10.39) and more generally the extension of (10.39) to arbitrary k € N
(where k counts the number of derivatives VE ,..., V5, ), we find that for k£ € N,

q € N, for m large enough, (A — Ag’ ) )~/ (A, T) and its derivatives on V of order
< k are O(T'~9). Using (10.29), one finds easily that a for given ¢ € N, for m large

enough, </ sh (A, T)dA, /(/\ - Ag,f)))“lt:n()\, T)d/\> and its derivatives of order < k
5 5
on S are O(T9). Finally, by (10.29)

_ 1 dvy; (y)
EO - Tdim Nyj /X Y (27T)d1m Y
m+1

1 —n/
Yo + ; 5 /‘s fa(N)dX T—™/2

2

1 /
(10.69) “% /{s sl (A, T)dA

VA
2—.—
/Nyj/xmﬁ)

From the previous considerations, one deduces that for any ¥k € N, T
|55 J5 SN, T)dA| %0 — ”‘7”%0 and its derivatives on S of order < k are @(‘/—17:)

d'UNyj/x (Z)

2
(v, Z)_—(zw)d‘m ol

. ~ 2
Therefore as T — oo, T4m Ny, /x ”PTT_NHBTU”EO — [IUH%O and its derivatives on
S are 0(717)

Using Theorem 10.3 and (10.67), we see that if s € K (5), 7™ ¥i/* (Prs, Prs) —
(Qrs, Qrs) po and is derivatives on S are O (ﬁ)

The proof of Theorem 6.10 is completed. ad
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11. The analysis of the two parameter
semi-group exp(—A;, ;) in the range u €]0, 1],
T €0,

The purpose of this Chapter is to prove Theorems 6.7 and 6.17. The main point of
Theorem 6.7 is to show the existence of C > 0, v €]0, 1] such that for u €]0,1],
0 <T < 1/u, then

® Trs [N exp(—A2 1)] — /X Td(TX, g7*)® Trs [Nu exp(—C3-)]
< C(u(1+T))".

This Chapter is the obvious extension of [19, Section 11}, where Theorem 6.7 was
established when S is a point.

To establish this result, the main idea is to replace A, T by Zu T, and to apply to
A2 7 the functional analytic machinary of [19, Section 11]. Of course, the local index
techmques used in [19] in the case of a single fibre, are now replaced by relative local
index techniques. We follow the approach by Berline-Getzler-Vergne [3] to the proof of
the relative local index theorem of [4]. This permits us to apply to the present problem
the techniques of [19, Section 11], to which the reader is referred when necessary.

This Chapter is organized as follows. In Section 11.1, we prove (6.20), which is the
easy part of Theorem 6.7. In Section 11.2, we show that the proof of Theorem 6.7 is
local on the fibres X . In Sections 11.3 and 11.4, we construct a coordinate system near
W and a trivialization of mj, A(Tg S) SAT*OVX)®¢. In Section 11.5, we mtroduce
the conjugate superconnection B , and we calculate the Taylor expansion of B
u — 0 in the given trivialization. In Section 11.6, we reduce the proof of Theorem 6.7
to an equivalent problem on (TrX)y, (yo € W). In Section 11.7, and following (3],
we make a Getzler rescaling on the operator Zﬁ 1, and in Section 11.8, we describe

certain key algebraic features of the new rescaled operator Ly;Z;/ T In Section 11.9,
we introduce graded Sobolev with weights. In Section 11.10, we show briefly how the

results of the previous Subsections permit us to reduce the proof of Theorem 6.7 to
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the problem already considered in [19, Section 11]. Finally in Section 11.11, we show
how to prove Theorem 6.17 along the same lines as Theorem 6.7.
Here, we use the notation of Chapters 3 and 6-9.

11.1 The limit as u —0 of ® Tr, [Ny exp(—AZ 1)]

For u >0, T > 0, let P, r(x,2') (z,2’ € X) be the smooth kernel of exp(—A2 ;)
with respect to é%},%.

Ifa e A(TﬁV), if Uy,...,Uz2dimx € TrX, then iy, ...iy, .. x@ € A(TﬁS) Let
o™ € A(TRS) be such that
max

(11.1) iUl "'iU2dimXa = (iUl "'iUZdidevx)a

In particular, if o is a smooth section of A(Tg V'), the integral along the fibre / ais

b's
given by
(11.2) / o= / oM dyx .
X x
Proposition 11.1 — Let Ty € [0, +00[. There exists C > 0 such that for any u €]0, 1],

T € [0,To], then

(11.3) ® Trs [Nu exp(—A2 7)] - / Td(T X, g7*)® Trs [Nu exp(—C%2)]| < Cu,

. X

|® Tr; [Ny exp(—A2 7)] — @ Tr; [Nuexp(—A2,)]| < CT.

Proof. By using the local families index theorem of [4] as in [14, Theorem 2.16], one
finds easily that for any T >0, x € V, as u — 0,

(11.4) & Tr, [NaPur(z, )] (—;’7‘:—;‘%
{Td(TX,g"*)® Trs [Nuexp(—C22)] }o .

Take Tp > 0. The arguments in [4] show that there exists C > 0 such that for u €]0, 1],
T e[0,To), z €V,

(11.5)  |® Trs [NuPu,r(z, )] é%ﬂ%)y—

{Td(T X, g7)® T, [Nz exp(~C32)] } ™| < Cu.

Finally

(11.6) ® Trs [Nuexp(—A2 )] = /X<I"I‘rs [NuPy,r(z,x)) (;1:;{%.
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The first inequality in (11.3) follows from (11.5), (11.6).
Also

(11.7) % Trs [N exp(—A7 )] =

7]
% {Trs [NH exp(—AiT —-b [Au,T, V])] }b=0 .

The arguments of [4], [14] show that for T' < Ty, as u — 0, the right-hand side of
(11.7) remains uniformly bounded. Thus we get the second inequality in (11.3). O

11.2 Localization of the problem

Let a* (resp. a¥) be the inf of the injectivity radius of the fibres X (resp. V). We
take o > 0 as in Section 7.3. Let € € R be such that 0 < ¢ < % inf(a*,a", ). If
z € V, let BX(z,a) be the open ball of center z and radius a.

Let f be a smooth even function defined on R with values in [0, 1], such that

f(t) =1for |t| < /2,

(11.8) 0 for [t| > a.
Set
(11.9) ot) =1- £(2).
Definition 11.2. For u €]0,1], a € C, set
+o00 42

Fu@) = [ explitav®) exp(=)fut) =
(11.10) o i

Gu(a) = /_ exp(ita\/i) exp(Tt)g(ut)de_%r—.
Clearly
(11.11) F,(a) + Gy(a) = exp(—a?).

The functions F,(a),Gy(a) are even holomorphic functions. Therefore the exist
holomorphic functions F,(a), Gy (a) such that

Fu(a) = Fy(a?)

11.12 ~
(112 Gu(a) = Gu(a?).

From (11.11), (11.12), we get

(11.13) Fyu(a) + Gyu(a) = exp(—a).
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The restrictions of F,,G, to R lie in S(R). Therefore the restrictions of F,, G, to
R also lie in S(R).
From (11.13), we deduce that

(11.14) eXP(—Ai,T) = ﬁu(AiT) + éu(AiT)
Theorem 11.3 — There exist ¢ > 0, C > 0 such that for u €]0,1], T > 0, then
(11.15) "I‘rs [Nnéu(AiT)] ‘ < cexp (;—S) .
Proof. Set
(11.16) Hu(a) = / " exp(itv/3a) exp(—)g(t) S
oo 2u? uV2m
Then
(11.17) Gu(a) = Hu(%).

By [19, eq. (13.23)], we find that for any ¢ € R4, m € N, there exist ¢,, > 0, C;,, >0
such that

m "‘Cm
(11.18) sup |a|™ |Hy(a)| < em exp( 5 ) .
acC u
[Im(a)|<c

Again there is a holomorphic function H,(a) such that
(11.19) H,(a) = Hy(a?)

and so by (11.17), (11.19)

~ ~ ra
(11.20) Gu(a) = H, (ﬁ) .
Let A’ be the contour in C
A
, < A
i
.
-1 0
Y
N
- 7
—1
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From (11.18), we deduce that
m| s -C
(11.21) sup |a| IHu(a)l <cexp|—3 ) -
aep’ u
Let I:.iu,p(a) be a holomorphic function such that

(11-22) ﬁi(‘p—l)(a)

Gonr = Hup(a).

{ lim, I-Iu,p(a) =0,

By (11.18), we see that for any m € N,

~ -C
Hu,p(a)| < cexp (F) .

By Proposition 9.3 and by (11.20),

(11.23) sup |a|™
acp’

(11.24) Tr, [Nnéu(Ai,T)] = tu Trs [NHFIu(A%/u)] :
Also
(11.25) Trs [NHH (AT/u)] Trs [NHH (AT/u)] :
Clearly
H, _H.(Y)
H (AT/u) - /
2mi A — A%,/u
Equivalently
- 1 H, »(\
(11.26) H,(A%,,) = —————”’() dX

2mi ar (A — A/)p

Using (11.21), (11.26) and proceeding as in Chapter 9, we find easily that for v €]0, 1],
T2>1,

(11.27) |'I‘rS [Nnﬁu(g%/u)]l < cexp (—;—Z,C—) .

Using (11.24)-(11.27), we get (11.15). The proof of our Theorem is completed. [
By (11.10), we see that

- +oo
(11.28) Fu (A2 1) = / cos(ty/2A2 )exp( )f(ut) T

—O0Q
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Also Aﬁ,T is a second order elliptic operator whose principal symbol is given by UZJ%E.
Let Fy,(A2 7)(x,2') (z,2’ € X) be the smooth kernel of F, (A2 ;) with respect to

-(g—”ﬂ’%gi-’,%'% . Then

(11.29) Trs [NuFur(427)] = /X To. [NuFo (42 1), dvx (x)

Using finite propagation speed [21], [35] and (11.28), we see that if z € V,
l‘;‘vu(Aﬁ’T)(:z;, z’) vanishes for 2’ ¢ BX(z,a) and only depends on the restriction of
A2 1 to BX(z, ).

By Theorem 11.3, we find that the proof of (6.19) has been reduced to a local
problem on a given fibre X. A probabilistic proof of this fact can also be given along
the lines of [19, Proposition 11.10]. However the argument is slightly more complicate
than in [19], because the Lichnerowicz formula in (7.47) is more involved than the
formula for one given fibre used in [19).

11.3 A rescaling of the normal coordinate Z,
Definition 11.4. For T > 0, let Br(x) be the smooth section of 7*A(T§S) such that

(11.30) Br(z)dvx (z) = {Td(T X, g7*)® Tr, [Nu exp(—C32)] } 7

.
The key result of this Chapter is the following extension of [19, Theorem 11.13].

Theorem 11.5 — There exist y €)0, 1] such that for any p € N, there is Cp > 0 such
that qu e]O$ 1]; Te []-v 1_1,,']: Yo € W; ZO € NY/X,R,yo; |Z0I < 2221_,

® T [Nﬂf'u(Aﬁ,T) ((yo, %) ’ (yo, %‘9)>] ~hr (yo, %)

< Cp(1+120))P(u(1+ 1))

1

(1131)  —gmwyx

Remark 11.6 . From Theorem 11.5, one derives (6.19) in the same way as in [19,
Remark 11.14] using [19, Theorem 11.13]. In particular one has to apply Theorem 11.5
in the case where Y = (. Using also Proposition 11.1, we have thus proved
Theorem 6.7.

11.4 Alocal coordinate system near W and a trivialization of 7}, A (T%.S)
BA(TOVX) ® ¢
Let V™VATRS)BMT @VX) pe the connection on ml A(TS) & A(T*©DX) along
the fibres X, which is induced by VATV X),
Let €3, ..., ez be an orthonormal basis of Tr X. Let f1,..., for, be a basis of Tr .S,
let f1,..., f™ be the corresponding dual basis of T S.
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Definition 11.7. Let 1V ™vATASBAT*VX) pe the connection on i} A(THS)
SA(T*®1 X) along the fibres X given by

(11.32) 1V ATRSBAT OV X) _ gy ATRS)BAT OV X)
+ -;- (Svei, faH’V> V2c(e)) f* + % <Svff’v,f:’v> Fo8
Let 2V ATaS)BAT Y X) po the connection on w5 A(T3S) & A(T*(O,I)X) along
the fibres X
(11_33) ZVWI/A(TRS)éA(T*(Ov”X) _ e_f-y\%(ffwwx)

H,N
Ly ATRS)BAT OV X) 7 55 (fy )

Recall that by the results of [4] stated after (1.5),
v ¢H.Ny;x HNy,;x\ _
(11.34) <s fatvex g ”>_o.
By (7.40), (7.43), (11.34), we get
(11.35) 2Vw§‘,A(TﬁS)®A(T*<°’1)X) _ VW*VA(TQS)@A(T*WMX)
+ % (<Svei7fc{{’v> - <VETXf§IYNY/X’ei>) \/§C(6i)fa
H,N H,N o
+%(<Svffyw,f;1,w>—<fa Y/X’VTXfﬂ Y/x>)f fﬁ
From (11.35), it is clear that if A, B are smooth sections of Tr X, then
2G Ty MTRS)BAT OV X AB) _

v
AaB) 4 (87 (). 2V - (VRN FEN5, BY) 5.

Let c!(TrX) =~ TmrX be the set of elements of length 1 in ¢(TrX). It fol-
lows from (11.36) that parallel transport along the fibres X with respect to
2y ATRS)IBAT OV X) maps ¢! (TrX) into ¢! (TrX) & TS, while leaving A(T3S)
invariant.

Let PTX be the projection operator TV ~THV ¢ TX — TX.

Proposition 11.8 — The following identity holds

(11.36)

(11.37) 1WWATROBATTOVX).2 _ 1 ((gTX)2¢, o) c(e;)c(e;)
+ %’I‘r [(VTX)Z] + % <(SVPTXSV + VTXSV)f:I,V, glv>
fafﬁ + % (VTXSvei, ;{,V) \/§C(Gi)fa .
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Also 2V™VATRSBATOVX)2 45 obtained from the expression (11.87) for
1y ATRS)BAT OV X),2 by replacing c(e;) by c(e;) + \/§<ff’Ny/x, €i> fe.

Proof. If A € End(TX), the action of A on A(T*(®1X) is given by

(11.38) i (Aei, e;) c(ei)c(e;) + 3 Tr[A].

So we find that
«(0,1)
(11.39) vATTREX)2 2 ((VT*)2ei, e5) cles)c(ej) + T [(VT¥)?] .
Using the identity
[ees) £, cle;) fP] = 26 £ 7,
(11.37) follows easily. Using (7.40) and (11.33), one obtains the corresponding formula
for (ZVw{,A(TﬁS)@A(T*(O'”X))2' |
Recall that for u > 0, 1, : A(T{S) — A(TgS) was defined in (9.9).

Definition 11.9. For u > 0, let 2V™VATRS)BAT ®VX)u he the connection on
73 A(T3S) ® A(T*(®V X) along the fibres X,

(11.40) 2V1r*vA(TﬁS)®A(T'(°'1)X),u _ ¢u2VwQA(TﬁS)®A(T*(°’1)X)¢;—1 .

In the sequel, we will use trivializations with respect to the connection
2y ATRS)BAT @V X)u_ It will be often more convenient to trivialize with respect
to 2V";A(Tﬁs)®A(T'(o’l)X), and to apply afterwards the operator v,,.

Take yo € W. If Z € (TrRX)y,, t € R — x; = expj (tZ) € Xgyy, is the
geodesic along the fibre X, such that zo = z, %|,—o = Z. If |Z| < ¢, we identify
Z € (TrX)y, to expy (Z) € Xnyy,- Let BLX(0,a) be the open ball in (TrX),, of
center 0 and of radius . The ball BX¥ (0, ) is then identified to B (yo, a).

Let durx (Z) be the volume element in (Tr X ),,. Let k'(Z) be the positive smooth
function on BIX(0,¢) such that

(11.41) de(Z) = k’(Z)d’vTx(Z).

Then k'(0) = 1.

We fix Zo € Ny/x R,yo» |Z0| < a/2. Take Z € Ny;x Ryo» |Z| < /2. The curve
t €[0,1] — Zo + tZ lies in BTX(0,). We identify (7} A(T%S) ® A(T*OV X))z to
(my A(TES) ® A(T*OV X)) 2, (1€5P. £z to £z,) by parallel transport with respect to
the connection 2V ™VATRSBAT OV X) (regp. V¢) along t € [0,1] — Zo + tZ.

When Zy € Ny,x R0, 20| < a/2 is allowed to vary, we identify (n}A(TgS)
Q?)A(T"(O’l)X))Z0 (resp. £z,) to (L A(TS) ® A(T"‘(O’l)X))y0 (resp. &y,) by parallel
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transport with respect to VVATRSIBAT OVX) (regp. VE) along t € [0,1] — tZo.
Therefore the fibres of 73 A(T5S) ® A(T*(®VX) at Zo + Z and yo are identified by
parallel transport along the broken curvet € [0,1] — 2tZ,,0 <t < 1/2, Zo+(2t—-1)Z,
1<t<1
F<t<L

11.5 The Taylor expansion of the operator EX;:Z’

Definition 11.10. For u > 0, set

(11.42) Bl =exp { 5 —(fa' ””")} BY, exp { f —(fa" ”"/")}
Then

(11.43) A,r =Bl +TV.

Also by Proposition 9.3,

(11.44) BY, = uip BY ¢3!

In the sequel, BX,z, A2 . are considered as differential operators acting on smooth

sections of (13, A(T3S) ® (T"(0 1 X) ®¢€)z, which depend smoothly on Z € (TrX)y,,
|1Z| < a/2.

IfU € (TrX)y,, let Vy be the standard differentiation operator acting on smooth
functions on (TrX),,. Let e1,...,e2 be an orthonormal basis of (TrX)z,. For
1<i<24 et TeiZ"(Z ) be the parallel transport of e; with respect to V7X along the
curve t € [0,1] — Zo + tZ.

Let Op be the set of scalar differential operators on BZ:)X (0,/2). It is clear that,
in the considered trivializations,

AZ 1, Bj3? € (miy A(TRS) ® c(TrX) ® End(€))y, ® Op.
For p € N, ¢ € N, 0,(]Z|?) will denote an expression in (7}, A(TS) ® c(TrX)
® End(£)),,, which has the following two properties:

— For k € N, k < p, its derivatives of order k are @(lle_k) as |[Z| — 0.

— It is of total length < g with respect to the obvious Z-grading of (my, A(TgS)
®c(TrX) ® End(£))y,-
Theorem 11.11 — Take yo € W, Zo € Ny /x R,yo, |Z0| < /2. Then in the given
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trivialization of n3, A(T3S) ® c(TrX) ® £ near (yo, Zo),

2 2¢
B u 7% A(TE S)BA(T* D)
(11.45) BY? = — 5 Yu E : (Veiw(lzn +1 (zv VAT S)BA(T* O x))
1

2

Zo
2 2 1 2 u?

(Z,e:) +02(]2] )+@0(1)) it +u?00(1) + clei)e(e)

u2

V2

(RE,(FEW, £57) + 00(121)) +u*Voo(z) + w2021 21 )"

(R§0 (e:,€;) + @o(lZl)) + c(ei)L:— (Rgo (es, FEW) + 0‘0(|Z|)) + L1fagh

* * P> * 2
Proof. By Proposition 11.8, (ZV"VA(TRS)‘X’A(T (o’l)x)) is a 2-form on X with val-

ues in elements of length < 2 in 7}, A(T%.S) ® ¢(Tr X). Let 2DV ATRS)BAMT*V X),Zo
be the connection form for 2V™VATRS)IBAT @V X) pear Zo in the trivialization of
5 A(TES) & A(T*OD X) with respect to 2V ™VATRSIBAT ®VX) By the consider-
ations we made after (11.36), we find easily that 2pm ATRS)BAMT OV X) g 5 1-form
with values in elements of length < 2 in (7}, A(T%S) ® ¢(Tr X))z, Using [1, Propo-
sition 3.7], we see that

(11.46) 2I\7r{,A(T§S)®A(T‘(°’1)X),Zo(Z)
=3 (ZV"'vMTﬁS)@A(T"“'”X))Z (2,) +0:(2%).
0
Now we use formula (7.47) for E:f = ;47,2‘,0 and also (11.46), and we obtain
(11.45). O
Let ﬁu(ﬁiT)(a:, '), (x,z’ € X) be the smooth kernel associated to F, (KiT) with
respect to (;Tv)’fi%)y. Clearly

(11.47) Tr [Nnﬁu(Aﬁ,T)(x,m)] = Tr, [Nufu(Zﬁ,T)(x,x)] .

So in Theorem 11.5, we may as well replace A?L’T by .Z,%T

Take yo € W. For Zy € Ny;x R,yo, |Z0| < €/2, it will be very useful to identify
(T A(T%S) ® A(T*OVX) ® £) z, to (m*A(T{S) ® A(T*ONX) ® €),, as indicated in
Section 11.4.

11.6 Replacing X by (Tg X),,

Definition 11.12. Let Hy, be the vector space of the smooth sections of (7}, A(T5S)®
A(T*(Oyl)X) ® €)yo over (TRX)yo-
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Let ATX be the ordinary flat Laplacian of Tr X. Then ATX acts naturally on Hy,.
Let v(a) be the smooth function of a € R considered in (7.29). If Z € Tr X, put

(11.48) p(Z) =~ (%) .

Then

p(Z)=1 if |Z]|< 20,

(11.49)
0 if |Z| > 4o.

We now fix Zg € Ny, x R,yos | 20| < /2. As indicated in Section 11.4, the trivialization
under consideration of 73 A(TxS) & A(T*OVX) ® ¢ depends explicitly on Z.
Therefore the action of DX also depends on Z.

Definition 11.138. For u > 0,T > 0, let Li Zo) M}»?° be the operators acting on Hy,

LLE = = p2(2) (o ATX + TP ) 4 ) R r(20+ 2).
(11.50) AT
Mb% = (1 - (2) 2 + (2B

Let F, (L1 Z°)(Z Z") (Z,Z' € (TmX)y,) be the smooth kernel associated to
F, (L1 Z°) with respect to k'(Zo )";’—:)’fr,%} By using finite propagation speed [21,
Section 7.8], [35, Section 4.4], we see that for any yo € W, Zg € Ny, x R,yo» | 20| < /2,

(11.51) Fu(A2 1) (40, Zo), (y0, Z0)) = Fu(LL%)(0,0).

In the next Subsections, we will show that there exist v €]0, 1], such that for any
p € N, there is C > 0 such that if u €]0,1], T € [1, ;1;], Yo € W, Zo € Ny,/x R,yo>
IZO| S %,

1

®Tn, [NaFu(ZL/7)(0,0)] = Br(uo, 520 <
C
@+ 1Zopr W)

which, by (11.51), is equivalent to (11.31), i.e. establishes Theorem 11.5.

11.7 Rescaling of the variable Z and of the Clifford variables
For u > 0, let F, be the linear map

(11.53) heHy, —» F,he Hy, ; F,h(Z) = h(%)-
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For u>0,T > 0, set

2,Z0 _ p—-171,2
LuT = F, Lu,T F.,

(11.54)
M2% = FriML%0F,

Then, we see that

(11.55) L2%, M2%0 € (ny A(T3S) ® c(TrX) & End(€))y, -

Let e1,...,e2 be an orthonormal oriented basis of (TRY )y,, let ez 41,..., €2
be an orthonormal oriented basis of Ny xR y,- Let €l,...,e2¢ and e2¢'+1, ... €%
d::note t?;e corresponding dual basis of (TgY)y, and Ny x g . . Then ey, ..., ez and

el, are orthonormal oriented basis of (TrX)y, and (T§X)y,-
Definition 11.14. For u > 0, T > 0, set

A
cur(es) = Lj—— - _“ﬁ, , l<j<of,
(11:56) V2eIN  uT
cur(ej) = —— — —=ie, , 20+1<j<2¢.

uT NG

Definition 11.15. For v > 0, T > 0, let L% M>Z € (n}A(TZS)

® End(A(T{ X ) ®€))y, ®Op be the operators obtained from Li’,:zr0 , M2:Z0 by replacing

the Clifford variables c(e;) by the operators c, r(e;) considered in Definition 11.14.
Let F, (L3 ZO)(Z Z') be the smooth kernel associated to the operator F, (L3 Z°)

calculated with respect to k' (Zo)%f)if,é%?- Then F, (L* Z°)(0 0) can be expanded in
the form

(11.57) Fur(L3%°)(0,0) = > e A€ Nigy, .. e,

1<iy <i2...<ip <2¢
1<j1<72...<jq <2¢

QJI Jq QJI Jq € (WWA(TRS) ®€)
Set

(1158) [Fur(@32)0,0)]" = Qu,...2e € (miy A(TAS) B End(ATHX) &)y

so that (11.58) is the coefficient of e! A... A e?¢ in (11.57).
Proposition 11.16 — The following identity holds,

1 ~ ~
TZdim Ny, x Trs [NHFu(Ai,T)((yo, Zo), (yo, Zo))] =

(—i)dim X Ty, [NH[ Fur(L22)(0, 0)] x] .

(11.59)
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Proof. Equation (11.59) follows from (11.51) and from [19, Proposition 11.2]. O

Let NVv/x be the number operator of A(Ny /x,r)- Then N Ny/x acts naturally on
ATRX)\w-
Put

éi=71€)(Zy), 1<i< 2.

Then é;,...,éz is an orthonormal basis of (TrX)z,.
By using Proposition 11.8 and Theorem 11.11, L3 can be extended by continuity
at u = 0. More precisely we have the formula

(11.60) L3Z = T'NNY/X{ Z‘(Ve,+4 Do (VT)%(Z,€)é5,¢5)

1<35,5'<2¢
(& + (fa"™7% 65) F) e + (157 &) £7)
+ % <(SVPTXSV +VTXSV)Z0(Z’éi)fé{,V, é{,v>fafﬁ

2
<VTXSV)ZO(Z ) SV Y+ (1 e5) £9)17)
lele! RS (ez,eJ)+2f“fﬁR (FEW, £50W)
+ezf,6R (61,, }TN Y/X

+T > dAVEV(Zo)+ DY, € AVEV(Z)

1<5<2¢ 20 +1<5<2¢
+ Tfaviﬂ,w V(Zo) + T?V?(Z).

By the fundamental identity of [4, Theorem 4.14], [7, Théoréeme 2.3],if A, A’ € (TrX),
if B,B’ € TRV, then

(11.61) {((VT*)2(A, A)PTXB,PTXB’) + ((SYPTXSV)(A,A")B, B")
+ {(VTXSY)(A,A)B,B') = ((VT*)*(B,B")A,A') .

From (11.60), (11.61), we deduce that

20
(11.62) L3:§°=T‘”N"”‘{—%Z(véi+i D (V)% (5,602 )

1<5,5' <20
(¢! + < HNY/XaéJ>fa)(67 + <fHNY/X 5 .,>fﬂ)
+ % <(VTX)ZO( a, , ﬁ’ )Z,ei> fafﬂ
(IO (65, 12 Z,e) @ + (150775, 5) 195
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o o H, ,
+ 3" R, (éi,¢5) + 3 /PR, (£ £5")

+ e fPRE (e, ff’w)}TNNY’X +T 3 & AVEV(20)

1< <20

+ Y EAVEV(Z0)+T favif,,w V(2Zo) + T*V?3(Z,).
201 41<j<2¢ “

Recall that we have the C° splitting

(11.63) TV =THEVVvoTX.

The splitting (11.63) induces the identification

(11.64) ATRV) ~ 7y A(TgS) ® A(TpX).
Using the identification (11.64), we can rewrite ngff’ in the form

2¢
(11.65) Ly7° = T—N"Y/X{ ~15 (Ve +
1

2 Ny/x
L(V)%,2,6:) ) + RS, + TVEV(Z0) + T2V3(Z0) TV ™.
11.8 The matrix structure of Li’?/ T

By Proposition 11.8, Theorem 11.11 and (11.62), we get an asymptotic expression
for MuZ ?T/T as u — 0 very similar to [19, eq. (11.59)], which we do not rewrite, because
of its sheer length. Note that in [19], the é; were noted e;.

Observe that

(11.66) L% = MyZe + p*(Z)(T favf,;,,wv +

uTe(r%06,)VE , . V + T2V?2)(Zo + Z) + T%(1 — p2(Z)) P .

T20¢;

¥ C € (mAT3S)®c(TrX)DEnd()), ,,, let CF) € (W;VA(TﬁS)

S End(A(T3 X) ® E)) be the operator obtained from C' by the trivialization in-
y
dicated in Section 11.4:) and by making the Clifford rescaling indicated in Definition

11.15. By (11.66), we get

(11.67) L3Z/T = M22o/T 4 pz(uZ){T FoV oV +

(3)
uTc(t%/Té;) Ve zore,V + T?V?)(Z0/T + uZ)}u ot T2(1 — p2(uZ)) P .
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Clearly
7 (3)
(11.68) {favﬁ,,wv( =24 Z)} wr =1 vf wV(yo).
g

By Theorem 9.8,
(11.69) Pf‘v’jf,WVP,W 0,
and so

- Z, | Zo|

£ vt Zo = 9
w5 (2 ) o4,

Now we expand first 2 (*réiZ of T(Zo/T+uZ)) as u — 0 by first using the

trivialization associated to the connection 2V™VATRSBATVX) By (11.36),

(11.71) % (TZ°/Téi(Z0/T+ uZ)) = %(éi)Zo/T +

u((SEO/T(Z)éi,f VY = (VEX £ )

20/Té4 (2o /T+uZ))
el
trivialization induced by 2V7vA(TaS )BTV X)u g simply obtained from (11.71) by
replacing f by % So for 1 <1 < 2¢/, we get for u €]0,1], T € [1,1/u],

) £+ 0y (juzl?).

Zo/T

The corresponding expansion of o(r as u — 0 with respect to the

c(120/Tety Z 3 _ i _u_z.
(11.72) ul ————2 73 ( +uZ) =T(e'A 5 ie;) +O(uT |Z)),
u,T
and for 2¢' +1 < i< 2¢,
Zo/Tgi 3 , 272
(11.73) {qu(T—ﬁ—)(— + Z)} —ein -2, 1 owr|z).
u,T

From (11.72), (11.73), we obtain for 1 < ¢ < 2¢', u €]0, 1],
Zo/Téi)

3
c(r ¢ Zy
(1174) {UT—\/§—VTZO/TéiV (? + 'LLZ) }u’T =

. 2 Z
T(et A _%iei)vfzméiv (?" + uZ) +0(T|2)),

and for 2¢' +1 <1 < 2¢,

R e

u2T? Z
i) Ve zo/re,V (?0 + uZ) +0(uT|Z|).

IS
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Since V“TV = 0, by proceeding as in (9.21), for 1 < ¢ < 2¢/, we get

(11.76) PEVEVPS, =
and so for 1 < i < 2¢,

(11.77) PV, ( + Z) Pt =0( f,?

+lu Z|)

11.9 A family of Sobolev spaces with weights
Clearly

(11.78) ATaX)yo = AMTRY )yo ® ANy x,R)vo -
For0<p<2¢,0<q<2¢set
APD(TEX) = AP(TRY )yo ® AU Ny x R )yo -

The various AP9(T% X),, are mutually orthogonal in A(T%X)y,-

Let I, (resp. I ) be the set of smooth (resp. square integrable) sections of
(T A(THS) ® A(TEX) ® €)yo- For p < dimTrY, ¢ < dim Ny, xr,7 < dimTRS,
let Iy q.4),50 (resp I(p ) yo) be the set of smooth (resp. square integrable) sections
of (my AT(TRS) ® AP(TRY) ® ANy 5 g) ® E)yo over (TrX)y,-

Let g7° be a Hermitian metric on T'S. Then all the previously considered vector
bundles are equipped with a Hermitian metric. Put ¢ = dimTY, n = dim Ny, x,
s=dimTS.

Definition 11.17. For u €]0,1], T € [1,1], yo € W, Zo € Ny xR,yo> 1%0| < &F,
$ € L(p,q,r)yo> PUL

) uZ 2(2¢' +2s—p—r)
(11.79)  |sl2 72,0 = sl (1+ (12| + 1Zol)p(=)
(TrX)yo

(1 + %—I (—;))mn_q) dvrx(Z).

For y € R, let It} , Ii"‘ be the set of sections of (71, A(TgS) ® A(THX) ® E)yo,

(T A(T3S) ® AT X) ® £%)yo, which lie in the u*® Sobolev space. If s € I& , w
write s in the form

— ot 4o + o 7,
(11.80) s=sT+s , sTel k.
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Definition 11.18. Ifu €]0,1], T € [1,1], 4o € W, Zo € Ny, x,R.yo> |Z0| < L, s € I},
set

2 2 2 2
(11.81) sl 7,201 = I8lu1, 200 + T |3+|u,r_r,zo,o +
2 2

2
+ Y |Veislar,z00

=1

2 p(uZ)V_(% +uZ)s”

11.10 Proof of Theorem 11.5

The Sobolev norms (11.79), (11.81) are the obvious analogues of the corresponding
norms in [19, Definitions 11.23 and 11.25]. At least formally, the problem treated
here is the obvious analogue of the problem considered in [19], with extra Grassmann
variables f*A. However, these Grassmann variables come with no variable i ¢, , which,
in some sense, makes them easier to deal with.

Also the estimates in (11.68)-(11.77) are the obvious analogue of the corresponding
estimates in [19, Section 11 j)]. In particular the estimates (11.70), (11.77) should be
compared with [19, eq. (11.66)].

One can then proceed formally as in [19, Section 11] and obtain (11.52). As in [19],
the Sobolev norms (11.79), (11.81) play a key role in proving the required estimates.
Of course here we deal with the kernel of F, 054 Z°)(a; z’), while in [19, Section 11],
we considered directly the kernel exp(— La Z T ). However observe that by (11.10), by
proceeding as in [19, eq. (13.23)], for any m e N,

(11.82) sup ™ |Fu(a) — exp(—a?)| < cexp( )
|Im(a)[<c

It is then very easy to incorporate the estimates (11.82) in the arguments of [19] to
obtain (11.52). a

11.11 Proof of Theorem 6.17

The proof of (6.81) is essentially similar to the proof of Proposition 11.1.
To establish (6.82) when h, r = 6, 7, we use the Lichnerowiz formula for

(11.83) Af/-f+2da; A’\’/_,\/—+2d“aa YW, dada—- (uNV)

given in [14, Theorem 2.15], and also in (12.39), together with the arguments given
above. Details are left to the reader.

The cas where hy,T = 7, ¢ or hy,r = 7, 1 is obtained from the above by making
da or da equal to 0.
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12. The analysis of the kernel of ﬁu(Ai,T 1) for
T>0asu—0

The purpose of this Chapter is to prove Theorems 6.8 and the first half of
Theorem 6.18. This Chapter is the obvious extension of [19, Section 12], where the
case where S is a point was treated.

As in [19], to prove Theorem 6.8, we exploit results already established in
Chapter 11, and also we establish certain key algebraic identities, which extend
corresponding identities of [19, Section 12]. That apparently complicate computations
simplify dramatically is related in particular to the fact that we made the “right”
construction of T#W in Chapter 7, and also that we chose the adequate trivialization
of the vector bundles. Once this is done, we are able to adapt the analytic framework
of [19, Section 12] to prove Theorem 6.8. The proof of the first half of Theorem 6.18
involves the control of the speed of convergence of the considered quantities asu — 0,
for T €]0, 1]. This problem was not considered explicitly in [19]. This is why we have
to give a more precise form to the estimates of [19, Section 12].

This Chapter is organized as follows. In Section 12.1, we show that the proof of
Theorem 6.8 is local on X. In Section 12.2, we construct a coordinate system near yo €
W, and also a trivialization of 7}, A(T%S) ® A(T*(®V X) ® ¢ near yo. In Section 12.3,
we replace the fibre X by (TrX)y,. In Section 12.4, we rescale the coordinate Z in
(TrX)y, and also the Clifford variables. In Section 12.5, we calculate the asymptotics
of the operator Li’fé?/ «» Which was obtained from Ain Ju by such a rescaling. As in
[19, Section 12 f)], the building blocks of the operator B2, of Chapter 5, which
is associated to the exact sequence 0 — TY — TX — Ny/x — 0, appear in
this process. In Section 12.6, we briefly indicate how to establish Theorem 6.8 along
the lines of [19, Section 12]. Finally, in Section 12.7, we establish the first half of
Theorem 6.18.

In this Chapter, we use the assumptions and notation of Chapters 3-5, 6-9 and 11.
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12.1 Localization of the problem
Clearly

(12.0)  Tr, [Nuexp(-A2 7/,)] = Trs [NuFu(42,2/,)] + Trs [NuGu(42 7,)] -

By Theorem 11.3, there exist ¢ > 0, C' > 0 such that for « €]0,1], T > 0,
~ 5 -C
(12.2) Im [NHG,‘(A,‘,T/“)” < cexp(—7).

By (12.2), we see that to establish Theorem 6.8, we just need to show that asu — 0,
(12.3) & Tr, [NHFM(Ai,T)] - / & Tr, [N exp(—B22)] ch(n, g").
Y

As in Chapter 11, using finite propagation speed, the proof of Theorem 6.8 has been
reduced to a local problem on X.
Clearly

(12.4) Trs [Nﬂﬁu(Ai,T/u)] = Trs [an’u(gﬁ,q"/u)] .

Let f‘u(Zﬁ 7/4)(Z;2')(z, 2" € X) be the smooth kernel associated to f‘u(ZiT /) With
respect to (;%}izﬁlgy. Then

(25) T [NaFuB )] = [ To [NaFul (o)) (o

12.2 A local coordinate system near y, € W and a trivialization of
A(T*(O,I)X) @5

Takeyo € W.If Z € (TrX)y, , t € R — z: = expy, X (tZ) still denotes the geodesic
in X, such that g = yo, %u:o = Z.If |Z| < a, we identify Z € (TrX)z, with
expy (Z) € X.

Take u > 0. If |Z| < a, we identify (7} A(TgS) ® AT*OVX))z, &7 to
(AT S)SA(T*OV X ))yos &yo by parallel transport with respect to the connection
2y (MTRS)BAMT OV X)u ¢ along the curve t € [0,1] — tZ.

IfU € (TrX)yo, TU (Z ) € (TrX)z denotes the parallel transport of U along the
curve t € [0,1] — tZ with respect to VTX.

12.3 Replacing the fibre X by (TrX),,
Let ATX be the ordinary flat Laplacian on (TrX)y,.
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Definition 12.1. For u > 0,T >0, yo €Y, let Li’}_’,‘.’/u be the operator acting on Hy,

1,30 2 u? oy T2 e+ 2 on T2
L7 =0=p(2) | =5 A" + P ) +p(2) AL 1/
(12.6) AT 3
M = —u¥(1 - p(2) =5~ + P (2) B3

With respect to the notation in (11.50), our Lt”g?/u, M}¥o are exactly the operators

1,0 1,0
L, 7w My"

Clearly

T
(127) Li% = My¥, + 2 (2) (S FVinwV

ce)oe v, T22) L T2 _ 2 .
+T 2Ve,-V+u2V)+u2(1 p2(Z)) P .

5
Let ﬁu(Li”’:’l?/u)(Z, Z") (Z,Z' € (TmX)y,) be the smooth kernel associated to
F, (Li’g?/u) calculated with respect to %.

12.4 Rescaling of the variable Z and of the horizontal Clifford variables

For u>0,T > 0, set

2vy0 i -1 17y0
Lu,T/u - Fu Lu,T/uF“ ’

(12.8)
Mg,yo = Fu_lM&‘yoFu.

As in (11.55),

(12.9) L2, MP¥ € (miy A(TRS) ® c(TrX) ® End£)y, ® Op.
Let ej1,...,e2r be an orthonormal oriented basis of (TRY )y,, let e2¢:41,,€2¢ be an
orthonormal oriented basis of Ny, x Ry, Let €',...,e2¢, and e2¢+1,... e? be the

corresponding dual basis of (TgY)y, and (Ny,x r)yo-

Definition 12.2. Let K, K;to be the sets of smooth sections of (my, A(TRS)

BATRY)BANyx)®E)yos (M ATRS)BA(TRY)BA(Ny, x)BEE)y, over (TRX )y-
Then Ky, = K} & K.

Definition 12.3. For u > 0, set

cules) = \/5% A —%iei ,1<i< ol

cu(e,-) = c(ei) , 20 +1 <1< 2¢.

(12.10)
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For u >0, T > 0, let Li:gﬁ’/u, M3v € End(K,,) be the operators obtained from
Li’!:’r?/u’ M2¥° by replacing the variables c(e;) by c,(e;) for 1 < i < 2¢’, while leaving
unchanged the operators c(e;) (2¢' +1 < j < 2¢). Then

L% Mg¥e € (miy A(T3S) ® End(A(TRY)) ® ¢(Ny/x,r) ® End(€)),, ® Op.

Let Fu(LY%,,)(Z,2') (2,Z' € (TrX)y,) be the smooth kernel associated to

E, (Li’{,ﬂ’/ .)» Which is calculated with respect to ‘{—2”5)%4,@. Then ﬁu(Lz’g?/u)(Z, Z) can
be expanded in the form

(12.11)
Fu(L3%,)(2,2) = 3 e AL NEP Nig, .. de,, ®QITINZ,2)
1<i1 <. .. <ip <28’
1<51<...<jq<2¢'
Qh11(2.2) € (miy ATRS) 8 End(A(Ny/x) 88))
Set

(1212) [R(L3%.)(2,2)] =Qu.2e(2,2) €
(7w A(T25) ® End(A(Ny,/x) & 5))y0

Proposition 12.4 — For anyu >0, T >0, yo € W, Zo € Ny/x R,yo, |Z0| < 2, the
following identity holds

(12.13) w2dmNy/x Ty, [NHF (Au 7/u) (Y0, uZo), (yo,uZo))] k' (uZo)

0y B [ Vo [Fu(20 0, 200] ]

Proof. Since for |Z| < 2a, p(Z) = 1, using finite propagation speed, we see that if
Zy € Ny/X,R,ym |Zo| < @, then

(12.14) Fu(A2 1,,)(Zo, Zo)K'(Zo) = F., (£.,%/.)(Zo, Zo) -
Identity (12.13) follows from (12.14) and [19, Proposition 11.2]. O

12.5 The asymptotics of the operator Lzyr_,‘i /u a8 u —0

Definition 12.5. Set

(1215) M = =} (Ve + (00T Z,e0))’ + 87 (V52 4 VT3,
Then

(12.16) M3¥o € (AM(THW) ® End(€))y, ® Op.
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The splitting TW = THW @ TY induces an identification
(12.17) ATEW) ~ 7y A(TgS) @ A(TRY).
From (12.16), (12.17), we find that

(12.18) MY € (miy A(TRS) ® A(TRY) ® c(Ny/x,r) ® End(€))y, ® Op.

Of course the contribution of ¢(Ny,x r) to Mg Y0 is trivial.

Then we have the obvious extension of [19, Theorem 12.10].
Theorem 12.6 — Asu — 0,

(12.19) M3vo — M3,

Proof. We proceed as in the proof of (11.60)-(11.65). The main difference is that
because the Clifford variables c(e;) (2¢/+1 < i < 2¢) are not rescaled, they ultimately
disappear in the limit. As in (11.62), to calculate the limit Mg' Yo explicitly, we still
use the identity (11.61). The proof of our Theorem is completed. O

In what follows, we will calculate the expansion as u — 0 of the remaining terms

M 3:!/0
in Lu,T/u.

If C is a smooth section of 73, A(TS) ® c(TrX) ® End(£), if £ € Xy, is close
to yo, we denote by C3(z) the element of (73, A(T%S) ® End(A(T}Y)) ® ¢(Ny,/x,r)
® End(£))y, which is obtained by using the trivialization of 73 A(T5%S) ® c(Tr X) ® ¢
associated to 2VTVATRSEAT @V X)u 5nd V¢ as in Section 12.2, and by applying
the transformation on the elements of ¢(TrX)y, of Definition 12.3. In the sequel, we
still use the identification (12.17).

Let S € End(A(N") & A(N*)) be given by

2¢
(12.20) S = g D clei)ele:).
2¢'+1

Then S extends to an operator acting on A(T3Y) ® A(-]_V—;// x) ® AN}, /x) ® 1. Also
by (7.17), {iy = ANy, x ® n. Therefore S acts on ATRY) ® A(N;/X) ® &y

We use the notation of Section 5.1. In particular ¢(APTY Z), ¢(APTYZ) €
ATEW) ® End(A(W*y/X) ® A(Ny,x)) are defined as in Definition 5.5.

Now we extend [19, Theorem 12.12].
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Theorem 12.7 — Asu — 0,

(12.21)
3
1 o C(Te,) 1 . o -
{af ng WV(UZ) -+ Z 're,V(U'Z)} = 1—‘.@ VEV + f A (v{zvigywv _
€ 2¢
i A o €
vTX f Y/x+TV(fH v pTY Z) )(’yo) + Z;e A VZVTeiV(yO) +

pPTY z

> €00t vy + 0 (ut +12)

2¢'+1
$(V+(uz>)2 = S (V) (30) + 0(luz)),

1, ~ 2
(V- @2))? = (V5V~(w) +0(u|2]"))
Moreover the following identities hold

P i*VEVPST =0,
£ ( fa IR i3 3
P (f /\(v VeV =V

H,N.
pTYsz‘ Y/X+Tv(fcf'vaTYZ)

2@’ . — _ F
D€ AVEVELY) (o) P = = PR APTY Z)PE

i=1

(12.22) 20 |
P> ij;—)vg,.v) ()P = P75, P¢

~ PNv/x 7|?
(VEV7)*(w0) = '—2—' !
P (VET)2 = i (Pﬁ"(vf)2P€' — PEVEVPET (V2! P€+V€VP5”) .

1=20'+1

Proof. Clearly

1 1
(1223) =f*ViuwV (u2) = =f*ViuwV(vo) +
FOVGVenw V(o) + 0(u|Z[%).

Also, by using (11.71) at Z; = 0, we get, in the trivialization induced by
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2y MTROBAT @V X) and V¥,

c(re,)

7

Vi V() = <52

+u ((SY(Z)es, V) - (vT"f’fy’Z‘”", &)
£+ 01(JuZ?))(VE, V (30)
+uVE Ve, V(yo) + Oo(|uZ[?)).

(12.24)

3
To calculate the corresponding {E%VﬁeiV(uZ)} , we replace in the right-hand
u
side of (12.24) f* by -tu— and c(e;) by cyu(ei). We get

(12.25)
{vt, via Z)}i= e A=)V Voo 3 L9t viwn)
+ 1 (S (Z)es, £V - (V”f”,y?”*,ei>)
VEV(yo) + 12,0(6 - —ze,)vf V.. V(%) +0(u|Z[).
By (1.5),
(12.26) (SY(D)es, FIVY = — (8V(2)FEV s es)

= - <TV(fo}z?’v7Z)aei> .

Using (7.27) and (12.26), we get

(1221) (S} (2)ei 1) = (VX T e5) ) VEV () =

- v N V(yo) = — v¢ N V(yo) -

H, )
VIXfo T YIX 4TV (53, 2) vz,a.‘YZfa YIX v (£30Y,PTY 2)

By (12.25), (12.27), we obtain

; 1 :
(12.28) {C(Te) ,ey(uZ)} 3 € AVEV(w)
V2 u 1<i<2e
_ fa 5
Iy VIEyda Y X+TV(f§"",PTYZ)V(y°)
+ > EAVEVE V) + Y. C\(;.i.)ViV(yo)+@(u(1+iZ|2)).
1<i<2e! 20/ +1<i<2¢ 2
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Finally

(12.29) PVEV(Wo) = D e AVEV () + F*VEsw V(vo)-

1<i<2e “
By (12.23), (12.28), (12.29), we obtain the first identity in (12.21). The second and
third identities in (12.21) are trivial and were already obtained in [19, Theorem 12.12]
by Taylor expansion.

By proceeding as in (9.21), we get the first identity in (12.22). By Theorem 9.8,
pPs ViH,WVPE— =0 on W, and so

(12.30) P& Vi Zvi,,,w V(yo)P¢ =0.
Also by Theorem 9.8,

(12.31) P& Ve

PVY/x z

Vif,w V(y())PE_ = O.
From (12.30), (12.31), we get
(12.32) Pt §EZV§C{,,WV(y0)P5_ =0.

Using Theorem 1.10 and Proposition 7.8, we find that

12.33) PS¢ V¢ vV P¢
( ) PTYZfCl Y/X+Tv(f£'V7PTYZ)

-1_

T2 (PNY/X (VEry zfa

H,Ny,x

+TV (8, PTY 2))
=1 _
_ pt H,W\ pTY 3
PE 22 (A PTY 2) P

From (12.33), we obtain

' o 3 ¢
(12.34) P ( f /\vax H,N Y/X+Tv(f5,V’PTYZ)V)P

= P AP )P

Also by [19, Theorem 12.12],

2¢
(12.35) PN e AVEVE, V(yo) = P& Y e 1 (Z e A A(e;))PTY Z
i=1 i=1

From (12.34), (12.35), we get the second identity in (12.22). The last three identities
in (12.22) were already proved in [19, Theorem 12.12]. The proof of our Theorem is
completed. O
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12.6 Proof of Theorem 6.8

Recall that we reduced the proof of Theorem 6.8 to the proof of (12.3).

We claim that using Theorems 12.6 and 12.7, the proof of (12.3) is essentially
identical to the proof of [19, Theorem 6.7] given in [19, Section 12]. In effect, by

using the arguments of Chapter 11, the obvious analogue of [19, Theorem 12.14]

holds. Namely, we obtain uniform estimates on the kernel F, (ng?/ WJ(Z,2Z') and its

derivatives. Also using Theorem 12.6 and Theorem 12.7, the same arguments as in
[19] show that the analogue of [19, Theorem 12.16] holds. Namely put

(12.36) U = {X € C,Re()) < 6Im*(\) — A}.

Then the analogue of [19, Theorem 12.16] asserts that if A is large enough, and if §
is small enough, for T >0, yo e W, A€ U,asu — 0,

(12.37)
- -1,
(A= Li’g?/u)‘l — P ()\ - %;’%"’ - (V")§0> P in the sense of distributions.

Note that the operator %,21,’3“ appears in (12.37) because of Theorem 12.6 and of the
algebraic identities of Theorem 12.7.

The proof of (12.3) then continues as in [19, Section 12 i)]. O

12.7 Proof of the first half of Theorem 6.18

To establish the first half of Theorem 6.18, we will first show how to prove that if
hy,T is any of the functions 0u,1, A, 7, Ay 7, T, 75 ™, 1, for T >0,

(12.38) lim hu,T/u = hr.
u—0

Then we will explain how to obtain the estimate (6.83).

Clearly, the most complex expression is 6, 7, the others expressions being obtained
from 6, r by making da or da = 0, so in our proof of (12.38), we just consider the
case where hy, 7 = 0, 7.

If A€ TrX,let A9 A1) be the component of A in TX,TX. By [14, Theorem
2.15] (and keeping in mind that %NX = N{f), we have the following extension of
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Theorem 7.19,

A,_,T+daua£A”T+d_u(,;9 A, r — dadaN3f =

u2 *(0,1) ¥\
- (VQ(T X088 1 1(SY (en)ej, F21V)

afB
Vacle) L+ 3 (Vo sV, i) I
c(eE‘”’)gg c(eﬁ“’)g) L WK

(12.39) + = B .
2 N\ fa
+ %c(ei)c(ej)R’g(ei,ej) + uc—(c;z/L—R’g(q, FEY)
U PREGEY 1) +ur S ve v

dim X

+T favi,,,vv +T?V? — dada

Let ¢(.(29), ¢(.(%1)) € T X®End(A(T*©V X) be given by X € TR X — ¢(X 1),
c(X©1) € End(A(T*OV X).
Now we define the fibrewise connection on 7§, A(TgS) ® A(R?*) ® A(T*(OV X)),

(12.40) IVW:/A(TE_S)QA(RZ‘)@A(T‘(O,l)x) _

Ly ) ATRS)BATODX) C(-(I’O))da+ c(.(O) -
V2 V2
By comparing (7.47) and (12.39), it is clear that in the analysis of 6, 1/,
1y L ATRS)BAT OV X) ig replaced by LV ATRS)IBAR™BAT VX)) et 4y ... w,
be an orthonormal basis of TX, let w!, ..., w? be the dual basis of T7* X . In particular
c(.M9) = wie(wy),

c(.OV) = we(w;) .

A trivial computation shows that

(12.41)

(12.42) 1VVATRBAR™IBATOVX),2 _
Ly MTaS)BAMT* OV X),2 +e ( k fodq (S(e,)wk,fH v> +
w* foda (S(eswk, f2V) ) + w'w'dada.
By (2.8) and (12.42), we obtain
(12.43) 1VTVATRSBAR™BAT OV X)2 _
1y 7y A(TRS)BA(T D X),2

+ wiw” f%da (S(wi)wk, V> +W'w’°fad‘<5(w,)wk, V) + w'w'dada .
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By (1.5) and by Theorem 2.3, which asserts that TV is of complex type (1,1), we
obtain from (12.43),

(12.44) 1V TVATRS)BARBAT OV X).2
Ly MTRS)BAT OV X).2 | i A idada.

We define 2V7r“,A(TﬁS)®A(R2‘)@A(T‘(O'I)X) from 1V1r:,A(T,;5)®A(R2')@A(T'WJ)x) as in
(11.33). By (7.40),

(12.45) ZVW;A(T,;S)@A(R”)@A(T'(o'l)x) — ZVw{,A(TﬁS)éA(T*("'”X)
1 H,N a
+ O +VB(fa M, () £%)da
+ %(c(.(o’l)) +v2 < fHENyx .<°r1>> f%)da.

By (12.44),

(12.46) 2V1r‘*,A(TﬁS)@A(R?')@)A(T'(O’”X),2=
va;,A(T;,_S)@A(T'(D'l)X),Z + wwidada.
To establish (12.38), we proceed exactly as in Sections 12.1-12.6, by replacing A (T S)

by A(T%S) ® A(RZ) and 2V7r{,A(T§S)®A(T‘(°’1)X) by 2v1r“,A(T§S)®A(R2‘)@A(T‘“””X).

In particular, trivializations are now done with respect to the connection
2y A(TRS)BAR?)BA(T* OV X)u

In view of (12.46), the operator M3'¥° in (12.15) should now be

(12.47) M3¥ = -1 (V,, + 1 ((@*(VT¥)2, — V=1JTXdada)Z, e;))”

+i*(VE2 + LTe(VTX2)) — dada B2 X

Also using (11.71) at Zp = 0 and (12.46), we see that the analogue of (11.71) at
Zo = 0 is now

(12.48) \—;_E(Te,.)_ \/_(ez ((( V. (2Z)es, fEV)
— (VEX fama ¥, i>)f°‘ +da(z, e;) + da (Z, e,~>) +0.([uz?).

Using (12.48) and proceeding as in (12.23)-(12.35), we find that the obvious
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extension of the first identity in (12.21) is

c(re;)

7

a VAR Vi3 ¢
f A (Vzvff'wv VV£¥YZ f’NY/x+TV(ff’V,PTYZ)V) (yO)

1 1
(12.49) {E fang,wv + ==V, . V(u Z)} = ;i*VfV(yo) +

u

20
+> et AVEVE, V(yo) + daVEV (yo) + daVEV (yo) + O(u(l + | Z|%)).
1

By(12.49), the obvious extension of the second identity in (12.22) is

§ [ ra IR vi3 _
(12.50) P¢ (f /\(v VipwV VV}T,QSYZfa'NY/X+T"(fq"'V,PTYZ)V)

20
+3 e AVEVE,V + daViV + davgv) (yo) P&~

= pt” (%é‘(APTYZ) + da\/—_la—(\/%) + da\/—_le(—‘/?)PE' :

By (12.47), (12.49), (12.50) and by proceeding as in Sections 12.1-12.6, we find that
given T > 0,asu — 0

(12.51) 0,10 — Or -

To establish (6.83), for greater clarity of the references, we will instead show that
there exist C > 0, o > 0, 8 > 0 such that for u €]0, 1], T € [u, 1],

[

C
(12.52) '<I>Trs [NHexp(—Ain/u)] —/Y<I>'I‘r5 [NHexp(—%%z)] ch(n,g")| < Tzfﬂ .

Given the considerations we made before (12.51), the proof of (6.83) for hy, 1 = 6, 1
will just be the obvious analogue of our proof of (12.52).

Using (12.2), (12.4), it is clear that to prove (12.52), we only need to show that
for u €]0,1], T € [u, 1],

(12.53) \@T‘r [NHF (AuT/u /<I>Tr [ N1 exp(—®B32)] ch(n, g" )l < Tﬂ .
By Proposition 9.3,

(12.54) Trs [NHﬁu(ZzT/u)] = 1/’1/\/7"' Trs [NHf'“(T’Zi/\/T,\/T/u)] ’
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Also one verifies easily that
(12.55) / @ Tr, [Nu exp(—B2:)] ch(n, g") =
Y

Yi/vT /Y ®Tr [Ny exp(~TR2)] ®Tr [exp(~TV™?)] .

By (12.54), (12.55), we see that (12.53) is equivalent to

= A2
(12.56) '¢1 y ﬁ(cp"ns [NHFu(TAu T, ﬁ/u)] -
Cu®
/Y ® Tr, [Nu exp(—TH2)] @ Tr [exp(—TV™?)] )I < TF -
Observe that for u €]0,1],T €]u, 1], then 7“? €]0,1]. Then to prove (12.56), we only
need to show that there exist C > 0, a > 0, 8 > 0 such that for u €]0, 1], T €]0, 1],

(12.57) |<1> Trs [NHF‘,,(TZ?L,I /u)] - / & Tr, [N exp(—TH2)]

Y
Cu®
T8 °
To establish (12.57), we need to refer in some detail to the estimates [19, Section 12].
To make our references to [19] easier, we will work exactly in the context of [19], i.e.

Ty [exp(—TV"’z)] I <

when S is a point. The arguments given before make the extension to the general
case quite easy.

Let Fo(TL3Y,), (2, 2) (Z,2' € (TrX)y,) be the smooth kernel of F, (TLYY),)

with respect to é%’)‘}izy}. By using the arguments of [19, proof of Theorem 12.14],
one finds easily that for any m € N, there exist C > 0, p € N such that for
u €]0,1],T €]o, 1],

(12.58) sup |1+ 120" Fu(TLE,) (Zo, Z0)| < s
ZoENy;x,R,yo ! 17
|1Zo|<e/4u

and that given M > 0, m’ € N, there exists C’ > 0, n’ € N that for u €]0, 1], T €]0, 1],

glettlel )
WF’U(TL’ WZ,Z")

u,1/u

'
<<

(12.59) sup S

Z,Z'€(TrX)y,
|PTY z|,|PTY 2’|<M
|P”Y/XZ|,|P”Y/XZ' <&

e, | |<m’
Put
- - - +
Ly 1 = Péw Li’f{‘}u P%v | Ly 5 = Pw L;”;f{‘}u Pt ,

(12.60) .o Lo
Lu»3 = ngo Lu1,'éll'3/uP§y0 ’ Luv4 = ngo Lu’}{‘}uPﬁyo :
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Theorem 12.8 — There exist C > 0, n € N such that foru €]0,1],T €]0,1], yo € W,
|PE* Fu(r e, e “ <G
u,1/u u,l/u T"
(12.61) . Cu
~ 3, -
”P€ Fu(TL'u,yl‘}u)PE l w,lju — T'n .

Proof. By [19, eq. (12.79)],

(12.62) |s+|u,1/u,0,0 < Culslyuo, -

By [19, eq. (12.71)], for u €]0,1], A € U,
(12.63) - z3% )—1”_1’l < C(L+ 2.
w1/u u,1/u,0

From (12.62), (12.63), we deduce that if s € I,

+
azes) [0z g S CHLF D bl
Put
(12.65) Ey=A—Ly1—Lya(A—Ly4) 'Ly3.

By [19, eq. (12.71), (12.84)]

(12.66) IBully 1 w0 S CA+ A2

By [19, eq. (12.85)]

(12.67) P& A= L3 ) P = EZ Lya(A — Lua) ™

By proceeding as in [19, eq. (12.86)-(12.88)], we obtain

(12.68) | EZ Lu2(A — L )s™ || < C A+ M) u st

u,1/%,0,0 — u,1/,0,0 *

Recall that the contour I' in C was defined in [19, eq. (11.115)]. Then by [19, Theorem
11.30],

= 73, ACENEY
(12.69) F(TL,Y,) = 2m e L3,3{(}
u u

Also by [19, Proposition 13.10], given ¢ > 0, m € N, there is C > 0, such that for
u €]0,1]

(12.70) sup la|™ |Fu(a)| < C.
a€l
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From (12.64), (12.67), (12.68), (12.70), we get (12.61) easily. a
If s € I, has compact support, if k =0,1, ¥’ € N, put
(12.71) Isli,T,O,(k,k’) = > 1252 10k -
|l <K’

Now we establish a refined version of [19, Theorem 12.16], closely related to [19,
Theorem 11.35] and [19, Theorem 13.41].

Theorem 12.9 — There exists C > 0 such that if o € I, has compact support, for
v €]0,1], A €T,

(12.72)  |(Lug + Lu2(A = Lua) 'Ly 3 — BPY — Vo
u,1/u,0,—1

S CA+|A)?u 0y 1 /w0014 -

Proof. The proof of (12.72) will consist in following in detail the inequalities in [19,
eq. (12.93)-(12.118)]. In particular the dependence of the constants on A € C will be
made more explicit. The precise version of [19, eq. (12.95)] is

_ V= PNvix z|?
(Lu, — Povo Mg — Wlﬁ(APTYZ) — Sy — |"—|—)0

(12.73) 5

u,1/u,0,—1
< Culoly,1/u0,0,9) -

In the right-hand sides of [19, eq. (12.99), (12.100), (12.103)] C should be replaced
by C(1 + |A|)2. Also from [19, eq. (12.111)], we get

(12.74)  |Lg oA = Lu,a) 'Ly, 4(M® — LY )) " Lg 30

|u,1/u,0,-—1
<C@A+ |A)%u 1001 /w01 -

Finally, instead of [19, eq. (12.115)], we have

(12.75) |(L{)’,2()\u2 - LZ{4)_1L6I,3+ 2( 0. _1L3,3)‘7|u,1/u’0,_1

S CQA+[ADuloly 1 /u,0,0,1) -

Using (12.73)-(12.75), and proceeding as in [19, eq. (12.117), (12.118)], we get
(12.72). O

If s € I, has compact support, let |s|; , be the limit as u — 0 of [s|, ;/, 0,0- AS
in [19, Definition 12.15], if s € I, put

_ IIP””"ZI loo
(12.76) lslg2 = Isf2 o + ° + Z IVeisloo -
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Ifk=0,1,k"eN,if s€I, set
(12.77) lslocein = O 12%sl3 4 -
|o| <k’

Then by using the notation of [19, p. 195], by [19, eq. (12.72)], if A € U,
-1,1
(12.78) H()\ — @2vo _ g2 —1”0 < C(1+|A)2.

Also by proceeding as in [19, Proposition 11.34], given k& € N, there is p € N such
that

(12.79) | =i — vy el| <O D sl o

Theorem 12.10 — There exist C > 0, ¢ € N such that for u €]0,1], T €]0,1],
Yy €Y, AeU, ifse€l, has compact support,

<
u,1/x,0,0

Cu(1+ AN Islp (0,4) -

(12.80) I[Pﬁ_ (A — L3’y<} “1pET (A — %%yo _ VZf -1] s

u,1/u

Proof. Recall that E, was defined in (12.65). By [19, eq. (12.82)]

(12.81) E;' =P (A- LYY, )T P

Then

(12.82) E;'—(A-®BP* —VvA)~l =
Eg'(Luy + Lu2(A — Lyg) " Lyz — B2 — V) (A — BPY — vIH)~L,

Using (12.66), (12.72), (12.79), (12.82), we get (12.80). O
Clearly
(12.83) P& Fy(TEY% )PE — Fy(T(@Y + VI2) =
L _ 13y -1 _ __OR2:Y0 _ vm,2\—1

By (12.70) and by Theorems 12.8 and 12.10, we find that there exist C > 0, £k > 0
such that il s € I has compact support,

(12.84) |(Fu(TL3Y,) — P& R (T(BI° + VI2)PE)s Luoo

Cu |3|o,(0,4)
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Take A € Ny/x R, y,- Let J;}) be the Hilbert space of Ly sections of (A(T*(%1X)
®E)y, over {Z € (TrX)yo,|Z — Al < 3/2}. We equip J{ with the natural obvious
Lo Hermitian product.

If B e L(JL), let IB||2 be the corresponding norm. By (12.84), we get

Cu(l + | A])2¢+4

Tk )
Using (12.58), (12.59), (12.85) and proceeding as in [19, Section 11 p)], we find that
if Zo € Ny;x Ryos 120l < &

B . _nA
(12.85) ” Fu(ﬂgiﬁ*}u) — P& F(T(®BYY + V1.2)) Pt ”<>c> <

(12.86) |(Fu(TL3%,) — PE Fu(T(@Y + VI2)PE)(Zo, Zo)|

u,1/u
Cu®(1 + | Zo|)2¢ +4
< .

Also from (11.10), one gets the easy estimate

(12.87)  |(Fu(@@}* + V32)) - exp(~T(B}Y + V12)) ) (Zo, Zo)|

< Cexp(—1/u?)

S
Finally using (12.70) and proceeeding as in [19, Theorems 11.27-11.31], we see that
for any m € N, there exist C > 0, m’ € N such that for u €]0,1], T €]0, 1],

c

(12.88) sup \(1 +|Zo|)™ Fu(T(BT™ + V;’f))(zo,zo)l < o

Zo€Ny;x,R,yo

and that given M > 0, n’ € N, there exist C’ > 0, m’ € N such that for u €]0, 1],
T €]o,1],

glel+le’|

C
s7eggw e (T@ + Vi) (2,2)

2,Z'e€(TrX)y, T

IPTYZI,IPTYlesM

By (12.58), (12.59), (12.86)-(12.89), we find that for any m € N, there exist C > 0,
a >0, 8> 0 such that for yo € Y, Zo € Ny, x,R,yo> |Z0| < €/8u,
(12.90) |(Fu(TL3%,) — P exp(~T(BI™ + V32))(Zo, Z0)|

< Cu® .

= TR(1+|Zo|)™
Finally by making v — 0 in (12.87), and using (12.88) (or by a direct proof) for any
m € N, there exist C > 0, m' € N such that if Zy € Ny, x R, yo,

(12.91) (1+ | Zol)™ |exp(~T(BT™ + V) (2o, Z0)| < Tim
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Using (12.13), (12.90), (12.91), we get

~ dvx (yo, Zo)
2 j0, £0)
(12.92) I/Y/ZoeNY/x,R,yo(I)T‘rs [NHFu(TAu,l/u)(ZO’ZO)] (2m)dimX

|Zo|<e/8
- / ® Trs [exp(—TH2)] @ Tr [exp(—V™?)] l < C“ﬁ :
Y T

By also using (12.92) in the case where Y = ¢ as in [19, Remark 11.14], (12.57)

follows easily from (12.92).

We have then completed the proof of the first half of Theorem 6.18. O
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13. The analysis of the two parameter operator
exp(—A; r) in the range u €]0,1], T > 1/u

The purpose of this Chapter is to prove Theorems 6.9, the second half of Theorem 6.18
and Theorem 6.19. This Chapter is the extension of [19, Section 13], where
Theorem 6.9 established when S is a point.

For 0 < ug < u < 1, the techniques of Chapters 8 and 9 can be used. However,
here, one of the main points is to obtain uniformity of the convergence in (6.22)
for u €]0,1], T > 1/u. We are thus forced to use relative local index techniques.
In particular, while in Chapter 9, the bundle A(T*®1X) in directions normal to
W was trivialized using the connection AT O X ), here we have to trivialize the
bundle 73, A(Tg,S) ® A(T*(V X) in directions normal to W using a connection which
is essentially the fibrewise connection 2V™VATRSIBAT @V X) glready considered in
Chapter 11. The algebra is more involved than in [19, Section 13], but once the
right coordinates and trivializations are found, the functional analytic machine of
[19, Section 13] can be used without any substantial change. Still, inequality (6.84)
in Theorem 6.18 gives a bound on a speed of convergence as u — 0, which is uniform
in T' € [1,+00[. Such a problem was not considered in [19], but the techniques of [19]
can also be used to solve this problem.

The organization of the Chapter is closely related to the organization of [19,
Section 13]. In Section 13.1, we show that the proof of Theorem 6.9 is local on a fibre
X. In Sections 13.2 and 13.3, we construct a coordinate system and a trivialization
of mHA(T3S) ® A(T*®VX) & £ near yo € W. In Section 13.4, we replace X by
(TrX)yo- In Section 13.5, we rescale the coordinate Z € (TrX)y,, and we use a

Getzler rescaling [23], [3] on certain Clifford variables. The operator Aﬁ /v IS then

replaced by an operator 583’y° In Section 13.6, we give an explicit formula for $3’y°

in the considered trxvxahzatlon. In Section 13.7, we study the asymptotics of 583’%? as
u — 0. This permits us to recover the results of Section 12 in a different trivialization.
In Section 13.8, we study the asymptotics of the operator §£3’y° as T — +o00, when the

7'!/0

operator §£3 is written as a (3, 3) matrix with respect to a natural splitting of the

vector space K0 on which 583’y° acts as an unbounded operator. In Section 13.9, we
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calculate the asymptotics as T — oo of Frk'/2A, rk~/2F;* in the trivialization
of 4 A(T.S) ® A(T*(®V X) which was described before. While the trivialization is

more complicate than in Chapter 8, the asymptotics is simpler. Then we relate the
asymptotics of 583’y° as T — +oo to the asymptotics of (FTkl/zAvu,Tk‘lﬂFqu)z.
In Section 13.10, we introduce a new family of Sobolev norms depending on u,T,
which extend corresponding norms already constructed in [19, Section 13 k)]. These
Sobolev norms incorporate the grading of the Grassmann variables in 7j, A(Tg S), so
as to permit an analysis of 583’y° very similar to the one given in [19, Section 13]. In
Section 13.11, we introduce a fibrewise elliptic differential operator Z¥°, which is the
analogue of an operator introduced in [19, Section 13 0)].

In Section 13.12, we take advantage of the formal similarities with [19, Section 13]
to give a short proof of Theorem 6.9.

In Section 13.13, we prove Theorem 6.19, and in Section 13.14 we establish the
second half of Theorem 6.18. The algebra involved in the proofs of both Theorems
is more complicate than before. The fact that ultimately, the algebra simplifies is a
little miracle. The organization of Section 13.13 reproduces the organization of the
whole Chapter. In Section 13.14, in our proof of the second half of Theorem 6.18, we
explain how to adapt the techniques of [19] to establish a result which has no explicit
analogue in [19].

In this Chapter, we use the assumptions and notation of Chapters 3, 5, 6-9 and 11-
12.

13.1 A proof of Theorem 6.9: the problem is localizable on W

We fix € > 0 such that ¢ €]0, L inf(aX,a¥,€0)]. Let a €]0, L inf(aX,a",e0)]. The
precise value of o will be determmed in Section 13.3.
We use the notation of Section 11.2.

Theorem 13.1 — There exist ¢ > 0, C > 0, § €]0, 1], such that for u €)0,1], T > 1,

(13.1) ‘«p Trs [Nnéu(Ai,T/u)] — dim#@ Tr, [éu(BZ‘z’a)]

c -C
< T8 exp(F).
Proof. By (11.24), (11.25), we get
(13.2) Tr, [Nnéu(Ai’T /u)] — o T [NHﬁu(,ZzT /uz)] .

Using (11.21), (13.2), and proceeding as in Chapter 9, we find that there is C > 0,
C’ > 0, § €]0,1] such that for u €]0,1], T > 1

(13.3) |T‘rs [Nnﬁu(Z%/uz)] — Ty, [qNHun (BY?) ” <cC (?>6exp (:g) .
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By Theorem 8.8 and by (13.2), (13.3), we get (13.1). O

In view of Theorem 13.1, to prove Theorem 6.9, we only need to show that there
exist C > 0, § > 0 such that

C
T6

dim Ny/x

(13.4) "I&s [anu(Ai,T/u)] T2

AR

Let F, (Au 7/4)(®; @') (z,2’ € X) be the smooth kernel of ﬁu(Ai,T /) With respect to

% As we saw after (11.29), F, (Au 1/4)(%, ) depends only on the restriction
of A2 1/, to BX(z, ).
By (7.10), we get

(13.5) / Trs [NHF (43 T/u)] %z

e/8
dim X ZdimNy/x
(27T) / ./zo|<s@ ( )

T, [NaFu(t ) (0, 220), (0, 22 ) |
ke (s0, 222 ) i (Z0) b (40)

Now we state an extension of [19, Theorem 13.6].

Theorem 13.2 — If ¢ €]0,3inf(eo,a®,aY)], a €]0, ;inf(eo,a*,a)] are small
enough, for any p € N, there exist C > 0 such that for u €]0,1], T > 1, yo € W,
Zo € Ny;xRyos | 20| < ef; then

(13.6)
a+ iz (= T [NaFu(t ) (G0, 2200, o, 220 )| < €.

There exist C' > 0, &' €]0,1/2] such that for any u €]0,1], T > 1, yo € W,
Zo € Ny/x,R.yos |%0] < %@, then

(%)‘“‘“" (%)2‘“"””" T [NaFu 17) (0, 222, 0, 22 ) |

— exp(— | Zo|?) dim Ny x [ 1 \¥™Y -
qdim Ny, x 2 .2? T [F( u? )] (yanO)

(13.7)

C
T "

Remark 13.3. By proceeding as in [19, Remark 13.7], from Theorem 13.2, one gets
(13.4) easily.
We will then concentrate on the proof of Theorem 13.2.
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13.2 An orthogonal splitting of 7’X and a connection on 7'X

On W, we have the splitting of C'® vector bundles

Definition 18.4 . If yo € W, Zo € Ny x R,yo» |Z0| < &, let TX] TX?

expX (Zo)’ expX (Zo)

be the subspaces of TXexp% (Zo) Which are obtained from T'Y,,, Ny,x 4, by parallel
transport with respect to VX along the curve t € [0,1] — expgf) (t2).
Then TX?', TX? are smooth vector subbundles of T'X|q, such that

TXY, =TY,
(13.9) u
Moreover on U, T'X splits orthogonally into

(13.10) TX =TX'eTX?.

Let PTX" PTX? pe the orthogonal projection operators from TX on TX!, TX2. Let
vTX' yTX? pe the connections on T X!, TX2,

(13.11) vTX' _ pTX'yTX : vTX? _ pTX*gTX

By Proposition 7.2, on W, VTX ' , VTX ® restrict to vTY vhNv/x,
Set

(13.12) OPTX = yTX' g yTX*
Put
(13.13) A = VTX _0yTX,

Then A’ is a 1-form on AU, with values in endomorphisms of T'X exchanging TX!
and TX2.

By construction
(13.14) i*A'=A.
Moreover if yo € W, Zp € Ny/x R,y,, then

(13.15) AL (Zo) =0.
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13.3 A local coordinate system near y, € W and a trivialization of
e A(THS) ®A(T*OVX) & ¢

Take yo € W. If U € (TRY)y,, let t € R — y; = exp), (TU) be the geodesic
in the fibre Y, ,, such that yl;=0 = o, %|t=0 = U. Since ¢ < %, the map
U € BTY(0,¢) — exp}, (U) € Yryy, is a diffeomorphism.

IfU € (TRY)yO, |U| <g Ve NY/X,R,yO, let yV € NY/X,R,exp{O ) be the parallel
transport of V' with respect to VNv/x along t € [0, 1] — expy, (tU).

Recall that m is the projection Ny,x — W. Then the map

(13.16) U, v) e B;‘Z)Y (0,€) X Ny/xR,yo — (exp;/o(U),‘rUV) e 7~ Y(BY (yo,¢€))

is a trivialization of Ny, x Ry, Over BY (yo, €).
If Z e (TrX)y,, Z=U+U',U € (TRY )y, U’ € Ny, xR pyo, Ul <6, |U] <k,
we identify Z to expgf(py ) (rvU’) € %U,. This identification is a diffeomorphism

from BLY (0,¢) x BNY’ *(0,€) on an open neighbourhood W, (yo) of yo in Xy 4. In
partlcular

(13.17) We(yo) N Yrwyo = B ¥(0,¢) x {0}.

Clearly there exists ag(e) > 0 such that for yo € W, Zp € Ny x Rr,yo» |Z0| < €/8,
the open Riemannian ball BX(Zy,ao(e)) is contained in W,/2(yo). In particular
0 < ap(e) <e/2 < b/4.

Now we take o €]0, inf(ao(), ga*, 3a¥, 3eo0)].

Let °VA(T @YX) be the connection induced by °V7X on A(T*©VX). Then
OAT* Y X) jnduces the corresponding fibrewise connection Oy A(TRS)BAT D X)
on 73 A(T3S) ® A(T*OV X).
Definition 13.5 . Let 3V ATRS)IBMT @V X) pe the connection on 73 (T S) ®A(T*©V X)
along the fibres X over AU,

aY

(13.18) 3VTVATRSBATOVX) _ 0gmi ATR)IBAT™ D X)
+ <VTXf5’wa +TY(fHV ) - A'(ff’W)PTxl.,e,-> f c(ei)
H,N H,N o
+ % (<SV(')fc5{’Wa é{‘w> — < N YIx VTXf Y/X>) f fﬁ.

In view of (1.6), (11.35), (11.38), (13.18) and using the fact that Tr[A’] = 0, it is
clear that

(13.19) 2v7rvA(TRS)®A(T"(° Dxy _ SVWVA(TRS)®A(T'(° 25§

+ 1 (A'()ei, e5) cei)cle;) + <A’(ff w)pTX* > fe c(e,) .
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Let us observe that by (1.34), (1.35), (13.18), we have the equality of fibrewise
connections on W,

(13.20) Z-=.3V7r:,/\(1}1s)?éaA(T*(N)X) — i*ovw;,A(TiS)QM(T'(O’”X)

+ Y (@W(Ew,), ,>f c(e')

1<i<2e

+1 <SW(-)ff’W, Yy ege.
By (1.6), (13.20), we get
(13.21) i*3v7r:,A(TﬁS)®A(T‘(°’1)X) _ i*va{‘,A(TﬁS)@A(T'(O'”X)

+ ) H(SWOFEY, e fV2c(er)

1<i<2e
+ 3 (ST OFEV VY o1,

je. i*3VTVATRSBAT@VX) 5 very closely related to the fibrewise connection
1ymiv ATRHBATOVY) gttached to (mw, THW, gTY).
Put

(13.22) BT ATRSIBAT D X)u _ o 3Gy ATRBAT OV X) -1

Take u €]0,1. If Z € (TaX)y, Z = U + U, U € (Ta¥)yo, U' € Ny/x o,
|U| < &, |[U'| < &, we identify (7}, A(T5.S) @ A(T*©V X))z (resp £z) to (miy A(TgS)
RA(T*OV X)),, (resp. &,) by parallel transport with respect to the connection
3YTVATRS)BAT @V X)u (resp V¢) along the curve t € [0,1] — 2tU(0 < ¢t < 1/2),
U+ (2t-1)U'(3 <t<1).

Let ZF""A(TRS)@\(T'(O VX 31’7'"A(TRS")QZ’A(T'(0 D) 1“'E ]."€ be the connection
forms of""V"VA(TRS)‘X’A(T'(0 v X) 3V"VA(TRS)®A(T'(O v X) Vf V‘E in the trivialization
associated to 3V"VA(TRS)®A(T‘(O VX) V¢, By (13.19),

(13.23)
- - = =(0,1) - - S =(0,1)
2F;VA(TRS)®A(T X) — 3F2VA(TRS)®A(T X) + % <A,(-)ei7ej>z (ei)c(ej)

+ <A,(faH’W)PTXl"ei> —f—o—tf\/—%e—il .

As in (11.36), we find that parallel transport with respect to 3Ty ATRS)BAT™ D X)
maps ¢! (TrX) into c}(TrX) ® TR S.

By (13.18), it is clear that the curvature of 3YTVATRSBAT @V X) j5 of length < 2
in 73, A(T3S) ® ¢(Tr X ). By proceeding as in the proof of Theorem 11.11, we see that
3PV ATRS)BAT @V X) i5 of length < 2 in 7 A(TRS) ® c(Tr X).
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By [1, Proposition 3.7], and by proceeding as in (11.46), we get
(13.24) 20T ATROBATCVX) 1y _ 1 (SVWDA(TRS)QA(T*“””X))ZO (2,U)
+02(|Z12)U if Z,U € (TRY )y, or if Z,U € Ny/x R yo -
By construction
(13.25)  SCVATRSBATCYX) (1) _ 0 if Z € (TRY )y, U € Ny/x.Royo -
Also by using the definition of curvature, we find easily that
(13.26) 3F20A(Tﬁ5)®A(T‘(°"’X)(U) — (3vﬂ{‘/A(TﬁS)®A(T*(°v”X))ZO (Z,U)

+ 012U if Z € Ny;x Ryo»U € (TRY )y, -

13.4 Replacing X by (Tr X),,

U € (TarX)y,, Z € We(yo), let °7U(Z) be the parallel transport of U
with respect to °V7X along the curve t € [0,1] — 2tPTYZ, 0 < t < 1/2,
PTYZ 4+ (2t —1)PNvixZ, L <t<1.

Ifyo€Y,U € (TRY )y, put

4|U|
13.27 U) = —] .
(13.27) wo) = (55)
Then
Y
pO)=1 i U] < 2,
(13.28) y
—0 if U= 22
— 4 -
Let ATY be the Euclidean Laplacian on (TRY )y, Let €1, ..., €2 be an orthonormal

basis of (TRY )y,-
Definition 13.6 . Let L be the differential operator on (TrX)y,,

20
(13.29) L=(1-p*(PTY2))A™Y + (P 2) Y V3. .. prvz)-
1
Let (a,b) € R? — k(a,b) € [0, 1] be a smooth function such that

Kk(a,b) =1 if |a| < 1/2, |b| < 1/2,

(13.30)
=0 if |a|>3/4 or |b| >3/4.
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If Z € (TrX)y,, put

TY N.
(13.31) QO(Z)=;¢(|P Z|, |P Y/xz|) .
€ €
Then
(13.32) (Z)=1 |if |PTYZ|<¢/2,|PN/xZ|<e/2,

=0 if |PTYZ|>3e/4, or |PY¥/*xZ| > 3¢/4.

Let ANv/x be the Laplacian on Ny/x R,y,- We still define the vector space Hy, as in
Definition 11.12.

Definition 13.7 . For u > 0, T > 0, let 583}?19, ‘M:,%? be the operators acting on H,,,
—u? - _
LU = (1= P (2)(5- (L + ANx) + TPE 5, P
T2 + PNv/x7 2 _ _
(13.33) + ;g(Pﬁ + |——"2—|P§ ) +0*(2) A% 1/ s
2 ~

Mo = (1= *(2) 5 (L+ AN/%) + *(2) B

Let k" (Z) be the function defined on W, (yo) by

(13.34) dvx (Z) = k"(Z)dvrx(Z).

Then kl’(,‘, =1.

By construction, ¢?(Z) is equal to 1 on We/2(yo)- Also if Zo € Ny x R, yo> |Zo| < &,
then BX(Zp,a) C ‘W,/2(yo). By using finite propagation speed, it is clear that if
20 € NY/X1R7y07 iZ0| < e/8,

(13.35) T, [NarFu(A2,774) (90, Z0), (30, Z0)) | K" (30, Z0)

= Tr, [Nea L (£13) (20, 20)] -

13.5 Rescaling of Z and of the horizontal Clifford variables
For u > 0, T > 0, let Gy, T be the linear map H,, — H,, given by

Y TpPNv/xZ
u U

Set

(13.37) LR = G r L PG,

27y0 — -1 1,90
‘M‘u,T - Gu,TMu’ GU,T .
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Then

LR, ML € (my A(TRS) ® ¢(TrX) ® End(€)),, ® Op.
Let e1,...,ezr be an orthonormal oriented basis of (TRY)y,, let eap41,..., €2 be
an orthonormal oriented basis of Ny, x R,y,- Let e',...e?* and e2t'+1 . ¢2¢ be the

corresponding dual basis of (TRY )y, and Ny, x R, y,-

Recall that the vector spaces K, K;'f) were defined in Definition 12.2 and that
the operators ¢, (e;) were defined in Definition 12.3.

Definition 18.8 . Let 583’9_;’,./%3 ¥ € End(K,,) be the operators obtained from
$i’§9,Mi’f{,‘3 by replacing the Clifford variables c(e;) by cy(e;) for 1 < ¢ < 2¢/, while
leaving unchanged the c(e;) for 2¢' +1 < i < 2¢.

Let F, (§£3’y°)(Z 2"y (Z,Z" € (TmrX)y,) be the smooth kernel associated to
max
F, (§£3’y°) with respect to d;’—:)’f;,s,%} We still define [F (i’s’y" ] as in (12.12).

Proposition 13.9 — For any u > 0, T > 0, Zo € Ny/x R,yo> |Zo] < eYT , the

8u

following identity holds

(13.38)

(%)2dimNY/x v, [Nnﬁu(Ai /) ((yo, l\t/Z—O) (o, Qf/Z—O))] K" (yo, u_\/ZQ_(:)
— (Y Ty, [N [Fu(@280)(Z0, 20)]) ] -

Proof. Using (13.35), the proof of our Proposition is the same as [19, Proposi-
tion 13.17). O

If C is smooth section of m}y A(T%S) ® ¢(TrX) ® End(¢), if z € X, is close
enough to yo, let C3(z) be the element of (m}, A(T5S) ® End(A(TRY)) ® c(Ny/xR)
® End(£))y,, which is obtained by using the trivialization indicated in Section 13.3,
associated to V"QA(Tﬁs)éA(T*(O'I)X)’“, and by applying the transformation of the
elements of ¢(TrX )y, of Definition 13.8.

SOCIETE MATHEMATIQUE DE FRANCE



222 THE ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—AZ 1) ...

13.6 A formula for 583’y°
Observe that

13.39) £ = M3Y + P (wPTY Z + —=PNv/xZ
(13.39) al 7 )

c(®re;)

\/—
+ T—2V2('U,PTYZ + _y_PNY/XZ)) + (1 _ <p2(uPTYZ + LPN"/XZ))
u? VT JT

2
et )
2

1 avﬁ 1% v TY u Ny
— —_— /X
( { J fH,W +T Ore; } (UP Z+ \/__P Z)

T2

(TP'E‘ SyoP¢ + ZEP“ + 7]

Now we establish an extension of [19, Theorem 13.18].
Theorem 13.10 — The following identity holds

u

(13.40) MIY = -1 <1 — Q2(uPTYZ + ﬁPNY/XZ)> (Lyprv z + TANYIX)

2¢

u
+ 1/)u<P2(UPTYZ + ﬁPNY/x Z) {_% (\/TVPNY/X OTCi(uPTYZ"'?uT’,PNY/X Z)
i=1
- * = *(0,1)
+VPTYOTei(uPTYZ+7,,$PN,,,XZ) +u [sr vATRS)BATT OV X) (0,
+ 1 (A’ (°rei)re;,  rer) c(Pre;)c(Prex)

a © 1 pH WY pTX*0_ €0 TY U HNy,x 2

+* s (A (FEW)p Tez) +T¢( Tel)] (WPTYZ+ =P z))

LuvTvV
+2(U T PNY/XVOT_:;.OTei(uPTYZ+7“?PN"/XZ)
k3

+uV 2Py A(TRS)BA(T OV X) + I‘E)

PTYUTX Ore(uPTY Z+ 3 PNY/X 2) Tt ) [(
Ore

2
VIX Ore)(wPTY Z + —=PNv/xZ ] + L KuPTYZ + —=PNv/xz

c(°re;)

7
PP REGEY )] WP 2+ S P 2) !

+ u? [%C(OTei)C(OTej)Rls(OTei, OTej) + fr—— R'g(fH W 0re;)

Proof. Formula (13.40) follows from Theorem 7.20, from (13.19) and from (13.33). O

Recall that S was defined in (12.20). Since &y, >~ ANy, ®7, S acts naturally on
A(T*OVX) ® £~ )w. Now we extend (19, Theorem 13.19).
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Theorem 13.11 — For any yo € Y, u €]0,1], Z € (TrX)y, such that |PTY Z| <
3e/4u, then as T — +oo0,

3
1341) T 2foavé, v+ S &% gt PTYz + Y pNvixz
( ) { f H w Z \/§ orei } (u \/T )

— T a/\V€ 174 =3 C( Tet) V PTYZ
=u )TN Ve +2;“{T} ootV (WP 2)

+ \/T{f"‘ AT VEawV

Ny/x z

+Z {C( i } Vi "Y/xzv"-re } (UPTYZ) +0(u |PNY/XZ|2) )

c(Ore;) u
T § : { } $76,VWP™YZ + —PNZ)
20/ 41 u T

24
Y S G T = AW, i e )
PR LI

Vx5 Vore,V(WPTY 2) + O(u | PYY/x Z]%),
T? 2., pTY U pNy |PNY/XZ| -
—(V— — /X L~ p¢
— (V) (uP Z+ =P Z)=T—F5—P
T [vV=1_
+ ug [WC(PN"/XZ), Ve x5V ooy /XZV_(uPTYZ)] +0(u? | PNvix z|%).
Moreover

_ 20 0 . 3 _
(13.42) Pt [ FENV gV + D {c(}z‘f‘) } V5 e, V] (wPTY Z)P¢ =0,
1 u

- c(e; _
pt {fa/\veNY/xZ f"WV+Z {( )} Nv/xzvs‘re }("*"PTYZ)Pg =0,

Z c(e' Ve, V(@PTY Z)P¢™ = P& S, P&
2041
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Proof. Clearly, as T — +o00
(1343) Lfoave,  V@PTYZ+ " pMvixz) =
) u fav VT

-:E FONVEww V(PTY 2)+ VT f* AV VE o V(uPTY Z)+0(u |PNvix Z|%).

pNY/x 7z fE

Also since VT PNv/x Ore;(uPTY Z) = 0, using (7.27), (13.18) and by proceeding as in

(11.36), the exlja.nsmn as T' — +o0 of Tﬂ%l(uPTYZ + \/LTPNY/XZ) with respect
to 3VTVATRS)BAT @V X) ig given by

c(°re;)

(13.44) T2 7

(wPTY Z + ;T.PN"/XZ) =

TC(OTCi)

7 (uPTY Z) + 0, (u? | PNv/x Z|%).

From (13.44), we see that as T' — +o0,

3
(13.45) {TC—(O\;_;)} (uPTYZ+7u_fPNY/XZ)=

T{C(\};’)} wPTY Z) + O(u |PN¥/x Z|*).

Since for 1 < i < 2¢, °VT¥, ,%7e;(uPTY Z) = 0, by (13.20), we get for 1 < i < 2¢/,

(13.46)

3Vﬂ‘§-¢(TRS)®A(T*(O l)x)c( Te:) uPTY Z) = —(TW(fEW PTY 7),%r¢;) (uPTY Z)fo.
P zZ \/_ o

From (13.46), we deduce that in the trivialization associated to
for 1 <t <20, c(°re;) lies in ¢(TRY) ® T#S. In particular

3V1r;,A(T,;S)®A(T*<°-Ux)
)

(13.47) {ucCre;)wPTY 2)} = 0(1).

From (13.43), (13.45), (13.47), we get the first identity in (13.41).
Since OVPTYZ Te;(uPTY Z) = 0, using (13.20), it is clear that for 2¢' +1 < i < 2¢

13.48 3y ATRSIBAT OV X) 0,0y PTY Z) = 0.
PTY Z

Therefore for 2¢' +1 < i < 24,

(13.49) {c(rei)}> (wPTY Z) = c(es).
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From (13.45), (13.49), we get the second identity in (13.41). The third identity was
already proved in [19, Theorem 13.19].

The first identity in (13.42) follows from the fact that VI‘TV = 0, and also from
(7.21) and Theorem 9.8. By [19, Theorem 13.19] and by Theorem 9.8, we get the
second identity in (13.42). By Proposition 7.8,

20
(13.50) P& Y c(e’)vo,e V(uPTY Z)Pt™
2¢0'+1 \/_

2¢
= PE_ %V—-l Z C(ei)E(OTei) Pg_
2¢'+1

Now since €|W ~ ANy /x ®1N is an identification of holomorphic Hermitian vector
bundles, one finds easily that for 2¢/ + 1 < i < 2¢, ¢(°7e;) is identified to c(e;).
From (13.50), we get the third identity in (13.42). The proof of our Theorem is
completed. O

13.7 The algebraic structure of the operator ££ wasu —0
By (13.45), (13.46), (13.49), we see that asu — 0, if 1 S j<2e,
(13.51) w {C(OT—"’J)}a (uPTY Z + —PNv/x Z)
v2 J, vT
=el A —fz'ej —u(TY(fFW,PTY Z),¢;) f©

2
N- 2
+e ("2<|PTYz|2+——~—'P e >) ,

and if 20/ +1 < j < 2¢,
(13.52) {C—(O—Tﬁ’—)}s (uPTY Z + ——PNv/x) =
' v2 J, VT

c(ej) U\ DNy x 7|2
\/§+@(T|P rxz[*) .

By construction the 7e; (1 < i < 2¢’) span Tr X! and the 7e; (2¢' +1 < j < 2¢)
span TrX?. Since A’ exchanges TX! and T X?,
(13.53) 1 (A"%7e;, % ex) c(®re;)c(Prer) =

z Z (A"%7e;,%rer) c(®rej)c(®Tex).

1<j<2¢
20'+1<k<2¢
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Moreover
(13.54) A'(fEW)pTX 000, € TRX2.

From (13.51), (13.52), (13.54), we see that as u — 0,

(13.55) {ul (A’ (°rei)1e;, Orex) c(®re;)c(®Tex)

3
+fa\/_ (A/(fHW)PTX 0, ) } (uPTY Z + ;_PNy/xZ)
— Z (Ayo(e,)e_,,ek> el A ijg)
1<j<2e
20/ ¥1<k<2¢

+ f"—j——i (AL (FEW)PTY ¢,) .

From (1.33), (13.14), (13.15), we find that

e
(13.56) Z (A, (ei)ej ex) e A g/f) \/. (AL, (fFEW)PTY ¢;) =
1<j5<2¢
2e’¥f§k52e
. c c
Y eI A—= (Ay(e))PT &) + fE—=A(fEW)PTY ¢
\/5 Yo \*~J2 \/é o ’
1<j<2¢
21'If§k52£

which is equivalent to

(13.57) 1<Z<:2, (A, (ei)es,exn) el A Cf;g)

2e’+1<]<2e :

+f (A (FEW)PTY ¢;) = —%
As we saw after (13.23), 3Py (MTRSBAMT OV X) jg of length < 2 in v ATRS)
®c(TrX). By (13.24)-(13.26), it is clear that asu — 0, {ut,°T

(APTYei) .

uPTY Z+ 32 PNY/X z¥u ! }

has a finite limit given explicitly in terms of the curvature of 3V™A(TRS)BAT* 1 X)

restricted to W, where only the 5%)- (1 < i < 2¢) replaced by e*A and the f© survive.
Clearly

(13.58) va{,A(TﬁS)®A(T‘(°”)X),2 _ 3V1r;,A(T,;S)®A(T'<°v1)X),2

+ [3V”0A(T§S)®A(T‘(°'”X), 2yl ATRS)BAT OV X) _ 3V"&A(Tﬁs)®A(T"°"’X)]

~ ~ 2
+ (2V1r{,A(T,‘tS)®A(T’(°'”X) _ 3vw{‘,A(T§S)®A(T'(°’1)X))
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By (13.19),

(13.59)
(2V"0A(TQS)®A(T"°’”X) - 3V”&A(T.;S)®A(T"°'”X))2 = 1 (A"%e;, €;) c(ei)c(e;)
+1 <A/2(ff,W’fﬁH,W)PTXI.’PTXI.>fafﬂ
(A’(.)A’( ff’W)PTXI.) .

£
V2
By [19, eq. (13.61)], if Z, Z’ € (TaX)y,, if U,U’ € TRY,

+ f*

(13.60) (A2(2,Z2")U,U"y = (A2 (U, U"PTY Z,PTY Z') .
Also by (1.33), (13.14), (13.15), if Z,Z’ € (TrX)y,, U € (TEW )yo, U’ € (TRY )yo,

(4 (D)4, (U)Z',U")

= (A, (PTY 2)A,(U)Z',U")

== <Ayo(U)Z,’Ayo(PTYZ)UI>

= — (A, (U)PTY Z', A,,(U")PTY Z)
= (Ayo (U) Ay, (U)PTY Z, PTY Z')

= (Ay (U") Ay, (U)PTY 2/, PTY Z) .

(13.61)

Moreover, by (13.18), (13.19),

(13.62)
[3V7r(‘,A(T,‘.-¢S)®A(T"(°’1)X), 2y A(TRBAT OV X) _ 3V1r(‘,A(TﬁS)¢§A(T‘(°'1)X)]

[Ovvr(,A(TﬁS)éA(T‘“"l)X), 2V ATRS)BAMT OV X) _ 3Vw{,A(TﬁS)®A(T‘(°'1)X)]

c
V2
+ (A (FEW)YPTX GTX FENX L TV (LY ) — A (F5P)PTX) pe .

o (AYTTE N LTV (FIY ) — AGFEW)PTX))

Now we briefly explain how to calculate the limit as « — 0 of {u2z/)u3

» - D »(0,1) 3
V;;’MTRS)@A(T > X)’z(Z,ei)Q/);l} . We use (13.58)-(13.62). We claim that no
u

term in (13.62) contributes to the limit. In effect °VTX preserves the splitting
TX = TX' @ TX? Then by (13.19), it is clear that [OV™VATRIBATOVX)
2y ATRS)BAT OV X) _ 3V";’A(Tﬁs)§A(T‘(O'1)X)] does not contribute to the limit.
Using the second identity in (1.35) and (7.27), we find that the remaining terms in

(13.62) do not contribute to the above limit.
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By Proposition 11.8, (11.61)-(11.65) and (13.58)-(13.61), we see that as u — 0,

- * = *(0, 3
(13.63) {uly, S Vi ATRIBATTEDN2 7, e’} —
(<7‘*( ' TX)%OZ’ ei> - <A1210PTYZ’ PTYCi)) .

From (13.24), (13.26), (13.40), (13.55)- (13 57), (13.63), we see that as u — 0, the
operator Ms’y" converges to an operator .MO given by the formula

2¢
1
(13.64) M3y = -3 > (\/T VpNyixe, + VpPrve,
1

vT

Ny, x
+ _;_ <Z*(VTX),§OP \/TZ , PTY€ > <1/ VTX)yo PTYZ PNy/xe>

- Ew) + i ((V€)2 + _;, ﬁ[(vTx)z])

1 PNvixZz
+3 <(i*(VT")§0 — PTY 42 PTY) (PTYZ+ ————) ,ei>

V2

Yo

Also using (13.51), (13.52), we find that as u — 0,

3
c i u
(13.65) { favﬁ,,wv+z (Jf) OTeiV}u(uPTYZ+ﬁPNY/XZ)

1, o
= —"VEV (o) - f VTW( jaw pry gV + Z \/- VeV (%)
2041

agé
+f vPryz+—‘/=|=—1"NWTXZ fo‘wv(yo)

2¢'
5
+ Z e’ AvaYz+P Y/XZ OTeiV(yO)

2041
N 2
0 (u(]PTYZ|2 + w)) .
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Now by [19, eq. (13.102)], by (7.21) and by Theorems 9.8 and 12.7,

Pé fava(fH w pryz)V (W) ¢ =0

Pt z C(ez)vf V(50)PE =5,
20'+1
Crev ¢ € _
Pt s vPTYZ+PNY;‘X fo,wv(yo)P =0,
2¢

sze/\V

(13.66)

VE V(yo)P¢ =0.
N / e;
PTYz+P YTXZ

Identity (13.64) now plays the role of identity (12.15). Identity (13.65) replaces
(12.21), and the identities (13.66) replace (12.22).

For u > 0, let @2 be the operator defined in Theorem 5.8, which is associated
to the exact sequence of holomorphic Hermitian vector bundles on W, 0 — TY —
TX,w — Ny,;x — 0. Using the previous formulas, the second identity in (5.16) and
proceeding as in [19, Section 13 i)], we find that given T" > 0,

(13.67)  lim &Tx, [NH exp(—Aﬁ,T/u)] —

/Y & Tr, [ Nex exp(—G14D%:Gi,r)] ch(n, g7).
Equivalently
(13.68)  lim &Tx, [NHexp( A2 T/u)] / @ Tr, [Nu exp(~D2.)] ch(n, g") -

Identity (13.68) is compatible with Theorem 6.8, because of (5.19).

13.8 The matrix structure of the operator 583’”’ asT —4oo

For convenience, we introduce a Hermitian metric g7° on T'S. This metric induces
a corresponding metric on A(TR{.S).
Definition 13.12. Let Fy, (resp. Fgo) be the vector spaces of smooth (resp. square
integrable) sections of (7}, A(T%S) ® A(TRY) ®n) vo OVeT (TRY )y, Let K, K=yt070 be
the vector spaces of square integrable sections of (3, A(T%S) SA(TRY) ANy /x)®

€) 0 (Tiy ATHES) ® A(TRY) & ANy, ) B E*),, over (TrX)yo-
We equip F) with the Hermitian product

(13.69) 0,0/ €F — (0,0') = / ) (0,0')(2) ?;:)Zénz)z :

Jvo
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We equip K with the Hermitian product

d'UTx(Z)
13.70 s,s e K% — (s, s ——/ 8,8V (2)——= .
( ) Yo ( ) (TR X)so ( ) ( )(21r)dlmX

We now use the notation of Chapters 7 and 8. In particular 6,, denotes the K&hler
form of the fiber Ny, x R, y,- Set for Z € (TrX)y,,

el

(13.71) Byo(Z) = exp <0yo )

Here (3,,(Z) is considered as a section of (A(_N-;, /x) ® A(Ny y x)) . Recall that
Yo

§po = (A N;'/X ® M)yo-

Definition 13.18. Let 4 be the linear map v : 0 € F* — 0 8, € K.

0 . . -, .
Let K? be the image of F)  in K. By [19, Theorem 7.4], or by (8.41), % is an
isometry from FJ  onto K> .

Let K>+, K>+~ be the orthogonal vector spaces to Ki» in KJ ,
respectively. We then have the orthogonal splittings

0 __ 10 10, L
Kyo - Kyo ® Kyo

—,0 _ g0 0,1 ,—
Kyo - Kyo ® Kyo .

-,0
Kyo’

(13.72)

Let p,pt denote the orthogonal projection operators from K(y)0 on K/©

m, K>+ with
respect to the Hermitian product (13.70).

Set
(13.73)
- +
Aur =pESYp, Bur =p¥ ¥ pt P4, Cur =pLIYR P,
- - - - +
-l)u,T=-Pe pJ_g?,,:%?pa l?u,T=IJE pl‘gi?{?plpg ’ -F'u,,T=}3E PJ"SZ?,’,%?P& )
+ + - + +
Gur =P £%p,  Hur=P" £ p- P, I,y =PY £3% P

Then we write the operator SEZ%‘? as a (3,3) matrix with respect to the splitting

0 _ 10 70,1,— +,0
Kyo - Kyo & Kyo ® Kyo ’

Au,T Bu,T Cu,T
(13.74) £ = |Dur EBur Fur
Gu,T Hu,T Iu,T

By proceeding as in Section 8.2, we know that for v € ]0,1], as T' — +o0, the

differential operator SEZ’,%P has an asymptotic expansion of the form

(13.75) LR =D "0, TH? .
k<4
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Therefore as T' — +o0, the operators A, 1, B, r,... have asymptotic expansions
similar to (13.75). Put

2¢
1
(13.76) V=g ZI:A(ei)ei.

Then v € Ny, x r is the mean curvature of Y in X.

We now prove one of the central results of this Section.

Theorem 13.14 — For u € |0, 1], there exist operators A,, By, Cy, Dy, E, F,, Gy,
H,, I, such that as T — 400,

(13.77)

Aur =Ay+0 (%) , Byur=VTB,+0(1), Cu,r=TC,+0(\T),

Dyr =VTD,+0(1), E,yr=TE+0(T), F,r=TF,+0(T),
Gur =TG, +06(T), H,r=TH,+0KT), I,vr=T2I,+0(T%?.
Let P, be the operator acting on K,
e~ ) 2 TY ¢ cei) e
(13.78) Py =uP* ¢ P*(WPTY Z) Viimyvupryzy + 5 Vervizg
20'+1
(<p2 vé v) (uPTY 2)

Ore;

1 e~ - — — —_—
4 3 [T g OV P 2, P, T, (VI PTY )

PNv/x z|? -
= (Vpry/x g ¢*)(uPTY Z) (S+ %) } PE

Then the following identities hold

(13.79) B, =pP,pt P*

Cu=pP& QP(uPTYZ) (% i {3‘-9%3—)}3 (VE,..V) wPTY2)

1 u
1 20 o(e:) .
e Ta v TY i 3 TY '3
+ = f (Ve VIWPTY Z) + uz,;l ol (vomv) (uP Z)) Pt
Dy, = P¢ ptP.p,

E=p' P* (—% ANv/x 4 % |PNvixz|? 4 S) P& pt,
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oo () )

1

= (Ve VI@PTY Z) + 2;_:,1 LI (95,.v) PT"Z)) P,
1

+ +
I, = — Pt (((p V)2 4 (1 — p?) P€+) (uPTY Z) PE*

Proof. Using formulas (13.15), (13.25), (13.39)-(13.42), the proof of our Theorem is
the same as the proof of [19, Theorem 13.22]. O

13.9 The asymptotics of Fyk'/2A, pk~1/2F;?

We use temporarily the same notation as in Section 8.1.
Take z = (y, Z) € U,,. We identify &, to &, in the same way as in Section 8.1. Also
we identify (13 A(TS) ® A(T*OV X)), to (13 A(TS) ® A(T**V X)), by parallel

*(0,1)
transport with respect to the connect10n3V7rV MTRSBAT X)

X,tel0,1] — (y,t2).

Then the restriction of ZI,T to U, acts naturally on smooth sections of A(T5%.S)®
E(go), and so it defines a superconnection on E(gov/T).
Definition 18.15 . Let € be the superconnection on E,

along the geodesic in

c(e:)
/3
a p (OFAT* OV X)B¢ HW
+ fEA ( V(fuw) + By(fa” ))
(T (F3, £57)
2v2 '
Now we give another version of Theorem 8.5. Of course the difference is that
we have used a different trivialization of 73 A(T%S) ® A(T*®V X). In what follows,
Z e Ny/ X,R
Theorem 13.16 — As T — +o0, then

2¢
(13.80) € =D +>" By(e:) + 3V4V5V(y)
1

_..;_fafﬂ

(13.81) Frk/?24, rk~2F;! = TV (y) + VT(DNY/x + V5V (y))

1 2 N Y s 3
+(s:+ﬁ@(|2| Nvix +12|8Y + 12|05 + 2| + | 2| )

Proof. Inspection of the proof of Theorem 8.5 shows that the only term in
Frk'/2Ark~'Y2F;! which may eventually modify the expansion in (8.10) is
FrkY/2DXk-1/2F!,

ASTERISQUE



THE ASYMPTOTICS OF Frk'/?A; rk~/2F;1 233

Clearly

(13.82) DX — Z c(®res) YATT O X)8E
T V2

O

Using (13.82), we find by a formal argument that with respect to [19, Theorem
8.18] or to (8.10), there is an extra contribution in the present expansion of
Frk'/2DXk~=1/2F;! given by

2¢
" - 2 =(0, - - P> = (0, C e,
(1383) 3 [(3V1rVA(TRS)®A(T ©ONX) _ 0gmi ATAS)BAT*C I)X))y (2), \(/_)] v..
20'+1
+ Z C(ez) ( VwVA(TRS)®A(T*(° Nx) 3V7rVA(TRS)®A(T"(° ‘)X)) (&) =
20'+1 \/ﬁ

[(va“,A(TﬁS)@m(T'(o'l)X) _ va“,A(T,‘LS)éA(T‘(O'l)X)) (Z),DN,,,X] )

Now by (7.27), (13.15), (13.18), it is clear that for 2¢' +1 < ¢ < 2¢,

s

(13.84) [(3V1r{,A(TﬁS)(§A(T'(°’”X)_va{‘,A(TﬁS)@A(T'(O’”X)) (2), C(ez)] 0.
Also by (13.18),

2¢
(13.85) Z C(ez) (OVWVA(TRS)®A(T"<° NX) _ 3y Arp )BAT 1>X)) (e:)

20/ +1 vz
- _ Z cles) <V HNv/x +TV(ff’V,ei),ej>y fa\c/(gj)
26/ +1
- Z L (¥ st g5 = (N IR NN gt
2071 2

Using (7.27) again, the first expression in the right-hand side of (13.85) vanishes on
W. Also by (1.6), (7.27), we get for 2¢' +1 < i < 24,

H,N H,N H,N
(g oI £ "/">=—<fa TV (Y e))

13.86
( ) <TV( HV nyY/X) ei>-
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Moreover using (1.5), (1.6), we obtain

(1387)  (SV(e)fEW, FIF) = L{TV(FEW, £57), &)
+ 3 (TVEY ), 5 ) = 1 {TV(IEY e, W)
= 3 (TVUEV 1Y) ) + 5 (TV(FEY e, g5 %)
= 3TV e X))
= J(TV UYL T A TV Y 1) =TV (Y £ e

From (13.85)-(13.87), we find that

2¢
(13.88) > dei) (OV”:/A(TES)@A(T'(O'I)X) _3vw'vA<TaS)®A<T*<°J>X)) (es)

20/ +1
_ _lfafﬁc(PNY/XTV(ff’W,f;{’w)) .
From (8.9), (8.10), (13.83), (13.84), (13.88), we get (13.81). The proof of our Theorem
is completed. O
Theorem 13.17 — The following identity holds
(13.89) v 1pCpy = BY.

Proof. The proof of our Theorem is the same as the proof of Theorem 8.8. Note that
here, the identity (8.48) is not needed. O

Using [19, Proposition 8.9] and Theorem 13.16, we find that as 7' — +o0,

(13.90) FrA,rF;' = TV+(y) + VT(DNv/x + V4V ()
dimY

+6-="

c(v) +0(—=).

ﬁ
Also
[DH,DNv/x] =0

(72 AOVAG 0%, pivix] = 0.

(13.91)

By squaring (13.90), using (13.91) and comparing with (13.77), one gets an
explanation for the simplicity of formula (13.78) for ®,,.
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13.10 A family of Sobolev spaces with weights

Let ¢ be the orthogonal projection operator from (7, A(TnS) ® A(TRY)
@A(ﬁ;/ x) ® E)yo on (T AT S) ® A(TY) ® {exp(8)} ® ) 4o Recall that p is the
orthogonal projection operator from K9 on K;? and that p* = 1—p. By an obvious
analogue of (8.43), we know that if s € Kgo,

1 — |PNvix z)|?

_lZ,I2 TY / !
q exp | —5— s(P" Y Z + Z")Yduny,x(Z) .
Ny;x,R,yo

Let ¢* be the adjoint of the map ¢ : F§ — Kgo defined in Definition 13.13 with
respect to the Hermitian product (13.69), (13.70). Then

(13.93) Yr=9"lp.

Definition 13.18. If Z € (TrX)yy, U € (TRY )y,, set

1/2

(13.94) 1 |prvrxz)* v pNv/x 7
+ 1+ T (2\/_ | |)
Gu@) =1+ (1+ |U|2)1/2 0 (329-) .

The algebra (73, A(T}S) ® A (T1Y))y, splits into

2(dim Y +dim S)
(13.95)  (my A(TRS) ® A (TRY))yo = P @WATRS) ®A(TRY));, -
0

This splitting induces corresponding splittings
2(dim Y +dim S)
0 _ 0
Kyo - @ K"",yo ’

(13.96) 0
2(dimY +dim S)

Fgo = @ Foyyo *

0
Definition 13.19. If s € K9

"'yo’

(13.97)  slizrye0 = / IsI? lgu, 7] ? G YH2ERET (7) dur x (2).
RA )y,

0
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Let ( , )y 7.4,,0 be the Hermitian product on K9 which is the direct sum of the

Hermitian products on the K2, ’s associated with formula (13.97).

If o € R, let K4, K;':"‘ be the Sobolev spaces of order p of sections of

(1]

(T ATRS) © ATRY) @ AWyx) B€), (mivATRS) B ATRY) B ANy x) BE*)
over (TRX)yO- Ifse Kgo, we write s = st 4+ s, st € K;to’“.

Definition 13.20. If s € K}/o, set

2 T2

u,Tyy0,1 — u2

2

(13-98) Isl uaTvyOvo

2 _
|s+|u,T,yo,0 +T|pts™|
20/

N, 1.—12 2 2
+T||PYY/XZ| ps™ |, 1 go0 T [PSluryo0 + D Ve slazyo0
1

2¢ )
1
+T Z |Ve,~p slu,T,yo,O :
2041

Then (13.98) defines a Hilbert norm on K . Let K, ! be the antidual of K and let
| |u7yo,—1 D€ the norm on K ! associated with the norm | ,on Kl We

identify K9 with its antidual by the Hermitian product (, ), 1, o-

‘We have the family of continuous dense embeddings with uniformly bounded norms

|uvay0,

(13.99) K, - K) - K.

In view of Theorems 13.11 and 13.14, it should now be clear that the functional
analytic arguments of [19, Sections 13 k)-13 o)] can be used without any change.
In effect, the asymptotic structure of SEi%‘? as T — 400 is exactly the same as in
[19, Section 13]. Of course, we have the extra Grassmann variables f*, but these are
exactly of the same nature as the e* (1 <1 < 2¢').

Details are left to the reader.

13.11 The operator =,
Definition 18.21 . For u > 0, yo € Y, let Z¥% be the operator from F, into itself

(13.100) EY = Y (Ay — BuE™ D, — CLI;'GL)Y.

In view of (13.79), one verifies easily that Z¥° is a second order elliptic differential
operator.

If U € BIY (0,), we identify (niy A(T}S) & A(T*©DY))y, ny with (n A(TES)
SA(T*OVY)),,, 1y, by parallel transport with respect to 1y ATRS)BATOVY)u,
V7 along the geodesicin Y t € [0,1] — tU.
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Let G, be the linear map
(13.101) heFy, - GheFy, , Gu.h{U)= h(%), U € TrY,,
Let $2:% be the operator acting on smooth sections, of (73, A(T3S)® A(T*©VY) &
m)vo
(13.102) $2v = G;1BY?G,, .
Let 3% be the operator obtained from ¥.2.%0 by replacing the Clifford variable c(e;)
(1<i<2¢) by 3@ - 3\%‘- Then ¥3:% is a differential operator acting on smooth
sections of (mjy A(T%S) ® A(TRY) ® 1))y, over BLY (0,¢/u).

Now we prove the obvious extension of [19, Theorem 13.43].
Theorem 13.22 — QOver BZ;Y (0,e/2u), the following identity holds
(13.103) r3vo — Zvo

Proof. Using Theorem 13.17 and (13.90), the proof is formally exactly the same as
the proof of [19, Theorem 13.43] and of Theorem 9.25. O

13.12 Proof of Theorem 13.2

Using Theorems 13.11, 13.14, 13.22, the proof of Theorem 13.2 proceeds as the
proof of [19, Theorem 13.6] in [19, Section 13 q)]. O

13.13 A proof of Theorem 6.19

Now, we will establish (6.85). Namely we show that if h, 1 is one of the fonctions
6u, T, Xy 15 Au1> Ty T, 7 then for v €]0,1), T > 1,

. C
(13.104) |,/ — hy| < T -

To make the discussion simpler, we will take hy T = 6, T, the discussion for the other
cases being much easier. Also the proof of (6.85) for h, 1 = Ny, (With u > ug > 0)
is essentially similar.

An evaluation of the limit of 0, 7 as T" — +oo

First we will show that for u > 0,

(13.105) lim 6,7 =05.

T—>+00

We will recall a few identities from [14, Theorems 1.7, 1.14 and 2.6], which are more
precise than Theorem 2.14. Recall that w""¥ was defined in (3.16).
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Theorem 13.23 — The following identities hold
(13.106)
VE'2=0,vE? =0
v, 5] =0,[vE,5""] =0,
-VE”,(UV’H] = 0, [VEI,UJV’H] =0 ,
— i V(1,0) X i Vv (0,1)
rax,wV’H] _ (T ) , [BX ,wV’H] _ —ie(T ) ,
8 V2 V2
” —X ’ ——X*
VE ,C(TV(I’O))] — [6 ,C(TV(I’O))] =0, [VE (TV(O 1))] [ (TV(O,I))] =0

Proof. These results are proved in [14]. In particular the third identity was established
in [14, Theorem 1.7 and eq. (2.21)]. Of course, the reader should keep in mind that

Jin [14] is V23" . O
For a € C*,u > 0,T > 0, set

AL = aud” + Tv+ VE' + d-( o _ w’?¥ ) _ TV

da  2u2aa? 2v2ua
0 in’H) c(TVO.D)

Al = Tv* + VE +d
T aud "+ Tv* + + a<6a+2u26a2 ov/3ua

(13.107)

Al =AY+ AL .
Then Atlb,T is a superconnection on E over § x C*.
Proposition 13.24 — The following identities hold,

" oV, H _ " o in,H
AL =ex v (aax +Tv+ VE +dd—) exp| —= |
T =P <2u2 la? 5a) “P\ 2uz|aP?

iwVH =X , bS] —jwVH
AY, =exp| —s ad  +Tv*+VE +da—) exp| ——= | .
LT (2u2 jaf? ( 9a) P\ 2u2 [a]

Proof. This identity immediately follows from (13.106). O
Theorem 13.25 — The following identities hold,

ALE=0,4 2 =0,
(13.109) . V,H

A l—A2T+dau66 A’T+d‘u86A 1 + dada—

(13.108)

Proof. By Theorem 13.23,

2

(a5X+T'u+VE”+dE£> =0,
da

(13.110) 2

_—-X* * E’ 3

ad +Tv*+V +da—a-a =0.
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From (13.108), (13.110), we get the first two identities in (13.109). Then,
(13.111) ALz = [A};},A}‘:T] .

By (13.107), (13.110), (13.111) we get

=X
1,2 =X [3 ,in’H]
A/l,u’Tla=1 = Aﬁ,T + da (uc’) — __211,——
(13.112) N
% . V,H i JV,H
Y U 07 ,iw" "] + dada’™
2u u?
Using Theorem 13.23 and (13.112), we obtain
- TV (1,0))
A2 = A2, 4da (uax o) )
U, Tja=1 u,T 2\/511,

(13.113)

=X+ c(TV(1.0) iwYVH
) + st
u

da{ud +—— dada——-— ,
+a(u Vo ada

which is exactly the last identity in (13.109). The proof of our Theorem is
completed. O

Remark 13.26. It should be pointed out that the identities in (13.109) are not special
cases of (13.106). In fact there are associated with the fibrations V' x C* — S x C*,
and V x C* is equipped with the (1,1) form ﬁ;wv, which is not closed over V x C*.

By Theorem 13.25, it is clear that

(13.114) Ou,r = — Ty [NH exp (_A]\}%yﬁhz:l + dad&N,Y)]aladE .

To study 8, 7 as T — 400, we will proceed as in Chapters 8-9. However the situation
is subtler, because the holomorphic and antiholomorphic directions in V have now
been made in some sense independent.

Let f1,...,fm be a locally defined smooth basis of TrS. Similarly, g1,...,9m
denotes a locally defined smooth basis of T'S, g, . . ., §,, the corresponding conjugate
basis of T'S. Of course f1,..., f?™ (resp. g,...,g™, resp. G*,...,g™) denote the dual
basis of TS (resp. T*S, resp. T*S).

Instead of Definition 7.16, we now define.
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Definition 18.27. Set

H,N _H,N
AV exp | 92 Sl ) g @)
b ua V2 ua 2

HN o s_H,N
AV expl & c(ga’ ") L@ )
wT ua V2 ua V2 ’

(13.115) AV —expd -9 olga ™) g c@a ')
T ua V2 ua V2

o . HN _H,N.
AV expd L2 ) | T c@a” )
T ua V2 ua V2 ’

Clearly, Au T is a superconnection on E over S x C*, which is conjugate to A
Now we will give a formula for Au,T, which extends Theorem 7.17.
As in (7.36), we will assume that

[fou fﬂ] =0,

(13.116) -
[ga,gﬁ] = Ov [ga,gﬁ] =0.
Let wi,...,w, be an orthonormal basis of TX, let w?, ..., w’ be the corresponding
dual basis of T*X.
Theorem 13.28 — The following identity holds

~a 1 —X *(0,1) >
(13.117) Al = a8 +Tv+g% A (VAT 0% _ Le(w)e (V%f‘gf’”"”‘)) -

-2 *2e(w;)e (ng{gg’NY/x) +

0 C(g ’ Y/x) 299 WV (gHW W

gag [ (TV(g ”V,ﬁff“’),m>+
+ (<gH Ny, x VTX—;{ NY/X> _ <§g,Ny/x’V%f{gf,Ny/x >)

1

2
TX. HNY/X — c(w;) gﬁ c \viP. S —HNY/X
+<V w>]——\/§ + &5 \/_( )

g~ gﬂyy H,Ny,x TX H WNy/x
_ 3 gﬂ v
2|al

_H,N H,N _H,N H, V —
_ <g’y Y/X V HNY/xgﬁ Y/X> < Y/ X TV(g $V)>)
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Proof. Clearly

H,N
clga”""%),

(e 121
(13118) l:g_c(gnyY/X)+g_c(.g.g,NY/X), F] —2

gc: yNy,x —HNY/X {a H,Ny,x
[Zetg ™) + To@a ™), [ Le(otlN7)

+ g9 (_H NY/X)’aE—]] — 29 gﬁ HNy/x ggNY/X> )

From (13.118), we deduce that

(13.119) = HNY/X) et ) P G i
) P13 a V2 da  2aa?
ox g% ¢( HNY/X) +__‘"_c(_H Nyvrxy iz i_ﬂc(gfwwx)
PY3 a V2 - da @ NG}
7’ H,N _H,N
- T WV (@l gy ) WV (6Y, 38|

By (7.44) and by (13.119), we find that the coefficients of da coincide in (13.117).
Also

7 c(w;) VA(T'(O 1)X)®§

(13.120) =7 Vo

Using (13.120) and proceeding as in the proof of Theorem 7.17, we obtain the full
(13.117). The proof of our Theorem is completed. O

Remark 13.29. Needless to say, a strictly similar formula holds for AY, . In both
©.1) ( wr
«(0,1 *(0,1) v\,
formulas g* A VA(T X)8¢ , g¢ A V‘;\,(,Tv X)®¢ have been replaced by g* A
-(0,1) -0, X\ *
V;\:T X)@E g% A V;\éfw X)@ﬁ.

Now we suppose that wj,...,ws is an orthonormal basis of TY, and wagp 41,
., Ww2¢ is an orthonormal basis of Ny, x.
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Definition 13.30. Put

vl ZC(wz)o (A(T‘("”X)@as).w

wi

w; )

gNy/x _ Z C(wz)o (A(T‘(O D X)®€)w

(13.121) 22”;“
7 =3 e(Wi) 0 (AT X)B8)w
- wi ’
T V2
2¢ — -~
AR C(Wi) o GAT™ O X)B8) 1w
20'+1 \/5 '

With the notation of Definition 8.2,

=37 +3",

1
(13 22) DNv/x = gNy/x + aNY/X*

Definition 13.81. Put

¢
(13.123) B = ad" + az c(wl)By(ei) + %6%%21}(3/)

V2
— A(T*OD) _
+7*A ( VE_,(,TW)H 08w | By (g W))
van (2T v
oa 62 V2 2 aa?
Y

9°g° ¢ ( N V(1,0)( HW —=HW W(1,0)( HW —HW )
— ( PNy/xT ) ) , -T s ,
+ a 2\/5 (ga ’gﬁ ) (ga gﬁ )

We define B!’ is a similar way. Then
(13.124) B! =B +BY

is a superconnection on E over S x C*.

Now we use the same trivialization of (A(T*1X) ® £)|a, as in Chapter 8.
Theorem 13.32 — AsT — +oo0.
(13.125) Frk'/2AY k= 2F5t = Tot(y) + VT(@d 7> + Véu(y))

" 1
+98Y 4+ =0 (|Z|28N”/X +12|0Y + 12|85 + 2| + |Z|3) .
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Proof. To prove (13.125), we will use as much as we can the results already established
in the proof of Theorem 8.5.

By (13.117), (13.120) and by Theorem 8.5, it is clear that (13.125) holds in degree 0.
Now we consider the terms of positive degree in A(TgS) not containing da. The term
of degree 1 in formula (13.117) for ;{}"T, not containing da, is the sum of

— a factor of g*A, which preserves the total degree in A(T*®VX) ® €.
— a factor of g*A which increases by 2 the total degree in A(TR X) ®E.
Similarly the term of degree 1 in Z};T not containing da is the sum of
— a factor of g*A, which decreases by 2 the total degree in A(TgX) ®E.
— a factor of g*A, which preserves the total degree in A(T**1)X) ® €.
If we make a = 1 in (13.118), we find that the term of degree 1 in Z}:’T, which does

not ontain da, can be read off from the corresponding term in Zu;_r by selecting those
terms which can be described as indicated before.

Now in the right hand side of formula (8.9) for B, the term of degree 1 in A(TgS)
preserves the total degree in A(T*(®V) X) ® £. Thus we find easily that when making
da = 0, (13.125) holds in degree 1 in A(TgS).

The identity (13.125) for the term containing da is trivial. From now on we exclude
this term, together with the corresponding term in A?;T which contains da.

In degree 2 in A(T3S), in AL 7, we have sums of

— terms with g®g?, which increase the degree in A(T*(®1DX) ® ¢ by 1.
— terms with §*g?, which decrease the degree by 1.

Similarly in degree 2, in Z}L"T, we have

~ terms with g>g” which decrease the degree by 1.

— terms with g*g? which increase the degree by 1.

Again this shows that these terms can be detected from the expression (7.37) for
Zu,T. By noting that in B, we only have terms containing g*g®, from (8.10), we find
that (13.125) holds in degree 2.

In degree 3, Av}"'T is proportional to the piece of type (1,2) in ZU,T. Using Theorem
8.5 again, we find that (13.125) holds in degree 3. The proof of our Theorem is

completed. -
Remark 13.33. A corresponding result holds for g}L’T

Put
(13.126) DNv/xa — OENY/X +65NY/X* .

Let a!/? be the natural square root of a € C* near a = 1.

SOCIETE MATHEMATIQUE DE FRANCE



244 THE ANALYSIS OF THE TWO PARAMETER OPERATOR exp(—Aﬁ,T)

For a € C*, put

1 VA
(13127) ,Ba = ;m;v'?;exp{-z—lgl--f-m} .

Then by proceeding as in [6, Theorem 1.6] or [19, Theorem 7.4], one verifies very
simply that for y € W, B spans the one dimensional Ly kernel of the elliptic
self-adjoint operator DNv/x.e 4 /1 ﬂ‘/%) acting on the vector space of Lo sections

of ﬂ*(A(W—;/X) ® A(Ny,x)) over Ny;x Ry, and moreover,

ali2 dUNY/X _
(13.128) ,[Vy/x,n ”ﬂy” (27r)dimNy/x =1.

We define 9, as in Definition 8.7, by replacing # by (8%. More generally, all the
objects introduced in Chapter 8 now depend explicitly on a € C*, so that the whole
construction is fibered over W x C*.

Put
”n 174 a inYH C(TW(IYO))
BV = o /ud" +VF d—(—— )— ,
“ avug + +da da 2uaa? 2v2ua

(13.129) Wl’ Y * Fl a sz,H C(TW(IVO))
B = a\/ud d —_— —
v ave V7 A da da  2uaa? 2v2ua ’

w1l _ pwl” w1’
BW1 = pW1” 4 pW1’

Needless to say, BY1" and BW!' verify identities similar to (13.108).
Now we prove the following non trivial extension of Theorems 8.8 and 13.17.

Theorem 13.34 — The following identity holds

v~ 1pBY py = BV,

(13.130) ; /
Y pBY py = BV .

Proof. Clearly on W x C*, 3 is of total degree 0 in A(N;/x) ® A(Ny,x)- Then the
argument of the proof of Theorem 8.8 show that the terms not containing da or da
coincide in both sides of (13.130). By the same arguments as in Theorem 8.8,

—a ,—=HN . ,
(13 131) d)‘lp _ﬁc(fa Y/X) B in,H p,‘/) _ _in,H
) a NG} 2 aa? aa?

So to establish the first identity in (13.130), we only need to show that

0

1o}
-1, -
(13.132) v p iapw 2
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Equivalently, we have to show that

0Ba _
(13.133) <36 ; ﬁa> =0.
Clearly
9 _ (112 1 a ,
(13.134) o = <4 a2z lal Ba -
Then

8B, > 1 / |Z|? 1z
13.135 yBa ) = —m—— ex _—
( ) < 8 ' ldlm Nyix Ny;x,r P ( 'a’l {4 Ial

2 a al vaY X(Z)
— %m <9€Xp(|—aT)7 p(l ‘)> }(27r)d1:nNy/x .

af
exp( =

One has the easy

2
2 Y/X s

(13.136) dim N
1m Y/X a dim N

6 exp , €XPp > —_— 2 Y/x

( (I e 2 al
Moreover

dun
2

/N exp(— |Z] );ﬁn—:;% =1,

(13.137) v

dun
2 2 Y/X .
/Y/ |Z|" exp(— |Z|°) o N % = dim Ny, x .

From (13.135)—(13.137), we get (13.133).
To complete the proof of the last identity in (13.137), we only need to show that

0 0o
-1, Y - Y
(13.138) Yp aaw 90’
or equivalently that
9B _
(13.139) < %a ,ﬁa> =0.

This identity can be proved as before. We can also use (13.128) and (13.133), from
which (13.139) follows. a
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Since Al ’T does not contain differentiation operators in the a or @ direction (it is
a curvature, i.e. a tensor), by (13.115),

~ a HﬁNY/X
(13.140)  A,7 _ =exp {_ f7 C(fa\/_z_ )} A2 exp {_c( P Ny/x)} ,

ie. Zﬁq is obtained from Allt"‘;l by the same conjugation as Zﬁ,T is obtained
from A2  in Chapter 7. By (13.140), we get
(13.141) Tr, [NH exp { AY% ., +dadaNy, }] =

Tre [NH exp (—Ztl",leul + dad‘dﬁ%)] .

By using the Lichnerowicz formula (12.39), Theorems 13.32 and 13.34, (13.141), and
by proceeding as in Chapter 9, it should now be clear that given u > 0, as T — 400

N

dada
— §dim Ny/x Trs [exp (~BS*? + dada(N + §dim Ny/x))]| ™ -

By using (13.114) and the analogue of (13.113) for BY;!, we see that (13.142) is
equivalent to (13.105).

The connection 3V 7V ATRS)BAR)BAT "V X)

We use the notation of Chapter 12. First we extend Definition 13.5.
Definition 18.35. Let 3V ATRSBAR™BAT @VX) e the connection on
7y AT S) ® A(R?*) & A(T*(®V X) along the fibres X over .,

(13.143) SVWVA(TRS)®A(R2*)®A(T"(° Dx) _ vaVA(TRS)®A(R2')®A(T'(° D x)
+ (VIX SN TV PV, ) = A (FEV)PTX &) fc(er)
H,N; H,N
+ 3 ((SYOLEW, 50 = (g 9T ) po g
+ L (c(P™X".00) 4 /3 (f2Nerx, 00 f2) da

V2
" % (C(PTxl_(o,l)) + \/§<ff’N"’x, _(o,1)> fa) da

In view of (12.45), (13.18), (13.143), we see that the obvious analogue of (13.19)
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is now
(13.144) 2y ATRS)BARPIBMT OV X) _ 3y AMTRS)BART)BA(T OV X)
1 f"‘c(ei)
+ i (A'(Dei, e5) c(es)ele;) + <A’(ff’W)PTX -,€i> —ﬁ“

1 1
+ﬁc(Psz'(l,O))da_l_EC(Psz.(O,l))da.

Our fibrewise trivialization of 73 A(T5%S) ® A(R**) ® A(T*(®VX) is now done with
respect to 3V ATRS)BARTIBAT 1V X)

We define the operators §£1’y° ML¥ as in (13.33), where the operator gﬁ,:r /u 18
replaced by

—-f% c H,Ny,x } 2 ( 0 )
——(fa A d —A +
exp{ u \/i(f ) wr/u F A0 By u,T/u

d‘u(a ) —dad&fo)exp{—c(fHNy/x)}.
Ou u,T/u

The operators 5812",’{,‘3,be’1’° are defined as in (13.37), and 522’%‘3,M3’y° as in Defini-
tion 13.8.

Using the Lichnerowicz formula (12.39) and (13.144), we get an analogue of
Theorem 13.10. Theorem 13.11 remains formally unchanged, essentially because in
(13.143), PTX". vanishes on Ny, x r.

vyO

The algebraic structure of §£3 asu — 0

)yO

As in Section 12.7, we briefly explain the behaviour of §B3 as u — 0. The

argument given in this Subsection will be used later in establlshlng estimates on
|0u,T/u - 0T|. For 1 < j < 2¢', equation (13.51) is now

c(®re;)

3
(13.145) U {T} (UPTYZ + %PNY/X Z) —

. 2
& N =Lie, —u (T (F2Y, PTY 2),¢) f* +u(PTY z,¢;) da

N 2
+u(PTYZ,e;)da+0 (u2 ([PTYZ|2 + w))

and for 2¢/ +1 < j < 2¢, equation (13.52) is formally unchanged. Equation (13.55) is
also unchanged.
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Equation (13.58) still holds. Equation (13.59) is now
(13.146) (2v7r(,A(TﬁS)(§)A(R2')@A(T‘(O’I)X) _ 3V7r:,A(T,;S)éA(R”')@A(T*W)X))2
= 1 (A%, ¢5) clen)ele) + & (A(FEW, ffW)PTX pTX! ) por g
+ fa—j—E(A'(.)A'( FEWYPTX y | % (AP 09 ¢ e(e;)da
1

+ J—
V2
_ <A/(f£1,w)PTx1_’Psz_(o,1)> foda+ <PTX2.(1,O),PTX2'(O,1)> dada .

(AOPTX*.OD ¢ cle;)da — (A/(FEW)PTX" . PTX (G0 fagq

Also observe that if Z,Z" € (TrX)y,, if U € TRY,
(A4, (Z2)PNY1xZ'\U) = (A, (PTY Z)PNvix Z' U
(13.147) = — <A;0 (PTYZ)U, PNy/x Z’>
= — (A, (U)PTY z,PNvixZ") .

Put

R2/3 — 2/3ymy (A(TRS)BAR?)BA(T* (D X)
(13.148) _ 2/3gry MTRS)BAT* ™V X)
Clearly,

(13.149) [3Vw§,A(TﬁS)®A(R2*)@A(T"“"”X) ,sz;,A(T,;S)@A(RZ*)@A(T*(O'I)X) _
SVw(,A(TﬁS)@A(RZ*)@A(T'(O’I)X)] _ |:3v7r{‘,A(TﬁS)®A(T*(°'1)X)
2y ATES)BAT* OV X) _ 3vw;A(TQS)®A(T*<°v1>x)]
+ [3VW;A(T§5)®A(T'<°’1)X),Rz _ Ra]

+ [R3’2V7r;‘,A(TﬁS)®A(T*(°'”'X) _ 3Vﬂ{‘,A(TﬁS)®A(T‘(°'1)X)] + [R3,R2 _ R3] ‘
Observe that since TX! and TX? are orthogonal,

(13.150) [R*,R?* - R*] = 0.

Now we explain how to calculate the limit of {u2¢u3V"“/MTRS)@A(R”MA(T"O’”X )2

(Z, e,-)zﬁ;l}z as u — 0. We use the analogue of (13.58). Again we claim that

no term in the right-hand side of (13.149) contributes to the limit. We already
saw this after (13.62) for the first term. To see that the second term does not
contribute, we use the expression (13.18) for 3V™VATRS)BAT@VX) The term
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[OV“;’A(TQS)@A(T‘(O'I)X ), R?2 — R3| does not contribute, since R? — R® only contains
Clifford variables in TX2, and °V7X preserves TX?2. As to the second term in the
right-hand side of (13.18), its bracket with R? — R3 does not contribute to the limit,
because of the second identity in (1.35) and (7.27). The third term in the right-hand
side of (13.149) does not contribute to the limit, because A’(.) exchanges TX' and
TX2.

By Proposition 11.8, (11.61), (12.46), (13.63) and by (13.146)-(13.150), we find
that asu — 0,

- - NS VS A (7 (0, 3
(13.151) {u2¢gvﬂv1\(TRS)®A(R2 YRA(T*CO I)X),2(Z’ ei)"/);l}u R
((*VIX2 — /—1PTY JTX PTY dada — PTY A2 P™Y) Z,e;)
—da <APTY., PNY/X“’O).> - da<ApTY,, pNv/x<o,1>_> _

By (12.39), (13.151), we see that as u — 0, the operator J(/t '$° converges to M3‘y°
given by

2¢
(13.152) MY = -1 (\/—v Ny/xe, + VPTY e
1
41 <(,L~*(VTX,2 — VZIPTY JTX pTY dadg — PTY A2 PTY) (PTYZ+ PNy/xZ> e~>
2 Yo ’ Yo \/T >t
_< *(VTX2P \;:TXZ’P > — L(VIX2pTY 7 pNv/xe,)
PNy/x Ny;x=%
+ da <APTYe,-, Tz> -} dﬁ <APTYei, PTZ-'>
2
— —C(APTYei) + ic(PN"/"‘e(.l’o))da + —l—-c(PNY/Xe(.O’l))dE
V2 V2 ’ V2 ’

* (V82 + 1 Tx [VTX2]) - dd‘dlmX

Using (13.145) and the considerations which follow, we see that to the right-hand
side of (13.65), we should add

(13.153) daVry v(y) + daVryv* (y) .
Together with the identities (13.66), there is now the obvious
(13.154) P& (daVPTy v(y) +d_VPTY_v*(y))P5_ =0.

Then by (13.152), (13.154), and by proceeding as in Section 13.7, we find that as
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u— 0,
(13.155)
dimY N 2
1 T |PYY/1xZ
0u,T/u - = (%) / 'I‘I' I:NH eXP( (M&yo %‘FTS’"‘% Tr [RTX]
Y

+ RANY/x))) | Tr [exp(—-V"’2)] .

By using Proposition 5.32, (13.155) is equivalent to
(13.156) eu,T/u - 9T7

a result we already established in Section 12.7. The techniques of this Subsection will
be used in Section 13.14 to establish the second half of Theorem 6.18, i.e. to obtain
the estimate (6.84).

An estimate on |0, 1/, — 6}

By the previous considerations, we find that the obvious analogue of Theorem 13.14
remains true for the new operator 583’y° In fact, we have verified that the arguments
of the proof of Theorem 13.14 apply verbatim to our new problem. In particular the
new operator P,, is still given by (13.78).

Now we explain how to extend Theorem 13.16. First we redefine the connection
3Ty ATR S)BARY™)A(T* OV X)

ovn;,A(T,QS)@A(Rﬁ*

in formula (13.143) by keepmg
YRA(T D X) unchanged, and by scaling g* into ;, g* into -
da into 2%, da into 9
Deﬁmtzon 13.36. Put

a !

£
(13.157) €' =ad +a C%) By(w;) + V5 V50(y)
1

*(0,1) ¥\ &

e (_6_ c(g ) Y/X) in,H) _ C(TW(I,O)).

oz a* V2 ~ 2qa® 2v2a

We define €' in a similar way.

Now we prove an analogue of Theorem 13.32, where we use the trivialization
associated to 3VTVATRSBARTIBAT @V X) jngtead of OV VATRSIBAT @V X) For

more details, we refer to Section 13.3.
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Theorem 13.37 — AsT — +oo,

(13.158) FrkY/2AY k= Y2F;1 = Tut(y) + VT (ad 7™ + Véu(y))

1 2 9N Y S 3
0(1z|> dNvrx +|2|0¥ +1210° +|Z| + |Z]°).
=02l 1] 1Z] 12| +121%)

Proof. Given Theorem 13.32, we proceed as in the proof of Theorem 13.16, where we
used Theorem 8.5. With respect to (13.125), we have an extra contribution given by

+6V +

20 2¢
(13.159) 3 > [e(PTYZ)da, c(w;)] Vi, + 5 D, c(w)e(PTYw;)da
20 +1 20+1
_ gogP c(PNxTVAO (gBW gih W)
a 2v/2 '
Since Z € Ny, x g, the first two terms in (13.159) vanish identically. Our Theorem
now follows from Theorem 13.32. O

The obvious analogue of Theorem 13.34 is now.
Theorem 13.38 — The following identity holds

Y 1pCY py = BV
Y1 pCV pyp = BV

Proof. Our Theorem follows immediately from Theorem 13.34. O

(13.160)

It should now be clear that the same methods as in Sections 13.1-13.12 show the
existence of C > 0, § €]0, 1] such that for v €]0,1], T > 1,

.. C
(13.161) |0,/ — 03] < 75 -

13.14 A proof of the second half of Theorem 6.18

Now we will prove the second half of Theorem 6.18, i.e. we establish the existence
of C > 0, p > 0 such that for u €]0,1], T > 1,

(13.162) |0u’T/u - OTI < Cu”.

In Section 12.7 and Subsection 13.13, we gave two proofs of the fact that for T' > 0,
asu — 0

(13163) Bu,T/u - 9T .

We will show how to use the formalism of the present Section 13.13 to prove (13.162).
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By the previous arguments, it is clear that the analytic formalism of the whole
Chapter 13 is very close to the one of [19, Section 13]. To simplify the references, we
will prove, in the context of [19, Section 13|, i.e. when S is a point, that there exist
C > 0, p > 0 such that for u €]0,1], T > 1,

(13.164) 'm [NH exp(—AZ 1 /u)] - / ® Tr, [Nz exp(—B22)] ch(n, g")| < Cu.
Y
The extension of (13.164) to the case where S is arbitrary or to the proof of (13.162)

will then be essentially the same.

So now we assume for simplicity that S is a point. By (11.21), (13.2) and by
proceeding as in Chapter 9, we get for v €]0,1], T > 1,

=~ -C
(13.165) ‘TrS [NHGu(Ai,T/u)H < cexp (Tﬁ—) .
So to establish (13.164), we only need to show that

(13.166) "I‘rs [NHfu(Aﬁ,T/u)] - / ® Tr, [Niz exp(—B1z)] ch(n, g")| < Cu?.
Y

Take yo € Y. We replace ﬁu(Ai,T/u) by ﬁu(§£3,y0) as in [19, Section 13 g)] or in
(13.38). By [19, Theorem 13.32], we know that given M > 0, there exist C > 0,
C’ > 0, such that for u €]0,1}, T > 1, we have the uniform bounds

sup  (1+|Zo))™ |Fu(£35)(Z0, Z0)| < C,

Zo€Ny,/x,R,yg

1Z0|< =T
(13.167) plell| Fu(E2%) (2,2 < C’
' sup 82267 : =
2,2/ €(ToX)ug 8ZdZ'

|PTY z|,|PTY 2'|<M
|py/x z|,| PNY/x 7| < AT

|a|,|a'|§m'

By [19, eq. (13.143)] or by (13.98), if s € K, ,
Cu |s|u T.50,0

(13.168) 5% w700 € =

By [19, Theorem 13.28], we get for A € U, u €]0,1], T' > Tp,

-1,1
< C(1+AD2.

(13.169) H (r-<)
u,T,yo
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Using (13.168), (13.169), we obtain easily
-1
per ()\ —#3w) P
-1 _
(13.170) PE (A—g3w) P

P& (- 583;?{,9) P

By [19, eq. (13.241)], for T > Ty,
(13.171) F (3% =

From (11.10), (13.171), we get

0 _ Cu(l+ )2
u,T,y0 B T ’
o0 _ Cu(l+ )
u,T,yo B T ,
M0 Cu(l+ A

u,T,yo T

/ Fu(\) (A — £2%0)~1dA.

~ 0,0 Cu
PE, (583’?’“) =3 <&v
u,T u,T,yo - T
~ _110,0
(13.172) PR, (sgiﬂ,{;’) Pt < Qv
’ u,T,yo T
0,0 Cu
PSE, (§£3vy°) pet <&
s uvayO - T

If s € K , has compact support, put

Yo’

(13.173)  [sl3 1y 1

2¢'

+|p3|0Tyo,o+Z|V613|0Tyoo+T D [Vepts |o:ryo,

Observe that

2 2
=T |plS|0,T,yo,0 +T ”PNZ|plS|0,T,y0,0

2¢

2¢'+1

2 . 2
(13.174) |3|0,T,y0,1 = ulfglo Is'u,T,yo,l

Let KO~ K1 be the obvious Hilbert spaces associated to the norms |

Yo ?
I |1,T,y0,0

If k=0,1, k¥ € N, if s € K~ has compact support, put

2 ag)2
(13'175) 'S|O7T7y07(k)k,) = Z |Z S'0$T7y07k -
lo| <K’

253

lo,7,y0,0 20d

Recall that for yg € W, u > 0, the operator Qbf;yO (which is attached here to the exact
sequence 0 — TY — T X|w — Ny,x — 0) has been described in Theorem 5.8. Also

Gu,r has been defined in (13.36).

Now we prove an analogue of Theorem 12.9. The whole point is that while in

Theorem 12.9, T =1, here T' > 1.
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Theorem 13.39 — There exist C > 0, p € N such that if u €]0,1], T > Ty, A € U,
if s € K~ has compact support,

(13.176) [(P¢ 3% P + P& 3% Pt (n - P s pet)=1

+ - _
PE IR P — Gr R G — Vi)s < Cu(l+ |ADP Islo,7,y0,(1,4) -

u,T,yo,—1

Proof. Consider the operator Mg:g? in (13.152), with da = 0, da = 0. First, we claim
that

- - - - T |PNv/x z|?
(13.177) ‘ (PE SBi:%E’Pﬁ — Pt Mgzg,opﬁ ~ TSy, — I—_L) s

2

u,T,yo0,—1

< Culsloryo,1,4) -
O

First we consider the contribution of .Mig? to (13.177). Recall that .Mi?}’ is given by
[19, eq. (13.87)], which corresponds to (13.40). Clearly for 1 < ¢ < 2¢/,

PNy/xZ
(13.178)  %re;(uPTYZ + 7’% PNv1x7) =% ¢, (uPTY Z) + © (“I———-l) .

vT
From (13.178), we find that since °re;(uPTY Z) € (TRY )y,

(13.179)
VTPNv/xOre;(uPTY Z + %PNY/XZ) = O(u|PNv/x 7)),

PTYOre (wPTY Z + . PNv/x Z) = Ore,(0) + O (u PTY 7| + L PNY/XZ) .
i 7= ) =°rei(0) [Pz + = | |

Also by [19, eq. (13.122)], for 2¢' +1 < i < 2¢,

2 Ny/xZ|2
o__ TY U BNy,xpzy _ 0., TY u lP
(13.180) “rei(uP ¥ Z + —\/TP Z)="1e;(uP " *Z)+0 (—-——T .

Moreover, in the considered trivialization of X,
20

(13.181) > Vi uprrzy = AN,
2041
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Also by [19, Theorem 13.19] (which corresponds to Theorem 13.11)

20
- c
(13.182) PST Y —(°
20'+1 \/Q
_ 2¢ _ B 5
TSy, +uvTP ) c(e) V5, Ny x g Vore, VWPTY Z2) P8 + O(u® PMY/x |Z]%),

Ore;
2041

Te)VS.  V(uPTY Z + %PNv/xz)Pf'

Ore;

20/
-T ) 2 _
Pt ” 2(61 A —%iei)vﬁ V@uPTYZ + %PNY/xz)pﬁ = O(u | PNv/x Z|2),

Ore;
1
uvT

Pﬁ_T_zvz(uPTYZ + _u_PNY/xZ)Pﬁ_ = z |PNY/XZ|2 +
u? VT 2 2

V—1-(PNvix 7), V¢ vé V- (wPTY Z)| + 6(u? [PNv/x Z|?).
\/5 P

Ny/x 7z ¥ pNy/x z

From (13.179)-(13.182), we get (13.177) easily.

As in [19, eq. (12.74)] and in (12.60), put
Ly =P E3%ps | L, =P8 $3%peT
(13.183) s NS
Lys=P U £0P , Lya=P 0P .

Also we define L;, , 3, Ly, 53, Ly 4, Ly 4> L4 as in [19, eq. (12.97), (12.104)], so that

L//
Luyg2/a = Ly 03 + /3
(13.184) w
A A
Lu,4 = L;A + Z + :2 .

Observe that our 522:3{,9 corresponds to 583”7,}"/“ in Chapter 12.

Take o € K| with compact support. Then [19, eq. (12.99)] is now

|L,s(A = Lua) ™ L, 50 < OT|(A ~ Lua) 'L,
S Cu |(A - Lui4)—1L1"130|u»T7y011
S C(l + lAI)zu |L;’3G|U,T’0’_]_

< C(1+ [A])?u ol 101

u,T,y0,~1 3%y 40,0

(13.185)

(in the first and last inequalities, we used the fact that scalar differential operators
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preserve £} and ). The analogue of [19, eq. (12.100)] is

"

L
L oA = Lyg)™ 122

o <O+ AN L 50, 1 yo -1
uyTiyOv—l
C(1+|\)%u
< —_T—— lL” |u T/u v0,0 — C(l + l)\l)z lalu ,T,y0,0 ?
LII
22 (X — Ly4) " L, 30 I(A Lua) ' Li 30|, 1400
u u,T,yo,—l ,

S C I(A - Lu1.4)_1L{u'73aluyTvy011

C(1 +|A)3u
<+ W2 |Lhsol o € LB o) o

<C(1+ P")zu |U|u,T,y0y1 ’
" "e—Lg
Zu2 () _ L, 0! ("_3._0_3) o
" U

cT -
—5 |3 = Lua) 7 (L3 — LG 3)o]|

(13.186)

u,T,y0,0

u,T,y0,—1

< SO+ 5 p Ly~ Lol
< 9_(1_+|’\_|)_2 |(LZ,3 - 0,3)"|u,T,yo,—1

< M (s = L63)9] 14000

<C(+ I)\l)2 |(X+ 12Dy, 7,40,0 -

The analogue of [19, eq. (12.101)-(12.103)] is

II

"
"y — 1 Lo,
,2u 02(>‘ L'u.4)_

u,T,yo,—l

T
T |1+ 1ZP) 20~ Lu) LG

u,T,y0,0
<C|a+12P)2( - Lua) L s

(13.187) u,T,y0,1

< O+ |(1+12)2LG 50|
L CL+ )P
- T

< CA+ APulQ+121)0ly 1,400

u,T,yo0,—1

1+ Z15H)Y2L! al
| +12)72Lg .

(to establish the third inequality, some manipulations on commutators similar to the
ones in [19, Proposition 11.34] are needed).
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The analogue of [19, eq. (12.107)] is

"

L
Lg (A — Lu,4)_lﬁi()\ —Ly,)” 1Lo 30

u)T)yO ,—1
"

C 1 Ly
%A = Lo =2 (? - L) L g0

<___

uvayO ,1

L,
(13.188) < C(l + ‘/\I)zu_ u,4 (A L///4) lLO 30

»,T,yo0,—1
C(1+|A])*u :
—‘—“( Tl ) IL" (Au LZ:4) 1L6”3o|

C(1 + |A\|)?u?
< — 7z 10| 70,0 -

The analogue of [19, eq. (12.108)] is
|L6/,2()\ - Lu,4)—1L;,4()\u2 - LZ:4)_1L6/,30|

u1T,y0 ,0

U,T,yo,— 1

(13.189) _ wa) T Ly, 4 (M — LZC4)—1L3,3U|u,T,yO,1
C(1 + |A])?u? 9 -
< - T |Lya(u® — Liy) 1L6’,3U'u,T7yo,_1 :

If 7 € Kt has compact support, put

20

~,2 2 2

(13'190) |T|u,T,yo,1 = |TIu,T,yo,O + Z lvgislu,T,yoy() :

1
Then
(13.191) [ R L

Let | IZ’T’yO’_l be the corresponding dual norm. From (13.189)-(13.191), we obtain

| 0,.2(A — Lu,4)_1L:L,4()\“2 - Lﬁfzx)_ng,aUl
_ O+ )22

u,T,0,—1

|L;,4()‘u2 _ L///4)—1L// 30,|"'

> T u,T,yo,—1
(13.192) 2 2 2 m -1
< C(1+ AD*e? |(W? = Lya) ' Lo sol, oy
C(1 + |A])?u? c(1+ |,\|)2 2
= _T— |U|uTyo,1 < T |U|u,T,yo,1

By (13.188)-(13.192), we get
Ly 1Los
] ( P2 (N = Lua) 2 = L (W - in4>-1L3,3) 4

ca+ |)\|)2u
S ——F—loluTyen -

"

(13.193) w,T,y0,~1
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Also
|(Lg2(Mu? — Lis) ' Lo s + Lo 2(L6/4) " Lo ,3)0 | 1 4o 1
<CT|((Ww?® = Ly,)~ 1+(L'” ) Lo 30y 1400
(13.194) -T3|('A'“ + T2 Z) LG 50], 1y

w A
< Cu( 55 0hur g0 + 1201000 ) -

By (13.177), (13.185)—(13.187), (13.193)—(13.194), we get (13.176). The proof of our
Theorem is completed. (]

Using (13.167) and Theorem 13.39, we proceed as in [19, Sections 11 p) and 13 q)|

to get (13.166).

The proof of the second half of Theorem 6.18 is completed. (]
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14. A proof of Theorem 0.2

In this Chapter we establish Theorem 0.2. The proof is much simpler than the
corresponding proof of Theorem 0.1. At a formal level, it simply consists in exchanging
the role of the parameters u and T in the proof of Theorem 0.1. Because of the formal
similarities, we simply sketch the main steps in the proof of Theorem 0.2, leaving the
details to the reader.

The Chapter is organized as follows. In Section 14.1 we establish an identity

4
ZI,'CO = ®(0"° + 96"), which depends on parameters ¢, 4,Tp with 0 < ¢ < 1 <
k=1

A < +00, 1 < Tp. In Section 14.2, we briefly study the asymptotics of the I}°. In
Section 14.3, we show that the divergences of the I;? add up to 0 in PS/P5°. Finally
in Section 14.4, we prove Theorem 0.2.

In this Chapter, we use the notations of Chapters 3, 4, 6. Recall that H(X,§|x) ~
H(Y,n)y) is a vector bundle on S. Also, here, we assume that for i > 1, 0 < k < m,
HY(X,&kx) = 0. This implies that for i > 1, H(Y,ny) = 0. Also the H°(X, £ x)
(0 < k < m) are holomorphic vector bundles on S.

14.1 A closed form on R} x R%
Put

(14.1) B‘:I,,T = AUT,U .
Let 3, r be the form on R} x R} x §

(14.2)
dT

du
Bur = T Trg [N(‘;T)z eXP(—Bf,T)] +

[V — M) B2

Using Theorem 4.1, we obtain the obvious analogue of Theorem 4.3, i.e. a formula of
the type

(14.3) du, 1B, 1 = 00u1 + 00, 1.
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Let I' = I'c 4,1, be the contour considered in Section 4.3. By (14.3), we obtain the
obvious analogue of Theorem 4.5, i.e.

(14.4) / B =0y +0d.
r
For 1 <k <4, put
(14.5) 0= / o4 .
Lk

Then (14.4) is equivalent to

4 —
(14.6) Y I =a(8y° + 857).

k=1

We will make A — 400, Ty — +00, € — 0 in this order in identity (14.6). We will
just sketch the study of the behaviour of the terms I}° (1 < k < 4), without studying
in detail the right-hand side of (14.6).

14.2 The asymptotics of the I;°’s

The term I.°

We have
10 4 1% 2 du
(14.7) = [ &, [(N(uT)z - NH)exp(—BuyTo)] =.
€
a) A— 400

By Theorem 6.6, since H(X,§|x) is concentrated in degree 0,

10 11 oo \% 2 du
(14.8) I’ -1t = / ® Trs [(N(uT)z —NH)exp(—Bu,:ro)] o
€
B) To — +oo
Clearly
0
(14.9) (B2} = 2(1yDX + V)2,

Over S, we have a holomorphic complex of Hermitian vector bundles

(14.10) (%,v): 0 = H*(X, &) — -+ — H(X,&) — 0,
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whose pointwise homology is concentrated in degree 0. Let v¥** be the adjoint of v
with respect to the L, Hermitian metric on € induced by (2.22). Put

(14.11) YV y 4 %
Using the identification # ~ ker DX, we get
(14.12) yv¥ — pker DX V Pker DX )

Let V¥ be the holomorphic Hermitian connection on #. By proceeding as in Chapter 9
(in a much simpler situation), we find that for a given u > 0, as T' — +o0,

(14.13)  Trs [(N(‘;T)z — Nu) exp(—B;fTo)] — — T, [NH exp(— (V¥ + uV)2] .

Since for 1 < ¢ < dimX, 0 < k < m, Hi(X,§k|X) = 0, the spectral sequence

associated to the complex (E, a3~ +v) and the partial grading by N{f degenerates at
E5. In particular

(14.14) H(X,§x) ~ker V¥ ~ H (%,v).
By proceeding as in [19, Section 9], one derives easily from (14.13), (14.14) that as
To — +o0,

— the spectrum of To DX +V converges to 0o and to the spectrum of V¥ (counted
with multiplicity).

— The nonzero eigenvalues of ToDX + V stay away from 0.

These two facts allow us to establish the required uniformity in the integral in the
right-hand side of (14.8). Using (14.13), as Tp — +o0,

1 2 oo % o1 du
(14.15) ' — I = —/ P Ty, [NHeXp(—(V + uV) )] -
v) €—0
Put
ch(3, 9%) = 3 (~1)* ch(H(X, &), g™ (X)),
(14.16) =0
ch'(%,9%) = Y _(~1)%i ch(HO(X, & x), g (X&)
=0
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Clearly

(14.17) I;Z — ch/(%, g%) log(e) —

du

% =— /0 ‘s (’I‘rs [NH exp(— (V¥ + uV)2)] — Tr, [NH exp(—V%’z)]) —

- /1 " e, [Nax exp(~(V* +uv)?)] %“ .

§) Evaluation of I73

We have an exact sequence of holomorphic vector bundles on S

(14.18) 0 — H°(X,&n) — ... — H(X, &) — H°(¥,v) — 0.

Clearly the H°(X,¢&;) (0 < i < m), whose direct sum is ¥, are equipped with the Lo
Hermitian metric induced by (2.22). Also since H°(%,v) ~ ker V¥, H®(%,v) is also
equipped with a Hermitian metric gHO(%’”).

Let ch((%, g%), (H (%, g%),gH(%’gw))) € P%/P59° be the Bott-Chern class of [13,

Section 1f)], such that

80 ~
(1419) 5 ch((%, ¢%), (H(%, %), g7 ")) =
ch(H (%, g%), g7 (*:9™))) — ch(%, g%) .
Proposition 14.1 — The following identity holds

(14.20)
I = —1 (ch (%, 9%), (H (%, v), g™ *))) + T'(1) ot (%, %)) in PS/P5.

Proof. By using the transgression formulas of [13, Theorem 1.15], one finds easily
that %(—2[{3 is just the right-hand side of (14.19). By deforming the complex
(14.18) to a split complex over P! as in [13, Section 1f)], and using the axiomatic
characterization of Bott-Chern classes in [13, Theorem 1.29] as in [13, Corollary 1.30],

we get (14.20). O

The term I°

Clearly

dr

To
(14.21) Iéo = —/1 ® Tr, [N(‘:;T)z eXP(_Bg,T)] ? .
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a) A— +o0o

By Theorem 6.6,

To

H(X, 2 ar

(14.22) 1P — I = —/ & Tx, [P/ NS Pyyrexp (—Vy7 %) | .
1

B) To — +oo

Take s € E. By (6.12)

(14.23) (P18, Poyrs), o = ( PyrTN%s, P ypTVHs)
/

Since H (X, x) ~ H(¥,v), we can represent any class in H(X,§x) by s € ker v,
so that s € Q°(X, &y x), 5% = 0, v¥* = 0. From (14.23), we get

(14.24) <P1/T3,P1/T3>% = <131/T3’ ﬁl/T3> :
Let Py be the orthogonal projection operator from E on ker V¥, Using the arguments

after (14.14), we find easily that as T — +o0, ﬁl/T =P+ @(%) In particular if s is
taken as before,

1
(14.25) (Pyrs, P1/TS>%, = (s,s) + @(—1—,)

From (14.25), we find that as T — o0,

H(X, » 1
(14.26) gl/Er €x) _ gH(3) +0(),
and so
(14.27) VHX&x) = yHE) @(%).

By (14.22), (14.27), we find that as Ty — +o0,

400
H(X, 2\1 dT
(14.28) ' — I = —/ @ Trs [PI/TN\)/(Pl/T exp (-—Vl/(T fix) )] 7
1

v) €—0

I’? remains constant and equal to I33.
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5) Evaluation of I

Proposition 14.2 — The following identity holds
(14.29) I =1l (H(X, £1x), gHEx) gH("ffv)) in PS/PSO.

Proof. Since H(X,§|x) is concentrated is degree 0,

To
H(X.£x).2\] ¢T
(14.30) I =— /1 ® Tr, [PI/TNHPI/Texp (—VI/T ix )] a
By (6.49)
T H(X,
(14.31) I} = ich (H( X, &x), g"1X4x), gH0 §|x)) .

Using (14.26), (14.28), (14.31), we get (14.29).

The term I

This term was already studied in Section 6.4.

The term 0

We have the identity

To dT
(14.32) P = P Trs [N(‘QT)z exp(—B?T)] -
1 ’ T
a) A— +o0o
I? remains constant and equal to I}
B) To — +oo
By proceeding as in (14.13), we find that as Ty — +o0,
+oo dT
(14.33) I} > 12 = f @ Trs [N(‘ér)z exp(—Bé?:r)] T
1
v) €—0
Clearly
+oo dT
(14.34) IZ2 = / & Tx, [Nya exp(—A%)] T
(3
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By [14, eq. (2.126)], we know that given € € [0, 1], there are forms CV, (¢), C¥ (¢) in
P3, depending smoothly on ¢, such that as T — 0,

1
(14.35) ® Tr, [N exp(—A%.,.)] = -T—20Y1 (6) + CY (€) + 0(T?)
and 0.(T?) is uniform in € € [0, 1]. Moreover by [14, Definition 2.25],

wV
CY.(e) = / 2—-Td(TX, 97%)® Tr, [exp(—C2)] ,
(14.36) X 47
CY(e) = / (dim X Td(TX) — Td' (T'X)) ch(§) in PS/P5°.
X

In particular the classes of CY; (), CY (¢) in PS/P5? do not depend on ¢.

Also by proceeding as in (14.13), one can prove that for € € [0,1], as T — +o0,
the integrand in (14.34) is uniformly bounded by O(7s). Using (14.35), we find that
ase — 0

1
(14.37) I — 3CY(e) + CF () log(e) — I =

1 v
/0 ) (’IYS [NY2 exp(—A%,)] — 0;2(0) -Gy (0)> %g

+oo dar
+ /1 & T, [Nfo exp(—A%0)] = — $C%4(0).

8) Evaluation of I3

Theorem 14.3 — The following identity holds
m
(14.38) 3=1 {_ S (1)FTWY, g%) + 1“'(1)03’(0)} in PS/PS0,
k=0
Proof. The identity (14.38) follows from (2.50) and (14.37). O

The right-hand side of (14.6)

As in Sections 6.7 and 6.8, one establishes the equality
4 —
(14.39) D Lt =3(5v, + 05y).
1

Of course, one needs to study in detail the right-hand side of (14.6). The situation
being much simpler than in Chapter 6, we leave the details to the reader.
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14.3 Matching the divergences

We will only check that the divergences of the I’s vanish in PS/P5° When
A — +oo there are no divergences (including in (6.54)), because H(X,¢x) is
concentrated in degree 0. When T, — +o00, no divergence appears. When ¢ — 0,
we get the diverging terms in (14.17), (6.55), (14.37) which refer to I3, I{? and I

(14.40) (— el (%, g%) + Cy () — Dy ) log(e) + 3(DY; — cfl(s))ei2 .

a
By (2.51), (6.14), (14.36), using the fact that w' is closed, (14.40) vanishes in
PS/PSo,

14.4 Proof of Theorem 0.2
By (6.56), (14.20), (14.29), (14.38), the identity (14.39) can be written in the form

(14.41)  — Loh ((9%,9%), (H(3,v),g7%V)) +

%&l (H(X’ §|X)a gH(X{IX),gH(%’U)) +

ITWY,6%) — 1Y (-1)FT(w", g*) + 31’ (1)(— b/ (%, %)
k=0
+CY(0) = DY) =0in PS/PS50.

As we saw in (14.40), the term after (1) in (14.41) vanishes in P°/PS0. Also by
the universality of Bott-Chern classes [13, Section 1f)], using the notation in (0.11),
one has the identity

(14.42) ch (% g%), (H(%,v), g% ™)) — ch (H(X, & x), g X 1x), gH )
=¢ch (3{, gf’") in PS/pPS0.

From (14.41), (14.42), we get (0.13).
The proof of Theorem 0.2 is completed. O
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15. A new derivation of the asymptotics of the
generalized supertraces associated to a short
exact sequence

In [6], to a short exact sequence 0 — L — M — N — 0 of holomorphic
Hermitian vector bundles, we associated a superconnection B7, whose curvature %B2.
was calculated in [6, Theorem 3.10] and in Theorem 5.6. Also in [6, Theorem 7.7],
we established (5.22) in Theorem 5.11, by calculating explicitly the generalized
supertraces as infinite determinants.

In [19, Section 14|, we briefly sketched another derivation of Theorem 5.11 by
showing that as T — +oo, the operator @2, defined in (5.16) can be written as a
(2,2) matrix whose asymptotic structure is closely related to the matrix structure of
583’1%'[? described in Theorem 13.14 (with £+ = 0). Still in [19, Section 14}, we did not
use the fact that @%2 is itself the square of the superconnection @1 introduced in
(5.15). Moreover the proof of [19, Section 14] was purely computational.

In this Chapter, we come back again to the problem considered in [6] and in [19,
Section 14]. More precisely, we show that if V and W are the total spaces of M and
L,and ifi: W — V is the corresponding embedding, then the superconnection B is
just a special case of Al, 7 The superconnection €t is just the analogue of Avl’ VT
and 97 is the superconnection ‘:{1, 7 in the trivialization of Section 13.9. Then we
show that the asymptotics of @2, obtained in [19, Section 14] is a consequence of
Theorems 13.16 and 13.17.

In other words, it should now be clear that the main result of [19, Section 14]
should be thought of as the prototype of some of the results we proved in the context
of a general family of immersions, for the simplest such family, which is the embedding
of L in M.

This Chapter is organized as follows. In Section 15.1, we introduce the family of
immersions i = L — M. In Section 15.2, we construct the superconnections B, and
we relate the conjugate superconnections €r and @1 to .Zl, VT

We use the assumptions and notation of Chapter 5.
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15.1 A family of immersions

Let V, W be the total spaces of M,L and let ny: V — B, mw : W — B be the
obvious projections. Then we have the diagram

(15.1) L—W

I

M—V—/—8B
which is the obvious analogue of (3.1). Moreover, with the notation of Section 3.2,

Let 2 be the generic point of M. Then the Koszul complex (7{,AN *,\/:Tij(z))
provides a resolution of the sheaf .0y, and restricts fibrewise to a resolution of
i.0L.

Now we use the notation of Chapter 3, with £ = 7j,AN*, v = \/—_lz'j(z). In
particular, if b € B, Ep denotes the vector space of smooth sections of n3, (A(M N ®
A(N*)) along the fibre Mg 3, and F; denotes the vector space of smooth sections of
73y A(L") on Ly .

Let THV be the horizontal subbundle of TV associated to the connection VM,
Using the splitting TV = THV @ i}, M, we get the identification

(15.3) A(TRV) = 7 (A(TRB) ® A(MR)) -
Put
(15.4) wY =190 |z[3, .

Let w™ the Kihler form along the fibres of Mg. Using (15.3), we see that w™ can
be identified to a real (1,1) form on V. Then a simple computation shows that

v (RMnE),

(15.5) W =w 5

From (15.5), we see that w" restricts to the Kihler form w™ along the fibres M, and

moreover THV is exactly the orthogonal bundle to TV with respect to w".

Put
(15.6) wW =i*wVY.
Then by (15.4),

(15.7) wW =id0|z[3 .
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Let THW be the horizontal subbundle of TW associated to V. Using the splitting
TW = TEW @ =}, L, we get the identification
(15.8) ATEW) = 73y (MTEB)  A(LR)) -
Then we have the analogue of (15.5), i.e.

L, i(RERE)

(15.9) WV =w 5

Now to the previous datas on V or W, we can construct the objects which we
considered in Chapter 3. In particular if A, A’ € TrB,Z € MR,

(15.10) TV ARV, AHEVY = RM(A,A)Z,

the other components of TV vanishing identically. Also ¢ = 7, AN* is naturally
equipped with a Hermitian metric, and the adjoint v* of v = v/—1i;(,) is given by

(15.11) v = —V/=-1j(Z)* A .
If V =v+v*if Z =2+ Z, then, with the notation of Section 2.2,
ic(Z)
15.12 V= .
(15.12) /3

15.2 The superconnection B

Let DM =3 + 3" be the obvious Dirac operator acting on E along the fibres
of B. In view of (2.31), (4.1), (15.10), the analogue of A, /7, which we note by ®Br,
is given by

RMZ)
15.13 B = DM 4+ VTV +vE - AB2)
( ) T 23

which fits with (5.7).
If U € TrB, let UH:NL/m be defined as in Definition 1.8. Then one finds easily
that on W,

(15.14) UHNum = A(U)Z.

If we extend U>Nv/x to the whole V by formula (7.30), where 7 is taken to be 1, we
get

(15.15) UHNum — A(U)PLZ.
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Let V be the trivial connection along the fibres of M. Using (11.32), (15.10), we see
that along the fibres of M, we have the identity of connections

(15.16) Ly (MTRBIBAM™) — v 4 L(RM 7, ) .

By (15.16), we find that the parallel transport operator 7 from PLZ to Z along
t € [0,1] — PLZ + tPN Z with respect to 1 V™V (MTRB)®AMY)) i5 given by

(15.17) T =exp (3 (RMPNZ,PLZ)) .

By (11.33), (13.18), (15.15), formula (15.17) also gives the parallel transport operator
with respect to 2V™V(MTRBI®AM™)) 54 3y (MTRB)®AM™))

By (7.35), (15.15), the analogue of ‘ZL\/T is given by

1515 ermp (D) g oy (ALY

Now in view of (15.17), we see that when trivializing ﬂ{,A(H*) by parallel transport
with respect to 3V™v(A(TRS)®AMY) in the directions of N (which are normal to L),
9@ is replaced by D given by

(15.19) Dr =exp (-3 (RMPNZ,PLZ))Grexp (3 (RMPNZ,PLZ)) .
Equivalently,
L
15.20) D1 = exp cAP22) 4 RMpNZ pLz
\/5 2
L
B exp (—2@5—52 +3 <RMPNZ, PLZ>) )

As the notation indicates, formulas (15.18), (15.20) are compatible with (5.15).
From (15.20), we see that when defining Fr as in (8.8), the expansion as T' — 400
of Fr@rF;! is given by the right-hand side of (13.81).
The analogue of B}V is the superconnection on F
c(RNZ)
2v2
Then if € is given by the analogue of (13.80), by Theorem 13.186,

(15.21) By =DN + VvF -

(15.22) v IpCpy = BY.

Note that in [19, Theorem 14.6], we calculated directly the expansion of @32 as
T — +o00, by using (5.16).

In retrospect, formula (5.16) for % and the asymptotic result of [19, Section 14]
appear just as special cases of results we proved in full generality for families of
immersions.
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Remark 15.1. By (15.4), the form w" is 89 exact. If we use the notation in (7.23),
we thus find that even though in general, THW # THV}y,,
(15.23) p(wV]) =0.

This gives a (sophisticate) confirmation to the possibility (exploited in [6]) of
deforming the complex (5.1) over P! to a split situation, where THW = THV,y,.

SOCIETE MATHEMATIQUE DE FRANCE






Bibliography

[1] Atiyah M. F., Bott R., Patodi V. K., On the heat equation and the Index
Theorem, Invent. Math., 19 (1973), 279-330.

[2] Baum P., Fulton W., MacPherson R., Riemann-Roch for singular varieties,
Publ. Math. IHES, 45 (1975), 101-146.

[3] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundl.
Math. Wiss. Band 298. Berlin-Heidelberg-New-York, Springer 1992.

[4] Bismut J.-M., The index Theorem for families of Dirac operators: two heat
equation proofs, Invent. Math., 83 (1986), 91-151.

[6] ——, Superconnection currents and complex immersions, Invent.
Math., 99 (1990), 59-113.

[6(] ——, Koszul complexes, harmonic oscillators and the Todd class,
J.A.M.S., 3 (1990), 159-256.

[7] ——, Formules de Lichnerowicz et théoréme de 'indice, Proceedings
of the Conference in honour of A. Lichnerowicz, D. Bernard, Y. Choquet-
Bruhat eds., Vol. Géom. Diff. pp 11-31. Travaux en cours, Paris: Hermann
1988.

[8] ——, Equivariant short exact sequences of vector bundles and their
analytic torsion forms. Comp. Math., 93 (1994), 291-354.

[9] ——_, The infinitesimal Lefschetz formulas: a heat equation proof, J.
Funct. Anal., 62 (1985), 435-457.

[10) — | Familles d’immersions et formes de torsion analytique en degré
supérieur. C.R. Acad. Sci. Paris, 320, série I (1995), 969-974.

[11] Bismut J.-M, Berthomieu A., Quillen metrics and higher analytic torsion
forms, J. reine angew. Math., 457 (1994), 85-184

[12] Bismut J.-M., Cheeger J., n-invariants and their adiabatic limits, J.A.M.S.,
2 (1989), 33-70.

[13] Bismut J.-M., Gillet H., Soulé¢ C., Analytic torsion and holomorphic deter-
minants bundles, I, Comm. Math. Phys., 115 (1988), 49-78.

SOCIETE MATHEMATIQUE DE FRANCE



274 BIBLIOGRAPHY

[14 — | Analytic torsion and holomorphic determinants bundles, II,
Comm. Math. Phys., 115 (1988), 79-126.

[15) — Analytic torsion and holomorphic determinants bundles, III,
Comm. Math. Phys., 115 (1988), 301-351.

[16] — | Bott-Chern currents and complex immersions. Duke Math.
Journal, 60 (1990), 255-284.

7] ———— |, Complex immersions and Arakelov geometry, The
Grothendieck Festschrift, P. Cartier and al. eds, pp. 249-331. Prog.
Math. n° 86. Boston-Basel-Berlin, Birkh&user, 1990.

[18] Bismut J.-M., Kohler K., Higher analytic torsion forms and anomaly
formulas, J. of Alg. Geom., 1 (1992), 647-684.

[19] Bismut J.-M., Lebeau G., Complex immersions and Quillen metrics, Publ.
Math. IHES, 74 (1991), 1-297.

[20] Bott R., Chern S. S., Hermitian vector bundles and the equidistribution of
the zeros of their holomorphic sections, Acta Math., 114 (1968), 71-112.

[21] Chazarain J., Piriou A., Introduction & la théorie des équations auz dérivées
partielles linéaires , Paris, Gauthier-Villars, 1981.

[22] Faltings G., Lectures on the arithmetic Riemann-Roch theorem, Ann. Math.
Studies, Princeton University Press, Princeton 1992

[23] Getazler E., A short proof of the Atiyah-Singer Index Theorem, Topology, 25
(1986), 111-117.

[24] Gillet H., Soulé C., Arithmetic Intersection Theory, Publ. Math. IHES, 72
(1990), 93-174.

[25] — | Characteristic classes of algebraic vector bundles with Hermi-
tian metric, Ann. of Math., I, 131 (1990), 163-203, II, 131 (1990), 205-238.

[26) — | Analytic torsion and the arithmetic Todd genus, Topology, 30
(1991), 21-54.

[27] —— | An arithmetic Riemann-Roch Theorem, Invent. Math., 110
(1992), 473-543.

[28] Griffiths P., Harris J., Principles of algebraic geometry, New-York, Wiley,
1978.

[29] Hitchin N.: Harmonic spinors, Adv. Math., 14 (1974), 1-55

[30] Hormander L., The analysis of linear partial differential operators, I, Grundl.
Math. Wiss. Band 256, Berlin-Heidelberg-New-York, Springer, 1983.

[31] Kobayashi S., Differential geometry of complex vector bundles. Iwanami
Shoten and Princeton University Press, 1987.

ASTERISQUE



BIBLIOGRAPHY 275

[32] Quillen D., Superconnections and the Chern character, Topology, 24 (1985),
89-95.

[33] ———, Determinants of Cauchy-Riemann operators over a Riemann
surface, Funct. Anal. Appl., 14 (1985), 31-34.

[34] Ray D. B., Singer I., Analytic torsion for complex manifolds, Ann. of Math.,
98 (1973), 154-177.

[35] Taylor M., Pseudodifferential operators, Princeton, Princeton Univ. Paris,
1981.

Jean-Michel Bismut

Département de Mathématique,
Université Paris-Sud

Batiment 425, 91405 Orsay Cedex, France
bismut@topo.math.u-psud.fr

SOCIETE MATHEMATIQUE DE FRANCE



