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Counting Integer and Rational Points on Varieties 
Joseph H. Silverman* 

Let 
V/Q be any variety. 

In other words, V/Q is a system of polynomial equations 

Pi(X1, . . . ,Xn) = 0, 1 < i < r, (*) 

where the polynomials have coefficients in Q. We will be interested in studying 
the set 

V(Q) = (set of rational points on V) 
= (set of simultaneous solutions to the system (*) with Xi e Q), 

and also in some cases the set 
V(Z) = (set of integer points on V) 

= (set of simultaneous solutions to the system (*) with Xi e Z). 

The problem of describing the sets V(Q) and V(Z) is the central problem in 
the study of Diophantine Equations. 

There are lots of good questions one can ask about a Diophantine set 

V = V(Q) or V = V(Z), 

for example: 

[1] Is V finite? 
[2] Is V Zariski dense in VI Is V dense in V(R) taken with the real 

topology? 
[31 Assuming V is infinite, how "large" a set is it? 

This article is an expanded version of a talk given at Columbia University, Dec. 2, 1991. 
AMS Classification — Primary: 11G35, Secondary: 14G25, 11D85. 
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Positive answers to question [1] are known for subvarieties of abelian varieties 
(Faltings), affine curves (Thue, Siegel), and certain higher dimensional affine 
varieties (Schmidt, Faltings). The first part of question [2] is answered by a 
powerful conjecture of Vojta, and in an earlier talk Mazur discussed possible 
answers to the second part. In this talk I would like to describe some of what 
is known and what is conjectured concerning question [3]. In other words, 
assuming that V(Q) and/or V(Z) is infinite, I want to measure how "large" 
it is in some quantitative way. 

To illustrate what this means, we'll start with the simplest example imag­
inable, namely 

V/Q is the system of 0 equations in 1 variable. 

In other words, V is the affine line A1. Then 

A1(Z) = {X e Z : X satisfies no relations} = Z. 

Clearly #AX(Z) = oo, so a reasonable way to describe the "size" of A1(Z) is 
to use the counting function 

N(A1(Z),B) def {X eZ : \X\< B}. 

Clearly we have 

^ ( A ^ Z ) , B) = 2[B] + 1 = 2B + O(l), 

and the fact that iV(A1(Z),J5) grows like 2B gives a reasonable measure of 
the size of A*(Z). 

Of course, we don't have to stick with Q and Z, although I will for much 
of this talk. But for example if we look at the same variety and count points 
in the Gaussian integers Z[t], we have 

N(A}(Z[i])iB) ш {X e Z[i] : \X\ < B} 
(x,y) eZ2 : x2 + y2 <B2 

TTB2 + 0{B). 

(Better error estimates are available, but we won't concern ourselves with 
such matters.) 

Now suppose we are interested in rational points? It clearly makes no 
sense to try to count AX(Q) = Q by counting 

{X eQ : \X\<B}: 
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since there are infinitely many rational points with absolute value less than B. 
So we want a better way to measure how large a rational number is, which 
leads to the notion of height. The height of a rational number z is 

H(z) = H a 
b 

def max a , \b } for z 
a 

E 
G Q with gcd(a,6) = 1. 

Then it is a nice exercise to show that the counting function for AX(Q) is 

N(A1(Q),B) del X G Q : H(X) < B 
12 
7T 

B2 as S —> oo. 

More generally, we can think of our variety V as a subset of projective 
space IPn, so in order to define the height of a point in V(Q), we just need to 
define the height of points in Pn(Q). This is easy. The height of a point P e 
Pn(Q) is 

H(P) = H([x0,...,xn]) def max{|z0 | , . . . , |zn |} 
for P = [#0,... ,a:n] with Xi e Z, gcd(xi) = 1. 

We can now define the counting function of the variety V c Pn to be 

N(V(R),B) def {PeV(R) : H(P)<B\ 

Here R could be Q or Z, or more generally it could be a number field K or 
ring of ^-integers in K. Of course, to do this I need to define the height of a 
point in Pn(if). The definition is as follows, but if you haven't seen it before, 
you should ignore it and just stick with the case R = Q or Z: 

H(P) = H([x0,...,xn]) def 
VGMUT 

m a x ^ i r ^ 1 

for P= lxo,...,xn} eVn(K). 

GOAL: Describe the asymptotic behavior of the counting 
function N(V(R),B) as B —• oo in terms of elementary 
geometric invariants of the variety V and elementary arith­
metic invariants of the ring R. 

The counting function for Fn(K) was described by Schanuel in 1979: 
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Theorem. (Schanuel [10]) 

N(¥n(K),B) hR/w 
C/f(n + l) 

2ri (27rr2 
d1/2 
ак 

n+l 
( n + l)ri+ra-1Bn+1. 

Here h,R,w,ri,r2,dic,CK are the usual quantities (class number, regulator, 
number of roots of unity, number of real and complex embeddings, absolute 
discriminant, zeta function) associated to the number field K. 

In particular, if we take K — Q then 

h = 1, R = 1, w = 2, ri = 1, r<i = 0, d<j = 1, 

so 
N(lPn(Q),.B) 

2n 
C(n] 

Bn+1 

and taking n = l w e recover the exercise mentioned above, 

N(A1(Q) B) Ni^mB) - 1 
2 

C(2) 
-B2 12 

7T2 
B2 

Why is it true that Pn has a lot of rational points? In some sense, it 
is because there is a very large group acting on Fn(K), namely Aut/cO^71) = 
PGLn+i(iïT). A natural generalization of Pn is the Grassman variety 

G(m,n) = (collection of m-dimensional linear subspaces of An). 

Thus for example Pn = (3(1, n + 1). There is a natural way to write G(m,n) 
as a variety in p(^)-1 given by what are known as Plucker coordinates; in 
the following theorem we take G(m,n) with this embedding into projective 
space. 

Theorem. (Schmidt 1968 [11] for K = Q, Thunder 1990 [14] for arbitrary 
K) 

N{G(m,n)(K),B) ~Crn^KBn 

where cm,n,/<: is an explicitly given (quite complicated) constant. 

The proofs of Schmidt and Thunder follow along the lines used by Schanu­
el, but are considerably more complicated. One can look more generally at 
homogeneous spaces, which will have large automorphism groups. Two recent 
results along these lines are the following. 
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Theorem. 
(a) (Pranke, Manin, Tschinkel 1989 [6]) Let G be a semi-simple algebraic 
group over K, let P be a parabolic subgroup, and let V = P\G be the 
associated generalized Bag manifold. Choose an embedding V C Pn with the 
property that the hyperplane section H is linearly equivalent to —sKy for 
some positive integer s. Then there is an integer t > 0 such that 

N(V(K),B)S ~ cvB(logBY. 

(b) (Duke, Rudnick, Sarnak 1991 [5]) Let G be a linear semi-simple al­
gebraic group over Q, Jet H c G be a reductive subgroup (with certain 
additional properties), and let V = H\G. Then there are constants a > 0, 
b > 0, c> 0 such that 

N(V(Z),B) ~cBa(logB)b. 

Both of these results require fairly heavy machinery for their proofs. Notice 
that the variety P\G in (a) is projective, so one counts rational points, while 
the variety H\G in (b) is afBne, so one counts integral points. 

All of the varieties we've considered so far have had a lot of rational 
points, in the sense that N(V(K),B) grows like a positive power of B. For 
such varieties it is natural to look at the quantity 

ß = ß(V{K)) def lim 
В-юо 

logN(V(K),B) 
log£ 

assuming that this quantity exists. Thus ¡3 measures how large V(K) is in 
the sense that for every e > 0 we have 

Bß~£ < N(V{K),B) • ßß+e for B > 1. 

We also remark that if (3 exists and V(K) is infinite, then (3 will be equal to 
the abscissa of convergence of Manin's height zeta function 

PeV(K) 
H(P)-S. 

Batyrev and Manin have recently [2] described some conjectures which 
relate /3 to a geometrically defined quantity a = c*(V). I'll describe a precisely 
in a moment, but if you are unfamiliar with the terminology, don't worry. The 
main thing to remember is that a(V) depends only on the geometry of the 
variety V over the complex numbers, or equivalently on geometric properties 
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of the complex projective manifold V^C). Also, it is frequently possible to 
compute a(V) directly from the equations for V. 

To define a(V), we recall that the variety V is assumed to be given as 
a subset of projective space V c Pn. We let H e Div(F) be the divisor 
corresponding to a hyperplane, and let Ky e Div(V) be a canonical divisor. 
Further let NS(V) be the Neron-Severi group of V, which is the group of 
divisors modulo algebraic equivalence. Then 

a(V) inf {r e R : rH + Ky is in the effective cone of NS(V) <8> R}. 

Notice that a(V) is reminiscent of the quantities that come up in Nevanlinna 
theory and in Vojta's conjectures. 

Conjecture. (Batyrev, Manin 1990 [2]) 
(a) For every e > 0 there is a non-empty Zariski open subset U C V such 
that 

(3{U{K)) <a{V) + e. 

(b) Suppose that the canonical divisor Ky is not in the closure of the cone 
of effective divisors in NS(V) (8) R. Then there exists a non-empty Zariski open 
subset U C V and a finite extension K'IK such that 

0{U(K'))=a(V). 

For example, on Pn we have 

KFn = ( - n - 1)#, soa(Pn) = n + l . 

On the other hand, SchanuePs theorem says that 

N(Fn(K),B)~cn,KBn+1 so(3(Fn(K)) = n + 1. 

Thus in this case we have a = /3, which verifies the Batyrev-Manin conjecture 
(without the necessity of taking a Zariski open subset or going to an extension 
field). 

An interesting consequence of the Batyrev-Manin conjecture arises if one 
considers the case that the canonical divisor Ky is trivial, so a(V) = 0. One 
deduces that for every e > 0 there is a non-empty Zariski open subset Ue cV 
such that 

(3(U(K)) < e. 

In other words, V{K) has comparatively few points. For example we might 
look at K3 surfaces, of which the Kummer surfaces described in Mazur's talk 
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are a particular kind. The conjecture says that if V/K is a K3 surface, then 
for every e > 0 there is a finite union of curves Z c V so that 

N((V\Z)(K),B) < B£ for all B > 1. 

Now it may happen that a K3 surface will contain infinitely many rational 
curves Zi ,Z2 , . . . (that is curves Zi = P1). Note that each Zi will have a 
counting function 

N{Zi{K),B)^ciB2'd\ 

where d{ is the degree of the curve Zi in Zi C V C Pn. This shows that the 
Batyrev-Manin conjecture for such K3 surfaces cannot be improved, in the 
sense that one cannot replace the Be by a smaller function. (See [15] for some 
recent work concerning rational points on Kummer surfaces.) 

One case where the Batyrev-Manin conjecture is known to be true is 
that of abelian varieties. In fact, Neron used his theory of canonical heights 
to prove the following much more precise result. 

Theorem. (Neron 1965 [9]) Let A c Pn be an abelian variety defined over 
a number Geld K, and let r = r(A,K) be the rank of the group of rational 
points A(K). Then there is a constant c = c(A, K) > 0 such that 

N(A(K),B) ~c(logi3)r/2 as B —• oo. 

Thus not only is 0{A(K)) = 0, but in fact N(A(K), B) only grows like a 
power of log B. There are other sorts of Diophantine equations which exhibit 
this kind of log J3 growth. The simplest example is Pell's equation 

V : x2 - Dy2 = 1, 

where D is a positive square-free integer. As is well-known, every integer 
solution in V(Z) is obtained from a single primitive solution, and it is easy to 
verifv that 

N(V(Z),B) ~ c l o g B . 

More generally, if the rational or integral points on a variety form a finitely 
generated abelian group, then they satisfy estimates similar to the estimate 
given in Neron's theorem. 

So far we have seen varieties whose counting functions grow like a power 
of B and varieties whose counting functions grow like a power of log B. And of 
course, there are varieties whose counting functions are bounded (i.e. varieties 
with finitely many rational points). I would like to ask if these three cases 
give the only sort of behavior possible. To make this precise, I need to explain 
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what I mean when I say that "a function f(B) grows like a power of B". A 
reasonable interpretation is that 

lim 
B—oo 

log log/(B) 
log logo 

1. 

In any case, if f(B) ~ cBa(\ogB)b with a > 0, then f(B) will satisfy this 
condition. Similarly, if f(B) grows like a power of logB, then it will satisfy 

lim 
log log/(B) 
log log log B 

1. 

This leads me to ask the following question (which is certainly not a conjec­
ture, since I have virtually no evidence. Some, however, might for that reason 
consider it to be a provocation rather than a question!): 

Question. Let V/Q be a variety. Is it true that V satisfies one of the following 
three properties? 

(i) N(V(Q),B) = 0(1) as B —• oo (i.e. V(Q) is finite). 

(ü) lim 
#—oo 

loglogiV(y(Q),B) 
log log B 

1. 

(iii) lim 
B->oo 

loglogiV(V(Q),B) 
log log log B 

1. 

More generally, is this true with V(Q) replaced by V(R), where V/K 
is any (quasi-projective) variety defined over a number field K and R is any 
subring of K. (For more details and a more precise version of this question, 
see [12].) 

I would like to conclude by discussing a very classical family of Diophan-
tine equations whose solutions in integers can be completely described, but 
whose counting functions are still quite mysterious. We consider first the 
Markoff equation 

V* : X2 + Y2 + Z2 3XYZ. 

(The subscript on V refers to the number of variables.) This equation has 
the obvious solution (1,1,1); and given any solution (x,y,z) there are trivial 
ways to produce new solutions such as permuting the coordinates or changing 
the signs of two of the coordinates. But there is another, less obvious, way 
to produce a new integer solution from a given one. Here's how. Given an 
integer solution (x, y, z), if we substitute X = x and Y — y into the equation 
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(1,1,1) (1,1,2) (1,2,5) 

(1,5,13) 

(2,5,29; 

(1,13,34) 

(5,13,194] 

(2,29,169) 

(5,29,433) 

Figure 1 

for V3 we get a monic quadratic equation in Z one of whose roots is Z = z. 
The other root Z = z' will also be an integer, and then (x,y,zf) is our new 
point. Carrying out this procedure, we see that we get a map (in fact, an 
involution) 

ct>:V3(Z) V3(Z) V3(Z (x,y,3a?i/ - z). 

Theorem. (Markoff 1880 [8]) Every point in V3(Z) other than (0,0,0) can 
be obtained from (1,1,1) by applying permutations, sign changes, and the 
map (j). 

The proof of Markoff's theorem is quite easy. One shows that if P = 
(x,y,z) satisfies 0 < x < y < z, then the Z-coordinate of 0(P) is strictly less 
than z. This allows one to descend to the case that 0 < x < y = z, and then 
the equation for V3 shows that one has arrived at (1,1,1). 

In order to count the integer solutions to the Markoff equation, it suffices 
to count the solutions satisfying 0 < x < y < z (and then take into account 
the 6 permutations and 3 sign changes). These normalized solutions form the 
tree pictured in Figure 1. Cohn [4] gave X estimates for iV^V^Z), B), and 
Zagier strengthened these to give the following asymptotic formula: 

Theorem. (Zagier 1982 [16]) There is a constant c3 « 3.253 such that the 
counting function for the Markoff eauation VQ satisfies 

N{V3(Z)iB)~c3(logB)2 as B —• 00. 
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It was noted by Hurwitz in 1907 [7] that Markoff's technique allows one 
to find all integer solutions to the more general equation 

Vn : Xl + X\ + .. - + X2n = nX1X2 - - -Xn. 

In other words, all of Vn(Z) can be obtained from the initial point ( 1 , 1 , . . . , 1) 
by applying permutations, sign changes, and the map 

(x\,x2,. - • ,xn) X\,X2, ... ,Xn-\,nX\X<i • • -xn-i - xn) 

Based on Zagier's result, one might guess that the counting function for Vn(Z) 
would grow like (logjB)n_1, but in fact this is not the case, as was recently 
shown by Bar agar. 

Theorem. (Baragar 1991 [1]) 
(a) Suppose that the counting function for V4 grows like 

N(V4(Z),B) ~c4(log£0Q 

for some constants C4 > 0 and a > 0. Then 

2.38 < a < 2.8. 

In particular, Nty^Z), B) does not grow like (logB)3. 
(b) More generally, suppose that the counting function for Vn grows like 

N(Vn(Z),B) ~cn(logB)«W 

for some constants cn > 0 and a(n) > 0. Then 

1.45 log n - 1 < a(n) < 3.7 logn. 

Numerical evidence compiled by Baragar suggests that a(4) w 2.44. It is 
not at all clear what a(4) should be, so I will leave you with one final question: 

Is it conceivable that 

N(VA{Z),B) ~c4(logB)a 

for some irrational number a? 
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Addendum I: Counting Geometrically Generated Points 

On certain varieties it is possible to describe the counting function for ge­
ometrically generated subsets of V{K), even though the counting function 
for V(K) itself remains intractable. We briefly describe two examples. 

Suppose that V is an elliptic surface, which means that there is a mor-
phism 7r : V —> C to a smooth curve C such that almost every fiber of ir is an 
elliptic curve. Then the group of sections C —» V (defined over K) forms a 
finitely generated abelian group which we will denote by V(C). If a : C —> V 
is any section to 7r, then we get rational points on V by applying a to rational 
points on C, 

a{C(K)) C V(K). 
Doing this for every section, we get a subset of V(K) which we will denote by 

Vsect(K) def [a(t) : a e V(C and t e C(K) 

If C has genus at least 2, then C(K) is finite, so the subset Vsect(K) will 
not be very interesting. (In particular, it will not be Zariski dense.) On the 
other hand, if C has genus 0, then the image of every section has so many 
rational points that the counting function Vsect(K) looks like the counting 
function for IP1. So the interesting case is when C has genus 1, which means 
that both C(K) and V(C) are finitely generated abelian groups. They then 
interact with each other in a non-trivial way as described in the following 
result of Greg Call. 
Theorem. (Call 1984 [3]) Let V —• C be an elliptic surface defined over 
a number field K, let V(C) be the group of sections de&ned over K, and 
let Vsect{K) be the subset ofV(K) consisting of those points which lie on a sec­
tion. Assume further that C has genus 2, so its group of rational points C(K) 
is a finitely generated group, and let 

r(V) = rank V (C) and r(C) = rank C(K). 

Then 

N(Vsect{K),B) 
(logjB)imax{r(V),r(C)} ifrW^riC), 
(logJB)2r(y) log log B ifr(V) = r{C). 

For our second example of geometrically generated points, consider a 
surface V inside IP2 x P2 described by the intersection of a (1, l)-form and 
a (2,2)-form. Thus V is given by two homogeneous equations 

V 
3 

i,j=1 
aijkxiyjk 

3 

i,k,l,j=1 
biikiXiXiykyi = 0. 
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This surface is another example of a K3 surface. The projections 7TI,7T2 : 
V —> P2 are double covers, so there are associated involutions a\, a2 : V —• V. 
Let .A be the subgroup of Aut(V) generated by o\ and o2. It is not hard 
to prove that A is isomorphic to the free product (Z/2Z) * (Z/2Z), so in 
particular it is infinite. One then checks that for most points P e V(K), the 
orbit 

AP def {<fiP : 0 E .A} 

is likewise infinite. The following result shows that the points in any such orbit 
are extremely sparse (although one expects that V(K) will contain infinitely 
many distinct orbits). 

Theorem. (Silverman 1991 [13]) Let P e V(K) be a rational point on 
the K3 surface described above, and assume that the orbit AP is infinite. 
Further let 

' 2 if no non-zero element of A fixes P, 
< 1 if some non-zero element of A fixes P. 

Then 
N(AP,B) fp 

log(2 + V3) 
loglog£ + 0 ( l ) . 

Addendum II: The Circle Method 

As the referee has kindly pointed out, the circle method provides another pow­
erful technique for counting integral points on varieties. For example, Birch 
(Proc. Royal Academy 1962) has shown that if P i , . . . . Pr are polynomials of 
degree d in Z [Xi , . . . , Xn], if the corresponding variety V is not too singular, 
and if n is very large compared to d and r, then the counting function for V 
has the form 

N(V(Z),B) ~CvBn-rd. 

There is a similar statement for projective varieties. Note that this formula 
is compatible with the conjecture of Batyrev and Manin, since the canonical 
divisor on V is Ky ~ (n — rd)H. 
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