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The expl ic i t reciprocity law of B l o c h - K a t o 

Ehud de Shal i t 

Introduction. In §2 of their paper [B-K] B loch and Kato proved a 
remarkable theorem relating the Coates-Wi les homomorphisms, which play 
an important role in the theory of cyclotomic f ie lds, to the structure of 
Fontaine's ring Bcris([F2], [F-Ml). This theorem is one of the two ingredients 
in the proof of the "Tamagawa number conjecture" for the motive (D(r), r 
even and posit ive. (Cf. [B-K], §6. The other ingredient is the Main Conjecture 
of Iwasawa theory, proved by Mazur and Wiles.) 

Star t ing from Bcris, and using the "fundamental exact sequence" (see 

below), one constructs, for each r^l, a canonical c l ass in Hj(<0p,^p(r)). (We 

wri te HKK.M) for HKGaKK/KXM) . ) The theorem of Bloch and Kato identif ies 

this c lass essent ial ly as the rth Coates-Wi les homomorphism. In §2 of [B-K] 

the authors reduce their theorem to the case r=1. This case, in turn, fo l lows 

from more general "explicit reciprocity laws", proven in [K]. 
The proofs in [B-K] and [K] are diff icult, and use the relation between 

Bcr1s and crystal l ine cohomology, Fontaine's syntomic cohomology, and the 
main resul ts of Fonta ine-Messing. In our attempt to understand them, we 
found a simpler proof of the case r=1, where we deduce the theorem directly 
from the explicit reciprocity laws of A r t i n -Hasse and Iwasawa. We have 
somewhat s impl i f ied the presentation of the general case too, although 
mainly in sty le, and not in substance. Perr in-Riou ([P], prop. 3.4(0) found 
another way to reduce the general case to the case r=1. 

The proof given below might cover p=2 too, which was excluded from 
the d i scuss ion in [B-K] . St r ic t ly speaking, §9 re l ies on part I I I of [F-M], 
where p=2 causes some dif f icul t ies. (Elsewhere, e.g. in the case r=l of the 
main theorem, p=2 is not a problem.) However, the resu l ts needed here 
should extend to p=2. In particular, lemma 8.2, which is of "qualitat ive" 
rather than "quantitative" nature (and which is the only troublesome point) 
should remain valid. We hope that when the detai ls of [F-M] f inally appear, 
they wi l l al low us to include p=2. Th is should help to el iminate the 
unknown powers of 2 in theorem 6.1(i) of [B-K]. 

s. M . F. 
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E. DE SHALIT 

Chapter I (§ l -§4) is devoted to a preliminary study of the ring Acris. In 
§4 we show how to derive the "fundamental exact sequence". Despite i ts 
importance for the construct ions of [B-K], the proof of the r ight -exactness 
of th is sequence was unavailable in print until now. (In [F-M] the authors 
only say that it is done by "explicit laborious computations", but their notes 
on the proof were never made public1.) 

Chapter II (§5-§9) contains the proof of the theorem of Bloch and Kato 
along the l ines d iscussed above. 

Chapter I I I contains the seeds to general izat ions to other Lubin-Tate 
formal groups (in the spir i t of [W]). The author hopes to expand on this in a 
future paper. Recently, K. Kato kindly informed the author that he had 
generalized his work to any Lubin-Tate group, but in a direction that seems 
different than the path taken in chapter I I I . 

Acknowledgements. Chapters 1 and 11 of this paper are based entirely on the work of others, 
mainly J.-M. Fontaine and K. Kato, and except for the presentation, we claim no originality on our 
part. This work was written while the author was visiting Princeton University. He would like to 
thank the department of mathematics for its support, and A. Wiles for many pleasant discussions. 

I. The ring Bcris and the fundamental exact sequence 

1. The ring R. The construction of the ring R (resp. Acris and Bcris) reviewed 
below is due to Fontaine and Wintenberger (resp. Fontaine, see [F-M] ch.I, §1 
and the references therein). One should think of Bcr1s as the ring of all p-
adic periods of mot ives with good reduction over the maximal unramif ied 
extension of <Dp. 

Let p be a prime number, and <Dp an algebraic c losure of the p-adic 

numbers. Let R be the "perfection" of the ring ^(Qp)/p^(Qp), 

(0 R = lim^((Dp)/ptf((Dp) 

the inverse l imit taken wi th respect to the Frobenius map of ra is ing to 
power p. Clearly R is an integral domain in character is t ic p, on which 

1 The referee has pointed put that a proof of the fundamental exact sequence will appear in 
[F4], and some of the ideas involved may be found also in [F3]. 
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THE EXPLICIT LAW OF BLOCH-KATO 

Frobenius $ is bijective. If X=(X0,X1,...)GR> where xIG^((Dp)/p^((Dp) and xiP=xH, 

let x1 be any representative of xi in 0((Dp), and define xW=limnfc1+nPn e0(Cp). 
Here (Cp is the completion of <Dp. It is easy to see that the limit exists, is 
independent of the choice of representatives, and that the association x  
(x^.x^,. . .) identifies R as a set (and as a multiplicative monoid) with the 
set of all infinite series in 0(<Cp) such that (xW)P=x(H). 

For xeR, define vR(x) = vp(x(°)), where vp is the p-adic valuation, 

normalized by vp(p)=1. Then R becomes a complete valuation ring, whose 

residue field is Fp. Let £ be an element of R such that C(0) = 1, C^* !1 . Then 

Fp[[£-1]]cRf the field of fractions of R contains a separable closure 

Pp((C"0)sep of Fp((£-1)), and is identified with its completion. In particular, 

R is integrally closed. 

2. Witt vectors over R. Let W(R) be the ring of Witt vectors over R. For 
aeR let [a]=(a,0,0,...)GW(R) be its Teichmuller representative. Since the 
absolute Frobenius homomorphism $ is bijective on R, every element of 
W(R) has a unique expression in the form 

(2) a = (a0,a1P,a2P2,...) = 2o«n<~Pn[an]. 

Define the map 9 : W(R) -> 0(Ip) as 

(3) e(a) = Xo*n<ooPn an(0). 

Then 0 is a surjective ring homomorphism. Indeed, 9 is already surjective 
when restricted to the set of Teichmuller representatives, because 
6([a]) = a(0) is arbitrary, a fact that will be used below. That 9 is a 
homomorphism follows directly from the way addition and multiplication 
are defined in W(R) ([S], ch. 2 §6). 

Let J = Ker(e). Then J is a principal ideal, generated by any a as in 
(2), for which e(a)=0 and a/°)e^((Cp)x. The proof is not difficult. See [F1], 
proposition 2.4. 

The Frobenius of W(R), still denoted <p, is bijective. It preserves 
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E. DE SHALIT 

J+pW(R) , but not J . The Galois group Gal(Qp/(Dp) acts by functorial i ty on R 

and on W(R), and commutes with (J) and 9. 

Lemma 2.1 (i) The elements of W(R) sat is fy ing $ ( a ) = a P are precisely the 

Teichmuller representatives [a], aeR. 

(ii) For aeR, 0c|rn([a])=a(n). 

Proof. The f i rs t asser t ion is a general and well known property of Witt 

vectors. The second fo l lows from the fact that for X G R , (|rn(x)(m)=x(m+n). • 

For each n^O, let £n be a primit ive pn root of 1 in (Dp, such that Cnp=Cn-i-

The element £eR for which ^n^-Cn g ives a generator e = [£] e W(R) of a 

"mult ipl icative Tate module" ezP c w(R)x. Put Kn=Qp(£n), and Koo=UKn. 

Lemma 2.2 The fol lowing sequence of mult ipl icative groups is exact: 

(4) 0 —» eZP — > i + j 

p-<t> 

1 + pW(R) —* 0. 

Proof. If pGW(R)x , a ^ p P " ^ € l + pW(R), and by success ive approximations one 

checks that every element a of l + pW(R) is of this form. Choose reR such 

that r(°)=e(p). Then p/[r] e I + J , but s t i l l a=(p/[r])P"(t). Th is proves the 

surject iv i ty of p-cj). If pP~(t>=i, by lemma l(i) p=[r], and since r(°)=e(p)=1, r is 

a p-adic power of e. 

Remark. When p=2, -1el + pW(R), so lemma 2 shows that e has a square root 
•f ee l+J . Since -1 is not in 1+J, this square root is unique. 

3 . Divided powers. Let A'crjs be the divided power envelope of W(R) wi th 

respect to J . If y is a generator of J , A'crjs = W(R)[y2/2!,y3/3!,.. . ] c W(R)®(D. 

Let Acris be the completion of A'cr1s in the p-adic topology (it is easy to see 

that A'cris is separated, so it embeds in Acris): 
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THE EXPLICIT LAW OF BLOCH-KATO 

(5) Acr is " ^m<- A ' cris / P ^ ' cris -

Since 4>(J) £ J+pW(R), and since (p) already admits divided powers in W(R), 
<{> extends to A'cris. It then extends by continuity to Acr1s. Clearly the Galois 
action carr ies over too. The map e extends to Acr1s easi ly, since 9(y)=0. 

We denote the kernel of 0 in Acrjs by Jcris (it is not principal, nor even 

finitely generated). Its divided powers are the ideals JCnS[rl (r^l) given by 

(6) ^c r i s 
[rl 

- (Yr/r!, Yr+7(r+1)! , ...)Acris. 

Obviouslu J cris 
[1] = Jcris. One further defines 

Jc r i s< r> = { ccEJcris[rl ; <|>(a) e p^Acris }. 

Observe that for any p e 1+J, log(p) e AcMs is defined by the usual 

power ser ies in p-1, which converges nicely. Moreover log(p)eJcr1s<^1'>. In 

particular 

(7) t = log(e) (recall e=[£]) 

is a generator of an "additive Tate module" Zp(1) Q JCr is^^ - We denote by 

Zp(r) the subgroup generated by tr. Let 

S r = { XGAcr1s; pnxeZp(r) for some n } c Jc r i s< r> . 

Since Acris is p-torsion free, for some non-negative c(r), 

(8) sr = p-c(DZ (r). 

In fact, c(r) = Z i ^ o ^ P " ^ " 1 ? " 1 ' ' where M denotes the largest integer ^x, but 
we shall make no use of this exact value. 

Bcris is defined as Acris[t"1]. Our primary concern is nevertheless with 
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Acris. 

4 . P r o p o s i t i o n (The fundamenta l exact sequence) . For every r^O the 

sequence 

(9) o —> sr —> Jrric e n s 
<r> 

1-p~r(t> 

Ac r i s * ^ 

is exact. 

Remark. When r=1 the exact sequences (4) and (9) are related by the 

fol lowing diagram 

0 —* 6ZP —* 1+J 

p-<t> 

1+pW(R) —» 0 

log log P ]log 

0 —> S1 —> J cris 
<1> 

1-pHct> 

Acris - " 0. 

If p>2, the vertical ar rows are infective, the last one is onto W(R), and the 

first one is an isomorphism, since S1=Zp(1). If p=2, the last vertical arrow 

has {±1} for i ts kernel, which is also the cokernel of the f i rs t one, since now 

S1=2"1Z2(1) (see the remark fol lowing lemma 2.2). 

<r> 

Proof. That the kernel of 1—p~rcf> on Jcrjs is Sr, is essent ia l ly proven in 

[FI], théorème 4.12. (The ring B of [F1] is different from Bcris, but the proof 

can be adjusted to Bcrjs.) We show the sur ject iv i ty of 1 —p~ncp in several 

steps. We shall prove a little more, i.e., that for any unit veAcrisx 

(10) (<})-vpOJcris[rl2 PrAcris. 

It wi l l be convenient to fix as a generator of J = yW(R) the element 

(11) y = [T l l +p . 
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THE EXPLICIT LAW OF BLOCH-KATO 

where TTGR is some fixed element with n(°)= -p. 

4.1 The element u = (e- l )P 'Vp. ([F-M] sugges ts the use of tP 'Vp , but the 
two elements are associates in ACRIS . ) From (11) we get 

yP = [TT]P mod pW(R), 
and clearly 

(e - l )P-1 s U-11P"1 mod pW(R) , 

so since ( £ - 1 ) P - V T I P € R x , there exist AeW(R)X and V G W ( R ) such that 

u = A(yP/p)+v. 

This shows that U G A ' C R I S . Furthermore, pv is d iv is ib le by yP"1 in W(R), and 

since p is a prime in W(R), and p does not divide y, v is divisible by yP"1. We 
conclude that 

(12) u = X(yP/p)+nyP_1 J \GW(R)x , |ieW(R). 

4.2 Corol lary. Inside W(R)[1/p] we have 

03) A'cris = W(R)[ym/m!] = W(R)[ynP/(np)!] = W(R)[uVi!]. 

Proof. The first equality is the definition of A ' C R I S . The second fo l lows from 

the observation that if m=np+j, (K j<p, m! and (np)! are divis ible by the same 

power of p. Since ueJ'cris = E m > 1 ^ ( R X y ^ / roO, i ts divided powers uj/i!eJ'cris 

as wel l . On the other hand, we prove by induction on n that ynP/(np)! G 

W(R)[uVi!]. If n=1 this is clear from (12). In general, we may replace ynP/(np)! 

by (yP/p!)n/n!, since (np)! and (p!)nn! are divisible by the same power of p. So 

(yP/p!)n/n! = (XjU+^yP-tyVn! G W(R)[uVi!] 

since, by the induction hypothesis, ym/m! G W(R)[uVi!] for all m<np. 

4.3 C la im: (eP-1)/p(e-1) G Acrisx. 

Proof. (eP-1)/p(6-l) = (8- l )P"Vp mod Acris, so by 4.1 it l ies i tself in Acris. 
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R DE SHALIT 

Furthermore e(e) = 1, so 9((eP-1)/p(e-1)) = 1, and (eP-1)/p(e-1) e 1+Jcris. But if 

X € Jcris, Z o ^ ^ o o X 1 converges in Acrjs, since xj/i!eAcris and Acris is p-adically 

complete. It fo l lows that 1+JCnsgAcr i sX-

4.4 Lemma. Let veAcrisx, r^O, e ^ r + 1 , and consider the ser ies 

(14) f(x(e-1)e) = 2o^i<co(v-1p-r( t )) i (x(6-1)e), XGAcris-

Then (14) converges to an element of Jcris<r> and 

(1-v-1p-r(|))(f(x(6-1)e)) = x(e-1)e. 

Proof. By 4.3 , (v-]p-r()))(x(£-1)e) = pe" rv -1c t ) (x ) - ( (sP-1) /p (6 - l ) )e - (8 -1 )e = 

p^x^e - l ) 6 , wi th x1GAcrJs. Iterating, the ith summand in (14) wi l l be divis ible 

by p1(e"r)(e-l)e, which guarantees convergence to an element of Jcris ^ c 

^cris^^ a9a^n bU 4.3. The 1ast statement fo l lows formally. 

4.5 Corol lary. (cJ)-vpr)Jcr1s [rl 2 prAcris-uVi! if i i(p-l)>r. 

Proof. In addition to what was already said, one only has to note that if 

(e-l)e is divisible by pm in Acris, so is (14). 

4.6 Lemma. If O^r and V G A p H * for every i>0 

(<t>-vpr)Jcris 
[rl 2 prArriq-uVi! 

Proof. By induction on r, we may assume that (10) holds for all r's smal ler 

than our r. When r=0, (10) fo l lows from corollary 4.5, and lemma 4.7 below. 

So suppose i is such that 0<i(p-1)^r (bigger i's are taken care of by 4.5). 

Write $(u) = pPHu£, where { is the unit ((eP-l)/p(8-l))p_1 (see 4.3). Let x be a 

variable. Then 

(<J)-vpr)(xuVi!) = pi(P-0^i.((()-vripr-i(p-i))(><).ui/j!> 
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THE EXPLICIT LAW OF BLOCH-KATO 

and by the induction hypothesis ($-v^"ipr~j(P"1))(x) g ives everything in 

p r - i ( p - D A cris as x runs over Jcris[r"l(P"1)]- The cla*m f o l l ows , s ince 

uVi!-Jcris [M(p-1)l 
- Jc r i s 

[rl 

4.7 To f in ish the proof of (10), it remains, by 4.2, and the density of A'cris in 

AcMs, to prove that (c})-vpr)Jcristrl 2 prW(R). We f i rst do the case r=0. Write 

v = Z o ^ i < o o V j u i / i ! , where V 1 G W ( R ) tend p-adical ly (in W(R)) to 0. Th is is 

poss ib l e by 4.2 and the densi ty of A 'cr1s in A c M s . App l y i ng e, 

6(v0)=e(v)€^(Cp)x, so v0 must be a unit in W(R). By corol lary 4.5, it is 

enough to show that (<t>-v0)AcrJS 2 W(R) (see the argument in the next 

paragraph), so we may assume that veW(R)x. In this case ((()-v)W(R)=W(R). 

Indeed, it is enough to prove the "mod p" version of this, i.e., that for aeRx, 

xP-ax=b is solvable in xeR for every beR. This is true since R is integrally 

closed. 

The case r=0 concludes the proof of (10) when r=0, hence we can start 

the induction on r, and we may assume that lemma 4.6 holds. By that lemma, 

the proof of (10) is reduced again to the case veW(R)x. Indeed, wr i te 

v=20< i<oov iu i / i ! as above, let beprAcNs, and instead of solving (c))-vpr)(x) = b, 

solve (<t>-v0pr)(x) = b. Then (<()-vpr)(x) = b - p ^ i ^ v ^ V i ! = b - b ' (say). Lemma 

4.6 suppl ies a solution of (<))-vpr)(x') = b', and x+x ' is the desired element of 

Jc r i s 
[r] 

Let therefore veW(R)x. We w ish to show that (c|>-vpr)Jcris[rl 2 prw(R), 

An easy computation shows that 

<t>(yr) = Pr(d0 + d ! U + - +d ru r ) 

where dieW(R), and d0GW(R)x. To see this simply wr i te c|>Cy) = yP+pb, and 

check that bGW(R)x. Then use (12) to eliminate yP, and raise to power r. Now 
let x be a variable. Then 

(c))-vpr)(xyr) = p r ( (d0+ - drur)<))(x) - v x y r ) . 
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By lemma 4.6 again, and by the fact that d0 is in W ( R ) X , it is enough to show 

that every element of W ( R ) is of the form c|)(x)-vxYr, for some X G W ( R ) . Once 

again, it is enough to prove the "mod p" version of this, so we have to solve 

xP-ax=b in R , which can be done thanks to the fact that R is integral ly 

closed. 

4 .8 Corol lary (of the proof). The fundamental exact sequence sp l i t s over 

(s-Or+,Acrjs-

Proof. This fo l lows from step 4.4 in the proof. 

I I . The expl ic i t reciprocity law 

5. The c l a s s i c a l expl ic i t reciprocity law. Let Kn=(Dp(Cn), and let Un be 

the group of principal units of Kn. If a , p eKnx, we denote by oB the Ar t in 

symbol of p (on any abelian extension of Kn), and define [a,p]neZ/pnZ by 

(15) ap (aO /a '= Çn[a'pln 

where a ' is any pn root of a . If p = (pn) is a norm-compat ib le sequence 

( p n E K n x , Nn+1n(pn+1)=pn) , and a G K n x for some n, then there ex is ts a we l l -

defined [a .p lGZp such that for all n large enough [a,p] mod pn = [ot,pn]n. Let 

(16) B = limj<nx, U = lim«_Un 

(inverse l imi ts with respect to the norm). 

Recall ([C], [dS]) that for any u G U Coleman associated a unique power 

ser ies gUGZP[ [T ] ]X with the property 

(17) gu(Cn - 1) = un Vn^ l . 
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Introduce a formal variable t via T=et-1, and identify <Dp[[t]] wi th <Dp[[T]]. Let 

(18) 6g = ( l + D g - ' d g / d T = g_1dg/dt e Zp[[T]]. 

Let x ' G = G a K K o o / Q p ) - > Zpx be the cyc lotomic character. For later 

reference we let Gal((Qp/(Dp) act on power se r ies in T (or t) in a way 

compatible with the special ization maps sending T to £n-1, i.e. 

(19) a(T) = ( i + T ) X ( a H a(t)=x(a)t. 

The rth Coates-Wiles homomorphism (r^l) is the G-homomorphism U - » 
Zp(r) given by 

(20) Orcw(u) = (d/dt)r log(gu)(0)-f\ 

Thus 0]cw(u) = 6gu(0)t. It is easi ly checked that these homomorphisms are 

independent of the choice of C. 

Theorem (exp l ic i t rec iproc i ty l aw ) . Let U G U , and otEUn, where n^l. 

Write Trn=TrKn/(Dp. Then 

(21) [a,u] = p-nTrn(log(a)-8gu(Cn-0). 

Proof. See [Iw]. Our notation fo l lows [dS], ch.I, §4, where we give a short 
proof, as well as generalizations to other formal groups (due to Wi les [W]) .D 

6. The exp l ic i t rec iproc i ty law of Bloch and Kato . Let r^l, and 
consider 

(22) 3r : (Dp = H°((Dp,Acr1s®(D) - > HKOp.Optr)). 

the connecting homomorphism derived from (9). (Galois cohomology is 
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a lways based on continuous cochains, and the modules are given their p-

adic - or ind-p-ad ic , after we invert p - topologies, in which they are 

a lways complete.) Since restr ict ion to the Galois group over Koo induces an 

isomorphism 

(23) H1(fip.Op(r)) * H0(G,H1(Koo,(Dp(r))) = HomG(U,(Dp(r)) 

(an easy exercise), we may ask what is dr(1) as a G-homomorphism from U 
to Qp(r). The answer is given in terms of the Coates-Wi les homomorphisms. 

Theorem. ( [B-K], theorem 2.1) For each r^l 

(24) 3r(0 = " * rcw/(r -0 l 

Proof. It seems better to consider, r ight from the beginning, cohomology 

over Koo. Let T=e- I (so that T=et-1). and observe that Zp[[T]] c H°(Koo,Acr1s), 

whi le HKKoo.SO = Hom(B,Sr) projects onto Hom(U,Sr). Rest r ic t ing the map 

obtained from the connecting homomorphism to these subgroups, we obtain 

a continuous pairing of G-modules 

(25) 3r : Zp[[T]] x U - > Sr ar(f,u)=ar(f)(u) 

which we w i s h to study. The theorem wi l l fol low from the fo l lowing 
statement: 

(26) 3r(f,u) = -Res(t"rf(T)-dlog(gu))-tr. 

Here f(T) is the power ser ies obtained by substi tut ing T (a formal variable) 
for T, and, as before, we have identified <Dp((t)) wi th Qp((T)). Indeed, if f=1, 

Res(f r -d logtg)) = (d/dt)rlog(g)(0)/(r-1)!, so (26) and (24) coincide. The proof 
of (26) wi l l be done in two steps. In §7 we do the case r=l. In §8 and §9 we 
reduce the general case to that of r=1. 

7. Proof of (26) when r=1. Start wi th lemma 2.2. Let a e H°(Koo,1 + pW(R)), 
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and pick p G 1+J such that pP"* = a . Then 

opn-Ct>n =: apn" ] + pn"2(t)+ • + p(|)n-2 + ())n-1 

Now e(6)=1 implies 

(27) ect)-n(p)Pn = 0(|)-n(a)Pn"1-e(t)1-n(a)Pn"2 e ^ - ^ a ) . 

In particular, take a = a (T) G l+pZp[[T]], and define 

(28) a(n) = a (T )Pn"1 -a ( (1+T)P-1 )Pn"2 a( (1+T)Pn_1-1) , 

so that e<|rn(p) = a(n)(Cn-1)1/pn, because e<|) '1(a)=a(C1-l) . Thus, for every 

aeGaKfip/Koo) 

(29) ecf -^p0-1) = e c f r ^ ) 0 " 1 = {a(n)(Cn-0,/pn}° 

By theorem 5 and lemma 2.1(H), if U G U and 

(30) ß°u-l = e(a.u) 

then (a,u) = [a(n'((n-1),u] = P~nTrn{log(a(n))(CnH>8gu(Cn-1)} mod pn. However, 

comparing (4) and (9) (cf. remark fol lowing proposition 4), one gets (a,u)t = 

91(p"llog(a),u). We must therefore show that for n^l 

(31) p-nTrn{log(a(n))(Cn-0-8gu(Cn-1)} ^ - R e s { t - 1 p - M o g ( a ) - d l o g ( g u ) } mod pn. 

7.1 Lemma. For n^l, the fol lowing equality holds: 

Trn{)og(a(n))(Çn-l)-ôgu(Çn-))} = Pn-'20<1<Dn(log(a>ôgu)(Çn4). 

Proof. The proof is a stra ight forward computation, based on the fact that 
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for a pn root of unity E, 

Z ?=r 5gu(Ti-1) = p-8gu(C-0. 

Observe that log(a)€pZp[[T]], and if p=2, log(cx)e4Z2[[T]]. The proof of 

(31) wi l l now be complete, provided we show 

7.2 Lemma. For any feZp[[T]], n^l, 

(32) 20<i<pn ^ n 1 " 1 ) s -Res(t"1f(T)dt) mod pn 

(if p=2, mod 2n_1). 

Proof. It is enough to check (32) wi th f=(1+T)m, m^O, because then it wi l l 
hold for all feZp[T]. Both s ides of (32) are continuous homomorphisms from 

Zp[[T]] to Zp, so if they agree on polynomials, they are equal. So let f=(1+T)m. 

The left hand side is equal then to pn-1 if pn|m, and to -1 o therwise. The 
right hand side is computed as 

- R e s { T " ] ( 1 + T / 2 - -)(1+T)m-dT/(1+T)} = - 1 . 

Th is concludes the proof. 

Remark. Coleman's power se r ies are defined for any PEB, and not only for 
U G U , and if v(p)=d (i.e. at each level n the valuat ion of pn in K N is d), the 

co r respond ing g^ e TdZp[[T]]x. Thus dlog(g^) e T_1Zp[[T]]dT in general . 

Formula (26) general izes : 

3r(f,p) =-Res(rrf(T)-dlog(go))-tr 

for all feZp[[T]] and peB. When r=1, the proof given above needs only minor 

modi f icat ions. Lemma 7.2, for example, has to be checked for f in T_1Zp[[T]]. 

It is here, when one checks (32) for f=T_1, that p=2 g ives some trouble. The 

sum on the left comes out to be (1-pn)/2, whi le the residue on the right is 

1/2. Fortunately, we only need the congruence modulo 2nH if p=2. 
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8. Reduction of the general case to the case r=l. Formula (26) is 

proven by reduction to the case r=l. We need two lemmas. 

8.1 Lemma. If f € H 0 ( K o o , A cris) and r>1 then 3r(tf) = t3M( f ) . 

Proof. The lemma fo l lows immediately from the commutative diagram 

(33) 

0 — S r ^cr is 
<r> 

1-p-r<t> 

Acris 0 

t t t 

o —-> sr+1 —* ^cr is 
<r+l> 

1-p~M(t) 

Acr i s > °-

8.2 Lemma. The pairing Zp[[T]]xU -» Sr (f,u) ^ 3r(f,u) factors as v|/roco(ffu)f 

where o> : Zp[[T]]xU -» Q = Zp[[T]]dT is u(f ,u) = f(T)-dlog(gu), and v|/r : Q -> Sr 

is some G-homomorphism (G=Gal(KOQ/(Dp)). 

The proof of th is lemma, explained in full detail in §9, seems to require 

rather d i f f icul t concepts from syntomic cohomology, as developed by 

Fontaine and Messing. 

8.3 Conc lus i on of the proof of (26). Granted lemmas 8.1 and 8.2, we 

proceed as fo l lows. Fi rst , note that co is surjective, because, for example, 

1+T occurs as a possible gu. Define 

(34) v|/r(û>) = Res( r rû>) t r . 

We have to check that \j/r=v|;ri a statement that is equivalent to (26) by the 

surjectivity of a). For r=1 this was done in §7. By induction we may assume 

it to hold for r-l. Now \j/r annihi lates Tr+1Q (even TrQ), hence extends to a 

homomorph ism Qp[[T]]dT/(Tr+1) - » Qp(r). The same is true for v|/r, by 

211 



R DE SHALIT 

corollary 4.8. Indeed, that corollary shows that 3r(f,u)=0 if feTr+1Zp[[T]], so 

lemma 8.2 implies \|/r(co)=0 if oo€Tr+1Q. Having replaced Zp by <Qp, we may 

replace T by t, and we view i|/r and \j/r as homomorphisms from 

<Bp[[t]]dt/(tr+1) to (Dp(r). By 8.1 and (34) 

v|/r(tcù)=tv|/r.1(o>)i vpr(to>)=tvpr_|(o>). 

so the induction hypothesis implies v|/r=\j/r on t(Dp[[t]]dt/(tr+1). The 

difference vj/r-\pr therefore induces a G-homomorphism from <Dp to <Dp(r), 

which must be 0, so we conclude that i|/r=\j/r 

9. Proof of lemma 8.2. The proof is based on the commutative diagram of 
[B-K], p. 348. Here we present a slight variation of that diagram, and 
hopefully fill in some of the missing details. Let St - Zp[[T]] c Acris, let An = 

Acris / PNacris. #n = # / P n # , #n = the jma9e of #n in An, J < r \ = 

J<r>cris/Pnj<r>cris' and Srn=Sr/pnSr. Let also Um = the principal units of Km. 

Taking coinvariants of multiplication by pn in the fundamental exact 

sequence (9) we get the "mod pn" exact sequence 

(35) 0 - srn - J<r>n - An - 0, 

which is exact also on the left because Acr1s is p-torsion free. Take 

cohomology over Km, m^n, and observe that #n Q H°(Km,An) (an easy 

excercise; note that #n is the image of St in An and not #/pn#). The 

connecting homomorphism will therefore give us a pairing 

(36) Srn : Rn x Um/Umpn Srn 

whose composition with the natural projection StxU —> #nxUm/UmPn is 

simply 3r mod pn. It is clearly enough to show that for every n^l, 3r mod pn 
factors through the homomorphism f<g>u —» f-dlog(gu). In proving this we will 
work at the finite level m, tut which m we choose is unimportant, as long 
as m^n. 
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9.1 We shall have to assume familiarity with the contents of [F2], §3.2-§3.7. 

It is shown there that An may be canonically identified with H°cris(#j<in) = 

lim_>H°cris(^Ln), L ranging over all the finite extensions of K in K. Here we 

used the short-hand notation H ^ g C d ^ ) = HKSpec(0|/pn0L)cris,0L/w ) 

(#L/wn ^s the crystalline structure sheaf on the crystalline site). 

Let L = Km, and define ZLn and DLn as in [F2], §3.2, where we choose y = 

Cm-1. Note that SLn = #n = Wn[[T]]f where Wn = Z/pnZ. Let fe#cw(R)cAcris, 

and assume m^n. Let aLn and pn be the maps defined in [F2], §3.3 and §3.7 

respectively. Then pn(f)eWn(^L)cwn(%) (it is enough to check this with 

f=e). Furthermore, when we identify f as an element of H°cris(#Ln) via 

otLnopn. we get that ctLn<>pn(f) is the class of $n(f) in 

(37) Hocris(OL,n) = Ker (d: DL,n Dl,n×EL,nO 1 EL, n) 

(cf. [F2] §3.2). In (37) we mapped c))n(f) to ELn first, then to DLn, where it 
lands in the kernel of d. 

We can also map, in the obvious way, Qn := Q 1 ^ = Wn[[T]]dT to 

(38) Hlcris<*L.n) = Coker (d : DL,n DL.n«sLin«,zLin)-

Let Tp be Coleman's "trace operator" on 9t [C]. It is characterized by 

(39) Tp°(f)(f) = Pf, 

its image is p#, and the "projection formula" Tp(<|>(f)g) = 4>(f)Tp(g) holds. 
Extend the definition of Tp to differentials in Zp[[T]]dT as in [B-K], so that 
Tp(f(T)dT/(l + T))=p-1Tpf(T)dT/(l+T). Then Tp fixes dlog(gu) for ueU. NOW 
define a map 

(40) Qn - > Hlcris^L,n) 
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to be the composit ion of Tpn with the "obvious" map coming from (38). Then 

the d iscuss ion above may be summarized in the fol lowing lemma. 

L e m m a , flap #n to H°cr1s(^Ln) by aUnopni and Qn into H ^ p ^ ^ ) by (40). 

Then these maps are compatible with the natural action of H° on H1 (and of 
#n on Qn). 

9.2 Recall the definit ion of the (smal l ) syntomic s i te (Spec 0L)syn [F-M], 

and that of the sheaves 0ncr1s and Srn on the syntomic si te. In our notation, 

proposit ion II.1.3 of [F-M] states that 

(41) Hicris(^L,n) = Hi((Spec(^L)syn,^ncris) i =0,1. 

Now consider the diagram 

(f,u)— fdlog(gu) 

# n x U/UPn 

HO(Spec(^L)syn,^ncris) 

x Hi(Spec(tfL)syn,Sin) 

O n 

A 

u 

H'(Spec(d>L)syn.<Vns) 

O rn )synx ' 

H'CSpecC^LÎg yn,5.rn) 

x HKSpec(^L)syn,Sin) 

B ^r+1n^syn 

u 

H2(spec(tfL)syn,ar+,n) 

H' (L ,Srn)xH ' (L ,S 'n ) 

C 

H2(L,Sr+'n) 
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Explanations: The exact sequence (35) may be sheaf l f ied to produce an 
exact sequence of s imi lar sheaves in the syntomic site. The vertical arrows 
in B are the connecting homomorphisms for that sequence. The horizontal 
ar rows of B are cup product pair ings. The commutativi ty of B is deduced 
from an analogue of (33) (lemma 8.1). The vert ical a r rows in C are the 
comparison maps between the syntomic cohomology and Galois cohomology. 
Just in order to define them, one needs the construct ion of the syntomic-
etale si te (cf. [F-M] §5). Square B and square C are the same as the bottom 
sqaures in [B-K], except that there the authors multiply the sheaves Srn by 

some pm to map them into Z/pnZ(r) . 
The vert ical a r rows in square A are constructed using (i) the maps 

defined in lemma 9.1 and the compatibi l i ty between them, (i i) the f i rs t 

Chern c lass map Um-» H,(Spec(0L)SyrvS.1n) (derived from the Kummer exact 

sequence in syn tomic cohomology) and i ts re la t ion to logar i thmic 

differentials, and (i i i) the comparison between syntomic cohomology of the 

sheaf $ncr1s and crysta l l ine cohomology (41). In contrast wi th [B-K] , we 

start wi th Spec(0L) and not wi th Spec(#) , which a l lows us to map #n and 

not just Z / p n Z into it. The ring 9t is ( topologica l ly) smooth , so i ts 
crystal l ine cohomology is dull, while that of #L is rich ! 

The composi t ion of the three vert ical a r rows on the left wi th the 

bottom horizontal arrow thus factors the way we want it to factor, since 

the top horizontal row is induced from oo. To conclude the proof of lemma 

8.2 observe that the bottom horizontal arrow factors through H2(L ,Srn®S1n) 

= Srn (canonically!), and that the map we have constructed by fol lowing the 

vertical ar rows on the left and then the bottom horizontal arrow (call it 

8rn) is the composit ion of 3rn with S r n - > H2(L,Sr+1n). The latter has bounded 

kernel (as n increases), so from the validity of the lemma for 8rn for all n, 

fo l lows i ts validity for 3rn as well. 

I I I . Other formal groups 

10. Notat ion. From now on let K be an unramified extension of (Dp of degree 
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d.ira uniformizer, q=pd, and c(>K=ct)d. Fix a power series fe#K[[X]] such that 

(42) f = TXX + - = Xe! mod Ti. 

Let Ff(X,Y) be the corresponding Lubin-Tate formal group law, and Af(X)=X+-
G K[[X]] its logarithm (cf. [dS], chapter 1.1 for the notation used here). For 
aG#K let [a]f be the endomorphism of Ff whose power series expansion 

starts with aX+-. Thus f=[ir]f. Let oon be a primitive nn division point of Ff, 

such that 

(43) f(cùn)=û)n.lf n^l, 

and denote by o> = (o)n) the corresponding generator of the Tate module of 

Ff, 

(44) Ta(Ff) = lim<_Ker hrn] = №K]CÙ. 

Write also Vf = Ta(Ff)<8>Q. Let Kn=K(a)n) be the Lubin-Tate tower, analogous 

to the cyclotomic tower. Let K : GaKK^/K) - &KX be the character giving 

the action of the Galois group on the 7Tn-torsion points (for all n), i.e. 
a(o)N)=[K(a)]f(o)n). Then Vf is a one-dimensional vector space over K, on 
which the Galois group acts via K. 

10.1 Proposition, (i) There exists a unique T = T^ in W(R) such that 

(45) e())K-n(T) = <on n^O. 

(ii) For aGGK=Gal(K/K), o(T(ï))=To(û))=[K(a)]f(T(l>) ; (|)K(T(ù)=[Ti]f(T(û). 
(iii) Let t=tco be defined as \(T^). Then tGAcris and 

(46) a(t)=K(a)t VQGGK, (|)Kt=T[t. 

Remarks (i) When K=(Dp and TX=p, so that Ff is (up to a change of variable) 

the multiplicative formal group, T=e-1 (cf. (7)). 
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(ii) Vf is a crystalline representation of GK. More generally this holds, 
by a theorem of Fontaine, with the Tate module of any p-divisible group 
over &K. The existence of t as in (46) is therefore not a new result (our 
proposition re-proves the fact that the Tate module is crystalline). What 
we want to emphasize is that a choice of a generator for the Tate module 
gives us, in a canonical way, an element of Bcr1s. In other .words, 

Hom Qp[GKl( vf« Bcris) is not on1!J d-dimensional over K, but has a 

distinguished basis, consisting of the homomorphisms that send a> to t^, 

(pt^, .... (^"'t^. Note that the line K-cp11 in Hom^ [GK](Vf, Bcr1s) may be 

characterized as those homomorphisms that intertwine the K-action on Vf 

with the (^-twisted action of K on Bcris. In particular 

HomK[GKl(vf' Bcris) Ä { XGßcris I °M = K^G)X V Q G G k } = Kt 

is one dimensional over K. 

Proof. Everything, except the construction of T, is easy. For example, the 
unicity, as well as the action of Galois and Frobenius, are deduced from the 
fact that fl(t)Kn(J)=0 (recall J=Ker(e)). That t is in Acris follows from the 
well known fact that Af'(X)etfK[[X]], while TeJ. 

Let o)0 n=o)n. We shall define, by induction on i, a)1n e #(<Cp) Vn^O, and 
prove 

(47) wi,n = wi,n+1 q mod u u. 

Then if we let xi,n ) lim m 8 wi,n+mm qm 

we shall clearly have xi,n xi,n+iq-
We will also know that xi,n = ^i.n mod 11 • 
so we will be justified in setting, as the next step of the inductive 
definition, 

^i+i.n = ^iin-xi.n)/lT-
Observe that xt = (a)in mod Ti)n^0 = (x1n mod ir)n^0 e R, and with the notation 

of §1, xi n=xi((jn). Therefore the element 
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(48) T = Xi^o^'tXil e W(R), 

and 0())K"n(T) = Xj^o^^i.n = ^rv Everything now hinges on the proof of (47), 
which at first sight seems rather surprising. At least for i=0 it is obvious, 

since (o0 n=f(oo0 n+1) =COQ pj+j mod TC. We need a lemma. 

Lemma. If h€K[[X]] has bounded denominators, and h(o>n)e0K for infinitely 
many n, then he#K[[X]]. 

The proof of the lemma is clear, since |o)n| -» 1 as n -» ©o. 

We assume now that cOj>n have been defined for O^j^i, and that they satisfy 
(47). We define xin and wi+1,n as above, and we wish to prove (47) with I+1. 

Claim. For each O^j^i and each v^l there exists a natural number |i(j,v) and 
a power series hjVe0K[[X]], such that 

(49) ^j,n s hj,v^M(j,v)+n) mod * v Vn^O. 

The claim (with v=l and j = i) will clearly imply (47). When j=0 it holds 
trivially, with h0v = X and \i0v - 0, so we prove the claim by induction on j. 
By the lemma, it is enough to find hjV as above in K[[X]] (the proof will 
guarantee bounded denominators). Now 

x i-l,n xj-1,n+v 
qv 

" ^j-l.n+v 
qv 

= hj-l,l(a3[i(j-U)+n+v^! 
qv 

mod TIV+1, 

so o)jn = {hj-ljV+i(o)[i(j_1>v+1)+n) - hj_ll(a)li(j_ll)+n+v) qv 
} /T I mod nv. 

Suppose that a = ^(j-l,v+l)-[i(j-l,1)-v ^ 0 (the case a ^ 0 being treated 
similarly). Define [i(j,v) = |a(j-1,v+l), and 

hi,v = (hj-i,v+i " (hj-Uofofo of)Q }/7T' 
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where f is composed with i tself a t imes. Then (49) holds. 

10.2 Proposi t ion. There exist exact sequences 

( 5 0 ) 0 - > [0K](T) - F f (J) 

f[-]f4>.K 

Ff(nW(R)) - * 0 

and 

(51 0 - * 0Kt - » Af(J) 

i-u-1OK 
W(R) — 0. 

The proof is left out. It is s imi lar in principle to lemma 2 .2 . 

Now define 

( 5 2 ) FiF f Acris = { aeJcr is^ I <|>K(a) e ^rAcr is }. 

Th is is a f i l t rat ion s imi la r to JcrjS<r>- It depends on the formal group in 

question. Note that Xf(J) c Fil1f(Acr1s). 

11. S p e c u l a t i o n s . P ropos i t i ons 10.1 and 10.2 may be v iewed as the 

beginning of an attempt to general ize the resu l ts of th is paper to other 

Lubin-Tate formal groups. For example, the analogue of the "fundamental 

exact sequence", wi th K t rnAc r1s replacing S r as the left term, ( 5 2 ) replacing 

the middle term, and 1-TT"r(J)K replacing 1—p-r<4>, seems to be incorrect (i.e., 

not exact). The reason is that Acris is somehow "too big". There might be a 

smal ler "Acr1s" that wi l l be the ring of p-adic periods, not for all mot ives 

wi th good reduction, but only for those whose p-adic rea l iza t ions have 

coefficients in K, and wi th which the analogue of the fundamental exact 

sequence will hold. One would expect this smal ler r ing to be stable only 

under ct)K=(t)d, but not necessar i ly under <J). In particular, it should contain t, 

but not (})jt for K i < d . If so , is there a formula for the connect ing 

homomorhp i sm of that sequence in t e rms of the C o a t e s - W i l e s 

homomorphisms ? The case r=1 requires only the existence of the sequence 

(51), and the proof given in § 7 most probably general izes, mutatis mutandis, 
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to general Lubin Tate groups. The general case needs to awai t analogous 

general izat ions of the sheaves S.r and the main theorems of [F-M]. 

Work on p-adic periods of formal groups of abelian var ie t ies has been 
done by Colmez [Cz] and by Winterberger [Win]. The first in terest ing non-
ordinary case is the formal group of an el l ipt ic curve w i th supers ingu lar 
reduction. The eas ies t formal groups beyond the ordinary (i.e. essent ia l ly 
mul t ip l icat ive) ones are Lubin-Tate groups of height > 1. We believe that 
relat ions between the structure of r ings s imi la r to Acris and the ar i thmetic 
of Lubin-Tate groups should exist in general. In retrospect, th is might be 
the motivat ion for the path taken in this paper. 
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