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CYCLIC HOMOLOGY AND MODULI 
SPACES OF RIEMANN SURFACES 

C . - F . Bödigheimer * 

1 Introduction 

Let %h(g) denote the moduli space of directed Riernann surfaces of genus g. 
It consists of conformal equivalence classes of triples [F, 0 , X ] , where F is a 
closed Riernann surface and X is a tangent direction at some point O of F. 
Since the mapping class group T(g) = 7r0(Diff~{'(FJ O , X)) acts freely on the 
contractible Teichmiiller space *£(g) of marked directed surfaces, the quotient 
%k(g) is an orientable, open manifold of dimension 6# — 3 with the homotopy 
type of BT(g). The group T(g) is better known as the mapping class group 
of genus g surfaces with one boundary curve. 

This moduli space Wl(g) can be described as a configuration space ^p(g) 
of slits in the complex plane; we recall this uniformization from [Bo 1]. A 
compactification P(g) was developed in [Bo 2]. It has a cell structure whose 
cellular chain complex resembles formally the Hochschild resolution of an 
non-commutative algebra without unit; and in addition, there is a cyclic 
operation and an involution on the set of cells. 

*partially supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft. 
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This analogy is strong enough to permit the definition of Hochschild ho­
mology groups HH*(P(g)) and cyclic homology groups HC*(P(g)) for these 
complexes. They are related to their (topological) homology groups H*(P(g)) 
by long exact sequences 

… HHN*(P{g)) HH*(P(g)) H*-i{P{g)) … 

and 

… HH*{P(g)) HC*(P(g)) H*-i{P{g)) … 

in which HHN*(P(g)) is the so-called naive Hochschild homology. Our in­
tention is to use the apparatus of cyclic homology theory to study the spaces 
P(g)/W(g), which are Poincaré dual to the moduli spaces 9Jl(g). Here we 
merely report on some basic ideas. 

We point out that 9Jl(g) carries a (non-free) S ̂ act ion given by rotation 
of the tangent vector or X. The quotient is the moduli space of genus g 
surfaces with one puncture. It seems difficult to describe this action on 
the homeomorphic space ^p(g); but we expect this action to be related to 
the cyclic action on cells. Complex conjugation of conformai structures is 
another symmetry on 9Xt(#); it is easily seen to transform to the reflection 
operator mentioned above. 

Acknowledgements. The author is grateful to St.Hurder for an encoura­
ging conversation at an early stage of this investigation, and to J.Morava 
for ever patient listening and many comments. It is a pleasure to mention 
the hospitality of the Institute for Advanced Study, where this article was 
written during the year 1992/93. 

2 M o d u l i and parallel slit domains 

We recall a specific description of the moduli space DJl(g) ; the reader is 
refered to [Bô 1] for more details. 

Let [F, 0,X] 6 %ft(g) be a directed Riemann surface of genus g. There 
is a function u : F > ]R = IR U oc with the following properties: (1) u 
is harmonic away from O , and (2) u(z) — Re(l/z) is smooth and vanishes 
at O for any local parameter z defined around O such that z(0) = 0 and 
dz(x) is positive-proportional to — dx, where x is any non-zero tangent vector 
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at O representing the direction X. Such a function exists by the standard 
existence theorems for differentials on Riemann surfaces; it is unique up to a 
positive real factor and up to a real additive constant. 

Let the critical graph K of the gradient flow of u consist of the dipole 
O and all zeroes of the flow as vertices, and all integral curves which leave 
zeroes are the edges. Since F0 = F \ K is connected and simply-connected, 
the restriction of u to F0 is the real part of a holomorphic map w = u + i v : 
F0 • €; w is unique, up to another additive constant for the harmonic-
conjugate v of u. The complement of w(F0) C C, — which can be described 
as a configuration of 2g pairs of horizontal slits in the complex plane <D, — 
will comprise all moduli of the conformal class [F, 0 , X]. 

A slit Lk is a horizontal half-line, which starts at some point Zk = 
{xkiVk) £ <C, and is unbounded to the left. There are always 4g slits, paired 
by a fixed point free involution À in the symmetric group (5 4 ^, acting on the 
index set I = { 1 , . . . , 4 # } . A configuration is subject to two conditions: 

(1) Vk < Vk+\ 

(2) %k = X\{k) 

So far no assumption is made about the slits being disjoint or different. 

To associate a surface F(L) to L we glue, for each pair k and A(fc), the 
upper (resp. lower) bank of to the lower (resp. upper) bank of Lx^ky 
As basepoint we choose O = oc and X is the direction of — dx under the 
local parameter £ i—• l / £ . If F(L) is a (non-singular) surface, it inherits 
from C a conformal structure, and thus [F, 0,X] G %tt(g). In case F(L) 
has singularities, or if it is a surface of a genus smaller than 5 , we call L 
degenerate. 

The following conditions (3) and (4) guarantee that neither O nor any 
finite point of F(L) is singular and that F(L) has maximal genus g. Define 
a new permutation a — A o ¿, where t denotes the cyclic rotation k 1—• 
k + 1 (mod 4#). Let k(Y) + 1 denote the number of cycles of cr, which can be 
any even number between 0 and 2g. We admit only pairings A for which 

(3) « ( A ) = 0 

holds; such a A is called connected. 
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The next condition excludes certain sub configurations. 

(4) There is no index k such that : 

A(Jfc) = Jfe + 2, Lk — Lk+2 and 
Lk+1 C Lk. 

In [Bo 2] we examined in detail, what type of singular surfaces occur if (3) 
or (4) is violated. 

It is obvious from the gluing process that two distinct configurations can 
lead to conformally equivalent surfaces. In this case they are connected by 
a chain of moves (called Rauzy-moves) of the following type: if Lk-i C Lk 
then Lk-\ can jump to the upper bank of the slit L\(k)- In its new position it 
will be contained in L(Y)k, and all slits overtaken by this move change their 
index by a cyclic rotation, and A is conjugated accordingly. Such a move 
leaves F(L) certainly invariant. The equivalence classes generated by Rauzy 
moves are denoted by £ = [ Z , 1 ? . . . , L 4 ^ | A ] . A class is called non-degenerate, 
if none of its representatives violates (3) or (4) . In the older literatur such a 
class is called a parallel slit domains. 

On the space of all parallel slit domains the contractible 3-dimensional 
group of similarities of € acts freely as a group of conformal invariants. It 
is generated by translations in the x- and y-direction and by dilations; the 
parameters of such a transformation correspond precisely to the three unde­
termined constants in the complex potential w. We therefore introduce the 
following normalizations. 

(5) 2/i = 0 

(6) ?j4g = 1 

(7) min{xk} = 0 

These conditions are invariant under moves, and thus conditions on a class. 
For a non-degenerate class we always have yx < y4gi enabling us to normalize 
as in (5) and (6) . The main result of [Bô 1] is that the space of all non-
degenerate, normalized configuration classes is homeomorphic to the moduli 
space Wt(g). 

It will be convenient for the compactification to introduce the additional 
condition 

(8) max{xk} < 1. 
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This selects a subspace, which is homeoniorphic to the entire space by re-
parametrizing the real parts of the slit end points. We denote this subspace 
of all classes satisfying (1) to (8) by 9p(g)-> and use this configuration space 
as a model for the moduli space 9Jl(g). 

3 T h e cyclic structure of the compactifica-

tion 

The space 93(g) can be compactified by taking its closure in the space of all 
normalized classes of configurations: one simply forgets about the condition 
(4) and replaces (8) by the weak inequality 

(9) max{xk} < 1. 

This compactification of the moduli space is denoted by P(g)- Let D(g) 
be the subspace of degenerate classes. The subspace N(g), consisting of all 
classes with max{xk} = 1, is a partial boundary of the manifold ^p(g)- The 
subspace U(g) of all classes such that max{xk} = 0 (which we call uni-level 
surfaces) is a homotopy retract of P(g), see [Bo 2]. U(g) and N(g) are 
disjoint, but N(g) and D(g) are not. W(g) = D(g) U N(g) is called the 
periphery of ^p(^), because *$(g) = P(g) \ W(g). Since *$(g) is an orientable 
manifold of dimension 6g — 3, Poincaré duality implies H*(P(g), W(g)) = 
J?6^-3-*(^P(5 f )) for all coefficients, see [Bo 2]. 

It was shown in [Bo 2] that P(g) is a finite cell complex, the cells of which 
were denoted by symbols 

(10) E = [a 0 , a i , . . . , a n + 1 | À |JB0, B u . . . £? m +i] = [a\X\B]. 

If the slits lie on n + 2 distinct y-levels - the 0-th being y = 0, the 
(n + l)-st being y = 1 - then a2- is the number of slits on the i-th level. 

Thus 0 < a{ < 4#, Y%+J = 4g and 0 < n < 4g - 2. Similarily, if 
the slits start at m + 2 distinct ^-levels - the 0-th being x = 0, and the 

(m + l)-st being x = 1, although there may be none on this last vertical -
then Bj is the subset of indices whose slits start on the j-ih vertical. The 
Bj are a A-invariant, decompostion of I, non-empty for j = 0 , . . . , m; and 
0 < m < 2g — 1. Taking the distances between these horizontals resp. 
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verticals as barycentric coordinates, the cell E becomes a product of two 
open simplices, E = A n x A m . We call n the vertical and rn the horizontal 
dimension of E; and £ = n + m is its dimension. 

Since a Rauzy move changes some of the numbers a2, some of the sets 
Bj and conjugates A , this notation (10) for a cell is not unique, which is 
indicated by the brackets refering to the equivalence relation generated by 
Rauzy moves. 

On the other hand, this notation makes it obvious, how similiar this cell 
structure is to several well-known constructions like the bar-construction or 
the Hochschild resolution of an algebra, as we shall see by looking at the face 
operators. 

There are face operators d[ for the first factor A n and d" for the second 
factor A m of 2?, for i — 0 , . . . , n resp. for j = 0 , . . . , m : 

( H ) &t(E) = [«o, · · ·, a% + « ¿ + 1 , · · . , «n+i I A \BQ, . . . , j B m + i ] , 

(12) dj(E) = [ a 0 , . . . , a n +i | A | 5 0 , . . . , Bj U JB^+i,..., 5 m + i ] . 

The cyclic structure of this cell complex comes from the cyclic operator 
T defined by 

(13) r{E) = [ o „ + 1 , a0, ...,an\ t a ^ o A o t~a^ I * ° » + ' £ o , . . . , * a » + 1 £ m + i ] , 

where t E <&4g is the maximal cyclic permutation k t—• k + 1 used earlier, r 
moves the last package of slits on the level y = 1 to the bot tom to become 
the first one; it follows that it is well-defined with respect to Rauzy moves. 
The cycle number of a' = r r t n + 1 o A o r " r t n + 1 o r is the same as that of a = A o r , 
thus K,(tan+l o A o t~an+l ot) = A C ( A ) = 0. The sets Bj are invariant under the 
new A' = r a n + 1 o A o r ~ a n + l . 

r acts essentially on the first factor of J51, in accordance with the general 
philosophy that this factor seems to hold more information. 

The order of r on a cell E is not its dimension, but determined by its 
vertical dimension, 

(14) r n + 2 = id. 

48 



CYCLIC HOMOLOGY AND MODULI SPACES OF RIEMANN SURFACES 

The subspaces D(g), N(g), U(g) and W(g) are subcomplexes of this cell 
decomposition and invariant under r. The presence of singular subconfigura­
tions as descibed in (4) is independent of the values of barycentric coordinates 
and therefore a property of a cell E] furthermore, such sub configurations are 
then also present in each face of the cell and in the cell r(E). N(g) resp. 
U(g) can be characterized by the properties i ? m + i 7̂  0 resp. m = 0 of their 
cells; both properties are invariant under the face operators and the cyclic 
operator. 

The relations between face operators and the cyclic operator are recorded 
in the following easily proved 

L E M M A 1. 

(15) diodi = dlod[+1 for 0 < i < j < n, 
(16) diodi = dlod[+1 for 0 < * < n, 
(17) 81 о Щ = Щ-,о&! for 0 < i < j < TO, 
(18) diodi = dlod[+1 for 0 < j < rn, 
(19) diodi = dlod for 0 < i < n, 0 < j < TO, 
(20) TO d'i = ö | + 1 O T for 0 < i < n - 1, 
(21) rod'n = d'0or2 

(22) rod1; = d"or for 0 < j < TO. 

It is not clear, how this cyclic structure fits into the general theory of 
cyclic sets and cyclic spaces as developed in [C], [B], [DHK], [G], [J] and 
others. There are no degeneracy operators, since the complex P(g) is finite 
dimensional. The degeneracies seem to be important to put an S 1-action 
on the geometric realization, see [J], We point out that the cyclic structure 
restricted to the sub complex U(g) is closer to the general theory; only the 
order of r is n + 2 instead of n + 1, what can be regarded as an effect of our 
normalization, i.e. the cone of U(g) is a cyclic set in the sense of [C]. On the 
other hand, certain other cyclic constructions are used, where the order of r 
differs from the general theory, e.g. the edgewise subdivision in [BHM]. 

The S 1-action on the moduli space 9Jl(g) is given by rotating the tangent 
direction X, i.e. a · [F,0,X] = [F,0,aX] for an angle a G S 1 . It is well-
defined, since the tangent bundle of F is a complex vector bundle. This 
action is not free; whenever O is a fixed point under some (necessarilly) 
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cyclic automorphism of F order r, then TLJrTL < S1 is the isotropy group of 
[F,0,X] for any direction X. 

But at this point we do not know, how this action transforms to this 
specific parametrization y$(g) of the moduli space. 

Remark. There is also a free S 1-action on the "homotopy-type" of ty(g)-
The mapping class group T(g) is the central extension of the pointed mapping 
class group Tl(g) = 7r0(Diff+(F, O)) by an infinite cyclic group generated by 
a Dehn-twist along a null-homotopic curve enclosing the point O. Thus 
BT(g) is the total space of an S 1-bundle. But the rotation does not lift to 
a free flow on the Teichmiiller space l(g); only the isotropy is disjoint from 
the integral part TL < JR. 

4 T h e chain complex of P{g) 

Let IK be any commutative ring with unit, and let S(g) be the chain complex 
with Si(g) the free IK-module generated by all cells E of P(g) of dimension 
£ = n + m. The boundary operator d : Sf(g) • Sf-i(g) is given by 

(23) d = d' + (-l)nd" 

with 

(24) & = 
n 

E 

i=0 

(-1)i di and d" -
m 

t . 
i = 0 

i-iyd'j 

Since d' and d" commute by (19), we have dod = 0. We call d the topological 
boundary operator, since H*(S(g), d) = H*(P(g)). 

We now exploit the fact that S(g) looks formally similiar to the Hochschild 
resolution of some algebra A, if we interpret the entry a = ( a 0 , . . . , a „ + i ) as 
a tensor in ^4*>(n+2). The Hochschild boundary operator b : St(g) • Si-\(g) 
is defined as 

(25) b = & + (-i)n+l&0 T + (-i)nd" 

Using the commutation relations of Lemma 1 it is straightforward that bob = 

0. We denote the complex S(g) with the boundary operator b by Sh(g), and 
call its homology HHN*(P(g)) = H*(S(g),b) the naive Hochschild homology 
oîP(g). 
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Denote by T = ( — l ) n + 2 r be the (signed) cyclic operator, by D = id — T 
the invariance operator, and by TV = id + T + T2 + ... + Tn+l the norm 
operator. Then we obtain 

L E M M A 2. 

(26) boD = Dod 

(27) doN = Nob 

Proof: The arguments in [LQ] carry over verbatim. 

Thus we can form the double complex C(g) with Cp^q(g) = Sq(g) for 
all p , and its boundary operator d : CPy<J(g) • Cp-\^q © Cp^\{g) is 
given by d = D — d for odd £>, and d = N + b for even p. Let the 
cyclic homology of P(g) be the homology of the associated total complex, 
HC*(P{g)) = H*{Tot(c(g)),d). 

Different from the classical situation is that the complex S(g) is not 
acyclic; in fact, its homology is precicely what interests us. Note that the 
total complex is periodic in dimensions above 6g — 3, since S(g) vanishes 
there. 

There is an earlier definition of cyclic homology, which uses the complex 
of r-coinvariants instead of the double complex C(g), Denote by S(g) the 
quotient complex with Si(g) = St(g)/im(D). Because of (26) S(g) inherits 
from S(g) a boundary operator b. 

P R O P O S I T I O N 1. 

If Q Ç IK, then S(g) and Tot(C(g)) are chain equivalent. 

Proof: One applies the usual argument, that the rows of C(g) form a free 
resolution of the cyclic groups 7L/£7L. In our case, however, there are several 
groups involved per row. Let the terms Si(g) = © n + m = ^ Snjrn(g) in the £ - th 
row be decomposed according the vertical and horizontal bigrading of their 
cells. The summands are no subcomplexes (neither for d nor for 6), but they 
are invariant under both D and N. Thus for each £ and n the summands 
Sn,i-n{g) form in the ^-th row of C(g) a free, periodic resolution of the group 
%/£% with alternating differential D and N. The "row spectral sequence" of 
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C(g), which converges to H*(7L/'tH\ IK), is trivial as soon as <Q C IK. It follows 
that the homology of Tot(C(g)) is isomorphic to the homology of S(g). 

Remark. In search of an algebra behind all this we may perhaps first 
concentrate on the subspace U(g). The cells are then all of type ( n , 0 ) , and 
we write E = [a\X] = [a 0 , - - . , a n + 1 | A ] . Let A C IK[X] be the ideal generated 
by X. We write Xa for the tensor Xa° 0 · - - <g> Xa»+* in An = A^n+2). To 
involve A, we consider the K-module A in the group ring IK[© 4 ^] generated by 
all connected pairings, i.e. free involutions A G &4g with ft (A) = 0. Consider 
now the ideal Xn C *An(g)A generated by all differences Xa (X) A — Xa 00 Xf such 
that [a | A] und [a'jA'] are related by a Rauzy-move. If Qn is the quotient by 
this ideal, then the complex Q = (Qn) inherits from the Hochschild resolution 
of A a "topological" boundary d and a Hochschild boundary 6. This is the 
complex we study. 

5 T h e Connes - Gys in diagram 

To relate the three homologies H, HHN and HC we consider the following 
complexes and chain maps. Let the complex S\g) consist of the first two 
columns of C(g), with d as boundary operator; its homology is denoted by 
HH*(P(g)) and called the Hochschild homology of P(g). Let Tot(C(g)) be 
the total complex associated to the double complex C(g) minus the first col­
umn, graded such that Ci^(g) = So(g) is the degree zero part; its homology 
will be denoted by HC'(P(g)). In the following diagram 

0 0 

0 s\g) 5 » ω Σ 5 ( α ) 0 

0 s\g) Tot{C{g)) ZTot'(C(g)) 0 

^Tot{C(g)) E2Tot(C(g)) 

0 0 

all maps are inclusions, except for two shift maps. 
The first, sh : Tot(C(g)) • Y,Tof (C(g)), is the chain map induced by shif-
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ting the columns of the double complex C{g) one column to the left. And 
sh2 : Tot(C(g)) • Z'2Tot(C(g)) is the periodicity self-map of Tot(C(g)). 
Here E denotes the suspension (or shift) of a complex. The diagram is com­
mutative, and we obtain 

P R O P O S I T I O N 2. 

There is the a diagram of long exact sequences 

HHN*(P(g)) HH.(P(g)) H*-i(P(g)) 

HHN*(P(g)) HC*(P(g)) HC\-X{P(g)) 

HC\.2(P{g)) = HC^2(P{g)) 

In the classical situation of an algebra the term H*(P(g)) would vanish 
and the diagram would reduce to the long exact Connes-Gysin sequence, sh2 

is then Connes' periodicity operator. Since the total complex Tot(C(g)) is 
periodic in high dimensions, the shift induces an isomorphism. 

P R O P O S I T I O N 3. 

The double shift 

shl : HC^P(g)) HC^2{P{g)) 

is an isomorphism for * > 6g — 5. 

As a consequence, the cyclic homology HC*(P(g)) differs from the peri­
odic cyclic homology HC%er(P(g)) = lim^ HC*+2i(P(g)) only in dimensions 
* < 6g - 3. 

It is clear that everything said so far is also true, if we replace the space 
P(g) by any of the spaces P(g)/W(g), P{g)/D(g)1 or U(g) note that the 
dimesion of the last two spaces is 4g —2. Recall that P(g)/W(g) is a Poincare 
dual to 9Jl(g); thus for IK a field we obtain results about the homology of the 
moduli space. 
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6 Dihedral and quaternionic homology 

We mention another operator, the reflection W — ( — 1) \(N+L)(.N+2) UJ , where u 
acts on a cell E by 

(28) OJ(E) — [an+i,an,... , a u a 0 \ uoXou 1 I u)(B0),.. .,uj(Bm+i)] 

Here to G &4g is the involution k t—y 4g + 1 — k. 

L E M M A 3. 

(29) Wo d'i = d'^ow for 0 < i < n, 

(30) Wod'J = d'joW for 0 < j < m. 

It follows that 

(31) Wo& = (-l)nd'oW, 

(32) Wod" = d" oW. 

One can define dihedral and quaternionic homology groups for the com­
plexes P(g) and the various sub complexes and quotient complexes, following 
[L 1]. The easiest case is U(g). It is obvious, that W corresponds to the 
complex conjugation in ^p(g); the conjugation of the conformai structure of 
a parallel slit domain is just the complex conjugation of its slits in € , which 
amounts to reading the slits in reversed order from top to bot tom. 
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