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COMPARISON THEOREM FOR $$-OPERATIONS 
IN HIGHER ALGEBRAIC K-THEORY 

A. NENASHEV 

Introduction 

In his paper [G2], D. Grayson defined a map 

Ak : Sub* GM -+ GWM 

for every k = 1,2... and every exact category M with a suitable notion of 
exterior and tensor products, where both the domain and the codomain of the 
map are certain fc-fold multisimplicial sets representing the homotopy type of 
iiT-theory of the category M. This provides a definition of the operation A^ 
on K.M as induced by the map on the homotopy groups. 

The G-construction GM is a simplicial set defined in [GG] whose vertices 
axe in one-to-one correspondence with all pairs (A,B) of objects of M, and 
an edge from (A,B) to (A',B') in GM is a pair of short exact sequences 
(A>->Af —» C^By-^B1 —» C) with equal cokernels. In order for the G-
construction to serve as a domain of the map A f c, one should subdivide it 
first by the A:-fold edgewise subdivision functor Sub& : Simp.Sets —• fc-fold 
Multisimp.Sets (see [G2], sect. 4). The codomain G^M is the iterated G-
construction. Its vertices correspond bijectively to all 2fc-tuples of objects of 
A4 positioned naturally at the vertices of a fc-dimensional cube. 

Another definition of the operation in the same fashion was given by 
the author in [N]. This definition is provided by the map 

Ak : Diag Subk GM -» G(k; M) 

where Diag : A;-fold Multisimp.Sets —» Simp.Sets is the total diagonal functor 
and G(k;JA) is a simplicial set whose vertices are in one-to-one correspon­
dence with all (k + l)-tuples ( A 0 , . . . , Ak) of objects of and an edge from 
(Ai) to (Bi) is a (k + l)-tuple of short exact sequences A{>—>Bi —•» Ci) together 
with a long exact sequence of cokernels 0 —> Ck —* Ck-i —• • • Co —> 0. 

It is not hard (and this is done in [G2] and [N]) to establish independently 
the equivalence of each of the two definitions of A-operations to that given by 
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A. NENASHEV 

means of Quillen's plus construction in [Hi] and [Kr] in the case of iiT-theory 
of a ring. The purpose of this paper is to show directly the equivalence of the 
above two definitions for any exact category Ai with operations, in the very 
spirit of the definitions, i.e., by means of certain simplicial structures. 

We demonstrate the idea in the case k = 2. The map A 2 of Grayson takes 
a vertex (V, W) of GAi to the 4-tuple of objects of Ai 

W AW W®W 
VAV V®W 

regarded as a vertex of G^Ad. We observe that the objects WAW and 
W ® W standing in the 1st row admit the natural maps W A W*-+W & W 
and W ® W —» W A W, which lead to the pair of dual short exact sequences 
0^WAW-*W®W->S2W^0 andO <- WAW <- W®W <- WoW <- 0, 
where S2W is the symmetric square and W o W = D2W is the 2nd divided 
power (invariants of the symmetric group £2 action on W ® W in the case 
of modules). In the sequel, we prefer to use sequences of the second type, i.e. 
coSchur complexes (c/. [ABW], ch. V). 

This observation leads to the definition of a bisimplicial set A(2; A4) whose 
vertices are in one-to-one correspondence with all diagrams of the type 

A *— В *—< С 
D E 

where the sequence A<++ B<—<C is exact. There is a natural map 
A(2] Ad) —• G^Ai given on vertices by 

A B <-< C 
D E 

A B y 

D E. 

This map is a homotopy equivalence, and the map A 2 : SubiGAd -^G^Ai 
from [G2] can be lifted to a map A 2 : Sub2 GM —• A(2; M), 

(V,W) ----> WAW ^- W ®W WoW 
V AV v®w 

On the other hand, there is a natural map Diag A(2; Ai) —> G(2; Ai) given 
on vertices by 

A <r- B *-< C\ 
D E J 

(D,E,C) 
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COMPARISON THEOREM FOR ÔPERATIONS 

which also proves to be a homotopy equivalence, and the composite map 
Diag Sub2 GM —• Diag A{2\ M) —• G{2\ M) given on vertices of GM by 

(V, W ) i—>• 
(W AW ^- «-< WoW 

V AV V <g)W V A V , V<8>W, W O W ) 

is nothing but the map A 2 from [N]. Thus, we result with the equivalence of 
the A2-maps of [G2] and [N]. 

For an arbitrary k, we define a fc-fold multisimplicial set A(k; M) and a 
map Ak : Subk GM —> A(k; M) by means of which the A-maps of [G2] and 
[N] can be linked in the following manner. 

MAIN THEOREM. — The commutative diagram of spaces holds, 

|Sub fc GM\ 
A[G2] 

\G^M\ 

Subk GM\ Afcloc.cit. A(k-M) Diag A(k;M) 

I Diag Subfc GM\ 
A[G2] 

\G{k;M)\ 

where all arrows are given by certain simplicial maps, the vertical arrows on 
the right are homotopy equivalences, the map Ak on the top is that of [G2], 
and Ak at the bottom is defined in [N]. 

REMARK. The construction of each of the three arrows in the bottom 
square depends on choice of cokernels for all admissible monomorphisms in 
M, hence these maps are defined up to natural simplicial homotopy. Given 
such a choice, the bottom square is strictly commutative. 

In section 1 we recall the definition of multidimensional S. and C (mapping 
cone) constructions given in [G3] , and develop some technique for them. 
This technique is based mainly on a generalization for multidimensional 
case of the Theorem C of Grayson [Gl]. It enables one to compute the C-
construction of a cube of exact categories as a homotopy fibre of the map of 
5. constructions of the corresponding faces, under a certain assumption on the 
cube (c/. Proposition 1.6). In order to prove such a generalization, we need to 
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restrict the class of dominant functors introduced in [Gl] and consider strictly 
dominant functors (cf. Definition 1.1) which prove to be stable under applying 
the C-construction degreewise (Proposition 1.5). 

In section 2, some finite categories of words (actually ordered sets) are 
introduced. We declare certain sequences of words to be "long exact" and 
call them "formal Schur complexes". Then we define some exact categories 
of diagrams in Ad in which the positions correspond to those words, and 
formal Schur complexes give rise to long exact sequences in those diagrams. 
We define the multisimplicial set A(k;Ad) by means of these categories of 
diagrams via the C-construction and show that the natural forgetful map 
A(k; Ad) —y G^Ad is a homotopy equivalence. Hence, A(k; Ad) represents the 
K.Ad homotopy type. 

In section 3, we construct a chain of fc-fold multisimplicial sets A(k; Ai) = 
A(k, k; Ai) —• A(k; k — l;Ai)—+ >A(k, l;Ad) and show that all maps in 
it are homotopy equivalences. Then we define a map from the total dia­
gonal Diag A(k, 1; Ai) to G(k; Ai) which also proves to be a homotopy 
equivalence. This results with a homotopy equivalence of simplicial sets 
Diag A(k; Ai) G(k; Ai). 

In section 4 we define a map Ak : Sub& GAi —* A(k; Ai) with "real" coSchur 
complexes corresponding to formal Schur complexes in the diagrams. We check 
that this map is compatible with the A-maps defined in [G2] and [N], therefore 
establishing the desired equivalence. 

We note that another (with respect to A(k,£;Ai)) interesting class of 
multisimplicial spaces representing the delooping of the K-theory homotopy 
type was introduced by Grayson in [G3] in order to define the operations 
of Adams. Further investigation of operations in higher iiT-theory on the 
simplicial level is carried out in the preprint of B. Kock [K6]. 

§1. Simplicial Technique 

We recall the definition of the multidimensional C and S. constructions (cf. 
[G3], sect. 4). 

Let A denote the category of finite nonempty totally ordered sets and 
nondecreasing maps. For any partially ordered set P, we denote by ArP the 
category of arows in P, where a map of arrows is an obvious commutative 
diagram. We use the notation i/j for the arrow (j < i) G ArP. Given an 
exact category Ai with a distinguished zero object *, the iS-construction 
of Waldhausen is a simplicial set S.Ad with S.Ad[P] = Exact(Ar P, Ad), 
P G A, with obvious face and degeneracy maps, where "Exact" refers to 
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the set of functors satisfying the condition : F(i/z) = * for any i € P 
and 0 —• F(j 1%) —» F(k/i) —• F(k/j) —+0 is an exact sequence in A4 for any 
i < j < k in P (cf. sect. 1.3 of [W2] or sect. 7 of [Wl]). 

We regard the set [1] = {0 < 1} as a category. By an n-dimensional 
cube X = (̂n) of (exact) categories we mean a functor from ( [ l ] n ) o p to the 
category of (exact) categories. For e € [ l ] n we denote by X(e) the category 
standing at the vertice e. By a map of n-dimensional cubes we mean a natural 
(exact) transformation of functors. We also consider covariant cubes of certain 
categories of words in §2; a confusion seems impossible. Given some cubes 
Af(m) and 3^(n) w e define a (m + Tridimensional cube X S y by 

* ia;y(ei,...,sm+n) = ДГ(е!,...,ет) ж У (Em+1,......,Em+n). 

Let B be a symbol. For P € A we denote simply by BP the disjoint 
union {B} U P with B declared to be less than any element of P. Given 
Pi , . . . , Pn G A and € e {0, l}n we set 

r (Pi , . . . , Pn) = [AT P± - Ar(PP x)] H • • • H [Ar P n - Ar(PP n)] 

and let T(Pi,. . . , P n ; s) be the category at the e-vertice of the cube 
T(Pi , . . . , P n ) , i.e., T(Pi,. .. , P n ; e) is the direct product of n categories with 
i-ih factor equal to AT Pi or Ar(J3Pt) accordingly to Si = 1 or 0. 

Suppose we are given an n-dimensional cube of exact categories X. We use 
the notation of [G3], sect. 4, and define the mapping cone construction CX 
to be an n-fold multisimplicial set given by 

CX[Pi, ...,Pn] = Exacte!,..., P n), X) 

where "Exact" stands for the set of functors whose components at all vertices 
axe polyexact, i.e. exact in each variable. If n = 0, then X is actually an exact 
category, and we have CX = X. Notice that in the case n = 1 the same 
construction was denoted by F.(A—>B) in [Wl, p.182] and by S.(A-+&) in 
[W2, p. 343]. 

Regarding CX as a, multisimplicial exact category in a natural way, we 
apply the S. construction degreewise to obtain the (n + l)-fold multisimplicial 
set S.CX which we denote simply by S.X. We write explicitly 

S.X[P0, P i , . . . , Pn] = Exact(Ar P 0 El T(Pi , . . . , P n ) , X). 
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The notation S.X is justified by the case n = 0 where we obtain the ordinary 
S. construction of Waldhausen. 

We notice that the G-construction of an exact category Ai can be defined 
as GAi = C[Ai -^5 Ai x Ai] (compare with the original definition in [GG], 
sect. 3). 

Given an exact functor of exact categories F : A —• B we denote by im F the 
class of those B G B with B = F(A) for some A £ A. We call an admissible 
monomorphism B*—*Br in B an F-mono if its cokernel belongs to imF. 

An exact functor F is called dominant if for each B>—>B' in B there exists 
another admissible monomorphism J3>—•J3" and a commutative diagram 

B >—• B\ >—>•>—> B^ 

в'Цв" >—• C\ >—>•••>—• c n 

in which all horizontal arrows are F-monos. By virtue of Theorem 2.1 of 
Grayson [Gl], this property is sufficient for the sequence 

C[F : A^B]^S.A->S.B 

to be a fibration up to homotopy. 
When dealing with the multidimensional C-construction, it seems conve­

nient to restrict the class of dominant functors. 

DEFINITION 1.1. We call an exact functor F strictly dominant if for 
each / : By-+B' in B there exists an object B" in B and a filtration 
J3>—>B\>-• • • • >-^Bn = Bf © B" in which the composite map is equal to / © 0 
and all arrows are F-monos. 

This means that in the definition of dominant functor the required pushout 
must be the addition of a direct summand and the lower sequence is reduced 
to one object. The class of strictly dominant functors contains the following 
two types of exact functors : 

a) surjective functors, i.e. those F : A—+ B with imF = Obj B\ 
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b) cofinal functors, i.e. those F : A^B that for any B in B there exists 
some B' in B with B © B' G imF. 

Given an exact category A and two exact subcategories A! and A!1 of >t 
together with exact functors j ' : A—+ A!, j " : A —* ./4", we say that the collec­
tion (A, A!, A"; j f , j") satisfies the condition of the additivity theorem if there 
exists a short exact sequence of endofunctors of A : 0 —• j f —• 1A —* j " —• 0. 

PROPOSITION 1.2. — Suppose {A, A1, A";j',j") and (B, B1, B"\£', £") satisfy 
the condition of the additivity theorem and an exact functor F : A—> B is 
compatible with them, i.e., 

F(A') C B',F(A") C B", and F(j'A A—»j"A) = (*'FA FA — *"FA) 

for any A G A. If both of the restricted functors F \ Af —*B' and F : A!' —• B" 
are strictly dominant, then F is strictly dominant. 

LEMMA 1.3. — Given an exact category and a commutative diagram in it 
of the form 

A' y-> A ^ A!1 

X X X 
B' B —* B" 

in which the horizontal sequences are short exact, we have a natural isomor­
phism B' IX A , A B x A". In other words, we can pass from A'*—* A —* A" 

B" 
to B't-^B —* B" by the two steps 

A' >— A A" 

B' ^ C -+ A" 

B'/A' ^ C/A 

and 

B' y-y C -» A" 

B' >-». B -* B" 

B/C ^ B"/A" 
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where all short sequences are exact. 

Proof of the lemma is trivial • 

LEMMA 1.4. — Given an exact functor F : A-+B and admissible mo-
nomorphisms f : Ay-*C and g : Cy->B in B, suppose that there exist 
such objects Ci\ B' in B and filtrations of F-monos Ay->Ai>-> • • • >C © C", 
C>—•Ci*-> • • • y-*B © Bf with the composite maps equal to f © 0 and g © 0, 
respectively. Then the same property holds for the arrow gf : Ay-+B. 

Proof The filtration Ay^Axy-^ • • • y-+C © C'y^Cx © C>-+ • • • >-+B © © C" 
is the desired • 

Proof of Proposition 1.2. Given an admissible monomorphism Ay->B in the 
category B, we apply Lemma 1.3 to the diagram 

t'A y-+ A -+ £"A 

J" X X 

£'B >-+ B -H> ¿"5. 

By Lemma 1.4 it suffices to show that both of the arrows Ay-»C and Cy-+B 
have the required property, where C = £lBU£fAA = B x ^"A. Since 

i7" : .A' —>Bf is strictly dominant, there exists a filtration of jF^-monos 
I'Ay-*A\y-• • • • y-^t!B © i? ' which gives rise, by the cobase change via t!Ay->A, 
to a filtration A>->Ai JJt'A A*-* • * * ^C © B' with the same cokernels. The 
desired filtration for Cy-+B is obtained similarly by a base change from that 
for £"Ay->£"B, hence we are done • 

If A( n ) is a cube of exact categories and p i , . . . , p n are nonnegative integers, 
we write CPlmm,Pn(X) instead of Cvf([pi],..., [pn]), where [p] denotes the set 
{0 < 1 < • • • < / > } G A. We call X strictly dominant in the first direction if 
for every (e 2 , • • • ,£n) G [ l ] n _ 1 the functor X(l,e2,..., sn) —• X(0, e2,... ,en) 
is strictly dominant. We denote by X(E1 = 1), X{s\ = 1,̂ 2 = 0), etc., the 
face of X determined by the indicated equalities. 

PROPOSITION 1.5. — Let A ( n ) , with n > 2, be a cube of exact categories 
strictly dominant in the first direction. Then for every P2, • • > ,Pn > 0 the 
functor CP2„.Pn(X(si = 1)) —> CP2,,.Pn(X(ei = 0)) is strictly dominant. 
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Proof. First we treat the case n = 2. We do this similarly to the proof of 
Proposition 1.5.5 in [W2]. We have to show that if both ^(1,0) —• X(0, 0) and 
^(1,1) —> X(Q,1) are strictly dominant, then so is 
CP[X(1,1) -> X(1,0)]^ CP[X(Q, l)->Ar(0,0)] for every p > 0. If p = 0, 
we are restricted to the functor X(l, 0) —• X(Q,0). Suppose p > 1 and set 
A = CP[X(1,1) -+ X{1, 0)]. We let A! = s p _i(C p _i[*(1,1) *(1,0)]) be the 
image of the degeneracy map, j f = sp-idp, A!9 = {x G A \ dpx = * } , and 
j"x = x/j'x. Then (AiA',A"\j')j") satisfy the condition of the additivity 
theorem. The same can be done with B = CP[X(0,1) ^ X(0,0)]. Since the 
category A!' (resp. B") is equivalent to ^(1,1) (resp. ^(0 ,1)) and A! (resp. 
B') is equivalent to C p _ i [^ ( l , 1) -+ X(l, 0)] (resp. C p_i[;t(0,1) -+ X(0, 0)]), 
Proposition 1.2 enables us to carry out an induction on p, hence the case 
n = 2 is done. 

Now let n > 3, then we have 

CP2...PnX{s1 = 1) = CP2[CP3...PnX(s1 = 1,52 = l J - C p ^ A T O - ! = l,e2 = 0)] 

Cfp2...Prl̂ '(^i = 0) = CP2[CP3„.Pn X(si = 0,e2 = 1) — > C P 3 „ . P n X { e 1 = 0,£ 2 = 0)] 

whence everything follows via the induction on n by virtue of the case n = 2 
• 

PROPOSITION 1.6 (fibration theorem for C-construction). — Given a cube 
of exact categories X(n), n > 1, strictly dominant in the first direction, the 
sequence 

CX -+ S.X(e! = 1) -> 5.^(^1 = 0) 

¿5 a fibration. 

Proof By Lemma 5.2 of [Wl], it suffices to check that for every • • • ,Pn > 
0 the sequence 

C[CP2...PnX(e1 = l)->CP2...PnX(e1=0)}^S.CP2...PnX(e1 = 1) -

—• S.CP2,,,Pn X(e± = 0) 

is a fibration up to homotopy. The functor C P 2 . . . P nX(s\ = 1) —• CP2,„PnX{e\ = 
0) is strictly dominant by Proposition 1.5. Hence, Theorem 2.1 of [Gl] gives 
the desired result. • 
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COROLLARY 1.7. — Let X —*y be an exact functor of cubes, each of them 
being strictly dominant in the first direction. If the square 

S.X(£l = 1) S.yie! = 1) 

S.X(e! = 0) S.yie! = 0) 

is homotopy cartesian, then the map CX —• Cy is a homotopy equivalence • 

The following assertion shows that it suffices to check the above condition 
on the vertices of given cubes. 

COROLLARY 1.8. — Let X^ —*^( n ) be an exact functor of cubes, each of 
the cubes being strictly dominant in the first direction. If for every e G [l]71"""1 

the square 

S.X(l,s) S.y(l,e) 

S.X(0,e) S.Y(0,e) 

is homotopy cartesian, then the map CX —± Cy is a homotopy equivalence. 

Proof We carry out the induction on n. If n = 1, then the assertion is 
equivalent to that of Corollary 1.7. If n > 2, then, according to Lemma 4.1 of 
[G3], there are fibration sequences 

S.X(61 = 1, s2 = 1) S.X(61 = 1, e 2 = 0) S.X(ex = 1) 
S.X{e1 = 0, e2 = 1) -+ S.X{e1 = 0, s2 = 0) -* S.X{ex = 0) 
S.y(e! = 1,62 = 1)-+ S.y(6! = l,62=0)-> S.y(6± = 1) 
S.y(61 =0,62 = 1)-+ S.y(61 =0,62=0)-> S.y(6± = 0). 

The first and the second terms of these sequences form homotopy cartesian 
squares by the inductional hypothesis for the maps X{62 = 1) —+ ^ ( ^ 2 = 1) 
and X{62 = 0) —* y{62 = 0). Hence, so do the third terms, and we axe done • 
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PROPOSITION 1.9. (additivity theorem for multidimension 5. construction). 
— Let A ( N ) , 3^(n), (̂n) be some cubes of exact categories, and let i : y—• X, 
j : Z —y X be exact inclusions. Suppose we are given exact functors p : X —• Z 
and q : X —• y, and an exact sequence of endofunctors of the cube X : 
0—>jp—• lx —>iq—>0. Then the map 

qxp.S.X S.y X S.Z 

is a homotopy equivalence. 

Proof By Lemma 5.1 of [Wl], it suffices to check that for every p\,... ,pn > 
0 the map q x p : S.Cplmm.pnX—yS.CPl...pny x S.Cp1,,,pnZ is a homotopy 
equivalence. We can reduce this to the additivity theorem of Waldhausen 
(cf Proposition 1.3.2(4) of [W2]) by the same argument as in the proof of 
Proposition 1.5. • 

By virtue of Proposition 1.6, we obtain 

COROLLARY 1.10 (additivity theorem for C-construction). — Under the 
assumptions of Proposition 1.9 with n > 1, suppose that the cubes X(n^, 
^(n), Z(rC$ are strictly dominant in the first direction. Then the map 

qxp:CX->Cy xCZ 

is a homotopy equivalence. 

In conclusion, we provide a sufficient condition for a functor to be strictly 
dominant. 

PROPOSITION 1.11. — Let Fi : A-+Ai, with 1 < i < m, be a 
collection of strictly dominant functors. Then the functor F = (i 7!, .. ., Fm) : 
A —> A\ x • • * x Am is strictly dominant. 

Proof It suffices to show the case m = 2. Given an admissible monomor-
phism ( / : A\>->Bi,g : A2 —» B2) in Ai x A2, we decompose it trivially in 
(/ : A\>->B\, 1 : A2 —• A2) and (1 : B\>^>B\,g : A2 -+B2). Hence, by Lemma 
1.4, we are reduced to show that an arrow of the form ( / : A\ —• B\,\ : 
A2—^A2) in A\ x A2 admits a filtration of the required type. Since F± is 
strictly dominant, there exists an object B[ in Ai and a filtration of i<i-monos 
A ^ D 2 > ^ • • • y-^Dn = B1 © B[ with the composite map equal to / © 0. 
Let Dx/A ^ Fi(Ci) and £> 2 /A_i = F^d) for 2 < i < n, where C i , . . . , C n 

are some objects of A. We put E{ = F2(C{), 1 < i < n. Then the filtration 
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{A1,A2)^(D1,A2®E1)^{D2,A2®E1®E2)^ • • •^(Dn9A2®E1@ - • -®En) 
of -F-monos is the one required • 

§2. The Multisimplicial Set A(k;M) 

For e = (ffi,... with Si G {0 ,1} , let 2l(&; e) denote the set of all 
words W = Xi ...Xk of length k in the letters £*,T, 5, Q (the first letters 
of the words "exterior", "tensor", "symmetric" (products), and "quotient") 
satisfying the conditions 

(2.1) 
(i) 

(ii) 
(iii) 

if Xi = S, with i < k - 1, then Xi+i = • • • = Xk = S ; 

if Xj = S, then i > 2 and Xi_i ̂  E; 

Xi = Q if and only if e\ = 1. 

Let a(W) be equal to 0 if Xk = E, to 1 if Xk = T, and to n + 1 if 
W — Xx... Xk-nS ... S with Xk-n ^ S; a(W) is not defined if Xk = Q. 

We regard 2C(fc; s) as a category with the minimal stock of morphisms 
including all arrows of the type 

;2.2) 

(i) X\ ... XnT S . . . *S <— X\ .XnS . . . 5 with j = k - n - l > 0 ; 

3 J + l 
(") X\ .. . Xn E . .. E T S ... S <— X\ ,XnE...ETS...S with 

i j — 1 i — l j 
i + j — k — n. i,j > l ; 

(iii) Xi ... Xn E . . . jE7 <— X\ . Xn E.. .E T with 

¿+1 2 
i = k — n — 1>0, 

where n > 1 and X n G {T, Q} . This set of morphisms consists of the identity 
isomorphisms and all formal compositions of arrows of the type (2.2), which 
we shall refer to as the elementary arrows in 2l(fc;s). Notice that if Sk = 1, 
then 2l(fc; e) has no morphisms except the identity isomorphisms. 

If W <— Wf is an elementary arrow in 2l(fc; e), then both a(W) and a(W) 
are defined and we have a(W) = a(W) — 1. Consider a nonoriented graph 
with vertices corresponding to all words in 2t(&; e) and edges corresponding 
to all elementary arrows. This graph is a tree (suppose that, for the contrary, 
there exists a cycle, and take a word W with the minimal value a(W) in this 
cycle; this leads to a contradiction, since any word in 21 (fc; e) is the target 
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of at most one elementary arrow). Thus, the category 2l(&; e) is actually a 
partially ordered set. 

Let 2t(fc) = a(fc; ( 0 , . . . , 0)) be the category of words in the letters E, T, S 
satisfying (2.1)(i)-(ii). We display the categories 21(2) and 21(3), 

(2.3) TE <— TT <— TS 
EE ET «(2) 

TTE 4- TTT < - T T S 

TE'JE' « - T £ T ^ - TTS « - T S S 

TE'JE' «- T£T ^- TTS 

EEE' «- EET 
a(3) 

Exercise for the reader : the number of words in 2l(&) is equal to 3.2 f c — 1 — 1. 
Let &(k; e) be the set of words of length k in the letters E,T,Q satisfying 

(2.1) (iii) ; the number of such words is equal to 2 r , where r is the number of 
zeroes among £2. We regard &(k;s) as a category with identity isomorphisms 
only. 

There is an obvious inclusion functor Q$(k;e) —•+ 2l(&; e) (but (&(k; e) is not 
a full subcategory in 2l(fc;e), since, for example, the words TE and TT of 
0 (2 ; (0,0)) are linked by an arrow of the type (2.2) (iii) in 21(2)). 

For W = X1...Xk e OL(k;e) (resp. for e = (el9...,ek) e {0,1}*) 
and n, with 0 < n < fc, let W>ny W> n , W<n, W< n (resp. £> n , etc) 
denote the words Xn+i . . . Xk, Xn ... X\ . .. Xn^i, X\ . .. Xn (resp. the 
tuples ( s n + i , . . .,£*,), etc.). 

Suppose that e = (e i , . . . , £ n , 1, 0 , . . . , 0) with 0 < n < — 1. By definition, 
one checks that 

(i) W e a(fc; e) if and only if W< n e (S(n; £< n ) and W > n 6 3l(fc - n; £> n ) ; 

(ii) W <— W is an elementary arrow in 2i(&; e) if and only if W>n <— W>n 

is an elementary arrow in 2t(& — n; £> n)-
Thus, we have an isomorphism of categories (throughout the paper, we will 

speak of an isomorphism of categories instead of equivalence if some categories 
are actually isomorphic) : 

(2.4) 2t(fc; e) = <5(n; e<n) x &(& - n; e>n) with n < k - 1, 
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and £ > n = (1 ,0 , . . . ,0) . 

Given a word W of length less or equal to fc, we let %Lw(k;e) denote the 
full subcategory of f2i(k;s) of the words with the beginning equal to W (this 
set may be empty). According to (2.2), if W <— Wf is an elementary arrow 
in 2l(Ar), then W and W begin with the equal number of E (which may be 
equal to zero). Thus we obtain 

(2.5) K(k)^%T(k)\\*E{k) disjoint union of categories 

and obviously 

(2.6) SHE(k) ~ « ( f c - 1) EW ^ W ; 

(2.7) a r ( ^ a ( M i , o , . . . ) o ) ) TW ^ QW. 

With the isomorphisms (2.4)-(2.7), one can reduce certain questions for the 
category %l(k;e) with an arbitrary s to those for 21T(&)-

We let 2l(fc; e) denote the category 2t(fc; e) with a unique zero object in 
addition. Say that a sequence in 2C(fc; e) is "long exact" (formal Schur complex) 
if it has the form 

(2.8)(i) 
0 ^- WE ...E*- WE ...ET ^ WE ... ET S <-

WETS ...S+- WTS ...S^ WS ...S*-0 

where W = X\ ... Xn, with 1 < n < k — 1, and Xn £ {T, Q}. In particular, 
"short exact sequences" are those of the type 

(ii) 0 <- WE <- WT <- WS <- 0. 

Thus, all horizontal sequences in the picture (2.3) are "exact". 
If e = (e[,... ,e'k) e' = (e[,. . . ,e'k) and e < e', i.e. E{ < e'{ for 

each i = l,...,fc, we define a functor 2l(fc; e) —• %L(k; e f) which takes zero 
object to zero object, a word W = X\ . .. X k to zero object if, for some 
z, e\ — 1 and Xi = S (for this we need to add zero objects), otherwise 
W \r—> W 1 = X[ . . . X'k where X[ = X { if e\ = 0 and X[ = Q if = 1. It is 
easy to check that this functor is "exact", i.e., it takes "long exact sequences" 
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in 2L(k;e) to "long exact sequences" in 9l(fc;£;). For example, the functor 
9[(4; (0,0, 0, 0)) —• »(4; (0, 0,1, 0)) takes the "exact" sequences 

0 «- TEEE <- TEET <- TETS <- TTSS <- TSSS <- 0 

of 91(4: (0,0,0,0)) to the "exact" sequence 

0 ^ TEQE <- TEQT <- TEQS ^ 0 ^ 0 ^ - 0 

in 91(4; (0,0,1,0)). We also define the map ©(£; e) -><»(&; ef) by the same 
rule. 

The categories 9l(fc; e) (resp. &(k]e)) together with the functors defined 
above form a covariant fc-dimensional cube which we denote by 9t(£) (resp. 
<3(fc)). Since the inclusion functors (5(k; e) —> 9l(Ar; e) commute with the func­
tors 9f(fc; e) —> ^(A:; e') and (S(fc; e) —* <3(fc; £'), we have an inclusion functor of 
cubes 0(Ar) —•9T(jb). 

Let be an exact category with a distinguished zero object *. 
Let A(k;e) = Exact(9t(fc; e), jVf) denote the category of "exact" functors 

and their natural transformations, i.e. those functors that take the zero object 
of 9t(fc;e) to * and take "long exact sequences" in 2t(fc; e) to long exact 
sequences in A4. Since the category %l(k;e) is a final partially ordered set, 
A(k; s) is actually a category of diagrams of a certain type in Ai (with certain 
exactness conditions) and morphisms of such diagrams. 

Put A(k) = A(k; ( 0 , . . . , 0)). For example, A{2) and A(3) are the categories 
of diagrams of the type depicted in (2.3) with objects of Ad instead of words, 
where all horizontal sequences are exact including exactness at the ends. 

It can be checked that each A(k; e) is an exact category in the obvious 
sense. The "exact" functors 9f(fc; e) —• 9f(fc; ef) with e < e* induce the exact 
functors A(k\ e) <— A(k; e'). Thus, the categories A(k; e) form a fc-dimensional 
cube of exact categories which we denote by A^)-

It is convenient to regard the objects of A(k;e) as "exact" functors 
F : 91 (fc) —• Ai (via 9f(fe) —• Sl(fc; s)) with the properties : 

(2.9) (i) i£W = Xi ... Xk G 2(k) and, for some t, = 1 and X{ = 5, then 
F(W) = *; 

(ii) if W = Xx ... Xk and W = X[ ... X'k G fH(k) do not satisfy (i) and for 
each i the condition Si = 0 implies Xi = X[, then F(W) = F(W). 

The morphisms are natural transformations of such functors which respect 
the condition (2.9) (ii). 
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In other words, the objects of A(k\ e) can be thought of as diagrams in A4 
with the disposition of objects and arrows given by the category 2l(fc) (with 
the exactness condition for the corresponding sequences), where some objects 
are linked by the equality sign and some objects are equal to * accordingly to 
(2.9) ; morphisms of such diagrams are defined naturally. Thus, A(k; e) can be 
regarded as an exact subcategory (not full) in A(k); more generally, A{k',er) 
is a subcategory in A(k; e) if e < e1. 

We also consider the exact categories Q{k\e) = Punct(0(fc;e), A4); 
G(km,e) = Ad x • • • x Ad where the number of copies is equal to 2 r , and r is 
the number of zeroes among €{. The categories Q(k; e) form a fc-dimensional 
cube of exact categories G(k), with the functors G(k;e) <— G(k;ef) for e < e1 

induced by the functors &{k\e) —• <3(k;ef) defined above. 
It is convenient to think of an object of G(k; s) as a 2fe-tuple of objects of 

the category Ai positioned at the vertices of a fc-dimensional cube, with any 
two objects linked by an edge in the i-th direction with Si = 1 being equal 
(and morphisms of such tuples respect those equalities). 

We have the exact functor of cubes A^) G(g) induced by <S(fc) —• 2l(fc). 
The map A(2) ~+ G(2) can be depicted in the following fashion, 

gW = 

• • 
II II - II II 
• • • =• 
i i — A(2) = 

• «— • <—< • • = • < — * 
II II - II II 
• • • = • 

• ^— # 4—< # • = • <— * 

• • • = • 

where, for example, 

• «— • < • 
II II 

means the category *4(2; (1,0)) whose objects, by definition, are all diagrams 
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in A4 of the type 

XQE «— XQT XQS 

XQE XQT 

with XQE (resp. XQT) written twice at the positions of the words EE and 
TE of a(2) (resp. ET and TT), and the map 

• «— • «—< • 
II II 

• «— • «—< • 

o o 

is the equalities forgetful functor 

4(2; ( 1 , 0 ) ) - 4 ( 2 ; (0,0)). 

Let A(fc; Ai) denote the multisimplicial set CA(k) (cf- §!)• One checks that 
CG(k) is naturally isomorphic to the iterated G-construction G^A4 (see [GG], 
sect. 6, or [G2], sect. 3). Hence, the map of cubes A(k) —* Q(k) induces the map 
of Ar-fold multisimplicial sets A(k; A4) -^G^A4, and we formulate the main 
result of this section. 

PROPOSITION 2.1. — The map A(k; A4) —* G^Ai is a homotopy equiva­
lence. 

Proof. All functors in the cube G(k) are easily seen to be cofinal, hence Q{h) 
is strictly dominant in each direction (c/. §1). We shall check in §3 that the 
cube -4(*r) (and also some its generalizations A(k,£)) is strictly dominant in 
the first direction (see Proposition 3.2). Hence, by Corollary 1.8, it suffices to 
check the following 

LEMMA 2.2. — For every e G {0, l } f c , the map S.A(k; e) —* S.Ç(k; e) is a 
homotopy equivalence. 

Proof Let e = (e i , . . . , en, 1,0,..., 0) with 0 < n < k — 1. In view of (2.4), 
we obtain 

A(k; e) ^ Exact((S(n; £ < n ) x - n: e>n). A4) = 

Funct(<g(n; e< n ) , Exact(a(fc-n; £> n ) , A4)) = Funct((g(n; £<n), A(k-n; e>n)), 
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since (S(n;s< n) is a trivial category, and obviously 

Q{k\ e) = Funct((g(n; e<n), G(k - n; e > n ) ) with £ > r i = (1 ,0 , . . . ,0 ) . 

It results that the case e = (e\,... ,£„, 1,0,... ,0) is reduced to that 
of £>„ = (1,0, . . . , 0 ) . In view of (2.7), it is equivalent to the fact that 
S.Axin — k) —• S.QT(TI — k) is a homotopy equivalence, where we put 

AT(m) : Exact(a T(m),M) , GT(m) = Funct(<5T(m),M). 

If e = ( 0 , . . . , 0), accordingly to (2.5), (2.6) we have 

A(k) = A(k;e) = Exact(2lT(fc) T ]*E(k),M) S 
AT(k) x AE(k) £* AT(k) x A(k - 1), 

and also 

g(k) s gT(k) x gE(k) ^ gT(k) x c?(fc - i). 

Hence everything in this case is reduced as well to the case of Ar(k) —> QT(^) 
by induction. 

Suppose that k > 3. We let 2t̂ (A;) denote the category obtained from 21T(&) 
by replacing the word TS... S by the word TES . . . 5 (TJE"5 . . . S %Lr(k) in 
view of (2.1) (ii)) together with the new elementary arrow TETS...S <— 
TES... 5, the new "exact sequence" TE...E +- - • • <— TETS...S <— 
T # S . . . 5 in exchange for TJ3 . . . £7 <- - • - <- TETS . . . 5 <- TTS . . . 5 <-
T5 . . . 5, and the "admissible epimorphism" TT5 . . . 5 —• T£;S . . . 5. We de­
note by %Lj,(k) the same category without the "admissible epimorphism". 

We put A'T(k) = Exact(2l^(fc), -M), where exact functors are supposed to 
take the "epimorphism" TTS ... S —• TJE'.S . . . 5 to admissible epimorphisms 
in M;A£(k) = Exact(a^(A:),A^). 

LEMMA 2.3. — The category Ar

T{k) is naturally equivalent to Ax{k). 
Proof. If F G Ar(k), we define the functor G : %Lf

T(k) —> M. by letting 
G(W) = F(W) for W ^ T # S . . . 5 and 
G(TES ... S) = coker(F(T5 . . . S)^F(TTS ... 5)). Then the epimorphism 
G(TTS...S) = F(TTS ... S)-*G(TES . . . 5) is naturally defined and the 
sequence 0 <- G(T# ...£?)< <- G(TETS... 5) <- G(TES ... S) <- 0 is 
exact, hence Cr G .4^ (A;). 
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On the other hand, if G € A'T(k), we define the functor 
F : %LT(k)^M by letting F(W) = G(W) for W ^ TS...S and 
F(TS . . . 5) = KET(G(TTS ... S)-^G(TES... 5)) , under some previous choice 
of kernels and cokernels in Ai. Then the monomorphism 
F(TS ... S)^F(TTS ... S) = G(TTS . . . 5) is naturaUy defined and the se­
quence 

0 <- F{TE ...E)< <- F(TETS ...S)<-

<- F(TTS . . . S) <- F(TS... S) <- 0 

is exact, hence F G Ar(k). 
The correspondence F <-+ G provides the desired exact equivalence • 
The inclusion functor 2l^(A;) —» 2t̂ (A;) induces the epimorphism forgetfull 

exact functor A'T{k) —> A'^ik). 

LEMMA 2.4. — The map S.Ar

T{k) —• 5.*4^(fc) ¿5 a homotopy equivalence. 

Proof. First we show the case k = 3. The category ^47

T(3) (resp. ^4^(3)) 
consists of all diagrams in Ai of the type 

XiTTE) «- XCTTT) <-< XCTTS) 

X{TEE) ^- X(TET) ^ X(TES) 

with exact rows (resp. without the vertical epimorphism). By the additivity 
theorem, S.A'T(3) (resp. S.A'T(3)) is homotopy equivalent to the direct 
product of S. constructions of the subcategories of diagrams of the type 

X(TTE) = X(TTT) 

XiTEE) = XCTET) 

<— * 

<— * 
resp. 

X(TTE) = X(TTT) 

X(TEE) = X(TET) 

<— * 

<— * 
and 

*~-J\T(TTT) = X(TTS) 
I 

*<+-X(TET) = X(TES) 

resp 
* «- X(TTT) = X(TTS)y 

* «— X(TET) = X{TES)J 

Hence, in order to check that the map S.A'T(3) —> S.*4j.(3) is a homotopy 
equivalence, it suffices to show the following 
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SUBLEMMA 2.5. — Let EpiA4 denote the category whose objects are all 
admissible epimorphisms in Ai and morphisms are transformations of arrows, 
with the natural structure of exact category which admits an exact equivalence 
EpiA4 «-» £(Ai), where £(A4) is the exact category of short exact sequences 
in Ai. Then the map 5.Epi.M —• S.(Ai x Ai) given by (B—»C) i—• (B,C) is 
a homotopy equivalence. 

Proof of the sublemma. It is equivalent to say that the functor / : 
£(Ai) —> Ai x Ad, (A>—*B—*C) t—• (B, C), induces a homotopy equivalence on 
the S. constructions. By the additivity theorem (see the proof of Lemma 1.4.3 
in [W2]), the functor g : Ai x M—>£(M), (B,C) »-+ ( B ^ B © C ^ C ) , is a 
homotopy equivalence. Hence, it suffices to prove that fg : Ai x Ai —• Ai xAi , 
(B, C) \—y (B © C, C), is a homotopy equivalence. Let t : Ai x Ai —• Ai x Ai 
denote the exact functor (B,C) i—• (C, 0). The map |*S'.̂ | has a homotopy 
inverse — |*Sf.̂ | in the sense of the iJ-space structure on \S.(Ai x Ai)\ (cf 
Lemma 3.2 of [GG]). Then \S.fg\ = |5.(1 © *)| ~ 1 + \S.t\, and 1 - \S.t\ is its 
homotopy inverse, since t 2 = 0 • 

We shall do something similar for an arbitrary k > 4, and the reader is 
invited to depict a diagram which represents an object of *4^(4). 

Let A ,

T {k)< i l (resp. *4^(fc)<i) be the full subcategory of A'T(k) (resp. 
A'*r(k)) defined by the condition : x ( w ) = *, if <y(w) > 2. The categories 
A'T(k)<i and Ax(k)<i are obviously isomorphic. 

Let A'T(k)>i (resp. A'x(k)>i) denote the full subcategory in A r

T(k) (resp. 
Af^(k)) defined by the conditions 

(i) X(W) = * if <x(W) = 0; 
(ii) X(WTT) = X(WTS) if WTT, WTS e aT(fc). 

By the additivity theorem, S.Ar

T{k) ~ S.A'T(k)<i x S.A'T{k)>\ and 
S.Aj>(k) ~ 5.^4^(fc)<i x S.A'>r(k)>i (we cut all exact sequences in the 
corresponding diagrams by the conditions a(W) < 1 and <x(W) > 1). 

One checks that the rules 

X(W) = 
Y(W<K^) 

* 
if a(W) > 1 
if a(W) = 0 and Y(W) = 

X(WT) 
X(WS) 

if a(W) = 0 
if a(W) > 1 

define an isomorphism of exact categories 

,4'T(fc)>i ^ A'T(k - 1) (resp. ^ ( A ; ) > ! ^ A'^(k - 1)) X <-+ Y, 

whence Lemma 2.4 follows by induction • 
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We continue to prove Lemma 2.2. It now suffices to show that the map 
S.A'rp(k) —• S.Gr(k) is a homotopy equivalence. Any diagram representing an 
object of Aj^(k) consists of two unlinked diagrams with the objects of the 
type X(TTW) and X(TEW), respectively, and each of the two diagrams 
represents some object of Ar(k — 1). Formally speaking, we have 

Ax(k) ^ A'j>T(k) x A'^E{k) = AT(k - 1) x AT{k - 1) 

where the isomorphism AFTT(k) = Ar(k — 1) (resp. A'TE(k) = Ar(k — 1)) is 
given by the rule X(TTW) = Y(TW) (resp. X{TEW) = Y(TW)). Hence 
the map Afj>(k) —+ Gr(k) is isomorphic to the direct product map 

A'+T(k) x A'+E(k)^ÇTT(k) x gTE(k) 

which, in its turn, is isomorphic to the map 

AT(k -l)x Ar(k - 1) -> GT(k - 1) x GT(k - 1). 

We complete the proof of Lemma 2.2 and Proposition 2.1 by the induction on 
k. It remains to check the base k = 2, i.e., that the functor AT(2) —• £T(2), 

( X ( T J 5 ) ^ X ( T T ) ^ X ( T S ) ) i-> (X(TE),X(TT)) 

is a homotopy equivalence on S. constructions, which is true by Sublemma 
2.5. • • 

§3. The Chain of Maps Connecting A(k;A4) to G(k;Ai). 

3.1. The Multisimplicial Sets A(k,£',A4). — We give briefly some 
definitions similar to those of §2 and refer there for more detailed account. 

For £ = 1,..., k and e G {0, l } f c , we let 2l(fc, £\ e) denote the set of words of 
length k in the letters E,T,S,Q satisfying (2.1)(i)-(iii) and the condition 

(3.1) if W = X\ .. .Xk and X{ = T fore some i, with £ < i < fc, then 
Xi+i = S (and, consequently, accordingly to (2.1)(i), 

X{+2 = • • • = Xk = S. 

We shall regard %{k,£',e) as a full subcategory in %L(k;e) (see §2); we 
call a sequence in $l(k,£;e) "exact" if and only if it is "exact" in 2t(&;£). 
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Obviously, a(fc,fe;e) = (fc,£;e) and a(fc,£;e) C a ( M ' ; e ) if £ < £'. The 
"exact" functor 2l(fc; —* 2f(fc; £'), with e < s', induces the "exact" functor 
2l(fc, ^; s) —• 2i(fc, ^; e'), where we denote by a bar the same category with a 
unique zero object in addition. 

We put A(k, £; e) = Exact(2l(k, £; s) , Ai). Let A(k,£) denote the fc-dimensional 
cube formed by the exact categories A(k,£\e) with e G [1]*. The inclu­
sions 2t(&,^ — l;e) C 2t(&,^;£) induce the exact functor of cubes pe : 
A m ) —+ A(k,e-i)i t> = 2,..., k. 

We put £; Ai) = CA(k,£) (see §1). Thus, we obtain a sequence of fc-fold 
multisimplicial sets 
A(k; Ai) = A('fc, k; Ai) —• A(k, k — 1; AA) —• • A{k, l;Ai), which is the main 
subject for study in the rest of section 3.1. 

We depict the passage from 21(4,4) to 21(4,1), where 2l(A;,^) stands for 
2l(&, £\ ( 0 , . . . , 0)). It looks like one cuts off branches of a tree beginning with 
the upper ones. The reader is invited to depict 21(4, ^; e), with £ = 4,3,2,1 
and some e ^ (0, 0, 0, 0). 

(3.1) 

EEEE 
EEET 
EETS 
ETSS 
TSSS 

• EETE* ETEE• ETTE• TEEE• TETE* TTEE• TTTE • 
• EETT I ETET I ETTT I TEET I TETT I TTET I TTTT I 
• J ETTS I J TETS I _ I TTTS I I 
• 1 TTSS I- J 
• T 

31(4) = 31(4,4) 

EEEE* 
EEET* 
EETS. 
ETSS.-
TSSS.-

ETEE. 
ETET I 
ETTS I 

TEEE. 
TEET I 
TETS I 
TTSS 1. 

TTEE. 
TTET I 
TTTS I 

a(4,3) 
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E EE E* 
EEET. 
EETS. 
ETSS. 
TSSS.. 

TEEE. 
TEET I 
TETS I 
TTSS I 

EEEE 
EEET. 
EETS. 
ETSS. 
TSSS. 

a(W) = 0 
1 
2 
3 
4 

a(4,2) 21(4,1) 

All branches of these trees are "exact sequences", c/. (2.8). 
Let £ > 2, and let B(k,£; s) denote the full subcategory of A(k, £; e) whose 

objects are those F G A(k,£;e) with the property : if W G %L(k,£ — 
then ^ ( W ) = *. We denote by it the inclusion functor B(k,£\e) A{k,£\e) 
and define an exact functor qz : A(k, £; e) —• #(&, ^; e) by the rule : for 
W G 2(k,l;e) and F 6 -4(A:, f; e) 

q£F(W) = 

*, i f W e a ( M - l ; e ) 
coker (F(W')^F(W)), if W £ fc, (£ — 1; e) 

and the origin W' of the unique elementary 
arrow W' —• W belongs to 2l(fc, £ — 1; e), 
i.e. <*rWO = - £ + 1 

F(W) otherwise (i.e., if a(W) < к — £ and 
W.£ 2(k,l - 1;E)) 

We also define an exact functor ji : A(k, £ — 1; e) —* 4̂(fc, e) by the rule : 
for F G A(k,£- l;e) and W G a ( M ; s ) 

J£F(W) = 

F(W), if W e £- 1; e) 
F(W), iíWé Я(к, £ - 1; e) and the origin W 

of the unique elementary arrow W —• W 
belongs to 2t(&,̂ — 1;^), i.e. 
a(W) = k-e+i 

*, otherwise (i.e. a(W) < k — £ and 
W.£ 2(k,l - 1;E)) 

Notice that the case = 1 is exceptional. In this case a(W) is not defined, 
there are no elementary arrows, the categories A(k,£\ e) and B(k, £; e) are the 
direct products of some copies of Ai, and we have obviously 

A(k, £; e) S A(k, i-l;e)x B(k, £; e). 
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The exact functors J£, p£, qe give rise to the maps of cubes 

B(k,l) <=> A(k,l) <=> A(k,l-1) 

which we denote by the same letters. 
PROPOSITION 3.1. — a) For every k and £, with 2 < £ < fc, we have a 

short exact sequence of endofunctors of the cube A(k,£)> 

0 —• jepi —• 1 —• ieqe —> 0; 

b) If e,ef G {0,1}^ are such that S£ = 0, s't = 1, and = e\ for i ^ £, then 
the map A(k, £] e') —* A(k, £; e) in the cube A(k,e) induces an exact equivalence 
of categories B(k, £; er) —> B{k, £; e). 

Proof a) One checks by definition that for every e G {0, l}h the same 
sequence of endofunctors of A(k,£; e) is exact, 

b) We consider the following cases. 

1. If ee-! = e*£_x = 1, then f&(k,£;e) = f&(k,£ - l;e) and a(fc,4e') = 
%L(k,£ — l ;e ') , hence both B{k,£\e) and B(k,£;sf) are trivial. 

2. If £ < k — 1, = £ ,

£_1 = 0, and Si = = 0 for every i > then we 
have a one-to-one correspondence 

a(fc, 4 e) - £ - 1; s) a(fc, 4 e') - a(fc, * - l; e'), 
X±... X^2TTS ... S Xi ... X^2TQS . . . 5 

Xi ... X^_ 2T£"X£ +i ... Xfc <-» X x ... Xt-2TQXe+i ... Xk, 

which gives rise to an exact isomorphism of categories B{k, £; sr) —• B{k, £; e). 

3. If £ < k — 1, S£-i = s,£_1 = 0, and e% — e\ = 1 for some i > £, 
then the same argument with the bijection 2l(fc,£;£) — %{k,£ — l;e) 
%(k,£;e') - f*(k,£- given by 

Xi ... X£-2TEX£+i ... Xk <-> X\ ... X£-2TQX£+\... Xk 

gives the desired. 

4. If £ = and El-1 = E'l-1 = 0, then B(k,£;e) is a direct product 
of the categories of diagrams of the form F(X\ .. .TT) --> F(Xi .. .TE) 
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(two-term exact sequences), where the categories correspond bijectively to all 
elementary arrows Xx ... TT Xx ... TE in 2l(fc, k; s) - »(Ar, k - 1; e). On the 
other hand, B(k,£\ s') is a direct product of copies of A4 which are in one-to-
one correspondence with all words X\ .. .TQ in 2C(fc,fc;£') — 2t(fc, k — l ;^ ' ) . 
The functor B(k,£',£f)->B(kJ;e) takes an object F G B(kJ;e') to G e 
B(k,£; e) defined by the rule : the two-term exact sequence G(Xi . . . TT) 
G(Xi . . . TE) coincides with F(XX ... TQ) ---> F{XX ... TQ). Hence this 
functor is an equivalence • 

A good exercise illustrating Proposition 3.1 is to depict the cubes 
*4(3>3) A3>2) -> A(3,2) an(i compute exphcitly the cubes #(3,3) and #(3,2)-

We notice that, for example, the composite map A(3, 3) —* .4(3,1) does not 
admit a "kernel" category with such properties as those of B(k, £) with respect 
to the map pi : A(k,£) —*A(k,£ — 1). That is why we cannot prove directly, 
with the technique of §1, that the map A(fc, k; A4) —• A(k, 1; A4) is a homotopy 
equivalence and need the filtration {A(k,£; A4)}. 

PROPOSITION 3.2. — For every k and £, with 1 < £ < A;, the cube A(k,£) 
is strictly dominant in the first direction. 

Proof. We have to show that for every e G {0, l } f c _ 1 , the functor 
A(k, £; (1, s)) —• A(k, £; (0, s)) is strictly dominant. We consider the following 
cases. 

1. If £ = 1 and e ^ (0, . . . , 0 ) , then we have a natural bijection 
a(JFE, 1; (0, £)) a(fc, 1; (1, £)), EW <r+ QW. Therefore, the functor 
A(k, 1; (1, e)) —• A(k, 1; (0, s)) is an isomorphism of categories. 

2. If 2 < £ < k and e ^ (0, . . . , 0 ) , then 2t(fc, £ ; (0, £)) is the disjoint 
union of the subcategories &#(&, £\ (0, £)) and 21T(^^; (0, £)), which consist 
of words beginning with E (resp. T). Each of the two subcategories admits an 
isomorphism to &(&, £\ (1, e)) given by £ W QW (resp. TW QW). Thus, 
the functor .4(fc, £; (1, e)) ,A(fc> 4 (°> <0) - ^ ( ^ 4 (0, e)) x >4T(*, (0, e)) is 
of the type of a diagonal functor A —• A x A, which is strictly dominant by 
Proposition 1.11. 

3. If £ = (0, . . . , 0 ) , then for every £ = 1,.....,k the category 2l(fc,^) = 
2i(A;, £\ (0, £)) is the disjoint union of the categories 2li(A;,^), where for i = 
0 ,1 , . . . , fc, we denote by 2lz*(&, ^) the full subcategory of 2t(fc, ^) which consists 
of all words of the form E... EXi+i . . . with X{+i ^ (some of 2U(&? ^) 
consist of one word only). Thus, A(k,£) is a direct product of the correspon­
dent categories Ai(ky£). By virtue of Proposition 1.11, it suffices to show that 
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for each i = 0 ,1 , . . . , fc, the functor A{k, £\ (1, s)) —* Ai(k, £) induced by the 
inclusion 2U(fc, £) —* 2l(&, ^; (1, s)) given by 

T X 2 • • • Xk i-> QX2 ... Xk if i = 0 
EX2...Xk^QX2...Xk , if 1 < i < k, 

is strictly dominant. We claim that, in fact, all those functors are surjective. 
This is equivalent to the fact that given a part of the diagram corresponding to 
2t«(A;, ^ ) , we can expand it to the entire diagram corresponding to 2l(fc, £; (1, e)) 
in such a manner that all exactness conditions hold, i.e., to expand the diagram 
from a branch to the whole tree (cf. picture (3.1)). The last assertion is 
obvious, which completes the proof • . 

PROPOSITION 3.3. — For every k,£, with 2 < £ < fc, the map 
A(k,£;A4)—*A(k,£— 1;A<) is a homotopy equivalence. 

Proof. By virtue of Corollary 1.7, it suffices to show that the maps 
S.A^k^){s1 = 1) -*S . ,A(m - I ) ( 5 I = 1) and S.A(k,£)(£i = 0) —• S.A(k9£-i)(ei = 
0) are homotopy equivalences. We treat the case e± = 1, the case S\ = 0 is 
similar. 

Consider the diagram 
(3.2) 

S-A(kt£)(ei = l,ee = 1) S.-4(fc,*)(£i= 1, El = 0) S-A(ktt)(ei = 1) 

S..4(fĉ _l)(£l = 1,££ = 1) S..4(fc^_l)(£l = 1,££ = 0) S-A(ktt)(ei = 1) 

where horizontal sequences are fibrations by Lemma 4.1 of [G3]. 
By virtue of the additivity theorem (Proposition 1.9) and Proposition 3.1 

a), we have the homotopy equivalences 

S.AtkMe-L = l,et = 1) ~ S.A(k9i-i)(ei = = 1) x S.BfkMex = l,ee = 1). 
S.A(kl£)(ei = !,££ = 0) ~ 5 . A m - I ) ( ^ I = = 0) X S.# ( M )(ei = 1,^ = 0). 

The map of cubes B^k^{e£ = 1) —• B(k,£)(££ = 0) *s an exact equivalence 
by Proposition 3.1 b), hence the map 

S.# ( M )(ei = l,ee = l ) - ^ 5 . B ( M ) ( e i = !,££ = 0) 
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is a homotopy equivalence. Therefore, the diagram (3.2) results with the 
desired homotopy equivalence S.A(k,£)(^i = 1) —* S.A(k,£-i)(£i = 1) • 

We notice that, in general, the cube &(k,£) -s n ° t strictly dominant in the 
first direction. Hence, we cannot use the additivity theorem for C-construction 
in the above proof. 

3.2. The Map Diag A(k, 1; Ai) —• G(k; Ai). — Let £{k) denote the exact 
category of exact sequences in Ai of length k, i.e. those of the form 0 «— 
X0 «- Xi «— <— Xk <— 0, and let Fk : £(k) —>Mk+1 be the arrows 
forgetful functor. We denote by T>n(k) (resp. £n(k)) the n-dimensional cube 
with the category Aik+1 at the vertex (0 , . . . , 0) and £{k) at all other vertices 
(resp. £(k) at all vertices). Its structural functors coincide With Fk and the 
identity functor of £(k) (resp. the identity functor of £(k)). We set 

Dn(k) = CVn(k) En(k) = C£n(k). 

We shall define simplicial maps 

Diag£>n(fc) ->D1(k) and DiagEn(k) ->Ei(k) 

which coincide on vertices with the identity maps Aik+1 —• «MAr+1 and 
£(k) —+ £(k), respectively, where Diag stands for the total diagonal functor. 
In order to do this, we should be given a choice of cokernels for all admissible 
monomorphisms in Ai. 

First we define the maps DiagZ?2(&) —+ Di(k) and DiagE2(k) —• Ei{k) by 
an argument similar to that in sect. 4.2 of [N]. 

A (p,p)-simplex in D2{k) is determined by the data : some objects X{j 
of A4k*~x with 0 < i,j < p; admissible monomorphisms equipped with a 
choice of cokernels, Xijy-+Xijr —»Xijr/j and Xij^-*Xi'j—»Xir/ij for every 
i < i1, j < j ' ; the induced monomorphisms of cokernels with a choice of their 
cokernels Xi>/ij*-+Xi>—»Xif/j and Xijt/j^X^¿1 /j —»Xit/ij>/j, where 
all X with at least one fractional index are actually objects of £(k). 

We take the diagonal objects X 2 , 2 , 0 < i < p, from the above data, and 
for any i < j , we associate with the admissible monomorphism Xi^y-+Xjj its 
cokernel Xjj—^X^jjy^^ in Aik+1 according to the given choice of cokernels 
in Ai. This cokernel stands in the following natural diagram with exact rows 
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and columns 

Xi,j/i Xj,j/i Xj/i,j/i 

Xi,j/i X(j,j)/(i,i) Xj/i,j 

Xj/i,i Xj/i,i 

which is obviously a pull-back. Since all terms except the central one axe 
objects of £{k), we obtain easily that -X"(j,j)/(i,t) can be regarded as an 
object of £{k) in a natural way. Thus, we have associated with an arbi­
trary p-simplex in DiagJC^fc) a p-simplex in D\(k) determined by the data 
(Xu>-+Xjj—*X(jjy(ij)), with 0 < i < j < p. This correspondence is evidently 
compatible with face and degeneracy maps, hence we obtain a simplicial map 
DiagZ>2(^) —* D\(k). The map Diag E2(k) —> E\(k) is defined similarly but 
easier. 

Now suppose that n > 3 and let X denote either Vn(k) or £n(k). For 
£ E {0, l } n " " " 2 we denote by X{e) the two-dimensional face 

* ( e ,0 , l ) 

*(£,0,0) 

* ( e , l , l ) 

*(e,l,0) 

of the cube X. Then for every r i , . . . , rn_2 > 0 and p > 0, we have 

C ri,,,rn_2ppX — Cri ...r„_2 ([Cpp^(^)]e€{0,l}Tl-2 ) 

C r i .„ r n_ a([Cpdiag X(s)]ee{o,i}n-0 = 

= C fr 1...r t l_ 2 P(diag n -. l 5 n X) 
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where [CppX(e)]e^0jlyn-2 and [Cp diag X(e)]e€{0Ayn-2 are the (n - 2)-
dimensional cubes formed by the categories CppX{e) (resp. Cp diag X(e)) with 
the obvious functors, the vertical map is induced by the maps 
CppX(s) —* Cp diag X{e) defined above, and d i ag n _ l n X denotes the (n — 1)-
dimensional subcube of X given by £ n -i = £n- Thus, we obtain a simplicial 
map 

d i aSn-i,n CX -+ Cdiagn_1?n X. 

This enables us to define a map Diag CX —• C Diag X by the induction on di­
mension. Since X = Vn(k) or £n{k), we obtain the maps DiagZ)n(fc) —•Di(fc) 
and DiagSn(fc)-+-Ei(fc). 

Now let consider the cube A(k,i)- The categories A(k, 1; e) can be computed 
easily. 

If e = ( 0 , . . . , 0), then 2(k,1; e) consists of the words EE ...E,E... ET, 
E . . . T 5 , . . . , ETS . . . 5, T5 . . . S; no two of these words axe connected by an 
elementary arrow. Thus A(k, 1) = A(k, 1; (0 , . . . , 0)) = Mh+1. 

Ii e ^ (0, . . . , 0 ) , we let r(e) denote the maximal index i with = 1. 
Then all words in f&(k,l;e) begin with the same word W of length r(e) in 
the letters E and Q accordingly to S{ = 0 or e%\ = 1 for i = 1,. .. , r(s). Those 
words form a "long exact sequence" 0 <— WE... E <— WE... ET «—...«— 
WTS ... S <- WS ... 5 <- 0 of length - r(e) + 1 (if r(e) = fc, then 2(k,1; e) 
consists of a unique word which we regard as an exact sequence of length 1 
with the identity isomorphism). Hence, we have *4(fc, 1; e) = £{k — r(s) + 1). 
In particular, A(k, 1; (1, 0, . . . , 0)) 9* £(fc). 

Thus, we can regard the cube A(k,i) as a subcube of £>*:(&) via the inclusions 
A{k, 1; e) £(k) given for e ^ (0 , . . . , 0) by 

F \—> (0 <— X 0 <— Xi <— • • • <— Xk-r(e)+l < 0 <-- ... <-- 0 <-- 0) 

r(e)-l 

where Xi = i^W;) , and is the unique word in 2l(fc, 1; e) with ce(P^) = i, 
and via the isomorphism A(k, 1) ^ .M** 1 . Hence we obtain the composite 
map DiagA(k,l]M)-+ DiagD k(k)-+ Dx(k) with Z>i(fc) = G(k;M), since 
Di(k) = [£(k)-> Mk+1] (c/. [N], sect. 2.2) ; the same simplicial set was called 
0\SFn, with n = k + 1, in [Gl], sect. 8. 

PROPOSITION 3.4. — The map Diag A(fc, 1; A4) —»G(fc; AI) ¿5 a homotopy 
equivalence. 
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In order to prove the proposition, we construct a section up to homotopy 
for the map in question and show that this section is a homotopy equivalence. 

Let G(k; Ai) denote G(k; Ai) regarded as a fc-fold multisimplicial set, with 
all but the first directions being trivial. We denote by A(k,i) the A;-dimensional 
cube with the functor S{k) —• Ai1**1 at the edge (1 ,0 , . . . , 0) —•((),. . . , 0) and 
the trivial category * at the other vertices, and put A(k,l; Ad) = CA(kyi)> 
Then we have an obvious inclusion G(k; Ai) —+ A(k, 1; Ad). Its image consists 
of the simplices given by those diagrams in which all isomorphisms in the 
directions other than the first are actually identities. One checks that the map 
G(k; Ai) —* A(k, 1; AI) is a homotopy equivalence by the argument similar to 
Corollary (2) of Lemma 1.4.1 in [W2]. 

Further, we have a natural inclusion A(k,1) —• A(k,1) which gives rise 
to the homotopy equivalence A(k, 1; Ai) —» A(k, 1; Ad) by virtue of Corol­
lary 1.8. One checks by definition that the composite map \G(k;Ai)\ = 
\G(k;M)\^\A(k,l;Ai)\->\A(k,l;Ai)\ = \DiagA(k9l;M)\->\G(k;M)\ is 
homotopic to the identity map (notice that the composite map is not equal 
to the identity, since the choice of cokernels in a given simplex of G(k; Ad) 
does not coincide in general with the distinguished choice of cokernels in Ad). 
Hence the proposition is proved. • 

Propositions 3.3 and 3.4 result with a homotopy equivalence 
Diag A(k\ Ad) —• G(k; Ad) which depends up to simplicial homotopy on the 
choice of cokernels in the category Ai. 

§4. The Map Ak : Subk GAi —• A(k; Ai) 

We give a brief account of operations on an exact category Ai and refer to 
[G2], sect. 7, [G3], sect. 2, or [N], §3, for more details. 

We suppose that for every X\,..., Xn G Ai, a tensor product X\ (g)• • • <g)Xn 

is determined in Ad. For any admissible filtration J\Ti>—• • • • >—>Xn, we let an 
exterior product X\ A.. .AXn be determined. We prefer cosymmetric powers to 
symmetric ones and suppose that for every X E Ai and n > 1, a cosymmetric 
power X o o X (n copies) is determined in Ai. In case of modules a 
cosymmetric (=divided) power is nothing but the invariants of symmetric 
group action on the corresponding tensor power. We notice that all the same 
can be done by means of symmetric powers and Schur complexes instead of 
cosymmetric powers and coSchur complexes. 

Besides certain properties of naturality, we assume that the following three 
properties of these operations hold 

(4.1) (i) tensor product is exact in each variable; 
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(ii) the multilinearity property of exterior products, i.e., given an admissible 
nitration U>~* • • • >—• V>—•W/>—>• W>—*X>-+ • • • >—*Y, we have the exact sequence 

0 - » I / A . . . A 7 A ^ ' A X A . . . A y - » I / A - A V A W r A X A . . . A r - » 
—*U A ... A V ® W / W " A JT /W A ... A Y/W' —• 0; 

(iii) given an admissible nitration .X"o>—•-X\>—• • • • >—*Xn, we have the exact 
sequence (coSchur complex) 

0 -> X0 o • • • o X0 -* Xx o • • • o Xx -*(Xi/X0) <g> X2 o • • • o X2 

^(Xx/Xo) A (X2/X0) ®X3o---oX3^ ->(Xx/X0)A • • • A (Xn-x/X0)®Xn 

^(Xx/Xo) A • • • A (Xn/X0) — 0 

where all terms contain n factors. 
We suppose that for any admissible monomorphism X>->Y, a cokernel 

Y—*Y/X is chosen in the category A4. 
We recall that given a simplicial set X , its fc-fold subdivision Sub& X is a 

fc-fold multisimplicial set with 

(Sub* X)[PU ..., Pk] = X[P t . . . Pk] for every F b . . , P f c G A , 

where Pi . . . P^ is the concatenation of finite totally ordered sets, i.e. the 
disjoint union with each element of Pz- declared to be less than each element 
of Pj if i < j (c/. [G2], sect. 4). There is a natural homeomorphism of geometric 
realizations |SubfcX| = |X| . 

We want to define a map A k : Sub*. GAi —• A(k; Ai). Suppose we 
are given a simplex x G (Sub*. G M ) [Pi,. ..,Pk] = G M [Pi ...Pk] = 
Exact([Ar(Pi . . . P k)-^Ar(BP 1 . . . P k)], [M ^ Ai x AI]), cf. §1. Then we 
have to define its image A k x in A{k\ Af )[Pi,. . . , Pk] = CA(k)[Pi> • • • ? -Pa?] = 
Exact(r(Pi,. . . , Pa,), *4(a?)) (c/. §1), i.e., for every e G {0, l } h we have to define 
an exact functor 

(A*s)(e) : T(Px,..., Ffc; e) - ^(fc, e) 

and those functors with different e should be compatible. 
Recall that A(k;e) = Exact(2l(fc; e), Ai). Thus, given a collection 

(i i / j ' i , . . . Jk/jk) G T(Pi, . . . ,P f c;e) and a word W G f&(k;e), we have to 
define an object of Ai 

(4.2) (Akx)(e)(ix/jx,-..,ik/jk)(W) 
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and check the exactness condition in each im/jm and in W. We define the 
required object by the following procedure. 

Let W = X1...Xk and {m < . . . < nr} = {n\Xn £ {T,<2}}. We 
divide the word W into the parts W = W0Wi .. . Wr, where W0 = E.. .E, 
Wt = XntE...E if 1 < * < r - 1, and Wr is equal to X n r .J5. . . E or to 
XUrS ... S. The number of or S in each part may be equal to zero. Consider 
the intervals of the natural series /0 = (1, 1̂ — 1), I\ = (^1, 2̂ — 1 ) , . . . , i"r = 
(rar, A;) which correspond to the distribution of indices between the words 
W o , . . . , W r ; notice that /0 = 0 if rii = 1. We subdivide each of It, 
0 < t < r, into subintervals It,o It,1,....,It,s(t) according to the rule : let 
{nM < . . . < nM(t)} = {n e It I jn 7̂  B) and ^,0 = (rit,rit,i --1), It,1 = 
(™*,i>n*,2-l), .. - ,It,s(t) = ( n t , s ( t ) , n < + i - l ) where we set n0 = 1, n r + i = + 
and (nt,s(t),n<+i = n*+i. Notice that 7̂ ,0 is empty if nt,i = n ,̂ and it is the case 
if Xnt = Q. 

We now associate an object Mx(ItiP) of with each nonempty interval 
J^p, with 0 < £ < r, 0 < p < according to the rule : 

Mx(I0,o) = pr1x(z'i/jB) A . .. A p r ^ ^ t l - i / B ) if n0,i > 1 

We use prx and pr2 to denote the projections A4 x A4 —• A4 and write simply 
x(i/j) instead of p?\x(i/j) = p?2x(i/j) if j ^ B. Notice that j n = B for 
n e /0,0; 

Mœ(7 0,p) = x(inop/jnop) Л x(ino p+1/jnop) A...Ax(ino p+1/jnop) 

if 1 < p < ^(O). We have j n o , P 7̂  B by definition; 
Mx(Ii9o) = PT2x(inJB)A. . .Apr 2 x(z n t A - \ /B) if 1 < * < r -1 and n M > n t. 

In this case j n = J3 for each n G i*,o ; 

Mx(It,p) = x(intp/jntp) Л ж ( г п , р + 1 / . ? ' П 1 , р ) Л • •• Ax(intiP+1-i/jntlP) 

i f l < t < r - l and 1 < p < ; 
if = XUrE.. . i£ then M x ( / r ? 0 ) , M x ( / r ,p) are defined according to the 

same rule as M x ( /^o) , Ma.(JtjP) with 1 < £ < r — 1; 
suppose Vrr = XnrS ... S and consider the subcases : 
if j n B for some n > n r , then we associate the distinguished zero object 

* with entire interval Ir; 
if j n = B for every n , with nr < n < k, then Ir,o = Ir and we put 

Mx(Ir) = pv2x{inr/B) o • • • o px2x(inr/B) (k - nr + 1 copies) ; 

366 



COMPARISON THEOREM FOR ÔPERATIONS 

if jUr B and jn = B for n > nr, then 7r,o = 0, ir,i = -fr? and we put 

M*(J r) = pr2:z(in /P) o - • • o pr2x(inr/B) 
P*2xUnr/B) o • • • o PT2x(jnr/B) 

(k — nr + 1 copies) 

accordingly to the given choice of cokernels in Ai. 
We now define the object (4.2) to be equal to the tensor product of all 

Mx(Ii^p) written in the natural order. In the case Mx(Ir) = * we assume that 
the tensor product is also equal to *. 

We check the exactness in W. Given a tuple 
(ii/ji,...,ik/jk) e r(Pi , . . . ,P f c ;e) and a long exact sequence 

0 -+ WS ... S -» W'TS ... S • W'E ...ET-* WE ...E-+0 

in a(fc;e) with W = Xx . ..Xm, Xm 6 {T,<2} (c/. (2.8)), we have to show 
that the corresponding objects in Ai form an exact sequence. We consider the 
following cases. 

1. If JM 7̂  B and JN = B for every n > m, then we obtain the sequence 

0-»M(g PT2x(Im/B) o • - • o PT2x(im/B] 
V^2x\3m/B) o • • • o p r 2 x( j m /P ) 

—• M <g> xÇim/jm) (g) pr 20r(im +i/P) O • • • O pr 2 x(z m + l /P) —> 
-> Af <g> XIIM/JM) A X{IM+1/JM) <g> PV2x{IM+2/B) O • • • O p r 2 x ( z m + 2 / P ) -

• Af <g> Xiim/jm) A • • • A Xiik-l/jm) ® PT2xiik/B) —J 
M ® Xiim/jm) A • • • A X{ik/jm) —• 0, 

where Af is the tensor product corresponding to W . In view of (4.1) (i), its 
exactness is equivalent to (4.1) (iii) for the filtration 

P^2xUrn/B)>^PT2x(im/B)y-^PT2x(im+l/B)^ • • • ^PT2xiik/B) 

2. If j n = P for every n > m, then the corresponding sequence is exact by 
virtue of (4.1) (iii) for the filtration 

0>->pr 2o:(im/P)>->pr 2x(im +i/P)>^ - - - >->pr2xiik/B). 

3. Let max{*|j4 ^ B} — n > m. Then the first (n — m) terms in the 
sequence are equal to * and the rest are equal to those corresponding to the 
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sequence of words 
0 -> W"S ...S-> W"TS... S • W'-E ...ET-+ W"E...E -> 0, where 
VF" = W^'E... £ T is a word of length n. Hence we are reduced to the case 1. 

Using the multilinearity property (4.1) (ii), we check immediately the 
exactness of (4.2) in each i m / j m , 1 < m < fc, as well as the compatibility 
of (Ahx)(£) with different e. Thus, we have defined the map 

(4.3) Ak : Sub* GM A(k; Ai). 

Composing it with the map A(k; Ai) —> G^A4 (cf. §2), we obtain the map 
Ak of Grayson. In order to prove this, it suffices to check that HW E C5(fc; s), 
i.e., W does not contain 5, then the definition of the object (4.2) is equivalent 
to that from [G2, sect. 7]. The verification is trivial. 

We claim further that the composition of the total diagonal of the map 
(4.3) with the map Diag A(k; Ai) —» G(k; Ad) defined in §3 is nothing but the 
map Ak : DiagSub^ GA4 —+ G(k; Ai) constructed in [N]. Notice that the two 
maps under comparison are defined up to a choice of cokernels of admissible 
monomorphisms in Ai. It suffices to check coincidence of the two maps on 
vertices. For given a simplex of high dimension in the domain, its image 
under each of the maps is given by a certain diagram in which all arrows are 
uniquely determined by those in the given simplex according to the naturality 
properties of the operations, and by a given choice of cokernels in Ai. 

One checks by the construction of the map Diag A(k; AA) —> G(k; Ai) (cf. 
§3) that it takes a vertex x G DiagA(k;Ai)[0] = A(k) to the collec­
tion (x(E ... E), x(E ... ET),x(E... ETS),..., x(ETS . . . 5) , x{TS ... S)) G 
G(k; M)[0]. Given a vertex y G (Subfc GM)[0,. . . , 0] = GAi[k - 1], we obtain 
under the map (4.3) a vertex x in A(k; Ai) such that 

x(E...E)= priy(0/£0 A pr iy(l/B) A ... A priy((fc - I)/B) 
x(E... ET) = prx y(0/B) A ... A pr1 y((k — 2)/B) ® pr2 y((k - 1)/B) 
x(E... ETS) = PTiV(0/B) A ... A priy((fc - 3)/B) 0 pr2y((fc - 2)/B) o Vx2y((k - 2)/B) 

x(ETS ...S) = priy)(p/B) ® pr2y(l/B) o - - o pr2y(l/B) 
x(TS .. . 5) = pr2y(0/B) o • • - o pr2y(0/B) 

which coincides with the definition of the map Ah in [N], sect. 4.1. This 
completes the proof of the Main Theorem. 
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