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Exposé V 

SEMI-STABLE REDUCTION A N D CRYSTALLINE 

COHOMOLOGY WITH LOGARITHMIC POLES 

by Osamu Hyodo and Kazuya Kato 

Introduction 

The results of this paper were obtained by the collaboration with J.-

M. Fontaine and L. Illusie. 

We say a scheme X over a discrete valuation ring A is with semi-

stable reduction if etale locally on X , there is a smooth morphism X —> 

Spec(A[Ti,... ,T r]/(Ti • • -Tr — 7r) for some r > 0, where TT is a uniformizing 

parameter. This condition is equivalent to the condition that X is regular, the 

generic fiber of X is smooth, and the closed fiber of X is a reduced divisor 

with normal crossings on X . 

Let A be a complete discrete valuation ring with field of fractions K and 

with residue field k such that char (A') = 0, char(fc) = p > 0, and k is perfect, 

and let KQ be the field of fractions of the ring W = W(k) of Witt vectors. Let 

X be a proper scheme over A with semi-stable reduction, and let Y = X ® A & -

Then, the crystalline cohomology group H™ys(Y/W) ®w Ko (m £ Z) is not 

a "good cohomology" when Y is singular. However U. Jannsen conjectured 

in [J] that there is a "new crystalline cohomology group" D , which is a finite 

dimensional A'0-vector space endowed with 

- a bijective frobenius-linear operator (p : D —» D called the frobe-

nius, 

- a nilpotent operator M : D —• D called the monodromy operator, 

satisfying J\f(p = p(pAf, 

S. M. F. 
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- a K-isomorphism with the de Rham cohomology 

p : D ®Ka K HBR(XK/K) (Xk = X®a K). 

This space D is a mixed characteristic analogue of the limit Hodge 
structure [S]. 

The triple (D, AT) is constructed in Hyodo [H2] by using some de Rham-
Witt complex with logarithmic poles. In this paper, we give another construc
tion of (D,(p,J\f) using the crystalline cohomology theory with logarithmic 
poles and give the isomorphism p. The 4-ple (JD, <p,Af, p) has the following 
further properties. 

- (D,(p,J\f) depends only on the scheme X (gu A/m2

A over A/m2

A 

where denotes the maximal ideal of A (cf. (1.7)). 

- The isomorphism p depends on a choice of a prime element TT of A. 
If we indicate the choice of 7r as p^, we have 

PTTU = Pn o exp(log(u)A/") 

for u G Ax, where we denote the if-linear operator on D ®/̂ 0 K induced b> 
J\f by the same letter J\f. The K-linear operator pnoAfop~x on H Q R ( X K / K ] 

is independent of the choice of 7r (cf. Thm. 5.1)). 

- As is shown in [H2], the triple (D,(p,AT) is ®wKo of a triple 
( H , <p,N) with H a canonically defined (A;)-module of finite type. L. Illusie 
has proposed a method to show that the operator J\f : H —> H is already 
nilpotent before ®wKo- This has been carried out by A. Mokrane, see [M]. 

The theory of crystalline cohomology with logarithmic poles used in this 
paper is based on the theory of "logarithmic structures" of Fontaine-Illusie 
reported in [Kl] (cf. §2 for a summary of this theory). In fact, by using 
this theory of logarithmic structures, we construct (D,(p,Af, p) in this paper 
not only for X as above, but also for a scheme over A with a "smooth 
logarithmic structure whose reduction is of Cartier type" (for example, a 
product of schemes with semi-stable reduction is such a scheme). We give 
also the detailed study of the de Rham-Witt complexes with logarithmic 
poles associated to such general situation (§4). 
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In [J], Jannsen presented a conjecture on the relation between the 4-ple 
(D,(p,Af,p) and the p-adic etale cohomology H™(X ®A if,Qp), which was 
formulated in a more precise form and proved in the case of abelian variety 
by Fontaine [Fol]. We discuss this conjecture in another paper [K2]. 

The subject of this paper is studied independently by Faltings [Fa] § 4, and 
a different formulation of logarithmic structure is given in [Fa] §2. The triple 
(D,(p,J\f) is obtained also from his theory. The study of the de Rham-Witt 
complex of this paper is not contained in [Fa]. 

A different approach to this subject using syntomic sheaves is given in 
[Fo2]. The authors heard that P. Deligne considered a mixed characteristic 
analogue of the limit Hodge structure in rather old days (unpublished). Some 
related topics are discussed in [112], [113], [114]. 

The authors thank especially Professors J.-M. Fontaine and L. Illusie for 
their collaboration, stimulating discussions and suggestions. Professor Illusie 
made many improvements of the manuscript. They also thank Professors 
P. Berthelot, B. Mazur and M. Raynaud for their help. They thank Université 
de Paris-Sud for its support and its hospitality. 

1. — A fast construction of (D,<p,J\f) 
Before we start the use of the crystalline cohomology theory with logarith

mic poles, we remark in this section that it is possible to construct (D,(p,J\f) 
in the semi-stable reduction case without using such theory, but using only 
the classical theory of the de Rham-Witt complexes. The proofs of some state
ments are not given in this section. However proofs using the theory of log 
structures are given in later sections for generalized versions of the statements. 
Proofs without using the theory of log structures exist, but we do not discuss 
them. 

In this section, let A be a discrete valuation ring with field of fractions K 
and with residue field k, and assume that A: is a perfect field of characteristic 
p > 0. Let X be a scheme over A with semi-stable reduction, and let 
Y = X®Ak. 

All sheaves considered in this section are those on small etale sites. 

(1.1). — We define a complex Wnu'Y on Yet as follows. This complex is 
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nothing but the de Rham-Witt complex in [H2], but the construction here is 

different and more elementary. Though this complex in fact depends in general 

on the scheme X ®A A/m2

A over A/m2

A, not only on Y, we use the notation 

Wnujy for simplicity. 

Take a dense open subscheme U of Y which is smooth over k, and let 

u : U —• Y be the inclusion map. We define Wnu;Y as a subcomplex of 

u*WnSl\j where WnVt\j is the usual de Rham-Witt complex ([111]) of U. Let 

Y - U X J- XK 

be the inclusion maps. Then i-\OX) - R'MO^) is injective and the 

restriction of i~1j*(Ox )/R'MO^) to U is isomorphic to the constant sheaf 

K*/Ax. From this we see that there exists a unique homomorphism 

dlog : i~1j*(Ox ) —• u*WnÛ\j 

which induces on u-H-'(Ox) the composite map 

D L O G 

u-LR\O*X) — O* — • WNNH 

and induces the zero map on Kx . Define Wncj'Y to be the iy n(CV)-subalgebra 

of u+WRSL'u generated by dWn{Oy) and d l o g ^ " 1 j+{0$K)). Then WnuY 

becomes a subcomplex of u*WnSl)j. As it is easily seen, WnuY is independent 

of the choice of U. 

(1.2). — One can check the following facts easily. The operators 

induce 
F : Wn+1u,Y — Wnu>Y ,F : Wn+1u,Y , 

F : Wn+1u,Y — Wnu>Y , 

V : u.WnQ
q

v —Wnu>Y ,Wnu>Y , 

F : Wn+1u,Y — Wnu>Y ,F : Wn+1u,Y 

respectively, satisfying IV=p,VF = p, dF = pFd, vD = pdV, FdV = d 
The absolute frobenius of Y induces an endomorphism of the differential 

algebra 

(p : Wnu'Y —> WnLJY 

which induces pqF on WnuJY. 
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(1.3). — Now fix m E Z and let 

Dn = Hrn(Y,WnujY), DOQ = Y}mHrn(Y,Wnüüy), D = D00®w K0 . 

If Y is proper over k, it can be shown that each Dn is a Wn(k)-modnle of finite 

length and is a finitely generated W(A;)-module (cf. ( 3 .2 ) ) . The frobenius 

if on Wnujy (1 .2 ) induces Dn —• Dn, —• £>oo and D —> D, which we denote 

also by (p. The map (p \ D ^ D is bijective as is seen from the existence of the 

endomorphism of complexes g = (pr~qV : Wnujy —• W^ n ^y)gGZ for r bigger 

than the dimension of Y which satisfies (pg = g(p = p r + 1 . 

(1.4). — To obtain the monodromy operator J\f, we define a complex Wnuj'Y 

on Y (which also depends on X (&A A/m1^. ^ • ^ —̂  ^ be as in (1 .2) , 

and consider the graded differential algebra 

A = u*(Wnnu)[8]/(62) 

where 6 is an indeterminate in degree one satisfying 

6a = {-l)qa6 (a G W n f î£) , d9 = 0. 

We are going to define Wnuj'Y to be a ì/Fn(CV)-subalgebra of A'. Let 

dlos:i-1j,(0$K)-+A1 

be the unique homomorphism which induces on dlos:i-1j,(0$K) the composite 

map 

dlos:i-1j,(0$K)(a G Wnfî£),dg 

and induces on Kx the map a —• ordA-(a)# (here ord^- is the normalized 

additive discrete valuation of K). We define Wnuj'y to be the Wn(Oy)-

subalgebra of A' generated by dWn(Oy) and the image of dlog. Then Wnuiy 

becomes a subcomplex of A\ and is independent of the choice of U. 

PROPOSITION (1 .5 ) . — The sequence 

0 —> Wnu'y[-1] —+ Wnuy —> Wnujy —> 0 

a —>a0, 6 —• 0 
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is exact. 

This will be proven in (4.20). 

(1.6). — Define N= Dn Dn as the connecting homomorphism of the 
exact sequence (1.5). The commutative diagram of exact sequences 

0 —> Wnu'Y[-l] —> WnZ'y —+ Wnu'y — 0 

y y y 

0 —> Wnu)'Y[-\] — • Wr&y —> WnujY —> 0 

where the middle ip is induced from the ring homomorphism A' —• A' which 
extends (p of u^WnQ'u by 6 \—> p6, proves Aftp = ptpAf. If Y is proper over k, 
this equation and the bijectivity of (p show that J\f : D —• D is nilpotent. 

(1.7). — One can check that the complexes Wncjy and Wnu)'Y depend only 
on the scheme X®AA/m2

A over A/m2

A, and hence (Dn,(p,Af) (n > 1) depends 
only on X ®A A/m2

A over A/m2

A. This last fact can also be seen, by using 
the theory of log structures, from the fact that (Dn,(p,Af) is determined by 
certain log structures on Y and on Spec(fc) (cf. §3) which depend only on the 
scheme X ®A A/m2

A over A/m2

A. 

2. — Crystalline cohomology with logarithmic poles 
In this section, we give a summary of the paper [Kl] on the logarithmic 

structures of Fontaine-Illusie, and add a logarithmic version (2.24) of a result 
[B02] (1.6) of Berthelot-Ogus. 

In this section, monoids are assumed to be commutative and have a unit 
element, and homomorphisms of monoids are assumed to preserve the unit 
elements. For a monoid P , let P9P be the associated commutative group 
{ab~l',a,b G P } . We call a monoid integral if P —* Pgp is injective (i.e. if 
«ab = ac=>b = c" holds). 

(2.1). — For a scheme X, a pre-logarithmic structure on X is a sheaf of 
monoids M on the etale site Xet, endowed with a homomorphism a : M —y Ox 
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with respect to the multiplicative law on Ox- A pre-logaxithmic structure is 

called a logarithmic structure (or a log structure) if 

(a G Wnfî£),(a G Wnfî£), 

For example, the sheaf M = 0\ with the inclusion map 0\ —• Ox is a log 

structure which we call the trivial log structure. If M is a log structure, we 

identify Ox with the subsheaf a~l{Ox) of M via a. 

A morphism between schemes with log structures is defined in the evident 

way. 

(2.2). — For a pre-log structure M on I , the log structure Ma on X 

associated to M is defined as the push out of 0\ <— a~l(0^) —• M in the 

category of sheaves of monoids. That is, 

Ma = (0% 0 M)/ ~ 

where ~ is the equivalent relation 

(u,a) ~ (v,b) there exist (locally) c, d G cx l{O^A such that 

a(c)u = a(d)v and ad = be 

(the map Ma —» Ox is the sum of M —• Ox and the inclusion map 

Ox —> Ox). The natural morphism M —• M° is universal among morphisms 

from M to log structures on X. 

(2.3). — For a morphism of schemes f : X —>Y and a log structure M on Y, 

the inverse image f*M of M is defined to be the log structure on X associated 

to the pre-log structure / "^ (M) (endowed with f~x{M) -+ f~~l{0Y) -> OX). 

(2.4). — The category of schemes with log structures has finite inverse limits. 

For a finite inverse system (X\,M\)\, its inverse limit (X,M) is described 

as follows. The scheme X is the inverse limit of the inverse system (X\)\. If 

PA • X —• X\ denote the projections and M' denotes the inductive limit of 

the system (p^1(M\))\ in the category of sheaves of monoids on Xet, M is 

the log structure associated to the pre-log structure M'. 
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(2.5). — For a morphism of schemes with log structures / : (X,M) —> 

(Y, iV), we define an Ox-module C J ^ X M)/(YN)>
 w hich is called the sheaf of 

differential forms with logarithmic poles relative to f and is often denoted 

simply as ^ X / Y , to be the quotient of $l^/y0(Ox®z^^ p ) divided by the Ox~ 

submodule generated by local sections of the forms (da(a), 0) — (0,a(a) ® a) 

(a e M) and (0,1®a) (a G f~L(N)). The class of (0,1®a) (a G M) i n a ^ / y is 

denoted by dlog(a). Define (^x/y = ^X/Y f ° r 9 ^ ^- Then with the map 

^ : ^ x / y UXIY d(adlog(bi) A - • • Adlog(6 g)) = da Adlog(bi) A • • -dlog(bg) 

(a G € Ox, b1.....bq EM), (u'x/Y,d) becomes a complex. 

(2.6). — We say a log structure M on a scheme X is fine if etale locally 

on X, there is a finitely generated integral monoid P and a homorphism 

h : Px —-> Ox where Px denotes the constant sheaf defined by P , such 

that M is isomorphic to the log structure associated to the pre-log structure 

(Px,<x). 

A standard example of a fine log structure is the following. Let X be a 

regular scheme and D a reduced divisor with normal crossings on X. Let 

(a G Wnfî£),(a G Wn (j:U = X-D^X) 

with the inclusion map a : M —» Ox • Then M is a fine log structure which is 

associated etale locally to 

N x —> °x : {mi)\<i<r 
II rm

i 

г 

where 7r2- G O x define regular subschemes of X whose union is D. The reason 
why we work with the etale topology in the theory of log structures is that 
the definition of "normal crossing" is etale local. 

(2.7). — For a morphism / : (X, M) —• (Y, N) between schemes with fine log 

structures, a chart of / is a system [Px -L* M, Qy -UN,Q-!UP) where P 

and Q are finitely generated integral monoids and s,t,h are homomorphisms 
satisfying the following conditions : s and t induce isomorphisms (Px)a —+ M 
and (Qy)a AT, respectively (here P x is regarded as a pre-log structure 
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via Px —M —• Ox, and Qy similarly), and (/, h) commutes with (s, t) in 
the evident sense. A chart of / exists etale locally. 

In the following (2.8)-(2.12), let / : (X,M) (Y,JV) be a morphism 
of schemes with fine log structures. We give definitions of several types of 
morphisms (cf. [Kl] §3 and §4). 

(2.8). — We say / is a closed immersion (resp. an exact closed immersion) 
if the underlying morphism / : X —» Y is a closed immersion and the map 
f*N —> M is surjective (resp. bijective). 

(2.9). — It can be proven that the following two conditions (i) and (ii) (resp. 
(i)' and (ii)') are equivalent. We say / is smooth (resp. etale) if the equivalent 
conditions (i) and (ii) (resp. (i)' and (ii)') are satisfied. 

(i) (resp. (i)')- The underlying morphism X —• Y is locally of finite 
presentation, and for any commutative diagram of schemes with fine log 
structures of the form 

(T',L') - i + (X,M) 

(T,L) —> (Y,N) 

where i is an exact closed immersion such that the ideal of T' in T is 
nilpotent, there exists etale locally on T a morphism (resp. there exists a 
unique morphism) g : (T, L) —» (X, M) such that gi = s and fg — t. 

(ii) (resp. (ii)'). Etale locally on X and on Y, there exists a chart 

(Px —> M, Qy —• AT, Q A P) of / such that the kernel and the torsion part of 
the cokernel (resp. the kernel and the cokernel) of the induced homomorphism 
h9P : Q9P —> P9P are finite groups whose orders are invertible on X, and such 
that the induced map X —• Y x S p e c( 2[g])Spec(Z[P]) is etale in the usual sense. 

We have : 

(2.9.1). — If / is smooth, the (9x -module u^/y l s locally free of finite type 
for any q. 
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(2.9.2). — If X is locally of finite type over Y, there exists etale locally 

on X a factorization (X,M) (Z,L) JU (Y,N) with L fine, i a closed 
immersion and g smooth. This follows from the existence of local charts of / 
[Kl, 2.9 (2)] ( 1 ) 

(2.9.3). — If / is a closed immersion, there exists etale locally on X a 

factorization (X,M) -U (Z,L) (Y,JV) with L fine, i an exact closed 
immersion and g etale [Kl, 4.10]. 

(2.10). — It can be proved that the following conditions (i) and (ii) are 
equivalent. We say / is integral if there equivalent conditions are satisfied. 

^ By [Kl, 2.9 (2)] we may assume X and Y are affine and we have a global 
chart of / : Spec(A) -> Spec(B) given by (P -> A, Q -+ B, u : Q P) . 

We thus have a factorization (X,M) ^ (X1,L)—>(Y,iV) where X x = 
^ xSpec(Z[Q])Spec(Z[P]) and L\ is the log structure associated to P —* Z[P] —> 
P x = A ®z[Q] ^[P]. Moreover, M = i*1L1 Now, choose a surjective map 
v : N r —• P , and consider the factorization of n given by Q —• Q © N r —» P 
where the first map sends a to (a, 0) and the second one (a, 6) to u(a) + v(b). 
Taking the pull-back by Y ^ Spec(Z[Q] of Spec(Z[P]) -> Spec(Z[Q©N r]) -+ 

Spec(Z[P]), we get a factorization (Xi,Li) (X2,L2) —• (Y,N) where i2 

is a closed immersion and (X2,L2) —> (Y, iV) is smooth. Here X 2 = Spec(P 2), 
with B2 — A ®z[Q] Z[Q © N r ] . Finally, choose a surjective map of B\-
algebras B\\t\,..., tn] —• B and endow Z\ = Spec(Pi[£i, . . . , tn]) (resp. 
Z2 = Spec(P 2[^i, • • • ?*n])) w ^ h the inverse image log structure of X\ (resp. 
X2). We thus get a factorization (X,M) (Zi ,Mi) (Z2,M2) -> (V,iV) 
where (X,M) —> (Z 2 ,M 2 ) is a closed immersion and ( Z 2 , M 2 ) —• (Y,iV) is 
smooth, as desired. 
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(i) For any scheme Y' with a fine log structure N' and for any mor
phism (X',N') - (Y,N), the log structure of the fiber product 

(X,M x (Y,N) (Y',N') is fine. 

(ii) Etale locally on X and on Y, there exists a chart (Px ^M,QY^ 

N,Q±P) of / such that the ring homomorphism AQ) - Z[P] 
induced by 

h is flat. 
We have (cf. [Kl] §4) : 

(2.10.1). — The morphism / is integral if f*N M or if Ny/O^-

generated by one element for any y G Y (( )y denotes the stalk at a geometric 
point dominating y). 

(2.10.2). — If / is smooth and integral, the underlying morphism X —• Y 
is flat. 

(2.11). — We say / is exact if the diagram 

/-i(AT) —-> M 

f-i(N)°P — • Mgp 

is cartesian (then a closed immersion (2.7) is exact if and only if it is an exact 
closed immersion in the sense of (2.7)). 

(2.12). — For a prime number p and a scheme S over Fp with a fine log. str. 
L, the absolute frobenius F^S,L) : (5, L) —> (5, L) is defined to be the pair of the 
absolute frobenius Fs : S —• 5 and the p-th power map FgX(L) = L L 
where we used the natural isomorphism F^1^) = T of any sheaf T on Sef. 
In the case X and Y are schemes over F p , we say / is of Cartier type if / 
is integral and the morphism g in the following commutative diagram with a 
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cartesian square is exact. 

(2.12.1) 

F(X,M) 

(X,M) (X',M') (X,M) 

(Y,N) 
Y,N) 

(Y,N) 

If / is smooth and of Cartier type, we have a Cartier isomorphism 

(2.12.2) C-1: wq

x'/Y —> Hq (wx/Y) (gel) 

characterized by 

C- 1(adlog(/z*(6 1)) A • • • A d\og(h*(bq))) = ^*(a)dlog(b1) A • • • A dlog(6 9) 

(a G O * , . . . , G M ) . 

(2.13). — We give remarks on smooth morphisms and morphisms of Cartier 
type. 

(2.13.1). — Let A be a discrete valuation ring. Then, we call the log 
structure on Spec( A) corresponding to the closed point (regarded as a reduced 
divisor with normal crossings) in the sense of (2.6) the canonical log structure 
of Spec(A). If A' is a discrete valuation ring which is finite over A and N', Nf 

denote the canonical log structures on Spec(A) and Spec(A'), respectively, 
the following three conditions on / : (Spec(A'),N') —> (Spec(A),A r) are 
equivalent, (i) / is etale. (ii) / is smooth, (iii) A' is tamely ramified over A. 

(2.13.2). — Let A be as in (2.13.1) and X be a scheme over A with semi-
stable reduction. Let Y — X ®A k where k is the residue field of A, let 
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M be the log structure on X corresponding to Y (regarded as a divisor 
with normal crossings on X), and let N be the canonical log structure 
on Spec(A). Then, the morphism (X, M) —» (Spec(A),iV) is smooth (and 
it is integral by (2.10.1)). If k is of positive characteristic, the morphism 
(Y, M) —» (Spec(fc), iV), where M and AT denote the inverse images of M and 
iV, respectively, is smooth of Cartier type. 

(2.13.3). — Let be a field and j : U ^ I be a toroidal embedding 
of a smooth fc-variety U into a normal fc-variety X. Then if M denotes the 
log structure Ox H * j P x

u , ( X , M) is smooth over Spec(fc) where Spec(&) is 
endowed with the trivial log structure (2.1). The equivalence between (2.9) (i) 
and (2.9) (ii) in the case Y = Spec(fc) and N is the trivial log structure says 
that the notion of toroidal embeddings over k is essentially equivalent to the 
notion of a scheme with a fine log structure which is smooth over Spec(fc). 

(2.13.4). — Smooth integral morphisms are stable under base changes, 
compositions, and under taking fiber products. The same is true for smooth 
morphisms of Cartier type in characteristic p > 0. For example, for X and 
A as in (2.13.2) with Y singular and for a discrete valuation ring A' which 

def 

is finite with ramification index > 1 over A, X' = X <S>A A' is not regular. 
However from the view point of log structures, X' is not so ugly : with the 
log structure M' as the fiber product, (X' ,M') is smooth over (Spec(yl /), N') 
with Nf the canonical log structure on Spec(A'). 
(2.14). — The theory of crystalline cohomology is generalized to schemes 
with fine log structures as follows. As a base, we take a 4-ple (5, L, J, 7) 
where 5 is a scheme such that Os is killed by a non-zero integer, L is a fine 
log structure on 5, J is a quasi-coherent ideal on 5, and 7 is a PD (= divided 
power) structure on i". Let (AT, M) be a scheme with fine log structure over 
(5, L) such that 7 extends to X. We keep these notations in (2.15)—(2.17) and 
in (2.19)-(2.22). 

(2.15). — We define the crystalline site ((X, M) / (5 , L, 7 , 7 ) ) c r y 5 (which 
we abbreviate as ((X,M)/(S,L))cry8 or as (X/S)^r

g

ys) as follows. An object 
is a 5-ple (/7, T, Mj,z,^) where U is an etale scheme over X, (T, Mr) is a 
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scheme with a fine log structure over (S, L), i is an exact closed immersion 

(U, M\u) —• (T, Mr) over (.S, L), and <5 is a PD-structure on the ideal of Î7 

in T which is compatible with 7. Morphisms are defined in the evident way. 

A family of morphisms 

gx : (Ux,Tx,MTx,ix,8x) —> (U,T,MT,i,8) 

is a covering if the morphisms of schemes g\ : T\ —> T are etale and form a 

covering for the etale topology, and U\ ~T\ XTU for all A. 

The structure sheaf Ox/s of (X/S)l^ys is defined by 

Oxls(U,T,MT,i,ô) = T(T,0T). 

(2.16)- — Let i : (X,M) —• (X' ,M') be a closed immersion over (5 ,L) 

with M' fine. Then, the PD-envelope (D ,MD) of (X,M) in (X ' ,M' ) is 

defined having the following characterization. Etale locally on I , i factors 

as (X,M) - U (X",M") (X' ,M') with M " fine, t' an exact closed 

immersion and g etale, and D is the usual PD-envelope of X in X " with 

the inverse image M D of M ' . This ( D , M D ) has the desired universality as 

in the classical case. If i is an exact closed immersion, then D is the usual 

PD-envelope of X in X ' and Mp is the inverse image of M' . 

For example, let X = Spec(fc[t]) with k a field and t an indeterminate, 

and let M be the log structure on X associated to the divisor H = 0". 

Let (X ' ,M' ) =f (X,M) xSpec(fc) (X,M) where Spec(fc) is endowed with the 

trivial log structure (2.1) and let i : (X,M) —• (X ' ,M' ) be the diagonal 

morphism. Then, X ' = Spec(k[ti,t2]), M' is the log structure corresponding 

to the divisor Hi = 0" U H2 = 0", i is a closed immersion but not exact. As 

(X", M"), we can take X " = Spec(fc[£i, £2,MJ1, ^ ^ 2 ] ) with the log structure 

M " corresponding to the divisor Hi = 0" (= H2 = 0)". Hence the P D -

envelope of (X,M) in (X ' ,M') is Spec(fc[£i] < v >) where v = M J 1 - 1 

regarded as an indeterminate endowed with the log structure associated to 

N —» ¿[¿1] < v > ; 1 —> ¿1. (< > means the PD-polynomial ring.) 

(2.17). — The theory of crystals is generalized to schemes with fine log 

structures as follows. A sheaf of (9x/£-niodules T on (X/S)l°fys is called a 
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crystal if the map 

Or* ®OT FT —• ? 

is an isomorphism for any morphism T' —• T in (v;°g - nj where F 

and TT> denote the sheaves on TET and TET induced by T, respectively. If 

( x , M ) - U ( z , i V ) is a closed immersion over (5, L) with N fine and (Z,N) 

smooth over (o, L), the following two categories (a) (b) are equivalent. Let 

(D,MD) be the PD-envelope (2.16) of (X,M) in (Z, N). 

(a) The category of crystals on (v;°g - nj 

(b) The category of Op-modules K on DEI = X E T endowed with 

V : K —• K®Qz u l

z / s 

satisfying the following conditions (i)-(iii). 

(i) V is additive and 

V(ara) = aV(ra) + m ® da (a G OD , m G /C). 

(ii) The composite 

V(m) ACÜ + m ® dcj .—V(m ® u;) 

is zero where we extend V to 

K ®0z uq

z/s K ®oz uq+\ ; V(m ® u;) = V(m) ACÜ + m ® dcj . 

(iii) If x G D and y denotes the image of x in Z, and if ¿ 1 , . . . ,£ r are 

elements of iV^p such that (d log(£2))2- is a basis of the free öz;y-module ^Z/s y-> 

then for any m G /C^ we have 

TT 
l<i<r 

n (v;°g - nj) (m) = 0 

for some c, > 0, rij G Z. Here V 1" 8 is defined by 

V(m) = 

l<t<r 

V£ g (m)®dlog (* f 0 (m G /Cx) • 

235 



O. HYODO, K KATO 

The definition of the functor giving the equivalence of categories follows 

faithfully the classical case. In particular, K = To as an Op-module. 

Remark (2.17.1). — Under the conditions (i) and (ii), (/C ®oz uz/s,V) 

becomes a complex. 

Remark (2.17.2). — Under the conditions (i) and (ii), if (iii) is satisfied 

for one choice of (tz)2-, then it is satisfied for any choice of (ti){. 

(2.17.3). — Let {Z',N') be the fiber product of two copies of (Z,N) 

over (S, L) in the category of schemes with fine log structures (2.13.5), 

let (D',MD>) be the P£>-envelope of (X,M) in (Z' , iV), and let pu 

P2 : D' —• D be the two projections. Assume £ i , . . . , £ r as above are 

given globally. Then, OD' is isomorphic via p2 to the PD-polynomial ring 

OD < 5 i , . . . , 5 r > with 5 i , . . . , 5 r indeterminates, and the isomorphism is 

given b;y si*—> PÌWPÌÌU)-1 - 1. The composite 

(*) KB — > P*ICD — K DI = p*2 IC D — 

(V£6-J) 
n 

(V£6-J)(m)) 

is given by 

(**) m i — > n 
l<2<r 

(V£6-J) 

1 <2<r l<j <72i 
n n ( V £ 6 - J ) ( m ) ) 

(V£6-J) 

A similar fact holds for crystals in the sense of derived categories ([B] V 3.6.1) : 

if K is a crystal in the derived category and V ^ s denotes the s' 1 '-component 

of KD —> KD1 then (*) is given by (**). 

(2.18). — To give an explicit description of the crystalline cohomology 

of crystals (2.20), we give here a preliminary definition. For a morphism of 

schemes with fine log structures / : (X, M) —• (5, L) (at this point we don't 

need any PjD-structure) such that the underlying morphism X —• S is locally 

of finite type, an embedding system for / is a pair of simplicial objects (X\M') 

and (Z\ N') in the category of schemes with fine log structures endowed with 

morphisms 

(X-,M-)-*(X,M), ( X , M - ) — > { Z \ N % (Z\N-)-^(S,L) 
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(here (X, M) and ( 5 , L) are regarded as constant simplicial objects) satisfying 
the following conditions (i)-(iv). 

(i) The diagram 

(X\M-) (Z-.N-) 

(X,M) (S,L) 

is commutative. 

(ii) The morphism X —• X is a hyper-covering for the etale topology, 
and Ml (i > 0) is the inverse image of M on X1 for each i. 

(iii) Each (Z\N{) - » (5 ,L) is smooth. 

(iv) Each ( X \ M 2 ) —• (Z\Nl) is a closed immersion. 
It is easily seen that embedding systems for / exist. 
Let (X')~t be the topos whose object is a system which associates to each 

i > 0 a sheaf Tl on Xl

ei, and to each increasing map s : { 0 , . . . , t } - f { 0 , . . . , j } 
a morphism ps S-1 (F') —>Fj where s denotes the morphism X> X* 

corresponding to 5 , satisfying pid. = гd. and = /9 5 • s_ (pi). 
The obvious morphism of topoi 0 : (X)et—X~t (X~t denotes the topos of 

sheaves on XPi) satisfies 
F—> RO.O-1(F) 

for any abelian sheaf T on Xet ([SD]). For a complex T' in (X')~t bounded 
below, R6^(T') is computed as follows. By replacing T' with a complex which 
is quasi-isomorphic to T\ we assume i ? 9 0 2 * ( J r u ) = 0 for any q > 0 and any 
z, j , where 9{ denotes X1 —> X and T%3 denotes the degree j part of the 
complex on X1 defined by T'. Then RO^T') is represented by the double 
complex ( M ^ ' j ) ) u ( [SD]) . 

DEFINITION (2 .19) . — With notations as in ( 2 .14 ) , assume X is locally 
of finite type over S. Fix an embedding system ((X',Mm), (Z',N')) for 
(X,M) ( 5 , L ) , and let (D\MDi) be the PD-envelope of (X\Ml) in 
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(Z^N*). For a crystal T on (X/S)x?fys, define the complex CX/s,r in (X')~t 

bv 

Cx/s,r = (FD- FD- ®Oz. ^Z'is FD ®OZ. V2

Z./S • • •), 

and call it the crystalline complex of T . If T = Ox/s we denote Cx/s ,T 

simply by CX/s-

PROPOSITION (2 .20) . — Let the situation be as in ( 2 . 1 9 ) . Let u^s be the 

canonical morphism from (X/S)l^ys to Xei. Then there exists a canonical 

isomorphism 

Ru^/s.(T)^R9t(Cx/s^). 

(2.21). — In (2 .19) , crystalline complexes associated to two different 

embedding systems E, E' are related to each other as follows. There is an 

embedding system E" having morphisms E" —• E and E" —• E' of embedding 

systems. Denote the crystalline complex associated to E (resp. El', resp. E") 

by 'X/sj? (resp. C'XIST, resp. C £ / 5 ~). Then the canonical morphisms 

R0*(CX/s,r) — • RÛ"{C'XISÎT) I— R0*(cx/s,r) 

with 0, 6" the evident morphisms of topoi, are isomorphisms, and compat

ible with the isomorphism of (2 .20) . 

The following lemma on crystalline complexes is used frequently in this 

paper. 

LEMMA (2 .22 ) . — In (2 .19) , iff: (X,M) — ( 5 , L ) factors as (X,M) 

( 5 , L ) —1-+ ( 5 , L) with f smooth integral and i an exact closed immersion 

such that the ideal of S in S is a sub-PD -ideal of I, then Cx/s is fla^ o v e r 

0~l f~l(Os) for any choice of an embedding system. 

PROOF. It is enough to show that Dl is flat over S. First, we show that 

it is sufficient to prove (2 .22) for one choice of an embedding system. If 

((X', Af"), (Z', N')) is an embedding system, (Z',N') is integral over ( 5 ' , L ' ) 
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on a neighbourhood of X in Z. So we may assume (Z',N') is integral 

over (S,L). Assume we have two embedding systems ((X',M'), (Z',N')), 
((X-)',(M-)'), ((Zy,(NJ)) with ( Z \ i V ) and ((Zy,NJ) integral over 

(5, L), and let (((X)", (My), ((Z')", (iV')") be the third embedding system 

defined by (Xy = X* x x (Xj and ((Z 8)", (AT*)") = (Z'',JV') x ( s , x ) 

((Z*')',(Ni)').If (D\MDi) (resp. ((£>*)',M ( Z ) < ),)) denotes the PD-envelope 

of (A^AP') in (ZSJV) (resp. ((X 1 ) ' , (M')') in ((Z*)', (iV1)')), and similarly 

((£>*')">M(/?')") denotes the PD-envolope of (X%M J ) in (Z 1 )", (N')") then 

etale locally 

(£>*)" 2 Spec(0 o< < < ! , . . . , <r >) 

(£>«')" ^ S p e c ( 0 ( 0 . y < * ! , . . . , * ^ >) 

where ¿ 1 , . . . , tr, ..., t'r, are indeterminates and < > means the PD poly

nomial ring (same proof as in [Kl] (6.5)). Hence the flatness of Dl over S is 

equivalent to that of (D1)'. We may work locally on X, so we can choose an 

embedding system such that X1 = X for any z, (Z\Nl) is a constant simpli-

cial object (Z,N), X = Z X 5 S and (Z,N) —> (5, L) is smooth and integral. 

Then, Dl = Z for any i and Z is flat over S by (2.10.2). 

The base change theorem for crystalline cohomology ([B] V 3.5) is general

ized to log structures (cf. [Kl] (6.10)). We shall use the following special case 

of the generalization. 

PROPOSITION (2.23). — Let 

(X'M') (X,M) 

(S\Lf) (5,L) 

(s', L',I',y) (5 ,X, / ,7) 

be a commutative diagram of schemes with fine log structures such that : 

f : (X,M) —• (5,L) is smooth integral and the upper square is cartesian, the 
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lower two vertical arrows are exact closed immersions, S (resp. S ) is defines 

in S (resp. S') by a PD-subideal of I (resp. I'), and S' —» S is radicial Then 

for a flat crystal T on (X/S)lc°^ys, we have 

Os>\x> ®ês |x , Ru%.{?)\X, ^ Rux*/S,(g*crys(f)). 

Here for a sheaf Q on X , S or 5 ' , G\x' denotes the inverse image of G on X'. 

This is proved by using 

0S'\X' ®oslx, (CX/S,F\X')CX'IS>,g*crys(T) 

and the flatness of CXJS,T over @s (2.22). 

The following result (2.24) is the log structure version of the result of 

Berthelot-Ogus [B02] (1.4) on the bijectivity of the relative frobenius map 

(g)Q on the relative crystalline cohomology. 

P R O P O S I T I O N ( 2 . 2 4 ) . — Let p be a prime number and let f : (X,M) —• 

( 5 , L) be a smooth morphism of Cartier type ( 2 . 1 2 ) between schemes over Fp 

with fine log structures. Assume we are given schemes with fine log structures 

(Tn,Ln) ; n > 1 with exact closed immersions 

{S,L)^{TuLy)^{T2,Ldddd2)sd^--' 

and a PD-structure on the ideal of S in Tn for each n, and assume that the 

following (i)-(iv) are satisfied. 

(i) Each Tn —> Tn+i is a PD-morph i sm. 

(ii) Tn is a flat scheme over l / p n 2 and Tn Tn+i ® 2 / p n l . 

(iii) {rankx (u;^5)}x€x i>s bounded. (Remark : the condition (Hi) is 

satisfied ij X is quasi-compact). 

Consider the diagram (2.12.1) and let 

Os>\x>®ês|x,Ru%.{?)\X,^ Rux*/S,(g*crys(f)) 

be the morphism of projective systems induced by g in (2.12.1), where 

we identify XPi and XL via the canonical equivalence. Then, if r = 
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maxj rank^fc jL / - ) ; x G X\, there exists a homomorphism of projective sys

tems xj) : Ru^ (Ox/Tn) Ru^/T.(Oxl/Tn) satisfying (pip = pr and 

w y = v 2 

P R O O F . We follow faithfully the method in [B02]. 

There exist an etale covering U —> X , schemes with fine log structures 

(Zn,Nn) and (Z'n,N'n) over 2/pn2 (n > 1), smooth integral morphisms 

(Zn,Nn) —> (Tn,Ln) and (Z'n,N'n) —> (Tn,Ln), exact closed immersions 

(Zn,7Vn) (Zn+i,iVn+i) and (Z; ,JV;) (Zn+i,iVn+i) over (Tn+1, Ln+i) 

which induce Zn Zn+i ®2/pn2 and Z'n Z'n+X ®2/pn2, respectively, 

morphisms (Zn, ATn) —> Z'n,N'n) over (Tn,Ln) which are compatible with the 

above closed immersions, and exact closed immersions {U,M\u) —» (Zi,N\) 

and ( [ / ' , M ^ , ) —• (Z{, N[) where V — V x ^ I ' such tha t the two squares in 

the diagram 

(U,MW) (U',M'1u') (S,L) 

(Z1,N1) (Z,N'1) (Z,L'1) 

are commutative and cartesian. We identify (X')~t and (X'')~v We consider 

the crystalline complex Cx/rn (resp. Cx'/Tn) defined with respect to the em-

bedding system ((*«', M«'), (Z^N^)) (resp. {{X'n)\ {M'J), {{Z'n)\ (KY))) 

where X1 (resp. (X7)2 is the fiber product of i + 1 copies of U (resp. U') over 

X (resp. X') and (Z£, A^) (resp. ((Z') j . , (iV;)j.) is the fiber product of t + 1 

copies of (Zn,Nn) (resp. (Z^N^)) over (Tn, Ln). Note that Cx/Tn is flat over 

Z/pnZ (2.22) and CX/rn+1 ® Z/pnZ CX/rn, and the same things hold for 

Cx'lTn' We define the complex En on (X')e* as follows. Let 

El = {ae PqC«Y/Tn; da € Pq+1CY/Tn} C C * / T N , 

El = E<JpnEll (or m>n + q. 

Then £ ^ is independent of the choice of m > n + q, and with d : E^ -+ E^1 

induced by d : —> C^+1 for ra > + g + 1, (En,d) becomes a complex. As 
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is seen easily, the image of TO • CQ —• CQ is contained in and thus 

y> : CqXi/Tm —• Cx /TM for ra > n + g defines <p : CQXC'/TS —>EQN 

LEMMA (2.25). 99 defines a quasi-isomorphism of complexes 
TO • CQ—> (EN,D) 

The proof of (2.25) is identical with the classical case given in [B01] §8, 

[B02] § 1 and we omit it. 

Now we finish the proof of (2.24). For any complex C and for i G Z 

let r<t-C be the subcomplex of C whose degree q par t is Cq (resp. 0 

resp. Ker(d : Cq —• Cq+1)) for q < i (resp. q > i, resp. q = i) . Lei 

r = max{rankx(u ;^5 )} . Then, the canonical morphism r < r C —• C is a quasi-

isomorphism if C = Cx/ rn ? C*x'/Tn or since 7ïq(C) = 0 if g > r for these C 

Let V7' : T<rCx/Tn —> T<rEn be the map induced from T<rCx/Tm ~* T<rE'm 

a 1—• p ra with m > n + r, and define ^ to be the composite map in the 

derived category 

Ru^/T,(Ox/Tn) 
by v' 

Ro.En 
bv 

i ? 4 ? / T . ( o X 7 T n ) . 

It is easy to see tha t (pip = pr and i/jcp = pr . 

3 , — Crysta l l ine cons truc t ion of (D,ip,N) 

We construct (D,(p,J\f) using the theory of crystalline cohomology with 

logarithmic poles in a more general situation than § 1. 

DEFINITION (3.1). — Let p be a prime number and let S be a scheme over 

Fp with a log structure M. Let n > 1, and let Wn(S) = Spec(Wn(0 s)) • We 

define the log structure Wn(M) on Wn(S) called the canonical lifting of M 

to be M 0 Kev(Wn(Os)x —• 0$) which is endowed with the homomorphism 

to Wn(Os) induced by M —» Wn(Os) / a 1—• ( a ( a ) , 0 , . . . ,0). The morphism 

(Wn(S), Wn(M)) -+ (Wn(S), Wn(M)) defined by the usual frobenius F : 

Wn(S) - Wn(S) and by F-l(Wn(M)) * Wn(M) - Wn(M) ; (p on M) 0 

(F* on Kei(Wn(Os)x -> C7|) is called the frobenius of (Wn(S),Wn(M)). 

(3 .2 ) . — Let be a perfect field of characteristic p > 0 and fix a fine 

log structure L on Spec(fc). Let Wn = Spec(Wn(k)). Then we have the log 
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structure Wn(L) on Wn. Let Y be a scheme with a fine log structure M and 
with a smooth morphism / : (Y,M) —• (Spec(fc), L). Take m G Z and let 

Dn = Hm(((Y,M)/(Wn,Wn(L)))crys, Oy/Wn) 

be the m - t h crystalline cohomology group of (Y, M ) over (Wn, Wn(L)), where 

Wn is endowed with the usual PZ)-structure on pWn. In particular, it follows 

from (2.20) that 

(3.2.1) Dl^Hm(Y,uY) where iüy — ^(y,M)/(Spec(Ar),L) ' 

The absolute frobenius of (Y, M) and that of (Wn, Wn(L)) induce 

<p : Dn —• Dn . 

Let = l imDn, D = Doo ® Q. 

If / is smooth and integral and if Y is proper over (3.2.1) and the exact 
sequence of crystalline complexes 

p 
0 > CY/(Wm9Wm(L)) • CY/{Wrn+niWm+niL)) > CY/(Wn,Wn(L)) • 0 

(2.22) (here Y is endowed with M ; we do not abbreviate W.(L) since 

sometimes we shall consider also the trivial log structure on W) show that 

Dn is of finite length over Wn(k) and is finitely generated over W(k). If 

/ is smooth and of Cartier type, (p : D —• D is bijective by (2.23) and (2.24). 

(Here, (2.23) is applied by taking the frobenius (Wn,Wn(L)) -+ (Wn, Wn(L)) 
as ( 5 ' , L ' ) ( 5 ,L ) of (2.23), and the frobenius (Spec(fe),L) -> Spec(fc),L) 

as (S*,L') —> ( 5 , L ) . We then obtain 

0 > CY/(Wm9Wm(L)) • CY/{Wrn+niWm+niL)) > CY/(Wn,Wn(L)) • 0 CY/(Wn,Wn(L)) 

The bijectivity of <p : D —• D is proved also using the de Rham-Wi t t 

complex of §4, by the same argument as in (1.3). 

Without the Cartier type assumption, the bijectivity of (p need not hold as 

in the simple example (3.3) below. 
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The monodromy operator will be discussed in (3.4)-(3.6). In the situation 

of semi-stable reduction, we will see in (4.20) that this (Dn,<p,J\f) coincides 

with tha t of § 1. 

(3 .3 ) . — Consider the case Y = Spec(k[t]/(tr)) with t and indeterminate, 

(p,r) = 1,L ( resp .M) is the log structure on Spec(k) ( resp .Y) associated 

to N —• Ospec(fc); 1 »—• 0, (resp.N OY\ 1 .—• t), and / : (Y,M) -
(Spec(fc),L) is induced from N —> N; 1 i—> r. Such (Y,M) -+ (Spec(fc),L) 

appears as the reduction of a tamely ramified extension of a discrete valuation 

ring (2.13.1). Then, / is smooth and integral, but if r > 1, it is not of Cartier 

type. The crystalline cohomology of degree m of (Y, M) over (Wn, WN(L)) 

vanishes for m ^ 0, and for m = 0 we have Dn — Wn[t)/(tr) with the 

frobenius (p which extends the usual frobenius of Wn(k) by ip(t) = tp. Hence 

(p : D —y D is not bijective if r > 1. 

(3 .4 ) . — Now we define the monodromy operator. 

Let / : (Y ,M) —> (Spec(fc),L) and (by fixing m) DN be as in (3.2), and 

assume that / is smooth and L is the log structure associated to N —* k; 
1 i • 0. We define the m,onodromy operator J\f : DN —• DN in two ways 

(3.5) (3.6). 

(3 .5 ) . — Let (D,LD) be the PD-envelope of (Spec(fc), L) in the fiber 

product of two copies of (WN, WN(L)) over WN where the last WN is endowed 

with the trivial log structure, and let pi : (D,LD) —> (WN, WN(L)) be the two 

projections. Let e be any section of L whose image in L/Gm = N is 1 £ N, 

and regard it as a section of WN(L) via the embedding L C WN(L). Then, 

D = Spec(Wn < u - 1 >) where u is the image of pKeJp^e)"1, which is 

independent of the choice of e and which is regarded as an indeterminate in 

this isomorphism. Let 

K - i?r(((Y,M)/(Wn,Wn(L)))ery3,0Y,wn) 

K! - i?r(((y, M ) / ( D , LD))CRYS, OYID) • 

244 



EXPOSÉ V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES 

Then we have a morphism 

(3.5.1) / C — > L p J ( k ) = k ' = Lp*2(lC) 
ieN 

(u-1)Q K 

where the first and the second isomorphisms are by the base change theorem 

(2.23). We define the endomorphism Af : Dn = Hm(IC) -> Dn to be the map 

induced from the (u - l ^ l - c o m p o n e n t /C —• K of the morphism (3.5.1) (then, 

(3.5.1) is given by 

i>0 
((« - i )w 

0<j<i 
W-j)))-

The property J\f<p = p<pAf is easily verified. 

(3 .6 ) . — Another construction of M is as follows. Consider the exact closed 

immersion (Wn,Wn(L)) -> (Spec(Wn[t]), C) where C is the log structure 

associated to N —• Wn|Y]; 1 i—• t (here t is an indeterminate) defined by 

Wn[t) —• Wn 5 11—• 0 and C Wn(A) ; 1 G N i—• 1 G N. Take an embedding 

system ( (Y ' ,M- ) , (Z\N')) of (Y,M) -+ (Spec(Wn[t]), C). Let Cr/Vyn, where 

Wn is endowed with the trivial log structure (resp. Cy/ Spec(wn<t>), where 

Wn < t > is the PD polynomial ring over Wn in one variable t and Spec(iyn < 

/ > ) is endowed with the inverse image of £ ) , be the crystalline complex 

associated to the embedding system ( (Y ' ,M") , (Z',N')) ( resp.((Y",M') , 

(Z'xSpec(wn[t]) Spec(Wn < t >), (N')f)) where (NJ is the inverse image 

of N'). We obtain an exact sequence 

0 > Cy/ Spec(Wn<i»[-l] • Cy/Wn > Cy/ Spec(Wn<t» • 0 

where the second arrow is a i—• aAdlog( t ) . Since Wn®wn<t>Cy/ Spec(W„<t>) 

with respect to Wn < t >—> Wn ; № —> 0 (i > 1) is the crystalline 

complex Cy/(vyn,vyn(L)) with respect to the embedding system ( ( Y ' , M ' ) , 

(Z ' XsPec(VKn[̂ ]) Wn, (N'Y')) where (N')ff is the inverse image of AT, we obtain 

an exact sequence 

0 > Cy/(Wn,Wn(L)) —> Wn ®wn<t> CY/wn —• Cyi{wn,wn{L)) — • 0. 
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We define J\f to be the connecting homomorphism of this exact sequence. 

The coincidence of the two definitions of J\f given in ( 3 . 5 ) and ( 3 . 6 ) is 
proved by the method of [B] V 3 . 6 . 

4. — D e R h a m - W i t t c o m p l e x e s 
In this section, k denotes a perfect field of characteristic p > 0, and Y 

denotes a scheme with a fine log structure M and with a smooth morphism 
of Cartier type / : (Y ,M) -+ (Spec(fc).L). 

We consider in this section the de Rham-Wi t t complex of (Y, M ) over 
(Spec(fc),L) generalizing [HI] [H2] which treated the semi-stable reduction 
case. We give the definition (4.1), descriptions of the structure of the de R h a m -
Wit t complex in (4.4)-(4.7), relation with the crystalline cohomology in (4.19), 
and the relation with § 1 in (4.20). 

In this section, we shall consider the two log structures Wn(L) and 0$yn 
on Wn. We do not abbreviate Wn(L) when Wn is endowed with Wn(L), and 
abbreviate Oxwn when Wn is endowed with Oxwn . For example, in the notation 

^ y / ( w n wn(L)) (resP-^wy/vKn)' ^ *s endowed with M and Wn is endowed 

with Wn(L) ( r e s p . C ^ ). 

(4 .1 ) . — We define the de Rham-Wi t t complex as follows. Let 

wn^Y = Rqu^(WntWn(L)).(oY/Wn). 

We define the operators 

d : WnuY - WnuqY+1, F : Wn+1uqY - WnuY , V : WnuqY -+ Wn+1uqY 

satisfying 

( 4 . 1 . r d2 = 0 , FV = VF = p, dF = PFd, Vd = pdV, FdV = d 

as below, following the classical case [IR]. Wnuj'Y becomes a complex with 

respect to the differential d. 
In this section, we choose embedding systems {{Y\M%(ZlNi)) as in 

the proof of 2.24 (with X replaced by Y and (Tn;Ln) by (Wn,WJL))) , and 
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denote the corresponding crystalline complexes CY/(wn,wn{L)) simply by Cn. 

Note Cn is flat over Wn and Cn ®Z/P™2 Z/pmZ -=U Cm for m < n. 

First, d is defined to be the connecting homomorphism in the exact 

sequence of cohomology sheaves associated to the exact sequence of crystalline 

complexes 

o ^ c n - ^ c 2 n ^ c n ^ o . 

Next, F (resp. V) is the map induced by Q + i -» Cn (resp.p : Cn C;+1). 

The relations (4.1.1) are proved easily. For n = 1, we have the Cartier 

isomorphism 

(4.1.2) C : W i < 4 = nq(cüy) ¿ 4 (cf. (3.2.1) and (2.12.2)). 

(4 .2 ) . — We define a canonical homomorphism 

TTn : Wn+iuY — • Wnu'Y 

as follows. Wi th the notations of the proof of 2.24, the map p9 •• cqn+1 

: Wi<4 sends Ker : Wi<4 : Wi<4 into Ken (Fq Et1 and induces 

Cn ®Z/P™2 Z/pmZ -=U CmCn ®Z/P™2 Z/pmZ -=U Cm : Wi<4 where the last isomorphism 

is by (2.25). 

We call this map 7rn and its composite Wm^Y —• Wnulr (m > n) the 

canonical projection. 

DEFINITION (4.3). — Define a chain of sub sheave s of LUY 

0 = DQLÜ^ C BIU)\r C B2cOy C • • • C Z2ujy C ZXUJY C Z0u;^ = 

by the formulas 

B0<4 = 0 , 

Cn ®Z/P™2 Z/pmZ 

Bnujy 
c-1 

BN + \UYLBXLü\r 

ZOÜJY — Lüy , 

Zicjy = Ker(d : UJY —• OJY * ) , 

ZNUY 
c-1 

Zn+iUy J Z\Lüy 
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and by induction on n (cf. Illusie [J71]0.(2.2.2)). 

We can generalize the structure theorem for the de R h a m - W i t t complexes 

[111] I §3B to the case with log structures. 

T H E O R E M (4.4). — The map 7rn WxuqY 0 W^y1WxuqY 0 W^y1 is surjective and the 

composite map 

WxuqY 0 W^y1 
c-1 

WxuqY 0 W^y1 
{Vn,dVn) 

WxuqY 0 W^y1 

induces an isomorphism 

0—>Rqn—> Bn+luqY WxuqY 0 W^y1WxuqY 0 W^y el +d1d ds 

where is defined by the exact sequence 

0—>Rqn—> Bn+luqY 7 i ,q~l 
(Cn,dCn) 

B^y — > 0 . 

P R O O F . The problem is local and hence we consider the crystalline com

plexes for embedding systems consisting of constant simplicial objects. The 

facts tha t Image(Vn,dVn) C Ker(7rn) and R% dies in Ker(7rn) are easy 

and left to the reader. The suriectivity of 7rn follows from the surjectiv-

ity of pq : WxuqY 0 W^y1 Eq which is checked easily. The surjectivity of 

(Vn,dVn) : Wxu\ W^y1 - Ker(7rn)dfg is proved also easily. Indeed, if 

WxuqY 0 W^y1 and the class of a in WxuqY 0 W^y1 is annihilated by WxuqY 0 W^y1 then 

pqa = d(pq~lb) + pn(pqc) in WxuqY 0 W^y1 for some b WxuqY 0 W^y1 and for some 

WxuqY 0 W^y1 such that dc WxuqY 0 W^y1 If b (resp. c) denotes the class of b 

(resp. c) in WiUy 1 (resp. WiuY), we obtain a = dVn(b) + Vn(c) mWn+^y. 

Finally we prove that the kernel of the map in problem s WxuqY 0 W^y1 
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Ker(7rn) coincides with Rn. The commutative diagram 

WxuqY 0 W^y1WxuqY 0 W^y1 
(Vn,dVn) 

Wn+1u;qy 

pr2 

W^y1 
dVn~1 

WnuqY 

F 

and induction on n show that if (a, b) £ Ker(s), then b £ ZnuJy~X. Hence 

(a, b) = (a', 0) m o d i t ^ for some a' £ uY. Since the kernel of V : WNUJY —> 

Tyn+ia;y comes from the boundary map Wiuiy"1 —> WnuY which coincides 

with dV*1"1 as is easily seen, we have Fn_1C~1(a/) = dyn~1C~1(c) for some 

c £ cjy-1. Therefore, by induction on n, o! belongs to BnuoY (= Ke rCn : 

Bn+xulr S ic j^) and hence (a ' ,0) £ Q.E.D. 

By the method as in the classical case [111], we can deduce the following 

facts from (4.4). 

COROLLARY (4.5). — (1) If m > n, pn : WxuqY 0 W^y1 factors 

through the canonical projection WxuqY 0 W^y1 The induced map pr : 

WxuqY 0 WWxuqY 0 W^y11 is injective and WxuqY 0 W^y1WxuqY 0 W^y1 WNUJY is a 

quasi-isomorphism. 

(2) limWncjy 
n 

is torsion free for any q. 

We give two presentations (4.6) (4.7) of WnUY. 

PROPOSITION (4.6). WnuY is canonically isomorphic to 

(4.6.1) {{WnOY®Az M9Pirl{L°v)) (WnOY® Ai M9P/f~1(L9P)))/Jr 

where T is the subsheaf of the direct sum generated by local sections of the 

forms 

(ei(a(ai)) ® (ai A • • • A aq),0) - pl(0, e,-(a(ai)) <g) (a2 A • • • A aq)) 

( a i , . . . , a 9 e M , 0 < i < n). 
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Here for b E O y , we denote ( o , . . . , o , M o ) e W ) by Ei{b). 

i times 

P R O P O S I T I O N (4.7). — (1) There exists a canonical isomorphism of graded 
differential algebras 

qez. 
lUJWn(Y)/(Wn,Wn(L)) II ^ 

yEZ 
0(T) ®Wn(k) 

where Wn(Y) is endowed with the canonical lifting Wn(M) (3.1) of M and! 
is the graded subideal of the algebra generated locally by local sections of the 
forms ^*,i,a,6 and drjij^a^ (0 < j < i < n, a E Oy, b E M) where 

Wd,a,b = €i(a)d£j(a(b)) - 6i(aa(b)p )d log(6) . 

(2) For each q and each x E Y, coincides with the image of 

(^SpeciWiOy-))/Spec(W(fc)) ^x.tor UWn(Y)/(Wn,Wn(L)),x 

where Spec(Wn(Oy^)) (resp. Spec(W(k))) is endowed with the log struc
ture associated to —> W(Oy^) (resp. r(Spec(&), L) —» W(k)); a i—• 
( a ( a ) , 0 , 0 , . . a n d tor denotes the torsion part. 

P R O P O S I T I O N (4.8). — Let T be an object of ((Spec(k),L)/Wn)cryS (Wn 
is endowed here with the trivial log structure). Then, there exists a functorial 
homomorphism between graded G(T)-algebras 

(4.8.1) 
q>0 

0(T) ®Wn(k) WnuqY 
q>0 

0(T) ®Wn(k)0(T) 

which is an isomorphism ifT is flat over Wn. 

(4 .9 ) . — We prove (4.6)-(4.8) together. We may work etale locally, and 

hence we can take in (2.24) Y' = Y, (Z',N') to be a constant simplical object 

(Z, iV). Consider the crystalline complex for this system. We define a ring 
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homomorphism r wn{oY) - n°{cYIT), an additive map 6 wn(oY) 

H\CYIT) which is a derivation with respect to r and a homomorphism 

d log : 0(T) ®Wn(k)0(T) ®Wn(k) by 

r : ( a 0 , . . . , a n - i ) 
n- l 

i=c 

0(T) ®Wn(k) 

6 : ( a 0 , . . . , a n - i ) 

n- l 

¿=0 

0(T) ®Wn(k) 

dlog : b I—• dlog(b) , 

(a{ e Oy, be M) where a2- is any lifting of a2- to OD and b is any lifting of b 

to the log structure N of Z . The map r (resp. <5, resp. dlog) is well defined by 

virtue of the following fact : for a E O D and h E Kex(On —• O y ) , 

pHa + hY" * =piapn ' in OD 

(resp. for a e OD and h £ Kei(0D -> OK), 

(a + fr)p" ' " ^ ( a + h)- ap" i~lda = d 

0(T) ®Wn(k) 

0(T) ®Wn(k) 

in O p ®oz ulz/1 where Cj = bn~2')!((Pn~1' - Ì ) ! ) " V ' " n e Zp, resp. for a e E N 

and tx E Ker(£>* -> 0 * ) , 

dlog(aw) - dlog(a) G Ö d ®oz ^Z/T LS image of log(u) E Öd 

under d : OD -+ OD ®0Z "Z/T)-

In the case T = WN, r is a ring homomorphism Wn(C?y) —• Wnu;y, and 6 

coincides with the composite Wn(Oy) — • WUUJY WUUY. It is not difficult 

to see that there exists a Wn((9y)-homomorphism LJwn(Y)/(wn w (L)) 

V}(CYIT) which sends da (a E Wn(Oy)) to 6(a) and dlog(6) (b E M ) 
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to dlogffr), tha t this map induces a homomorphism of Wn(Oy)-ale:ebias 

0(T) ®W 

q>0 
UWN(Y)/(WN,WN(L)) 

q>0 
W{CYIT) and that the last map annihilates 

0(T) ®Wn(k) lenotes the sheaf (4.6.1) and lq denotes the degree q part of 

J , we have a commutative diagram 

(4.9.1) 

0(T) ®Wn(k) 

t 

0(T) ®Wn(k)0(T) ®Wn(k) 

W(CY/T) 

by yb 

where s (resp. t) sends [w (g) (61 A • • • A bq),0) to r(w)dlog(Di) • • • dlog(6q) 

(resp. wdlog(bi) A ••• A dlog(&g)) and (0,w ® (61 A ••• A &<?-i)) to 

<5(w)dlog(&i) • • • dlog(6q_i) (resp. dw A dlog(6i) A • • • A dlog(6q_i)) . 

We prove s is bijective in the case T = Wn. 

Let FilHlWnul)') be the image of 

(VHWJOY))® A*z M9P) 0 (VHWJOY))® az M9P 0(T) ®Wn(k) 

Then, s sends Fil' into the kernel of the canonical projection 0(T) ®Wn(k)0(T) 

and the isomorphism (4.4) (V^dV^C-1 : < 4 ©a;?,"1 K e r f a ) factors as 

a # 0 uqyl FiV/FiV*1 K e r f a ) , 

where the first map is a surjection defined by 

(adlog(òi) A • • • A dlog(6q),0) »—• (e,-(a) <g> (&i A • • • A 6q),0) 

(0, adlog(bi) A • • • A dlog(69_i) 1—• (0,e,-(a) ® (61 A • • • A 6q_i)) 

which is well defined as is checked easily. This shows that s is an isomorphism 

and proves (4.6). 

Next we show tha t t in (4.9.1) is surjective. This will prove (4.7)(1). We are 

reduced to the case q = 1. As a sheaf of abelian groups, LUwn(Y)/(Wn,wn(L)) 
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is generated locally by Si(a)dsj(b) (a, b G Oy, 0 < i, j < n) and wà\og(b) 

(w G Wn(Oy), b G M ) . If i > j , ei(a)dej(b) clearly belongs to X\ + Image(tf). 

If i < ?, ei{a)dsj(b) = d(ej(a)e?-(6)) - eAbideAa) Eli + Image(t), 

We prove (4.7.) (2). Let G = JSpec(W(0Y^))/ Spec(W(k))x- First, 

[mage(G^or) C Tx follows from the fact tha t hm 
n 

-y'£t(a^)c/eo is torsion free. 

Next we show that r\ij,aj> is> when regarded as an element of G1, a tor

sion element. Let (p : Gq —> Gq be the map induced by the frobenius of 

W(Oyjc) and W(k) and the p-ih power maps on and r(Spec(fc), L). 

Then, cp : Gq ® Q —• ® Q is bijective. Indeed, this is reduced to the 

case q < 1. For # = 0, (p : G ° ® Q —> G° ® Q has the inverse map 

(a0,ai,...) i—• P_1(0, a0, a i , . . . ) and hence is bijective. For q = 1, the in

verse map is given by 

adb i—• ¥?-1(a)d¥?"1(6) (a, 6 G W(OY,X) ® Q ) , 

adlog(ò) h—4 p - V ' ^ d ^ f c ) (a G W(öy ,* ) ® Q, b G MF) 

(cf. [Ill] I (4.3)). On the other hand, the 2 j - t h iteration of (p : G1 -+ G1 

annihilates r/2*,j,a,6 since 

<P24mj,a,b) = e¿(ap J)d£j(a(lfJ)) - е,-(о" 'a(by'+')dlog(ò^) 

= гРеЛа? ')deMV>')) - гРеЛа? ')еп(а(ЪТ)à\oz(V>3) = 0 . 

Finally we prove (4.8). We define the 0 (T) -homomorph i sm in (4.8) to be 

the one induced from 

WnuY 
(4.6) 

[WnulY -±> HHCY/T) 

where s is as in (4.9.1). The bijectivity statement in the case T is flat over 

Z/pn2 is reduced to the case n = 1 by using the long exact sequence of 

cohomology sheaves associated to the exact sequence 

0 — • CY/(T®Z/P1\ 

n- 1 
V -y'£t(a^)c/eo(«(^)) -^^(ap2i)eo(a(t)p0dlog( 
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In the case n = 1, by working locally, we may assume tha t Y = Z XT Spec(fc). 

Then, D = Z and our task is to prove 

OCT) ®k Wiuy) ^ W V Z / T ) • 

By Cartier isomorphism (2.12), this map is rewritten as 

0(T) 
F 

k Uy 0(T) 
F 

0{T) UZ/T 

where (p : a i—• ap. Since ip : 0(T) —> C?(T) factors through the canonical 

surjection 0(T) —• fe and ® o ( T ) ^ ^ / T = we are done. 

R e m a r k ( 4 . 1 0 ) . — The existence of the canonical homomorphism Wnu)y —> 

RqulyJT+(OY/T) m (4-8) is not an evident fact, for we do not have a morphism 

(T, LT) —• (WN,WN(L)). The authors do not know if this homomorphism 

comes from a homomorphism in the derived category 

(*) RuY*(Wn,Wn(L))*(°r/Wn) RU^T.{OY/T). 

The meaning of (4.8) is tha t WnUy grows "neglecting" log structures when we 

take PJD-thickenings of Spec(fc). To see how the problem is delicate, assume 

only tha t / is smooth integral but not tha t / is of Cartier type. Then we have 

the following counterexample of (4.8). 

Let L be the log structure associated to N —• fc; 1 i—• 0, y = 
Spec(fc[£]/(fr)), (p , r ) = 1, M is the log structure associated to N —• k[t]/(tr); 
1 i—• t, and ( y , M ) -+ (Spec(fc),L) induced by N -+ N; 1 i—• r. Then, 

r ( y , Wnu^) = Wn(k)[t]/(tr). If we take T = Spec(Wn{k) < s > ) with s an 

indeterminate and endow T with the log structure associated to N —» Wn(k) < 
s > ; 1 i—y s and with the usual PD-s t ruc tu r e , 

r (T, i2°nJ« (Or/T)) = Wn(k) < s > [t]/(tr - s). 

But Wn(k) <s> ®wn(k)Wn(k)[t]/(tr) and Wn(k) <s> [t]/(tr - s) are not 

isomorphic as Wn(k) < s >-algebras if r > 2. 

The following (4.13) says that a good homomorphism (*) desired in (4.10) 

exists at least "modulo torsion which is bounded independently of n" under 

a certain assumption. This (4.13) will play a key role in §5 in the definition 

of Ptt-

254 



EXPOSÉ V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES 

DEFINITION ( 4 . 1 1 ) . — For a sequence of functors between categories 

C A n л-» 
n+1 • yn-1 • И , 

let ps(C.) be the category of systems {(An, sn)}n>i where An is an object of 
Cn and sn is a morphism An(An+i) —• An. We often abbreviate {(An, sn)}n>i 
as {An}n. 

DEFINITION ( 4 . 1 2 ) . — For an additive category C, we denote by Q ® C the 

category whose set of objects is the same as C but whose set of morphisms 
between objects A, B is Q ® Home (A, B ) . An object A of C is denoted by 
Q ® A when it is regarded as an object of Q ® C. 

PROPOSITION ( 4 . 1 3 ) . — Assume we are given for each n > 1 an object Tn of 
((Wn,Wn(L))/Wn)crys with the log structure Ln, a morphism F : (Tn,Ln) —> 
(Tn,Ln) and an exact closed immersion (Tn,Ln) —• (Tn+i,Ln+i) which are 
compatible with PD-structures and have the following properties (i)-(iii). 

(i) With respect to the morphisms (W.,W.(L)) —• (T.,L.) —• W. (the last 
W. is endowed with the trivial log structure), F commutes with the frobenius 
of (Wn,Wn(L)) and that ofWn, and (Tn,Ln) —• (Tn+i, Ln+i) commutes with 
F, with (Wn,Wn(L)) - (Wn+UWn+1(L)) and with Wn -+ Wn+1. 

(ii) Tn is flat over Wn and Tn Tn+i (g) Z/pnZ for each n. 
(in) For each n > 1, the ideal Xn ofWn in Tn is generated etale locally by 

local sections of the form 

aw (i > 1 ) with a E Image(Ln — • 0Tn) n l n • 

For n > 1 , define 

Kn = RuyJT*(OY/Tn), K'N= RUY*(WN,WN(L))*(°Y/WN) 

and let /3n : Kn -+ K'n be the canonical morphism. Then, in the category 

Q (g)ps(D(Yet,0(T.))), there exists a unique isomorphism 

h:Q® {0(Tn) ®Wn Kin — • Q ® {/Cn}n 
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satisfying the following (4.13.1) (4.13.2). 

(4 .13 .1 ) . — (Ai)n 0 h coincides with the morphism induced by 0(Tn) —• 

WJk). 

(4 .13 .2 ) . — / / we denote the morphisms 0(Tn) —• 0(Tn), Kn —• Kn and 

K'n —• K'n induced by the frobenius morphisms by the same letter <p, then h 

commutes with (p ® (p on Q ® {0(Tn) <g>wn fcn}n and <P on Q ® {^n}n-

The rough idea of the proof of ( 4 . 1 3 ) is that the frobenius on KJn is near to 

an isomorphism and the frobenius on I n is near to zero, and this forces the 

morphism {/Cn}n —> {JC'n}n to split in Q ® ps(D((X.)ei, W.(k))). 

To Drove ( 4 . 1 3 ) . we use the following lemma. 

LEMMA ( 4 . 1 4 ) . — LetC be a triangulated category and : C —> C be an exact 

functor. Assume we are given a distinguished triangle (si+is~1)(pi+i = (p$((pi) 

A[l] and morphisms (pA : &(A) —> A, (pB : &(B) —> B, <pc - $(C) —» C, in C 
(we denote all of them simply by (p) such that 

aip = <p$(a), FIIP = (P$(P), j(p = ¥ > [ 1 ] * ( 7 ) • 

Let p be a prime number, sq = 1, s\, S2,... be integers such that sI|si+1 for 

all i > 0 and l im^oo oidp(si+isi ) = oo, let r > 0 6e an integer, and assume 

the following (i)-(iii) are satisfied. 
(i) There exist morphisms cpi : Ql(A) -A For i > 0 such tsuchhat Yo = Id A , 

YQ(p) • • • $z"1(^) = s^,-for all i> 1 , and (si+is~1)pi+i = (p$((pi) for all 

i > 0 . 

(ii) There exists vb : C —> $ ( C ) s^c/i £Aa£ (resp. ipip) is the multiplication 

by pr on C (resp. 9(C)). 

(iii) T%e set of homomorphisms from C to A is annihilated by a power of p. 

Take an integer c > 0 such that prc*l\sc, and an integer d > 0 such that 

pr{i+l)\siPd for all i > 0 . Then the kernel (resp.cokernel) of 

[C,B]^-^[C,C]^:h^ (3h 

is annihilated byp2cr (resp.pcr+d), where [C, B]^ denotes the set of morphisms 

h : C —> B such that h(p = (p$(h), and [C, C]^ is defined similarly. 
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PROOF. For X = A or C, denote (p$((p) • • •Qi-1(&):Qi(x) -> X by 
and denote $ 2 ' - 1 (^) • • • $(</>)</> : X $*(X) by We show first [C, A\v is 
annihilated by p c r . Indeed, for h G [C, A)^, we have 

prcÄ = prca^c$c(/i)</>(c) = prca2ipc$c(<pc)<f>2c(h)^2c) prcÄ = prca^c$c(/i)</>(c) = prca2 

for some a G pZ. Hence 

p r cÄ = p r c a^ c $ c (/i)</> ( c ) = prca2ipc$c(<pc)<f>2c(h)^2c) = • • • = 0. 

This proof shows also [C,,A[1]]&= 0. In particular, we have pcrj = 0. 
Next we show that the kernel of [C, 2?]^ —> [C, C]^ is killed by p2cr. 

Indeed, let h be an element of this kernel. Then, there exists h! : C —• A 
such that h = a/i'. Since a((p$(hf) — h'tp) = (p$(h) — hip = 0, there exists 
/*" : $(C) C[ - l ] such that yQ(h')- h'<p = j[-l]h". By pcrj = 0, we have 
pcrti G [C, A]^ and hence p2crti = 0 and p2crh = 0. 

Finally we show the cokernel of [ C , ^ -+ [C,C]<p is killed by p c r + d . Let 
ft G [C,C]^. Since p c r 7 = 0, we have j(pcrh) = 0 and hence there exists 
ti :C—>B such that fih' = pcrh. We have P((p$(h') - h'<p) = 0. Hence there 
exists h" : $(C) -+ A such that <p$(ft') - h'(p = aft7'. Define * : C -+ 5 by 

* = pdti -f 
2>0 

( p r f - * i + 1 > * 0 « w * , ^ , > ( , ' + 1 ) • 

Then < e [C, B]v and /ft = p c r + d / i . 

(4.15). — To prove (4 .13) , we apply (4 .14) by taking 

A — In ®Q(TN) Kr. where J„ = Ker(C?(Tn)—>Wn(fc)), 

B = Kn c=ic'n. ß = ßn, * = WJk) 
& 

^n(A:)( ? ) ^n(A:)(?) 

and ipi as follows. For m > 1, we have (pl(Im) C pMJm. Indeed, if a G Lm and 
a(a) G /m (here a : L m —• Oxm is the canonical map), 

^(a(a)W) € ( a ( a ) ' ' ) % T m = « , - j a ( a ) ^ 0 T m 
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where Uij = (pij!(j!)-1 and U{j G £>MZP if j > 1. Hence we have a map 

of projective systems (pM)_1<£> : I- —• !<> which defines <pi : In —> In. We 

define <pi : $%(A) —* A as (y>,- on /,•) ® ((p on /Cn). Then, the assumptions (i) 

(iii) in (4.14) are satisfied clearly and (ii) is satisfied by (2.24). Note when 

n varies, we can take the same r, c and d independently of n. Hence we 

have the uniquements of h stated in (4.13). We show the existence of such 

h as follows. By (4.14), we find h'n g [K'nXn]<p such tha t /3nh'n = pcr+d. 

Now when we vary n, the morphism p2crh'n coincides with the morphism 

induced by p2crh'n+1. Thus (p2crh'n)n is a morphism {/C^}n —• {/Cn}n in 

ps(D(YeU W.(k))). Define h" = p"3cr"d® (p2cr/i'n) : Q®{/C^}n -> Q®{/Cn}n 

and let /i : Q ® {(9(Tn) ®wn ^n}n —• Q ® {/Cn}n be the morphism induced by 

h". It remains to prove that h is an isomorphism. By lemma (4.17) below, it 

suffices to show that the morphism induced by h 

(4.15.1) Q ® {0(Tn) ®Wn WnuqY}n — • Q ® {Rqu°*T.(0Y/Tn)}n 

is an isomorphism in Q®ps(0(T. ) -modules ) ) for each q. But this follows from 

LEMMA (4.16). — The morphism (4.15.1) coincides with the one induced 
by the isomorphism in (4.8). 

P R O O F . By a similar argument to tha t in ( 4 . 1 4 ) we can show tha t there 

exists a unique morphism whose composite with 

Q ® {R^T.(OY/TJ} — Q ® {WNU>Y}N 

coincides with the morphism induced by 0{Tn) —• Wn(k) and which 

conunutes with frobenius. The morphism induced by (4.8) also has these 

properties. 

In (4.15) we have used 

LEMMA (4.17). — Let C{ (i > 1) be abelian categories, D(Ci) their derived 

categories, and let 

D(Cn+1) yn D(Cn) —> U D(d) 
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be exact functors. Let {An}n and {Bn}n be objects of ps(D(C.)) and let 

h : {An}n — • {Bn}n be a morphism. Assume there exists r > 0 such that 

#{<? G Z ; H"(AN) + 0 or H"{BN) ± 0} < r 

for all n. Then, the following two conditions are equivalent. 

(i) Q ® {An}n —* Q ® {Bn}n is an isomorphism in Q (g)ps(D(C.)). 

(ii) There exists a non-zero integer m such that the kernel and the cokernel 

of Hq(An) —• Hq(Bn) are killed by m for any q and any n. Here Hq : D(Cn) —> 

Cn is the canonical cohomology functor. 

P R O O F . The implication (i) (ii) is easily seen. We prove (ii) = > (i). 

For each n > 1, take any distinguished triangle An A Bn —> Cn —>. 

If (ii) is satisfied, Hq(Cn) is killed by m2 for any q and for any n. By 

(4.18) below, this shows that Cn is killed by M = m4r for any n. By the 

exact sequence Hom(i?n, An) —> Hom(Bn,Bn) H o m ( 5 n , C n ) , there exists 

gn : .Bn —> An such that /in^n = M. We see easily that (Mgn)n>i is a 

morphism {jBn}n —> {An}n in ps(D(C.)) and satisfies 

hn(Mgn) = M2 , (Mgn)hn = M2 for any n . 

LEMMA (4.18). — £e£ C 6e an abelian category, A an object of the derived 

category D(C), S a finite subset of 2, mq (q £ S) integers, and assume that 

Hq(A) = 0 for q £ S, and that Hq(A) is killed by mq for q G S. Then A is 

killed by 
GES 

mq. 

P R O O F . The case # ( 5 ) < 1 is clear. Assume # ( 5 ) > 2, let r = max(5) , 

and consider the distinguished triangle 

r<r_! A —> A — > TyrA —> 

By induction on # ( 5 ) , r<r_!A is killed b n 
GES 
q<r 

mq and T>rA is killed by mr. 

By the exact sequence 

Hom(A, r<r_i A) —> Hom(A, A) —> Hom(A, r > r A ) , 

we see that the identity morphism of A is killed by f i Wa
GES 
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T H E O R E M ( 4 . 1 9 ) . — {cf. [Ill] II § 1 in the case without log structures). In 

the derived category, we have a canonical isomorphism 

WnuY S Ru^{WniWn{L)Y{üY,Wn) 

compatible with frobenius and with the transition maps when n varies. 
Here the transition map Wn+iOJY —• Wnuj'Y means the canonical projection. 

P R O O F . The proof is the same as in the classical case [111] I I § 1 (cf. also 

[Bl] I I I § 2 ) . Take an embedding system ( ( Y \ M ) , (Z\N')) for ( Y , M ) 

Wnj Wn(L)) such that there exists a morphism (Wn(Y') , Wn(M')) -> (Z\ N') 

for which the diagram 

( y , M - ) 

(Wn(Y-), Wn(M-)) 

(Z;N-) 

(Wn,Wn(L)) 

is commutative, and consider the crystalline complex CN with respect to 

this system. We define a homomorphism of complexes CN —» 6~1(WUUJY), 

where 8 : (Y')~T —> Ye7, as follows. Let (D',MD) be the PD-envelope of 

( Y ' , M ) in (Z',N'). By the universal property of the PZ>-envelope and the 

usual P D - s t r u c t u r e on the ideal of Y in WN(Y) (which is characterized by 

et.(a)M = (p- l)!-1eip_1(a',i(P"1)) for a G Oy, % > 1 ) we have (Wn(Y% 

WN(M')) —> (D',M'D), and this morphism gives a homomorphism of com

plexes CN -> uWn(Y-)/(Wn,Wn(L),[}) where 
q>0 

Ru^ {Y)l{Wn,Wn{L))\) is the quo

tient of 
q>0 

,jJWn(Y)/(Wu,Wn(L)) by the ideal generated locally by local sections 

of the form 

( 4 . 1 9 . 1 (l(ali])-ali-i]da (aeKei(Wn(Oy)—+Oy •), />!)• 
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SiTifp thf* irriRP-p of (4.19.1 Ì in W„ujh is 7,pro fthis is seen for examnle. bv the 

fact tha t lim 

n 

WnUy is torsion free and 

i\(d(aM) - a^-^da) = d(ai) - ia^da = 0 ) , 

we have UWn(Y)l{Wn(L)),{] Wnuy = 6-HWnujY) Thus we obtain 

the desired map Wnuy = 6-HWnujY) By applying RO. we have 

RuYttWn,Wn(L))*(°y/Wn) ~* WnUY The fact that this is an isomorphism 

is reduced to the case n = 1 by (4.5)(1). For n = 1, if we take Y' = Z' = Y', 

< 4 = C? -+ Wia;^ coincides with the Cartier isomorphism C 1. 

( 4 . 2 0 ) . — We show that in the semi-stable reduction case treated in §1 , 

the de Rham-Wi t t complex in § 1 is canonically isomorphic to the de R h a m -

Wit t complex of this section. Let the situation be as in § 1 and define the log 

structures on Y and on Spec(/c) as in (2.13.2). Let Wncjy T (resp. Wnu'YIt) 

be the de Rham-Wi t t complex of §1 (resp. §4). Let U be a dense open 

subscheme of Y which is smooth over k, and let u : U —• Y be the inclusion 

map. Then, Wn<jj'jj r = WjSl'y = Wnu)'v n by the reduction to the classical 

case [IR], and hence Wnuj'Y j and Wnu>'YII are regarded as subcomplexes of 

the same complex u*Wn(jj\jj = u^Wnoj'uH (here use (4.4) to see the map 

Wncj'YtI —• u*Wn(jo\j It is injective). By the presentation (4.6) of Wncj'YII, we 

see that these subcomplexes are the same. Q .E .D. 

We give a proof of the exactness of (1.5). Let (WnuY) be the sheaf obtained 

by replacing /~1(Lfifp) in (4.6.1) by the trivial group sheaf, and let (WNULR)F 

be the sheaf (4.6.1). Then we have an evident surjection (wnzYy - WnZY 

which sits in a commutative diagram 

= 6-HWnujY) (wnùqYy (WNLJY)' 0 

n Wniüy'1 WnùY Wniüy 0 

Here the upper row is exact, the left and the right vertical arrows are 
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isomorphisms by (4.6), and the lower row is exact except possibly at Wnüy. 
This shows the exactness of the lower row. 

In the above, we obtained (WnuY)' WnuY. From this we obtain also 

9>0 
UWN(Y)LIWN) P 

q>0 
wnzY where Wn(Y) is endowed with WN(M), 

WN is endowed with the trivial log structure, and T is the ideal generated 
locally by 7/z',j,a,6 and dr)IJ^A^ (4.7) regarded as local sections of UO'W (YyWn-

Finally the coincidence of the monodromy operator of § 1 and that of § 3 
follows from the commutative diagram of exact sequences 

0 CJ-1] WN ®wn<t> CY/WN CN 0 

o _ + e-\wnuY)\-\\ 8~\WNUY) e-^WNUJY) 0 

where the upper row is the exact sequence in (3.6), the left and the right 
vertical arrows are as in the proof of (4.19), and the midlle vertical arrow is 
defined in the same way as the left and the right ones. 

5. — de R h a m c o h o m o l o g y 
The aim of this section is to prove 

T H E O R E M (5.1). — Let A be a complete discrete valuation ring with field 

of fractions K and with perfect residue field k such that char(K) = 0 and 

char(k) = p > 0, and let N be the canonical log structure on Spec(A) (2.13). 

Let X be a scheme with a fine log structure M and with a smooth morphism 

f : (X, M) —» (Spec(A), N) and let Y = X Denote the inverse image of 

M (resp. N) on Y (resp. Spec(fc)) by M ( resp.L) . Assume that X is proper 

over A and the morphism (Y, M) —• (Spec(fc), L) is of Cartier type. Fix m e l , 

and let 

D = Q lim 

n 
Hm(((Y, M)/(Wn, Wn(L)))crys, Oy/wJ • 

262 



EXPOSE V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES 

Then, to each prime element tt of A, we can associate a canonical K-

isomorphism 

PN:K®KODSSSSSS^H%SSDDDR(XK/K) 

(KQ denotes the field of fractions ofW(k), Xj< = X®AK endowed with the log 

structure induced bu M. and H%R(XK/K) = H™{XK,UXKIK)), satisfying 

PTTU = PTT exp(log(u W ) for ue A* . 

In particular, the linear operator Wnuy = 6-HWnujY) on H%R(XK/K) is independent 

of 7T. 

We shall use the following notations. Lei An = A®l/pn2, Xn = X®l/pn2. 

We endow Spec(An) (resp. Xn) with the inverse image of N ( resp .M) . We 

denote fiA simply by [*/*']. 

LEMMA (5.2). — Fix a prime element 7r of A, and let Spec(i?n) be the PD-

envelope of Spec(An) in Spec(Wn[t]) with respect to the closed immersion 

t i—y 7T. Endow Spec(i?n) with the log structure associated to N —» Rn ; 

1 i—• t. Then, we have a canonical isomorphism in Q ® ps(D((X.)ei, R.)) 

he:Q R{Rn [Y/(Wn, Wn(L))]}n>i = Q ® {[XJSpec(Än)]}n>!. 

P R O O F . Note [Xn/Spec(i?n)] = [Xi/Spec(i2n)] . Take r > 0 such tha t 

(mA)Pr C pA. We define hn to be the composite of 

(5.2.1) 

Q ® {Rn ® i „ [Y/(Wn, Wn(L))]}n 

l<8)<Pr 
Q ® { A , 

d 
ïvn[Y/(Wn,Wn(L))]}n (2.24) 

Q ® { f i n 
9 

wn<t>[Y/Spec(Wn < t >)]}„ (4.13Ì 

Q ® { [ X i / Spec(fin)]}n = Q ® {XJ Spec(fin)]}„ 

where (jp are the frobeniuses, SvedWn < t >) is endowed with the log 

structure associated to N -+ Wn < t > ; 1 i—> t, g : Wn < t >-+ Rr> is 

the homomorphism 

/ i—• tpr , a i—• <£>r(a) for c Wn; 
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and the arrow (*) is induced by the left big square of the commutative diagram 

below. Though the log structures are abbreviated for simplicity, this diagram 

is a commutative diagram of schemes with log structures. In this diagram the 

composites of the horizontal arrows are the r - t h iteration of the frobenius. 

X1 

S p e c h i ) 

Spec(i?n) 

Y 

Spec(fc) 

Spec(Wn < t >) 

X1 

(**) 

Spec(Ai) 

Spec(i?n) 

It is easily seen tha t is i?n-linear and is independent of the choice of r. 

The following ( 5 . 3 ) shows that hn is an isomorphism. 

LEMMA ( 5 . 3 ) . — The arrow (*) in ( 5 . 2 . 1 ) is an isomorphism. 

P R O O F . 

Q®{Rn 
9 

®wn<t>[y/Spec(Wn <t>)]}n*ÉQ®{Rn £m[Xi/Spec(Än)]}n 

(by ( 2 . 2 3 ) since (**) is cartesian) 

[Xi/ 
Q{[Xi/Spec(Än)]}n 

by ( 2 . 2 4 ) . 

(5 .4 ) . — The isomorphism hn induces an isomorphism in 

ps(D((X.)et,A.)) 

Q ® { ^ „ ® ^ „ [Y/(Wn,Wn(L)))}n Q ® {An ®£n [XJ Spec(i?n)]}n 

and the last object is isomorphic to Q®{[Xn/Spec(^ln)]}n by the base change 

theorem (2.23). Since 

Q lim 
n 

Hm(Xn,[Xn/Spec(An)]) H7}B(XK/K), 
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we obtain an isomorphism 

PN : K ®W lim if "*(((Y, M) {WN, WN(L)))CRYS, OY,WJ 

n 

{WN, WN(L)) 

(5 .5 ) . — Finally we prove the relation between and p^u s tated in 

(5.1). Since Ax is generated by 1 + tua and the image of the multiplicative 

representative A : kx —* Ax, it is sufficient to consider the case u = 1 mod rriA 

and the case u = A(c) for c £ kx. 

We consider first the case u = 1 m o d r a ^ . Let r be as in the proof of (5.2). 

Consider the morphism 

®®{[Y/(Wn,Wn(L))}}n 
gdf 

%®{[Y/(Wn,Wn(L))]}n 

^Q®{[Y/Wn <t >]} ,hg 
Q ® { [ X i M „ ] } „ 

(i = 1, 2), where s is the morphism induced by h in (4.13) by taking 

Tn = Spec(VFn < t > ) whose log structure is as in the proof of (5.2), and 

the arrow fi (resp. /2) is induced by 

9i :Wn <t>—• An] t I • 7TP V 

(resp. g2 : Wn < * > — • ^-n ; * 1—• ?rpr). Then the map p™ (resp. p^) : D —> 

Hm(XK/K) coincides with Hm(fl oso ip~r) ( r e sp .#m( /2 0 5 0 <p~r)). Let 

(D'n,MDin) be the PD-envelope of Spec(VFn < t > ) in Spec(VTn < *i,*2 > ) , 

where Spec(Wn < t > ) is endowed with the log structure associated to 

N — • Wn < t > ; 1 1—• t and Spec(Wn < ¿1,^2 > ) is endowed with the 

product log structure. Let pi : D' — • Spec(Wn < t > ) (i = 1, 2) be the 

i - th projection. Since g\ m o d p and g2 m o d p coincide (as morphisms of log 

schemes), we have by (2.17.3) 

PI = 

i>0 
( M J 1 - ! ) 1 ^ 

0<j<i 

{WN, WN(L)) 

as morphisms ; [Y/Wn <t>}^ [Y/D'n]., where {WN, WN(L)) and p* denotes the 

265 



O. HYODO, K. KATO 

pull back by pi. From this we obtain 

f1 
i>0 

{UPR - l)W/2 O 
0<i<i 

(N-j) 

i>0 
l o g K yl]f2oAfl. 

Hence we have 

pru = Hm 
i>0 

log(upr)[i]f2oAfi oso<p-r) 

= Hm 
i>0 

log(up r*f2osotp-r)o(p-rAry 

(by Af o s = s o J\f which is easily seen, and by Ny> = pipJ\T) 

i>0 
(z!)-1(log(U))V*<>.A/\ 

Next assume u E \(kx). Then, the PD-morph i sm over Wn 

f:Wn<t >—> Wn<t> t 1—• ut 

preserves the frobenius, and this fact and the characterization of the isomor

phism (4.13) show tha t the diagram 

®®{[Y/(Wn,Wn(L))]}n 

by (4.13) 

Q ® { [ Y / S p e c ( W n < * > ) ] } „ 
by / 

Q®{[Y/Spec(Wn <<>)]}„ 

by (4.13) 

is commutative. The fact pn = puv follows from this easily. 
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