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CODIMENSION ONE FOLIATIONS IN CP", n > 3,
WITH KUPKA COMPONENTS
D. Cerveau and A. Lins Neto

1. INTRODUCTION

1.1 — Basic notions:
A codimension one holomorphic foliation in a complex manifold M can be

given by an open covering (Uy)aca of M and two collections (wa)aca and

(gaﬁ)UanUﬂ¢¢, such that:

(a) For each o € A, w is an integrable (wq A dwg = 0) holomorphic 1-form
in Uy, and wy # 0.
(b) If Us N Up # ¢ then wa = gag - wg, where gag € O*(Ua N Up).
Recall that O(V) is the set of holomorphic functions in V and O*(V) =

{9€ O(V)lg(p) #0 Vp €V}
Let F = ((Ua)aca, (Wa)aeA(Jap)U.nUs#4) be a foliation in M. The sin-

gular set of F, S(F), is by definition S(F) = (] Sa, where So = {p €
a€A

Ua|wa(p) = 0}. It follows from (a) and (b) that S(F) is a proper analytic
subset of M. The integrability condition implies that for each o € A we can
define a foliation F, (in the usual sense) in Uy — S, whose leaves are solutions
of we = 0. Condition (b) implies that if U, NUs # ¢, then F, coincides with
Fpin Uy, NUg — S(F). Hence we have a codimension one foliation defined in
M — S(F). A leaf of F is by definition, a leaf of this foliation.

If S(F) has codimension one components, then it is possible to find a new

foliation F; = ((Ua)aeA,(tba)aeA,(gag)UanUB¢¢) such that S(]'-l) has no

S.M.F.
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components of codimension one, S(F;) C S(F), and the leaves of F and
F1|(M — S(F)) are the same (in fact we = fo - Wa, fo € O(Uy)). From now
on all the foliatons that we will consider will not have codimension 1 singular

components.

1.2 — The Kupka set:
In 1964 I.Kupka proved the following result (see [K]);

1.2.1 THEOREM. Let w be an integrable holomorphic 1-form defined in a
neighborhood of p € C", n > 3. Supose that w, = 0 and dw, # 0. Then there
exists a holomorphic coordinate system (z,y, z3, . . . , 2n) defined in a neighbor-
hood U of p such that z(p) = y(p) = 0 and w = A(z,y)dz + B(z,y)dy in this
coordinate system, where A(0,0) = B(0,0) = 0 and 42(0,0) — %(0, 0) # 0.

In fact Kupka proved this result in the real context, but his proof adapts

very well in the holomorphic case.

1.2.2 Remarks: Let w, A, B and U be as in Theorem 1.2.1.

(i) The set {(z,y,23,...,2,) € Ulz = y = 0} = V is containned in U. If
the singular set S of w has no codimension 1 components, then V is
a smooth codimension 2 piece of S and (0,0) is an isolated solution of
A(z,y) = B(z,y) = 0. By taking a smaller U if necessary we can suppose
that SNU =V.

(i) The foliation induced by w = 0 in U is equivalent to the product of the
singular foliation in U N {23 = c3,...,2n = cn} C C? x (c3,...,¢n) given
by Adz + Bdy = 0 (or by the differential equation & = —B,y = A), by
the codimension 2 foliation in U given by * = ¢,y = c3. The singular
set in this case is V = {z = y = 0}.

Let F = ((Ua)aeas (Wa)aea, (9ap)v.nUs#4) be afoliation on M. We define

the Kupka set of F by K(F) = | J Ka, where
a€A

Ko = {p € Ua|wa(p) = 0 and dwa(p) # 0}
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CODIMENSION ONE FOLIATIONS IN CP"

Since wq = gapwp in U, NUg # ¢, we have dwy = dgog Awg + gopdws which
implies that K, NUg = K3 NU,. It follows from (i) that K(F) is a smooth
complex codimension 2 submanifold of M. In fact K(F) = S(F) — W(F)

where W(F) = U Weo, Wo = {p € Uy|wa(p) = 0 and dw(p) = 0}. Observe
a€A

that W(F) is an analytic subset of M.

1.2.3 Definition: We say that K is a Kupka component of F if K is an

irreducible component of S(F) and K C K(F). Observe that a Kupka com-

ponent of F is in particular a smooth connected codimension 2 analytic subset

of M.

Let V be a connected codimension 2 submanifold of K(F). It follows from
the local product structure (see 1.2.1 and 1.2.2) that there exists a covering
(B:)ier of V by open sets of M, a collection of submersions (v;)ier, ¥i: Bi —
C?, and a 1-form w = A(z,y)dz + B(z,y)dy defined in a neighborhood C of
(0,0) € C2, such that:

(a) ¢i(B;) C C for evere i € I.

(b) (0,0) is the unique singularity of w in C and V N B; = ¢;(0,0), for
every i € I.

(c) F|B; is represented by w} = ¢¥(w).

We will say that F has transversal type w or X along V, where X is the
vector field —B3/0x + A3/8y. The linear transversal type of F along V is, by
definition, the linear part of X at (0,0) in Jordan’s canonical form, modulo
multiplication by non-zero constants. Let L be the linear part of X at (0,0)

in Jordan’s canonical form. We have the following possibilities:

(i) L is diagonal with eigenvalues A\; # A,.
(if) L is diagonal with eigenvalues A; = Ag # 0.
(iii) L is not diagonal with eigenvalues A; = Ap # 0.
Observe that, since 48(0,0) - %(0,0) # 0, we have tr(L) # 0 and so the
possibilities A; = Ay = 0 or \; = —)\, cannot occur.

In case (i) the two eigendirections of L induce via the submersions 9;, two
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line subbundles of the normal bundle v(V') of V in M. We will call these
line bundles L; (relative to A;) and L, (relative to Az). It is clear that
v(V) = Ly ® L,. In case (iii) L has just one eigendirection which induces in
the same way a line subbundle L; of v(V'). In the case of Kupka components
we have the following (see [G.M- L.N]):

1.2.4 - THEOREM. Let dim(M) > 3 and K be a Kupka compact component
of F. We have:

(a) In case (i), if C(L;) is the first Chern class of L;, i = 1,2, considered in
H2(K, C), then \,C(L3) = M\C(Ly).

(b) In case (iii) we have C(L;) = 0.

(c) In case (i), if Aa/\1 = p/q, where p,q € Z, are relatively primes and
C(Ly) # 0, then X is linearizable.

1.3 - Codimension 1 foliations of CP*, n > 3:

A holomorphic foliation in CP™ can be given by an integrable 1-form w =
Z widz; (w A dw = 0), with the following properties:
=0
(a) wo,...,w, are homogeneous polynomials of the same degree > 1.
(b) ir(w) = Z w;z; =0 (R = Z 2;0/0z; is the radial vector field).

=0 1=0

This form can be obtained as follows: let m: C"*! — {0} — CP™ be the
canonical projection and F = ((Ua)aea, (Wa)aecas (9aB)U.nv,s4) be a folia-
tion in CP". Let 7* = ((Uz)aca, (Wh)aea, (955)U.nUs#e) be the foliation
in C™*! — {0} defined by Uy = n7!(U,), w}, = 7*(wq) and g}5 = gap 0 7.
Since for Uy N Uz NUJ # ¢ we have g5 - g5, - g5, = 1, we can use Cartan’s
solution of the multiplicative Cousin’s problem in C"*! — {0} (see [G-R]) to
obtain an integrable 1-form n in C**! — {0} such that for any o € A, we have
n|U% = hq - w?, where h, € O*(U?). From Hartog’s Theorem (see [G-R]),
n extends to a holomorphic 1-form p in C™*1. If u = pp + pr+1 + ... is the
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Taylor development of p at 0, where the coefficients of u; are homogeneous
of degree j and pj # 0, then it is easy to see that w = ;. is integrable. We

leave it to the reader the proof of the following facts:

(c) S(w) = 8§(F*) ===1(S(F)) u{0}.
(d) L* is a leaf of F* iff L* = n~1(L), where L is a leaf of F.
(e) If k = degree (w) > 2, then K(F*) = n~1(K(F)) = {p € C**|w(p) =0
and dw(p) # 0}.
When degree (w) = 1 we can have w = z;dz; — 22dz; and in this case
K(F*) ={z1 = 22 =0} = =~1(K(F)) U {0}.
Observe that condition (b) is equivalent to conditions (c) and (d) and means

that the lines through the origin are tangent to the leaves of F*.

Observe also that given an integrable 1-form w in C"*! satisfying (a) and

(b) we can induce a foliation F(w) in CP™ as follows: let (U;)?_, be the cover-

(:cf,,...,x::_l,a:::H,...,x;). Define n; = ¢¥(n}), where nf = w|(z; = 1) =
ij(zo, oesZic1, 1, Zig1, ..o, 20)dz;. It is not difficult to see that if dg(w) =
J#i

k then n;|VinU; = (%)k+1n;|U:nNU;. Hence F(w) = (U:)eg, (1) 7o ((@?)¥+1)ix;)

is a foliation on CP™.

Remark: Two integrable 1-forms w and 5 in C**1, with properties (a) and

(b) define the same foliation iff w = X - ) where A € C*.

It follows from the above considerations that the space of foliations in CP™
can be written as Up>1 P, where P, is the projectivization of the following
space of polynomial 1-forms: I, = {wlw = Y I widz;,dg(w;) = m Vi =
0,...,n, wAdw=0, szwj = 0 and the set {wp = -+ = w, = 0} has all

=0
irreducible components of codimension > 2}.
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Observe that I, is an open subset of the following algebraic set

E.. = {w|dg(w) = m,w A dw =0, Zz,-w,- =0}

=0

Problem - Describe in some way the irreducible components of P,,. Let us

see some examples.

1.3.1 - Example: Let f,g be homogeneous polynomials in C**!, n > 3,
where dg(f) = k > 1, dg(9) = £ > 1 and k/¢ = p/q where p and ¢ are

relatively primes. Assume that:

(%) V z € {f =g=0}- {0} we have df(z) Adg(z) # 0.

We will use the notation fM g (f = 0 intersects g = 0 transversely) in this
case. We observe that Noether’s lemma implies that if f and g satisfy (*)

then {f = g = 0} is a complete intersection.

Let w = qgdf — pfdg. It follows from Euler’s identity that ig(w) = 0.

Moreover w A dw = 0 because w = f.g.n, where = q'—ifﬁ - pig-‘l and dn = 0.
Therefore w induces a foliation in CP™, F(w), such that:
(1) S(F(w)) = 7{p# 0| w(p) =0} = S (singular set)

(ii) K(F(w)) =n{p#0]| f(p) = g(p) = 0} = K (Kupka set)
(iii) f9/gP, considered as meromorphic function on CP™, is a first integral of

F(w). This follows from the fact that w = gP*! f1=9d(f7/g?).
(iv) w € P, wheren=k+¢— 1.

As a consequence of the techniques developed in [G.M-L.N.] it is possible

to prove the following result:

1.3.2 THEOREM. Let Fy = F(w), where w is as in example 1.3.1. Then
there exists a neighborhood U of Fy in P, such that if F € U then there are
polynomials f and § of degrees k and £ respectively, and F = F (qgd f—p fdg).

As a consequence we have:
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1.3.3 COROLLARY. There are irreducible components in P, (for all m > 1)

whose foliations are defined by meromorphic functions in CP™, n > 3.
Concerning Kupka components we will prove in §3 the following result:

1.3.4 THEOREM A. Let F be a foliation of CP™, n > 3, which has a Kupka
component K of the form {[z] | f(z) = g(z) = 0} where f and g are homo-
geneous polynomials and f M g. Let dg(f)/dg(9) = p/q where p and q are

relatively primes. Then:

(a) If dg(f) = dg(g), then F is the foliation induced by the form fdg — gdf.
In particular f/g is a first integral of F.

(b) If dg(f) < dg(g) then F is induced by a form of the type qg:1df — pfdgi,
where g1 = g + h.f is homogeneous and dg(g,) = dg(g). In particular
f9/gY is a first integral of F.

1.3.5 Example: A logarithmic form is one of the type

(%) w:fl...f,ZA,%"

j=1
where A1,...,A, € C* and fi,..., fr are holomorphic functions. When
fi,..., fr are homogeneous polynomials in C**1, dg(f;) > 1fori=1,...,r,

and ) A\;dg(f;) =0, then w induces a foliation F(w) in CP", where F(w) €
=1
P,,m= Xr: dg(fi)—1. Observe that i Aidg( f;) = 0 is equivalent to the con-
=1 =1

dition ) z;w; = 0. We will use the notations F; = {[z] € CP" | fi(z) = 0}

=0
and F;; = {[z] € CP" | fi(z) = fj(z) = 0} if i # j. We will assume that
fi,..., fr are irreducibles. The foliation F(w), induced by w in CP™ has the
following properties:
(i) Forevery i =1,...,r, F} = F; — S(F(w)) is a leaf of F(w).
(ii) The holonomy of F* is linearizable and is conjugated to a subgroup of the

group of linear transformations of C generated by the set {g; | g;j(z) =
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exp(2miAj/Xi).z, j=1,...,r, j # i}. The holonomy of a leaf L #
Fy, ..., F} is trivial.

(iii) For any i # j, F;; C S(F(w)). Moreover, if \; # \; then F;; — V is
contained in the Kupka set of F(w), where V' = {[2] | dfi(z) A df;(z) =
ojuv, V' = U {[z] | fe(2) = 0}. In particular K(F(w)) C U F;;.

k#i,j i#)
(iv) The function f}...f> (in general multivalued) is a first integral of

F(w). The following result is known:

1.3.6 THEOREM. (J. Omegar) — Let Fy be the foliation induced by w in CP",
n > 3, where w is like in (*) of 1.3.5. Assume that fi,..., f, are irreducibles

and for some i € {1,...,r}, say i = 1, we have:

(a) F is smooth.
(b) For any subset {j1,...,js} C {2,...,r} where j; < -+ < j, and any
p€ FiNF; N---NF; then F\,F;,...,F;, intersect multitransversely
at p.
(c) For some j > 1 we have \;/)\; ¢ R.
Then there exists a neighborhood U of Fy in P,, such that if F € U
then F is induced by a logarithmic form of the same type of w, say n =

.
dg; .
g1s---9r 2 MGk, where dg(g;) =dg(f;), j=1,...,r.
Jj=1

It follows that:

1.3.7 COROLLARY. There are irreducible components in P, (for allm > 1)

whose foliations in an open and dense subset are defined by logarithmic forms.

1.3.8 Definition: We say that a meromorphic 1-form w, defined in some
complex manifold M, has an integrating factor, if there exists a meromorphic

function f in M, called an integrating factor, such that, d(—'}—’) = 0. Remark

that for w as in (*) of 1.3.5, the function f = f; ... f, is an integrating factor.

In §3 we will prove the following result:
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1.3.9 THEOREM B. Let F be a foliation in CP™, n > 3, such that there is
an analytic subset N C S(F) with the following properties:

(a) cod(N) =2 and N = {[z] € CP" | f(z) = g(z) = 0}, where f and g are
homogeneous polynomials on C"11.

(b) K(F)NN is open and dense in N and moreover for any connected com-
ponent C of K(F)N N the linear part of the transversal type of F at C
has eigenvalues \1(C) # 0 # A2(C), where A2(C)/A1(C) ¢ R.

(c) For any p € N — K(F), F can be represented in a neighborhood of p by
a holomorphic form which has an integrating factor.

Then there exists a closed meromorphic 1-form n in CP™ which represents
F outside its divisor of poles. In particular F is induced by a homogeneous
1-form in C™*! which has a meromorphic integrating factor.

Furthermore F is of logarithmic type if we assume that:

(d) K(F) is dense in each irreducible component of codimension 2 of S(F).
(e) For any connected component C of K(F) the transversal part of F at C

has linear part non degenerated (i.e. 0 is not an eigenvalue).

Remarks:

1.3.10 — It will follow from the proof that condition (b) can be replaced by;

(b’) A2(C)/A1(C) ¢ Q and the transversal type is linearizable.
1.3.11 — In [C-M] the authors give some sufficient conditions for a holomor-
phic integrable 1-form have a local integrating factor. One of their results

implies that (c) follows from (b) and

(c’) For some neighborhood U of p € N — K(F), F|U has a finite number of

analytic leaves which intersect multitransversely in the points of N.

1.4 An example: Let K be the twisted cubic in CP?, which is defined in
homogeneous coordinates (z,y,z,w) € C* by the equations f = g = h =0,

where
(%) f=XW-YZ, g=XZ—Y2andh=YW—Z2.
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We will prove here that there exists no foliation in CP? having K as a Kupka

component.

Let Uy and Uy be the affine coordinate systems in CP2, whose points are
of the form [1:u:v:w]and [z :y: z: 1], respectively. Then K C Uy U U,.
Moreover K N Uy and K N Uy can be parametrized by ¢o(t) = [1: ¢ : 2 : ¢3]
and @4(s) = [s%;5% : s : 1] respectively, where po(t) = @a(s) iff s = 1/t.
Let fo(u,v,w) = f(1,u,v,w) = w — uv, go(u,v,w) = g(l,u,v,w) = v — u?,
fa(z,y,2) = f(z,9,2,1) = = — yz and hy4(z,y,2) = h(z,y,2,1) = y — 22
Remark that K NUy = {fo = go =0} and K NUy = {fs = hy =0}.

Suppose by contradiction that there exists a foliation F on CP?® whose
Kupka set contains K. Let w be a homogeneous integrable 1-form in C* such
that ip(w) = 0 and w represents F. Let w = f_‘aaidzi, where dg(a;) = k,
i=0,...4. fwy=w| {20=1} = an(l,u,v,w)du + a(1,u,v,w)dv +
a3(1,u,v,w)dw and wy = w | {24 = 1} = ao(z,y,2,1)dz + o (z,y, 2,1)dy +
as(z,y, z,1)dz, then F|Uj is represented by wo and F|Us by ws. Moreover in
U, N U, we have wy = z~(k+Dqy,.

Now, consider the maps v, 14: C* — C3 given by ¢ (u, v, w) = (u, go(u, v, w),
fo(u,v,w)) and Y4(z,y, 2) = (fa(z,y, 2), ha(z,y,2),2). It is not difficult to
see that ¢ and 14 are diffeomorphisms, so that we can consider (u, go, fo) and
(fa, ha, 2) as coordinates in Uy and U, respectively. Moreover (K NUp) =
{fo = go = 0} and ¢4 (K NUy) = {fs = ha = 0}. Observe also that the inverse

maps of 1o and 14 are polynomials, so that we can write
wo = A(u, go, fo)du + B(x, go, fo)dgo + C(u, go, fo)dfo

wy = D(f4, ha, 2)dfs + E(fs, ha,2)dhs + F(fs,he, 2)dz

where A, B,C, D, E and F are polynomials. Let us analyze wg. Consider the

vector field
x=(2-9B) D, (24 0) 0, (9B o4y
“\9g90 0fo) Ou 0fo Ou/ dgo Ou  0go/ 9fo
As the reader can see, the integrability condition is equivalent to ix(wo) = 0.

Moreover, in the proof of Kupka’s Theorem (1.2.1) it is proved that the flow
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of X leaves invariant the Kupka set. Since {fo = go = 0} C K(F) N Uy, we

must have X(u,0,0) = (g—gco - g%) (u,0,0)Z, so that,

dA aC 0B 0A
(1) 5%(“’0’ O) = %(U, an) and —aZ(U,O,O) - 8_go(u’ 0, 0)

On the other hand, since K C S(F), we can write

wo = (a1(u)go+az(w) fo)du+(b1 (u)go+ba(w) fo)dgo+(c1 (u)go+ca(u) fo)dfo+. . .

where ay,...,cy are polynomials in u and the dots mean terms of order > 2
in (go, fo). This implies that:

X = (a1(u) - bz(u))-giu +a2(u)£(; - al(u)aif0 +...

where the dots mean terms of order > 1 in (go, fo). From (1) we get that
a1 = az = 0 and X(u,0,0) = (c;(u) — ba(u))Z. On the other hand, since
K C K(F), we must have dwo(u,0,0) # 0 Vu € C, and this implies that
c1(u) —ba(u) # 0 Vu € C. Hence ¢; — by = ¢, ¢ # 0 a constant, because c; — bs

is a polynomial. From these considerations it is easy to see that:
(2) dwo|K N Up = cdgo A dfp.

With an analogous argument it is possible to conclude that

3) dws|K NUy = édfs A dhy, where ¢ # 0 is a constant.

Now, recall that wy = z~(**Dw, in Uy N Uy. Since z = 23 along K N Uy and

w4(0,0, z) = 0, we have:

dwo|K NUp N Uy = 2~ D dw, (0,0, 2) = 2735+ dw, (0,0, 2)
which together with (2) and (3) implies that:
(4) édgo A dfo = 2735+ Vdf, Adhy along K NUgNU,, &= c/é.
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As the reader can verify easily, we have the following relations

{ foIUo NU, = $_2f4|Uo NU,
goon NUy = .’1:—2[Zf4 - yh4]|Uo NU,

This implies that

()
dgoAdfolKnUonU4 = y$_4dh4 /\df4|I{nUonU4 - Z_lodh4 /\df4|KﬂUoﬂU4

because yz~* = 2710 along K N U,.

Finally, from (4) and (5) we get that 10 = 3(k + 1), where k € N, which is
a contradiction.

This example motivates the following:
Problem: Are there foliations on CP™, n > 3, which admit a Kupka com-

ponent which is not a complete intersection?

We think that the answer is no.

2. BASIC RESULTS

In this section we will state and prove some of the results that we will need
in §3.
2.1 Definitions: Let ¢: — R be a C? function, where U C C™ is an open
set. We say that ¢ is strictly k-subharmonic (briefly s.k — s.) or (n — k + 1)-
pseudoconvex, if for any z € U the 0-matrix of ¢ at z, which is defined
by

o? .
Hy(2) = (a_z_i(;pzj (z)) 1<i,j<n

has at least k positive eigenvalues. Observe that H,(2) is a hermitian matrix,
so that all its eigenvalues are real. Moreover, if f: V' — U is a biholomorphism
then

Hopog(w) = P Hy(f(w)).P
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where P is the jacobian matrix of f at w. This implies that the concept of
s.k — s. can be defined in complex manifolds: if M is a complex manifold of
dimension n and ¢: M — R is C?, we say that ¢ is s.k — s. if for any p € M
there is a holomorphic local chart a:U — V C C", p € U, such that poa™!
is s.k—s.. It is clear that if 3: U; — V3, p € Uy, is another holomorphic chart,
then po 871 is s.k — s..

We say that a connected complex manifold M is k-complete, k > 1, if there

exists a s.k — s. function ¢: M — R such that:
(*) Jim ¢(p) = +oo,

that is, for any sequence (pnp),>1 in M, without accumulation points, we

have lim ¢(p,) = +00. We observe that a s.k — s. function, k¥ > 1, cannot
n—oo

have a local maximum. This fact follows from the maximum principle for
subharmonic functions, as the reader can verify easily. Hence there are no
s.k—s. functions on compact manifolds. Remark also that property (*) implies
that:

(i) For any r € R the sets ¢~1(—o00,r] and ¢~!(r) are compact.
(ii) inf {@(p) | p € M} = m > —oo, and there exists pg € M such that

¢(po) = m.
When k = n = dim(M) a s.k — s. function is also called a strictly subhar-

monic function.

2.2 Extension of Meromorphic forms:
The main result of this section is the following:

2.2.1 THEOREM. Let M be a k-complete complex manifold, where k > 2.
Let C be a compact subset of M and w be a meromorphic (resp. holomor-
phic) ¢-form defined on M — C. Then w extends to a meromorphic (resp.

holomorphic) ¢-form on M.

Proof: Let o: M — R be a s.k—s. function such that lim ¢(p) = +o0. Since
p—oo

a s.k — s function is .2 — s. if k > 2, we can assume that k = 2. Let m =
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inf{p(p) | p € M} and r = sup{p(p) | p € C}, so that M — C C ¢~ 1(r,+00)
and w is defined on ¢~!(r,+00). The idea is to prove the following:
Assertion 1: If w can be extended to p~!(s,+00), where s < r, then there
exists € > 0 such that w can be extended to ¢~1(s — &, +00).

Since ¢~1[m,+00) = M, then assertion 1 clearly implies the theorem. On

the other hand, assertion 1 is implied by the following:

Assertion 2: Suppose that w has been already extended to ¢~!(s,+00),
where s < r. Given p € ¢p~1(s), there exist a neighborhood V of p such that
w can be extended to V U ¢p~1(s, +00).

Assertion 1 follows from assertion 2 because ¢~1(s) is compact. In order
to prove assertion 2 we use Levi’s Theorem:
Levi’s Theorem: (see [S] for the proof). Let W C V C C™~! be open
sets, where W # ¢ and V is connected. Let f be a meromorphic (resp.
holomorphic) function defined in (W x A(r)) U (V x [A(r) — A(r")]), where
A(r) ={z € C||2] < r} and 0 < v’ < r. Then f can be extended to a
meromorphic (resp. holomorphic) function on V' x A(r).

An open set A of the form (W x A(r)) U (V x [A(r) — A(r')]) is called a
Hartog’s domain. The set A=Vx A(r) is called its envelope of holomorphy.

Another fact we will use is the following:

LEMMA 1. Let ¢:U — R be a s.2—s. function, where U C C" is an open set
(n >2). Let p € U be such that ¢(p) = s. Then there exist a biholomorphism
a: Vi — U; and a Hartog’s domain A C V; such that

(a) 0eV;,a(0)=pelU, CcU
(b) a(A) C U; and p € a(A), where A is the envelope of holomorphy of A.
For the proof see the §8 of [S-T].

Assertion 2 follows from Levi’s Theorem and Lemma 1. In fact, given p €

¢~ 1(s), by taking a local chart we can assume that p=0 € C" and ¢: U — R,
0 € U c C". Since ¢(0) = s and w is defined in p~!(s,+00) C U, we can

write w = Zf[dl[, where I = (i1,...,%¢), 41 < -+ < ig, dzy = dz;; A+ -Adz;,
I
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and fr is a meromorphic (resp. holomorphic) function on ¢~!(s,+00). Let o
and A be as in lemma 1 and g; = froa™!, I = (i; < --- < ig). From Levi’s
Theorem g can be extended to a meromorphic (resp. holomorphic) function
on A. Hence f; can be extended to a meromorphic (resp. holomorphic)
function on o(A). Since a(A) is a neighborhood of p = 0, then assertion 2 is

proved. i

Now we consider the following situation: let fi,..., fi be homogeneous (non
constant) polynomials in C**! and V(fi,..., fx) = {[p] € CP" | fi(p) =
= fulp) = 0},

2.2.2 THEOREM. M = CP"-V(f1,..., fx) is{-complete, where { = n—k+1.

Proof: Let dg(f;) = dj, j = 1,...,k and ¢1,...,qx € [N] be such that
dig1 =+ =dpge =q¢> 0. Put G; = f}”, so that dg(G;) =4¢,j =1,...,k,
and V(f1,..., fk) = V(Gi,...,Gk). Define o: M — R by

o S

Yi=1 1G5 ()

where [ ] = m:C**! — {0} — CP™ is the canonical projection and z =

(20,...,2n). It is easy to see that ¢ is well defined and real analytic on

M. Moreover, since M = CP" — V(Gy,...,Gk), we have lim ¢(p) =
p—oo

lin‘1/<p(p) = +o00, where V = V(Gi,...,Gk). Let us prove that ¢ is s.f —
p—’

s.. Fix [2°] = [20:...:20] € M. We can suppose that z] # 0, so that

[2°] = [1:29,...,28], where 29 = 29/20. In the affine coordinate system

(1,...,2n) = [lizy:...:zy] € C", ¢ can be written as p = qp; — 3,

n k
where ¢1(¢) = fg(1 + 3 |a; ") and ¢2(z) = 3 lg;(2)|?, where g;(z) =

j=1 j=1
Gj(1,z4,...,2,). Therefore we have H, = gH,, — H,,. A direct computa-
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tion shows that H,, = (ai;j)i<i,j<n and H,, = (bij)1<i,j<n, Where

aii(z) = (1 +Z|xj|2) /(1 +;|mj|2)2

J#i

aij(z) = —xifi/ (1 T i |z |2)

i=1

2
. . k
b=y &, 0, (Z lg,-P)
J:

r<s

where AL = grggf - gsg-g—f. Observe that the quadratic form associated to
H, is

Qi(z,w) = Zw,-a,-jwj = (13-{- Z |xi|2) [Z |w,| + Z |lwiz; — w]x,|
i, j=1

i<j
Hence it is positive definite. For some fixed 2 € C* -V, V ={¢g; = --- =

gk = 0}, let K(z) = {w € C" | Zbij(m).wj =0,foralli=1,...,n}.
j=1

Assertion: dim(K(z)) >n—k+1forallz € C"*-V.

Proof: Since z € C" — V, let us assume for instance that g,(z) # 0. From
now on we will omit the point = in the notation. Let S be the space of

solutions of the linear system:
(6) ZAhw, s=2,...,k

Since in (6) we have k — 1 equations, we have dim(S) > n — k+ 1. So it is
enough to prove that S C K(z). Observe that (6) is equivalent to

09, . gs - 091 . — .
) Z@xJ o 2 ijwj’ §=2,...,k.
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On the other hand (7) implies that if r # s then

6

Jj=1 j=1

0 ;)
Z Arst gr oy i~ 9s %wj =0
; J

Therefore, if w € S, then Z Al w; =0 for all r # s. Hence, if w € S, then
J=1

-2
Zbijwj = (Z IngZ) ZZZisAzst
ji=1 j=1

Jj=1r<s

-2
(£0) "o (e -
j=1 r<s j=1

This proves the assertion.
Now if w € K(z) — {0}, we have

EtH‘,,w = qQ:(z,w) — Z Wibjjw; = qQ1(x,w) >0

i,y=1
This implies that H, has at least n — k + 1 positive eigenvalues. I

2.2.3 COROLLARY. Letk < n-1and fi,..., fi be homogeneous non constant
polynomials on C™*1. Then any meromorphic {-form defined in a neighbor-
hood of V(fi1,...,fk) C CP", can be extended to a meromorphic ¢-form in
CP".

2.3 Noether’s lemma of second order:

Let f,g:U — C be two analytic functions and V = {f = g = 0}, where U C
C™ is an open set. If W C V, we say that f intersects g transversely outside
W (briefly fM g out of W) if for any 2 € V — W we have df(z) A dg(z) # 0.

Classical Noether’s lemma can be stated as follows:
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2.3.1 NOETHER’S LEMMA. Let f,g,U,V and W be as above. Suppose that:

(a) W is an analytic subset of U, where cod(W) > 3.
(b) H\(U - W,0) = {1}.

If .U — C is an analytic function such that h|V = 0, then there are
analytic functions o, 3: U — C such that h = a.f + B.g.

When U = C”, n > 3, f and g are homogeneous polynomials, W = {0},
and f M g out of {0}, then we have the following: if h is a homogeneous
polynomial with h|V = 0, then there are homogeneous polynomials o and 3
such that h = a.f + B.g, where dg(a) + dg(f) = dg(B) + dg(g) = dg(h). In
particular if dg(h) < min{dg(f),dg(g)}, we must have h = 0. This assertion
follows from Noether’s lemma because H'(C" — {0},0) = {1} for n > 3 (see

[C]). Here we are mainly interested in the case where the 1-jet of h is 0 along

V.

2.3.2 Definition: Let U C C" be an open set, V C U be a codimension k
smooth complex submanifold and h: U — C be analytic. We say that the £-jet

of h is zero along V if for any 2° = (29,...,2%) € V there is a kolomorphic
coordinate system = = (x1,...,%,) defined in a neighborhood A of z° such
that:
(a) VNA={z,=-- =z, =0}
(b) h(z) = Z ao(x)x]* ... xp*

|lo|=£2+1
where in the above notation o = (04,...,0k), |o| =014+ 0k, andas: A —

C is holomorphic for all o such that |o| = £+1. We use the notation j& (h) = 0
to say that the £-jet of h is zero along V.

2.3.3 THEOREM. Let f,g:C™ — C be homogeneous polynomials, n > 3,
where fM g out of 0 € C". Let V ={f =¢g=0} and V* =V - {0}. Ifh
is a homogeneous polynomial with ji,.(h) = 0, then there are homogeneous
polynomials a,b and c such that h = af? + bf.g + cg®, where dg(h) = dg(a) +
2dg(f) = dg(b) + dg(f) + dg(g) = dg(c) + 2dg(9).
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Proof: Since fM g out of 0, for any 2° € V* there is a holomorphic coordinate

system (z1,...,2,) defined in a neighborhood U,e such that:

(a) f(z) =1, g(z) = z2 Vz € Uy, so that U,o NV = {z; = 25 = 0}.
(b) h(z) = a(z)z? + B(z)z172 + 7(2)73, V2 € U,0, Where e, 8,7 € O(Upo).
It follows that it is possible to find a convering (U;)ier of C™ — {0} by open
sets and three collections {a;}ier, {Bi}ier, {7i}ier, where oi,Bi,vi € O(U;)
and h|U; = (i f2+B:fg+7:i9°)|Ui;. When U;NU; # ¢ we have a;;i f2+06ijfg+
7ijg° = 0, where oy = aj — i, Bij = B — Bi and vi; = v; — vi € O(U; NU;).
Observe that this relation implies that g|U;NU; divides a;; f2|U;NU;. This fact
together with fT g out of 0 implies that a;; = 6;;g, for some 6;; € O(U;NU;).
Now, if U;NU;NUg # ¢ we have (6;j+08;ic+0ki)g = 0ij+ajr+ok; =0, and so
6ij + 6k + 6ri = 0. It follows from Cartan’s solution of Cousin’s problem that
there exists a collection (6;)icr, 6; € O(U;), such that é;; = §; — 6;. Therefore
we can define a function o € O(C™ — {0}) by

a|U; = o — big

Similarly, there are a collection (&;)ier, €i € O(U;), and v € O(C™ — {0})
such that v|U; = v; — €;f. Let hy = h — af% — yg2. It is clear that:

hi|Ui = Bifg+ 6igf* +eifg® = (Bi + 6:f + €i9)fg = vifg.

IfU;NU; # ¢, wehave (p;—p;i)fg = 0, so that ¢; = ¢;. Therefore there exists
B € O(C™—{0}) such that 8|U; = ¢;, i € I, and we have h = af2+3fg+vg>.
Now, from Hartog’s theorem, o, 3 and 7 can be extended to holomorphic

functions on C", which we call o, 3 and +y also. Let o = Zaj, B = Zﬁj
j20 j20

and v = Z’)’j, where «;, 3; and 7; are homogeneous of degree j. It is clear
>0

that if ji, j» and js are such that ji +2dg(f) = ja+dg(f)+dg(g) = ja+2dg(g),

then we have h = o, f2 + @j, fg + @j,g%. So we can take a = aj, b= aj,

and c = oj,. 1
Remark: We will need the above result only to prove (a) of theorem A.
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3. PROOFS

3.1 Proof of Theorem B:

Let F be a foliation on CP™ which satisfies hypothesis (a), (b) and (c) of
Theorem B. The idea is the following: let w be a homogeneous integrable
1-form in C™*! which represents F as in §1.3. We will prove that there exists
a homogeneous polynomial f such that d(w/f) = 0 and dg(f) = dg(w) + 1.
After that we will use some results containned in [C-M] to conclude the proof.

Let N = NjU---UN,. be the decomposition of N in irreducible components.
From the hypothesis we have that for each i = 1,...,r, N;NK(F) is open and
dense in N;. Since N;— K (F) is algebraic we have that cody,(N;— K (F)) > 1,
and so, N; N K(F) is connected.

Observe now that hypothesis (b) and Poincaré’s linearization Theorem im-
ply that N; N K(F) is of linearizable transversal type. This means that
there exist A\! and A} with A\i/A! ¢ R with the following property: (1)
Vp € N; N K(F) there exists a local chart (z,y,z):U — C x C x C*~2,
such that U N N; N K(F) = {(z,y,z)|z = y = 0} and F|U is the foliation
defined by the 1-form wy = A zdy — Myydz. If we divide wy by Mjzy we get
the form ay = iyu - adf, where a = A; / )\'i ¢ R. Observe that ay is closed,

so that wy has an integrating factor.

LEMMA 2. Let i € {1,...,r} be fixed. There exists a neighborhood A; of
N; in CP", and a meromorphic closed 1-form n; on A; such that if P; is the
divisor of poles of 1;, then F|(A; — P;) is represented by n;|(A; — F;).
Proof: It follows from the considerations before Lemma 2 and from hypoth-
esis (c) that it is possible to find a convering of N; by open sets of CP™,
(U;)jes and a collection (aj);jes such that:
(i) If j,k,¢ € J are such that U; N Uy N U, # ¢, then U;,U; N Uy and
U; NU, NUyg are simply connected. Moreover by using the local structure

of analytic sets, we can suppose also that U; N NV;, U; N Ux N N; and
U; NUx NUg N N; are simply connected.
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(i) J = JyUJ, where U;N(N; = K(F)) = ¢ if j € 1, | J Uj D MinK(F),
j€n
|J U; > Ni— K(F) and if j, k € J; is such that U; N Uy # ¢ then there
Jj€J;
is £ € J, with U, C U; NUy.

(iii) For each j € J, aj is a closed meromorphic 1-form on Uj, such that
a; = wj/f;, where f; € O(U;) and w; is a holomorphic 1-form which
represents F|U;. We can assume also that the singular set of w; is of
codimension > 2.

(iv) For each j € Ji, there is a local chart (z},y;,2;):U; — C x C x C*~2

such that a; = %y:"- - a%"—, where a ¢ R is as before. In this case
J J

w; = z;dy; — ay;jdz; and f; = x;y;.

(v) If j,k € J is such that U; N Uy # ¢, then there exists a meromorphic
function g;i, defined on U; N Uy, with a; = gjrox. This function is
obtainned as follows: since w; and wj, define the same foliation on U;NUy
and their singular sets have codimension > 2, we can write w; = hjiwg,
where hj; € O*(U; N Uyg). Therefore gjr = frhjr/f; as the reader can
verify easily. Moreover, the collection (g;x)v;nu, # ¢ satisfies the cocycle

condition g;kgrege; = 1 on U; N Uy N Uy if this set is non empty.
Assertion: If j,k € J are such that U; N Ug # ¢, then gji is a constant.

Proof: Observe first that a; = gjra implies that dgjx A o, = 0 because ¢;

and oy are closed.

1°¢ case: k € Jq, so that ap = iy”: - a‘%‘l. Let z = (2%,...,2""2) and
gjk = g. Relation dg A o = 0 implies that outside the set of poles of g we
have 5629; =0,1<r<n-2,and xk%’; + ayk%’; = 0. This implies already
that g does not depend on 2. Therefore g = g(zk,yx) and we can suppose
that g is defined in a neighborhood of (0,0) € C2. From now on we will omit
the indexes k. Let P be the set of poles of g. Suppose first that P D {z = 0}.
In this case, it is not difficult to see that there are a disk A C {y = 0} and

an annulus A C {z = 0} such that g has no poles on W = (A — {0}) x A.

113



D. CERVEAU, A. LINS NETO

Consider the Laurent development of g in W

9z,y)= > bnag™y", bmn€C

myn=-—00

[e ]
From a:g% + aygg- = 0 we get Z bmn(m + na)z™y™ = 0, which implies

m;n=—00
that byn(m + na) = 0 Vm,n € Z. Since a ¢ Q, this implies that b,,, = 0 if
(m,n) # (0,0). Therefore g|W is constant, which implies that g is constant.

If {z = 0} ¢ P, then it is possible to find a disc A C {y = 0} and an
annulus A C {z = 0} such that g is holomorphic on A x A. In this case g
admits a Laurent development on A x A and so g is constant by the same

argument as before.

2" case: j,k € Jo. In this case let £ € J; be such that U, C U; N U.
Observe that gjk - gke - gej = 1 on Up = U, N U; N Ug. By the firs case gie
and gg; are constants. Hence g;i is constant on Uy, and so on U; N Uy. This
proves the assertion.

Now, if j,k € J; and U; N U # ¢ then gjx = 1. In fact, on U; N Uy we

have:

From (i), there is po € U; N Ux N N;. It is clear that pp = (0,0,27) in the
chart (z;,y;,2;) and po = (0,0, 2)) in the chart (zk, Yk, zx). By analyzing the
sets of poles of a; and oy, we get that either {y; =0} N U, = {yx = 0} N U;
and {z; =0} NUi = {zxr = 0} NUj, or {y; =0} NU = {z = 0} NU; and
{ye =0} NU; = {z; =0} N .

On the other hand, by comparing the residues of a; and ax around {z; =
0}, {y; = 0}, {zr = 0} and {yx = 0}, we obtain in the first case that gjx =1
and in the second case that 1 = —agjr, and —a = gj.. Well, these last
relations imply that a? = 1, which is not possible. Therefore g;jx = 1. So we
have proved that if j, k € J; is such that U;NUj # ¢ then o = o on U; NUk.
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It follows that we can define a closed meromorphic 1-form #; on B; = U U;
JE€N1
by %:|U; = a;.
Let us prove that 7; can be extended to A; = U Uj. Let n; be defined on
jeJ
A; by:

(vi) mi|Bi = 7

(vil) If j € Jo then U;NB; # ¢. Therefore there is k € J; such that UpNU; # ¢
(because B; O N; N K(F)). We put n;|U; = gijo;. Observe that this
definition is natural because n;|U; N Ui = |U; N Uk = ox|U; N Uy =
9kja;|U; N Ug.

Let us prove that 7; is well defined. We can consider g = (gjk)v,nu,#¢ as a
cocycle in H'(U,C*), where U = (U; N N;)jes. It is not difficult to see that
if G is trivial in ﬂl(U,C*) then 7; is well defined. Let U; = (U; N Ny)jey,
and G, = {gjx € G | j,k € J1}. Then gjr = 1 for any g;x € G; and so G;
is trivial in H'(U;,C*). On the other hand, since cody,(N; — K(F)) > 1 it
follows that any closed path «:[0,1] — N; with end points in N; N K(F) is
homotopic, with fixed end points, to a path 4:[0,1] — N; N K(F). It follows
that the monodromy of a closed path as above (with respect to G) is trivial.
This implies that G is trivial, as the reader can check by himself. This ends
the proof of Lemma 2. §

From Lemma 2 we get for each N; , 7 = 1,...,r, a neighborhood A; and
a closed meromorphic 1-form 7; on A; such that, if P; is the divisor of poles
of n;, then 7; represents F on A; — P;. Furthermore if C' is a connected
component of A; N A; then 7;|C = X;;(C)n;|C, where A;;(C) is a constant

integrable 1-form which represents F on Uy. Then wy can be extended to
CP™ as a meromorphic 1-form with poles in Ly = {[z] € C" | zp = 0}. Since
wo|A; and 7; represent the same foliation, we have that wo|A; = fin;, where

fi is a meromorphic function on A;. On the other hand, if C is a connected
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component of A; N A; then we have
fixij(C)n;|C = fimi|C = wo|C = fn;|C

which implies that f;|C = X;;(C)fi|C. Since A;;(C) is a constant, it follows
that %—lC = %]C. This implies that we can define a closed 1-form 6 on

,.

A= U A; by 0|A; = ‘—% Now, by corollary 2.2.3 of §2.2, § can be extended
i=1

to CP™, because A is a neighborhood of N = {f =g=0}and2<n-1. We

call @ this extension. Let P be the divisor of poles of §. Fix pg € CP™ — P

and for each path v:[0,1] - CP" — P with v(0) = po, put

I(y) = exp [/79]

We will prove now that if -y is a closed path then I(y) = 1. It is easy to see that
this will imply that we can define a holomorphic function F: CP®* — P — C
by F(p) = I(), where 7(0) = po and (1) = p.

Let v be a closed path. Since CP™ is simply connected, -y is homologous in
CP"—P toy1+---+7k where each v; is a small cycle envolving an irreducible
component of P. So it is sufficient to prove that if 7 is a small cycle envolving
an irreducible component of P, say @, then exp[ f,y 0] = 1. Now, since N =
{f = g = 0}, it follows from Bézout’s Theorem that @ N N; # ¢ for some
i. It follows that we can deform 7 keeping it closed along the deformation,
to a small cycle ¥ envolving ) and containned in A;. Since 0|4; = %, this
implies that [ 6 = [, ‘—% = 2wim, m € Z. Hence I(y) = 1.

The above argument implies also that F'|A; = c¢;f;, where c; is a constant.
Since n; = wo/ fi is closed, we get that n = wo/F is closed. Hence the first part
of the theorem is proved. It follows also that if w is a homogeneous integrable
1-form on C™*+! which induces F then w has a meromorphic integrating factor
say F = g/h. Let us prove that g and h are homogeneous polynomials such
that dg(g) — dg(h) = dg(w) + 1.
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In fact, let dg(w) = k. Since F is an integrating factor, we have dFF A w =
Fdw. On the other hand, ig(w) = 0 implies that (k + 1)w = Lg(w) =

irdw + d(i pw) = igdw, where Lp is the Lie derivative. Therefore we get
ir(dF)w = Fig(dw) = (k+1)Fw = ig(dF) = (k+ 1)F

Integrating ip(dF) = (k + 1)F, we get that F(tz) = t**1F(z), if z is not a
pole of F. Hence g and h are homogeneous and dg(g) — dg(h) = k+ 1. We
can suppose that g and h do not have common factors. Let g = g{“" vo o ghm

be the decomposition of g in irreducible factors, where k;,...,k, > 1.

LEMMA 3. There are Aq,..., A, € C and a homogeneous polynomial ¢ such
that

hw = . dg; (cp)
8 — = ==L 4dlZ
® g ?;; o T \Y

where ¢ = gf‘ cgim 0< ¢t <k -1, Zz\jdg(gj) = 0, ¢ and v have no
i=1
common factors and dg(p) = dg(v).

The proof of the above result can be found in [C-M].
Now let us assume hypothesis (d) and (e) of Theorem B and prove that F

is of logarithmic type. First of all, if we multiply the right hand side of (8)

£1+1 lm+1

by g; .. gy Tt we get the form

m m
dg; dg;
(9) 1=01 Gmdp— 0Gi...gm I L2 + g ¥ gty N
=1 9 = 9

which is holomorphic in C™+!, Observe that if £; = X\; = 0 for some i €

{1,...,m}, then g; is a factor of 7 and g; plays no essential role. Hence we
can suppose that either ¢; # 0 or A\; # 0 for all : = 1,...,m. With this
condition G; = {[z] € CP" | g;(z) = 0} is invariant under F, which implies
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that if ¢ # j then Gi; = {[2] | gi(z) = g;(2) = 0} C S(F). Since Gi; has
codimension 2, hypothesis (d) implies that the set

A = K(F)NGi;n{[z] € CP" | dgi(z)Adg;(z) #0, ¢(z)# 0 and g-(z) # 0 for r #

is open and dense in G;;. In order to simplify the notations we will put ¢ =1

and j = 2. Now we will prove that:

(i) If £, > 0 and ¢, = 0 then the linear part of the transversal type of F at
G2 is degenerated.
(ii) If ¢, = £2 = 0 then the quotient of the eigenvalues of the linear part of
the transversal type of F at G2 is —A3/A1 (or —A1/A2)
(iii) If £, > 0, €3 > 0 then the above quotient is —f2/¢; (or —£1 /¢2).

In fact, since A is open and dense in G2, let p € C**1 — {0} be such that
[p] € A. We know that ¢(p) # 0 and g.(p) # 0 for r > 2. This implies that
the form E /\jgg& has a holomorphic primitive, say h;, defined in a simply

28 7
connected neighborhood U of p. Therefore we can write:

hw dg, dgz
10 ——| =229 4 dhy +d| -2 =
(10) g lu 1g1 + A2 +adhy + (gf ez) I

92
where hy = ¢/g3* ... g5, ha(p) # 0.

Proof of (i): Since £2 = 0 we have Ay # 0. Let o be a branch of h2—1/e1 and

B be a branch of h;’/ 122 exp(h1/A2) defined in U. These branches can be
defined because ha(p) # 0. Observe that d(ag:)(p) A d(Bg2)(p) # 0, so that
there is a local coordinate system (z,y,z) € C x C x C*~! around p, such
that z = ag; and y = Bg,. It is easy to see that in this coordinate system we

have

., dz dy —y _ 4y 4T dy dz
u—/\1?+)\2—&—+d(m )—)\1?+)\2y 1 2571

If we multiply p be 21+ .y we get (—£1y + A\128y)dz + Apz®+1dy. Therefore
the transversal type of F in G is given by the vector field A\z“1+19/0z +
(61y — \zt1y)8/8y. Since ¢; > 0, this proves (i).
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Proof of (ii): Since ¢; = {, = 0 we have A\ # 0 # A2 and

d d
p=X ggl +/\2 92 +dh3

where hy = h; + hy. Let a = exp(hs/A2). We have dg;(p) A d(ag2)(p) # 0,
therefore there exists a local coordinate system (z,y,2) € C x C x C*~!
around p, such that g; =  and ags = y. In this coordinate system we have
n=X ‘i—” + /\2%, so that zyu = A\ ydx + A\2zdy, therefore the quotient of the
eigenvalues of the normal type is —Az/A; (or —A1/A2).

Proof (iii): In this case we can write (10) as

d dg h
p=0 g1 W ag2 +d . 3(
9 92 9:'97°

where hg = hy + hy g g52. Since dg; (p) Adga(p) # 0, there exists a coordinate
system (z,y,z) € C x C x C"~! around p such that z = g; and y = g,. If we
multiply g by zé1+1.y%+1 b1 we get

hylzhtlyftl = —lyda — byzdy + Mhy 2y de + Aok ey dy

+ h;1$21+1ye2+1dh.

It is not difficult to see that this implies (iii).

Now from (i) and hypothesis (e) it follows that either £, =--- = ¢, =0 or
4y...4, > 0. In fact, if this is not the case, then there are ¢ # j such that
¢; > 0 and ¢; = 0, which cannot happen by (i). If {, = -+ = {,;, = 0 then

F is logarithmic and we are done. Let us suppose that ¢; ...£, > 0. In this
case, it follows from (iii) that for any ¢ # j the quotient of the eigenvalues of
the linear part of the normal type of F at G;; is rational. Let us prove that
this case cannot occur.

In fact, since in N N K(F) the quotient of the eigenvalues of the normal
type is not real, then in the above situation, there exists p € C"*! — {0} such

that [p] € K(F)NN — U Gij. In this case p € K(7*(F)) and so there exists
i#j
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a coordinate system (z,y,z) € C x C x C*~! around p such that 7*(F) is
defined by the form 6 = zdy + aydz, where a ¢ R. On the other hand let hT“’
be as in (8). Its set of polesis P = U{gi = 0}, it is closed and represents

1

7*(F) outside P. Therefore there exists a meromorphic function f; on U such
that

hw d dz
o o= fi(zdy + aydz) = 0 = d(f1(zdy + aydz)) = d(zy fr) A (?y + a?)
As we have seen in the proof of Lemma 2, the last relation implies zy f; = c,
c a constant. This implies that PN U = {z = y = 0}. Therefore there are
i # j such that {g; =0}NU = {z =0} and {g; =0} NU = {y = 0}, and so
[p] € Gij, a contradiction. This completes the proof of Theorem B. I

3.2 Proof of Theorem A:

We will use Theorem 1.2.4 of §1 (cf. [G.M.-L.N.]). We need some prelim-

inary results.

LEMMA 4. Let V5 M bea holomorphic vector bundle with fiber C2, where
M is compact. Assume that V = E, @ Es = Fy @ F5, where E, FE», F; and
F, are holomorphic line bundles, such that c¢(Ey) # 0 and qc(E1) = pc(E»),
where p,q € Z, 0 < q < |p| (c = first chern class). Then:

(a) If p # q then F; = E; for some i,j € {1,2}. Moreover, if we assume
i =j =1 then c(F2) = ¢(E»).
(b) If p=q (i.e. ¢(E1) = c(E7)) then c¢(F;) = c(E;) fori=1,2.

Note: As in 1.2.4, we denote by c(-) the first Chern class considered as an
element of H2(M,C).

Proof: Let U = (Uy)aea be a covering of M by trivializing open sets of
the E;’s and F;’s, where U, N Us and U, N Uz N U,, are simply connected if
they are not empty. For each o € A and i = 1,2 let e!: U, — P~1(U,) and
fi:Uy — P~1(U,) be holomorphic local sections such that e (p) € Ei(p)—{0}
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and fi(p) € Fi(p)—{0}, p € Uy, where E;(p) and F;(p) denote the fibers of E;
and F; over p. It follows that for all p € Uy, {€X(p), €2 (p)} and {f1(p), f2(p)}
are basis of P~1(p). Therefore there is a matrix Ao = (ai/) such that a¥ €
O(U,), Ay = det(An) € O*(Uy,) and €, = ailfl + ai2f2 on U,. On the
other hand there are collections {gfxﬁ}UaﬂUp#cﬁ and {hfxﬁ}UanU”qu, 1=1,2,
where gi 5, hi5 € O*(Us NUp) and €}, = 9igehr 9o = hopffon U NUp # ¢
for ¢ = 1,2. These collections are in fact cocycles (i.e. if Us NUgNU, # ¢
then giﬂ.gf,,y.gfm =1 and hf .k}, .hi, = 1) and c(E;) (resp. ¢(Fi)) can be
represented in H? (U, Z) by the 2-cocycle

(11)
miz,@'y = 27r\1/__1'(€g(gizﬂ) + eg(glﬁ'y) + eg(g—zya))
_ UaNUgNU, # ¢
resp. n 2,,\/“‘( g(haﬂ) +¢ (h )+ fg(hfya))

where the £g’s are branches of the logarithm arbitrarily chosen.

1 1
Now, if we set Gog = (go‘ﬂ 2 ) and Hog = (h"‘ﬁ g ), then it is not

0 9ap 0 haﬁ

difficult to see that on U, NUg # ¢ we have Go3Ag = AgHyp or equivalently

(i) ghgalt = allhly
(ii) gaﬁaﬂ =a’hl,
(iil) g2gaj' = al h

(iv) 9208 = aZ2h2,

(12)

For fixed o € A let f, = allal?a?'a??2/A2Z, where A, = det(A,). Let us
prove that there is f € O(M) such that f|Uy = fo. In fact, if we take the
product of the relations (7) ... (iv) we get

(13) (g;ﬂgiﬂ)2aklaé2a%1a%2 11 12a21a22(h1 h2 )2

On the other hand the relation GagAp = AaHqp implies that g 592545 =
heshZsAp, and so (gkg92%5)%/(hlgh%s)? = AZ/A%. This relation together
with (13) implies that fo|Us NUg = fg|Us N Ug, which proves the existence
of f.
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Now, since M is compact, f is a constant. We have two case to consider:

1t case: f # 0. In this case the a¥ € O*(U,) for all . This together with
the relations in (12) imply that all cocycles in (11) are equivalent and so all
Chern classes involved are equal. This case, of course, cannot happen in case
(a).

2"¢ case: f = 0. Observe that the relations in (12) imply that for all i,j €
{1,2}, the collection {a?/},c4 defines a divisor in M. Since f = 0, one of

these divisors is = 0. Suppose for instance that al? = 0 for all o € A.
This implies that E; = F; and all,a?? € O*(U,) for all @ € A, because

Ay = alla?? € O*(U,) in this case. Analogously, if al! = 0 for all @ € A we
get By = F3 and ¢(E;) = ¢(F;). The remaining cases are similar and we leave

them for the reader. J

Now let f and g be homogeneous polynomials on C"*1, n > 3, such that
fM g. Let F = {[z] € CP" | f{z) =0}, G = {[2] | g(z) =0} and K = FNG.
We denote by v 5 K, F — F and G — G the normal bundles of K, F and G
in CP™ respectively. Let F = F|K, G = G|K. We will use the notation c(-)
to denote the first Chen class of a holomorphic vector bundle in H? p of the

corresponding base. It is well known that:

(a) v=F @G and c(v) = ¢(F).c(G) (c f. [G-A])

(b) ¢(F) = ¢(F)|K and ¢(G) = ¢(G)|K. In particular ¢(F), c(G) # 0, because
c(F),c(G) # 0 and dim(K) > 0 (cf. [G-A]).

() dg(f)-c(G) = dg(g).c(F).

Assertion (c) follows easily from Theorem 1.2.4 and example 1.3.1, as the
reader can verify.

Suppose now that F is a foliation of CP™ having K as a Kupka component.
Let dg(f)/dg(g) = p/q where p,q are relatively primes and p < q (p = q iff
p=gq=1).

Let A; and A2 be eigenvalues of the normal type of F at K. Let us prove
first that A\; # 0 # Ay. In fact, let us suppose by contradiction that Ay =
0. In this case A\; # 0, because K C K(F). Let E; and E; be the line
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subbundles of v induced by the eigendirections of A\; and A, respectively.
Then v = F &G = E, @ E,. It follows from Lemma 4 that ¢(F) = ¢(E;) and
c(G) = c(E,) or ¢(G) = ¢(E;) and ¢(F) = c¢(E3). Let us suppose for instance
that ¢(F) = ¢(B;) and ¢(G) = c¢(E3). Now (a) of Theorem 1.2.4 implies that
0 = Apc(E1) = M1¢(E2) and so ¢(E;) = ¢(G) = 0, a contradiction.

On the other hand, if A; # Ay we can define F; and E3 in the same way
and get the following relations (assuming ¢(F) = c¢(E1)):

A1c(Ez) = Aac(Er) \
C(F‘) = c(Ey), C(é) =c(E;) = X% = g
PC(G') = qc(ﬁ‘)

We can conclude from the above arguments that:

(1) Ag ;é 0 ;é )\1 and )\2//\1 (S Q+.
(i) If A2 # A; then A2/A; = p/q.
We want to prove that A2/A; = p/q in all cases, but before that we will

prove the followingt result.
LEMMA 5. The transversal type of F at I is always linearizable and diagonal.

Proof: Let A;/\; = r/s where r,s € Z4, 0 < s < r and (r,s) = 1. Let us
suppose by contradiction that the transversal type is either non linearizable
or linearizable but not diagonal. In this case, by Poincaré-Dulac Theorem, we
must have 1 = s < r and the transversal type is equivalent to the vector field
X =z0/0x + (ry + 2")d/0y. The dual form of X is w = (ry + z2")dz — zdy,
therefore by Kupka Theorem (1.2.1), there is a covering (Uy)aea of K by
open sets of CP™, where each U, is the domain of a chart (24, Yo, 2q): Us —
C x C x C"~2 such that

(1) If Uy NUg # ¢ then it is connected.
(i) KNUy = {20 = ya =0}
(i) F|Uy is defined by the form (ry, + z5)dzs — Zadya = we.
(iv) There is a multiplicative cocycle (gag)v.nus%¢ such that if Uy NUp # ¢
then go3 € O*(Ua NUpg) and wq = gogwg on Uy N Up.
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lw, is closed because

Yo _d%a (Yo
r+1 r]°
x5 Tqo zh

Observe also that {z, = 0} is the unique analytic separatrix of F through
K NU,. It follows that on U, N Ug # ¢ we must have z, = hogrg Where
hop € O*(Us NUg). In particular (z4)aca defines an analytic divisor on

U= U U,. On the other hand we have

Now observe that z "~

a€A
Wao Jap wg wg
14 = = fog——, . ' Ua).
( ) .’L‘:;+1 (haﬁ)r"'l x;{.l f ﬁmg*'l f ﬁEO(U N ﬁ)

This implies that:

w
0= d( m)—df‘,ﬂ/\ﬂ%#dfaﬁ/\wﬁ:o.
B

Therefore fug is a first integral of F|U, N Ug. As the reader can verify by

using the Taylor series of fo3 = Z amn(28)T3 ys, the relation dfosAws = 0
m,n>0

implies that f,g is a constant. In fact this constant is 1 because the residues

-r—1

of 27" 'w, and :cEr—lwg around {z, = 0} are both equal to 1. It follows

that ;" 1w, = xgr_lwg and so there exists a closed meromorphic 1-form 7

definedon U = U U, such that §|U, = 25"~ w, and 7} defines F|U outside its

divisor of poles. By Corollary 2.2.3 of §2, 7} can be extended to a meromorphic
closed 1-form 1 on CP™ which defines F outside its divisor of poles. Let
n*=x*(n).

It follows from Lemma 3 of §3.1 that there exist homogeneous polynomials
gi,--+,9m, ¢ and ¥ on C*"*! ay ... ,a, € C and ¢4,...,¢, non negative

integers such that:
m
Z S d(
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(vi) ) _ajdg(g;) =0

Jj=1
(vii) ¥ = g7* ... g5 and dg(p) = dg(¥).
Let a € A be fixed. We have

m
’dgj 14 _ dz, Yo \ _
(15) [Z o ¢>} va =22 -a (L) = v
From Bézout’s theorem, for every j = 1,...,m we know that G; N K # ¢,
where G; = {[2] | gj(2) = 0}. If o is such that Uy N G; N K # ¢, we can
conclude from (15) that:

(vili) GjNUa ={24 =0} =2 m=1
Then (vi) implies that a;dg(g1) = 0 = a; = 0. But this implies that

n = d(£) and its residue around {zo = 0} is zero, a contradiction. il

LEMMA 6. If \; = Ay then p = ¢ = 1 and F is induced by the form on
C"*lfdg — gdf.

Proof: Let w be an integrable homogeneous 1-form on C™*! which induces
F. The foliation defined by w on C"*! is F* = n*F. Moreover, if K* =
7~ (K) — {0}, then K* C K(F*) and the transversal type of F* at K* is
linearizable and diagonal with equal eigenvalues.

Let pp € K*. We assert that there exist a chart (z,y,2):U - CxCxC"~!
around po and a function A € O*(K* NU) such that:

(i) K*NU ={z=y =0}
(i) flU==2,9U=y
(ili) w|U = A(z)(zdy — ydz) + 0, where 6 denotes terms of order highter than

1in (z,y).
(iv) The local expression of the radial vector field in U is

3} i}
R|U=ma:—;+m:—+-7, m=dg(f), n=dg(g).
1
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Observe that (i) and (ii) follow from the implicit function theorem and the
n—1
fact that df (po) A dg(po) # 0. Let R|U = A9/dz + B8/dy + > G;0/0u;.
j=1
From Euler’s identity we have R(z) = ma and R(y) = ny, which implies
that A = mz and B = ny. The proof of (iv) can be done as follows: let
L,,...,Lp—; be homogeneous linear polymials such that L;(po) # 0 and
df (po) Adg(po) AdL1(po) A+ - AdLyn_1(po) # 0. Take z; = Lj/L, for j > 2 and
2z a branch of £g(L,) defined in a neighborhood of pg. Then (z,y, z1,...,2n-1)
is a diffeomorphism in a neighborhood U of py and moreover R|U = mzd/dz+
nyd/0y + 0/0z;.

Now since the linear part of the normal type of F* at K* has A\; = A,
and is diagonal, then for each section {z = ¢} the dual form has linear part
zdy — ydz, which implies that the linear part of w|{z = c} is of the form
A(z)(zdy — ydx). Therefore the linear part of w|U with respect to (z,y) if of

the form

n—1

wy = A(2)(zdy — ydz) + Z j(2)x + Bj(2)y)dz;

j=1

It follows from the integrability condition w A dw = 0, that A; = B; =0
for j =1,...,n—1, as the reader can verify directly by taking the linear part
of w A dw with respect to (z,y). This proves (iii).

We can conclude from the above facts, that there exists an open covering
(Ua)aca of K* and two collections (Aq)aeas ((Ta, Yas 2a))aca, Where A, €
O*(K*NU,) and (Za, Ya, 2a): Us — C x C x C™~1 is a local chart such that

(i) K*NUq = {24 = yo = 0}
(i) flUa = x4 and g|Uqy = yo.
(iil) w|Uq = Aa(2a)(TadYa — Yadza) + 04, where 6, denotes terms of order
highter than 1 in (o) _/a)
(iv) R|Uy = mzo35o— 31: + NYo 53— 3y + aza.
Now, if K*NU,NUg # ¢ and p € K* NU, NUg then

dw(p) = 2A4(p)dza(p) A dya(p) = 285(p)dzs(p) A dys(p).-
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Since z, = zg = f and yo = yg = g on U, N U, then we must have
Aq4(p) = Ap(p). Hence we can define a holomorphic function A: K* — C*
such that A|U,NK* = A, for every o € A. Let us prove that A is constant.

Let dg(w) = k > 1 (dg(w) = degree of the coefficients of w) and the two
jet of w along K* NU, be

3y = A(2a)(Zalya — Yadzs)

n—1

+ E(A,‘(Za)mi + Bi(za)xaya + C,'(Za)yg)dzg'

i=1

+ P(Za, Yo, 2a)dTa + Q(ZTa, Ya) 20 )dYa

where P and @ are homogeneous of degree two in (24, Yo ). Since ig(w) = 0,

get
0= iR(w) = A(za)(n - m)zaya + A1(Za)-'l7i + Bl(za)xaya + Cl(za)ytzx + 03

where 63 denotes terms of order highter than 2 in (z4,ys). This implies that

(V) Al ECI =0 and (n—m)A+31 =0.
On the other hand, we have seen in the proof of Theorem B that i g(dw) =
(k + 1)w. From this we get

(k + 1)A(20dYa — Yodze) + 00 = tp(dA)(20dYa — YadZa)
+ 2A(Mmzodye — nNYadzy)
- Bl(yadxa + xadya) +r

where r denotes terms either of order highter than 1 in (z4,y,) or terms in

the dz}s. Comparing these expressions we get:

(vi) (k+1)A =ip(dA)+ 2mA — By =ig(dA) + 2nA + B;

Therefore,
(vii) ip(dA) =(k+1—-m —n)A =LA

Equation (vii) implies that A(tp) = t*A(p) for all t € C* and p € K*.
Now, if £ = 0 then we can define a holomorphic function ¢: K — C by
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¢([p]) = A(p) and this implies that A is constant. On the other hand, if
£>0,let M:C"t! — C be linear. In this case we can define a meromorphic
function on K by ¢([p]) = A(p)/M*(p). Since M is arbitrary, it follows that
A must vanish in some point p € K*, a contradiction. Analogously, if £ < 0
the function ¢ = M~*A must have some pole, and so A also, which is again
a contradiction. Therefore A is constant and moreover k +1 = m + n.

Let p = w — A(fdg — gdf). It is not difficult to see that the 1-jet of u
along K* is zero and that p is homogeneous of degree k = m + n — 1. From
Theorem 2.3.3 we can conclude that u = f2u; + fgus + 9> ps, where py, pa, p3

are 1-forms with homogeneous coefficients and

(viii) k= 2m +dg(p1) = m+n + dg(pe) = 2n + dg(us)
unless some of the p;’s are = 0. Now, if m =n, (viii) and k+1=m+n =
2m = 2n, implies that p; = po = p3 = 0, and so w = A(fdg — gdf). Let us
suppose by contradiction that m > n for instance. In this case k =m+n—1

implies that p; = uo =0, and so
w = A(fdg - gdf) + g*ps.
Since ig(w) = 0, we get
0= A(n —m)fg+ g*ir(us) = g(A(n — m)f + gir(ps))-

This implies that g divides f which is a contradiction. Hence m = n and
w = A(fdg — gdf), which proves the lemma. I

COROLLARY. A2/A; =p/q=m/n.

Now let us suppose that 1 < p < ¢q (i.e. dg(f) < dg(g)). Let w be a

homogeneous integrable 1-form on C™*! which induces F on CP".

LEMMA 7. In the above situation w has an integrating factor.

Proof: We know from Lemma 5 that the transversal type of F at K is

linearizable. This implies that there exists a covering of K by open sets
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(Ua)aea and coordinate systems ((ZTq, Yas 2a): Ua = C X C X C"*~2)4¢4 such
that:

(i) KNUqy = {za = yo =0}
(i1) F|Uq is defined by we = p2adye — qYadza
(iii) If U, NUp # ¢ then it is connected and there exists gog € O*(Uq N Up)
such that wy = gagwpg on Uy N Up.
(iv) f U NUgNU, # ¢ then it is connected and gap.ggy-gva = 1.

We will consider two cases:

1% case: 1 < p < ¢. In this case we will prove that there exists a closed

meromorphic 1-form on U = Z U,, which defines F outside its poles.
«

Oberve first that 1 < p < g implies that {z, =0} NUs = {zg = 0} N U,
and {yo = 0}NUs = {ya = 0}NU,. This follows from the fact that the vector
field X = pzd/0z+qyd/0y has only two analytic smooth separatrices through
(0,0), which are {x = 0} and {y = 0}, and they correspond to two differet
eigenvalues g and p. Let 0, = 2y we = pdya/Ya—qdTa/To. L UNUs # ¢
and hog = TaYp9as/TaYa, then e = hapng and hag € O*(Uy NUp) because
zg/rq and yg/yo € O*(Ua NUp) by the first observation. On the other hand,

0 = dno = dhag Ang = dhop A wg = 0 = hyp is a first integral of
prp0/0z3 + qypd/0ys = hap is a constant.

Now, if we compare the residues of 7, and 7g around {zo = 0} NUg we get

hap = 1. This implies that 74|Us N Ug = 3|Us N U and so there exists a
closed meromorphic 1-form 7 on U = U Uq such that 7|Uy = ny foralla € A

o1

and 7j represents F|U outside its poles. It follows from Corollary 2.2.3 that
this form can be extended to a closed 1-form n on CP™ which represents F

outside its poles. This implies the 1%* case.

2"4 case: 1 =p < ¢. In this case we have still {z, = 0}NUs = {z5 = 0}NT,
by the same reason as in the 1°* case, but {ya = 0}NUs = {yg—caj = 0}NU,,

where ¢ is a constant, as the reader can verify easily. For each o € A, let
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Pa = Ya/r. Let us prove that if Uy NUg # ¢ then there constants ans € C*
and bgg € C such that ¢, = aagps + bags-

In fact, we have
1

q+1
—g— —— xz
dpa = 2597 wa = 2377 gapuwp = (52) 9opdpp = aapdpp

e

where aqg € O*(U, N Ug). The above relation implies:
0 =d?po = dagp Adpg = dags Awg =0 => a,p is a constant = a,g € C*.

= Pa = aappp + bap-

Now let & be a merorphic 1-form on CP™ which represents F outside its
poles (we can take @ such that 7*(@) = w/M*+1, where dg(w) = k and M is
linear). For each a € A, there exists a meromorphic function f, on U,, such
that W|Uy = fodpe. If Uy NUg # ¢ then

wan = fadps = faaaﬁd‘Pﬁ = fﬁdﬁoﬂ-

Therefore f3 = aqgfa, and so % = d—){f on U,NUpg. This implies that we can
define a meromorphic closed 1-form § on U = U U, such that é|Ua = dfo|fa

for each @ € A. By Corollary 2.2.3 this form can be extended to a closed
1-form 6 on CP™. With an argument similar to that we have done before in
the proof of Theorem B, it can be proved that there exists a meromorphic
function f on CP™ such that df/f = 6. Clearly for each o € A, we have
flUa = c¢fa, ¢ a constant. This implies that d(w/f) = 0 and so @ has an

integrating factor and w also. This proves the lemma. [

Let A/B be the integrating factor of w. From Lemma 3 we have

Bw _ <~ dg;j ¢
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where A = gf‘ ...gkm is the decomposition of A in irreducible factors, ¥ =

f‘ cogbm 0 < b < kj—1, Z)\jdg(gj) = 0, ¢ and ¢ have no common
Jj=1
factors and dg(y) = dg(¢)). We can suppose also that for any j € {1,...,m}
we have either £; # 0 or A; # 0.
Let us consider the 1% case in the proof of Lemma 7. In this case we can
suppose that for any o € A:
Bw, _; _wf dya dr,\ _ dy;,  dzj
Al (Ua)_w( v ‘za) T T
On the other hand for j € {1,...,m} we have from Bézout’s Theorem that
Aj = {g;=f =g=0}- {0} # ¢ and for a point p € A; N U, (for some )
we get
dg, dy?, dx?
d(=) =p—=2 — ¢—=.
Z arn + ( ) ya ! p
This implies that either {g; = 0} N U, = {2}, = 0} and X\; = —q or {g; =
0}NU, = {y: = 0} and A; = p. Since in the right member the poles are of
order 1, we get also £; = 0. Moreover {g; = 0} N 7~!(U) coincides with one

of the divisors {z}, = 0} or {y% =0} (U = UUO,). Therefore m = 2 and we
can suppose that

% = pdg% - q% and pdg(g1) = qdg(g2)-

Observe that we have also {g1 = g2 = 0} D {f = g = 0}. From Noéther’s
Lemma (2.3.1), we get g1 = a1 f+ 519 and g2 = a2 f + P29 where oy, ..., 5, are
homogeneous polynomials. On the other hand, {g1 = g2 = 0} is connected by
Lefschetz’s Theorem and {g; = g, = 0} C S(F*) as we have seen after Lemma
3. This implies that {g; = go =0} = {f = g = 0}. In fact, {f =g =0} isan
irreducible component of {g; = go = 0} and if it has another component, say
N, then NN{f =g =0} - {0} # ¢. Hence if 2 € NN {f = g = 0} — {0},
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then dgy(z) A dg2(z) = 0. But this implies that z € {f = g = 0} — K(F*)
which is not possible. Therefore {g; = go =0} = {f = g =0}.

By Noéther’s lemma the matrix (Zl g;) is invertible. Since dg(f) <
2

dg(g) this is possible only if 8; and a, are constants and 82 = 0. Hence:

B d d
== p'ﬂ _ ¥ = F is induced by pfdg, — qg:df.
A g1 f
In the 2" case we can suppose that 22 = 7*(/f). Therefore if p € ({g; =
f=9g=0}-{0}H)Nnn~1(Uy,), we have

) A,-;g.—’ + d<§) = aod(po 0 T) = aad(ya/73)

j=1 J

where a,, is a constant. This implies that A\; = 0, j = 1,...,m. Moreover
o/Y|Us = aaya/td + by = m =1, £; = q and Bw/A = d(¢/g7). Now, let
n= g‘pid(cp/gi’) = %E - q%"]l. If we apply the same argument as in the 15 case
for n we can conclude that g; = a3 f and ¢ = as f + (29, where o1 and B, are

constants. This proves Theorem A. I
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