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VANISHING HOLONOMY AND M O N O D R O M Y 

OF CERTAIN CENTRES A N D FOCI 

M A R C O B R U N E L L A 

Introduction 

Let u(x, y) = A(x, y)dx + B(x, y)dy = 0 be the germ of an analytic differ

ential equation on R 2 , with an algebraically isolated singularity at the origin: 

.4(0,0) = £ ( 0 , 0 ) = 0, dimR 

R{ x,y} 
(A,B) < + O G , 

The singularity u = 0 is called monodromic if there are not séparatrices 

at 0. In this case, given a germ of an analytic embedding (R+,o) 
T 

: R 2 , O ) 

transverse to u outside 0, it is possible to define a monodromy map P -
1 U>,T* 

( R + , 0 ) — > (R + , o ) , following clockwise the solutions of u = 0; PUiT is a germ 

of homeomorphism of ( R + , 0 ) analytic outside 0. if J V = id then u = 0 is 

called centre. Otherwise Pu%r is a contraction or an expansion (by the results 

of Ecalle, Il'yashenko, Martinet, Moussu, Ramis... on "Dulac conjecture") 

and u) = 0 is called focus. 

The simplest monodromic singularities are those for which the linear part 

Mi of the dual vector field v(x,y) t 
t 

B(x,y) q 
q5 -A(x,y) d 

dy is nondegenerate, 

i.e. invertible. We distinguish two situations: 

i) the eigenvalues A, /i of Mu are complex conjugate, non real, with real part 

different from zero. Then UJ = 0 is a focus and it is analytically equivalent 

to ujun = 0, where uun denotes the linear part of u (Poincare's linearization 

theorem). 

ii) the eigenvalues A,/i of Mw are complex conjugate, non real, with zero 

S. M. F. 
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real part. Then if u = 0 is a centre there exists an analytic first integral 

(Lyapunov-Poincare theorem, see [Moul] and references therein) and u = 0 

is analytically equivalent to xdx + ydy = 0. If u = 0 is a focus the ana

lytic classification is a difficult problem, which requires the theory of Ecalle-

Martinet-Ramis-Voronin to pass from the formal classification to the analytic 

one ([M-R]). The monodromy is an analytic diffeomorphism tangent to the 

identity, and two such equations are analytically equivalent if and only if their 

monodromies are ([M-R]) . 

In this paper we shall study the simplest degenerate monodromic sin

gularities, i.e. those with A = \i = 0, ooun ^ 0, and with "generic" higher 

order terms. Modulo a change of coordinates ([Mou2]), we may work in the 

following class. 

Definition. Let u = Adx + Bdy = 0 be the germ of an analytic differ

ential equation on R 2 , with an algebraically isolated singularity at 0. This 

singularity is called monodromic semidegenerate if the first nonzero quasiho-

mogeneous jet of type (1,2) of u is 

w0 ( z , y ) = x3dx + (y + 2X2 )dy 

with a 2 < 2. Notation: we MSD (a). 

We will denote by JPw the monodromy map of u e MSD{a) corresponding 

to the embedding ( R + , o ) ( R 2 , 0 ) , t (*,0). Pc is a germ of analytic 

diffeomorphism tangent to the identity ([Mou2]), and we may consider Pu as 

the restriction to R + of a germ of biholomorphism of ( C , 0 ) , tangent to the 

identity, again denoted by Pu, 

Let CJ G MSD(a) and let Q be the germ of holomorphic 1-form on C 2 

obtained by complexification of LO. Using a resolution of the singularity we 

may define as in [Mou3] and [C-M] the vanishing holonomy of fi: it is a 
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subgroup H ( u ) C B h ( C , 0) = { group of germs of biholomorphisms of ( C , 0 ) } , 

generated by / , g G J B / I ( C , 0 ) satisfying the relation ( / o g)z = id. 

Our result is a computation of Pw in terms of H ( Q ) . A similar result 

was remarked by Moussu in the (simpler) case of nondegenerate monodromic 

singularities ( [Moul] ) . 

Theorem. Let u = 0 be monodromic semi degenerate, then 

Pu> = [f, g] 

In particular, H ( Q ) is abelian if and only if u = 0 is a centre. This 

means, by [C-M], that a nontrivial space of "formal-analytic moduli" can 

appear only if u = 0 is a centre (and a = 0, see below): for the foci, formal 

equivalence analytic equivalence. Hence our situation is very different from 

the situation of equations of the type xdx + ydy + ... = 0, where the difficult 

case is the case of foci whereas all the centres are analytically equivalent (here 

the vanishing holonomy is always abelian, generated by a single / G B h ( C , 0) , 

and the monodromy is given by / 2 , see [Moul]) . On the other hand, it is no 

more true that the monodromy characterizes the equation: it may happen 

that <Ji,U2 £ M S D { a ) have the same monodromy without being analytically 

equivalent. 

A consequence of the above relation between monodromy and vanishing 

holonomy is the following normal form theorem for centres, based again on the 

results of [C-M]. Let us before remark that u;o(#> y) = x3dx + (y + ax2)dy = 0 

is a centre for any a G R (but a first integral exists if and only if a = 0). 

Corollary 1. Let u G M S D ( a ) be a centre and let a ^ 0, then the germ 

ou = 0 is analytically equivalent to ¿ 0 = 0. 

We don't know a similar explicit and "simple" (polynomial?) normal 

form for foci, even in the case a ^ 0; but the triviality of the space of formal-
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analytic moduli seems here a useful tool. The classification of centres with 

a = 0 requires arguments ot the type Ecalle - Martinet - Ramis - Voronin (cfr. 

[C-M]). 

As another corollary of the above theorem we give a positive answer to 

a quescion posed by Moussu m Mou2J 

Corollary 2. Let u = 0 be a monodromic semidegenerate centre, then 

there exists a nontrivial analytic involution I : (R 2 ,o) (R 2 ,o) which pre

serves the solutions of u = 0: I*(u) ACJ = 0. 

The above computation may be generalized to the case of germs u whose 

first nonzero quasihomogeneous jet of type ( l , n ) is 

wo(s ,y ) = 'Zn-l 
X 

dx + (y + axn)dy 

with a2 < 1/4 n ([Mou2]). Thè vanishing holonomy H(Q) for these germs is 

generated by f,g £ JB/i(C,0) satisfying ( / o g)n = id ([C-M]). But now, 

if n > 3, the relation between commutativity of H(Q) and triviality of Pu 

becomes more complicated; in particular, it is no more true that there is 

equivalence between "iJ(J7) abelian" and "P„ = id". 

The computation of P^ in terms of H(Q,) for n > 3 is straightforward, 

once one has understood the case n = 2. Hence, for sake of simplicity and 

clarity, we have choose to limit ourselves to the semidegenerate monodromic 

singularities. 

Acknowledgements: I thank R, Moussu and A. Verjovsky who read the 

manuscript and suggested me some improvements of the exposition. 

Resolution of singularities and vanishing holonomy 

Let u G MSD(a) and let Q be its complexification. We recall the desin-

gularization of Q and the construction of H(Q) ([C-M], [Mou3]). 
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We denote by M the complex manifold of dimension two covered by 3 

charts Uj = {{xjiVj)} — C2, j = 1,2,3, glued together by the identifications 

' 
' wi1 = 

1 

sd 

yi = x2y22 I ^3 = ¿2V2 

?/3 — 
1 

X2 

' 
' 
' 

x3 = x1y1 

y3 = 
1 

x1y1 

Let h : M —> C2 be the holomorphic map whose expressions /ij in the charts 

C/j are 

/ U ( x i , y i ) = ( « i y i > y i ) i M^,2 /2) = (s2V2,*2l/2)> ^ 3 ( ^ 3 , 1 / 3 ) = ( ^ 3 , ^ 3 2 / 3 ; 

The divisor Z 
def 

h-1 ((0,0)) is a union of two copies of C P 1 , which intersect 

transversally at a point p. liZj = ZN Uj; then 

Zi = {yi = 0 } , Z2 = {x2 = 0 } U {V2 = 0 } , z* = [x3 = 0 } 

The map K[M\Z '• M\Z-> C 2 \ { ( 0 , 0 ) } is a biholomorphism, 

On M there is naturally defined an involution j : M —• M given, in every 

chart Uj, by j(xj,yj) = (xj,y~j). The set MR of fixed points of j is a real 

analytic manifold, the map h restricts to a real analytic map hK : MK - » R2 . 

ZR def (hR) -1((0 , 0)) = Z 0 MR is a union of two copies of R P 1 intersecting 

transversally at p. The map hR\MR\zR • M R \ ZR R 2 \ { ( 0 , 0 ) } is a 

real analytic diffeomorphism. The manifold M R is covered by the charts 

uf-
dej 

Í T , n M R ~ R 2 , j = 1,2,3, and we will denote again with (xj,yj) the 

corresponding coordinates. 

Prom now on we will consider only the germs of the previous objects ( M , 

h, MK, etc.) along Z or ZK, denoted by the same symbols. 

Define fi = h*(Q). Its local expressions are 

fii = !/i[(l + 0 ( |Vi | ) )dy i + (0(\y1\))dx1] 

n 2 = x2y2 [(2x2 + lax 2 
2 + r 

3 
2 + 0{\x2y2\))dy2+(y2 + 0(\x2y2\))dx2] 

Ö 3 = £ 3 [(1 + lay0 + 2 y2 
3 

= 0(\x3\))dx3 + (0(\x3\))dy3] 
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The only singularities of the foliation T defined by Û are: 

- the point p ( = (0 ,0) mU2), where Q,2 

de J 

s 
1 

sdsd n2 has a singularity of the 

type "2:1 resonant saddle": 

ü2 = 2x2dy2 + Vidx2 sd h.o.t. 

- the points 

01 = ( x 2 = - a + t-sd 2 sqdqd y 2 = o) = {xz = 0 ,7/3 = 
1 

2 
^—a — i V 2 - a * ) ) 

92 = (x2 = —a—i V 2 - a 2 , y 2 = 0) = (xz = 0, yz = 
sd 

2 
( - a + i \ / 2 - a 2 ) ) = i(9i) 

where Cl2 has hyperbolic singularities (the ratio of the eigenvalues is not real) 

if a 0, and saddles with 4 : 1 resonance if a = 0. 

We denote by Wo ^ C P 1 the component of Z containing qi and q2, and 

by Wi ~ C P 1 the other component; WQ \ { p , 9 1 , 9 2 } and Wi \ {p} are regular 

leaves of T. 

Let JL = d(fc-i({y = 0}) \Z) = { y 3 = 0 } and r = Lfl W 0 = (^3 = 0,2/3 = 

0). Let 7 i : [0,1] sd ô\{p, 91,92}, J = 1,2, be two paths 

such that 7i (0) = 7 i ( l ) = r, sdqds qdsdqdqddq 

To these paths there correspond two germsq 

of biholomorphisms fj : qsdsdqsgfghhds 

given by the holonomy of the foliation sdqsd 

We set f,geBh(C,0) equal respectively to / 1 , f2 expressed using the coor

dinate £ 3 on L. 

Definition (fC-Ml). The vanishing holonomy H(Q) of Q is the subgroup 

of B/ i (C ,0 ) generated by / and g. 

An elementary computation shows that 

/ ' ( 0 ) = —i •exp ( 
a 

qdsdqfsfsd 
) g'(0) = -i • mm sdf 

a 

2V2 - a 5 ) 

sdfsf 

df df 

dsf 
'•Ti 

sdf 

Rey3 
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in particular, H(Q) is hyperbolic (i.e. | / ' ( 0 ) | # 1, \g'(0)\ # i; if and only if 

a = 0 

Near the singularity p there exists a first integral, of the form x2 y22 + h.o.t. 

;[C-M]), This implies that the holonomy of of along 7i * 72 or 72 * 7i (which 

are freely homotopic in WQ \iPiQuQ2} to small paths around p) is periodic, 

of period 2. Hence: 

(fog)2 = {goff=id 

rtemark that from the fact that Vt has real coefficients we deduce that 

9{z) = f-'(z) 

and, because p is a real point of M , fog and go f are real: 

(fog)(z) = ( do g) ée^) and (gof)(z) = (gof)(z) 

Now we turn to the real 1-form u. Clearly, /iR : M R —> R2 gives a 

resolution of the singularity. We set /+ = cl((hK)-1({y = 0,x > 0 } ) \ ZK) = 

L fi M R CI {z3 > 0 } , then the holonomy of the foliation Q defined by u = 

(hKy(uj) along the upolycicle" Z R produces a germ of analytic diffeomor-

phism of (l+,r) Using the coordinate x% on /+ and complexifying the result 

we obtain a germ of biholomorphism of ( C , 0) which is nothing else that the 

(complex) monodromy Pu of u (for the appropriate choice of orientation of 
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M. BRUNELLA 

9)- WR1 = W1 U M R 

W Ro + Wo UMR 

Proof of the theorem 

Let T~ c M b e a germ of complex line, j-symmetric, transverse to f, 

passing throught a point p~ of Wo near p with coordinates (in the chart U2) 

(—6,0), e G R + small. Let TQ = T~ fl MR be its real part; it is a germ of real 

line transverse to Q. The holonomy of Q along the poly cycle composed by the 

segment from p~ to p and WiR d= W\ fl M R gives a germ of homeomorphism 

AT : (iW) T-0 + p- where T0_ = T- 0-0 {V2 < 0}, 17+ = To - U [V2 > 0}. 

sd 

K"(t> 

sd 
ds 

sd 

ds 5k 

|Inr> X2 

sdsf 
sd 

p- 7p 

sdq 

sdqd 

dsqdd 

On the other hand, we may consider a path T: 0,1 - Wo \ {P,9i,92} 

with 7(0) = 7(1) = P and md7(p) = 1, indy(qi) = ind1{<q2) = 0. The 

holonomy of T along 7 induces a germ of biholomorphism K : (r- p") 

(r-,p-) which is an involution because of the first integral of Q near p. 
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Lemma. 

\{X2 < 0}, 
fdfd 

Proof. 

let A+ ,A~ C M be two germs of complex lines, j-symmetric, transverse 

to T and passing throught (0, e), (0, —e) (in the chart U2). Let AQ", AQ be their 

real parts, AQ_ = AQC\{X2 < 0 } , AQ_ — AQO{X2 < 0 } . The homeomorphism 

k~ is the composition of a homeomorphism k^ from TQ_ to AQ_, an analytic 

diffeomorphism fc* : AQ • -AQ", and a homeomorphism k9 from A+_ to rjT+. 

Because W\ \ {p} is simply connected, 

the path which joins (0, - e ) to (0,e) along 

sdsf \ {p} is contractible in W\ \ {p} (endpoints 

fixed) to a path 7 contained in i\V2\ < 

Hence k* is the restriction to A0 of a 

biholomorphism K* : A —• A+, obtained from the 

holonomy of f along this path 7 

dfg df 

d 

fdd 

fdAt 

dff 

fdf 

dfqsf 
dfsdf 

•3d 
dsf 

We choose e so small that Ù has a first integral x2y% + - defined on 

17« = { |s 2 | < e, b l < e } . Hence every leaf of dsfsf different from a separatrix 

at p either does not intersect Uf d df n M R , or it intersects df 
df 

along two 

segments "symmetric" w.r. to the x-axis. We deduce that: 

i) if teAô_, then K*(t) S A I - is the only intersection of At with the leaf 

of dsfd through t\ 

ii) if 5 GTro_, then K-{s) G r0-+ 
is the only intersection of r0-+ 

with the leaf 

of f\ut through s. 

From these two remarks, it is clear that k2 o sdfdsfdsfd O fcj is equal to 

K~ dsf 
5 i.e. k" = K-\ 

r01 
Q.E.D. 

Obviously, a similar result holds if we start from r + = germ of complex 

line ?-symmetric passing throught (6 ,0) = p + , etc.. 
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As a consequence, the complex monodromy df : ( C , 0 ) - > ( C , 0 ; may be 

computed as the holonomy of T along a path 7 : [0,1] df W 0 \ {P, 9i,92}i 

7(0) = 7(1) = r, as in the following picture 

dffsfd 

dfsdff 

dsff 

• df 

dfs 

df 

fdsffsdff 

dsfs 
sdfdf 

This path is homotopic tc sdfd 
sd 

*7i *7i 1 
* 7 2 » hence 

sqdffsqfdf o f 1 of1 Og-1 

and from (g o / ) z = id we conclude 

sdfsf /00 of-1 og-1 = If, 9Ì 

Q.E.D. 

Proof of corollary 1 

It is sufficient, using the path-lifting argument of [C-M], to show that the 

vanishing holonomies H(n) and H(£lo) are holomorphically conjugate. The 

"assertion 1" of [C-M], pag. 478, is here replaced by 

Assertion l a : if a; £ MSD(a) then there are analytic coordinates (x, y) 

near (0,0) s.t. w is, modulo multiplication by a nonvanishing germ: 

u(x,y) = x3dx + {y + ax2)dy + f (x,y)(2ydx - xdy), / € R sfdfsf 

The proof of this normal form lemma is achieved as in [C-M]: = 0 has a 

separatrix X 4 + 2aX2Y + 2Y2 = 0 (in suitable coordinates, preserving the 
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class MSD (a)) which is a separatrix also for 2YdX = XdY = o. Hence: 

Ci A ( X 3 dX + (Y + aX2) dY ( = (X4 + 2aXlY + 2Y') H1 (X,Y} dXAdY 

fi A 

(2YdX - XdY] 

= [X4 + 2aX2Y + 2Y2) •H2(X,Y)dX AdY 

(2YdX - XdY) 

\ (X3dX + (Y + aX2)dY) = (X4 + 2aX2Y + 2Y2)- dXAdY 

and from these formulae the assertion l a follows. 

Let us denote by /0, <?o the generators of H(fto); [fo,9o] = id because u0 

is a centre, moreovei 

/¿(0) = /'(0) = A 

go (0) = g'(o) = 
E 
A = 

- 1 
A 

and |A| 7^ 1 because a ^ 0. 

Prom the commutativity and the hyperbolicity of H(Q.) we deduce that 

H(Q) is holomorphically conjugate to the group generated by 

z I—> Xz ana Z h-• 
1 
I 2 

For the same reasons, H(fio) also is holomorphically conjugate to that linear 

group, hence to fT(fi). Q.E.D. 

Proof of corollary 2 

Consider the germ / o g G Bh(C, 0): it is real ( ( / o g)(z) = (f o g) (z)) 

periodic with period 2, and conjugates JI(f2) with itself thanks to [/, g] = id: 

[f°g)og = (9of)°9 = I 9°{j0g) 

'Jog) 0f = / 0 ( 9 0 / ) = fo(f0g) 

As in corollary 1, we use the path-lifting technique of [C-M] to suspend ( / o g) 

and to obtain a germ of biholomorphism I : M - * M , which preserves JF: 
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Ï*(Û) A Û = 0. From the fact that ( / o g) is a real involution, we obtain that 

i" is also a real involution. Taking the projection on C 2 and the restriction to 

R 2 we obtain the required analytic involution. Q.E.D. 

Remark: if a ^ 0 the result follows also from corollary 1: OJ0 is invariant by 

(w,y) (-*,y)-
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