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QUASI-REGULARITY PROPERTY FOR UNFOLDINGS OF 
HYPERBOLIC POLYCYCLES 

M . El Morsalani, A . Mourtada and R. Roussarie 

1. INTRODUCTION. 

Let X be a real analytical vector field on R2. A polycycle r of X is an 
immersion of the circle, union of trajectories (Singular points and séparatrices 
whose a and u limits are contained in this set of singular points). Moreover 
one supposes that T is oriented by the flow of X and that a return map 
P(x) along T is defined on some interval a with one end point on T : a is 
parametrized by analytical variable r G [0, .ri], {x = 0} = a D T = {q} and 
P{x) : [0,#o] — • [0, #i] for some .r0 G]0, :ri[ 

We say that V is an hyperbolic polycycle if all the singular points in 7 
are hyperbolic saddle points. Let { p i , . . . , pk} the set of these singular points 
listing in the way they are encountered when we describe V starting at q. We 

define the hvperbolicitv ratio of p,, i = 1, . . . , k to be n = 
µ'i 
µ'i where — ¡1'^ 

n" are the eigenvalues at pi (µ'i, µ"ii > 0). 

The Poincaré map P(x) is analytic for x > 0, and extends continuously at 
0 by P ( 0 ) = 0. 

In 1985, Yu. Ilyashenko [II] introduced a notion (the almost-regularity) 
similar to the following one up to a composition by the logarithm : 

Definition. Let g(x) : [0, xo] — • R a function, analytic for x > 0, and 

continuous at x = 0. One says that g is quasi-regular if: 

QRi) g(x) has a formal expansion of Dulac type. This means that there 
exists a formal series: 

g(x) = 
00 

i=0 

xXiPi(hix) 

S. M. F. 
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where A,- is a strictly increasing sequence of positive real numbers 0 < Ao < 
Ai < . . . tending to infinity and for each i, Pi is a polynomial, and g is a 
formal expansion of g{x) in the following sense: 

Vn > 0 9W ~ 
n 

i=0 

xXiPi(lnx) = o(xXn). 

QR2) Let G ( 0 = g(e~t) for £ e [& = -logx0, oo[. 
Then G has a bounded holomorphic extension in a domain Q(C) C C 

where Q(C) = {C = f + ti? | £4 > C ( l + rj2)} for some C > 0. 

In the same paper [ I I ] , Ily&shenko proved that the shift map 6(x) = P(x)—x 
is quasi-regular. The property Qi?i was already established by Dulac in [D]. 

As a consequence of the Phragmen-Lindelaf theorem (see [C]) a flat quasi-
regular function (g(x) = o(xn), Vn) is necessarily equal to zero, and it follows 
from this that V cannot be accumulated by limit cycles of X ( a limit cycle 
of X is an isolated periodic orbit). 

This result was a first step in the solution of the "Dulac problem", for which 
one needs to look not only at hyperbolic polycycles but more generally at all 
elementary polycycles. As it is well known, this general solution ( [EMMR] , 
[ E l ] , [E2], [12], [13]) involved more elaborated technics, and we limit ourselves 
to the hyperbolic polycycles in this paper. 

Here we want to consider the unfoldings (X\, T) of a hyperbolic polycycle 
T, germs of finite parameter family (X\), with A"o = X defined by a represen­
tative family on V x W where V is a neighborhood of V and W neighborhood 
of 0 in the parameter space. 

As it was shown in [R], it is useful to obtain quasi-regularity property for 
1-parameter unfoldings, in order to study finite cyclicity for general unfoldings 
of hyperbolic polycycles. In the present paper, we extend to any 1-parameter 
unfoldings a result of [R], proved there for hyperbolic loops (singular cycles 
with just 1 singular point): 

Theorem 1. Let (X€ ,T) a 1-parameter analytic unfolding of an hyperbolic 
polycycleT forXo with k vertices. Let P{x, e) the unfolding of the return map 
where x is some analytic parameter defined as above for XQ. Let 6(x,e) = 
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P(x, e) — x. Let 6(x,e) = 
oo 

2 = 0 
Mx) ? (Le: 6i(x) = 

1 d^ix.O) 
il de* 

the formal 

expansion of 6 in e. 

Then, there exists some R > 0 ( depending on r i ( 0 ) , . . . , rfc(O)) such that 
for Vz G N , xtR6i(x) is quasi-regular. 

Remarks. 

1) Given an unfolding Xe and a transversal a ~ [0, x\] chosen as above for 
X o , the return map P(x, A) is defined in a domain D = U ^ w ^ a ^ e ) , ^ ] where 
a(e) is a continuous function, such that a (0) = 0. So, given any x G]0, # I ] , the 
return map P ( x , A) is defined for x if |e| is small enough. Prom this it follows 
that the functions 6j(x) in the above theorem, are defined for Vx G]0, a?i]. 

2 ) Theorem 1 extends Ilyashenko\s one which corresponds to the quasi-
regulaxity of <5o(#)-

The generalization brought by theorem 1 is useful to study unfolding of 
identical polycycles, i.e polycycles such that 6(x) = P(x) — x = 0. Suppose 
for instance that A = e G R . Then, if (r,A"0) is an identical polycycle, one 
can write: 

6(x,c) = €n6(x<€) 

for some n > 1, with a function 6(x,e) such that 6(x,Q) ^ 0. Then from 
theorem 1, we have that 8(x,0) has a non-trivial Dulac expansion. 

So, the equation for limit cycles {S(x, e) = 0 } , which is equivalent to 
{6(x, e) = 0 } , has the same properties that in the non-identical case (6(x, 0) ^ 
0) . 

This allows us to develop for some identical unfoldings a proof similar to the 
one for unfolding of non-identical polycycles. In [R] these ideas were applied 
to prove the finite cyclicity of any analytic unfolding of loops (Singular cycles 
with just one singular hyperbolic point). Here we extend it to some polycycles 
with 2 singular points: 

T h e o r e m 2. Let (X\, T) an analytic unfolding of an hyperbolic 2-polycycle 
T (a polycycle with 2 singular points pi, p2 ) . Lot n ( A ) , r2(A) the X-depending 
hyperbolicity ratio at pi, p2. Suppose that: 
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1) For all X, r i (A)r2(A) = l 
2) at least one of the two saddle connexions remains unbroken (for all X). 
Then (X\, T ) has a finite cyclicity. 

Remark. 

A part the conditions 1,2, no other conditions are imposed on (X\, T) and 
the polycycle Г may be identical. The non-identical case was already worked 
out in a previous paper [ELM]. Moreover, if 7^(0) = r2(0)_1 ^ Q , a result of 
finite cyclicity was obtained in [M], without the conditions 1,2. 

The conditions 1,2 in the theorem 2 may seem very restrictive. Neverthe­
less the theorem has the following natural application to polynomial vector 
fields. Let P2p be the family of all polynomial vector fields of some even de­
gree 2p, p > 1. It is easy to extend Pov in an analytic family of vector fields 
on the sphere (X\). This family (X\) is equivalent to P2p on the interior 
of a 2-disk D2, whose boundary dD2 corresponds to the "circle at infinity 
7 o o " . Singular points of ( Х д ) appears at infinity in pairs of opposite points 
(p, q) and a consequence of the even degree is that the tangential eigenvalues 
at p, q are opposite and the same for the two radial eigenvalues. It follows 
that the product of the ratios of hyperbolicity at p and q is one. Then if for 
some value Ao (that we can suppose equal to 0) , X\Q = XQ has just a pair 
of singular points p, q on y8 and if there exists a connection Г 1 of p and q 
in int(Z)2), one can apply theorem 2 to the unfolding ( Х д , Г ) where Г is one 
of the 2 poly cycles containing Г 1 and an arc Г2 of 7 ^ joigning p and q\ we 
have r*i(A)r2(A) = 1 as noted above and the connection Г2 at infinity remains 
unbroken. This applies to the quadratic family V2 and allows to prove the 
finite cyclicity of some of the 121 possible cases of periodic limit sets listed 
for this family in [DRR] (cases labelled: H\, H\ in this article). 

In the first paragraph, we prove the theorem 1. Of course, we hope that 
the quasi-regularity property proved here will have a more general application 
that the one given in theorem 2 and proved below in the second paragraph. 
In fact the proof uses the existence of a well ordered expansion for 6(#, A) at 
any order of differentiability. This expansion was established for unfoldings 
like in theorem 2 in [ELM] and we recall it bellow. In this paper it was used to 
prove the finite cyclicity in the non-identical case. Here, we use it to reduce in 
some sense the general case to the non-identical case, by the method already 
described in the loop case in [R]. This is made in the second paragraph. 

Firstly a natural ideal in the space of parameter functions germs, the 
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coefficient Ideal J is associated to any unfolding of identical graphic . If 
{ 0 i , . . . , 4>i} is a system of generators for J, and, in our case, when it exists 
a well- ordered expansion for 6(x, À ) , one can divide 6(x, A) in the ideal: 

6{x,\) = <f>i(\)Si(x,\) 

with functions Si(x,X) having also a well-ordered expansion. The theorem 
1 is then used to prove that "for most of indices f , 6i(x,0) is quasi-regular 
and then has a non-trivial Dulac expansion; and we can apply, as in [R] for 
the loop case, a derivation-division algorithm similar to the one used for the 
non-identical case. Here we will use the precise procedure developed in [El.M] 
for the non identical case. 

2. Q U A S I - R E G U L A R I T Y P R O P E R T Y 

2.1 Reduction to the quasi-regularity property for saddle transitions.— 
We recall here a definition used in [ I I ] : 

DEFINITION 1 [11].— A domain L of C is said to be of class I if it 
contains a domain Q(C) of the form, 

ft(C) = {C = £ + n; £ 4 > C ( l + r/2)}. 

for some C > 0. 

In the neighbourhood of each saddle point pi, choose as in [II] a chart 
analytical in (a;;, yz-, e) in which the field X€ takes the form 

X i — X i 

Vi = -yi[ri(e) + х"ЧлЫх1,уи e)] 

where U{ G N and U{ > rz(0) and the functions /?; are analytical on At- = 
{\xi\ < 1} x {\yi\ < l } x ] - e0,6o[ and satisfy 

sup 
A . 

fi < inf ( l , r , -(€)/2) 
K K K o l 

Denote by cr2- = {(xiy, yi); yi = 1} , of = ai fl [0,1] x { 1 } , r,- = {(a,-, y,-); x{ = 1} , 
rf = T{ PI { 1 } x [0,1], -D,-(., e) the Dulac map which send af on r + 

yi = D{(xhe) = Dj^(xi) 
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and G2(.,e) the analytical map which send 77 on cr/+1 (with cyclic notation) 

xi+1 = Gi(yi,e) = GiAlJi)-

The return map on cr* is given by 

P { x u , e) = Gk,e o Dk%e o Gk-ut 0 A - i . c o • • • o Gi,c o D M . 

Put Hi = Di, H2 = G i , . . . , H2k-i = -Dit, i?2fc = Gk and agree that the 
composition is made with respect to the first variable 

P(x1,e) = H2k o H2k-1 o …. o H1(x1,e), 

for all n G N , we can write 

gnp 

Sen 
^ I , É ) 

n n 

p2k + q2k = l2k = 1 p2k - 1 + q2k = l2k-1 = 1 

n 

/1=1 

^ 1 ,P2,Q2,-.. ,P2fc,<?2fc X 

Sl2kH2k 

Sx1p2kEq2k 
Hok-l o . . . o H1 (x1 ,E) f ) )x 

dl^H2k-i 
Sx1p2k-1Eq2k-1 

o Hok-2 o .. .0 H\(xi, e)) x ... x 
Sl1H1 

de* 0*i>€)) 

the coefficients AilyP2^^... ,P2Jt,92fc G Z. 
Using [ I I ] , we see that the maps x1 »—» H,; o Hi-1 o • • • o H\(x\, 0) are quasi-

regular and their continuation to the complex plane, after conjugacy by the 
map e~^, send a domain of class X on a domain of class X. Furthermore, the 
analytical maps Gt can be naturally continued to complex disks in biholomor-
phic maps and their partial derivatives of all order dliGi/dx^ieqi(xi1, 0) are 
quasi-regular. So the Theorem 1 is a consequence of the Lemma 1 below. 

2.2 Quasi-regularity for unfolding of hyperbolic saddle transition.— 
This section is devoted to the proof of the following Lemma 

LEMMA 1. Let P be a saddle point of a,n analytical planar field Xo 

and X\ an analytical unfolding of A'o near P ( the parameter A belonging 

to some neighbourhood Vm of 0 in Hm). Let D(., \) the Dulac map defined 

as above and r ( A ) the hyperbolicity ratio of the saddle point P ( A ) . Let R = 

Maz( l , r ( 0 ) ) ; then for all n G N and p + q\ + (¡2 + V q™, = n, the map 

x h-> x" R d"D 

d.rP\V • • • A'/;," 
(.r,0) 
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is quasi-regular. 

Remark—. 

The Lemma for n = 0 is proved in [ I I ] ; the proof in the general case is 
based on this one. The multiplying function xnR is not the best one for 
some values of (p, g i , . . . , qm). But this choice allows an easy estimate of the 
constant R in Theorem 1: If we put R[ = M a x ( l , n ( 0 ) ) then in Theorem 1, 
take R = Ri • • • Rk- The result of this Lemma and the remark above show 
that Theorem 1 may be extended to any unfolding X\ with m > 1: the maps 
xi i-+ x^d^^P/dX^1nk . . . A ^ ( o : i , 0 ) are quasi-regular. 

Proof of Lemma 1.— We use the notations of [11]. Choose an analytical 
chart (o?,y, A) so that the field X\ takes the form 

(2.2.1) 
X = X 

V =-y[r(\A) + Xnyf(x,y,\)} 

with n > r0 = r(0) and / analytical on A = {\x\ < 1} x {\y\ < 1} x Vm and 
satisfying 

(2.2.2) sup \f \ < inf 
AG V 

: i , r ( A ) / 2 ) 

the family ( ^ A ) is induced by the family (Xfl) given by 

(2.2.3) 
x = x 

V = -y[r(v) + xnyf(x, y, A)] 

where fi = (^0, A) G Vm+1 C Rm+1 and r(/0 = r0 + fi0. Denote by a+ = 
{{x,y); y = 1 and x 6 [0 ,1]} , r + = {{x,y); x = 1 and y G [0,1]} and D( . , /x ) 
the Dulac map which sends cr+ on t + 

y = D(x.fi). 

Extend the real field Xfl to a field Xtl defined on C2 with local variables ( 2 , w) 

and complexify the parameter A to A G V£? C C2 

(2.2.4) 
i = z 

w = -w[r + znwf(z, w, A)] 

we keep the parameter /¿0 real for reason given below. 
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We will say that the complex family (2.2.4) as above, with //o G R belongs 
to the Siegel domain because the ratio of hyperbolicity remains real. Denote 
by do and di the punctured disks of coordinate z 

d0 = { ( 2 , u O ; 0 < | c | < l , u ; = 0 } , 

d1 = {(z,w);0< \z\< h, w = l}, 

and by ¿ 0 , d\ their universal covering with base point respectively on (1,0), 
(1,1) and with coordinate £ = — Lnz. Denote also by d2 the punctured disk 
of coordinate w 

d2 = {(z,w);0< \tv\ < l,z = 1} 

and by d2 his universal covering with base point on (1,1) and coordinate 

v = —Lnw. Let us show that for A G V£\ e small enough and C > 0 big 

enough, there exists a map D holomorphic in ( ( , A) G fi(C) x V£?, analytical 

in HQ G] — 6, e[ and with values in d2; furthermore, for A G Vm = Vjg fl Rm, 

the map D is the complex continuation of the map D defined on a+ C td1. 

Let C = £ + ^7 G Q ( C ) and cv̂  the union of the two segments [0,£], [E, C] 
parametrized by the arc-length s (see fig. 2a): s(0) = 0, s(£) = £, 5(C) = 
£ + \r)\ = 5. Let 7 0 and 7 1 the curves on fig. 2b defined by 

7i = 7C.1 • [°> S] ^ C x { ! } , s - ( E x p ( - a < ( * ) ) , 1), 

7 0 = 7c,o : [0,5] ̂  C x { 0 } , s - (Exp(a<(*) - C) ,0) , 

and if = r(/x)Lnz + Lnw the first integral of the linear field associated to the 

field X^. The formula 

d 

dt 
(\w\2) = -2\w\2[r^u)+ Rere(znWf(z,wtX))] 

and the hypothesis (2.2.2) show that through each point p = (z , w) with z ^ 0 
and \w\ < 1 passes a curve, solution of the system (2.2.4), which cover the 
segment [ ^ , ^ / | ^ | ] of the curve 70 under the projection ttz : (z,w) —• z and 
which is entirely contained in the poly disk P = { | - | < l , | t i ; | < l } . Let us show 
now that if p = ( 2 , 1 ) = (Exp(—0.1)< then this curve can be extented to a 
curve 7 £ which cover the curve 7 ^ 0 under the projection 7CZ and is contained in 
the intersection of P with the surface (pp (the complex solution of the system 
(2.2.4) passing through p ) . To prove this point, an estimate of u along this 
curve is usefull. Parametrize the arc of 7̂  defined above by s G [0,£]; on the 
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end of this arc, we have |it;| < 1. Hence, suppose that the curve 7^ exists for 
s G [0 ,T] with T > £ and differentiate ?/ along this curve 

u = zznwf(z,w,\); 

one can compute \znw\ < \zr°w\ = \z~tl°\.\zrw\ = \z~^°\.\eu\; along the curve 
7£, we have e~Z < \z\ < 1, and \z~^°\ < A = Sup(e//oC, 1); therefore, we 
get \u\ < A | e w | . Put v(s) = \u(j^(s)) — u(p)\; as along the curve 7^ we have 
\dt/ds\ = 1, one can easily verify that 

\dvlds\ < A . e - r * + v M c s ) < e-q-t+v(s)a 

Prom now on, the same arguments as in [II] can be used; so we conclude that 

for C > 0 big enough, we get v(s) < 1 along the curve 7^ for all £ G Q(C) and 

for all ¡1 = (/io, A) G] — e, e[x V£7. The extension of th curve 7^ for s G [0, S] is 

done as in [II] and we put 

D(C, µ) = H7dS)) = v(%(S)) = r(,i)C + h(C,n) 

with |h(C,µ)| = v(S) < 1; the same estimate as above shows that /i(C? ¿0 —* 0 
as £ —• 00 and ( G fl(C) uniformly on // G] - e, e [ x . 

Remark that for /i0 G C , the results above are false in domains of class 
I , but still valid in domains of the form u{C,C) = { ( £ , * / ) ; £ > C ( l + 
C'772)1/2}. Unfortunately, the Phragmen-Lindelof theorem does not apply on 
such domains. 

The extension map D is holomorphic in (£, A) G J1(C) x VQ and analytic 

in jjl0 G] - 6,6[ and we have D(x^i) = e-^(-Ln.r,/*0,A) for ^ ^]o,a:o] and /i = 

(A*o, A) G V R + 1 . Denote by F (C , /*o, A) = e -S (^" ° 'X) ; the analytic extension of 

the partial derivatives dnD/dxp ̂ q0\f . . . A?- to the domain Q(C) x ] - € , e[x V £ 

is a function of the form 

epC 
P 

1=1 

al 
gn-p+i jp 

SClµq0Aq1l ... Aqmm 

with a; G Z. As the function F is bounded on Q(C)x] — e,e[xVQ and holo­

morphic in (C, A ) , we begin by studying the functions dnF/d/jLQ; but we have 

D(C,/i) = -Lnw(t(S),p,Li). Thenifweputu»n(/(5),p,/i) =M(dnw/d^)(t(S),p,//), 

we see that it suffices to study the functions un = wn/w. Let us begin by 

the function u\\ using the fact that ?'(//) = ?*o + /¿0 and the second line of the 

system (2.2.4), we get 

w1 = -w{[r + :"wfi\] - w 
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and then U\ = U\Znwj\ — 1, where fn and f\ are holomorphic functions in 
( z , w , A ) bounded on C = {\z\ < 1} x {\w\ < 1} x Vg1. Put vx = |u1|, then 
one can easily show that \dv\/ds\ < A\\V\\euu\ + 1 where An = A.S\ and 
Si = S u p { | / i ( z , w , A ) | , (z,w,\A) G £ } ; so we get 

dv1 
ds ' 

<AA\V\e~ r0 2 E f 1 

for some constant A\; this yield after integration between 5 = 0 and s = £+1̂ 1 

vi < Ax e 
io 
Z E eAA^\n\)e r2 

2 E 
- I ) 

and this show that there exists Bi > 0 such that |e ro<>wi(£, / / ) | < Z?i for all 
( C , A i ) e n ( C ) x ] - c , 6 [ x V ^ . 

Remark that the multiplying function can be replaced by the function £ 1 
and this is optimal for the linear part of the field. The same procedure and 
an induction on n permit us to show that there exist Bn > 0 such that 
|e-nroCi/n(C,̂ )l < Bn for all (C/0 € n ( C ) x ] - 6 , 6 [ x V # . 

Now, let Vg1 = rfi(0,«i) x ••• x dw(0,am) where a2- > 0, ( C / ) / € n some 
strictly increasing sequences with Co = C and tending to some C < oo 
and ( a ^ / ) / € N some strictly decreasing sequences with a2-,o = ai, tending to 
some a'i > 0 for all i = 1 , . . . , m. The theorem of derivation under the 
integral sign and the Cauchy's integral formulas show that for all n G N and 
P + Q + Qi H \-Qm = n, there exist iJ,,.?.*/, qm > 0 such that 

\e-(p+qr0)t dnF 

SCpµq0Aq1l...Aqmm 
(0/01 < Bp,q%qiimmm,qm 

for all (C, /i) G fi(C")x] - 6, e[xrfi(0, a'\) x • • • x r/m(0, a'm) and this finish the 
proof of Lemma 1. 

3. FINITE CYCLICITY RESULT. 

3. .1 The well ordered expansion for the shift map 

We consider a real analytic family of vector fields X\ on the plane. This 
family depends on a parameter A G R \ for some A G N . Suppose that 
for A = 0, X\ has an identical hyperbolic polycycle To with two vertices Pi 
and JP2- In order to study the cyclicity of r ( ) in the family X\, we restrict 
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ourselves to a fixed neighbourhood U of To in the plane. We choose U as 
union of three sets A\, A2 and As i.e U = A\ U A2 U A3, and we denote W a 
neighbourhood of A = 0 in R A . Now X\ will be represented in A\ xW,A2x 
W and As x W respectively by JVj[, A"^ and X% three analytic vector fields 
depending analytically in (ra, A) G R2 x RA. The three charts verify the 
following properties : 

i) In Ai with local coordinates ( # 1 , j / i ) , A i = { ( # 1 , j / i ) ; |a?i| < 2 and |y1| < 
2} the family A"j[ has a unique singular point Pi (A), which is an hyperbolic 
saddle point situated in the origin of A\ i.e Pi (A) = 0. Also the stable 
separatrix and the unstable one are respectively the axis oy\ and ox\. Finally, 
the 1- jet of X\ in 0 is equal to : 

j 1 A l ( 0 ) = .r1 
d 

Sx1 
- r r i ( \ ) y i i 

a 

Sy1 
(3.1.1) 

this formula defines on W an analytic function n'(A): the hyperbolicity ratio 
of the saddle point Pi. 

ii) In A2 with local coordinates (x2, ?/?), A2 = {(x2, y2); \x2\ < 2 and \y2\ < 
2 } , the family X\ has a unique singular point P>(A) which is an hyperbolic 
saddle point, situated in the origin i.e P2(A) = O.The 1- jet of X\ in 0 is given 
b y : 

i1(-A-A2)(0) = y2 
f) 

Oy-2 
—rr-2(X)X2x 

d 
0x2 

(3.1.2) 

the stable and unstable séparatrices of (— À ' ^ ) at 0 are respectively the axis 
ox2 and oy2\ and the hyperbolicity ratio of (—A'2) at P2 is r2(A). 

iii) In As the vector field Ar^ has no singularities. Furthermore the points 
Q i ( l , 0 ) , $¿(0,1) in the two charts Aj i = 1,2 and the regular segments of 
To joining them are contained in As (figure 3). 

The family X\ verifies the two following conditions : 
a) for all A in W n (A) = r2(A). 

b ) at least one of the saddle connections remains unbroken for all A. 

Remark. 

The condition a) is equivalent to the first condition in Theorem 2. 

Now let us define the maps that will permit us to study the cyclicity of To. 
Firstly consider: 

°i = {(XU Vi) S Ai] y; = 1} and r, = {(.r,-, / / ; ) G A{\ x{ = 1} ¿ = 1,2 
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at = {(xiiVi) 6 <Ti;xi > 0} and Tt = {(xiiVi) e rt-;yt > 0} ¿ = 1,2 

the segments crz-, rt* are parametrized respectively by xi, yi i = 1,2 and are 
transversal to the vector field X A for all A in W. 
The flow of X | , A E W in ^ 3 defines two analytic diffeomorphisms, the regular 
transition maps, R\^\ and i?2,A 

Ri, A : T f — • cr2, i?2,A : ^2 — • cri 

The flow of X\ in A i (resp of (—X%) in . 42 ) defines the transition map D\,\ 
(resp -D2,A) called the Dulac map. 

£>I,A : cri* — • T I , D2,A : T2+ — • <72 

the map j D ^ A (resp D2,x) is analytic for x\ > 0 (resp ?/2 > 0) , but it's extended 
by continuity in 0: £>I,A(0) = 0 and D2.\(0) = 0 for all A in W. 

Remark. 

To define the above maps, we have perhaps to reduce the neighbourhood 
W to a some smaller one. 
Finally the shift map will be defined by : 

6(x, A ) = Rux o Dux o R 2 M x - D2,x(x) 

where x = y2 is the parametrization of the transversal r2. 

Proposition 1. Given K arbitrary integer, there exists a neighbourhood 
Wk C W of 0 in RA, analytic functions 7/] : Wk — • R such that on [0, x0] x 
Wk the map <5(x, A ) has the form : 

l ) 6 ( x , A ) = 
i r ( 0 ) + j < A ' + l 

74Vr(A)+J' + ^A-(.r.A)x if r (0) i Q 

2)6(x ,A) = 
0 < j < i < A ' + l 

yKijxir(0) wj + OK(x, A)1 if r (0) = p 

q 
E Q, p ^ q = 1 

where r ( A ) is the common hyperbolicity's ratio ofX{1 at Pi and (—X%) at P2. 
The function u is defined by: let cvi (A) = r(0) — r ( A ) , 

w(x, A) = 

x-a 1 (A) -1 

« i ( A ) 
for « 1 (A) 96 0 

— In .r, for n , ( A ) = 0. 
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<J>k{%, A) is a Ck function, k-flat at x = 0 for any A. 

In order to prove this proposition we have to extend the field X\ in the 
complex domain; besides we'll restrict ourselves to the case r (0) = 1 because 
the other cases axe resolved in the same way. 

3. .2 The complex continuation of S 

The family X A , A G RA has a natural holomorphic extension X j . This 
extension is obtained by extending the vector fields X\i i = 1,2,3 to holo­
morphic ones in domains extending the different charts A{ x W. 

In the following we will denote this holomorphic extension by X j , A G CA, 
we will work with the same notations as in the real domains with caps symbols 
to subline that we are in the complex ones. 

We can suppose, up to a holomorphic conjugacy, that the vector fields X^* are 
defined in the charts A ; : polydisks |x,|2 + |y,|2 < 2;(xz-,yt) G C2, i = 1,2. 
The origin in each chart A2- is the only singular point with hyperbolic 1-jet: 

j 1 X , 1 ( 0 ) = x1 
d 

dxi 
- (1 - r?,)yi 

a 

dyi 

i 1 ( - X A 2 ) ( 0 ) = y2 
0 

Oy-2 
- (1 - 5 i )x2 

d 

oy2 

where 1 — Si (A) = r ( A ) is the complex continuation of the hyperbolicity ratio. 

We define : 

<7I = { ( x i , y t ) G A , ; y , : = 1} and 77 = { ( x , : , y i ) € A,-;x,- = 1} 

af is (resp T * ) a sector in CT,; (resp in r , ) denned by : 

af = { (x , - , y , - ) e oi ; \Arg(-x.i)\ < 90) O<0O< 
7T 

2 

respectively 
r^ = { ( x f , y ; ) € r , - ; | - 4 r f l ( y , - ) | < M0} 

the disks cr2-, rz- are transversal to the local invariant manifolds of X ^ . 

The Dulac and the regular transition maps defined above have unique holo­
morphic extensions. So the shift map has a unique holomorphic extension 
noted by 6(x, A) in ( r * \ { 0 } x W ) and prolonged in 0 by 0. 
Let the function cD(x, A) be the continuation of the real one defined above. 
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Theorem 3. For any arbitrary integer K, there exists a neighbourhood W # 
of 0 in W C CA and holomorphic functions 7/] : W / ^ — • C continuation ol 

the real functions yfj such that on t+2 x W/v- the function £(x, A) has the 
form : 

« ( x , A ) 

0<j<i<K 

7£(A)x'^ + ^ ' ( x , A ) 

where i\)K is a function of class Ch , in the real sense, K-ûat in x = 0. 

Remark. 

This development is what we call the well ordered expansion of order 
K. The monomials x*u3J are totally ordered by the lexicographic order : 
x*uP -< xmu)n if and only if i < m or / = m and j > n. 

The proposition 1 is an immédiat consequence of theorem 3, it suffices to 
restrict all the different neighbourhoods, charts and functions in CA and C2 
respectively to RA and R2. 

Proof of the theorem 3. 

Given an integer A" ̂  0 we may apply the results of [R]. There exists a 
neighbourhood W # of 0 in CA, some transversals depending on the parameter 
A G C A , &i (resp Ti) tangent to a,-in 0 (resp to a,) such that the Dulac maps : 

D1 A " ^1" —* ^i and D 9 ^ : T+2 — > 0-2 are written under the form : 

D I , A ( X I ) = x i + 

< j < i K 

a ^ ( A ) x i ^ ' + • • • + n A > i , i x f + 1 u + V ' A - ( X I , A) 

D2 r (y2) = y2 + 

l<j<i<K+l 
Pijyfij + ••• + /?A-+i,iy2+1S + Vl(y2, A) 

where 0 ^ 7 , / % are holomorphic functions on W/v- V'/xo^A' ARE CK in the real 
sense, A'-flat resp. to X i = 0 , y> = 0. 

The same arguments as in [R] work here because X i and ( — X | ) have respec­

tively the same hyperbolicity ratio r (A) in Pi and P2. 

Now there exist (p^ i = 1,2 (resp 0.^ i = 1.2) holomorphic diffeomor-

phisms defined by the flow of X ~ between a; and ix,- (resp T\ and f^.) 

Pi,A : oi oi °i.X '• Ti Ti 

316 



QUASI-REGULARTTY PROPERTY FOR UNFOLDINGS 

with VA G W i r , 4>i9x(0) = ^>X(0) = 0 t i= 1,2. 
So the Dulac maps : 

D1?A / O1+ T1 and D2,A : t2 o2 

are written : 

D1,a(x1) = (o-11,A o D2,A o O2,A) (y2) 

D2,A(y2) = (o-12,1 0 D2.X O <i»2jJ (y2)(o) 

by using the lemma 2 below we obtain that the Dulac maps have the following 
development for a choosen K : 

D i ( X i ) = X ! + 
l < j < » ' < A ' 

aij(\)x\2Jwj + ••• + rtA-+i,ixf+1w + V ' A - ( X I , A) 

D2(y2) = y2 + 

l<j<i<K 
P i j M y W w j + ••• + >h<+uiy£+1u> + Vi-(y2, A) 

the functions c^-j,/3ij,iftK have the same properties as o ^ j , ^ • 

L e m m a 2. Let f be a holomorphic function of o+ x W # where cr+ is a sector 
as the ones defined below. If f (0 . A) = 0 fhen there exists a holomorphic 
function g such that : 

u5(x(l + f ) , A) = (1 + 5, (A)g)u5(x, A) + g 

if a ^ 0 : u;(ax, A) = (1 + o{ax ) ) tD(x , A) - l n a ( l + o ^ j ) 

£ ( a x ( l + f ) , A) = (1 + o ( « ! )KD(x . A) - Ina ( l + o ( 5 i ) ) + g 

To finish the proof, we have to develop : 

6(x, A) = ( R x o Dj_x o R 2 j ( x ) - D2 r ( x ) 

where R1 j and R2 ^ are the regular transition maps. We can write them as : 

R a ( x ) = b0(A) + b i ( A ) x + b , (A)x2 + • • • + bK(\)xKk + o(xK) 

R 2 ^ ( x ) = a i ( A ) x + a2(A)x2 + a3(A)x3 + • • • + aA-(A)xA' + o(xK) 

Using again the lemma 2, we find the expansion of fi. 
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3. .3 Division in the ideal of coefficients 

Let's recall some definitions and results from [li] : 
For all XQ £]0,£o], the domain of the function 6\(x) = 6(x, \) and for all 
A G W , 6 is an analytic function in (x0, A) . Then we can write it as follows : 

6(x, A) = 
oo 

j = 0 
oJX,x0)(xx - XoY (3.3.1) 

for x close to xo-

Consider the ideal JXo generated by the germs of the functions a; in A = 0. 
We will note them by a;. In [i?], it is proved that the ideal JXo does not depend 
on the point XQ 7^ 0. J is called the ideal of coefficients associated to 6. J C O 
the ring of the germs of analytic functions in A = 0. 

In the following we will suppose that J ^ O ie fi(x, 0) = 0. This corresponds 
to the case: To is identical. The other case J = (9, ie 6(x, 0) ^ 0, was studied 
in [ELM] and corresponds To non identical. The definitions introduced here 
are available also in the complex domain. 
So let J the complexified ideal of J. It's easy to see that J = JXo for any 
x0 G T2 where JXo is the ideal of coefficients of £(x, A ) , extension of 6(x, A) 
defined above. 

Proposition 1. Let 7 / j , K > 2 the coefficients of the expansion of'6 to an 

order K. Given any k such that 1 < k < K then the germ 7 - G J for 
0 < j < i < k. 

Proof. 

We will apply the same algorithm as in [ELM] 
Consider the well ordered development of f> up to order K : 

6 (x ,A) = 
0 < j < i < h k 

y f j ^ w j + • • • + 7*+i . iXA'+1£ + V * ( x , A ) (3.3.2) 

For x ^ 0, the germ in A = 0 of the function A 1 — > <5X(A) = <5(x, A) is in J. 
Moreover each monomial in (3.3.2), apart the first one which is equal to 1. 
corresponds to a nonzero power of x. It follows that : 

(5(x, A) = 700 + ?/>()(x. A) (3.3.3) 
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where t/>o(x, A ) i — • 0 when x i — • 0, uniformly in A . Because the ideal 
J is closed we conclude that 7QQ has its germ in J. 

Suppose now that we have proved that the germs of yfj are in J for all the 
monomials xlcDJ •< xmcDn where < is the order introduced above. We use also 
the lexicographic order between the couples (i, j) < (ra, n ) . Let : 

Smn = S -
(f,j)<(m,,?}) 

YKijXiwi 

7^B(A)xrou;n + . . . + V'A'(x,A) 

(3.3.4) 

For each x ^ 0, the germ in A = 0 of the function A i — • <$mn(x, A ) is in J. 
But we have to remark that the sequence of monomials x*cDJ' does not form a 
scale of infinitisimals in x ( in uniform way in A ) , because the ratio of x'uP 
and x*a5', for j < Z, is equal to cD~J'+/ and does not tend to zero, uniformly in 
A , if x i — • 0. So we cannot apply directly to 7?^n, the same argument we have 
applied to 7QQ. We will apply it after a first step where we will transform 8mn 
by division and derivation. This is based on the following observation : if a 
function <£>(x, A ) has a well ordered development up to some order AT, like the 
function <5, then for Vs, / 6 R and any order of derivation r < AT, the function 

A i — • xzcD5^^(x, A ) has a germ in A = 0 in J, for Vx ^ 0. 

Starting with the monomials xT0J, i, j £ N , the derivation with respect 
to x produces more general monomials x*+5QlcDJ'. So, firstly we extend the 
total order introduced above in a partial one between these new monomials. 
For i,j E N and 5, / 6 Z we take : 

Xi+la1wr < xj+ka1ws i < j or 

/ = jj = k and r > s. 

the notation " / H " wiU be for a sum of / and a combination of monomials 
with larger order. 

Now let us explain our first step. Starting with Ao = <5mn, we divide it by 
x m . 

A1 = x-m A0 = YKmnwn + YKmn-1wn-1 + ... + R1R1R (3.3.5) 

with i?i = i/>Kx m of order (A ' — ra), is more differentiable and flatter than 
the last term in H 

If n = 0, our first step is achieved; A ] — 7/?m + v?i(x, A) where <£i(x, A) h-> 
0 when x i—• 0, uniformly in A, and we can repeat now, the argument used 
above for 7Q. 
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If n > 0, after noticing that 
du) 
<9x 

= —x 1 Ql, we have : 

A2 = x1+Sl 
SA1 

dx 
= nYKmnwn-1 + ... + R2 (3.3.6) 

where R2 is a convenient remaining term as R\ above. Repeating n — 1 times 
again the same procedure, we obtain finally : 

An+1 = n\r!irn + • • • + Rn + 1 

= n!7mn + ¥?n+l(x ,A))) 
(3.3.7) 

with a convenient remaining term Rn+1. Now Qn + 1 has an expansion whose 
first monomial has a positive power in x, so that <£n+i(x, A) 1—• 0 when 
x 1—y 0, uniformly in A. As above this implies that the germ of jj^n is in J. 

3. .4 The proof of theorem 2 

As O is noetherian, J has a finite svstem of generators fa, fa, • • • , <j>v, where 
(fa, fai • • • ? 0/) are holomorphic in W . 
Using the proposition 1 and the same arguments as in theorem 7 of [j?],we 
can write <5(x, A) under the form : 

S(x, A) = 
I 

7=1 

</>,(A)h*'(x,A) (3.4.1) 

where K is an arbitrary integer,the functions h f (x , A) are holomorphic for 
x ^ 0 and have the well ordered expansions of order K. We deduce the 
following proposition in the real domain : 

Proposition 2 [R]. Let (fa, fa, • • •, Ql) analytic functions in W whose germs 
in A = 0 generate the ideal of coefficients J. Let K an arbitrary integer, then 
there exists a neighbourhood Wk C W in RA and functions hKi (x, A ) , with 
1 < i < I having well ordered expansions of order K : 

hffax X) = DKh?(xx, \) + wij f (r , \ ) in [0, x0] x Wk 

DKh?(xx, \) = 
0 < n < m < I \ k 

Imn* v + ••• + 7A>I,I-T K+ 
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the hf are analytic for x ^ 0. They permit us to write 6(x, A) as follows : 

Six, A) = 
2 

i=1 
<t>i(\)hf(x,\) (3.4.2) 

we can choose a system of generators (<f>i, (f)o, • • • , <j>i) verifying some pro 
erties as in [R] : 

i) (<f>i,<f>2i •••,</>/) is minimal in the sense that it is a basis of the vector spac 
J / M J J where M is the maximal ideal of O. 

ii) For A = 0 the values of / i f (x, 0) of the expression (3.4.2) don't depend 
on K. So we can define the functions hi(x) = / i f (x,0) for any K. In the 
neighbourhood of x = 0, we can associate to them a formal power serie called 
the Dulac's development, we note by : 

D°°hi(xx) = 

oo 

0 <??<;?? 
l L ( o ) - r m ( - I n l n x)n (3.4.3) 

where 7^n(0) = 7^(vn(0) for any A' > Sup{m, n}. This development is unique. 
We obtain it from (3.4.2) by remarking that for A = 0 : x^u71 = xm(- In x)n. 
The functions hi are analytic for .r ^ 0 and /?, ^ 0. But, we cannot assert that 
D°°hi ^ 0, this would be true if hi was quasi-regular. If D°°hi ^ 0 then it will 
be equivalent to xm or xm In x . This equivalency allows us to define an order 
of flatness between the hi such that D°°hi ^ 0 by : order{hi) < order(hj) 
if and only if hj/hi i—> 0 when x i—• 0. We say that order (hi) = oo if 
D°°hi EE 0. 

iii) There exists an index 5,0 < s < I such that : 

order (hi) < order ( h o ) < • • • < order ( h s ) < oo 

and 
order(hj) = oc for j > s + 1 

we say that hi are ordered. 

The properties i,ii,iii of the system (</f>i, 0 2 . * • • ,<j>i) are not sufficient to 
conclude the finite cyclicity of To. That is why, we consider the map of 
desingularization of the set { A \ <j>\(j)o • • • c6/ = 0 } . 

There exists tp : W \—• W a proper analytic map of a compact domain W onto 
W neighbourhood of 0 € RA. ip is the map of Hironaka's desingularization. 
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We consider the family XX = X^x) for A G W. Take D = ^ " 1 { 0 } we 

associate to X^ at every point Ao G D, an ideal of coefficients noted JA C O^, 

ring of analytic germs at A = 0. As D is compact, the cyclicity of To in X\ 

will be finite if this is true for the Arr-germ at every A0 G D. 

Let <5(x, A) = 6(x, <£>(A)) the shift map of X-%, A in a neighbourhood of 

Ao G D. Then it's easy to see that JAo will be generated by (f>i(X) = <j>i o 

(f(\). Furthermore, there exists TVj a neighbourhood of A0 with coordinates 

*i> 22, • • • 5 z\(where A0 = (0,0,0, • • • , 0)) such that : 

& ( A ) = iii(X) 
A 

/=1 

. P I 
"3 

(3.4.4) 

the functions ui(X) are analytic and nonzero for all A G W% , p) are integers. 

Let's note 
i 

j=1 

z*ij = V ' I ( A ) , then ôi(\) = T / / ( A ) W ( A ) . 

Proposition 3 [i?]. From the system (<6i, Q2, • • • , ^ / ) we can extract a system 

(<l>ii ? ^¿25 " * ? ̂ l ) possessing properties i,ii,iii a,s (ø1, ø2, • • • , ø1). i.e there 

exists 5,0 < s < L such that ifl(xx, X) = J2j=i $ijHp'(xx, X) then order ( H ^ ) < 

order(H22) < • • • < order(Hss) < 00 and order (Hjj) = 00, where Hi is defined 

as below. 

Remark. 

The division of 6 in J^Qis not degenerated in a sense we will explain below. 

Until the end we are going to work with the family X ^ , 6(x, A ) , (j>ij, i f / v , . . . 

and we will show the finite cyclicity of To for this family. 

From now on, we discard the caps in the notation A, </>,... So that, we 

suppose we have a family X\ with : 

S (x, A) = 
L 

/ ' = ! 

ó/(A)/ / f ( .7- ,A) 

where 
order(h^ ) < order(Ih>) < • • • < order(hs) < 0 0 
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and 
order{h{) = 00 i > s 

and (f>i{\) = Ui{\)il>(\a) with Wi(A) llj=i -7i and (J2TI, ^2, • • • , z\) local coor­
dinates in W\0 

L e m m a 3 [R]. Consider W{ = { A G WAo \ № ( A ) | > | ^ ( A ) | for j ^ i}. 
Let J = {z \ Ao G W ^ } . Then we have the following results : 
i) Let i £ I then there exists an analytic arc \(e) : [0, So] 1—• W\0, with 
A(0) = AQ such that : 

order(^j o A)£=o < order(4^ o A)£=o for j ^ i 

ii) U j g / W i is a neighbourhood of \0. 

Proposition 3. Hi G I then D°°hi ^ 0. This means that L C { 1 , 2 , • • • , 5 } . 

Proof. 

Let i G / and A(s) the analytic arc in W\0. Let us consider the subfamily 
depending on 1-parameter : 

Xe = XX{£) S G [ ( U 0 ] 

let 6(x,s) the map 6 associated to this family, obviously, 6(x,e) = <5(x, X(s)) 
where <5(x, A) is the shift map of X\. So, for a given integer JiT, we can write : 

6(x,e) = 
L 

j = 1 
<f>jo\(e)h?(x<\(e)) (3.4.5) 

for all indices j : 
h?(x,\gvd)) = hj(x) + 0(e) 

and 
<f>j(\(e)) = aaaajenji+0(snn a,- ^ 0 

We replace in equality (3.4.5) to obtain : 

6(x,e) = aihi(r)sn,i + 0(en<) (3.4.6) 
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the formula (3.4.6) indicates that up a multiplication by nonzero coefficient, 
hi(x) is the principal part of the development of 6 in serie of e. Furthermore, 
by theorem 1 of this article, there exist quasi regular functions Ij(x), up to 
some factor x^R, such that : 

6(x,e) = eli(x) + s2I2(x) + • • • + sjIj(xx) + 0(ej) (3.4.7) 

for any integer j . 

If we equalize the two expressions (3.4.6) and (3.4.7), we find that : 

ciihj(x) = Ini(x) 

as hi(x) is not identically zero, its Dulac's development that coincides with 
the one of Ii(x) is not identically null. (Here I„. is eventually quasi- regular 
because it is the first non zero term in the expansion (3.4.7).) 

Remember that </>;(#, A) = ?/,(A)t/v(A) with i/;(A) ^ 0 for every A G W\0, 
so we may find a real r : 0 < r < 1 such that : if Vf = { A ; |07:(A)| > rr\<f)j(\)\ 
for i ^ j} then U;=1V^r is a neighbourhood of A0. 

To end the proof, we remark that we have the same situation as in para­
graph 8 of [12], therefore we can conclude that for all i : 1 < i < 5, there exists 
Ni G N , a neighbourhood W; of A0 and a real x; : 0 < Xi < xo such that 
6(x, A) has less than N{ zeros in [0. .r/] for all A G Vf D W{. 
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