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REGULAR LINEAR SYSTEMS ON CP1 A N D THEIR 

M O N O D R O M Y GROUPS 

V.P. KOSTOV 

1. INTRODUCTION 

1.1 

A meromorphic linear system of differential equations on CP 1 can be pre

sented in the form 

X = A(t)X (1) 

where A{t) is a meromorphic on C P 1 n x n matrix function, " • " = d/dt. 

Denote its poles a i , . . . , a p +i , p > 1. We consider the dependent variable X 

to be also n x n-matrix. 

Definition. System (1) is called fuchsian if all the poles of the matrix-

function A(t) axe of first order. 

Definition. System (1) is called regular at the pole a,j if in its neighbour

hood the solutions of the system are of moderate growth rate, i.e. 

I W - a ^ l ^ O d t - a ^ ) , Ni E R, j = 1,...., p + 1 
Here || • || denotes an arbitrary norm in gl(n, C) and we consider a restriction 

of the solution to a sector with vertex at ctj and of a sufficiently small radius, 

i.e. not containing other poles of A(t). Every fuchsian system is regular, see 

[1]. The restriction to a sector is essential, if we approach the pole along a 

spiral encircling it sufficiently fast, then we can obtain an exponential growth 

rate for | |X | | . 

Two systems (1) with the same set of poles are called equivalent if there 

exists a meromorphic transformation (equivalency) on C P 1 

X h+ W(t)X (2) 

S. M. F. 
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V. P. ROSTOV 

with W E 0(CPl\{au...,ap+l}) and detW(t) jt 0 for t e C P 1 ^ ! , . . . ^ ^ } 
which brings the first system to the second one. A transformation (2) changes 
system (1) according to the rule 

A(t) _> -W-\t)W(t) + W-\t)A{t)W(t) (3) 

1 . 2 

The monodromy group of system (1) is defined as follows: fix a point a ^ ay 
for j = 1,..., p + 1, fix a matrix J5 G GL(n, C) and fix p closed contours on 
CP1 beginning at the point a each of which contains exactly one of the poles 
cij of system (1), see Fig. 1. The monodromy operator corresponding to such 
a contour is the linear operator mapping the matrix B onto the value of the 
analytic continuation of the solution of system (1) which equals B for t = a 
along the contour encircling a;-; we assume that all the contours are positively 
orientated. Monodromy operators act on the right, i.e. we have B H+ BMJ. 
The monodromy operators Mi, . . . ,Mp corresponding to ai,...,ap generate the 
monodromy group of system (1) which is a presentation of the fundamental 
group 7r1(CP1\(a1, . . . , ap+1) into GL(n, C); we have 

MP+1 = (MX....M,)-1 (4 

for a suitable ordering of the points a;- and the contours, see Fig. 1. 

It is clear that 

1. the monodromy group is defined up to conjugacy due to the freedom in 
choosing the point a and the matrix B. 

2. the monodromy groups of equivalent systems are the same. 

The monodromy group of a regular system is its only invariant under mero-
morphic equivalence. 

Capital Latin letters (in most cases) denote matrices or their blocks; by i* 
we denote diag(l , . . . , 1). 

1 . 3 

It is natural to consider GL(n, C)p as the space of monodromy groups of regular 
systems on CP1 with p +1 prescribed poles (because the operators M i , . . . , Mp 
define the monodromy group of system (1)). Condition (4) allows one to con
sider Mp+i as an analytic matrix-function defined on GL(n, C)p. Of course, in a 
certain sense, M i , . . . , Mp+i are 'equal', i.e. anyone of them can play the role of 
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Mp+i. We define an analytic stratification of (GL(n, C))p by the Jordan normal 
forms of the operators M i , . . . , Mp+i and the possible reducibility of the group 
{ M i , . . . , Mp}. Fixing the Jordan normal form of M i , . . . , Mp is equivalent to 
restricting the matrix-function Mp+i = (Mi.-.Mp)"1 to a smooth analytic 
subvariety of GL(n, C)p, but if we want to fix the one of Mp+i as well, then 
we a priori can say nothing about the smoothness of the subset of GL(n, C)p 
(called superstratum) obtained in this way. The basic aim of this paper is to 
begin the study of the stratification of C?L(n, C)p and the smoothness of the 
strata and superstrata. 

Throughout the paper 'to fix the Jordan normal form5 means 'to define the 
multiplicities of the eigenvalues and the sizes and numbers of Jordan blocks 
corresponding to each of them', but not to fix the eigenvalues as well; this is 
called 'to fix the orbit'. 

2 The stratification of the space 
of monodromy groups 

Definition. Let the group { M i , . . . , M p } C GL(n,C) be conjugate to one in 
block-diagonal form, the diagonal blocks (called big blocks) being themselves 
block upper-triangular; their block structure is defined by their diagonal blocks 
(called small blocks). The restriction of the group to everyone of the small 
blocks is assumed to be an irreducible matrix group of the corresponding size. 
The sizes of the big and small blocks are correctly defined modulo permutation 
of the big blocks (if we require that the sizes of the big blocks are the minimal 
possible) and define the reducibility type of the group. 

Example : The reducibility type 
A B O 
0 C 0 
0 0 Q 

has two big 
A B 

0 C 

and Q) and three small blocks (A, C and Q). 

Definition. A stratum of GL(n, C) is its subset of matrices with one and 
the same Jordan normal form. A group { M x , . . . ,MP} C GL(n, C) defines a 
stratum of GL(n, C)p: the stratum is defined by 

1) the reducibility type of the group; 
2) the Jordan normal forms of the small and big blocks of the matrices 

M i , . . . , Mp+i and the ones of the matrices Mj themselves; 
3) two groups whose matrices M i , . . . ,MP are blocked as their reducibility 

type belong to the same stratum if and only if the corresponding Mj are conju
gate to each other by matrices (in general, different for the different j) blocked 
as the reducibility type. 
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A stratum is called irreducible if its reducibility type is one big and at the 
same time small block. 

A reducible stratum is called special if there exists a pair of small blocks of 
the same size, belonging to one and the same big block, such that the restric
tions of the matrices Mj to them have the same Jordan normal form for all 
j = l , . . . , p + l. 

Remark: Suppose that the definition of a stratum doesn't contain 3). Then 
some of the reducible strata defined in this way will turn out to be reducible 
analytic varieties (see the example below; note the double sense of 'reducible'). 
The good definition of a stratum is obtained when the strata defined above 
are decomposed into irreducible components if this is possible. After such a 
decomposition we obtain again a finite number of strata. 

Example: Let the reducibility type be P Q 
0 R 

, P, Q and R being 3 x 3 . 

Let M 2 , . . . , Mp+i have distinct eigenvalues. Let Mi = 

A 
0 
0 
0 
0 
0 

1 
À 
0 
0 
0 
0 

0 
0 
A 
0 
0 
0 

0 
0 
b 
A 
0 
0 

0 
0 
0 
1 
A 
0 

0 
a 
0 
0 
0 
A 

For a = 0, b ^ 0 and for a # 0, b = 0 the Jordan normal forms of the P— and 
Q—block of Mi and of Mi itself are the same (Mi has one eigenvalue - A -
and three Jordan blocks, of sizes 3, 2 and 1 respectively). In the first case the 
dimension of the intersection of the subspace invariant for Mi upon which Mi 
acts as one Jordan block of size 3 with the subspace invariant for all operators 
Mj is equal to 1, in the second case it is equal to 2. It can be checked directly 
that the two matrices (corresponding to (a, b) = (*, 0) and (a, b) = (0, *), * ^ 0) 
aren't conjugate to each other by a matrix blocked in the same way. 

Remark: The following example shows that the definition of a stratum 
of GL(n, C ) p is still not good - there exist several connected components for 
irreducible strata in which every operator Mj, j = l,..., p has one eigenvalue 
only. On the other hand-side, let there exist M ;- with at least two different 
eigenvalues. Consider two systems belonging to the same stratum. One can 
deform continuously the sets of their eigenvalues, i.e. perform a homotopy 
from the first into the second set, keeping their product equal to 1 and their 
multiplicities unchanged, i.e. different (equal) eigenvalues remain such for ev
ery value of the homotopy parameter. Whether for any such homotopy there 
exists a homotopy of the monodromy group, irreducible for every value of the 
homotopy parameter - this is an open question. 
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Example: The monodromy groups of the following three systems axe ir
reducible. Every monodromy operator Mi,M2, M3 is conjugate to one 3 x 3 -
Jordan block. The eigenvalues of Mi and M2 are equal to 1, the ones of M3 in 
the first case are equal to 1, in the second case - to e4'"/3, in the third case -
to e2"'/3. By tjt j = 1,2,3 we denote l /(t - a,-). 

X = 
0 1 0 
0 0 1 
0 0 0 

t + 
0 - 1 0 
0 0 0 
1 0 0 

<2 + 

0 0 0 
0 0 - 1 

- 1 0 0 
t1 X 

X = 
0 1 0 
0 0 1 
0 0 0 

«1 + 

0 -26 /27 0 
0 0 0 
1 - 1 / 3 1 

*2 + 

0 - 1 / 2 7 0 
0 0 - 1 

- 1 1/3 - 1 
E X 

X = 
0 1 0 
0 0 1 
0 0 0 

*1 + 

0 -19 /27 0 
0 0 0 
1 - 4 / 3 2 

*2 + 

0 - 8 / 2 7 0 
0 0 - 1 

- 1 4/3 - 2 
T3 X 

Definition. Consider a subset E of GL(n, C) consisting of matrices blocked as 

a given reducibility type. A stratification of this set is defined by 
1) the Jordan normal forms of the small blocks, taking into account whether 

two small blocks have common eigenvalues or not 
2) two matrices with the same reducibility type and orbits of the small 

blocks belong to the same stratum if and only if they can be conjugated with 
one another by a matrix blocked as the reducibility type. 

Lemma 2 .1 . Any stratum from this stratification is a connected smooth 
algebraic variety. 

The lemma is proved at the end of Section 3. 

Definition. A superstratum of GL(n, C)p is defined by the Jordan normal 
forms of the matrices Af i , . . . , Mp+i. Hence, every superstratum consists of a 
finite number of strata. 

Evidently, every stratum and superstratum is locally an analytic subvariety 
of (GL(n,C)y. 

Theorem 2.2. 
1) All irreducible strata are locally smooth analytic subvarieties ofGL(n, C)p. 
2) All strata and superstrata in which at least one of the matrices Mj, 

j = 1 , . . . ,p + l has n different eigenvalues are globally smooth irreducible semi-
analytic subvarieties of GL(n,C)p ('semi-analytic' means 'defined by a finite 
number of equalities and by inequalities of the kind P ^ 0'). 

3) A reducible group { M i , . . . , M p } (in block upper-triangular form, same 
as the reducibility type) is a singular point of its superstratum only in case that 
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i/Qiiy? • • • Î Qssj are the restrictions of Mj to the small blocks of the reducibility 
type, then there exist linear relations of the kind 

aivar tiQiij + . . . + a5var tvQssj = 0 , j = l , . . . , p + l , a* E Z 

Here }var tr' denotes the possible variation of the trace when every eigenvalue 

varies independently (equal eigenvalues have equal variations) and the stratum 

to which { M i , . . . , Mp} belongs is fixed. Hence, the singular points of a super

stratum are contained in one or more of its reducible strata - last equalities 

mean that for a fixed reducibility type the multiplicities of the eigenvalues of the 

small blocks Qkkjij = 1 , . . .p + 1 for which a* ^ 0 remain the same. 

4) Every reducible stratum is locally a smooth analytic variety. 

5) An upper-triangular group with Mj having one eigenvalue only , j = 

1 , . . . ,p + 1, is a singular point of its superstratum. 

3 Proof of Theorem 2.2. 

0°. We prove 1) in 1° - 3°, 2) and 3) in 4° - 7°, 4) in 8° - 13° and 5) in 14°. 
The proofs of the lemmas involved are given after the proof of the theorem. 

1°. Prove 1) (see 1° - 3°). Fix the Jordan normal forms ofMu..., Mp. This 
defines a smooth subvariety T of (GL(n, C))p. If we fix the Jordan normal 
form of Mp+i (or, equivalently, of M^x) , then this defines a smooth analytic 
subvariety S of GL(n, C). Let the group M = { M i , . . . , Mp} be irreducible. 
We prove that the differential of the mapping 

(Mu..., Mp) H . Mp+1 = ( M j . . . Mp)"1 

is non-degenerate at M ; in fact, we prove (what is equivalent) that the differ
ential of the mapping 

(MU...,MP)»M£1 = M1...MP (*) 

is such, see 2° — 3°. Hence, the graph of the mapping (*) is a smooth analytic 

subvariety of T x GL(n, C) , transversal at M to the smooth analytic subvariety 

U = T x <S; therefore their intersection is locally a smooth analytic subvariety. 

2°. The differential of (*) is the sum of two terms - the first (denoted by $p) 

is obtained when Mj are conjugated by matrices of the kind Gj = I+eYj, i.e. we 

move infinitesimally along the orbit without changing the eigenvalues. Hence, 

$p is the coefficient before e in the product GilMiG\... G~ lMpGp. Note 

that for small values of e the group {G^M^x,.. .,G~lMpGp} is irreducible. 

The second term (denoted by Ap) is obtained when we change infinitesimally 
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the eigenvalues (every eigenvalue changes independently, for every MjJ = 

1,...,J>). 
3°. Lemma 3 .1 . 

«p(M;Y)s*p(Af1,... ,Afp;y1,... ,yp) = 

= [M1,y1]M2...Mp + M1[M2,y2]M3...Mp + . . . + M1...Mp_1[^Y, p] : 

= Mi.. .Afp*p(iV1,.. . lJVp;Zll. . . ,Zp) 

where *p = [TV^Zx] + . . . + [NpiZp] , Zj = SjlMjlYjSj , JV;- = SjlMjSj , 
5;- = M i + 1 . . . Mp, j = 1 , . . . ,p - 1, Sp = J . Hence, the groups { M i , . . . , Mp} 
and {Nij..., iVp} coincide. 

The lemma is checked directly. 

Lemma 3.2 . Let Mj = QjlJjQj where Qj G GL(n, C) and J;- ts tfie 
Jordan normal form of Mj. Then 

AP(M,V) = y1M2. . .Mp + M1y2M3.. .Mp + . . . + M1M2...Mp_1yp 

tu/iere V} = QjxDjQj, Dj being a diagonal matrix whose diagonal entries are 
the variations of the eigenvalues of Mj, i.e. of the diagonal entries of Jj (equal 
eigenvalues have equal variations). We have 

Ap = Mi... MPKP , KP 
p 

i=1 
SfM^VjSj Sj = Mj+l...Mp , SP = I 

The lemma is checked directly. 

Lemma 3.3 . Let the group { M i , . . . ,MP} be irreducible. Then for every 
matrix L E gl(n,C), tr^Mp+iL) = 0 there exist matrices Y i , . . . . , l^ such that 
L == $P(M; Y ) , see Lemma 3.1. 

Lemma 3.4. For every d G C there exist matrices V i , . . . , Vp, see Lemma 
S.2., such that *r(Mp+iAp(M; V ) ) = d. 

The first statement of the theorem follows from Lemmas 3.3. and 3.4. 
Really, for L e gl(n,C) choose VU..., VP such that tr(Mp+xAp(M;V)) = 
t^Mp+iL). Hence, tr (M^\(L - Ap)) = 0 and we can choose Y1?.. . ,YP such 
that L- Ap = $ p ( M ; Y ) . 

4°. Prove 2) and 3). To this end we use a similar idea to the one of the 
proof of 1). We show for what groups M the tangent spaces to the graph of (*) 
(denoted by T(*)) and to the variety ZY, see 1°, are transversal. The space TU 
contains the tangent space to T , therefore it suffices to find the cases when the 
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sum of the projections of the spaces T(*) and TU into GL(n, C) , the space of 
M ^ \ , is the whole space gl(n, C) . Similarly to Lemmas 3.1. and 3.2. we find 
that the projection of TU into GL(n, C) is equal to 

Ap+l{Mp^uYp+uVp+l) = [M^YP+1] + Vp+1 

where Yp+i G gl(n, C) and if Mp+X = Qp+i^p+iQp+i) «Vfi being the Jordan 
normal form of M-1p+1, Qp+1 G GL(n,C) , then Vp+1 = Qp_£1Z)p+1Qp+1, £>p+1 
being diagonal, whose diagonal entries are the variations of the eigenvalues of 
Mj£v Hence, the two varieties U and the graph of (*) are transversal if and 
only if every matrix L G gl{p>, C) can be presented as 

I = £p(M;Y,V,yp+1,Vp+1) = 

$ P ( M ; Y ) + A P ( M ; V ) + A ^ M ^ Y ^ , Vp+l) (**) 

Present (**) with Yp+i = Vp+1 = 0, i.e. with Ap+i = 0, in the form 

L' = (Mx. . .MPYlL = £ P ( M ; Y ; V ) = tfP(N; Z ) + K P ( M ; V ) (***) 

From now on we most often consider equation (***) instead of equation (**) 
(if we can solve (***), then we can solve (**) ). 

5°. Let the reducible group M be in block upper-triangular form (same 
as the reducibility type). Decompose any matrix A G gl(n, C) in blocks, the 
decomposition being induced by the sizes of the small blocks of the reducibility 
type. Then for the following ordering of the blocks operator £'p, see (***), 
is block upper-triangular: if the blocks axe denoted by Qjt5, k (s) being the 
number of row (of column) of blocks, then QklSl precedes Qk2s2 if and only if 
ki — Si < ¿2 ~ $2 01 ki~ Si = k2 — S2 and k\ < k2. Hence, it suffices to consider 
the action of C'p upon matrices Y), V), j = 1 , . . . ,p + 1 whose elements outside 
a fixed block are equal to 0. 

Lemma 3.5 . Denote by Qijk the restriction of Mk for k = 1 , . . . ,p or Mp+X 

for k = p + 1 to the block Qij. Then equation 

p+1 

fc=i 
QukZk — ZkQjjk = A 

has a solution for any matrix A G^(n, C) if and only if the two following 

conditions donJt hold simultaneously: 

1) Qu and Qjj are of the same size (denoted by I); 

2) there exists a matrix B G GL(Z, C) such that B~lQakB = Qjjk for 

k = 1 , . . . ,p (hence, for k = p + 1 as well). 
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Note that for i > j the left hand-side of the equation gives the restriction 
of the image of operator C'p to the block Qx;- (KP has no influence upon blocks 
under the diagonal). Conditions 1) and 2) together are a private case of the 
non-smoothnes condition from 3) of the theorem. 

The block upper-triangular form of operator C'p implies that one could try 
to solve equation (***) successively for each block, in the opposite order of 
the blocks. If we fail at one of them, then, probably, we can't solve equation 
(**) ('probably' means that solving equation (***) is not equivalent to solving 
equation (**)). If conditions 1) and 2) from the lemma hold simultaneously, 
then it doesn't follow from Lemma 3.5. that we can solve (***). If they don't, 
but the non-smoothness condition from 3) of the theorem holds, then we can 
solve equation (***) restricted to all blocks Qij under the diagonal, i.e. with 
i > j. For i = j operator typ can give a solution only for matrices V with 
trl/^.,. = 0. Hence, operator KP must be used to make the trace of L'|Qii equal 
to 0 and he'll fail to do it for all small blocks simultaneously exactly if the 
variations of the traces of the small blocks are linearly dependent. 

7°. We proved in 6° that for strata verifying the non-smoothness condition 
from 3) of the theorem equation (**) possibly can't be solved and, hence, the 
variety ZY, see 1°, might not be transversal to the graph of (*). We prove now 
that non-transversality would imply local non-smoothness of their intersection. 
Introduce in GL(n,C) local coordinates q = (gi,...,gn2) such that at the 
intersection point of U and the graph of (*) the projection of U into GL(n, C) , 
i.e. <S, should be given by equations qi = ... = qs = 0, s =dim«S. Hence, the 
points of non-transversal intersection of the graph of (*) and U axe the ones 
where the differential of (*) degenerates and we have qi = ... = qs = 0. These 
are the singular points of the intersection of the image of (*) with {qi = ... = 
qs = 0} , i.e. with U. 

If a superstratum of (GL(n, C))p contains among the Jordan normal forms 
of My, j = 1 , . . . ,p + 1 one with distinct eigenvalues, then their variations are 
independent and we never have conditions 1) and 2) of Lemma 3.5. fulfilled 
together. On the contrary, if there is at least a pair of equal eigenvalues in 
every My, j = 1 , . . . ,p + 1 , then it is always possible to find a reducibility type 
such that conditions 1) and 2) of Lemma 3.5. will be fulfilled together. 

Irreducible strata and superstrata in which at least one of the operators 
Mj is with distinct eigenvalues are connected. Really, let this be Mp+i. The 
image of (*) is a semi-algebraic subset of GL(n, C) for every fixed set of Jordan 
normal forms of M x , . . . , Mp. The differential of (*) is non-degenerate, hence, 
the image is an open subset of GL(n, C). Hence, if the Jordan normal forms 
of M i , . . . , M p are fixed, then the points of the graph of (*) for which Mp+1 is 
not with distinct eigenvalues is locally a proper subvaxiety of the graph. This 
completes the proof of 2) and 3) of the theorem. 
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8°. Lemma 3.6. Let the group M be reducible. Then in its neighbourhood 
U € (GL(n, C))p there exists a holomorphic and holomorphically invertible 
matrix C such that it conjugates every group of the intersection of U with the 
stratum to which M belongs to one blocked as the reducibility type. 

The proof of 4) is similar to the one of 1). We consider the mapping (*) 
defined for M i , . . . , M p blocked as the reducibility type, making use of the 
lemma. Denote the set of these matrices by E. Consider the following subset 
of (E)*: the multiplicities of the eigenvalues of every operator M i , . . . , M p and 
their distribution among the small blocks are fixed and the Jordan normal 
forms of the small blocks as well. Denote this set by T' and consider (*) as a 
mapping (*):T' H-> E. For M~+x G E fix the multiplicities of its eigenvalues, 
their distribution among the small blocks and the Jordan normal forms of the 
small blocks. This defines a subset S' C E. 

Lemma 3.7. T1 andS' are smooth analytic subvarieties. 

The intersection of the graph of (*) with S' x T' (denote it by TV) consists 
of a finite number of strata of (GL(n, C))p (not necessarily of a single one). 
Really, though the eigenvalues of Mj and the Jordan normal forms of their 
small blocks are fixed, the Jordan structures of Mj depend on the elements in 
the blocks above the diagonal as well. 

Example : Consider the matrix 

A 1 a b 
0 A c d 
0 0 A 1 
0 0 0 A 

For c 7̂  0 it is conjugate 

to one 4 x 4 Jordan block. For c = 0, a + d ^ 0 it is conjugate to a matrix with 
one 3 x 3 - and one 1 x 1-block, for c = a + d = 0 it is cojugate to a matrix with 
two 2 x 2-blocks. 

9°. In the case of non-special strata we have 

Lemma 3.8. Every reducible non-special stratum consists of a finite num
ber of smooth analytic varieties. 

10°. We prove 4) of the theorem for reducibility types with one big block 
only; for such with several big blocks the proof is similar. The proof is carried 
out by induction with respect of the number k of small blocks. Let k = 2. Set 

Mj = Pi Qi 
0 Rj 

Let the stratum be special, i.e. the Jordan normal forms 

of Pj and Rj be the same for j = 1 , . . . ,p + 1 (for non-special strata the answer 
is given by Lemma 3.8.). By Lemma 3.5., equation (***) in which all matrices 
are block upper triangular (as Mj) can't be solved only if the sizes of Pj and 
Rj are equal and we have B~lPjB = Rj , j = 1 , . . . ,p + 1 for some matrix B. 
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Really, we first solve equation (***) for the diagonal blocks as in the irreducible 
case and then for the block B. 

Let Pj = Rj, j = 1 , . . . ,p + 1. Denote by C the space of matrices blocked 

as 
А В 
О С 

Then we have 

Lemma 3.9. The image of operator C'p restricted to C is either C or C fl 
{N E C\ti(N\B) = 0} . The second case occurs only if Qj = [D,Pj] for some 
matrix D, j = 1 , . . . ,p + 1. 

Lemma 3.10. Let Mj = Pi Qt 
0 A 

be conjugate to Pt 0 
0 Pj 

Then 

Qj = [JD;- ,PJ] for some square matrices Dj. The opposite implication is also 
true. 

Hence, for k = 2 the only case in which equation (***) can't be solved is 

the one when Mj can be simultaneously conjugated to the form Pi о 
0 Pi 

But in this case the reducibility type has two big blocks. 

11°. Let the reducibility type contain к > 3 small blocks. Let in the block 
decomposition induced by the sizes of the small blocks С U D be the set of 
blocks in the first row, B U D - the one of blocks in the last column and A 
- the set of all other blocks on and above the diagonal, see Fig. 2. Item 3) 
from the definition of the stratification of (GL(n, C))p implies that once the 
stratification of the restriction of the group M to A is defined, its definition for 
М|лив, M | A U C > M|AUBUCU£> does not change the one of M | A . 

Fix a stratum of M | AU в ^ d a stratum of МЦис such that their restrictions 
to A coincide. The stratification of M\AUBUCUD imposes (for every stratum) 
analytic conditions on the block D. The restrictions MJ\D, j = 1, •. •, p, consist 
of a finite number of smooth analytic varieties for every stratum of E, see 
Lemma 2.1.. In (*) Mp+1|p is presented as an analytic function of M b . . . , MP 
restricted to the corresponding strata. To prove the local smoothness of М | я 
it suffices to prove that the graph of Mp+i\r> is transversal to the level sets 
MP+I\DD where Mp+1 is restricted to some stratum of E, as in the proof of 1). 

12°. Introduce the following notation for the blocks of M;-: 

P Qi 02 . . . Q*-2 D 
0 Г [/2 . . . Uk-2 Si 
0 0 V ... Нк-2 s2 

0 0 0 . . . W Sk-2 

0 0 0 . . . 0 R 
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The tangent space to the graph of Mp+i\r> contains the space 

y = {Y\Y = (M1...Mp)\P 
p 

i=1 
WWX0j - X]{Nt\R)} 

Xj is of the size of D\ see. the definition of £p. Really, to see this it suffices 
to restrict in \J>P and Cp the matrices Zj to D to obtain Xj. The space y is 
not the whole space V (the space of matrices of the size of D) if and only if 
P and R are of the same size and we have Nj\P = B~l(Nj\R)B, j = 1,...,p, 
see Lemma 3.5.. This implies that Mj\P = B~l{Mj\R)B. Without loss of 
generality assume that MJ\P = MJ\R, j = 1 . . . ,p + 1. 

13°. The tangent space to the graph of (*)\d contains as well the space 

yl = {Y\Y = (M1...MP)|P 
p 

i=1 
:W\p)Xj - *!№*))+ 

(M1...Mp)\Ql 
V 

;'=i 
W\p)Xj - *!№*))+ 

where Y, (Xj, Xj) is of the size of D, (of D, of S{) and X1j belong to the 
subspace 

y = 
P 

i=1 
[(Mj\T)X}-X}(Mj\Rr)) = 0} 

As Mj|p = MjU and M | p ( = M|^) is irreducible, then we have either y1 = V 
or y1 = V PI { try = 0} (P is the space of matrices of the size of D); the second 
case occurs only if 

tr 
p 

i=1 
(Mj\Ql)x} = o v ^ . - . j ^ y (* * **) 

(the proof of this fact is similar to the one of Lemma 3.9.). Then condition 
(****) must be a corollary of equation 

p 

7 = 1 
((Mj|T) Xij - X1j(Mj|R)) = 0 

As in the proof of Proposition 3.17., we prove that the group M is conjugate 
to one blocked as M , with MJ\Q^ = 0, j = 1 , . . . , p. In this case note that the 
stratifications of the sets of monodromy groups blocked as 
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P 0 Q2 ... Qk-2 D 
0 T U2 . . . £ 4 - 2 Si 
0 0 V . . . # / : - 2 S2 

0 0 0 . . . W Sk-2 

0 0 0 . . . 0 Ä 

and 

T 0 I/2 . . . t/jb-2 5i 

0 P Q 2 . . . Qfc-2 I? 

0 0 y . . . Hk-2 s2 

0 0 0 . . . W 5jt-2 

0 0 0 . . . 0 R 

are isomorphic, the isomorphism being generated by the conjugation with the 
permutation matrix which permutes the lines of blocks in which P and T are. 
Hence, the smoothness of the stratification of the block D for fixed strata of 
the other blocks follows from the inductive assumption applied to the set of 
monodromy groups blocked as 

P Q2 . . . Q * ^ D 

0 V . . . Hk-2 S2 

0 0 . . . W Sk-2 

0 0 . . . 0 W 

This proves 4) of the theorem. 
14°. Prove 5). If in (**) all matrices except L are upper-triangular, the 

diagonal entries of each Mj being equal, then the image of Cp belongs to the 
subspace of matrices whose left lowest element is equal to 0. As in 7°, this 
implies non-smoothness of the corresponding superstratum at M . 

Proof of Lemma 3.3.: 1°. Making use of Lemma 3.1., we prove that every 
matrix L G gl{n, C) , trL = 0 can be presented as L = * P ( M ; X ) (it would be, 
of course, more precise to write ^ P ( N , Z); we hope that the reader will not ge 
mixed up). 

Proposition 3.11. Let J be a Jordan matrix. Then any matrix A G 
gl(n, C) can be presented in a unique way as A = [J,X]+Y, where [Y , V ] = 0; 
lJ denotes the transposed of J. 

Proof: Let the matrix J have one eigenvalue only. Then the matrices com
muting with lJ are shown on Fig. 3. The numbers on one and the same interval 
are the same, all other numbers are equal to zero, see [2]. The intervals are 
parallel to the diagonal and they begin and end at the bords of the blocks. The 
block decomposition is in accordance with the Jordan structure. The number 
of intervals of a diagonal (of an off-diagonal) block is equal to the size (to the 
least of the sizes) of the block. 
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If on Fig. 3. we assume that the sum of all the elements lying on one and 
the same interval is equal to 0 (for every interval) and that no other conditions 
are imposed on the matrix, then we obtain the definition of an arbitrary matrix 
presentable as [J, X] for some X G gl(n, C) (the reader will check this easily, 
because one needs to consider the action of the operator [J,.] on every block 
on Fig. 3. separately). 

If J has several eigenvalues, then one must take a direct sum of figures like 
Fig. 3. corresponding to the different eigenvalues. The proposition is proved. 

Corollary 3 .12. Let Mj = Q]lJjQj where Jj is the Jordan normal form 
of Mj. Then for a fixed Qj (Qj is not unique) any matrix A G gl(n, C) can be 
presented as A = [Mj,X] + Y, [Y,Qjl(tJj)Qj] = 0. 

2°. Proposition 3.13. (Schur's Lemma) If there exists a non-scalar 
matrix S G p/(n, C) such that [£, Mj) = 0, j = 1, ......., p, then the group 
{ M i , . . . , Mp} is reducible. 

Proof: Without loss of generality one can assume that S is in Jordan normal 
form. If it has at least two different eigenvalues, then Mj must be all block 
diagonal and the proposition is proved. Knot, then Fig. 4. (it is the transposed 
of Fig. 3.) shows one possible way how to choose the invariant subspace in 
the case when there are Jordan blocks of different sizes; for the case of Jordan 
blocks of the same size see Fig. 5. The vectors to the right describe the invariant 
subspaces. Asteriscs denote elements which can be arbitrary. 

3°. Proposition 3.14. For every group M = { M i , . . . ,MP} there exists a 
group K = { i i f i , . . . , Kp) such that 

i) M andK are simultaneously (ir)reducible; 
ii) the images of the mappings Wp : {X^..., Xp) «-+ [Ni, Xi] + ... + [iVp, Xp] 

for Nj = Mj and for Nj = Kj are the same; 
Hi) the matrices Kj have one and the same Jordan normal form. 

For the rest of the proof of the lemma we consider the Jordan normal forms 
of M i , . . . , Mp to be the same, making use of the proposition. 

Proof: We have [MUXX] + [M2,X2] = [Ma + aM2,* i ] + [M2,X2 - aXx]. 
Hence, the change (Mi,M2) H* ( M I + aM2,M2) preserves the image of *p 
and the (ir)reductibility of the group. If Mi + c*M2 fails to be non-degenerate, 
then we replace it by Mi + aM2 + pi for a suitable /?; the image and the 
(ir)reductibility are preserved again. If Mi and M2 have different Jordan normal 
forms, then either 

i) one of them (say, Mi) belongs to a stratum Si of GL(n, C) from the 
closure of the stratum 52 to which belongs the other or 

ii) this is not the case. 
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In case i) either 

11) the whole line Mi + aM2, a E C belongs to the closure of S2 or 
12) for almost all a the matrix Mi + aM2 belongs to a stratum 53 of a 

higher dimension. 

In case il) we choose a E C such that Mi + aM2 E S2 (or Mi + aM2 + /?J E 
S2). In case z'S) we choose a 6 C such that Mi + aM2 E S3 (or Mi+aM2+ PI E 
S 3 ) . Case w), in fact, coincides with ¿2). Hence, after a finite number of 
transformations all conditions of the proposition will be fulfilled, due to the 
finite number of strata of GL(n, C) . 

Proposition 3.15. Let all the matrices M i , . . . ,MP have the same Jordan 
normal form, i.e. let Mj = QjlJjQj, where Qj E GX(n,C) and the Jordan 
matrices Jj belong to the same stratum of GL(n,C), i.e. they have the same 
Jordan normal form. Set J\ = J. Then the (ir)reducibility of the group and the 
image of the mapping typ (with Nj = Mj, see Proposition 3.14-) are preserved 
if the group { M i , . . . , Mp} is replaced by the group {QjlJQj}, j = 1,... ,p. 

In accordance with this proposition, during the rest of the proof of the 
lemma we consider M i , . . . , Mp to be from one and the same orbit. To prove 
the proposition it suffices to notice that the image of ^p does not depend on 
the eigenvalues of the matrices Jj if the eigenvalues vary so that the Jordan 
normal forms of Mj axe preserved and the matrices Qj are fixed. The set of 
invariant subspaces is also preserved under such a change of the eigenvalues. 
The details are left for the reader. 

4°. Proposition 3.16. Let'Mj = QjlJQj, see Proposition 3.15., and 
let the image of the mapping typ with Nj = Mj, see Proposition 3.H., be 
not the whole of sl(n, C). Then there exists a non-scalar matrix V such that 

?V,QjlJQs]= O,J = 1 , . . . , p . 

Proof: Regard gl(n, C) as a vector space of dimension n2. Denote its co
ordinates by xjk5, 1 < A:, s < n. Let Sj be the set of elements on one interval 
on Fig. 3., see the proof of Proposition 3.11. Define the linear forms <pj on 
gl(n, C) as <fj = £ 5 Xks- Set d = jjŷ -. Suppose (which is not restrictive) 
that Qi = J, i.e. Mi = J is in Jordan normal form. Then the image of the 
mapping Xi i-> [Mi, Xi] is given by <pj = 0, j = 1 , . . . , d. Hence, the image of 
the mapping $p with Nj = Mj is a subspace of sl(n, C) described by a system 
of equations of the kind <p = ¿ ^ = 1 sjVj = 0> sj G C. Fix one such equation. It 
denotes the set of zeros of a linear form (of Xks) on gl(n, C) . The coefficients 
of the form are the coordinates of an n x n-matrix V commuting with V , see 
Proposition 3.11. 

The conjugation X H-* QjlJQj induces an automorphism of gl(n, C): Y = 

AX where A is n2 x n2 and X is considered as a vector column (the (k + l)-st 
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column of the matrix X follows the fc-th one). The matrix A is explicitely 
described below. The form (p can be presented as (p = (pX where (p is a vector-
line of size n2; if V is considered as a vector-column, then we have x(p = V. 
After the conjugation the form (p changes to (pA~l. Really, if Y = AX are the 
new coordinates, then CpX = (pA~lY. 

We have (pA~xY =' Y^A'1)^tp =l {(pA"lY). The n^vector-column^A"1)^ 
is (in the sense above) equal to an nxn-matrix. This is the matrix (?Qj)V(^Qj)~l 

Really, for n = 3 let Qj = 
m n p 
q r s 
t u v 

Then we have A = LR = RL where 

L = 
QJ1 

0 
0 

0 

QJ1 
0 

0 
0 

Q71 
corresponds to multiplying by Qj 1 to the left and 

R = 
ml qi tl 
nl rl ul 
pi si vl 

corresponds to multiplying by Qj to the right. It is 

clear how to construct L and R for arbitrary n. Hence, lA-1 =t ( L - 1 ) ^ - 1 , 
i.e. *A~l is the matrix of the transformation X i-* (tQj)X(tQj)~1. We have 

[?Qi)vrQj)-\QQj)eJ)eQi)-l] = o. 
The linear form (p describes a subspace of sl(n, C) to which the image of 

every mapping X h-> [Qj1 JQj,X] belongs. Hence, the matrix V corresponding 
to <p plays the role of the matrix iQjVtQj1 above as well, i.e. it commutes 
with V and '(QjYJ'iQj-1), j = 2 , . . . , j > , i.e. [* V, J] = ['V.QfjQj]g = 0. The 
proposition is proved. 

5°. Sum up the proof of the lemma. Suppose that the image of \J/p is not the 
whole of sl(n, C) . Then one can replace the group M by another group which 
satisfies the conclusion of Proposition 3.15. (namely, that all generators belong 
to one and the same orbit), without changing the image of typ. This leads to 
the existence of the nonscalar matrix %V commuting with the generators of the 
new (irreducible!) group which is a contradiction with Proposition 3.13. The 
lemma is proved. 

Proof of Lemma 3.4 It suffices to vary any eigenvalue of any of the matrices 
MU..., MP. 

Proof of Lemma 3.5.: The proof resembles the one of Lemma 3.3. Con

sider the matrices Pk = Quk 0 
0 Qjjk 

The left hand-side of the equation in 

Lemma 3.5. is the restriction of the action of typ with Ar;- = Pj to the left lower 
block; \I>p is defined in Lemma 3.1. 

Like in Proposition 3.16. we show that if the equation from Lemma 3.5. 
has no solution for some choice of the right hand-side, then there exists a 
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nonscalar matrix V whose right upper and diagonal blocks are equal to 0 such 
that [*V, Pk) — 0, k = 1 , . . . ,p. Conjugating V and P1?. . . , Pp by one and the 
same block-diagonal matrix, we can achieve the following form of *V: zeros in 
the left lower and in the diagonal blocks, the right upper block being of the 

form V = 
I 0 
S T 

where the blocks S and T are equal to 0; we assume that 

Qnk is of size ni < n2 where n2 is the size of Qjjk- The size r of J is equal to 
the rank of *V, S and/or T can be empty. 

The condition [* V, P*] = 0 implies that for r < ni < n2 last ni - r columns 
of Q«jkV and last n2 — r rows of V'Qjjk are equal to 0. Hence, we must have 
that the elements in last nx — r rows and first n\ — r columns of Qak must be 
zeros for k = 1 , . . . ,p, i.e. the group {Quk}, k = 1 , . . . ,p is reducible which 
is a contradiction. If r = ni < n2, then the elements of last n2 — r columns 
and first n2 — r rows of Qyi* must be zeros (for k = 1 , . . . . , p) i.e. the group 
{Qj jk}, k = 1, ... , p is reducible which again is a contradiction. Finally, if 
r = rii = n2, we have Qak = Qjjjb, k = 1 , . . . ,p which gives the result claimed 
by the lemma. 

Proof of Lemma 3.6.: We prove the lemma in the case of one big and two 
small blocks. In the general case the proof consists in repeating the same con
struction the necessary number of times. There exists a holomorphic and holo-
morphically invertible matrix C'(e) conjugating Mi(e) with its Jordan normal 
form; e denotes the local coordinates in the neighbourhood of M . The invari
ant subspaces of Mi|e=o axe described on Fig. 4 and Fig. 5. One of them 
must be invariant for M2|ff=o,... ,Mp+i|c=o. But then at least one such sub-
space must be invariant for M 2 , . . . , Mp+i for all e G U as well - the number 
of invariant subspaces is finite, the set of values of e for which an invariant 
subspace of C'~~lMiC' is such for C'"lMjC\ j = 2 , . . . ,p + 1 as well is closed. 
Hence, there exists a cojugation with a permutation matrix such that all the 

matrices Mj will be blocked as follows: A B 

0 D 
The superposition of the 

two conjugations gives the necessary matrix C. 

Proof of Lemma 3.7.: We have T' = T* x V where V is the subspace 
of (gl(n, C))p consisting of the p-tuples of matrices with the same reducibility 
type as the ones of S, the elements of whose small blocks and of the blocks 
outside the big blocks are 0 and the elements of whose superdiagonal blocks in 
the big blocks are arbitrary. T* is the set of matrices the elements of whose 
off-diagonal blocks are 0 and whose small blocks are same as the ones of T'. 

Consider a fixed small block. A matrix of the size of the small block -
T = D~lJD , J being its Jordan normal form which is fixed - can be locally 
parametrised by the matrix D and by the eigenvalues of J; for D one can 
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fix a subspace of minimal dimension (D is not defined uniquely but modulo 
multiplication by matrices commuting with J). Hence, for every small block 
one can introduce local coordinates (d,g) where d are the coordinates of D 

and g are the ones of the eigenvalues of J. The matrices with a fixed Jordan 
normal form depend analytically on (d,g) and their locally smooth analytic 
variety is an analytic fibration over the base g. One can locally parametrise 
T* as follows: for every Mj parametrise its every small block independently 
as above; denote the coordinates by (di,<7i),..., (d3,gs). If the second small 
block has eigenvalues equal to such of the first one, then we set g2j = gn for 
the corresponding eigenvalues and obtaining a subset g' of g. In the analytic 
fibration (di, g1) x ( ¿ 2 , 5 2 ) • (di,gi) consider the subset {g2j = put} ~ this is an 
analytic subvariety of the initial one. We obtain in the same way the subspaces 
Shi--">sfa (considering the fibrations (di,<h) x ( ¿ 3 , 5 3 ) H+ (dugi) etc.). The 
variety obtained in this way (setting g$j = gn) is a smooth analytic subvariety 
of the initial one. Replacing in the reasoning above g\ and g2 by gi U g'2 and 
p3, we obtain the subspaces ¿ 7 3 , . . . , ¿7" etc. Finally, we obtain the subspace 
5i U g2 U g'l U . . . U g[s~^ C j i U . . . U j , and the necessary smooth analytic 
subvariety, i.e. T* which has local coordinates (di, . . . , ds, <7i><72>--• • J S * * " 1 * ) 

(constructed for every Mj separately). 
For S' the proof is similar to the one for T'. 

Proof of Lemma 3.8.: 1°. Consider the case when the reducibility type is 
A B 
0 C 

i.e. it consists of one big and two small blocks. Consider M\. 

Suppose that its blocks A and C are in Jordan normal form for all values 
of the coordinates upon which the elements of 1Z (see 8° of the proof of the 
theorem) depend. A holomorphic conjugation to such a form exists (locally). 
Let Xi be an eigenvalue of Mi. Then condition rk(Mi — Ail) < aa , ax £ N 
('rk^'rank') defines a finite number of smooth subvarieties Tk(1) of T'. The 
same is true for M 2 , . . . ,MP. If we consider conditions rk(Ms — \ J) < a3 

, 5 = 1,......., p simultaneously, then this defines a finite number of smooth 

analytic subvarieties T£. Applied to M^+i, (i.e. for s = p + 1), these conditions 
define a finite number of smooth analytic subvarieties S'j of S'. The graph of 
(*) restricted to T£ intersects S'j x T£ and the intersection (for each (k,j)) is 

a smooth analytic subvariety. This is proved in the same way as of 1) of the 
theorem, considering the restriction of equation (***) to each block on or above 
the diagonal (in the big blocks), in the opposite to the order of the blocks as 
described in 5° of the proof of the theorem. This is possible because the strata 
are non-special and we don't have problems with Lemma 3.5. 

On each (S'j,T£) consider conditions rk(M3 — A5J)2 < & , , s = l , . . . , p + l. 
They define smooth analytic subvarieties; the graph of (*) restricted to T£ 

intersects S" x T£ and the intersection is a smooth analytic variety. Then we 
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consider conditions rk(M5 —A Ĵ)3 < c3 etc. These conditions define the closures 
of the strata; they are connected with the finding of the Jordan normal form of 
M3 (more precisely - how many blocks and of what size correspond to the given 
eigenvalue). When rk(M,, — X3I) is maximal possible, then this doesn't define 
a subvariety, but the compliment to the analytic varieties from which the other 
strata are composed. In the case of one big and two small blocks the proof of 
the smoothness is easy because the J3-blocks of the matrices (M3 — X3I)k are 
equal to £^=0 PiQ9Rk3'5 where P3 = M5|A, Q3 = M3\B, R3 = Af,|c, i.e. they 
depend linearly on Q3. 

2°. Let the reducibility type consist of one big and r small blocks: 

Qn Q12 

0 Q22 

0 0 
0 0 

Q i , r - i Qir 

Q2,r -1 Q2t 

Q r - l . r - 1 Q r - l , r 

0 Qrr 

In this case the proof is carried out by induction with respect to r, in 
the same way as in 1°; the roles of A, B and C are played respectively by 

Q' = 

Qu Q12 

0 Q22 

0 0 

Q i , r - i 

Q2,r -1 

Q r - l , r - l 

Qir 

Q r - l , r 

and Qrr. It is assumed that 

the Q- and (5rr-blocks of M i , . . . , Mp+i are restricted to irreducible components 
of given strata. Smoothness of strata is proved as it is explained in 1°. For the 
case of many big blocks the lemma is proved in the same way. 

Proof of Lemma 3.9.: Set in operator L'p, see (***)5 Yj = 
Y' Y" 
0 Yj" 

Find first Yj , Yj" and Vj , j = 1 , . . . ,p + 1 as in the irreducible case; they solve 
the restriction of equation (***) to the A- and C-blocks. After this the equation 
can be solved for the JB-block as well if its trace after the fixing of Yj , Yj" is 0. If 
not, then we can try to make the substitution Yj *-*Yj + Uj (or Yj" \-* Yj" + Uj) 
where Uj are matrices of the size of Pj such that J2Pjzz\[Uj^Pj] = 0. This will 
not change the A- and C-blocks. It will fail to change the trace of the B- block 
if and only if trEy=i UjQj(=tiZPj=i QjUj) = 0 for every set of Uj such that 
E ^ i [ ^ P i ] = 0 . 

Proposition 3.17. Let *r£?=1 UjQj(= trZPj=l QjUj) = 0 for every set of 
Uj such that T%=i[Uj,Pj\ = 0. Then Qj = [Pj,D°] for some matrix D° of the 
size ofPj, j = 1,......., p + 1. 

The lemma follows from the proposition, setting D = -D0. 
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Proof : Condition tr£ j= i UjQj = 0 must be a corollary from condition 
EPj=i[Uj,Pj] = 0. Every such corollary is of the form txY*j=l[Uj,Pj]D° = 0. 
We have tr E L J ^ , Pj]D° = trY,Ui(piD°u: ~ D°PiUi)- Hence we must have 

Qj = [Pj0, D00] 

Proof of Lemma ЗЛО.: For every e E С the matrix Pi eQi 
0 Pj 

is con

jugate to Mj = Pi о 
0 Pj 

Hence, the matrix 0 Qj 
0 0 belongs to the 

tangent space to the orbit of Mj for every e, i.e. Qj = [Pj,Dj] for some Dj. 

The opposite implication follows from Mj = S lMjS with 5 = 
/ -Dj 
0 J 

Proo/ of Lemma 2.1.: We combine the ideas used in the proofs of Lemmas 
3.7. and 3.8. For every stratum of S the Jordan normal forms of its small 
blocks define smooth analytic varieties in E. This is proved as the smoothness 
of T*, see the proof of Lemma 3.7. Let A be an eigenvalue of M G S. Then 
conditions rk(M — XI)1 < a,-, i = 1 ,2 , . . . , a:- € N define a finite number of 
smooth analytic varieties, see the proof of Lemma 3.8., which are the closures 
of a finite number of strata. The lemma is proved. 
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