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Normal forms for local families 
and nonlocal bifurcations 

Yu. S. Ilyashenko 

INTRODUCTION 

This paper deals with two closely related topics: 
1. Finitely smooth normal forms for local families. 
2. Bifurcations of polycycles of few- and many- parameter families. Here 

"few" is "no greater than 31' 
The exposition is the summary of two large paper [I,Y3] and [K,S] which 

are to be published in the forthcoming book [1]. Therefore all the proofs are 
brief in this text; there detailed exposition would be found in the book, quoted 
above. 

It appears, that for the study of nonlocal behavior of the orbits of vector 
field from the topological point of view, the smooth normal forms of vector 
field near singular points are necessary. For instance, consider a separatrix 
loop of a hyperbolic saddle (Figure 1). 

FIGURE 1 

We want to know, wether the positive semiorbits winging inside the sepa­
ratrix loop come to or o/fthis loop. The topological normal form of the field 
near the saddle is one and the same for all the fields and give no information 
on the subject; it is 
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X = X, y = -ij 

Meanwhile, the smooth normal form in the nonresonant case is 

i = Ai, yk^^ = -\2ij 

Ai > 0, —A2 < 0 are the eigenvalues of the singular point. The correspondence 
map of the entrance semitransversal r + onto the exit one T~ is equal to 

A(x) = x \ \ = \2/\i 

Suppose A ^ 1 . Then the correspondence map in the small neighborhood of 
O on r + has a large Lipshitz constant; in the case A > 1 this constant tends 
to zero as the neighborhood contracts to a point. The smooth map from r + 

to r~ along the orbits cannot neutralize this contraction; therefor in the case 
A > 1, the separatrix loop is orbitally stable from inside. In the same way, it 
is unstable if A < 1. 

The example motivates the study of smooth normal forms of local families. 
On the other hand, the bifurcations of polycycles are closely related with 

to Hilbert 16th problem, as is discussed below. 

§1. NUMBERS RELATED TO THE HILBERT 16th PROBLEM. 

Consider a family of differential equations 

( i ) 
dxj 

dx 
Pn{x,y) 
Qn(x,y) 

where Pn and Qn are polynomials of degree no larger than the fixed constant 
n. The following definition is popular in the survey literature. 

Definition 1. The Hilbert number H(n) is the maximal possible number of 
limit cycles of the equation of the family (1). 

It is obvious, that H(l) = 0 . Indeed, a linear vector field has no limit 
cycles at all. 

Nothing is known about the numbers H(2); its mere existence is an open 
problem. 

One can figure out, why Hubert has chosen the family (1) for the study 
of limit cycles. In the end of the last century polynomial families gave prob­
ably the only natural example of finite parameter families of vector fields. 

234 



NORMAL FORMS FOR LOCAL FAMILIES 

Now, when the mode and viewpoints have reasonably changed, generic fi­
nite parameter families became respectful. Therefore a smooth version of the 
Hilbert 16 < / l problem may be stated; it is written between the lines of some 
text due to Arnold [AAIS]. 

Hilbert-Arnold conjecture. The number of limit cycles of the equation 
of the typical finite parameter family (here and below "family" means " C°° 
family of vector fields in S2 ") with the compact base is uniformly bounded 
with respect to the parameter. 

This conjecture is closely related to some nonlocal bifurcation problem. We 
will first state it and then recall necessary natural definitions. 

Conjecture. Cyclicity of any poly cycle appearing in the typical finite pa­
rameter family is finite. 

Definition 2. A polycycle is a finite union of singular point and continual 
phase curves of the field which is connected and cannot be contracted along 
itself to any proper subset. 

A limit cycle is generated by a polycycle 7 in the family 

i = v(x,6), x e S2,e e B cRk 

if the path e(t) in the parameter space exits such that for any t € (0,1] the 
equation corresponding to e(t) has a limit cycle /(/) , continuously depending 
on the parameter t, 1(1) = I , and 

l(t) 7 as * —• 0 

in sense of the Hausdorff distance. 
Cyclicity of the polycycle in the family is the maximal number of limit 

cycles generated by this polycycle and corresponding to the parameter value, 
close to the critical one; the last corresponds to the equation with the poly­
cycle. 

Theorem (Roussarie). The equations of the family with the compact base 
and the polycycles having finite cyclicity only have a uniformly hounded num­
ber of limit cycles. 

Therefore the last Conjecture implies the Hilbert-Arnold one. Some bifur­
cation numbers related to these Conjectures, are naturally defined. 

Recall that a singular point of a planar vector field is called elementary if 
it has at least one nonzero eigenvalue. A polycycle is called elementary if all 
its vertexes are elementary. 
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Definition 3. B(n) is the maximal number of limit cycles which can be 
generated by a polycycle met in a typical rc-parameter family. 

E(n) is the maximal numbers of limit cycles which can be generated by an 
elementary polycycle in a typical 7?-parameter family. 

C(n) is the maximal number of limit cycles which can bifurcate in a typical 
n-parameter family from all the polycycles of the field, corresponding to the 
"critical" value of the parameter. 

Conjecture. B(n) exists and is finite for any n. 
This Conjecture is stronger then Hilbert-Arnold one. 

§2. STATEMENTS OF RESULTS. 

Theorem 1 (Ilyashenko &: Yakovenko). For any n the number E(N) 
exists. 

Theorem 2 (Kotova). C(3) = oo. 

This means that for any N one can find a generic 3-parametcr family, in 
which some differential equation generates more than N limit cycles. 

Moreover, a complete list of polycycles which can generate limit cycles and 
appear in generic 2 and 3- families is given; this is so called "Zoo of Kotova", 
Table 1 below. 

Theorem 3- B{2) = 2. 

Theorem 4. C(2) = 3. 

Last two theorems are due to Grosowskii. Druzkova, Chelubeev and Sere-
gin. 

Theorem 5 (Stanzo). For generic three parameter families there is a count­
able number of topologicaly noneqnivalent germs of bifurcation diagrams. 

In this form the Theorem 5 is an easy consequence of the Theorem 2. In fact 
Stanzo describes the topological and even the smooth structure of bifurcation 
diagrams for unfoldings of the phase portrait called "lips" (Figure 2), and 
constructs the invariants of the topological structure of these diagrams. 

As a by product of this study a generalized Legendre duality is found. 
Comments to the Table 1. In the Table 1 all the polycycles which can 

appear in the generic 2 and 3 parameter families are presented. For sure, 
"all" means "all equivalence clases": the equivalence relation is a following. 
Two polycycles are equivalent, if they have diffcomorphic neighborhoods in IR2 

and a diffeomorphism of one of them to another exists which transforms one 
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FIGURE 2. Lips 

polycycle to another in such a way, that for a correspondent singular points 
the multiplicity and other characteristics shown in the table coincide. We do 
not claim, that the equivalent polycycles have equivalent unfoldings; on the 
contrary, for the most part of cases already investigated this is not the fact. 
The presence or absence of a punctured heteroclynic curve distinguishes two 
nonequivalent polycycles in the cell 3.9. Abbreviations in the table mean the 
following: 

res resonant sadoble, 
fc-degen degeneration in the nonlinear terms of codimension fc, 
J = 0 J^divv dt = 0, where v is the correspondent vector field, t is 

time and 7 is a separatrix loop. 
The sign © means that the correspondent case is investigated, but not 

published; the capital letter stands for the name of the author. In case, when 
the result is already published, the abbreviations mean 

B Bogdanov, T Takens, L Lukianov, L-R Leontovich, Roussarie, R Reun, 
L.W Li Weign, DRS Dumortier, Roussarie, Sotomayor. Most part of the 
references may be found in [AAIS]. 

The authors of papers in preparation are 
K Kotova, Ch Chelubeev, G Grosovski, S Seregin, St Stanzo. 
They are young Moscow mathematicians. 

§3. NORMAL FORMS FOR LOCAL FAMILIES 

The detailed exposition is published in [IY1], therefore we give only a brief 
summary here. 

237 



Y. S. ILYASHENKO 

2.1 

& degen. 

2.2 

Ch 

+ 2.3 

FS 

2.4 

K 

2.5 

Lukianov 

2.6 

& res. or = 0 

2.7 
Reyn 

2.8 

© 

2.9 
FSF 

3.1 
® 

& 2-degen. 

3.2 3.3 

& res. 

3.4 3.5 

3.6 3.7 3.8 . 3.9 3.10 

3.11 3.12 3.13 3.14 3.15 

(ilw) 
3.16 3.17 I 3.18 3.19 3.20 

& 2-degen. res. nonres. res. 
3.21 

(°oi) 

& degen. 

3.22 3.23 

x - x4 + — 

(?) 

3.24 

e hit £} U {Jc+1f I « 

TABLE 1 
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Theorem 6. 1. The deformations of the hyperbolic germs of vector fields in 
a fix point which is nonresonant or oneresonant (all the resonance relations are 
the consequences of a single one (A,r) = 0, r E Z+, A is a tuple of eigenvalues 
of a singular point) have polynomial integrable normal forms with respect to 
Ck-equivalence for any k < oo. 

2. Analogous statement holds for germs of diffeomorphisms with the only 
change: (A,r) = 0 must be replaced by Ar = 0, where A is a tuple of multo-
plicators of the fix point. 

3. Deformations of saddlenodes of vector field in Rn (one eigenvalue is zero) 
having finite multiplicity and no supplementary resonances are Ck equivalent 
for any k to the linear suspension over one dimensional polynomial integrable 
family. 

The explicit formulae are listed in [IY1], and we shall not repeat it here. 
Note that the elementary singular points of the planar vector fields fall under 
conditions of the previous theorems. The list of finitely smooth normal forms 
of their unfoldings will be given in §6 and used below. 

The above theorem exhausts the positive results of this kind. Unfoldings 
in the other cases corresponding to the codimension one degenerations has 
functional module of smooth classification, or have no reasonable classification 
at all. 

Theorem 7. [IY2] 1. Typical one parameter deformation of germs of one 
dimensional diffeos with multiplicator A = 1 or A = - 1 has the functional 
modules of C1-classification. 

2. The same is true for the Andronov-Hopf families: deformations of planar 
vector fields with Ai¿ = zfcio;, w ^ 0. 

The modules in the above theorem are explicitly described. 
The deformations of saddle suspensions over the above families are finitely 

smooth equivalent to linear suspensions over these families. 
The result form the end of the long chain built by Belitski, Bogdanov, 

Brjuno, Dumortier, Rostov, Roussarie, Samovol, Takens. See [B], [Bo], [Br], 
[D], [K], [R], [S], [T]. 

§4. LIPS OR W H Y C(3) = oo? 

Consider a vector field in R 2 having two saddlenodes 0\,02 of multiplic­
ity two and a saddle connection, like it is shown in Figure 2. These three 
requirements produce a vector field with degeneration of codimension 3. 
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Theorem 8 (Kotova). For any N in a typical 3 parameter family such a 
vector field with "lips" may be met that its unfolding will have the equations 
with more than N limit cycles. 

Remark. This theorem immediately implies Theorem 2. 
Sketch of the proof. The finitely smooth orbital versal deformation of a 

saddlenode of multiplicity two has the form [IYll: 

x = (x2 +e)(l + ax)-1 

y = ±y 

Consider the unfolding of "lips". After the suitable reparametrization and 
coordinate change near saddlenodes one obtain the following local systems 
near 0\ and O2 respectively (see Figure 2): 

(4.1) 

x = (x2 + s)(l + a(s)x)-\ y = -y 

x = (x2 + + b(z)x)-\ y = y 

where e = (£,6, A) € (M3,0) and A = 0 corresponds to the saddle connec­
tion. 

Now consider the limit cycle equations. This will be an equation for the 
fix points of the Poincaré mapj written in the appropriate form. For this 
sake decompose the Poincaré map for the unfolding of the polycycle, in the 
domain, where it is defined, into the composition of the four maps, shown in 
the figure 3. 

FIGURE 3 
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The transversals 1 ^ , 1 ^ are taken in the neighborhood of the point Oi, 
where the normalizing chart for the local family is defined. Let be the 
entrance and the exit transversal through which the phase curves enter in 
and come off the mentioned neighborhood of 0\. Let x\ and y\ be restrictions 
of the y-function of the normalizing chart to Tf and TJ" respectively. Then 
the correspondence map 

A t : IT - IT 

along the phase curves will take the fori 

Ai(.ri) = J,!, yi = C,(î).ri 

C i ( s ) - » 0 a s £ - » 0 

This map is called the funnel. In fact 

Ci{e) = <p(s)exp 
7T 

SF 

$(5) = exp 
WS 7T 

2£ 
arctan -

1 

is 
' = 0(1). 

An analogous construction near the point 0_> gives the transversals r j , ] ^ 
with the charts #2, V2 and the correspondence map 

^2(^2) = 2/2,2/2 = C2(^).r2.C_>(^) —> 00 as a —• 0, 

C2(«5) = (<^(6))-1 exp 7T 
HF 

The map A2 is called is shower. 
There are also two regular maps along the phase curves depending on e as 

a parameter: 
fE :Tr ->PPT+ and </*:rj 

The Poincaré map A : Tf —• R D for any fixed £ is a composition 

A = gi o Ao o /? o Ai 

The limit cycle equation has the form 

A(.r) PP= .v, 

or equally 

(4.2) A 2 o /£- o A] = fj€

 1 
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The last equation will be studied below. 
Note that the function gi is not a germ but an actual function on a seg­

ment. The situation completely loses locality and, therefore, the following 
construction goes. 

Chose the curve 

7 = {S(e)}, e(e) = («r,%),\(e)), X(e) = 0, 

with the endpoint zero in the parameter space such that 

fs(xi) = 0 for X\ = 0, e = 7(e), 
Ci(e )C 2 (%)) = 1 

The left hand side of (4.2) for small s will be the rescaling f£ of the smooth 
function / 7 ( e ) with / 7 ( £ )(0) = 0: 

fe(x1) = C-HE)0fl(£)0C(s)(x1) 

The limit of the rescaled smooth function with the zero value in zero is 
linear. The Figure 4 shows that for a function properly chosen the limit 
cycle equation (4.2) for e = 0 may have a prescribed number of solutions, and 
a situation is structurally stable. 

FIGURE 4 

This proves the Theorem 8. 
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§5. BIFURCATION DIAGRAM FOR THE "LIPS" 

AND GENERALIZED LEGENDRE DUALITY. 

In the first half of this section the bifurcation diagram for "lips" will be 
described. This will give the sketch of the proof of the Theorem 5. 

5.1 Bifurcation diagram and Legendre transformation. 

Recall that the point in the parameter space of the family of vector fields 
belong to the bifurcation diagram if the corresponding vector field is not 
structurally stable in its domain. 

We will describe the intersection of the bifurcation diagram ( B D ) for "lips" 
with the narrow funnel U centered on the curve 

e = 6, A = 0 

Let 

¿1 = 
8-s 

3. £2 
Ai = 

A 
s)exps)ex 

(5.1) U = {(e ,M) |* i G a, Ax e a} 

Here a = [—A, A] is such a segment, that 

A ^> mSax zazzASzyr'FS>max(071y 

Let (s, <5i, Ai) be the new coordinates in U. Consider only those point on the 
B D which correspond to semistable limit cycle. Fix a small value of e. The 
limit cycle equation (4.2) has the form 

(5.2) eeQC2{8)fê(Cl{e)x)GJRRGGD=gj\x) 

Suppose that e runs the curve in U having a definite limit point (0, ¿1, Ai) in 
the chart (s, ¿1, Ai) , see (5.1). Then the solution of (5.2) gjl is given by the 
intersection of the graph of fE and the rescaled graph of fE which is almost 
a straight line. When the parameters <5i,Ai change, these "almost straight 
lines" changes also; the bifurcation diagram contains the points corresponding 
to the tangency of these graphs (Figure 5). 

In the case, when e = 0, the set of parameters (¿1, Ai), corresponding to 
the tangencies (2) on the Figure 5, will form the part of the "blown up vertex" 
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FIGURE 5 

of BD in the funnel U. This set will be the Legendre transformation of the 
graph of g^1 on the parameter plane (a, b) of the straight lines 

2/2 = axi - 6, 

6 = - A i , a = /J(0)exp 
7T 
2 

¿1 

The last formulae may be easily obtained analyzing the rescaling in the left 
hand side of (5.2). 

Therefore, the intersection BD fl U contains a surface, which becomes dif-
feomorphic to a cylinder over the Legendre transformation of a graph of g^1 

after the blowing up (5.1). This proves the Theorem 5, §2. 
Now discuss the intersection 

E = BD fi U H {s = so}, £o>0 

Then the lines would be replaced by the curves, still forming the two pa­
rameter family; the parameter values corresponding to tangency with the 
graph of g^1 belong to E. This intersection is equal, up to some details, to 
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the generalized Legendre transformation of the graph of E. First recall some 
classical definitions [A]. 

5.2. Dual second order differential equations.. 

Definition 4. A two parameter family of curves in the plane is the divergent 
diagram of maps: 

(5.3) 
xps)exsps)exzryyysfpsz)expedfd 

Remark. In the generic case near a typical point O of Q both maps cp and 
xj) are regular (have rank 2). Consider the set ip(Q) = {(a, b)} C R 2 as a space 
of parameters and the set (f(fl) = {(/>, q)} C R 2 as a phase space. The level 
curves of the germ i/> : (fi, O) —• ( R 2 , 0 \ ) , 0\ = il'(O) form the germ of a one 
dimensional foliation in R 3. The image of this foliation under the map i\) is 
the two parameter family of plane curves (in the naive sense), see Figure 6a. 

Remark. Let (t,a,b) be the local chart near 0 , and let cp = (^1,^2)-
Denote by dot the derivation with respect to t along the level curves of tj) : 
a = const, b = const in (fi, O). Then the function 

P = 
(¿2 

O 

is the derivative of a function y = f(x) with the graph < (̂?/>_i(a, b)) for suitable 
a and 6. The function may be also expressed through a, b, t, cpi, and (f2 
as a function q on (fi,(9). But in the generic case functions x, y, p form a 
chart in (fi, O). Therefore one can write 

q = $(x,y,p) 

The curves {<p(i(> x (a , b) \ (a, b) G ̂ (Q, O)} are the graphs of the solutions of 
the differential equations 

(5.4) y" = $(;r, y, if) 

Therefore, in a genetic case, the diagram (5.3) near a genetic points, gives a 
germ of a second order differential equation. 

Definition 5. The local second order differential equation is the genetic di­
agram (5.3) near a regular point of a map t/% with the phase space Im <p and 
a parameter space Im ^. 

Now define the differential equation dual to the previous one. For this sake 
we should nearly change the roles of the maps (p and ip. 
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FIGURE 6 

Definition 6. The second order differential equation dual to the one de­
scribed in definition 5, is the same diagram (5.3) considered near a regular 
point of a map (p with the phase space Im V anfl a parameter space Im <p 
(see Figure 6 b) 

5.3. Generalized Legendre duality. 

The definition of the generalized Legendre duality is naturally realized with 
the constructions of the Figure 5. 

Definition 7. The generalized Legendre transformation of the planer curve 
7 with respect to the family (5.3) with the parameter space Im i/> is the set 7 
of the parameters a = (a, b) such that the curves 

7 and (^(V'~1(o.')) 

are tangent. 

Remark. For the family 
y = ax — b 

(the maps cp and ip have the form 

(x, ax — b) (a. b. x) (r/. b) ) 

the definition 7 give the classical Legendre transformation. The following 
theorem is a classical. 
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Theorem [A]. The Legendre transformation is an involution for the genetic 
germ of a curve 7. Then means that the curve 7 obtain from 7 gives the same 
curve 7 after a Legendre transformation. 

The equivalent statement: the Legendre transformation is the inverse to 
itself on the set of genetic germs of curves. 

Theorem 9. (Stanzo). The generalized Legendre transformations with re­
spect to dual two parameter families, in sense of Definition 6, are inverse to 
each other on the set of genetic germ of plane curves. 

Remark. The first proof of this theorem was given by Stanzo and will be 
published in [K,S]. Here I reproduce the proof, proposed by Cromov without 
looking to the explicit statement of the theorem. I allow myself to reproduce 
here approximately a fragment of our conservation. I ask Gromov, does he 
know the fact called the "Generalized Legendre duality". He says " I don't, 
but the proof must be similar to the classical one. The crucial point is, that the 
curves of the first family passing through one and the same point correspond 
to the curve of the dual family on the parameter plane. Let me find the proof 
in some classical book, for the traditional Legendre transformation". We try 
to find it in some books of Klein and fail. "Well, - says Gromov, - in this 
case of lines it looks like what follows" - and he gave a sketch of the proof of 
the theorem [A], which will be extended below to the general context. 

This proof is based on incidence reasons only. We will give a sketch of it 
using the consequences of some genericity assumptions without formulating 
them explicitly. 

The principal fact used below is that the tangent line is the limit of chords. 
Similarly, the curve of the two parameter planar family tending to some curve 
7 in a point a, is a limit of the "chordal" curves of the family passing through 
the points a and /3, where (3 is the point of the same curve 7 tending to a. 

Consider two dual families of planar curves given by diagram (5.3). Define 
by A, J5 , . . . points on Im ip. Let $ and # ,4 be the curves of the dual families, 
correspondent to the parameter values A and a respectively: 

s)expsRR)exRRRpZRZs)exps)exps)exps)exp 

Let 

$ QF= {$Q | a G Im 0}DGD, V = {#,1 

$ QF= {$Q | a G Im 0}DGD, V = {#,1 | A G Im 9?} 

Take a curve 7 C Im y>, a point A G 7 and a curve $ a G $ tangent to 7 at a 
point A. Let 7* be the generalized Legendre transformation of 7 with respect 
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to the family We want to prove that the curve of the family \I> tangent to 
the curve 7* in the point a is ^4, that is to say, corresponds to the point A. 
This will give the desired duality. 

Instead of this study the "chordal" curve; the curve of the family \I> passing 
through a and the nearby point /3 £ 7*. Let C be corresponding point of Im <p: 

* c 3 a , 13; ^ c = V ' ( ^ 1 ( C ) ) . 

The point /3 corresponds, by definition of 7*, to the curve $/3 of the family 
$, tangent to 7 in the point B close to A. We state that the point C corre­
sponding to the "chordal" curve is to the point of intersection of $ a and 
$p (see Figure 7). Indeed, the curve 

* c = ^ _ 1(C*) 

has a non empty intersections with the curves 

* a = V " 1 ( « ) a n d * / J = V'-1()8) 

because these curves form the total inverse image of a and (3 with respect to 
the map ^ , and the curve i/>($?c) contains a and /3. Therefore the image 

C = (p(i>c) belongs to $ 0 = <p(i!'Q) and $p = (ptyp). 

This means that the point C is the intersection point of 3>Q and 
On the other hand C tends to ^4, as B tends to .4. This proves the theorem. 

FIGURE 7 

Remarks. 1. The generalized Legendre duality may be extended to higher 
dimensions. 

2. After my talk in the conference on Dynamical systems in Triest, June 92, 
Zakalukin communicated me that this generalized Legendre duality may be 
derived from some of his recent results (though the statement was unknown 
to him before). 
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§6 . BIFURCATIONS OF ELEMENTARY POLYCYCLES. 

In this section the weakened version of the Theorem 1 is discussed. 

6.1 Statement of result and four steps of the proof.. 

Theorem 10 (Ilyashenko & Yakovenko). An elementary polycycle met 
in a typical finite parameter family generates only finitely many limit cycles 
in this family 

We will give the brief sketch of the proof here; the detailed exposition is 
given in [IY3], This proof splits into four steps. 

Step I. Replace the Poincaré equation for limit cycles (the equation for 
fix points of the monodromy map) by the functional-Pfaffian system with 
the polynomial Pfaffian equations. This step uses the normal polynomial 
forms for the unfoldings of elementary singular points mentioned in §3 and 
summarized in the Table 2 below. The Poincaré equation is singular: its right 
hand side is not defined in the full neighborhood of zero point in the space of 
phase variables and parameters. The functional-Pfaffian system is regular in 
a likely neighborhood. 

Step II. Replace the functional-Pfaffian system by purely functional system 
which is regular in the entire neighborhood of zero. This is done using the 
Khovanskii procedure [Kh]. 

Step III. Generalize Gabrielov finiteness theorem from real analytic to 
finitely smooth case. This means, find a sufficient property for finitely smooth 
maps of real manifolds with boundary to have a uniformly bounded number 
of universe images of the regular value of the map. This leads to the definition 
of the so called nice maps. 

Step IV. The Khovanski procedure reduces the estimate of the cyclicity 
of elementary polycycle of the upper estimate of the regular solutions of the 
so called "special chain map". The simplest, not exactly the necessary one, 
example of the special chain map is the following: 

( 6 . 1 ) 9 = Pof, f : B -> RN, P:RN -+Rn, 

5 C K n is a ball; / is generic, P is polynomial. 

Theorem 11 [IY3]. For any fixed polynomial P and for generic / , the map 
(6.1) is nice. 

We will now explain these four steps in more details. 
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6.2 Step I. Reduction to functional-Pfaffian system. 

Theorem 12 [IY3]. The generic unfoldings of elementary singular points of 
the vector fields in the plane are finitely smooth equivalent to ones listed in 
the Table below. The correspondence maps for these unfoldings satisfy the 
Pfaffian equations listed in the column 3 of the same table. 

Type 

Nonresonant 
saddle 

Resonant 
saddle 

Degenerated 
elementary 

singular 
point 

(saddlenode) 

Normal form 

y = -y, u = 
y = -\(e)y, A > 0 

y = -y, u = xmyWWnWCW 

y = - y , u = xmyn 

is the resonant monial, 
fu = Pu-i± 

P„-i(iz,e) = Si + s2u+ 
y = -y, u = xmyn 

y = -y, u = xmyn 

x = g^{x,s), 
y = -y 

y = -y, u = xmyny = -y, u = xmyn 

.(l + a(e)xn, Pu-i 
is the same as before 

Pfaffian equation for 
the correspondence map 

xdy = X[e)ydx x > 0, y > 0 

(fu(xm,e)-rn%K%.xm)fu(KKyn,eKK)dx 
+nxyn-1f,l(£xrn,e)dy = 0 

x > 0, y > 0 

a. xdy = ydx 

b. gJx,e)dy - ydx = 0, 

y > 0 

TABLE 2 

Commentary. The case a in the third row of the Table corresponds to the 
map of the transversals crossing the central manifold. 

The case b corresponds to the map of the segment transversal to the stable 
manifold onto segment transversal to the central one. 

Let now 7 be an elementary polycycle met in a typical fc-parameter family. 
Denote by 

A:(KHKx.eLJL)^ A(.r.e) 

the Poincaré map of this polycycle defined for some domain in the space of 
phase variable x on transversal and parameter s. This domain contains in its 
closure zero point corresponding to the polycycle. The limit cycle equation 
has the form 

(6.2) A(x,LJLs) = x 

Our goal is to prove the existence of the upper estimate for number of solutions 
of this equation. The solution of (G.2) is intersection point of the cycle with 
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transversal T, see Figure 8. Replace this equation by the system corresponding 
to the intersection points of the limit cycles generated by 7 with transversals 
separating the singular points 0\,..., Ou from the other part of the polycycle, 
Figure 8. 

FIGURE 8 

Let r^" and TJ be the entrance and exit transversals in the neighborhood 
of the point Oj. Let Aj be the correspondence map of to TJ. Consider 
the normalizing charts near the singular points, see Table 2. Let Xj, j/j be 
the restrictions of the appropriate coordinate functions of these charts to 
and T~ respectively. Then the equation (6.2) may be replaced by the system 

yx = Ai (.?•!,£•) 

= /1 (2 /1 , ^) 
(6.3) 

yn = An(xn,s) 

Traditionally the correspondence equations bring the main difficulties. After 
the Table 2 is written down they become standard. The explicit formulae for 
them may be derived from this table. What about the functions / j , we only 
know that they are regular and generic. 

The correspondence maps Aj are solution of the Pfaffian equations from 
the Table 2. Replace these maps in the system (6.3) by the corespondent 
equations; we will obtain the system 

*i = fii(yn,£) 

u:\(xu¨P¨¨yu¨µs) 
(6.4) X'2 = /l (?/!<£) 

The 1-forms CJJ have the polynomial coefficients with respect to x and e. This 
is the end of the step I. 
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Step II. Khovanskii procedure.. 

This procedure allows to replace Pfaffian equations once more by the "func­
tional" ones, but the system constructed this time appears to be regular. The 
algorithm is described in [Kh], its realization may be found in [IY3]. The 
following system is obtained as a result 

(6-5) n / c n / , e ) = « 

Here 

(6.6) f(y, s) = (fi (</i,£),..., f„(yn,e)), 

e = ( e i , . . . , £k) € B is a parameter, B is a ball in Rk. The notation on the 
left hand side of (6.5) is explained by the following 

Definition 8. Let C (C of Cartesian) denote the space of all maps 

/ : («R"+fc,0) (R ? \0) 

of the form (6.6). The (n, C) jet of the map (6.6) in a point (y, e) is the set of 
maps (6.6) (maps from the space C) which difference with / is n-flat in the 
point (y, e). The space of all jets j^f, f £ C is denoted by Jg . 

The map T is polynomial: 

T : -> R 7 ? +k 

for appropriate iV.Next two steps allow to prove that the map (6.5) has a 
uniformly bounded number of regular inverse images of any of its regular 
values. 

6.4. Step III. Finitely smooth maps with Gabrielov property.. 

The following theorem of Gabrielov is well known. 

Theorem [G]. Let M be a compact analytic set in the real space and g : 
M —> R m an analytic map. Than for any a E R m the number of connected 
components of the inverse image g"1 (a) is uniformly bounded with respect to 
a. 

If the map (6.5) would be analytic, then the system (6.5) would have a 
uniformly bounded number of isolated solutions by the previous theorem. 
Unfortunately, the map (6.6) is only finitely smooth. In the general case the 
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Gabrielov theorem for finitely smooth maps is obviously wrong. We must 
find the sufficient local conditions for the finitely smooth map to have a uni­
form bound for the number of the inverse images of any of its regular values. 
These sufficient conditions were obtained analyzing the original proof of the 
Gabrielov theorem. 

Analytic sets form the so called stratified manifolds [W], [M]. Therefor we 
will consider the smooth ones, referring to the necessary definitions in [M]. 

Let M be a stratified manifold. Denote by sk A/, the skeleton of M, the 
union of its strata of all the dimensions lower than the maximal one; the 
last is called the dimension of M. Consider a complete flag in R m with the 
orthogonal projections 7Tj: 

(6.7) R m ^ Br - 1 • R1 ^ R° = {0} 

Definition 9. The map g : M —> R m of m-dimensional compact stratified 
manifold in R m is called nice if a flag (6.7) and a commutative diagram 

(6.8) 

Mm M T O _ 1 . ^ 2 - ... И1 М° 

9т 9т-1 91 9о 

Mm = Af, M'"1 = = -u = xmyMj, gm = p,Mm = Af, M'"XGDGD Af, M'" 

exist having the following properties: 

(6.9) Mm = Af, M ' " 1 = = -u = x m yM j , g m = p, 

Mi is a j-dimensional stratified manifold, ij is a natural embedding. On 
all the strata of MJ of the higher dimension the following dichotomy holds: 
either gj is regular in any point of the stratum, or rank dfj < dimAP on 
entire stratum. 

Remark. The maps gj are well defined by map g , the flag (6.7) and the 
diagram (6.8). 

Definition 10.. The contiguity number for the stratified n-dimensional man­
ifold is the maximal number of r?-strata adjacent to the n — 1 strata in the 
small neighborhood of the points of these last strata, see Figure 9. 

Denote the contiguity number for rrij in (6.8) by Uj. 

Theorem 13. .If the map g n is nice and (6.8) is the correspondent diagram 
with the contiguity number Vj, then the number of inverse images of any 
regular values g admits the following estimate 

#{0-\a)}< 
1 

2 m y = -y, uVV • V{-1/°} 
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N 
FIGURE 9 

< The proof goes by induction by j . Suppose the likely estimate for gm-i • 
M™""1 —y W71"1 is obtained. Eliminate from Mm all the higher strata where 
the rank of dg drops. This does not change the number of regular preimages 
and the map g with the domain narrowed in this way still remains to be nice. 
Take a regular value b of # m _ i and consider a function 

¥>(<*) <XNBGJ<<Wfor a e R1 = Tr^b. 
This function is piecewise constant and jumps in the points of the image of 
the visible contour of M m only. The magnitude of each jump is, roughly 
speaking, no larger than i / m , and the number of jumps is no larger than 

J 1 
2 m ~ 1 -7/1 • ... • 7/m_! #{M°} 

by the induction assumption, see Figure 10. For the values of a close to —oo 
and oo, <p(a) = 0. Therefore its maximal value is no greater than one half of 
its oscillation, which may be in turn estimated; 

ose <p < BCVBVJ • vm. 
This proves the theorem. > 

The theorem shows that the nice map has the Gabrielov property. Now we 
have to prove that the map 

(6.10) 
g:(y,e)^(<X<X<f(rcXf,£).sVXXX)eRSSn+k 

with the generic / £ C is nice. 

6.5. Step IV. Thom-Boardmann like classes.. 

We replace the family of equations (6.5), (6.6) by a single equation 

g = (a,s)JG 

g is the map (6.10), because we want to have a uniform estimate of the number 
of regular inverse images with respect to E. In order to investigate the map 
BVV introduce some notations used for the nice maps. 
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FIGURE 10 

Definition 11. . The criminant set of the map g : Mm R m of the 
stratified manifold is the union of sk Mn and the set of critical points of g on 
the n-strata of M : E = {x G higher strata | rank d# < n} 

We say that the map g agrees with the stratification M of M n , or M 
stratifies if the following dichotomy holds: each n-stratum Ma G M en­
tirely consist either or regular, or of critical points of g. The skeleton of the 
stratification which stratifies g will be called the essential criminant set of g ( 
it is defined up to a choice of stratification which agrees with g). 

Remark. The sufficient condition for the map g to be nice is the existence 
of the commutative diagram (6.8) with the properties (6.9) and the following 
one: 

each M- 7 " 1 is the essential criminant set for the map gj : M3 —• R-7. 
Fix a polynomial map T in (6.10) and a flag (6.7). 

Theorem 14. . There exist algebraic sets K.\ in the jet space J £ + / such that: 
codim K\ — I; 
the set K\ is the "universal criminant set" in the following sense: 
if the n + I-jet extension of f G C is transversal to JCi for any I, then the 

map g (6.10) is nice. 

The constructions goes by induction with respect to Z = m — dim M3 in 
(6.8). It is like the classical one, due to Thorn- Boardmann. 

Let Mm C R n + f c , m = n + k be the ball in the space of y, e, phase variables 
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and parameters in (6.6). Let / £ C be a Cartesian map (6.6) 

Mm LL Rn 

Consider the first universal criminant set 

Af,£0++ M'"XGDG 

id = { j£+V I rank ^ >m, x e hit £ } U {Jc+1f I « € &B}U {J 

where x is the source of the jet Jq*1/, # is the map(6.10). 
The set K\ is obviously an algebraic variety in J£+1. 
The following construction makes use of two important remarks. 
1. Consider a map 

Rr ф R* —> Rr+1. 
X i • (51,...,flr,../?!,WXSG...,/«<)(;!:) 

and suppose that gr = (</i, ...,#r)> ^ = (^i, and rank dp|^=o = r. 
Then the set of critical points of the restriction of h onto the set g = 0 is 

given by the equations 

g = 0, A ... A dgr A r//?i A ... A dhs = 0 

This fact lies in the foundation of the classical Thom-Boardmann construc­
tion. 

2. Consider a semialgebraic set K in the jet space 3q for some L given by 
the polynomial system 

G = 0, G = (<X<Gu...,Gr) 

with the additional requirement rank dg\K = r. 
Suppose that the L-jet extension of a map / G C is transversal to /C. Then 

the map 
g = GDGD-jLf 

has rank r on the set {g = 0}. 
These remarks allow to proceed the construction of the universal criminant 

sets /C/, using the following theorem of Whitney. 
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Theorem. . For any algebraic variety K in the affine space there is a semi-
algebraic set K, which is in fact a manifold such that: 

1. For any point x £ K a system G of polynomials exist such that in some 
neighborhood U of x 

K H U = {G = 0} H U; 
rank dG = codim K 

on K fl U;_ 
2. dim(/C\/C) <dim/C. 

This concludes the proof of Theorem 14. 

6.6 Cartesian transversality theorem.. 

To conclude the proof of Theorem 10 we need a Cartesian analogue of the 
classical Thorn's transversality theorem. 

Theorem 15. . Let C, as before, be a space of maps of the form (6.6), and 
let K be an algebraic variety in the space j£. Then a generic map f £ C has 
L-jet extension which is transversal to all the strata of K. 

This theorem is proved by Shelkovnikov. The proof is analogous to that of 
the classical transversality theorem. 

This concludes the proof of the Theorem 10. 
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