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Surjectivity of cycle maps 

Hélène Esnault and Marc Levine 

Introduct ion 

The complicated nature of the theory of cycles of codimension two and 
higher became apparent with Mumford's paper [M], which showed that pg = 0 
is a necessary condition for the represent ability of the group of zero-cycles on a 
smooth projective surface over C. This was generalized by Roitman [R] when 
he showed that the vanishing of all the groups q > 1, is necessary 
for the represent ability of the group of zero-cycles on a smooth projective 
variety over C. Bloch, Kas and Lieberman [BKL] investigated the zero-cycles 
on surfaces with pg — 0, showing that the group of zero- cycles was in fact 
represent able, at least if the surface is not of general type; Bloch [Bl] has 
conjectured that pg = 0 is sufficient for the represent ability of the zero-cycles 
on a smooth projective surface. The case of surfaces of general type is still 
an open problem, although there has been some progress, most recently by 
Voisin [V]. 

Bloch's proof in [Bl] of Mumford's infinite dimensionality theorem views 
the diagonal in X x X as a family of zero-cycles on X , parametrized by X , and 
goes on to consider the consequences of the generic triviality of this family. 
This may be the first appearance of this point of view. Coombes and Srinivas 
used this idea in [CS] to get a decomposability result for H1{K,2) of a surface. 
Bloch and Siinivas [BS] push this approach further, making a study of the 
cycle groups on a smooth variety X which relies on a partial decomposition of 
the diagonal in X x X. They have applied this method to give some examples 
for which certain cycle groups are represent able. This approach was recently 
used by Paranjape [P] in his discussion of the cycle groups of subvarieties of 
projective space of small degree and small codimension. Schoen [S] has also 
applied this method to give generalizations of the Mumford-Roitman criterion 
for non- represent ability to the Chow groups of cycles of positive dimension. 
Jannsen [J] used the ideas of Bloch and Srinivas in his discussion of smooth 
projective varieties X for which the rational topological cycle maps 

CRp(X)®Q-*H2Bp(X,®) 

S. M. F. 
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are injective. For such a variety, Jannsen shows that the diagonal in X x X 
decomposes in CH*(X x X)q into a sum of product cycles 

A = A0 x B° + Ax x B1 + . . . + Ad x Bd 

where A{ is a dimension i cycle, B% is a codimension i cycle, and d = dim(X). 
One consequence of this decomposition is that the total cycle map 

d 

p=0 
i C H p ( X ) ® Q -

2d 

q=0 

iHqp(X) 

is an isomorphism; in particular, X has no odd cohomology. 
In this paper, we prove an analog of Jannsen's result, considering the 

cycle map to rational Deligne cohomology rather than Betti cohomology. As­
suming injectivity of the Deligne cycle maps, we arrive at a decomposition of 
the diagonal into a sum of codimension one cycles on products of the form 

x Dl, with dim(r,-+i) = i + 1, cod(Z)z) = i (see Theorem 1.2 for a more 
precise statement). The consequences of this decomposition are a surjectiv-
ity statement for certain cycle maps to Deligne cohomology and some other 
related maps (Theorem 2.5), a vanishing result for certain Hodge numbers 
(Theorem 3.2), and a decomposability result for the K-cohomology (Theo­
rem 4.1). If we assume that all the rational cycle class maps for a smooth 
projective variety X are injective, then 

(1) all the rational Hodge cycles on X are algebraic (Corollary 2.6) 
(2) the Abel-Jacobi maps 

cln:CEn(X)alg^ Jn(X) 

are all surjective (Corollary 3.3) 
(3) the Hodge numbers hp,q(X) all vanish for \p — q\ > 1. 
(4) the maps 

CRP(X)®CX -+Hp(X,)Cp+1) 

are all surjective. 
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SURJECnvnY OF CYCLE MAPS 

The results on the Hodge numbers are a direct generalization of the re­
sults of Mumford-Roitman mentioned above. This points the way to some 
possible generalizations of Bloch's conjecture to a conjecture on the repre­
sent ability of cycle groups of higher dimension (see Questions 1 and 2 in §3). 
What is novel about the situation is that it involves all the groups of cycles 
of dimension 0 to s rather than the cycles of a single dimension s. Schoen 
has raised similar questions in his paper [S], from a slightly different point of 
view, replacing the injectivity assumption with an assumption that the gen­
eralized Hodge conjecture holds, and that the group of dimension s cycles is 
represent able; we haven't attempted to reconcile these two points of view. 

We would like to thank Uwe Jannsen and Kapil Paranjape for sending us 
preliminarly version of their manuscripts, which have greatly influenced this 
work. This joint paper arose out of conversations while the second author 
was visiting at the University of Essen; he would like to thank the University 
of Essen for its gracious hospitality and the DFG Schwerpunkt "Komplexe 
Mannigfaltigkeiten" for its generous support. 

§1. Decompos i t ion of the diagonal 

In this section, we show how the injectivity of the cycle map to Deligne 
cohomology leads to a decomposition of the diagonal. If X is a smooth pro­
jective variety, we let Zn(X) denote the group of codimension n cycles on X , 
CHn(X) the group of cycles modulo rational equivalence. We let Zn(X) and 
CHn(X) denote the group of dimension n cycles and cycle classes. If X is 
defined over C, we have the cycle class map 

cln: Zn(X) -> H^n(X,Z(n)). 

This map passes to rational equivalence, giving the map 

cln:CEn(X) -» Hln(X,Z(n)). 

We refer to an element of Zn(X)q as a Q-cycle. We also denote by cln 
the maps induced by cln after extending the coefficient ring. For the basic 
properties of Deligne cohomology and the cycle map, we refer the reader to 
[B]. 
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Let Hgn(X) denote the group of codimension n Hodge cycles on X: 

Hgn{X) {xeH2n(x,z(n)) x®ie FnH2n(x,c)}-

We have the exact sequence describing iJ|>n(X, Z(n)) as an extension: 

0 
ff2N-1(X,C) 

H2n-\X,Z(n)) FnH2n-1(XX) 
H2vn(X,Z(n)) Hgn{X) -+ 0. 

The nth intermediate Jacobian, J n ( X ) , is the complex torus on the left-hand 
side of the above sequence. 

L e m m a 1.1. Let X be a smooth projective variety over C of dimension d. 
Suppose the Q-cycle class map 

cln:CrF(X)Q^ Hln(X,Q(n) 

is injective. Let D be a pure codimension i = d — n closed subset of X, and 
let j be a codimension d Q-cycle on X x X, supported on X x D. Then there 
are closed subsets Df and V of X, codimension d Q-cycles 7? and 7? on X x X 
such that 

(1) D' has pure codimension i + 1 and T has pure dimension i + 1. 

(2) 7? is supported onT x D and 7? is supported on X x D'. 

(3) 7 = 7? + 7? in C&iX x X)Q. 

Proof. If D has irreducible components Z>i , . . . , D5, we can write 7 as a sum 

7 = 71 + . . . + 7s 

with 7J supported on X x Thus we may assume that D is irreducible. 
Write 7 as a sum, 7 = 7' + 7", such that each irreducible component of the 
support of 7' dominates D, and no irreducible component of the support of 7" 
dominates D. Since 7" is supported on X x P2(supp(l"))'> and P2(^PP(7n)) 
has codimension at least ¿ + 1 on X , we may assume that 7 = 7'. We may then 
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find a smooth projective variety D, mapping birationally to D by p: D —> Z>, 
and a Q-cycle 7 on X x D such that 

(i) for each y £ Z), X x y and 7 intersect properly on X x D. 

(ii) (zdx x p)*(7) = 7. 

Indeed, for a resolution of singularities r: ¿2 —> D, and a subvariety Z of 
I x f l , there is a subvariety W of X x £* which is generically finite over Z. 
Thus each cycle 7 as above can be lifted to a Q-cycle 7^ on X x E. Having 
done this, we may further blow-up E via D —• i£ so that each component of 
jE has proper transform to l x f l which is flat over I), giving us the desired 
resolution D and Q-cycle 7. 

For a point y £ -D, let 7y be the Q- cycle px*((X x y) • 7). Each 7y has 
codimension n on X. Fix a point 0 £ Z). Since JD is connected, the cycles 
70 and 7y are homologous on X, for each y in Z). Thus cln{^y — 70) is in 
Jn(X)o, for each y € D. Let c/: 5 —> JU(X)Q be the map 

c/(y) = c/n(7y -70) . 

In similar fashion, we have the map ch: D —> CHn(X)o defined by 

ch(y) = 7« - 7o mod rational equivalence. 

Both ch and c/ extend by linearity to maps 

ch:CE0(D) ->CHn(X)Q 

ch CH0(Z>)-+/n(X)Q. 

The map cl factors further through the Albanese map 

a pi CHQ(D) —> Alb(D). 

Clearly we have cln 0 ch = cl] since the map cln is injective by hypothesis, 
this implies that ch factors through Alb(Z)) as well. 
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Take an embedding of D in a PN, and let C be a smooth linear section 
of D of dimension one; we assume that C contains 0. By the weak Lefschetz 
theorem, the map Alb(C) —• A\b(D) is surjective; in particular, this implies 
that, for each y £ D, there is a Q-zero cycle ay, supported on C, such that 
cl(y) = cl(ciy). As the map ch factors through Alb(D), we have ch(y) — 
ch(ciy). 

Take y to be a geometric generic point of D over C, so C(y) = C(D) = 
C(D). The zero-cycle ay is defined over some finitely generated field extension 
of C(D); by specializing ay and changing notation, we may assume that the 
zero-cycle ay is defined over a finite extension L of C(Z)), of degree say M. 
Let by be the zero cycle • NmL/C(^(ay). Then by is defined over C(Z)), 
by is supported on C and ch(y) = ch(by). In particular, there is a unique 
Q-cycle 7? on X x D such that 

(iü) px*((X x y) • 7?) = px*((X x by) • 7), for y a geometric generic point of 
D over C. 

(iv) each irreducible component of supp(7?) dominates D. 

Let 5 = Px(supp(7)fl X x C). Since the fibers of supp(7) over D all have 
dimension z, S has dimension at most i +1. By (iii) and (iv), 7? is supported 
on S x D. Since c/i(y) = ch(by), (iii), together with the localization sequence 
for the Chow groups, implies there is a codimension one closed subset D' of 
D, and a cycle 7? € CHd~l(X x .D), supported on X x Z)', such that 

(v) 7 = 7? + To x f in C H Á - ¿ ( X x Z>)Q. 

Let r be a pure dimension i + 1 closed subset of X containing S and 
supp(7o), let D' be a pure codimension i + 1 closed subset of X containing 
p(D'). Take 7? (¿<¿x x p)*(7? + 70 x JD), 7- (idx x p)*( r ) Since 
(¿dx x p).(7) = 7, we have 

7 = 7? + 7? in CHD(X x X ) Q 

7? is supported on I x D' 

7? is supported on T x D, 

as desired. 
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Theorem 1.2. Let X be a smooth projective variety over C of dimension d, 
and let A be the class of the diagonal in CHD(X x X)Q. Suppose the Q-cycle 
class maps 

c/n:CiT(X)Q Hln(X,Q(n)) 

are infective for n = d — 1 , . . . , d — s, for some integer s, 0 < 5 < d — 2. 
Then there are closed subsets X = D°, D1,..., , I \ , . . . , r5+i, and cycles 
7i , . . . , 7„7a+1 e CHD(X XX)Q such that 
(1) Dl has pure codimension i, I \ has pure dimension i 
(2) 7J is supported on x D\ for i = 0 , . . . , s. 
(3) 7S+1 is supported on X x D9+1. 
(4) A = 7o + • • • + 7, + 7S+1 in CHd(X x X)0. 
Proof. We first apply Lemma 1.1 to the cycle A on X x X, with n = cf, i = 0 
and D = X. This gives us the Q-cycles 70 and 71, a codimension one closed 
subset D1 and a dimension one closed subset Ti with 70 supported onTi x X , 
71 supported on X xD1 and with A = 71 +71 in CrlD(X x X)Q. This proves 
the case 5 = 0. The general case follows by induction on 5, applying Lemma 
1.1 to the cycle 75"1"1 supported on X x D8+1. • 
Note. We have systematically indexed our cycle groups by codimension rather 
than dimension for notational convenience. However, it seems instructive to 
view the hypotheses of Theorem 1.2 as requiring the injectivity of the rational 
cycle maps for cycles of dimension 0 to s. 

§2. Surjectivity 
In this section, we use the decomposition of the diagonal given in §1 to 

study the surjectivity of the cycle map. 
Let X be a smooth projective variety over C of dimension d. Let 7 be in 

CH^(X x X)Q , supported on a product r x D , with T C X of pure dimension 
j , D C X of pure codimension i. Let p: T —> T, q: D —> D be birational 
maps, with T and D smooth and projective. If Z is a subvariety of T x D, 
then there is a subvariety W of T x D, with (p x q)(W) = Z, and with W 
generically finite over Z. In particular, there is a cycle 7 € CHJ_l(r x D)q 
with (p x g)*(7) = 7. 

The cycle 7 determines the homomorphisms 

7.:ff£(X,Q(&): #£(X,Q(fc)) 
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by 

7.(rç) • P2*(PÌ(v)ucld(1)), fo r rçe tf£(X,Q(ò)). 

Let / : f —> X , g: Z) —> X be the obvious maps, and let p ^ T x Z? —> D, 

Pf: TxZ) —> T denote the projections. The cycle 7 determines homomorphisms 

7.:ff£(r,Q(6)) ff;-2i(AQ(i-0)bj 

7.(»7) = Pö.(Pf(»7)Uc/J-(7)) for»? € ff£(r,Q(6)). 

L e m m a 2 .1 . Let Î? G ff£(X,Q(6)). Then 

7.(>/) = /.(WTO))). 

Proof. We have 

7 . ( » ? ) = P 2 . ( p î ( r / ) U c / d ( 7 ) ) 

= P 2 . ( p î ( r ? ) U c / d ( ( 5 x / ) . ( 7 ) ) ) 

= P 2 . ( p ï ( r ? ) U ( 5 x / ) . ( c F - ( 7 ) ) ) 

= P 2 . ( ( ^ x fU(g x /)*(pî(f7)) U cP-'m) (projection formula) 

= / . (Pß.G*(ff*(»7))Uc / ' - (7))) 

= / . ( W W ) ) -

The Deligne cohomology groups and iZp of a point * are easily com­
puted; we give here a partial computation: 

For k > 0, we have 

H$>(*,0(-k)) = ®(-k) 

H1D Q(1 + * ) ) = C/Q(*) 
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Let px'X —» * be the projection to a point. Using the cycle class map c/n, 
we obtain the maps 

cll_k:CKn(X)®HU*M-k)) Hln{XMn~k)) 

c/^ :CH"(X) J?I(*,Q(l + *)) tf¿n+1(X,Q(n + l + *)), 

defined by 

c/?it(»7®/J) c/»(f/)Up5f(a) 

c/?it(»7®/J) cl^ö p*x(ß). 

for a Q(-fc)). / ? € t f £ ( * , Q ( l + *)) and r( € CH"(X). 

Lemma 2.2. Let Y be a smooth irreducible projective variety over C of 
dimension dy. Then, for k > 0, we have 

HUY,Q(-k)) = Q(-k) 

HT>(Y,Q(1 + к)) = C / Q U + jfe). 

The map 

cl*y.CH**(Y) #° , (* ,Q (0) ) H2vdr(Y,®(dY)) 

is surjective. If t : * —• Y is a point of the maps 

i.:HU*M-k)) H*d*(YMdY-k)) k>0 
and 

i . : l ï j , (*,Q(H-*)) ^ + 1 ( y , Q ( d y + 1 + *)) A; > 0 

are isomorphisms. 

Proof. The computation of .ffp and .Hp follow directly from the isomorphism 

H\YQ(-k)) H\YQ(-k)) F-kH°(Y,C) 
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and the short exact sequence 

0 
H°(Y,C) 

ff°(r,Q(l + *)) F1+kH°(Y,C) 

ff°(r,Q(l + *)) ^(y .QCl + A r ) ) F1+kH\Y,C) 0, 

together with the identities (for k > 0) 

F-kH\Y,C) H°(Y,C) 
F1+kH°(YC) = 0 
F1+lfl1(y,C) = 0. 

For the surjectivity statement, we have the exact sequence 

0 H2dY~l(YX) 
F2^-1(F,Z(dY - A;)) FdY-kH2dY-\Y,C) 

^ ( F , Z ( c / y - f c ) ) 

H2dY(Y,Z(dY - k)) FdY-kH2dY(Y,C) -» 0. 

For A; = 0, this is just the exact sequence 

0 Alb(y) H2vdY(Y,Z(dY)) H2dY{Y,Z{dY)) 0; 

and the cycle class map cldv breaks up into degree map to H2dY(Y, ̂ dy)) = 
Z and the Albanese map a:CHo(F)o —» Alb(F). As both these maps are 
suriective, clt\ is suriective as well. For k < 0, we have 

H2vdY(x,q>{dY-k)) H2dY(Y,Q(dY-k)). 

As this latter group is isomorphic to Q(—k), generated by the class of a point, 
the map £* is an isomorphism as claimed. The computation of the group 
H2JY+1(X,Q(dY + l + k)) is similar. 
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Lemma 2.3. Let X be a smooth projective variety over C of dimension d, 
let r be a closed subset of pure dimension i + 1, D a closed subset of pure 
codimension z, and let 7 £ CHD(X x X)Q be a Q-cycle supported onT x D. 
Then, for all n.k > 0, 7*(iy£n(X, Q(n — k))) is contained in the image of 
CIQ _k, and 7*(#p + (X, Q(n + 1 + k))) is contained in the image of cl"k. 

Proof As in the paragraph preceeding Lemma 2.1, we let p: f —• T, q: D —> I? 
be birational maps, with T and I) smooth and projective. Let g:T —> X, 
/ : Z? —> X be the obvious maps, and let 7 £ CH1(r x D)Q be a Q-cycle with 
{9 x — 7- By Lemma 2.1, we have 

ъ(л) = д*(% ГО? 

for 77 £ #£(X,Q(6))). Also, the homomorphism 7* o maps #|,(X,Q(&))) 
to H^-2\D,Q{b- z))), and maps #|>(X, Q(6))) to #£( f , Q(6))). Since 
ff£(f, Q(6))) = 0 for a > 2z" + 3, and #£~2i(£>, Q(b - i))) = 0 for a < 2z', we 
need only consider four cases: 
(1) a — 2n — 2z, b — n — k: 
(2) a = 2n + 1 = 2z + 1, b = n + 1 + k; 
(3) a = 2n = 2z + 2, 6 = n - A:; 
(4) a = 2n + 1 = 2i + 3, 6 = n + 1 + fc. 

For cases (1) and (2), it follows from Lemma 2.2 that Q(-k)) 
is in the image of cll0 _k, and that /*(iJp(D, Q(l + k)) is in the image of 
cl\k. For case (3) , it follows from Lemma 2.2 that i ^ + ^ f ,Q(z + 1 - k)) is 
generated by c/j+^(CH*+1(f) ®•HU*M-k))).Q(-fc)), i.e., by the classes of points 
of any dense Zariski open subset of T. If x is a point of T, let jx be the 
divisor Pf)^(j - x x £)), when the intersection 7 fl x x D has codimension one 
on f x D. Then %(x) is the class in i?|>(I), Q(l))) of 7^, when the latter is 
defined; using the projection formula, we see that 

7.(#£+2(F ,Q( ; + i-fc))) cll_k(CE\D) •HU*M-k))). 

Following 7* by and using the compatibility of cycle classes with proper 
pushforward, we see that 

7*(i7£(X,Q(&))) < _ y c H i + 1 ( X ) •HU*M-k))). 

Case (4) is similar, and is left to the reader. 
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L e m m a 2.4. Let X be a smooth projective variety over C of dimension d, 
let D be a closed subset of pure codimension s + 1, and let 7 6 CHD(X x X)Q 
be a Q-cycle supported on X x D. Then 

(i) ^(Hln(X,Q(n-k))) yJHln+1(X,0(n + l + k))) 0? for n < s + 1, 
and for all k > 0. 

(ii) 7*(H2vn(X,®(n-k))) is contained in the image of clfi _k, and 

7Mn+1(x,q(n+i+k))) is contained m the image 01 cl" k, lor n = s + 1. 
and for all k > 0. 

(Hi) 7 . № ( X , Q ( n ) ) ) is contained in the image of clV: 0, for n — s + 2. 

Proof. The proofs of (i) and (ii) are similar to the argument in the proof of 
the preceeding lemma, and are left to the reader. For (iii), let D —> D be a 
resolution of singularities, and let / : D —> X be the obvious map. Arguing 
as in the preceeding lemma, we see that 7*(iJ|)n(X, Q(n))) is contained in 

#|>(Z), Q( l ) ) ) . Since the cycle class map cPiC&iD) -» # £ ( £ , Z(l ) ) ) 
is an isomorphism, we find that 7*(#|>n(X,Q(n))) is contained / . ( C H 1 ^ ) ) , 
proving (iii). • 

T h e o r e m 2.5. Let X be a smooth projective variety over C of dimension d. 
Suppose there is an integer s, with 0 < s < d — 2, such that the Q-cycle class 
maps 

cln:ClP(X)Q H2VN(X,Q(n)) 

are injective for n = d, d — 1 , . . . , d — s. Then the maps 

c/?,_t: CIP(X) H°v(*M-k)) Hln(X,Q(n-k)) 
and 

cll,k CrT{X)®H1v^,Q{l + k)) E^+HXMn + l + k)) 

are surjective for n = 0 , . . . , s + 1 and for all k > 0. The map 

clo,o CIT(X)®Q H2vn(X,Q(n)) 

is surjective for n — s + 2. In particular, if the Q-cycle class maps cln are 
injective for all n > 0, then the maps C/Q _k and cl" k are surjective for all 
n > 0 and for all k > 0. 

Proof. This follows from Theorem 1.2, and Lemmas 2.3 and 2.4, noting the 
the map A* is the identity. • 
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Corollary 2.6. Let X be a smooth projective variety over C of dimension 
d. Suppose the Q-cycle class maps 

cln:Crr(X)q H2vn(X,Q(n)) 

are injective for all n. Then the group Hgn(X) ® Q of rational Hodge cycles 
of X is generated by the classes of algebraic cycles for all n. 

Proof The suriectivity of the rational cycle class map 

CEn(X)Q Hgn(X)®Q 

follows directly from Theorem 2.5. • 

Remark. We will show in the next section that the injectivity of the cycle 
maps implies that the intermediate Jacobians of X are generated by the classes 
of algebraic cycles which are algebraically equivalent to zero. 

§3. Hodge numbers and the failure of injectivity of the cycle map 

We proceed to examine some consequences of Theorem 1.2 for the Hodge 
numbers of a smooth projective variety, and derive a criterion for ensuring that 
the cycle class maps are not injective. This can be viewed as a generalization 
of the theorems of Mumford-Roitman ([M], [R]) on the non-representability 
of the group of zero cycles on smooth projective varieties with non-trivial 
holomorphic p-forms for p > 1. What is novel in this setting is that it is 
not clear which cycle group is contributing to the lack of injectivity, although 
there is an obvious question one can pose (see Question 1 below). 

For a smooth projective variety X over C, we let Hp,q(X) denote (p, q)-
component in the Hodge decomposition of H*(X, C), and let hp>q(X) = 
dimc(£P'g(X)). Let c/n'n(7) denote the cohomology class in Hn>n(X) of 
7 G CB.n(X)q. If Y and Z are smooth projective varieties over C, with Z of 
dimension a, and if 7 is in CH6(F x Z), we have the homomorphism 

7.: H^"(Y) jjp+b-a,q+b-a^2^ 

defined by 7.(77) = p2*(pï(rç) U c/6'6(7)). 
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L e m m a 3 .1 . Let X, D and Y be smooth projective varieties over C, with 
maps f:D -> X, g:T -> X. Let 7 be in CH\V x D), and let 7 = (g x /) .(7). 
Then 7* = f*o% og*. 

Proof. The proof is the same as the proof of Lemma 2.1. • 

Let CHn(X)hom denote the group of cycles homologous to zero, modulo 
rational equivalence, and let CHn(X)aig denote the group of cycles alge­
braically equivalent to zero, modulo rational equivalence. 

T h e o r e m 3.2. Let X be a smooth projective variety over C of dimension d. 
Suppose there is an integer s, 0 < s < d — 2 such that the Q-cycle class maps 

cln: CHn(X)Q H2vn(X,Q(n)) 

are injective for n = d, d — 1 , . . . , d — s. Then the Hodge numbers hp,q(X] 
vanish if 

(i) p + q < 2s + 2 and \p - q\ > 1, 
or if 
(ii) p + q > 2s + 2 and p < s + 1. 

In particular, if the Q-cycle class maps cln are injective for all n > 0, tiien 
the Hodge numbers hp,q(X) vanish if \p — q\ > 1. In addition, the cycle class 
map cln induce a surjection 

cln:CHn(X)alg -> Jn(X) 

for n < s + 2. 

Proof. For (i), first suppose p + q — 2n is even. By Theorem 2.5, the map 

clo-k CHn(X)®H°v(*M-k)) H2vn(X,Q(n-k)) 

is surjective for all k > 0. On the other hand, for k = n, we have 

H2vn(X,Q(n-k)) H2vn(X,Q(0)) H2n(X.O). 
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and the map C/Q _n is the usual topological cycle class map to singular co­
homology (after twisting by Q(—n)). Since the topological cycle class map 
lands in ifn,n(X), the surjectivity of cl^_n forces the vanishing of the Hodge 
numbers hp,q(X) if p / q. This proves (i) for p + q even. 

For p+q = 2n — 1 odd, consider the groups CHn(X)hom and CHn(X)aig. 
As the difference of two cycles belonging to the same connected component 
of a family of cycles on X goes to zero in the quotient group 

CHn(X)hom CHn(X)aig, 

this latter group is generated by the connected components of the union of 
the Chow varieties of degree t cycles of codimension n on X, for varying t. 
In particular, CHn(X)h0m/CHn(X)aig is a countably generated group. On 
the other hand, cln(CHn(X)aig) is an abelian subvariety A of Jn(X), with 
tangent space T0(A) contained in the the subspace Hn~1>n(X) of T0( Jn(X)). 
By Theorem 2.5, the restriction of cln to CHn(X)h0m gives a surjective map 

CHn(X)hom Q • jn(x)®q. 

Thus, the complex torus Jn(X)/A is a countably generated group, which is 
impossible unless Jn(X) = A. But, as 

T0(Jn(X)) H°'n(X)®Hi'n-1(X)® ®Hn-hn(X), 

the Hodge numbers hp'9(X) vanish if \p — q\ > 1, completing the proof of (i). 
The same argument, using the surjectivity of 

cln:CEn(X)Q H2vn(X,Q(n)) 

for n < s + 2, as given by Theorem 2.5, shows that 

cln:CHn(X)alg^ Jn(X) 

is surjective for n < s + 2. 
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For (ii), we use the decomposition 

A = 7o + . . . + 7, + 75+1 

of the diagonal A given by Theorem 1.2, with ji supported on r,-+i x Dl. Take 
resolutions of singularities Dl —> D\ ti —> Ti, and let gl: fj —> X, fl: Dl —> X 
be the obvious maps. Take Q-cycles 7̂  on Ti x Dl 1 with x /* )*(7J) = 
7i. We note that gf(Hp>q(X)) = 0 if p + q > 2i, for dimensional reasons. 
Applying Lemma 3.1, we see that A* = 7*+1 as endomorphisms of Hp,q(X), 
for p + q > 2s + 2. Let D = Z)s+1, let I) —> D be a resolution of singularities 
of .D, and let f:D-^Xbe the obvious map. Take a Q-cycle 7 on I x fl such 
that 7S+1 = (idx x= (idx x f) µ 5Y°applying Lemma 3.1 again, we see that 

H™(X) Am(H™(X)) 7:+1(#™(X)) UH'—^—HD)), 

the second equality being valid for p + q > 2s + 2. In particular, we have 
Hp>q(X) = 0 i fp + g > 2 s + 2and p < 3 + l, proving (ii). • 

Corollary 3.3. Let X be a smooth projective variety over C o f dimension 
d. Suppose that the Q-cycle class maps 

cln: CBn(X)Q Hin(X,Q(n)) 

are injective for all n. Then the Hodge numbers hp>q(X) vanish if \p — q\ > 1, 
and the cycle class maps 

cln:CHn(X)alg Jn(X) 

are surjective for all n. 

Proof This follows directly from Theorem 3.2. 

If we adjoin the identities h™(X) = hq>p(X) = hd-p^d~q{X) to the 
information supplied by Theorem 3.2, we obtain a nice picture of the Hodge 
diamond of X, assuming that the Q-cycle maps cln are injective for n = 
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d, d — — 3. Here the stars represent all the coordinates (p, q) where it 
is possible that hp>q(X) ^ 0; in this example d = 20, s = 5. 

0 s + 1 d - s - 1 d 

Theorem 3.2, taken in the light of Bloch's conjecture that the zero-cycles 
on a smooth projective surface with pg = 0 should be detected by the Albanese 
map, leads to the following: 
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Question 1. Let X be a smooth projective variety over C of dimension d. 
Suppose there is an integer s > 0 such that the Hodge numbers hp>q(X) 
vanish if 

(i) p + q < 2s + 2 and \p - q\ > 1, 
and if 
(ii) v + a > 2s + 2 and D < S + 1. 

Then are the cycle class maps 

cP: CEP(X) H2vp(X,Z(p)) 

injective for p = d, d — 1 , . . . , d — si If not, are at least the Q-cycle class maps 

cF:Cllp(X) Q H2VP(X,Q(P)) 

injective for p = d, d — 1 , . . . , d — s? 

In light of the proof of Theorem 3.2, it might be better to replace (ii) with 

(ii)' There are smooth projective varieties Yi , . . . , Y3 of dimension dx — s — 1 
and morphisms Yi —* X inducing a surjection of Q-Hodge structures 

®iH*(YuC)®Q(-s-l) ,2dx 1n=2s+2 Hn(X,C), 

or even 

(n)" For each n > 2s+ 2, there is a pure Q- motive (i.e. a compatible collection 
of Galois representations, together with Hodge and Betti realizations, in 
the sense of Deligne [D] and Jannsen [J2]) Mn of weight n — 2s — 2 and 
an isomorphism of Q-motives Mn ® Q(-s — 1) —> Hn(X). 

As far as we know, the integral question is unsettled even for torsion 
cycles, except for zero-cycles (Roitman [R2], Bloch [Bl]) and for codimension 
two cycles (Murre [M]). 

In any case, the contrapositive of Theorem 3.2 gives a criterion for the 
failure of the injectivity of the cycle map. 
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Corollary 3.4. Let X be a smooth projective variety over C of dimension d. 
Suppose there is an integer s, 0 < s < d — 2, such that some Hodge number 
hp,q(X) is non-zero, with 

(i) p + q < 2s + 2 and \p - q\ > 1, 

or with 
(ii) p + q > 2s + 2 and p < s + 1. 

Then there is an integer n, d — s <n < d such that the Q-cycle class map 

cln: CrT(X)Q H2vn(X,Q(n)) 

is not injective. 

Nori [N] has given examples of projective varieties with CHn(X)^®Q ^ 0, 
but with Jn(X) = 0 as generic complete intersections of sufficiently high de­
gree in certain smooth quadrics. It would be interesting to check the Hodge 
numbers of these varieties, to see if similar non-injectivity results could be 
obtained by applying Corollary 3.4. With reference to Question 1, one could 
ask if the minimal s satisfying the conditions of Corollary 3.4 points to pre­
cisely the cycle group of highest codimension for which the cycle class map 
fails to be injective, i.e., 

Question 2. Let X be a smooth projective variety over C of dimension d. Let 
s be the minimal integer such that some Hodge number hp,q(X) is non-zero, 
with 

(i) p + q <2s + 2 and \p - q\ > 1, 

or with 
(ii) p + q> 2s + 2 and p < s + 1 

(supposing such an s exists). Then does the Q-cycle class map 

cln: CEn(X)Q H2vn(X,Q(n)) 

have a non-trivial kernel for n = d — s? 
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§4. Relations with K-theory 

The injectivity of the cycle maps, and the ensuing decomposition of the 
diagonal given by Theorem 1.2, have consequences for higher ii-theory, most 
notably K\, although one can say something about the other A'-groups as 
well. This leads to a generalization of a result of Coombes and Srinivas [CS], 
who showed that the map 

CH^-X")® tfi(C) H\X,K2) 

is surjective, assuming that the group of zero-cycles modulo rational equiva­
lence on X is represent able. 

Using the Gersten resolution (see [Q]) of the A-sheaves Kp on a smooth 
variety X over a field k, one arrives at the exact sequence 

0-+H°(X,)Cp) Kp{k{X)) p*:H°(X,)Cp) •iC*(*)), 

where X^ is the set of codimension p points of X. In particular, the map 
H°(X,)CP) —> Kp(k(X)) is injective; thus, if p:Y —> X is a proper birational 
map of smooth varieties, the maps 

P*:H°(Y,1CP) H°(X, ICp): p*:H°(X,)Cp) H°(Y,ICP) 

are inverse isomorphisms. If we require X to be smooth and projective, 
the group H°(X,JCP) is thus a birational invariant (assuming resolution of 
singularities for varieties over k). In particular, we may define the group 
Kp(X)gen for X an arbitrary projective variety over C by setting Kp(X)9en = 
H°(X, /C«), where X —» X is a resolution of singularities. We have 

K0(X)gen = Z; 
KAX)gen =CX, 

or X an arbitrary projective variety over C. The groups Kp(X)9en for p > 1 
xe more mysterious, and in general contain Kp(C) as a proper summand. 
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The cup product in if-theory gives rise to the natural maps 

K*{X)®Kq(C) -+Kq(X) 
Hp(X,ICp)®Kq(Xyen HP(X, )Cp+q), 

we call the image of these maps the decomposable part of KQ(X) or of 
HP(X,K1)a.q), respectively. There is a possibly larger subgroup of 
HP(X,IC7>+Q), which we now describe. 

Let ZP(X, q) be the group 

Z>(X,q) 
x€X(p) 

Kq(xy°n, 

where x is the closure of x in X. Via the Gersten resolution for )Cp+q, we 
have the natural map 

Z*(X,q) Hp(X,lCp+q). 

We call the image of this map the geometrically decomposable part of 
Hp(X,K,p+q). For q = 0,1, the decomposable part and geometrically decom­
posable part of Hp{X,K,p.\-q) agree; in general, the geometrically decompos­
able part contains the decomposable part. We extend the definition of the 
decomposable and geometrically decomposable parts to the rational versions 
Kq(X)q and HP(X, /Cp+g)(Q in the obvious way. 

Theorem 4.1. Let X be a smooth projective variety over C of dimension d. 
SuDvose the Q-cycle class maps 

cln:Crr(X)Q HF(X,Q(n)) 

are injective for n = d, d— 1 , . . . , d— s, for some integer s, 0 < s < d — 2. Tien 
the groups HP(X, JCp+q)Q are geometrically decomposable for 0 < p < s + 1. 
En particular, the map 

CIP(X)®CX ®Q HP(X,ICP+i)q 
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is surjective for 0 < p < s + 1. 

Proof The bi-graded ring (BPf<1Hp(X,JCq)Q satisfies the Bloch-Ogus axioms 
[BO] for a twisted duality theory; in particular, if 7 is a codimension d cycle on 
X x X, 7 gives rise to the endomorphism 7*: HP(X, fcp+q)q —> HP(X, )Cp+q)q, 
and the obvious analog of Lemmas 2.1 and 3.1 hold. We apply Theorem 1.2, 
retaining the notation of that theorem. The vanishing of Hp(Y,JCp+q) for 
p > dim(F) and for p < 0, together with the decomposition of the diagonal 

A = 70 + . . . + 7s + 75+1 

implies that, on HP(X, /Cp+g), 

A. 7P—1* "T" 7P*I 
7S* H~ 7* 5 

if 0 < p < s 
if p = s + 1 

For F smooth of dimension dy, the map 

CKdY(Y)®Kq(C) HdY (Y, lCdY+q) 

is surjective; arguing as in the proof of Lemma 2.3, we see that the image 
7P_i*(iiP,(X, ICp+q)) is in the decomposable part of Hp(X,)Cp+q). Similarly, 
the argument of Lemma 2.3 shows that ^p*(Hp(X,Kp+q)) is in the geomet­
rically decomposable part of Hp(X,Kp+q). Finally, arguing as in the proof 
of Lemma 2.4, we see that j*+1(Hp(X, /Cp+g)) is in the geometrically decom­
posable part of Hp(X,)Cp+q). This proves the theorem. • 
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