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R E P R E S E N T A T I O N S OF N A S H F U N C T I O N S 

SLAWOMIR C Y N K 

Introduction. 
The aim of this paper is to characterize Nash functions of m complex 

variables in term of rational functions of m + 1 variables. 
Using the notation introduced in Chapter I of the paper our main result 

(Theorem III.2.1) may be formulated as follows: 

Let K be a compact, rationally convex subset of C m . A function 

f'-K C 

extends to a Nash function in a neighborhood of K if and only if there is a 
rational function R G C(z, w), holomorphic in neighborhood of K xT (where 
T denotes the unit circle in C), such that 

/(*) = X R(z, w)dw for z G K. 

The paper is organized as follows: 
Chapter I and II are of preparatory nature. In Chapter I we study the 

class of rationally convex compact sets. As this class is essential in our further 
considerations, we give detailed proves of all theorems that we shall use later. 

The aim of Chapter II is to characterize Nash functions in terms of a special 
class of Nash functions - called simple Nash functions (Lemma II.3.2). This 
Lemma (in the case of m = l ) was earlier obtained in [C-T] . In [D-L] similar 
result ("in local situation") was proved. 

Chapter III contains main results of our paper. 
Our result were inspired by [C-T] and [D-L]. We apply some methods used 

in these papers. 
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S. CYNK 

C H A P T E R I 
Rationally Convex Compact Sets 

1. Rational Functions . In this section we present some basic properties 
of rational functions We shall need them in further sections of this paper. 

Let us start with the definition of rational function on an algebraic subset 
V of C m . 

DEFINITION 1. The ring of rational functions of the set V, denoted by C(V), 
is the full ring of fraction of the coordinate ring Ry of the set V. An element 
of the ring C ( V ) , is called a rational function on V. 

Let / be an arbitrary rational function on V. According to the definition 
there exist two regular functions P, Q on V such that: 

1. Q is not a zero-divisor in the ring Ry (in other words Q is not identically 
equal 0 on any irreducible component of the algebraic set V ) , 

2. / = 
P 

Q' 

DEFINITION 2. A rational function f = 
P 

Q 
is said to be holomorphic at point 

a £V iff there exists a germ g £ Oa(V) of holomorphic function at the point 
a such that g • Q = P. 

Let us notice that the germ g is uniquely determined ( does not depend on 
the choice of regular functions P i Q). The set of point at which a rational 
function is holomorphic is an open and dense (in euclidean topology) subset 
of the set V. 

The following theorem yields more precise characterization that set. 

T H E O R E M 1. Let f be a rational function ofV. The set of all points at which 
the function f is not holomorphic, is a nowhere-dense algebraic subset ofV. 

Proof. There exist regular functions P, Q £ Ry such that / = 
P 

Q 
and the func­

tion Q does not vanish at any irreducible component of the set V. 
The set 

X0 := {(x,w) € V x P1) (C):Q(x) ^ 0 and wQ(x) = P(x)} 

is a constructible subset and the set X := Xo is an algebraic subset of V x 
P^C). Moreover I j : = l n (C m x C) is an algebraic subset of C m x C. 
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REPRESENTATIONS OF NASH FUNCTIONS 

Let us assume that the function / is holomorphic at a point a G V. There 
exists a germ g G Oa(V) of holomorphic function such that gQ = P . In this 
situation 

I n ( { a } x P 1 ) = { ( « , s W ) } . 

Choose an arbitrary holomorphic germ g\ G ( 9 a ( C m ) such that g\\y = g. 

The holomorphic germ h G C ? ( a , / ( a ) ) ( C m x C) defined by the formula 

h(zi, . . . , 2 m , 2 m + l ) : = 2 m + l - ^1(^1? • - • ? ^m)j 

is an element of the ideal of the germ of the analytic set X\ at the point 

(a, 5(a)). 
Using the Serre Lemma (on polynomial generators) ([L], VII.15.3., p.337) 

we conclude that there exist polynomials P i , . . . , Pk G I{X\) (I(X\) de­

notes the ideal of the algebraic set X\) and germs of holomorphic functions 

9u • • • > 9k e 0 ( a , / ( a ) ) ( C m x C) such that 5 = 31 Pi + . . . , gkPk. Differentiating 

the above equality we observe that for at least one index i = 1 , . . . , k we have 
dPi 

Qz m+1 
( a , / ( a ) ) ^ 0 . 

Denoting by W the set 01 all points at which the function / is not holo­

morphic we state that 

W1 : = { 1 G V: 3 a m + i G C: ( a , a m + i ) e X 

and V P G / ( X i ) 
qf 

dzm+i 
( a , a m + i ) = 0 

= 
= 

U ' 
' 

a € V : (a, 00) G A 
= 
= 

U ( 
( o e y ^ ^ n ^ o j x P 1 ) ) > 2 } c w. 

We shall prove that 

Wi =W. 

Suppose, on the contrary, that a G W \ W\. 

From the definition of W\ we have 

X n ( { a } ) x P 1 = { ( a , a m + 1 ) } , ûrn+l € (L. 

Moreover there is a polynomial F G I(Xi) such that 
dF 

dzm+i 
• ( a , a m + i ) ^ 0. 

By the implicit function theorem there exist an open neighborhood U of 

a G C m , a real number r > 0 and a holomorphic function 

(f>:U — • a m + i + A ( r ) _ (where A ( r ) := {z G C : | z | < r}) such that 
P " 1 ( 0 ) n ( ? 7 x ( a m + 1 + A(r))) = 0 . 
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S. CYNK 

As the natural projection 

7r:X 9 (a?i,.. • , # m , # m + i ) (^1, • • • iXrn) G V 

is a proper mapping we may assume (if necessary - after suitable decreasing 
of U and r) that 

Xn(UxC)C<f>\ ( V xu) . 

From the latest equality we can deduce that for any point z G V x U such 

that Q(z) ^ 0 we have P (z) 
Q(z) 

= Q (z) 

Since the set {z £V x U: Q(z) ^ 0} is dense in V x U we have 

P(z) = Q(z)-<f>(z) for any z e v x u, 

and tins means that tne rational mnction / is holomorphic at the point a. 
We obtain a contradiction which proves that W = W\. 

Let us notice that W = W\ is an algebraically constructible set 
([K] Th.III.11.1.; [L], VII.8.3 — the Chevalley Theorem), and hence — since 
it is closed — an algebraic set (cf. [L], VII.8.3.,.p. 291—295). The proof is 
completed • 

Let Vt be an open subset of C m . We shall denote by 7£(fi) the space of 
all holomorphic functions on Q which are restrictions to the set Q of rational 
functions. Let us notice that a function / : —• C belongs to 1Z(tl) if and 
only if there exist polynomials P, Q: C m —» C such that Q"~ 1(0) n Q = 0 and 

/(*) = 
P(z) 

3 0 0 

for ^ G fi. If the polynomials P, Q are relatively prime then 

their are uniquely determined (up to a constant factor). 
Let K be a fixed compact subset of C m . Denote 

O(K) ; = {f:K C : there exist an open neighborhood V of K 

and a function / G 0(V) such that f = f\K}. 

An extension of a function from the class 0(K) to an open neighborhood 
of K is not uniquely determined. 

In the same way as 0(K) we define the class TZ(K). 
Let us observe that a function / : K —• C belongs to the class TZ(K) if and 

only if there exist polynomials P, Q: C m -+ C such that Q _ 1 ( ° ) fl IT = 0 and 

f (z) = 
P(£) 

QU 
for z G /T. Polynomials P and Q are not (in general) uniquely 

determined (even up to a constant factor). 
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REPRESENTATIONS OF NASH FUNCTIONS 

The sets 0(K) and 1Z(K) have (with natural operations) the structure of 
ring. 

Let Ri,..., Rk be rational functions of m complex variables and let 
Pi, • • •, Pk > 0 be real numbers. We shall denote by 

(1) {zeCm: \Ri(z)\ < P i for % = 1 , . . . , m } , 

the set of all points of C m , at which all functions R{ are holomorphic and 
moreover all inequalities hold. The sets of the form (1) are open; we shall call 
them rational polyhedra. 

2. Rationally convex compact sets . In this section we collect basic 
information concerning the class of rationally convex compact sets. 

DEFINITION 1. A compact subset K of the space Cm is said to be rationally 
convex iff for each point ZQ £ K the following two equivalent conditions hold: 

(i) There exists a rational function R £lZ(K U {ZQ}) such that 

(2) № o ) | > l № > 

(ii) There exists a polynomial P : C m —» C such that P(ZQ) = 0 and 
P(z) ^ 0 for each point z G K. 

Proof of equivalence of conditions (i) and (ii). 
Let us assume that for a fixed point zo £ K condition (i) holds. Let 

R G 1Z{K\J{ZQ\) be any rational functions fulfilling inequality (2) . Since 

R G lZ(KU{zo}) we can find polynomials < 5 i , Q 2 - C m —* C such that 

Q2(z) ^ 0 for each point z £ K U {ZQ} and R(z) = 
Qi(z) 
Q2(Z) 

for z € K. 

Then the polynomial P{z) := Q\(z) — R(z0) • (¿2(2) satisfies condition (ii). 

Now, we shall prove the converse implication. Let ZQ K and let 

P:Cm —* C be any polynomial such that P(ZQ) = 0 and P(z) ^ 0 for each 

point z e K. Put c : = m i n { | P ( z ) | : z G K\. Since P does not vanish on K we 

have c > 0. If we put R(z) := 
1 

3P(z) - c 
we get R G 1Z(Kö{z0}) and 

№ o ) | = i > i > \\R\\K. • 

The following remark proves that the class of rationally convex sets is very 
large 

REMARK 1. 

(1) Any compact set K C C is rationally convex. 
(2) Any polynomially convex compact set is rationally convex. 
(3) If the sum of two disjoint, compact sets is rationally convex then both 

summands are rationally convex too. 
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(4) Intersection of any number of rationally convex compact sets is ratio­

nally convex. 

(5) Product of two rationally convex compact sets is rationally convex. 

(6) If f: Cn —• C m is a proper holomorphic map, K is a rationally convex 

compact subset of C m then the inverse image f~~l(K) is rationally convex. 

Proof. ( 1 ) , ( 2 ) , ( 4 ) are obvious. ( 3 ) is a simple consequence of Theorem 1.3.1., 

we shall prove it later. 

(5) Assume that K\ and K2 are rationally convex compact subset respec­

tively of C m and Cn . Assume that (w0,z0) 0 K\ x K2. If w0 £ K\ then 

there exists polynomial P:Cn —• C such that P(w0) = 0 and P(w) ^ 0 for 

each point w G K\. 

The polynomial P i : C m x C n C defined by Pi(w,z) = P(w) satisfies 

conditions Pi(w0,zo) = 0 and P\(w,z) ^ 0 for each (w,z) G K\ x K2. The 

case of zo $ K2 is similar. 

(6) Since / is proper the set L : = / _ 1 (A^) is compact. Fix any point ZQ £ L. 

Then / ( 2 0 ) ^ K and consequently there exists a polynomial P\: C m —• C such 

that Pi (f(zo)) = 0 and Pi does not vanish at any point of K. 

Put c : = min {\Pi(z)[. z G K} > 0. Since Px of G 0(Cn) there 

exists a polynomial P : C n —• C such that P(zo) = Pi(f(zo)) = 0 and 

| |P — Pi o f\\f-i(K) < c - Polynomial P does not vanish at any point of 

the set L, and this finishes the proof. • 

L E M M A 1 . Any rationally convex compact set has a fundamental system of 
neighborhood consisting of rational polyhedra. 

Proof. Let Q be an open neighborhood of a compact, rationally convex 

set K. Since K is compact there exists a rational number p such that 

K C A m ( / 9 ) : = {z G C m : | ^ | < p for i = l , . . . _ , m } . From the ra­

tional convexity of K it follows that for each C £ A m ( / > ) \ ^ there ex­

ists a rational function RE G C(z) such that R(\KU{Q G Tl(KU{(}) and 

|Äc(C)| > 1 > I l Ä c k . 
The collection of open sets 

{Qc := {zECm: \Rdz)\ > ! } }c€Ä™(p) \n 

gives an open covering of the compact set A m (p) \ Ü. Let iiçi,..., Mçr be a 
finite subcovering. In this situation we get 

K C {z G C m : | ~ | < 1, i = 1 , . . . , m and | P C i ( * ) | < 1, j = 1 , . . . , r } C ft, 

which proves the lemma. • . 
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REPRESENTATIONS OF NASH FUNCTIONS 

3. Rational approximations. We start this section with the following 

version of the Runge Theorem (cf. [Fu],Tw.I.2.1.; [G-R], Th.VII.A.6.) 

THEOREM 1. Let K be a compact, rationally convex subset of C m . For every 

holomorphic function f G O(K) and every real number e > 0 there exists a 

rational function g G 7l(K) such that \\f — g\\x < e. 

Proof. By the definition of 0(K) there exist an open neighborhood Q of K 

and a function / G O(0) such that f\K = f. By Lemma 1.2.1. there exist 

R u . . . , R a e C(z) such that K C {z G Cm:\Ri(z)\ < l , t = 1 , . . . , « } C C fl. 

The set K is compact so there exists a rational number 6 > 0 such that 

K C {z G C m : \Ri(z)\ < 1 - 6 , . . . , \Rs(z)\ < 1-6}. Since the rational 

functions i ? i , . . . , i j 5 belong to the class Tl(K) there exist polynomials 

P i , . . . , P 5 , ( 3 G C[z] such that Q does not vanish at any point of K and 

Ri — 
2 
q , z = 1 , . . . , s. Let 

f>! : = { ( z , w) G C m x C : |u; • Q(z ) - 1| < 6, \P{(z) - w| < 1 — tf, t = 1 , . . . , s}. 

Then for ( z , w ) G Ŝ i we have | m*) 
Q{z) I < 1 and consequently z £ Q. We can 

define a function fi G 0(Vt\) by the formula / i ( z , w) := f(z). The set fix is a 

polynomial polyhedron, and the set K := {(• 3 1 
Q(z) 

5 
5 

:zeK ° 
° 

is its compact 

subset so by the Runge Theorem for polynomial polyhedra ([G-R], Th.I.G.8.) 

there exists a polynomial R G C\z,w] such that \\R — A II £> < e. Defining 

g(z) := R 5 
d 

2l 
q(z) ) we can get g G Tl(K) and 11/ -g|| k< < 6. • 

Proof of Remark 2.1(3). Let ATi and K2 be two disjoint compact sets such 

that the sum K\ U K2 is rationally convex. We shall prove that K\ is rationally 

convex. Let ZQ £ K\. 

If ZQ £ K2 then ZQ £ K\ U K2 hence there exists polynomial P G C[z] such 

that P(zo) = 0 and P does not vanish on K\ U A^ , and therefore P does not 

vanish on K\. 

If ZQ G A"2 then consider the function 

f:R\UK23 z ^ f(z):= 
( 
( 

l ] if zeK2. 

0 i f z G / t V 

Since sets K1 i K2 are compact and disjoint we have / G 0(K\ U K2). There­

fore by Theorem 1. there exists rational function R G Tl(Ki U K2) such that 

11/ - -RlU'aUA'2 < 5. But in this situation P i := R\Klu{zQ} € # ( # 1 U { ¿ 0 } ) 

and | i ? ( z 0 ) | > è > II^IUv This proves the remark. • 
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COROLLARY 1. If K is a compact, rationally convex subset of C M and if 
f G O(K), then f = {(z, f(z)) :z e K} C C m + 1 is rationally convex, too. 

Proof. Let (20, wo) ^ / . We shall consider two cases 

(1) z0 t K. 
Then there exists a polynomial P G C[z] such that P{ZQ) = 0 and P does 
not vanish on K. The polynomial Pi G C[2 ,w] defined by the formula 
Pi(z, w) = P(z) does not vanish on / and P\(ZQ, W0) = 0. 

(2) z0 G K, w0 ? f(z0). 
Let 6 : = \wo — f(zo)\ > 0. By Theorem 1. there exists a rational function 
R G U{K) such that \\R - f\\K < §. Let Ri(z,w) := w - R(z). We have 
Ri G U(f U { (20 , ^ o ) } ) ; moreover | P i ( w 0 , z 0 ) | = |™o - ^ ( ^ o ) | > | 6 > f 
> ||/ - R \ \ K = 1 1 ^ 1 1 , . 

Combining cases (1) and (2) we finish the proof. • 

COROLLARY 2. Let K be a compact, rationally convex subset of C M and let 
V be an algebraic subset of C m such that V fl K = 0. Then there exists a 
polynomial P: C m —» C such that P = 0 on V and P does not vanish at any 
point of K. 

Proof. By Lemma 1.2.1. there exists a holomorphically convex open neighbor­
hood Q of K, disjoint with V. Since the set'V is algebraic, there exist poly­
nomials P i , . . . , Pk G C[z] such that V = {z G C m : Pi(z) = 0, i = 1 , . . . , k}. 
Since V fl Q = 0, functions PI|Q , . . . , Pfc|ft has no common zeros. By the 
B-Cartan Theorem ([G-R], Th. VIII.A.14., Cor. VIII.A.16.) there exist holo-
morphic functions 3 1 , . . . , </fc G 0(Q) such that g\P\ + • • • + 5fcPfc = 1. Let 
6 : = (|| Pi 11 # + [- UPAJIIA")"1 •By Theorem 1. there exist rational functions 
i ? i , . . . , Rk G T^(K) such that ||^z- — P j | | < | . In this situation for any z G K 
we get | P i ( * ) P i ( * ) + • • • + Rk{z)Pk{z)\ > \ . 

Since Ri G TZ{K), there exist polynomials 5 i , . . . , 5 f e , Q € C[z] such that 
Si(z) 

Q does not vanish at any point of K and Ri(z) = * for z € K. Taking 
Q{z) 

P(z) : = S i ( z ) P i ( * ) + • • • + Sk(z)Pk(z) we get P = 0 on V and P does not 
vanish at any point of i f . • 

COROLLARY 3. Let X be an algebraic subset of Cm and let K C X be 
a rationally convex compact set. Then for any function f rational on X, 
holomorphic at points of the set K there exist polynomials P,Q G C[z] such 

P(z) 
that Q does not vanish at any point of K and f(z) = ) : for z G K. 

Q{z) 

Proof. Let V C X be the set of all point at which function / is not holo­
morphic. Theorem 1.1.1. shows that V is an algebraic set disjoint with K. 
By Corollary 2. there exists a polynomial Qi G C[z] such that Q\ = 0 on 
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V and Q i does not vanish on K. The set X := {(z,w) G C m x C : z G 

X and Qi(z) • w = 1} is an algebraic subset of C m x C. The function 

/ : X 3 (z,w) h-> / (2 ) G C is rational and holomorphic on the affine alge­

braic set X hence by the Serre Theorem ([L], VII. 16.3, p.342) there exists a 

polynomial Pi G C[z,w] such that / = P i U - Therefore f(z) = Pi ( 
( 

2, 1 
Qi(*) 

) 
) 

for 2; G iiT and consequently 

P (z) : = P1 ( 2, 
1 

Q1 (z) ) (Q(z)) deg w P1 
. 

QOO :=(Qi(*))' 
de g w , Pi 

. 

satisfy the assertion. • 

4. The rational hull of a compact set. Let K be a compact subset of 

C m . Following Remark 2.1. we can formulate 

DEFINITION 1. The rational hull of K, denoted by K, is defined to be the 

smallest rationally convex compact set containing K. 

LEMMA 1. 

(i) For each compact set K the map 

* :K(K) 3 R*-+ R\K en(K) 

is an isomorphism. 

(ii) For any two compact sets Ki and K2 we Lave 

Ki x K2 = Ki x K2. 

Proof, (i) We first prove that the map TT is surjectiv. If P i G T^{K) then 
there exist polynomials P, Q G C(z) such that Q does not vanish on K and 

Ä1C0 = 
P{z) 

Q(z) 
for z e K. Then c : = m i n { | Q ( z ) | : z 6 K\ > 0, and moreover 

Kx := 
( 
( teK:\Q(z)\> 

c 

2 H 

is a rationally convex compact set. (If zo £ Ki, then zo £ K or | P ( ^ o ) | > f • 

In the first case, since K is rationally convex, there exists a polynomial Pi 

such that Pi(zo) = 0 and Pi does not vanish on if , and consequently on K\. 

In the second case the polynomial P2{z) := Q(z) — Q(zo) does not vanish on 

Ki a n d P 2 ( z 0 ) = 0.) 
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By the definition of rational convexity K C K\ hence Q does not vanish 

on K. Consequently R := 
( 
( 
( 

p 

Q 

) 
) 

) 
) 

K 
G TZ(K) and R\K = Ri. This proves the 

surjectivity. 

Now, we shall show that 7r is injective. To prove this we take an 

arbitrary rational function R G TZ(K) such that R\K = 0. There exist 

polynomials P, Q G C(z ) such that Q does not vanish on K and R(z) = 
P (z ) 

Q(z) 

for 2 G Jlf. therefore we have PL- = 0. Let us notice that the set 

Kx :={zeK:P(z) = 0\ is rationally convex. 

(Let zo £ K\. If zo £ K then by the rational convexity of the set K there 

exists a polynomial Pi G C[z] such that Pi(zo) = 0 and Pi does not vanish 

on K, and consequently on K\. If zo G then P(zo) ^ 0 and polynomial P 

does not vanish at any point of the set K\.) 

Prom the definition of rational hull we conclude that K C K\, hence that 

P | ^ = 0, and consequently that R = 0. 

(ii) Inclusion K\ x K2 C I f i x K2 is a srtaightforward consequence of the 

definition of rational hull and Remark 1.2.1(5). 

The opposite inclusion follows immediately from the obvious equality 

{20} x K2 = {20} x K2. • 

L E M M A 2. If ft C C m is a rational polyhedron, and if K is a compact subset 

of ft then K C ft. 

Proof. Let 

n = { z 6 C T O : | i ? 1 ( ^ ) | < l , . . . , | i ? , ( 2 ) | < l } 

where R\,...,RS G C ( z ) . There exist relatively prime polynomials Pv, Q, 

such that Ri = 
Pi 
sd 

(i = 1 , . . . , s ) . Since Qi(z) -fi 0 for any point z € i f , we 

have (as in the proof of Lemma 1.) Qi(z) ^ 0 (i = 1 , . . . , m) for any point 

zEK. Define r,- : = ||Ri|| K,(t = 1 , . . . , a). The set 

Üfi := { z € Ä ' : |Ä,-(z)| < r,-} 

is compact. 

Now, we shall prove that the set K\ is rationally convex. In order to 

do this let us choose an arbitrary point z$ £ K\. If Zo £ K then from 

the rational convexity of K it follows that there exists a rational function 

ReU (j{ U { ¿ 0 } ) such that \R(z0)\ > \\R\\f{. If z0 G K then by the definition 

of the set K\ there exists an index ¿0 G { ! , . . . , $ } such that | P 2 o ( z 0 ) | > n 0 . In 
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REPRESENTATIONS OF NASH FUNCTIONS 

this situation the function R{0\K1 U {ZO} G 7Z(Kil){zo}) satisfies the condition 
(ii) of the definition of rational convexity. 

Let us observe that K C K\ hence that by the definition of rational con­
vexity K C K\ C f i , which completes the proof. • 

C H A P T E R II 
Nash Functions 

1. Definitions and basic properties. In this section we shall present some 

basic properites of Nash functions. We shall start with the following definition 

DEFINITION 1. Let Q be an open subset of C m and let z0 e fì. We say that 

a holomorphic function / : fi —• C is a Nash function at zo if there exist open 

neighborhood U of ZQ, U C £Î, a polynomial P:Cm x C —• C , P ^ 0, such 

that P(z,f(z)) = 0 for z G U. A holomorphic function defined on Q is said 

to be a Nash function iff it is a Nash function at every point of Q. The family 

of all Nash function defined on Q we denote by Af(Q). 

The restrictions of rational functions which are holomorphic on a fixed open 

set Q give examples of Nash functions on Q. Therefore we have the following 

inclusions 

TZ(Q) C N(Q) C 0(Q). 

Assuming that Q is connected, we can give a more precise description of the 
class of Nash functions on Q ([T], Remark 1.2 p. 228) 

REMARK 1. Let D be a connected, open subset of Cm, and let xo be a fixed 

point of D. If f is a holomorphic function defined on D then the following 

conditions are equivalent: 

(1) f is a Nash function at x0, 

(2)f€MD), 
(3) there exists a proper algebraic subset X of Cm x C such that 

f = {(z,f(z)):zeD}cX, 
(4) there exists a unique irreducible algebraic hypersurface X C C m x C 

such that j C X, 

(5) there exists an irreducible polynomial P:(L x (L —> (L, unique up to 

scalars, such that P (x, f(x)) = 0 for x G D. 

Moreover, it can be seen that X in (4) is equal to the Zariski closure / z of 
/ in C m x C. 

63 



S. CYNK 

DÉFINITION 2. Let Q be an open subset of C m and let z0 be a fixed point of 
Q. A holomorphic mapping F: Q —• Cn is said to be a Nash mapping at z0 

iff all components of F a Nash functions at ZQ. A mapping F is said to be a 
Nash mapping if it is a Nash mapping at every point of Q. 

In this paper we shall use only the simplest properties of Nash functions. 
For more deteils (and proofs of quoted theorem) we refer the reader to [T]. 

THEOREM 1. ( [T] , Th. 1.10.) The composition of Nash mapping is a Nash 
mapping too. 

THEOREM 2. ( [T] , Cor. 1.11.) IfQ is an open subset ofCm then J\f(Q) is a 
subring of the 0(Q) of holomorphic on Q. 

THEOREM 3. ( [T] , Cor. 1.12.) IfQ is an open subset of Cm, / G Af(Q), then 

df 
dxi eAf(Q) for i = l , . . . , m . 

2. Simple Nash functions • Let D be C m and let g G N (D). The set 
Xg := gz H (D x C) is an analytic subset of D x C, of pure dimension m. 
Since g is an irreducible m-dimensional analytic subset of D x C contained in 
Xg, it is an irreducible component of Xg. Let Yg be the union of the other 
components of Xg. 

DEFINITION 1. A function g eAf (D) is said to be a simple Nash function if 
g H Yg = 0. We denote by °J\f (D) the family of all simple Nasha functions on 
D. 

Since g = {(z,g (z)) : z G D} is a complex manifold, we see that g fl Yg = 0 
if and only if each point of g is a regular point of the algebraic set gz, and so 

0Af(D) = {geN(D):gCReg(g°)}. 

LEMMA 1. Let D be an open connected subset of C m , R G TZ,(D) and 
g eAf(D). If FR:D x C 3 (z,w)\-+ {z,w + R(z)) G D x C , then 

Xg+R = FR (Xg) and Yg+R = FR (Yg) . 

Moreover, ifg e°Af (D) then g + Re°Af(D). 

Proof. It follows from Remark II.1.1. that there exists a polynomial 
P: C m x C -> C such that (z,w) G gz if and only if P(z,w) = 0. Since 
R G TZ(D), it follows that there exist polynomials Q\,Q2 G C[z] such 
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that Q2 does not vanish on D and R(z) = 
Qi{z) 

Q2(Z) 
for z G D. 

The function PAz,w) := P(z,w- R(z)) • (Q2(z)) degP is a polynomial and 

moreover P (z, g(z) + R(z)) = 0 for z G D. Therefore 

XG+R C { ( * , w)eDxC:P1 (*, w) = 0 } = F ß (X9). 

Now, fix i? and g. Suppose on the contrary that X9+R C jp^ (XG). Then 

XG = ^(<7+#)+( -#) C F-R (XG+R) C F-R (FR (XG)) = XG which is impos­

sible, and, so XG+R = FR(X9). The mapping FR is a biholomorphism, so 

it maps irreducible components of XG onto irreducible components of X9+R. 

And consequently from FR(Q) = g + i? we see that I ^ + A = -Ffl 0 ^ ) -

If g e°Af(D) then, by definition, gHYg = H. We have (g + R) fl Y^+fl 

= FR (g) H F# ( ^ ) = FR (g H y )̂ = 0, hence g + R eW(D), and the proof is 

complete. • 

LEMMA 2. Let K be a compact, rationally convex subset of Cm, D 

an open, connected neighborhood of K, and let f G M(D), g E°AT(D). If 

P i , < 2 i : C m x C —• C are polynomials such that 
P1 (z,g( z)) 

Qi (z,g(z)) 
= f(z) on a 

dense subset of D then there exist polynomials P, Q: C m x C —• C such that 

for every z G K: 

i) Q ( z , g ( z ) ) ^ = 0, 

2 ) f (z) = 
P(z,g (z)) 

Q(z,g(z)) . 

Proof. Let X be the Zariski closure of g in C m x C. Consider the rational 

function on X defined by 
Pi 

Qi 
. This function is holomorphic at each point of 

~V J. 
the set g. The Lemma follows from Corollaries 1.3.1. and 1.3.3. • 

The lemma is no longer true if it is only assumed that q is a Nash function 

(9 e tfN(D)). 

EXAMPLE 1. Let D = B(0, ±) , and let f(z) : = 1 - ^ 1 - 4z where ^ 1 - 4z is 

a holomorphic branch of the square root of 1 — 4z in D such that / ( 0 ) = 0. 

Define Pi(z, w) : = w, Qi(z, w) := z, K := B (0,1/5) and g(z) := z • f(z) for 

zeD. Then 

A(*,g(*)) 

2iz,g(z)). 
= 

* • / C O 

z 
= / 0 0 , 

i n £ > \ { 0 } . 
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Suposse that there exist polynomials P, Q such that 

f (z) = 
P (z,g(z)) 

Q(z,g(z)Y 

for z € K. Without loss of generality we can assume that Q ( 0 , 0 ) = 1. Since 

P ( 0 , 0 ) = 0, there exist polynomials R\,R-2,,R3,Ri € C[z] such that 

P(z,g(z)) = zR!(z) + z{l - VT^Az) R2(z) 

and 
Q(z,g(z)) = l + zR3(z) + z(1-VT^Iz~)R4(z) 

z G 5 (0, j ) . Consequently we get 

(1 - V I - 4z) = 
zR1 (z) + z [1 - y/1 - *z) R2{z) 

1 + zR3(z) + z(l- y/T^ÄPj RAz) 
, for z £B 

( 
( 
( 

0, 
1 

5 ) . 
From the above equation we get 

(1 - Vl^Tz) (1 + zR3(z) + 2zR4(z) - R2(z)) = zR^z) + 4z2R4(z), 

and so 1 — \ / l — 4z £ C(z ) which is impossible. 

3. Resolution of singularities of a graph of Nash function. The aim 

of this section is to give a special characterization of Nash function. 

LEMMA 1. Let E be a rationally convex compact set, and let D and G be 

open, connected subset of C m such that <b ^ G C E C D. If f G Af(D), 

then exist a function q €°N(G) and polynomials P, Q: C m x C —* C such that 

f(z) = 
P{z,g{z)) 

Q(z,g(z)) 
on a dense subset of G. 

Proof. Let us denote by X the Zariski closure J7, of / in C m x C. By 

Remark II.1.1. there exists a unique (up to constant) irreducible polynomial 

^ : C m x C ^ C , ^ ^ 0 such that X = {(z, w) 6 C m x C: W(z, w) = 0 } . Let 

W(z,w) = E T O < Z W K ± 0) . 

Observe that without loss of generality, we can assume that ak = 1. 

(Otherwise, instead of / we consider function / 1 = a& • / , which has the 

desired property. If we have the representation for the function / 1 then the 

one for / we shall get by dividing by a&.) Under this assumption the hyper-

surface X satisfies the following additional property: the resriction 7Tx : = n\x 

to X of the natural projection 7r: C m x C —» C is a proper mapping. 
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Let the couple (X, r) consisting of algebraic set X C C r and proper, 
regular and birational mapping r:X —• X be a normalisation of X as in 
([L], VII.16.5., p. 347, Prop. 4.) Since the mapping 7Tx o t is proper, it 
follows that F : = t " 1 (^^(E)) is a compact, rationally convex set. Using 
the notation of the previous section we see that / is a irreducible component 
of Xf = Xn(DxC). 

As 
7 " I t - i ( A » : t (Xf) Xf 

is a normalisation of Xf, it follows that ([L], Prop. 1, p. 255) there exists an 
open-closed subset H of r~l(Xf) such that 

T\H:H- f 

is a biholomorphism. 
The set FQ : = H fl F is an open-closed subset of F, so defining 

X' F 3 x h-> x(x) = 
( 
( 

0, i f x G F o , 

1, fi x£F0, 

we get x € C?(F). By Theorem 1.3.1. there exists Xi € ^ ( F ) such that 
| | x "~ X i | | f < | - Let X2 be a rational function on X such that X2\F = Xi-

\ff : = (7rx o r, X2) is a rational map between X , and an irreducible algebraic 
hypersurface Xx C C m x C. Since for any y g i J f l r " 1 ( X n ( G x C)) C F 0 we 
have ^ - ^ ^ ( y ) ) = {y}, it follows from ([K], Th. I I I . l l . l . ) that the mapping 
\I> is birational. 

Prom the definition of X2 we see that for the holomorphic function 

g: G 3 z h-> X2 
0 

T | » ) " ' « 2 , / W ) ) € C , 

he have 

9 = 
( 
( GxB ( 0, 

1 
3 ) r\Xu 

and consequently g G7v(G) . 
Consider the rational mapping between Xi and X defined by 

$ := r o Y-1 

From the above constructions it follows that $ (z,w) = (z,(j)(z,w)), where 4> 
is a rational function on X\ such that 

f(z) = <j>(z,g(z)) 
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for z eG. 
There exist polynomials P, Q: C m x C —> C such that <f> = 

P 
Q' 

Consequently, 

we get 

/(*) = 
P(z, h(z)) 
Q(z,g(z)) 

on a dense subset of G (out of the zeros of the denominator), which is the 
desired conclusion. • 

LEMMA 2 . Let E be a compact, rationally convex set and let D and G be 
connected open subset of C m such that 0 / G C E C D. Let a be a fixed point 
of G. If f £ Af(D) then there exist a function g G N(G) and polynomials 
P,Q:Cm x C ^ C such that 

(1) 9(a) = 0, 

(2) 9(G) C U, 

(3) g*n(GxU) = g\G, 

(4) Q - 1 ( 0 ) n ( G x £7) = 0, 

(5; / 0 0 = 

P(z,g(z)) 

Q(z,g(z)) 
for zeG. 

Proof. By Lemmas 1.2.1. and 1.4.2. there exist an open neighborhood Q of E 
and a compact, rationally convex set E\ such that Q C E\ C D. Let £>i be 
the component of Q which contains G. Since, by Remark 1.2.1., D\ D E is a 
rationally convex set, without loss of generality we can assume that E C D\. 

Lemma II.3.1. shows that there exists a function Q\ £°Af(Di) and poly­

nomials P i , Q i : C m x C -> C such that f(z) = P1 (z,g1(z)) 
Qi(z,9i(z)) 

on a dense sub­

set of JDi, whereas from Lemma II.2.2. we see that there exist polynomials 
P 2 , Q 2 : C m x C - ^ C such that for z G E we have Q2(z,gi(z)) ^ 0 and 

/ 0 0 = 

P2 (zg,g1(z)) 

Q2(z,9i(z)) . 

The set E is compact, gif]Ygi = 0 and g\ \e nQ 2

 1 (0) = 0> so there exists 
d > 0 such that d i s t i l s , Y9l U Q J ^ O ) ) > 2d. By Theorem 1.3.1. there exists 
a rational function R G Tl(E) such that R(a) = 51(a) and \\gi — R\\e < d. 
Taking 

9 '= 
1 
1 (9i ~ Rh <t>:= 

P2(z,dw + R(z)) 
32(z,dw + R(z)) 

we get g G AI (G) and moreover: 
(a) g(a) = 0, 
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(b) \g(z)\ < 1 for z G G, 

(c) |w| > 1 for (z,w) G Yg, z G G. 

But d> G TZ(E x U) hence there exist polynomials P, Q: Cm x C -+ C such that 

(d) Q - 1 ( O ) n ( G x C / ) = 0, 

(e) / ( * ) = 
P(z, g(z)) 

0 ( ^ , 9 ^ ) ) 
dia z eG. 

The proof of the lemma is complete. • 

C H A P T E R III 
Representations of Nash functions. 

1. The operator S . Let K be a fixed compact subset of CTO. We shall 

use the following notation 

M{K) := { /: K —¥ C: there exists open neighborhood V of K 

and a function / 6 AT(V) such that / | ^ = / } 
In this section we shall consider the operator 

S: 0(K x T ) — • 0 (Ä") , 

denned by 5 ( / ) : = OQ, where f(z,w) = EnEzan(z)Wn, an G O(K). This 

operator admits the following integral representation: 

S(f)(z) = 
1 

2m J fT 

f(z,w) 

w 
iw, z e K. 

In the same way as in [C-T] (in the case of m = l ) one can prove that for 

every compact connected subset K of C m the following inclusion holds 

S(K(K x T ) ) C AT(K). 

In the next section we shall give detailed proof of this inclusion and investigate 

the converse one. 
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2. Representations of Nash functions . The main result of this section 

is 

T H E O R E M 1. If K is a compact, connected and rationally convex subset of 

C M then 

SÇJl(KxT)) =Af(K). 

Proof. Let us choose an arbitrary function / £ TZ(K x T). There exist poly­

nomials P, Q: Cm x C - > C such that Q does not vanish at any point of K x T 

and 
P(z) 

Q(z) 
= f(z) for z G K X T and an open, connected neighborhood D of 

K such that Q _ 1 ( 0 ) D (D x T ) = 0. Put / ( z ) := 
POO 
sdsf 

for z GDxT. 

There exist a non-empty open subset D\ of D and Nash functions 
(I)1, ....., (I)k E N(D1) with pair-wise disjoint graphs such that 

{(z,w) € Di x U: Q(z, a v ) ^ = 0 } = $ i U " - U $ f c , 

where (7 denotes unit disc in C. 
From the above equality and definition of S we get 

s (/) (*) = 
A: 

E 

J'=I 

1 

/V! 

dsf 

dsf 

) 
) («>(I)dggh 

P(z,w P(z,w) 

wQ(z,w) 

) 
) 
) 

(z,$j(z)), zeD1 

where N is sufficiently large integer. From Theorems II.1.1., II.1.2. and II.1.3. 

we get S 
( 
( 

= = 
= 

=Dl e N(Di), hence, by Remark II.2.1, 5 ( 
( 

= ) 
) 

\D e Af(D), and 

consequently S(f) = S= (= = = 
\K e N{K). 

Now, let g 6 Af(K). There exists a connected, open neighborhood D of K 

and Nash function g G N(D) such that g = CJ\K. From Lemmas 1.2.1. and 

1.4.2. it follows that there exist connected, open neighborhood G of K and 

rationally convex compact set E such that G C E C D. From Lemma II.3.2. 

we get 

g( z) P(z,h(z)) 

Q(z,h(z)) 
for zeG 

(where P,Q,h satisfy assertion of this Lemma). 

Let R be an irreducible polynomial describing the graph of h (cf. Remark 

II.1.1.). As h(z) is the only zero ("with multiplicity one " ) in U of the entire 

function 

C 3 W H R(z,w) e c 
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we have 

g (z) = 
l 

27Ti J T 

P(z,w) 
Q(z,w) = 

Rw(z,w) 
R(z,w) 

dw, z<=G. 

Taking 

F(z,w) := w • 
P{z,w] 
Q(z,w) = 

Rw(z,w) 

R{z,w) = (z,w) e k x t 

we get F G 1l(K x T), 5(F) = g and consequently 9 e S {K(K x T)), which 
proves the theorem. • 

COROLLARY 1. If K is compact and connected subset of C M , then 

S {Tl{K x T ) ) = d h\K:heM 
de 

k 
) ) cAf(K), 

where K is the rational hull of K. 

Proof. Let g G S (R(K x T ) ) . There exists a rational function R G 1Z(K x T) 
such that S(R) = g. Lemma 1.3.1. shows that R = RI\KXT for a rational 

function i?i G 7< s r<xT s = n sd KxT . 

Define h := 5( i?i) , Theorem 1. gives h G Af(K) and 5 = h\K-
In order to prove the converse inclusion assume that g G Af(K) and there 

exists a Nash function h G Af(K) such that h/k = g. Theorem 1. gives 
h = S(Ri) for a rational function Ri G TZ (K X T^j. Taking R : = i?i|atXT we 
get R G 7£(if X T ) and 5 = S(R), and the prove is complete. • 

The following example proves that Theorem 1. is no longer true when we 
drop the assumption that K is rationally closed. 

EXAMPLE 1. Let 

K := 
( 
( (z,w) eC2:\z\ < \w\ < 1 } u 

) 
) (l+exp(it),0):t e [-7T, 

5 
6 

r 
) 
) 

and let g(z, w) = V 
3 
2 - z for (z,w) G K. Since g 2 (z ,w;) + (z - | ) = 0, we 

have / G M IK). 
Observe that U2 C K. (If (* 0 ,u;o) G U2 \K then, by Definition 1.2.1., 

there exists a polynomial P such that P(zo,w0) = 0 and P does not vanish 

on K. In this situation the function — is holomorphic in neighborhood of K, 

and so has a unique extension to U2 — which contradicts P(z0, w0) = 0.) 
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Then 

{ ( 1 + exp(t«), 0) : * G [0, 2tt]} C K, 

hence there is no function ô G O 
( 
( 

K ) such that g\K = g, and it follows from 

Collorary 1. that g <£ S (K(K x T ) ) . 

Theorem 1 is no longer true if we replace compact set K by an open set 

and define S in the same way as before 

EXAMPLE 2. Let F : = {z = x + iy e C : y = expx - 1, x > 0 } . Then 
Q : = C \ F is a Runge domain biholomorphic with the unit disc. 
Let f(z) = yfz be a holomorphic branch of the square root in Q. We shall 

prove that / is not image under the operator S of any rational function, which 

is holomorphic in a neighborhood of fi x T. Assume that R is the desired 

rational function, holomorphic in a neighborhood of Q x T. In this situation 
P 

we have R = — where P, Q are relatively prime polynomials. Consequently 

Q _ 1 ( 0 ) n (fi x T ) = 0, so A := III ( { ( * , ™): <2(*, w) = 0, |w| = 1 } ) C F (where 
I I i : C x C - * C is defined by Ux(z,w) = z). 

From the Tarski—Seidenberg Theorem we deduce that A is a semialgebraic 

subset of F , so it is finite. But S(R) eO(C\A), and hence S(R) ^ /. 

The following example proves that TZ(K x T) in Theorem 1, cannot be 

replaced by Af(K x T). 

EXAMPLE 3. Let 

f(z,w) = ( 1 -
z 

2w 

( 
( 

_ i 
2 ) 

) 1 -
w 

2 
) 
) 

_ 1 
2 ( 2 , t B ) 6 # x T ) . 

T h e n / G A f ( * 7 x T ) , b u t 

W O O = E 

sd 
( 

2n 

ds ) 
2 

6 4 " n z n 

is a transcendental function (cf. [B], p. 159 and [Bo]). 
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