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SEMI-GLOBAL EXISTENCE THEOREMS
OF 3, FOR (0,n —2) FORMS
ON PSEUDO-CONVEX BOUNDARIES IN C"

MEI-CHI SHAW

INTRODUCTION
Table of contents:
Chapter 1. Notation and the main results
Chapter 2. Proof of the Theorems
Chapter 3. An example

Let M be the boundary of a pseudo-convex domain D in C*, n > 2. We
consider the tangential Cauchy-Riemann equations

(0.1) Opu = a

on an open subset w C M, where ais a (p,g) forminw,0SpSn,1S¢<
n — 1. Since 82 = 0, in order for Eq.(0.1) to be solvable, @ must satisfy the
compatibility condition

(0.2) Opa=0 in  w.

Recently, the semi-global existence results have been obtained by the author
for any (p,q) form a, where 1 £ ¢ £ n — 3, such that w is a pseudo-convex
boundary of finite type as defined in D’Angelo [8]. It is proved in [22] that when
Ow lies in a flat or a Levi-flat hypersurface which has a Stein neighborhood basis,
then Eq.(0.1) is solvable for all (p,q) forms a satisfying condition (0.2), where
1S ¢S n-3 When g=n-1Eq.(0.1) corresponds to the Lewy equation and
it is well-known that for most a it is not solvable locally unless w is Levi-flat
(see Hérmander [11]).
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In this paper we shall discuss the local and semi-global existence theorems
for the remaining case, i.e., when ¢ = n — 2. It was observed by Rosay [19] that
when ¢ = n — 2, condition (0.2) is not sufficient for Eq.(0.1) to be solvable in
w. In fact, there is an additional compatibility condition that a must satisfy
in order for Eq.(0.1) to be solvable. This additional condition, called condition
(A), is a condition on the boundary of Sw and will be derived in Section I. Our
main purpose in this paper is to show that condition (0.2) and condition (A) are
the necessary and sufficient conditions for Eq.(0.1) to be solvable when a is a
smooth (p,n — 2) form. We also characterize those domains on which condition
(0.2) always implies condition (A) ( see Proposition 1.2). This condition (A),
though easy to derive, does not seem to have been observed before.

The local solvability of Eq.(0.1) has been studied by many people when M is
strongly pseudo-convex (see [1,4,10,19,20,21,23,24]). In this case it was proved
in Henkin [10] that one can construct explicit solution kernelsfor 1 S ¢S n—2
when Ow lies in a hyperplane. When 1 £ ¢ < n — 2, he actually derived a
homotopy formula for §;. When ¢ = n — 2, such a homotopy formula will
not hold ( see Nagel-Rosay [17]) and polynomial approximation arguments were
used to construct the solution kernels. In fact, Henkin [10] showed that if dw
is Runge, then condition (0.2) is sufficient for Eq.(0.1) to be solvable when
¢ = n—2. In this paper we shall characterize those domains such that condition
(0.2) is sufficient for Eq.(0.1) to be solvable. These domains are more general
than Runge ones. In the strongly pseudo-convex case, it is especially important
to study the case when n = 3 and a is a (0,1) form, since this will give us
some insight into the problem of embeddability of abstract CR structures of
real dimension 5 (see Webster [25]).

The plan of the paper is as follows. In Section I we define the notation and
state our main results in Theorems 1 and 2. In Section II we use the Cauchy
problem for 9 for the top degree forms to prove Theorems 1 and 2. The Cauchy
problem is different in this case from the lower degree cases and this is when the
second compatibility condition was used. The rest of the proof is similar to the
case when 1 £ ¢ £ n—3. In the end of this paper we give an example by Rosay
[19] which shows that condition (0.2) is not sufficient for Eq.(0.1) to be solvable.
The author would like to thank Professor Catlin for helpful discussions and to
thank professor So-Chin Chen for pointing out the reference (3].

1. NOTATION AND THE MAIN RESULTS

Let M be the boundary of a pseudo-convex domain D and p be its defining
function, i.e., M = {z € C*|p(z) = 0} and |dp| = 1 on M. We assume that
M is of finite type in the sense of D’Angelo [8]. Let w C M such that w =
M N {z € C*|r(z) < 0} and dp A dr # 0 on the boundary of Ow. The space
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SEMI-GLOBAL EXISTENCE THEOREMS OF O, FOR (O, n-2) FORMS

C(r.q)(@) denotes all the (p, g) forms in w with coefficients in C*(@). For any
a € C (@), there exists a smooth (p,g) form & in C" such that & = a where
T is the pointwise restriction operator to the boundary and projection to the
parts which are orthogonal to the ideal generated by dp. Similarly we define the
space C} () for (p,q) forms in w with C*®(w) coefficients. The 8, operator
is defined to be as follows: for any a € C} )(w) and & that is any extension
of a such that T7& = a, then we define §,a = 7(da). It is easy to see that the
definition of 8, is independent of the choice of &. For other definitions and the
basic properties of the 8, complex, we refer the readers to Kohn-Rossi [16] or
Folland-Kohn [9]. Since p plays no role in the discussion of 3, we shall assume
that p = n for simplicity.

Let K be a compact set in C*. We shall use the notation O(K’) to denote the
set of functions which are defined and holomorphic in some open neighborhood
of K. Let w, CC w such that w, increases to w as € \, 0 and each Ow, is
smooth. For any a € C; ,_;)(®) such that Eq. (0.1) is solvable for some
u € C, ,_3)(w), then for any g € O(9w) we have, for small € > 0,

/ aAg=lim alAg
dw €0 Jou,

= lim OuAg
e—0 80}.
=1l éu A
(1.1) =0 J 9
= hm/ O(uAyg)
= hm/ d(uAg)

The third equality in (1.1) holds since the difference of Ou and Syu is a
multiple of 9p and 9p = dp — Op. Thus another necessary condition for Eq.(0.1)
to be solvable for a € C(7 ,_,)(®) is that

(A) / aAg=0 forall g€ O(0w).
Ow

The following proposition characterizes all the domains w such that condition
(0.2) will imply condition (A). At the end of this paper we shall give an example
of a Oy-closed form which does not satisfy condition (A).
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Proposition 1.2. If O(&) is dense in O(0w) (in the C(8w) norm), for any a
satisfying condition (0.2), a satisfies condition (A). In particular, if polynomials
are dense in O(Ow), then condition (0.2) implies condition (A).

Proof. From our assumption, for any ¢ € O(0w), there exists a sequence of
holomorphic functions g, € O(®) such that g, converges to g in C(8w). We
have, for any a satisfying condition (2),

/ aAg= lim alAgn
ow

Nn—+00 w
= nlergo /‘; o(aAgs)
= lim o A gn
n—+00 )
=0.

Thus condition (0.2) implies condition (A). If one can approximate any function
g € O(0w) by holomorphic polynomials, it is obvious that (2) implies (A) and
the proposition is proved.

Our main results in this paper are the following theorems.

Theorem 1. Let M be the boundary of a smooth pseudo-convex domain in
C", n 2 3 and M is of finite type. Let w C M be a connected subset such that
the boundary Ow is the transversal intersection of M with a simply connected
Levi-flat hypersurface My which has a Stein neighborhood basis. Let w' be any
relatively compact subset of w. For any a € C{; ,_,)(®) such that a satisfies
the compatibility conditions (0.2) and (A), there exists a u € C(7 ,_3)(w') such
that Oyu = a in w'.

If one assumes that w can be exhausted by subsets whose boundaries lie in
Levi-flat hypersurfaces, then we have the following semi-global existence result.

Theorem 2. Let M and w be the same as in Theorem 1. Furthermore we
assume w = Uw; such that w; CC w41 CC w and Ow; lies in a Levi-flat hyper-
surface for each i. For any a € C{; ,_5)(@) such that a satisfies the conditions

(0.2) and (A), there exists a u € C; , _5)(w) such that Oyu = @ in w.

Corollary 2.1. If M, is simply connected and defined by a pluriharmonic func-
tion, then the assertions in Theorem 2 holds. In particular, if M, is a hyperplane,
then the assertions in Theorem 2 hold

We also have the following local solvability result near a point of finite type.

230



SEMI-GLOBAL EXISTENCE THEOREMS OF Oy FOR (O, n-2) FORMS

Theorem 3. Let M be a smooth be a smooth pseudo-convex hypersurface in
C", n 2 3 and 2z € M. Suppose z is a point of finite type, then there exists
a local neighborhood basis {we}e>0 of 29 for M such that the following holds:
for any € > 0, if a € C{} ,_,)(@.) such that a satisfies the conditions (0.2) and
(A), there exists a u € C(O:,n-a)(“’c) such that Syu = a in w,.

We note that Bedford-Fornaess (see the example on P. 21 in [3]) has given
an example of an levi-flat hypersurface which does not have a Stein neighbor-
hood basis. We mention that Bedford-de Bartolomeis [2] showed that Levi-flat
hypersurfaces can not always be flattened locally even from one side. Thus our
theorems generalize the results of Henkin [9] even in the strongly pseudo-convex
case.

2. PROOF OF THE THEOREMS

To prove Theorems 1 and 2, we need to solve the Cauchy problem for 9 on the

top degree forms. Let Lf, (G) denote (p,g) forms on a domain G with L*(G)

coefficients. We denote the space of square integrable holomorphic functions by
H?(G) and the spce of holomorphic functions in C®(G) by A%(G). We have
the following lemma.

Lemma 2.1. Let G be a bounded pseudo-convex domain in C*, n 2 2. For
any f € L?n’n)(C"), such that f is supported in G and

(2.2) /G fAg=0 for any g€ H*(G),

we can find a u € L}, _,)(C") such that u is supported in G and Ou = f in

the distribution sense in C*. Furthermore, we have the following estimates:

(2.3) lulgECIl fIE

where the constant C depends only on the diameter of the domain G.
If we assume that G is a bounded pseudo-convex domain with smooth bound-
ary, then we can substitute (2.2) by the condition

(2.2) / fAg=0 forany geA®D),
G

and the same conclusion holds.
If we assume that G is a bounded pseudo-convex domain with a Stein neigh-
borhood basis, then we can substitute (2.2) by the condition
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(2.27) Lf Ag=0 for any g € O(G),

and the same conclusion holds.

Proof. We shall first prove the lemma assuming that G is a bounded pseudo-
convex domain. Following Hormander’s theory for 8, the -Neumann operators
for (0,1) forms, denoted by Ny, exist on G. One can also define the 8-Neumann
operator on functions (denoted by Ny) using N;. In fact, let 9 be the formal
adjoint of 9, then it follows from Theorem 3.1.19 in Folland-Kohn [9] that

(2.4) No =9N32o
whenever the formula is defined. We also have that
(2.5) 90Ny =I-H

where ¥ is the adjoint operator of 8 and H is the Bergman projection operator
from square-integrable functions into square integrable holomorphic functions
H?(G).

In fact, the formula (2.4) and (2.5) hold on all of L?(G). To see this, we
use the fact that N; is a bounded operator on L?o,l)(G) and the bounds only
depend on the diameter of G. In fact, using the precise estimates obtained by
Hérmander [12], we can have the following estimates:

(26) Mo |5 e?|lallE

where § is the diameter of the domain G (for details of estimate (2.6), see
Hérmander[12] and the proposition 2.3 in [21]). For any v € C*°(G), we have
from (2.4)

[|Nov||? = (BYN?2Bv, N3dv)
= (N, 8v, N}dv)
< |1 B[ N2 Bw||
< e} 6|V, B

2.7

On the other hand, we have
(NyBv, NyBv) = (N28v, Bv)
(2.8) = (IN2dv,v)
< || Novllllvl|
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Combining (2.10) and (2.11), we have
(2.9) [[Novl? £ e6?||v||?

Thus Ny defined by (2.4) is a bounded on all smooth functions and it extends to
L?*(G). We also have that (2.5) holds for all functions in L?(G). Also, it follows
from (2.5) that

"51\701)"2 =(195Nov, Nov)
(2.10) -
= ((I = H)v,Nov) £ [lvl|[|Nov]| £ eélv]]

Using Ny, we define
(2.11) u = — % ONoxf

where * is the Hodge star operator extended naturally to the L?(G) forms.
Using the relations that ¥ = — % 3 and % = I, we have from (2.5),

8u = —B(*xONoxf)
= +0ONoxf
= «(xf — H(xf))
= f—+H(x])

(2.12)

For any g € H%(G), from (2.2), we have

(213) CORNRIYEL

Thus from (2.8), H(*f) =0 and du = f in G.
Extending u to be zero outside G, we have for any ¢ € C; ,,(C"), that
(1, 9¢)cn = (396, i)g

= (—5* $,*ﬁ)a
= (—*&,5‘ * )G
= (*q—S, *aﬁ)g
= (x4, %f)e
= (f,¢)cr
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where the third equality holds since *iz € Dom(9*). This implies that Ou = f
in C" in the distribution sense. The estimate (2.3) holds from (2.11) with the
constant C = e¥6.

When G is a bounded pseudo-convex domain with smooth boundary, fol-
lowing Kohn’s theorem in [9] on the global regularity of the solutions of 4 on
strongly pseudo-convex domains, we have that A°(G) is dense in H?(G) ( in
the L?(G) norm). Thus if f satisfies condition (2.2’), it also satisfies condition
(2.2) and the same results holds.

When G is a pseudo-convex domain with a Stein neighborhood basis , we can
assume that G = NG, such that each G; is strongly pseudo-convex with smooth
boundary. We note that on each G;, the space O(G;) is dense in H?(G;) since G;
is strongly pseudo-convex (this essentially follows from the Kohn’s 8-Neumann
theory on strongly pseudo-convex domains). Since

/G‘f/\y=/Gf/\y=0

for every g € O(G;), thus condition (2.2) is satisfied for any g € H?(G;) and
there exists a solution u; which is compactly supported in G; and Ou; = f in
C". Furthermore, it follows from (2.3) one has that

luille:£C |l flle

where the constant C can be chosen independent of ¢. Thus there exist a weak
convergent subsequence of u; which converges to an element « in C" and the
support of u is contained in G. One easily sees that u satisfies (2.3) and Ou = f
in the distribution sense in C* and the lemma is proved.

Proof of Theorem 1. Let Dy = {2z € C*|r(2) < 0} and @ = D N Dy. From our
assumption that M, has a Stein neighborhood basis, we have that &y = MyND
also has a Stein neighborhood basis, since any domain of finite type has a Stein
neighborhood basis. Let G; be a sequence of smooth decreasing pseudo-convex
domains G; such that @ = NG;. We define Q; = @\ G;, QN G; = D; and
i Nw = @;. Then each D; is pseudo-convex since it is the intersection of two
pseudo-convex domains. Also each D; has a Stein neighborhood basis since D
and Dy both have Stein neighborhood basis. We also denote the boundary of
G; by 8G; and 8G; NN by w?. Thus ; / N and w; / w.

For any a that satisfies the conditions (0.2) and (A), we have, for any g €
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O(ﬁ‘),
/ a/\g=/ aAg—/ dlaAyg)
ouw) dwo w\w;
= / alhg- OaAg
Bwo w\w;
(2.14) =/ ahg-— Galg
dwo w\w;
= alg
Sw
=0.

For a fixed i, we extend a to & on § such that d& vanishes to high order on
w. Let ¢ € C¢°(C") be a cut-off function such that { = 1on ; and ( = 0
on §; \ Ni41. We define a; = (& and extend it to be zero outside 2, then
a; € C%,_;)(C") and Oa; = O(ADé. Setting a; = Oa;. Then az € CF; ) (C")

and a; is supported in D..
For any g € O(D;), it follows from (2.14) that

/D‘agl\g=/Di5C/\5&/\g
=/D.-6(CA5&Ag)

COa g

o

8D;

(215) "& /\g

0
]

I
e~

Il
el

d(@Ag)
0

alAg
w?

Thus a; satisfies (2.2). Using lemma 2.1 on the domain Dj, there exists a
u € Lfnln_l)(C") such that Qu; = az in C® and the support of u; is contained
in D;. We set

(2.16) pr=a1—u
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then we have §; = 9a& on Q; and 88, = da; — Bu; = 0 in C". Using the &-
Neumann operator on Q to solve the Cauchy problem for 8 for (n,n — 1) forms
with support in Q (see Proposition 2.7 in [22] for details), we have that there
exists a fp such that

9o = B in C*

and the support of o is in . Furthermore, f, is smooth up to the boundary
w;. We define ag = & — By, then day = 0a — 8f = 0 in Q; and ay = a in w;.
This shows that we have extended a to be -closed on ;.

Since 2; / §, any compact subset w’ can be contained in the boundary of
a pseudo-convex set ' and Q' C Q; for some ¢ sufficiently large. Thus one can
use the 8-Neumann operator on (n,n — 2) forms to solve du = ag on ' and the
solution u will be smooth to the part of boundary w; following the regularity
of the 9-Neumann problem up to the boundary points of finite type proved by
Kohn [15] and Catlin [7]. Since the method is similar to the case in [22] we omit
the details. Restricting u to ', Theorem 1 is proved.

Proof of Theorem 2. Applying the argument of Theorem 1, we can construct a
solution u; on every w;. To extract the convergent subsequence u;, we assume
first that n — 2 > 1. Since 5,,(u. — ui41) = 0 in w;, from the results of [22],
there exists a v; in w; such that J,v; = u; — u;4; in w;. Extending v; smoothly
to ¥; outside w;—;, we have that Op0; = 0 in wi_;. Letting @ij41 = uiy1 + Op¥;,
we have that a,,u.+1 = a in wi4; and t;4; = u; in w;—;. Continuing this way
one can construct a solution u for Eq.(0,1) in w and Theorem 2 is proved for
n > 3. The case when ¢ = 1,n = 3 is more involved and the argument involved
holomorphic approximation. We refer the readers to the proof of lemma 3.1 in
[22] and omit the details.

Proof of Corollary 2.1. If M, is defined by a pluriharmonic function r(z) = 0
and M is simply connected, then there exists a holomorphic function h such
that r(z) = Imh(z). After a holomorphic change of coordinates it is easy to see
that the conditions of Theorem 2 are satisfied and the corollary is proved.

Proof of Theorem 3.

We shall construct a neighborhood basis {w,} of zy such that dw, lies in a
holomorphically flat hypersurface. The following arguments were kindly pro-
vided by Catlin. Since zp is a point of finite type, it follows from Catlin [6]
that 2q is weakly regular. Thus there exist a family of strictly plurisubharmonic
functions {Ax}ren defined in a neighborhood U of zg such that 0 £ Ax £ 1 and

236



SEMI-GLOBAL EXISTENCE THEOREMS OF O, FOR (O, n-2) FORMS

&y

7 az.'afj

(2.17) a;a; 2 k|a|2 on MNnU

for all a € C".
Let 2 be the pseudo-convex domain with boundary M. Let B¢(29) denotes a
ball of radius € with center 2o and K, = Be(29) \ Bg(20). We claim that there

exists a strictly plurisubharmonic function ¢, defined on 2 N B,(20) such that

(2.18) $e(20) > sup $e(2).

Let 7 € C3°(Be(20)) such that 7 = 3 on Bg(2) and = 0 on K,. We define
gk =1 + k. We have gx(29) 2 2 and

9k(20) > sup gi.
K,

If we choose k sufficiently large, from (2.17), we have that gy is strictly plurisub-
harmonic near M N B,(z). Using Proposition 3.16 in Catlin [5], there exists
function @, on £ N B,(zp) such that

be = gk on M N B,(z)

and
de S gk on QN B(z).

One easily sees that ¢, satisfies (2.18). It follows from Theorem 3.15 in [5]
that the holomorphic convex hull of K, is the same as the hull of K, with
respect to plurisubharmonic functions. Thus there exists a holomorphic function
fe € A®(2N B,) such that

fe(20) > sup|f(2)]
K.

Multiplying f. by a nonzero constant and raise to high order if necessary, we

can assume that f(zo) = 1 and sup|f(2)| S -;- Applying Sard’s theorem,
K.

one can find a regular value y of th; level set {Ref. = p, where -;- <p<

1} = H, is a smooth hypersurface and M intersects H, transversally. Letting
we = M N {Refe > p}, it is easy to see that w, C B¢(z0) N M. Thus we
have constructed a neighborhood basis {w,} which satisfies all the hypothesis of
Theorem 2 and Corollary 2.1 and Theorem 3 is proved.
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3. AN EXAMPLE

In this section we shall examine some examples which were due to Rosay [19]
and construct an explicit example of a J;-closed form which does not satisfy
condition (A). Let S, be the unit spherein C*,n 2 3and I; = SaN{|z1]* < 3},
L2 = SaN{|z1> > }. It is proved in [19] that one can solve Eq.(0.1) for any
(p,q) form a satisfying condition (0.2) in I for all 1 £ ¢ £ n — 2. While on
T,, this is only true when 1 £ ¢ < n — 2. We note that the boundary of ¥,
and ¥ lie in the Levi flat hypersurface Mo = {|2|> = }} which has a Levi-flat
Stein neighborhood basis. Let n = 3 and ((23) be a cut-off function such that
¢(23) = 0 when |z3]* 2 § and ((23) > 0 when |23]> < . We define

C(Zs)

f==—=dzn ANdza ANdz3 NdZ3

and
a=r71f

where T is the projection operator from (3,1) form in C® to I; defined in
Section I. It is easy to see that a is a smooth (3,1) form on I, since for z € S,
|22 = 1 — |21|* — |2z3|* 2 § —|23]* > 0 on the support of (. Also 0f =0on I,
which implies that ya = 0 on ;. If we set h(z) = L, then h € O(9%;) and

/ a/\h=/ l-ﬁ:"—a-)-dzl Adzy ANdzz Adz;
8%, )

T, £1 22

- / / () / / L4z Adzy Adzy A ds
lzs2$4 lzal3 =4 —=|zs|? J|z1|2=} %122

= (2mi)? / /|=.|§; ¢(23)dzs A dZ

Thus a does not satisfy the necessary condition (A) and thus can not be solved
on I, (or on arbitrarily large subset of £;). We note that a is not smooth on
T,. On the other hand, since O(E;) is dense in O(dX;), Any Jy-closed (3,1)
form can be solved on 22 from Theorem 2. We also note that the boundary of
Y2 is not Runge.
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