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On the automorphism group of certain hyperbolic 
domains in C2 

Karl Oeljeklaus 

1 Introduction and Results 
Let Q = Q(z, z) be a subharmonic and non-harmonic polynomial on the complex 
plane C with real values. Then the degree the non-harmonic part Q N of Q is an 
even positive number 2k £ N*. In their paper [1], F . Berteloot and G. Cceure 
proved tha t the domain QQ = {(it;, z) £ C2 | Rew + Q(z, z) < 0} is hyperbolic 
for every Q like above. In this note, we consider the positive cone M of all such 
polynomials and the associated domains QQ C C2. 

Let Qi,Q2 £ M and QQ1,QQ2 be the associated domains. In what follows, 
we use also £7, fil5 Q2 instead of QQ, QQ1 , QQ2 if there is no confusion possible. 
First, we introduce an equivalence relation on the cone M. 

Defini t ion 1.1 Let Q\,Qi £ M. We say that Qi and Q2 are equivalent 
Qi ~ Q2, if there is a real number p > 0, a holomorphic polynomial p(z) and 
an automorphism g(z) of C such that 

(1.1) QAz, z) = pRe(p(z)) + pQ2(g(z),g(z)) 

On the other hand, there is another equivalence relation on M given by the 
biholomorphy of the domains QQ1 and Q Q 2 . The first results states that these 
two eauivalence relations are the same. 

T h e o r e m 1.2 LetQi, Q2 £ M. ThenQ\ andQ2 are biholomorphic, if and only 
if the two polynomials Qi and Q2 are equivalent in the sense of definition 1.1. 
In particular the degrees of the non-harmonic parts Q± and are equal, if 
the domains Qi and Q2 are biholomorphic. 

The fact tha t Q is hyperbolic implies that the holomorphic automorphism 
group Auto(f^) is a real Lie group and that all isotropy groups of the action 
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of A u t o ( ^ ) on Q are compact [3]. We denote by G , G i , G 2 the connected 
identity components of Aute>(fi), A u t o ( ^ i ) , Aute>(^2)« Clearly, if Qi and Q2 
are biholomorphic, then G\ and G2 are isomorphic. 

Let Q,Qi,Q2 denote the Lie algebras of G,Gi,G2. 
Let J , J i , J2 denote the subgroups of G, G i , G2 generated by the translation 

{(w, z) 1—• (w+it, z)\te R } and j , j i , J2 their Lie algebras. Hence the dimension 
of G , G i , G2 is at least one. 

The second result gives a "canonical" defining polynomial for the domain Q 
if d i m R £ > 2. 

T h e o r e m 1.3 Let Q = {Rew + Q(z) < 0} as above. Assume that d i m R G > 2. 
Then there are the following cases : 

a) Q is homogeneous. Then Q ~ B 2 = {|w|2 + \z\2 < 1} an^ Q ~ P\ ~ P2, 
where Pi(z,z) = (Rez)2 and P2(z,z) = \z\2. 

b) Q is not homogeneous. 

1) d i m R G = 2. Then degQN > 4 and either i) Q ~ Pi or ii) Q ~ P2, 
or Hi) Q ~ P3, where 

i) Pi(z,z) = Pi (Re 2:) is an element of M depending only on Re 2 
andG~ ( R 2 , + ) , 

ii) P2(z,z) = P2(|^|2) is an element of M depending only on \z\2, 
and G ~ R x S1, 

Hi) Ps(z,z) is a homogeneous polynomial of degree 2k, k > 2, i.e. 
Ps(\z,\z) = X2kPs(z^z) for all A G R and G is the non-abelian 
two dimensional real Lie group. 

2) d i m R G > 3. Then degQN > 4 and either i) Q ~ Pi or ii) Q ~ P2 
where 

i) Pi(z,z) = (Rez)2k andG is 3-dimensional and solvable, 
ii) P2{z,z) = \z\2k and G is ^-dimensional and contains a finite 

covering of SL2(TV). 

We are going to prove the two theorems simultaneously by distinguishing the 
dimension of G. First we handle the one and two-dimensional cases, then the 
homogeneous case and we finish with the three and higher dimensional cases. 

Before doing so, we prove the easy direction of theoreml . l . 

L e m m a 1.4 If Qi ~ Q2, then fii and Q2 are biholomorphic. 
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P r o o f : Assume (1.1). Let \I> = ( ^ i , ^ 2 ) be the biholomorphic map of C2 
defined by 

V2(w, ±w + p(z) 

lV2(w,z) = g(z) 

Then (A1) = n2. 

R e m a r k 1.5 In what follows we will often make a global coordinate change in 
C2 like (*), which is coherent with the equivalence of the defining polynomials. 
In the following, we take the notation from above. 

2 The one-dimensional case 

Let \£ : Qi —• Q2 be a biholomorphic map. For a subgroup N C G2 let ^*(N) 
be the group o ] V o $ C G\. 

L e m m a 2.1 Assume that ^f*(J2) — J\. Then Q\ ~ Q2. 

P r o o f : From our hypothesis it follows that there is a non-zero real number p 
such that 

0 ^ 0 $ = TpU (TAw, z) = (w + it, *)), 

since \I>* is a continuous group isomorphism of two copies of R. 

So we get with * = ( # 1 , # 2 ) 

*i(tu, z) + it = ty^w + ipt, z) 

V2(w,z) = ^2{w + ipt,z) 

which implies : 

* i K * ) -^w + p{z) 

^2{w,z) 9(*) 

with p G 0 ( C ) and g £ A u t o ( C ) , since the projection n : C2 —> C , (w, z) \-> z 
is surjective on Qi and Q2-

Therefore ^ is a biholomorphic map of C2 which maps Qi to Q2 and so we 
have 

iîl {Rew + Qx(z,z) < 0} = y-l{VL2) 

{Re(-w+p(z)) + Q2{g{z),g{z)) < 0} 

{Rew + pRep{z) + pQ2(g(z),g(z)) < 0} . 
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It follows tha t 

Qi(z,z) = pRep(z) + pQ2(g(z),g(z)). 

This equality implies the positivity of p and the fact that the holomorphic 
function p(z) is already a polynomial. Hence Qi ~ Q2. • 

We mention the following direct consequence, which is the statement of 
theorem 1.2 in the case d i m R G i = 1-

Corol lary 2.2 / / d i n i R G i = 1, then Qi and Q2 are equivalent. 

P r o o f : Here we have G\ = J\ and G2 = J2, hence ty*(J2) = J\. 

3 The two-dimensional case 

We are going to handle this case in a sequence of lemmas. We always assume 
that there is a two-dimensional subgroup H C G such that J C H. Since J C G 
is a closed subgroup isomorphic to R there are two possibilities for H : 

i) H is abelian and non-compact. 

ii) H is the solvable two dimensional non-abelian Lie group. 

L e m m a 3.1 Suppose that H is abelian. Then Q ~ P\ or Q ~ P2, where 
P1(^ , j ) = Pi(Rez) is an element of M which depends only on Rez, or 
P2(z,z) = P2(\z\2) is an element of M which depends only on \z\2. 

In the first case, the domain {Rew + Pi (Rez) < 0} realizes the domain Q 
as a tube domain. 

P r o o f : Let L = {af = (<rf, cr|) | t € R } be a one parameter group of H such 
that L and J generate H. The group H being abelian implies tha t L and J 
commute and so we get for all s, tf G R : 

aì (w + ¿ 5 , z) CF\(W, z) + is 

cr\(w + ¿ 5 , z) a{(w,z). 

The restriction of the projection TT : (w, z) —> z from C2 to Q being surjective 
and the second equality imply that 

at2(w,z) = at2(z) 
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is a non-trivial one-parameter subgroup of A u t o ( C ) ~ C* K C. Furthermore 
a\{w, z) = w + f(t, z), where f(t, •) G 0(C). Since cr* G Auto (C2) and stabilises 
fi, it follows tha t / ( / , •) is a holomorphic polynomial for all t G R. 

After a holomorphic change of coordinates in {z G C } , which is in fact 
polynomial and therefore coherent with the equivalence of defining polynomials, 
we have tha t 

a) a\{z) = z + it or 

b) o\(z) = e"'* • z for a G C* fixed. 

ad (a) : Here we have 

a{(w,z) w + f(t,w) 

al(w,z) z + it for all t G R. 

It follows tha t 

(3.1) f(h+t2,z) f(h,z + it2) + f(t2,z) for all tut2€ R. 

and therefore there is a holomorphic polynomial f such that 

(3.2) f(t,z) f(z + it)-f(z). 

After the change of coordinates in C2 

w 
z 

w - f(z) 
z 

we have that Q is given by {Rew + Q(z, z) < 0} , with a polynomial Q equivalent 
to Q. The action of L is then given by 

o\ (ù), z) — w 

cr^w, z) — z + it. 

This means tha t Q(z,z) is invariant under translations of the form {z »—• 
z + it\te R } , which implies that Q(z, z) = Q(Rez) and that Q is realized as 
a tube domain. The group H is isomorphic to ( R 2 , + ) . 

ad (b) : In this case, we have 

a\(w,z) = w + f(t,z) 

(j\{w^z) = eat • z 
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for a l h G R with fixed a = a + ib G C*. By the same argument as in case (a), 
we see tha t / (£ , •) is a holomorphic polynomial and that a1 G Au to (C2) for all 
< G R . SO we have : 

{(w,z) G C2 I Rew + Q(z,z) < 0} 

{(w,z)eC2 Rew + R e / ( £ , z] \-Q(eat-z^e*1-z) < 0} for all * G R, 

i.e. Q(z, z) = R e / ( £ , z) + Q(eoct • z,eö* • z). Without loss of generality, we may 
assume tha t the harmonic part of Q is trivial, which implies tha t R e / ( £ , z) = 0 
for all t 6 R, i.e. / (* , z) = / (*) G iR for all t G R. Hence /(*) = ißt with 
/3 G R. Then we have tha t Q(z, z) = Q(eat • z, • z) for all t G R. This implies 
tha t a G iR* and tha t Q(z,z) = Q(|^|2), i.e. the polynomial Q depends only 
on \z\2. 

The action of L then is given by 

a\{w,z) w + ißt 

a\{w,z) eat -z for all t G R. 

The group H is isomorphic t o R x S 1 . 

L e m m a 3.2 Suppose that H is the two dimensional solvable non-abelian Lie 
group. Then the polynomial Q is equivalent to a polynomial P2k, which is 
homogeneous of degree 2k, i.e. P2k(\z,\z) = \2hP2k(z,z) for all A G R and J 
is a normal subgroup of H. 

P r o o f : Let L = {a* — ((j\,cr2) \ t G R } be a one parameter subgroup of 
H such tha t L and J generate H. Then there are two cases : 

a) J is not the normal subgroup of dimension one in H. 

b) J is normal in H. 

ad(a ) : We may assume that L is normal in H. 
Let X = i £ - i ^ and Y = f£ + 9^ + f ^ +gjh be the two holomorphic 

infinitesimal transformations induced by J and L on Q. By our assumption there 
is a A G R* such that [X,Y] = A This equation yields f(w, z) = e'^h^z) 
and g(w,z) = e~iXwh2(z), huh2 G 0(C). It follows tha t 7 is a global 
infinitesimal holomorphic transformation of C2, since n : Q —• C, (w, z) \—• z is 
surjective. 

Furthermore h2 vanishes nowhere, since h2(zo) = 0 implies tha t the set 
{ (10 ,2 :0 ) | Rew + Q(ZQ,ZO) < 0} is stabilized by H with J as a non-normal 
subgroup which is impossible. Now we have Y(Rew + Q(z, z)) | { R C W + Q { Z , Z ) = Q } = 

0. 
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This yields the equation 

hi(z) + h2(z) 
dQ 
dz 

[z,z) + e2iXQ(z'~z) {hi(z) h2(z) 
dQ 
dz >»*)) ;0 . 

The expression hi(z) + h2(z)^(z,z) being a polynomial in z implies that 
the expression e2lXQ(z>z)(h\{z) + h2(z)^{z,z)) is also a polynomial in z. By 
differentiating n times, n G N with respect to z this yields that h2(z) = 0 for 
all z 6 C , a contradiction to the fact mentioned above. 

ad (b) : Assume that J is normal in H. We get 

(j\{w + is, z) a\(w,z) + ieat • s 

a 2 ( W + Z55 Z) al(w,z), a G R* fixed. 

So we have again al(w, z) = a^z) and o\ G A u t o ( C ) for all t G C . 
Furthermore o\{w,z) = eatw + f(t"z) with /(*,-) G 0 ( C ) for all * G R. 

Hence a* G A u t o ( C 2 ) and f(t, z) is a holomorphic polynomial for all t G R. 
Since d r n i R i / = 2, the one parameter group {<J2(Z) I * € C A u t o ( C ) 

cannot be trivial. So after a change of coordinates in the z-variable, we have 

(i) G\{Z) = z + it or 

(ii) ai(z) = eßt-z, ßeC* fixed. 

If (i) a\ = z + it, we get 

a\{w,z) eaiw + f(t,z) 
G2{W,Z) z + it and a1 G Auto(C~) 

This yields 
Q(z,z) e~at Re fit, z) + e-atQ(z + iL z - it). 

It is easy to see that this is not possible by considering the highest degree 
homogeneous summand of the non-harmonic part Q N of Q . 

So we may assume (ii), a\(z) = • z, /3 € C* fixed. 
Hence 

a{(w,z) eat-w + f(t,z) 

a\{w,z) eßt-z, a € R*, ß = a + ib € C* fixed 

and it follows that 

Q(z, z) = e~at Re / (* , z) + e~atQ{eßtz, e*z). 
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We may assume tha t Q has no harmonic summands and therefore 

Q(z,z) e'atQ(e(3t • z , e ^ • z \ for all t G R. 

The highest decree of Q is an even number 2fc, fc G N*. Let 
Q2k(z,z) = ]Cj=7 ajziz2k~~i, {CLJ = a2k-j) be the highest degree homogeneous 
summand of Q. We get 

Q2k(z,z] e-atQ2k(ePt-z,eëi-z), i.e. 
aj a i c - ° * - ^ ^ 2 f c - ^ , l < j < 2 J f e - l . 

A necessary condition for this is 

a = 2k-Ref3 

and tha t there are no summands in Q of degree smaller then 2k. 
Hence Q = Q2k — P2k and the lemma is proved. 

R e m a r k 3 .3 Lemma 3.1 and Lemma 3.2 give the proof of theorem 1.3 in the 
case dimR G = 2. 

L e m m a 3.4 Let fii = {Rew + Qi(z,z) < 0} and Q2 = {Rew + Q2(z, z) < 0} 
like above. Assume that \I> : fii —• Q2 is biholomorphic and that J\ and ty*(J2) 
are both contained in a two-dimensional subgroup H C G\. Then J\ = ty*(J2) 
and Qi ~ Q2. 

P r o o f : We have again to consider the following two cases : 

a) H is abelian, 

b) H is not abelian. 

In bot h cases, we assume J\ ^ ^*(J2) and produce a contradiction. Let 
9*(J2) = {at = (a*,at2)\t € R } . 

ad (a) : i) Assume that H = ( R 2 , + ) . Then by Lemma 3.1, we may suppose 
that Qi = {Rew + Qi(Rew) < 0} and Q2 = {Rew + Q2(Rez) < 0} are already 
realized as tube domains and tha t the biholomorphism \I> is equivariant with 
respect to the action of H ~ iH2 as imaginary translations on both domains. 
Hence \I> is an affine linear automorphism of C2 , i.e. ^i(w, z) — aw + bz + e, 
ty2(w, z) = cw + dz + f with 

a b 
c d G GL2(R) and 

e 
f 

e R 2 
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We get 

f*i = {Rew+Qx(Rez) < 0} = {aRew+bRez+e+Q2(cRew+dRez+f) < 0} , Rew +f 

which implies c = 0, i.e. J\ = ty*(J2) and that the two polynomials are 
equivalent. 

ii) Assume that H = R x S1. Then by Lemma 3.1, we may assume that 
fii = {Rew + Q i ( | * | 2 ) < 0} and tt2 = {Rew + Q2(\z\2) < 0} where Qx and Q2 
depend only on \z\2. Furthermore, the action of 51 on both domains is given by 
rotations in the ^-variable. Hence there is an a G R* such that 

# i K e i a ' . z ) * i ( u > , * ) 
y2(w,ei<xi • z) eH -^2(w,z), for all t G R. 

We get a = 1 and 

(1) 
Vi(w,z] \&i(w) 
V2(w,z) : z • g(w) 

Furthermore there exist b G R, f3 G R* such that * * ( J 2 ) = {°l \ t G R } looks 
like : 

ai(w,z) w + ißt 
o\{w,z) eibtz 

We get 

# i ( w - H / 3 * , e * 6 ' • z) $>i(w,z) + it 
V2(w + ißt,eibt.z) ®2{w,z). 

Now the above expression (1) yields 

$i(w,z) = ^i(w) 1 
-ßu 

y2{w,z) : z • p(w) eibt 
z-g(w + ißt), for a l l i e R, 

i.e. e~ibtg(w) = g(w + ißt), for all * G R. 
It follows : 

-ibg(w) g'{w)i(3, i.e. 

9'{w) --g(w), hence 

9M c • e & 

and $ is a global automorphism of C 2 . This yields easily tha t 6 = 0 and c ^ 0, 
i.e. ^2(w, z) = c • z. But then **( J2) = Jx and Qx ~ Q2. 
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ad (b) : Assume tha t H is not abelian. By lemma 3.2, we have J\ < H. 
Suppose tha t * * ( J 2 ) ^ J i . Let E = the inverse of Then we have that 
J2 = £*(**( J2)) is not normal in H. But lemma 3.2 applied to the domain Q2 
gives a contradiction. Hence ^*(J2) = J\ and Lemma 3.4 is proved. • 

R e m a r k 3.5 : Lemma 3.4 gives the proof of Theorem 1.2 in the case 
dimR G\ = dimR G2 = 2. 

4 The homogeneous case 
Now we are going to handle the case when the domains in quest ion are 
homogeneous , i.e. the group G acts transitively on them. 

A s s u m e that Q = { R e it; + Q(z, z) < 0} is a homogeneous complex manifold. 
T h e n by a theorem of Rosay [5] the domain Q is biholomorphic to the unit 

ball B 2 = {\w\2 + \z\2 < ! } • A s other "canonical" models for B 2 we ment ion 
the two realisations {Rett; + (Rez)2 < 0} and { R e w + \z\2 < 0} , which we use 
in the sequel. Here the polynomials ( R e z ) 2 and \z\2 are obviously equivalent. 

So we assume that Qi = { R e w + (Re z)2 < 0} and Q2 = { R e w + Q2(z, z) < 
0}. 

L e m m a 4.1 Suppose that Qi and Q2 are biholomorphic. Then Q2{z,z) ~ 
(Rez)2. 

P r o o f : Let ^ : Qi —> Cl2 denote a biholomorphism. The group G\ is 
isomorphic to SU{2,1) and J\ and \&*(J2) are two closed one-dimensional non-
compact subgroups of SU(2,1). By investigating the structure of SU(2,1) one 
can show tha t the normaliser Nct (Ji) of J\ in G\ is five-dimensional and closed 
and tha t there is an element g £ G\ such that gi$f*(J2)g~1 C A T G ^ J I ) - SO one 
can replace the map \I> by another biholomorphism ^ , such tha t J\ and ^ * ( J2) 
are contained in a two dimensional subgroup H of G\. But then by lemma 3.4 
# * ( e / 2 ) = Jx and Q2(z,z) = (Rez)2. m 

R e m a r k 4.2 : The above mentioned theorem of Rosay and lemma 4-1 prove 
theorem 1.2 and theorem 1.3 in the homogeneous case. 

5 The three-dimensional case 
We start with the following two useful lemmas. 

L e m m a 5.1 Let H C G be an at least three-dimensional subgroup of G = 
Aut^ ( f i ) . Then H is not abelian. 
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P r o o f : By assumption G and therefore H act effectively on Q. The lemma 
follows from the fact that ft is a two-dimensional hyperbolic complex manifold. 

L e m m a 5.2 Assume that G = Aut%(Q) is not solvable and that Q is not 
homogeneous. Let Q = s K r be a Levi-Malcev decomposition of Q — Lie(G). 
Then the semisimple part s is isomorphic to sl2(TV), the Lie algebra of SL2(R). 

P r o o f : Let s be a complex simple Lie algebra admitt ing a one or two 
codimensional complex subalgebra. Then s ~ 5/2(0) or s = sl^(C). 

Hence our real semi-simple algebra s is isomorphic to sl2 (R) , su(2), 5/3 (R), 
su(2,1) or su(3). 

In the last four cases, s admits a subalgebra, which is isomorphic to su(2). 
This means tha t we have an almost effective action of SU(2,C) on tt. Then 
the generic orbit of this action is a compact 3-dimensional Ci?-hyper surf ace 
isomorphic to a finite quotient of 53 . But we have also the non-compact closed 
subgroup J C G, which shows that G has an open orbit in Q. This orbit 
is isomorphic to the unit ball B2 and for a point p in this orbit the isotropy 
group IG(P) is a maximal compact subgroup K. Assume tha t there is a point 
q G n such that dimnG(q) < 4. The Q being hyperbolic implies tha t IG(Q) 
is compact and of greater dimension that K. This is impossible. Hence Q is 
already homogeneous. But this contradicts our assumption. Hence s ~ 5 /2(R) 
and the lemma is proved. • 

Now we assume that dimR G > 3 and that there is a three-dimensional 
subgroup H C G with Lie algebra f) such that J C H. In view of Lemmas 5.1 
and 5.2, we have the following cases : 
I. F) is solvable and not abelian. 
II. I) - sL2(R). 

5.1 Case I : 
The Lie algebra ij is solvable and dimR h = 3. 

In view of lemma 5.1 1} cannot be abelian. 
We use the classification of three-dimensional solvable Lie algebras given 

in [2]. Let f ) = < a , 6 , c > r . Then there are the following cases : 

(1) [a,b] = b, [a,c] = [b,c] = 0; 

(2) [a, c] = b, [a, b] = [c, b] = 0, i.e. f) is nilpotent. 

(3) [c, b] = 0, [a, b] = ab + /3c, [a, c] = jb + 6c, where 

D := ' a /3 
, 7 b~ 

€ GL2(R) 
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L e m m a 5.3 Assume that the structure of I) is given by (1) above. Then j = J)', 
the commutator of t) and Q ~ P, where P(z, z) = \z\2k, k > 2. 

P r o o f : In view of lemma 3 . 2 , we have tha t j C < 6, c >rC I). Our first 
step of the proof will be to prove tha t the group H cannot be simply connected. 
So we assume this and produce a contradiction. 

Then the group L associated to the Lie algebra / = < 6, c >r is isomorphic 
to ( R 2 , + ) and contains J. 

Hence Q = {Rew + Q(Rez) < 0 } by lemma 3 . 1 . Since L is normal H we 
have by [4] tha t the group H acts as a subgroup of GL2(R>) x R 2 on C2 and 
hence on Q. So we have a one parameter subgroup {(A(t), v(t)) G H \ t 6 R } 
with {A(t) | t G R } C G L 2 ( R ) being a non-trivial one parameter subgroup of 
G L 2 ( R ) . By considering the Lie algebra structure of f) and the shape of fi, it is 
an easy calculation to see tha t this is impossible. 

Hence H is not simply connected and isomorphic to N x 5 1 where iV 
is the non-abelian two-dimensional Lie group. The group J is contained in 
N' x S1 ^ R x S1 and therefore we have that Q = {Rew + Q(\z\2) < 0 } , the 
action of S1 being given as the rotations in the z-variable. 

Now let {&* | t G R } be the one parameter subgroup of H with Lie algebra 
< a >r . Since S1 is central in i7 , it follows 

aUw,els • z) aUw.z) 

al(w,els -z) etaal(w,z) for all 5 , t G R , 

i.e. 

a\(w,z) *{(w) 
a\{w,z) g(t,w) z with g(t, •) holomorphic in w. 

Furthermore there is a non-compact one parameter group of the form 

w 
z 

w + is 
ei*s . z a G R fixed, t G R } < iV 

which generates together with {a1} the group iV i.e. there is a p G R * such that 

a{(w + is,eias -z) :a{(w,z) + iept -s 

G\(w + is,eiois • z) G^yW, Z) • e 

and so al(w, z) — ep • w 

al(w,z) = g(t,w) • z 
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with g(t,w) • eiaePt's = g(t,w + is) • eias for all s,t € R i.e. g(t,w + is) 
eias{ept-l) .gfaw) and SO 

dg_ 
dw 

(t,w) = a{ept -l)-g(t,w) 

g(t,w) = c(t)e^ePt-1»'w. 

Hence is a global automorphism of C2 stabilizing Q. But this is only possible if 
g(t, w) does not depend on w, i.e. g(t, w) = g(t) and then 

a\(w,z) = epi • w and G\{W,Z) --g{t).z, with g{t + i) = g(t)-g(t). 

This implies g(t) = c-ev'1, v G R. Then it is easy to conclude tha t Q(z, z) ~ \z\2k 
and it is obvious tha t J = Nf <H. The lemma is proved. • 

R e m a r k 5.4 ; In the setting of lemma 5.3, i.e. Q = {Rew + \z\2k < 0} , the 
automorphism group Gofft is S T, where S is a finite covering of 5 L 2 ( R ) and 
T is a central subgroup isomorphic to S1, i.e. d i m G = 4. This case will also 
appear below. 

L e m m a 5.5 Assume that the structure oft) is given by (2) above. Then Q is 
biholomorphic to the unit ball B2. 

P r o o f : Here t) is isomorphic to the Lie algebra of the three-dimensional 
Heisenberg group H3. First we consider the case that H is not simply- connected. 
Then H = H3/T, where T is a discrete subgroup of H3 isomorphic to Z lying 
in the center C of # 3 . Hence H contains a central subgroup L = C/T ~ Sl. 
Then J and L generate a two- dimensional subgroup isomorphic to R x S1 and 
by lemma 3.1 we may assume that Q = {Rew + Q(\z\2) < 0} with the natural 
R x S1 action. The polynomial Q depends only on |z|2, is subharmonic and can 
be assumed to satisfy Q(0) = 0 and Q > 0. Then r(f l) = {Rew < 0}, where 
r : (w, z) —> z from C2 to C denotes the projection on the first component. 

This map is an equivariant i J -map since L ~ Sl is central in H and the 
L-action is given by rotations in the Z-variable. Therefore the two-dimensional 
group H/L acts on {Re w < 0} = r(Q). But this action cannot be effective, since 
there is no two-dimensional abelian subgroup in the automorphism group of the 
half-plane. Hence a two-dimensional subgroup of H containing L stabilizes all 
fibers of r and acts effectively on the fibers. But the r-fibers in Q are also 
half-planes and every two-dimensional subgroup of H is abelian. This is again 
not possible. So we have proven tha t H is isomorphic to the simply-connected 
Heisenberg group H3. Then there is a two-dimensional subgroup A containing 
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J which is isomorphic to ( R 2 , + ) . By lemma 3.1, the domain Q is given by 
{Rew; + Q(Rez) < 0} a tube domain. 

Let {af = (cr i ,^) I t G R } be a one-parameter group in H which together 
with A generates H. Since A C H is normal, we have by [4] tha t {af | t G R } 
is a subgroup of the affine linear group GL2(R) * R2-

So let a(t) b[t) 
c(t) d(t) 

e[t) 
/(*) 

= a1} C G L 2 ( R ) x R 2 ] denote this group. 

The group [A(t) a(t) 
c(t) 

b(t) 
d(t) I t G R } is not trivial in GL2(R) . We have 

al{wyz) 
a(t)w + b(t)z + e(t) 
c(t)w + d(t)z + f(t) 

and o% stabilizing ft implies : 

Q = {Rew + Q(Rez) < 0} 

{a(t) Rew + b(t) Rez + e(t) + Q(c(t) Rew + d(t) Rez + f(t)) < 0} 

It follows immediately tha t c(t) = 0 for all t G R and that 

Q(Rez) 
bit) 
a(t) 

Rez 
e(t) 
a(t) 

1 
a(t) 

Q(d(t) R e z + /(*)) 

The group H being nilpotent implies tha t a(t) = d(t) = 1 for all t G R , i.e. 

g ( R e z) = b(t) Rez + e(t) + Q(Re z + /(*)). 

Since b(t) is not identically zero, this equation implies that deg Q = 2 and that 
Q is biholomorphic to B2. • 

L e m m a 5.6 Assume that the structure ofi) is given by (3) above and that Q is 
not homogeneous. Then Q = {Rew + (Rew)2h < 0}, k > 2 and G = H. 

P r o o f : The structure of h implies that dimR h' = 2 and tha t the associated 
group H' C H is isomorphic to (R2, + ) . So Q as a simply-connected hyperbolic 
Stein manifold of dimension two with an action of ( R 2 , + ) , therefore it is 
biholomorphic to a tube domain Q' = F + iH2, where F is a convex domain in 
R2 containing no complex lines (see [7]). The group H' ~ (R2, + ) being normal 
in H implies tha t H acts on Q' as a subgroup of GL2(R) tx C2 (see [4]). 

Let {cr* = (tf"i,cr2)} be a one-parameter subgroup of H generating together 
with H' the group H. Then 

a1 a(t) b(t) 
c(t) d(t) 

' e(t) 
, /(*) 

G GL2(R) K R2 
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= (A(t),v(t))> 
with A(t) = etD, where 

D a (3 
7 6 

Since D € G I ^ C R ) ) after a conjugation with an element of 

1 0 
0 1 K R 2 } , 

we have that v(t) = 0 for all t G R , i.e. 

Qt a(t) b(t) 
c(t) d(t) 

0 
0 for all * G R 

Now assume that D is not triangulisable over R . Then {a1 \ t G R } is 
isomorphic to 5 1 , since any one dimensional subgroup of G X 2 ( R ) , which is not 
compact, is triangulisable over R . So the domain F C R 2 is invariant by a 
linear S1 -action and must therefore be bounded. 

On the other hand we have that J has to lie in H' because otherwise it would 
be a compact group. Then Q = {Re w + Q(Ke z) < 0} and H acts affinely on Q. 
Since the set {(y, x) G R 2 | y + Q(x) < 0} is not bounded we get a contradiction. 

So we can assume that the matrix D is triangulisable over R . Hence H' 
contains a one-dimensional normal subgroup of H. If J (jL H*then this group 
and J generate a two-dimensional non-abelian group, which is impossible by 
lemma 3 . 2 . 

So we have tha t J C H' ~ ( R 2 , + ) , = {Rew + Q(Rez) < 0} a tube 
domain and tha t H acts affinely on C2 and on Q with H' C H the group of 
imaginary translations as a normal subgroup. 

We have tha t 

af = A(t) a(t) b(t) 
c(t) d(t) , G G L 2 ( R ) 

etD,D a (3 
Ii 6 , t G R . 

Then 

{Rew + Q(Rez) < 0} 

{a(t) Rew + b(t) Rez + Q(c(t) Rew + d(t) Re z) < 0} 

which shows that c(t) = 0, i.e. 

Q(Rez) m 
a(t) 

Re 
1 

a(t) 
Q(d(t)Rez) for all t G R . 
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Since we may assume that Q has no harmonic summands we get 

QCRez) 
1 

a(t) 
Q(d(t)Rez). 

This implies tha t Q(Rez) = (Rez)2k, k > 2 and tha t the action of a1 is given 
by 

<7*(w, Z) (e™ -w.e* -z).teR. 

Now we prove tha t G = H. First we show tha t G is solvable. Assume 
to the contrary tha t G is not solvable. Then, since Q is not homogeneous, 
the semisimple par t of G is isomorphic to a covering of 5 L 2 ( R ) . Then by 
checking the possibilities for G as an automorphism group of a 2-dimensional 
hyperbolic manifold (see Case II) it is easy to see that G' does not contain a two-
dimensional abelian subgroup. So G is solvable and d i m a C > 2. Furthermore 
G' is nilpotent and contains H' ~ ( R 2 , + ) . Then it is easy to see (by checking 
the possibilities for G') tha t H' <G*', which implies that H' = G' (lemma 5.1 
and lemma 5.5). Then H' <G and by applying again [4] one concludes that 
G = H. • 

5.2 Case II : f) - sl2{H) 

Here we are going to handle completely the situation where ft is not homoge
neous and G is not solvable. 

By lemma 5.2, there is a three-dimensional subgroup H of G such that the 
Lie algebra f) is isomorphic to s / 2 (R) . 

Since Q is not homogeneous we have that 3 < dimR^ < 5, in view of the 
possibilities of a maximal compact subgroup K : K = (e), K = 51 , K = (S1)2. 

Let Q = fj K r be a Levi-Malcev decomposition of Q. Here r denotes the 
radical of Q. Hence dimRr = 1 or 2. If diniRr = 2, then r is abelian, because 
otherwise the center of 5 L 2 ( R ) K R is too small to admit a discrete central 
quotient with maximal compact subgroup (51)2. But then Q = f) x r is a direct 
product again because otherwise there is no central subgroup with quotient 
(S1)2. The existence of a three-dimensional abelian subgroup excludes this case 
(Lemma 5.1). If dima r = 1, then Q = h x r a direct product. 

Hence we have only two possibilities for Q : 

Q = t) = s / 2 (R) or Q = I) x R = sZ2(R) x R . 

We consider these cases in the following lemmas. 

L e m m a 5.7 Assume thatj CfjCG- Then J is contained in a two-dimensional 
subgroup of H. 
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P r o o f : If i f is modulo a finite covering isomorphic to SL2(R), then J as 
a non-compact subgroup of H is contained in a two-dimensional subgroup of 

H. So assume tha t H ~ SL2 (R) , the universal covering of 5L2(R)> and let C 
denote the center of H which is isomorphic to Z. If J fl C = (e), then J is also 
contained in a two-dimensional subgroup of H. So assume that J DC ^ (e), i.e. 
J H C ~ Z . . 

First this implies that H is a closed subgroup of G. (If H ~ SL2 (R) is not 
closed in G, then the maximal compact subgroup K of G is (51)2 and contains 
C. But J C G is a closed, non-compact subgroup of G and therefore JnC = (e), 
which is a contradiction.) 

Hence H acts freely on Q and all orbits are closed and isomorphic to R3. 
We may assume that J fl C = {(w, z) \—• (w + 27nfc, z) | G Z} . This group acts 
freely and properly discontinuous on Q and we can consider the quotient 

Q = {Rew + Q(z,z) < 0} (e*V) 
{0 < H2e2«<*'*> < 1} = Sl'. 

Then there is an action of a group S = SL2(R)/Jn C on Q' and the group 
JIJ DC acts as rotations in the w-variable. Furthermore the 5-action is free 
and all orbits are closed. 

Now let (-X"i,-X"2,-X"3) be a basis of the three-dimensional vector space of 
holomorphic vector fields induced by the 5-action on Qf. We take the exterior 
products <7i = Xi AX2, (72 — X\ A X 3 , (73 = X2 A X 3 . The <j2- are sections in the 
anticanonical bundle det(T^°fi ;) = k - 1 and generate an 5-invariant subspace 
of To($y-> /^_1). For every point p G there is cr2- such that &i(p) ^ 0. Hence 
we get an 5-equivariant holomorphic mapping a : Q' —> P 2 ( C ) defined by 

«(P) = {°I(p) ^(P) ^3(p)), 

where the 5-action on P 2 ( C ) is given by the natural S/C(S) ~ P5L2(R)-2 ic t ion 
which is of course projective-linear. 

Since there is no P5L2(R)-f ix-point in P 2 ( C ) the map a cannot be trivial. 
Hence the map a is either locally biholomorphic or the dimension of the 

fibers is one. 
In the latter case, the restriction of a to every 5-orbit is an 51-principal 

Cauchy-Riemann bundle (see [5]) and this fact yields that there is an additional 
holomorphic 51-action on fi' which commutes with the 5-action. Hence 
dimR G = 4 and we get a 
2-dimensional abelian subgroup of G containing J , i.e. by Lemma 3.1, Q = 
{Rew + Q(\z\2) < 0} or ft = {Rew + Q(Rez) < 0} . In both cases, one can 
assume tha t Q(z, z) > 0 for all z G C. 

But then an automorphism of Qf extends to an automorphism of Qfl){w = 0} 
and we get an 5-action on C ~ {w = 0}. This is impossible. 
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So we have to consider the case where the map a is locally biholomorphic. 
By considering the P5L2(R) - i nva r i an t domains in P 2 , with the property that 
all PSX2(R)-orbits are 3-dimensional, one sees that the image of Q' by a is 
contained in a domain biholomorphic to A x A \ D i a g ( A x A) with the diagonal 
PSL2(R ) - ac t ion . (Here A = {y G C | \y\ < 1}). 

Furthermore the associated map of S resp. P 5 L 2 (R)-orbi ts is injective, since 
they are 3-dimensional in a 2-dimensional complex manifold and a is locally 
biholomorphic. 

So we have a locally biholomorphic, 5-equivariant map 

& : fi' A x A \ Diag(A x A) . 

Using the 5-equivariance and the concrete description of P S L 2 ( R ) - orbits in 
A x A \ Diag(A x A) , one can see tha t this is impossible. The lemma is proved. 

L e m m a 5.8 Assume that j C f) C G and that J is contained in a two-
dimensional subgroup of H. Then H is a finite covering o / S L 2 ( R ) and Q ~ P, 
with P(z,z) = \z\2k, k>2. 

P r o o f : We assume tha t J is contained in a two dimensional subgroup of 
H. We are going to prove Q ~ P, with P ( z , z) = \z\2k directly. Then is follows 
that H is modulo a finite covering isomorphic to 5 L 2 ( R ) , by an investigation 
of the automorphism group of {Rew + \z\2k < 0}. 

By lemma 3.2, we have the two holomorphic vector fields X = i-^ and 
Z = - 2 w ^ j - £ induced by J and the group {(w, z) h-> (e2kt-w.e1 -z) \ t G R } . 
In view of structure of H there is a third holomorphic vector field Y induced by 
a one parameter subgroup of H such that 

[Z,X] = 2X 

[X,Y] = Z 

[Z,Y] = -2Y. 

Furthermore < R e X , R e Y , R e Z > R is the Lie algebra of real infinitesimal 
holomorphic transformations induced by H on Q. 

Now let Y(w,z) = f(w,z)-^ + g(w,z)-?^. Using the commutator relations 
we calculate / and g : 

[X,Y] Г0 t Ö J- ä 
hm hm C17 

idld_ + idg_d 
nui fìlli fìlli fì: 

-2w— --— = Z 
8w к dz 
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Hence ££ = - 2 » u , , §% = -f and so 

/О, z) = w2 + /1(2) and g(w, z 
izw , , 

- — + <?i(z). 

Furthermore : 

[Z,Y] [-2w^~ka-zJd^ + 9d-z] 

dw dw dw dz k dz dw 
z dg d ^ r d od — h 2/ h - — k dz dz dw k dz 
z dg d ^ r d od — h 2/ h - — 
k dz dz dw k dz and therefore 

- 2 / 2w^L + 2f- -^L 
dw k dz 

-2g -2w— - -— + -
dw k dz k 

and finally 

4 / 
2wdj_ z_dj_ 

dw k dz (2k + l)g--
nl dg dg 
2kw— + z — . 

dw dz 

It follows tha t : 

A(-iw2 + h{z)) -4iw2 + -fi(z) 

(2k+ 1) 
izw , 

-j-+9i(*)) i.e. —2izw IZW . , . 
" " Г + z9i(*. 

4/ i (*) = tfi(z) and (2fc + l)9i(z) = ZQ\(Z), which implies 

U(z) = c-zAh 

9l(z) = d-z2k+\ c,deC. 

The vector field Y is therefore given by 

Y ( _ ^ 2 + cz4/c 
<9w 

— + d • z2**1 
k 

d_ 
dz' 

In particular Y is a global holomorphic vector field on C2 and Re Y stabilizes 
the CR-hypersurface M = {Rew + P2k{z,z) = 0}, which means tha t 

(Y + Y)(Rew + P2k(z,z)) | M = 0. 
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We will compute this expression now : 

(Y Y)(Rew + P2k(z,z)) I« -iw2 + cz4k) + \{iw2 + cz4k) 

i!^ + dz2^)d^ 
k dz 

dP2, 
dz {i!^ + dz2^)d^ 

k dz ±(cz4k + cz4k) 1. 
+ 7 

-(Rew + zlm w)2 (Rew — ilmw)2) 
{dz2k+l^i 

dz dz 
iz (Rew + ü m ^ dP2k 

dz 
iz Rew — ilmw dP2k 

1 
2 
(cz4k + cz4k) (dz2k+ dP2f 

dz • dr2k-Ldp2fc, 
dz 

(2 Re w Im w z 
k 

Imw dP2k 
dz 

z 
k Im dP2k, 

iz 
~~k 

Rew dz IZ Reu;̂ r-oz 

We put Hew = —Pot and observe that Pok being homogeneous implies that 
P2k 2fc 

' A 
S dz 

Z ^ Z dz to get tha t the expression 

1 
2 

(cz4k cz4k (dz2k+1 
dP2k 

dz 
dz2k+] dP2k 

dz 
,iz_ 
k k P2K 

dP2k 
dz 

iz 
T p2k 

dP2k 
dz 

0 for all z € C . 

We may assume tha t P2k has no harmonic summands and reduce to 

dz2k 
xdP2k 

dz 
dz2k' 

ldP2k 
dz 

iz dP2k 
k dz P2k 

iz dP2k 
k dz P2k = 0 

for all z G C , with P2k(z, z) *2fc-l 
n = l 

üjZjZ2h • » aj • a2k-j and k > 2. 
If the constant d = 0, then it follows that 

z 
dP2k 

dz 
z 

dP2k 
dz 

which forces P2k(z,z) ak\z\2k. a-k e R > 0 . 

So assume tha t d ^ 0. Then we have 

d 
2k-l 

j=l 
jajZ2k+Jz2k-i d 

2k-l 

j = l 

aj(2k-j)zjz4k-j 
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2i_ 
~k 

2k-l 
ajZJz2k-3\ 

2k-l 
adj - zjz*k~j 

d 
2k-l 

i=i 
aj 2k - j )zjz4k~j 4k-l 

j=2fc+l 
-2k j-2k zjz*k~j 

2i_ 
J 

Ak-2 

3=2 l+n= 
aian n — K zjzk~J 0 for all z eC. 

Let r £ { 1 , . . . , k} be the smallest number such tha t aT ^ 0. Then our expression 
becomes 

2k-r 

j = t 
zjz*k~j zjz4k~j 

Ak-r 

j=2k+r 
0>j-2k j - 2k zjz4k~j 

J 
Ak-2r 

j=2r l + n=j 
atan In — k zjz4k~j = 0. 

But then aT = 0, which is a contradiction. 
So we have tha t V(z,z) \z\2k, k 2 and the lemma is proved. 

L e m m a 5.9 Assume that Q — t) x r, d i m r = 1. Then j C (). 

P r o o f : Assume that Q — f) x r and j (Ji f). In view of lemma 5.3, we have 
j ^ r. Let 7r : Q —> f) be the projection of (? onto h with kernel r. Again in 
view of lemma 5.3, we have that w(j) is the Lie algebra of a maximal compact 
subgroup of SL2 (R). Let L be the two-dimensional subgroup of G whose Lie 
algebra / is generated by r and It is clear that L is a two-dimensional Lie 
group containing J and the center C of G. Therefore I = 5 1 x R , since otherwise 
G = 5L2(R) x R, which is impossible. Hence Q = {Rew + Q(\z\2) < 0} , where 
we may assume that <3(|z|2) > 0 for all z £ C. The action of the connected 
component of C° the center of G is given by 

(w,z) (w + it,eipt - z t £ R, p £ R* fixed. 

We consider the function (w, z ) —> z • e p™ £ C, which is invariant under 
this action. We have 

| * . e " H 2 H2 ^—p2 R E TU U | 2 e p 2 Q ( M 2 ) 

The expression on the right side tends to +00 when \ z \ —+ +00 and the image 
of / is .^-invariant . Hence / : Q —» C is surjective and has maximal rank 
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everywhere. Hence we get an G/G° action on C which is impossible. The 
lemma is proved. • 

R e m a r k 5.10 a) The automorphism group of a domain Q = {Rew + \z\2k < 
0}, k > 2 is a product S • S1 , where S is modulo a finite group isomorphic 
to SL2(R) and S1 is a central one-dimensional group. Hence G is four-
dimensional. 

b) In the case dimR G = 3 the lemmas 5.3 to 5.9 prove theorem 1 and theorem 
2. 

c) We mention that from now on we may assume that G is solvable since the 
non-solvable case is completely handled by the lemmas 5.2 to 5.9 . 

6 The case dimR G > 4 
L e m m a 6.1 Let Q = {Rew + Q(z,z) < 0} and assume that G = Aut^( f i ) is 
solvable. Then dimR G < 3. 

P r o o f : We assume tha t dimR G > 4 and that Q is not homogeneous. So 
we have tha t d i m G = 4 or 5, since the highest dimensional compact subgroup 
of G i s (51)2. 

Let N C G be the largest nilpotent normal connected subgroup of G. Clearly, 
N contains (G')° , the connected component of the commutator G' of G. 

We first show tha t dimR TV < 3. Assume the contrary, i.e. dimiV > 4. 
Then the maximal compact subgroup of N is not trivial, i.e. isomorphic to 51 
or (51)2. But compact subgroups of nilpotent Lie groups are always central, 
in view of the bijectivity of the exponential map. Then A7" as a subgroup of G 
doesnot act effectively, a contradiction. So dimR N < 3. So we have to consider 
three cases : 

i) n = hs the three-dimensional Heisenberg algebra ; 

ii) dim AT" = 2 and N is abelian ; 

iii) dimiV = 1. 

Cas i) : n = /13. By similar arguments as above and using the fact that all 
maximal compact subgroups are conjugate one sees that N is simply connected. 
Hence all TV and therefore all G-orbits in Q are closed CR-hypersurfaces 
isomorphic to R3 . Using the results of [4], [7], it is not hard to check that 
a simply connected hyperbolic Stein manifold acted on by H3 is biholomorphic 
to the ball ; this contradicts our assumption. 
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Cas ii) : dimR TV — 2 and TV is abelian. 
If J (jL TV then J and TV generate a three-dimensional solvable group. Using 

the lemmas of Section V , we see tha t G cannot be solvable and of dimension 
four or greater, if ft is not homogeneous. 

So we have J C TV and we can find a 3-dimensional solvable group containing 
J. Using again the lemmas of Section V we conclude like above. 

Case iii) : dimR TV = 1. Then either J = iV or J and TV generate a 
two dimensional abelian group. In both cases we can take the complex-analytic 
quotient of ft by TV, which is either the upper half plane or C. But G/N is at 
least 3-dimensional and abelian. This is impossible. • 

R e m a r k 6.2 Using the same methods as above it can be shown that the number 
of connected components of Auto (ft) is always finite. 
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