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On the automorphism group of certain hyperbolic
domains in C?

Karl Oeljeklaus

1 Introduction and Results

Let @ = Q(z, ) be a subharmonic and non-harmonic polynomial on the complex
plane C with real values. Then the degree the non-harmonic part Q" of @ is an
even positive number 2k € N*. In their paper [1], F. Berteloot and G. Coeuré
proved that the domain Qg = {(w,2) € C? | Rew+Q(z, 2) < 0} is hyperbolic
for every @ like above. In this note, we consider the positive cone M of all such
polynomials and the associated domains 2o C C2.

Let Q1,Q2 € M and Qg,,{g, be the associated domains. In what follows,
we use also 2, Q, Q2 instead of Qg, Qq,, Qq, if there is no confusion possible.
First, we introduce an equivalence relation on the cone M.

Definition 1.1 Let Q,,Q> € M. We say that Q; and Q2 are equivalent
Q1 ~ @2, if there is a real number p > 0, a holomorphic polynomial p(z) and
an automorphism g(z) of C such that

(1.1) Q1(z,2) = pRe(p(2)) + pQ2(9(2), 9(2)).

On the other hand, there is another equivalence relation on M given by the
biholomorphy of the domains (g, and {2g,. The first results states that these
two equivalence relations are the same.

Theorem 1.2 LetQ1, Q2 € M. Then Q; and Q3 are biholomorphic, if and only
if the two polynomials Q1 and Q2 are equivalent in the sense of definition 1.1.
In particular the degrees of the non-harmonic parts QY and QY are equal, if
the domains Q0 and Qo are biholomorphic.

The fact that Q is hyperbolic implies that the holomorphic automorphism
group Autp(f?) is a real Lie group and that all isotropy groups of the action
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of Autp(2) on Q are compact [3]. We denote by G,G1,G2 the connected
identity components of Auto(Q?), Auto(21), Auto(Q2). Clearly, if @ and Q,
are biholomorphic, then G; and G are isomorphic.

Let G,G1,G> denote the Lie algebras of G,G1,Ga.

Let J, Ji, J2 denote the subgroups of G, G, G2 generated by the translation
{(w, 2) — (w+it,z) | t € R} and j, j1, jo their Lie algebras. Hence the dimension
of G,G1,G4 is at least one.

The second result gives a “canonical” defining polynomial for the domain 2
if dimg G > 2.

Theorem 1.3 Let @ = {Rew+ Q(z) < 0} as above. Assume that dimr G > 2.
Then there are the following cases :

a) Q is homogeneous. Then ) ~ By = {|w|?> + |2|> < 1} and Q ~ P, ~ P,
where Pi(z,z) = (Rez)? and Py(z,2) = |2|°.

b) Q is not homogeneous.

1) dimp G = 2. Then deg Q" > 4 and either i) Q ~ P, or ii) Q ~ P,
or 4it) Q ~ Ps, where

i) Pi(z,Z) = P;(Rez) is an element of M depending only on Rez
and G ~ (R?,+),

i) Pa(z,2) = Pa(|z|?) is an element of M depending only on |z|?,
and G~ R x S,

iit) P3(z,Z) is a homogeneous polynomial of degree 2k, k > 2, i.e.
P3(Az,A2) = A2*Py(z,%) for all X € R and G is the non-abelian

two dimensional real Lie group.

2) dimp G > 3. Then deg Q" > 4 and either i) Q@ ~ P, or i) Q ~ P»

where
i) P,(2,%Z) = (Rez)?® and G is 3-dimensional and solvable,
i) Py(z,2) = |2|>* and G is {-dimensional and contains a finite

covering of SLy(R).

We are going to prove the two theorems simultaneously by distinguishing the
dimension of G. First we handle the one and two-dimensional cases, then the
homogeneous case and we finish with the three and higher dimensional cases.

Before doing so, we prove the easy direction of theoreml.1.

Lemma 1.4 If Q) ~ Q2, then Q; and Q3 are biholomorphic.
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ON THE AUTOMORPHISM GROUP OF HYPERBOLIC DOMAINS IN C?

Proof : Assume (1.1). Let ¥ = (¥, ¥5) be the biholomorphic map of C?
defined by
" (19 = Ju 50
Uz (w, 2) = g(2)
Then \I’(Ql) = Qg. u

Remark 1.5 In what follows we will often make a global coordinate change in
C? like (*), which is coherent with the equivalence of the defining polynomials.
In the following, we take the notation from above.

2 The one-dimensional case

Let ¥ : ; — Qy be a biholomorphic map. For a subgroup N C G let ¥*(N)
be the group ¥~ o No ¥ C G}.

Lemma 2.1 Assume that V*(J2) = J1. Then Q1 ~ Q2.
Proof: From our hypothesis it follows that there is a non-zero real number p

such that
U oT 00 =Ty, (Ty(w,z) = (w+it, 2)),

since ¥U'* is a continuous group isomorphism of two copies of R.
So we get with ¥ = (U, Uy)

Uy (w, z) + it = Uy (w + ipt, 2)
Uo(w, z) = Vo(w + ipt, 2)

which implies :

Uy (w,2) = %w-{—p(z)
Uy(w,2) = g(2)

with p € O(C) and g € Auto(C), since the projection 7 : C?2 — C, (w,z) + z
is surjective on §2; and 5.

Therefore ¥ is a biholomorphic map of C? which maps Q; to 5 and so we
have

0 = {Rew+Q1(z,2) <0} =T71Q)
= {Re(%w +2(2)) + Qa(9(2), 3(2)) < 0}
= {Rew+ pRep(2) + pQa(g(2), 3(2)) < 0}.
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It follows that

Q1(z,2) = pRep(2) + pQ2(g(2), 9(2)).

This equality implies the positivity of p and the fact that the holomorphic
function p(z) is already a polynomial. Hence Q; ~ Q5. [ ]

We mention the following direct consequence, which is the statement of
theorem 1.2 in the case dimr G; = 1.

Corollary 2.2 If dimg G; = 1, then Q1 and Q2 are equivalent.

Proof : Here we have G; = J; and G2 = J3, hence ¥*(J2) = J;. |

3 The two-dimensional case

We are going to handle this case in a sequence of lemmas. We always assume
that there is a two-dimensional subgroup H C G such that J C H. Since J C G
is a closed subgroup isomorphic to R there are two possibilities for H :

i) H is abelian and non-compact.

ii) H is the solvable two dimensional non-abelian Lie group.

Lemma 3.1 Suppose that H is abelian. Then Q ~ P, or Q ~ P, where
Pi(z,zZ) = Pi(Rez) is an element of M which depends only on Rez, or
Py(z,2) = Py(|2)?) is an element of M which depends only on |z|?.

In the first case, the domain {Rew + P;(Rez) < 0} realizes the domain )
as a tube domain.

Proof : Let L = {o! = (ol,0}) | t € R} be a one parameter group of H such
that L and J generate H. The group H being abelian implies that L and J
commute and so we get for all s,t € R :

ol(w+is,z) = oj(w,2)+1is

~

12
1
ol(w+1is,2) = oi(w,2).

The restriction of the projection 7 : (w, z) — z from C? to (2 being surjective
and the second equality imply that

03(w, 2) = 03(2)
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is a non-trivial one-parameter subgroup of Autyp(C) ~ C* x C. Furthermore
ol(w,z) = w+f(t,2), where f(t,-) € O(C). Since o' € Auto(C?) and stabilises
Q, it follows that f(¢,-) is a holomorphic polynomial for all t € R.

After a holomorphic change of coordinates in {z € C}, which is in fact
polynomial and therefore coherent with the equivalence of defining polynomials,
we have that

a) ok(z) =z+itor

b) o(z) = e*!. 2 for a € C* fixed.

ad (a) : Here we have

oi(w,2) = w+ f(t,w)
z4+1t forallteR.

3w, 2)
It follows that
(3.1) f(t1 +t2,2) = f(t1, 2 +itz) + f(t2,2) for all t;,t; € R.

and therefore there is a holomorphic polynomial f such that

(3.2) ft,2) = f(z +it) — f(2).
After the change of coordinates in C?
(£)-(-1)

we have that Q is given by {Re w+Q(Z, 2) < 0}, with a polynomial Q equivalent
to Q. The action of L is then given by

R

ol(,2) =

)

w
+ it.

N
™

a3(®,
This means that Q(Z, %) is invariant under translations of the form {Z

Z 41t | t € R}, which implies that Q(Z,%) = Q(Re %) and that Q is realized as
a tube domain. The group H is isomorphic to (R?,+).

ad (b) : In this case, we have

oi(w,2) =w+ f(t,2)
ob(w,z) =e**. 2

197



K. OLJEKLAUS

for all ¢ € R with fixed o = a + ib € C*. By the same argument as in case (a),
we see that f(¢,-) is a holomorphic polynomial and that o € Auto(C?) for all
t € R. So we have :

Q = {(w,z) € C?*|Rew+ Q(z,%) < 0}
= {(w,z) € C?|Rew+Ref(t,z) + Qe - 2,e5' . 7) < 0} for all ¢t € R,

ie. Q(z,Z) = Re f(t,2) + Q(e* - z,€% - z). Without loss of generality, we may
assume that the harmonic part of @ is trivial, which implies that Re f(¢,2) =0
for all t € R, i.e. f(t,z) = f(t) € iR for all t € R. Hence f(t) = i3t with
B € R. Then we have that Q(z,z) = Q(e**-z,e%'-2) for all t € R. This implies
that o € iR* and that Q(z,2z) = Q(|z]?), i.e. the polynomial @ depends only
on |z|%.

The action of L then is given by

ol(w,z) = w+ift
os(w,z) = e*.z, forallteR.
The group H is isomorphic to R x S*. |

Lemma 3.2 Suppose that H is the two dimensional solvable non-abelian Lie
group. Then the polynomial Q) is equivalent to a polynomial Psj, which is
homogeneous of degree 2k, i.e. Por(A2,A2) = A** Py (2,%) for all X € R and J
s a normal subgroup of H.

Proof : Let L = {o' = (o1,0%) | t € R} be a one parameter subgroup of
H such that L and J generate H. Then there are two cases :

a) J is not the normal subgroup of dimension one in H.

b) J is normal in H.

ad(a) : We may assume that L is normal in H.

Let X = i% _i% and Y = fE% +g§—z-+f% +g% be the two holomorphic
infinitesimal transformations induced by J and L on 2. By our assumption there
isa A € R* such that [X,Y] = X\-Y. This equation yields f(w,z) = e”**h;(z)
and g(w,z) = e~ hy(z), hy,hy € O(C). It follows that Y is a global
infinitesimal holomorphic transformation of C2, since 7 :  — C, (w,2) — z is
surjective.

Furthermore hy vanishes nowhere, since ho(zp) = 0 implies that the set
{(w,z0) | Rew + Q(z0,%0) < 0} is stabilized by H with J as a non-normal
subgroup which is impossible. Now we have Y (Rew+Q(z, 2)) |{Re w+Q(z,5)=0}=
0.
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This yields the equation

0.

hi(z) + hg(z)aa—cj(z, Z)+ e21Q(z%) (Wz—)_ + V(z)%?—(z, z))

The expression hi(z) + hg(z)%?(z,f) being a polynomial in Z implies that
the expression e?*@(=:2) (h;(z) + hz(z)%%(z,f)) is also a polynomial in z. By

differentiating n times, n € N with respect to Z this yields that hy(z) = 0 for
all z € C, a contradiction to the fact mentioned above.

ad (b) : Assume that J is normal in H. We get

ol(w+is,2) = oi(w,2)+ie* s
ob(w+1is,2) = ob(w,z2), a € R* fixed.
So we have again o}(w, z) = g&(z) and 0 € Autp(C) for all ¢t € C.
Furthermore o!(w, 2) = e*'w + f(t,z) with f(¢,-) € O(C) for all t € R.
Hence o' € Autp(C?) and f(¢, 2) is a holomorphic polynomial for all ¢t € R.

Since dimg H = 2, the one parameter group {o4(z) | t € R} C Autp(C)
cannot be trivial. So after a change of coordinates in the z-variable, we have

(i) o4(z) = z+itor
(i) od(z) =€Pt. 2, B € C* fixed.

If (i) 0% = z + it, we get

oi(w,z) = e*w+ f(t,2)
ob(w,z) = z+4it and o' € Auto(C?)
This yields
Q(z,2) = e " Re f(t,2) + e~ *'Q(z + it, z — it).
It is easy to see that this is not possible by considering the highest degree
homogeneous summand of the non-harmonic part Q" of Q.

So we may assume (ii), o4(2) = P - 2, B € C* fixed.
Hence

ol(w,z) = e* w4+ f(t,2)
e’ .z, a€eR*, B=a+ibe C*fixed

a3(w, 2)
and it follows that

Q(z,z) = e * Re f(t,2) + e"’tQ(eﬁtz,eBtZ).
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We may assume that ) has no harmonic summands and therefore
Q(z,2) = e~ *Q(ePt - z,eP! . 7), for all t € R.

The highest de%;ree of @ is an even number 2k, k € N*. Let
Q2x(2,2) = E, 1 ajzi7?k=3 (a; = dgk—;) be the highest degree homogeneous
summand of ). We get

Qoi(52) = e Qu(ef 2, . 2), ie.
aj = aje" ™ -ejﬂt"'(%"j)ﬁt, 1<73<2k-1.

A necessary condition for this is
a=2k-Rep

and that there are no summands in @ of degree smaller then 2k.
Hence Q) = Q2r = Psk and the lemma is proved. [ ]

Remark 3.3 Lemma 3.1 and Lemma 3.2 give the proof of theorem 1.3 in the
case dimg G = 2.

Lemma 3.4 Let Q; = {Rew + Q1(z,2) < 0} and Q2 = {Rew + Q2(z,2) < 0}
like above. Assume that ¥ : Qy — Qg is biholomorphic and that J, and ¥*(J3)
are both contained in a two-dimensional subgroup H C Gy. Then J, = U*(J3)
and Q1 ~ Q2.

Proof : We have again to consider the following two cases :
a) H is abelian,

b) H is not abelian.

In both cases, we assume J; # ¥*(J2) and produce a contradiction. Let
U*(J) = {ot = (0i,0) | t € R}

ad(a) : i) Assume that H = (R?,+). Then by Lemma 3.1, we may suppose
that Q; = {Rew + Q1 (Rew) < 0} and Q2 = {Rew + Q2(Re 2) < 0} are already
realized as tube domains and that the biholomorphism ¥ is equivariant with
respect to the action of H ~ iR? as imaginary translations on both domains.
Hence V¥ is an affine linear automorphism of C2?, i.e. ¥;(w,z2) = aw + bz +e,
Uy (w,2) = cw + dz + f with

(

Z)EGLQ(R) and (;>6R2

o
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We get
Q0 = {Rew+Q1(Rez) < 0} = {aRew+bRez+e+Q2(cRew+dRez+f) < 0},

which implies ¢ = 0, i.e. J; = ¥*(J;) and that the two polynomials are
equivalent.

ii) Assume that H = R x S1. Then by Lemma 3.1, we may assume that
Q; = {Rew + Q1(|2|?) < 0} and Q, = {Rew + Q2(|2|?) < 0} where @, and Q>
depend only on |z|?. Furthermore, the action of S* on both domains is given by
rotations in the z-variable. Hence there is an oo € R* such that

Uy (w, e . 2) = U(w,2)
Uy(w, et 2) = e Uy(w,2), forallteR.

We get o =1 and

U,y (w,2) = ¥y (w)
O {am ) ZE,

Furthermore there exist b € R, 8 € R* such that ¥*(J3) = {o' | t € R} looks
like :
ol(w,z) = w+ifBt
oi(w,z) = ez
We get
Uy (w+i8t, e . 2) = Uy (w, 2) + it
Uy (w + ift, e - 2) = Uy(w, 2).
Now the above expression (1) yields

ded=wdm=%w

Uy(w,2) = z-g(w) =e® . 2. g(w+1ipt), forallteR,
ie. e"g(w) = g(w +iBt), for all t € R..

It follows :
—ibg(w) = g'(w)iB, ie.
gdw) = —%g(w), hence
glw) = c-eH

and ¥ is a global automorphism of C2. This yields easily that b = 0 and ¢ # 0,
ie. Wy(w,z) =c- 2. But then ¥*(J3) = J; and Q; ~ Qs.
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ad (b) : Assume that H is not abelian. By lemma 3.2, we have J; < H.
Suppose that U*(Js) # J;. Let £ = ¥~ the inverse of ¥. Then we have that
Jo = ¥*(¥*(J;)) is not normal in H. But lemma 3.2 applied to the domain
gives a contradiction. Hence ¥*(J2) = J; and Lemma 3.4 is proved. |

Remark 3.5 : Lemma 3.4 gives the proof of Theorem 1.2 in the case
dimR G1 = dimR Gz = 2.

4 The homogeneous case

Now we are going to handle the case when the domains in question are
homogeneous, i.e. the group G acts transitively on them.

Assume that Q@ = {Rew + Q(z,2) < 0} is a homogeneous complex manifold.

Then by a theorem of Rosay [5] the domain 2 is biholomorphic to the unit
ball B, = {|w|? + |2|? < 1}. As other “canonical” models for B? we mention
the two realisations {Re w + (Rez)? < 0} and {Rew + |2|?> < 0}, which we use
in the sequel. Here the polynomials (Re z)? and |z|? are obviously equivalent.

So we assume that Q; = {Rew + (Re z)? < 0} and Qs = {Rew + Q2(z, 2) <
0}.

Lemma 4.1 Suppose that 1) and Qa are biholomorphic. Then Qa(z,2) ~
(Rez)?.

Proof : Let ¥ : Q; — , denote a biholomorphism. The group G; is
isomorphic to SU(2,1) and J; and ¥*(J2) are two closed one-dimensional non-
compact subgroups of SU(2,1). By investigating the structure of SU(2,1) one
can show that the normaliser Ng, (J1) of J; in G} is five- dirnensional and closed
and that there is an element g € Gy such that g¥*(J2)g~! C Ng,(J1). So one
can replace the map ¥ by another biholomorphism ¥, such that J; and ¥*(J5)
are contained in a two dimensional subgroup H of G;. But then by lemma 3.4
U*(J;) = J; and Q2(z,2) = (Re2)2. |

Remark 4.2 : The above mentioned theorem of Rosay and lemma 4.1 prove
theorem 1.2 and theorem 1.3 in the homogeneous case.

5 The three-dimensional case
We start with the following two useful lemmas.

Lemma 5.1 Let H C G be an at least three-dimensional subgroup of G =
Autd(Q). Then H is not abelian.
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Proof: By assumption G and therefore H act effectively on Q2. The lemma
follows from the fact that Q is a two-dimensional hyperbolic complex manifold.
|

Lemma 5.2 Assume that G = Auty(Q) is not solvable and that Q is not
homogeneous. Let G = s X r be a Levi-Malcev decomposition of G = Lie(G).
Then the semisimple part s is isomorphic to slo(R), the Lie algebra of SLa(R).

Proof : Let § be a complex simple Lie algebra admitting a one or two
codimensional complex subalgebra. Then § =~ sl3(C) or § = sl3(C).

Hence our real semi-simple algebra s is isomorphic to sly(R), su(2), sl3(R),
su(2,1) or su(3).

In the last four cases, s admits a subalgebra, which is isomorphic to su(2).
This means that we have an almost effective action of SU(2,C) on Q. Then
the generic orbit of this action is a compact 3-dimensional C'R-hypersurface
isomorphic to a finite quotient of S3. But we have also the non-compact closed
subgroup J C G, which shows that G has an open orbit in 2. This orbit
is isomorphic to the unit ball B, and for a point p in this orbit the isotropy
group I;(p) is a maximal compact subgroup K. Assume that there is a point
g € Q such that dimg G(q) < 4. The Q being hyperbolic implies that I¢(q)
is compact and of greater dimension that K. This is impossible. Hence 2 is
already homogeneous. But this contradicts our assumption. Hence s ~ slo(R)
and the lemma is proved. |

Now we assume that dimg G > 3 and that there is a three-dimensional
subgroup H C G with Lie algebra § such that J C H. In view of Lemmas 5.1
and 5.2, we have the following cases :

1. b is solvable and not abelian.

II. h ~ sLy(R).
5.1 Casel:

The Lie algebra  is solvable and dimg h = 3.

In view of lemma 5.1 § cannot be abelian.

We use the classification of three-dimensional solvable Lie algebras given
in [2]). Let h =< a,b,c >r. Then there are the following cases :

(1) [a,8] = b, [a,¢] = [b,c] =0 ;
(2) [a,c] = b, [a,b] = [c,b] =0, i.e. b is nilpotent.
(3) [c,b) =0, [a,b] = ab+ Bc, [a,c] = b+ bc, where

D:=<fy’ ?)eGLg(R)
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Lemma 5.3 Assume that the structure of b is given by (1) above. Then j =¥/,
the commutator of h and Q ~ P, where P(z,%) = |2|?*, k > 2.

Proof : In view of lemma 3.2, we have that j C< b,c >rC h. Our first
step of the proof will be to prove that the group H cannot be simply connected.
So we assume this and produce a contradiction.

Then the group L associated to the Lie algebra | =< b,c¢ >g is isomorphic
to (R?,+) and contains J.

Hence 2 = {Rew + Q(Rez) < 0} by lemma 3.1. Since L is normal H we
have by [4] that the group H acts as a subgroup of GLy(R) x R? on C? and
hence on 2. So we have a one parameter subgroup {(A(t),v(t)) € H |t € R}
with {A(t) | t € R} C GL2(R) being a non-trivial one parameter subgroup of
GL,(R). By considering the Lie algebra structure of h and the shape of Q, it is
an easy calculation to see that this is impossible.

Hence H is not simply connected and isomorphic to N x S!' where N
is the non-abelian two-dimensional Lie group. The group J is contained in
N’ x S ~ R x S' and therefore we have that @ = {Rew + Q(|z|?) < 0}, the
action of S! being given as the rotations in the z-variable.

Now let {o! | t € R} be the one parameter subgroup of H with Lie algebra
< a >R. Since S! is central in H, it follows

ol(w,e-2) = ol(w,z2)
ob(w,e’.2) = eob(w,z) forall s,teR,
i.e.
oi(w,2) = oi(w)
o3(w,z) = g(t,w)-zwith g(t,-) holomorphic in w.

Furthermore there is a non-compact one parameter group of the form

{( v ) — ( :;a-i—.zs ) | @ € R fixed,t € R} a N

z z
which generates together with {o!} the group N i.e. there is a p € R* such that
ol(w+is, e . 2) = ol (w,z) + e’ - s
ob(w +1is,€* - 2) = ol(w, 2) ceiae”s
and so ol(w,2) =€’ - w
o(w,z) = g(t,w) - 2
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with g(t,w) - ei®”s = g(t,w + is) - € for all s,t € R i.e. g(t,w +is) =
etes(e”=1) . g(¢,w) and so

99 (1,w) = afe” ~ 1) - g(t, )

g(t,w) = C(t)e(a(e”—l))'w.

Hence is a global automorphism of C? stabilizing . But this is only possible if
g(t,w) does not depend on w, i.e. g(t,w) = g(t) and then

ol(w,2) =€ w, and o(w,z)=g(t)-z, with g(t+t) = g(t) - g().
This implies g(t) = c-e”?, v € R. Then it is easy to conclude that Q(z,z) ~ |z|>*
and it is obvious that J = N’ <« H. The lemma is proved. ]

Remark 5.4 : In the setting of lemma 5.3, i.e. Q = {Rew + |2|?¢ < 0}, the
automorphism group G of Q is S-T, where S is a finite covering of SLy(R) and
T is a central subgroup isomorphic to S, i.e. dimG = 4. This case will also
appear below.

Lemma 5.5 Assume that the structure of § is given by (2) above. Then Q is
biholomorphic to the unit ball B,.

Proof : Here b is isomorphic to the Lie algebra of the three-dimensional
Heisenberg group Hj. First we consider the case that H is not simply- connected.
Then H = H3 /T, where I is a discrete subgroup of Hj isomorphic to Z lying
in the center C of H;. Hence H contains a central subgroup L = C/I" ~ S1.
Then J and L generate a two- dimensional subgroup isomorphic to R x S and
by lemma 3.1 we may assume that Q@ = {Rew + Q(|2|?) < 0} with the natural
R x S! action. The polynomial @ depends only on |z|?, is subharmonic and can
be assumed to satisfy Q(0) = 0 and @ > 0. Then 7(2) = {Rew < 0}, where
7: (w,z) — z from C? to C denotes the projection on the first component.

This map is an equivariant H-map since L ~ S! is central in H and the
L-action is given by rotations in the Z-variable. Therefore the two-dimensional
group H/L acts on {Rew < 0} = 7(Q2). But this action cannot be effective, since
there is no two-dimensional abelian subgroup in the automorphism group of the
half-plane. Hence a two-dimensional subgroup of H containing L stabilizes all
fibers of 7 and acts effectively on the fibers. But the 7-fibers in Q are also
half-planes and every two-dimensional subgroup of H is abelian. This is again
not possible. So we have proven that H is isomorphic to the simply-connected
Heisenberg group Hs. Then there is a two-dimensional subgroup A containing
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J which is isomorphic to (R2,+). By lemma 3.1, the domain Q is given by
{Rew + Q(Re z) < 0} a tube domain.

Let {o' = (o1,0%) | t € R} be a one-parameter group in H which together
with A generates H. Since A C H is normal, we have by [4] that {o? | t € R}
is a subgroup of the affine linear group GL2(R) x R2.

So let{( a(t) b(1) )( e(t) ) = o'} C GLo(R)x R?} denote this group.

c(t) d() f@®)
The group {A(t) = ( Zg; 3((3 ) | t € R} is not trivial in GL2(R). We have
: | a(t)w+b(t)z + e(t)
.= ((elr e 10))

and o stabilizing Q implies :

Q = {Rew+ Q(Rez) <0}
= {a(t)Rew + b(t)Rez + e(t) + Q(c(t) Rew + d(t) Rez + f(t)) < 0}

It follows immediately that c(t) = 0 for all t € R and that

N PSRRI

The group H being nilpotent implies that a(t) =d(t)=1forallt € R, i.e.
Q(Rez) =b(t)Rez + e(t) + Q(Re z + f(2)).

Since b(t) is not identically zero, this equation implies that deg @ = 2 and that
Q is biholomorphic to Bs,. u

Lemma 5.6 Assume that the structure of h is given by (8) above and that Q is
not homogeneous. Then Q = {Rew + (Rew)** <0}, k> 2 and G=H.

Proof: The structure of h implies that dimg A’ = 2 and that the associated
group H' C H is isomorphic to (R?,+). So § as a simply-connected hyperbolic
Stein manifold of dimension two with an action of (R2,+), therefore it is
biholomorphic to a tube domain Q' = F + iR?, where F is a convex domain in
R? containing no complex lines (see [7]). The group H' ~ (R?, +) being normal
in H implies that H acts on ' as a subgroup of GL2(R) x C? (see [4]).

Let {o! = (0},0%)} be a one-parameter subgroup of H generating together
with H' the group H. Then

o= (2 49).(5)) commnn
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= (A(1), T(t)),

o-(3 1)

Since D € GL,(R), after a conjugation with an element of

(5 1) xm

we have that ¢(t) =0 for all t € R, i.e.

(45208 e

Now assume that D is not triangulisable over R. Then {o’ | t € R} is
isomorphic to S!, since any one dimensional subgroup of GLs(R), which is not
compact, is triangulisable over R. So the domain F' C R? is invariant by a
linear S!-action and must therefore be bounded.

On the other hand we have that J has to lie in H’ because otherwise it would
be a compact group. Then Q = {Rew+ Q(Rez) < 0} and H acts affinely on Q.
Since the set {(y,z) € R? | y+Q(z) < 0} is not bounded we get a contradiction.

So we can assume that the matrix D is triangulisable over R. Hence H’'
contains a one-dimensional normal subgroup of H. If J ¢ H’, then this group
and J generate a two-dimensional non-abelian group, which is impossible by
lemma 3.2.

So we have that J C H' ~ (R%,4), Q = {Rew + Q(Rez) < 0} a tube
domain and that H acts affinely on C? and on Q with H' C H the group of
imaginary translations as a normal subgroup.

We have that

ol = At) = ( Z((g Zgg ),EGLZ(R)

= et.D,D=(a ﬁ),tER.
TR

with A(t) = e!'P, where

Then

= {Rew+ Q(Rez) <0}
= {a(t)Rew + b(t)Rez + Q(c(t) Rew + d(t) Re z) < 0}
which shows that c(t) =0, i.e.

Q(Rez) = % Rez + a—(ltSQ(d(t) Rez) forallt e R.
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Since we may assume that ) has no harmonic summands we get

1
Q(Rez) = o (d(t)Rez).
This implies that Q(Rez) = (Rez)?*, k > 2 and that the action of ¢! is given
by

ol(w,z) = (e2F . w,e' - 2),t € R.

Now we prove that G = H. First we show that G is solvable. Assume
to the contrary that G is not solvable. Then, since 2 is not homogeneous,
the semisimple part of G is isomorphic to a covering of SLy(R). Then by
checking the possibilities for G as an automorphism group of a 2-dimensional
hyperbolic manifold (see Case II) it is easy to see that G’ does not contain a two-
dimensional abelian subgroup. So G is solvable and dimg G’ > 2. Furthermore
G’ is nilpotent and contains H' ~ (R?,+). Then it is easy to see (by checking
the possibilities for G') that H' <« G’, which implies that H' = G’ (lemma 5.1
and lemma 5.5). Then H' « G and by applying again [4] one concludes that
G=H. |

5.2 Case Il : h ~ sl2(R)

Here we are going to handle completely the situation where €2 is not homoge-
neous and G is not solvable.

By lemma 5.2, there is a three-dimensional subgroup H of G such that the
Lie algebra § is isomorphic to sl3(R).

Since €2 is not homogeneous we have that 3 < dimr G < 5, in view of the
possibilities of a maximal compact subgroup K : K = (e), K = S, K = (S')2.

Let G = h x r be a Levi-Malcev decomposition of G. Here r denotes the
radical of G. Hence dimg r = 1 or 2. If dimg r = 2, then r is abelian, because
otherwise the center of SLy(R) X R is too small to admit a discrete central

quotient with maximal compact subgroup (S 1)2. But then G = b x 7 is a direct
product again because otherwise there is no central subgroup with quotient

(S 1)2. The existence of a three-dimensional abelian subgroup excludes this case
(Lemma 5.1). If dimgr r = 1, then G = h x r a direct product.
Hence we have only two possibilities for G :

G=h=sl(R)orG=hx R=sl(R)xR.
We consider these cases in the following lemmas.
Lemma 5.7 Assume thatj C h C G. Then J is contained in a two-dimensional

subgroup of H.

208



ON THE AUTOMORPHISM GROUP OF HYPERBOLIC DOMAINS IN C?

Proof : If H is modulo a finite covering isomorphic to SLy(R), then J as
a non-compact subgroup of H is contained in a two-dimensional subgroup of

H. So assume that H ~ SLs(R), the universal covering of SLy(R), and let C
denote the center of H which is isomorphic to Z. If J N C = (e), then J is also
contained in a two-dimensional subgroup of H. So assume that JNC # (e), i.e.
JNC ~Z. o

First this implies that H is a closed subgroup of G. (If H ~ SL,(R) is not
closed in G, then the maximal compact subgroup K of G is (S! )2 and contains
C. But J C G is a closed, non-compact subgroup of G and therefore JNC = (e),
which is a contradiction.)

Hence H acts freely on Q and all orbits are closed and isomorphic to R3.
We may assume that JNC = {(w, 2) — (w+ 2mik, z) | k € Z}. This group acts
freely and properly discontinuous on {2 and we can consider the quotient

Q= {Rew + Q(z,2) < 0} 37 {0 < [w|2e29C) < 1} = V.

Then there is an action of a group S = SLy(R)/JNC on Q' and the group
J/J N C acts as rotations in the w-variable. Furthermore the S-action is free
and all orbits are closed.

Now let (X;,X2,X3) be a basis of the three-dimensional vector space of
holomorphic vector fields induced by the S-action on Q. We take the exterior
products 01 = X; AXs, 09 = X1 A X3, 03 = Xo A X3. The o; are sections in the
anticanonical bundle det(T(lg’OQ’) = k~! and generate an S-invariant subspace
of To(Q, k™). For every point p € ', there is o; such that o;(p) # 0. Hence
we get an S-equivariant holomorphic mapping a : ' — P4(C) defined by

a(p) = (01(1’) :02(p) : 03(17)),

where the S-action on P4(C) is given by the natural S/C(S) ~ PSLy(R)-action
which is of course projective-linear.

Since there is no PSLy(R)-fix-point in P2(C) the map « cannot be trivial.

Hence the map « is either locally biholomorphic or the dimension of the
fibers is one.

In the latter case, the restriction of « to every S-orbit is an S!-principal
Cauchy-Riemann bundle (see [5]) and this fact yields that there is an additional
holomorphic S!-action on ' which commutes with the S-action. Hence
dimg G = 4 and we get a
2-dimensional abelian subgroup of G containing J, i.e. by Lemma 3.1, Q =
{Rew + Q(|2[*) < 0} or Q@ = {Rew + Q(Rez) < 0}. In both cases, one can
assume that Q(z,z) > 0 for all z € C.

But then an automorphism of €’ extends to an automorphism of Q'U{w = 0}
and we get an S-action on C ~ {w = 0}. This is impossible.

209



K. OLJEKLAUS

So we have to consider the case where the map « is locally biholomorphic.
By considering the PSLy(R)-invariant domains in Po, with the property that
all PSLy(R)-orbits are 3-dimensional, one sees that the image of Q' by « is
contained in a domain biholomorphic to A x A\ Diag(A x A) with the diagonal
PSLy(R)-action. (Here A = {y € C| |y| < 1}).

Furthermore the associated map of S resp. PSL2(R)-orbits is injective, since
they are 3-dimensional in a 2-dimensional complex manifold and « is locally
biholomorphic.

So we have a locally biholomorphic, S-equivariant map

&:Q — A x A\ Diag(A x A).

Using the S-equivariance and the concrete description of PSLy(R)- orbits in
A x A\ Diag(A x A), one can see that this is impossible. The lemma is proved.
|

Lemma 5.8 Assume that j C §h C G and that J is contained in a two-
dimensional subgroup of H. Then H is a finite covering of SL2(R) and Q ~ P,
with P(z,2) = |2)?*, k > 2.

Proof : We assume that J is contained in a two dimensional subgroup of
H. We are going to prove @ ~ P, with P(z,2) = |z|>* directly. Then is follows
that H is modulo a finite covering isomorphic to SL2(R), by an investigation
of the automorphism group of {Rew + |2|?* < 0}.

By lemma 3. 2 we have the two holomorphic vector fields X = i% and
Z = —2w£-—£2 induced by J and the group {(w, z) — (e**"-w,e*-z) | t € R}.
In view of structure of H there is a third holomorphic vector field Y induced by
a one parameter subgroup of H such that

[2,X] = 2X
X,)Y] = Z
[Z,Y] = -2v.

Furthermore < ReX,ReY,ReZ >R is the Lie algebra of real infinitesimal
holomorphic transformations induced by H on Q.

Now let Y (w, 2) = f(w,2)Z + g(w, z)2. Using the commutator relations
we calculate f and g :

) 0
[’a—»f%+g$]
8f 0 4 8g 0
8 ow Bwaz

X,¥] =

I
N
S
|
|

|

|
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Hence g;% = —2iw, gﬁ = —*% and so

f(w,2) = —iw? + fu(z) and g(w,2) = — 22 +g(2).

k
Furthermore :
0 0
ZY) = g =g S +og)
_ of o dg 8 z20f 0O
= owdw " owd: K0z 0w
z20g 0 0 g0
~ %0:0: ¥ ou T has
0 0
and therefore
_ of z0f
-2f = 2w 5—+2f— 5By
_ O 209 . 9
~% = —w “ow  Fo: Tk
and finally
5 Of of _ 99 | 0Oy
4f = 2w <_9—+E6 , (2k+1)g_2kwaw+zaz.
It follows that :
d(—iw+ fi(2) = —diw® + ZA()
(2k + 1)(——k— +91(2)) = —2izw-— fzk_w + zg1(2), i.e.
4f1(2) = £f1(z) and (2k + 1)g1(2) = 2¢1(z), which implies
fi(z) = c-2**
gl(z) = d'22k+17 Cade C.
The vector field Y is therefore given by
0 izw 0
) aky 9, RW CL2k+1y 9
Y = (—iw’ +cz )3w+( : +d-z )az.

In particular Y is a global holomorphic vector field on C? and ReY stabilizes
the CR-hypersurface M = {Rew + P2 (2, %) = 0}, which means that

(Y +Y)(Rew + Poy(z,2)) |M= 0.
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We will compute this expression now :

Y + Y)Rew+ Py(z,2)) = 1( —iw? + c2**) + = (zw + ez%)

+ (—i-i-d 2k+l)aP2k +(__k_ d-2k+1)aP2k

k 0z
= %(cz‘“c + 2tk + §i(—(Rew +ilmw)? + (Rew — i Imw)?)
n (d22k+1%+d_22k+1%)——(Rew+zImw) P
+ %(Rew—ilmw)aggk
_ %(Cz4lc+(_:24k) + (d22k+1-a—g2—k +Jzzk+1%)
+ (2RewImw+EIm 8$k+glmlua§;k)
+ (——R agz’“ + fRew%)'
We put Rew = — P, and observe that P, being homogeneous implies that

Por = 55 (ziafﬂL +z %Dgﬁ) to get that the expression

1 1 OPok =+ ore1 OPok
5(6241C + ezt + (dzz'”"'l———aajk +d22k+1—“a;k)
; Py, iz _ OP,
(%szaaz’“ %szaa:k) =0 forallzeC.

0Py - 0Py, iz OPyy, 1Z 0Py
d2k+12-2 52k+1 el . e
S T s e

for all z € C, with Py(z,2) = kall a;jz9 2%~ a; = a3r_; and k > 2.
If the constant d = 0, then it follows that

P 3P
8 L 2k which forces Pay (7, %) = ax|2|**, ar, € R>°.
oz T o

So assume that d # 0. Then we have

2k-1 2k-1
d- Y ja;? i 4 d Y aj(2k — )27 70
j=1 j=1
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2k—1 2k—1
b | w0
2k—1 4k—1
= d Z a;(2k —j)zj24k_j +d Z aj—2k(j — 2k)zj24k_j
i=1 j=2k+1
22 4k—2
+ Z(Zalan(n— k))z'zF79| =0for all z € C.
j=2 l+n=j

Let 7 € {1,...,k} be the smallest number such that a. # 0. Then our expression
becomes

2k— 4k—T1
Z i(2k — j) z] 74— 4 d Z a;- 2k(]—2k)z] k=i
j=T j=2k+T1
. 4k-21
—-—[ Z Z aian(n — k)2 2% = 0.
=27 l+n=j

But then a, = 0, which is a contradiction.
So we have that P(z,z) = |z|?*, k > 2 and the lemma is proved. ]

Lemma 5.9 Assume that G=H xr, dimr=1. Then j Ch.

Proof : Assume that G =h xr and j ¢ h. In view of lemma 5.3, we have
j#r. Let m: G — h be the projection of G onto h with kernel r. Again in
view of lemma 5.3, we have that 7(j) is the Lie algebra of a maximal compact
subgroup of SLy(R). Let L be the two-dimensional subgroup of G whose Lie
algebra [ is generated by r and 7(j). It is clear that L is a two-dimensional Lie
group containing J and the center C of G. Therefore L = S! xR, since otherwise
G = SLy(R) x R, which is impossible. Hence Q = {Rew + Q(|z|>) < 0}, where
we may assume that Q(|z|?>) > 0 for all = € C. The action of the connected
component of C? the center of G is given by

(w,z) = (w+it, e - z),t € R,p € R* fixed.

We consider the function (w, z) L zemrv g C, which is invariant under
this action. We have

|z e pw|2 lz|2 .e—P2Rew > lzl2ep2Q(|z|2)'

The expression on the right side tends to +o0o when |z| — 400 and the image
of f is S'-invariant. Hence f : Q@ — C is surjective and has maximal rank
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everywhere. Hence we get an G/C° action on C which is impossible. The
lemma is proved. u

Remark 5.10 a) The automorphism group of a domain Q = {Rew+|z|?* <
0}, k > 2 is a product S - S, where S is modulo a finite group isomorphic
to SLa(R) and S! is a central one-dimensional group. Hence G is four-
dimensional.

b) In the case dimg G = 3 the lemmas 5.8 to 5.9 prove theorem 1 and theorem
2.

c) We mention that from now on we may assume that G is solvable since the
non-solvable case is completely handled by the lemmas 5.2 to 5.9 .

6 The case dimgr G > 4

Lemma 6.1 Let Q = {Rew + Q(2,%) < 0} and assume that G = Aut}(Q) is
solvable. Then dimg G < 3.

Proof : We assume that dimgr G > 4 and that €2 is not homogeneous. So
we have that dimG = 4 or 5, since the highest dimensional compact subgroup
of G is (S1)2.

Let N C G be the largest nilpotent normal connected subgroup of G. Clearly,
N contains (G')?, the connected component of the commutator G’ of G.

We first show that dimg N < 3. Assume the contrary, i.e. dimN > 4.
Then the maximal compact subgroup of N is not trivial, i.e. isomorphic to S?
or (S1)2. But compact subgroups of nilpotent Lie groups are always central,
in view of the bijectivity of the exponential map. Then N as a subgroup of G
doesnot act effectively, a contradiction. So dimg NV < 3. So we have to consider
three cases :

i) n = hg the three-dimensional Heisenberg algebra ;
ii) dim N =2 and N is abelian ;
iii) dim N = 1.

Cas i) : n = hs. By similar arguments as above and using the fact that all
maximal compact subgroups are conjugate one sees that N is simply connected.
Hence all N and therefore all G-orbits in 2 are closed CR-hypersurfaces
isomorphic to R®. Using the results of [4], [7], it is not hard to check that
a simply connected hyperbolic Stein manifold acted on by Hj is biholomorphic
to the ball ; this contradicts our assumption.
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Cas ii) : dimr N = 2 and N is abelian.

If J ¢ N then J and N generate a three-dimensional solvable group. Using
the lemmas of Section V, we see that G cannot be solvable and of dimension
four or greater, if ) is not homogeneous.

So we have J C N and we can find a 3-dimensional solvable group containing
J. Using again the lemmas of Section V we conclude like above.

Case iii) : dimgp N = 1. Then either J = N or J and N generate a
two dimensional abelian group. In both cases we can take the complex-analytic
quotient of Q by N, which is either the upper half plane or C. But G/N is at
least 3-dimensional and abelian. This is impossible. [ ]

Remark 6.2 Using the same methods as above it can be shown that the number
of connected components of Auto(§2) is always finite.
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