Astérisque

KARL OELJEKLAUS

On the automorphism group of certain hyperbolic domains in \mathbb{C}^2

Astérisque, tome 217 (1993), p. 193-216 http://www.numdam.org/item?id=AST 1993 217 193 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the automorphism group of certain hyperbolic domains in \mathbf{C}^2

Karl Oeljeklaus

1 Introduction and Results

Let $Q = Q(z, \bar{z})$ be a subharmonic and non-harmonic polynomial on the complex plane **C** with real values. Then the degree the non-harmonic part Q^N of Q is an even positive number $2k \in \mathbb{N}^*$. In their paper [1], F. Berteloot and G. Cœuré proved that the domain $\Omega_Q = \{(w, z) \in \mathbb{C}^2 \mid \operatorname{Re} w + Q(z, \bar{z}) < 0\}$ is **hyperbolic** for every Q like above. In this note, we consider the positive cone M of all such polynomials and the associated domains $\Omega_Q \subset \mathbb{C}^2$.

Let $Q_1, Q_2 \in M$ and $\Omega_{Q_1}, \Omega_{Q_2}$ be the associated domains. In what follows, we use also Ω , Ω_1 , Ω_2 instead of Ω_Q , Ω_{Q_1} , Ω_{Q_2} if there is no confusion possible. First, we introduce an equivalence relation on the cone M.

Definition 1.1 Let $Q_1, Q_2 \in M$. We say that Q_1 and Q_2 are equivalent $Q_1 \sim Q_2$, if there is a real number $\rho > 0$, a holomorphic polynomial p(z) and an automorphism g(z) of **C** such that

(1.1)
$$Q_1(z,\overline{z}) = \rho \operatorname{Re}(p(z)) + \rho Q_2(g(z),\overline{g(z)}).$$

On the other hand, there is another equivalence relation on M given by the biholomorphy of the domains Ω_{Q_1} and Ω_{Q_2} . The first results states that these two equivalence relations are the same.

Theorem 1.2 Let $Q_1, Q_2 \in M$. Then Ω_1 and Ω_2 are biholomorphic, if and only if the two polynomials Q_1 and Q_2 are equivalent in the sense of definition 1.1. In particular the degrees of the non-harmonic parts Q_1^N and Q_2^N are equal, if the domains Ω_1 and Ω_2 are biholomorphic.

The fact that Ω is hyperbolic implies that the holomorphic automorphism group $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ is a real Lie group and that all isotropy groups of the action of $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ on Ω are compact [3]. We denote by G, G_1, G_2 the connected identity components of $\operatorname{Aut}_{\mathcal{O}}(\Omega)$, $\operatorname{Aut}_{\mathcal{O}}(\Omega_1)$, $\operatorname{Aut}_{\mathcal{O}}(\Omega_2)$. Clearly, if Ω_1 and Ω_2 are biholomorphic, then G_1 and G_2 are isomorphic.

Let $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2$ denote the Lie algebras of G, G_1, G_2 .

Let J, J_1 , J_2 denote the subgroups of G, G_1 , G_2 generated by the translation $\{(w, z) \mapsto (w+it, z) \mid t \in \mathbf{R}\}$ and j, j_1, j_2 their Lie algebras. Hence the dimension of G, G_1 , G_2 is at least one.

The second result gives a "canonical" defining polynomial for the domain Ω if dim_{**R**} $\mathcal{G} \geq 2$.

Theorem 1.3 Let $\Omega = \{ \operatorname{Re} w + Q(z) < 0 \}$ as above. Assume that $\dim_{\mathbf{R}} G \geq 2$. Then there are the following cases :

- a) Ω is homogeneous. Then $\Omega \simeq \mathbf{B}_2 = \{|w|^2 + |z|^2 < 1\}$ and $Q \sim P_1 \sim P_2$, where $P_1(z, \overline{z}) = (\operatorname{Re} z)^2$ and $P_2(z, \overline{z}) = |z|^2$.
- b) Ω is not homogeneous.
 - 1) dim_{**R**} G = 2. Then deg $Q^N \ge 4$ and either i) $Q \sim P_1$ or ii) $Q \sim P_2$, or iii) $Q \sim P_3$, where
 - i) $P_1(z, \bar{z}) = P_1(\operatorname{Re} z)$ is an element of M depending only on $\operatorname{Re} z$ and $G \simeq (\mathbf{R}^2, +)$,
 - ii) $P_2(z, \bar{z}) = P_2(|z|^2)$ is an element of M depending only on $|z|^2$, and $G \simeq \mathbf{R} \times S^1$,
 - iii) $P_3(z, \bar{z})$ is a homogeneous polynomial of degree 2k, $k \geq 2$, i.e. $P_3(\lambda z, \lambda \bar{z}) = \lambda^{2k} P_3(z, \bar{z})$ for all $\lambda \in \mathbf{R}$ and G is the non-abelian two dimensional real Lie group.
 - 2) dim_{**R**} $G \ge 3$. Then deg $Q^N \ge 4$ and either i) $Q \sim P_1$ or ii) $Q \sim P_2$ where
 - i) $P_1(z, \bar{z}) = (\operatorname{Re} z)^{2k}$ and G is 3-dimensional and solvable,
 - ii) $P_2(z, \bar{z}) = |z|^{2k}$ and G is 4-dimensional and contains a finite covering of $SL_2(\mathbf{R})$.

We are going to prove the two theorems simultaneously by distinguishing the dimension of G. First we handle the one and two-dimensional cases, then the homogeneous case and we finish with the three and higher dimensional cases.

Before doing so, we prove the easy direction of theorem1.1.

Lemma 1.4 If $Q_1 \sim Q_2$, then Ω_1 and Ω_2 are biholomorphic.

Proof: Assume (1.1). Let $\Psi = (\Psi_1, \Psi_2)$ be the biholomorphic map of \mathbb{C}^2 defined by

(*)
$$\begin{cases} \Psi_1(w, z) = \frac{1}{\rho}w + p(z) \\ \Psi_2(w, z) = g(z) \end{cases}$$

Then $\Psi(\Omega_1) = \Omega_2$.

Remark 1.5 In what follows we will often make a global coordinate change in C^2 like (*), which is coherent with the equivalence of the defining polynomials. In the following, we take the notation from above.

2 The one-dimensional case

Let $\Psi : \Omega_1 \to \Omega_2$ be a biholomorphic map. For a subgroup $N \subset G_2$ let $\Psi^*(N)$ be the group $\Psi^{-1} \circ N \circ \Psi \subset G_1$.

Lemma 2.1 Assume that $\Psi^*(J_2) = J_1$. Then $Q_1 \sim Q_2$.

Proof : From our hypothesis it follows that there is a non-zero real number ρ such that

$$\Psi^{-1} \circ T_t \circ \Psi = T_{\rho t}, \ (T_t(w, z) = (w + it, z)),$$

since Ψ^* is a continuous group isomorphism of two copies of **R**.

So we get with $\Psi = (\Psi_1, \Psi_2)$

$$\Psi_1(w,z) + it = \Psi_1(w + i\rho t, z)$$

$$\Psi_2(w,z) = \Psi_2(w + i\rho t, z)$$

which implies :

$$\Psi_1(w,z) = \frac{1}{\rho}w + p(z)$$

$$\Psi_2(w,z) = g(z)$$

with $p \in \mathcal{O}(\mathbf{C})$ and $g \in \operatorname{Aut}_{\mathcal{O}}(\mathbf{C})$, since the projection $\pi : \mathbf{C}^2 \to \mathbf{C}$, $(w, z) \mapsto z$ is surjective on Ω_1 and Ω_2 .

Therefore Ψ is a biholomorphic map of \mathbb{C}^2 which maps Ω_1 to Ω_2 and so we have

$$\begin{split} \Omega_1 &= \{ \operatorname{Re} w + Q_1(z, \bar{z}) < 0 \} = \Psi^{-1}(\Omega_2) \\ &= \{ \operatorname{Re}(\frac{1}{\rho}w + p(z)) + Q_2(g(z), \overline{g(z)}) < 0 \} \\ &= \{ \operatorname{Re} w + \rho \operatorname{Re} p(z) + \rho Q_2(g(z), \overline{g(z)}) < 0 \}. \end{split}$$

It follows that

$$Q_1(z,\bar{z}) = \rho \operatorname{Re} p(z) + \rho Q_2(g(z),g(z)).$$

This equality implies the positivity of ρ and the fact that the holomorphic function p(z) is already a polynomial. Hence $Q_1 \sim Q_2$.

We mention the following direct consequence, which is the statement of theorem 1.2 in the case $\dim_{\mathbf{R}} G_1 = 1$.

Corollary 2.2 If dim_{**R**} $G_1 = 1$, then Q_1 and Q_2 are equivalent.

Proof: Here we have $G_1 = J_1$ and $G_2 = J_2$, hence $\Psi^*(J_2) = J_1$.

3 The two-dimensional case

We are going to handle this case in a sequence of lemmas. We always assume that there is a two-dimensional subgroup $H \subset G$ such that $J \subset H$. Since $J \subset G$ is a closed subgroup isomorphic to **R** there are two possibilities for H:

- i) H is abelian and non-compact.
- ii) H is the solvable two dimensional non-abelian Lie group.

Lemma 3.1 Suppose that H is abelian. Then $Q \sim P_1$ or $Q \sim P_2$, where $P_1(z, \bar{z}) = P_1(\operatorname{Re} z)$ is an element of M which depends only on $\operatorname{Re} z$, or $P_2(z, \bar{z}) = P_2(|z|^2)$ is an element of M which depends only on $|z|^2$.

In the first case, the domain $\{\operatorname{Re} w + P_1(\operatorname{Re} z) < 0\}$ realizes the domain Ω as a tube domain.

Proof: Let $L = \{\sigma^t = (\sigma_1^t, \sigma_2^t) \mid t \in \mathbf{R}\}$ be a one parameter group of H such that L and J generate H. The group H being abelian implies that L and J commute and so we get for all $s, t \in \mathbf{R}$:

$$\sigma_1^t(w+is,z) = \sigma_1^t(w,z)+is$$

$$\sigma_1^t(w+is,z) = \sigma_1^t(w,z).$$

The restriction of the projection $\pi: (w, z) \to z$ from \mathbb{C}^2 to Ω being surjective and the second equality imply that

$$\sigma_2^t(w,z) = \sigma_2^t(z)$$

is a non-trivial one-parameter subgroup of $\operatorname{Aut}_{\mathcal{O}}(\mathbf{C}) \simeq \mathbf{C}^* \ltimes \mathbf{C}$. Furthermore $\sigma_1^t(w, z) = w + f(t, z)$, where $f(t, \cdot) \in \mathcal{O}(\mathbf{C})$. Since $\sigma^t \in \operatorname{Aut}_{\mathcal{O}}(\mathbf{C}^2)$ and stabilises Ω , it follows that $f(t, \cdot)$ is a holomorphic polynomial for all $t \in \mathbf{R}$.

After a holomorphic change of coordinates in $\{z \in \mathbf{C}\}$, which is in fact polynomial and therefore coherent with the equivalence of defining polynomials, we have that

a)
$$\sigma_2^t(z) = z + it$$
 or

b) $\sigma_2^t(z) = e^{\alpha \cdot t} \cdot z$ for $\alpha \in \mathbf{C}^*$ fixed.

ad (a) : Here we have

$$\sigma_1^t(w, z) = w + f(t, w)$$

$$\sigma_2^t(w, z) = z + it \text{ for all } t \in \mathbf{R}.$$

It follows that

(3.1)
$$f(t_1 + t_2, z) = f(t_1, z + it_2) + f(t_2, z)$$
 for all $t_1, t_2 \in \mathbf{R}$.

and therefore there is a holomorphic polynomial \tilde{f} such that

(3.2)
$$f(t,z) = \tilde{f}(z+it) - \tilde{f}(z).$$

After the change of coordinates in \mathbf{C}^2

$$\left(\begin{array}{c} \tilde{w}\\ \tilde{z} \end{array}\right) = \left(\begin{array}{c} w - \tilde{f}(z)\\ z \end{array}\right),$$

we have that Ω is given by {Re $\tilde{w} + \tilde{Q}(\tilde{z}, \tilde{z}) < 0$ }, with a polynomial \tilde{Q} equivalent to Q. The action of L is then given by

$$\sigma_1^t(\tilde{w}, \tilde{z}) = \tilde{w}$$

$$\sigma_2^t(\tilde{w}, \tilde{z}) = \tilde{z} + it.$$

This means that $\tilde{Q}(\tilde{z}, \bar{\tilde{z}})$ is invariant under translations of the form $\{\tilde{z} \mapsto \tilde{z} + it \mid t \in \mathbf{R}\}$, which implies that $\tilde{Q}(\tilde{z}, \bar{\tilde{z}}) = \tilde{Q}(\operatorname{Re} \tilde{z})$ and that Ω is realized as a tube domain. The group H is isomorphic to $(\mathbf{R}^2, +)$.

ad (b) : In this case, we have

$$\sigma_1^t(w, z) = w + f(t, z)$$

$$\sigma_2^t(w, z) = e^{\alpha t} \cdot z$$

for all $t \in \mathbf{R}$ with fixed $\alpha = a + ib \in \mathbf{C}^*$. By the same argument as in case (a), we see that $f(t, \cdot)$ is a holomorphic polynomial and that $\sigma^t \in Aut_{\mathcal{O}}(\mathbf{C}^2)$ for all $t \in \mathbf{R}$. So we have :

$$\begin{split} \Omega &= \{(w,z) \in \mathbf{C}^2 \mid \operatorname{Re} w + Q(z,\bar{z}) < 0\} \\ &= \{(w,z) \in \mathbf{C}^2 \mid \operatorname{Re} w + \operatorname{Re} f(t,z) + Q(e^{\alpha t} \cdot z, e^{\bar{\alpha} t} \cdot \bar{z}) < 0\} \text{ for all } t \in \mathbf{R}, \end{split}$$

i.e. $Q(z, \bar{z}) = \operatorname{Re} f(t, z) + Q(e^{\alpha t} \cdot z, e^{\bar{\alpha} t} \cdot \bar{z})$. Without loss of generality, we may assume that the harmonic part of Q is trivial, which implies that Re $f(t,z) \equiv 0$ for all $t \in \mathbf{R}$, i.e. $f(t,z) = f(t) \in i\mathbf{R}$ for all $t \in \mathbf{R}$. Hence $f(t) = i\beta t$ with $\beta \in \mathbf{R}$. Then we have that $Q(z, \overline{z}) = Q(e^{\alpha t} \cdot z, e^{\overline{\alpha}t} \cdot \overline{z})$ for all $t \in \mathbf{R}$. This implies that $\alpha \in i\mathbf{R}^*$ and that $Q(z, \bar{z}) = Q(|z|^2)$, i.e. the polynomial Q depends only on $|z|^2$.

The action of L then is given by

$$\sigma_1^t(w,z) = w + i\beta t$$

$$\sigma_2^t(w,z) = e^{\alpha t} \cdot z, \text{ for all } t \in \mathbf{R}.$$

The group H is isomorphic to $\mathbf{R} \times S^1$.

Lemma 3.2 Suppose that H is the two dimensional solvable non-abelian Lie Then the polynomial Q is equivalent to a polynomial P_{2k} , which is group. homogeneous of degree 2k, i.e. $P_{2k}(\lambda z, \lambda \bar{z}) = \lambda^{2k} P_{2k}(z, \bar{z})$ for all $\lambda \in \mathbf{R}$ and J is a normal subgroup of H.

Proof: Let $L = \{\sigma^t = (\sigma_1^t, \sigma_2^t) \mid t \in \mathbf{R}\}$ be a one parameter subgroup of H such that L and J generate H. Then there are two cases :

a) J is not the normal subgroup of dimension one in H.

b) J is normal in H.

ad(a): We may assume that L is normal in H. Let $X = i\frac{\partial}{\partial w} - i\frac{\partial}{\partial \bar{w}}$ and $Y = f\frac{\partial}{\partial w} + g\frac{\partial}{\partial z} + \bar{f}\frac{\partial}{\partial \bar{w}} + g\frac{\partial}{\partial \bar{z}}$ be the two holomorphic infinitesimal transformations induced by J and L on Ω . By our assumption there is a $\lambda \in \mathbf{R}^*$ such that $[X, Y] = \lambda \cdot Y$. This equation yields $f(w, z) = e^{-i\lambda w} h_1(z)$ and $g(w,z) = e^{-i\lambda w}h_2(z), h_1, h_2 \in \mathcal{O}(\mathbf{C})$. It follows that Y is a global infinitesimal holomorphic transformation of \mathbf{C}^2 , since $\pi: \Omega \to \mathbf{C}, (w, z) \mapsto z$ is surjective.

Furthermore h_2 vanishes nowhere, since $h_2(z_0) = 0$ implies that the set $\{(w, z_0) \mid \operatorname{Re} w + Q(z_0, \overline{z}_0) < 0\}$ is stabilized by H with J as a non-normal subgroup which is impossible. Now we have $Y(\operatorname{Re} w + Q(z, \overline{z})) \mid_{\{\operatorname{Re} w + Q(z, \overline{z})=0\}} \equiv$ 0.

This yields the equation

$$h_1(z) + h_2(z)\frac{\partial Q}{\partial z}(z,\bar{z}) + e^{2i\lambda Q(z,\bar{z})} \big(\overline{h_1(z)} + \overline{h_2(z)}\frac{\partial Q}{\partial \bar{z}}(z,\bar{z})\big) \equiv 0.$$

The expression $h_1(z) + h_2(z)\frac{\partial Q}{\partial z}(z,\bar{z})$ being a polynomial in \bar{z} implies that the expression $e^{2i\lambda Q(z,\bar{z})}(\overline{h_1(z)} + \overline{h_2(z)}\frac{\partial Q}{\partial \bar{z}}(z,\bar{z}))$ is also a polynomial in \bar{z} . By differentiating *n* times, $n \in \mathbb{N}$ with respect to \bar{z} this yields that $\overline{h_2(z)} = 0$ for all $z \in \mathbb{C}$, a contradiction to the fact mentioned above.

ad (b): Assume that J is normal in H. We get

$$\begin{aligned} \sigma_1^t(w+is,z) &= \sigma_1^t(w,z) + ie^{\alpha t} \cdot s \\ \sigma_2^t(w+is,z) &= \sigma_2^t(w,z), \ \alpha \in \mathbf{R}^* \text{ fixed.} \end{aligned}$$

So we have again $\sigma_2^t(w, z) = \sigma_2^t(z)$ and $\sigma_2^t \in \operatorname{Aut}_{\mathcal{O}}(\mathbb{C})$ for all $t \in \mathbb{C}$. Furthermore $\sigma_1^t(w, z) = e^{\alpha \cdot t}w + f(t, z)$ with $f(t, \cdot) \in \mathcal{O}(\mathbb{C})$ for all $t \in \mathbb{R}$.

Furthermore $\sigma_1^t(w, z) = e^{\alpha t}w + f(t, z)$ with $f(t, \cdot) \in \mathcal{O}(\mathbb{C})$ for all $t \in \mathbb{R}$. Hence $\sigma^t \in \operatorname{Aut}_{\mathcal{O}}(\mathbb{C}^2)$ and f(t, z) is a holomorphic polynomial for all $t \in \mathbb{R}$.

Since dim_{**R**} H = 2, the one parameter group $\{\sigma_2^t(z) \mid t \in \mathbf{R}\} \subset \operatorname{Aut}_{\mathcal{O}}(\mathbf{C})$ cannot be trivial. So after a change of coordinates in the z-variable, we have

- (i) $\sigma_2^t(z) = z + it$ or
- (ii) $\sigma_2^t(z) = e^{\beta t} \cdot z, \ \beta \in \mathbf{C}^*$ fixed.

If (i)
$$\sigma_2^t = z + it$$
, we get

$$\begin{aligned} \sigma_1^t(w,z) &= e^{\alpha t}w + f(t,z) \\ \sigma_2^t(w,z) &= z + it \text{ and } \sigma^t \in \operatorname{Aut}_{\mathcal{O}}(\mathbf{C}^2) \end{aligned}$$

This yields

$$Q(z,\bar{z}) = e^{-\alpha t} \operatorname{Re} f(t,z) + e^{-\alpha t} Q(z+it,\bar{z}-it).$$

It is easy to see that this is not possible by considering the highest degree homogeneous summand of the non-harmonic part Q^N of Q.

So we may assume (ii), $\sigma_2^t(z) = e^{\beta t} \cdot z, \ \beta \in \mathbf{C}^*$ fixed.

Hence

$$\begin{array}{lll} \sigma_1^t(w,z) &=& e^{\alpha t} \cdot w + f(t,z) \\ \sigma_2^t(w,z) &=& e^{\beta t} \cdot z, \quad \alpha \in \mathbf{R}^*, \quad \beta = a + ib \in \mathbf{C}^* \text{ fixed} \end{array}$$

and it follows that

$$Q(z,\bar{z}) = e^{-\alpha t} \operatorname{Re} f(t,z) + e^{-\alpha t} Q(e^{\beta t}z, e^{\beta t}\bar{z}).$$

We may assume that Q has no harmonic summands and therefore

$$Q(z,\bar{z}) = e^{-\alpha t} Q(e^{\beta t} \cdot z, e^{\bar{\beta} t} \cdot \bar{z}), \text{ for all } t \in \mathbf{R}.$$

The highest degree of Q is an even number $2k, k \in \mathbb{N}^*$. Let $Q_{2k}(z, \bar{z}) = \sum_{j=1}^{2k-1} a_j z^j \bar{z}^{2k-j}$, $(a_j = \bar{a}_{2k-j})$ be the highest degree homogeneous summand of Q. We get

$$Q_{2k}(z,\bar{z}) = e^{-\alpha t} Q_{2k}(e^{\beta t} \cdot z, e^{\beta t} \cdot \bar{z}), \text{ i.e.}$$
$$a_j = a_j e^{-\alpha t} \cdot e^{j\beta t + (2k-j)\bar{\beta}t}, 1 \le j \le 2k - 1.$$

A necessary condition for this is

$$\alpha = 2k \cdot \operatorname{Re} \beta$$

and that there are no summands in Q of degree smaller then 2k.

Hence $Q = Q_{2k} = P_{2k}$ and the lemma is proved.

Remark 3.3 Lemma 3.1 and Lemma 3.2 give the proof of theorem 1.3 in the case dim_{**R**} G = 2.

Lemma 3.4 Let $\Omega_1 = \{\operatorname{Re} w + Q_1(z, \overline{z}) < 0\}$ and $\Omega_2 = \{\operatorname{Re} w + Q_2(z, \overline{z}) < 0\}$ like above. Assume that $\Psi : \Omega_1 \to \Omega_2$ is biholomorphic and that J_1 and $\Psi^*(J_2)$ are both contained in a two-dimensional subgroup $H \subset G_1$. Then $J_1 = \Psi^*(J_2)$ and $Q_1 \sim Q_2$.

Proof : We have again to consider the following two cases :

- a) H is abelian,
- b) H is not abelian.

In both cases, we assume $J_1 \neq \Psi^*(J_2)$ and produce a contradiction. Let $\Psi^*(J_2) = \{\sigma^t = (\sigma_1^t, \sigma_2^t) \mid t \in \mathbf{R}\}.$

 $\operatorname{ad}(\mathbf{a})$: i) Assume that $H = (\mathbb{R}^2, +)$. Then by Lemma 3.1, we may suppose that $\Omega_1 = \{\operatorname{Re} w + Q_1(\operatorname{Re} w) < 0\}$ and $\Omega_2 = \{\operatorname{Re} w + Q_2(\operatorname{Re} z) < 0\}$ are already realized as tube domains and that the biholomorphism Ψ is equivariant with respect to the action of $H \simeq i \mathbb{R}^2$ as imaginary translations on both domains. Hence Ψ is an affine linear automorphism of \mathbb{C}^2 , i.e. $\Psi_1(w, z) = aw + bz + e$, $\Psi_2(w, z) = cw + dz + f$ with

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{R}) \quad \text{and} \quad \begin{pmatrix} e \\ f \end{pmatrix} \in \mathbf{R}^2$$

We get

$$\Omega_1 = \{ \operatorname{Re} w + Q_1(\operatorname{Re} z) < 0 \} = \{ a \operatorname{Re} w + b \operatorname{Re} z + e + Q_2(c \operatorname{Re} w + d \operatorname{Re} z + f) < 0 \},\$$

which implies c = 0, i.e. $J_1 = \Psi^*(J_2)$ and that the two polynomials are equivalent.

ii) Assume that $H = \mathbf{R} \times S^1$. Then by Lemma 3.1, we may assume that $\Omega_1 = \{\operatorname{Re} w + Q_1(|z|^2) < 0\}$ and $\Omega_2 = \{\operatorname{Re} w + Q_2(|z|^2) < 0\}$ where Q_1 and Q_2 depend only on $|z|^2$. Furthermore, the action of S^1 on both domains is given by rotations in the z-variable. Hence there is an $\alpha \in \mathbf{R}^*$ such that

$$\begin{split} \Psi_1(w, e^{i\alpha t} \cdot z) &= \Psi_1(w, z) \\ \Psi_2(w, e^{i\alpha t} \cdot z) &= e^{it} \cdot \Psi_2(w, z), \quad \text{for all } t \in \mathbf{R}. \end{split}$$

We get $\alpha = 1$ and

(1)
$$\begin{cases} \Psi_1(w, z) = \Psi_1(w) \\ \Psi_2(w, z) = z \cdot g(w). \end{cases}$$

Furthermore there exist $b \in \mathbf{R}$, $\beta \in \mathbf{R}^*$ such that $\Psi^*(J_2) = \{\sigma^t \mid t \in \mathbf{R}\}$ looks like :

$$\sigma_1^t(w,z) = w + i\beta t$$

$$\sigma_2^t(w,z) = e^{ibt}z$$

We get

$$\begin{split} \Psi_1(w+i\beta t,e^{ibt}\cdot z) &= \Psi_1(w,z)+it\\ \Psi_2(w+i\beta t,e^{ibt}\cdot z) &= \Psi_2(w,z). \end{split}$$

Now the above expression (1) yields

$$\Psi_1(w, z) = \Psi_1(w) = \frac{1}{\beta}w$$

$$\Psi_2(w, z) = z \cdot g(w) = e^{ibt} \cdot z \cdot g(w + i\beta t), \text{ for all } t \in \mathbf{R},$$

i.e. $e^{-ibt}g(w) = g(w + i\beta t)$, for all $t \in \mathbf{R}$. It follows :

$$-ibg(w) = g'(w)i\beta, \text{ i.e.}$$
$$g'(w) = -\frac{b}{\beta}g(w), \text{ hence}$$
$$g(w) = c \cdot e^{-\frac{b}{\beta} \cdot w}$$

and Ψ is a global automorphism of \mathbb{C}^2 . This yields easily that b = 0 and $c \neq 0$, i.e. $\Psi_2(w,z) = c \cdot z$. But then $\Psi^*(J_2) = J_1$ and $Q_1 \sim Q_2$.

ad (b): Assume that H is not abelian. By lemma 3.2, we have $J_1 \triangleleft H$. Suppose that $\Psi^*(J_2) \neq J_1$. Let $\Sigma = \Psi^{-1}$ the inverse of Ψ . Then we have that $J_2 = \Sigma^*(\Psi^*(J_2))$ is not normal in H. But lemma 3.2 applied to the domain Ω_2 gives a contradiction. Hence $\Psi^*(J_2) = J_1$ and Lemma 3.4 is proved.

Remark 3.5: Lemma 3.4 gives the proof of Theorem 1.2 in the case $\dim_{\mathbf{R}} G_1 = \dim_{\mathbf{R}} G_2 = 2$.

4 The homogeneous case

Now we are going to handle the case when the domains in question are homogeneous, i.e. the group G acts transitively on them.

Assume that $\Omega = \{\operatorname{Re} w + Q(z, \overline{z}) < 0\}$ is a homogeneous complex manifold. Then by a theorem of Rosay [5] the domain Ω is biholomorphic to the unit ball $\mathbf{B}_2 = \{|w|^2 + |z|^2 < 1\}$. As other "canonical" models for \mathbf{B}^2 we mention the two realisations $\{\operatorname{Re} w + (\operatorname{Re} z)^2 < 0\}$ and $\{\operatorname{Re} w + |z|^2 < 0\}$, which we use in the sequel. Here the polynomials $(\operatorname{Re} z)^2$ and $|z|^2$ are obviously equivalent.

So we assume that $\Omega_1 = \{\operatorname{Re} w + (\operatorname{Re} z)^2 < 0\}$ and $\Omega_2 = \{\operatorname{Re} w + Q_2(z, \overline{z}) < 0\}.$

Lemma 4.1 Suppose that Ω_1 and Ω_2 are biholomorphic. Then $Q_2(z, z) \sim (Rez)^2$.

Proof: Let $\Psi : \Omega_1 \to \Omega_2$ denote a biholomorphism. The group G_1 is isomorphic to SU(2,1) and J_1 and $\Psi^*(J_2)$ are two closed one-dimensional noncompact subgroups of SU(2,1). By investigating the structure of SU(2,1) one can show that the normaliser $N_{G_1}(J_1)$ of J_1 in G_1 is five-dimensional and closed and that there is an element $g \in G_1$ such that $g\Psi^*(J_2)g^{-1} \subset N_{G_1}(J_1)$. So one can replace the map Ψ by another biholomorphism $\tilde{\Psi}$, such that J_1 and $\tilde{\Psi}^*(J_2)$ are contained in a two dimensional subgroup H of G_1 . But then by lemma 3.4 $\Psi^*(J_2) = J_1$ and $Q_2(z, \bar{z}) = (\operatorname{Re} z)^2$.

Remark 4.2: The above mentioned theorem of Rosay and lemma 4.1 prove theorem 1.2 and theorem 1.3 in the homogeneous case.

5 The three-dimensional case

We start with the following two useful lemmas.

Lemma 5.1 Let $H \subset G$ be an at least three-dimensional subgroup of $G = \operatorname{Aut}_{\mathcal{O}}^{0}(\Omega)$. Then H is not abelian.

Proof: By assumption G and therefore H act effectively on Ω . The lemma follows from the fact that Ω is a two-dimensional hyperbolic complex manifold.

Lemma 5.2 Assume that $G = \operatorname{Aut}^{0}_{\mathcal{O}}(\Omega)$ is not solvable and that Ω is not homogeneous. Let $\mathcal{G} = s \ltimes r$ be a Levi-Malcev decomposition of $\mathcal{G} = Lie(G)$. Then the semisimple part s is isomorphic to $sl_2(\mathbf{R})$, the Lie algebra of $SL_2(\mathbf{R})$.

Proof: Let \tilde{s} be a complex simple Lie algebra admitting a one or two codimensional complex subalgebra. Then $\tilde{s} \simeq sl_2(\mathbf{C})$ or $\tilde{s} = sl_3(\mathbf{C})$.

Hence our real semi-simple algebra s is isomorphic to $sl_2(\mathbf{R})$, su(2), $sl_3(\mathbf{R})$, su(2, 1) or su(3).

In the last four cases, s admits a subalgebra, which is isomorphic to su(2). This means that we have an almost effective action of $SU(2, \mathbb{C})$ on Ω . Then the generic orbit of this action is a compact 3-dimensional CR-hypersurface isomorphic to a finite quotient of S^3 . But we have also the non-compact closed subgroup $J \subset G$, which shows that G has an open orbit in Ω . This orbit is isomorphic to the unit ball \mathbf{B}_2 and for a point p in this orbit the isotropy group $I_G(p)$ is a maximal compact subgroup K. Assume that there is a point $q \in \Omega$ such that $\dim_{\mathbf{R}} G(q) < 4$. The Ω being hyperbolic implies that $I_G(q)$ is compact and of greater dimension that K. This is impossible. Hence Ω is already homogeneous. But this contradicts our assumption. Hence $s \simeq sl_2(\mathbf{R})$ and the lemma is proved.

Now we assume that $\dim_{\mathbf{R}} G \geq 3$ and that there is a three-dimensional subgroup $H \subset G$ with Lie algebra \mathfrak{h} such that $J \subset H$. In view of Lemmas 5.1 and 5.2, we have the following cases : I. \mathfrak{h} is solvable and not abelian.

II. $\mathfrak{h} \simeq sL_2(\mathbf{R})$.

5.1 Case I :

The Lie algebra \mathfrak{h} is solvable and $\dim_{\mathbf{R}} h = 3$.

In view of lemma 5.1 \mathfrak{h} cannot be abelian.

We use the classification of three-dimensional solvable Lie algebras given in [2]. Let $\mathfrak{h} = \langle a, b, c \rangle_{\mathbf{R}}$. Then there are the following cases :

(1)
$$[a,b] = b, [a,c] = [b,c] = 0;$$

(2) [a, c] = b, [a, b] = [c, b] = 0, i.e. \mathfrak{h} is nilpotent.

(3)
$$[c, b] = 0, [a, b] = \alpha b + \beta c, [a, c] = \gamma b + \delta c$$
, where

$$D := \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL_2(\mathbf{R})$$

Lemma 5.3 Assume that the structure of \mathfrak{h} is given by (1) above. Then $j = \mathfrak{h}'$, the commutator of \mathfrak{h} and $Q \sim P$, where $P(z, \overline{z}) = |z|^{2k}$, $k \geq 2$.

Proof: In view of lemma 3.2, we have that $j \subset \langle b, c \rangle_{\mathbf{R}} \subset \mathfrak{h}$. Our first step of the proof will be to prove that the group H cannot be simply connected. So we assume this and produce a contradiction.

Then the group L associated to the Lie algebra $l = \langle b, c \rangle_{\mathbf{R}}$ is isomorphic to $(\mathbf{R}^2, +)$ and contains J.

Hence $\Omega = \{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$ by lemma 3.1. Since L is normal H we have by [4] that the group H acts as a subgroup of $GL_2(\mathbf{R}) \ltimes \mathbf{R}^2$ on \mathbf{C}^2 and hence on Ω . So we have a one parameter subgroup $\{(A(t), v(t)) \in H \mid t \in \mathbf{R}\}$ with $\{A(t) \mid t \in \mathbf{R}\} \subset GL_2(\mathbf{R})$ being a non-trivial one parameter subgroup of $GL_2(\mathbf{R})$. By considering the Lie algebra structure of \mathfrak{h} and the shape of Ω , it is an easy calculation to see that this is impossible.

Hence H is not simply connected and isomorphic to $N \times S^1$ where N is the non-abelian two-dimensional Lie group. The group J is contained in $N' \times S^1 \simeq \mathbf{R} \times S^1$ and therefore we have that $\Omega = \{\operatorname{Re} w + Q(|z|^2) < 0\}$, the action of S^1 being given as the rotations in the z-variable.

Now let $\{\sigma^t \mid t \in \mathbf{R}\}$ be the one parameter subgroup of H with Lie algebra $\langle a \rangle_{\mathbf{R}}$. Since S^1 is central in H, it follows

$$egin{array}{lll} \sigma_1^t(w,e^{is}\cdot z)&=&\sigma_1^t(w,z)\ \sigma_2^t(w,e^{is}\cdot z)&=&e^{is}\sigma_2^t(w,z) & ext{for all} & s,t\in \mathbf{R}, \end{array}$$

i.e.

$$\sigma_1^t(w, z) = \sigma_1^t(w)$$

 $\sigma_2^t(w, z) = g(t, w) \cdot z$ with $g(t, \cdot)$ holomorphic in w .

Furthermore there is a non-compact one parameter group of the form

$$\left\{ \left(\begin{array}{c} w\\z\end{array}\right) \mapsto \left(\begin{array}{c} w+is\\e^{i\alpha s}\cdot z\end{array}\right) \mid \alpha \in \mathbf{R} \text{ fixed}, t \in \mathbf{R} \right\} \triangleleft N$$

which generates together with $\{\sigma^t\}$ the group N i.e. there is a $\rho \in \mathbf{R}^*$ such that

$$\sigma_1^t(w+is, e^{i\alpha s} \cdot z) = \sigma_1^t(w, z) + ie^{\rho t} \cdot s$$
$$\sigma_2^t(w+is, e^{i\alpha s} \cdot z) = \sigma_1^t(w, z) \cdot e^{i\alpha e^{\rho t} \cdot s}$$
$$\sigma_1^t(w, z) = e^{\rho t} \cdot w$$

with $g(t,w) \cdot e^{i\alpha e^{\rho t} \cdot s} = g(t,w+is) \cdot e^{i\alpha s}$ for all $s,t \in \mathbf{R}$ i.e. $g(t,w+is) = e^{i\alpha s(e^{\rho t}-1)} \cdot g(t,w)$ and so

$$\frac{\partial g}{\partial w}(t,w) = \alpha(e^{\rho t} - 1) \cdot g(t,w)$$
$$g(t,w) = c(t)e^{(\alpha(e^{\rho t} - 1)) \cdot w}.$$

Hence is a global automorphism of \mathbb{C}^2 stabilizing Ω . But this is only possible if g(t, w) does not depend on w, i.e. g(t, w) = g(t) and then

 $\sigma_1^t(w,z) = e^{\rho t} \cdot w, \quad \text{and} \quad \sigma_2^t(w,z) = g(t) \cdot z, \text{ with } g(t+\tilde{t}) = g(t) \cdot g(\tilde{t}).$

This implies $g(t) = c \cdot e^{\nu \cdot t}$, $\nu \in \mathbf{R}$. Then it is easy to conclude that $Q(z, \overline{z}) \sim |z|^{2k}$ and it is obvious that $J = N' \triangleleft H$. The lemma is proved.

Remark 5.4 : In the setting of lemma 5.3, i.e. $\Omega = \{\operatorname{Re} w + |z|^{2k} < 0\}$, the automorphism group G of Ω is $S \cdot T$, where S is a finite covering of $SL_2(\mathbb{R})$ and T is a central subgroup isomorphic to S^1 , i.e. dim G = 4. This case will also appear below.

Lemma 5.5 Assume that the structure of \mathfrak{h} is given by (2) above. Then Ω is biholomorphic to the unit ball \mathbf{B}_2 .

Proof: Here \mathfrak{h} is isomorphic to the Lie algebra of the three-dimensional Heisenberg group H_3 . First we consider the case that H is not simply-connected. Then $H = H_3/\Gamma$, where Γ is a discrete subgroup of H_3 isomorphic to \mathbf{Z} lying in the center C of H_3 . Hence H contains a central subgroup $L = C/\Gamma \simeq S^1$. Then J and L generate a two- dimensional subgroup isomorphic to $\mathbf{R} \times S^1$ and by lemma 3.1 we may assume that $\Omega = \{\operatorname{Re} w + Q(|z|^2) < 0\}$ with the natural $\mathbf{R} \times S^1$ action. The polynomial Q depends only on $|z|^2$, is subharmonic and can be assumed to satisfy Q(0) = 0 and $Q \ge 0$. Then $\tau(\Omega) = \{\operatorname{Re} w < 0\}$, where $\tau : (w, z) \to z$ from \mathbf{C}^2 to \mathbf{C} denotes the projection on the first component.

This map is an equivariant *H*-map since $L \simeq S^1$ is central in *H* and the *L*-action is given by rotations in the *Z*-variable. Therefore the two-dimensional group H/L acts on $\{\operatorname{Re} w < 0\} = \tau(\Omega)$. But this action cannot be effective, since there is no two-dimensional abelian subgroup in the automorphism group of the half-plane. Hence a two-dimensional subgroup of *H* containing *L* stabilizes all fibers of τ and acts effectively on the fibers. But the τ -fibers in Ω are also half-planes and every two-dimensional subgroup of *H* is abelian. This is again not possible. So we have proven that *H* is isomorphic to the simply-connected Heisenberg group H_3 . Then there is a two-dimensional subgroup *A* containing

J which is isomorphic to $(\mathbb{R}^2, +)$. By lemma 3.1, the domain Ω is given by $\{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$ a tube domain.

Let $\{\sigma^t = (\sigma_1^t, \sigma_2^t) \mid t \in \mathbf{R}\}$ be a one-parameter group in H which together with A generates H. Since $A \subset H$ is normal, we have by [4] that $\{\sigma^t \mid t \in \mathbf{R}\}$ is a subgroup of the affine linear group $GL_2(\mathbf{R}) \ltimes \mathbf{R}^2$.

So let $\left\{ \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}, \begin{pmatrix} e(t) \\ f(t) \end{pmatrix} = \sigma^t \right\} \subset GL_2(\mathbf{R}) \ltimes \mathbf{R}^2 \right\}$ denote this group. The group $\left\{ A(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix} \mid t \in \mathbf{R} \right\}$ is not trivial in $GL_2(\mathbf{R})$. We have $\sigma^t(w, z) = \begin{pmatrix} a(t)w + b(t)z + e(t) \\ c(t)w + d(t)z + f(t) \end{pmatrix}$

and σ^t stabilizing Ω implies :

$$\begin{aligned} \Omega &= \{ \operatorname{Re} w + Q(\operatorname{Re} z) < 0 \} \\ &= \{ a(t) \operatorname{Re} w + b(t) \operatorname{Re} z + e(t) + Q(c(t) \operatorname{Re} w + d(t) \operatorname{Re} z + f(t)) < 0 \} \end{aligned}$$

It follows immediately that c(t) = 0 for all $t \in \mathbf{R}$ and that

$$Q(\operatorname{Re} z) = \frac{b(t)}{a(t)} \operatorname{Re} z + \frac{e(t)}{a(t)} + \frac{1}{a(t)} Q(d(t) \operatorname{Re} z + f(t))$$

The group H being nilpotent implies that a(t) = d(t) = 1 for all $t \in \mathbf{R}$, i.e.

$$Q(\operatorname{Re} z) = b(t) \operatorname{Re} z + e(t) + Q(\operatorname{Re} z + f(t)).$$

Since b(t) is not identically zero, this equation implies that deg Q = 2 and that Ω is biholomorphic to \mathbf{B}_2 .

Lemma 5.6 Assume that the structure of \mathfrak{h} is given by (3) above and that Ω is not homogeneous. Then $\Omega = \{\operatorname{Re} w + (\operatorname{Re} w)^{2k} < 0\}, k \geq 2$ and G = H.

Proof: The structure of h implies that $\dim_{\mathbf{R}} h' = 2$ and that the associated group $H' \subset H$ is isomorphic to $(\mathbf{R}^2, +)$. So Ω as a simply-connected hyperbolic Stein manifold of dimension two with an action of $(\mathbf{R}^2, +)$, therefore it is biholomorphic to a tube domain $\Omega' = F + i\mathbf{R}^2$, where F is a convex domain in \mathbf{R}^2 containing no complex lines (see [7]). The group $H' \simeq (\mathbf{R}^2, +)$ being normal in H implies that H acts on Ω' as a subgroup of $GL_2(\mathbf{R}) \ltimes \mathbf{C}^2$ (see [4]).

Let $\{\sigma^t = (\sigma_1^t, \sigma_2^t)\}$ be a one-parameter subgroup of H generating together with H' the group H. Then

$$\sigma^{t} = \left(\left(\begin{array}{cc} a(t) & b(t) \\ c(t) & d(t) \end{array} \right), \left(\begin{array}{c} e(t) \\ f(t) \end{array} \right) \right) \in GL_{2}(\mathbf{R}) \ltimes \mathbf{R}^{2}$$

$$= (A(t), \vec{v}(t)),$$

with $A(t) = e^{t \cdot D}$, where

$$D = \left(\begin{array}{cc} a & \beta \\ \gamma & \delta \end{array}\right).$$

Since $D \in GL_2(\mathbf{R})$, after a conjugation with an element of

$$\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \ltimes \mathbf{R}^2 \},$$

we have that $\vec{v}(t) = 0$ for all $t \in \mathbf{R}$, i.e.

$$\sigma^{t} = \left(\left(\begin{array}{cc} a(t) & b(t) \\ c(t) & d(t) \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right) \text{ for all } t \in \mathbf{R}$$

Now assume that D is not triangulisable over \mathbf{R} . Then $\{\sigma^t \mid t \in \mathbf{R}\}$ is isomorphic to S^1 , since any one dimensional subgroup of $GL_2(\mathbf{R})$, which is not compact, is triangulisable over \mathbf{R} . So the domain $F \subset \mathbf{R}^2$ is invariant by a linear S^1 -action and must therefore be bounded.

On the other hand we have that J has to lie in H' because otherwise it would be a compact group. Then $\Omega = \{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$ and H acts affinely on Ω . Since the set $\{(y, x) \in \mathbb{R}^2 \mid y + Q(x) < 0\}$ is not bounded we get a contradiction.

So we can assume that the matrix D is triangulisable over \mathbf{R} . Hence H' contains a one-dimensional normal subgroup of H. If $J \not\subset H'$, then this group and J generate a two-dimensional non-abelian group, which is impossible by lemma 3.2.

So we have that $J \subset H' \simeq (\mathbb{R}^2, +)$, $\Omega = \{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$ a tube domain and that H acts affinely on \mathbb{C}^2 and on Ω with $H' \subset H$ the group of imaginary translations as a normal subgroup.

We have that

$$\sigma^{t} = A(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}, \in GL_{2}(\mathbf{R})$$
$$= e^{t \cdot D}, D = \begin{pmatrix} \alpha & \beta \\ \mu & \delta \end{pmatrix}, t \in \mathbf{R}.$$

Then

$$\Omega = \{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$$

= $\{a(t) \operatorname{Re} w + b(t) \operatorname{Re} z + Q(c(t) \operatorname{Re} w + d(t) \operatorname{Re} z) < 0\}$

which shows that $c(t) \equiv 0$, i.e.

$$Q(\operatorname{Re} z) = \frac{b(t)}{a(t)} \operatorname{Re} z + \frac{1}{a(t)} Q(d(t) \operatorname{Re} z) \quad \text{for all } t \in \mathbf{R}.$$

Since we may assume that Q has no harmonic summands we get

$$Q(\operatorname{Re} z) = \frac{1}{a(t)}Q(d(t)\operatorname{Re} z).$$

This implies that $Q(\operatorname{Re} z) = (\operatorname{Re} z)^{2k}$, $k \ge 2$ and that the action of σ^t is given by

$$\sigma^t(w,z) = (e^{2kt} \cdot w, e^t \cdot z), t \in \mathbf{R}.$$

Now we prove that G = H. First we show that G is solvable. Assume to the contrary that G is not solvable. Then, since Ω is not homogeneous, the semisimple part of G is isomorphic to a covering of $SL_2(\mathbf{R})$. Then by checking the possibilities for G as an automorphism group of a 2-dimensional hyperbolic manifold (see Case II) it is easy to see that G' does not contain a twodimensional abelian subgroup. So G is solvable and $\dim_{\mathbf{R}} G' \geq 2$. Furthermore G' is nilpotent and contains $H' \simeq (\mathbf{R}^2, +)$. Then it is easy to see (by checking the possibilities for G') that $H' \triangleleft G'$, which implies that H' = G' (lemma 5.1 and lemma 5.5). Then $H' \triangleleft G$ and by applying again [4] one concludes that G = H.

5.2 Case II : $\mathfrak{h} \sim sl_2(\mathbf{R})$

Here we are going to handle completely the situation where Ω is not homogeneous and G is not solvable.

By lemma 5.2, there is a three-dimensional subgroup H of G such that the Lie algebra \mathfrak{h} is isomorphic to $sl_2(\mathbf{R})$.

Since Ω is not homogeneous we have that $3 \leq \dim_{\mathbf{R}} \mathcal{G} \leq 5$, in view of the possibilities of a maximal compact subgroup $K : K = (e), K = S^1, K = (S^1)^2$.

Let $\mathcal{G} = \mathfrak{h} \ltimes r$ be a Levi-Malcev decomposition of \mathcal{G} . Here r denotes the radical of \mathcal{G} . Hence dim_R r = 1 or 2. If dim_R r = 2, then r is abelian, because otherwise the center of $SL_2(\mathbf{R}) \ltimes R$ is too small to admit a discrete central quotient with maximal compact subgroup $(S^1)^2$. But then $\mathcal{G} = \mathfrak{h} \times \tau$ is a direct product again because otherwise there is no central subgroup with quotient $(S^1)^2$. The existence of a three-dimensional abelian subgroup excludes this case (Lemma 5.1). If dim_R r = 1, then $\mathcal{G} = \mathfrak{h} \times r$ a direct product.

Hence we have only two possibilities for \mathcal{G} :

$$\mathcal{G} = \mathfrak{h} = sl_2(\mathbf{R}) \text{ or } \mathcal{G} = \mathfrak{h} \times \mathbf{R} = sl_2(\mathbf{R}) \times \mathbf{R}.$$

We consider these cases in the following lemmas.

Lemma 5.7 Assume that $j \subset \mathfrak{h} \subset \mathcal{G}$. Then J is contained in a two-dimensional subgroup of H.

Proof: If *H* is modulo a finite covering isomorphic to $SL_2(\mathbf{R})$, then *J* as a non-compact subgroup of *H* is contained in a two-dimensional subgroup of *H*. So assume that $H \simeq \widetilde{SL_2(\mathbf{R})}$, the universal covering of $SL_2(\mathbf{R})$, and let *C* denote the center of *H* which is isomorphic to **Z**. If $J \cap C = (e)$, then *J* is also contained in a two-dimensional subgroup of *H*. So assume that $J \cap C \neq (e)$, i.e. $J \cap C \simeq \mathbf{Z}$.

First this implies that H is a closed subgroup of G. (If $H \simeq SL_2(\mathbf{R})$ is not closed in G, then the maximal compact subgroup K of G is $(S^1)^2$ and contains C. But $J \subset G$ is a closed, non-compact subgroup of G and therefore $J \cap C = (e)$, which is a contradiction.)

Hence H acts freely on Ω and all orbits are closed and isomorphic to \mathbb{R}^3 . We may assume that $J \cap C = \{(w, z) \mapsto (w + 2\pi i k, z) \mid k \in \mathbb{Z}\}$. This group acts freely and properly discontinuous on Ω and we can consider the quotient

$$\Omega = \{ \operatorname{Re} w + Q(z, \bar{z}) < 0 \} \xrightarrow{(e^w, z)} \{ 0 < |w|^2 e^{2Q(z, \bar{z})} < 1 \} = \Omega'.$$

Then there is an action of a group $S = SL_2(\mathbf{R})/J \cap C$ on Ω' and the group $J/J \cap C$ acts as rotations in the *w*-variable. Furthermore the *S*-action is free and all orbits are closed.

Now let (X_1, X_2, X_3) be a basis of the three-dimensional vector space of holomorphic vector fields induced by the S-action on Ω' . We take the exterior products $\sigma_1 = X_1 \wedge X_2$, $\sigma_2 = X_1 \wedge X_3$, $\sigma_3 = X_2 \wedge X_3$. The σ_i are sections in the anticanonical bundle $\det(T_{\mathcal{O}}^{1,0}\Omega') = \kappa^{-1}$ and generate an S-invariant subspace of $\Gamma_{\mathcal{O}}(\Omega', \kappa^{-1})$. For every point $p \in \Omega'$, there is σ_i such that $\sigma_i(p) \neq 0$. Hence we get an S-equivariant holomorphic mapping $\alpha : \Omega' \to \mathbf{P}_2(\mathbf{C})$ defined by

$$\alpha(p) = (\sigma_1(p) : \sigma_2(p) : \sigma_3(p)),$$

where the S-action on $\mathbf{P}_2(\mathbf{C})$ is given by the natural $S/C(S) \simeq PSL_2(\mathbf{R})$ -action which is of course projective-linear.

Since there is no $PSL_2(\mathbf{R})$ -fix-point in $\mathbf{P}_2(\mathbf{C})$ the map α cannot be trivial.

Hence the map α is either locally biholomorphic or the dimension of the fibers is one.

In the latter case, the restriction of α to every S-orbit is an S¹-principal Cauchy-Riemann bundle (see [5]) and this fact yields that there is an additional holomorphic S¹-action on Ω' which commutes with the S-action. Hence dim_{**R**} G = 4 and we get a

2-dimensional abelian subgroup of G containing J, i.e. by Lemma 3.1, $\Omega = \{\operatorname{Re} w + Q(|z|^2) < 0\}$ or $\Omega = \{\operatorname{Re} w + Q(\operatorname{Re} z) < 0\}$. In both cases, one can assume that $Q(z, \overline{z}) \geq 0$ for all $z \in \mathbb{C}$.

But then an automorphism of Ω' extends to an automorphism of $\Omega' \cup \{w = 0\}$ and we get an S-action on $\mathbb{C} \simeq \{w = 0\}$. This is impossible. So we have to consider the case where the map α is locally biholomorphic. By considering the $PSL_2(\mathbf{R})$ -invariant domains in \mathbf{P}_2 , with the property that all $PSL_2(\mathbf{R})$ -orbits are 3-dimensional, one sees that the image of Ω' by α is contained in a domain biholomorphic to $\Delta \times \Delta \setminus \text{Diag}(\Delta \times \Delta)$ with the diagonal $PSL_2(\mathbf{R})$ -action. (Here $\Delta = \{y \in \mathbf{C} \mid |y| < 1\}$).

Furthermore the associated map of S resp. $PSL_2(\mathbf{R})$ -orbits is injective, since they are 3-dimensional in a 2-dimensional complex manifold and α is locally biholomorphic.

So we have a locally biholomorphic, S-equivariant map

 $\tilde{\alpha}: \Omega' \to \Delta \times \Delta \setminus \text{Diag}(\Delta \times \Delta).$

Using the S-equivariance and the concrete description of $PSL_2(\mathbf{R})$ - orbits in $\Delta \times \Delta \setminus \text{Diag}(\Delta \times \Delta)$, one can see that this is impossible. The lemma is proved.

Lemma 5.8 Assume that $j \subset \mathfrak{h} \subset \mathcal{G}$ and that J is contained in a twodimensional subgroup of H. Then H is a finite covering of $SL_2(\mathbf{R})$ and $Q \sim P$, with $P(z, \overline{z}) = |z|^{2k}$, $k \geq 2$.

Proof: We assume that J is contained in a two dimensional subgroup of H. We are going to prove $Q \sim P$, with $P(z, \bar{z}) = |z|^{2k}$ directly. Then is follows that H is modulo a finite covering isomorphic to $SL_2(\mathbf{R})$, by an investigation of the automorphism group of {Re $w + |z|^{2k} < 0$ }.

By lemma 3.2, we have the two holomorphic vector fields $X = i \frac{\partial}{\partial w}$ and $Z = -2w \frac{\partial}{\partial w} - \frac{z}{k} \frac{\partial}{\partial z}$ induced by J and the group $\{(w, z) \mapsto (e^{2kt} \cdot w, e^t \cdot z) \mid t \in \mathbf{R}\}$. In view of structure of H there is a third holomorphic vector field Y induced by a one parameter subgroup of H such that

$$\begin{bmatrix} Z, X \end{bmatrix} = 2X \\ \begin{bmatrix} X, Y \end{bmatrix} = Z \\ \begin{bmatrix} Z, Y \end{bmatrix} = -2Y.$$

Furthermore $\langle \operatorname{Re} X, \operatorname{Re} Y, \operatorname{Re} Z \rangle_{\mathbf{R}}$ is the Lie algebra of real infinitesimal holomorphic transformations induced by H on Ω .

Now let $Y(w, z) = f(w, z)\frac{\partial}{\partial w} + g(w, z)\frac{\partial}{\partial z}$. Using the commutator relations we calculate f and g:

$$[X,Y] = [i\frac{\partial}{\partial w}, f\frac{\partial}{\partial w} + g\frac{\partial}{\partial z}]$$
$$= i\frac{\partial f}{\partial w}\frac{\partial}{\partial w} + i\frac{\partial g}{\partial w}\frac{\partial}{\partial z}$$
$$= -2w\frac{\partial}{\partial w} - \frac{z}{k}\frac{\partial}{\partial z} = Z$$

Hence
$$\frac{\partial f}{\partial w} = -2iw$$
, $\frac{\partial g}{\partial w} = -\frac{iz}{k}$ and so
 $f(w, z) = -iw^2 + f_1(z)$ and $g(w, z) = -\frac{izw}{k} + g_1(z)$.

Furthermore :

$$\begin{split} [Z,Y] &= \left[-2w\frac{\partial}{\partial w} - \frac{z}{k}\frac{\partial}{\partial z}, f\frac{\partial}{\partial w} + g\frac{\partial}{\partial z}\right] \\ &= -2w\frac{\partial f}{\partial w}\frac{\partial}{\partial w} - 2w\frac{\partial g}{\partial w}\frac{\partial}{\partial z} - \frac{z}{k}\frac{\partial f}{\partial z}\frac{\partial}{\partial w} \\ &- \frac{z}{k}\frac{\partial g}{\partial z}\frac{\partial}{\partial z} + 2f\frac{\partial}{\partial w} + \frac{g}{k}\frac{\partial}{\partial z} \\ &= -2f\frac{\partial}{\partial w} - 2g\frac{\partial}{\partial z} = -2Y. \end{split}$$

and therefore

$$-2f = -2w\frac{\partial f}{\partial w} + 2f - \frac{z}{k}\frac{\partial f}{\partial z}$$
$$-2g = -2w\frac{\partial g}{\partial w} - \frac{z}{k}\frac{\partial g}{\partial z} + \frac{g}{k}$$

and finally

$$4f = 2w\frac{\partial f}{\partial w} + \frac{z}{k}\frac{\partial f}{\partial z}, \ (2k+1)g = 2kw\frac{\partial g}{\partial w} + z\frac{\partial g}{\partial z}.$$

It follows that :

$$4(-iw^{2} + f_{1}(z)) = -4iw^{2} + \frac{z}{k}f'_{1}(z)$$

$$(2k+1)\left(-\frac{izw}{k} + g_{1}(z)\right) = -2izw - \frac{izw}{k} + zg'_{1}(z), \text{ i.e.}$$

 $4f_1(z) = \frac{z}{k}f_1'(z)$ and $(2k+1)g_1(z) = zg_1'(z)$, which implies

$$\begin{aligned} f_1(z) &= c \cdot z^{4k} \\ g_1(z) &= d \cdot z^{2k+1}, \quad c, d \in \mathbf{C}. \end{aligned}$$

The vector field Y is therefore given by

$$Y = (-iw^2 + cz^{4k})\frac{\partial}{\partial w} + (-\frac{izw}{k} + d \cdot z^{2k+1})\frac{\partial}{\partial z}.$$

In particular Y is a global holomorphic vector field on \mathbb{C}^2 and $\operatorname{Re} Y$ stabilizes the CR-hypersurface $M = \{\operatorname{Re} w + P_{2k}(z, \overline{z}) = 0\}$, which means that

$$(Y+\bar{Y})(\operatorname{Re} w+P_{2k}(z,\bar{z}))\mid_{M}\equiv 0.$$

We will compute this expression now :

$$\begin{split} (Y + \bar{Y})(\operatorname{Re} w + P_{2k}(z,\bar{z})) &= \frac{1}{2}(-iw^2 + cz^{4k}) + \frac{1}{2}(i\bar{w}^2 + \bar{c}\bar{z}^{4k}) \\ &+ (-\frac{izw}{k} + dz^{2k+1})\frac{\partial P_{2k}}{\partial z} + (\frac{i\bar{z}\bar{w}}{k} + \bar{d}\bar{z}^{2k+1})\frac{\partial P_{2k}}{\partial \bar{z}} \\ &= \frac{1}{2}(cz^{4k} + \bar{c}\bar{z}^{4k}) + \frac{1}{2}i(-(\operatorname{Re} w + i\operatorname{Im} w)^2 + (\operatorname{Re} w - i\operatorname{Im} w)^2) \\ &+ (dz^{2k+1}\frac{\partial P_{2k}}{\partial z} + \bar{d}\bar{z}^{2k+1}\frac{\partial P_{2k}}{\partial \bar{z}}) - \frac{iz}{k}(\operatorname{Re} w + i\operatorname{Im} w)\frac{\partial P_{2k}}{\partial z} \\ &+ \frac{i\bar{z}}{k}(\operatorname{Re} w - i\operatorname{Im} w)\frac{\partial P_{2k}}{\partial \bar{z}} \\ &= \frac{1}{2}(cz^{4k} + \bar{c}\bar{z}^{4k}) + (dz^{2k+1}\frac{\partial P_{2k}}{\partial z} + \bar{d}\bar{z}^{2k+1}\frac{\partial P_{2k}}{\partial \bar{z}}) \\ &+ (2\operatorname{Re} w\operatorname{Im} w + \frac{z}{k}\operatorname{Im} w\frac{\partial P_{2k}}{\partial z} + \frac{\bar{z}}{k}\operatorname{Im} w\frac{\partial P_{2k}}{\partial \bar{z}}) \\ &+ (-\frac{iz}{k}\operatorname{Re} w\frac{\partial P_{2k}}{\partial z} + \frac{i\bar{z}}{k}\operatorname{Re} w\frac{\partial P_{2k}}{\partial \bar{z}}). \end{split}$$

We put $\operatorname{Re} w = -P_{2k}$ and observe that P_{2k} being homogeneous implies that $P_{2k} = \frac{1}{2k} \left(z \frac{\partial P_{2k}}{\partial z} + \bar{z} \frac{\partial P_{2k}}{\partial \bar{z}} \right)$ to get that the expression

$$\frac{1}{2}(cz^{4k} + \bar{c}\bar{z}^{4k}) + (dz^{2k+1}\frac{\partial P_{2k}}{\partial z} + \bar{d}\bar{z}^{2k+1}\frac{\partial P_{2k}}{\partial \bar{z}}) + (\frac{iz}{k}P_{2k}\frac{\partial P_{2k}}{\partial z} - \frac{i\bar{z}}{k}P_{2k}\frac{\partial P_{2k}}{\partial \bar{z}}) = 0 \text{ for all } z \in \mathbb{C}.$$

We may assume that P_{2k} has no harmonic summands and reduce to

$$dz^{2k+1}\frac{\partial P_{2k}}{\partial z} + \bar{d}\bar{z}^{2k+1}\frac{\partial P_{2k}}{\partial \bar{z}} + \frac{iz}{k}\frac{\partial P_{2k}}{\partial z} \cdot P_{2k} - \frac{i\bar{z}}{k}\frac{\partial P_{2k}}{\partial \bar{z}}P_{2k} = 0,$$

for all $z \in \mathbf{C}$, with $P_{2k}(z, \overline{z}) = \sum_{j=1}^{2k-1} a_j z^j \overline{z}^{2k-j}$, $a_j = \overline{a_{2k-j}}$ and $k \ge 2$. If the constant d = 0, then it follows that

$$\bar{z}\frac{\partial P_{2k}}{\partial \bar{z}} = z\frac{\partial P_{2k}}{\partial z}$$
, which forces $P_{2k}(\bar{z}, \bar{z}) = a_k |z|^{2k}, a_k \in \mathbf{R}^{>0}$.

So assume that $d \neq 0$. Then we have

$$d \cdot \sum_{j=1}^{2k-1} j a_j z^{2k+j} \bar{z}^{2k-j} + \bar{d} \sum_{j=1}^{2k-1} a_j (2k-j) z^j \bar{z}^{4k-j}$$

$$+ \frac{2i}{k} \left[\left(\sum_{j=1}^{2k-1} a_j z^j \bar{z}^{2k-j} \right) \left(\sum_{j=1}^{2k-1} a_j (j-k) z^j \bar{z}^{2k-j} \right) \right]$$

$$= \bar{d} \sum_{j=1}^{2k-1} a_j (2k-j) z^j \bar{z}^{4k-j} + d \sum_{j=2k+1}^{4k-1} a_{j-2k} (j-2k) z^j \bar{z}^{4k-j}$$

$$+ \frac{2i}{k} \left[\sum_{j=2}^{4k-2} \left(\sum_{l+n=j} a_l a_n (n-k) \right) z^j \bar{z}^{k-j} \right] = 0 \text{ for all } z \in \mathbf{C}.$$

Let $\tau \in \{1, \ldots, k\}$ be the smallest number such that $a_{\tau} \neq 0$. Then our expression becomes

$$\begin{split} \bar{d} & \sum_{j=\tau}^{2k-\tau} a_j (2k-j) z^j \bar{z}^{4k-j} + d \sum_{j=2k+\tau}^{4k-\tau} a_{j-2k} (j-2k) z^j \bar{z}^{4k-j} \\ & + \frac{2i}{k} \Big[\sum_{j=2\tau}^{4k-2\tau} (\sum_{l+n=j} a_l a_n (n-k)) z^j \bar{z}^{4k-j} \Big] = 0. \end{split}$$

But then $a_{\tau} = 0$, which is a contradiction.

So we have that $\mathcal{P}(z, \overline{z}) = |z|^{2k}$, $k \ge 2$ and the lemma is proved.

Lemma 5.9 Assume that $\mathcal{G} = \mathfrak{h} \times r$, dim r = 1. Then $j \subset \mathfrak{h}$.

Proof: Assume that $\mathcal{G} = \mathfrak{h} \times r$ and $j \not\subset \mathfrak{h}$. In view of lemma 5.3, we have $j \neq r$. Let $\pi : \mathcal{G} \to \mathfrak{h}$ be the projection of \mathcal{G} onto h with kernel r. Again in view of lemma 5.3, we have that $\pi(j)$ is the Lie algebra of a maximal compact subgroup of $SL_2(\mathbf{R})$. Let L be the two-dimensional subgroup of G whose Lie algebra l is generated by r and $\pi(j)$. It is clear that L is a two-dimensional Lie group containing J and the center C of G. Therefore $L = S^1 \times \mathbf{R}$, since otherwise $G = SL_2(\tilde{\mathbf{R}}) \times \mathbf{R}$, which is impossible. Hence $\Omega = \{\operatorname{Re} w + Q(|z|^2) < 0\}$, where we may assume that $Q(|z|^2) \geq 0$ for all $z \in \mathbf{C}$. The action of the connected component of C^0 the center of G is given by

$$(w, z) \mapsto (w + it, e^{i\rho t} \cdot z), t \in \mathbf{R}, \rho \in \mathbf{R}^*$$
 fixed.

We consider the function $(w, z) \xrightarrow{f} z \cdot e^{-\rho w} \in \mathbf{C}$, which is invariant under this action. We have

$$|z \cdot e^{-\rho w}|^2 = |z|^2 \cdot e^{-\rho^2 \operatorname{Re} w} \ge |z|^2 e^{\rho^2 Q(|z|^2)}.$$

The expression on the right side tends to $+\infty$ when $|z| \to +\infty$ and the image of f is S^1 -invariant. Hence $f : \Omega \to \mathbf{C}$ is surjective and has maximal rank everywhere. Hence we get an G/C^0 action on **C** which is impossible. The lemma is proved.

- **Remark 5.10** a) The automorphism group of a domain $\Omega = \{\operatorname{Re} w + |z|^{2k} < 0\}, k \geq 2$ is a product $S \cdot S^1$, where S is modulo a finite group isomorphic to $SL_2(\mathbf{R})$ and S^1 is a central one-dimensional group. Hence G is four-dimensional.
 - b) In the case dim_{**R**} G = 3 the lemmas 5.3 to 5.9 prove theorem 1 and theorem 2.
 - c) We mention that from now on we may assume that G is solvable since the non-solvable case is completely handled by the lemmas 5.2 to 5.9.

6 The case $\dim_{\mathbf{R}} G \ge 4$

Lemma 6.1 Let $\Omega = \{\operatorname{Re} w + Q(z, \overline{z}) < 0\}$ and assume that $G = \operatorname{Aut}_{\mathcal{O}}^{0}(\Omega)$ is solvable. Then dim_{**R**} $G \leq 3$.

Proof: We assume that $\dim_{\mathbf{R}} G \ge 4$ and that Ω is not homogeneous. So we have that $\dim G = 4$ or 5, since the highest dimensional compact subgroup of G is $(S^1)^2$.

Let $N \subset G$ be the largest nilpotent normal connected subgroup of G. Clearly, N contains $(G')^0$, the connected component of the commutator G' of G.

We first show that $\dim_{\mathbf{R}} N \leq 3$. Assume the contrary, i.e. $\dim N \geq 4$. Then the maximal compact subgroup of N is not trivial, i.e. isomorphic to S^1 or $(S^1)^2$. But compact subgroups of nilpotent Lie groups are always central, in view of the bijectivity of the exponential map. Then N as a subgroup of G doesnot act effectively, a contradiction. So $\dim_{\mathbf{R}} N \leq 3$. So we have to consider three cases :

- i) $n = h_3$ the three-dimensional Heisenberg algebra;
- ii) dim N = 2 and N is abelian ;
- iii) dim N = 1.

Cas i) : $n = h_3$. By similar arguments as above and using the fact that all maximal compact subgroups are conjugate one sees that N is simply connected. Hence all N and therefore all G-orbits in Ω are closed CR-hypersurfaces isomorphic to \mathbf{R}^3 . Using the results of [4], [7], it is not hard to check that a simply connected hyperbolic Stein manifold acted on by H_3 is biholomorphic to the ball; this contradicts our assumption. Cas ii) : dim_{**R**} N = 2 and N is abelian.

If $J \not\subset N$ then J and N generate a three-dimensional solvable group. Using the lemmas of Section V, we see that G cannot be solvable and of dimension four or greater, if Ω is not homogeneous.

So we have $J \subset N$ and we can find a 3-dimensional solvable group containing J. Using again the lemmas of Section V we conclude like above.

Case iii): $\dim_{\mathbf{R}} N = 1$. Then either J = N or J and N generate a two dimensional abelian group. In both cases we can take the complex-analytic quotient of Ω by N, which is either the upper half plane or \mathbf{C} . But G/N is at least 3-dimensional and abelian. This is impossible.

Remark 6.2 Using the same methods as above it can be shown that the number of connected components of $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ is always finite.

Acknowlegdments : This paper was motivated by a result of F. Berteloot and G. Cœuré[1]. I would like to thank both for their interest and useful discussions. My thanks are also due to R. Bérat for the IAT_{FX} -typeset.

Bibliographie

- Berteloot, F. et Cœuré G., Domaines de C², pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes, Ann. Inst. Fourier Grenoble 41 (1), (1991), pp. 77-86.
- [2] Jacobson, N., Lie algebras. Wiley & Sons, 1962.
- [3] Kobayashi, S., Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, Inc., New York (1970).
- [4] Oeljeklaus, K., Une remarque sur le groupe des automorphismes holomorphes de domaines tubes dans Cⁿ, C.R.A.S. 312 (I), (1991), pp. 967-968.
- [5] Richthofer, W., Homogene CR-Mannigfaltigkeiten, Dissertation Bochum (1985).

K. OLJEKLAUS

- [6] Rosay, J.P., Sur une caractérisation de la boule parmi les domaines de Cⁿ par son groupe d'automorphismes, Ann. Inst. Fourier Grenoble, 29 (4), (1979), pp. 91-97.
- [7] Yang, P., Geometry of Tube Domains. Proc. Symp. Pure Math. 41 (1984), AMS Providence, Rhode Island, pp. 277-283.

Karl Oeljeklaus Université des Sciences et Technologies de Lille U.R.A. 751 "GAT" associée au CNRS UFR de Mathématiques Pures et Appliquées F-59655 - Villeneuve d'Ascq Cedex (France) New address (after the 1.10.1993) : U.F.R. de Mathématiques, Informatiques et Mécanique Université de Provence (Aix-Marseille I) 3, place Victor Hugo F-13331 - Marseille Cedex (France)