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0. Introduction

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a
systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the
viewpoint of uniform estimates and by means of integral formulas. For this study we have
to solve the Cauchy-Riemann equation with uniform estimates on g-convex and g-concave
wedges in C™ (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le]
is devoted to ¢-convex wedges, here we study ¢g-concave wedges.

The main result of the present paper can be formulated as follows. Let G C C™ be a

domain, ¢ an integer with 1 < ¢ < n—1, and ¢,... , N a collection of real C? functions
on G satisfying the following three conditions :
() E:={z€G:p1(x) = = pn(z) =0} # 0 ;
(ii) dp1(2) A\ ---ANdpn(z) #0forall z € G ;
(iii) If A=()1,..., An)is a collection of non-negative real numbers with A\;+- - -+Ay =1,

then, at all points in G, the Levi form of the function
Apr+ -+ ANON

has at least ¢+1 positive eigenvalues.
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C. LAURENT-THIEBAUT, J. LEITERER

Set

N

D=(){z€G: pi(z) >0} ©.1)
ij=1

and

N

2=|J{z€G: pi(z)>0}. 0.2)
=1

Further, for £ € C™ and R > 0, we denote by Bgr(£) the open ball of radius R in
C™ centered at £. Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following
0.1. THEOREM. — For each point € € F there exists a radius R > 0 such that :

(a) If g—N > 0, then each holomorphic function on D extends holomorphically to
DU Br() ;

(b) If g—N > 1 and f is a continuous §-closed (n,r)-form with 1 < r < ¢—N on D,
then there exists a continuous (n,r—1)-form u on D N Bgr(€) with
Ou=f on DN Bg(). 0.3)
Moreover if, for some § with 0 < 8 < 1, f satisfies the estimate
[ £ < Wist¢,0D)~#, (€D, 0.4)

then the solution u of (0.3) can be given by an explicit integral operator and, for all
€ > 0, there is a constant C, > 0 (independent of f) such that :

If0 < B < 1/2, then u is Holder continuous with exponent 1/2—f—¢ on
D N Bgr(§) and

I lh2-p-c B < Ce 3Bl | distc, OD)P, ©5)

where || - III/Z—ﬁ—s DaBn@ 15 the Holder norm with exponent 1/2—p—¢€ on D N Bg(£).
If1/2< B8 < 1, then

sup || u(z) | [dist(z, 8D)1P~1/?* < C. sup|| £(¢) ||[dist(C,0D))° . (0.6)
2€D (€D

Note that the radius R and the constant C, in Theorem 0.1 depend continuously on
®1,--- ,N With respect to the C? topology.

Theorem 0.1 implies the following corollary for the domain 2 defined by (0.2) :
0.2. COROLLARY. — For each point £ € E there exists a radius R > 0 such
that :

(i) If ¢ 2 1, then each holomorphic function on 2 extends holomorphically to
2U Bg() ;

(ii) If ¢ > 2 and f is a continuous O-closed (n, r)-form with 1 < r €< q—1 on £, then
there is a continuous (n,r—1)-form u on N B,.(§) with

du=f on NNB.¢). ©.7)
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UNIFORM ESTIMATES FOR THE CR EQUATION ON gq-CONCAVE WEDGES

It is easy to see that, for » = 1, estimates (0.5) and (0.6) (with £2 instead of D) hold
also in this corollary. We do not know whether this is true for r > 2.

For the smooth case (N = 1) Theorem 0.1 was obtained by Lieb [Li]. We prove
Theorem 0.1 by means of integral formulas which are obtained combining the construction of
Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the
proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding
proof in the g-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an
idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that
in the survey article [He] of Henkin a global result, corresponding to the important special
case § =0, ¢ = ; of Theorem 0.1 is formulated (see [He] th. 8-12 d)).

Finally we want to compare our results with the work [G] of Grauert. He studied
domains of type (2 defined by (0.2), where instead of condition (iii) the following stronger
hypothesis is used :

(iii)’ There is a fixed (¢+1)-dimensional subspace T" of C" such that, forall j =1,... ,N
and z € G, the Levi form ¢; is positive definite on 7.

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the
conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 :
we can solve du = f only on the smaller set 2N B, (€) if f is given on 2, whereas Grauert
proves the existence of a basis of Stein neighborhoods U of £ such that, if f is given on
2N U, the equation du = f can be solved on the same set 2 N U. In the smooth case
(N =1) such a solution without shrinking of the domain is possible also with estimates as
in Theorem 0.1 (see Theorem 14.1 in [He/Le 2]). On the other hand, it is not clear whether
one can solve (even without estimates) the J-equation without shrinking of the domain in
the situation of Theorem 0.1 if N > 2. Note also that the statement of Theorem 0.1 under
the stronger condition (iii)’ and without estimates and with shrinking of the domain can be
obtained also from Satz 1 in [G].

1. Preliminaries

1.1. — For z € C* we denote by zy,... , z, the canonical complex coordinates of
z. We write (z,w) = zyw; +- -+ + zpw,, and |z| = (2,2)1/2 for z,w € C™.

1.2. — Let M be a closed real C! submanifold of a domain 2 C C", and let
¢ € M. Then we denote by ch(M ) the complex, and by Tc" (M) the real tangent space of
M at . We identify these spaces with subspaces of C" as follows : if py,... ,pn are real
C! functions in a neighborhood U, of ¢ such that M NU = {p; = --- = py =0} and
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dp1(Q) A --- Adpn(Q) # O, then

TEM) = {tecC": za”’(o t, =0 for j=1,...,n}

0Cy
and
TEM) = {teC: %xy(t):o for j=1,...,n},
v=1 v
where z;,... , za, are the real coordinates on C" with ¢, = z,({)+iz,.,(t) for t € C* and
v=1,...,n.

1.3. — Let £2 C C™ be a domain and p a real C? function on £2. Then we denote
by L,(¢) the Levi form of p at { € £2, and by F,(-,() the Levi polynomial of p at ¢ € £2,
ie.

— 3%p(0) 7
Lo(Ot = Tt
Q) ;1 %z, 00"

(ef, teC? and

2
Fylz,0) = 228”(0 Z gcﬁ'(?? )G — )

¢ € 2, z € C™ Recall that by Taylor’s theorem (see, e.g., Lemma 1.4.13 in [He/Le 1])
Re Fj(z,0) = p(0) = p(2) + Ly((N¢—2) +o(¢~2*) . 1.1

1.4.— LetJ = (J1,...,J2), 1 £ £ < oo, be an ordered collection of elements in
N U {*}. Then we write |J| = £, J(D?) = (J1,..- ,Ju—1,Jv+1,--- ,Je) for v = 1,... £, and
jeJifje{sn,...,d}

1.5.— Let N > 1 be an integer. Then we denote by P(NV) the set of all ordered
collections K = (ky,... ,ks), £ > 1, of integers with 1 < ky,... , k¢ < N, and by P(N, %)
the set of all ordered collections K = (ky,...,ks), £ 2 1 such that either K € P(N) or
forave{l,...,£}, k, =+ and K(P) € P(N) as well as K = (). We call P/(N) the
subset of all K = (ky,...,ks)EP(N) with k; < --- < k, and P'(N,*) the subset of all
K = (ky,... ,ke) where either K € P'(N)or 1 < ky < --- < kg1 < N and &k, = %, i.e.
Ky € P'(N)and K = Kiy*, as well as K = (x).

1.6. — Let J = (j1,...,J2), 1 £ £ < oo, be an ordered collection of integers
with 0 < j; < --- < j,. Then we denote by Ay (or 4;,...;,) the simplex of all sequences
{Aj }520 of numbers 0 < A; < 1 such that A; = 0if j ¢ J and X'A; = 1. We orient A;
by the form dAj, A---Ad);, if £2> 2, and by +1 if £ = 1.

Further Aj. (or Aj,...;,«) will be the simplex of all sequences { A; }52o U { A+ } of
00
numbers 0 < A; € 1,0< A\ < 1such that \; =0if j ¢ J and ) X;+\, = 1. We orient
j=0
Aj, by the form dXj, A --- AdXj, Ad,.
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UNIFORM ESTIMATES FOR THE CR EQUATION ON q-CONCAVE WEDGES

We set also Ay = 0.

1.7. — We denote by )°( a fixed C* function
x: [0,11— [0,1]
with ¥ A) =0if0< A< 1/4and y W)=1if 1/2< A< 1.

1.8.— Let N > 1 be an integer and K = (ky,... ,ks) € P'(N,*). Then, for
()
A € Aok with Ag # 1, we denote by A the point in Ax defined by

0 ’\ku _
Ap, = =" w=1,..,0

and for A € Ak, with A\, # 1, we set :\ the point in A defined by

o=k =1,....0 .

1-A,
()
If A\ € Aok with Ag # 1 we set A\, = l—_’\_”‘x; and if moreover \, # 1 we define

0%
A€ Ak by

0% ’\k

A, = v

BT

1.9.— Let D CC C" be a domain. D will be called a C* intersection,
k = 1,2,... 00, if there exist a neighborhood Uz of D and a finite number of real
C* functions p;,... ,pn, p. in a neighborhood of U such that

D={zeUp:pij(z) <0 for j=1,... N,*}
and
dpr, ()N --- Ndpp (2) #0

for all (ky,... ,k¢) € P'(N,x) and z € D with pi,(2) = - -+ = p,(2) = 0. In this case,
the collection (U, p1, - .. , pn, p+) Will be called a C* frame for D.

1.10. — Let D cC C" be a C! intersection and (Ug, p1,... , pN, p) @ frame for
D. Then, for K = (ky,...,ks) € P(N,*), we set

Sk ={z€0D: pp(2) =---=pp,(2) =0}
if ky,... , k. are different in pairs, and
Sk =0

otherwise. We orient the manifolds Sk so that the orientation is skew symmetric in
k1,..., ke, and

N
8D =Y _S;+S. (1.2)

i=1
and
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N
0Sk =ZSKj+SK* (1.3)

i=1
for all K € P(N, *).

1.11. — Let f be a differential form on a domain D C CV. Then we denote by
[|f(2)]], z € D, the Riemannian norm of f at z (see, e.g., Sect. 0.4 in [He/Le 2]).

1.12. — If M is an oriented real C! manifold and f is a differential form of maximal
degree, then we denote by |f| the absolute value of f (see, e.g., Sect. 0.3 in [He/Le 2]).

1.13. — Let D CC C™ be a domain. Then we shall use the following spaces and
norms of differential forms :

CY%(D) is the set of continuous forms on D. Set
1o = lIfllo,p = sugllf(z)ll (1.4)
z€

for f € CX(D).
C2(D), 0 € a < 1, is the set of forms f € C%(D) whose coefficients admit a
continuous extension to D which are, if & > 0, even Hélder continuous with exponent o

on D. Set
| f(2)— Q|

15
=z 1)

Iflle = Iflle,p = [Ifllo,p + sup
z,.(:(D

for0< a < 1and f € C2(D).
Bf (D), B > 0, is the set of forms f € C%(D) such that, for some constant C > 0,
| )| <€ Cldist(z,6D)", zeD,
where dist(z, D) is the Euclidean distance between z and 8D. Set
17115 = 1fll-p.0 = sup || £ [dist(z, 9D))° (1.6)

for > 0 and f € BE(D).
If A, (D) is the space of forms of bidegree (p,) on D, then we set
Cy (D) = CAD)N A, (D),

(D) c*D)n Ap (D),
Bﬁ (D) = BX(D)n 4, (D),
C? (D) = UogrnC (D),
* (D) = Uogr<n Gy (D),
? (D) = Uogr<n BE (D).

and
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2. Local g-concave wedges

In this section n and q are fixed integers with 0 < ¢ < n—1. Denote by M O(n, q)
the complex manifold of all complex n x n-matrices which define an orthogonal projection
from C™ onto some ¢-dimensional subspace of C™.

2.1. DEFINITION. — A collection (U,py,...,pn) will be called a g¢-
configuration in C* if U C C" is a convex domain, and pi,... ,pn are real C* func-
tions on U satisfying the following conditions :

(i) {zeU:p(2)=---=pn(z) =0} #0;
(ii) dpr(z2)A---Ndpn(z) #0forall z € U ;
(iii) If X € A;...n (see Sect. 1.6) and
pri=Ap1+-+ANPN

then the Levi form L,, (z) (see Sect. 1.3) has at least ¢+1 positive eigenvalues.

2.2. DEFINITION. — A local q-concave wedge (E,D), 0 € ¢ € n—1, is a C*

intersection D such that one can find a frame (Ug, p1,... ,pN, p«) (see Sect. 1.9) with
E={zeUg: p(2) =--- = pn(2) = 0,p.(z) < 0} satisfying
(i) if K = (ky,... ,k¢) € P'(N) and Ug ={z e Up: pr,(z) = - = pr,(2) } then
dpr,(2) A --- Ndpy,(2) # 0 for all z € UE ;
(i) p. is convex and if UX* = {z € Up: pr,(2) = -+ = pr,(2) = pu(2)} then

dpr,(2) A -+ Adpr,(2) Adpa(2) # 0 for all z € U™ ;

(iii) there exist a C*™ map Q: A;..n — MO(n,n—q—1) and constants o, A > 0 such
that

—Re F,,(2,0) 2 pa(2) — pa(Q) + al¢—z* — A|Q)(—2)
forall A € A,..5 and Z,C € UE'
2.3. LEMMA. — Let (U, ¢1,... ,oN) be a q-configuration in C*, 0 < ¢ < n—1.

Then for each £ € U with p1(§) = --- = pn(£) = 0, there exists a number R¢ > 0 such
that for all R with 0 < R < Rg, if

D={zeU:9j(z)>0,j=1,..., N}n{zeC":|z—€| < R}
E={zeU:p(z)=--=pn(z) =0}n{ze€C":|z—€| < R}

and

then (E, D) is a local ¢-concave wedge.

IfUz={z€C":|z—€| < R¢},pj = —pjforj =1,... N, pi(z) = |2—E*— R?
then (U, p1,-.. , PN, ps) Is a frame for D.

Proof. — 1t is sufficient to repeat the proof of Lemma 2.4 in [L-T/Le] using
—pxr = —(A1p1 + -+ ANpN) = A1 + -+ + A at the place of p%. m
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2.4. DEFINITION. — We shall say that a local ¢g-concave wedge (E, D) is defined
by a g-configuration if there exists a frame (U, p1,...,pn,ps) for (E,D) such that
(Up,—p1,-.. ,—pn) is a g-configuration.

2.5. Remark. — It is easy to see, using Lemma 2.3 and Lemma 2.2 in [L-T/Le],
that if £ € C™ is a fixed point and ¢,... ,x are real C* functions in a neighborhood V
of £ such that the following conditions are fulfilled
(i) dp1(E) A ---ANdpn(€) #0;
(i) &) =---=pn()=0;
(iii) setY; = {z€ V:pj(z) =0} for j =1,... ,N and o) = A1 +---+ Anon for
A € Aj..N, then for all K = (ky,... ,k;) € P'(N) and X € Ag (see sects 1.5 and

1.6), the Levi form L, (§) restricted to Tg:(Y;,l N---NYg,) (see Sect. 1.2) has at
least

dime TE(Yi, N+ NYi,)—n+q+1

negative eigenvalues ;

then there exists a number R; > 0 such that, for all R with 0 < R < R, (E, D), where
E=Y1n---nYyN{zeC:|z—{| < R}and D = {z€ V:pj(z) <0}n{z e
C":|z—&| < R}, is a local ¢g-concave wedge defined by a ¢ configuration.

2.6. Remark. — Tt is clear that in the case of a local ¢g-concave wedge defined by
a g-configuration we can choose the constant « of Definition 2.2 (iii) such that for each
A € Ay..N, z € Up, the Levi form L, () of 5x(¢) = pa(Q) — pa(2) + %l(—zl2 has at least
(¢+1) negative eigenvalues on Up.

3. A Leray map for local ¢g-concave wedges

Let D CC C” be a C? intersection, (Up,p1,--- PN, ps) a frame for D, and let Sk
be the corresponding manifolds introduced in Sect. 1.10.

3.1. DEFINITION. — A Leray map for D or, more precisely, for the frame
(Ug,p1,--+ , PN, px) is a map ¢ which attaches to each K € P'(N,+) a C"-valued map
Y (2,60 = (¥k(2,0,0), .., ¥k(2,(,N)
defined for (z,{,\) € D x Sg x Ag such that (Yx(z,(,A),{—2) = 1.
Now let (E/, D) be a local g-concave wedge and (U, p1, ... , PN, p«) the associated
frame.

Since p, is a convex function, if we set

0p.
©,- 1560

ap.
0G

() = 2(

158


ftp://ftp.t

UNIFORM ESTIMATES FOR THE CR EQUATION ON q-CONCAVE WEDGES

for ¢ € U and
¥"(z,0) = (w*((),(—2)

for (z,¢) € C* x Uy, then there exists ¢,y > 0 such that
Re%*(2,0) 2 pu(Q) — pal2) + 7I¢—2 (3.1)
for all (z,¢) € C* x U with |(—z| < ¢
It follows that *(z,({) # O for all (2,{) € D x S..

Since py,... , pn are defined and of class C? in a neighborhood of Uﬁ, we can find
C* functions a¥ (v =1,... ,N; k,j =1,...,n) on U such that

] azpv(C) a
kicey— —_
a,’(¢) 36100,

for all ¢ € Ug;, where « is as in Definition 2.2.

Set px = Mip1 +---+ Anpy and @ = Aja¥ +...+ Aya}i for A € Ay..y. Then

0Ck0G;
forall ( € Us,t € C™ and X € A;..n. Set

n A vl
PACGE Oox (C))tkt,-|< = 32)
k,j=1

n

Fou(2,0) = 226” 2(G—z) = Y A OG—2)G—2)

kj=1
for (2,(,A) € C" x Uz x Aj..n. Then it follows from (3.2) and condition (iii) in
Definition 2.2 that

—Re P, (2,0) = pa(2) — pa(0) + %|c—z|2 — AlQOX(¢-2)]2 (33)

for all (2,¢, ) € Uy x U % Ay..N.
Denote by Q;()) the entires of the matrix Q(}), i.e.

QW) = (Qk;N);;-; (k= column index ).
If (2,(,A) € C* x Uy x Ap...n, then we set

n

vi(2,¢,)) = g’é* © =Y a¥ G~z — A Qe ONCe—2zx)
J k=1 k=1 (3_4)
v=>,...,v")

= (U(Z:C) ’\); C—Z)

Since Q(X) is an orthogonal projection, we have

@(2,¢, ) = F,,(2,0) — A|QO)(¢—2) (3.5)
for all (z,(, ) € C* x Uz x Ay...n and it follows from estimates (3.3) that
—Re(z,6,0) > pa(2) = pA(O + 51—z (3.6)
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for all (2,(,A) € U x U x Ar..N.
Now we set for (z,(,A) € Uz x C* x Ay..N.
w(z,(,)) =v((,z, /\)}
¥(z,(,A) = p((, 2, )

It follows from estimate (3.6) that ¥(z,(, ) # 0 if (2,{,A) € D x Sk x Ak for
some K € P'(N).

Therefore, by setting

3.7

w6,
Y(2,(,A) = 'm (3.8)
for (z,{,A) € D x Sk x Ag,K € P/(N) and
" . ;‘
Yre(5,C,N) =% (A )¢,((Cz)+(1—x(w)%’—3 (3.9)
¥z, ¢, N

for (Z,C,A) (S D x SK* X AK*, K (S Pl(N), we obtain a famlly ’(/) = {¢K:¢K* }KGPI(N)
of C"-valued C! maps. Obviously, % is a Leray map for the frame Ug,p1,... PN, po)-

3.2. DEFINITION. — A map f defined on some complex manifold X will be called
k-holomorphic if, for each point £ € X, there exist holomorphic coordinates h;,... ,h, in
a neighborhood of £ such that f is holomorphic with sespect to hy,... , hg.

We deduce immediately from (3.4), (3.7) and Lemma 3.3 in [L-T/Le] that :

3.3. LEMMA. — For every fixed (z,A) € U X A1...N the map w(z,(,A) and
the function v(z,(,A) are (g+1)-holomorphic in { € C™.

4. An integral formula in local ¢-concave wedges

We denote by ﬁ(z, ¢) the Martinelli-Bochner kernel for (n, r)-forms, i.e.
1 n—1
—t
-~ ¢-z -z
B(z,{) = ————det ,d ANdzy A -~ Ndz,
= Gy (!c =P )

for all z,{ € C™ with z # { (for the definition of determinants of matrices of differential
forms, see, e.g., Sect. 0.7 in [He/Le 2]). If D CC C" is a domain and f is a continuous
differential form with integrable coefficients on D, then we set

mﬁ@hiADﬂOA&ao,zeD
€

(for the definition of integration with respect to a part of the variables, see, e.g., Sect. 0.2
in [He/Le 2)).
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Let D CC C™ be a C? intersection, Up,p1,---,pN,p.) a frame for D, and let Sk
be the corresponding manifolds introduced in Sect. 1.10.

Further, let ¢ be a Leray map for the frame (Ug, p1,... , pn, p«). Then we set

7 \
Yor(2,6, 0 =% Qag—g + (1= X 00 (2.6 ) @D
for K € P'(N,*) and (2,{,)\) € D x Sk x Aok. Note that 1— )°( (Xo) = O for A in the
neighborhood Aok Aok of Ag and therefore ok is of class C2. For K € P'(N, ) we
introduce the differential form

1 n—1

det (ZbOK(Z,Ca N), dpox(z,¢, /\3) Adzy A---ANdzy

(-1
@iy

defined for (z,{,\) € D x Sk X Aok, and the differential form

RY(2,¢, N =

1 n—1
det (;!)K(zac,/\S;,d"/)K(zyc,Ai) A dZ] JANREEAN dzn

1
Qri)*

LY (2,¢,0) =

defined for (z,{,A) € D x Sk x Ak (here d denotes the exterior differential operator with
respect to all variables z,(, \). If f is a continuous differential form on D, then, for all
K € P'(N,x*), we set

RY f(z) = / FOARY N, zeD,

and (€, NESk XAok

LY f(2) = / FOATLG Y, zeD.

(€, NESK XAk

Then, for each continuous (n, r)-form f on D, 0 < r < n, such that df is also continuous
on D, one has the representation

(~1""f =dBpf—Bpdi+ 3 (Lkf+dR%f - Rydr)
KeP/(N)

+ 3 (L;{ﬁme?ﬁf—Rﬁ*df) on D.
KeP/(N)ud

42)

This formula is basic for the present paper. It has different names and a long history
(see Proposition 1.3.1 in [Ai/He], Sect. 3.12 in [He/Le 2] and the notes at the end of ch. 4
in [He/Le 1], we call it Cauchy-Fantappie formula.

4.1. Cauchy-Fantappie formula for a local ¢-concave wedge. — Let (F,D)be a
local g-concave wedge, 0 < ¢ < n—1, (Up, p1,... , PN, px) the associated frame satisfying
conditions (i), (ii) and (iii) in Definition 2.2 and ¢ the Leray map constructed in Section 3
for the frame (U, p1, ... , PN, ps).
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We set
T =Bp+ Y Rt+ Y. R,
KeP!(N) KeP/(N)ul
— ¥
and L= 3 Lg+ > Lk
KeP/(N) KeP!(N)ul
= > L.
KeP/(N)yue

With this notation, for each continuous (n, r)-form f on D, 0 < r < n, such that df
is also continuous on D, (4.2) can be written

D) f=dT¥f—T%df +L¥f on D. 4.3)

4.1.1. THEOREM. — If0 < r < q—N, for each continuous (n,r)-form f on D
such that df is also continuous on D

()" f=dT¥f - T¥df +L¥f on D .

Proof. — In view of the Cauchy-Fantappie formula (4.3) it is sufficient to prove
that for 0 < r < ¢—N, K € P'(N), L% f =0.

Let us denote by [L¥ ]y, 7., the part of the form L} which is of type (0, k) in (.
Then, by Lemma 3.3, [L ]y, 7_;, = O for K € P'(N) and k > n—q.

Since f is of type (n,r), dimAg = |K|-1, dimSkg = 2n—|K| and |[K| < N we
obtain, by definition of L% f, that LY. f =0 for 0< r < g—N and K € P/(N). m

4.1.2. Remark. — In fact we can prove that, for K € P'(N), L}/’(f = 0 if
r < ¢—|K]|.

4.2. The manifolds I'x. — As we want to obtain an integral formula for forms
which are not necessarily defined on D, we are going to replace the integrals over the
manifolds Sk in (4.2) by integrals over certain submanifolds I'x of D.

For K = (ky,... ,ks) € P(N,*) we set
UE ={¢eUp: p(Q =" =m0}

if ky,...,k, are different in pairs, and U-g = @ otherwise. By conditions (i) and (ii) in
Definition 2.2 each Ug is a closed C? submanifold of Uz. We denote by px, K € P(N, *),
the function on Ug which is defined by

pr@Q) =p, () CeUfv=1,...,9.
Now, for all K € P(N, x), we define

Tk ={CeUF: pi(Q) < pr(Q) <0 for j=1,...,N,+}.
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Then it is easy to see that all I'x are C? submanifolds of D with piecewise C° boundary,
and that
E:F]U'--UFNUI',.

and
Ok =Sxg UTk1U---UT'gknUTk., K€ P(N).

We choose the orientation on I'x such that the orientation is skew symmetric in the

components of K, and the following conditions hold :
I,...,I'y, T, carry the orientation of C", and if }

KeP(N,*)and 1<j< N with x¢ K, resp. j ¢ K, then
T'k«, tesp. I'i; are oriented just as -OI'k
As in [L-T/Le], we obtain the following lemmas :

4.2.1. LEMMA. — IfI'y are the above manifolds, then
N
oIk :SK_ZFKj — I'kx
i=1

for all K € P(N,=*).

4.2.2. LEMMA. — If 'k are the above manifolds and Ag, Aok are oriented
simplices introduced in Sect. 1.6, then

> )ElaTK x Aok) =

K€eP/(N,*)
Dxao+ Y, (D¥lsgxAoxk— Y TkxAkx. (44)
KEeP!(N,x) K€EP!(N,*)
Z Tk x Ag) = Z Sk x Ak 4.5)
KeP/(N,*) KeP/(N,*)

and

Y, Tk xAg)= Y SksxAgat+ D, TkuxAx. (46)

KeP/(N)u@ KeP/(N)ud KeP/(N)

4.3.The operators L and M. — Let w*(z,(), ¥*(z,(), w(z,(,A) and ¥(z,(, )
be the maps defined in paragraph 3. We set

*(2,Q) = ¢*(2,0) = 20.(() for (2,{) e C" x Uy
¢(Z)C)A) = "/’(Z;C,/\)"’ZP,\(O for (Z,Ca’\) (S C" x Uﬁ X AIN

Then it follows from (3.1), (3.6) and (3.7) that &*(z,¢) # O for (z,¢) € D x D and
&(z,(,\) #0for (2,(,A) € D x D x Ay..n.

So we can define the C? maps

and

’ &(z,(, )
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for all (z,¢,)\) € D x D x Ak, K € P'(N,*). Notice that Pk (z,(, ) = ¥k (z,(, \) when
(z,{,A)€ D x Sg x Ag.

We set for (z,{,)\) € D x D x Ak
1 n—1

det <sz(z,<,AS,&zzK(z,g,A3) Adzy A~ Adz,

Loz, 0 =

1
Qin)
and one has f}"} = i}p( on D x Sk x Ag.

We set also for (z,¢,\) € D x D x Ag

= 1 ’-’_"‘_
Mit (2,6, %) = o det (dz/;K(z,C,/\)) Adzy A+ Ndzy .

4.3.1. Remark. — It comes from the properties of determinants that if X € P'(N)

1 n-—1

1 d ), d A
m et | w(z,(, ), dw(z,(,A)

for (z,¢,)) € D x D x Ak, where w(z,(,A) is (¢+1)-holomorphic in ¢.
Now let us define the operators L, L*, M and M* on CJ (D),0 < r < n, by

Loz, 0 =

Lf(s) = / FOALLG N, zeD
KeP/(N,*) (el XAk
L*f(z) = ] FOALE (¢, zeD
KeP'(Nyup Y CETrxx A gex
Mf(z) = / f(C)/\MK(zC A), ze€eD
KGP’(N *) (€T XAk
M*f(2) = / f(o/\M;ﬁ,,(z ¢\, z€D
KGP'(N)UO C€lraxArcx
for f € C3 (D).

For f € C3 (D), the forms Lf, L* f, M f and M* f are continuous on D.

4.3.2. LEMMA. — Let f be a continuous (n,r)-form on D. If we set

me= > [ fOAGENeD,

KeP!(N)U® Kx XAk

then Af =0 when0 < r < ¢g—N.

Proof. — By remark 4.3.1, [L ]de T=k = =0for K € P/(N) and k > n—gq. Using
that dim 'k, = 2n—|K|and |K| < N, the result follows easily from the definition of A. W
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4.3.3. PROPOSITION. — Let f be a continuous (n,r)-form on D such that df
is also continuous on D, then

L¥f= > Lkf=Ldf—dLf+(-1y*""Mf
KeP!(N,x)
and, if0< r € ¢—N
L¥f= Y, Lif=Ldf—dLl*f+(-1y"M"f.

KeP!(N)u®

Proof, — As ’I\,}/i, = f}’} on D x Sk x Ak, we have for z € D
> = > FOATEE N -
(ESKk XAk

KeP!(N,x) KEP’(N *)
Then using (4.5) in Lemma 4.2.2, we get

> Lkf@) =

K€eP'(N,%) KeP'(N,.)/(Cv")Ga(PKXAK)

Q) ALE(z,¢, N

FONLEE N

K€eP/(N,*) -/(C,A)GFK XA

N / FO N dea TG, 6,0
(€, ADETkxAK
by Stokes’theorem.
As de 3 L%(2,¢, ) = —=d. LE(2,¢, \) + MP(z,¢, M), then we get
> LY f(z)=Ldf —dLf+(~=1)"*"Mf .

KeP/!(N,x)

In the same way, using (4.6) in Lemma 4.2.2 and Lemma 4.3.2, we obtain the second
relation in Proposition 4.3.3. m

4.4.The operator H. — Using ¢* and & (see Sect. 4.3), we can define the C!
map

o C—F w') LAY
7(z,¢, A) =x ( °)IC—Z| + (1= x ( 0))["( )Q*( ) + vo. ))qs(z ¢, A)]

— [ O%
for all (z,{,A) € D x D x Ag;...Ns, With z # ( (for the definitions of )’2,/\,. and A see
Sect. 1.7 and 1.8). Note that

Wal )= gy i 1/2< <1 @7
7(z,¢, A) x(*)q;f ) (l—i(f\,.))ﬂ(z—’c-’o—{) if 0<A<1/4
GO (z,, )
(zcz\)-x(/\)(p,((cz) (1—3‘2(,\,))“’(z’—c’:\) if X=0.
CHEPY)
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In particular, for all K € P'(N,*) we have the relations

W(Z,C, ’\) = 'lnbOK(zaCa ’\) if (C,A) € SK X AOK (48)
(see (4.1) for the definition of ¥ox) and
7z,¢, ) = P (z,¢,A) if (N €Tk x Ak . 4.9

Now for (2,(,A) € D x D x Agy...N» With z # ¢ we introduce the continuous
differential forms

N 1 n—1
G(Z’C’A) ndet(ﬂ(?—,(,/\),dﬂ(z;(;/\))/\dzl/\---/\dz,,
and (2im)
i A : N ) Ad d
(2,¢,A) = @ )ndet(dn(z( ))/\ a A Adz,

where d is the exterior differential with respect to all variables z,(, A.

Then it is easy to see that
dG =1 (4.10)

It follows from the definitions of the kernels I§, }%ﬁ, E}’} and from the relations (4.7),
(4.8) and (4.9) that

G |puBra, =B (4.11)
a |DXSKXA0K = (_l)lKlﬁ}p( fOl‘. al Ke PI(N)*) (412)
G lpxrexa, =Lk forall K €P(N,x). “.13)

Like in [L-T/Le] we can describe the singularity of G and H at z = (.

4.4.1. LEMMA — Denote by [G(z ¢y Mlaeg x=+ and [H(z ¢, Mlaeg x=k the parts
of the forms G(z ¢,A) and big (z,¢, A), respectively, which are of degree k in A. Then
the following statements hold :

(i) The singularity at z = ¢ of the form [G(z ¢, Mldeg A=t is of order < 2n—2k—1 ;

(ii) The singularities at z = ¢ of the first-order derivatives with respect to z of the
coefficients of [G(z,(, A)ldeg r=k are of order < 2n—2k ;

(iii) The singularity at z = { of the form [H(z ¢, Mldeg x=k is of order < 2n—2k+1.

As (E,D) is a local ¢g-concave wedge, the map w is (g+1)-holomorphic in ¢
(Lemma 3.3) and therefore

4.4.2. LEMMA. — If f € C) (D) with r < g—N+1, then

I FQO NG ¢, ) =0
(€, NETKk XAk
for all K € P'(N) and z € D.
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Proof. — Let us remark that for K € P'(N)
n-—1

e
G | parnxan™= den det ((w(z,¢, 1), dw(z,¢, ) ) Adz1 A+ Adzn

where w is (g+1)-holomorphic in (. Therefore [@(z,( ”\)]dcg'c'zk = 0 for K € P'(N),
(2,{,A\) € D xI'x x Ak, k 2> n—q.

Since f is of type (n,r), dimAg = |K|-1,dimI'x = 2n—|K|+]l and |K| < N
we get

/ FO NGBz, ¢, =
€,\eTkxAKk

when r € ¢—N+l and K € P/(N). m
Let f € B,,,,.(D),O < B < 1 (see Sect. 1.13). Then, for all K € P'(N, %), we define

Hg f(2) :/ FOANH(zCN, zeD. 4.14)
(€, NETKk XAok

It follows from Lemma 4.4.1 (iii) that these integrals converge and the so defined differential
forms Hg f are continuous on D. We set

Hf= Y (D¥HKS
KeP!(N,x)
forfeB (D)0 B< 1.

Now let f € B? (D) 0< /A <1,0< r< n Since PAI(z,C,/\) is of degree 2n
and contain the factor dzl A---Adz, and since dlmn I'k x Aok = 2n+1, then only such
monomials of (z,¢, A) contribute to the integral in (4.14) which are of degree (n+1—r)
in (¢, A) and hence of bidegree (n,r—1) in z. This implies that Hg f = 0 if »r = O or
n+l—r < |K| = dlmn AOK-

Hence, for f € BS (D),0< 8<1,0<r < n, we have

Hf= Y (¥ Hkf,
P (4.15)
Hf=0ifr =0, and Hf € C}) ,_(D)if 1< r < n.
4.4.3. THEOREM. — Let (£, D) be a local g-concave wedge, 0 € ¢ < n—1 and
fe Bff’,(D) an (n,r)-form, 0 < r < n,0< B < 1 such that df € BE(D). Then
f=dHf+Hdf+Mf onD.
Let (Uz,p1,... , PN, px) the frame associated to (E, D) in Definition 2.2, then,
if0Lr<q—N,
f=dHf+Hdf+M*f onD.

In particular, if r =0, f = Hdf + M*f on D.
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Proof. — The proof of this theorem is analogous to that of Theorem 4.11 in
[L-T/Le]. For the convenience of the lecturer we will repeat it here

First consider a form g € C3 ;(D). Then by (4.10)
der@AG) =dgAG—d,(gAGD+(-1)"gAH
and it follows from Stokes’formula (which can be applied in view of Lemma 4.4.1) that

/ g/\@: dg/\@+d/ gA@+(—1)"+jHKg
'k XxAok) 'k XAok

'k xAok

for all K € P'(N,*). In view of (4.4) this implies that

AG+ (-=DI¥ AG— / gAG
v/l;ony Z g Z Tk xAx

KEP!(N,*) Sk xAox KEP!(N,x)

= Z (-1)¥l / dy/\é+d/ 9/\@+(—1)"+jHKg).
KeP!(N,*) FkxAok Tk xAok

Taking into account (4.11) and (4.12) as well as the definitions of 7% and H, this can be
written

~

TVg — gANG

KGP’(N,*)‘/I:KXAK
= > (= / dg/\é+d/ g/\é) +(=1y"Hg. (4.16)
KeP!(N,*) Tk xAok T'x XAok

Now we consider a form f € C3 (D) with 0 < r < n such that df is also continuous
on D. Setting g = df in (4.16), we obtain that
TVdf = ) (—1)'K|d/ NG+ Hdf+ Y / df AG .
K€eP/(N,x) Tk xAoxk KeP/(N»)/TrkxAK
Setting ¢ = f in (4.16), applying d to the resulting relation, we obtain that
arf= Y (-1¥ld / dFAGH-1*"dHf+ Y d( / fAG) .
KeP!(N,x) TxxAok KeP'(Ny) YTxXxAk
Using (4.13) and Proposition 4.3.3, these two relations imply that
dTYf —TYdf + LY f = (—1)Y*"™(dH f + Hdf + M f)
and hence by (4.3)
f=dHf+Hdf + Mf . 4.17)

If moreover 0 < r» < ¢ — N, then by Lemma 4.4.2, we obtain

dT',’f—T'/'df = (=1)""(dH f+Hdf)+ Z [d(_/p A f/\@)—/r A df/\é] .

KeP!/(N)
It follows from Theorem 4.1.1, Proposition 4.3.3 and (4.13) that
f=dHf+Hdf + M*f . (4.18)
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Now we consider the general case. Let f € BS (D),0< 8 < 1,0<r < n, such
that also df € B?(D). Choose ¢ > 0 with B +¢ < 1. Then, by local shifts of fand a
partition of unity argument, we can find a sequence of forms f, € Cg’,(—D—) such that also
the forms df, are continuous on D and

fv — f and dfu _’df
in the space BZ**(D). By Lemma 4.4.1 (iii), then
Hf, — Hf and Hdf, — Hdf

uniformly on the compact subsets of D. Moreover the kernels ﬁ;@ are of class C! in
D x D x Ak and therefore

Mf, — Mfand M*f, — M*f
uniformly on the compact subsets of D. Since, by (4.17) and (4.18),
fo=dHf, +Hdf, + M,
fo=dHf, +Hdf, + M f,, f0<r<qg—N,

and

this implies that
f=dHf+Hdf+Mf
f=dHf+Hdf+M*f, if0<r<q¢—N.®

5. Homotopy formula and solution of the §-equation

in local ¢-concave wedges

Let (£, D) be a local ¢g-concave wedge, 0 < ¢ < n—1, Ug,p15--- PN, pe) the
associated frame satisfying conditions (i), (ii) and (iii) in Definition 2.2.

5.1. LEMMA. — Let £ be a fixed point in E, then there exists a neighborhood
W of &€ in C™ such that for each f € B? (D), 0< B < 1,0 < r < n, the differential

form M*f = % fl"K*xAK*f(OAMK*( ,(,A) is of class C! in W and D C W.
KeP/(N)

Moreover M* is a bounded operator from B (D) into C’l *(W)

Proof. — Recall that M.(z,{,A) = iy det( d.(2,¢, X)) where

Pica(z, ¢, N =x O );’((Cé) (1_;(A*))w<z,c,f) ’
?(z,¢,A)

for (z,¢,A\) € D x D x Ak
Moreover, we know from (3.1) and the definition of é* in Section 4.3 that
@*(2,{) #0forall (z,{) € {z € U/p.(z) <0} x {y € Ug/ps(x) <0} . (5.1)
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From (3.6), (3.7) and the definition of @ in Section 4.3 we get
Re &(2,(, A) € pa(2) + pa(0) — %K — z[* for all (2,¢,A) € UpxUpx Ak . (5.2)

Set § = dist(, I'y...nw), if z € B(¢, 76),7 < 1, and ¢ € T'k,, then |z2—(| > (1—1)8.
Let W « = {z € B¢, 76) | ps(z) < 225D}, then W, = [ W «isa
T,A A

AEAKx T,A
neighborhood of &, which contains D N B(€, 76).

We set W = [( U W,)UD] N{z € Up | pu(z) <0}, W is a neighborhood of &
7<1
in C", which contains D. We deduce from (5.1) and (5.2) that *(z,{) # 0 and &(z,{) #0

for (2,{,A) € W x I'x X Ak

Consequently M, K is a C! differential form on W x I'k. x Ag., which defines a
bounded operator M* from Bf (D) into CJ, ,(W). m

5.2. LEMMA. — Let f € BE,,(D) a (n,r)-differential form, 0 € # < 1, such
that df € B2(D). Then if0< r < qg—N-1,dM*f = M*df on W.

Proof. — We consider first the case, where f € C’,i,,(T)_) and df is also continuous
onD.Ifze W

i@ = > [ FO Ad s Mia(2,¢, %)
KeP/(N)up ¥ ©NET kX Axcx
since dM; K+ = 0 by definition of M, Kx-
Therefore, using Stokes’theorem and (4.6) we get

M =MEe- Y [ £ A Mia(z,¢, )

KEP'(N)UU (C:A)ESK* XAK*

FO A Myu(z,¢, 0.

KeP!(N) [(,A)GPK* XA g

But we have M. |SK*xAK*: df}zﬁ =0, then

dM* f(z) = M"df(2) — FOANMga(z,¢,0) . (53)

KeP/(N) /(C,»\)el“mxAK

Since M. |FK*xAK: dii IFK*xAK, we have
/ FO A Mra(z,¢,0) = / FO Ay ADL (2, ¢,
(€, NElkxXAK (€, NElkx XAk
=(-1yd,( FOALL(,6,)
(€, Nl kxXAK
+(=1 / FONLEGN ) (5.4)
C,NETkxXAK
F(=1y / dea(FQOATE(z,C,0)
(€, NETx XAk )
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By Lemma 4.3.1 we get that, if 0 < r < ¢—N,

/ FOATEG N =0 5.5)
(€, VETkxXAK

andif 0K r < g—N—lordf =0

J FQO AL N =0 (5.6)
((,VETKx XAk
One can easily prove that
Y 0Tk.xAx)= > Sk«xAxk. .7
KeP/(N) KeP/(N)

Then, from Stokes’theorem and (5.7) we deduce

de \(FO AL CN)

KeP/(N) /((,A)erm X Ax

FOANLEE N, (5.8)

KeP!(N) -/(:Z«\)esx*xAK

Using (LYl z—; = O for K € P'(N), k > n—g, and dim Sk, = 2n—|K|~1 for
K € P'(N), we obtain that

/ FOANTEG, ¢, N =0 if 0<r<q—N-1. (5.9)
(€, AESKx XAk

Therefore using (5.3), (5.4), (5.5), (5.6), (5.8) and (5.9) the lemma is proved for
f € C} (D) such that df is continuous on D.

Now, let f € B,’f’,(D), 0<B8<1,0<Kr< ¢g—N-1, such that also df € Bf(D).
Choose € > 0 with S+¢ < 1. Then as in the proof of Theorem 4.4.3, we can find a sequence
of forms f, € C2 (D) such that the forms df, are also continuous on D and

fv— f and df, — df

in the space BY*(D).

As the kernels 1/\/1\1(,. are of class C! in W x I'ks X Agx, K € P'(N)UD,
M*f, — M*f and M*df, — M*df for the C' topology in the open set W. Since
dM*f, = M*df, by the first part of the proof we get that dM*f = M*df for
0<r<q—N-1. m

5.3. THEOREM. — Let (E,D) be a local g-concave wedge, 0 € ¢ < n-—1,
Uz P1,-.. , PN, ps) the frame associated to (E, D) in Definition 2.2 and € a fixed point
in E. Then there exists a real R, R > 0, such that for each f € Bf,”,(D), 0<B<1,

1< r<q— N =1, with df € B2(D) we have
f=8df+dSf on DN B R)
where S = H+TM*, T being the Henkin operator for solving the 8-equation in B(€, R).
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Proof. — In Theorem 4.4.3, we have proved that, if 1 < r < ¢—N, we have
f=dHf+Hdf +M*f on D. (5.10)
Let_ W be the neighborhood of £ defined in Lemma 5.1. Then, there exists, R > 0,
such that B(¢, R) C W and M* f is a C! differential form on B(¢, R).

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map
associated to B(£, R) (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]). Then we have

M*f=dTM*f+TdM*f on B(E,R). (5.11)

Setting S = H +TM*, (5.10), (5.11) and Lemma 5.2 imply
f=dSf+Sdf on DNBE,R).m

5.4. LEMMA. — Let us suppose that (E, D) is a local g-concave wedge defined
by a g-configuration, £ a fixed point in E and W the neighborhood of ¢ defined in
Lemma 5.1 using a constant a satisfying the properties of Remark 2.6. Then for each
(z,A) € W x A,...N there exists a strictly g-convex domain G such that

a) Sl..‘N* cC G y
b) Uy is a q-convex extension of G ;

c) [E;/{--N]dcgzzn—q—l is a O-closed form on a neighborhood of G.

Proof. — Set p;(Q) = pi(Q) — pi(2) + £|¢—2%, i = 1,...,N and for ¢ > 0,
sufficiently small

¢ = max(—ﬁl,... a_ﬁN:p*_’e) .
By definition of W, if 2 € W, we have
Si.n« CC{CEUF | §) <0} .
Consequently there exists # > O such that
S1.nve CC {¢ € Up | $°(¢) < 0}
where ¢° = maxg(—p1,... ,—pN, Ps—E).
Since g, is strictly (¢+1)-convex for each A € A;...x and p. is convex, the function
@* is strictly (¢+1)-convex on Uz Without loss of generality, we can assume that p, is an

unbounded exhausting function for Uz. Then also @ is an unbounded exhausting function
for U-'ﬁ.

Since —Re¥(z,(, ) > pa(¢) for (2,(, ) € Uy x U x Aq...N, for each (z,1) €
W x Ar..n, LY n(z, -, A) is defined on {¢ € U5 | $°(¢) < 0}

Using the (g+1)-holomorphy of 4 and the definition of L we get
[L,ib-nN]deg'fzn_q =0 and dz,(,)\Ld) =0,
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therefore
O¢ [L‘lb.“N]deEZ=n—q—l =—(0¢ + dZ,A)[L;,{"N]dGSE="_‘1 =0

For (z,)\) € W x Ay..x, LY. n(z, -, M) is D-closed on {¢ € Uz | 3°(¢) <0} and
for sufficiently small ¢ > 0, G = {¢ € Ug | #°(¢) < —c} has the required properties. ®

5.5. LEMMA. — Under the hypothesis of Lemma 5.4, let f € BS ._\(D) an
(n,q—N) differential form, 0 < § < 1, such that df =0 then

dM*f=0 on W.

Proof. — First let us assume that f is continuous on D. Using (5.3), (5.4), (5.5),
(5.6) and (5.8) we get for z € W

dM* f(z) = FOANLEGE N .

KeP!(N) /(CYA)ESK* XAx

Since on W x Sk x Ak, L = LY and [£% 107, = 0 for K € P(N), k > n—q,
we obtain

am 1) = [ FOAEY i diegtam—g s D)

(€, AES)...NxXAL..N
- -/)\EAI..-N (‘/(ESLHN* f(C) A [L;/J'”N]degfzn_q_l(za C’ /\)) ’ (512)

We fix (z,A) € W x A;...n, by Lemma 5.4 [EllewN]degZ:n—q—l is a O-closed formon a
neighborhood of a strictly g-convex domain G containing S)... .. Moreover U is a g-convex
extension of G and by Corollary 12.12 (ii) in [He/Le 2] we can approach [E’f’,,, Nl e T
uniformly on G by a sequence (F})jen of O-closed form on U. Therefore we have

/ces....N,. FO ALY, Nliggzmng1(:¢ ) = lim /C FOAF;Q)

€S5)...N%

=n—g-1

Since S1...n+ is the boundary of S;...x and f(¢)A Fj({) is closed on S;...y we obtain

/( o FONE Nz goa16 ) =0

and consequently using (5.12) dM*f =0 on W.

This proves the lemma when f is continuous on D. The same argument as in the
proof of Lemma 5.2, implies this lemma when f € Bf, o ~(D).

5.6. THEOREM. — Let (E,D) be a local q-concave wedge defined by a ¢-
configuration (see Definition 2.4), 1 € ¢ € n—1, £ a fixed point in E and N the
real codimension of E in C™.

Then there exists a real R, R > 0, such that for each f € Bﬁ q_N(D), 0<B<l,
¢g—N 21, with df =0 on D we have

f=dSf on DNB(E,R)
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where S = H+TM*, T being the Henkin operator for solving the -equation in B(€, R).

Proof. — From Theorem 4.4.3, we know that
f=dHf+M*'f on D. (5.13)

Let W be the neighborhood of £ defined in Lemma 5.1. Then there exists R > 0 such
that B(¢, R) C W and M* f is a C! differential form on B(¢, R). Moreover by Lemma 5.5,
M?* f is O-closed on B(¢, R).

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map
associated to B(¢, R) (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]).

Then we have
M*'f=dTM*f on B(,R). (5.14)

Setting S = H + TM*, (5.13) and (5.14) imply
f=dSf on DNBE,R).m

5.7. THEOREM. — Let (E, D) be a local q-concave wedge, defined by a ¢-
configuration, 1 € ¢ € n—1, N the real codimension of E and £ a fixed point in E. Let
us suppose that g—N 2 0, then there exists a neighborhood W of £ in C*,D C W,
such that each holomorphic function in D has an holomorphic extension to W'.

Proof. — Let f be a holomorphic function in D and € > 0 a real number. We set
p; = pj+€, j=1---N,* For ¢ sufficiently small, the frame (U, pi, ... , P, p3) defines
a new local g-concave wedge, denoted by (F., D.), which has the same properties than
(E,D). Let d. =dist(¢, E;) and £, € E. a point such that | — & | = d..

Set f(¢) = f(O)d¢i A --- AdCn, fis a d-closed (n,0)-form which is continuous in
D.. Since ¢ > N, Theorem 4.4.3, applied to f and D,, implies that
f=Mf in D..
As in the proof of Lemma 5.1 we have to consider the functions #* and @, associated
to (Ee, D).
If ( € I'k,, then @*(2,() # O for all z € Uz such that pi(2) <0, i.e. p*(2) < —¢.
On the other hand, for all (2,(, ) € Uz x Uz x Ak

Re @.(z,, 1) < p5(2) + p5(O) — S ¢—2[*

where the constant oo depends only on the second derivatives of p5 and consequently is
independent of ¢.
Following the proof of Lemma 5.1, if §. = dist(¢., I y,) set We, = {z €
T,

B, 7éc) | 5 < ‘”—“(21;’2 }, then WE = () We_ is a neighborhood of &..
by A€AKx T,A
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We shall prove that for some 7 and for sufficiently small ¢, then W is a neighborhood
of &.

Since I'{. ., = I'i...nx N D,, we have 6. > §—d.. Choose €9 > 0 such that for all
€ < €9, 6—d > £ and 7 such that d, < 3.

Then if ¢ < inf( $(1—7)8,£0), the point £ belongs to {z € B(., ‘r%) | p5 <

A

%eall=7) } and therefore £ € W: and &.(z,{,)) # 0 on WE x I'ku X Ak..

Choose such an ¢, it follows from the definition of M>* that M* f is a C!, (n,0)-form
in W£, moreover by Lemma 5.5 dM; f=o.

Finally the (n,0)-form h defined by A = f on D and h = M f on W defined a
holomorphic function h on W = W: U D suchthat h = fon D. ®

6. Estimates

In this section we denote by (£, D) a local g-concave wedge, 0 € ¢ < n—1, and
by (Ugp,p1,--. , N, ps) the associated frame satisfying (i), (ii) and (iii) in Definition 2.2.
Let I'x, K € P(N,*) be the submanifolds of D defined in Section 4.2 and &(z,(, ) the
function defined in Section 4.3.

In Section 4.3, we have defined an operator H from B,‘f,,,(D) into ng*(D) by
Hf= ), D¥Hgf for feB;.D)
K€EP!(N,*)
where the Hg’s are given by (4.14).

Letusset H'f = Y (-D¥lHgfand H*f= 5 (=DIKIMHg,f.
KeP'(N) KeP/(N)uU®

Let us recall some definitions and propositions given in [L-T/Le].

6.1. DEFINITION. — Let K € P/(N,*) and let s be an integer.

A form of type O, (or of type O,(z,(,A)) on D x I'y x Apk is, by definition, a
continuous differential form f(z,{, A) defined for all (z,{,A) € D x I'x X Aok with z £ (
such that the following conditions are fulfilled :

(i) All derivatives of the coefficients of f(z,({,A) which are of order O in (, of order

< 1lin 2, and of arbitrary order in A are continuous for all (2,{,\) € Dx I'x X Aok
with 2 £ (.

(ii) Let V{,k = 0,1, be a differential operator with constant coefficients which is of
order O in ¢, of order « in 2, and of arbitrary order in A. Then there is a constant
C > 0 such that, for each coefficient ¢(z,¢, ) of the form f(z,(, )),

|V:§0(Z,<,A) I < Clc_zls—n
for all (z,¢,\) € D x T'x x Aok with z # (.
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(iii) There exist neighborhood Uy, Ux C Aok of Ap and Ag, respectively, such that
f(Z,C,A) =0 for all (Z;C$A)€ DxTI'g % (UOUUK)'

The symbols O,(z,(,A) and O, will be used also to denote forms of this type, also
in formulas. For example :

f =0, means : f is a form of type O.

O; A f = O A g+ Oy, means : for each form h of type O, there exist a form u of type
Oy and a form v of type O,, suchthat hA f =uAg+v.

The equation
EfG) = | 0, ¢, M A f(z,6, )
((,MESKk XAoK
means : there exists a form E of type O, such that
BfG) = [ B, ¢, DA 2,60
(€, NESKk XAok

for all f.

6.2. DEFINITION. — Let m > 0O be an integer. An operator of type m is, by
definition, a map
E : Uogp<1BS (D) — C;, (D)

such that there exist

- an integer k£ > 0,

- K € P'(N),

- a form E’(z,(,/\) of type O\k|-2n+2k+m O D x I'r x Aok such that, for all
feBE.D),0<B<],

-~ E A
Ef(z) = / FEOA M
¢, NeTk X Aok @F+m(z ¢, N)

where f € Bf (D) is the form with

FO=FONGA-AdCa

and for © holds the following :
if m=0,then ©=1;

if m > 1, then there exist indices %,,... ,%,, € K such that either
©=0pi, N---Ndpi,, or ©=203p; ABpi, A---\Dpi,
o
(for the definition of A, see Sect. 1.8).

6.3. PROPOSITION. — Let us consider an operator E of type m,m 2 0.
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(i) Let0<B<1/2,0<e<1/2—4,and 1 <r < n. Then
E(BS (D)) CC "3:{’“(5)
and the operator E is compact as operator between the Banach spaces BE,,(D)

and CY*2F~<(D)

nr—

(i) Let1/2<B<1,0<e<1-6,and 1< r<n. Then
E(B! (D)) CB "*‘"’2(5)

nr—1
and the operator E is compact as operator between the Banach spaces B,ﬁl’r(D)
and BY'*7/X(D).

n,r—1

For the proof of this proposition see the proof of Theorem 4.12 in Section 8 of
[L-T/Le].

6.4. THEOREM. — The operator H' is a finite sum of operators of type
m,m 2 0.

Proof. — It comes from the definition of H’ that the calculations are exactly the
same than in the proof of Theorem 5.4 in [L-T/Le]. The only change is that we have
exchange the roles of z and ¢ in the definition of w. But using that, forall k =1,... , N, p;
is of class C3, we get that

Oo AW =00 A D _wi(z,(,\)d(; = O A Y ap*(z)dc, +0,

ji=1 kEK
= 00N IO+ 3 (G20 — O de; + O,
keK ’
=0 A 0p;i(Q) + O1

and in the same way OoAdaW = 3~ OpAdp;({)+O1 and OgAD, B = 3~ OoAdp;({)+O1
JEK JjEK
on D x I'y x Aok, K € P'(N), which are exactly the same estimates than in [L-T/Le]. ®

6.5. PROPOSITION. — Let ¢ be a fixed point in E and W the neighborhood
of £ defined in Lemma 5.1. Then for each f € Bff,r(D), 0<B8<1,0<r<n the
differential form H *f is of class C' in W and the operator H* is a bounded linear
operator from B (D) into Cl ‘(W)

Proof. — By definition of W, &*(2,{) # 0, ®(2,{) # 0 and |z—¢| # O for
(Z)C’A) e W x I'gy % AOK*-
Therefore the kemnels, which are used to define the operator H*, are C 1 differential

forms on W x I'k. X Aoxk«. Then it follows easily from the definition of H* that H* is a
bounded linear operator from B,’?,,.(D), 0< A< 1,into C},,,(W).

6.6._THEOREM. — Let € be a fixed point in E and R be a positive real number
such that B(§, R) C W, where W is the neighborhood of £ defined in Lemma 5.1. Then
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the operator S = H + TM*,T being the Henkin operator for solving the 8-equation
in B(¢, R) has the following properties :
i) For0< 8<1/2,0< ¢ < 1/2—6 and 1 € r < n, S is a compact operator
between the Banach spaces B ,(D) and C’l/2 ﬁ s(D N B(, R))

i) For1/2 < B8<1,0<¢ < —ﬁ and 1 € r € n, S is a compact operator,
between the Banach spaces B (D) and BﬁJ'E 1/ 2(D N B, R))

ﬂT—

Proof. — Recall that S = H' + H* + TM*. It follows from Proposition 6.3 and
Theorem 6.4 that H' satisfies the conclusions i) and ii) of the theorem.

By Lemma 5.1 and Theorem 2.2.2 in [He/Le 1], TM* is a bounded operator from
B,e,,.(D), 0< B < 1,into C, l/2(D N B(, R)) and, by Proposition 6.5, H* is a bounded
operator from B (D), 0 < 8 < 1, into CL.(DNBE,R)).

Now let 0 € B < 1/2. It follows from Ascoli’s theorem that the injection maps from

CcMHDn B, R)) and CL , (D NB(, R)) into C'/*~P~<(DNB(,R)) are compact.
This ends the proof of the theorem in the first case.

Finally, suppose that 1/2 € S < 1. By Ascoli’s theorem, H* + TM* is a
compact operator from Bf ,(D) into CS.(D N B(, R)). Moreover the injection map
from C2 , (DNB(, R)) into B ~/*( DN B(, R)) is bounded and the second assertion
of the theorem is proved. W

Combining Theorem 5.3, Theorem 5.6 and Theorem 6.6, we obtain the main result
of this paper :

6.7. THEOREM. — Let (E, D) be a local q-concave wedge, 0 < ¢ < n—1, and §
be a fixed point in E. Then there exists a real R, R > 0, and a linear operator S from
Bff,r(D) into Cg’r_l(D N B, R)), 1 < r < n, such that :

)IfO < B < 1/2and 0 < ¢ < 1/2—B, S is compact from BE (D) into

CHIP(DnBE,R)) .

i) If1/2 < B < 1and0 < ¢ < 1-8, S is compact from Bf (D) into

B (DN BE,R)) .

iif) For each f € BE,,(D), 0<pB8<1,1<r<qg—codimg E—1 with df € BE(D) we
have

f=Sdf +dSf on DNB(,R).

iv) If moreover the local q-concave wedge (E, D) is defined by a q-configuration and
1 < r = q—codimg E, then for each d-closed form f € qu,r(D): 0<B<1 we
have

f=dSf on DNB(E,R).
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7. Globalization

Let us denote by E a holomorphic vector bundle over an n-dimensional complex
manifold X, by £2 and A two domains in X such that 2 CC A CC X and by D the domain
AN 2. Further, let C;’_’,,(ﬁ, E), BE’,(D, E) etc... the Banach spaces of E-valued differential
forms on D, which are obtained canonically extending the definitions of Section 1.13.

7.1. DEFINITION. — Let q and ¢’ be two integers, 0 < ¢, ¢’ € n—1. A domain
D cc X will be called a q-concave, q'-convex domain of order N, 1 £ N < 2n, if there
exist two domains 2 CC A CC X such that D = A \ £ and satisfying the following
properties :
(i) For each point £ € 012, there exists a neighborhood U, of £ in X contained in a
coordinate domain, such that, after identification with its image in C", U, contains
a local g-concave wedge (E;, D) with

(@) £ € B ;
(b) codimg E; < N ;
(¢) (E¢, D¢) is defined by a g-configuration ;
) If (Uﬁé’pl’”' PN, px) is a frame for (E¢, D¢) then D N Ug N {z €
Uﬁe | p+(2) <0} = Dg.
(ii) A is a local ¢’-convex domain.

7.2. Examples. — The simplest example of such domains is given by D =
B@O,R)\ B(O,R), 0 < R < R in C", this is a (n—1)-concave, (n—1)-convex domain of
order 1. Another simple example is D = A \ 2 with A a C? smooth ¢’-convex domain
and 2 a C? smooth ¢-convex domain.

A more interesting example is given by D = A \ 2 where A is a strictly pseudo-
convex domain with C2-smooth boundary and §2 is the union of N strictly pseudoconvex
domains with C3-smooth boundary, whose boundaries are intersecting transversally. Such a
domain is a (r—1)-concave, (n—1)-convex domain of order N.

The case where A is a strictly pseudoconvex domain with C2-smooth boundary and
2 = U with £;, i = 1,2, two strictly g-convex domains with C-smooth boundary
intersecting themselves transversally defined by 2; = {z € Uaq, | ¢i(2) < 0} and such
that for each A € [0,1] and £ € 0 N 02, the Levi form Ly, 41— 2)e,(£) restricted to
Tg(agl N 3£%) has at least dim¢ Tgi(arzl N 0€%)—n+q+1 positive eigenvalues, defines a
g-concave, (n—1)-convex domain of order 2 (cf. remark 2.5).

7.3. THEOREM. — Let D be a q-concave, ¢’-convex domain of order N in X.
We suppose that g+¢'—N 2> n. Then there exist linear operators

T: |J BE.(D,E)— C3,_(D,E)
0€<A<1

K.: |J BE.(D,E)— C3,.(D,E)
0€8<1

and
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for n—¢' < r € ¢—N such that the following holds :
(i) ifn—¢' < r < ¢g—N-1, then
f=dLf+Tondf + K. f
for all f € B,’f,,(D, E), 0 < B < 1, such that df also belongs to BE(D, E);
(i) if r = g—N, then for all d-closed f € B} ((D,E),0< <1,
f=dlf+K.f;

(iii) if 0 € B < 1/2 and 0 < £ € 1/2—3, then T, and K,,n—¢' < r < q—N, are
compact operators from Bf (D, E) into Cy/2={~*(D, E), resp. Cx/r " ~*(D, E) ;

(iv) if1/2 < B < 1 and € > 0, then T, and K,,n—q' < r < ¢—N, are compact
operators from Bg,,(D, E) into Bff__ll/z(D, E), resp. B,eff_l/z(D, E)

Proof. — By Definition 7.1 and Lemma 2.4 in [L-T/Le] there exists a finite number
of open sets Uy,... ,Un C X such that D C U; U---UU,, and each Uu;nD,1<j<m
is either a local ¢’-convex domain or a local ¢g-concave wedge defined by a g-configuration.
The second case occurs, when U; N2 # 0. Moreover, we may assume that £ is trivial over
some neighborhood of each U; N D, 1 < j < m.

Let A; be the operators which are induced in

U BL.(D,B)
0€<8<1
by the local operators in the following way : if U; N D is a local g-concave wedge
A;jf = S(flu;ap) where S is defined in Theorems 5.3 and 5.6 and if U; N D is a local
q'-convex domain A; f = H(f|v;np) where H is defined in Section 4 of [L-T/Le].

We choose non negative C° functions y; with compact support in U; such that
X1+ -+ Xm = 1 in a neighborhood of D and we set

m

Tf=Y x4f

j=1
K. f=Y dxjNA;f
i=1
forn—¢' < r<¢—N,fe€ Bﬁ},(D), 0<p<l.
Up to the end of this part we will suppose that X = C”.

and

7.4. DEFINITION. — A g¢-concave, ¢'-convex domain of order N, 1 < N < 2n,
D contained in C* will be of special type if D = A \ 2 where A is a local ¢'-
convex domain and (2 is the union of N strictly g-convex domains 2;, 1 < 7 < N,
with C® smooth boundary intersecting themselves transversally, defined by 2; = {z €
Usq, | i(z) < 0} and such that for each multi-index K € P(N), each A € Ak and each

e () 08k, the Levi form Lgr ++repn, () restricted to TE‘:(BQ;cl N---NJQ2,) has
k€K

at least dime T (0%, N - - - N 3%, )—n+q+1 positive eigenvalues.
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7.5. PROPOSITION. — Let D CC C™ be a g-concave, q'-convex domain of order
N and of special type and suppose that q¢+q¢'—N 2 n. If f is a continuous (n,r)-form
in some neighborhood Uz of D, n—q' < r < ¢—N, such that 8f = 0 in Uz, then there

exists a form u € () CI/Z-I (D) such that 8u = f in D.

n,r—
e>0

Proof. — This proposition is the analogous in the case of ¢-concave, ¢’-convex
domains of Lemma 2.3.4 in [He/Le 1]. Using Theorem 7.3 at the place of Lemma 2.3.1
([He/Le 1]) we can repeat the proof of Lemma 2.3.4 in [He/Le 1]. We have only to remark
that there exists a g-concave, ¢’-convex domain of order N and of special type GG such that
D cC G cC Up.

Let us consider 2; , = {z € Usq, | vi(z) > a}. For a > 0, sufficiently small
N
it is easy to verify that (2, _.U ; o has the same properties than 2. Moreover if

A={z€Ux|pj<0,j=1,...,N}thenAp ={z€Ux|pj<-B,j=1,...,N}
is also a local ¢-convex domam for sufficiently small 8 > 0. Then it suffices to take
G = Ag \ §2, for some small & and 5. W

Following the same methods than in part 2.3 of [He/Le 1], we get the following
theorem on the resolution of the §-equation in g-concave, ¢’-convex domains with estimates
up to the boundary.

7.6. THEOREM. — Let D CC C™ be a g-concave, ¢'-convex domain of order N
and of special type such that ¢+¢'—N 2 n and for0 < B < 1, let f € Bﬁ’,(D) be a
O-closed form on D, n—¢' < r < ¢—N.

(i) if0 < B < 1/2, there exists u € ﬂ Cl/2 ~¢(D) such that du = f and for each
€ > 0 there exists also a constant C such that
llellij2-p-e < Cellfll-5 5
(ii) if1/2 € B < 1, there exists u € ﬂ Bﬁte—ll/z(D) such that Gu = f and for each

€ > 0 there exists also a constant C such that

lullij2z-p-e < Cellfll-5 -

Proof. — As in the proof of Theorem 2.3.5 in [He/Le 1], we deduce the existence of
the solution u from Proposition 7.5 by the bumping method. The estimates are a consequence
of the Banach’s open mapping theorem and of Theorem 7.3 (cf. [He/Le 1] appendix 2). ®
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