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UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN 
EQUATION ON q-CONCAVE WEDGES 

Christine LAURENT-THIÉBAUT and Jürgen LEITERER 
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4. An integral formula in local q-concave wedges 
5. Homotopy formula and solution of the ô-equation in local a-concave 

wedges 
6. Estimates 
7. Globalisation 

0. Introduction 

This article is the continuation of [L-T/Le]. Both papers are preliminary works for a 
systematic study of the tangential Cauchy-Riemann equation on real submanifolds from the 
viewpoint of uniform estimates and by means of integral formulas. For this study we have 
to solve the Cauchy-Riemann equation with uniform estimates on ^-convex and g-concave 
wedges in Cn (for historical remarks, see the introduction to [L-T/Le]). Whereas [L-T/Le] 
is devoted to g-convex wedges, here we study q-concave wedges. 

The main result of the present paper can be formulated as follows. Let G C Cn be a 
domain, q an integer with 1 < q ^ n— 1, and <p\,... , (pN a collection of real C2 functions 
on G satisfying the following three conditions : 

(i) E := { z G G : <px(z) = • • • = <pN(z) = 0 } ^ 0 ; 

(ii) d<pi(z) A • • • A d<pN(z) ± 0 for all z e G ; 

fiiij If A = (Ai,... , XN) is a collection of non-negative real numbers with Ai+- • +AJV = 1, 
then, at all points in G, the Levi form of the function 

\l<pi + • • • 4- \N<PN 

has at least g+1 positive eigenvalues. 

151 



C. LA URENT- THIEBA UT, J. LETTERER 

Set 

D = 
N 

i=1 
{zeG: <pj(z)>0} (0.1) 

and 

M = 
N 

J = l 
[zeG: <pj(z)>0} . (0.2) 

Further, for £ e Cn and R > 0, we denote by BR(£) the open ball of radius R in 
Cn centered at £. Then Theorems 5.6, 5.7 and 6.6 of the present work imply the following 

0.1. THEOREM. — For each point £ e E there exists a radius R>0 such that : 
(a) Hq—N ^ 0, then each holomorphic function on D extends holomorphically to 

D U BR (E) ; 
(b) If q—N ^ 1 and f is a continuous d-closed (n, r)-form with 1 ^ r ^ q—N on D, 

then there exists a continuous (n^r—iyform u on D f] BR(£) with 
du = f on D fl BR(0 . (0.3) 

Moreover if, for some ft with 0 ^ ft < 1, / satisfies the estimate 

\\№\\<№K,dD)]-', ( 6 J 3 , (0.4) 

then the solution u of (0.3) can be given by an explicit integral operator and, for all 
€ > 0, there is a constant Ce > 0 (independent of f) such that : 

HO 
D fl BR(0 and 

^ ft < 1/2, then u is Holder continuous with exponent 1/2—ft—e on 

\\u n n n j n ^ Ce s 
CED 

| / ( 0 \\№(C,dD)]fi, (0.5) 

where \\ • H ^ - p - e Dr\BR(0 IS tne Holder norm with exponent 1/2—ft—e on D H BR(£). 

Hl/2^ft<\, then 

sup 
CED 

\u(z)\\[dist(z,dD)f-l/2+£ < C£ sup 
CED 

\\№\\№(C,dD)]fi . (0.6) 

Note that the radius R and the constant C£ in Theorem 0.1 depend continuously on 
<pi,... , (pw with respect to the C2 topology. 

Theorem 0.1 implies the following corollary for the domain £2 defined by (0.2) : 

0.2. COROLLARY. — For each point £ E E there exists a radius R > 0 such 
that : 

(i) If q ^ 1, then each holomorphic function on Q extends holomorphically to 
HUBr(0; 

(ii) If q^ 2 and f is a continuous d-closed (n, r)-form with 1 ^ r ^ q— 1 on fi, then 
there is a continuous (n, r—l)-form u on Qf\ Br(£) with 

du = f on flnBr(0- (0.7) 
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It is easy to see that, for r = 1, estimates (0.5) and (0.6) (with Q instead of D) hold 
also in this corollary. We do not know whether this is true for r ^ 2. 

For the smooth case (JV = 1) Theorem 0.1 was obtained by Lieb [Li]. We prove 
Theorem 0.1 by means of integral formulas which are obtained combining the construction of 
Lieb [Li] with the construction of Range and Siu [R/S]. The main problem then consists in the 
proof of the estimates. Fortunately, in large parts, this proof is parallel to the corresponding 
proof in the g-convex case which is carried out in [L-T/Le]. Note that, in both proofs, an 
idea of Henkin plays a very important role (see the introduction to [L-T/Le]). Note also that 
in the survey article [He] of Henkin a global result, corresponding to the important special 
case p = 0, e = \ of Theorem 0.1 is formulated (see [He] th. 8-12 d)). 

Finally we want to compare our results with the work [G] of Grauert. He studied 
domains of type Q defined by (0.2), where instead of condition (Hi) the following stronger 
hypothesis is used : 

(Hi)' There is a fixed (g+l)-dimensional subspace T of Cn such that, for all j = 1, . . . , N 
and z G G, the Levi form <pj is positive definite on T. 

Under this hypothesis, Corollary 0.2 follows from Satz 1 in [G]. Note that the 
conclusion of Satz 1 in [G] is essentially stronger than the conclusion of our Corollary 0.2 : 
we can solve du = f only on the smaller set fiC\Br(£) if / is given on ¿2, whereas Grauert 
proves the existence of a basis of Stein neighborhoods U of £ such that, if / is given on 
Q D U, the equation du = f can be solved on the same set Q D U. In the smooth case 
(N = 1) such a solution without shrinking of the domain is possible also with estimates as 
in Theorem 0.1 (see Theorem 14.1 in [He/Le 2]). On the other hand, it is not clear whether 
one can solve (even without estimates) the 9-equation without shrinking of the domain in 
the situation of Theorem 0.1 if N > 2. Note also that the statement of Theorem 0.1 under 
the stronger condition (Hi)' and without estimates and with shrinking of the domain can be 
obtained also from Satz 1 in [G]. 

1. Preliminaries 

1.1. — For z 6 Cn we denote by z\,... , zn the canonical complex coordinates of 
z. We write (z, w) = z\W\ + • • • + znwn and \z\ = (z, z)ll2 for z) w G Cn. 

1.2. — Let M be a closed real C1 submanifold of a domain (] C Cn, and let 
C G M. Then we denote by Tf(M) the complex, and by T*(M) the real tangent space of 
M at C- We identify these spaces with subspaces of Cn as follows : if p\,... , PN are real 
C1 functions in a neighborhood U( of C such that M C\U = {p\ = • • • = PN = 0} and 
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d/>i(C)A-AdpAr(C)#0, then 

T (M) = {T e C" : 
n 

I/=l 

dpj(0 
aCv 

= 0 for j = 1, . . . , Tl } 

and 
T R 

c (M) = {t E Cn: 
2n 

v=1 

««(C) 
dxv 

xv(t) = 0 for j = 1, . . . ,n }, 

where a?i,... , a?2n are the real coordinates on Cn with tv = xv{t)-\-ixv+n{t) for t € Cn and 
z/ = 1, . . . ,n. 

1.3. — Let Q C Cn be a domain and /> a real C2 function on fi. Then we denote 
by Lp(0 the Levi form of p at C G fi, and by Fp( •, O the Levi polynomial of p at C € £2, 
i.e. 

M O * = 
n 

j,k=1 

a2 p(C) 
aCjaCk 

tjtk 

C G ft, T € Cn, and 

F,(*,C) = 2 
n 

j=1 

a p(C) 

aCj 
Cj - zj) -

n 

j;k=1 

a2 p(C) 

aCjaCk) (0 - *iXCb - **) 

< G ft, : G C " . Recall that by Taylor's theorem (see, e.g., Lemma 1.4.13 in [He/Le 1]) 

ReF,(z,C) = ( * 0 - + L,(CXC-*) + oflC-*|2) . (1.1) 

1.4. — Let J = (ji ? • • • > 1 ^ £ < oo, be an ordered collection of elements in 
N U {*}. Then we write \ J\ = £, J(p) = (Ju>- , jv-u J»+u• • • Ji) for 1/ = 1, . . . , 1 , and 
jZJifje { j i , . . . 

1.5. — Let JV ^ 1 be an integer. Then we denote by P(N) the set of all ordered 
collections K ={k\,... , Jb/), £ ^ 1, of integers with 1 < A?i,... , ib/ < iV, and by P(iV,*) 
the set of all ordered collections K = ... , kt\ £ > 1 such that either K e -P(N) or 
for a i/ £ { 1 , . . . ,£}, hv = * and iiT(z>) € P(N) as well as # = (*). We call Pf(N) the 
subset of all K = (Jbi,... , ki)tP(N) with Jbi < • • • < kt and P'(JV, *) the subset of all 
# = (Ari,... , ki) where either K € P'(N) or 1 ^ ibi < • • • < kt_i ^ N and kt = *, i.e. 
K(l) € P'(N) and # = fftf)*f as well as K = (*). 

1.6. — Let J = 0i>--- 1 < ^ < oo, be an ordered collection of integers 
with 0 < j i < • • • < j / . Then we denote by A j (or Ajv..jt) the simplex of all sequences 
{ Xj }£L0 of numbers 0 < Aj < 1 such that Aj = 0 if j £ J and £Aj = 1. We orient Aj 
by the form dXh A • • A dAj, if £ > 2, and by +1 if £ = 1. 

Further Aj* (or A^..^*) will be the simplex of all sequences { Aj } oo J=0 U{A,} of 

numbers 0 < Aj < 1, 0 < A* < 1 such that Aj = 0 if j £ J and oo 

3=0 
Aj+A* = 1. We orient 

Aj* by the form dXj2 A • • • A dAj, A dX*. 
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We set also A ^ = 0. 

1.7. — We denote by x a fixed C°° function 

X: [0,1] — [ 0 , 1 ] 

with { (A) = 0 if 0 < A < 1/4 and x (A)=l if 1/2 < A < 1. 

1.8.— Let N > 1 be an integer and K = ,**) G P'(N,*). Then, for 
0 

A G AQK with Ao J= 1, we denote by A the point in AK defined by 

m 
kw 
l - A o 

(M=lt... ,£) 

and for A G AK* with A* ^ 1, we set A the point in AK defined by 

A*„ = 
kv 

1 - A . 
(v = 1;..., l) 

0 
If A G AQK* with A0 ^ 1 we set A„,= A*/1*A0 and if moreover A* ^ 1 we define 

0* 
AG AK by 

L kv 

L kv 

1-A0 

1.9.— Let D CC Cn be a domain. D will be called a Ck intersection, 
k = 1,2,... ,oo, if there exist a neighborhood U-Q of D and a finite number of real 
Ck functions /»!,... ,PN>P* in a neighborhood oiU-^ such that 

0 = {*€£%:f t - (*)<O for ¿ = 1, . . . , # , * } 

and 
dpkl(z) A • • A dpk£(z) £ 0 

for all (Ari, , fc/) G <P'(JV, *) and z G 3D with p^C?) = • • • = pkt(z) = 0. In this case, 
the collection ,p\ , . . . ,PN,P*) will be called a C* /ra/we for D. 

1.10. — Let D CC Cn be a C1 intersection and (E%, p i , . . . ,PN,P*) a frame for 
£>. Then, for # = (*i,. . . , */) G P(JV, *), we set 

SK = {zedD:phl(z) = '.. = pkXz) = 0 } 

if k\, are different in pairs, and 

5 ^ = 0 

otherwise. We orient the manifolds SK SO that the orientation is skew symmetric in 
&i,... , hi, and 

8D = 
N 

i=i 

Sj + S* (1.2) 

and 
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ÔSK = 
N 

j=1 
SKJ + SK* (1.3) 

for all X £ P(JV>). 

1.11. — Let / be a differential form on a domain D C CN. Then we denote by 
||/(z)||, z G A the Riemannian norm of / at z (see, e.g., Sect. 0.4 in [He/Le 2]). 

1.12. — If M is an oriented real C1 manifold and / is a differential form of maximal 
degree, then we denote by | / | the absolute value of / (see, e.g., Sect. 0.3 in [He/Le 2]). 

1.13. — Let D CC Cn be a domain. Then we shall use the following spaces and 
norms of differential forms : 

C f0 (D) is the set of continuous forms on D. Set 

ll/llo = 11/llo.D = sup 
zED 

l l /Wl l (1.4) 

for / e c o, (D). 

C (D), 0 < a < 1, is the set of forms / G C (D) whose coefficients admit a 
continuous extension to D which are, if a > 0, even Holder continuous with exponent or 
on 75. Set 

U / H « = | | / lkD = ||/||ofD + sup 
z, C E D 
a # C 

l l/(*)-/(C)|| 
IC-^I-

(1.5) 

f or 0 < a < 1 and / G C a D). 

5 ß CD), ß ^ 0, is the set of forms / G C CD) such that, for some constant C > 0, 

| |/(z)| | ^ C[dist(*,<9L>)]-A zeD , 

where dist(z,dD) is the Euclidean distance between z and dD. Set 

\\f\\-ß = \\f\\-P,D = SUP 
z£D 

\\f(z)\\[dist(z,dD)]f (16) 

f or ß > 0 and / e -B (A)-
If Apr(D) is the space of forms of bidegree (p, r) on D, then we set 

C 
p, r 

JD) = C & 
* 

(D)nApJD), 

C fCC D = C (fl)nA?,r(D), 

B /9 
Pi7* 

(D) = B P 
* 

CD) H Apr(jD), 
and 

C 0 
p, * 

(D) = U0<r<nC 0 
p,r 

(D) 

c. & 
P,* 

(D) = Uo<r<nC & 
p,r 

(D); 

B P 
rp,* 

(D) = U0<R<NB 'p,r (D). 
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2. Local g-concave wedges 

In this section n and q are fixed integers with 0 < q < n— 1. Denote by M0(n, q) 
the complex manifold of all complex n x n-matrices which define an orthogonal projection 
from Cn onto some ^-dimensional subspace of Cn. 

2.1. DEFINITION.— A collection (U,p\,... ,PN) will be called a q-
configuration in Cn if U C Cn is a convex domain, and />i,... ,PN are real C3 func­
tions on U satisfying the following conditions : 

(i) {zeU: Pl(z) = ... = PN(z) = 0} ± 0 ; 

(ii) dpi(z) A • • A dpN(z) £ 0 for all z e U ; 

(7iX) If A G A\...N (see Sect. 1.6) and 

PA := Aipi + • • +\NPN , 

then the Levi form LPx(z) (see Sect. 1.3) has at least g+1 positive eigenvalues. 

2.2. DEFINITION. — A local q-concave wedge (E,D), 0 < q < w—1, is a C3 
intersection D such that one can find a frame (U^,p\,... ,PN,P*) (see Sect. 1.9) with 
E - { z e : pi(z) = • • • = pN(z) = 0, p*(z) < 0 } satisfying 

(7) if K = (*i,.. . € P'(JV) and K 
Z> = { z E UD : pk1 (z) = ... = pkl (z)} then 

rfpjbi(^) A • • A dp*,Cr) ^ 0 for all * e £ K 
D » 

(70 P* is convex and if U-K* 
D 

= {z e U^: pkl(z) = ••• = = p*(z)} then 
ctab,0z) A • • • A dpjk.O?) A dp*(;z) 9^ 0 for all z £ U 

D 
(Hi) there exist a C°° map Q: Ai...^ —• MO(n,n—q— 1) and constants > 0 such 

that 
-ReF„A(*,C) ^ PA(S) - />A(C) + «|C-^|2 - A|Q(A)(C-^)|2 

for all A e Ai...N and Z,C € £%. 

2.3. LEMMA. — Let ({/, ^>i,... , (p^) be a q-configuration in Cn, 0 ^ q ^ n—1. 
Then for each £ € U with <p\(0 = • • • = <PN(0 = 0, there exists a number R% > 0 such 
that for aii with 0 < R < % if 

D = {zeU: <Pj(z)>0, j = 1, . . . , i V } n { ^ € C N : | Z - < E | < i i } 
and 

E = {zeU: <pi(z) = • • • = y ^ s ) = 0 } n { : E C n : < } 

then (i£, D) is a iocai g-concave wedge. 

If % = { Z € C» : \z-t\ < R( }, Pi = -ipi forj = 1, . . . ,N, p.(z) = \z-tf-R2 
then (t%, p\,... , PN,P*) is a frame for D. 

Proof. — It is sufficient to repeat the proof of Lemma 2.4 in [L-T/Le] using 
—p\ = —(Ai/>i + • • + XNPN) = X\<p\ + • • • + \N<PN at the place of p%. • 
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2.4. DEFINITION. — We shall say that a local g-concave wedge (E, D) is defined 
by a ^-configuration if there exists a frame (Ujf,pi,... ,PN>P*) for (E,D) such that 
(UD, pi,... , — PN) is a g-configuration. 

2.5. Remark. — It is easy to see, using Lemma 2.3 and Lemma 2.2 in [L-T/Le], 
that if f € Cn is a fixed point and (p\,... , <PN are real C3 functions in a neighborhood V 
of £ such that the following conditions are fulfilled 

(i) % ( O A . - - A « ^ 0 ; 

(H) Pi(O = " - = Wr(O = 0 ; 

(7/0 set = { 2 € V : <Pj(z) = 0 } for j = 1,... , JV and (p\ = \\<pi + • • • + AJV^AT for 
A € AT, then for all X = (*i,. . . , */) € P'(iV) and A € ^ A : (see sects 1.5 and 

1.6), the Levi form LPx(£) restricted to T 0 ^ n • • • n Yjb,) (see Sect. 1.2) has at 
least 

dime T, .c ( n . n - n n j - n + g + 1 

negative eigenvalues ; 

then there exists a number > 0 such that, for all R with 0 < R ^ R$y (E,D\ where 
jE? = y ! n - - - n y j v n { 2 r € C n : | * - £ | < fi} and D = {z G V: y>jCz) < 0}C\{z E 
Cn : |J2-—£| < R}y is a local g-concave wedge defined by a g configuration. 

2.6. Remarie. — It is clear that in the case of a local g-concave wedge defined by 
a g-configuration we can choose the constant a of Definition 2.2 (Hi) such that for each 

A € AV..N9 z E [%, the Levi form LsAO of p\(Q = />A(C) - P A 0 0 + OF 
2 |C—2r| has at least 

(g+1) negative eigenvalues on U-^. 

3. A Leray map for local g-concave wedges 

Let D CC CN be a C3 intersection, , p\,... , PN, P*) a frame for D, and let SK 
he thft r.oiTP.snnnHincy manifolds intrndnrpH in Sftp.t 110 

3.1. DEFINITION.— A Leray map for D or, more precisely, for the frame 
([/77, p\,... , />ATj />*) is a map ^ which attaches to each K e P'(N, *) a Cn-valued map 

^ ( * , C , A ) = ( ^ 1 
K 

(z,C ,A), . . . , ^ n (*,C,A) 

defined for (z,C,A) € D x SK * AK such that {^irC^C A),C_z) = 1-

Now let {E) D) be a local ^-concave wedge and />i,... , PN> P*) the associated 
frame. 

Since p* is a convex function, if we set 

w* (C) : = 2 dp* 
a C1 (C),... 

do* 

dCn (C)) 
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for C G Ujj and 
w* (z; C= (w* (C), C-Z) 

for (z, Q G Cn x Ujy, then there exists £, 7 > 0 such that 

Re C) ̂  P*(0 ~ P*(z) + TlC-^l2 (3.1) 

for all (z, 0 € Cn x U-n with \C~z\ < 5. 

It follows that i/>*(zX) £ 0 for all (z,Ç) £ D x S*. 

Since , PN are defined and of class C3 in a neighborhood of i /^ , we can find 

C°° functions a (1/ = 1,... , JV; j = 1, . . . , n) on U-jy such that 

a Mi 
1/ 

( 0 
ô V , ( C ) 
aCkzCj 

< 
& 

2n2 

for all £ G U-Q, where a is as in Definition 2.2. 

Set px = X\p\ + • • • + XNPN and a ki 
X 

— X\d kj 
-1 + • • • + Xjsfa kj 

N 
for A G Ai. .AT. Then 

[ 
N 

Jb.7=l 

(a kj ( O -
Cj - zj) -

dCkdQ 
:o)tktj < 

a 
2 

NI2 (3.2) 

for all < € % , < ë C " and A e AH..N. Set 

£M(*,C) = 2 
n 

¿=1 

dpx 
aCj 

(Cj - zj) 
N 

k,j=1 
a kj 
"X 

(OiCk-ZkXQ-zj) 

for OZ,CjA) G Cn X f/̂ - x Ai ...TV- Then it follows from (3.2) and condition (Hi) in 
Definition 2.2 that 

-RcFPx(zX)> Px(z)-px(0 + 
a 
2 

\Ç-z\2 - A\Q(X)(C-z)\2 (3.3) 

for all (j2r,C, A) G x t% x AV..N. 

Denote by Qkj(X) the entires of the matrix Q(X), i.e. 

Q(X) = (Qkj(X)) N 
k,j=l 

(k — column index ) . 

If (z,C, A) G Cn x Ujy x Ai. .AT, then we set 

vf(z,Ç,\) = 2 
dpx 

( 0 -
n 

Jb=l 
a kj 

A ( c x a - * * ) - ^ 
n 

*=1 

Qkj (L) (Ck-zk) 

v=(v\... ,vn) 

9 = (v(z,Ç,X),C-z) 

(3.4) 

Since <5(A) is an orthogonal projection, we have 

<p(z,C,\) = Fpx(z,0-A\Q(Xft-z)\2 (3.5) 

for all (z,C, A) € C" x x AI„.JV and it follows from estimates (3.3) that 

-Kß<p(z,C,\)Z Px(z)- Px(0 + 
a 

a 
l<-*l2 (3.6) 
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for ail (z,Ç, A) eU^xU^x Ai...N. 

Now we set for (2,Ç, A) G U-p x C" x AI...N. 

wj (z, C, A) = vj (C, z, A) 

Uz,C,X) = (p(£,z,\) 
(3.7) 

It follows from estimate (3.6) that V(^,C,A) ^ 0 if (z,<, A) e D x SK X ^AT for 
some if e P'(JV). 

Therefore, by setting 

lM*,C,A) = 
tt>(z,C,A) 

w (z, C, A) 
(3.8) 

for (z,C, A) € D x SK x AK,K e P'(JV) and 

*I>K*(Z,C,X) =X (A.) 
t»*(C) 

i**(*,C) 
+ 0 - X Í A . ) ) 

™(z,C, A) 
w (z, C, A*) 

(3.9) 

for (2 , C, A) e D x x A* . , # € P'(iV), we obtain a family ^ = {i\)K,i>K* }KZP'(N) 
of Cn-valued C1 maps. Obviously, ^ is aLeray map for the frame (Ujj,pi,... ,PAT,/>*)• 

3.2. DEFINITION. — A map / defined on some complex manifold X will be called 
k-holomorphic if, for each point £ E X, there exist holomorphic coordinates /11 , . . . , hn in 
a neighborhood of £ such that / is holomorphic with Fespect to h\,... , hk. 

We deduce immediately from (3.4), (3.7) and Lemma 3.3 in [L-T/Le] that: 

3.3. LEMMA. — For every fixed (z,X) 6 Ujy x A\...N the map u;(z,C,A) and 
the function ^(2T,£JA) are (g+l)-hoiomorphic in £ E Cn. 

4. An integral formula in local g-concave wedges 

We denote by B(z, Q the Martinelli-Bochner kernel for (n, r)-forms, i.e. 

B(z,0 = 
1 

(2iri)n 
det 

i n-1 
C - z 

IC-*I2 
, d 

C - z 

C - z2 
Adz\ A - - A dzn 

for all E Cn with z £ ( (for the definition of determinants of matrices of differential 
forms, see, e.g., Sect. 0.7 in [He/Le 2]). If D CC Cn is a domain and / is a continuous 
differential form with integrable coefficients on D, then we set 

BDf(z) 
CCD 

/(C)AB(2r,0, ZED 

(for the definition of integration with respect to a part of the variables, see, e.g., Sect. 0.2 
in [He/Le 2]). 
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Let D CC Cn be a C3 intersection, (U-Q, p\,... , PN , P*) a frame for D, and let S/r 
be the corresponding manifolds introduced in Sect. 1.10. 

Further, let ip be a Leray map for the frame (Ujy, p\,... , PN , />*)• Then we set 

^олг(2,С,А) =дс (Л0) с - * 
IC-2I2 + ( l - £ ( A o ) ) ^ ( * , C , A ) (4.1) 

for # G P ' W *) and (2г, C, A) G D x 5лг x Лолг. Note that 1 - { (Ao) = 0 for Л in the 
0 

neighborhood Лок^ Док of Aq and therefore фок is of class С . For G -P'CW, *) w^ 
introduce the differential form 

R гЬ 
К (*,C,A) = 

(-1)|K| 

(2тгг)п det ( 

1 

wOK (z, C, L) 

n-l 
dwOK (z, C, L) A dz\ Л • • • Л dzn 

defined for (z,C A) E D x SK X A O K , and the differential form 

L •Ф 
к (*,C,A) = 

1 
(2ттг)п 

det ( 
1 

WK (z, C, L); 
n-l 

dtl)K(zXA) Adz\ Л • • - Л dzn 

defined for (£,£, A) E D x SK X A # (here c? denotes the exterior differential operator with 
respect to all variables z,C,A). If / is a continuous differential form on D, then, for all 
-K G P'C/V, *), we set 

R >tt> 
к f(z) = 

(C, L) E S K X AOK 
Д О Л Я 

к (z,C,A), z G A 
and 

L 'к •/CO = 
(С,А)е5КХДК 

/(С) Л L ̂к •(*,С,А), z£D. 

Then, for each continuous (n, r)-form / on D, 0 < r ^ n, such that d/ is also continuous 
on D, one has the representation 

(-l)n+rf = dBDf-BDdf + 
K£P'(N) 

•tb f + dR LK f-R df 
a 

+ 
K E P' (N)U0 

(L •tb 
K* f + dR f-R K* df ) on D. 

(4.2) 

This formula is basic for the present paper. It has different names and a long history 
(see Proposition 1.3.1 in [Ai/He], Sect. 3.12 in [He/Le 2] and the notes at the end of ch. 4 
in [He/Le 1], we call it Cauchy-Fantappie formula. 

4.1. Cauchy-Fantappie formula for a local g-concave wedge. — Let (E, D) be a 
local g-concave wedge, 0 < q < n - l , (t/^,/>i,... , />jv, p*) the associated frame satisfying 
conditions (i), (ii) and (Hi) in Definition 2.2 and i/> the Leray map constructed in Section 3 
for the frame (U^,pu... ,pN)p«). 
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We set 
Tw = BD + 

K€P'(N) 

R w 
k 

+ 

K€P'(N)UH 

R w 
K 

and 
Lw = 

K£P'(N) 

L w 
JK + 

K€P'(N)Ut 
L 

L w 
* = 

KeP'(N)u$ 
L w 

K* ' 

With this notation, for each continuous (n, r)-form / on D, 0 < r < n, such that df 
is also continuous on D, (4.2) can be written 

(- l )n+r/ = dT^f - T^df + L*f on D . (4.3) 

4.1.1. THEOREM. — If 0 ^ r ^ q—N, for each continuous (n,r)-form f on D 

such that df is also continuous on D 

(- l)n+r/ = dT^f - T^df + Vif on D . 

Proof. — In view of the Cauchy-Fantappie formula (4.3) it is sufficient to prove 
that for 0 ^ r ^ q-N, K 6 P'(N\ L • it, 

'K f=0. 

Let us denote by [L K deg C= k the part of the form L 
K 

which is of type (0, k) in 

Then, by Lemma 3.3, [L '4> 
k 

deg C = k = 0 for K e P'(N) and k > n-q. 

Since / is of type (n,r), ûimAK = lüCI—1, dirnS*: = 2n-\K\ and \K\ ^ N we 
obtain, by definition of L tb 

K / , that L JK f = 0 for 0 < r ^ q-N and K e P'(N). m 

4.1.2. Remark. — In fact we can prove that, for K G P'(N), L •4> 
JK f = 0 if 

r < H * | . 

4.2. The manifolds TK. — As we want to obtain an integral formula for forms 
which are not necessarily defined on dD, we are going to replace the integrals over the 
manifolds SK in (4.2) by integrals over certain submanifolds TK of D. 

For K = ... , kt) e P(N, *) we set 

U K 
D = pkl(0 = ... = Pkt(0} 

if ,kt are different in pairs, and U K 
D 

= 0 otherwise. By conditions (i) and (ii) in 

Definition 2.2 each V rK 
D 

is a closed C3 submanifold of We denote by PK>K e P(N, *), 

the function on U K 
m which is defined by 

PK(0 = PK(0 (C€G ; i/ = l , . . . , * ) . 

Now, for all if E -P(Ar, *), we define 

LK = {C E U K 
D 

:p j (C)<№(C )<0 for j = l , . . . ,7V,*} . 

162 



UNIFORM ESTIMATES FOR THE CR EQUATION ON q-CONCAVE WEDGES 

Then it is easy to see that all TK are C3 submanifolds of D with piecewise C3 boundary, 
and that 

D = Ti U • • • U TN U T* 

and 
dTK = SK U rKl U • • • U TKN UTK*, K E P(JV) . 

We choose the orientation on TK such that the orientation is skew symmetric in the 
components of K, and the following conditions hold : 

A , . . . ,TN>T* carry the orientation of Cn, and if ^ 
KeP(N,*) and l^j^N with resp.j then I 
Tic*, resp. TKJ are oriented just as -OTK > 

As in [L-T/Le], we obtain the following lemmas : 

4.2.1. LEMMA. — If TK are the above manifolds, then 

drK = SK -
N 

j=1 
PKJ — PK* 

for all K € P(N,*). 

4.2.2. LEMMA. — If TK are the above manifolds and AK,AOK are oriented 
simplices introduced in Sect. 1.6, then 

K£P'(N,*) 
( - D 1*1 d(TK x Ao*) -

D x AQ + 
K£P'(N,*) 

(-1) SK x A0*r -
K£P'(N,*) 

TK x A* . (4.4) 

K£P'{N,*) 
d(TK x a * ) -

K E P' (N,*) 
SK x A * (4.5) 

and 

K£P'(N)U\ 

d(TK* x = 
K€P'(N)U$ 

SK* x 4 ^ + 
K£P'(N) 

TK, x A * . (4.6) 

4.3.The operators L and M. — Let w*(zX\ ^*(z,C)» w(*,C> A) and ^(z,C,A) 
be the maps defined in paragraph 3. We set 

#*(*,C) - tf*(*,C) - 2p.(C) for u , o e C x ^ and 
#(*, C, A) = C, A) + 2px{0 for (2r, C, A) € Cn x x Ai...Ar. 

Then it follows from (3.1), (3.6) and (3.7) that $*(z,Q £ o for (z,() G D x D and 
#(*, C, A) ^ 0 for (*, C, A) € Z) x D x ^. . . jy. 

So we can define the C2 maps 

iM*,C,A) =x (A*) w*(C) 
**(*,C) 

+ ( 1 - X ( A . ) ) 
tfl(z,C, A) 

*C*,C,A) 
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for all (z, C, A) E D x D x AK> K E P ' (JV, *). Notice that $K(z, C, A) = t/>K(z, C, A) when 
( 2 r , C , A ) € / ? x 5 j r x 4 j r . 

We set for (2r,C, A) e D x D x AK 

L K (*,C,A) 
1 

(2f7T)n 
det 

1 

fe(*,C,A) 

n-l 

drpK(zX^) A <i2rx A • • • A CTEN 

and one has £ «2 = 2 on D x 5 K x Atf. 

We set also for ( 2 , ( , A ) G D X D X 

M W 
A: (*,C,A) = 

1 
(2tV)n 

det 
n 

*?#(*, C> A) A CTEI A • • • A DZN . 

4 . 3 . 1 . Remark. — It comes from the properties of determinants that if K E Pf(N) 

L 
K <*,C,A) = 

1 
(2i7r)n$n(zX, A) 

det 
I 

TI>(Z,C A) '5 

n-l 
dwiz.C. A) 

for ( Z , ( , A ) E D X D X where C, A) is (g+l)-holomorphic in C-
Now let us define the operators L,L* ,M and M * on C ( £ ) , 0 < r < n , by 

Lf(z) = 
K£P'(N,*) CELK X AK 

/ ( 0 A L (s.C.A), z G D 

£*/(*) = 
KeP'(N)u$ CELK* X A K* 

/ ( 0 A 2 (2r,C,A), z £ D 

Mf(z) = 
KeP'{N,*) (ZTKXAK 

/(C) A M (z,C,A), z £ D 

M*f(z) = 
K£P'(N)Ut C E L K* X A K* 

/ ( 0 A M ; (2r,C,A), z € D 

for fee i0 (D) 

For / E C 0 
n 

( D ) , the forms X / , L*f, Mf and M * / are continuous on D. 

4 . 3 . 2 . LEMMA. — Let f be a continuous (n, r)-form on D. If we set 

Af(z) = 
KeP'(N)u$ LK* X AK 

/ ( 0 A L 
w 
JK 

(z, C, A), z E D , 

then Af = 0 wien 0 ^ r < g-Ar. 

Proof. — By remark 4.3.1, [L 4> 
JK ]deg C=k = 0 for K E P'(N) and ^ n - g . Using 

thatdimTK* = 2n-\K\and \K\ ^ A the result follows easily from the definition ot A . • 
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4.3.3. PROPOSITION. — Let f be a continuous (n,r)-form on D such that df 
is also continuous on D} then 

L f 
K£P'(N,*) 

L tb 
K f = Ldf-dLf + (-l)r+nMf 

and, if 0 < r < q—N 
L tb 

* 
d= 

K E P'(N)U 0 
L K* f = L*df-dL*f + (-l)r*nM*f . 

Proof — As L K = L tb 
K on D x SK x AK, we have for z e D 

KeP'(N,*) 
L tp 

K / (*) = 
K€P'(N,*) (£SKxAK 

/(OA L tb 
K (*,C,A). 

Then using (4.5) in Lemma 4.2.2, we get 

KeP'(N,*) 
E ib 

K f(z) = 
K€P'(N,*) (C, A)E a (L K X A K) 

/ ( 0 A L tp (*,C,A) 

K£P'(N,*) (C,A)€RKxAx 
dKOAL tb 

'K (*,C,A) 

+ (-l)n+r 
((,A)ER/fXAK 

f(QAdcxL tp 
K (*,C,A) 

by Stokes'theorem. 

As d^\L tb 
K 

(z, C, A) = -dz L tb 
K (*,C,A) + M K (zX, A), then we get 

K£P'(N,*) 
L • tb f(z) = Ldf - dLf + (-l)r+nMf . 

In the same way, using (4.6) in Lemma 4.2.2 and Lemma 4.3.2, we obtain the second 
relation in Proposition 4.3.3. • 

4.4.The operator H. — Using and $ (see Sect. 4.3), we can define the C1 
map 

n(zX^) ={ (A0) 
C - z 

IC-*I2 
+ ( l - J ( A o ) ) [x(l> 

w*(C) 

**(*,0 
+ ( 1 - X ( A . ) ) 

0* 
w(zX, A) 

O (Z, C, A*) 

O O 0* 
for all (z,C, A) € JD x D x Aoi...AT., with 2 ^ £ (for the definitions of x,A. and A see 
Sect. 1.7 and 1.8). Note that 

iK*,C,A) = 
C-z 

IC-*I2 
if 1 / 2 < A 0 < 1 (4.7) 

^ , C , A ) =x (A.) ti>*(0 
O* (z, C) + ( 1 - X ( A . ) ) 

0* 
w(z,C, A) 

0* 
<P(z,<,A) 

if 0 < A 0 < l / 4 

>?(*,<, A) = x (A.) w*(0 
*'<*,C) 

+ ( 1 - X ( A . ) ) 
w(z, C, A) 

*(*,C,A) 
if A0 = 0 . 
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In particular, for all if G P'(Ny *) we have the relations 

ïK*,C,A) = tfojr(*,C,A) * ( C , A ) e S * x A 0 K (4.8) 

(see (4.1) for the definition of ipoK ) and 

iKs,C,A) = fo(*,C,A) if ( C A ) E ^ x ^ . (4.9) 

Now for (z,C, A) 6 D x D x z\oi-iv* with 2: ^ ( we introduce the continuous 
differential forms 

and 
G(s,C,A) = 

1 

(2i?r)n 
det 

1 

«K^C,A) 

n-l 
dn(zX, A) A rf^i A • • • A <f zn 

£<*,C,A) = 
1 

(2iV)n 
det 

n 
DRÇCZR,C,A) Adz\ A • — A dzn 

where d is the exterior differential with respect to all variables z, C, A. 

Then it is easy to see that 
dG = H (4.10) 

It follows from the definitions of the kernels B, P^K,L\ and from the relations (4.7), 
(4.8) and (4.9) that 

Pi D 
^ DxDxAo ~~ 

(4.11) 

G |DxSkX A0K = (-1) |K| R w 
K 

fofall KeP'(N,*) (4.12) 

G|DxLK X AK = L W 
K for all if € P'(iV, *) . (4.13) 

Like in [L-T/Le] we can describe the singularity of G and H at z = £. 

4 . 4 . 1 . LEMMA. — Denote by [GCz,C, A)]DEGA=fc and [#(2, £, A)]DEGA=* ^ e parts 
of the forms G(z,£,A) and i/(2r,C,A), respectively, which are of degree k in A. Then 
the following statements hold : 

(i) The singularity at z = £ of the form [G(2,£, A)]deg A=fc is of order ^ 2n—2k—\ ; 

(ii) The singularities at z — of the first-order derivatives with respect to z of the 
coefficients of [G(z,C, A)]DEGA=A: are of order < 2n—2fc ; 

(Hi) The singularity at z = £ of the form [#(z,C, A)]dEGA=Jb is °f order ^ 2n—2fc+l. 

As (E,D) is a local g-concave wedge, the map w is (g+l)-holomorphic in C 
(Lemma 3.3) and therefore 

4 . 4 . 2 . LEMMA. — IffeC. 3 CD) with r ^ q-N+1, then 

(C,\)erKxAK 
/(C)AG(z,C,A) = 0 

for all K £ P'(N) and z e D. 
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Proof. — Let us remark that for K G P'(N) 

G — 
DXTKXAK 

1 
(2iir)n 

1 det w(z, C, A), 
n-l 

dw(zX, A) A dz\ A • • • A dzn 

where w is (g+l)-holomorphic in £. Therefore [G(z,C, A ) ] ^ j=ib = 0 for K G P'C/V), 
(z,C, A) €DxTK X AAT, ^ n - g . 

Since / is of type (n,r), dimAK = \K\-1, dimrK = 2n-\K\+l and \K\ < JV, 
we get 

«,A)erKxAK 
/(C)AG(2r,C,A) = 0 

when r < q-N+1 and if G P'(Ar). • 
Let f £ B CD),0 < /? < 1 (see Sect. 1.13). Then, for all K G *), we define 

HKf(z) = 
(C, A)ELK X AOK 

/ ( O A f f ^ C A ) , z € D . (4.14) 

It follows from Lemma 4.4.1 fii/J that these integrals converge and the so defined differential 
forms HKI are continuous on D. We set 

Hf = 
K E P'(N,*) 

( - D 1*1 HKf 

for / e B re,* ( D ) , 0 < / 9 < 1. 

Now let / G £ (D), 0 < /? < 1, O ^ r ^ n . Since H(zX^) is of degree 2n 
and contain the factor dzi A • • • A cten and since dimu x — 2n+l, then only such 
monomials of i/(z,£,A) contribute to the integral in (4.14) which are of degree (n+1—r) 
in (C,A) and hence of bidegree (n,r— 1) in z. This implies that = 0 if r = 0 or 
n+1—r < = dimR AQK-

Hence, for / G B (£>), 0 < /9 < 1, 0 ^ r < n, we have 

Hf 

K E P' (N,*) 
\K\*n+l-T 

(-1)|K| HKf, 

Hf = 0 if r = 0, and Hf G C o 
n.r —1 

CD) if 1 < r < n. 

(4.15) 

4.4.3. THEOREM. — Let (E, D) be a local q-concave wedge, 0 ^ q ^ n—1 and 
f E B B 

n, r 
(D) an (n, r)-form, 0 < r ^ n , 0 ^ / ? < l such that df e B * (D). Then 

f = dHf + Hdf + Mf onD. 

Let (Ujy,p\,... ,PN,P*) the frame associated to (E,D) in Definition 2.2, then, 
ifO^r^q-N, 

f = dHf + Hdf + M*f onD. 

In particular, ifr = 0,f = Hdf + M*f on D. 
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Proof. — The proof of this theorem is analogous to that of Theorem 4.11 in 
[L-T/Le], For the convenience of the lecturer we will repeat it here 

First consider a form g £ C 
ni3 

(D). Then by (4.10) 

dCtx(g A G) = dg A G - dz{g A G) + (-l)n+jg A H 

and it follows from Stokes'formula (which can be applied in view of Lemma 4.4.1) that 

d(TKxAoK) 
gAG = 

TKXAOK 
dg AG + d 

TKXAQK 
gAG + (-l)n+jHKg 

for all K £ P'(iV, *). In view of (4.4) this implies that 

DxA0 
9 AG + 

K£P'(N,*) 

(-1)|K| 
SKXAQK 

9 AG — 
K£P'(N}*) TKxAK 

9 AG 

KeP'(N,*) 

(_i)l*l 
TKXAOK 

dg AG + d 
TKXAOK 

gAG + (-l)n+jHKg 

Taking into account (4.11) and (4.12) as well as the definitions of T^ and H, this can be 
written 

T+g-
K£P'(N,*) TKxAK 

9 AG 

= 
K£P'(N,*) 

(-Dim 
L K X AOK 

dgAG + d 
LK X°AOK 

9AG + (-iy^Hg. (4.16) 

Now we consider a form f £ C o 
N R (D) with 0 < r < n such that df is also continuous 

on D. Setting g = df in (4.16), we obtain that 

T*df = 
K£P'(N,*) 

(-1) ,1*1 9 
TKXAOK 

dfAG+(-l)r+l+nHdf + 
KçP'iN,*) TKXAK 

dfAG . 

Setting g = f in (4.16), applying d to the resulting relation, we obtain that 

dT*f = 

KeP'(N,*) 

(-1)1*1* 
TKXAOK 

dfAG+(-l)r+ndHf+ 

K£P'(N,*) 

d) 

TKx.AK 
/ A G ) . 

Using (4.13) and Proposition 4.3.3, these two relations imply that 

dTPf _ jvfiy + Li,j _ (_iy+n(dHf + Hdf + Mf) 

and hence by (4.3) 
f = dHf + Hdf + Mf . (4.17) 

If moreover 0 < r < q — N, then by Lemma 4.4.2, we obtain 

dT^f-T^df = (-l)r*n(dHf+Hdf)+ 
K£P'(N) 

d) 

LK*XAK* 
/ A G ) -

LK*XAK* 
dfAG 

It follows from Theorem 4.1.1, Proposition 4.3.3 and (4.13) that 

f = dHf + Hdf + M*f . (4.18) 
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Now we consider the general case. Let f E B ß (D), 0 < /? < 1, 0 < r < n, such 

that also df e B >ß (D). Choose e > 0 with /3 + e < 1. Then, by local shifts of / and a 

partition of unity argument, we can find a sequence of forms fv EC >f0 XD) such that also 
the forms dfv are continuous on D and 

fu —• / and dfv —• df 

in the space B ß+e (D). By Lemma 4.4.1 (Hi), then 

Hfv —* # / and Hdfv —+ Hdf 

uniformly on the compact subsets of D. Moreover the kernels M w 
K are of class C1 in 

D x D x AK and therefore 

Mfv —+ Mf and M 7 , —• M 7 

uniformly on the compact subsets of D. Since, by (4.17) and (4.18), 

fv=dHfv+Hdfv+Mfv 
and 

fv=dHfv+Hdfv+M*ft„ if ( K r < g - T V , 

this implies that 
f = dHf + Hdf + Mf 

f = dHf + Hdf + M*f, ifO^r^q-N.m 

5. Homotopy formula and solution of the d-equation 

in local g-concave wedges 

Let (E,D) be a local g-concave wedge, 0 ^ q < n—1, ( 6 ^ , , P N > P * ) the 
associated frame satisfying conditions (7), (//) and (n/J in Definition 2.2. 

5.1. LEMMA. — Let £ be a fixed point in £7, then there exists a neighborhood 
Wof£ in Cn such that for each f £ B, ß 

n,r 
(D). 0 < B < 1, 0 < r < n, the differential 

form M* f = 
K£P'{N) 

LK * A K* /(C) A Mtf.C - , C, A) is of class C1 in W and D CW. 

Moreover M* is a bounded operator from B }ß (D) into ClnAW). 

Proof. — Recall that MK*(z, C, A) = l 
(2iT)n 

det(c?^J(t(2:,C,A)) where 

wK*,(C, A ) = £ (A*) t**(C) 
O* (z, C) 

+ ( 1 - X ( A . ) ) 
w(z,C,X) 

O(z, C, A*) 

for (z, C, A) G D x D x AK*. 

Moreover, we know from (3.1) and the definition of in Section 4.3 that 

«•(s, 0 0 for all (z, C) G { x E < 0 } x { y E £%/p.(y) ^ 0 } . (5.1) 
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From (3.6), (3.7) and the definition of $ in Section 4.3 we get 

Re $(z, C, A) < px(z) + Px(0 -a 
2 

|C - z\2 for all (*,<, A) e C% x E% x A * . (5.2) 

Set 6 = disttf,ry..Nt), if z e B(£, TS),T < 1, and C G Iff., then |z-CI > (1 -r)<5. 

Let W t, A 
{ z E B(E, TA) | p 

* 
A 

CO < 6a(\-r) 
2 

}, then WT - n 
A6AK» 

W 
r.A is a 

neighborhood of £, which contains D n £(£, r<5). 

We set W = ( u 
T<1 

WT)UJD n {:G | />*0e) < 0 }, W is a neighborhood of £ 

in Cn, which contains D. We deduce from (5.1) and (5.2) that $*(zy Q £ 0 and $0r, Q £ 0 
f o r ( z , C , A ) € ^ x A K*. 

Consequently M*-* is a C 1 differential form on W x TK* X ART*, which defines a 
bounded operator A P from B^(D) into CN>5),(W0. • 

5.2. LEMMA. — Let f £ B (D) a (n,r)-differential form, 0 < /? < 1, such 
that c(f € £ CD). Then if 0 ^ r ^ q-N-l, dM* f = M*df on W. 

Proof. — We consider first the case, where f EC CD) and df is also continuous 
on D. If z E W 

dM*f(z) = (-l)r+1 
K€P'(N)U$ tf,A)€LV*xAK* 

f(C) V dC, A MK* (z, C, A) 

since dMjc* = 0 by definition of MK* . 

Therefore, using Stokes'theorem and (4.6) we get 

dM*f(z) = M*df(z)-
K£P'(N)Ut (C,A)ESK* X AK* 

/ ( C ) A M ^ ( z , C , A ) 

-
K£P'(N) (C,A)€rK*xAK 

/ ( C ) A M ^ f e C A ) . 

But we have MK* c * = dL 
5K*XAx* 

W 
K* - 0, then 

dM* f(z) = M*df(z)-
KeP'(N) (C,A)€rK*xAic 

/ ( O A M ^ C A ) . (5.3) 

Since MK* |rwXA|C=dL W 
K |LK* X A k, , we have 

'(C,A)€rK*xAK 
/(C)AMJT.(Z,<,A) = 

(C,A)erK*xAK 
/(C) A dzf\L K (*,C,A) 

= ( - l ) r d , ( 
'(C,A)erK*xAK 

/ ( 0 A £ (*,C,A)) 

+ (-Dr+1 
(C,A)€rK*xAK 

rf/(C)AL (*,C,A) (5.4) 

+ (-Dr 
(C,A)erK*xAK 

</<,A(/(C)AL <*,C,A)) 
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By Lemma 4.3.1 we get that, if 0 < r < q-N, 

[(,A)6rK*xAif 
/(C)ALj(2r,C,A) = 0 (5.5) 

and if 0 ^ r ^ q-N-I or df = 0 

«,A)€rK*xAK 
* ( C ) A L (*,C,A) = 0 . (5.6) 

One can easily prove that 

K£P'(N) 
d(rK* x AK) = 

K£P'(N) 
SK* x AK • (5.7) 

Then, from Stokes'theorem and (5.7) we deduce 

KeP'(N)' (C,A)€rK*xAK 
dCx(f(OAL •J, (*,C,A)) 

= 

K£P'{N) (C, A) ESK* X AK 
/ ( O A I AT (s,C,A). (5.8) 

Using [L W 
K ]deg C=k = 0 for K G P'(iV), £ ^ n -g , and dim5^* = 2n-\K\-\ for 

# G P'(N\ we obtain that 

(C,A)€Sk*xAk 
/(C)A 2; 0 (z,C,A) = 0 if 0 < r < g-7V-l . (5.9) 

Therefore using (5.3), (5.4), (5.5), (5.6), (5.8) and (5.9) the lemma is proved for 
feC, 0 (D) such that df is continuous on D. 

Now, let f e B (L>), 0 < / ? < l , 0 < r < g-JV-1 , such that also df £ B (D). 
Choose e > 0 with < 1. Then as in the proof of Theorem 4.4.3, we can find a sequence 
of forms fv G Cn r(D) such that the forms dfv are also continuous on D and 

fv —• / and dfv —• df 

in the space B (D). 
As the kernels MK* are of class Cl in W x IV* x AK*, K G P'(Ar) U 0, 

M*/^ —• M*f and M*d/„ —• M*df for the C1 topology in the open set W. Since 
dM*f„ = M*df„ by the first part of the proof we get that dM*f = M*df for 
O^r^q-N-l. • 

5.3. THEOREM.— Let (E,D) be a local q-concave wedge, 0 ^ q < n—1, 
(t/p, £ i , . . . ,PN,P*) the frame associated to (E, D) in Definition 2.2 and £ a fixed point 
in E. Then there exists a real R,R> 0, such that for each f G B 

n.r .(D), 0 < /? < 1, 
1 < r < q- N - 1, with df eB 0 

* (D) we have 

f = Sdf + dSf on Dr\B(£,K) 

where S = H+TM*, T being the Henkin operator for solving the d-equation in B(£, R). 
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Proof. — In Theorem 4.4.3, we have proved that, if 1 < r < q—N, we have 

f = dHf + Hdf + M*f on D . (5.10) 

Let W be the neighborhood of £ defined in Lemma 5.1. Then, there exists, R > 0, 
such that B(£, R) C W and M*f is a C1 differential form on B(£, R). 

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map 
associated to B(£, R) (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]). Then we have 

M*f = dTM*f + TdM*f on B(Z,R). (5.11) 

Setting S = H + TM\ (5.10), (5.11) and Lemma 5.2 imply 

f = dSf + Sdf on DnB(Z,R).M 

5.4. LEMMA. — Let us suppose that (E, D) is a local q-concave wedge defined 
by a q-configurationf £ a fixed point in E and W the neighborhood of £ defined in 
Lemma 5.1 using a constant a satisfying the properties of Remark 2.6. Then for each 
(z, A) G W x A\...]s[ there exists a strictly q-convex domain G such that 

a) S\...N* CC G ; 

b) U-Q is a q-convex extension of G ; 

c) №i!..jv']degf=n-5-i ,s a d-cl°sed form on a neighborhood of G. 

Proof. — Set pi(Q = Pi(0 - Piiz) + f \(-z\2, i = 1, . . . , JV and for e > 0, 
sufficiently small 

<p = max(-/5i,... ,-pN,P+-e) • 

By definition of W, if z e W, we have 

5 i . . . i v . G C { C € % | # C ) < 0 } . 

Consequently there exists ß > 0 such that 

S i . . .Ar* c c { C e t % l £ ( C X O } 

where <p ß = m a x ^ ( - p i , —pN,/>*-e). 

Since />A is strictly (g+l)-convex for each A £ ^I...JV and />* is convex, the function 
is strictly (g+l)-convex on [%. Without loss of generality, we can assume that p+ is an 

unbounded exhausting function for U-Q. Then also ß is an unbounded exhausting function 
for 

Since - R e V ^ C j A ) > px(0 for (z,C,A) ^ [/— x Ujf x A\...N, for each (z,A) € 

WxZki...jv,L «6 
'1 

N(z, •, A) is defined on { C € £% | £ ( C X O } . 

Using the (g+l)-holomorphy of ip and the definition of L w 
'1...JV 

we get 

[L 1> 
1-AT 

W = n - , = 0 and d , , C L A L * = 0 , 

172 



UNIFORM ESTIMATES FOR THE CR EQUATION ON q-CONCAVE WEDGES 

therefore 
dc[L tb 

LDEGC=N-«-L = " ( Ô C + < A ) [ £ 
W 
l-AT 

]deg C=n-q = 0. 

For (z,\) G VF x Ai...NIL 
1 -TV 

(z, - , A) is 9-closed on { C G £% | £ ( C ) < 0 } and 
for sufficiendy small c > 0 , G = { ( G ( / n | £^(0 < - c } has the required properties. • 

5.5. LEMMA. — Under the hypothesis of Lemma 5.4, let f G B (3 
n,q-N 

(D) an 

(n, q—N) differential form, 0 ^ ¡3 < 1, such that df = 0 then 

dM*f = 0 on W . 

Proof. — First let us assume that / is continuous on D. Using (5.3), (5.4), (5.5), 
(5.6) and (5.8) we get for z G W 

dM*f(z) = 

K£P'(N) «,A)€Sx*xAK 
/(C) A L K (*,C,A). 

Since on W x SK* X AK, L K 
= L K and [L 

K 
]deg C=k = 0 for K E P'(N), k > n-q, 

we obtain 

dM*f(z) = 
(C>A)€51...JVR*XAI...JV 

/(C)A [2 w 
L-JV ]deg C =n-q-1(z, C, A) 

A€AI...7sr CES1... N* 
/ ( ( ) A [ I 1 -AT ldegC=n-g-l^'C) A) . (5.12) 

We fix (z, A) G WxAi. .AT, by Lemma 5.4 [Z 
l-N 

] , „7 „ „ , is a <9-closed form on a 

neighborhood of a strictly a-convex domain G containing Si...v*. Moreover £/ is a a-convex 
extension of G and bv Corollarv 12.12 (ii) in [He/Le 21 we can approach IX tb -ldeg<=n-g-l 
uniformly on G by a sequence (Fj)j€N of enclosed form on £/. Therefore we have 

C E S1... N* 
/ ( O A [2 

L -AT ldegC=n-fl-l (*,C,A) = lim 
j—too C E S1...N* 

/(C)Af>(C). 

Since S\...N* is the boundary of Si...AT and /(C)AFj(C) is closed on Si...AT we obtain 

(€SI-N* 
/ ( O A [2 W 

1 -IV 
W = N - , - I ^ C , A ) = 0 

and consequentiy using (5.12) dM*f = 0 on W. 

This proves the lemma when / is continuous on D. The same argument as in the 

proof of Lemma 5.2, implies this lemma when / G B ft n,q — N 
(D). 

5.6. THEOREM.— Let (E,D) be a local q-concave wedge defined by a q-
conûguration (see Definition 2.4), 1 ^ q ^ n—l, £ a fixed point in E and N the 
real codimension of E in Cn. 

Then there exists a real R, R> 0, such that for each f G B B 
n,q — N 

(£>),0 < / ? < ! , 
q—N > 1, with df = 0 on D we have 

f = dSf on DC\B(.Ç,R) 
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where S = H+TM*, T being the Henkin operator for solving the d-equation in B(£, R). 

Proof. — From Theorem 4.4.3, we know that 

f = dHf + M*f on D . (5.13) 

Let W be the neighborhood of £ defined in Lemma 5.1. Then there exists R > 0 such 
that Biijft) C W and M*f is a C 1 differential form on R). Moreover by Lemma 5.5, 
M*f is d-closed on B(£, R). 

Let T be the operator defined by Corollary 1.12.2 in [He/Le 1] with the Leray map 
associated to B(£, R) (see Definition 2.1.2 and Corollary 2.1.4 in [He/Le 1]). 

Then we have 
M*f = dTM*f on B(£,R). (5.14) 

Setting S = H + TM\ (5.13) and (5.14) imply 

f = dSf on DnB(Z,R).m 

5.7. THEOREM.— Let (E,D) be a local q-concave wedge, defined by a q-
configuration, 1 ̂  q ^ n— 1, TV the real codimension of E and £ a fixed point in E. Let 
us suppose that q—N ̂  0, then there exists a neighborhood Wof£inCn,DC W, 
such that each holomorphic function in D has an holomorphic extension to W. 

Proof. — Let / be a holomorphic function in D and £ > 0 a real number. We set 
P JE 
• = Pj + £, j = 1 • • • N, *. For e sufficiently small, the frame (Ujy, p ,p AT e 

* 
) defines 

a new local g-concave wedge, denoted by (E£,D£), which has the same properties than 
(E, D). Let de = dist(£, E£) and ££ e E£ a point such that |£ - £e | = d£. 

Set /(C) = /(C)^Ci A • • • A c?Cn, / is a d-closed (n,0)-form which is continuous in 
D£. Since q^ TV, Theorem 4.4.3, applied to / and D£, implies that 

f = M * 
£ 

f in De . 

As in the proof of Lemma 5.1 we have to consider the functions and $s associated 
to (£?„!>,). 

if C e r , then $*(z, C) ̂  0 for all z £ U-Q such that p%(z) < 0, i.e. p*(z) < -s. 

On the other hand, for all (z, C, A) £ £% x Ujy x A# 

Rc*e(z,C ,A)<p (*) + ri<0- & 
2 

|C-Z|2 

where the constant a depends only on the second derivatives of p A 
and consequently is 

independent of e. 
Following the proof of Lemma 5.1, if 6£ — dist(£e,r £ 1-AT* ) set W £ 

r, A 
= {z € 

(B (Ee, Tqe) | p 
A 

< *«O(1-T) 
2 

}, then W £ T E n 
A E AK* 

W 
r, A 

is a neighborhood of £e. 
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We shall prove that for some r and for sufficiendy small £, then W £ 
T 

is a neighborhood 
of£. 

Since T e 
1...AT* 

= fi...AT* n De, we have S£ ^ <S-de. Choose so > 0 such that for all 
s < so, 6—d£ > 6 

2 and T such that deo < TO 
2 

Then if e < inf(f (1—r)Ä,eo), the point £ belongs to {z £ B(££1T 
6 
2 ) I p £ 

* < 

aEe &(1-t) 
2 

} and therefore £ € W £ T 
and #((z ,C ,A)^0<m W £ 

T 
x TK* x Ax*. 

Choose such an e, it follows from the definition of M£ that Af 
e 

/ i s a C^O^OHorm 
in W 

r 
, moreover by Lemma 5.5 c?Af •* a = 0. 

Finally the (n.O)-form Ä defined by & = / on D and h = M * f on W 
T 

defined a 
holomorphic function /i on W = W £ T 

U D such that h = f on D. • 

6. Estimates 

In this section we denote by (E>D) a local g-concave wedge, 0 < q < n— 1, and 
by >PN,P*) the associated frame satisfying (7), and (ii'i,) in Definition 2.2. 
Let rK,K £ P(iV,*) be the submanifolds of 75 defined in Section 4.2 and $(2r,C, A) the 
function defined in Section 4.3. 

In Section 4.3, we have defined an operator H from B ß 
n,* 

{D) into C o (B)by 

Hf = 

KeP'(N,*) 

(-1)1*1 # * / for / € B 
n,* (£>) 

where the iïjir's are given by (4.14). 

Let us set H'f = 
K€P'(N) 

(-l)\K\HKf and H*f = 
KÇP'(N)U$ 

(-1)||K]+1 H*f. 

Let us recall some définitions and propositions given in [L-T/Le]. 

6.1. DEFINITION. — Let K e P'(N, *) and let s be an integer. 

A form of type Os (or of type 0,(z,C,A)) on D x TK x A0K is, by definition, a 
continuous differential form f(zX, A) defined for all (z, £, A) e D x TK X Z^OÜ: with z ^ C 
such that the following conditions are fulfilled : 

(i) All derivatives of the coefficients of f(zX,X) which are of order 0 in £, of order 
< 1 in z, and of arbitrary order in A are continuous for all (z, C, A) e D x TK X Ao*r 
with z £ C 

(ïij LetV AC 
2 

, « = 0,1, be a differential operator with constant coefficients which is of 
order 0 in of order K in z, and of arbitrary order in A. Then there is a constant 
C > 0 such that, for each coefficient <p(z, £, A) of the form f(z, £, A), 

IV AC 
z C(z,C,A) | < C|C-z| 5 —AC 

for all (z, C, A) G D x x A0K with z / 0 

175 



C. LA URENT- THIEBA UT, J. LEITERER 

(Hi) There exist neighborhood UQ^UK Q AOK of Ao and AK, respectively, such that 
/ ( * , C, A) = 0 for all (*, C, A) € D x TK x (U0 U UK\ 

The symbols 0 , (z , C, A) and Oa will be used also to denote forms of this type, also 
in formulas. For examnle : 

f = 03 means : / is a form of type O. 

Oa A / = Ok A g + Om means : for each form h of type Os there exist a form u of type 
Ok and a form t; of type Om such that h A f = uAg + v. 

The equation 

Ef(z) = 

(C, A)E SK X AOK 
0,(*,C,A)A/(z,C,A) 

means : there exists a form £" of type Os such that 

Ef(z) -
'(C,A)€SKxAOK 

£(z,C,A)A/(z,C,A) 

for all / . 

6.2. DEFINITION. — Let m > 0 be an integer. An operator of type m is, by 
definition, a map 

E:{JQ<ß<lB 3 
n,* 

(D) C 0 
n, * 

(D) 

such that there exist 

- an integer k ^ 0, 

- K E P'(iV), 

- a form E(zX,X) of type 0\K\-2n+2k+m on D x TK x A0K such that, for all 
f E B ß 

n,* 
( D ) , 0 < / ? < 1, 

£/<*) -
(C,A)€rKxA0K 

/ (OA 
C, A) A 6 ( 0 

<P*+m(z,C,A) 

where / E B ß 
o,* 

(D) is the form with 

/(C) = /(C)AdCi A---AdCn , 

and for 6 holds the following : 

if m = 0, then 6 = 1 ; 

if ra ^ 1, then there exist indices i\,... , im E K such that either 

6 = dp^ A • • • A <9#m or 6 = dph A dpi2 A • • • A dpim 

0 
(for the definition of A, see Sect. 1.8). 

6.3. PROPOSITION. — Let us consider an operator E of type ra, m ^ 0. 
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(i) Let 0 < p < 1/2, 0 < e < 1/2-/?, and 1 < r < n. Then 

E(B ft (£>)) CC 1/2-B-e 
i,r-l 

(D) 

and the operator E is compact as operator between the Banach spaces B, fi (D) 

and C l/2-fi-E 
n,r-l 

(D) 

(ii) Let 1/2 < p < 1, 0 < e < l-p, and 1 < r < n. Then 

E(B fi 
n,r 

(D) C B B+e-l/2 
n.r — 1 (£>) 

and the operator E is compact as operator between the Banach spaces B fi (D) 

and B n+E - 1/2 
n,r —1 (D). 

For the proof of this proposition see the proof of Theorem 4.12 in Section 8 of 
[L-T/Le]. 

6.4. THEOREM. — The operator H' is a finite sum of operators of type 
m, m ^ 0. 

Proof. — It comes from the definition of H' that the calculations are exacdy the 
same than in the proof of Theorem 5.4 in [L-T/Le]. The only change is that we have 
exchange the roles of z and C in the definition of w. But using that, for all k = 1, . . . , JV, pk 
is of class C3, we get that 

OQ A W = Oo A 
n 

j=1 

^(z,C,A)d<j =Oo A 

kEK 

dpk 
dzj 

(zWj+Oi 

= O0AdPj(O + 
k£K 

dpk 
dzj 

(z) 
dpk 
dzj 

( C ) H i + O i 

= Oo A dpj(0 + 0\ 

and in the same way OoAd\ W = OoAdpiiO+Oi andOoAdzX$ = O0Adft(C)+Oi 

o n D x T j ^ x A O K , # £ P'(N), which are exacdy the same estimates than in [L-T/Le]. • 

6.5. PROPOSITION. — Let £ be a fixed point in E and W the neighborhood 
of £ defined in Lemma 5.1. Then for each f G B ft 

n,r 
CD), 0 < p < 1, 0 < r < n the 

differential form H* f is of class C in W and the operator H* is a bounded lines 
operator from B fi n,* 

(D) into C l (WO. 

Proof. — By definition of W,#*(z,C) ^ 0, <£(z,0 # 0 and \z-Ç\ £ 0 for 
(zXA)eW xTK* xAOK*-

Therefore the kernels, which are used to define the operator H*9 are C1 differential 
forms on W x TK* X AOK*. Then it follows easily from the definition of H* that H* is a 
bounded linear operator from B 0 

n,* 
(£>), 0 ^ p < 1, into C l (W). 

6.6. THEOREM. — Let £ be a fixed point in E and R be a positive real number 
such that P ( £ , R) C W, where W is the neighborhood of£ defined in Lemma 5.1. Then 
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the operator S = H + T M * , T being the Henkin operator for solving the d-equation 
in B(£,R) Las the following properties : 

i) For 0 < ß < 1/2, 0 < £ < 1/2—ß and 1 < r < n, S is a compact operator 
between the Banach spaces B 0 

n.r 
(D) and C 1/2-/?-* 

n,r —1 
(Dr\B(Ç,R)). 

ii) For 1/2 ^ 3 < 1. 0 < e ^ 1—3 and 1 < r ^ n, 5 is a compact operator, 
between the Banach spaces B ß (D) and B ß+£-l/2 

n,r —1 ( f l n f l « , Ä ) ) . 

Proof. — Recall that S = H' + H* + TM*. It follows from Proposition 6.3 and 
Theorem 6.4 that H' satisfies the conclusions i) and ii) of the theorem. 

By Lemma 5.1 and Theorem 2.2.2 in fHe/Le 11, TM* is a bounded operator from 
B (D), 0 < ß < 1, into C 1/2 

n,* 
(Df l B(Ç, R)) and, by Proposition 6.5, H* is a bounded 

operator from B ß (£>), ( K / ? < l , in toC l 
n,* 

( f l n 5 « , f i ) ) . 

Now let 0 < /? < 1 /2 . It follows from Ascoli's theorem that the injection maps from 
C 1/2 ( D f l B(£,R)) and C\+(D f\ B(£,R)) into C1/2"^"6(Z) D B(Ç,R)) are compact. 
This ends the proof of the theorem in the first case. 

Finally, suppose that 1/2 ^ 3 < 1. By Ascoli's theorem, H* + TM* is a 

compact operator from B ß 
n,* 

(D) into C o ( D D B(£,R)). Moreover the injection map 

from C o 
n,* 

(Dr\B(Z,R)) into B ß+e-l/2 ( D H .R) ) is bounded and the second assertion 

of the theorem is proved. • 

Combining Theorem 5.3, Theorem 5.6 and Theorem 6.6, we obtain the main result 
of this paper : 

6.7. THEOREM. — Let (Ey D) be a local q-concave wedge, 0 ^ q ^ n—1, and £ 
be a fixed point in E. Then there exists a real R, R > 0, and a linear operator S from 

B ß (D) into C n,r —1 ( D n JB(£,Ä)), 1 < r < n, such that : 

i) If 0 ^ ß < 1/2 and 0 < e <: l/2-ß, S is compact from B ß (D) into 

C l/2-ß-e 
n.* (Dr\B(tR)) • 

ii) If 1/2 < /? < 1 and 0 < s ^ 1-ß, S is compact from B ß (D) into 
B ß+e-l/2 

n, * 
(D U B (E, R) . 

Hi) For each f E B ß 
n,r 

CD), 0 < / ? < l , l < r < g-codimR E—l with df € B ß 
* 

(D) we 

have 
f = Sdf + dSf on D D 2?(£, R) . 

iv) If moreover the local q-concave wedge (£", D) is defined by a q-conûguration and 
1 ^ r = q— codiniR E, then for each d-closed form f £ B 

n,r 
(D), 0 < ß < 1 we 

have 
f = dSf on DC\ B(Ç, R) . 
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Let us denote by E a holomorphic vector bundle over an n-dimensional complex 
manifold X, by Q and A two domains in X such that Q CC A CC X and by D the domain 

A\&2. Further, let C y 
n,r 

{D,E\B fi (D, E) etc... the Banach spaces of E-valued differential 
forms on D, which are obtained canonically extending the definitions of Section 1.13. 

7.1. DEFINITION. — Let g and q' be two integers, 0 ^ g, q' < n—1. A domain 

D CC X will be called a q-concave, q*-convex domain of order N, 1 < AT < 2n, if there 
exist two domains ^ CC ̂  CC X such that D = A \ Q and satisfying the following 
properties : 

(i) For each point £ G dQ, there exists a neighborhood U% of £ in X contained in a 
coordinate domain, such that, after identification with its image in Cn, U% contains 
a local g-concave wedge (E^Dç) with 

(a) £ e Et ; 

(b) codimR Eç^N ; 

(c) (EçiDç) is defined by a g-configuration ; 

(d) If (f/p ,PN^P*) is a frame for (E^Dç) then D n fi {z e 
Un. 0} = J3*. 

(ii) A is a local g'-convex domain. 

7.2. Examples. — The simplest example of such domains is given by D = 
J3(0, R') \ 5(0, R), 0 < R < R! in Cn, this is a (n— l)-concave, (n—l)-convex domain of 
order 1. Another simple example is D = A \ Q with A a C2 smooth g'-convex domain 
and ¿2 a C3 smooth g-convex domain. 

A more interesting example is given by D = A \ Q where A is a strictly pseudo-
convex domain with C2-smooth boundary and Q is the union of N strictly pseudoconvex 
domains with C3-smooth boundary, whose boundaries are intersecting transversally. Such a 
domain is a (n— l)-concave, (n— l)-convex domain of order N. 

The case where A is a strictly pseudoconvex domain with C2-smooth boundary and 
Q = £2\ U &2 with 422, i = 1,2, two strictly g-convex domains with C3-smooth boundary 
intersecting themselves transversally defined by Q = {z e Uant \ <Pi(z) < 0} and such 
that for each A £ [0,1] and £ e dQ\ fl <9J?2 the Levi form IAVI-KI-AW2(0 restricted to 
T c 
E 1 B B B 1 B E 3 c 

E 
(<94?i n dfy)—n+g+1 positive eigenvalues, defines a 

g-concave, (n—l)-convex domain of order 2 (cf. remark 2.5). 

7.3. THEOREM. — Let D be a q-concave} q'-convex domain of order N in X. 
We suppose that q+q'—N ̂  n. Then there exist linear operators 

Tr: B fi 
n,r 

(DiE)^C 0 
n,r — 1 

(D, E) 
0^fi<\ and 

Kr: B 3 
n,r {D,E)^C o 

n.r 
(D, E) 

0^fi<\ 
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for n—q1 < r < q—N such that the following holds : 

(i) if n—q1 < r < q—N—I, then 

f = dTrf + Tr+ldf + Krf 

for all f £ B^r(D, E),0^/3<1, such that df also belongs to B?(D, E) ; 

(ii) if r = q—N, then for all d-closed f € B iß 
n,r 

{D,E),0 </?<!, 

f = dTrf + Krf; 

(Hi) if 0 < ß < 1/2 and 0 < e ^ l/2-ß, then Tr and Kr,n-q' ^ r ^ q-N, are 
compact operators from B ß (D,E)intoC ,1 2-ß-e 

n,r —1 
(D,E), resp.C, 1 2-ß-e (D,E) ; 

(iv) if Ì/2 < ß < 1 and £ > 0, then Tr and Kr,n—q' < r ^ a—TV, are compact 
operators from ß 

n,r 
(D,E) into B\ d+£-i/2 

N,R —1 
(D,E), resp.5 ß+e-l/2 

n, r (D, E) 

Proof. — By Definition 7.1 and Lemma 2.4 in [L-T/Le] there exists a finite number 
of open sets Ui,... , Um C X such that l5 c #i U • • • U £/m and each Uj D D, I ^ j ^ m 
is either a local g'-convex domain or a local g-concave wedge defined by a g-configuration. 
The second case occurs, when UjC\Q ^ 0. Moreover, we may assume that E is trivial over 
some neighborhood of each Uj fl D, 1 < j < ra. 

Let A- be the operators which are induced in 

0<ß<l 
B ß (D,E) 

by the local operators in the following way : if Uj fl D is a local g-concave wedge 
A , / = S(/|i/inz>) where 5 is defined in Theorems 5.3 and 5.6 and if Uj D D is a local 
g'-convex domain A , / = H(f\UjnD) where # is defined in Section 4 of [L-T/Le]. 

We choose non negative C°° functions \j with compact support in Uj such that 
Xi + * * * + Xm = 1 in a neighborhood of D and we set 

Tr f 
m 

j=1 

Xj Aj f 

and 

Krf = 
m 

j=1 

dXj^Ajf 

for n - g ' < r < g-JV, f £B ß 
n,r 

(D),0<ß<l. m 

Up to the end of this part we will suppose that X = Cn. 

7.4. DEFINITION. — A g-concave, g'-convex domain of order TV, 1 < N < 2n, 
D contained in Cn will be of special type if D = A \ Q where A is a local g'-
convex domain and Q is the union of N strictly g-convex domains ft, 1 < i 4, N, 
with C3 smooth boundary intersecting themselves transversally, defined by ft = {2; G 
Udrii I ̂ i(^) < 0} and such that for each multi-index K £ V(N), each A £ AK and each 

E E 
kv E K 

<9ft<r.. the Levi form L\LTZ5T (£) restricted to T! 3 (ößfcl n •••nößfc,) has 

at least dime 7] c (dft^ D • fl dfikt)—n+g+1 positive eigenvalues. 
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7.5. PROPOSITION. — Let D CC Cn be a q-concave, qf-convex domain of order 
N and of special type and suppose that q+qF—N ^ n. If f is a continuous (nyr)-form 
in some neighborhood U-Q of D, n—qf < r < g—N, such that df =0 in Ujy, then there 
exists a form u £ 

e>0 
C 1/2-5 

n,r — 1 (D) such that du = f in D. 

Proof. — This proposition is the analogous in the case of g-concave, g'-convex 
domains of Lemma 2.3.4 in [He/Le 1]. Using Theorem 7.3 at the place of Lemma 2.3.1 
([He/Le 1]) we can repeat the proof of Lemma 2.3.4 in [He/Le 1]. We have only to remark 
that there exists a g-concave, g'-convex domain of order N and of special type G such that 
D CC G CC UQ. 

Let us consider = {z £ Van* I <Pi(z) > a}. For a > 0, sufflciendy small 
N 

it is easy to verify that fia = (J f2za has the same properties than Q. Moreover if 

A = {z€U-E\Pj<0, j = l, .2",iV}then A? = {z ZU-K\ Pi < j = l , . . . ,N} 
is also a local g-convex domain for sufficiently small /3 > 0. Then it suffices to take 
G = Ap \ fia for some small a and /?. • 

Following the same methods than in part 2.3 of [He/Le 1], we get the following 
theorem on the resolution of the 9-equation in g-concave, g'-convex domains with estimates 
up to the boundary. 

7.6. THEOREM. — Let D CC Cn be A q-concave, q1-convex domain of order N 
and of special type such that g+g'—N ^ n and for 0 ^ 8 < 1, let f £ B 

n,r 
(D) be a 

d-closed form on D, n—qf ^ r < g—N. 
(i) if 0 < /3 < 1/2, there exists u £ 

E>0 
C 1/2-0-E 

N,R —1 
(D) such that du = f and for each 

€ > 0 there exists also a constant Ce such that 

\\u\\1/2.0-t < a n / i l - , ; 

(ii) if 1/2 ^ 8 < 1, there exists u £ 
E>0 

B 3+e-l/2 
N,R —1 

[D) such that du = f and for each 

e > 0 there exists also a constant C£ such that 

\\u\\U2»£^C£\\f\U . 

Proof. — As in the proof of Theorem 2.3.5 in [He/Le 1], we deduce the existence of 
the solution u from Proposition 7.5 by the bumping method. The estimates are a consequence 
of the Banach's open mapping theorem and of Theorem 7.3 (cf. [He/Le 1] appendix 2). • 

181 



С. LA URENT- THIÉBA UT, J. LEITERER 

Bibliography 

[Ai/He] AIRAPETJAN R.A., HENKIN G . M . — Integral representations of differential 
forms on Cauchy-Riemann manifolds and the theory of CR-functions, Usp. 

Mat. Nauk 39 (1984), 39-106, [Engl, trans. Russ. Math. Surv., 39 (1984), 

41-118], and : Integral representations of differential forms on Cauchy-
Riemann manifolds and the theory of CR-functions II ,Matem. Sbornik 127 
(169) (1985), 1, [Engl, trans. Math. USSR Sbornik 55 (1986), 1, 91-111]. 

[G] GRAUERT H. — Kantenkohomologie, Compositio Math. 44 (1981), 79-101. 

[He] HENKIN G .M. — The method of integral representations in complex analysis 
(russ.). In : Sovremennge problemy matematiki, Fundamentalnye napravle-
nija, Moscow Viniti 7 (1985), 23-124, [Engl, trans, in : Encyclopedia of Math. 
Sci., Several complex variables I, Springer-Verlag, 7 (1990), 19-116]. 

[He/Le 1] HENKIN G.M., LEITERER J. — Theory of functions on complex manifolds, 
Akademie-Verlag Berlin and Birkhäuser-Verlag Boston, 1984. 

[He/Le 2] HENKIN G.M., LEITERER J. — Andreotti-Grauert theory by integral formu­
las, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston (Progress in Math. 
74), 1988. 

[Li] LIEB I. — Beschränkte Lösungen der Cauchy-Riemannschen Differential­
gleichungen auf q-konkaven Gebieten, Manuscripta Math. 26 (1979), 387-
409. 

[L-T/Le] LAURENT-THIEBAUT C., LEITERER J. — Uniform estimates for the Cauchy-

Riemann equation on q-convex wedges, Prépublication de l'Institut Fourier 
n° 186, Grenoble, 1991. 

[R/S] RANGE R.M., SIU Y.T. — Uniform estimates for the $-equation on domains 
with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 
(1973), 325-354. 

Ch. LAURENT-THIÉBAUT 
INSTITUT FOURIER 
Université de GRENOBLE 1 
BP 74 
38402 St Martin d'Hères Cedex 
(France) 

J. LEITERER 
FACHBEREICH MATHEMATIK der 
HUMBOLDT-Universität 
0-1086 Berlin 
(Germany) 

182 


