Asterisque

MICHEL BROUE
GUNTER MALLE

JEAN MICHEL
Generic blocks of finite reductive groups to Charlie Curtis

Astérisque, tome 212 (1993), p. 7-92
<http://www.numdam.org/item?id=AST_1993_ 212_ 7 0>

© Société mathématique de France, 1993, tous droits réservés.

L’acces aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique 1’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AST_1993__212__7_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

GENERIC BLOCKS OF FINITE REDUCTIVE GROUPS

MicHEL BROUE, GUNTER MALLE AND JEAN MICHEL

Ecole Normale Supérieure and Universitat Heidelberg

To Charlie Curtis

CONTENTS

0. Introduction
1. Notation, prerequisites and complements

A. Generic finite reductive groups

e Usual invariants of a generic finite reductive group

¢ Class functions on G

e d-split Levi subgroups

B. Generic characters

e Some consequences of Lusztig’s results

o Generic unipotent characters, uniform functions

o The generic Deligne-Lusztig induction and restriction
2. d—cuspidality and the uniform theory

A. d—cuspidality

B. Regular unipotent characters

C. Regular characters

e Introduction: the regular character of £,(G¥,1)

e The generic formalism

D. First application to actual finite reductive groups
3. Generalized Harish-Chandra theory

A. The fundamental theorem

B. d-Harish-Chandra theory for unipotent characters
4. Generic ®4-blocks

A. More on regular unipotent characters and Mackey for-

mula
B. & -defect groups

1991 Mathematics Subject Classification. 20, 20G.

We thank the M.S.R.I. in Berkeley, and the second author thanks the Ecole Normale
Supérieure, for their hospitality during the elaboration of part of this work
S.M.F.
Astérisque 212* (1993)



M. BROUE, G. MALLE, J]. MICHEL

C. Regular characters of generic ®,4-blocks
5. m—blocks and isotypies

A. mblocks, Brauer morphisms

B. Isotypies

C. ¢-blocks

Appendix : Tables.

0. INTRODUCTION

This work has been motivated by two problems, which interacted with one
another: attempts to solve one helped to solve the other one.

The first one originated in [Brl], where is presented a conjecture about the
structure of any block with abelian defect of any finite group (see [Brl], 6.1),
which states that such a block should have the same type as the corresponding
block of the normalizer of its defect group. One of our goals was to check this
conjecture in the case of the finite reductive groups G¥ (we denote by G a
connected reductive algebraic group over an algebraic closure of a finite field
Fq, by F: G — G a Frobenius endomorphism defining a rational structure
on this finite field, and by G¥ the group of rational points). This is achieved
in the present work (see §5.C, 5.24), at least for “large” prime numbers (i.e.,
in the split case, prime numbers which do not divide the order of the Weyl
group of G).

By general properties of isotypies (see [Brl]), our results imply in particular
that, for large prime numbers, conjectures as Alperin’s weight conjecture or
the Alperin-McKay height conjecture are verified for unipotent blocks (and
so for “almost” all blocks) of all finite reductive groups.

The second question which motivated this work was to understand better
the “generic” aspects of block theory of finite reductive groups.

Throughout the intensive work which has been done recently by many au-
thors about blocks of finite reductive groups (among whom Fong-Srinivasan,
Schewe, Cabanes-Enguehard, Hif}, Geck, and the authors), it had become
gradually clear that, for large prime numbers £, properties of £~blocks of G¥
do not really depend on the prime number ¢, but rather depend on the cy-
clotomic factor of the “polynomial order” of G¥ which is divisible by £ (see
[BrMa] and §1.A below).

This remark had to be put in the perspective opened by the work‘of C.W.
Curtis, who defined in particular the “generic degrees” of characters of G,
and subsequently of his student R. Boyce (see [Boy]) who defined characters
“with ®4—defect zero”.
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A few experiments convinced us that it was indeed very often possible to
replace £ by the corresponding ®4 in many of the congruence relations involved
in modular character theory.

One of the aims of the present work is to present further evidence for the
existence of a “generic representation theory of generic groups”. Using exten-
sively [BrMa| (where are defined what we call here “generic finite reductive
groups”, as well as their ®;—subgroups and their centralizers), we introduce
here a formalism which allows us in particular to group the unipotent char-
acters into ®4-blocks and to define a suitable notion of “®,;-defect group” of
a unipotent character (see definition 4.7 below). From many points of view,
this ®4—defect group (a rational torus in G) behaves like an ordinary defect
group. Moreover, if £ is a large prime which divides ®4(q), then the actual
{-defect group is just the Sylow /-subgroup of the group of rational points of
the ®4—defect group.

One of the by—products of this approach is indeed the fact that we can
treat the case of m-blocks (7 a set of large prime numbers which divide the
same cyclotomic factor) the same way we would treat ¢-blocks, and this is
what we present here.

With these two questions in mind, we came upon the main theorem of this
work (see 3.2). This theorem is certainly the main tool to study our blocks,
but it is also interesting in itself. It shows in particular that the usual so—called
Harish-Chandra theory of characters, as well as many aspects of the Howlett—
Lehrer-Lusztig theory about induction of cuspidal characters, must be viewed
as a particular case (the case associated with the first cyclotomic polynomial
®,) of a general set of results which hold for every cyclotomic polynomial,
provided one replaces the family of “Harish-Chandra” Levi subgroups by the
family of centralizers of ®4-subgroups (called here d-split subgroups), and
the cuspidal characters by the “d—cuspidal characters”.

In particular, theorem 3.2 shows that, provided each irreducible unipotent
character is equipped with an appropriate sign, Deligne-Lusztig induction
from d-split subgroups is nothing but the ordinary induction in Weyl-type
groups which are independent of q.

We thank Paul Fong for a careful and useful reading of the first version of
this manuscript.

1. NOTATION, PREREQUISITES AND COMPLEMENTS

A. Generic finite reductive groups.

In §1.A, we recall notation, definitions and some results from [BrMa] con-
cerning generic finite reductive groups.



M. BROUE, G. MALLE, J. MICHEL

We call “generic finite reductive group” what is called “donnée radicielle
compléte” in [BrMa]. Let us recall briefly the definition and set our notation.

A root datum of rank r is a quadruple (X, R, Y, RY) such that

(rd.1) X and Y are free Z-modules of rank r, endowed with a duality X x
Y — Z denoted by (z,y) — <z, y>.

(rd.2) R and RY are finite subsets of X and Y respectively, endowed with a
bijection R — RV denoted by a +— aV.

(rd.3) For @ € R we have <a,a¥> = 2. Let s, be the involutive auto-
morphism of X defined by s,(z) = r —<z,aV>a, and let sY be its
adjoint, an automorphism of Y (one has s¥(y) = y— <a,y>a"). Then
sa(R) = R and sY(RY) = RY.

The Weyl group of the root datum (X, R,Y, RV) is the subgroup of the group
of automorphisms of Y generated by the sY for o € R.

The following definition is valid in the general case; for the particular
twisted cases 2By, *Fy, 2Gs, the reader may refer to [BrMal].

Definition.

e An automorphism of the root datum (X, R, Y, RY) is an automorphism
¢ of Y which stabilizes RV and such that ¢V stabilizes R.

e A generic finite reductive group is a pair G = (I'g, Wg¢), where I'g
is a root datum, W is its Weyl group, and ¢ is an automorphism of
finite order of I'g.

Let p be a prime number and let F, be a chosen algebraic closure of F,.
To a root datum I'g is then associated a pair (G, T) where

e G is a connected reductive algebraic group over F,,
e T is a maximal torus of G,

and such a pair is uniquely determined up to inner automorphisms of G
induced by the elements of T.
The isogeny theorem (cf. for example [Sp2], 11.4.9) implies the following:

(1.1) To a linear map of Y of the form q¢, where q is a power of p and ¢ an
automorphism of I'g, is associated an isogeny Fq4 : G — G of the algebraic
group G, uniquely determined up to inner automorphisms of G induced by
elements of T

If ¢ = 1, the isogeny Fy is in fact an algebraic automorphism of G; oth-
erwise, the isogeny Fy4 is the Frobenius endomorphism associated to some
F,-structure on G. Note that, since T is commutative, if ¢ and ¢’ commute
then Fgy commutes with Fiu g for any other power ¢’ of p.

10
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Thus, given a generic group G, the choice of a power ¢ > 1 of p and of an
element ¢ in the coset W¢ determines a triple (G, T, F)), where F = Fgy is a
Frobenius endomorphism (such a construction is also possible in the twisted
cases, where ¢ has to be replaced by an odd power of v/2 or v/3, and F is a
special isogeny of the corresponding group of type By, Fy or G2 ¢f. [BrMa),
§2). Let us call such a triple a “(g, ¢)-triple associated to G”. As in [BrMa),
§2 we will write G(q) for GF'.

Usual invariants of a generic finite reductive group (cf. [BrMa]).

Preliminary remark. What follows is written in the “general case”. In order
to apply it to the twisted cases (?Bg, 2F4, 2Gz), one has to perform a few
modifications, such as to replace the ring Z and the field Q by, respectively,
-1 -1

Z[v2 '] and Q(v/2) (for 2B, and ?Fy), or by Z[v/3 ] and Q(v/3) (for 2G).
We leave this work to the reader.

Let G = ((X,R,Y,RY), W;¢) be a generic finite reductive group.

Weset V =QRY and W = Wg. We denote by SV the symmetric algebra
of V, by (SV)W the graded subalgebra of W-invariant elements of SV, and
by 2 the ideal of (SV)"W consisting of elements without degree zero terms.

o The vector space g /2AE has dimension r, and is endowed with an action
of the image ¢ of » modulo W. We set

EG = (—l)rdetq}

o We set RG := SV/(SV2;). Then RG is a finite dimensional graded
algebra which, as a QW-module, is isomorphic to the regular representation
of W. We denote by R"G the subspace of elements of degree n of RG, and
by 2N (G) the number of elements of the root system R. Then we have

N(G)
RG = Z R"G.

n=0

e The polynomial order of G (denoted by Og(z) in [BrMa)) is the polyno-
mial denoted here by |G| and defined by the formula

ez N ©
1 1

W] 2%€W Goty (1 — zug)
If (¢, ¢) (whence (G, T, F)) is chosen, one has |GF| = |G|(q) .

We recall now how various definitions are translated in the setting of generic
groups.

(1.2) |G| :=

11
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Tori and Levi subgroups.

e A generic torus is a generic group such that R = RV = 0 (so W¢ re-
duces to a single element). Generic subtori of G (called “sous-données
toriques” in [BrMa]) are generic tori of the form ((X',Y”),wd|y)
where w € W and Y’ is a w¢-stable direct summand of Y and X'
its dual (a quotient of X).

o Generic Levi subgroups of G (called in [BrMa] “sous-données de Levi”,
and often abbreviated herein “Levi subgroups”) are generic groups

of the form ((X,R',Y,R"Y), Wrw¢), where w € W, where R"Y is a
parabolic subsystem of RY which is w¢-stable and where Wg: is the
Weyl group of R'V.
Lifting scalars.
Let I" be a root datum, and let G = (I', W¢) be an associated generic finite
reductive group. Let a € N.
(1.3) We define the generic finite reductive group G(*) = (T(%), ¢(2)) by the
following rules:
(1s.1) T® :=T x --- x ' (a times),
(1s.2) ¢(®) is the product of ¢ (acting diagonally on T X --- x T') and the
a—cycle which permutes the various factors T' of I'(%),

We have |G(?)|(z) = |G|(z?). Let (G, T, F,) be a (¢%, #)-triple associated
with G, and let (G(), T(2), F(2)) be a (g, $(*))-triple associated with G(®).
Then

(1.4) G@F® ~ gFe

In other words, we have G(*)(q) ~ G(g°) .

Changing q into —q.
Let G = (I'g, Wg@) be a generic finite reductive group. We recall (see
[BrMa]) that we define the generic finite reductive group G~ by

(1.5) G :=(Te, We(-9)) -

Note that if —Id € Wg, then G = G.
We have |G~ |(z) = (-1)"|G|(-=z).
The radical, the “semi-simple quotient”, the adjoint group, the dual group.

If G = ((X,R,Y,RY),W¢) is a generic finite reductive group, we denote
by Q(R) the Z-submodule of X generated by R.

12
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e The radical of G is by definition the generic torus defined by
Rad(G) == (X/QR)**,QR)Y), 8, n.) -

For a triple (G, T, F) associated with G, the algebraic group associated
with Rad(G) is Z°(G) (the connected component of 1 in the center Z(G) of
G).

e The generic “semi-simple quotient” of G is “the quotient of G by its
radical Rad(G)”, namely

Ges == ((Q(R)**,R,Y/Q(R)*,RY),W¢)

(here “¢” stands for the automorphism of Y/Q(R)* induced by ¢, and RY
stands for the image of RY in Y/Q(R)1).

For a triple (G, T, F) associated with G, the algebraic group associated
with G is G/Z°(G). We have |G| = |G|/|Rad(G)].

e The dual generic group is defined by

G* :=((Y,RY,X,R),W¢ ™),

where the automorphism ¢V of X is the adjoint of ¢, and where W is identified
with its contragredient action on X, i.e., W is the group generated by the s,
for o € R (note that G* is covariant in G).

e We denote by P(R) the dual of Q(R") in Q ® Q(R), i.e., the set of all
v € Q ® Q(R) such that <v,aV> € Z for all o € R.
The adjoint generic group of G is defined by

Gaa == ((Q(R), R, P(RY),RY), W¢).

For a triple (G, T, ¢) associated with G, the algebraic group associated
with G’a.d is Gad-

e We define the derived generic group D(G) by (with obvious abuse of
notation)

D(G) = ((X/Q(R")", R,Q(R")"*,RY),W¢).
Thus we have a generic finite torus
G/D(G) = (QR'Y:,Y/QR'Y*), 81, orss)-
We have
(1.6) Rad(G*) = (G/D(G))* .

Let (G, T, F) be a (g, ¢)-triple associated with G. Let [G, G] be the derived
group of G. Then the algebraic group associated with D(G) (resp. G/D(G))
is [G, G] (resp. G/[G, G]).

13
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Good primes.

The following definition can be found in [SpSt], 4.1. It depends only on
the root system of G.

(1.7) We say that a prime £ is good for G if there is no closed root subsystem
R, of R such that ¢ divides the order of the torsion subgroup of Q(R)/Q(Ry).
A prime which is not good is called bad.

It results from [SpSt], 4.4, that if £ is good for G, then there is no closed
root subsystem R; of R such that £ divides the order of the torsion subgroup
of Q(RY)/Q(RY). Hence if £ is good for G it is also good for the dual generic
group G*.

Intersections of Levi subgroups.
Let L = ((X,Ry,Y, R)),WiLvé) and M = ((X, Rm, Y, Ryp), Wmw¢) be two
Levi subgroups of G.

(1.8) We say that LN\ M is defined if
Wirved N Wywed # 0.
In that case, choosing an element u € W v N Wyw, we define
LNM:= ((X,RLN Ry, Y, R N RYp), (WL N Wnm)ug),

Note that Wpvg = Wipu¢ and Wyweé = Wymug, whence Wpvp N Wywe =
(WLNWm)ug. It is easy to see that LNM is a well-defined (.e., independent
of the choice of u) Levi subgroup of both L and M.

By the preceding definition, it is clear that

(1.9) LN M is defined if and only if there exists a maximal generic torus T of
G such that T is contained in both L. and M. In this case, T is contained in
LNM.

1.10. Definition. For L and M two Levi subgroups of G, we denote by
Swe (L, M) the set of all w € Wg such that YIL N\ M is defined.

If (G,T,F) is a (g, ¢)-triple associated to G, we recall (cf. [BrMa], 2.1)
that there is a well-defined bijection between Wg—classes of generic Levi sub-
groups of G and GF-conjugacy classes of F-stable Levi subgroups of G. Then
Swe (L, M) is non-empty if and only if there exist L and M in the correspond-
ing classes of Levi subgroups in G such that LNM contains a maximal torus;
in that case, L N M is a Levi subgroup of G, whose rational conjugacy class
corresponds to the Wg—conjugacy class of L N M.

14
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Class functions on G.

Let CF(G) be the space of all W-invariant functions on the coset W¢ with
values in Q[z], called class functions on G.

We shall see later on that this space can be “specialized” onto the space of
unipotent uniform functions for a chosen (g, #)-triple associated to G.

If  and o/ € CF(G), we set <a,a/>g = W Ywew (wo)a (we).

Induction and restriction.

Let L = ((X,RL,Y, R)),WLw¢) be a Levi subgroup of G, and let a €
CF(G) and 3 € CF(L).

We denote

e by ResE « the restriction of o to the coset Wiwg,

e by Ind%ﬁ the class function on G defined by

(1.11) Ind®B(ug) = ﬁ Z B(vugv™?)  for up € Wgo,
veW

where B(z¢) = B(z¢) if & € Wiw, and B(z¢) = 0if z ¢ Wiw. In other

words, we have

(1.12) Indp B(u¢) = > B(*(ud)).

veEWg /Wi, (ud)EWLwe
We have the Frobenius reciprocity:

(1.13) <a,Indf B> = <ResC a, B> .

The Mackey formula.

It is clear that Wi, acts on Swg (L, M) from the right, while Wy acts on
Swe (L, M) from the left. If we let w run over a chosen double coset WyvWy,
for some v € Swyg (L, M), we see that “LLNM is defined up to Ww—conjugation
as a subgroup of “IL and up to Wy—conjugation as a subgroup of M, which
proves that the operations Ind%\wl and Res;ﬁﬂ,:,wl depend only on the double
coset of w. This gives sense to the following formula

(1.14) Resy -Ind® = Z IndM ., - Respk oy, -ad(w),
wEWnm\Swg (L,M)/ W

whose proof goes like the proof of the Mackey formula for ordinary induction
and restriction (note that Sy, (L, M) may be empty).

15
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Some important class functions.

e We denote by trgg the class function on G defined by the character of
the “graded regular representation” RG (see above). Thus the value of the

function trpg on w¢ is trpg(we) := Eﬁ’iﬁ’) tr(we; R"G)z™ .

e For a € CF(G), we shall consider the following polynomial (which will
be identified later on with the “fake degree” Deg(®%)) :

N(G)
(1.15)  D(a) := <a,trpe>g = Z(IWI )" a(wg)tr(we; R"G))z" .
n=0 weW

We have ( cf. [BrMa), prop. 1.6')

a(we)
(1.16) IWl Z < dety (1 — awg) O‘)|W| Z detv(l—xw¢) ’
or, in other words

<a,trsy>g = <a, tI‘R(;>(;<1G', trsv>g,

where 1© is the constant function 1 on Wg¢.
o For a Levi subgroup L of G, by the Frobenius reciprocity (1.13), we have
N(G)
D(Indf1Y) = <1% Res® trrg>y = Z tr(we; (R"G)")z™ .

n=0

where Wi,w¢ is the coset associated to L and (R"G)"t are the Wi —invariants
in R"G.
It follows from 1.2, 1.13 and 1.16 (see also [BrMa], prop. 1.7) that

(1.17) |G)/|L| = egeLz™¥© NI D(IndF1%);

D(Indf1%) will be identified later on with the generic degree Deg(RS(1)).
e Every element w¢ € W¢ defines a maximal generic subtorus (or, equiv-
alently, a minimal Levi subgroup) T, := ((X,Y), w¢). We have

trpg(wo) := D(Indq-ﬂ’:’w 1Tws),
So
(1.18) |GI/|Tw¢| = EGETy,4 N © trR(;(w¢) ,

and also trgg(w¢) = D(Kwe), Where Ky4 is |Cw(w¢)| times the characteristic
function of the W-conjugacy class of we.

It follows from 1.17 and 1.18 that
(1.19) RGSE trrg = D(Indfln‘)trm .

16
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(1.20) For 8 € CF(L), we have D(Indfg) = D(Indf1V) <, trpr>y -
Indeed, D(Ind$g3) = <, Res® trpe>; = D(IndS1%)<B, trpi>y -

Class functions on G™.

The map 0%: CF(G) — CF(G™), given by oCa(w(—9)) = a(we), is an
isometry. The map L — L~ is a Wg—equivariant bijection from the set of all
generic Levi subgroups of G onto the set of all generic Levi subgroups of G~.
It is clear that

0C . Indf = Indf" -0 , o' Resf = Rest- o€,

(121 ¢ .
D(Ind& 1V )(z) = D(IndS1Y)(-1) .

Class functions on G(®),

Let a € N. We have (see 1.3) Wgw@) = (Wg)*, and it is clear that the
map (w;,ws,..., w,,)¢(“) — wiws - - - We @ defines a bijection between the set
of classes of W) ¢(?) under Wgay—conjugacy and the set of classes of Wg¢
under Wg—conjugacy. Thus it induces an isometry

o CF(G) = CF(G).
1.22. Proposition. We have

ol -IndE'((:)) = Indf - o{®

G, (a) (a) G
Resy -0’ =07 - Resjlay -

d-split Levi subgroups.

Let T = ((X,Y), ) be a generic torus. We recall that in this case the
polynomial order |T| is just the characteristic polynomial of ¢ on Y. A generic
®,4—group (cf [BrMa], §3, abbreviated here by “®;-group” or even by “d-
group”) is a generic torus whose polynomial order is a power of ®,. It is proved
in [BrMa], 3.3, that a ®;—group is completely specified up to isomorphism by
its polynomial order.

Remark. If (T, F) is an associated algebraic torus, the fact that T is a ®4-
group translates to the fact that T splits “exactly” over Fga (“exactly” in the
sense that no subtorus splits over a smaller field).

It is proved in [BrMa] that the maximal ®;-subgroups of G (called “Sylow
®,-subgroups of G”) are all conjugate under Wg.

17
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We call d-split Levi subgroups the centralizers in G of the ®;-subgroups
of G (as in [BrMa), 1.3, we define the centralizer Cg(T) of a subtorus T of G as
the Levi subgroup whose root system consists of the roots orthogonal to T and
such that its associated coset of automorphisms contains the automorphism
¢ associated to T). In particular, the centralizers of the Sylow ®;-subgroups
are the minimal d-split Levi subgroups.

We shall use the following technical remark.

By [BrMa], prop. 3.8, we know that whenever L is a minimal d—split Levi
subgroup of G, we have egepz™(©~NL) =1 mod ®,. It then follows that
the preceding congruence holds for every d-split Levi subgroup of G, from
which we deduce by 1.17:

(1.23) For any d-split Levi subgroup L of G, we have
|G|/|L| = D(Ind$1%) mod &,.

The Mackey formula becomes particularly simple when we restrict ourselves
to pairs of d—split Levi subgroups.

1.24. Proposition. Let M; and M, be two d—split Levi subgroups of G.

(1) My NM;, is defined if and only if M; and M contain a common Sylow
& ,—subgroup of G. In particular Swy (M, M) # 0.

(2) If M; NM;, is defined, then it is a d—split Levi subgroup of G.

(3) Let M and M, be two d—split Levi subgroups containing the minimal
d—split Levi subgroup .. Then we have

Swe (M1, My) = Wi, Nwg (L) Wi, -

In particular, we have

Resyy, -Indy, = Z Indpy upy, - Resyg &y, -ad(w),
w € Wiay (L)\ W (L) / Wi, (L)

where, following the notation of [BrMa], §1.B, for a Levi subgroup L
of G, we put Wg(L) = Nw,(L)/WL.

Proof. For a generic Levi subgroup M of G, let us denote by Zy(M) the Sylow
®,-subgroup of its center. Then M is d-split if and only if M = Cg(Z4(M)).

(1) Suppose first that M; N M; is defined. By 1.9, there exists a generic
maximal torus T of G contained in both M; and M,. Then the generic groups
Z4(M;) and Z4(Mpy) are both contained in the Sylow ®;-subgroup Ty of T.
Now if S is a Sylow ®4-subgroup of G containing T4, we see that M; and

18
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M, both contain Cg(S) hence S. Conversely, if M; and M, both contain a
minimal d-split Levi subgroup, a fortiori they both contain a maximal torus
T, thus Mj; N M; is defined by 1.9.

The last assertion in (1) follows from the Sylow theorems in [BrMa).

(2) Let T be a common maximal torus for both M; and M;. Then the
generic subgroup Z4(M; ).Z4(M;) of T is defined in an obvious way (cf. [BrMa),
§3.E), and it is then clear that M; N M, = Cg(Zq(M;).Z4(My)).

(3) Set S = Z4(LL) (thus S is a Sylow ®;—subgroup of G). Assume that
w € Swe(M;,Mz). Then by what precedes, there exists a Sylow ®;—-subgroup
S’ of G such that S’ is contained in both *M; and M,. By Sylow theorems
(cf. [BrtMa), th. 3.4), there exist wy € Wy, and we € Wy, such that wl§ =
1§ and §' = S, from which it follows that w; ww; € Nywg(S). The
assertion now follows from the fact that Nwg(S) = Nwg (L) (cf. [BrMa), th.
3.4). O

Given a Levi subgroup ((X, Ry, Y, R)), WLw¢), we define its image in G,,
(resp. its image in Gaq) to be ((Q(R)*+, Ry, Y/Q(R)*, RY), WLwé) (resp.
((Q(R), Rv, P(RY), Ry ), WLw¢)).

1.25. Remark. A Levi subgroup is d-split if and only if its image in G,,
(resp. in Gaq) is d-split.

B. Generic characters.

In §1.B, we introduce the formalism which is necessary to treat unipotent
characters as generic objects, and to prove that related constructions such as
Deligne-Lusztig induction are indeed defined at the “generic level”.

Some consequences of Lusztig’s results.

For chosen g and ¢, whence a triple (G, T, F)) (cf.§1.A), one has a well-
defined bijection between the W—conjugacy classes of the coset W¢ and the
GF—conjugacy classes of F-stable maximal tori of G (cf.[BrMa], 2.1). Thus
in particular, for w¢ € W, the virtual Deligne-Lusztig character R-(ffw ¢(1),
denoted here RS: , is well defined.

The following result is a particular case of a more general theorem which
will be proved later (see 1.33).

1.26. Theorem. (Lusztig) There exists a finite set, denoted by Uch(G), and
a map Uch(G) — CF(G), denoted by v +— m.,, with the following property:
whenever (G, T, F) is a (g, ¢)-triple associated to G, there is a bijection v +»
p,(Y;F from Uch(G) onto the set £(GF,1) of unipotent characters of GF such
that for every w¢ € W¢, we have

mo(wg) = (0§, RS, )ar .
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Thus in particular
(1) for all v € Uch(G), m. takes only integral values,

(2) by the known orthogonality relations on the virtual characters Rs;~ )
we have

> my(wg)my(w'g) =

¥€Uch(G)

|Cw(wg)| if wp and w'$ are W—conjugate,
0 ifnot.

Sketch of proof of theorem 1.26. Let Fam(W) be the set of families of ordinary
irreducible representations of W. One knows (see [Lul], chap. 4, and also
[DiMi1], §4) how to associate to each element F € Fam(W) a well-defined
finite group G(F).

1. Assume first that ¢ is chosen in W¢. Let Fam(W)? be the set of all
¢—invariant families. The choice of ¢ defines, for each F € Fam(W)?, an
automorphism ¢x of G(F) (see [DiMil], 4.1). We denote by Uch(G, ¢) the
union (for all F € Fam(W)?) of the sets of G(F)-conjugacy classes of pairs
(907, x), where g € G(F) and x € Irr(Cg(x)(9dF)).

It is one of Lusztig’s main theorems in [Lul] (cf. th.4.23) that there is a
map Uch(G, ¢) — CF(G), say v +— m., such that for each choice of a suitable

g, there is a bijection v +— p,.ch : Uch(G, ¢) — E(GF,1) with m.,(wg) =
F F
(P—(y; ’ RS¢ )GF .
2. If ¢’ is another element of W¢ (defining a triple (G, T, F’)) there is a
well-defined bijection o4 ¢4 from Uch(G, ¢) onto Uch(G, ¢'), such that

GF pGF _{.GF GF'
(p—y 7Rw¢)GF - (pad,#,(—y)’quﬁ )GF' .

The system (Uch(G, ¢),04 4 )¢,6'ewe is projective. We define Uch(G) as the
limit of this system. 0O

Remark. It results from [Lul], chap. 4, that the set Uch(G), as well as the
“multiplicities” m.,, depend only on the action of ¢ on W and on the order

of ¢ on Q(R). In particular, to compute the multiplicities we may reduce to
the case where X = Q(R) and R is irreducible. Also,

(1.27) any automorphism ¢' of the generic group G which commutes with ¢
defines a permutation of the set Uch(G), which depends only on the action of
¢’ on Wg and on the order of ¢'.

Remark. We refer to [DiMil}, 6.4, for what follows. The map vy +— p,(fF
is uniquely determined by the condition (p.(fF,ng )gr = mq(wg) for all
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rational unipotent characters p.cf " . This includes all unipotent characters in
the case of classical groups. To ensure unicity in the case of exceptional groups
for non-rational characters, the following supplementary conditions have to be
added:

e To v € Uch(G) there is associated a root of unity Ay (cf. [DiMil],
before 6.4 for the definition — we just mention that when ¢r acts
trivially on G(F) and + is given by (gér, x) then Ay, = x(9)/x(1)).
We ask that, if F' is the smallest split power of F, the eigenvalues of
F? associated to p.ch in any Deligne-Lusztig variety of G be equal to
Ay up to some power of q%/2.

e To deal with the principal series unipotent characters corresponding
to characters x4 of degree 512 of the Hecke algebra of a group of type
E7 or of degree 4096 of the Hecke algebra of a group of type Es, we
must add another condition: Lusztig ([Lul], chap. 4) identifies F to a
subset of the couples (9@, x); the 4 we are looking at is an element of
F via this identification, which gives us a character x., of W. We ask
that x, be the specialization for ¢ = 1 of the character x, associated

to p,cfp.
In what follows we will assume that these conditions are satisfied. This has
the following consequence:
1.28. Proposition. Let ¢’ be an automorphism of I'¢ which commutes with
¢, and let U(¢") be the corresponding permutation of Uch(G) (cf. 1.27). Then
F F

Fpg (p,(f )= pg'( #')() for any power ¢’ of p, and for v € Uch(G).

In particular we get that the action of Fy 4 on £(G¥,1) does not depend
on ¢'.
Generic unipotent functions, uniform functions.

Generic generalized unipotent functions.

We denote by Q[z] Uch(G) the free Q[z]-module on Uch(G), endowed with
the quadratic form for which the canonical basis {¥}yeuch(c) is orthonormal.
The scalar product of two elements 1 and 9’ of Q[z] Uch(G) is denoted by
(¥,%')g. The elements of Q[z] Uch(G) are called the generic generalized
unipotent functions.

Generic uniform functions.
For wg € W¢, we set RE«# = Z,,GUch(G) my(w¢)y. Thus Rﬁ¢ depends
only on the Wg—conjugacy class of w¢, and the system {Rﬁ #}we, Where wé

runs over a set of representatives for the Wg—conjugacy classes of Wg¢, is an
orthogonal system in Q[z] Uch(G) (by the remark (2) following theorem 1.26).
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For all v € Uch(G), we have m,(w¢) = (v,R$,)c and more generally, for

1 € Q[z] Uch(G), we set my(weg) = (9, RE¢)G.

We call generic uniform functions on G the elements of Q[z] Uch(G) which
are Q[z]-linear combinations of the R é

For o € CF(G), we set

1
(1.29) 36 = ] > o(wg)RE,,
wew

so that & = mggs. The linear map &€ : CF(G) — Q[z] Uch(G), a — &S,
is an isometric embeddmg whose image is the subspace of generic umform
functions.

The orthogonal projection from Q[z] Uch(G) onto the subspace of uniform
functions is denoted 7$. Thus for all ¥ € Q[z] Uch(G), we have

(1.30) 7S() = ﬁ S %, RS, R

weW

and 73 (%) =
Generic degrees.

For all w € Wg, we set (see §1.A) Deg(RE s) = trrg(we). We extend
linearly the map Deg to all uniform functions, by setting Deg(®$) := D(a) =
<a,trpg>g, and then to all of Q[z] Uch(G) by composition with 7& (this
corresponds to the fact that, for the actual finite reductive groups, the degree
of a character equals the degree of its uniform projection). Thus we have

(1.31) Deg(w) := DegrS(y) = |1W| 3" my(wg)Deg(RS,) = Deg(®S,,),
weW

1
and we see in particular that for v € Uch(G), we have Deg(vy) € W—|Z[:v]
We may notice the following more precise statement due to Lusztig:

1.32. Theorem. There exists an integer c divisible only by bad primes for
G (c¢f. 1.7) such that Deg(y) € %Z[z]

Proof. Let {E’ } Eetrr(w)¢ be an orthonormal basis formed by the restrictions to
W¢ of one extension to W (¢) of each ¢-invariant irreducible character of W.
Then Deg(®$) = <E, trre> is in Z[z], and Degy = 3 o(®%,7)cDeg(2%F);
the theorem then follows from the formula given in [Lul], 4.26, which implies
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that (®C B ~)g are rational numbers whose denominators are divisible only by
bad primes for G. O

Remark. Whenever (g, ¢) is chosen, we have Deg(v)(q) = p,cfp(l).
Indeed, it follows from 1.31 that Deg(vy)(q) is equal to the scalar product

of p§ G” with the character Ivt/l > wew Deg(RS, (1))R * (1) , which is the

unipotent projection of the regular character of GF.
The polynomial Deg(+y) is called the generic degree of «.

The generic Deligne-Lusztig induction and restriction.

If L = ((X,RL,Y,R)), WLw) is a Levi subgroup of G, a choice of ¢' €
Wg¢ is said to be L-adapted if ¢' € Ww¢. The choice of such a ¢’ in the
coset Wi ¢ and any choice of ¢ determines, as explained below 1.1, a quadru-
ple (G,L, T, F) where G is a connected reductive algebraic group over Fj,
F: G — G is a surjective endomorphism, L is an F-stable Levi complement
of some parabolic subgroup of G and T is an F-stable maximal torus of L.

The following theorem translates into our language the known fact that
the Deligne-Lusztig induction is “generic”.

1.33. Theorem. For each Levi subgroup L of G there exists a linear map
RE: Q[z] Uch(L) — Q[z] Uch(G)

with the following properties:

(1) Whenever A € Uch(L) and RF(A) = ¥ 7€Ueh(@) MY then n.7 E Z,
and for any LL-adapted choice of ¢, R (p% M= >~ €Uch(G) n.,,p,7

(2) R® sends the generic uniform functions on L into the generic uniform
functions on G and induces Indf on the level of class functions, i.e.,
we have RC - 7L = 7C . R and RS . L = &C. Indg.

(3) If M is a Levi subgroup of G and if L is a Levi subgroup of M, then
RE =R§; - RM.

Sketch of proof of 1.33.

Notice that once (1) is proved, (2) and (3) are just translations of known
properties of the map RE. We prove (1).

Let (G, F) be associated with G as above.

There exists an embedding 7 : G — G where G has a connected center
and 7(G) contains the derived group of G. Let L = n(L), and let 7rL be

the restriction of 7 to L. Since for any v € Uch(G) we have p,y = p.y T
(cf. [DiMi2], 13.20), and Rf(p., )-m = RE(pL" -my) (cf. [DiMi2], 13.22), it is
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enough to prove the theorem for G, i.e., for a group with connected center.
Applymg the same arguments to the quotxent map G — Gag (where Gad
is the adjoint group) which has a connected kernel (so [DiMi2], 13.22, still
applies), we may assume G adjoint.

When G is adjoint, (G, F) is a direct product of the form (GE“‘),F(“"))
(restriction of scalars from Fge; to F, of (G;, F)) where G; are simple groups.
Since all our constructions behave nicely with respect to products, we may
assume that the group is of the form (G(%), F(%)) with G simple.

Now the isomorphisms G(9F® ~ GF+ and L(®F® ~ LFe (see 1.4) “com-
mute” with RE, and map isomorphically £(G(“)F(“), 1) to £(GF=,1). So we
can reduce our problem to the case of (G, Fy), i.e., to the case where G is
simple. We will use results of Shoji [Shol], [Sho2] in this case.

Let m be sufficiently divisible so that (G, F™) is split, i.e., the generic
group Gy associated to it is such that ¢ = 1. Itmfollows fr:')m 1.28 that there
exists a map U(¢) on Uch(Gy) such that F(p.‘fp )= pg(z)(,,) . Moreover, the

set of fixed points Uch(Gy)V(#) has the same cardinality as Uch(G). In this
context, for any ¥ € Uch(Gp)Y(#), Shoji ([Sho2], 3.1.2 and 3.1.3) defines an
element of QUch(G) (that he calls R, or R; depending on the case), which
we shall denote here by Sh®y (here Sh stands for “Shintani” — see [DiMil]
for the notation used here, such as Shgm /r), such that:

o v +— Sh%y is an isometry, and the set {Sh%y; (v € Uch(Go)Y(#)}
spans QUch(G),

e for m divisible enough, there is a well-defined G¥" —class function
p~ on GF" F (whose values are the product of the value of a suitable

extension of p,(f ™ to the group G- (F) by a root of unity) such that
Shpm r(py) = pg:;,y (where this last function is defined by linearly

extending the notation psp).

We shall give a formula for RE in the basis pg;_y which will make clear it is
generic.

Let m be divisible enough so that (L, F™) is split and let Ly be the cor-
responding generic group. Let A € Uch(Ly)Y(#). By Harish-Chandra theory,
there exists a Levi subgroup M of L, such that (M, F™) is split, and an ele-
ment p € Uch(Mo) (where Mj is the genenc group corresponding to ( , F™))
such that p" s cuspidal and pA is a constituent of R (p“ ) Fur-

thermore, since p,‘ ™ is F-stable, we may choose (M, p“ ) to be F-stable.
Let M be a generic group corresponding to (M, F') and let Wymv¢ be the corre-
sponding coset. Set Wg, (Mo, p) := Nwg, (Mo, p)/Wpm, . Then the F-stability
of p implies a natural action of v¢ on Wg, (Mo, p) and on Wy (Mp, p), and the
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extension p, corresponds naturally to a function xx on Wi, (Mo, #)vé (an ex-
tension of the v¢-invariant irreducible character of Wi, (M, ) corresponding

to pk’m by Howlett—Lehrer—Lusztig theory). Conversely any Wi, (Mo, p)-
invariant function on Wi, (Mo, #)vé corresponds to a linear combination of
extensions py.

It is proved in [DiMi3], 9.7, that (assuming Shoji’s results)

G/ LF \_ GF
RE (Pshon) = Pspoar

where A’ is the linear combination of extensions p, corresponding to the

function Indvv;z: ((zt :3 :Z: xa. O

Note that

¢ Uch(T ) consists of only one element denoted by 1, and lﬁw (1)=RE #
hence (by 1.33, (3)), for all w'¢ € WLwé, we have RE(RL,,) = RS,

o similarly, the image of 1- by the isometric embedding ®C of 1.29 is
denoted by 1L or just 1; we have Deg(R¢(1)) = D(Ind$1L) (as promised
after 1.17).

1.34. Proposition. For all { € Q[z] Uch(L) we have

DegRF (¢) = Deg(R[ (1))Deg(¢) .

Proof. This is an immediate consequence of 1.20 and of the formula RF (®5) =
e asp- for all B € CF(L). O

The adjoint map of RE is a map *RE: Q[z] Uch(G) — Q[x] Uch(LL) which
is in particular such that

o for all @ € CF(G), we have *R(®%) = oL

G )
Resy a

¢ for all wop € Wi, we have *R%w (7) = my(we)l.

The following theorem, which extends the Mackey formula (see 1.14) to the
preceding context, is a consequence of an unpublished result of Deligne (see
[DiMi2], 11.6) and of 1.33, (1) and 1.24, (3).

1.35. Theorem.
(1) Let L and M be two Levi subgroups of G. Then

*RG - RS = > RMwr - *Rywy, - ad(w).
weEWm\Swg (LM) /W4,
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(2) Suppose that M; and M, are two d—split Levi subgroups containing
the minimal d—split Levi subgroup L. Then

* pG G
RM[2 ‘RMl = E : Rﬁ:nWM[l : Mzn'"Mll -ad(w).
wEWn, (L)\Wg (L)/ Wy, (L)

(Indeed, Deligne proved the Mackey formula for actual finite reductive
groups under the assumption that ¢ is large. Thus 1.35 results from the
genericity of RC.)

The arguments at the beginning of the proof of 1.33, together with 1.28,
prove the following two propositions that we will use later to reduce some
questions to the case of simple groups.

Going to the adjoint group.

The reader may refer to the remark before 1.27 to prove the following

statement.
1.36. Proposition. Let G = ((X,R,Y,RY),W¢) be a generic group, and
let L = (X,R,Y,R"Y),Wrw¢) be a generic Levi subgroup of G. The
sets Uch(G) and Uch(Gad) may be identified, and similarly the sets Uch(L)
and Uch(IL), where L is the generic Levi subgroup of G,q defined by L =
((Q(R),R',P(RY),R"),Wgw¢). Then the following diagram is commuta-
tive:

ZUch(G) —— ZUch(G,q)
< 1%
ZUch(L) —=— ZUch(L)
Remark. If G is the algebraic group associated to G, and 7 : G — Gaq is the
natural isogeny, and if L is associated to L, then 7(L) is associated to L.
Lifting scalars.

1.37. Proposition. Let G be a generic group and let a € N. For all G there

is a natural identification O'G) between Uch(G) and Uch(G(")) such that the
following diagram is commutative:

(@)
Z Uch(G(®)) —— Z Uch(G)
3| [ ne

(a)
Z Uch(L(®) —*— Z Uch(L)
We will use the following result, whose proof is based on an argument
given by Geck [Ge] in the case of a torus (this argument is unfortunately not
“generic”).
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1.38. Theorem. Let vy € Uch(G) and L be a Levi subgroup of G. Then the

polynomial Deg(vy) divides || IlDeg(*RG(‘y)) (in Q[z]).

Proof. Let (G,L, T, F) be a quadruple associated to G and L for a choice
of g. Whenever q is large enough, there exists some regular element s €
Z°(L)¥, i.e., an element such that Cg(s) = L. Then by the “Curtis—type

formula” (see e.g. [DiMi2], 12. 5) we have (*RG(p_(,; )(s) = (bS ")(s). On
the other hand, since *Rf (p$ ") is a sum of unipotent characters and s €
Z(L), we have (*RE(p GF))(3) = (*RG( G™))(1). Thus, using that for any
|GF/Car ()| 65 (s) .
p$7 (1)

s the expression is an algebraic integer, we get that

|GF/LFI(*RE ($7))(1)
$7 )

values of ¢, we must have divisibility of the corresponding polynomials in
Q[z], whence the theorem. O

When L is a maximal torus T4, we get:

1.39. Whenever v € Uch(G) and w¢ € Wgé are such that m.(wé) # 0,
then the polynomial Deg(y) divides z¥(®) Deg(RS ) (in Q[z]).

This was first proved by Boyce [Boy].

is an integer. Since this is true for an infinity of

2. d—-CUSPIDALITY AND THE UNIFORM THEORY

A. d—cuspidality.

In §2.A, we define the notion of d—cuspidality of unipotent class functions
as the generalization of the usual notion of cuspidality (which must be viewed
as the 1-cuspidality).

Let p.(f " bea unipotent character of G¥. We say that p.ch is d—cuspidal if,
whenever T is a maximal F-stable torus of G such that *RE (p$ F) # 0, then

the Sylow ®;-subgroup of T is contained in Z(G). The translation in terms
of generic groups (independent of q) is achieved by the following definition.

2.1. Definition.

(1) A class function a on G is d—cuspidal if whenever w¢ € W ¢ is such
that a(we) # 0, then ker(®4(w¢)) is orthogonal to all the roots of G.

(2) ¥ € Q[z] Uch(G) is said to be d—cuspidal if the corresponding class
function my, is d—cuspidal, i.e., whenever T is a maximal torus of G
such that *RE(v) # 0, then the Sylow ®,-subgroup of T is contained
in Rad(G).
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Remarks.

1. Note that for d = 1 we get the usual notion of cuspidality for the
elements of Uch(G) (i.e., v € Uch(G) is 1-cuspidal if and only if p_ch is a
cuspidal character for any associated group G¥). Indeed, condition (2) above
can be reformulated as follows: “ *R$() = 0 whenever T contains some
non-central ®4-subtorus S”. If L is the centralizer of S in G, condition (2)
becomes: “whenever L is a proper d-split Levi subgroup of G, the uniform
projection of the function *RT () is zero” (in particular, being d-cuspidal is
a property of m,(9)). Now, for d = 1 and 4 € Uch(G) the “positivity” of
ordinary Harish-Chandra restriction shows that if * RZ(v) # 0, then its degree
is non zero, and so its uniform projection cannot vanish; thus we see that +
is 1-cuspidal if and only if *RE(v) = 0 for any proper 1-split Levi subgroup,
which is the usual notion of cuspidality.

2. In the case where G = GL,, then W = &,,, ¢ = 1, and a d—cuspidal
class function on &, is a function which vanishes on all elements whose cycle
decomposition contains a cycle of length a multiple of d.

Moreover, Uch(G) may be viewed as the set of partitions of n. Thus it
results from the Murnaghan-Nakayama formula (see for example [JaKe]) that
~ is d—cuspidal if and only if the partition of n corresponding to < has no d-
hook (i.e., the d—cuspidal partitions are the d—cores of length n). Thus this
paragraph may be considered as the generalization to all Weyl groups of the
“yoga” of hooks for the symmetric groups.

2.2. Definition. Let L be a d—split Levi subgroup of G. We denote by
CF 4(G,L) the set of all class functions a on G with the following property:
if wp € Wi is such that a(wg) # 0, then there exists w' € Wg such that
ker &4(wep)®' is orthogonal to all roots of L.

Remarks.

o Let ¢ € Q[z] Uch(G). Then my € CF4(G,L) is equivalent to the fol-
lowing: whenever T is a maximal torus of G such that *R%(v) # 0, then the
maximal ®;-subgroup of T is contained in a Wg—conjugate of Rad(L).

o CF 4(G,G) is the set of all d—cuspidal functions.

o If L is the centralizer of a Sylow ®4-subgroup of G, then CF4(G,L) =
CF(G).

2.3. Proposition. Let L be a d-split Levi subgroup of G.
(1) Let o € CF4(G,L). Then Res® o is d~cuspidal.
(2) Let B8 be a d—cuspidal class function on L. Then IndSg € CF4(G,L),

and
Resf IndPs = Z YB.
wEWsg(L)
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Proof. The first assertion is obvious. The second assertion is an application
of formula 1.12. O

Generic degrees and d—cuspidality.

For a polynomial P € Q[z], we denote by P; the largest power of the
cyclotomic polynomial ®; which divides P (i.e., the ®4-part of P).
2.4. Proposition. If ¥ € Q[z] Uch(G) is d—cuspidal, then |Gg|q divides
Deg(%).
Proof. We have by 1.31

Deg(¥) = |W| Y my(wg)Deg(REy),

weW
where my is d-cuspidal. It follows from definition 2.1 that the preceding
sum need only be taken over those w’s such that the Sylow ®,;-subgroup
of T, is contained in Rad(G), which implies that |Gy |4 divides |G|/|T wg)-
Since (cf. 1.18 and the definition of RS wa) |Gl/|Twel = :f:a:N(G)Deg(RGd,), we
deduce that |G |q divides Deg(v). O
We may notice the following lemma, which is immediate by 1.30.

2.5. Lemma. For ¢ € Q[z] Uch((G) we have

W) = 3 e RECEEW))
Mwg

We introduce a new definition which will be technically useful. Let us call
“d-anisotropic maximal tori” of G the maximal tori T such that the Sylow
®4-subgroup of T is contained in Rad(G). We denote by 73(G) the set of all
d-anisotropic maximal tori. For 9 € Q[z] Uch(G), we define the “d-cuspidal
projection” of ¥ as

1
2.6) ca(Y) = *RS (v
( d [TG%;)]WG Wea(T)| T R¥(*Rf(¥)).
So we have by 1.34
1
(2.7)  Deg(ca(¥)) :=
’ [TETd(ZG)]wG We(T)

which, since Deg(*RS(v)) = (*RG( ¥), 1)1 = (¢, RS (1)), can be written:

Deg(ca(¥)) : |W| D my(we)Deg(Rg,)

where the sum is taken over those w’s such that T, is d-anisotropic. It is
clear from the above proof of 2.4 that

o Deg(RE (1)) Deg ("R (%)) ,
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(2.8) |Gss|q divides Deg(cq(v)), and cq(vp) = 4 if ¢ is d—cuspidal uniform.

The following result is specific to the elements of Uch(G).

2.9. Proposition. If v € Uch(G) and if |Gs|q divides Deg(y), then ~
is d—cuspidal. In particular, for v € Uch(G), the following statements are
equivalent:
(i) ~ is d—cuspidal
(ii) Deg(‘y)d = |GSS|d>
(iii) Deg(y) = Deg(ca(7)) -

Proof of 2.9. Assume that v € Uch(G) is such that |Gg|q divides Deg(7y).
Whenever w¢ € W¢ is such that my(w¢) # 0, it follows from remark 1.39
that (Deg(7))a divides Deg(RS,). Thus we see that whenever m,(w¢) # 0,
|Gss |a divides |G|/|T wg|, which proves that m., whence «, is d—cuspidal. O

B. Regular unipotent characters.

In §2.B, we give various formulae for the computation of the unipotent
part of the regular character — viewed here again in the generic context —
and called “regular unipotent character of G”. These formulae will be used
later on to prove some divisibility properties for characters of the actual finite
groups.

The unipotent regular character of G is the element of Q[z] Uch(G) defined
by the formula

1
(2.10) UReg® := W > Deg(RS,).RS,.
weW

Since by 1.31, Deg(vy) = (v, URegG)G, we see that

UReg®= ) Deg(y).y
~€Uch(G)

We change the notation in formula 2.10 : instead of summing over w € W,

we sum over a set [T]w, of representatives for the Wg-classes of maximal tori
Ty We recall that Wg(Twg) = Cw(we) and we get :

e G
(2.11) UReg® = [g‘; %DR%(I).
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Similarly, choosing a natural integer d,
1
ca(UReg®) = ] ) Deg(RS,). RS,
where the sum is taken over those w’s where T4 is d-anisotropic. We have
ca(UReg®) = > Deg(ca(7))-7-
~€Uch(G)
Performing a similar change of notation as in 2.10, we get:

e G
(2.12) ca(UReg®) = ) D—”’%/f—(%lliﬁu) :
[TeTa(G)lwg

More generally, we have the following decomposition of uniform functions:
2.13. Proposition. Let ¢ € Qz] Uch(G). We have:
1 *
o) = Y WRS{(%( Riz(¥)))-
[M d-split (M)
split]wg

where the sum is over a set of representatives for the Wg-classes of d-split
Levi subgroups of G.
Proof. To prove this, we use the

2.14. Lemma. Let ¢ be a Wg—stable function on the set of all maximal tori
of G. Let M be a d-split Levi subgroup of G. Then

S p(T) _ 1 > e(T)
W (T M '
[T; Ta =wg Rad(M)4]wg I G( )I IWG( )I [TE€Ta(M)]wy, IWM(T)I
Proof of 2.14. Since M = Cg(Rad(M)4), we see that Ty = Rad(M)q if and
only if T is a d~anisotropic maximal torus of M. Moreover, since Nwg (M) =

Nwg(Rad(M)q), two such tori are Wg—conjugate if and only if they are
Nwg (M)-conjugate. It then follows that

3 p(T) _ 5 (T)
We(T
[T;Td=wGRad(M)d]W@I &(T)| [T Ta=Rad(Mal vy, v We(T)]

_ [Wha : Nwe(T)] (T

__ 1 o(T)
 We(M) [Ter(ZanM Wi (T)|
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a
Applying this lemma to ¢(T) = R$(*R$(v)), we get from 2.5

2S(w) = 1 RE(*RE(v))
W= D e, C

[M d-split] we [TeTa (M)]wy IWM(T)I

which glves the proposmon, using the definition of c¢; and the equality RS -
*Rf(¥) = Ry - RY - *RY - *Rfy(¥). O

2.15. Propos1tlon. Let L be a generic Levi subgroup of G. Then

*RE(UReg®) = Deg(RS(1))UReg" .
Proof. For v € Uch(LL), we have

(*ij’(URegG), V)]L = (URegG, RE(V))G
— Deg(RE(v)) = Deg(RE(1)).Deg(+)
= Deg(RE(1)) (UReg][‘,u)]L

a

2.16. Proposition. We have

G _ Deg(Ryi(1)) ¢ M
UReg” = ~ d_sip]:itlw WRM(Cd(UReg ).

Proof. 1t is immediate from 2.11, 2.13, 2.15 and the multiplicativity of the
degrees Deg(R§(1)) = Deg(R§(1))Deg(RY(1)). O

The following statement generalizes proposition 2.4.

2.17. Proposition. Let 9 € Q[z] Uch(G) be such that my € CF4(G,L).

(1) |Lgs|a divides both Deg(tp) and Deg(*RE(v)).
(2) We have

Deg(3) _ Deg(Rf (1)) Deg(*REf (%))
Lela ~  [We(L)] |Lgs |4

mod P, .
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Proof. We know (cf. 2.3) that *RE(v) is d—cuspidal, and it follows from 2.4
that |Lg|q divides Deg(*RE (v)).

Moreover, we have

e G
Des() = (5, UReg®)s = 5 M) (g, g co(UReg) .
[MIIWG

Since (by 2.12)

Deg(Ry (1))

IWMI(T)l (¢7 R%(l))G ’

(%, Ra(ca(UReg")))g = >

[T; TE€Ta(M)]wy

we see that this scalar product is zero unless Ty Cw, Rad(LL), whence that

G M
W, RM((iEiUlReg e unless Tq =w, Rad(L). This proves that
s|d

(%, Rfj(ca(UReg")))e
II[Jss |d

unless M =y, L, from which 2.17 is immediate. O

®, divides

=0 mod ¥,

C. Regular characters.
In §2.C, we define a suitable generic version of some projections of the

regular character which occur in block theory (see [BrMi]), and we establish
some technical formulae.

Introduction: the regular character of £,(GF,1).

In what follows we shall give a “generic version” of the series £,(GF,1)
introduced in [BrMi], and we start by computing the regular character of
this series in a particular case, in order to justify the notation which will be
introduced in the generic case.

Notation and prerequisites.

Let (G, T, F) be a (g, ¢)-triple associated with G.

We recall that there is a natural indexing of the set of minimal closed non
trivial unipotent subgroups of G normalized by T by the root system R of G.
For a € R, we denote by U, the corresponding unipotent “root subgroup”.

Notice that, since [G, G] is connected, we have

(6/[G,G])" = G"/[G,G]" .
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2.18. Definition. Let K be a characteristic zero field, containing enough
roots of unity for GF.

(1) We denote by Ablrr(GF) the group of K-characters of the abelian
group G¥ /[G,G]F, considered as characters of GF. We denote by
AbRegC® = Y oc avIre(GF) 0 the corresponding regular character.

(2) For a set of prime numbers m, we denote by Ab, Irr(GF) the subgroup
of AbIrr(GF) consisting of characters whose order is a T—number. We

denote by Ab, RegGF = s Ab, Irn(GF) 0 the corresponding regular
character.

Notice that the notation Ablrr(GF) is slightly abusive, since G /[G, G]F
depends on G and F, and not only on GF.

Whenever M is a Levi subgroup of G, we have M = Z°(M)[M, M].
In particular for a Levi subgroup L of M we have M = L[M,M], and
M/[M,M] = L/LN[M, M]. Thus M¥/[M, M]¥ is a quotient of L¥/[L,L]¥,
and the restriction of characters induces inclusions

AbIrr(GF) C AbIrr(MF) C AbIrr(LF).

From now on, we assume that

(2.19) = is a set of good prime numbers for G.

Centralizers of m—elements.

Since T = F} ® Y, the group FX ® X is identified with Hom(T,F}). For
s € T and x € X, we denote by x(s) the corresponding element of ]F;,‘.
Let s € T. We set

(2.20) R :={a; (a € R)(a(s) =1)},

and we denote by G(s) the connected centralizer Cg(s) of s in G.

2.21. Proposition. Let s be a m—element of T.

(1) R, is a parabolic subsystem of R.
(2) G(s) is the Levi subgroup of G generated by T and by the U, for
a € R;.

Proof. For (1), cf. [GeHi], 2.1. For (2), see for example [BoTi|, 3.4, and also
[DiMi2],2.3. O
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Centralizers of m—characters.

Let 0 be a character of TF, whose order is divisible only by primes in 7 :
we then say that 6 is a m—character of TF.

Suppose chosen once for all an isomorphism FX —(Q/Z), . Then it follows
from [DeLu], (5.2.3), that we have an exact sequence

(2.22) 0} -y Sy —-1F — {1},

which allows us to view T¥ as a quotient of Y, and thus to define the image
6(y) of an element y € Y through a character 8 of T¥. For such a character,
we then define the closed subsystem

(2.23) Ry :={a;(a € R)(#(cY)=1)},
and the subgroup G(T,0) of G by
G(T,0) :="T.(Ua) e, -

2.24. Proposition. Let  be a m—character of TF.
(1) The subsystem Ry is parabolic in R.
(2) The group G(T, ) is the largest F—stable Levi subgroup M of G such
that
e TCM,
e 0 belongs to the image of Ablrr(MF) in AblIrr(TF).

Proof of 2.24.

(1) We may assume that T is part of a (g, ¢)-triple associated to G and
let (G*,T*,F*) be a (q,qbv—l)—triple associated with G*. We choose an
isomorphism

*) T s Irr(TF) .

The reciprocal image of § through the isomorphism (*) is a 7—element s €
T*F". The system Ry is then the dual of R} (see 2.20), hence is parabolic by
2.21, (1).

(2) The second assertion of 2.24 results from [DeLu], proposition 5.11, (i),
and from the fact that a closed connected subgroup H of G containing T is
generated by T and by {U, ; (o € R)(U, C H)} (see [BoTi], 3.4). O

We set GF(T,0) := G(T,0)" .
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Following Lusztig’s notation, we denote by £(GF,1) the set of unipotent
characters of GF. For any p € £(G¥ (T, 6),1) we then have (see [Lu2]) a well
defined irreducible character of GF, defined by the formula

F el
X(&(1.0),0,0) = £GEG(T0EG(1,0)(0P)
(this is a particular case of the “Jordan decomposition of characters”).
F F . .
Two characters X(GG(T,O),G,p) and X(%(T',o'),o', oy are equal if and only if the
triples (G(T, 6),0, p) and (G(T’,6'),6", p') are GF—conjugate (see [Lu2], and
also [DeLu], 5.20).

A particular case.
We assume now that:

(2.25) Every m—element of GF is GF—conjugate to an element of T .

We shall see in §4 that the preceding hypothesis is satisfied if 7 = {¢} for
a “large” prime number ¢ (“d-adapted” in the sense of §5) and T contains a
Sylow ®4-subgroup of G.

It is then easy to see that the regular character of the series £,(G¥,1) (see
[BrMi], above 2.1) is given by the following formula:

GF F F
(2.26) Reg, = Y XEmaonD X omn-
(G(T.0),0,)gr

For an F-stable Levi subgroup M of G containing T, we define

(2.27) oM’ = 3 6.
{6;(0€Ab, Irr(MF))(M=G(T,0))}

2.28. Lemma. Under the preceding hypothesis, we have

G
Reg_’(r;F = Z MR&(G&:UR%MF)

wo=, War(M)]

Deg(RS, F
- Y Rl G,
(M,p)lgF ’

where M runs over representatives of GF-conjugacy classes of F-stable Levi
subgroups of G, where p runs over the set £(MF 1) of irreducible unipotent
characters of M¥ | where

F
UReg™ = ) p(l)p
HEE(MF 1)
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and

Wgr(M) := Ngr(M)/MF | Wgr(M, p) := Ngr(M, p)/MF

The proof is left to the reader (it is immediate once the notation is under-
stood).

We note that the sum in the above lemma is over the F—stable Levi sub-
groups M of G for which there exists an element § € Ab, Irr(T¥) such that
M is GF—conjugate to G(T,6). These will be generically the “r-split” Levi
subgroups of G.

The generic formalism.
Lemma 2.28 justifies the introduction of the following formalism, meant to
F
define a “generic”- version of the character Reg,cr;

e For any d, the group W acts naturally on the set of pairs (M, p) (extend-
ing remark 1.27 to isomorphisms), where M is a d-split generic Levi subgroup
of G and where p € Uch(M); we set Wg(M, p) = Nwg(M, p)/Wm. We de-
note by R4(G) the free Q[z]-module on the set of Wg-conjugacy classes of
such pairs, with basis denoted by {X((GM, “)}.

We define (cf. 2.28)

Deg(Ry(1) ¢

2.2 ¢ .= . .
(229 Roti = 2 Tiyg(nd, u)] X

[(ML“)]WG

e For any generic Levi subgroup N of G, we denote by Aqg(N) the free
Q[z]-module on the set of pairs (M, ) such that M is a d-split Levi subgroup
of G containing N and v € Uch(N), with basis denoted by {O(N;M ®v}.

We set @EM = @EM ® 1. For a d-split generic Levi subgroup M of G,
we set OM := Q%{M .
[®©F i ® v should be viewed as the formal version of Resl\N/l: (@gi)pyF]

o We define Rf : A4 G(N) — R4(G) by the formulae
(2.30)
{ RG(OM @ u) = X((GM’“) for N = M, a d-split Levi subgroup of G,

R§ (O ®v) = RG(O¥ @ R¥(v)) for N C M, M d-split.

We shall see that the map R{ of 1.33 identifies to a special case of this one.
o We set

(2.31) Abg Regh := > Of v -
{M;; (NCM)(M d-split)}

37



M. BROUE, G. MALLE, J]. MICHEL

[Note that Abg Reg" should be viewed as the formal version of Ab, RegNF
2 6eAb, Irr(NF) 0.]
With this notation, it follows from definition 2.29 that

Deg(Rpy(1))
[(M%:]WG [We(M, p)|

=y %WR&(@%‘ ® URegM) .
Mwg

Regg = R$(©O¥ ® Deg(p).p)

(2.32)

The following theorem is the analogue of 2.16.
2.33. Theorem.

(1)
Deg(RF(1)) ¢ T
Reg§ = ) —— L2 RE(AbyReg"),
We(T '
e TTW(T)]
where T runs over the set of maximal tori of G.
(2)
Deg(RS (1
Regg = ) DeglRu(1)) pe (Aby Reg ® Deg(ca(w))-1)
We
=Y w}%ﬁ(%d RegM ® c4(URegM)),
o T TWa(M)

where M runs over the set of d—split Levi subgroups of G.
Proof. (1) By 2.32, we see that

1
Reg§ = el > [WulDeg(R§(1)) Rz (0 ® UReg").
M
Also, by 2.11, we see that

URegM = Z Deg(RM(1))RM(1).
'll'CM

Thus we get, using 2.30,

Reg§ = ZDegRT (Z R§(©Eue)
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and the result follows from 2.31.
(2) We extend cq4 of 2.7 to Reg$ by setting

Deg(R§(1
ca(Reg$) := E MR% (Abg Reg”).
A ELCC)
(<]
By lemma 2.14 applied with ¢(T) = Deg(RS(1))R$(Abg Reg"), we see that
Deg(Rpy(1)) M
ReeC = § ML RS (cq(R
€84 IWG(M)I M(Cd( €gd ))

[M; Md-split]wg
Thus it suffices to prove the following lemma.
2.34. Lemma. We have cy(Reg5) = Abg Reg® ® ca(UReg®) .
Proof of 2.34. We have

De 1
AbyReg® ® cy(UReg®) = 3~ %%Abd Reg® @ R§(1),
[TeT4 (G)lwg ¢

and it suffices to check that, for T € 73(G), we have
AbgReg® ® R$(1) = RS(AbgReg"),
which is immediate by 2.30 and 2.31, since T is contained in no proper d-split
Levi subgroup of G. O
O
In order to define a generic version of the adjoint *R$ of R§ which may be
“specialized” to the ordinary *R$, we must introduce more notation.
Let Rq,c(N) be the free Q[z]-module on the set of Wy—conjugacy classes
of pairs (M, 8), where
e M is a d-split Levi subgroup of G such that M NN is defined,
e 6 ¢ Uch(MNN),

with basis denoted by { X?IM[, 6)} .

Remark. We must see xfy; 5) as Ry (OF ® 8) .
We define RS: R4 g(N) — R4(G) by the formula

(2:35) Rii(x(ms)) = Fia(OF ©6),

and then we define *R§: R4(G) — R4 (N) in such a way as to fit with the
Mackey formula, i.e., for any d-split pair (M, p) of G, we set

(236) “REOMww) = D Rinew (O © "R (“w)) -
Wi\Swg (MN) /Wy
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2.37. Theorem. Let N be a generic Levi subgroup of G. Then

"Rf(Regg) = Deg(Rf(1))Regg -
Sketch of proof. Since, by 2.33,

Deg(R&%(1

G _ g(R¥(1)) ¢ T

Regy = mz —-——lWG(T)l R7(AbgReg’),
Wg

and since Abg Reg! = Reg!, it follows that
*Rf(Reg;) = Deg(RF(1))Regq
and also that

*Ri(Regd)= Y RY("RY(*RR(Reg%))).
[{T; TCN}]wy

Thus the result follows from the transitivity of both R§ and *R§. O

D. First applications to actual finite reductive groups.

In §2.D, as a first application, we prove that the specialization of our previ-
ous regular character behaves as the regular character of a “®;—-idempotent”.
The actual application to true {-idempotents will be given in §5.

Let (G, T, F) be a (g, ¢)-triple associated with G. Following the notation
introduced at the beginning of §2.C, let (G/[G, G])4 be the product of all
the Sylow ®.-subgroups (e # d) of the torus G/[G, G]. We then denote by
Ab, Irr(GT') the group of all characters of G /[G, G]F (viewed as characters
of GF) whose kernel contains the group of rational points of (G/[G, G])a.
We denote by Aby RegGF = peAby 1rr(GF) 0 the corresponding regular char-
acter.

2.38. Definition—Proposition.
(1) Let N be an F—stable Levi subgroup of G. The class function oN" on
N¥ is defined inductively by the formula

Z Resl\NA: (61(\;”) = Aby RegNF .
{M; (M d-split)(NCM)}
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(2) (Equivalent definition) For an F-stable Levi subgroup N of G, we
define

Irr(ON) := Abg Irr(NF) — U AbgIrr(MF) .
{M; (M d-split)(NCM)}

Then we have OF = Ypcryonr) b -

For a unipotent character u of M¥, we set
Wgr (M7I‘) = NGF(le")/MF

and (with obvious notation)

GF _ DegRE (1) LG aMF
Resd = D (e MO8 )
[(le‘)](;F

The following result is a kind of “generic version” of [BrMi], thm. 2.2.

2.39. Theorem. All the values of |[Wg| RegdGF are divisible by |G|4(gq)-

Proof of 2.39. This depends on the following general property of the Deligne—
Lusztig induction.

2.40. Proposition. Let L be an F-stable Levi subgroup of G. If ( is a class
function on L¥ which takes integral values, then the function |G¥|,RE(()
takes integral values.

Proof of 2.40. Let P be a parabolic subgroup of G such that L is a Levi
complement of P, and let U be the unipotent radical of P. We denote by Vy
the associated Deligne-Lusztig variety, on which the finite group G¥ acts by
left multiplication, while the finite group L¥ acts by right multiplication. We
denote by Ay the class function on GF x L¥ defined by the formula

Au(g,l) := Ztr((g,l"l); H(Vu,Q)) .

It is known (cf. [DeLu], prop. 3.3) that the function Ay takes integral values,
which are independent of £ (£ # p). Moreover, the map R§ is defined by Ay
as follows (see for example [Brl], §1). For a class function ¢ on L¥, the value
of RE(() at g € G¥ is given by the following formula:

RE(¢)(9) = (Au(g,"),{)Lr
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where we denote by A(g, ) the class function on L¥ whose value at [ € LF is

A(g,1).
By [Brl], 4.1, it suffices then to prove that Ay is “/-perfect” for every
¢ # p. This follows from [Brl], prop. 2.1 (see also [DeLu], prop. 3.5). O

We can now prove Theorem 2.39.
By 2.33 and using 1.28, which shows that we may identify Wg(M, s) and

War(M, pf,’[F), we see (note that our notation has been chosen so that ev-
erything specializes nicely) that
(2.41)

F DegRS (1 F
Regf” = Y0 ool MULRG (Ab, Reg™” Deg(cu(u)) )
(Mp)lgr | GV
It suffices to prove the following lemma.

2.42. Lemma. Whenever M is a d—split Levi subgroup of G and p is a
unipotent character of M,

R (AbgRegM . Deg(ca(p))(q)-1)

takes values which are divisible by |G|4(q).
Proof of 2.42. On one hand, since Wgr (M, u) = Ngr(M, pn)/MF, we have

DegRy; (1) EGEM F. ,
WorMw)] ~ War(m, & Nar (sl
On the other hand, by 2.8, we see that |Wm|Deg(ca(pt))(g) is divisible by
|Mgs|a(q) (since |[Wnm|Deg(cq(p)) and |Ms|q are both polynomials in Z[z], the
second one monic), and thus |Wy|Abg RegMF .Deg(ca(p))(q).p takes values
divisible by |M|4(q).
Since [M|4(q) = |Gla(q), 2.42 is proved. O

O

3. GENERALIZED HARISH-CHANDRA THEORY

A. The fundamental theorem.

In §3.A, in order to decompose our regular characters, we define partitions
of the set of unipotent characters in a way which generalizes Harish-Chandra
and Howlett—Lehrer—Lusztig theories.

We call d-split pairs of G the pairs (M, ) where M is the centralizer in
G of a ®4-torus of G, and where p € Uch(M). We say that such a pair is
d—cuspidal if p is d—cuspidal.
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3.1. Definition. Let (M;, p1) and (My, p2) be two d-split pairs. We write

(M, p1) < (Mg, p2)

if
(1) M; is a Levi subgroup of My,
(2) (R (m1), m2)g #0.

The Weyl group Wg of G acts on the set of d—split pairs of G and it
stabilizes the relation < . If (Mj,p;) and (My, p2) are two d-split pairs,
we set (M, 1) Swg (Mg, p2) if and only if there exists w € Wg such that
(Mg, p1)*¥ < (Ma, p2).

For a d-cuspidal pair (L, A) of G, we denote by Uch(G, (L, A)) the set of
~ € Uch(G) such that (L, A) < (G, 7). Note that Uch(G, (L, A)) depends only
on the Wg—conjugacy class of (L, A).

The following statement is fundamental. It expresses that Deligne-Lusztig
induction can be viewed as ordinary induction through generalized Weyl
groups, provided each unipotent character is equipped with the appropriate
sign, and if we work only with d-split Levi subgroups of G.

3.2. Fundamental Theorem.

(1) For each d, the sets Uch(G, (L, X)) (where (L, A) runs over a complete
set of representatives of the Wg—conjugacy classes of d—cuspidal pairs
of G) partition Uch(G).

(2) There exists a collection of isometries

I 5 : ZIr(Wn(L, X)) — Z Uch(M, (L, X)),

where
o M runs over the set of all d—split generic Levi subgroups of G,
e (L, A) runs over the set of d-cuspidal pairs of M,

such that
(a) for all M and all (L, A), we have

G We (LA
Ry~ Ity = IG ) - Indy o173 -

(b) The collection (Im’x))u(m N is stable under the conjugation
action by Wg.

(c) I?i,,x) maps the trivial character of the trivial group Wi (L, )
to A
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We believe that 3.2 will have a general and nice proof, involving in partic-
ular a generalization of the notion of Hecke algebras (cf. [Brl] last paragraph,
and [BrMa2)]) and a suitable generalization of Howlett—Lehrer theory (which
must be understood as adapted to the case d = 1 — see below) to a “d-
Howlett—Lehrer theory”. Unfortunately such a theory seems out of reach for
us at the moment.

Indeed, the case d = 1 is known: the first assertion is the so—called Harish-

Chandra theory, and the second assertion can be deduced from theorem 5.9
in [HoLe].

We provide a case by case proof of the fundamental theorem. The case of
type A will be treated first; for the classical groups, we give a rough sketch
(we refer to [En2] for a more detailed proof), and a case-by-case analysis for
the exceptional groups using tables given in the appendix.

It will be convenient to prove 3.2 together with the following result, stating
a general “Ennola”—duality via ¢ for Deligne-Lusztig induction:

3.3. Theorem ( “Ennola”-duality for R¥). There exists a natural bijective
isometry o€ : Uch(G) — Uch(G™) such that whenever L is d-split for some
d, the following diagram is commutative :

ZUch(G) —~— ZUch(G")

o T

ZUch(L) —Z— ZUch(L")

Remark. It is very likely that the preceding theorem holds without the hy-
pothesis about the Levi subgroup L. This is actually the case if G is of
classical type, as shown below. It is still to be checked for the case where G
is of exceptional type.

We define a sign €, and v~ by ¢®(y) = e,7~ where v € Uch(G) and
~4~ € Uch(G™). Note that the c© defined above extends the one of 1.21 via
the isometry of CF(G) with the subspace of uniform functions of Q[z] Uch(G).

Proof of 8.2 and 3.3. First note that it suffices to prove both statements in the
case where G is simple. Namely, by 1.36 and remark 1.25, we may reduce to
the case of adjoint generic groups, which are direct products of simple generic
groups G(®). Since RE is compatible with products, we may hence assume
that we have just one factor G(*), and finally, by 1.37, that a = 1.
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The case of the type A.

Since the property we want to prove concerns only the unipotent characters,
we may as well assume that we are dealing with the general linear or unitary
group.

Let us denote by GL,, the generic finite reductive group corresponding to
the general linear groups of rank n. Thus GL, = ((Z™,R,Z"™, RY), S,) with
R=RY = {(e;i—¢€;); (1 <i#j<n)}, where {ej,...,e,} is the canonical
basis of Z™.

Then the generic group corresponding to the unitary groups of rank n is
GU, := GL,,, where GL,, = ((Z",R,Z",RY), G,..(-1d)) (cf. [BrMa], §2).

If we have shown 3.3, then it suffices to prove 3.2 for GL,,. But 3.3 is well
known in the case of type A. Namely, by [LuSr] (see for example [DiMi2], 15.4)
if we take as reference torus the “diagonal” maximal torus of GL,(F,) (which
is stable by both the standard and the “twisted” Frobenius endomorphism),
the generic irreducible unipotent characters of GLL,, are the functions

T == Y x(w)RS for x € Ir(S,),
' weS,

while the generic irreducible unipotent characters of GU,, are the €X<I>SU"
where €, = £1 and

QSU" = ZG: x(w)REY»  for x € Irr(S,,) .
weES,

Identifying Uch(G) and Uch(G™) with Irr(S,), we then see that the map
X — €xX is the map og, which shows 3.3.

The natural bijection M — M~ between the set of generic Levi subgroups
of GLL,, and the set of generic Levi subgroups of GU,, is such that the ®4(z)-
subgroups of GL,, correspond to the ®,(—x)-subgroups of GU,, (recall that,
for d > 2, ®4(—z) = ®24(x), ®4/2(z), or ®4(z) if d is respectively odd, con-
gruent to 2 modulo 4, or divisible by 4). So to prove 3.2 for type A, we may
as well assume that G = GL,,, which we do from now on.

We identify CF(G) and the subspace of uniform functions of Q[z] Uch(G)
via the map o — ®& (see 1.29). Thus the map RY is identified to the induction
Indf’ on class functions (see 1.33, (2)) and *RE to Res?.

Let 4 be an irreducible character of &,, and let w € &,,. Then *R%w (v) =
~(w)1 and (see remark 2 after 2.1) 4 is d—cuspidal if and only if the partition
of n corresponding to 4 is a d-core.
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Moreover, a d-split Levi subgroup of G is of type GILS:? X (G]LS:? X+ X
G]Lg:? x GL; (¢f.1.3). It is then easy to see that a d—cuspidal pair of G is a
pair (L, A) such that L is the direct product T x GL, where

e T is a torus such that |T|= (z? — 1),
e A (with the appropriate identifications) is a character of &, corre-
sponding to a d—core of size r.

Thus n = ad + r, and L = (I'y, Wpv), where
e 'y is a suitable root datum,
® W]L jad 67-,
e v is an element of cycle type d® of Guq

(here we identify G,4 with the obvious subgroup of the Young subgroup Ggq x
S, in G,).

We have v € Uch(G, (L, A)) if and only if A is the d—core of 4. This proves
in particular the first assertion of 3.2.

A d-split Levi subgroup M containing L is of type G]LE:? Xooe xGILgi) xGL,,
where s > r. We can compute Rﬁ[ by computing successively Rﬁ‘ , then RM:,
etc., where M is of type GILS{? X e X G]le‘?_
GL{® x -+ x GL{Y_
assume (since R behaves nicely with respect to products)

X GLgn,+s, My is of type

x GL4n,_,+dn.+s, and so we see that it is enough to

2

G=GL, and M =GL{" x GL,

with . C M, which we do from now on. Thus n = ad+r = bd+ s with r < s,
G = (I'g, Wg) with Wg ~ &,, and M = (I'y;, Wmw) with
o Wu =~ (64)? x B;, a Young subgroup of &,
e w is an element of cycle type d® in Gpq (note that Wyw = Wy).
The class functions on G are the usual class functions on &, while the set
CF(M) may be identified with the set of usual class functions on Gy x &;.
Indeed, every B € CF(M) (i.e., B is a Wy-stable function on Wyw) defines

a class function B, on &, as follows: for (01,02,...,04) € (Gp)?, we set
By(o102 - -+ 04) := B((01,02,...,0q4).w).
We have

We(L,A) = Ce,44.(v)/6r ~ (Z2/dZ)1 G,),

and
WM[(]L, A) ~ Gy X (Z/dZ) 16,-p.

With the preceding identifications, the description of I&,A) and I(I}E,,\)
amounts to the description of corresponding maps I7% (m = n, s), where

I} y: ZIrr((Z/dZ) 1 6,) — ZIrr(Gn, (d, A))
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I 5: ZIre((Z/dZ) 1 So—p) — ZIrr(Bs, (d, A)),

where Irr(G,,, (d,A)) denotes the set of irreducible characters of &, (parti-
tions of m) with d—core A. We want these maps to be such that the following
diagram is commutative :

ZIrr((Z/dZ)1 B,)) Ly ZIrr(Gy)
(34) : e, ®I% :

ZIr(Gp X (Z/dZ)1 Gap) 2™ ZIr(Gp X B,)

where the vertical arrows are the restriction maps.

With appropriate choices (see [Os]), an irreducible character of (Z/dZ)16,
(resp. of (Z/dZ)!S4—p) is defined by a family of partitions (7; & a;)i=1,....d
where E?:l a; = a (resp. Z:'i=1 a; = a —b). Such a collection may be
interpreted as the “d—quotient” of a partition = of n (resp. of s) with d-
core A , and defines a sign €, (see for example [Enl], §3) in a way which is
“compatible” with the Murnaghan-Nakayama formula, and this defines the
maps I7%.

Assume first that a = b. In this case 3.4 is equivalent to the following
property :

For all ¢ € Irr((Z/dZ)1 G,), for all (01,09,...,04) € (6,)? and for all
o € 6,, we have

I7x(¢)((01,09,...,04).w.0) = ((0102---04)A(0).

This equality results from the Murnaghan-Nakayama formula for wreath
products (see [Os] or also [Rou]) and from the fact that the cycle type of
((01,02,...,04).w) € Guq is d times the cycle type of 010204 € B,.

The general case a > b is analogous, and is translated as follows.
We let w be as above. Then for { € Irr((Z/dZ)1 &,) the value of I} (¢)

on ((6p)¢ x (64-p)? x 6,).w is given as follows:
For (01,02,...,04,01,0%,...,0%) € (6)¢ X (64-p)¢ and o € &, we have

I} x(¢)((01,02,...,04,01,09,...,05).w.0) =
(0102 -+ 04)(010% - - 34))A(0).
Let now w’ be an element of cycle type (d)° in S(a-b)d, and let ¢ denote

the restriction of ¢ to &y X (Z/dZ)1S4—p. Then the value of (Ide, ® I3 5 )((s)
on (Gp X (G4-p)? x &,).w' is given as follows:
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For (01,02,...,04,01,0%,...,04) € (6p)¢ X (6,-p)? and o € G, we have

(Ids, ® I3 2)(C)((0102 - - - 04) (01,05, ... ,04).w'.0) =
C((0102---0a)(0105 - 0y))A(0) .

It is clear that the preceding formulae prove the commutativity of 3.4.
Note also that statement (b) of the theorem holds trivially since all auto-
morphisms of GL, fix all unipotent characters.

The case of classical groups.

We use Asai’s results on the decomposition of the Lusztig functor Rf as
cited in the paper [FoSr] of Fong and Srinivasan.

Let G be a generic group of type B, C;, D; or 2D,. Lusztig has shown
that the unipotent characters Uch(G) of these groups may be parametrized by
means of so called symbols. A symbolis an unordered set {S, T} of two strictly
increasing sequences S = 7 < -+- < Z4, T = y; < --- < yp of nonnegative
integers, usually denoted as

A= (xl e Tq ) )
Y - U
Two symbols are considered to be equivalent if they can be transformed into
each other by a sequence of steps

(x1 xa)N 0 1 +1 ... xa+1)
Y1 .- U 0 v»1+1 ... yw+1

or by interchanging the rows. The rank of a symbol A is

rank(A) —Zx,+Zy, [(a+b_l) ]

and |a—b| is called the defect of A. The unipotent characters of groups of type
B, and C; are in bijection with the equivalence classes of symbols of rank / and
odd defect. The unipotent characters of groups of type D; are parametrized
by (classes of) symbols of rank ! and defect divisible by 4, except that if the
two rows of A are equal, two unipotent characters correspond to the same
symbol; such symbols are called degenerate. Finally the unipotent characters
of groups of type 2D, are parametrized by symbols A of rank ! and defect
congruent 2 (mod 4) (cf. [Ca], 13.8).

Let us first assume that the integer d of the theorem is odd. We will need
the decomposition of R¥ in the particular case of a Levi subgroup L = T x H,
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where H is a generic classical group of the same type as G and T is a torus
such that |T| = 2/ — 1 (we will always have d|f). In this particular situation
a unipotent character of H and hence of L is indexed by a symbol A = (S, T).
The decomposition of RY(v,) is explicitly described by a simple formula of
Asai given in (3.1) of [FoSr]. Namely, R®(v,) equals

(3.5) Z (=1)Ms=rys_(oyuget 1T + Z (—I)MT""YS,T—{y}u{yH},
z€S y€eT
z+f¢S y+f¢T

where Mg, :=|{s € S|z < s <z + f}|. Also by convention if a degenerate
symbol occurs on the right hand side of the formula, then it is understood
that both unipotent characters corresponding to it appear in the sum. The
formula above has a convenient interpretation in terms of f-hooks: The sym-
bols occurring as indices of unipotent characters on the right hand side are
precisely those which are obtained from A by adding an f-hook. (The concept
of hooks, cohooks, cores and cocores of symbols is explained in detail in [O]]
and [FoSr], for example.)

The proof will be in several steps. We first describe the d-cuspidal pairs.
Each symbol A has a uniquely determined d-core. We claim that the d-
cuspidal unipotent characters s of G are precisely those where A itself is a
d-core. Indeed it is easily seen that the generic d-split subgroups L of G all
have type

GL{Y x - x GL{® x H,

where H has the same type as G. Now by 1.37 the d-cuspidal unipotent
characters of (Gngld) are in natural bijection with the 1-cuspidal characters of
GL,, and as we already saw above such characters exist only if n = 1. Hence
d-split subgroups L can have d-cuspidal unipotent characters only if L is of

type
(3.6) T x H, where |T{ = (z¢ — 1)°,

and where H has the same type as G. In turn, if @ > 0 by induction these
d-cuspidal characters have the form A =1®---® 1 @y, where A is a d-core.
Now R behaves well with respect to direct products. So the constituents
of RE(X) for (L, ) as above may be computed by repeated application of
Asai’s formula 3.5 in the particular case f = d, using transitivity. Clearly
all constituents of Rﬁ(f(z\) have the same d-core A, so we obtain a partition
of the unipotent characters of G into series, such that two characters lie in
the same series if and only if their associated symbols have the same d-core.
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This completes the description of the d-cuspidal pairs and of the d-series and
proves 3.2(1).

We next show that the series are disjoint even with respect to induction
from intermediate d-split Levi subgroups. Obviously by induction it suffices
to do this for maximal subgroups M (see the reasoning for type A). Up to
G-conjugacy any maximal d-split generic subgroup of G containing L has the
form

(3.7) M = GL{" x H

where b < a and H' has the same type as G. Although the formula of Asai
doesn’t explicitly yield the decomposition of R$(u) for g a unipotent char-

acter of M, we can still deduce it. Indeed, the unipotent characters of G]Lgd)
are indexed by the irreducible characters x of &, = W(GL;). The unipotent
character of GLL; corresponding to x is

1
(3.8) ™= G > x(w)RES(1),

weES,

where |T,| = [[;(z% — 1) when w has cycle type [];(b;). It is now clear
by repeated application of Asai’s formula for f = db; that the constituents
of Rﬁ(p) are indexed by symbols obtained from A by adding db;-hooks, and
since the addition of a db;-hook may be mimicked by the addition of b; d-
hooks, Rﬁ, preserves the series defined above, which proves disjointness.

Thus it remains to establish the existence of the collection of maps Ig{,x)-
As in the case of type A above it is sufficient to do this for M maximal.
Let L be a fixed d-split subgroup of G as in 3.6 with H of rank r, so that
l = ad+r, and A = 4, a d-cuspidal character of H. Then M has the
form 3.7. Let us assume for the moment that G has type B; or C;. Then
We(L,A) 22 (Z/2dZ) S, (where implicitly we have already made all the
identifications as in the proof for type A). The characters of this wreath
product are in bijection with 2d-tuples of partitions (w; - a;) with }_a; = a.
As we have seen, the unipotent characters in Uch(G, (I, X)) are parametrized
by symbols ¥ with given d-core A and hence weight a. Since a symbol A =
{S, T} is uniquely determined (up to equivalence) by its defect and by the two
partitions represented by the S-numbers S, T, we get a bijection from the set
of symbols with a given d-core onto the set of pairs of partitions of a;, as with
prescribed d-cores and a; + a; = a (we get ordered pairs since the defect of
A is odd). These in turn are in bijection with the set of pairs of d-quotients
(see [JaKe]), hence with 2d-tuples of partitions (w; - a;) of a = ) a;. This
defines a bijection between Uch(G, (L, A)) and Irr(Wg, (L, X)).
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For M as above we also have Wi(L, A) & &y X ((Z/2dZ) ! G,—-5). The set
Uch(M, (L, A)) is parametrized by pairs (w,I') consisting of a partition w b
and a symbol I" for H' with d-core A. We have an obvious bijection from these
to Irr(Wm(L, A)).

We now have to compare the decomposition of Rﬁ(u), for p a constituent
of RM(X), with the corresponding decomposition of induced characters in the
Weyl group. First note that by (3B) of [FoSr] there is associated a well defined
sign € to each unipotent character of G so that no cancelling takes place in
the induction.

We make again use of the decomposition 3.8 for the unipotent characters
of GL,. The different tori T, appearing in the sum correspond to the one
element subsets {w}. Induction to Wg(L, ) just yields the characteristic
function on the corresponding class, so that the multiplicity of any irreducible
character x of Wg(LL, A) is just equal to the value x(w). This value may be
computed by the generalized Murnaghan-Nakayama formula of Osima [Os] for
wreath products, by successively removing hooks of length n; from w of cycle
type [, ni. On the other hand, the multiplicity of a unipotent character of G
in R%w (1) is seen by 3.5 to be obtained (up to sign) by the same procedure
of adding hooks of length dn;. Adding a hook of length dn; is equivalent to
adding a hook of length n; to one of the partitions of the d-quotient. Hence
the multiplicities on both sides agree and the assertion of 3.2 follows for types
B and C.

In types D and 2D, two complications arise. Firstly, degenerate symbols
may occur in 3.5, and secondly, sometimes the normalizer Wg(L, A) is not the
full wreath product. It will become clear presently that both problems are
intimately linked. But if both do not occur, the above proof carries through
precisely as for types B and C.

As the d-core of a degenerate symbol is easily seen to be also degenerate,
the first complication occurs when the cuspidal character A is indexed by a
degenerate symbol. But also, the normalizer Wg(IL, A) is not the full wreath
product precisely when A is degenerate. So it remains to check the existence of
I(’}E,A) in this case. Then Wg(L, A) is a subgroup of index two in (Z/2dZ)1G,,
generated by the elements of G, and the even elements in (Z/2dZ)°. It hence
suffices to see that precisely those characters x of (Z/2dZ)! &, indexed by
2d-tuples of partitions (w; F a;) of a = Y a; with a; = a;4+4 and w; = wiyq,
1 <4 < d, split when restricted to the subgroup described above. This in turn
is equivalent to saying that precisely those x vanish on all odd elements of
(Z/2dZ)16,. This final fact follows from the Murnaghan-Nakayama formula
in [Os], and the proof for odd d is completed.

It remains to treat the case when d is even. This resembles very much the
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previous case, so we do not go into any details. (Indeed, the particular case
where d is twice an odd number will follow immediately from 3.3, which is
proved below.) Let L be a generic Levi subgroup of G of type T x H, where
H is a generic classical group of the same type as G (or possibly G~ in the
case of the even—dimensional orthogonal groups) and T is a torus such that
IT| = zf + 1. Again, the decomposition of R¥(v,), where o denotes the
unipotent character of L indexed by the symbol A, was explicitly given in
[FoSt], (3.2). Namely, R¥(y,) equals

Z (=)ot Vot ys_ 2} Tutat 1)
z€S

z+f¢T
(3.9)
+ Z (~D) Ve Iy ) - t)
yeT
y+fES
Here Ng, := |{s € S | s < z}|, and the same convention concerning degener-

ate symbols as in 3.5 applies. The symbols occurring as indices of unipotent
characters on the right hand side are precisely those which are obtained from
A by adding an f-cohook. Each symbol has a well defined f-cocore, and ar-
guments as in the previous part now show that the d-cuspidal pairs of G are
the (L, A) where A is a unipotent character of the form 1®@---® 1 ® ya of

L =T x H, where |T| = (2 + 1), e:=d/2,

and where A is an e-cocore. As above this is an easy consequence of 3.9. In
types B; and C; we have Wg(L,A) & Z2. 1 S,. The same holds for D; and
2D, except that when A is degenerate, we only obtain the subgroup of even
elements as previously. It is well known that for symbols the mechanism of
d-hooks when d is odd is completely parallel to that of d/2-cohooks when
d is even. Since this same parallelity also holds for Asai’s formula 3.9, the
previous arguments may be applied with only minor changes. A more detailed
account is contained in [En2].

We next prove the general Ennola—duality for Rﬁ‘f in the classical groups.
Let A = (S,T) be a symbol. Define A~ = (S~,T~) to be the symbol obtained
from A by moving all odd entries from S to T and vice versa. In fact, as
(S,T) = (T, S) by definition, we might as well exchange the even entries of S
and T to obtain A~. We claim ¢© is the mapping

YA P EAYA-,

where €, is the parity of the degree in z of Deg(7ys) (note that €, is the sign
by which one has to adjust Deg(«yx)(—q) to obtain a positive value). To prove
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3.3, observe that any Levi subgroup of a classical group contains at most one
factor of classical type, i.e., not of type A. Since all unipotent characters of
type-A groups are uniform, the formulae of Asai 3.5, 3.9, enable us to compute
the decomposition of RF for any Levi subgroup L of any classical group. For
type A the desired commutativity has already been proved, and the definition
of the sign €5 agrees with the one given there. So by induction it therefor
suffices to prove the commutativity of 3.3 in the case that L has the particular
form assumed in Asai’s formula.

The operation A — A~ interchanges odd hooks and odd cohooks, and
leaves even hooks and even cohooks alone. It follows that the symbols for
constituents of RC(y,-) are just the images under ~ of the constituents of
RE(~a). Hence we are reduced to checking the correctness of the signs. As-
sume that L = T x H as in 3.5, and ¥ is obtained by adding an f-hook at
position z of A. Shifting the symbol if necessary, we may assume that z is
even. The equality to be proved after evaluating 3.5 and 3.9 is

(1Mo = eeq(—1)VsmetNrmets,

By the definition of S~, T~, M and N, this may be written as

A€y = (_1)1+Ns,:+NT,z+N1 ,

where Ny ;= |[{s € S |z <s<z+f,seven}|+|{t e T |z <t < z+f,teven}|
But by the degree formula for 4y, given in [Ca], 13.8, the right hand side is the
change in parity of the degree of Deg(vx) when A is replaced by ¥, whence
the desired result follows for odd length hooks. (Note that if L is of type D,
exactly three of the four groups L, L™, G and G~ are of the same orthogonal
type. This accounts for a factor —1 in the above equation.) If f is even, one
obtains similarly

EAEy = (_1)1+N2,

where No:=|{s €S|z <s<z+f,sodd}|+|{t€T |z <t<z+f,todd}.
Again this identity is verified using the degree formulae. This completes the
proof of 3.3 for classical groups.

The case of exceptional groups.
We now prove theorem 3.2 for exceptional groups of Lie type, together with
”Ennola”—duality 3.3 in the case of d-split Levi subgroups of such groups.

We assume that G has a connected Dynkin diagram of exceptional type, so
that the corresponding groups of Lie type are simple of exceptional type. In
this case we do not have such a nice result on the decomposition of RS(X) as
Asai’s formula for the classical groups (cf. 3.5, 3.9). But since we are dealing
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with groups of bounded rank, it can be replaced by the Mackey formula for
twisted induction 1.35. Thus the decomposition may uniquely be determined
except for some ambiguities stemming from algebraic conjugate eigenvalues
of Frobenius. These we can not resolve, but the attainable information is
sufficient to prove the fundamental theorem 3.2.

Our approach will consist in a case by case analysis, but some frequently
used arguments are collected at the beginning. Clearly if we know the de-
composition of RE(A) for each d-split generic Levi subgroup L of G and
each unipotent character A € Uch(LL), then the assertion of the theorem may
be checked. Namely the disjointness and the positivity will follow from the
lists, and the existence of the collection of maps I&EA) just by comparing
these finitely many decompositions with tables showing the decompositions
of induced characters in the corresponding Weyl groups. This trivial step of
verification will not be made explicit in the proof. We shall just sketch how
to find the decomposition of Rﬁ(f’, and list the relevant normalizers Wg(L, A)
in the Weyl group.

For the case of tori L = T, the decomposition of the usual Deligne-Lusztig
induction Ri,rc‘ is known in all cases by the work of Lusztig. This already ac-
counts for about half the cases in the exceptional groups. When L is contained
in a Harish-Chandra generic subgroup M, i.e., centralizes a 1-subgroup (see
[BoTi], Sect. 4), then RM is known by induction and R; coincides with ordi-
nary Harish-Chandra induction, so the decomposition follows from the result
of Howlett and Lehrer [HoLe| (the case d = 1). Finally, if A lies in the space
of uniform functions of L then it may be written as a linear combination of
Deligne-Lusztig characters R%(1). By transitivity of Lusztig-induction we
can thus also express RC(A) as a linear combination of R$(1)’s. Hence the
determination of the decomposition is reduced to computations with Weyl
group characters. So far we don’t even have to assume the Mackey formula
to obtain the decompositions.

Unfortunately, not all cases (G,d, L, A) are of one of the above types. We
now first collect a list of all quadruples (G,d, L, A), where G is simple excep-
tional, d an integer with ®4(z) dividing |G|, L a d-split generic Levi subgroup
and A € Uch(L) is d—cuspidal (this last information is either already known if
L is classical, or by induction for exceptional IL). This list appears as Table 1.
The notation for the unipotent characters of the exceptional groups follows
[Ca], 13.9. For groups of type A;, the unipotent characters are indexed by
partitions, for types D; and 2D, by symbols (see the proof for classical groups).

However we have omitted the cases with d = 1, as these are known by the
classical Howlett—Lehrer theory, and the cases where L = T, (hence) A =1,
(then d is regular for G in the sense of Springer [Spl]), because here the
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decomposition is also clear due to L = T.

Note that the groups Wg(IL, A) occurring in case d = 2 are all well known
Coxeter groups, as they should be by the ”Ennola”—duality, since we have
G(2a 1,2) = W(BZ)a G(la 1,3) = W(AZ), G(27 173) = W(BS)a Gag & W(F4)
and G(6,6,2) = W(G,).

The table already shows that for the types 2By, G, Ga, 3Dy and 2F; the
decomposition of R®(A) for all cuspidal pairs (L, A) can be determined from
the knowledge of R$. But this is not the case for the decomposition of all
R (), where M < G is maximal d-split but A not cuspidal. In particular we
will have to return to 2F, later on.

3.10. Theorem. The decomposition of the RE() for the (G,d,L, ) listed
in Table 1 is given by Table 2.

From this, the fundamental theorem 3.2 follows for exceptional groups.
At the same time, the "Ennola”-duality 3.3 follows for all Levi subgroups IL
which are d—split for some d.

Remarks. (a) In the cases marked by a * in the last column, the decomposition
can be proved without using the general Mackey formula.

(b) The decompositions for G not of type Eg, i.e., cases 1-38, were already
obtained by Schewe [Sch] assuming a conjecture on Shintani descent, but note
that some of his tables contain inaccuracies.

Outline of the proof of 3.10. In all cases marked with a * in the next to last
column of Table 1, the d—cuspidal character A of L lies in the space of uniform
functions of L. So by our above remarks on transitivity of Deligne-Lusztig
induction, RE’ can be computed purely mechanical from information inside
the Weyl group. All these computations with characters of Weyl groups were
done with the computer algebra system CAS [NPP].

This leaves 28 cases (G, d, L, A) to be treated. These can not be solved with
the methods discussed so far. We shall now assume in addition the validity
of the Mackey formula for Rﬁ in full generality, as allowed by 1.35 and 1.33.

It enables us to calculate the norm of R¥(A) from the knowledge of Wg(L).
For A € Uch(L), denote by 7L(]) its projection to the space of uniform class
functions on L. By definition, this projection may be written as a linear
combination of Deligne-Lusztig characters R¥(1), so as above we may cal-
culate RF(7L(A)) from the character tables of Wy, and Wg. Since we have
RE(7L(X)) = n$(RE(X)) by 1.33 (2), the uniform part of R®() is known in
all cases, as is the norm by the Mackey formula. These two informations suffice
to determine the decomposition except for some small ambiguities resulting
from irrationalities. Namely, it will turn out that there exists an essentially
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unique element ¥ € Z Uch(G) with 75(y) = 7$(RE(X)) of minimal norm, and
that this norm coincides with the norm of RS(A) calculated from the Mackey
formula.

By transitivity of Deligne-Lusztig induction we may recover the decompo-
sition of R® if for some maximal Levi subgroup M < G containing L we know
the decomposition of Ry (and the one of RM by induction). We will therefore
from now on assume that L is already maximal in G.

If L is a direct product of two groups L. = L; x L,, and all unipotent
characters of IL; happen to be uniform, then RE may be written as a sum of
R}r;le,a for some maximal subtori T of L;. If moreover T x L, is contained in
another maximal Levi subgroup L/ for which we know RS, then by induction
we can also compute RF. This is for example useful if Ry, tends to contain
only few constituents (and hence is easily determined), while RE’ has large
norm. As an example we cite the case d = 2 in G of type Eg, where L has
type Ds + A2 and L' has type E.

We now consider the restriction of the uniform part 7C(RE (X)) to a family
F of unipotent characters as defined by Lusztig (see [Ca], chap. 13). The
characters in a family, as well as their uniform projections, span pairwise
orthogonal spaces of class functions. If a family consists of just one unipotent
character, then this character coincides with its uniform projection and hence
its multiplicity in Rf may be recovered from the uniform projection.

Next assume that the family F is a four member family p;,... , ps, t.e., is
associated to the group G2. Then except for one case in F; and two cases
in Fg the orthogonal complement of uniform functions has a one dimensional
intersection with F and is spanned (after a suitable renumbering of the p;) by
p1 — p2 — p3 + pa. It turns out that in all cases of interest to us the uniform
projections of the RE(A), restricted to a four element family, coincide with
the uniform projection of exactly one p;. It is now clear that the minimal
norm is achieved if indeed RF(A)|x = p;. In case that adding up the minimal
norms one just arrives at the norm of R‘]E’ (A), the decomposition is uniquely
determined. This accounts for the cases (17), (27), (62), (63), (64), (65). For
cases (42) and (43) the decomposition can not be deduced unambiguously,
since there two unipotent characters in the four—element family have the same
uniform projection, but at least the sum of the two decompositions follows
from the norm condition. Since the pairs of characters concerned do only occur
with equal multiplicity in all other RE, the ambiguity here does not harm the
proof of the theorem. Whichever of the possibilities holds, the collection of
maps I(I}'['LA) exists.

Next we consider the eight member family associated to the group G3. Here
the orthogonal complement to the space of uniform functions has dimension
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three, except for type G, but there all unipotent characters of every proper
Levi subgroup are uniform. In the other cases, the vector of shortest length
in the sublattice spanned by generalized characters is p; — ps of length two;
all other vectors have length at least four. Checking the cases one sees that
(5), (9), (11) and (14) follow from this observation.

In the case of the 21-member family in Fy associated to &4, the shortest
vectors in the lattice of generalized characters orthogonal to all uniform func-
tions are Fy[0] — F4[6?] and Fy[i] — F4[—i] of norm two, and all other vectors
have length at least four. This determines the cases (1), (2) and (3).

Finally in the 39-member family F in Fj associated to G5 one again finds
that all vectors of length two come from pairs of unipotent characters with
algebraically conjugate eigenvalues of Frobenius. Moreover, all other vectors
have length at least four. This information is not yet sufficient do obtain all
missing decompositions. So for example in case (47) we have G(q) = Es(q),
M(q) = ®3E¢(q), and it turns out that the norm of R{(A) restricted to the
family F may be as big as seven. But at least we know how to decompose
R$;(7) for those v lying in the principal series of Eg(g). Also, by the Mackey
formula, the scalar products of these with the still unknown R;(\) are known.
This, combined with the information on nonuniform characters in F, allows
to compute the decomposition completely.

The same type of reasoning takes care of the 13—member family of charac-
ters in groups of type 2F for ®3—split subgroups M with structure M(q) =
@ 2B5(g). Although some ambiguities with respect to characters with alge-
braically conjugate eigenvalues of Frobenius remain, these are not relevant to
the proof of the theorem, since it holds whichever of the different possible
cases occurs.

After the determination of all Rﬁ[ it remains to compare the decomposi-
tions for Ml maximal with those of the corresponding characters induced from
Wm(L, A) to Wg(L, A). The groups Wg(L, A) turn out to be irreducible com-
plex reflection groups in all cases. We have indicated these groups, using the
standard notation given for example in [Be] or [Co], in the last column of
Table 1 for the cases listed there, and collected them in all other cases where
d # 1,2 and Wg(L, A) is noncyclic in Table 3. (For d = 1,2 they are the usual
Weyl groups of G or G™.)

In the two cases (22) and (23), Wg(L) is the reflection group Gg but the
stabilizer of the d-cuspidal character A of L is a Sylow 2-subgroup of Gg of
index three, isomorphic to the imprimitive reflection group G(4, 1, 2).

With the help of the reflection representations for the relevant reflection
groups given in [Be] it is possible to find the fusion of Wu(LL, A) into Wg(L, A)
and thus to compute the decomposition of all induced characters, using the
computer algebra system CAS [NPP]. Then a straightforward verification
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proves the existence of the maps Ig‘ﬂ,‘). The details are omitted. This com-
pletes the proof of 3.10. O

O

It might be noted that the bijections I&’A) are not unique if Wg(L, A) is
cyclic; indeed on this level any bijective map is admissible. But once we have
chosen the bijections on the level of cyclic groups, it is ”almost” determined for
all bigger groups Wg(L, A). To be more precise, the characters in the (IL, X)-
series are determined by their multiplicities in the R{j(v) for (L, A) 5 (M,~)
(provided that some numbering is chosen on the 1-dimensional level), up to
a small number of cases which basically result from algebraically conjugate
eigenvalues of Frobenius, making characters indistinguishable by induction.
This is again a remarkable analogy to the case d = 1, where Benson and
Curtis have proved a similar result (here the ”cyclic” case is just the trivial
group), also up to one ambiguity in E; and two in Fjg.

B. d—Harish-Chandra theory for unipotent characters.

In §3.B, we draw some straightforward consequences of the preceding fun-
damental theorem about the structure of the poset of d—split pairs.

The following statements generalize Harish-Chandra theory, which corre-
sponds here to the case d = 1. They were recently conjectured or partially
proved by many authors (see for example [Sch] or [FoSr]), and are immediate
consequences of theorem 3.2.

3.11. Theorem (transitivity). Let (L,\) be a d-cuspidal pair, and let
(M, ) and (G,~) be d-split pairs such that (L,A) < (M, n) and (M, ) <
(G,7). Then (L,A) < (G,).

This theorem, together with the disjointness asserted in 3.2(1), shows the
existence of a “d-Harish-Chandra theory”. We draw some straightforward
consequences of the existence of such a theory.

3.12. Proposition. Let (L,\) be a d—cuspidal pair, and let (M, ) and
(G,~) be d-split pairs such that (L,A) < (G,v) and (M, p) < (G,v). Then
(]Lv A) '\<WG (M, p’)

Proof of 3.12. By 3.2, (1), there exists a d—cuspidal pair (L', A’) such that
(L', A") < (M, p). Then by 3.11 we have (L', \’) < (G,~). By 3.2, (1) again,
we then see that (L', A’) is Wg—conjugate to (L,A). O

3.13. Corollary. The d—cuspidal pairs are the minimal d—split pairs for the
order relation < .

Proof of 8.13. Apply the preceding proposition with (L, A) = (G,«). O
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The following consequence of d—Harish-Chandra theory is a result of “con-
trol of fusion”.

3.14. Proposition. Let (L, ) and (M, u) be two d-split pairs. We assume
that (L, X) is d—cuspidal, and that (L, A) < (M, p).
(1) Assume that w € Wg is such that also (L,A) < (M, u)*. Then there
exists v € Wy and n € Ny, (L, X) such that w = vn.
(2) The natural map Ng((L, A), (M, 1))/ Nae (L ) = Nwg (M, 1)/ Wiy

is an isomorphism. In particular (with obvious notation) we have

NWg(]L,A) (Ma M)/WM(]L’ A) = WG (M’ I‘l’) .

Proof of 3.14. If (L, A) is contained in both (M, x) and (M, ), then (L, A)
and “(LL, A) are d—cuspidal pairs contained in (M, p), and hence (see 3.13) are
conjugate under Wy This proves (1). We get (2) by applying (1) to the case
where w € Nwg(M, p). O

The next result is also an immediate consequence of 3.12.

3.15. Proposition. Suppose that (L, A) is a d—cuspidal pair such that
(L,A) X (G,~). Then

*RE(Y)=(.REN)e D>, ™A
weWg(L)/We (L)
In particular, we have
Deg(*RE(7)) = (7, RE(N))6IWa(L) : We(L, A)[Deg(R)
and Deg(*Rf (7)) # 0.

4. GENERIC $,-BLOCKS.

A. More on regular unipotent characters and Mackey formula.

In §4.A, using §3, we split unipotent regular characters into a sum of char-
acters, for which we refine results of §2.B. We also refine the Mackey formula.

Let (L,A) be a d-cuspidal pair. We denote by prﬁ,‘ the orthogonal pro-
jection from Q[z] Uch(G) onto the submodule with basis Uch(G, (L, X)).

We define
(4.1) URegys :=pria(UReg®) = )" Deg(y),

{7 (LA)R(G)}
and we have (see formula one line above 2.12)
(42)  ca(URegfy) =pria(ca(UReg®) = )~ Deg(ca(7))7-
{7; (LANL(G)}
We have the following version of 2.13:
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4.3. Proposition. Let v € Uch(G, (L, A)), and let ¥ € Q[z] Uch(G) be a
uniform function. Then

(7, Ra(m))c * G
7¢ = Tr g g s € R ")b
¥l [(M,u);(lm)é:vvg(m,u)lwG IWe(M, p)l (i cal RO

Proof. From 2.13, we have

= 3 m(*Rﬁm,cx*Rﬁ(«p»)M

[M d-split]wg

Ym0 R )en e B

[M d-split]wg n€Uch(M)
whence the result, since the pairs (M, ) in the summation have to be above
(L,A). O

From 4.3 we deduce the following refinement of 2.16.
4.4. Proposition. We have
Deg(Ry(1))

UReg®, =
A [We(M, )|

(M) 5 (LA) S wg (M)l wg

R{z(Deg(ca(p)).pe) -

Finally, the preceding machinery allows us to prove a refined version of the
Mackey formula (see 1.35). The proof of the following statement follows from
1.35 and from 3.14 and is left to the reader.

4.5. Proposition. If (M, p1) and (Mg, pt2) are two d—-split pairs containing
the d—cuspidal pair (L, X), we have

(R, (1), Ry, (p2))e =

*p¥ * pM
> (*Rop g, (“1), *RAZ g, (H2))Manomss -
wE Wi, (LA)\ W (L) /Wi, (LX)

The preceding statement can be reformulated in terms entirely analogous
to the previous “Mackey formulae”, provided we consider maps “over (L, A)”.
For a d-split generic Levi subgroup M containing L, let us denote by

R$(L,\): Z Uch(M, (L, X)) — Z Uch(G, (L, \))
the restriction of Rﬁ, and by
*R%(L,\): Z Uch(G, (L, A)) — Z Uch(M, (L, X))
its adjoint, i.e., the restriction to Z Uch(G, (L, X)) of pri, - *Rf; .
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4.6. Proposition. Let (L, ) be a d—cuspidal pair, and let M) and My be
two d—split Levi subgroups of G containing L. Then

R§, (LX) - Ry, (LX) =

z R M, N @M, L,A)-* M,an[l(L A) -ad(w).
wEWn, (LA)\We (L,X)/ Wy, (LX)

B. ®;—defect groups.

In §4.B, we reformulate some of the previous results in order to define a
suitable notion of generic ®;—defect group of a unipotent character.

The d—Harish-Chandra theory allows us to define the notion of “®4—defect
groups” or “defect (generic) tori” of an element ¥ € Uch(G), as follows.

4.7. Definition. Let v € Uch(G).

(1) For each d let S4(y) be the set of all ®4—tori S of G for which there
exists a maximal torus T containing S such that *R%(v) # 0.
(2) The maximal elements of Sq(7y) are called the @d—defect tori of 4.

4.8. Theorem. Let~y € Uch(G), and let (L, A) be a d—cuspidal pair (unique
up to Wg—conjugation) such that 4 € Uch(G, (L,A)). Then S € S4(7y) if and
only if S is Wg—conjugate to a ®,—subgroup of Rad(L). In particular the
®,—defect tori of oy are the Wg—conjugates of Rad(LL)q4.

Remark. An element v € Uch(G) is d—cuspidal if and only if the Sylow &4
subtorus of Rad(G) is its defect torus.

Proof of 4.8. We set M := Cg(S).

Assume first that S € S4(y). Let T be a maximal torus of G such that
T O S and *R§(v) # 0. Since T C M, we have *R;(v) # 0 and there exists
p € Uch(M) such that (M, p) < (G,7). By 3.2(1) there exists w € Wg such
that L is a subgroup of M, from which it follows that S* is contained in the
maximal ®4-subtorus of Rad(L).

Assume now that S is contained in the maximal ®4-subgroup of Rad(L).
Then L C M. Since (cf. 3.15) Deg(*RE(v)) # 0, we see that there exists a
maximal torus T of L, whence of M, such that *R$(v) # 0, which shows that
SeSi(y). O

For the notation used below, the reader may refer to §2.A.

4.9. Theorem. Let v € Uch(G) with ®4—defect group S. Let L := Cg(S).
Then

(1) S=Rad(L)q and m, € CF4(G,L),
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(2) Deg(v)y = |Gla/IS|,
(3) *R% () = 0 whenever M is a d-split Levi subgroup of G such that
Z4(M) is not Wg—conjugate to a subgroup of S.

Proof. (1) results from the definition of a defect group.
(2) Since |G|q/|S| = |Lss|a, we see by 2.17 that

Deg(y) _ Deg(RE(1)) Deg(*RE(y))
ILosla —  [Wa(L)| |Los 4

Deg(*Rf (7))
IIL'ss ld

mod Qd ,

and it suffices to prove that is not divisible by ®4. But this

results from 3.15 and from 2.9.
(3) Z4(M) is not Wg—conjugate to a subgroup of S if and only if L is not
conjugate to a subgroup of M. Thus (3) is an easy consequence of 3.2(1). O

Remark. We shall see later on that a generic defect group does behave, in
many respects, as the right “generization” of an actual defect group. More-
over, for suitable choices of ¢ and ¢ (see §5), the Sylow {-subgroups of the
rational points of a generic defect group are the defect groups of a correspond-
ing actual ¢-block.

Assertions (2) and (3) of 4.9 may be stated in the following way, which
generalizes the properties of d—cuspidal elements of Uch(G).

4.10. Proposition. Let (L, A) be a d-cuspidal pair, and let v be an element
of Uch(G, (L, A)). Then

(1) Deg(v)a = |Lssla ,
(2) for a d—split generic Levi subgroup M of G, we have *R§;(v) = 0 unless

LCw, M.
Finally, we have the following version of 2.13:

4.11. Proposition. Let 4 € Uch(G) and let S € S4(7y); let ¢ be a uniform
function in Q[z] Uch(G). Then

(v, )6 = ) mw, Rij(ca("R(¥)))e -

[M d-split;Rad(M)a <Slw

Proof. This is immediate from 2.13 if we notice that c4(*R$;()) is a sum of
R¥Ws where T € T4(M): this shows that, for the scalar product to be non
zero, those T’s must have T4 = Rad(M)q <S. O
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C. Regular characters of generic ®;—blocks.

In §4.C, results of §2.C are refined the same way results of §2.B were re-
fined in §4.A. In particular we define what must be considered as the regular
characters of the generic ®;-blocks.

Following the notation introduced in §2.C, we have a decomposition

Ra(G) = P RuA(G)
[LAlwg

where (IL, A) runs over the set of d—cuspidal pairs of G, and where we denote
by Rix(G) the free Q[z]-submodule of R 4(G) generated by all the X?ML ) for

(IL, A) 4W¢; (M) ”’)
We “extend” the definition of the orthogonal projection prf’ s (see §3.A
above) by defining

X((GM,p) if (]L’ A) W (M’ I‘)

G G —
PIL A (X(Ml,u)) T {0 if not .

The following property of prﬁ,‘ is a translation of the consequences of 3.2
listed in §3.B above.

4.12. Lemma. Whenever N and M are two d-split generic Levi subgroups
of G such that N C M, and v € Uch(N), we have

Rg(eg,l\d[ ® V) if (lL’ A) '\<Wo (N’ U)

Prﬁ(.;,x (Rg(@?;,m Qv)) = .
0 if not.

Proof. By 2.30, we know that
Ri(0%m ®v) = Ry(OF ® RY(v)),
or, in other words,

R{(OEM®V) = > (RN (v), p)MRy(O¢ ® RY'(v)).
{p;(Nw)<S(M,u)}

The result then follows from the following property:
Assume (N,v) < (M, ). Then

(L, A) Swg (M, p) if and only if (L, A) sw, (N,v),
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which is immediate by 3.13. [
We define (cf. 2.28)
Reg&n = PTE,A (Regfl;)'
Thus by definition,
3 Deg(Ru(1)) ¢

X(M,p)
(M) 5 (L) S6 (M) wg We(M, )l

Deg(Rii(1)) 1 oM
(419 N 2 Tav o fm(©¢ ® Deg().p)
(M) ; (LX) S (M) wg |WG(M, p’)l

Reg?ﬂ,,x) =

and also

(4.14) Regi = > Regfiy,
(LA)]wg

where (L, A) runs over the set of d-cuspidal pairs of G.

4.15. Theorem. We have

Deg(RS (1
Reg(i,x) = > TWE%%RWAM Reg"'@Deg(ca(p))-p) -
[(Mp) 5 (LX) <6 (M) wg ’

Proof. 1t suffices to apply prﬁ,‘ to both sides of the corresponding formula
for Reg§ (see 2.33), and to use lemma 4.12 above. O

The preceding results allows us to improve 2.39, by decomposing the char-

acter RegdG'F (see §2.D) into a sum of characters with similar divisibility prop-
erties.

The reader may refer to §2.D above for the notation used here.

Let (G, T, F) be a (g, ¢)-triple associated with G, chosen in such a way
that T contains a Sylow ®,—subgroup of G. For a d—cuspidal pair (L, A) of
G we set

F DegRS (u F
Regfiy = > |—W_;(MIVI(—))|R’(‘;"(62*A B,
(M0); (B2 RgrMplgr | G0 H
4.16. Theorem.
(1) We have Reg§ = E[(L)‘)]c’{j Regﬁ,‘ .
2) All the values of |Wg|RegS, are divisible by |G|4(q).
LA

Proof. The first assertion is immediate. As in the proof of 2.39, the second
assertion is a consequence of 2.42. O
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5. m—BLOCKS AND ISOTYPIES

In §5, we apply what precedes to the study of ordinary blocks of actual
finite reductive groups.

The preceding “generic” approach shows that the group G¥ (at least as
far as unipotent characters are concerned) hardly differentiates between two
prime numbers dividing the same factor ®4(g). Thus, many usual objects and
properties of the classical /~-modular representation theory can be replaced,
without harm, by corresponding objects or properties when the single prime ¢
is replaced by a set of primes dividing the same factor ®4(g). In this section,
we illustrate this with an application of the generic theory, assuming that we
are dealing with “large” primes (which in practice means primes not dividing

(We(e))-

Since many notions (Brauer morphisms, generalized decomposition maps,
isotypies, etc.) are often known only for the case of a single prime, we give
(or recall) briefly, when needed, their definitions for a set of primes. The
reader may refer to [Rob] and [RoSt] for more details — or read what follows
assuming that 7 consists of a single prime.

A. m-blocks, Brauer morphisms.

In §5.A, for suitable sets of primes 7, we describe m—idempotents which
turn out to be the m—blocks of G¥. We compute their images under the usual
Brauer morphisms.

Large primes.

Let G be a generic finite reductive group, let p be a prime number, and let
(G, T, F) be a (g, ¢)-triple associated to G such that g is a power of p. Let £
be a prime number different from p and dividing |GF|.

5.1. Definition. We say that ¢ is large (for G) if £ 1 |Wg(®)|.

5.2. Proposition. If ¢ is large, then

(1) there exists a unique integer d such that ®4 divides |G| and ¢ divides
®4(q) (in other words, we have |G|, = |Gla(q)e),

(2) ¢ is good for G,

(3) £ divides neither |(Z(G)/Z°(G))F| nor |(Z(G*)/Z°(G*))F"

Proof. For (1), see [Ge].

(2) follows from the fact that bad primes divide |W|.

(3) The group of characters of Z(G)/Z°(G) is isomorphic to the p’-part
of the torsion subgroup of X/Q(R). Since the torsion subgroup of X/Q(R),
namely the group Q(R)11/Q(R), is a subgroup of P(R)/Q(R), it is enough
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to check that |P(R)/Q(R)| and |P(RY)/Q(RV)| (this last to get the result for
G*) divides |W|. But by definition |P(R)/Q(R)| is the connection index fg
of R, and fr = frv divides |W| by [Bou], ch. VI, §2, prop.7. O

5.3. Definition. Let 7 be a set of prime numbers such that p ¢ ©. We
say that 7 is (G, F)-adapted if there exists an integer d such that |G¥|, =
|Gla(q)x. We then also say that 7 is (G, F,d)-adapted.

Remarks.

1. If 7 is (G, F, d)-adapted and L is an F-stable Levi subgroup of G, then
7 is (L, F, d)-adapted.

2. If 7 = {¢} where { is a large prime, then 7 is (G, F')-adapted by 5.2.
5.4. Proposition. Let 7 be a set of large prime numbers which is (G, F, d)-
adapted. Let L be an F-stable Levi subgroup of G.

(1) Let S = Z°(L). Let S be a w-subgroup of SF. Then C&(S) is a d-split
Levi subgroup of G.

(2) Let T be an F-stable maximal torus of L, and let § be a w-character
of (L/[L,L]))¥. Then G(T,¥) is a d-split Levi subgroup of G.

Proof. (1) Since every element of 7 is good for G, the group C&(S) is a Levi
subgroup of G. Moreover, by 5.2, (3), we have S C Z°(C&(S)). Now C&(S)
contains Cg(S), a Levi subgroup whose center by assumption is S, so we have
Z°(C&(S)) C S, and thus 7 is d-adapted for Z°(C&(S)). It follows that S
is contained in the Sylow ®4-subgroup Z°(C&(S))q of Z°(C&(S)), since the
quotient of the corresponding groups of rational points is a 7’-group. Then we
have C&(S) = C&(Z°(C&(S))a), which shows that C&(S) is a d-split Levi
subgroup of G.

(2) The proof of the second assertion follows from the first one applied in
the group G*. 0O

m—blocks.
Let m be a (G, F,d)-adapted set of large primes, and let Regf’&,,‘) be
the projection of Regﬁi (see §3.C above) onto the subspace generated by

characters in
E(GF,1):= ] £&(GF,(s)),
3€(G‘F.)fr
(cf. [BrMi]). We will prove Regf’a"x) is the regular character of a central
“r—idempotent” of G (which will turn out to be a block if = = {£}).

From now on, we assume that (G, T, F) is chosen so that T contains a
Sylow ®4-subgroup of G. So T is contained up to GF-conjugation in all
d-split Levi subgroups of G.
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5.5. Theorem. Let 7 be a set of large primes which is (G, F, d)-adapted.

(1) The projection of RegdGF onto £-(GF,1) is the character Reng.
(2) Let (L, ) be a d—cuspidal pair of G such that T C L. Then

GF F F
Regr (L) = Z X0, (1)-XG1,0,0)
[(M70’“)]GF

where

e 0 runs over Ab, Irr(LF),

o M =G(T,0) (cf 2.24).

o (M, p) is a d-split pair such that (L,A) Sgr (M, p),

The character Regf’&,,‘) is the character associated to a central
n-idempotent ef,:L,A)' In particular, its values are divisible by |GF|.

(3) We have
F F
Regt = Z Regy (1) »
[(LN)]gF

(in other words, eS" = E[(LA)IGF ef’&,k) ), where (L, A) runs over
the set of all d—cuspidal pairs of G.

Proof. (1) For a d-split Levi subgroup M of G, let us denote by Irr,,(@lc\;dp)

the set of 7—elements of Irr(@l\G"F). Then, if prfF denotes the projection onto
the subspace generated by characters in £,(G¥, 1), we have

F F
pré (RGO m)= > RG(O.m).
0€Irr,(@“GdF)

We need the following lemma, which follows from 5.2 applied to a dual
group L* of L. The reader may refer to 2.38 for the notation.

5.6. Lemma. Let L be an F-stable Levi subgroup of G containing T. Let
7 be a (Z°(L), F,d)-adapted set of prime numbers which are large for G. Let
M be a d-split Levi subgroup of G containing L. Let 8 be a m—element of
Irr(OM"). Then M = G(T, ).

It then results from 5.6 that

F F
pry (RM(6§ -m) = >, Ry(6-n) -
{6; (6 m—element)(G(T,0)=M)}

(1), as well as the first part of (2), are now immediate. Let us now prove that
F
the values of Regg(L’,‘) are divisible by |GF|,. Let e,,GF denote the central
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1dempotent corresponding to £,(G¥,1). We know (see [BrMi], th. 2.2) that
e,cf is a m-idempotent, i.e., it belongs to the group algebra of G¥ over the

ring Z[1/r),ex. Since 7 is d—adapted for G and no element of 7 divides |Wg]|,
we know by 4.16 that all values of Regf;\ are divisible by |GF|,. For all
g € GF, we have Regfr;’&,,‘)(g) = Regﬁi(g.efF) and this proves now the
second assertion of 5.5.

Finally the third assertion of 5.5 is an immediate consequence of 4.14. O

Brauer morphisms.

Let 7 be a set of prime numbers, and let s be a 7—element of Gf. Whenever
e is a central m—idempotent of QGF, we denote by Br,(e) the image of e
through the corresponding Brauer morphism (cf. [Rob] or [RoSt], and also
[BrMi], §3). For the convenience of the reader, we recall the definition of
Br,(e).

o Let w?F be the class function on G¥ with value |Cgr(s)| on the GF-
conjugacy class of s and 0 elsewhere.

e For a class function ¥ on G let decfr’GF(v,Z)) denote the class function
on Cgr(s) such that

Y(st) if t is a 7'—element
0 if not.

decy®" (9)(t) = {

o For a class function % on GF, let e.9) be the class function on G¥' defined

by e.4(g) = B(eg).
Then the following formula defines the idempotent Br,(e) :

(5.7) Br,(e). Regsr () = dec®®" (e.wS") .

Thus Br,(e) is a central m—idempotent of QCgr(s).

Iteration of 5.7 allows us to define (see for example [RoSt] or [Rob]) an
idempotent Brg(e) for all abelian m-subgroups S of GF. In the case where
n = {{}, this definition coincides with the original definition of Brauer.

5.8. Theorem. Let (L,A) be a d—cuspidal pair of G. Let 7™ be a set of
large prime numbers which is (G, F,d)-adapted for L. Let S be a subgroup
of Z°(L)E and set M := C&(S). Then

GF MF
BTS(ew,(L,A))= Z €x (L', \)
(L',
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where (L’, A') runs over a complete set of representatives for the MF—conjuga-
cy classes of d—cuspidal pairs of M which are GF—conjugate to (L, \).

Proof. We may assume by induction that S is cyclic. Let s be a generator of
S. By “Curtis—type formula” (see [Br2], 4.3), we know that

s,GF s;MF «pG
dec;’™ =dec,”" - "Ry .

So by 5.7 we must prove that

s F
(deci™" - *RE) (e 1 5y @& ( Y e x)) .Reg"

(Ll Al
Let us denote by £-(G¥, (L, X)) the subspace of the space of all class functions
¥ on GF such that ega)‘).w = 1.
For each d-cuspidal pair (L, ), *R$; sends the Z-span of £-(GF, (L, X))
into the Z-span of U1, ar) E«(MF, (L', X')). Thus we see that

F F
(L) Z emwan | Ru(es ,(L 2T ") = *R§ (S, L) Ts ),
(LAY

and also that, for (N, v) any d-cuspidal pair not G -conjugate to (L, ),

F * F F
(N) ( Z BWM,(L,,A,)) . R]\G/I(CWG’(N’V).WS )= 0.

(L7,A")
It follows from (L) and (N) that

F x F
(Z ewM,(L’,A’) RM(ew(LA)w ") =*R§ (@),

(L', A7)
and so
s, * F F F s F * F
(decy ME Rl(\;d)(eS,(L,A)'w.? )= Z e-:rM,(L’,A’) (decy™” - *RF)(ws)
(L' A7)
MF ,GF F
= Z € (L' A) decy® (wf¥)
(L' A7)
F MF
— E e,rM’(L/ ,A’) . Reg
(L",2")
O
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B. Isotypies.

In §5.B, we check that the isotypy conjectures of [Brl] hold for our w—
idempotents.

Preliminaries.

The following notation and hypothesis are in force throughout this section.

Let m be a set of large prime numbers for G, which is (G, F, d)-adapted.
Let (L, A) be a d—cuspidal pair of G. Let T be an F-stable maximal torus of
G which contains Z°(L).

In order to describe the irreducible characters of Z°(L)E x Wgr (L, X) we
have to find the inertia group of 8 € Irr(Z°(L)E) in Wgr(L, ). This is the
purpose of the next proposition.

5.9. Proposition.

(1) The restriction map from L¥ down to Z°(L)¥ induces an isomorphism
Ab, Irr(LF)SIr(Z0(L)F) .

(2) Let 0 be a character of Z°(L)E, and let 6 denote as well the linear

™)

character of T¥' corresponding to it by (1). Then the inertia subgroup
of 6 in W(;F (L, A) is WGF(T,g)(L, A)

Proof. (1) We know that L = [L,L]Z°(L). Moreover, Z°(L) N [L,L] is a
subgroup of the finite group Z([L, L]). Since 7 consists of large prime numbers
for G, we see by 5.2 that Z°(L) N [L,L] is a n’—group. Thus the projection
Z°(L)F — LF/[L,L]F is injective. Since |Z°(L)Y| = |L¥/[L,L]¥|x, the
image of Z°(L)F in L¥/[L,L)¥ is a supplement of (L¥/[L,L]¥)s, which
proves (1).

(2) Let 8 be the linear character of L¥ corresponding to 6 by (1). We
have to show that Ngr(L,,0) = Ngr(1,9)(L, A). This will result from the
more general equality Ngr(L,0) = Ngr(t,)(L). Let T' be a maximally split
F-stable maximal torus of L, and let 6’ = f|1. By 2.24 we have GF(T, ) =
GF(T',0'). Since two maximally split F-stable maximal tori of L are L¥-
conjugate, we can find representatives of Ngr(L,8)/L¥ in Ngr(L,T",0'). It
is thus enough to show that Ngr(T’,8') C G¥(T’,6’'). This results from the
fact (applied in G*) that centralizers of 7-elements are connected and are
Levi subgroups of G. O

In order to simplify the notation, we set

G(6) := G(T,6) .
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Let 0 be the character of the group Z°(L)¥ x Wgr(g)(L,A) defined by
f(zw) := 0(z) where z € Z°(L)E, w € Wgr(g)(L, A). Then, whenever 7 is an
irreducible character of Wgr (g)(Li, A), the character

Z°(L)YExwWgpr(LA) 5
IndZ,(L)fxW:F(o)(L,A)(G.T)

is an irreducible character of the group Z°(L)E x Wgr (L, A). We have (with
the above notation)

0 Z°(L)y xWgr(LA) 5
Irr(Z°(L)E 1 Wgr (L, X)) = {Indz,(wxwzi(o)(m)(e.r)}[(g,rnwcp(w .

We denote by ef’(FL,,‘) the central m—idempotent of G associated with =
and (L, ) (c¢f.5.5). For z € G¥ we set

G(z) := C&(z) and GF(z) := C& () .

The centralizer in Z°(L)E x Wgr (L, A) of an element z € Z°(L)E is
ZO(L)f e WGF(I)(Lv A)
The next proposition is a result about control of fusion.

F
5.10. Proposition. The map = — (:v,ef,(é;z)) induces a bijection between
the conjugacy classes of m—elements of the group Z°(L)E x Wgr (L, ) and
F
the GF —conjugacy classes of pairs (z, ef’(l(‘;))) (for a m—element x of Z°(L)E).

Proof. Since efféﬁ) = ef’(FI(‘,x’z\,) if and only if (L, A) and (L', A’) are conjugate
under G¥(z), we must check the following property: the elements z and z’ of
Z°(L)E are conjugate under Z°(L)F x Wgr (L, A) if and only if there exists
g € GF such that

(a) 2’ =29,

(b) (L,A)9 is GF(z')—conjugate to (L, A).
This is obvious since Wgr(L,A) = Ngr(L,A)/Lf. O

w—perfect isometries.

We shall use the notion of “perfect isometry” as defined in [Brl]. Since this
was only defined for /~idempotents and not for m—idempotents, we give here
briefly a whole account of the necessary definitions and elementary properties
of m—perfect isometries.
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Let H be a finite group and let 7 be a set of prime numbers. Let K be a
field of characteristic zero which is a splitting field for the group H. Let O
denote the integral closure in K of the ring Z[{1/£}4¢,].

Let e be an idempotent of the center ZOH (a “central m—idempotent” for
H).
We denote by CF(H, e; K) the K—vector space consisting of class functions

o on H with values in K and such that a(eh) = a(h) for all h € H. Let
CF(H,e; K) be the subspace of functions vanishing outside of the set H+ of
n'~elements of H. We define the O-modules CF(H, e; O) and CF(H,e; O)
in an analogous way. We denote by Irr(H,e) the set of irreducible characters
of H on K which belong to CF(H,e; K), and so to CF(H,e; O).

5.11. Definition. (see [Brl], 4.1) Let H and H’ be finite groups, and let e
and e’ be two central m—idempotents for H and H' respectively. Let

I: ZIrr(H,e)—ZIr(H', €')

be an isometry. I is m—perfect if the following two conditions are fulfilled:

(P1) I extends linearly to an isometric isomorphism
CF(H,e; O)—CF(H',€’; 0) .
(P2) The restriction of I to CF,/(H, e; O) induces an isometric isomorphism

CF.(H,e;0)—CF(H' e;0) .

The proof of the following property of m—perfect isometries is the same as
the proof of the corresponding result given in [Brl], 1.5, for the case m = {¢}.

5.12. Proposition. Assume that
I: ZIrr(H,e)—ZIrt(H',€')

is a m—perfect isometry. Then the algebra isomorphism from ZK He onto
ZKH'e' defined by I induces an algebra isomorphism from ZOHe onto
ZOH'e'. In particular e is primitive if and only if €' is primitive.

Generalized decomposition maps.

For the convenience of the reader, we also recall the definition of general-
ized decomposition maps ir the particular settings we are working in (see for
example [Brl], 4A).
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5.13. Definition. .
(1) Given a class function 1 of GF, let decfr”(GLA)(gb) be the class function

on G¥(z) defined as follows (see for example [Brl], 4.3):

. dec1r @, )\)(’l,b) vanishes outside of the set of 7'—elements of G¥ (z),
o for 2’ € GF(z)q,

z, G (z
dec ,g‘ X)(gb)(w') = y(za’e ,(IE ,2)) .

(2) Similarly, given a class function ¢ of Z°(L)E x Wgr(L, ), let

z,Z°(L)E s Wy

decr F(L’A)(go) be the class function on the group

Z°(L)E % War(zy(L, A)
defined as follows:
o dect”’ (L)x W, F(L’A)(cp) vanishes outside of the set of n'—elements of
the group Z°(L)E x Wgr(4)(L, A),
o for a '—element &’ of Z°(L)E x Wgr(5)(L, A),

o F
decfr’Z (E)x >‘WGF(L’)‘)(cp)(ar:') = p(z2') .

Let tdec®@ .. denote the adjoint of dec®C" . For a class function ¢ of
(L) (L)’

GF(z) with support on GF(z),, tdecw’(LFA)(cp is the class function of G

with support on the m—section of x in G¥ given by

ey ) (#)(a2) = 9(@)

z,Z°(L)E xw,

for all 2’ € GF(z),s. Similarly, we let 'decy ar (A denote the

o F
adjoint of decy’ 2,2°(L)x XWgr (LA)

The following result is a classwal consequence of Brauer’s second main
theorem (see for example [Brl], 4A, last part, for the case where 7 consists of
a single prime).

5.14. Lemma.

(1) If+ is a linear combination of elements of £,(G¥, (L, A)), then

:»,GF :c,GF
Y = Z (tdecw’(L’A) -decm(L’,\))(gb) .
[IEZO(L)f]WGF(L,X)
(2) If€ is a class function on Z°(L)E x Wgr (L, ), then
z.2° F o F

6 - Z (tdeCﬂ',Z (L)w XWGF(L’A) . dec;"rvz (L)n XWGF(I-HA))({') .

[$€Z°(L)E]WGF<L,>‘)
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The main theorem.

Notation.

Let (L, A) be a d—cuspidal pair of G. We denote by Uch(GF, (L, X)) the
set of unipotent characters 4 of G¥ such that <RF(X),v> # 0. It follows
from 3.2 that there exists a collection of isometries

I 5y : ZIrr(Wiyr (L, X)) — Z Uch(MF, (L, X)),

where M runs over the set of all d—split Levi subgroups of G,
such that

G (L,A)
Ryt It x = I§.a - Ind Gi(L NE

5.15. Theorem.
(1) The map

1S5 2l (Z°(L)F 3 War (L, A)) — ZI(GF, e 5))

such that

F Z°(L)E W, r (L) G(8)
IWG,(L,A): Indzo(L)Fx Gi(,)(L >‘)(0.7') — Rg(o)(O I(L >‘)(7'))

commutes with the generalized decomposition maps in the following sense:
whenever z € Z°(L)E, then

GF GF yZ°(L)F ¥ Wg r(L,X)
(a) deCw (L ) Iy = I-;r,(I(fA)) - decr er .

(2) IWG:L’A) is a m—perfect isometry between (Z°(L)Y x Wgr(L,A),1) and
(GF, effL A))'

Remark. Had we given the general definition of a “r-isotypy” (see [Brl], 4.6,
for the deﬁnition of an {-isotypy), assertions (1) and (2) above would mean

that (GF,e® (L ,‘)) and (Z°(L)E x Wgr(L, ), 1) are m—isotypic.

Proof of 5.15, (1).
For z € Z°(L)E, we have the “Curtis type formula” (cf. [Br2], 4.3)

F T
(5.16) dec7r’(L A = = dec ’,(L,>(‘)) . G(l)(L A),
and similarly it is easy to see that

z,2°(L)E W p(L,A)

2,Z°(L)E ¥WgF (L)
decr

— dec Z°(L)E uWg p (LX)

‘Re €S 70(LYE n W, aF () (LA)
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Thus we see that (a) in the statement is equivalent to

,GF T) % F
dect G AV RE (o) (L, N) - I(pn) =

GF( ) a:,Z"(L)fXW F(g (L) ZO(L),{‘”W (LX)
(b) I L) decr ST Res o () aWar oy (L)

The proof of 5.15 is in several steps.
Step 1. The first step allows us to reduce the proof of (b) to the case where
x € Z°(G)E.
5.17. Proposition. Whenever N is a d-split Levi subgroup of G,
* PG GF NF Z°(L)y #Wgr (LX)
RN (L, A) - I Ly = Ty, - ReSzoLyFuwmp (L) -
Proof of 5.17. It suffices to prove the equivalent adjoint statement:

G NF GF Z°(L)y #Wgr (LX)
RN(L,A) - In oy = I Ly 'IndZO(L)fxwzi(L,A) .

Thus we must check that for all d—split Levi subgroups M of N such that
L C M, for 6 € Ab, Irr(Z°(L)¥) such that N(#) = M, and for all irreducible
characters 7 of Wpm(L, A),

G NF Z°(L)g #Wyr (L) 5
RN(L’ ’\) ) Iw,(L,A) (Indzo(L)fo::;.(L,A)(oT)) =

o F o F ~
Z°(L)x XWg r(L,A) (Indz (L) Wy r (LX) (07_)) )

GF
Lo - mdzem)raws r (L) Zo(L)E ¥ Wy r (L)

This last equality is equivalent to

G(6 G(6 War(e)(LA)
R& ) (ORM( )(I(l\f,x)(T))) = RG(s) (GI(L(,A)) (Indwslp((er),,x) (T))) :

This follows now from the fundamental theorem 3.2 applied in G(6). O
By 5.17, we see that (b) is equivalent to

o F
decz,GF(z) _IGF(:c) -ReSZ (L) EuWgr (LX)

(L) (L) Zo(L)EXWgr(,) (LX) =
GF ©,Z°(L) ¥ W,y (LX) Z°(L)F uW, g (LA
16 () . decy G (=) .Res?.¢ ); Gr(LA)
7,(L,A) Zo(L)EXWgF () (L)

Thus we see that it is sufficient to prove that, for z € Z°(G)E,

z,GF F F z,Z°(L)E xWg p (LA
() decl (15 Inma) =T, - decr arBA)
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Step 2. The usual decomposition maps are defined by the formulae
F o F o F
decf,&’,‘) = dec}r’fL’A) and decf (L)z ¥Wer (LA) = dec},’Z (L)z %W r (L) .

For z € Z°(G)E, and for a class function ¥ on G¥, we denote by t2G" (¥)
the class function on G¥ defined by t=G" (¥)(g) :== ¥(zg) .
Similarly, for z € Z°(G)E, and a class function ¢ on Z°(L)E x Wgr (L, A),

we denote by £52°(L)x *Wor (L:2) () the class function defined by

F
26" (p)(h) := (ah) .
Thus for z € Z°(G)E we have

,GF GF ,GF
dec:_,(L)‘) = deC,’r’(L’A) . tz
deci’ZO(L)foGF(L’A) _ decf"(L)foGF(L,A) 4827 (LEAWGR(LA)
Equation (c) becomes then

GF ,GF 1GF
decy Ly t77 Il Ly =

We see that it suffices to prove

,GF 1GF _ 1GF ,Z°(L)F ,
(d) 65 I L = oL - t57 B War ()

and

GF F F Z°(L)EuWgr (L)
(e) dec L Trqra =I5 @ - dec e

Equation (d) is an immediate consequence of the values of Deligne-Lusztig
and ordinary induction. Indeed, we see that

GF 1GF Z°(L)ExWgr(LA) 5 \\ _
(8797 I ) (I o) (P) =

GF 2,2°(L)F a W p (LA Zo(L)EnWgr(LA) 5\ _
(Iw,(m)‘t w1 Wart )> (0L e w gy L) (O-7)) =
G(o
9($)Rg(o)(9-I(L(,A))(T)) .

Step 3 : proof of (e).
The proof is by induction on rks(G)—rkss(L), where we denote by rk,,(G)
the semi—simple rank of G.

1. The case G = L.

This is the case where rk,s(G) = rkys(L). The irreducible characters of
L% to be considered are the 8.\ where § € Ab, Irr(L¥). The equality (e) is
then proved by the following lemma.
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5.18. Lemma.

(1) For a d—cuspidal irreducible character A of L¥ and 6 € Ab, Irr(LF),
we have

1
decky 3)(0A) = oAb Reg - A= ——— > pA.
m,(L,A) T7o(TNF| 5™ o F
|Z ( ) I |Z (L)‘Il’l nGIrr(Z"(L)f)

(2) For 0 € Irr(Z°(L)E), we have

z°(L)f 1 zof 1
decy ™ (0) = 1Zormyry Res Zon 2 T
n€lrr(Z°(L)E)

Proof of 5.18. The second assertion is obvious. To prove the first one, we
notice the following property of d-cuspidal characters.

5.19. Let v be a d-cuspidal irreducible unipotent character of G¥. Let 7 be
a set of large primes which is (G, F,d)-adapted. Let g € G¥. Then v(g) =
unless the m—component g, of g belongs to Z°(G)F.

Proof of 5.19. It results from the Curtis type formula (see 5.16) that, for
M := C&(gr), we have
v(9) = *Ru(7)(9) -

Since M is a d-split Levi subgroup of G (by 5.4), and since v is d-cuspidal,
we see by 4.10, (2), that *R$;(y) = 0 unless M = G, which proves 5.19. O

a

Remark. The preceding result is a particular case of the following property,
which also follows from 4.10, (2).

Let v be a unipotent character of G¥ such that ('y,RE(/\))GF # 0, where
L is a d-split Levi subgroup of G, and where A is a d—cuspidal unipotent
character of LY. Let m be a set of large primes which is (G, F,d)-adapted.
Let g € GF. Then v(g) = 0 unless the T—component g, of g belongs to
Z°(L)F.

This property can also be viewed as a consequence of Brauer’s second main
theorem and theorem 5.8 (see for example formula 5.14, (1)).

2. Applying the induction hypothesis.

By the induction hypothesis, we assume now that (e) holds whenever G
is replaced by any of its proper d-split Levi subgroups. It follows that (c)
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(whence (b) and (a) as well) holds for all z € Z°(L)F — Z°(G)E. The formulae
5.14 applied with ¢ = I7r (L, J\)(5) then show that

(5.20)
IG:LA)' Z tdec Z°(L)F>1WGF(LA) . dec z,Z°(L)FxWGp(LA) _
T \seze(o)r
E td EG d Z,GF I
€Cr (L) " 9€Cr (L,2) ,(L A) -
2€2°(G)E

To prove that (e) holds, again by the induction hypothesis and by 5.17, it
suffices to prove that, for 6 € Irr,(Z°(G)F) and 7 € Irr(Wgr (L, X)), we have

(decS(pay - I8())(0.7) = (IS(y , - dec? PIr*War Ty 1y

i.e.,

Z°(L (L,A)
decS (1, 2)(0-I§ 2) (7)) = (AS(L x) - dech e AWar L)y g 1y

It is easy to check that
) ) tdecsZ (W XWor(LA) 4, 52°(L)7 Wor @A) gy —
0€lrr.(Z2°(G)F) 2€2°(G)F
12°(G) 7 dec?" ™7 () ,
and also that

GF 2,GF
Z Z tdeC,r @A) -dec”’ (L, >‘)( (L, A)(OT)) =
0€lrr(2°(G)F) 2€2°(G)F

F F
|Z°(G)f|deC7(r;,(L,A)(I((r;,,x)(T)) .
Since

o F o F
decf (L)« >‘VV(;F‘(LA)(&T) — decf (L) >‘VV.;;F(L,A)(,’_)

and
F F
decy ,(L A)(a (L, A)( T)) = decf,(L,A)(I&,A)(T)) )
we see that (e) follows then from what precedes. This completes step (3) and
thus the proof of 5.15, (1). O
Proof of 5.15, (2).
As in step 3 above, the proof is by induction on rk,s(G) — rks,(L).
1. The case where G = L.

We use notation previously introduced (see 5.11). We shall need the fol-
lowing property of d—cuspidal characters.
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5.21. Lemma. Let~ be a d-cuspidal unipotent character of GF. Let 7 be a
set of large prime numbers which is (G, F, d)-adapted for G. Then for all g €

GF,|C : Z°(G)F|, divides in other words, 7(9) €
¢ (Car(0) : 2°(G)F | divides 1(g) ( e 2]

Proof of 5.21. We see by 2.9 (cf. proof of 2.42) that for each £ € m, we have
v(1)e = |GF : Z°(G)F|,, and so « is a character with /—defect zero of the
group G¥'/Z°(G)F. Hence, we know that, for allg € G¥', |Cgr(g) : Z°(G)F|,
divides ¥(g), from which it follows that |Cgr(g) : Z°(G)¥|. divides v(g). O

We must check that the map

1L s ZIn(Z°(L)E) S ZIn(LF, ek g )

such that § — 6 (here we identify Ab, Irr(L¥) and Irr(Z°(L)E) after propo-
sition 5.9, (1)), is a m—perfect isometry.

e The O-module CF(Z"( )E; O) is generated by the set of character-
istic functions 67 M= of the elements z of Z°(L)E, while the submodule
CF.(Z°(L)E: O) is generated by the characteristic function 6 "W We

have

z°(L)F 1 _
(a) 52" (L) = T > e
0€elrr(Zo(L)F)

e The O-module CF(LF ,efr‘,F(L,,‘); O) is generated by the set of “projec-
tions” of the characteristic functions of the conjugacy classes of L “onto
the idempotent eLIZL ,‘)” By 5.19, we see that all these characteristic func-

tions project onto zero, except the characteristic functions 6 ) of elements

(z:v
zz' € L¥ whose m—component z belongs to Z°(L)F. The projection of such
a function is then

/\(x’_l) -1
(b) er L Oaery = 1Cor@)] Y. 0ETeA.
L 0€Ab , Irr(LF)
Since
oL AT v
,(LA) (.'ca:’) |CLF( /)| w,(L A’ (w) ’

we see by 5.21 that the module CF(L¥, (L x) 0) is actually generated by
the functions ew’(L,,‘) : 6(3) for z € Z"(L)f.
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E‘he submodule CF ./ (LF, efr‘:L’A); O) is generated by the functions eH(L,A)-
6(1;,). For the same reasons as above, it is actually generated by efr';L’,‘) . 6(1‘1;
By (a) and (b), we see that

A1)

Z°(L)y
,(LA) 6(w) |LF : Zo(L)F| w,(LA)(5 )

and this proves indeed that Ifr',(L,,‘) induces a bijection from the module
CF(LF, el A),0) to CF(Z°(L)F; 0) as well as from CF(LF, ekl 1), 0)
to CF(Z°(L)E; 0).

2. Applying the induction hypothesis

The following proof is the analogue of the proof of lemma 4.5 in [Brl].
We first need to prove an easy general result about finite groups. Let H be
a finite group, and let e be a central 7—idempotent for H. Let us denote by

dec?: CF(H,e; ©0) — CF,.(H,e; O)

the “r—decomposition map”, defined as usual (for f € CF(H,e;O), and for
h € H,, we have dec” (f)(h) = f(h)).

5.22. The O-module CF/(H, e; O) is generated by dec! (Irr(H, €)).

Proof of 5.22. Since decf commutes with the “projection onto e”, we may
assume e = 1. Let h be a n’'—element of H, and let 6” be the charac-
teristic function of the m'-section of h (namely, we have 6H 1(g) = 1if the
n’-component of g is conjugate to h, and 6,{{ n(g) =0 otherw1se). It suffices

to prove that 61{1’ » is a linear combination with coeflicients in O of elements of
Irr(H). This is an easy consequence of Brauer’s characterization of characters.

a

We now assume that for every proper d-split Levi subgroup N of G con-
taining L, the map IWN,(FL,,‘) is a m—perfect isometry.

Then by the definition of a perfect isometry (5.11) and by assertion (1) of
theorem 5.15, we see that it sufﬁces to prove that IG:L 2 induces an isomor-
phism between CF,/(GF,eS (L »); 0) and CF (Z°(L)E x Wgr(L, X); O0).

By 5.22, this follows from the fact (5.15, (1)) that

F F F Z°(L)F xWg r (L, A)
decrir ) Inway = Iy -dec ) o

This completes the induction and thus the proof of 5.15, (2). O
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5.23. Corollary. The idempotent ef’&,,‘) is a m—block of GF (i.e., it is a
primitive central T—idempotent).

Proof of 5.23. By 5.15, (2), and by 5.12, it suffices to prove that 1 is a 7—block
of Z°(L)F x Wgr(L,A). By [Rob], thm. 9 (a non trivial generalization to
any 7 of a result which is well known in the case where 7 consists of a single
prime), it suffices to check that Wgr(L, ) acts faithfully on Z°(L)F. This
follows from the fact that L = Cg(Z°(L)F). O

C. /-blocks.
The following hypothesis are in force in what follows.

(H1) Let G be a connected reductive algebraic group over an algebraic
closure of F;, endowed with a Frobenius endomorphism F': G — G
defining a rational structure over F,.

(H2) Let £ be a prime number which does not divide ¢, which divides |G|,
and which does not divide |[Wgr(d)|.

We denote by G a generic finite reductive group corresponding to (G, F),
and we set G = (I', W¢).

Following [BrMi], we call unipotent ¢-blocks of G the primitive central
{-idempotents which are constituents of the “unipotent idempotent” e?F.

We denote by O the extension of the ring of ¢-adic integers by a root of
unity whose order is the l.c.m. of the orders of the elements of G¥. Thus
e?F € ZOGYF, and the unipotent ¢-blocks are the primitive idempotents of
the algebra ZOGFe$" .

The following omnibus theorem is an immediate consequence of the pre-
ceding sections (specially of theorem 5.15), as well as a consequence of general
results about isotypies (see [Brl]). We make free use of the notation which
has been introduced previously.

5.24. Theorem. Let d be the unique integer such that ®4(z) divides |G|
and ¢ divides ®4(q). Let (L, ) be a d—cuspidal pair of G.

(1) The set of all irreducible constituents of the virtual characters RS (),
where § € Ab,Irr(LF), is the set of all irreducible characters of an {-

block of GF, which we denote by eeG,(i,,‘).

(2) (Z"(L){,e%‘,&’,‘)) is a maximal eg(i,,\)—subpair of GF. In particular,
Z°(L)F is a defect group ofeg(;,x).

(3) Whenever S is a subgroup of Z°(L)f, its centralizer M in G is a
d-split Levi subgroup, and the Brauer correspondent Brs(eg&’k)) of
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eg(‘;’,‘) is given by the following formula:

F F
Brs(efma) = Y el
@)

where (L', X’) runs over a complete set of representatives for the M¥ -
conjugacy classes of d—cuspidal pairs of M which are G¥ -conjugate
to (L, A).
4) (GF,eE&,A)) and (Z°(L)} x Wgr(L,),1) are isotypic, and so in
particular (see [Brl], thm. 1.5 and §4.D)
(a) the block eg(i,k) of GF has respectively the same numbers of
ordinary and modular characters as the group Z°(L)} x Wgr (L, A),
(b) all irreducible characters in eg(i’,‘) have height zero,

(c) the Cartan matrix of eg&,,‘) defines the same integral quadratic
form as the Cartan matrix of the group Z°(L)¥ x Wgr(L, ),

(d) the generalized decomposition matrix of (G ,eE(FL,,‘)) defines
the same quadratic form (over Z[e?"/¢"], where a is the valuation in
¢ of ®4(q)) as the generalized decomposition matrix of

(ZO(L)ZF A WGF(L’ A)’ 1),

(e) the algebras ZOGFeE(L,‘) and ZO[Z°(L)F x Wgr (L, X)] are
isomorphic.
We have . .
G
€ = E CE(L,A)v

[(L’A)lgF

where (L, ) runs over the set of all d—cuspidal pairs of GF (modulo GF-
conjugation). In other words, (L, A) — eg'(i,k) is a bijection between the set

of all unipotent £-blocks of G and the G¥ —conjugacy classes of d—cuspidal
pairs

Notice that, still assuming ¢ is large (i.e., £{ |IW(®)|), the preceding theo-
rem implies that several of the current conjectures in modular representation
theory are true for groups of type G and unipotent blocks : Alperin conjec-
ture, Alperin-McKay conjecture, Dade’s new weight conjecture, all implied
in these cases (blocks with abelian defect groups) by conjecture 6.1 in [Brl].

Notice also that the preceding remark can be strengthened by extending it
to non—unipotent blocks of finite reductive groups, using the fact (see [Brl],
theorems 2.3 and 5.6) that in many cases the “Jordan decomposition of blocks”
is an isotypy.

82



GENERIC BLOCKS OF FINITE REDUCTIVE GROUPS

6. APPENDIX : TABLES FOR EXCEPTIONAL GROUPS

Table 1. Some d-series for exceptional groups.

G d L(q) A case # We(L, A)
F, 2 (g+1)%.By(q) é1,1 1 G(2,1,2)
4 (¢° +1).B2(9) b11,—, 62 2,3 Z,
Es 2 (¢+1).45(9) $a21 4 2,
3 (¢* + ¢ +1).°Dy(q) *Dy[-1] 5 Z3
4| (¢+1)(g-1)"4s(q9) $22 6* Z4
5 (¢° —1).A1(q) b2, 611 7™, 8" Zs
Es 2 (¢ +1)%.D4(q) $13,02 9 G(1,1,3)
4 (¢* +1)(g +1)-As(q) $22 10* Z,
6 (¢* —a+1)-°Da(q) $2,1 11 Z3
10 (q5 + l)Al(q) ¢2, ¢11 12‘, 13* Z5
E; 2 (g+1)*.Da(q) #13,02 14 G(2,1,3)
2 (q + 1) ZEs(q) 2E6 [9], ZEs [02] 15, 16 Zz
3 (q3 - 1) 3D4(q) 3D4[—1] 17 Zs
3 (¢ + g+ 1).45(q) $42, b2211 18*,19* Zs
4 (¢ +1)%.4:1(q)® #3, 4%, 20%,21* Gs
¢%¢11; ¢2¢%1 22*’ 23* G(47 17 2)
5 (¢° —1).A2(q) @3, $21, $111 24*,25%,26* Zyo
6 (¢® +1).3Dy(q) $2,1 27 Zs
6 (¢ —q+1).%45(q) ba2, $2211 28*,29* Zg
8 (¢* +1).41(¢?).-A1(q) 83,2611, $1162,4%,  |30%,31%,32%,33% | Z,
10 (q5 + 1).2A2(q) ¢3,¢21,¢111 34",35',36"r Zlo
12 (q" - q2 + 1).A1 (q3) b2, 11 37*,38* Z12
Eg 2 (g +1)*.Dy(q) $13,02 39 Gas
2 (¢ +1).2Es(q) 254 [6], 2E5[62] 40,41 G(6,6,2)
2 (¢ +1).Ex(q) bs12,11, 512,12 42,43 Zs
3 (42 + ¢+ 1)2.3Dy(q) 3D4[-1] 4 Gs
3 (¢* +9+1).Es(q) #81,6, P81,10, 90,8 45*,46*,47 Zg
4 (4% + 1)%.D4(q) $3,1, $123,013, $23,01, P12,03 | 48*,49%,50,51 | Gs
5 (¢*++¢*+q+1).A4(9) $32, 221 52*,53* Zyo
6 (¢* — g+ 1)%.%Dy(q) #2,1 54 Gs
6 (¢ — g +1).%Eq(q) $5.6: 8.6 P66 55%,56*, 57 Zs
7 (¢" —1).A1(q) é2, 611 58*,59* Zy4
8 (¢* +1).2D4(q) $13,~, Po123,13 60*,61* Zg
do23,1, $123,0, P013,2, Po12,3 | 62, 63,64, 65 Zg
9 (¢® +¢% +1).42(q) #3, b21, h111 66*,67*,68" VAT
10 [(¢* —¢* +¢° — ¢ +1).%44(g) $32, $221 69*,70* Zyo
12 (¢* — ¢® +1).2Dy(q) 13081 3,922, *Da[1] | 71%,72%,73,74 | 2y,
14 (¢" +1).A1(q) #2, 611 75%,76* Z14
18 (¢° — ¢ +1).%42(q) #3, $21, d111 77*,78*,79* Z18

The notation for the unipotent characters in column 3 and in the following table is as in
[Ca), the one for the reflection groups in the last column is standard, see [Be].
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Table 2. Decomposition of some RE().

case |RE(X)

1 ¢4,1 + ¢4,13 - ;’,7 - ¢,4,7 —2B,,r

2 ,2,4 + ¢'2,1s - ¢i,7 + B, ¢

3 ,2’,4 + ¢'2,,16 - ¢i',7 + By, ¢

4 be1,a — Pea,13

5 Dy,1+ Dy,e — Dy,r

6 20,2 — Pe0,5 + Pe0,11 — P20,20

7 B1,0 — D246 + Ps1,0 — Pes,13 + Be,25

8 6,1 — Peas + Ps1,6 — P2a,12 + D136

9 $s,3 + 850 + 20165

10 ¢4,1 + ¢i,7 - ,4I,7 - ¢4,13

11 [¢gs+ b5 — b6

12 b1,0 — Is',s + g,s — As e~ ¢’2,,16

13 ,2,4 - 2A5, 1- Is,s + ¢ls,9 - ¢1,24

14 | ds6,3 — b120,4 — 3b216,9 — 200336,11 + 20336,14 + 3B216,16 + P120,25 — Ps6,30
+3¢280,8 — 3B280,17

15+ 16 | E¢[0],1 — Eq[0)], € + E¢[6%],1 — Es[6%], ¢

17 D,,1+ Dy,e, — Dy,03 — Dy,04 + Dy, €3 + Dy, €

18 | a7, + brss,s — Bars,e + brss,20 — 216,16 + Bso7

19 H189,7 — Pars,14 + Pr89,22 + P27,37 — $216,9 + P189,10

20 | 1,0 — 2d210,6 — 31056 — 3b189,22 + B21,36 + 20563 — 2D4, 1 + 3dacs,8 + 3b1ss,10
—4¢az6,11 — 4D4, 02 + 2¢120,25 — 2Dy, €2 + 315,16 + 2¢70,18 + B35,22

21 $21,3 — 3b189,5 — 3B105,21 — 20210,21 + 1,63 + 2H120,4 — 2D4, €1 — 4aze,14
—4D,, 0} + 3¢s0s,15 + 3P189,17 + 256,30 — 2D4, € + P315,7 + 20700 + P3513

22 G721 — Preo,7 + 2h378,0 — 105,15 + 2021013 + Parar — P1s,7 + Pr0s,5 — 2h216,16
“2D4,7'€2 - ¢35,31 + ¢21,33 - 2¢zso,s - 2D4, T

23 $27,2 + 26210,10 — Pr05,12 + 2037814 — P189,20 + D706 — Pas,a + P16 — 20216,
—2D,,re; — ¢1s,2s + ¢105,26 - 2¢zso,17 —2D,,re

24 1,0 + 21,3 — Prso,7 — P1s9,22 — Psa 12 + P336,11 + 216,06 — 189,17 + Ps6,30 + $21,33

25 71+ bar2 — Dres,6 — Pars,e — Pars,14 — Pres,21 + P27,37 + bras + @s12,11 + Ps12,12

26 —¢189,5 — 189,20 + B21,36 + D163 + Ps6,3 + D216 + Ba16,9 — Prs9,10 — Paa,15 + Paze,s

27 $s6,3 — P120,4 + Paze 11 — Pazs,14 + D120,25 — Ps6,30

28 $27,2 — P189,5 + Pars,0 + P189,20 — Paos,15 + D, T

29 $189,7 + Pars,14 — P189,22 + P27,37 — Paos,s + Dy, ey

30 ®1,0 — Pros,6 + Pr89,220 — D21,36 + P216,9 + D, 71 — Pago,17 — D,,re

31 71 + Prso,7 — br0s,15 — Par,37 — D1204 + Di, €1 + P56 30 — Dy, €
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32
33
34
35
36
37

38

39

40 + 41
42 + 43

44

45
46
47
48

49

50

51

52

53
54

55
56

G27,2 + Pr05,12 — P189,20 — P7,96 — bs6,3 + Da, 1+ H120,25 — Da, €3

¢21,3 - ¢189,5 + ¢105,21 - ¢1,63 - ¢216,16 - D4,T€2 + ¢2so,s + Dh r

1,0 — B21,3 + Drse,7 — P1ss,22 — Pa20,10 + Ds, 02 + Paos,1s — Da, 7€ + 35,31 + Dy, €

—¢r1+ bar,2 — Pies,6 + Pars,9 — Pars14 + Pres,21 — Par,37 + bras + E;[¢] + E;[—€]

—¢189,5 + P189,20 — P21,36 + P1,63 + 35,4 + Day 1 + baos,s — Da,T€1 — Paz0,13 + Da, o,

1,0+ a10,6 + P21,36 — 56,3 + Da, 1 — Pazsi1 — Dy 02 — 120,25 + Dy €2 + 280,18
+E[6), € + Es[6%),€

21,3+ ba10,21 + P1,63 — P120,4 + Da, €1 — baz6,14 — Dy, 05 — ¢se,30 + Day €+ dago0
+Es[6],1 + Eg[6°],1

b112,3 — 20160,7 — Paoo,7 — IP1206,13 — 4b2240,00 — 203360,13 + IP2800,13 + 8P3200,16
+8¢3200,22 — 203360,25 + IP2800,25 — 4B2240,28 — IB1206,33 — P100,43 — 2@160,55 + Pr12,63
+4¢1344,8 — 8Ds, b 5 — 8D4, by o + 4b1344,38 — 4b1344,00 — 6B2016,19 — 6¢s600,10
—12¢448,25 — 16Dy, d16,5

E5[6], $1,0 — Es[6], ¢ 5 — Es[6], ¢ 5 + Es[6], 61,6 — 2E5[6] — 2E5[—6]+
Es[0°], 61,0 — Es[6°], 61 5 — Es[6°], 65 + Es[6°], 61,6 — 2E5[6°] — 2E4[—6"]

B1096,11 — P1096,26 T P1096,12 — Pa0s,27

D4a ¢1,0 - D«h ¢’2,4 + Dh ¢;,12 - 2D47 ¢;,7 - Dh I2,,4 + 2D47 Is’,s + 2D47 ¢g,9 - Dh ¢'z,16
—2Dy, ¢4 7 + Dy, ¢Y 15 — Day 85 16 + Day 61,24 — 2Dy, ha 0 + 2D4,¢’5,3 +2D,, Q’,g
—2Dy, ¢4,15 + Dy, ¢a,8 — 2Dy, ¢16,5 — 3Es[—6] — 3Eg[—6°] + 3Eg[—1]

Bs67,6 + Pa240,9 — Pas36,13 — 283522 + P2268,30 + P1296,33

—P2835,14 — Das3e,23 + P3240,31 + Pse7,46 + P2268,10 + D1206,13

P1008,9 + D1575,10 + P1575,35 + P1008,39 — P3150,18 — P2016,19

#8,1 + 205605 + 3Pas36,13 + Pa200,21 — 3B3240,31 — 3P1400,11 + 3Ps40,13 — 4Pa200,16
—4D,, 'sl,s + 2¢3240,28 — 2D, ¢2’_7 — 2013448 — 2D, hs1 + b1400,37 + 201008,39 + Ps6,40

—3¢3240,9 + Pa200,15 + 3Pas36,23 + 2P560,47 + P5,01 + 2P2240,10 — 2Ds, ¢f;,7 — 46¢33200,22
—4D,, ’»’5’5,9 — 3b1400,20 + 3Ps840,31 + D1400,7 + 201008,9 + P56, — 2P1344,38 — 2D4, ba 13

$28,8 + 20160,7 + B300,8 — 3B972,12 + 2P840,14 — 3P700,16 + 2P840,26 — 3P700,28 — 3P972,32
+ 300,44 + 20160,55 + B28,68 + 4130419 — 2Ds, b ¢ — 2Ds, ¢ ¢ — 4D4, h12,4

B81,4 — 2D4, @5 4 — br00,6 + 3P2268,10 — 20a200,12 — 3B2100,16 — 2Ba200,24 — 3P2100,28
+3d2268,30 — Pr00,42 — 2Ds, '21‘15 + Psa,64 + 202016,10 + 205600,19 + 4Pa4s,25 — 4Dy, bas

@35,2 + Pse0,5 — Dazan,e + P2sas,22 — Dsa0,14 %‘ ®3360,13 — P2240,28 — Psa0,31 + P210,52 + PD160,55

B2835,14 — P3240,31 + Ps60,47 + P3s,74 + D104 + P160,7 — P2240,00 — Pss0,13 — Pas0,26 + P360,25

H112,3 + 1607 — Paco,7 + 202240,10 + Pa360,13 + 203200,16 + 2P3200,22 + Pase0,25
+2¢2240,28 — Pa00,43 + P160,55 + P112,63 — 2013448 — 2Dy, ¢’s,3 -2D,, ¢Q’,9 — 2¢1344,38
—3¢7168,17 — P1344,10 + 2D4, ¢16,5 + 3Es[0], ¢2,2 + 3E6[6%], f2.2

Bse7,6 — Paza0,9 + Paszs, 13 — Passs 22 + Por2,32 + D, do 10

— 835,14 + Pas36,23 — Paz40,31 + Pse7,46 + Por2,12 + D, P 2
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57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

5

76

7

78

79

B1008,9 — B1575,00 — P1575,38 + Br008,39 + P1134,20 + Da, P 6
$1,0 — P3240,5 — Pe075,14 + Ps,01 + Paco,7 — P300,8 + Paoss,11 + Paoss,12 + P3200,22
—P2400,23 — Po72,32 + P1206,33 + P50,56 — P160,55
#8,1 — Peo7s,22 — Pa240,31 + B1,120 + Ps0,8 — Br60,7 — Por2,12 + P1206,13 + P3200,16
—®2400,17 + Pa0s6,26 + Pa096,27 + Pa00,43 — P300,44
#8,1 + Pas3e,13 — Paz00,21 + P3240,31 — B2240,00 + D, @) 7 — H1344.38 — Ds, b 13
—@3240,0 + Pa200,15 — Pas36,23 — Ps,01 + P2240,28 — Da, ¢,'4’,7 + 13448 + Duy s
¢844 — Gaco,7 + Da, do,2 + P700,16 — Ds, ¢§’,6 — Por2,32 + Pr00,42 — Pr12,63
Dy, $1,0 + H300,8 — P2268,10 + P2800,3 — P2100,28 + Pr206,33 — D, 81 1, — H2s,68
b112,3 — Pr00,6 + Po72,12 + Da, b 6 — $700,28 — Di, B9 .10 + Pav0,43 — Psa 64
¢28,8 + Dy, 45;,12 — @1296,13 + P2100,16 — P2800,25 + P2268,30 — P300,4¢ — Da, P1,24
®1,0 — Ps60,47 — Ps0,8 + P160,7 + P2800,13 + P700,16 — Pss00,21 — P3200,22 + Pacss,26 + Paoss,27
+ 112,63 + P2s,68 — Pr008,0 — Ee[6], 61,0 — E6[6°], 61,0 — b1575,38 — Ee[6], Y 3 — Es[6°], 67 5
b8, + P3s,2 + b3s5,74 + Ds01 — Dr00,6 — Pa00,7 + P2240,10 + P1400,11 + P2240,28 + P1400,20
— 700,42 — 100,43 — P3150,18 — B2016,10 — E6[6], $21 — Es[0°], 2,1 — Es[6], ¢2,2 — E[6?], 62,2
—@s60,5 + D1,120 + P112,3 + P28,8 + Pacss,11 + Paoss,12 — Pse00,15 — Paz00,16 + P2800,25 + Pr00,28
—¢s0,56 + Br60,55 — P1575,10 — E6[6], 8] 5 — Es[6°], 4] 5 — b1008,30 — E6[6], #1,6 — Es[6°], b1,6
$35,2 — Pse0,5 + Pa240,0 + PDa2s3s,220 — Paz00,12 + D, ¢'z’,4 — @1400,20 — Dy, ¢i',7 + ¢s0,56 + Da, 43'2',16
$2835,14 + P3240,31 — Ds60,47 + P35,74 + D508 + D, ¢’2,4 — ¢1400,11 — Ds, ¢;_7 — @a200,24 + Ds, ¢;,1s
8,1 — Pse0,5 + Paz00,21 — P3200,16 — Da, ¢Q’,3 — ¢2240,28 + Dy, ¢:I,7 + b1344,8 + Dy, b4
+Pass,30 + Es[0], ¢1,6 + Es[0%], b1 .6
®4200,15 — Ps60,47 + P8,01 — P2240,10 + D, ¢;,7 — $3200,22 — Dy, ¢Q,9 + P1344,38 + D4, ds13
+Pass,0 + Es[6], 61,0 + Ec[6°], ¢1,0
¢844 + D, ¢lz,4 — ¢700,6 + Pa200,12 + Pa200,24 — Pr00,42 + D, ¢,2’,15 + Ps4,64 — Pr168,17
—Dy, ¢4 + Es[6], 62,2 + Es[67], b2,2
$28,8 — Pr60,7 + P300,8 — Psa0,14 — Psa0,26 + P300,44 — P160,55 + P28,68 + P1344,10
—Es[—6] — Es[—6°] + Es[-1]
1,0 + P3240,0 — Pe075,14 — Ps,01 — Pr00,6 + Da, ¢I1,12 + E;[€],1+ E7[-€],1 + #s600,21
—D,, ¢:,;,9 — ¢2268,30 + D, 9,10 + 210,52 — Da, ¢IZ’,15
$s,1 + Peor5,22 — P3240,31 — D1,120 — P210,4 + Da, ¢I2,4 + ¢2268,00 — Dy b2 — Ds600,15
+Dy, ¢5 5 + Er[€], € + Ex[~€], € + br00,42 — D, 87 15
$1,0 + Pse0,47 — b210,6 + Day 83 4 — b2100,06 — Dy b9 6 + b2400,23 + Da, 9 o — Er[€], € — E7[-€], €
—¢sa,60 — Da, 1,24 + b1008,9 + Es[6], $1,0 + Es[6°], b1,0 — b1575,34 — Es[6), 6) 5 — Es[6°], 97 5
—@s,1 + b3s5,2 + P3s,74 — Ps,91 — P300,8 — Do, ¢;,12 + Ps40,13 + Dy, ¢:,7 + ¢ss0,3 + Dy, .’;"7
— 300,06 — Da, 8715 — b1134,20 — D, 6,6 — Es[-6] — Es[-6°] — Es[6] — Es[6]
®s60,5 + b1,120 — Paa,e — Dy, h10 + E;[¢],1 + E;[-€],1 + ®2400,17 + Da, ¢’s’,a — $2100,28 — Da, ’9’,6
—¢210,52 + Da, ¢;’,15 — $1s75,10 — Es[6], ¢13 — Es[67], d"l,s + ¢1008,30 + Es[0), b1,6 + Es[60%], b1,
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GENERIC BLOCKS OF FINITE REDUCTIVE GROUPS

Table 3. Wg(T) for d regular and T noncyclic.

G d T We(T) | 6 4 IT| We(T)
D, 3 32 G, B, 3 328, Gs
6 3?2 G4 4 3232 Gs
), 4 32 (e 6 &3 Gas
g’ 3,2 Gs E, 3 38, Gae
8" oy° Gs 6 3%, Gas
F, 3 32 Gs Es 3 34 Gaz
4 &2 Gs 4 51 G

6 2 Gs 5 32 Gis
Es 3 33 Gss 6 o4 Gsz
4 o292 Gs 8 2 Gy

6 328, Gs 10 32, Gis

12 o2, G1o

The notation for the reflection groups Wg(T) is as in [Be]. Note that the T are uniquely
determined by their orders, being Sylow ®4-tori.
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[FoSt]
[Ge]
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[JaKe]
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[LuSr]
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1

Aby Irr(GF)
AbyReg®"
AbIrr(GF)
AbRegGF
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Aac

adjoint generic group
Ag

Brg

Br,

Cd

CF4(G,L)
CF(G)
CF(H,e; K)
CF.(H,e; K)

G
X(G(T,0),0,0)
G
X(M,p)

N
X(M.8)
class functions on G

d—-anisotropic maximal torus

d—-cuspidal
d-cuspidal pair
z,GF

dec
z,Z°(L)E W, (LA
tdeC,.— ( )1r GF( )

decfr’GF

Deg

derived generic group
D(G)

d-group

d-split Levi subgroup
d-split pair

dual generic group
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generic Levi subgroup
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generic finite reductive group

generic torus

generic uniform functions
generic unipotent functions

G(F)
GF(T,0)
GF(z)
good prime
G(q)
G(s)

GSS

G(0)
G(T,0)
G(z)
I
It
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F
12w

~
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y
N(G)
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®4-group
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m—perfect isometry
w8"

P(R)
PIEA

(¢) 1/)’)(;
Ty
Q(R)
Rad(G)
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Regﬁi
RegT(r)
Regf; »)
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