
Astérisque

ANNE BOUTET DE MONVEL-BERTHIER

VLADIMIR GEORGESCU
Graded C∗-algebras and many-body perturbation
theory : II. The Mourre estimate

Astérisque, tome 210 (1992), p. 75-96
<http://www.numdam.org/item?id=AST_1992__210__75_0>

© Société mathématique de France, 1992, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1992__210__75_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Graded C*-Algebras and Many-Body Perturbation Theory: 
II. The Mourre Estimate 

Anne Boutet de Monvel-Berthier and Vladimir Georgescu 1 

1. Introduction 

We have introduced in [BG 1,2] the notion of graded C*-algebra with the 
purpose of obtaining a natural framework for the description and study of 
hamiltonians with a many-channel structure. If H is a self-adjoint operator in a 
Hilbert space <#f, the expression "H has a many-channel structure" is not 
mathematically well defined, although in examples of physical interest the meaning 
is rather obvious. Spectral theory alone is not enough in order to decide whether H 
is a many-channel hamiltonian or not. Usually the distinction is acquired with the 
help of scattering theory through the introduction of the channel wave operators. 
However, there are results (like the HVZ theorem which describes the essential 
spectrum of a N-body hamiltonian in terms of the spectra of the subsystems) which 
are outside the scope of scattering theory but should belong to a general theory of 
"many-channel hamiltonians". Our proposal in [BG 1,2] was to define the many-
channel character of a self-adjoint operator H by its affiliation to a C*-algebra 
provided with a graduation which allows one to describe a "subsystem structure" 
for the system whose hamiltonian is H. From our point of view, the main object 
associated to the physical system is a graded C*-algebra, the possible dynamics are 
given by self-adjoint operators H affiliated to it, and we are interested in assertions 
independent of the explicit form of H. 

Our purpose here is to show that the Mourre estimate fits very nicely in such a 
framework. Given two self-adjoint operators H, A such that the commutator [H,A] 
is a continuous sesquilinear form on D(H), we associate to them a function 
p:IR—>]-°o,+oo] in terms of which the property of A of being locally conjugated to 
H is easily described. If the action of the unitary group associated to A is 
compatible in some sense with the grading of the C*-algebra and if this algebra has 
a property which we call reducibility, then the p-function associated to H can be 
estimated in terms of the p-functions associated to "sub-hamiltonians". Our 
arguments are inspired from those of Froese and Herbst [FH], but the main point 
here is that the explicit form of H is never used, but only its affiliation to the 
algebra. In particular, in the N-body case H could be of the form described in 
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Proposition 7 of [BG 2] (see also section 2 below; this class is more general than 
the class of dispersive hamiltonians of [D2] and [G]) or it could be a hamiltonian 
with hard core interactions (this situation is treated in a joint work with A.Soffer, 
paper in preparation). We shall explicitely calculate the p-function (and so get the 
result of [PSS] and [FH]) for Agmon hamiltonians using theorem 3.4 which gives 
the p-function of an operator H =H1O1+1®H2 in terms of those of Hj assuming that 
A is similarly decomposable. Theorems 3.4 and 4.4 are, technically speaking the 
main results of this paper, the applications to hamiltonians affiliated to the N-body 
C*-graded algebra, being only an example (in this context theorem 2.1 being 
important) 

In the rest of this section we shall recall the framework introduced in [BG1,2]. 
Some more specific properties of what we call the N-body C*-graded algebra are 
studied in section 2. In section 3 we introduce in a more general setting the p-
functions (which are more systematically studied in [ABG 2]) and prove the first 
important result, formula (3.8). Finally, in section 4 we define the reducible 
algebras and show how a Mourre estimate is proved for hamiltonians affiliated to 
such algebras. 

We recall now the definition of a C*-graded algebra as introduced in [BG1,2]. 
Let S4 be a C*-algebra and if a finite lattice, i.e. a finite partially ordered set such 
that the upper bound YvZ and the lower bound Y A Z of each pair Y,Z e if exists. 
We shall denote O (resp. X) the least (resp. the biggest) element of if. We say that 
S4 is a if -graded C*-algebra if a family {S$(Y)}Yey> of C*-subalgebras of S4 is 
given such that 

(i) S4=L{S$(Y)\ Ye if }, the sum being direct (as linear spaces); 

(ii) s4{Y)s4(Z)czs4(YvZ) for all Y,Zeif. 

One can introduce such a notion for infinite if also (then Z{s4(Y) I Ye if } is only 
dense in S4) and an interesting example of such an object will appear in the next 
section. 

We can put in evidence a filtration of S4 by a family {^y^Yeif °^ 

C*-subalgebras by defining s4Y=Z{s4(Z) | Z<Y}. Then s4Y<zs4 z if Y<Z and 

S4X=S4. If we denote if ( Y ) = { Z G if | Z<Y}, then if (Y) is a finite lattice also and 

S&Y is a if (Y)-graded C*-algebra in a canonical way. Finally, observe that S4(X) is 

a *-ideal in S4 (so s4 (Y) is a *-ideal in s^), and if we denote %Y=Z{s4(Z) | Z^Y}, 

then {^y^Yeif *s a decreasing family of closed *-ideals in S4 such that S&=S&Y+S&Y 

(algebraic direct sum) for all Y e if. 

For each Y eif we shall denote .^(Y), SPY the projection operators of s4 onto 
£#(Y), resp. S4Y, associated to the direct sum decompositions A = E{ A (Y)\ Ye if } 
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resp. S4=S$Y+!%Y- More precisely, if S G£#, then one can write it in a unique way 

as a sum S=E{S(Y) | Ye £ } with S(Y) e s4 (Y). Then #(Y)(S)=S(Y). Obviously 

^Y=E{^(Z)|Z<Y} , which is equivalent to ^(Y)=£{^z (i(Z,Y) I Z<Y}, where 

|Li:ifxi?^Z is the Möbius function of if. Clearly each $>{Y)'M-*s4 is a linear, 

continuous projection (i.e.^(Y)2=^(Y)) which commutes with the involution. But 

the main point is that Y:£$->£$ is a linear, continuous projection which is also a 

*-homomorphism of onto £$Y. n̂ particular, if S ss4 is a normal element and f 

is a complex continuous function on the spectrum of S (which vanishes at zero if S4 

has not unit) then ̂ Y(f(S))=f(^Y(S)). Observe that $6 Y=ker ̂ Y, which gives a new 

proof of the fact that $& Y is a closed *-ideal in s4. 

Let S4 be an arbitrary C -algebra realised on a Hilbert space X (i.e. s4 is a 

C*-subalgebra of B(X), the space of bounded linear operators in X) and H a self-

adjoint operator in X. Denote C ^ R ) the abelian C*-algebra of complex 

continuous functions on R which tend to zero at infinity (with the sup norm). Then 

(^-H)'1 e S4 for some complex X if and only if f(H)e s4 for all fe C ^ R ) . If this is 

fulfilled, we shall say that H is affiliated to S&. In some applications it is useful to 

work with self-adjoint but non-densely defined operators in X. By this we mean 

that a closed subspace X of X and a self-adjoint densely defined operator H in X 

are given (so X is the closure of the domain of H in X; think, formally, that H = ©o 

on XOX). Let then R(^)=(?i-H)-1 on X and R(A,)=0 on XOX, for Xe ( C \ R . 

Clearly, the family {R(A,)| A, e ( C \ R } of bounded operators in X is a pseudo-

resolvent, i.e. R(A,)*=R(A,*) and R(Xl)-R(X2)=(X2-Xl)R(Xl)R(X2). In fact, as shown 

in [HP], there is a bijective correspondence between (not necessarily densely 

defined) self-adjoint operators in X and pseudo-resolvents on X (or spectral 

measures E such that E ( R ) * 1 ) . Using Stone-Weierstrass theorem, it is trivial 
to establish a bijective correspondence between pseudo-resolvents and 
*-homomorphisms ( ( K C ^ R )̂ >B(<?zf) (put R(X,)=(|)(r^) where r^(x) = (A-x)-1). 
Clearly №f)\x= f(H) and <|>(f)ltf Q>f=0-

As a conclusion of this discussion, if S4 is an arbitrary C*-algebra, a 
*-homomorphism ( ( K C ^ R ) — w i l l be called self-adjoint operator affiliated to 
s4. As above, to give <|) is equivalent to giving a pseudo-resolvent {R(X) I Xe C \ R } 

with R(X)es4. We shall use in such a case a symbol H and denote <|)(f)=f(H) for 
feCoo(R) and R(A,)=(A,-H)-1. When s& is realised in a Hilbert space X, then H is 
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realised as a (non-densely defined in general) self-adjoint operator in <K. If s4 x is 

another C*-algebra and SP\Sâ-^s4x is a *-homomorphism then .^iCo^R )->£$! is 

a *-homomorphism which defines a self-adjoint operator Hj affiliated to S4X. We 

shall denote H ^ C H ) . 

Let us go back now to our i?-graded C*-algebra s4. For each self-adjoint 

operator H affiliated to s4 and each Yei? we may consider the self-adjoint operator 

HY affiliated to AY defined by Hy=^Y(H) (i.e. f(HY)=# Y(f(H)) for all f e C00(R )). 

Observe that HX=H. If H is just an element of $4, then HY=^Y(H) is just the 

projection of H onto £$Y. If S4 is realised on a Hilbert space 2f£ and H is the 

hamiltonian of a system (i.e. e~lHt describes the time evolution of the system), then 
the HY's will be called sub-hamiltonians (they describe the evolution of the system 

when parts of the interaction have been suppressed). Observe that each HY (and 

H=HX) has its own domain D(Hy) which is not dense in 2ft in general. In the many-

body case with hard-core interactions, D ( H ) is not dense, D ( H Q ) is dense and D ( H Y ) 

for Y^O, X is sometimes dense and sometimes not. If Hy is densely defined for all 

Y, we shall say that the densely defined self-adjoint operator H in 2f£ is «if-affiliated 

to A. Such operators are easy to construct using the following criterion. Let 

H Q = H ( 0 ) by a densely defined self-adjoint operator in 2f€ affiliated to S4q=S4(0). 

For each Y^O, let H(Y) be a symmetric, H0-bounded operator in 2f£ with 

relative bound zero and such that H(Y)(H0+i)"1G^(Y). Then H=Z{H(Y) | Yei?} 

is self-adjoint and i? -affiliated to S4 . Moreover, for all Ye i?, we have 

HY=^Y(H)=2;{H(Z) I Z ^ Y > - IF H O is bounded below, then it is enough that H(Y) 

be HQ-form bounded with relative bound zero and for c large enough 

(H0+c)-1/2H(Y)(H0+cr1/2€^(Y). 

We stop here this accumulation of definitions. In [BG 2] these notions are used 
in the spectral theory of N-body systems. For example, we show that the Weinberg-
Van Winter equation and the HVZ theorem are very natural in this framework 
(both the statements and the proofs). 

2. The N-body Algebra 

In this section we shall describe some important properties of a graded 
C*-algebra canonically associated to an Euclidean space (in place of the usual N-
body formalism, we prefer to work in the geometrical setting first considered by 
Agmon, Froese and Herbst and systematically developed in [ABG 1]). 

Let E be an Euclidean space (finite dimensional real Hilbert space). We 
provide it with the unique translation invariant Borel measure such that the volume 
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of a unit cube is (27c)-(dimE)/2. Then #(E) is the Hilbert space L2(E) and the Fourier 

transform (<Tf)(x)=JE e"i(xly)f(y)dy induces a unitary operator in 2f£(E) . Denote 

B(E)=B(a*f(E)). If E=O={0} then <Kf(0)=(C and <r=l. For any Borel function 

f:E->(C we denote f(Q) the operator of multiplication by f and f(P)=^r*f(Q)^r. 

Then K(E) will be the C*-algebra of compact operators on H (E) and T(E) the 

C*-algebra of operators of the form f(P) with f:E—>C continuous and convergent to 
zero at infinity (i.e. feQJE)). By convention K ( 0 ) = T ( 0 ) = C . 

If E,F are Euclidean spaces and G=E©F is their euclidean direct sum, 
then there is a canonical isomorphism of ^f(E)®^f(F) (Hilbert tensor product) 

with ^f(G). For S G B ( E ) , T eB(F) we write S®§T for the operator in B(G) 

corresponding to S®T by the preceding isomorphism. Finally, if J c B ( E ) , 

#cB(F) are *-subalgebras, then we denote M®^J\T the C*-algebra on ̂ f(G) 
obtained as the norm-closure of the linear space generated by the operators of the 
form S®^T with S E ^ , T eJT. 

Now let us fix an Euclidean space X and denote II(X) the set of all subspaces 
of X provided with the natural order relation (inclusion). Then II(X) is a complete 
lattice with O, resp. X, as least, resp. biggest, element. For Y,Z e Yl(X) we have 
YvZ=Y+Z and Y A Z = Y O Z . Let Y ell(X) and Y1en(X) its orthogonal. Then 
YiY1 are Euclidean spaces, X=Y0Y1 and we abbreviate ®y=®Y- We shall be 
interested in the C*-subalgebras of B(X) defined by 

(2.1) ¿7" (Y) = K(Y)®YT(Y1). 

The family {<Ŝ (Y)I Y e T1(X)} has the following properties: 

(i) The algebraic sum XI^T (Y) | Ye n(X)} is direct i.e. each element S in the 

linear subspace of B(X) generated by u{<y (Y) | Ye II(X)} can be uniquely written 

as a sum S=E{S(Y) I Ye II(X)} with S(Y)e<r(Y) and S(Y)^0 only for a finite 
number of Y's. 

(ii) For all Y,Ze II(X) we have: <T(Y)<T(Z)c^(Y+Z). 

For proofs of the first, resp. second, assertion, see [BG 2], resp. [ABG 1]. 

In particular, the *-subalgebra Z{^(Y) I Ye II(X)} of B(X) is n(X)-graded in 

a natural sense. It is obviously not norm-closed, and we shall denote ST its closure. 

This is the graded C*-algebra canonically associated to X we were talking about at 
the beginning of this section. 

79 



A.-M. BOUTET DE MONVEL, V. GEORGESCU 

For the N-body problem only subalgebras of ST of the following type are 

needed. Let if cfl(X) be a finite family of subspaces of X such that 0,Xeif and 

Y+Zeif if Y,Zeif (so if is not a sub-lattice of II(X), because YnZéi f in 

general; however, if is a lattice for the order relation induced by II(X)). Denote: 

(2.2) ^ = £ { ^ ( Y ) | Y e i f }. 

Then s4 is a C*-subalgebra of ST which is also a «5?-graded C*-algebra (in 

the notation we do not mention the dependence on if, which is considered fixed 

from now on). Let us mention that the projection S^^oi?T onto the subalgebra 

P^Y=Z{5r (Z) | Z G if.ZczY} can be explicitely described as follows. Assume 

Y*X and denote Y+ the set of elements of Y1 which do not belong to any Z1 with 

Zeif, Z<^Y. Then Y+ is a dense cone in Y1 and for any co eY+ we have 

^Y(S)=s-lim?l_>ooe-a(P'a))Sea(P'C0) for all S es4. 

Let us explain in what sense the choice of if corresponds to the N-body 

problem. Define, inductively, if 1==if, if 1={X}\ if 2=if i\if \ if 2=the set of maximal 

elements of if 2; if 3=if 2\if 2, if 3=the set of maximal elements of if 3; etc.... Then, N 

is the integer defined by ifN = { 0 } . For example, the two-body problem 

corresponds to if = { 0 , X } and the characteristic C*-algebra is s4 = T ( X ) + K ( X ) 

(direct sum). The (generalized) three-body problem is described by 

if={0,Y1,...,YN,X} where Yj are subspaces such that O^Yj * X and Yj+Yj=X if î j 

(hence Y^Yj for i*j; observe that one could have YjOYj* O , but Y1AYj=0 in if). 

The characteristic C*-algebra in such a case is ^=T(X)+^'(Y1)+...+5r(YN)+K(X) 

(direct sum) and if S{eZr(Y{) then S J S J G K ( X ) if i^j. The complications which 

appear for N>4 are due to the "nested" structure of if. 

A large class of (densely defined) self-adjoint operators if-affiliated to the 

algebra s4 is described in Proposition 7 of [BG 2]. Very roughly, they are of the 

form H=h(P)+X{VY(Qy,P)| Ye i f .Y^O} where h:X->R is a continuous function 

divergent at infinity and Qy is the projection on Y of Q, so that ̂ Vy^T* is, in the 

representation ^f(X)=L2(Y1,<^f(Y)), the operator of multiplication by an operator-

valued function. 
In the rest of this section we shall isolate some properties of the algebra ST 

related to the "geometric" methods introduced by Simon [S] in the N-body problem 
and further refined in [PSS] and [FH]. 
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T H E O R E M 2.1: Let X:X—>(E be continuous and homogeneous of degre zero outside 
the unit sphere (i.e. X(x)=X(x/lxl) if\x\>\). Then [S,X(Q)] is a compact operator 
for each S e?T. If S e<T (Z) for some Z eIl(X) andX(e)=0for eeZ1, lel=l, then 
both SX(Q) and X(Q)S are compact operators. 

Proof: Observe first that for each M<oo there is c>0 such that if lyl < M : 

(2.3) |X(x+y)-X(x)| = X x+y 
•Ix+yl -

X X 
Ixl < W c 

Ixl 
for x large enough, where w is the modulus of continuity of the restriction of X to 
the unit sphere. It is clearly enough to prove the theorem for S of the form K®ZT 

with K G K ( Z ) and T E T ( Z j - ) . Let X0(x) = X(TC£(X)) where is the orthogonal 

projection of X onto Z 1 . Then x0(Q)=l®z<E> where IITZ is the operator of 

multiplication by Xlz± in ffl(Z^). From (2.3) and a result of Cordes [C] it follows 

that [T,<D] is compact in <Kf(Z1). So [S,X0(Q)]=K®z[T,0] is compact in ^f(X). 
Writing [S,X(Q)]=[S,X(Q)-X0(Q)]+[S,X0(Q)] and observing that X(x)-Xo(x)=0 

if xe Z-'-, it follows that it is enough to prove the second part of the proposition for 
bounded uniformly continuous functions X:X->£ such that lX(z+z')l —> 0 as 
Iz'l—> oo, Z ' G Z ^ , uniformly in z when z runs over any compact subset of Z (use 
(2.3) to show that this is fulfilled by X-XQ or by the initial X if X(e)=0 for eeZ1, 
lel=l). Let us show for example that SX(Q)=(1®ZT)(K®Z1-X(Q)) is compact. In 
the representation <^(X)=L2(Z-L;(^(Z)), the operator K®Z1-X(Q) becomes the 
operator of multiplication by the function z'»—> K\|/(z')e B(Z) where 
(\|/(z/)u)(z)=X(z4-z,)u(z). Since X is bounded and uniformly continuous, 

\|/: Z"L->B(Z) is bounded and norm-continuous. The last condition we put on X is 

equivalent to s-lim|z/|_^oo\)/(z,)=0 . Since K is compact in ^f(Z) we get 

IIK\|f(z')llB(Z)-»0 as lz'l->oo. It is standard now to show that K®Z1-X(Q) is the 

norm-limit in B(X) of operators of the form ZKj®zOj where K J G K ( Z ) and Oj is 

the operator of multiplication by a C000 function in M (Z1). Since 

(l®zT)(Kj®zOj)=Kj®z(TOj) and TOjeK(Z1), the proof is finished. • 

Remark: The fact that [S,%(Q)j is compact for S E J shows that ST is a non-trivial 
subalgebra (and a rather small one) of B(X). 

Let us go back to the N-body algebra s4 associated to some semi-lattice 

i?cII(X) as in (2.2). Let Yeif, Y*X. Following [FH] and [ABG 1], we shall call a 
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function XY:X—>IR Y-reducing, if it is continuous, homogeneous of degree zero 
outside the unit sphere and if Xy(e) = 0 f°r â  e suĉ  that 'e'=l an(̂  e e f°r some 
Ze i? with ZtfY. Recall that ®Y=Z{^(Z)|ZeiffZ^Y} is a norm-closed *-ideal 
in s4 and£$=£#Y+$Y direct sum. It follows from theorem 2.1 that for a 
Y-reducing function XY we have (remark that S4(X) = K(X)): 

(i) [S,XY(Q)1 e s4 (X) for all S 6 s&; 
(ii) SXY(Q) and XY(Q)S belong to s4(X) for all S e % Y. 

A family {%YJTei? °f functions Xy:X->IR is called J? -reducing if Xx=0, each 
XY is Y-reducing for Y*X and E{XYlYei?}=l on X. It is easy (see [ABG 1]), to 
construct such families having the supplementary properties: 

(iii) XY=0 if Y is not a maximal element in i?\{X} (i.e. Xy*0 only forYe i?2); 

(iv) XY e C°°(X) and X (x)=0 on a neighbourhood on the unit sphere of the set 

UlSxnZ-MZeif, ZtfY}. 

Let us make a final remark concerning the structure of the algebra J . It is 
convenient now to indicate explicitly the dependence on the space X by denoting 
^(Y)=^X(Y) , <T=^X L e t ^ J be the norm-closure of £{<TX(Z) I Z e II(X), 

ZczY} and^* the norm-closure of £{<TX(Z) I Ze II(X), Z^Y} . So is a 
C*-subalgebra of <TX, SYX is a norm-closed *-ideal and ST* = JX . We would like 
to point out the following relations: for Z,Y e n(X) such that ZczY we have 

(2.4) ^x(Z)=<rY(Z)®YT(Y1). 

In fact, if we denote E = Y n Z \ then Y=Z0E and Z1=E0Y1. It is clear that 

T(Z1)=T(E)® z 
E 
, T(YX) so we get: 

^ X ( Z ) = K ( Z ) ® X ( T ( E ) ® Z 1 T ( Y 1 ) ) = ( K ( Z ) ® | T ( E ) ) ® $ T ( Y ± ) = 

= <TY(Z)® ̂ T(YX). 

From (2.4) we also obtain: 

(2.5) ^ Y = ^ Y & Y T ( Y ± ) -
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Here we may specialize to the N-body algebra s4=s4x associated to i? with the 
convention that S4Y is constructed using i?(Y). So: 

(2.6) sa X 
Y = ^ Y ® Y T ( Y L ) -

Y Y 
To S4Y, if Y*0, we may associate a family {%z}zeJ£(Y) (with on^ ̂  Z<#Y, 

Y Y 
i.e. Y covers Z) with X Z:Y->R and then we may extend %ZY=^z®Y1 ̂ *e-

Y 
%ZY:X->IR is given by XZY(x)=Xz(7rY(x)). Observe that for each fixed Yei?\{0} 

we shall have Z{%ZY |Zei?,Z<«Y}=1. 
3. General Considerations on the Mourre Estimate 

In this section we shall quit the graded C*-algebra setting in order to present 
certain notions and results related to Mourre theory in the framework introduced in 
[ABG 1,2] and [BGM]. We do this step hopping that so we shall put in a better light 
the proof of the Mourre estimate for hamiltonians with a many channel structure. 

Let 2f€ be a (complex, separable) Hilbert space and A a self-adjoint operator in 

H. Denote Wa = elAa the unitary group in H generated by A. We shall say that a 
closed operator T in X is of class Cl(A), and we shall write TeC^A), if its 
domain D(T) is invariant under the group W and if for all ueD(T) the function a 

<Wau|TWau> is of class C1. In this case we denote [T,A] the sesquilinear 

form on D(T) given by <uli[T,A]u> = d 
da <WaITWa>la=0. Let £ =D(T) equipped 

with the graph-norm. Then [T,A] is a continuous sesquilinear form on £ and it is 
often useful to think of it as a continuous linear operator from $ to its adjoint space 
£*. It is shown in [ABG 1 j that, if $ is invariant under W, then TeC^A) if and 

only if the sesquilinear forms T , 
n 
a 

Wa on G converge weakly when a—»0 and in 

this case: 

(3.1) i|'T,A]= s-lim 
cc->() 

T 
, 

1 
a 

Wa . 

the strong limit being in B(£,£*). If the limit exists in norm in this space, 

then we write TeC^(A); this is equivalent to the norm-derivability of 

ah~* W*TWaeB(£,£*). For bounded T we identify B(0,£*)=B(#). 
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We shall now associate to each self-adjoint operator H in <K of class C^A) two 
functions p = pHA and P = P H defined on K. with values in ]—°°,+°°], according to 

the following rule. Denote E(k;z)=E((X-e,X+z)) for A. e R and e>0. Then 

( 3 . 2 ) jS (̂X) = sup{a G JR. I there is 8>0 and a compact operator K such 
that E(A.;e)[iH,A]E(X,;e) > aE(X;e)+K}, 

( 3 . 3 ) p^(K)= sup{ae]R |3e>0 such that E(A,;e)[iH,A]E(X;e) > aE(X;e)}. 

Another way of defining pHA is as follows. For e>0, let 

pe(A,) = inf{<u I [iH,A]u> |u=E(A,;e)u, ||u||=l} 

(with the convention inf 0=°o).Then pe(A,)—»p(A,) as e-^+0. Let us also mention the 
following fact. If L G E , then the spectral measure of the operator H-^0 is 
S«-> E(S+^0) (ScE Borei set). Hence we get PHA-Y0(Y)= pHA(Y+Y0) and similarly 

for p. 
A systematic study of the functions p and p is presented in [ABG 2], from 

which we quote now some results. It is easy to show that p and p are lower 
semicontinuous (l.s.c.) functions, p(^)<°° if and only if A,eoess(H) and p(^)<°° if 
and only if Xe a(H). From the virial theorem we get that, if p(V)>0, then X has a 
neighbourhood in which there is at most a finite number of eigenvalues (counting 
multiplicities). A deeper consequence of this theorem is the following result 
(implicitly contained in [FH] and explicitly isolated and proved in [ABG 2]). 

PROPOSITION 3.1: If X is an eigenvalue of H and p(k)>0, then p(A,)=0. Otherwise, 
j$a)=pO,). 

The next result is easy, but very useful in applications. 

PROPOSITION 3.2: Let A c E be a compact set and 0: A - * R an upper 
semicontinuous function (u.s.c.) such that Q(X)<p(X) for all XeA. Then there is 
£>0 such that for all XeA: 
(3.4) E(A.;e)[iH,A]E(A/,e) > Q(X)E(X]e). 

Functions 0 as in the last proposition play a role in the proof of the 
propagation theorems (see [Dl] and [T]) but we shall need them in the proof of the 
theorem below. They are very easy to construct, as the next example shows (this 
explains corollary 4.3 from [Dl]). For any v>0, let 

(3.5) 0V(Y) = inf 
||I-A|<V 

pOO-v. 

84 



C*-ALGEBRAS AND MANY BODY PERTURBATIONS 

Then 0v:IR —>]-<*>, +00] is upper semicontinuous, 9Vl(A,)<0V2(A,) if V2<VJ and 
9Vl(A,)*°°, and hmQ 0v(^)=p(^) for all A,eR. Moreover, Qv(X)<oo if 

dist(>,,a(H))<v. This choice is useful in abstract considerations, but a better one can 
be made in the case of Agmon hamiltonians. Let us mention that 

Pvft) £ inf 
IH-A,|<v 

POO ^ P A ) 

with pv defined after (3.3). 

We can introduce now the main concept of Mourre theory. 

DEFINITION: Let H be a self-adjoint operator in the Hilbert space №. We shall say 
that a self-adjoint operator A is conjugated to H at some point Xe R if He C^A) 
and №(X)>0. 

H 

In the graded C*-algebra setting it is better to work only with bounded 
operators. So it is useful to be able to express the preceding property in terms of 
the resolvent of H. 

PROPOSITION 3.3: Let H and A be self-adjoint operators, X0 a complex number 
outside the spectrum of H and R=(^0-H)_1. Assume that eiAoc leaves invariant the 
domain of H. Then HeCi(A) (resp.HeC^A)) if and only if Re Cl(A) 
(resp.ReC^A)). In this case 

(3.6) [R,A] = R[H,A]R. 

1Assume, moreover, that X0 elR (so H has to have a spectral gap). Then, for all 
real X ̂  X0, we shall have 

(3.7) P*((X0-Xrl) = (X0-Xr2p*(X). 

In particular, A is conjugated to H at some XelR\{X0} if and only if it is conjugated 
to R at (X0-X)~l. 

Proof: Since Wa=elAot leaves invariant the domain of H, it is easy to show that 
[R,l/otWa] = RlH,l/aWa]R. Denote # the domain of H (assumed dense without 
loss of generality) provided with the graph norm; then ^<z^f continuously and 
densely and, after identification of H with its adjoint space tf* using Riesz lemma, 
we get &ctfc:&*. Using (3.1) and the fact that R is an isomorphism of 2ft onto £ 
and of G* onto tf, we see that [R,l/aWJ is weakly convergent in B(^f) (i.e. R is 
of class CKA)) if and only if H e CKA) and then (3.6) is true. 
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In order to prove (3.7), we may assume ^o=0. Let cp:R\{0}-»R\{0} be the 
diffeomorphism (p(A,)=-̂ _1. Then the spectral measure of R is ER(S) = E(cp(S)). 
Using (3.6) we get for ^>0 (for example) and 0<e<^: 

ER(A/,e)[iR,A]ER(X;e) = H"1 E(Ie) [iH, A] E(Ie)H_1, 

where we have denoted IE=(-(^-8)-1,-(?i+8r1). For each a < ^ ( - r 1 ) there are 
8o>0 and a compact operator K such that 

E(-r1;e0)[iH,A]E(-r1;e0) > aEC-X"1 ;£0)+K. 

If e is small enough, L is a neighbourhood of -X 1 contained in (-X l-e0,-X 1+г0), 
hence E(Ie)[iH,A]E(Ie) > aE(Ie)+E(Ie)KE(Ie). We get 

H-1E(Ie)[iH,A]E(Ie)H-1 > aH^ECy+H^ECyKECyH-1 > 

>a(^-e)2E(Ie)+H-1E(Ie)KE(Ie)H-1. 

Since the last term here is compact, we obtain pHA(Y)>Y2pHA (-A-1). For the reverse 

inequality one has to start from E(À,;e)[iH,A]E(A,;e) = HE(^;£)[iR,A]E(^;e)H. 

Remark: The preceding proposition is not true if D(H) is not assumed invariant 
under elAoc. For N-body hamiltonians with hard-core interactions, if A is the 
generator of dilations, then R is of class Cl(A) but D(H) is not invariant under eiAoc. 

We pass now to the main result of this section, namely the calculation of the 

p-function for an operator H of the form H1®!-!-!®!!2 assuming that A admits a 

similar decomposition. Assume that two self-adjoint bounded from below 

operators H1, H2 are given in Hilbert spaces tfv 3V2- We denote & =D(№) provided 
with the graph norm, so that Gj is a Hilbert space continuously embedded in tf.y 
Let ^ f ^ ® ^ , g,1=g>1® f̂2 and $2=tfl®$2 (Hilbert tensor products). It is known 
that there are continuous embeddings £\<zM and #2<z<#f > ^ 1 (resp. £2) being the 
domain of the self-adjoint operator H ^ H*®1 (resp. H2=1®H2) in 7K. Moreover, 

the operator H=H!+H2 is self-adjoint on the domain 8>=g,1n^2 and its spectrum is 
given by a(H)=a(H1)+o(H2) (these assertions depend on the boundedness from 
below of the operators, see section 2.1 in [ABG 1]). Consider now a self-adjoint 
operator A1 in 7%. such that № is of class C^A*). Recall that the self-adjoint operator 

A=A1®1+1®A2=A1+A2 can be defined by the property eiAa = eiAla®eiA2(X for 

all a G R. It is then obvious that D(H)=# is invariant under elAoc. By hypothesis, 
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BJ=[i№,AJ] is a continuous sesquilinear form on Gj. It is well-known that B1 will 

extend to a continuous sesquilinear form B ^ B 1 ® ! on *§ x and similarly B2 to 

B2=l®B2on #2- Now it is easy to show that Hj is of class C^Ap and of class C*(A) 

and [iHj.AjMiHj, A]=Bj (use e-iAaH1e+iAa=e"iAl0CH1e+iAl0C=(e-iAlaH1e+iAla)®l). 

Since # = ¡ ^ 0 ^ 2 (with the intersection topology), the sesquilinear form B=B1+B2 is 

continuous on G It follows that H is of class C*(A) and [iH,A]=B. 

These arguments prove the first part of the next theorem: 

THEOREM 3 . 4 : Let H1, H2 be two self-adjointy bounded from below operators in the 

Hilbert spaces tâh fâ2 Assume that AJ is a self-adjoint operator in Hj such that HJ ¿5 

of class C\AJ). Let H ^ O l + l Œ H 2 and A = A 1 ® 1 + 1 ® A 2 , self-adjoint operators in 

^=^x®^2. Then H is of class Cl(A) and for all Xe E : 

( 3 . 8 ) is H a) = inf 
X=Xi+K2 

p 
Al 
Hl 

(A1) + p 
A2 
H2 

(A2) 

Proof: (i) We have to prove only the preceding formula. Denote P=P 
El 
H = pj=p 

At 
1 

Since G(H)=O(¥L1)+G(H2), ( 3 . 8 ) is obvious if A £ o ( H ) , both members being 

equal to +<*>. Moreover, by adding to № a constant and taking into account that 
A 
H-X0 a) = p 0 H (A+A0), we can assume №>0, so that H is positive too. Hence, when 

we prove ( 3 . 9 ) , we may assume without loss of generality that Xe a(H), A>0 and we 
may consider only decompositions A^A^+A^ with Aj e o(Hp, so that A>0. 

(ii) Let us first prove that the function f(A) defined by the r.h.s. of ( 3 . 8 ) 
on R+=[0 ,+°o[ is l.s.c. (then its extension by + 0 0 for A<0 will be l.s.c. on R ) . 
Let fj = pjl]R+ and F(A1,A2)=fi(A1)+f2(A2). Then F:R2->]-oo,oo] is l.s.c. For A>0 
denote I\={(Xi,X2) I Aj>0 and A!+A2=A}. 1̂  is a compact subset of E 2 and 
f(A)=inf{F(A!,A2) I (AbA2) Assume f(A)>a; we have to show that f(p,)>a for [i 
in a neighbourhood of A. We have F(A1?A2)>a for all (A1?A2) elx, hence each such 
(A1?A2) has a neighbourhood U(Aj,A2) in E 2 on which F is strictly greater than a. 
1̂  being compact, it may be covered by a finite set Ui,...,Un of such 
neighbourhoods. Then L^UjuL^u ... uUn is a neighbourhood of 1̂ . Since \ is 
compact, U will contain a set of the form I ^ ( 8 ) = { ( A 1 , A 2 ) G R 2 | A - e ^ + A ^ A + e } . 
So F(AbA2)>a on I^(e). Since F attains its lower bound on compacts, we shall have 
f(|Lt)>a for A-£<|Ll<A+£. 
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(iii) For each v>0 we denote 9^ the function R -»]-oo?+oo] associated to pj 

according to the rule (3.5). Then 9^ is u.s.c. and is finite on the open 

neighbourhood {|LteIR I dist(|it;a(№))<v} of a(№). On this set we also have 

Ojv(µ)<pj(µ). 

Let us fix some arbitrary k o ( H ) (so ^>0) and some (small) numbers 
v>v'>0. The set of all [i<X such dist(|i;a(Hj))<v' is a compact and the restriction of 
9̂  to it is a finite-valued u.s.c. function such that 9^(|i)<pj(|i). According to 
Proposition 3.2, there is £ e(0,v') such that for all \i<X with dist(|i;G(HJ))<v' : 

(3.9) EJ(ji;e)BîEi(ji;e) > в*(ц)Е1(ц;е). 

Here EJ is the spectral measure of Hi But, if dist(|a;o(HJ))>v', then Ei(|i;e)=0, 
because we assumed e<v'. Hence (3.9) is valid for all |Lt<̂  if we give an arbitrary 
finite value to 9̂  (|i) for dist(n.;a(HJ))>v'. 

It will be convenient to define 9^ (|i) for [i<X and dist(|i;a(HJ))>v/ as equal to a 

finite constant bigger than sup е{,(т)|т<А,, dist(x;a(HJ))<v/ (observe that the 

function 0jv being u.s.c. is bounded from above on this compact set). We shall, 

however, keep the same notation for this new function. 

(iv) Let us work in a spectral representation of the operator H2. Then there is 
a measure space S2 and a Borel function co2:S2—>R + such that <^2= L2(S2) and H2 is 
the operator of multiplication by co2. We then identify 2KX®X2 = L2(S2;̂ f x) so that 
H becomes the operator of multiplication by the operator-valued function 
s>-> H1+co2(s). From (3.9) we get for all s e S2: 

(3.10) E1(^-co2(s);e)B1E1(^-co2(s);8) > 9^(?I-CO2(S))E1(^-CÛ2(S);E). 

If f is a bounded Borel function, then f(H) is in L2(S2;^f j) the operator of 
multiplication by the operator-valued function s>—>f(H1+co2(s)). Hence, if E is the 
spectral measure of H, then E(A,;e) is just the operator of multiplication by 
s»—> E1(^-co2(s);e) (take f equal to the characteristic function of (A,-e,A,+e)). So 
(3.10) is equivalent to 

(3.11) E(>i;8)B1E(?i;e) > [l®eJ(Ar-H2)]E(b;e). 

Observe that 1®9^(A,-H2)=9^-H2). Writing an estimate similar to (3.11) with H1 

and H2 interchanged, we obtain (B=B1+B2): 

(3.12) E(A.;e)BE(A.;e) > [Э^-Н^+Э^-Н^Е^е) . 
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(v) We have to find the lower bound of the operator e ^ H ^ e J O r - H ! ) on 

the subspace E(X\E)X. Let us work in a spectral representation of both H1 and H2, 

so that iK =L2(S2 x S2), H: is the operator of multiplication by (s1,s2)'-^ C0:(Sj) and 

H is (s1,s2)»—» co1(s1)+co2(s2). Hence e^t-H^+eJa-H!) is the operator of 

multiplication by eia -œ^s^+eja -œ^!)) and the subspace E(̂ ;e)̂ f is the set of 

functions in X which are zero outside the set {(s^Sj) I X-E<CO1(S1)+CO2(S2)<^+E}. In 

conclusion: 

[01v(Y-h2)+02v(Y-H1)]E(Y;E)> 

> [inf {e^A.-T^+eJíAr-T!) I A r ^ ^ + V ^ + e , XjG O(H¡)}] E(A,;e). 

Let us consider the inf in the r.h.s. and replace the variables xv x2 by Xx=X-x2, 
X2=X-xx. Then we must have XX<X, X2<X, I^+^-^KE , and we are interested in 

inf 0v1(Y1) +0ev A-2 . 
Taking into account the way 0jv has been chosen in (iii), we 

may also assume dist(A.j,a(Hi))̂ v'. But then clearly this infimum is minorated by 

inf inf 
IH!-XLL<V 

PiCM-i) + inf 
µ2-Y2<v 

p2(^2)-2v XX9X2^X9 ^i~^X2—X <E 
. 

The numbers \iv \i2 which appear here satisfy JJ.J<A,J+V and ||Li1+|i2-X|<£+2v. Hence 
we can bound by below the above quantity by: 

inf {pjGLij) + p2(|i2)-2v I \iv\i2<\+v9 iM-i+M-ì— l̂<e+2v } > 

> inf {p^Hj) + p2(M-2) ~2v I I^I+ |^2-X|<E+2V} = 

= inf 
Ijj.—X|<E+2v 

inf 
µ = µ1+µ2 

[p1(|i1) + p2(|i2)]-2v = 

= inf 
|u-X|<e+2v 

F ( U ) - 2 V > inf 
\[L-X\<3V 

f(VL)-2v := 0V. 

From (3.12) we obtain then: E (X;E)BE(X;E ) > 0vE(X;E). SO p(X)>9v. Since v>0 is 
arbitrary and 0V—>f(X) as v—>+0 due to the lower semicontinuity of f, we get 
p№f(A,). 

(vi) It remains to be shown that the equality is in fact realised in p(A,)>f(A,). Of 
course, only the case X eo(H) is non trivial. By the lower semi-continuity of F and 
the compactness of 1̂  (see (ii)) it follows that there are X1GG(H1) and X2ea(H2) 
such that X=XX+X2 and f(X)=pAXl)+p2(X2)- By the definition of p(L) (see the 
remark after (3.3)) there is a sequence u j N ne N 0=1.2) such that u j N = Ej Yj ; 

1 

n 
U j 

N , 

89 



A.-M, BOUTET DE MONVEL, V. GEORGESCU 

||uj||=l and <unlBJU^>-^pj(A,j). Let un=u^®uj. Then ||un||=l and E(X;|)un=un. 
Moreover 

<unIBun> = <u* \&u\> + <u2nIB2u2n>->Pj^jHPa^)-

This finishes the proof. 

Remark: Assume that H2 has a purely continuous spectrum. Then P 
A2 
H2 = A 

P 
A2 
H2' 

Hhas 

also a purely continuous spectrum and 

( 3 . 1 3 ) 
pAH(Y) 

= 
pAH(Y) 

= inf 
Y = Y1+Y2 

[PH»(XL) + P H 2 A 2 ) 1 -

As an example, let us see how the theorem should be used for the case of 
Agmon hamiltonians (cf. [ABG 1]) . Let Y eif \{X} and HY =HY®Y1+1®YAY1. We 
take A = A Y ® Y 1 + 1 ® Y A y 1 where A is the generator of the dilation group normalised 
such that [iA,Al=A. Obviously, for X*0: 

P > ) = A 
+00 if X<0 
Y if X>0. 

Let pY=p^Y and PY=PHY* ^OR Y = X WE ^AVE P Y = P Y :=^Hy ^ Proposition 3 . 1 . In 

conclusion: 
( 3 . 1 4 ) P Y ( ^ ) = inf 

µ>0 
[pY(?i-|a)+|i] for all Y e if \{X} and X e R. 

4. Reducible Graded C*-Algebras 

In this section we shall introduce a class of graded C*-algebras so that the p-
function of a hamiltonian affiliated to such an algebra can be easily estimated in 
terms of the p-functions of sub-hamiltonians if the action of the conjugate operator 
is compatible with the graduation. The definition below is motivated by Theorem 
2.1 and the existence of if-reducing families (mentioned after the proof of theorem 
2 . 1 ) for the N-body algebra. 

Let us consider a finite lattice if and a if-graded C*-algebra s4. Recall that for 

each Y eif we have a canonical decomposition S4=s4y+^Y suc^ ^hat Ay *s a 

subalgebra of £ $ , $ Y is a closed *-ideal, &$yn!$y={0} and the projection 

: £ ^ - > £ ^ Y *s a *-homomorphism. Moreover, s4Ycz^z ^ Y<Z anc* S4x=s4. In 
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this section we shall furthermore assume that s4 is realised on a (separable) Hilbert 

space (i.e. £0czB(#) is a C*-subalgebra). 

DEFINITION: A family {JY}Y(E-$f of bounded, symmetric operators in is called 

-reducing if: 

(a) Jx=OWZ{J^|Yei?} = l; 

(b) for each Ses4 and Ye if, w teve [S,JY]e«8Z(X); 

(c) 1/Ye if ûwd Se % , SJY and JYS for/ang to S4(X). 

If such a family exits, we shall say that S4 is a reducible if -graded C*-algebra. 

Recall that £$Y *s canonically a i?(Y)-graded C*-algebra; if each S$y is reducible , 

we shall say that s4 is completely reducible. 

In connection with this definition, recall that s4(X) is also a closed *-ideal in 

s4 (and S4(Y) in s4Y), hence at (c) we could have required only SJYeP^(X). If 

if={0,X}, then s4 is (completely) reducible: it is enough to take J Q = 1 » J X = 0 - The 
remarks which end section 2 prove that the N-body algebra is completely reducible 
(take JY=xY(Q)). 

For two operators S,Te^ we shall write S ~T if S-TeS^(X). Since s4(X) is a 

closed *-ideal, this relation is equivalent with equality in the quotient S&/s4(X) 

C*-algebra, so it is compatible with the algebraic operations and with continuous 
functional calculus for normal elements. This can also be seen from the fact that 
S ~T if and only if 9 Y(S)=^Y(T) for all Y*X (and if and only if #(Y)(S)=#(Y)(T) 
for all Y*X). 

PROPOSITION 4 . 1 : Let {JY}Yeif be an s4-reducing family. For each Se£$ and 

Yeif denote SY= ^ Y ( S ) . Then for S\...,Snes4 we have 

( 4 . 1 ) S S ...S ~ XY JYSYSY---SYJY-

Proof: Since 9 Y is a homomorphism, we have (S1S2...SN)Y— S^SY'-.SY? so we may 

assume that there is only one factor.Then, using [S,JY]e£^(X) and (S-SY)JYe£^(X) 

(because S-SYe$Y) we get 

S—£Y SJY — 2-Y ( [S ,JY|JY + JY(S—SY)JY+JYSYJY) ~ XYJYSYJY. 
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COROLLARY 4.2: / / H is a self-adjoint operator affiliated to s4, (peC^R) and 
Ses4, then 

(4.2) cp(H)~£Y JYcp(HY)JY, 

(4.3) cp(H)Scp(H) ~ EY JY(p(HY)SY(p(HY)JY. 

Remark: In the N-body case considered in section 2 we have £^(X )=K (X) . Taking 
into account theorem 2.1, if H is a self-adjoint operator in <#f(X) affiliated to ST, 
cpeC^R) and % : X ^ C is continuous and homogeneous of degree zero for |x|>l, 
we shall have [cp(H),%(Q)] G K ( X ) . If H is affiliated to the algebra s4 described by 
(2.2) and %=%Y is Y-reducing, then we also have XY(Q)((p(H)-(p(HY))G K ( X ) . 
These assertions are generalisations of some of the results from section 2.6 of 
[ABG 1]. 

We arrive, finally, to what we call "Mourre theory in a graded C algebra 
setting ". From now on we assume that a densely defined, self-adjoint operator A in 
lK is given such that the group of automorphisms associated to Wa=elAoc leaves s4 
invariant and its action is compatible with the grading, i.e. 

(4.4) W * ^ (Y)Wac^ (Y) for all Ye if and ae R. 

If we denote { ^ a } the group of automorphisms of B(tf) given by 

^a(S)=WaSWa, then the preceding requirements are fulfilled if and only if 

Wa(s4)=s4 and ^a^(Y)=^(Y)^a for all Ye if, ae R (the second condition being 

equivalent to ̂ a^Y=^Y^oc for a11 Y'a)-

Let us remark that if we consider the algebra 9~ of section 2.2 and if Wa is 
the dilation group, then these conditions are fulfilled (so for s4 given by (2.2) 
also). Moreover, in this case {^a}a(=iR induces a norm-continuous group of 
automorphisms of ST (in particular, its generator, which is formally [,iA], is 
norm-densely defined). 

We will be interested in the spectral analysis of a self-adjoint operator H 
affiliated to S4 by the conjugate operator method. Proposition 3.3 shows that, if H 
has a spectral gap (i.e. 3X0e R\a(H); in fact we shall be interested only in H 
bounded from below), then it is better to study R=(X,0-H)_1, which is bounded, self-
adjoint and belongs to S4. In particular, we shall not have to put any condition of 
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invariance under Wa of D(H), which could be non-dense (in hard-core case for 

example). So, for the moment we consider an arbitrary self-adjoint operator Res4. 

PROPOSITION 4.3: Let Re S4 and denote R(Y)=^ (Y)(R), RY=9 Y{R).Then 

ReC^(A) if and only if R(Y)e C^(A) for all Ye i? and also if and only if 

RyeC^A) (VYeif). In this case we shall have 

[iR,A]e&Z ^^(Y)([iR,A])=[iR(Y),A],^Y([iR'A]=[i%'A]/örö// Yei?-

The proof is trivial because s4, s4(Y), S&Y are norm-closed and ^(Y), $>Y 

commute with Wa. The problem which we would like to study now is the relation 

between pA and p^with Y^X. Since A is fixed in this section, we shall leave it 

out in the notations of the p-functions. 

As an example, let us consider the "two-body" case i? ={0,X}. Let Re s4 self-

adjoint with ReC^(A). Then R=R0+R(X) with RQeS$0 = A(0) and R(X)e£0(X) 

(which is K(X) in the N-body case). If ReC^A), then according to proposition 4.3 

[iR,A] = [iR0,A] + [iR(X),A] ~ [iR0,A] 

(because [iR(X),A]=^(X)([iR,A])e£0(X)). If (p:R->(C is continuous (and (p(0)=0 if 

s& has not a unit) then 9(R)=^0(cp(R))+^(X)(cp(R))=9(R0)+^(X)((p(R))-9(R0). 

Hence (p(R)[iR,A](p(R)~cp(R0)[iR0,A]cp(R0) and (p2(R)~(p2(R0) if <pGc~(R) (and 

(p(0)=0 if s4 has not unit). If s4(X) contains only compact operators, it is easy to 

get from this that PR(^)=PR0(^) for all X (¿0 if s4 has not unit) . In particular, A 

is conjugated to R at X ( ^ 0 if s4 has not unit) if and only if it is conjugated to R Q at 
X. 

Recall that if i? ={0 ,X} , then s4 is automatically reducible. Let us go back 

now to a general s&, but assume it reducible. Let {JY} be an ̂ -reducible family. 

Consider a self-adjoint element ReS4 of class C^(A) and a continuous function 

cp:R-^R which vanishes at zero if A has not a unit. Then cp(R)e£# and 

^Y((p(R))=(p(RY). Let us take S=[iR,A] in (4.3). Then corollary 4.2 and 
proposition 4.3 give: 

(4.5) (p(R)[iR,A](p(R)~EYJy(p(Ry)[iRY,A](p(RY)JY, 

(4.6) (p2(R)~EYJY(p2(RY)JY. 
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Let us write S <T for S,Te£^, if we have this inequality modulo &${X) (i.e. 
3Kes4{X) such that S<T+K). It follows from (4.5), (4.6) that we have 
(p(R)[iR,A](p(R) > acp2(R) for some ae IR if and only if 

(4.7) £YJY[(p(RY)[iRY,A](p(RY) - acp2(RY)]JY > 0. 

In conclusion, the following result has been proved (observe that Jx=0) : 

THEOREM 4.4: Let S4 be a reducible if -graded C-algebra such that S4 (X) 
contains only compact operators. Let Abe a densely defined self-adjoint operator 
in H such that e"iAa^ (Y)eiAac^ (Y) for all Ye if and ae IR. Consider a self-
adjoint operator Res4 of class C^(A). Then for all A,eIR\{0} we have 

(4.8) ^ a ) > m i n { ^ Y a ) | Y e i f \ { X } } . 

In particular, if A is conjugated at some X^O to all RY with Y<X, then A is also 
conjugated at X to R. 

Remarks: 

(a) If S4 has unit, the condition X±Q is not necessary. 
(b) Only JY?K) really appear in (4.7); hence in (4.8) the minimum has to be taken 
only over these Y's. For example, if there is an -reducing family {JY} with JY^0 
only for Ye if 2 (as in the N-body situation considered in section 2), then: 

(4.9) ^ a ) > m i n { ^ a ) | Y e i f 2 } . 

In the next corollary we use the obvious fact that if X0£ a(H) then X0<£ a(HY) 
for any Ye if (because St>Y are *-homomorphisms). 

COROLLARY 4.5: Assume that H is a self-adjoint unbounded operator in <#f which 

has a spectral gap and which is affiliated to S4. Moreover, assume that the domain 

of HY is invariant under eiAoc {all Ye if, ae IR ). If H is of class C (̂A), then each 

HY is of class C (̂A) and 

(4.10) (5£>min{^Y|Yei?\{X}}. 

{Remark (b) above applies here too). In particular, if A is conjugated to each HY 
with Y<X at some Xe IR, then H is conjugated to H at X. 
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Combining theorem 3.4 (more precisely fromula (3.14)) with corollary 4.5 
one easily gets the results of [PSS], [FH] and [ABG 1] for N-body or Agmon 
hamiltonians (much more general situations may be considered, as we shall show in 
a later publication). In fact (3.14) shows by induction over Y that fSŷ O for all Y. 
Hence, using again (3.14) and proposition 3.1 we see that for Y<X we have 
pY(A,)=0 only if f)Y(A,)=0 or if |3Y(A,)>0 but X is an eigenvalue of HY. So we get by 
induction that f$Y(^)>0 if X is not a threshold or eigenvalue of HY. Then (4.10) 
implies $X(X)>0 if A, is not a threshold of H. 
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