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The Scott Correction and the
Quasi-classical Limit

Barry Simon!

The Scott correction is the second term in a large Z asymptotic expansion
of the total binding energy of an atom with nuclear charge Z. The atom is
a complicated system with multiparticle correlations among the electrons.
Nevertheless, the proof of the Scott correction can be reduced to the study
of the semi-classical limit of a one-body system where the electron-electron
interaction is replaced by an averaged self-consistent potential.

This reduction is more or less well-known to the experts in the field, so
this paper is unabashedly pedagogic. However, previous discussions have so
intertwined the reduction to the classical limit with the control of that limit
that the simplicity of the reduction has been hidden.

Basically, we will compare a quantum Hamiltonian, H, with a quasi-
classical Hamiltonian, H?C, with responding energies E and E?C, and ground
states ¥ and ¥9C and we will show (modulo a fact about the quasi-classical
limit) that:

E < (U9°, HUOC) = EQC 4+ 0(Z°/3)

E9C < (¥, HOCT) = E+4 0(Z°/3)

where E ~ Z7/3 and the Scott correction is O(Z?2).
To be precise, the N-electron charge Z atomic Hamiltonian acts on

LIR3N by
Al z 1
H= (—A~ - —) +yY —— 1
22 g) L ) M
= j
where a point in R*" is written as (z;,...,zy) with z; € R® and L2 means
those functions ¥(z,...,zn) in L® which are antisymmetric under inter-

changes of coordinates.
The Hamiltonian H has several simplifications. We ignore electron spin
which affects the statistics. It can be easily accommodated by changing the
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constants in the discussion below. We ignore corrections due to a finite nuclear
mass. We ignore relativistic corrections.
What will concern us is the total binding energy:

E(N,2)= igf(\Il,H\Il) = inf spec(H)

and
E(Zy=E(N=2,2)

We will henceforth take NV = Z without further comment.

To describe the quasi-classical problems, we describe the Thomas-Fermi
model (invented by Thomas [16] and Fermi [3]). This posits an electron gas
with density p(z) obeying

/ p(z)dz = Z (2a)

and energy given by

Errlp) =d [ s - [l z+ 5 [E2E0 o)

where d is the universal constant %(;13;)5/ ® defined so that the sum of the
first IV eigenvalues of the Dirichlet Laplacian in a cubic region of volume V

is asymptotic as N — oo to
dV (N/V)3/3

Thus, the first term is a quasi-classical limit of the kinetic energy term in (1)
and the other terms are clearly the nuclear attraction and electron-electron
repulsion.

According to Lieb-Simon [7,8], there is a unique p, call it pZ, minimizing
ETF(Z) = inf{€rF(p)|(2a) holds; p € L* N L3/3}
and moreover,
E(Z2)/E™"(Z) -1 )

as Z — oo.

It is fairly easy to determine the Z dependence of TF theory:
P () = 227 (2P
ETF(Z) — Z7/3ETF(1) = Z7/3eTF
In what follows, a critical role will be played by the TF potential

Z _
p3F(z) = e /|w — 7'  (y)dy
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THE SCOTT CORRECTION AND THE QUASI-CLASSICAL LIMIT

Note that the Euler-Lagrange equations for minimizing £ read
5
S = 4)
Equation (3) says that E(Z) ~ errZ"/® as Z — oco. There has been
work on the next two terms in the asympototic series. Scott [11] looked at
the situation where the electron repulsion is dropped and the N-body problem
reduces to a one-body problem (Hydrogen atom), which can be exactly solved.
He noted the leading corrections to the Thomas-Fermi analog for this model
of order Z? came from the inner shells where the electron repulsion shouldn’t
matter; so he posited that the O(Z?) term was the same for the true atomic
case. That
E(Z) = errZ™® + esconZ® + 0o(Z?) (5)

was proven recently by Hughes [4] and Siedentop-Weikard [13]. A recent
preprint of Ivrii-Sigal [5] provides a new proof and extends the result to the
molecular case.

Fefferman-Seco [2] have announced control of the Z%/3 term, which has
a contribution due to electron exchange (computed originally by Dirac [1])
and one from the higher order classical limit (computed by Schwinger [10]).
Actually Fefferman-Seco study mf E(Z,N), not E(Z) but they should be the
same to O(Z°%/3).

These proofs are all over 100 pages and one of our goals here is to hope
for a proof of the Scott correction on one foot.

The quasi-classical problem we will relate to H is given by

VA

HQC = Z(_‘/—\i _ W%F(l)) _ l/pTF(x)p F(y) dedS (6)

i=1 2 I’l _yl

The final term in H9¢ is a number (constant), which needs to be there because
@z overcounts the cnergy of interaction. In fact, the constant is exactly ([8]),

1 -~
L s
3(7F

By scaling n,al F = ZABOTH(Z1 22) so —A; — pgp(t) is unitarily equiva-
lent to Z4/3h/ ~ where
WS = —Z7BA - o F ()
Thus, h9C is a one-body Hamiltonian with & = Z=1/3 and Z — oo is
the A — 0 limit. Let
e?°(2)<ef(2) < -

be the eigenvalues of hc > with eigenfunction nQC z an ©Z ... Then
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E®C€(Z) = inf spec(H?C) = Z‘WZ ePC(2) - 3eTpZ7/3

=
and the one electron density for H9C is
z
c c;z 2
p3°(@) =2 |nf9% (2" a)|
i=1

Our goal is to prove:

THEOREM.

|E(Z) — E9€(2)] <czf’/3+2/@'(;””)—‘5’#613 d3y

where

5p(x) = [pFF (z) — p2C(2))]

The point is that the 6p Coulomb energy is

7731 5/’( )5/’(?/)
‘ 2/ |z -yl

with

~ 11
6p = [5 Z n:()] ] - pi " ()

The leading order for % S"n? is p; by (4), so good control of the classical
limit should imply that §p ~ Z=1/3 50 one expects that

dp(z)ép(y) 5/3 -
[ Mmoo "

or less (Seco [12] tells us that it is less). Thus, the Scott correction (5) would
follow from control of EQC| a one-body problem to O(Z?) and a proof of (7).

We now turn to the proof of the Theorem. We will show that

QC 6p(2)8p(y) 3 13 a
E(Z) < E?°(Z) + + / oot dtdty (8a)

and
EPC(Z) < E(Z) + cZ°® (8b)
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THE SCOTT CORRECTION AND THE QUASI-CLASSICAL LIMIT

To prove (8a), let Y€ be the ground state of H QC so

U (ay,...,an) = (2072 det(fiQC(xj))

with £2€(z) = Z2nRCZ (7132, Then

E(Z) = (99°, HUOC)
= EQ°(Z) 4 (¥9°, (H — HY)¥?C)

Now H — H®C has three terms:

(a) (‘I’QC’ 2 [9972"1«“(1,,,) - Z|$i|_l]‘I’QC) =- fm d3z d®y since

|lz—yl

(UQC, (32, W(:))¥?C) = [W(x)pQC(z)dz for any W.

QC (£),Q€
() (P96, Liq; i ¥9°) = 3/ e dlad’y — Ex(¥°9)
where the exchange energy, Fz(¥) is defined for any ¥ as:

D) = o 1 [pre(@)pe(y) 5. 2
E.z(\Iz)-—(\If,;jm_mjlw)+2/ ey Cady (9)

where

[)\y(.'l,‘) = Z/l\I/(.T,l‘g,...,.’L‘N)Izdsxg...d3.’L‘N

is the one particle density. For determinantal ¥ one can compute Ez(¥)
explicitly and see that

Ex(¥)>0

using the positive definiteness of the kernel |x — y|~!. Thus, this term is
QPR 3 e
P~ ()p™ (¥) g3.. 13

< f Ty d’xd’y.

. JTF/ TF
[ ﬂ—%ﬁ d®z d®y in the definition of H?C.

(M

(¢)  The explicit term
Putting thesec three terms together yields (8a).

To prove (8b), let ¥ be the true ground state of the quantum Hamiltonian
and let p@ be its one particle density. Then

ECC(Z) = (¥, HOCD)
=E(Z)+ (U, (HC - H)¥)
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Qghe calcuéact'ioanf the second term is identical to the one done for
(T®“,(H — HS)U9C), viz

_ 1 [ (81p)(=)(619)(y) 3
(¥, (H9C — H)V) = Ex(¥) — 5 ! Fy ;I Bz d3y

where
(61p)(z) = p%(z) — p"F (2)

By the positive definiteness of |z —y| !, the second term is negative. Now
we need to pull a rabbit out of our hat, namely, an inequality of Lieb [6]:

Ba(¥) < ¢ [ pul@)ia
for any ¥. Thus, by the Schwartz inequality:

1/2 1/2
E°C(Z)< E(Z) + c(/p(x)d3a:) (/p5/3(:c)d3:1:)
Now by definition of p:

//)(x)d3x =27

and by the Lieb-Thirring inequality and the virial theorem:

/p5/3(1')d3x < (¥, -AT)
< [-E(Z)]
< dz'3

by an elementary estimate on the quantum binding energy (for example, drop
the Coulomb repulsion and use Hydrogen eigenvalues). Thus

EQC(Z) S E(z)+clzl/2(z7/3)1/2 — E(Z)+C’Z5/3

proving (8b) and so the Theorem. O

We close with several remarks about the proof:

(1) If one proves that E — E?C = 0O(Z)%/? (i.e., if one proves that

J %—)@ d®z d®y = O(Z°/?)), then the proof shows that

/ (61p)(x)(610)(¥) d3.z'd3y — O(Z5/3)
|z -yl
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so we get some control on the approach of p? to pT¥.

(2) To use these ideas to go to the Z%/3 term, we would need to show that
the 6p Coulomb energies are o(Z%/3), control E?C to O(Z%/%) and get control
of Ex(¥) and Ex(¥9C). Control of Ex(¥9C) should be possible as Dirac
did his calculation. Fz(¥) is a full many-body question.

(3) To prove the Lieb-Simon result on leading order for E(Z), one only
proves some leading order results on the quasi-classical limit. For energy, this
can be done via path integrals [14], coherent states [15] or Dirichlet-Neumann
bracketing [9]. The ép Coulomb energy should be accessible via L' bounds
and local L9 convergence of p.

I'd like to thank G.M. Graf and L. Seco for useful discussions.
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