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S P E C T R A L T H E O R Y OF ELLIPTIC O P E R A T O R S 

O N N O N — C O M P A C T M A N I F O L D S 

M . A . SHUBIN 

Introduct ion 
This paper contains an enlarged and modified part of my five 

lectures given in June 1991 at Nantes during the Summer School 
on Semiclassical Methods. Of course the whole subject as given 
in the title is inexhaustible since even the "simplest" particular 
case of the Schrodinger operator on euclidean space can not be 
exhausted because it contains the whole Quantum Mechanics and 
hence its complete understanding would provide us with the com­
plete understanding of a considerable part of the Universe. So I 
did not pretend to be complete in my lectures and I make even 
less pretensions in this paper. Actually this paper contains only 
a description of some qualitative results on the spectra of elliptic 
operators on non—compact manifolds. The lectures contained also 
a beginning of a quantitative theory, namely integrated density 
of states and applications of von Neumann algebra techniques to 
this topic. I hope that these things some day will be described in 
a second part of this paper but they seemed to me too voluminous 
and disorderly to include in this paper now. 

This paper contains two chapters each having an Appendix. In 
Chapter 1 we discuss the first question which natually arises when 
you begin to study a differential operator: what is the natural do­
main, where this operator is defined? Actually, if the operator is 
to be considered in a Banach space, one can always take minimal 
and maximal domain arriving in this way to minimal and maxi­
mal operators in this Banach space. We concentrate on the ques­
tion whether these operators coincide because then they provide 
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a natural operator in the Banach space associated with the given 
differential operator. We describe several methods of proving the 
coincidence based on finite speed propagation for evolution equa­
tions, regularity results and estimates of the Green function. The 
necessary technique concerning manifolds of bounded geometry 
and behaviour of the Green function is described in Appendix 1 
to this chapter. Note that a non-trivial difference between mini­
mal and maximal operator would mean that boundary conditions 
should be imposed but this certainly goes out of the scope of this 
paper. The only thing we do about it here is that we explain how 
to write the unique solution of the hyperbolic Cauchy problem in 
operator terms in case when the corresponding generating second 
order operator is symmetric but not essentially self-adjoint due 
to the behaviour of lower-order terms at infinity (Theorem 3.4). 

In Chapter 2 we discuss some general topics concerning ellip­
tic operators on manifolds of bounded geometry. Namely first we 
apply the general abstract eigenfunction expansion theorem, de­
scribed in Appendix 2, to provide weighted Sobolev spaces which 
contain complete orthonormal system of generalized eigenfunc­
tions for any self-adjoint operator. We use the ellipticity to nar­
row these spaces by use of regularity theorems. Next we discuss 
Schnol—type theorems giving sufficient conditions for the given 
complex number A to belong to the spectrum if a non-trivial 
and non-square -integrable eigenfunction with an appropriate be­
haviour at infinity is given. 

Some parts of this paper are based on methods and technique 
that were described in [44] and [45], and I felt free to borrow 
from these papers which were only published in a volume of the 
P D E seminar in Ecole Polytechnique. But many of the results of 
[44] are essentially improved here and also some clarifications are 
added. 

We are very grateful to the organizers of the Summer School 
on Semiclassical Methods at Nantes (and especially to Professor 
D. Robert) for providing the opportunity to lecture there and so 
to see the topics discussed here from a renewed point of view. We 
are also very grateful to the Sloan Foundation and M.I.T. for their 
support during the time when this text was being written, and to 
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Maggie Beucler for her careful work of typing the manuscript. 
Numerat iona l convent ion. We numbered all formulas and 

also Definitions, Theorems etc. separately in every Chapter or 
Appendix. Inside a Chapter or an Appendix we refer to a formula, 
Definition, Theorem etc. from the same Chapter or Appendix 
without any indication of the division where it belongs. 

Chapter 1. Minimal and maximal operators . 
1.1. Abstract preliminaries 
Let TC be a complex Hilbert space, A a densely defined linear 

operator in Ti (the domain of A will be denoted D(A)). Suppose 
that A has a closure A or, equivalently, that the adjoint operator 
A* is densely defined (see e.g. [32]). We shall denote by GA 
the graph of A i.e. the set of pairs {u,Au}, u £ D(A). Then 
G-j = GA, i-e- the graph of A is the closure of the graph of A. 
Moreover ~A = A** = (A*)*. 

Now let A^~ be another densely defined linear operator in 

DEFINITION 1.1. A+ is called formally adjoint to A if 

(1.1) (Au,v) = ( t i , A+v), u e D(A), v G D(A+), 

where (•, •) is the scalar product in 7i. 
If A = A+ then A is called symmetric or formally self-adjoint 
Note that since A, A+ are densely defined, both A and A+ have 

closures. 

DEFINITION 1.2. Let be as in Definition 1.1. Then the 
minimal and the maximal operator for A are defined as follows: 

— — A , AmSiX — (^4."^) • 

Note that both Amin and Ama,x are closed and Amin C AmSiX 
i.e. D(Amin) C D(Am„x) and -4max is an extension of -Amjn. The 
important question that arises in analytic situations and will be 
discussed later is whether Am-m = AmSLX or not. In an important 
particular case A = A~*~ the coincidence Amjn = Amax means that 
A is essentially self-adjoint i.e. A is a self-adjoint operator in 7{. 
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Now let us consider a more general abstract context. Let B,B* 
be complex Banach spaces and a continuous non-degenerated 
pairing B x B1 —> C be given which will be denoted (•>•)• Here 
continuity may be understood as separate continuity i.e. conti­
nuity with respect to each variable. Non-degeneracy means first 
that if u G B and (u, t;) = 0 for all v G Bf then u = 0, and second 
that if v G B1 and (u, v) = 0 for all u G # then = 0. Also this 
pairing may supposed to be bilinear as well as hermitean i.e. lin­
ear with respect to the first variable and antilinear with respect 
to the second variable (in the latter case we shall denote it by 
( v ) . Now let two pairs Bi^B1^ i = 1,2, be given with continu­
ous non-degenerated pairings described as before. Suppose that 
A : B\ —> #2 and Af : B'2 —* B[ are two densely defined linear 
operators. Then At is called a formally transposed operator to A 
if 

(1.2) (Au,v) = (u,Afv), u G D{A\ v G D(Af). 

If we have hermitean pairings between B{ and B\ and (1.1) is 
satisfied for two densely defined linear operators A : B\ —> B2 
and : Bf

2 —> B[ then A + is called formally adjoint to A. In 
both situations the following definition is applicable 

DEFINITION 1.2'. Amin = A, Amax = (A1)* or Amax = (A+)* 
Here A is the operator whose graph is the closure of the graph 

of A in B\ x B2 and (A*)* and (A+)* are naturally defined as 
the maximal operators such that the following natural identities 
hold: 

(1.3) ((Af)*u,v) = (u,Afv), u G D((Afy), v G D(Af), 

(1.3') ((A+)*u,v) = (tx, A+v), u G £>((A+)*, v € £>(A+). 

It is easy to see that Amm is well defined as for the case of Hilbert 
space and Amin G AmaiX. Now it is natural to ask about the 
conditions of coincidence Amin and Amax. 
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Sometimes it is useful to pass from a couple A^Af (or A, A + ) 
to the matrix 

( 1 . 4 ) 
' 0 A] ( [ 0 A \ 

A= [A* Oj (°r [A+ 0 j } ß'2 ф Bi - i 
В2фВ[ 

Then we naturally have a* = a (or a+ = a). 

Propos i t ion 1.3. Equality amjn = amax is equivalent to the si­
multaneous fulfilment of two equalities 

( 1 . 5 ) 

^-iriin — ^max Blid (A )min — (A )max (or (A )min — \A )max)-

(So the trick of passing to the matrix operator a allows to 
reduce the proof of the equalities (1.5) to a similar equality for a 
"symmetric" operator a.) 

Proof. It is easy to check that 

a = " 0 A 
A' 0 . 

and a* = " 0 (Af)*~ 
A* 0 

(and similar equalities for hermitean case are valid too). The 
Proposition immediately follows. • 

Now it it well known that for a symmetric densely defined op­
erator A in a Hilbert space essential self-adjointness is equivalent 
to two equalities 

( 1 . 6 ) Ker (A* - il) = 0, Ker(.4* + il) = 0 

It easily follows that actually they are equivalent to inclusions 

( 1 . 7 ) Ker(A* - il) C D(A), Kev(A* + il) C D(A) 

(see e.g. [411). Also the following proposition is sometimes useful. 
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ropos i t ion 1.4 ([42]). Let /H\^H2 be Hilbert spaces, 

A : Hi - » И 2 , ^ : П2 -> Hi 

a pair of densely defined linear operators and (1.1) is fulfilled. 
Suppose that the operator A+A is densely defined and essentially 
self-adjoint. Then Amm = 4 a x and (A+)min = (A+)max-

This statement actually means that A and A+ are "essentially 
adjoint" to each other i.e. 

A = ( A + ) * and A+ =A*. 

So Proposition 1.4 in a sense gives an inverse statement to the 
well-known fact (first established by von Neumann) that if A is 
a closed densely defined linear operator in a Hilbert space then 
the operator A*A is self-adjoint. 

Now we shall recall some facts concerning a connection between 
self-adjointness and evolution equations (see e.g. [4]). First let 
us consider the following Cauchy problem for functions of a real 
variable t with values in a Hilbert space where a densely defined 
symmetric operator A is given: 

( 1 . 8 ) ü = —A*u, u(0) = ¿(0) = î/i . 

Here u = - ^ j , u = and the derivatives are understood as the 
limits in the norm-topology of 7i and they may be supposed con­
tinuous in this topology. Also the solutions u may supposed to be 
defined for all real values of t. Actually we shall only speak about 
the uniqueness of the solutions of (1.8) and in the context given 
all the uniqueness statements are equivalent. So the uniqueness of 
the solution of (1.8) can be formulated as follows: if u : R —> 
u is continuous, u exists in the norm sense and are continuous, 
u(t) 6 D(A*) for every t € R and (1.8) are satisfied for all t with 
UQ = u\ = 0 then u = 0. 
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Propos i t i on 1.5 ([4]). Suppose that A is semi-bounded from 
below i.e. 

(1.9) (Au,u) > -C(u,u), u e D(A) 

with a real constant C. Suppose that we have the uniqueness 
of solutions for the Cauchy problem (1*8). Then A is essentially 
self-adjoint. 

The idea of the proof is as follows: if A is not essentially self-
adjoint then it has at least two different semi-bounded from below 
self-adjoint extensions. But for any such an extension A we can 
write the solution of (1.8) in the form 

( 1 . 1 0 ) u{t) — (cos VÀt) sin yAt 
H 7=—ui 

VA 

(the choice of the branch of the square roots does not matter 
because both functions 

sin fit 
[I i—• cos /it, /i i—• 

are even). So using two different semi-bounded from below exten­
sions A\ and A<i in (1.10) and taking the difference u = — u^ 
of two solutions ui and u<i obtained in this way with the same 
initial values u0,ui £ D(A) we shall come to a non-zero function 
satisfying (1.8) with vanishing initial values. 

Observe that if, vice versa, A is essentially self-adjoint (and 
semi-bounded from below) than even the uniqueness of the weak 
solution of (1.8) can be easily proved by the use of the Holmgren 
principle. 

There is a possiblity to use a first-order evolution problem (of 
heat equation type) 

(LU) ù = — A*u, u{0) = UQ. 
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Then the statement of Proposition 1.5 is still t rue if we change 
(1.8) to (1.11) in this statement (and the proof does not change). 
But there is also a possibility to avoid the semiboundedness re­
quirement (1.9) by considering a Schròdinger-type evolution equa­
tion 

(1.12) ù — iA*u, u(0) = UQ. 

Let us introduce "deficiency indices" 

(1.13) K± = dimKer(A* ± il) 

(which may be non-negative integers or +oo) 

P r o p o s i t i o n 1.6 ([4]). Suppose that K+ = K - and there is the 
uniqueness of solutions for the Schrôdinger type Cauchy problem 
(1.12). Then A is essentially self-adjoint. 

Here the uniqueness should be understood in the sense which 
is similar to that described before Proposition 1.5 for the problem 
(1.8) (of course only continuity of u and ù is required). The idea 
of the proof is also similar to the one of the Proposition 1.5 (the 
condition A v + = K - is necessary and sufficient for self-adjoint 
extensions to exist and K+ = K - > 0 implies that there are at 
least two such extensions). 

1.2. Minimal and maximal operators , essential self-
adjointness for differential operators (basic definit ions 
and nota t ions ) . 

Let us consider a linear differential operator 

(2.1) A : С°°{Х,Е{) C°°(X.Eo). 

where X is a C°°-manifold, E\,E2 are complex C°°-vector bun­
dles over X , C°°(X, Ei) is the space of all C°°-sections of E{ over 
X. 
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When we want to study such a differential operator, especially 
spectral properties of this operator, the first thing to be done 
is to supply it with an appropriate domain so as to make it a 
reasonable operator in a Hilbert space or, more generally, in a 
Banach space. So we begin by describing different possibilities to 
do this. 

Let ft = ft(X) be the vector bundle of (complex) densities (or 
1-densities) on X. Integration of densities gives a linear map 

j : C0°°(X,ft) uj H — • j a;, 

where C£°(X,E) for any vector bundle E over X denotes the 
space of all compactly supported C°°-sections of E over X. Now 
for any vector bundle E over X we define (following [3]) the dual 
bundle E* = Hom<c(i?, ft). Hence we have a natural bilinear 
pairing of bundles E x E* —> .ft, hence applying integration we 
obtain natural bilinear pairings in sections 

(2.2) 
C0°°(X,£) x C ° ° ( X , £ * ) -> C, C°°(X,E) x C0°°(X,£*) C, 

which we will denote (•,•). Now the transposed operator to A is 
a differential operator 

At : C°°(X,EZ) C°°(X, #!*), 

defined by the identity 

(2.3) (Au,v) = (u,Afv)y u e CZ°(X,E), v e C0°°(X,F*). 

Now let ty(X,E) denote the space of all distributional sections 
of E over X which is the dual space to C£°(X,E*), i.e. the 
space of all linear forms on CQ°(X,E*) which are continuous in 
the usual sense (see e.g. [22], Ch. 2). Then we have a natural 
inclusion C°°(X, E) C X>'(X, E) and the identity (2.3) allows then 
to extend A to a linear operator 
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(2.4) A : V\X,El)-^V\X,E2) 

which we denote A again because it does not lead to a confusion. 

DEFINITION 2.1. Suppose that we are given Banach spaces 
BUB2 such that C0°°(X,£;) C Bi C V\X,E{), i = 1,2, and the 
inclusions Bi C T)\X,Ei) are continuous in the weak topology of 
V\X,Ei) (which means that if lim = u in the norm of Bi 

k—+oo 
then lim (uk,ip) = (u,ip) for every i/> G Cg°(X,Ef)). 

k—+oo 

The minimal operator Amin : B\ —* B2 is the closure of 
A : C0°°(X,Ei) C£°(X,E2) i.e. a linear operator from B\ 
to ^ 2 such that its graph in B\ x B2 is the closure of the set 
of pairs {u,Au} with u G C£°(X,Ei). The maximal operator 
is a linear operator Amax : # i —• #2 such that its domain 
D( imax) = G B\, At/ € # 2 } , where A is applied in the 
sense of distributions (i.e. as in (2.4)) and Amax is a restriction 
of the operator (2.4) (i.e. AmSLXu = An if u G D(AmSLX)). 

It is easy to see that the minimal operator is well defined and 
Amin C Amax i.e. D(AmiTi) C D(Ama,x) and 

Amsix 1S an extension 
of Amm. The important question we will discuss below is whether 
Amin and Amax coincide or not. 

An example of the spaces Bi appears if we have an hermitean 
metric on each bundle £ ¿ , ¿ = 1,2, and also a positive C°°-density 
dfi on X. Then we can define a space LV(X, Ei), 1 < p < 00 which 
is the completion of CQ°(X, Ei) with respect to the norm 

H I , = [/ Kr)№(*)]1/P, 
JX 

where \u(x)\ denotes the norm of u(x) induced by the hermitian 
metric in the fiber. So we can take Bi = LPi(X, Ei), i = 1,2, and 
speak about the coincidence of Am-in and Amax from to Lp2. 
In case of pi = p2 = p we will just speak about the coincidence 
of Amin and Amax in Lp. 

The case when Bi = LPi(X,Ei) can be also viewed as a par­
ticular case of the setting described in Sect. 1.1 if we take B\ — 
LPi(X,E*) with l/p5 + l /Pi = l . 
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Now instead of the usual space L°°(X,E) it is often more 
convenient to use the Banach space C(X,E) of all continuous 
sections of E vanishing at infinity. We shall also denote this 
space by L°°(X,E). It also has a natural non-degenerated dual­
ity with Lr(X, E) but is more convenient than L°°(X, E) because 
C0°°(X, E) is dense in L°°(X, E) (but not in L°°(X, E)). We shall 
also define L?(X,E) = LP(X,E), 1 < p < oo, to be able to use 
the whole scale LP(X,E), 1 < p < oo. 

Now instead of linear duality between E and j£* we can also 
consider an hermitean duality. We will actually use only the case 
when E = E* so E is supplied with a fiberwise positive hermitean 
map E x E Q(X). Then we get a Hilbert space L2(X,E). 
Suppose that we have E\ = E2 = E in (2.1) and A is symmetric. 
Then the coincidence Amin = Amax means that A is essentially 
self-adjoint. 

1.3. Fini te speed propagat ion and essential 

se l f -adjointness . 
Here we describe how the finite speed propagation for hyper­

bolic equations and systems allows to make use of abstract Propo­
sitions 1.5 and 1.6 in order to prove essential self-adjointness of 
some differential operators. The idea to apply uniqueness for evo­
lution equations to prove essential self-adjointness is due to A. Ja. 
Povzner ([31]), it was formulated in an abstract form by Ju. M. 
Berezanskii ([4]) and later rediscovered and applied in geometric 
situations by P. Chernoff ([9]). 

Let X be a Riemannian manifold, A is the scalar Laplacian on 
X. This means that A = -6d where d : C°°(X) -+ A\X) is the 
standard differential (AX(X) is the space of all smooth 1-forms 
on X ) , 6.: A1(X) —• C°°(X) is the formally adjoint operator to 
d. The simplest example of the application of Proposition 1.5 is 
given by the following 

T h e o r e m 3 .1 . Let X be a complete Riemannian manifold i.e. 
all geodesies can be extended indefinitely. Let A : C°°(X) —» 
C°°(X) be a linear differential operator of the form 
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( 3 . 1 ) A = -A + B, ordB < 1. 

Suppose that A is formally self-adjoint and semibounded from 
below on C Q ° ( X ) . Then A is essentially self-adjoint. 

Proof. Consider the Cauchy problem 

( 3 . 2 ) 
d2u _ 

dt2 ~ 
-Au, u\t=o = w 0 , 

au 
t=0 = U\. 

The equation in (3 .2 ) is strictly hyperbolic, the bicharacteris-
tic flow is essentially the geodesic flow on X. Hence due to 
the finite speed propagation we can always find a solution u 6 
C°°(R, C Q ° ( X ) ) provided 1*0,^1 £ C0°°(X). (Here C°°(R, C£°(X)) 
denotes the space of functions u : R x X —> C, such that 
t »—• u(t,-) is a C°°-function of t with values in C £ ° ( X ) ; this 
implies in particular suppu fl ([—T, T] x X) is a compact for ev­
ery T > 0 ) . Hence the standard application of the Holmgren 
principle gives the uniqueness of the Cauchy problem required to 
apply Proposition 1.5. • 

Theorem 3.1 was formulated in a slightly weaker form by P. 
Chernoff ([9]) (for the case when ord B = 0 i.e. when A is the 
Schrodinger operator) though the reasoning given in [9] works 
for the operator ( 3 . 1 ) too. The arguments in [9] directly use the 
evolution equations like (3 .2 ) considering invariance properties of 
domains of operators i.e. they do not appeal to abstract state­
ments like. Propositions 1.5, 1.6. Therefore they allow to prove 
the self-adjointness for all powers of A as well as for self-adjoint 
geometric matrix differential operators e.g. Laplacians or signa­
ture operator d + S on differential forms on complete Riemannian 
manifolds. Remark that the proof of essential self-adjointness of 
d+8 can be done by use of Proposition 1.6 if we use the Friedrichs 
theory of symmetric hyperbolic systems ([13]). Besides any zero 
order terms (which do not change formal self-adjointness) can be 

48 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

added to d + 6 without changing the essential self-adjointness. As 
we will see below this is in a sharp contrast with the behaviour 
of the second order operators where lower order terms may be of 
crucial importance. 

Observe that the essential self-adjointness of pure Laplacian A 
(without lower order terms) on differential forms on a complete 
Riemannian manifold was first stated and proved by M.P. Gaffney 
[14-16] with the help of cut-off functions and Friedrichs mollifiers, 
and independently by W. Roelcke [34]. H.O. Cordes [10] used a 
beautiful inequality technique to prove essential self-adjointness 
of the powers of the scalar Laplacian and some Schrodinger opera­
tors. The essential self-adjointness of generalized Dirac operators 
on complete Riemannian manifolds was proved by M. Gromov and 
H.B. Lawson ([21]). 

There exist a lot of results about essential self-adjointness of 
elliptic operators in Rn or in open subsets of Rn. We shall mention 
only a very small part of them which is most closely connected 
with the results on manifolds that we have discussed here. 

The essential self-adjointness of semi-bounded elliptic second-
order symmetric operator in Rn was first proved by E. Wienholtz 
([49]; see also a very simple exposition for the Schrodinger oper­
ator in the Glazman's book [18]). 

Now let us mention the following Titchmarsh-Sears theorem 
(see [48], [39] and an exposition in [5]). 

T h e o r e m 3 .2 . Let A = —A + V(x) be a Schrodinger operator 
on Rn and V(x) > —Q(\x\), where Q is a positive non-decreasing 
function on [0, oo) such that 

(3.3) 1 Q(ry^2dr = oo 

Then A is essentially self-adjoint. 

Observe that condition (3.3) is satisfied for Q{r) = (1 + r)a if 
and only if a < 2. On the other hand the Schrodinger operator 
with the potential V(x) = — (l + \x\2)a/2 is essentially self-adjoint 
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if and only if a < 2 (see [5]) which shows that the condition 
(3.3) is relatively precise. Note that if we consider the classical 
Hamiltonian on R2n 

tf(p,<?) = H 2 - ( i + M2r/2 
corresponding to the quantum Hamiltonian A = — A — (1 + 
|a:|2)Q'/2 then the condition a < 2 is equivalent to the complete­
ness of the classical dynamics for H (i.e. the existence of solu­
tions for the corresponding Hamiltonian system for all values of t-
variable). Hence in this example the properties to be well-defined 
for the corresponding classical and quantum systems are equiva­
lent though no direct connection has been established. Note that 
the completeness condition for the manifold in Theorem 3.1 (and 
in other similar more general results mentioned before) are also 
in fact conditions of completeness of the corresponding classical 
systems. We refer the reader to P. Chernoff [9] for a beautiful 
speculation why lower order terms do not mat ter for the first-
order operators from this point of view: first-order operators cor­
respond to relativistic systems and no conditions are needed to 
infinity because the particle never gets there. 

Theorem 3.2 was improved and generalized in many directions. 
T. Ikebe and T. Kato ([23]) extended it to Schrôdinger operators 
with magnetic field so as to include quantum Hamiltonians of 
Stark and Zeeman effects. Many improvements and generaliza­
tions (e.g. for the cases where no spherically symmetric minorante 
is required) were made by F.S. Rofe-Beketov and his collabora­
tors (see e.g. [37], review papers [35], [36] and references there). 

T. Kato ([24]) used the evolution equation approach by P. 
Chernoff to prove that if A = —A + V is a Schrôdinger oper­
ator in Rn with a real valued V G C°°(Rn) and A > —a — b\x\2 
on C£°(Rn) with some constants a and b then A is essentially self-
adjoint. This means that we can use a minorante like —a — b\x\2 
not only for the potential V but also for the operator A itself. 

Many other results and references about the essential self-
adjointness of Schrôdinger operators in Rn can be found in [32], 
vol. II. 
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Recently Igor Oleinik ([30]) proved the following generalization 
of Theorem 3.2 to manifolds. 

T h e o r e m 3 .3 . Let X be a Riemannian manifold, and aasume 
that there exists a point XQ G X such that the exponential map 
expXo : TXQX — J » X is a diffeomorphism. Consider the Schrodinger 
operator A = —A + V(x) on X and suppose that V(x) > —Q(r), 
where r = dist(x, x$) and Q is a positive non-decreasing function 
on [0, oo) satisfying (3.3). Then A is essentially self-adjoint. 

The condition on the exponential map is probably not nec­
essary but let us mention that it is satisfied for all rotationally 
symmetric manifolds (e.g. for the hyperbolic space). 

The proof of Theorem 3.3 may be given along the same lines 
as for the euclidean case X = Rn with the standard metric (see 
e.g. [5]) but with the use of refined Green's formulas and cut-off 
functions. 

Now we turn to the situation when a formally self-adjoint el­
liptic second-order operator is not essentially self-adjoint due to 
the lower order terms. What happens with the solution of the 
corresponding hyperbolic Cauchy problem like (1.8)? Can it be 
expressed in operator terms by a formula like (1.10)? We shall 
give now a more precise statement of the problem and the answer 
in a simplest case. 

Let X be a complete Riemannian manifold and A = A + V 
be the Schrodinger operator with a real-valued potential V G 
C°°(X). Hence A is formally self-adjoint but not necessarily 
semibounded. We can consider the Cauchy problem (3.2) which 
will be a strictly hyperbolic problem, hence well posed in spaces 
like C0°°(X), C°°(X) , L2COMP(X), L2OC(X) etc. due to the finite 
speed of propagation. 

Now suppose that UQ,U\ G CQ°(X). Then we can find a 
unique u G C°°(R, C0°°(X)) which is a solution of (3.2). Ob­
viously G D{A) = CQ°(X) for all t G R, in particular 
u(t, -) G D(AM-M) for all t G R n . How can this solution be ex­
pressed in operator terms? 

Note that A is a real operator hence it has equal deficiency in­
dices (complex conjugation interchanges Ker(A* — il) and 
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Ker(A* + ¿7)). Therefore there exists a self-adjoint extension 
of A which we shall denote A (it may not be unique,namely when 
the deficiency indices do not vanish). 

We shall need cut-offs AM for the operator A which are defined 
as E((—N, oo); A)Aj where E(I] A) means the spectral projection 
of A corresponding to the interval I i.e. E(I; A) = Xi(A) where 
Xj : R -» {0,1}, X/(A) = 1 if A € / , X/(A) = 0 if A $ I. Hence 
AN > —NI. Now for every u0,ui G CQ°(X) we can consider 

( 3 . 4 ) û j v ( * ) = (ca&ty AN)UQ -
sin t\J Â]Sf 

j==—^\ 
V AN 

(The choice of the branch for the square root is not important be­
cause the functions A i—• cost>/Â and A i—• (sin ty/\)/y/X are even; 
the fraction in the right hand side of ( 3 . 4 ) should be understood 

as the result of substitution of AN into the second function.) Now 
we can state the result. 

T h e o r e m 3.4 . Let A be a Schrôdinger operator on a complete 
Riemannian manifold X with the real potential V G C°°(X). Let 

u be the solution of (3.2) with initial values u0,ui G Co°(X), A 
a self-adjoint extension of A , UN are defined by (3.4). Then 

( 3 . 5 ) ùN e C°°(R,L2(X)) n C°°(R x X) 

and 

( 3 . 6 ) lim ûN = u in C°°(R x X). 
N—•oo 

In particular the limit in (3.6) does not depend on the choice of 

the self-adjoint extension A. 

Proof. The inclusion G C°°(R,L2(X)) is obvious since UQ,UI 

belong to the domain D(Ak) hence to D(AkN) for every k G Z+. 
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The operator inclusion i c i * and the ellipticity of A imply now 
that uN e C°°(R x X). 

Let us decompose Uj, j = 0 ,1 , as follows 

UJ = Uj,N + UJ = U 

U'j,N 

Then (3.4) can be rewritten as 
4K> u"j,N 

= E((-cx>,-N};Ä)Uj. = Я( ( -ЛГ,оо) ; 

ÜN(t) 

where 

v!N(i) = cosi AjsfuL N 
s i n t \ / ' A N 

\/'AN 
" U0,N + *W1,JV " U0,N + *W1,JV 

Now note that u9N is the solution of the Cauchy problem (3.2) 

with u$,ui replaced by UO,NIUI,N because AkNu^N = Akul-N for 

every k 6 Z+, j = 0 ,1 . Since lim Akuf! N = 0 in £ 2 p f ) for every 

k £ Z, it follows due to the ellipticity of A that lim u9\ N = 0 

in C°°(X) , j = 0 , 1 , hence lim uft = 0 in C°°(R x X ) and 
N—•00 

lim u\ N = w7- in C°°(X) , 7' = 0 ,1 . It remains to notice that 
then lim u'N = u in C°°(R x X ) due to the well known local 

N-+00 7V V Y 
energy estimates for the Cauchy problem (3.2). • 

1.4. Minimal and maximal operators on manifolds of 
b o u n d e d geometry . 

We shall use definitions, notations and facts about manifolds 
of bounded geometry, which are collected in Appendix 1 to this 
Chapter. 

Let X be a manifold of bounded geometry, E, F are vector 
bundles of bounded geometry on X and 
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(4.1) A: CZ°(X,E)^CZ°(X,F) 

is a C°°-bounded uniformly elliptic differential operator of order 
m. Recall that A can be extended to a bounded linear operator 

(4.2) A : W™(X, E) - Lp(X, F), 1 < p < oo 

Lemma 1.4 from Appendix 1 easily implies that Amjn = ^4max in 
LP(X, E) if 1 < p < oo. More exactly 

P r o p o s i t i o n 4 .1 . If 1 < p < oo and A is a uniformly elliptic 
operator (4.1) then AmiIi = Amax in LP(X,E) and 

(4.3) £>(Amin) = D(Am!,x) = W™(X,E). 

Proof. Clearly due to the continuity of A in (4.2) 

W™(X,E)cD(Amin)cD(A 
max / 

But Lemma 1.3 from Appendix 1 implies that 
£>(Amax) C W?{X,E\ hence D(Amin) = D(Am*x) = W?(X,E). 
• 

Corollary 4 .2 . Let A be as in Proposition 4.1 with E = F and 
let E have a hermitean C°°-bounded scalar product on fibers, 
(•,•) is the scalar product on L2(X,E) induced by the scalar 
product on ubers and the Riemannian density on X. Let A be 
formally self-adjoint with respect to this scalar product. Then A 
is essentially self-adjoint in L2(X,E). 

Proposition 4.1 does not cover exceptional values p = 1 and oo 
but actually Amjn = AmSiX also for the case p = 1. As to the case 
p — oo, a natural modification is necessary: we have to consider 
L°° = C instead of L°° (see notations in Sect. 1.2). So we have 
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T h e o r e m 4.3 ([45]). Let A be a, C00-bounded uniformly elliptic 
operator acting as in (4.1). Then Amin = Amax in LP(X,E) for 
all p G [1, 00]. 

Following [45] we shall give a proof that uses the theory of 
operators with a parameter. A much more complicated parabolic 
operation approach was suggested by Yu. A. Kordyukov [27],[28] 
who proved the same statement in the case where E = F and A 
has a positive-hermitian principal symbol. Many authors have 
obtained the equality Am\n = AmSiX (in L1 or C) or results which 
imply this in various special cases. E.B. Davies [12] obtains such 
results for second order operators on homogeneous spaces, Lie 
groups and on some more general manifolds. The work of R.S. 
Strichartz [47] also treats the second order case on manifolds. T. 
Kato [25] studies the Schrodinger operator on Rn with non smooth 
potential. H.B. Stewart [46] studies strongly elliptic operators in 
the Euclidean case and obtains resolvent estimates in the case 
p = l ,oo . He also refers to some unpublished seminar notes of 
Masuda. 

First we shall suppose that the following Agmon-Agranovich-
Vishik condition is satisfied: 

(H) E = F and there exist constants p £ C and C > 0 with 

\p\ = 1 such that| |(am(i/) - /QA)—11| < C for all v 6 T * X 

with \v\ = 1, A > 0. 

Here am is the principal symbol of A, \u\ means the norm of the 
cotangent vector v with respect to the given Riemannian metric 
and || • || is the operator norm in fibers of E which is taken in 
local trivi&lizations of E making it a vector bundle of bounded 
geometry (see Appendix 1). 

The following Lemma summarizes the necessary part of the 
Agmon-Agranovich-Vishik theory of the operators satisfying (H) 
(see e.g. [1], [2], [7], [40], or [41]): 

L e m m a 4.4. There exists Ao > 0 such that for A > Ao the 
operator A - Xpl : W™+\X,E) W{(X,E) is bijective for 
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every £ 6 R with a bounded inverse (A - A/))"1 : W$(X,E) -> 
W ^ ' O ^ - E ) satisfymg the estimate 

(4 -4: | | ( Л - A / O ^ u l U - n + У'т\\(А - Xpy^Wm+t-! + ... 
+ \\\(A-\p)-1u\\i<C\\u\\i 

for every u € W^X, E). Here \\-\\3 denotes the norm in W^X, E) 
and C > 0 is a constant which is independent of u and of A. 

Proof. We first notice that it is enough to prove the result with A 
replaced by p~xA, which satisfies ||(/?_1am(:r,£) — A)""11| < C, x £ 
X, |£| = 1. This is the usual uniform Agmon condition so we can 
apply the Seeley construction of a local parametrix of A — A) 
which will satisfy uniform estimates. (See [40].) We then get 
a global parametrix by using the uniform partition of unity of 
Lemma 1.3 in Appendix 1. (Making use of the fact that A is a 
differential operator, one can give simpler proofs, see for instance 
[ 4 1 ] . ) • 

Later on we shall abbreviate W£(X,E) to W2S, LP(X,E) to 
Lp etc. 

Let / € C°°(X) have the property that u(x,dx)f is a C°°-
bounded function for every C°°-bounded vector field v. Then: 

(4.5) e ^ o i o e * = A + Bf, 

where Bf is a C°°-bounded differential operator of order m — 1. 
We then have: 

ef o (A - Xp) o e"f = (A - Xp) + Bf, 

and if we choose A > Ao, where Ao is given in Lemma 4.1, then in 
the sense of bounded operators from W2m+^ to we can write 

(4.6) o (A — Xp) o e * = (l + Bf(A-\p)-1)o(A-\P). 
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If A > 0 is large enough (depending only on the bounds of daf for 
I < \a\ < min canonical coordinates), the norm of Bf(A—A/))""1 : 
L2 —* L2 is smaller than ^. We conclude that the right hand side 
of (4.6), viewed as an operator W™ —> L2, is bijective with a 
uniformly bounded inverse when A > Ai, and Ai > 0 is large 
enough. The identity (4.6) is of course to be understood in the 
sense of distributions, but we have: 

L e m m a 4.5. Let f be as above. Then there exists a constant 
Ai > 0 depending only on the bounds of daf for 1 < \a\ < m 
(in canonical coordinates) such that for A > Ai the uniformly 
bounded inverse, G\ of the operator A — \p : W™ —• L2 (which 
exists according to Lemma 4.4) has the following property: The 
operator o G\o (which a priori maps L2nSt into W™loc) has 
a bounded extension L2 —• W™, and the norm can be bounded 
by a constant which is independent of A and of /. 

Proof. If / is a bounded function, then multiplication by is 
a bounded operator on all the spaces and we see that o 
G\ o e~f is the inverse of the operator (4.6), and the proposition 
follows in that case. If / is not a bounded function, we let ip(s) 
be a smooth increasing real valued function with ip(s) = s for 
- 1 < s < 1, ij>(s) = 2 for s > 3, if>(s) = - 2 for s < -3 and 
put %l>€(s) = e"V (es ) , for 0 < e < 1. Notice that \d*ip€(s)\ < Ck 
for k = 1, 2 , . . . , where Ck are independent of s and of e, so that 
the functions f€=:tp€of satisfy \daf€(x)\ < Ca for 1 < |a | < m, 
with Ca independent of e. We can then apply Lemma 4.5 with 
/ replaced by f€. We conclude that e^€ o G\ o e~f€ is bounded 
as an operator L2 —> W™, uniformly with respect to A and e. If 
u G L2 fl then for e > 0 small enough, we have f€ = / on 
the support of u, and if K is an arbitrary compact subset in X , 
then for e > 0 small enough, we have e^G\e^^u = efeG\e~f€u 
on K, hence \\e^G\t~fu\\mj< < C||u||0, with a constant C > 0 
which is independent of u and K. Here || • \\M,K denotes the W2m~ 
norm over K. Since K is arbitrary, we conclude that G\t~^u 
belongs to W2m and G\e~^u\m < C\\U\\Q. It is then clear that 
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o G\ o e ^ extends to a bounded operator L2 —» W™. • 

Notice that the distribution kernel of oG\oe~~f is of the form 
ef(x)~~f(y)KGx(x,y), if we denote the distribution kernel of G\ by 
Kox(x,y). Also notice that JiTg^ is C°° outside the diagonal. We 
shall apply the above result with / = fx(y) = (t + l)d(x, y), where 
d is the function constructed by Kordyukov (see Lemma 2.1 in 
Appendix 1). Here x may be an arbitrary point of X , and t > 0 
may be arbitrary but fixed. Then the hypotheses of Lemma 4.5 
are satisfied uniformly when x varies in X and as in Theorem 2.2 
of Appendix 1 we obtain: 

L e m m a 4 .6 . Let t > 0. Then there exists \(t) > 0 such that 
for X > X(t) we have the following: For every S > 0 and all 
multiindices a,/3 there exists CQ q & > 0 such that 

(4.7) 
№d¡Gx(x,y)\ №d¡Gx(x,y)\ for all x, y € X with d(x. y) > S. 

The study of Kqx m the region d(x,y) < 6 goes through ex­
actly as in section 3 of Appendix 1, and we obtain the following 
analogue of Theorem 3.7 of Appendix 1: 

T h e o r e m 4 .7 . Let t > 0. Then there exists X(t) > 0 such that 
for X > X(t) we have the following: For all multiindices a, /3 there 
exists a constant Cayp > 0 such that when m < n and x ^ y: 

(4.8) №d¡Gx(x,y)\ < Ca^d(x,y m-n-\a\-\/3\e-td(x,y) 

and when m > n and x ± y: 

(4.9) 
№d!Gx(x,y)\ 

< Ca,p(l +d(x,y m-n-\a\-\ß\ J l o g ^ y))\)e-td(X>y> 

We here also notice that it is well known that the kernel is 
locally integrable in y for every fixed x and in x for every fixed y. 

We have the following result where the only assumption is that 
X is of bounded geometry: 
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L e m m a 4.8. Let B(x,r) = {y € X]d(y,x) < r}. There exists a 
constant C = C(X) such that for all x £ X and r > 0: 

(4.10) Vol(B(xyr)) < eCr. 

Proof. We supply a simple proof for the sake of completeness. 
A more general result due to Bishop, can be found in the book 
of M. Gromov [20]. We shall use reasoning as in the proof of 
Lemma 1.2 of Appendix 1. Let us take a maximal system of 
points {xj\j = 1 , 2 , . . . , N} C B(x, r) such that the balls B(xiJe) 
and B(XJ,S) do not intersect if i ^ j . Then B(x, r) will be covered 
by the balls B(xi,2s), ¿ = 1,2, . . . ,N. Now evidently 

N < Ci (e )VolB(s , r ) , where d(e) = [inf VolB(x,e)]. 

Since the ball B(x,r -f s) is covered by the balls B(xi,3e), i = 
1 , . . . , iV, we have 

Vol V(x,r + e) < C{e) Vol V(x,r) 

where C(e) = Ci(e) sup Vol B(x,Ze). Now (4.10) evidently fol-
xex 

lows. n 
Using the lemma one obtains the following corollary of Theo­

rem 4.7. 

Corollary 4.9. There exists A0 > 0, such that if A > A0, then: 

(4.11) 

sup 
xEX 

\KGx(x,y)\dy < +oo, sup 
vex 

\KGx{x,y)\dx < +oo. 

Proof. Using (4.8), (4.9), it is easy to see that 
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sup 
x£Xy\x — y\<6 

\KGx(x,y)\dy < + 00, 

sup 
yex\x-y\<6 

\KGx(x,y)\dx < + 0 0 , 

so we only have to estimate the corresponding integrals over the 
domain |x—y\ > 6, and here we may use (4.7): We get for A > X(t) 

J\x-y\>6 
KGx(xjy)\dy<Ct 

r+00 

0 
e-td(*>y)dy = Co 

+ 00 

Jo 
e " t r W ( r ) , 

where V(r) = Vol(i?(x, r ) ) . We choose t strictly larger than the 
constant " ¿ 7 " which appears in Lemma 4.8. Then the last integral 
is convergent and an integration by parts gives: 

poo 

Jo 
e"irdV(r) 

poo 

Jo 
te-frV(r)dr < f 

'0 

tetc-t)rdr = t/(t-C). 

The same estimate is valid for the x-integrals and the corollary 
follows. • 

From now on we take A > 0 sufficiently large so that Corollary 
4.9 applies. By Schur's lemma (see e.g. Lemma 18.1.12 in [22], 
vol. 3) we then know that the restriction of G\ to CQ° has a 
unique bounded extension Lp —> Lp, when 1 < p < 00. It is also 
easy to see (using also (4.11)), that G\ has a unique bounded 
extension, L°° —• L°°. Working with some fixed p, we denote this 
extension G\. For u £ CQ° we have (A — \p)G\u = u, and using 
the continuity of G\ in Lp and the continuity of A — Xp for the 
weak topology of distributions, we get: 

(4.12) (A - \p)Gx = I on Lp 
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Let u £ D(Ama>x) so that u and Au belong to Lp. Then if <p £ CQ°, 
we get formally: 

(4.13) 
{GX{A - Ap)«, y ) = ( ( A - \P)u, G*x<p) = (ti, ( A - A,)*Gfr) , 

where the scalar products are taken either in L2 and * indicates 
that we take the formal complex adjoint in the sense of distri­
butions. To justify these manipulations we may use the cut-off 
functions constructed as follows: 

(4.14) XN{X) E 
l<i<N 

XN{X 

where {<fii\i = 1 , 2 , . . . } is the partition of unity described in 
Lemma 1 .3 of Appendix 1. Clearly XN € C Q ° ( X ) , 0 < XN < 1 
and for every compact K C X there exists N such that XN = 1 
in a neighbourhood of K. Moreover IC^XAH ^ Ca in canonical 
coordinates uniformly with respect to TV. Now we can begin with 
the obvious equality 

(GXXN(A - \p)u, tp) = (u, (A - \P)*XNG*X<P) 

and then take limit as TV —» oo. Using the boundedness G\ : 
Lp —+ Lp in the left-hand side and the estimates ( 4 . 8 ) , ( 4 . 9 ) in the 
r ight-hand side we shall conclude that the limits exist and ( 4 . 1 3 ) 
is fulfilled. Now (A — \p)*G\ip = as can be seen by replacing 
u by a C£°-section ifr in ( 4 . 1 3 ) and using that G\(A — \p)ift = 
G\(A - \p)ib = tf>. Thus ( 4 . 1 3 ) reduces to: 

( 4 . 1 5 ) (G\(A - \p)u,(p) = (u,<p). 

and varying <p we conclude that: 

(4.16) GX(A -Xp) = I on D(Am!lx). 
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Thus we have proved that for A sufficiently large, (A — Xp) is 
bijective from D(AmaiX) onto Lp and that the inverse is G\. 

We can now end Proof of Theorem 4.3. First suppose that (H) 
is satisfied. Let u £ D(AmSLX) and v = Au. Let Wj, j = 1 ,2, . . . 
be a sequence of C^-sect ions converging to v — Xpu in Lp, and 
put Uj = G\Wj £ Lp fl C°°. Then Uj —> u in Lp and Auj = 
Wj + A/ray —• u in Zp. It only remains to prove that Uj belongs 
to D(Am\n). We note that if Qj = supp(^j ) then 

SUP* fnji1 X i v ( ^ ) ) | A ' G A ( ^ , y ) M ? / and 
suPj,eftj f('L~~XN(X))\KG\(x'>y)\dx tend to zero when TV tends 

to infinity, and similarly when (1—XN(X))KGX 1S replaced by some 
z-derivative of the same function. (Indeed, this is proved in the 
same way as Corollary 4.9.) Hence (still with j fixed) XNuj uj 
and A(XNUJ) —* AUJ in Lp when N —>• oo, and the proof is 
complete provided (H) is satisfied. 

Now consider the general case. Here we just have to apply 
Proposition 1.3. We may assume that E and F are uniformly 
C°°-bounded hermitean vector bundles. Let A+ denote the for­
mal complex adjoint of A, and consider the uniformly elliptic C°°-
bounded formally self adjoint operator: a : C°°(M;F 0 E) —• 
C°°(M; F 0 E) given by the matrix 

a = / 0 A\ 
L 4 + 0 

We notice that a satisfies (H) with p = \ / - - I 7 so we know that 
amax = cimin. It follows due to Proposition 1.3 that Amax = Amjn 
q.e.d. • 

A p p e n d i x 1. Analys i s on manifolds of b o u n d e d geome­
try. 

In this Appendix we mostly follow [44]. 
A l . l . Prel iminaries . Let X be a Riemannian manifold 

n = d i m X . In what follows we shall always suppose for the sake 
of simplicity that X is connected. Then the Riemannian distance 
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d : X x X —> [0,+00) is well defined; namely d(x,y) is the 
infinium of Riemannian lengths of all arcs connecting x and y. 

Denote by TXX the tangent space of X at a point x G X and 
let expx : TXX —• X be the usual exponential geoddesic map: 
exp^. v = 7(1), where 7 ( i ) is the geodesic (with a canonical param­
eter which is proportional to the arc length) starting at x with the 
initial speed v G TXX, i.e. 7(0) = 7(0) = v. We shall always 
suppose that X is complete or equivalently that expx is defined 
everywhere i.e. for every x G X and v G TXX the corresponding 
geodesic *y(t) can be defined for all t g R . The exponential map 
exp^. : TXX —* X is a diffeomorphism of a ball Bx(0, r) C TXX 
of radius r > 0 with the center 0 on a neighborhood VXyT of £ in 
X . (Actually for a fixed x this neighborhood /7x?r will be the ball 
B(x,r) of the radius r centered at x on the manifold X with re­
spect to the distance d induced by the given Riemannian metric, 
provided r is sufficiently small). Denoting by rx the supremum 
of possible radii of such balls we can define the injectivity radius 
of X as rinj = mfX£xrx- If rinj > 0 then taking r G (0,rt-nj) 
we see that expx : Bx(0,r) —> Ux,r will be a diffeomorphism for 
every x G X. Euclidean coordinates in TXX (associated with an 
orthonormal frame in TXX) define coordinates on Ux^r (by means 
of expx) which are called canonical. 

DEFINITION 1.1 (see e.g. [8] or [33]) X is called a manifold of 
bounded Geometry if the following two conditions are satisfied: 

a) Tinj ^ 0 

b) |V* i2 | < Ck, k = 0,1,2, . . . (i.e. every covariant derivative 
of the Riemann curvature tensor is bounded). 

Note that a) implies that X is complete i.e. all geodesies can 
be extended indefinitely. It follows that X is complete as a metric 
space witlj the metric given by the Riemannian distance and 
every ball {x\d(x,XQ) < r} is compact whatever XQ (E X, r > 0. 

The property b) can be replaced by the following equivalent 
property which will be more convenient for the use here 

b') let us fix any r G (0, rinj) and let UXjr, Ux^r be two domains 
of canonical coordinates y : UXjr —> R n , y ; : Ux^r —> IRn such 
that UXyr fl Ux'ir 7^ 0 : consider the vector function y1 0 y-1 : 
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y(Ux,r D Ux;r) -*• Rn] then 

\d^(y'o y-1^ < CQ>r 

for every multiindex a. 
Examples of manifolds of bounded geometry are Lie groups or 

more general homogeneous manifolds (with invariant metrics), 
covering manifolds of compact manifolds (with a Riemannian 
metric which is lifted from the base manifold), leaves of a foli­
ation on a compact manifold (with a Riemannian metric which is 
induced by a Riemannian metric of the compact manifold). 

Below we shall always use only canonical coordinates with a 
fixed r G (0)rinj). Then all the change of coordinate functions 
have bounded derivatives of all orders. This property allows to 
formulate a correct notion of Cfc-boundedness (k = 0 ,1 ,2 , •••) 
or C°°-boundedness for functions, vector fields, exterior forms 
and other tensor fields on X. Namely a function / : X —> 
C is called C*-bounded if / € Ck(X) and \d«f{y)\ < Ca for 
every multiindex a with | a | < k and for any choice of canonical 
coordinates. A function / : X —» C is called C°°-bounded if 
/ e C°°(X) and / is C*-bounded for every k = 0 ,1 ,2 , • • •. Let 
C*(X) be the space of all Cfc-bounded complex-valued functions 
on X (here k = 0,1,2, • • • or k = oo). Of course C*-boundedness 
of a function / G Ck(X) is equivalent to the estimate |Vfc/(a:)| < 
C but the formulation in local coordinates is sometimes more 
convenient. 

Similarly a vector field, an exterior form on any general tensor 
field on X is called C*-bounded (k = 0 ,1 ,2 , • • • or k = oo) if all 
components of the field in any canonical coordinate system are 
Cfc-bounded as C*-functions of corresponding coordinates (with 
bounds depending only on the order of the differentiation but not 
on the chosen coordinate neighbourhood). 

Let A : C°°(X) C°°(X) be a differential operator of order 
m with C°°-coefficients. We shall call it C°°-bounded if in any 
canonical coordinate system A is written in the form 
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( i . i ) A = E 
|or|<r 

"AVK 

where the coefficients aa are (complex-valued) functions satisfy­
ing the estimates \d^aa{y)\ < Cp for any multiindex ¡3 (with a 
constant Cp which does not depend on the chosen canonical neigh­
bourhood). A C°°-bounded vector field defines a C°°-bounded 
differential operator of order 1. 

Let E be a complex vector bundle on X. We shall say that 
E is a bundle of b o u n d e d geometry if it is supplied by an 
additional structure: trivializations of E on every canonical co­
ordinate neighbourhood U such that the corresponding matrix 
transition functions guw on all intersections UnU' of such neigh­
bourhoods are C°°-bounded i.e. all their derivatives dyguuf(y) 
with respect to canonical coordinates are bounded with bounds 
CQ which do not depend on the chosen pair U,U*Examples of 
vector bundles of bounded geometry are: trivial bundle X x C, 
complexified tangent and cotangent bundles TX(g)C and T*X(g)C, 
complexified exterior powers A£T*X ® C of the cotangent bundle 
(C°°-sections of A£T*X ® C are exterior complex-valued ^-forms 
on X ) , complexified tensor bundles etc. The definition of C°°-
bounded differential operator is easily generalized to the case of 
operators 

(1.2) A : C°°(X,E) -+ C ° ° ( X , F ) 

acting between spaces of C°°-sections of vector bundles of bounded 
geometry E, F (the definition is the same as for scalar operators 
but with the use of the representation (1.1) in canonical coordi­
nates and chosen trivializations. Examples of C°°-bounded dif­
ferential operators in this more general context are the exterior 
differentiation de Rham operator d : A£(X) A^+1(X) where 
Al(X) = C°°(X, A^T*X <g> C), operators of covariant differentia­
tion of tensors, Laplace-Beltrami operators on functions or forms 
etc. 
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If E is a vector bundle of bounded geometry on X then the 
notion of C^-boundedness and the corresponding spaces C%(X, E) 
of C^-bounded sections are also defined for i = 0 ,1 ,2 , • • • or £ = 
oo. Also the space LP(X,E) of the sections with the integrable 
p - t h power of a fiber norm (1 < p < oo) is naturally defined as 
well as the spaces LP(X,E), 1 < p < oo. 

The following Lemma is essentially due to M. Gromov [19]. 

L e m m a 1.2. There exists So > 0 such that if e £ (0,£o) then 
there exists a countable covering of X by balls of the radius 
e : X = \jB{xi,e) such that the covering of X by the balls 
B(x{, 2e) with the double radius and the same centers has a unite 
multiplicity. 

Here the multiplicity (or index in the terminology of [19]) of 
the covering by balls is the maximal number of the balls with 
non-empty intersection in this covering. 

Proof. Let us choose So > 0 so that 3so < ^inj^ hence the canon­
ical coordinates are defined on the ball B{x,%s) for every x £ X 
and the transition functions from one set of canonical coordinates 
to another have bounded derivatives of every order (see Definition 
1.1). Also the components gij and gx* of the Riemannian metric 
have bounded derivatives of every order in chosen canonical co­
ordinates. It follows in particular that there exists C > 0 such 
that 

c - 1 < 
V(x,r) 
V{y,r) 

< C, x,yeX, r £ (0,3e0), 

where V(x,r) = Vol B(x, r) (here Vol means volume with respect 
to the standard Riemannian density). 

Let us choose a maximal set of disjoint balls B(xiye/2), 
B(x2,e/2)i... (such a set exists due to Zorn Lemma and is ob­
viously countable). For every x £ X there exists i such that 
d(x^Xi) < e (otherwise we could add B(x,e/2) to the chosen 
balls). Hence X = l)B(xi^e). 

Now if y £ B(xi,2e) then B(xi,e/2) C B(y,3e). Hence if y is 
covered by each of different balls B(xikJ2e), k = 1 , . . . ,TV, then 
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^2i<k<N ^(Xhfe/^) — V^Vi^6) an(l we Se^ the required estimate 
of multiplicity 

i V < ( s u p V(y,3e))( MV(x,e/2)). 
vex x^x 

Lemma 1.1 implies the existence of "uniform" partition of unity 
which is subordinate to a covering by balls from Lemma 1.1. Let 
us choose e < r/2 where r G (0, r,-nj) is fixed as before. 

L e m m a 1.3. For every e > 0 there exists a partition of unity 
1 = E^jC/pj on X such that 

1) (pi > 0, (pi G C0°°(X), supptpi C B(xiy2e), 
where {x{} is the sequence of points from Lemma 1.2; 

2)\d^i(y)\<Ca 
for every multiindex a in canonical coordinates uniformly with 
respect to i (i.e. with the constant Ca which does not depend on 
i). 

This Lemma is a useful tool to construct global objects on X 
from their local prerequisites. One of the important examples is 
the uniform Sobolev or Besov spaces W*(X\ s G R, 1 < p < oo 
(see e.g. [33] in case p = 2). First introduce the Sobolev norm 
||-IU,p o n CQ°(X) by the formula 

(1.3) \\u\\s,p = ^l\\<PiuKLPIB(Xii2ey 

where | | . | | a i p ; , 2 e ) means the usual Sobolev (Besov or Bessel 
potential) norm of order s in canonical coordinates on B(xi,2s). 
Actually we only need the case s G Z+; then the local Sobolev 
norm can be written for every open set Q C Rn as 

I M k j > ; « = ( s | < * | < * IVvWdy)1'', 1 < p < oo, 

||v | |a,oo;n = S | a | < s e s S S U p | 9 a v ( y ) | 
fi 
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Also if we choose a system Y\, • • • , Yjv of C°°-bounded vector 
fields on X such that Y\(x),-- ^Y^(x) generate TXX for every 
x G X then we can introduce the following norm which is equiv­
alent to (1.3) 

(1 . 30 

и р и *,р - У . E 
k=0 l < i i < t 2 < - - - < i f e < A r I. \Yix • • • Yiku(x)\pdx, 1 < p < oo, 

where dx is the standard Riemannian density on X , 

^ s ,oo 

s 

= E E 
fc=0 l < i i < 2 2 < - - - < i f c < i V 

ess sup 1 ^ • • • Yiku(x)\. 
X 

Another equivalent norm for s £ Z+ is given by 

?/ P _ y» \Vku(x)\pdx, 1 < p < oo, 

^ 5,00 

S 

<E 
fc=0 

ess sup \X?ku(x) 
X 

(here | * | is understood as the norm induced by the Riemannian 
metric on tensors). 

Now we can introduce the uniform Sobolev space W*{X) as the 
completion of CQ°(X) with respect to the norm (1.3). The spaces 
Wp(X) have the same properties as the corresponding spaces in 
the case X = Rn. All of them are naturally included in the 
space of distributions VF(X). The space W25(X) has a natural 
Hilbert structure and will be also denoted HS(X). The usual 
embedding theorems are true, e.g. W%(X) = LP(X) if 1 < p < oo, 
Wj(X) C C{(X) if s > k + n/p. If E is a vector bundle of 
bounded geometry then the Sobolev norms of sections and the 
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corresponding Sobolev spaces of sections Wp (X,E) E) are defined 
in the same way. 

Denote W~~>{X) = Us&W^X^W^X) = nseRW^X) and 
the similar meaning have the notations W~°°(X) E), W£°(X, E). 

Let A be a differential operator of order m acting as in (1.2) 
between spaces of sections of vector bundles of bounded geometry. 
The principal symbol of A gives a family of linear maps 

ат(х,0 Ex -> Fx 

where x G X, (#,£) € T*X is a cotangent vector based at Ex 
and Fx are fibers of bundles E and F over x. Let us choose 
admissible trivializations of E and F over a neighbourhood of 
x. Then am(x,£) becomes a (complex) matrix. The operator A 
is called elliptic if this matrix is invertible for every (#,£) with 
£ 7̂  0. It is called uniformly elliptic if there exists C > 0 such 
that 

( 1 . 4 ) I«m Ы)\ < c\crm, (*,0 e т*х,<£ ф о. 
Here |£| is the length of (#,£) with respect to the given Riemann­
ian metric, la"1 (a, £)| is the operator norm of the matrix a^l1(xJ £) 
in the above mentioned trivializations. 

Let A be a C°°-bounded differential operator of order m on 
M. Then A defines a bounded linear operator A : W£(X) —• 
W°~m(X) for every s € R, 1 < p < oo (if A acts as in (1.2) 
then it defines a bounded linear operator A : Wp(XjE) —• 
Wp~~m(X,F)). Now we shall formulate regularity properties and 
a priori estimates which follow from uniform ellipticity. 

L e m m a 1.4. Let A be a C°°-bounded uniformly elliptic dif­
ferential operator acting as in (1*2) between spaces of sections of 
vector bundles of bounded geometry Then for every t € R, p € 
(1 , +oo) there exists C > 0 such that 

(1.5) H k P < C(\\Au\\8_m,p + |M|tjP), u e C?{X,E). 
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Moreover if u £ W~°°(X,E) and An £ W^m(X,F) 

then u £ W$(X,E). 

Proof. Let us choose the points x\, x<i,... and e > 0 as in Lemma 
1.1. We have the usual local a priori estimate 

(1.6) IMIÍ,p¡B(*j,e) < Cx(\\Au\\l , £) +" llUll*,p;B(xi,2e)) 

with a constant C\ which does not depend on i. Summing over all 
i we evidently obtain an estimate which is equivalent to (1.5). The 
last statement also follows from the corresponding local regularity 
result and the estimate (1.6). • 

A 1 . 2 . Weight e s t imates and decay of the Green 
funct ion. 

We begin with a construction which gives a substitute with 
natural smoothness properties for the distance d = d(x,y) on a 
connected Riemannian manifold X of bounded geometry. Such a 
substitute will be a function which we shall denote by d = d(x^ y). 
For the case of Lie groups it can be constructed as a convolution 
of d(x,.) with a C^-funct ion ([29]). The general case requires a 
more complicated procedure which we shall give now ([27],[28]). 

L e m m a 2 .1 . (Yu.A. Kordyukov). There exists a function d : 
X x X —* [0, +oo) satisfying the following conditions: 

(i) there exists p > 0 such that 

\d(x,y)-d(x,y)\ < p 

for every x,y £ X; 
(ii) for every multiindex a with \a\ > 0 there exists a constant 

Co > 0 such that 

\dfd(x,y)\ < C a , x,y ex, 
where the derivative dy is taken with respect to canonical 
coordinates. 
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Moreover for every e > 0 the exists a function d : X x X —> 
[0, oo) satisfying (i) with p < e. 

Proof. Let us choose a covering X = UB(xi,2e) and a partition 
of unity 1 = T,<fii described in Lemmas 1.2 and 1.3. We shall 
suppose that an orthonormal frame is chosen in every tangent 
space TXiXj i = 1,2, • • •, so TX{X is identified with Rn and the 
exponential maps at the points X{ can be considered as the maps 
expx. : Rn X . 

Let us choose a function #i € C£°(Rn) such that 9X > 0, 
supp #i C {x\\x\ < 1}, fRn9i(x)dx = 1 and define 0$(a;) = 
S~n0i(x/S) for any £ > 0. Now choosing 8 sufficiently small 
we can define 

(2.1) d(x1y) = V£1<pi(y) 
IR* 

06(expx¡-(y) - z)d(x,expx.(z))dz. 

Subtracting the evident identity 

d(x,y) = Z°li<Pi(y) I 06(expxl(y) - z)d(x,y)dz 

from (2.1) and using the triangle inequality we obtain the estimate 

\d{x,y)-d{x,y)\ < E £ i ^ ( y ) I 96(exp^(y)-z)d(expx.(z),y)dz. 

It follows from the bounded geometry conditions that there ex­
ists C > 0 such that d(expx.(z),y) < C8 if y G supp cpi and 
I expl"1(y) — z\ < £, so we obtain 

\d(x,y)-d(x,y)\ < C8 

which proves (i) with small p provided 8 is chosen sufficiently 
small. 

To prove (ii) let us consider first the case \OL\ = 1. 
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Using the notation dj = d/dyj in some canonical coordinates 
we obtain 

( 2 . 2 ) 

aid(ar,y) = s£1 [a i ^ (y ) ] Bs(expx*(y) - z)d(x,expx.(z))dz+ 

S-lVpi(y)S?=1 / bijk(y)[Q—06(expxl(y) - z)]d(x,expx.(z))dz 

where bijk are some functions (in the chosen canonical coordi­
nates) which are C°°-bounded uniformly with respect to fc 
and the chosen coordinates. The same arguments as we used in 
proving (i) show that the first term in the right hand side of (2.2) 
is estimated by a constant. To estimate the second term we can 
subtract from it a similar term which is obtained by changing 
d(x,expx.(z)) to d{x,y) (this modified term evidently vanishes). 
Following then the reasoning used for the proof of (i) we obtain 
that the second term is estimated by a constant. 

Further inductive reasoning shows that (ii) is true for every a 
q.e.d. • 

Now we can introduce exponential weights f€^y £ C°°(X) by 

( 2 . 3 ) fe,y(x) = exp(ed(y,x)), x, y € X, 

where £ £ R (usually e will be sufficiently small). 
Let us introduce a weight Sobolev space 

wux) = {u\u e v'(X)je,yu e w;(x)} 

where s G M, p G [ 1 , oo] and y is any fixed point in X. It is easy 
to check that 

frlfe,y2eC?(X) 
for any fixed points yi , j /2 € X. It follows that the space W^£(X) 
does not depend on the chosen point y. The space W^€(X) is a 
Banach space with the norm 
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(2.4) MI*,PÎ«,y — l l / e ,0wll«,p-

These norms obtained by use of different points y are equivalent 
but the dependence on y is sometimes essential. 

Now we shall consider a C°°-bounded uniformly elliptic oper­
ator A : C°°(X,E) -+ C°°(X,E) where E is a vector bundle of 
bounded geometry. Then Am\n = Amax in LP(X,E), 1 < p < oo 
(see Sect. 1.4 in Ch. 1) and we denote vp(A) the spectrum of 
^-min (or Amax) in LP(X, A). Let us suppose that A £ C\ap(A) 
for p £ ( l , + o o ) . Then there is a bounded everywhere defined 
inverse operator 

(A - XT)'1 : Lp(X,E) Lp(X,E). 

The L. Schwartz kernel of this inverse operator will be denoted 
G = G(x,y) and will be called the Green funct ion (p and A 
are fixed). We are ready to prove estimates of decay of the Green 
function off the diagonal A = {(x,x)\x £ X} C X xX. Note that 
G is a distributional section of the bundle E (g> E* on X x X (the 
fiber of E <g) E* over a point (x,y) £ X x X is Ex <g> E*, where E* 

is the dual linear space to Ey). We identify the density bundle 
over M with a trivial bundle by use of the standard Riemannian 
densitv. 

T h e o r e m 2.2. Let A : C°°(X,E) -+ C°°(X,E) be a C°°-
bounded uniformly elliptic differential operator. Let p £ (1 , +co) 
and A £ C\crp(A) be £xed, G = G(x, y) the Green function. Then 
G £ C°°(X x X\A) and there exists e > 0 such that for every 
S > 0 and for every multiindices a,/3 there exists Cap& > 0 such 
that 

(2.5) I ^ C ? ( s , y ) | < CQßsexp(-ed(x,y)) if d(x,y) > S. 

Here the derivatives dx and dfjj are taken with respect to canonical 
coordinates and absolute value in the left hand side is taken in 
the corresponding fibers. 
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Proof. Without loss of generality we can suppose that A = 0. 
For the sake of simplicity of notations we shall only considei the 
scalar case i.e. the case of trivial E = X x C. Let us for every 
£ G R , y G X consider a differential operator Ae^y = F€iyAF~y 
where F€iV is the multiplication operator (F€tVu)(x) = fCjy(x)u(x) 
with f€iV defined by (2.3). Choosing any s G R we obtain a 
commutative diagram 

(2.6) 

w;{x) w;~m{x) 

Fe Fe,y 

w:-m(x) 
A 

w:-m(x) 
where the vertical arrows are linear topological isomorphisms and 
even isometries if we use the norm (2.4) in Wp€(X) and the cor­
responding norm in Wp~m(X). It follows from the properties of 
d described in Lemma 2.1 that 

(2.7) A€jV — A + sB€iy, 

where {B£^y\y G X , |e| < 1} is a family of uniformly C°°-bounded 
differential operators of order m — 1. It follows that the operator 
norm 

ЦА.,, - A : WAX) wrm(w)\\ 
tends to 0 as e —• 0. The required invertibility of A implies now 
that A defines a linear topological isomorphism of Banach spaces 

A: w;(x)w;~m(x), 

so A€jy in the diagram (2.6) also defines a linear topological iso­
morphism if \e\ < So where So > 0 is sufficiently small. Besides all 
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norm estimates are uniform with respect to y G X. Hence A in 
the diagram is also uniformly topologically invertible if |e| < £o-

Now notice that 

(2.8) G(xìy) = [A-16y(.)](x)ì 

where 8y is the standard Dirac ^-measure on X supported at 
y G X. The Sobolev embedding theorem implies that if s < —n/p 
then 8y G n £ 6 R W ^ ( I ) and 8ys,piey < CSjP uniformly over 
y G X and e with |e| < 1. It follows from (2.8) that 

(2.9) ||G(-,y)IU+m,/>;*,j, < CSiP 

if \e\ < e0. 
Now note that 

AxG(x,y) = 0 if x ^ y. 

It follows from (2.9) and the uniform local a priori estimate like 
(1.6) that for every S > 0, s G R, p G (1, +oo), y G X and x G X 
with d(x, y) > 8 

| |G( - ,y ) | |Ä>P|B(x ,« /2 ) < CSìPy6exp(-ed(xJy)). 

The Sobolev embedding theorem implies now that the required 
estimate (2.5) is satisfied if /3 = 0. Now the same reasoning can 
be applied with respect to y because we can use the uniformly 
elliptic equation 

AtyG{x,y) = 0iix^y 

where A* is the formally transposed operator to A defined by the 
equality 

(Au,v) = (u,Aiv), u,veC™(X), 

where 
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(f,9) = / f(x)g(x)dx, 

dx is the Riemannian density on X. This immediately leads to 
the estimates (2.5). • 

Actually estimates (2.5) prove to be adequate only in case of 
subexponential growth of the volume of the balls on X. For the 
case of exponential growth stronger estimates in terms of Lp-
norms are available. 
T h e o r e m 2.3. Let p 6 ( l , + o o ) and A € C\ap(A) be fixed, 
G = G(x,y) the Green function. Then there exists e > 0 such 
that for every 8 > 0 and for every multiindices a,/3 there exists 
Caps > 0 such that 

(2.10) 
x\d(x,y)>6 

\daxd^G(x,y)Y exp(ed(x,y))dx < Caps 

(2.11) 
Jy:d(x,y)>6 

daxdlG{x,y)\p exp(ed(xJy))dy < Cap8, 

where l/p1 + 1/p = 17 the derivatives and absolute values are 
understood as in Theorem 2.2. 
Proof. We should just return to (2.9) but use it a little differently. 
Namely, using the same reasoning as in the proof of Theorem 2.2 
we can evidently conclude from (2.9) that for every s € M 

oo 

E \\G(->y)\\L,B(Xi,6/2 exp(ed(xj,y)) < oo 

where x j are chosen as in Lemma 1.2 (with e replaced by 8 there). 
Then (2.10) obviously follows. To prove (2.11) we should apply 
(2.10) to the transposed operator A1. • 

We need also uniform local estimates of the Green function 
near the diagonal but the simplest way to obtain them is in a use 
of pseudo-differential operators. This will be done in the next 
Section. 
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A 1 . 3 . Uni form properly supported pseudo—differential 
operators and structure of inverse operators . 

We shall introduce here classes of uniform properly supported 
pseudo-differential operators on a manifold X of bounded geom­
etry which coincide locally with well-known Hormander classes 
\&m and ^™hg ([22], vol. 3). Such classes were inroduced first on 
Lie groups in [29] and later in the general case in [28] 

DEFINITION 3.1. Uty-°°(X) is a class of all operators R with 
a L. Schwartz kernel KR £ C°°(X x X) satisfying the following 
conditions 

(i) there exists CR > 0 such that KR(x,y) = 0 if d(x,y) > 
CR] 

(ii) \dxd!jfKR(x,y)\ < Cap, x,y G X, where the derivatives 
are taken in canonical coordinates. 

The class U^~~°°(X) will serve as a class of negligible operators 
in our context. Notice that an operator R £ U}if~<x>(X) is not 
necessarily compact e.g. in L2(X). 

In the next definition we fix r £ (0,rjnj) as was already done 
before. 

DEFINITION 3.2. U$m(X) is a class of all operators A : C0°°(X) 
CZ°(X) satisfying the following conditions: 

(i) there exists CA > 0 such that KA(x,y) = 0 if d(x,y) > 
CA (here KA is the L. Schwartz kernel of A); 

(ii) let B(xo,r) be a ball on X , then in canonical coordinates 
on B(xo,r) the operator 

Ax0 = Mc™{B{xQ,r)) : СГ(В(х0,г)) >C~(B(a0 ,r ) ) , 
u I * Au\B(XOyr) 

can be written as 

(3.1) — aXo(% ) -f" RXQ 
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where aXo G S™ uniformly with respect to XQ, i.e. 

I3f 0 1 < cafi(i + K i ) m - | ° ' 1 

with which do not depend on and RXO is an operator with 
a L. Schwartz kernel KRX G C°°(B(x0,r) x B(x0,r)) satisfying 
the following estimates 

№d!KR.0(x,v)\<c'aft 
with constants C'ap which do not depend on xG. 

DEFINITION 3.3. Uty™hg(X) is a class of operators A G U^m(X) 
which have poly homogeneous local symbols aXQ(x^) with uni­
form estimates of homogeneous terms in local representations 
(3.1). More exactly it is required that there exist aXQj = aXQyj(x,fl), 
j = 0 , 1 , 2 , . . . , such that the following conditions are satisfied: 

(i) aXQj(x,£) is defined when x G B(xo^r)^ ^ 0 and is 
homogeneous of degree m — j with respect to i.e. 

a*o,jOM£) x G £(a?o,r) x G £(a?o,r), £ G Rn \0 ,* > 0; 

(ii) aSo>i G C°° when £ ^ 0 and |^a?aeo>i(x, 0 1 < CAFIJ 

when a: G B(xo,r) and |£| = 1 with the constants Capj 

which do not depend on Xo] 
(iii) let x G C£°(Rn), x ( 0 = 1 when £ is close to °> and X is 

fixed, then for every N,a,f3,xo 

d?dZ\arJxM x(0)<* •x(0)<*x0,j(x>Œ \capN(i+\t\)m-N 

with CQpjsf which do not depend on XQ. 
So the classes U^m^U^^lhg are just usual Hòrmander classes 

of properly supported pseudo-differential operators but with ap­
propriate uniformity conditions. 
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The classes [7#m, UV™hg are defined for all m G R. The class 
U^™hg{X) can be defined also for m G C as a class of opera­
tors A G U^Re m(X) such that the conditions (i), (ii), (hi) of 
Definition 3 . 3 are satisfied if we replace m by Re m in (iii). 

The usual algebraic and continuity properties are satisfied for 
the classes UVm(X), U*™hg(X). 

In particular the following statements are easily checked: 

(a) if Aj G UVmt(X), j = 1 , 2 , then AXA2 € t /#mi+m2(X); 
the same is true for the classes U$™hg(X)] 

(b ) if A G UVm(X) (or U*™hg(X)) then A* G UVm(X) 
(resp. Ufy™gh(X) where m is complex conjugate to m). 

(c) if A G UVm(X) then A defines for every s G R, p G 
( 1 , +oo) a continuous linear operator 

A : w ; ( x ) - » v r ; - m ( x ) 

Proposition 3.4. Let A be a C°°-bounded uniformly elliptic 
differential operator of order m on X. Then there exists B G 
17^-™(X) such that I - AB, I - BA G C/*-°° (X) . 

Proof. The operator jB with required properties is easily con­
structed by use of inform local parametrices B{ for A in the balls 
B(xi,e) from Lemma 1.2 and then patching them up by the for­
mula 

B = Xi^iBiQi, 

where $ ¿ 7 ^ 1 are multiplication operators <&iu(x) = <pi(x)u(x), 
^iu{x) = ipi(x)u(x),<pi is taken from the partition of unity of 
Lemma 1 .3 , ifii G CQ°(-B(XJ,2e)) are chosen to be uniformly C°°-
bounded and such that ifti(x) = 1 in a neighbourhood of supp <pi. 

REMARK 3 . 5 . Choosing e > 0 sufficiently small we can obtain 
the parametrix B with a L. Schwartz kernel K B with 

supp KB C {(x,y)\d(x,y) < d} 
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where 6\ = £i(s) —> 0 as e —> 0. 
Now we can describe the structure of the operator (A — A/)-1 

in case A ^ &p(A) more precisely. 
First note that all the definitions and statements of this Sec­

tion can be easily generalized to operators acting in spaces of 
sections of vector bundles of bounded geometry on X. The cor­
responding classes of operators A : C Q ° ( X , E) —• CQ°(X, F) will 
be denoted U^°°(X]E,F), U^M(X]E,F), U$™HG(X;E,F) or 
U^-°°(X,E) etc. in case E = F. 

T h e o r e m 3.6. Let A : C^(X,E) -> C0°°(X,F) be a uniformly 
elliptic C°°-bounded differential operator of order m. Let the 
closure of A in LP(X,E) have an everywhere defined bounded 
inverse A - 1 . Then there exists e > 0 and a representation: 

(3.2) A - 1 = B + T , 

where B e UVp^iX; F, E), ThasaL. Schwartz kernel KT £ C°° 
satisfying the following estimates 

(3.3) | ^ # M * , y ) | < Caßexp(-ed(x,y)). 

Also 

( 3 . 3 0 / \dZd;KT(x,y)\*exp(ed(x,y))dx < CQß 
Jx 

(3.3") / \d«dßyKT(x,y)\p' exp(ed(x,y))dy < CQß 
Jx 

where + 1/p = 1- Here the derivatives and the norm in the 
left-hand side are taken with respect to the canonical coordinates 
and canonical trivializations of E and F. 

Proof. For the sake of simplicity of notations we shall consider 
the case of trivial E = F = X x R. It follows from Proposition 
3.4 that there exists B G U^!~™(X) such that 
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AB = I-R, 

where R € U^~°°(X). Multiplying by A-1 from the left we 
obtain (3.2) with T = A~XR. Now it is clear that 

(3.4) KT{x,y) = [A-lKR{-,y)]{x). 

Notice that KR(-,y) £ C0°°(X) and supp KR{-,y) C B(y,r0) 
for some ro > 0 which does not depend on y. Hence it follows 
from (3.4) and Theorem 2.1 that the estimates (3.3) are fulfilled if 
d(x->y) > ro with ro > 0 arbitrarily small so the estimates (3.3) are 
proved outside ^-neighbourhood of the diagonal for every 8 > 0. 

Now we have to prove (3.3) in the set 

{(x,y)\d(xyy) < 8} 

where 8 > 0 can be chosen arbitrarily small. But then (3.3) re­
duces to the boundedness of all derivatives which follows from the 
Sobolev embedding theorem and the boundedness of the operator 

A ' 1 : w;(x) -> w;+m(x) 
for every s £ R which is due to the regularity properties (Lemma 
1.4) and the closed graph theorem. 

Now to prove (3.3') we use (3.4) again but apply the bounded­
ness of Ajy instead of Theorem 2.2 itself. The estimate (3.3") is 
proved by applying the same arguments to Af instead of A. • 

Now we can prove estimates of the Green function near the 
diagonal. 

Theorem 3.7. Let A,p , À satisfy the conditions of Theorem 2.2, 
G be the Green function (the L. Schwartz kernel of (A — XI)"1). 
Then there exists e > 0 such that 

(3.5) \dQxdlG{x,y)\ <CQßd(x,y)m-n-^-Mexp(-ed(x,y)) 
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provided m < n; 

(3.6) 
№dPG{x,y)\< 

Ctt/,[l + d ( x , y ) m - n - W - ^ log d(x, y)\] exp(-ed(x,y)) 

provided m > n. 

Proof. As usual we shall consider the scalar case. Due to Theorem 
2.2 it is sufficient to prove (3.5) and (3.6) for x,y £ X such 
that d(x,y) < 8 with some fixed 8 > 0. Let us consider the 
representation (3.2). Clearly the L. Schwartz kernel Kt satisfies 
the required estimates due to (3.3). Now we have to consider Kb 
and to do this let us present B locally in B(xo,r) in the form 
(3.1) 

BXQ — bXQ(x,Dx} + 

where the L. Schwartz kernel of RXo satisfies the required esti­
mates and bXQ = bXQ(x,£) is a polyhomogeneous symbol with 
uniform estimates. The L. Schwartz kernel of bXQ(x,Dx) in local 
canonical coordinates near XQ is equal to 

KXo(x,y) = F^x-ybX0(x,() = (27r)-n / bX0(x,0ei{x-y^d( 

so to prove the necessary estimates it i's sufficient to use the well 
known properties of the Fourier transform of homogeneous func­
tions or their appropriate distributional regularizations (see e.g. 
[22], vol. 1). • 

REMARK 3.8. Most part of the results described here can be gen­
eralized to pseudo-differential operators. Namely, Theorem 3.6 
is true for uniformly elliptic pseudo-differential operators A £ 
UV™hg(X]E,F) if m > 0. Also if A £ UVm(X;E,F) is uni­
formly elliptic in appropriate sense (see [29] for the case of Lie 
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groups) then the statement of Theorem 3.6 is true with B 6 
U<f>-m(X]F,E). So Theorem 3.7 is also true in the case A € 
UV™hg(X]E,F) if m > 0 (the estimate (3.5) will be true when 
m < n or m — n Z). 

In fact it is not necessary to consider only pseudo-differential 
operators which are properly supported. Everything is true e.g. 
for the operators like the right-hand side in (3.2) i.e. for the 
operators of the form A = A0 + T, where A0 € UV™hg(X; E,F) 
and T satisfies some decay conditions as in the formulation of 
Theorem 3.6. Moreover the requirement of exponential decay of 
the kernel off the diagonal can also be relaxed if the volume of 
balls on X grows even more slowly. The corresponding machinery 
was developed in [29] for Lie groups and is perfectly suitable for 
general manifolds of bounded geometry so we omit the details. 

Chapter 2. Eigenfunct ions and spectra . 
2 .1 . General ized e igenfunctions. 
Let X be a manifold of bounded geometry which we shall sup­

pose to be connected for the sake of simplicity, d i m X = n, and E 
a complex vector bundle of bounded geometry on X. We shall al­
ways suppose that E is provided with an hermitian scalar product 
of bounded geometry on fibers. In particular the Hilbert space 
of sections L2(X,E) is well defined. We shall construct a special 
Hilbert-Schmidt rigging of this space, hence its negative space 
will contain a complete orthonormal system of generalized eigen­
functions of any self—adjoint operator (see Appendix 2 after this 
Chapter). In the elliptic case additional regularity properties of 
these generalized eigenfunctions will be proved. 

Denote Vx(r) = VoLB(:r,r), V(r) = sup Vx(r). Lemma 4.4 

from Chapter 1 immediately implies that there exists a > 0 such 
that 

(1.1) V(r) < ear. 

Also both Vx(r), V(r) are increasing functions on [0, oo) with val­
ues in [0,oo), positive on (0, oo). The reasoning in the proof of 
Lemma 4.4, Ch. l shows that there exists C > 0 such that 
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(1.2) Vx(r + 1 ) < CVx(r), r > 1, x e X. 

Taking supremum over x € X on both sides we obtain 

(1.2') V(r + 1) < C F ( r ) , r > 1. 

with the same constant C. Hence (again with the same constant 
C > 0) we obtain 

(1.3) C"1 Vx(r) < Vx(p) < CVx(r) if p € [r - l , r + 1], 

(1.3') cr1 v ( r ) < y(p) < cv{r) if p e [r - I, r + 1 ] . 

REMARK 1.1. It is not always possible to estimate Vx{r) from 
below by C_1V(r) whatever C > 0. For example, if we take 
a manifold X which is diffeomorphic to Rn with coordinates 
x = ( x i , . . . , x n _ i , x n ) = {x1 ,xn) with the hyperbolic metric 
x~2(dxt2 +dx\) in {#|:rn > 1} and the euclidean metric dx12 +dx\ 
in {x|xn < —1} with a smooth transition in {x\ — 1 < xn < 1} 
making X a manifold of bounded geometry then Vx(r) for a fixed 
r varies at least between volumes of the euclidean and the hyper­
bolic ball of radius r (the first one being 0(rn) and the second 
growing exponentially as r —• +oo). 

L e m m a 1.2. There exist increasing C°° functions V : [0, oo) —> 
(0, oo), Vx : [0, oo) —• (0, oo) such that 

(1.4) C-xVt{r) < Vx(r) < CVx{r), r > 1, 
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(1.4') C-1V(r) < V(r) < CV{r), r > 1, 

with the same constant C as in (1.2), (1.2!), (1.3), (1.3'). Besides 

(1.5) \dkrVx(r)\ < CkVx(r), \dkrV(r)\ < CkV(r) 

for every k = 0 , 1 , 2 , . . . . 

Proof Let us extend Vx(r),V{r) by 0 on (—oo,0) and then take 

Vx(r) j Vx(r + s)<p(s)ds, V(r) = jv(r + s)<p{s)ds, 

where y € C0°°(R), <p > 0, / <p(s)ds = 1 and supp y C [ -1 /4 ,1 /4 ] . 
The estimates (1.4), (1.4'), (1.5) now obviously follow from (1.3), 
(1.3'). Also VX,V axe increasing due to the same property of 
Vr,V. • 

Now let us define positive weight C°° functions 

(1.6) fx0(x) = Vx0(d(xo,x)), /(*) = V(d(x0,x)), 

where d is the smoothed distance-function constructed in Lemma 
2.1 of Appendix 1. 

L e m m a 1.3. In canonical coordinates 

(1.7) \dafXo(x)\ < CQfX0(x), \dQf(x)\ < CQf(x), x£X 

with constants Ca which do not depend on x. 

Proof. The estimates (1.7) obviously follow from (1.5), the "de­
rivative of composition formula", e.g. 

85 



M. A. SHUBIN 

( 1 . 8 ) daHx) = 

E 
Q>i-\-...-\-a>k = a 

Ca1, . . . ,ûJk(^r^)(rf(a:o ,^))5x1^(:ro,^) . . . dzkd(x0,x), 

and boundedness of the derivatives ¿ ^ ¿ ( 2 : 0 for | a | > 0 (see 
Lemma 2.1 in Appendix 1). • 

Now change fXo,f to real powers of these functions. 

L e m m a 1.4. For any t G R in canonical coordinates 

( 1 . 9 ) \dafL(x)\ < CQ,tfl(x)., | ^ r ( x ) | < Cttf./*(x). 

Proof. Using "derivative of composition formula" like (1.8) we 
obtain e.g. 

(1.10) 

daf\x) : > 
Oti + ..-+ak = o/ 

l«il>° 

cai_,Qkfi-k(x)d^f(x)...d^f(x) 

and (1.9) follows from Lemma 1.3. 

L e m m a 1.5. Ht > 1/2 then /"*,/"* € L2(X). Also 

fr01/2(logfX0 - i / 2 - e ) / - i / 2 ( l o g / : - 1 / 2 - , € L2(X) 

for every e > 0. 

Proof Let us fix * > 1/2. We clearly have due to Lemma 1.2 

J x:d(z,xo)>l 

f-02t(x)dx < Ci V-2t(r)dVX0(r) = 

Ci 
i v . (iì 

A"2sdA < oo. 
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with a consant d > 0. Hence / " * e L2. Now Vx{r) < V(r\ 
therefore V"*(r) < ^ ' ( r ) and < C2fx'0t(x). Hence / - * € 
L2(X). Other inclusions are checked similarly. • 

Now let g : X —• (0, oo) be a positive C°°-function such that 

(1.10) \dQg(x)\ < CQg{x), xeX. 

Examples of such functions are due to Lemma 1.4. We 
could also take /*fl (log fXo )tl or / ' ( l o g / ) ' 1 with ¿,¿1 € R. 

Now let us define the weighted Sobolev space H* = Hg(X,E) 
with 5 £ R as follows 

Hsg(X,E) = {u\u e V'(X,E). gueH^X, E)}, 

where 

HS(X, E) = Wj(X,E) 

is the uniform Sobolev space defined in Sect. A l of Appendix 1. 
Clearly Hsg{X,E) D C^(X,E), hence Hsg{X,E) continuously 

included and dense in L2(X,E) provided s > 0 and g(x) > go > 
0. Therefore in this case we can use Hg as a positive space to 

construct a rigging of L2(X,E). 

L e m m a 1.6. If we use Hg(X,E) with s > 0 and g(x) > g0 > 0 
as a positive space to construct a rigging of L2(X,E) then the 
corresponding negative (dual) space will be equal to H~J1(X^E) 

Proof. Denote = Hg(X, E). Then in the notations of Appen­
dix 2 we obviously have: 

H- = {u\ueV'(X,E), g-1ueH~*(X,E)} = H;Jl(X,E) 

due to the standard duality by HS(X,E) and H-3(X,E). 
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Propos i t i on 1.7. Suppose that s > n/2, g G C°°(X) satisfies 
(IAO), g{x) >g0>0 and g"1 G L2(X). Then the rigging of H = 
L2(X,E) with the positive space H+ = H8g(X,E) is a Hilbert-
Schmidt rigging. 

Proof. Choosing an elliptic pseudo-differential operator 
B € U*;{2g(X,E) we may take A = I + B*B € U#;hg(X,E) 
which will be elliptic invertible self-adjoint operator of order s. 
Hence u e H*(X,E) if and only if u € L2{X,E) and Au G 
L2(X,E). Now obviously HS(X,E) = I m ^ " 1 ) , where Ä is the 
self-adjoint operator defined by A on L2(X,E) with the domain 
D{A) = H'(X,E). Hence 

Hsg(X,E] = {g^A^ulu e L2(X,E)} = g-1Ä-1L2(X,E). 

Therefore it is sufficient to establish that g lA 1 is a Hilbert-
Schmidt operator. But his Schwartz kernel is given by 

K(xyy) = g-1(x)G(x,y) 

where •) is the Schwartz kernel of A~x (or the Green function 
of A). Now we can use Theorems 2.3 and 3.7 from Appendix 1 
to conclude that 

/ \G{x,y)\2dy<C < o o 
Jx 

It follows that 

/ \K{x,y)\2dxdy <C 
JXxX 

I g 2(x)dx < oo 

hence g XA 1 is a Hilbert-Schmidt operator. • 

Now applying Theorem 2.3 from Appendix 2 we immediately 
obtain 
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T h e o r e m 1.8. Suppose that s > n/2 and g satisfies the condi­
tions in Proposition 1.7. Then for any self-adjoint operator A in 
L2(X,E) the space H~*X(X,E) contains complete orthonormal 
system of generalized eigenfunctions of A in the sense of Defini­
tion 2.2 of Appendix 2. 

Corollary 1.9. For anye > 0, S > 0 both spaces H ™/j*2_€6(X, E), 

H f-\?2(\0^f}-ii2-6 contain complete orthonormal system of gener­
alized eigenfunctions of any self-adjoint operator A in L2(XyE). 

REMARK 1.10. Using the composition formula for pseudo-diffe­
rential operators of classes U^m we can describe the space Hg(X, E 
also in a dual way as the space of all u G T)f(X,E) such that 
gBu G L2(X,E) for every B G U$3(X,E). If s G Z+ then we 
can equivalently write gdau G L2(X,E) for every multiindex a 
with \a\ < s (here dau can be taken in canonical coordinates 
for any piecewise constant choice of such coordinates induced by 
coverings described in Lemma 1.2 of Appendix 1). Using this 
description we can skip the requirement of smoothness of g and 
estimates (1.10) defining e.g. Hp for s G Z+ as the space of 
sections u G L2{X,E) such that [1 + V(d(^x0))]fdQu G L2{X,E) 
for every a with | a | < s. Hence the dual space HJÎt consists of 
distributions which have the form 

v = E 
k<s 

Xi...Xk 

^ . . . ^ [ ( l + VK-^o)))*««], vaeL\X,E), 

where X\,... ,X8 are first-order uniformily C°°-bounded differ­
ential operators in C°°(X^E)J the sum is taken over a finite set 
of such tuples X i , . . . , X* with k < s. Similarly for general s > 0 
the space Hj*t consists of sections u G T>\X,E) of the form 

u — 

N 

i = i в л a A-vid f . ,xn) у v i , 
v.- <F L¿• X.E). Bj e uvs(x,E) 
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where N and the set B\,... ,BN depend on u. 

EXAMPLE 1.11. If X = Rn with the standard euclidean metric 
then V(d(x,0)) = cn|x|n and for any e > 0, 8 > 0 we can take 

71 / 2 £ 

the space ^(1+|x|2)-n/4-6(^n) as the negative space containing a 
complete orthonormal space of generalized eigenfunctions of any 
self-adjoint operator in L2(Rn). 
EXAMPLE 1.12. If X = Hn is the hyperbolic space with the 
curvature —1 then Vx(r) = V{r) ~ cne^n"^r as r —• oo. Let 
us denote \x\ = rf(x,0), where 0 is a fixed point in Hn, and 
choose a positive C°°-function x v-+ (x) coinciding with |x| if 
\x\ > 1. Then for any e > 0, 8 > 0 we can take one of the spaces 
H~~n!2~£ - , j v , W o , № ) or H~n[2~:€ 1W WoW v 1/2 , (Hn) as the 

e x p ( — ( n - - l + 6 ) ( z ) / 2 ) V / e x p ( — ( n — l ) ( i : > / 2 ) ( x > - 1 / 2 - 5 V ' 
desired negative space for any self-adjoint operator in L2(№n). 

Now suppose that we consider not a general self-adjoint opera­
tor but a uniformly elliptic C°°-bounded self-adjoint differential 
operator A : C°°(X,E) C°°(X,E). Then we can use local 
a priori estimates to increase —n/2 — e up to any s. Actually 
any generalized eigenfunction will be a solution of a uniformly 
elliptic equation, hence it should be a C°°-function (or rather 
C°°-section). Hence we arrive to the following 
T h e o r e m 1.13. Let A : C°°(X,E) -> C°°(X,E) be a C°°-
bounded uniformly elliptic self-adjoint operator. Let g be a posi­
tive C°°-function on X, satisfying (1.10), such that g~l € L2(X). 
Then there exist a complete orthonormal system of eigenfunctions 
for A, such that any eigenfunction i\) in this system satisEes the 
following estimates 

(1.11) / \dQxP(x)\2g-2(x) < oo, x e X, 
Jx 

for any multiindex a. 

Now using locally (on balls of a fixed radius) the Sobolev 
imbedding theorem we obtain 
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Corollary 1.14. Under the conditions of Theorem 1.13 there 
exists a complete orthonormal system of eigenfunctions such that 
any eigenfunction ip in this system satisfies estimates 

(1.12) \dQ^(x)\ < CQg(x). 

REMARK 1.15. Clearly g here can be replaced by a positive 
function g\ such that 

C'1g(x)<g1(x)<Cg(x) 

with a constant C > 0. In particular both Theorem 1.13 and 
Corollary 1.14 remain true if we replace g by one of the following 
functions: 

[l + y«.,x0))]1/2+£, [1 + V{d{; Z 0 ) ) ] 1 / 2 log[2 + V(d(; *o))]1+£, 

where e > 0. 
2.2. Schnol—type theorems . 
In the previous section we gave a sufficient condition for a space 

to contain a complete orthonormal system of generalized eigen­
functions for a self-adjoint operator. The corresponding eigenval­
ues then will be in the spectrum of this operator (at least almost 
everywhere) and actually the closure of the set of these eigen­
values constitutes the spectrum in L2. In this section we will 
consider an opposite question: assume that for some A £ C we 
know a solution if) of the equation A%j) = satisfying some esti­
mates at infinity; when can we conclude that A is in the spectrum 
<j{A) of the operator A in L2? 

An example of the sort is the well known Schnol theorem ([38], 
[11]) which (with some simplifying restrictions) states that if A = 
—A-\-q(x) is a Schrodinger operator in L2(Rn) with the potential 
q e A?c(Rn)such that v(x) > - c for a11 x e Rn and there exists 
a non-trivial solution tf> of the equation Aij) = A?/> such that for 
every e > 0 
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j>(x) = 0(exp(e\x\)) 

then A £ 0(A). Another Schnol theorem ([38]) also concerning 
the Schrodinger operator states that if the negative part q-(x) = 
min(0, q(x)) satisfies the estimate 

«_(*) = o(|z|2) 

then the existence of a non-trivial polynomially bounded solution 
(i.e. a solution rf> such that ift(x) = 0((l + \x\)N) with some TV > 0) 
for the equation Arj> = Xift implies that A 6 &(A). 

T. Kobayashi, K. Ono and T. Sunada ([26]) introduced. 
DEFINITION 2.1. An operator A satisfies the weak Bloch 
property (WBP) if the following implication is true: 

{there exists a bounded if) ̂  0 such that Aip = A^} = > A 6 &(A) 

So each of the mentioned Schnol theorems implies that the 
Schrodinger operator on Rn with a locally bounded and semi-
bounded below potential satisfies WBP. 

On the other hand the Laplacian A of the standard Riemann­
ian metric on the hyperbolic space Mn does not satisfy WBP 
because AI = 0 but 0 £ <r(A). 

It is natural to investigate the following WBP-problem: de­
scribe classes of manifolds and operators which satisfy 
W B P . 

It is easy to notice that the WBP-problem is closely connected 
with the problem of coincidence of spectra of an operator in spaces 
LP(X) for different p: if all these spectra for 1 < p < 00 coincide 
then WBP evidently holds because if crp(A) means the spectrum 
of A in LP(X) then the existence of a non-trivial bounded solution 
if> of A%1> = implies that A 6 cr 00(A) so A € <J2(A) = a (A). The 
problem of the coincidence of spectra was considered on discrete 
metric spaces in [43] where it was pointed out that the coinci­
dence follows from the exponential decay of the Green function 
off the diagonal provided the space has a subexponential growth 
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of the number of points lying in a ball of the radius r a s r - ^ + 0 0 . 
The exponential decay of the Green function off the diagonal was 
proved in [43] for some operators which were called pseudodiffer-
ence operators, e.g. difference operators with a finite radius of 
action and bounded coefficients on discrete groups etc. 

The same reasoning works also for continuous objects when 
the appropriate estimates of the Green function hold. Such es­
timates were obtained in [29] for uniformly elliptic operators on 
unimodular Lie groups and in [27],[28] on general manifolds of 
bounded geometry. It follows (though it was not noticed in [29] 
or [27],[28]) that the spectra of corresponding operators in LP(X) 
coincide for all p G (1 , +00) provided the volumes of balls of ra­
dius r grow subexponentially as r —• + 0 0 , and also that W B P is 
satisfied in this situation. The main ideas of this approach will 
be explained here in detail. The important point here is a use 
of some weighted Sobolev spaces with exponential weights. In 
[26] the authors used an entirely different method which is quite 
close to the original Schnol method (see also [11]). The WBP was 
proved in [26] for the Schrodinger operators with periodic poten­
tials on Riemannian manifolds X with a subexponential growth 
of volumes of balls and with a discrete group of isometries T such 
that the orbit space X/T is compact. 

Now let A be a complete connected Riemannian manilold, 
d{x,y) be the Riemannian distance between x and y, x,y G X. 
Let A be a differential operator on X. Denote by cr(A) its spec­
trum in L2(X). 

DEFINITION 2.2. 
i) The operator A satisfies the weak Schnol property 

(WSP) if the existence of a non-trivial solution t/> of the 
equation Aip = satisfying an estimate of the form 

1 ^ ) 1 = 0 ( 1 + d(x,x0)iV) 

(with some N > 0 and a fixed XQ) implies that À G &(A). 
ii) The operator A satisfies the s trong Schnol property 

(SSP) if the following implication is true: if there exists 
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a non-trivial solution ift of the equation Arj> = Xip such 
that for every e > 0 

Шх)\ = O(exp(ed(x,x0))) 

(with a fixed XQ) then À G 0"(A). 

Clearly SSP implies WSP, and WSP implies W B P We shall 
prove that if X is a manifold of bounded geometry with a subex-
ponential growth of volumes of balls and A is a uniformly elliptic 
differential operator with C°°-bounded coefficients on X then A 
satisfies (SSP) and even stronger property: if for every e > 0 
there exists a non-trivial solution t/>€ of Aij>€ = with 

(2.1) I ^ O O I = O(exp(ed(x,x0)) 

(with a fixed xo) then À G &(A). We even prove the following 
Theorem which does not require any subexponential growth con­
ditions 

T h e o r e m 2.3. Let X be a manifold of bounded geometry, E a 
vector bundle of bounded geometry on X, 

A : C00(X,E)-+C00{X,E) 

a uniformly elliptic C°°-bounded differential operator. Let p G 
( l ,oo) , A G C and for every e > 0 there exists ip€ G C°°(X,E) 
such that Aip€ = AT/>£, ij)e 0 and 

(2.2) ï!>€exp(-ed(;x0)) e Lp(X,E). 

Then A G <TP(A). 

Here o-p(A) means the spectrum of Amm = Amax in LP(X,E) 
(see Sect. 1.4 in Ch. 1), 1 < p < oo. 

Before proving Theorem 2.3 we will give its corollaries and 
particular cases. 

94 



SPECTRA OF ELLIPTIC OPERATORS ON NON-COMPACT MANIFOLDS 

DEFINITION 2.4. Let X be a manifold of bounded geometry. 
We shall say that X has a subexponential growth (or is a manifold 
of subexponential growth) if for every e > 0 

(2.3) V(r) = 0(e€r), r -+ oo 

where V(-) is introduced in Sect. 1. 

Corollary 2.5. Suppose that X is a manifold of subexponen­
tial growth, A is a uniformly elliptic C°°-bounded differential 
operator on X and A £ C. Suppose that for every e > 0 there 
exists ij)e ^ 0 satisfying Atye = \tf>€ and the estimate (2.1). Then 
A £ orp(A), 1 < p < oo. In particular (WBP), (WSP) and (SSP) 

are satisfied for A in this case. 

Proof To apply Theorem 2.3 we have to check that 
exp(—sd(-,xo)) £ LP(X) for any e > 0, 1 < p < oo. This can be 
proved if we notice that (2.3) implies for any e > 0, S > 0 

exp(-ed(.,a:o)) < V~1~6(d(-,x0)) < ^ 1 _ Í K ^ 0 ) ) 

and then use the same reasoning as in the proof of Lemma 1.5. 

Corollary 2.5 gives the same sufficient condition for A £ crp(A) 
to be true whatever p £ ( l ,oo) . So we may expect that &P(A) 
does not depend on p in the case of subexponential growth. We 
shall prove this and even give some information about extremal 
cases p = 1 and p = oo. 

Propos i t ion 2.6. Let X,A be as in Corollary 2.5 (in particular 
X has a subexponential growth). Then the spectrum crp(A) does 
not depend on p £ ( l ,oo) . Moreover denoting this spectrum by 
&(A) we have 

(2.4) o-i ( A ) C cr(A), <Too(A) C <T(A). 
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Proof. For the sake of simplicity of notations let us consider the 
case of trivial bundle E with the fiber C. We have to prove that 
if A £ C — cTpQ(A) for some po 6 ( l ,oo) then A ^ ^ ( ^ l ) f°r aU 
p G [1,00]. Now we may also suppose that A = 0. 

Due to Theorem 3.7 of Appendix 1 we obtain for the Green 
function •) (the L. Schwartz kernel of A"1) that 

sup 
y 

\G(x,y)\dx < 00, sup 
X 

\G(x,y)\dy < 00. 

Hence due to the well known Schur lemma (see e.g. Lemma 
18.1.12 in [22], vol. 3) we obtain that the integral operator G with 
the Schwartz kernel £?(-,-) can be extended to a linear bounded 
operator 

G : LP(M)^LP(M) 

for every p € [1, 00]. Let us introduce for any e > 0 a space We 
which contains functions <p £ C°°(X) such that 

\dQ<p(x)\ = O(exp(-ed(x,x0))) 

for every multiindex a (with the derivative da in canonical co­
ordinates) and a chosen fixed XQ € X (the condition does not 
depend on x0). The subexponentiality condition clearly implies 
that We C LP(X) for all e > 0, p € [1, 00] and moreover 

(2.5) We С f i f i И?(Х), e > 0. 
p€[l,oo] seR 

Now it follows from Theorem 3.6 of Appendix 1 that G maps 
C0°°(X) into W€ with some e > 0. Evidently AG = GA = I on 
CQ°(X). Note that the first equality implies that AxG(x,y) = 
Sy(x) and the second implies that AtGt = I on CQ°(X), hence 
AyG(x,y) = 6x(y). Another important algebraic corollary is that 
GfAf = I on C0°°(X). 
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Now it is easy to check that AG = I on LP(X) for every 
p G [1, oo] if A is applied in the sense of distributions. In fact 
if u G Lp(X), v G C2°(X) then 

(AGu,v) = (Gu,Afv) = (u.G'A^) = (u,v), 

hence AGu = u. It follows that Gu € DP(A) where DP(A) is the 
domain of A in LP(X). Hence A : Dp(A) —• LP(X) is surjective. 

Let us prove that GA = J on Dp(A), p G [l,oo]. If u G 
Dp(A), v G C0°°(X) then 

(GAu.v) = {Au,Gfv) 

due to the Fubini theorem. Note that Gfv G We for some e > 0. 
So it is enough to prove that 

(2.6) (Au,<p) = (u, AV>, U G £>p(A), ip G 

Let us define a cut-off function 

X n ( z ) = Xi=1<fii(x) 

where <pi are the functions from the partition of unity of Lemma 
1.3 in Appendix 1. It is clear that X N G CQ°(X)^ 0 < XN < 1 
and for every compact K C X there exists N such that XN = 1 
in a neighbourhood of K. Moreover |5aXiv| < CQ in canonical 
coordinates uniformly with respect to N. 

Now we can begin with the equality 

(2.7) (AU,XN<P) = (U,A(XN<P)), u G DP(A), if G W€, 

and try to take limit as N —> oo to obtain (2.6). Note that 
(Au)(p G I^iX) due to (2.5), therefore lim (AU,XN<P) = (Au,<p) 

N—+oo 
due to the dominated convergence theorem. The same reasoning 
can be applied to the right-hand side of (2.7) due to the estimates 
of derivatives of xat , so we obtain (2.6). 
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We have proved that the operators A : Dp(A) —» LP(X) and 
G : LP(X) —• Dp(A) are mutually inverse as required. • 

Proposition 2.6 immediately implies that W B P holds under its 
conditions, i.e. if X has a subexponential growth, A is uniformly 
elliptic C°°-bounded operator on X, A £ C and there exists u £ 
L°°, u ^ 0 such that Au = \u, then A £ ap(A), 1 < p < oo, 
because a^A) C crp(A). But Theorem 2.3 will give us a stronger 
result as mentioned in Corollary 2.5. 

Corollary 2.5 and Proposition 2.6 were proved in the paper 
[44] which was inspired by the beautiful paper [26], though the 
paper [44] relied heavily on ideas contained in [43], [29] and [28]. 
Theorem 2.3 improves the results of [44] extending it to general 
manifolds of bounded geometry. 

Now we are ready for the proof of the main theorem. 

Proof of Theorem 2.3. Let us consider the scalar case and suppose 
that A — 0. We should repeat arguments given in the proof of 
Proposition 2.6. Let us suppose that 0 ^ ap(A). Then we can 
construct the Green operator G = A-1 which has a Schwartz 
kernel •) satisfying estimates (2.10), (2.11) in Theorem 2.3 of 
Appendix 1. 

Using the local a priori estimates it is easy to prove that (2.2) 
implies the same inclusion for derivatives of ift€: 

(2.8) \dQi>J-)\eM-ed(;x0)) e L?(X) 

for every multiindex a (with the derivatives taken in local coor­
dinates). But (2.8) and the estimate (2.11) in Appendix 1 imply 
now that GAip£ makes sense due to the Holder inequality if e > 0 
is sufficiently small. Moreover GAip€ = ip€. Indeed for every 
v £ CQ°(X) we obtain using the Fubini theorem and estimates 
(2.10), (2.11) from Appendix 1: 

(GA^v) = (Ai})€,Gtv) = {^AWv) = ( ^ , t ; > 

(the middle equality is obtained by a limit procedure with the 
same use of the cut-off functions as in the proof of Proposition 
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2.6. On the other hand A%l>€ = 0 implies GAip€ = 0, hence ij;e = 0, 
so we get a contradiction which proves the theorem. • 

REMARK 2.7. Suppose that X has a free isometric action of a 
discrete group T such that X/T is compact. Let A be the scalar 
Laplacian on X . Then R. Brooks [6] proved that 0 G ^ (A) if and 
only if r is amenable. Note that we always have A l = 0, hence 
0 G (Too(A) and W B P does not hold on X if T is not amenable. 
However it is not clear whether something like this is true for more 
general operators (e.g. Schrodinger operator with a T-invariant 
potential, which is the case where W B P was proved in [26] for 
the case of subexponential growth). 

Now the amenability of T is equivalent to the amenability of 
X which means the existence of compacts Kj C X, j = 1,2, . . . , 
such that 

l im 
J-+00 

Vol A i h - KA 
Vol Кj 

= 0 

where (Kj)i = {x\6ist(xyKj) < 1}. This makes sense for general 
manifolds of bounded geometry. So it is natural to ask whether 
W B P is true for general C°°-bounded uniformly elliptic operators 
on amenable manifolds. The positive answer for the Schrodinger 
operator in the T-periodic case was conjectured in [26]. 

Similar questions may be asked for WSP and SSP (for SSP the 
natural question is whether the subexponential growth condition 
can be weakened or not). 

REMARK 2.8. There is an essential gap between Theorems 1.8 
(or 1.13) and 2.3. Namely Theorems 1.8 and 1.13 do not allow to 
exclude C°°-bounded functions from negative spaces where we 
are trying to find a complete orthogonal system of generalized 
eigenfunctions. On the other hand the condition (2.2) in Theo­
rem 2.3 (in case p = 2) is not satisfied for ipe = 1 unless X has 
a subexponential growth. The gap disappears for the manifolds 
of subexponential growth but it is natural to try to fill it in case 
of manifolds of exponential growth (like Hn). No considerable 
improvement can be expected in Theorem 2.3 because its growth 
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conditions come close to those which exist in examples like Hn. 
On the other hand the abstract Theorem 2.3 from Appendix 2 can 
not be improved in the sense that the condition on the rigging to 
be a Hilbert-Schmidt rigging is necessary if we want the negative 
space to contain a complete orthonormal system of generalized 
eigenvectors for any self-adjoint operator. So possible improve­
ment can be made here only if we switch from abstract operators 
e.g. to C°°-bounded uniformly elliptic ones. 

REMARK 2.9. It is sufficient to have only a sequence Sj —> 0, 
and it is not necessary to keep A fixed when we change e. For 
instance in Theorem 2.3 we can only require that there exist a 
sequence Sj > 0, Sj —• 0 as j —• +oo, and sections ifij; ^ 0, such 
that if>j exp(—Sjd(-, XQ)) G LP(X,E), Aipj = with \j —> A 
as j •—• oo. Then we can easily prove by the same reasoning that 
A G crp(A). (Here 1 < p < oo.) 

In case of subexponential growth it is easy to prove, using 
Theorem 1.8, that for the self-adjoint operators satisfying the 
conditions of Theorem 2.3 this condition is also necessary (hence 
necessary and sufficient) for the inclusion A G 0"(A), as well as the 
existence of sequences Xj —> A, ipj G C°°(X, E), tftj ^ 0, such 
that Aiftj = and 1 ^ ( ^ ) 1 — 0(expSjd(x,XQ)) where Sj —• 0 
as j —̂  0. 

A p p e n d i x 2. R igged spaces and general ized e igenvectors 
of self—adjoint operators . 

In this Appendix we shall briefly describe some well-known 
results about rigged spaces and generalized eigenvectors of ab­
stract self-adjoint operators. We will mainly follow [5] referring 
the reader to the book for proofs and more details. An alternative 
approach can be found in [4]. 

A 2 . 1 . R igged Hilbert spaces . 
Usually Hilbert spaces arise in Analysis as spaces of square-

integrable functions, sections of a vector bundle etc. But in this 
case usually additional restrictions of smoothness or (and) de­
cay may be imposed to form a smaller Hilbert space. Also then 
the dual to this smaller space can be defined as a Hilbert space 
which naturally includes the basic Hilbert space. This situation 
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is described in the following 

DEFINITION 1.1. A rigged Hilbert space is a triple 

(1.1) HJ. СП СП. 

where H, H+, H- are (complex) Hilbert spaces (with the scalar 
products and norms denoted by ( v ) , ( v ) + > ( v ) - > II * II? II " ll+> 
|| • || _ respectively) and the following conditions are satisfied: 

i) Both inclusions 71+ C W and 7i C are linear continuous 
operators with dense image. 

ii) The scalar product (•, •) in 7i can be extended to a continu­
ous hermitian form (•, •) : 7{+ x 7Y_ —* C which is non-degenerate 
in the following strong sense: every linear continuous functional 
£ : 7Y+ —+ C can be uniquely represented in the form = (-, / ) 
where / £ 7i- and | | / | | - = ||^|| where ||^|| is the usual (opera­
tor) norm of £] similarly, every anti-linear continuous functional 
£9 : 7i- —> C can be uniquely represented in the form = (<7, •) 
with g e H+ and \\g\\ + = ||^||. 

The triple (1.1) is called then a rigging for the Hilbert space 
7Y. Spaces 'H+,'H- (and norms || • | |+, | | • | | - ) are usually called 
positive and negative spaces (and norms) respectively. Actually 
the negative space 7Y_ can be obviously reconstructed if only the 
couple ?{+ C 7i is given with the continuous imbedding operator 
having dense image. 

A convenient general procedure of constructing a rigging for 
a given Hilbert space 7i is to use a continuous linear operator 
K : such that Ker K = 0 and Ker K* = 0 (hence with 
a dense image ICH). Having such an operator we can put 

(1.2) H+ = KH, (Ku,Kv)+ = (K, v), U, v £ 7i. 

Then 7i- can be reconstructed as the dual space to 7i+ or as the 
completion of H with respect to the norm \\h\\- = \\K*h\\. 

Actually without loss of generality K can be chosen self-adjoint 
because replacing K by \K\ — y/K*K does not change the space 

(and its norm). 
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DEFINITION 1.2. A Hilbert-Schmidt rigging is a rigging con­
structed with the help of a Hilbert-Schmidt operator K in (1.2). 

Hilbert-Schmidt riggings play a special role in spectral theory 
as we shall see in the next section. 

Supposing that K* = K we may consider A = K~x as a self-
adjoint operator in besides Ker A = 0. If such an operator is 
given then we can construct the rigging by putt ing 7Y+ = D(A) 
and (u,v)+ = (Au,Av). This will be a Hilbert-Schmidt rig­
ging if and only if A has a discrete spectrum and its eigenvalues 
{Xj\j = 1 ,2 , . . . } satisfy 

(1.3) 
oo 

£ A 7 2 < ~ 

Note that only separable Hilbert space H may have a Hilbert-
Schmidt rigging in the sense described here. But this is the only 
case which we need in applications. 

A 2 . 2 . General ized e igenvectors . 
First recall a general formulation of the spectral theorem for 

self-adjoint operators (see e.g. [5] or [32]). 

T h e o r e m 2 . 1 . Let A be a self-adjoint operator in a Hilbert 
space 7i. Then there exists a measure space (M, / i ) , a unitary-
operator U : 7i —* L2(M, dfi) and a real-valued measurable 
function a on M which is defined and finite almost everywhere 
such that 

(i) %j> e D(A) if and only ifa(-)(Ut/>)(-) € L2(M,dfi) 
(ii) Iftpe U(D(A)) then (UAU-l<p)(m) = a(m)<p(m). 

In other words A can be represented as a multiplication op­
erator Ma given by (Ma<p)(m) = a(m)c^(m) in L2(M, dfi) with 
a real-valued measurable and almost everywhere finite function 
a. More exactly A = U~xMaU with a unitary U. Let us recall 
that under the given conditions the operator Ma with the natural 
domain 

D(Ma) = {<p\if e L2(M,rf/i), aif G L2(M,dfi)} 
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is self-adjoint. 
Now let us consider a rigging (1.1) of Ti. Let A be a self-adjoint 

operator in Ti. Suppose further that we are given a measure space 
(M, fi) and a vector-valued function $ : M —• (which may be 
actually defined almost everywhere) with values in the negative 
space of the rigging. 

DEFINITION 2.2. A vector-valued function $ : M —• H- is 
called a complete orthonormal system of generalized eigenvectors 
(or eigenfunctions) of the operator A if the following conditions 
are fulfilled: 

(i) for any G the function m H-> (/z+, $ (m) ) on M 
belongs to L2(M,d / i ) ; 

(ii) the map h-» ( / 1 + , $(•)) can be extended to a unitary op­
erator ¡7 : 7i —> L2(M, d / i ) which gives a spectral representation 
of A as in Theorem 2.1. 

The reader can find motivations and explanations of this def­
inition in [5]. Let us remark only that <£(m) is really a general­
ized eigenfunction of A with an eigenvalue a{m) in a reasonable 
sense. For example if we take any complex-valued Borel function 
/ : R -> C then 

(2.1) Wm)J(A)g) = f(a(m))(*(m),g) 

for any g € H+ n f{A)~lH+ (i.e. g G W+ D !>.(/(A)) and 
f(A)f G W+) and for almost every ?ri G M . In particular 

($ (m) , Äff) = a (m)($(m ) , f l f ) 

for any g such that # G 7i+ and A(/ € and for almost every 
rn G M. 

Actually the set MQ C M where all relations (2.1) are true 
(and such that ji{M — MQ) = 0) may be choosen independent of g 
provided 7Y-}_ is separable (see [5], Proposition 2.7 in Supplement 

Now we shall remind the main result about riggings and gen­
eralized eigenfunctions. It is due to Ju. M. Berezanskii but in 
a weaker form it was proved earlier by I.M. Gelfand and A.G. 
Kostyuchenko [17]. 
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T h e o r e m 2.3. Given a Hilbert-Schmidt rigging (1.1) of H and 
a self-adjoint operator A in H, there exists in (1.1) a complete 
orthonormal system of generalized eigenvectors for the operator 
A. 

A simple proof can be found in [5]. Remark that the condi­
tion on the rigging (1.1) to be Hilbert-Schmidt is necessary in a 
natural sense (see [4]). 
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