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On the Many Body Problem in Quantum Mechanics 

Avy Soffer* 

Section 1. Introduction 

The aim of these lectures is to describe some of the modern mathemat

ical techniques of iV-body Scattering and with particular mention of their 

relations to other fields of analysis. 

Consider a system of N quantum particles moving in R n , interacting with 

each other via the pair potentials Va\ the Hamiltonian (with center of mass 

removed) for such a system is given by 

H = - A + E 
i<3 

Vijixi-xj) on L 2(JT A ' ~ n ) . 

Here 1 < i, j < N, x{ 6 R n . - A is the Laplacian on L2(Rn A " n ) with metric 

x >y = 

N 

=1 

¿=1 
rriiXi • yi ; mi > 0 . 

The rrii are the masses of the particles. The main problem of scattering theory 

is to describe the spectral properties of H and find the asymptotic behavior 

of e~tHtcp(p for (p 6 L 2 , as t —> ±oo . 

There are two reasons for that: one, the behavior is much simpler as 

t —• ±oo . Secondly it determines the full properties of the system. Since the 

•Supported in part by NSF grant number DMS89-05772. 

S. M. F. 
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A. SOFFER 

sum i 
<j 

V{j does not vanish as \x\ —> oo in certain directions, the perturbation 

of —A is not negligible at infinity. The spectral properties and asymptotic 

behavior of H are therefore radically different than that of —A. 

This is the generic multichannel problem. There are many different 

asymptotic behaviors possible, depending on the choice of <p. Thus the main 

theorem can be phrased as: given <p £ L 2 ( R n ) , find hamiltonians Ha and 

Functions cp a= , s.t 

e-iHtp — E 
a 

e~iHat<PÌ « 0 as t —> ±00 . 

Accepting the physicist's dogma that every state of the system is described 

asymptotically in terms of particles (or bound clusters of particles) we con

clude that the only possible Ha are the subhamiltonians of the system: 

tia = H — Ia 

I a = E 
(iJ)Ca 

Vij(Xi ~ Xj) 

and a stands for arbitrary disjoint cluster decomposition of { 1 , 2 , . . . , N}. 

Ia is called the intercluster interaction. The Hamiltonian that describes 

the bound clusters of a decomposition a, is denoted by Ha. Not much is known 

for Multichannel Non Linear Scattering; see however [Sof-We and cited ref.]. 

The approach to studying e~%Uii\) for large |£| is by first reducing the prob

lem via channel decoupling (or other methods) to the study of the localization 

in the phase space of e~tHiip. Then, we develop a theory of propagation in 

the phase space for H. The channel decoupling is achieved by constructing a 

partition of unity of the space, with two main properties: one, on the support 

of each member of the partition the motion e~lHiip is simple (= one channel) 

and can be described by one fixed hamiltonian. The second property is that 

the boundary of the partitions is localized in regions where we can prove that 

no propagation of e~~lHtip is possible there for large times; in this way we 

conclude that no switching back and forth between channels is possible as 

|<| —• 00 which implies the desired results. 

The first part, based on the construction of partitions of unity relies 

mainly on geometric analysis combined with the kinematics of (freely) moving 
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particles. Different techniques are now known, each with its own importance, 
and I will describe some of the main constructions. The second part of the 
proof is analytic; it provides an approach to finding the asymptotic behavior 
of e~lHtip as \t\ —* oo, which is complementary to that of stationary phase. 
As I will describe below it replaces the (central) notion of oscillation by that 
of microlocal monotonicity. The distinctive feature of this approach allows 
the study of general pseudo differential operators H on equal footing with 
constant coefficient operators. 

The first proof of Asymptotic Completeness (AC) for TV-body systems 
along these lines was given in [Sig-Sofl]. Since then, different proofs were 
developed, with new useful implications [Deri, Kit, Gr, Ta] (see also [En2, 
Ger2-3]). Further developments concentrated on the long range problem. The 
three body case was first solved by Enss [En2]. (See also [Sig-Sof3].) Local 
decay and minimal and maximal velocity bounds were proved for JV-body 
hamiltonian, including ones with time dependent potentials in [Sig-Sof2]. This 
approach is further utilized in [Sk, FrL, Ger2 , Ger-Sig, H-Sk]. A method 
of dealing with the problem of AC for long range many body scattering is 
developed in [Sig-Sof4,5]; the case of N = 4 is solved there. 

A final comment; the phase space approach to JV-body scattering origi
nated with the fundamental works of Enss [Enl,2]. A comprehensive descrip
tion of the Enss method can be found in [Pe], including applications to many 
problems in spectral theory. References of many of by now classical results, 
including the works of Mourre, until about 1983 can be found in [CFKS]. We 
refer the reader to this book also as the basic reference used here on spectral 
and scattering theory. 

Section 2. Microlocal Propagation Theory 

Let H be a self adjoint operator on L2(Rn) arising from the quantization 
of a classical Hamiltonian h. By solving the Hamilton-Jacoby equations for h 
it makes sense to talk about the classical trajectories (or bi-characteristics) of 
h (or H). As t —> ±oo the (unbounded) trajectories concentrate, in general, 
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in a certain set of the phase space. 

DEFINITION 2.1. A bounded p.d.o. j with symbol homogeneous of degree 
0 in x is said to be supported away from the propagation set (at energy E) of 
H if the following estimate holds 

±00 
[ 
[ 

± 1 

= a 
(x) 1/2 je-tHtiP\\2dt< e l ic l i 2 for all tP = En(H)rp. 

Here (x)2 = 1 + ar, En(H) is the spectral projection of H with ft any 
sufficiently small interval containing E. 

Our aim is to identify the (conical) set PSE of the phase space, with the 
property that any j is supported away from the propagation set in the sense 
of the above definition if and only if it is supported away from PSE- We can 
therefore think of PSE as the propagation set of H at energy E. 

The main tool to proving that a given conical set K is away from the 
propagation set PSE will be to prove (microlocal) monotonicity of the flow 
generated by H in K. 

The claim is that the classical flow generated by H is moving out of any 
such K monotonically in for large t. By finding a lower bound for this 
monotone flow in K we can then absorb the effects of quantization and other 
potential perturbations of H. 

I chose to describe the above approach first when applied to H = — A, and 
along the way prove some known and new smoothing estimates for —A. The 
proofs are easy but allow the introduction of some of the other fundamental 
notions and arguments repeatedly used later. 

DEFINITION 2.2. The Heisenberg derivative of an operator family F(t), 

DF(t), w.r.t. to H is defined by 

DF (t) = i [H,F] = + dF 
dt . 

DEFINITION 2.3. A bounded family of linear operators F(t) on L2(Rn) is 
called a propagation observable for H if its Heisenberg derivative is positive -
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lower order terms. For some 6 > 0: 

DF(t) > 6B*B - 0((B*By-£) - 0{L\dt)) 

we then say that DF(t) majorâtes B*B {DF(t) > 0B*B). 

Basic Lemma 2.4 Let F(t) be a propagation observable which majorâtes 

B*B. Then 
[ 
[ 

>±oo 

±1 

WBe-^||2fdt < cUf . 

The proof follows by the fundamental theorem of calculus and Heisenberg 

equations of motion: 

d 
dt 

{eiHi^,Fe-iHii)) = (eiHt>iP,DFe-iHtil;) . 

The Basic Lemma reduces the proof that a given j is supported away 

from PS to finding a propagation observable majorating j*(x)~~1j. When F 

is chosen to be a p.d.o., one can often use Gôrding's inequality to check ma

joration, which reduces the problem to finding a lower bound for the Poisson 

bracket {/i, / } . 

Theorem 2.5 (Microlocal Smoothing Estimate) Let j be a bounded homo

geneous of degree 0 (in x) symbol, with support away from 

PS = {(x,t)eT*x\z\\t}. 

Then 

a) 

T 

I 
o 

= 1 
(x) 1/2 

•J(<p)l'2e+iAttl> [ 
[ 

2 
dt < CTU\\ 2 1> € L 2 (R") 

b) 

T 

fi 
0 

II 
1 

(x) 1/2+e (py^-e^f|y|dt < cr||U\\2 • 
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Furthermore, in case the dimension n > 3, CT can be chosen independent of 

T. The same is true in any dimension if -*/;(£) is supported away from 0. 

REMARK. Part b) of the theorem is known as local smoothing estimate. If 

was proved in [Co-S, Sj, V] (see also [Be-K, G-V2, Ka-Ya]) and found since 

then many important applications in both linear and nonlinear PDE see e.g. 

[JSS], [KPV]. 

PROOF. The proof for a general H replacing A is given in [So2]. Here I 

sketch the main steps: By the Basic Lemma we have to find operators Fi, F2 

bounded and s.t. 

DFX > (xy^2J(p)r(x)^^1/2 + 0(l) 

and 

DF2 > (x)-"2-*'1^)^)-1/2-*1/!2 + 0 ( 1 ) 

where O( l ) stands for an operator of order zero (in f ) . Using p.d. calculus it 

is easy to check that 

Fi = 7; = (îi -p + p-Xi) 
1 

2 
i = 1,2 

satisfy both of the above; 

Xi = x/{l + x2 + 9i{x))1/2 

P = P/(P) 9i{x) = 0,02(2) = \x\2 £ . 

REMARK 1.. The original proofs of b) uses stationary phase analysis, and 

therefore does not extend to cases where the kernel of e~liH is not explicitly 

constructible, e.g. H = - A + V, V singular. The above argument trivially 

extends to such general H. 

REMARK 2. The above theorem shows that the notion of propagation set is 

relevant also for finite time behavior of e ~ l H t i p 

The operator 7 comes from regularizing the operator 7 = T>(X -p + p • x). 

Different versions of 7 appeared in scattering theory [L, Ml-2, M-R-S]. 
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Its centrality for the TV-body problem was first realized in [Sig-SoflJ. To 

see its importance, let us compute the Poisson bracket of £ 2 with the symbol 

of y 

{ e 2 , i - O p ß = 2 e - v 1 ( x . o = 
2 

<x) 
(e2 - (x.e )2) 

and it is clear that the above bracket is positive (0(1/x^~y£2)) iff(w, e) is localized 

away from {x|| e}.We can therefore identify the PS of - A with {x||e } , which 

is not surprising since x(t) = XQ + 2£t are the classical trajectories of — A, and 

they concentrate where x 
t = 2£. 

Section 3. Hamiltomans and Kinematics 

Consider an iV-body system in the physical space Rv. The configuration 

space in the center-of-mass frame is 

(3.1) x = {x e RvN I 

N 

E 

2 = 1 

rriiXi = 0} 

where x = (a?i,... ,XTV ) with X{ G R", with the inner product 

(3.2) (x,2/) = 2 
A' 

E 
?:=i 

m, xi . yi . 

Here m-i > 0 are masses of the particles in question. The Schrodinger operator 

of such a system is 

H = -A + V(x) on L2(X) . 

Here A is the Laplacian on X and 

V(x) = Y,Vij{xi - XJ) , 

where (ij) runs through all the pairs satisfying i < j . 

We assume that the potentials V{j are real and obey: Vij(y) are A y -

compact. It is shown in [Com] (see also [CFKS]) that under this condition 

Kato theorem applies and H is self-adjoint on D(H) = -D(A). Moreover, by 

115 



A. SOFFER 

a simple application of Holder and Young inequalities and by a standard ap
proximation argument (see [CFKS]) one shows that if Vij are Kato potentials, 
i.e. 

Vij e Lr(B?) + (L 8 (Rv )) e> where r > v 
2 if v > 4 and r = 2 if v < 3 , 

and the subscript e indicate that the L°°-component can be taken arbitrarily 
small, then Vij is Laplacian compact. 

Now we describe the decomposed system. Denote by a, 6 , . . . , partitions 
of the set { 1 , . . . ,N} into non-empty disjoint subsets, called clusters. The 
relation b < a means that b is a refinement of a and b ^ a. Then am-in is 
the partition into N clusters ( 1 ) , . . . , (AT). Usually, we assume that partitions 
have at least two clusters. # (a ) = |a| denotes the number of clusters in 
a. We also identify pairs £ = (ij) with partitions having N — 1 clusters: 

(zj) {(ij)(1) . . . (i)... (j)... (N)}. We emphasize that the relation £ C a 
(resp. £ C a) with £ = (ij) is equivalent to saying that i and j belong to 
different clusters (resp. to same cluster) of a. 

We define the intercluster interaction for a partition a as 7rt = sum of all 
potentials linking different clusters in a, i.e. 

(3.3) Ia= E 
e=a 

Vi. 

For each a we introduce the truncated Hamiltonian: 

(3.4) H a = H = 7 a . 

These operators are clearly self-adjoint. They describe the motion of the 
original system broken into non-interacting clusters of particles. 

For each cluster decomposition a, define the configuration space of rela
tive motion of the clusters in a: 

Xa = {x € X I Xi = Xj if i and j belong to same cluster of a} 

and the configuration space of the internal motion within those clusters: 

Xa = {xeX\ E 
Jed 

rrijXj = 0 for all Ci G a} . 
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Clearly Xa and Xa are orthogonal (in our inner product) and they span X: 

X = Xa®Xa. 

Given generic vector x G X , its projections on Xa and Xa will be denoted by 
xa and xa, respectively. 

If i and j belong to some cluster of a, then X{ — Xj = (7rax)i — ( 7 r a x ) j , 
where 7 r a is the orthogonal projection in X on Xa. This elementary fact and 
the fact that —A =(p, p) with p = —iVx (see equation (3.6) and the sentence 
after it) yield the following decomposition: 

(3.5) Ha = Ha e l + 1 e Ta on L2po = L 2 { x a ) e L 2 ( x a ) . 
Here Ha is the Hamiltonian of the non-interacting a-clusters with their 
centers-of-mass fixed at the originating on L 2 ( X a ) , and Ta = 
—(Laplacian on X a ) , the kinetic energy of the center-of-mass motion of those 
clusters. 

The eigenvalues of Ha, whenever they exist, will be denoted by e a , where 
a = (a, m) with m, the number of the eigenvalue in question counting the 
multiplicity. For a = am-in, we set ea = 0. The set { 6 : a , all a} is called the 
threshold set of i f and ea are called the thresholds of if. For a = (a,m) we 
denote |a| = |a| and a(a) = a. 

Our method is based on localization of operators in the phase-space 
T*X = X x X'. Hence and henceforth, the prime stands for taking dual 
of the space in question. The dual (momentum) space X' is identified with 
(3.6) 

X1 = {k e R?N I Tiki = 0} wi th the inner p r o d u c t (fc,u) = E 1 
2mz-

ki . ui. 

Thus |fc|2 is the symbol of - A and - A = |p| 2 . We use extensively the 
natural bilinear form on X x X' : (x,k) = Ea^ • k{. Given generic vector 
k G X\ its projections on X'a and (Xa)f will be denoted by ka and fca, 
correspondingly. Accordingly, the momenta canonically conjugate to xa and 
xa and corresponding to ka and fca will be denoted by pa and p a , respecitvely. 
Thus T a = | p a | 2 . Using the bilinear form above we define the generator of 
dilations as 

A = 
1 
2 ({p,x} + (x,p)) 
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and the self-adjoint operator 7 , 

7 = 
1 
2' 

[fax) + (x,p)) , 

associated with the angle between the velocity and coordinate. Again, for 

decomposed systems A splits into the operator 

Aa = 
1 
2 

l<J>\x") + (x",pa)) 

corresponding to the internal motion of the clusters, and the operator 

Aa = 
1 
2 {(Pa,Xa) + (XajPa)) 

corresponding to the motion of the centers-of-mass of the clusters. 

Finally, we mention some notation. We denote E& = f(H G A) for an 

interval A C R and set HQ = HEQ. P will stand for the orthogonal projection 

the pure point spectral subspace of H. 

Section 4. Partitions of Units 

The configuration space of N particles moving in v dimensions with the 

center of mass removed is 

X = {x G R"N
 I 

N 

E 
?:=i 

rriiXj = 0} . 

Here the rn2's are the masses of the particles and x\ G W their position. Let 

a be any disjoint cluster decomposition of { 1 , 2 , . . . , iV} . Denote by Xa the 

subspace of X given by 

Xa = {x | X{ — Xj = 0 if (ij) belong to the same cluster in a} . 

Define \x\a = mm^j)^a \x{ — Xj\. We can now prove the existence of a two 

cluster partition of unity {ja}-

Proposition 4.1 There exists a partition of unity of X, { j a } # ( a ) _ 2 s.t. 

i) E1 
a 

Ì a 2 ( * ) = 1 on X. 

118 



THE MANY BODY PROBLEM 

ii) Each 0 < ja{x) < 1 is smooth and homogeneous of degree 0 outside 

the unit ball of X. 

Hi) ja{x) = 1 for some neighborhood of Xa/{\x\ < 1} 

iv) ja{x) = 0 for \x\a < ea\x\ for some positive ea. 

The proof follows by finding a covering of the unit sphere of X by neigh

borhoods of X a , = (a) = 2. For each member of the covering we then asso

ciate a smooth characteristic function which we then extend by homogeneity 

to \x\ > 1 and in a smooth but otherwise arbitrary way to \x\ < 1. We then 

normalize these functions so that ]P 3a = 1 • 
a 

The partition constructed in the proposition above is called a two-cluster 

partition of unity and it appeared already in the Haag-Ruelle theory [GJ]. By 

generalizing the construction above to neighborhoods of X a , a any two or more 

cluster decomosition we can construct a fc-cluster decomposition { ja}#(a)<fc 

to obtain 

Proposition 4.2 There exists a partition of unity of X, { 7 * a } s.t. 

0 E ìli*) = 1 
= (a) < k 

ii) Each 0 < ja(x) < 1 is smooth and homogeneous of degree zero outside 
{|| x||<1 } 

in) ja(x) = 1 for some neighborhood of Xa/{\x\ < 1} 

iv) supp ja(x) C {\x\a > <5|#|} f°r some 6 > 0. 

This kind of partitions will allow us to use induction on number of cluster 

decompositions. Such partitions were used extensively in [Ag, Sig-Sof 1]. 

Partitions of unity are the basic tool to decouple channels of propagation 

from each other. In spectral geometry they are used to decouple different 

neighborhoods of infinity from each other [FHP1-2], see also [CFKS chapter 

i i ] . 

Theorem 4.3 (Hunziker Van Winter Zislin) (HVZ) 

<7 e s s(tf) = | J < 7 C S S ( # „ ) #(o) = 2 . 
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PROOF. [Sig 3] Using trail functions it is easy to prove that 

°ess(H) D u 
a 

<7ess(Ha) • 

To prove that ae8S(H) Ç (J a aess(Ha) we use the two cluster partition of unity 

{ j a } # ( a ) = 2 : 

H = 
1 

2 E 
a 

iln + Hil) = E 
a 

ja H ja + E 
a 

Ja\ja,H] 

= E 
a 

jJHa + h)ja + 
1 

2 E 
a 

[ j « , b a , # ] ] . 

Since H = - A + F(x) it follows that 

b'a,L7a , i ï]] = b ' a , b - a , - A ] ] = 0 ( | x | - 2 ) 

by property (ii) of the partitions j a . Furthermore, by property (iv) of j a we 

conclude that 

jaIa = 0(1x1"") . 

Hence 

H = E 
a 

jaHaja + 0(\x\-n+ 0(1x1^) . 

Since 0(\x\ M ) is - A (and hence # ) compact it follows by Weyl's Lemma 

that 

aess(H) = cr e s s ( E 
a 

jaHaja) 

from which the result follows by an elementary argument. 

In the study of the asymptotic behavior of multichannel systems the 

decoupling by ja{x) is not sufficient (see however [D-SJ [Sig3]). This is due 

to the fact that the flow under H can move through the boundary of one 

partition into the other and back. Therefore, to achieve a true decoupling 

between channels a new approach is needed. 
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This has been done in [Sig-Sofl] by introducing a phase space partition of 

unity with the boundary of the partitions localized away from the PSE of H. 

In this way the decoupling is achieved between channels, modulo quantum os

cillations capable of tunneling through the classically forbidden regions. The 

contribution of such oscillations is then controlled by the microlocal propaga

tion estimates as explained in the previous section. 

Proposition 4.4 (phase space partition of unity) There exists a partition of 

XxX'(= T*X),jatE(x,Ça) s.t. 

i) E 
#(«)>2 

ja , E (x , ea )=1 

ii) Each 0 < j a < 1 is homogeneous of degree zero in x 

Hi) supp ja(x,£a) C { |x | a > <5|a:|} and j a = 1 in some neighborhood of 

Xa 

iv) supp V x j a ( x , £ a ) is away from PSE. 

The construction of such partition can be found in [Sig-Sofl]. The main 

building blocks of such a partition are Xx0 (z)? a n ( ^ Xto (£)? Xx0 (
x) is a (smooth) 

characteristic function of a cone in x near the direction XQ and Xf 0(£) in f 

near fo5 the support of the X£0

 1S taken to be either strictly inside that of Xx0 

or strictly outside. It is then easy to see that V x . ( x . C o {x)Xto(0)) ŝ supported 

where x \ \ f. 

The main application of the above partition is 

Theorem 4.5 (Channel Decoupling) Let E be a given non threshold energy 

of H. Then AC follows from the propagation theorem on PSE-

PROOF. 

e - i H t Y = E 
a 

lle-""l> 

= E 

a 

e +i H a t (e iHai j2ae -i Ht Y=. 

It is therefore left to show that 

eiHaij2

ae-iH'rP ^ipf as t - > ±00 . 
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By Cook's method this is reduced to proving that 

[ 
[ \\(Hjl-jlH)e-iin^\\2dt<||cU\\ . 

But 
||Haja2 - j2 a H ) e - iHt Y || 2 dt < c ||Y||. 

j^Ia = 0(|x| **) and for fi > 1 the above estimate holds by local decay since 
E is away from the thresholds (see section 7). 

Haj2

a-j2

aHa = ü(\x\-l)ja(x,ta) 

where Ja{x^a) lives away from the PSE by property iv). Applying the prop
agation theorem to this term the result follows. • 

A very interesting partition of unity of X was constructed in [Gr]. (A 
simpler construction is given in [Der3].) It is an iV-cluster partition of unity 
with further property on the boundary which implies monotonicity of the flow 
there in a certain sense: 

Proposition 4.6 (Monotonic Partition of Unity) There exists an N-cluster 
partition of unity {qa}i furthermore, the derivative of qa along xa on the 
boundary is nonnegative: 

E 

a 
xa<8)Vqa(x) > 0 . 

The idea behind the construction of qa is the observation that VF( |x | < 
c) = - V F ( | x | > c) and qa is a product of such F's with x —• x% and c —> eg. 
One can then cancel the negative terms in the sum Y^xa ® Vg a (x ) by the 

a 
corresponding positive ones, using that 

xa ® VF(\xb

a\ > cb

a) + xh ® VF(\xb

a\ < cb

a) > 0 . 

Using the above partition, one can construct new propagation observables 
with monotone Heisenberg derivative by "clustering" (see [FHP1] for the first 
such procedure) the corresponding two body analog: In one channel nonlinear 
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scattering one uses the propagation observable (p - f ) 2 + V(<p) {V(<p) stands 

for the nonlineari ty), to derive the pseudo-conformal identities for the NLS 

equation [G-Vl]. For AT-body systems, using qa one replaces y by v(x,t) 

where 

v(x, t) = E 
a 

Xa 

t 
Wa 

where wa are appropriately scaled (in time) qa. One can then show that 

-K = lp-v{x,t))2 + V(x) 

is a propagation observable. Other observables can also be constructed, e.g. 

EawaAa/t 

In the study of Long Range Scattering one is led to study the asymptotics 

of TV-body systems at threshold energies. This requires zooming on zero 

velocities (coming from the critical points of the symbols of Ea + Ha) which 

we do by scaling in the time variable (see section 8). A natural partition of 

unity used in such an analysis is multiscaled [Sig-Sof5]: 

Proposition 4.7 (Multiscale partition of unity) There exists a k-cluster {ja} 

partition of X, depending on time, s.t. on support ja(x,t) \x\a > 6ita(a)^ and 

\xa\ < 62b(a)^^ (where of course a(a) > (3(a)). The partition is multiscaled 

since a(a) > c¿(a') if a C a'. 

Just like with the monotonic partition it is possible to cluster operators 

using the multiscale partition leading to new propagation observables. 

Section 5. The Channel Expansion 

Recall that in the two body case the dilation generator A has positive 

commutator with H (= — A + V(x)) for sufficiently regular V(x) and when the 

commuator is localized away from the thresholds of H. The question arises 

whether we can "cluster" A to prove similar bounds for the iV-body case. (See 

[Hul] for the case of classical mechanics.) This was first shown by Mourre in 

the case N = 3 and later generalized for all N in [PSS, FH1, BG2]. In [Sig-

Sofl] it is shown that the commuator of H with certain global observables, 
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including A and 7 , can be approximated to arbitrary accuracy by a sum of 
contributions from the open channels of the system, at the given energy. This 
became a central technical result in the study of spectral and scattering of TV-
body systems. It implies, for example, that the Mourre estimate holds at non 
threshold energies with precise lower and upper bounds on the commutator 
i[H, A]. This section is devoted to proving the theorem using an important 
simplifying idea of Hunziker [Hu2]. 

The channel expansion theorem state that certain commutators with H, 
as well as the identity can be approximated, arbitrarily close, by a finite sum 
of contributions of open channels only. The approximation gets better as 
we add more and more open channels to the sum and shrink the interval A 
around the energy E. We first need a few definitions. 

Let {ej(a)}<jL1 be the eigenvalues of i / a , with corresponding projections 
Pj(a). Here the Pj{a) are all chosen to be finite dimensional. Denote by 
p(«) = N 

3 

Pj(a) = 1 — P(a) the projection on 7ip.p(Ha) and P(a) is the 

projection on the continuous spectral subspace of Ha. 

P»(a) = 
N 

E 
i = l 

Pj(a) and P (a) = l-PN(a) . 

We drop the index a when Ha = H (#a = 1). For the smooth spectral 
projection FA of i 7 a , we let 

F» = FAP\a). 

A cluster decomposition a and a choice of eigenvalue for Ha determines a 
channel a. So, we let Pa be the projection on the channel bound state, pa 

be the channel momentum (pa = p a ( 0 ) ) , T a its kinetic energy ; Ta = T a ( a ) = 
|Pa(a)| 2 == b a | 2 j Tn(a) — order number of the eigenvalue SJ(Q). 

Theorem 5.1 (Channel Expansion) Given E 6 R, 6, e > 0 there exists 
integers {Ni}iLx and a finite set of channels C£: 

aeC£ iff m(a) < TV # ( c v ) . 
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For each a £ C£ there exists a smooth characteristic function of the origin 

Xa, with sharpness less than <5, and an interval A D E s.t. 

0 F»i | i f ,J |F*iF»' | c E E 
QrGCe 5 = ( a 2 , . - - » O A ; . a ( « ) ) 

J , 2 r è x « t ó + e ( a ) - A ) i ; ) i ^ 

|if,J|F*iF»' [ [ E 
E 

v|if,J|F*iF»'||if,J 0 A 2 

£ C e S=(a 2 , . . - ,afc,a(a)) 

where A i C A , and for S = ( a 2 , . . . ,a^,a(a)) 

|if,J|F*iF»'||if,J|F*iF»'| 

PROOF. We sketch the proof before giving the details. The idea is to try to 

mimic the proof of the HVZ theorem, by reducing the problem to Ha using 

the two cluster partition of unity j a . We then get 

|if,J|F* E 
#(«0=2 

jai[H,A]ja + K 

where K stands for a relatively compact operator (w.r.t. H). Next, we want 

to replace i\H,A] by i\Ha,Aa], using that 

H = Ha + Ia and JaIa = K 

and 

A — A" + Aa • 

Doing that, we get 

i\H,A] = E 
* 2 

jaÌ[Ha,Aa]ja + E 
a 2 

\iai\Ha*AaUa+K . 

The first sum on the r.h.s. involves a "one body" commutator and produces 

the 2pi term. It is left to consider i[Ha,A
a), which we rewrite now as 

i[Ha®l+pl®l,Aa] = i[Ha,Aa) . 
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This last commutator is exactly the same as i[H, A] but for a subhamiltonian 
coming from some two cluster decomposition a. We can therefore assume it 
satisfies the theorem and proceed by induction to conclude the proof. 

The difficulty lies at this stage: the original commutator is localized with 
H ~ E, but the new one, i[H°, Aa] has Ha localized near E — 2p2

a which varies 
over a large interval, in general, and can hit bound states of Ha for example, 
where the induction hypothesis is useless. To proceed, we use a resolution of 
the identity 

1 = 
A 

E 
7 = 1 

Pi{a) + PN{a) 

and study 

(HI) Pji(a)^H^A^Pjia) 

(H2) PN(a)i[H\Aa]PN(a) 

(H3) PN(a)i[Ha,Aa]Pj(a) (and its adjoint). 

Case (HI) is shown to contribute zero by applying the virial theorem and 
localization using FA Case (H2) is treated by the induction hypothesis. Case 
(H3) is shown to be small in norm by compactness. The main simplification 
in the proof below compared to [Sig-Sofl] is that the induction hypothesis 
is formulated and used for H(l, rather than Ha. In this we follow Hunziker 
[Hu2]. 

The induction on clusters begins with n = N and descends to 1. For 
n — JV, H is reduced to —A where the proof is straightforward. For the 
sake of notation we only do the last step of the induction: proving it for H 
assuming it for all Ha, # (a ) > 2. Using the IMS localization formula: 

£Ce S=(d2v ,<u.,tt(o))£Ce S=(d2v ,<u.,tt(o)) E 
#(«)=2 

F^jai[Ha,A]jaF^ 

for Ai sufficiently small, and Ni sufficiently large, depending on e. 

£Ce S=(d2v ,t(o)) E 
a 2 

FgjaFAl(Ha)i[Ha,A]F*3(Ha)jaF£ 

for all A 2 D A j , s.t. F A 2 F A ] = FAt. 
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To prove the last inequality we used that for all e' > 0 

\\F^jaFA2(Ha)-F^ja\\<e' 

for IAiI < 6(e') and Ni > N!(e). 

To prove it, observe that since jaJa = K and H = Ha + Ia then 

jaFA2 (Ha) = j a .FA 2 (H) + K = FA2 (H)ja + K . 

Next, we use 

i[Ha,A} = i[Ha,Aa} + 2pl . 

Hence, using the resolution of identity 
N 

2 J 
l 

Pj + FnA = 1 we get 

,A]F«;j E 
a 2 

F£ù,F£i[Ha,A]F«;jaaF£ 

+ E 
a 

F^JaPa2plFlì(pl+ eQ)Paja F /Vi 

ra(a)<7Vi 

+ 
E 

a 2 

F^ja2FA2Pai[Ha2, A]PQFA 2ia 2 JPN1A1^ 

m ( a ) < TV 2 

m(a')<N2 

= Er 

a 2 

F£lJa2F^i[Ha2,A}PaFA2ja2FNA1»l + h.c. 

, (a) >2 

h.c. stands for hermitian conjugate. 

The second term on the r.h.s. is derived by using; the virial theorem: 

Pai[H%A]Pa= 0 . 

The third term is zero, since Pa localizes Ha near ea (in F&2) and Pai localizes 

Ha near ea

f ^ sa (in F&2). Therefore, since eQ,/ ^ e a , choosing the sharpness 

of F&2 sufficiently small either F&2Pa = 0 or F^2PQf = 0 (or both). 

The fourth term and its hermitian conjugate are made smaller than any 

e > 0, by observing that 

F»H[Ha„A]PQ 
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is a (relatively) compact operator, since Pa is compact on L'2(Xa). Hence, 
letting | A 2 1 1 0, N2 —> 00, we see that FNa^2 —0 and hence 

\\F£i[Ha9tA]Pa\\-+0. 

One technical tool used here and in the above compactness arguments is 
reduction to the subspace L2(Xa) using the fibre representation for Ha is 
fibres of pa : 

FA(Ha) = I 
2 

\\F£i[Hat+Pea2)dea 

Since H is semibounded from below the sum over f a extends over a compact 
set. This allows us to use compactness arguments in L2(Xa) for each fibre £ a . 

Similarly, we prove the channel expansion for the identity: 

\\F£i[Ha9 E 
a 2 

FNAij2a 
FNi[Ha9 

= E 
#(«°)=2 

F^jaFl2(Ha)jaF^ 

Since \ \ F £ K F £ N 1 A 1 II < e for all sufficiently small | A j | and large Nt. Writing 

Fl(Ha) = F^(Hay- + (FA2P^-(a)r-

we set 

«') 2 = E 
#(a)=2 

F Z ; j a F £ ( H a y - j a F » N ; 1 1 

+ E 
#(«)=2 

F£jaFl2(ea+Pl)jaF«N1A1; 

and we redefine 
\\F£i[Ha9tA]Pa\\-+0\\F£i+ea-E). 

Using the induction hypothesis and using local compactness to prove 

\\F£i[Ha9tFNA1A]Pja Pa N2 
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the result follows. • 
Next we prove the Localization Lemma: 

Lemma 5.2 Let i = 1,2 be smooth functions s.t. supp i*\ C (-6/2,6/2) 
and supp F2 C [3/4 a oo). Then 

F1(\p\-K)F2(±1-K)= 0(\X\~1) . 

PROOF. Pick F3 so that supp F3 C (-(2/3)6, (2/3)6) and F3 = 1 on supp Fi. 
Denote g = F3(\p\ - K), F^p) = Fj(|p| - K) and F2(j) = F2(±j - K). The 
operator j g = gjg is symmetric and bounded: 

\(x-pgugu)<\\pgu\\\xgu\\ < (K + 
2 
3 6) U H I ' 2 -

where we have used that 

i i * / n < 11/11 • 
This shows that 

±570 < K + 
2 
3 

5 . 

Now observe 

Fi(p)F2(7) = F , (p ) (F 2 ( 7 ) - F 2 ( 7 s ) ) . 

Using the Fourier representation 

F(j) = I F2(s)e^s ds 

and using a continuity argument in order to extend the following result from 
C(R)-functions to smooth bounded functions F2 with C q ° derivatives, we ob
tain 

F2(l) ~ F2(lg) = J +8 

— O O 

F2(s)(eh* - eh°s) ds 

=1 i 
[ +8 

— O O 

dsF2(s)ei''s I du e-ilu{y - S7s)e' ' 7 » u . 
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This implies 

Fi{p)F2(1) = - i 
[+8 
5+8 lsF2(s) f 

Jo 

<u.,tt(o))<u.,tt(o))<u) e iyg u; 

We commute F\(p) on the r.h.s. of this expression through ell^s u \ The 
result is 

F1(p)F2{j) = B, + B2 , 

where 

Bi = - i 
/

00 

-00 

dsF2(s) f <u.,tt(o))<u.,tt(o))<u.,tteiygu 

and 
Bo = i 

/
O O 

- O O 

rfsF2(s) /* 
Jo 

dueimf{8-u)Fi(p)j(l - g)ell*u . 

Next we show that 

(a) [F 1 (p) , 7 ] = 0 ( N - 1 ) . 

Using that 
[Fi(p),7] = S[p,i ; ii(p), 

xi 
(c) + o ( N - ) ) 

and using the commutator formulas [Section 6] we obtain (a). Now the rela
tion 

[F1(p),ei'<t} = -i 
Jo 

e'-(<-*)[Fl(p),1}ei->« ds , 

Equation (a) and commuator formulas imply that 

[F1(p),e^} = 0(\x\-iti). 

Equations (a) and the above equation together with the relations 

Fl(p)(l-g) = 0 

and 

/
00 

-00 

|F 2 (s) | \s\n ds < 00 for n = 1,2,3, 
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imply 

Bi = 0(\x\~1) , ¿ = 1,2. 

Using the Localization Lemma, we can then sharpen the statement of the 

channel expansion theorem, by replacing Xa(pa + €(a) ~ E) by FaXa(Pa + 

e(a) - E)Fai with 

Fa = X(la(a) = \/E - s(a)) . 

Section 6. Some Operator Calculus 

In this section we derive various estimates on functions of self-adjoint 

operators following [Sig-Sof2]. We begin with a few remarks. 

Let A be a self-adjoint operator on L 2(IR"). If / is a measurable function 

with integrable Fourier transform then we define 

(6.1) № = 
[ 
[ 
[ 

f{s)eiA*ds 

where f(s) is the Fourier transform of /(A) and the limit defining the integral 
is taken in the strong sense. With some care this formula can be extended to 
a broader class of functions. For positive powers of positive operators we use 
the representation on D(A[a]^+l) 

(6.2) A = sin7r(a — [a]) 

7T 

[ 
[ 
(oc 

<u.,tt(o)) 

A + W 
dwAla]+i , 

where [a] is the integer part of a. 

Expansion of Commutators 

Let H and A be self-adjoint operators on the same Hilbert space 7i. We 
assume that D(A) fl D(H) is dense in H, and for some n > 1 

(6.3) adk

A(H) extends to a bounded operator for all 1 < k < n. 

Here adh

A(H) = [• • • [if, A], A], • • -A]k-times are defined initially as forms on 
D{A) fl D(H). 
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Property (F): 
We consider a class of smooth functions / whose Fourier transforms / 

obey 

(6.4) l l / ( n ) l l i = 
[ 
[ 
[ 

| / (*) | |* | n d5< OO . 

Here,f (k)stands for the kth derivative of / . We derive Taylor-type expansions 
for the commutator [H,f(A)]. 

Lemma 6.1 (Leibnitz Rule) 
Let for some n > 0 H obey (6.3)and / obey condition (F). Let [H, f(A)] 

be defined as a form on D(An). Then, 

(6.5] [H,f(A)} = 
n-1 
Z 

fc=lE 

1 
k1 f

k)(A)ad>;A(H) + Rn(f) 

in the form sense with the remainder Rn{f) satisfying 

(e.e) \\Rn(f)\\<C\\fin%\\ad^(H)\\ 

Consequently, [H,f(A)\ defines an operator on D(An~i). 

PROOF. We begin with feC™ functions for which representation (6.1) is 
well-defined and then extend the expressions obtained to the class of interest. 
Thus on D(H) x D(H) 

(6.7) [H,f(A)} = I isf(s)[H,eiA°} . 

We have 
[H,eiAs] = eiAs{e-iAsHeiAs - H) . 

Using that 
d 

ds 
{e~iAsHeiAs)=ie-iA*adA(H)eiAs 

and the Fundamental Formula of calculus we compute 

(6.8) e-iAsHeiAs _ H = i 

S 

S 
0 

due~iAuadA(H)eiAu . 
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The above two formulas are first derived with H replaced by H€ = • H 
l + ieH e> 

0. Then, we let e j 0 and use the boundedness of adA{H) to prove that this 

limit exists. 

Subtracting from and adding to the integrand adA(H) gives 

e-iAsHeiAs _H = Í8a¿A(H) + i 1 
0 

du(e~iAuadA(H)eiAu adA{H)) . 

Iterating this relation n — 1 times we obtain 

e-iAsHeiAs _ H = 

n - 1 

E 
=1 

(is)" 

kl 
adk

x(H) + R (S) 

where 

(6.9) Rn{s) = 

s 

! 
0 

dui • • • 

« n - l 

I 
0 

dune-iAu»a<r\(H)eiAUn . 

This together with (6.7) and the relation 

oc 
[ 
[ 

— oo 

f(s)(is)keiA*ds= fh)(A) 

yields 

(6.10) [H,f(A)} = 
n-1 

E 
=1 

1 
kl 

r)(A)adk

A{H) + Rn(f) 

where 

[8.11) Rn(f) = 

oc 

/ 
— oo 

f(s)eLURn(s)ds . 

Since adJiiH) is bounded we have that 

||Ä n(«)||<const.|i|»||ad^(JÏ)|| 
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which yields 

(6.12) \\Rn(f)\\ < const. 
oc-{ 

— oc 

\f(s)\\srds\\aa"\(H)\\ . 

Finally we extend the above analysis to arbitrary function / satisfying 
condition F. 

First assume that H is a bounded operator. Then the form 

A(f)=i[H,f(A)}-
11-1 

E 
=1 

1 
kl 

fik\A)adA{H) 

is well defined on D(An). 
Now, let fjeC$°(R) j = 1,... oo with fj -> / in the F topology 

II/HF = l i b i l i • 

It readily follows that A(fj) —> A(/) in the form sense since /j —> / 
implies 

l l < A ) - ' U - ( A ) - / ( A ) | U - > 0 . 

By the estimate (6.12) 

M / I ) - > * » ( / ) 

with Rn(f) bounded. 
Equality (6.10) then implies 

A ( f ) R n ( f ) = 0 

in the form sense on D(An). 

Since Rn(f) is bounded and 
n-\ 
E 

Ar= 1 

1 
k. f

k\A)adk

A(H) is an operator defined 

on D(An l) the above equality extends to D(An J ) . The result for un
bounded H now follows by approximating H by 77 

l + 7f// and a simple continuity 
argument. 

REMARK. For similar expansions, based on resolvents see [B-Gl and cited 
ref.]. 

Lemma 6.2 Let A(t) be a commutative family of self-adjoint operators with 
common domain V. We assume that A(t) is norm differentiate in t : A(t + 
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6) - A(t) are bounded for 6 small and the following norm limit exist: 

lim 
a 0 

1 
6 

(A(t + 6)-A(t)) = -
dA{t) 

dt . 

Then, we have 
(a) For all bounded smooth functions f, with f^eL1, f(A(t)) is norm 

differentiate. 
(b) Assume that A(t) > 0 for all t. Let a > 0. Then A(t)af(A(t)) is 

differentiate in the strong resolvent sense and the chain rule applies for 
g(X) = Y\°f(\): 

d 
dt 

g(A(t))=g'(A(t)) 
dA(t) 

dt . 

PROOF. 
(a) As in the proof of Lemma 6.1 we derive the formula 

d 
dt 

e'XA^=iX dA{t) 
dt 

eiXA(t) _ 

Using this formula and equation (6.1) we get 

(6.13) 
d 
dt 

f A(t)) = 
dA(t) 

dt f'(Mt)) 

where the limits defining d_ 
dt are taken in the norm sense. 

(b) Since the A(i) have a common domain D, A(t)/(A(s) + ij-1 are 
bounded for all s and t by the closed graph theorem. We can then compute 
directly that 

m 

dt 
A(t)a = aA(t)a~l dA{t) 

dt 

for all positive integers a. Thus by the Chain rule it suffices to consider th< 
case 0 < a < 1. 
To this end we compute 

1 
6 

[A{t + <5)° -A(t)a' == 1 
6 

A(tr [(1 + 6ß(t))a - 1] 

where 

<u.,tt(o)) 
(A(t + 6) - A(t)) 

6 <u.,tt(o)) 
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Note that since A(t) > 0 and norm differentiate and, A(t) are commuting 
for different values of t,/3(t) is a bounded self-adjoint operator for each t. 
Using that by the spectral theorem 

(1 + 6f3)a - 1 = a6P + 0(6) 

the result follows. 

Some Domain Estimates 

Lemma 6.3 Let H and A > 0 be self adjoint operators on a Hilbert space 
H. Assume that D(H) N D(A) is dense in H. Then, for a > 0 s.t. 

(6.15) adk

H(A) are bounded operators for 1 < k < [a] + 1 

we have 
g(H): D{A«) -> D{A«) 

forallg(\)eCS°{R). 

PROOF. By interpolation it is sufficient to prove the lemma for integer a. 
We first show that adA(g(H)) are bounded for 1 < k < [a] + 1; using 

eq. (6.8) we derive, in the sense for forms on D(H) fl D(A) = D,the following 
equality 

[A,eisI1] = eisI1{e-isIIAeisH - A =) 

(6.16) = i e s H 

s 
fi [ 

0 

dfie-^Hadn{A) e ' " / f , 

hence 

(6.17) sup 

11*11=11*11=1 

I < <f>, [A,eisH)rP > I = | | [ A , e ' s " ] | | < s\\adH(A)\\ < cs 

due to (6.15) (with k = 1). 
Iterating the formula (6.16) and using the estimate (6.17) we get 

(6.18) \\adn

A(e>*")\\<cs» n < [a] + 1 

136 



THE MANY BODY PROBLEM 

By (6.7) and (6.18) 

(6.19) | K № ( t f ) ) | | = || 

O O 

[ 
[ 

— oo 

dsg(s)ad'\(e's")\\<C 

OC 

[ 
[ 

— oc 

\sng(s)\ds < oo . 

Since ||ad^(g(if))|| < oo for n = [a] + 1, taking g-real valued we apply 
Lemma 6.1 (with /(A) = Xa , a integer) to get: 

(6.20) [9(h), A°} = 
[a] 

E 
fc=l 

ck 

+8 
adk

A(g(H))Aa-k + Ä[a] + 1 

and ii[ a]+i is a bounded operator due to (6.6). (Note that since a is an 

integer, one can derive eq. (6.20) directly, without reference to Lemma 6.1.) 

Hence, if we let ueD(Aa), then using eq. (6.20) we obtain 

Aag(H)u = g(H)A°u+ [Aa

i9(H)]u 

= g(H)A«u + E 
? = 1 

\\F£i[Ha9tA]P[a]+1uEM 

since B{ = 
2 
31 

ad>Ai(g{H)) are all bounded by (6.19). 

Section 7. Local Decay, Velocity Bounds and Spectral Theory 

Recall the notion of threshold energy: /C a = 0 for some cluster decom

position a(a) and channel a. Here /C a = E — ea where ea is an eigenvalue 

of Ha. Thus thresholds E are eigenvalues of subhamiltonians Ha. The set 

of all thresholds is denoted T. It is known that T is discrete and bounded. 

Furthermore points of T can accumulate (at K £ T) only from below. These 

properties of H follow from the Mourre estimate [see e.g. CFKS] which we 

now turn to: 

For E ^ 7', the channel expansion for H gives (the Mourre estimate) 

[Ml-2, PSS, FH1, BG2]. For more general Hamiltonians see [Der2, Gerì, 

FHP1]. 

EA{H)i[H,A]EA{H) > eEl(H) + K , e > 0 
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with K compact ( £ C A ) . 
Let A C A be s.t. H has no eigenvalues in A. Then E^(H) —> 0 as 

|A| —> 0. Since K is compact, we can choose A sufficiently small s.t. 

EAi[H,A]E^ > 0E\(H) - eE\ >{0- e)El(H) . 

A general spectral theory has been developed with the Mourre estimate 
as the main tool. This theory can be thought of infinitesimal and microlocal 
version of scaling theory in PDE (see also [L]). The Mourre estimate deter
mines the way an infinitesimal scaling affects the operator H. Let us describe 
few notable consequences of the Mourre estimate. (A comprehensive analysis 
of the continuous spectral part of H is done in [ABG], [BG1].) See [Iw] for 
applications to systems of equations and [We] to nonhomogeneous media. 

Theorem 7.1 (Mourre) Assume H satisfies the Mourre estimate for an inter
val A. Then H has only finitely many eigenvalues in A; assume moreover that 
the commutator i[[H, A ] , A] is H bounded. Then H has no singular spectrum 
in A. 

Theorem 7.2 (Local Decay) Assume H satisfies the Mourre estimate for an 
interval A and ad2

A(H) is H bounded. Then local decay holds: 

oo u 
— oo 

\\(A)-~*e-<HirP\\Ut<c\№\\l for all = EAip . 

In case A is the dilation generator it is easy to show that (A) can be replaced 
by (x), in the above local decay estimate. 

Theorem 7.3 (Minimal and Maximal Velocity Bounds) [Sig-Sof2] Assume 
as before that the Mourre estimate holds for some energy E. Let 0m and 9M 
be the lower and upper bounds: 

0mE\ < E A i [ H , A } E A < 0 M E 2 l A . 
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Assume furthermore that ad2

A(H) and ad\ are H bounded. Then 

[ 
[ 
[ 

\\F ( 
A 

t 
<em- e ) e - 7 / V H 2 

dt 
Ta <c\\{x)ß(a)1>g /3(a) = 

1 - a 

2 J 

and 
[ 
[ 
[ 

\\F ( 
Q 

>ÖAF + e)e-"lti>\\ 
dt 

t a 
\ \ { x ) ' 3 ^ g . Y | | 2 

Here ip = 25A ̂ . 

REMARK. The upper bound inequality for i[H, A] is called the reverse Mourre 

estimate. Sharp values of 6m and 6M can be found for a general iV-body 

hamiltonian using the Channel Expansion Theorem. 

A corollary of Theorems 1 and 2 is a proof of asymptotic completeness 

for the two body case. Further results can also be established by the analysis 

leading to the above theorems, e.g. propagation estimates for the region of 

phase space where A < 0 and analytic properties in certain weighted spaces 

of the resolvent of H. But not less important and impressive are the results 

about eigenfunctions of H and its resonances. 

Theorem 7.4 (Froese-Herbst) Exponential decay of eigenfunctions. Let H = 

—A + V where V satisfies: 

i) V is — A bounded with bound less than 1 

ii) x • W is bounded from 7i] to 7i~2. 

Suppose that Hip = Eip. Then eA<J :ty € L'1 for all A 2 < M~{H) - E. 

Here r] £ M(H) iff the Mourre estimate holds at rj = E (see CFKS, ch.4). 

The results on absence of embedded eigenvalues uses: 

Theorem 7.5 (Froese-Herbst) Absence of embedded eigenvalues. Let H = 

—A + V where V satisfies conditions (i), (ii) of the above theorem and fur

thermore, x • V V is A bounded with bound less than 2. Then, if eA<*>V> G L2 

for all A real, then ip = 0 (see CFKS, ch. 4). 

There are also interesting results about the existence and characterization 

of resonances using the Mourre estimate in [Or] and to Nonlinear instability 
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of periodic solutions [Sig2]. See also [FL, J, Na]. 

PROOF. The proof of the first part of Theorem 7.1 is very simple: Let 

{ipn}%Li be eigenfunctions of H with eigenvalues in A. Then 

0 = (1>n,[H9iA]il>n) = (Y1>n,E*[HM]E*1>n) > 0 | | lM | 2 + (1>n,Kil>n) . 

Now, let n —• oo; then (i/jn,Kipn) —> 0 since K is compact. We used also 

the virial theorem to prove the first equality. 

The absence of singular continuous spectrum in A follows from Local 

Decay (Theorem 7.2). 

The original proof of Theorem 7.2 given by Mourre was based on proving 

differential inequality for the complex distorted resolvent of i7, the distortion 

is generated by the group elXA. 

Later a new proof, more general, was given by the methods of microlocal 

propagation estimates [Sig-Sof2]. This proof implied also the minimal and 

maximal velocity bounds as well as pointwise decay estimates (in time) in 

certain regions of the phase-space [Sig-Sof2, Sk, Ger2, H-Sk, Ger-Sig, Her]. 

This approach could also be extended to time dependent hamiltonians of the 

type 

H(t) = H + W{x,t) 

that arise in long range scattering theory. 

IDEA OF PROOF. (Theorems 7.2,3) We construct a sequence of negative 

propagation observables of singular operators. Each one, when used, implies 

a propagation estimate which is then used to control the remainder terms of 

the next, more singular observable. Denote for a moment by X(t) a monotone 

increasing function of ¿, and let a,/3 > 0. Then 

0 a , / ? ( A , t ) = -( 
-X(t) 

10 ) 
a 

F ( 
\(t) 

t 
< -6 ) 

satisfies 

i) <ßa,ß < 0 

ü) ít^A1) > 0 f o r a n y 6 > °-
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The Mourre estimate then suggest the use of 

A(i) - eiHiAe-iHi . 

To make the analysis go, we take <j>aJ3(A,t) = Fa as the propagation observ

ables and work inductively in a. 

Using the Leibnitz Rule for operators and the Mourre estimate we can 

then bound EADFaE& from below, to prove the theorems 2, 3 by invoking 

the Basic Lemma. 

This approach allows very precise localization of the orbit e~~tiHip in the 

phase space. For general two body hamiltonians of the PDO type one can 

prove asymptotic completeness by proving sharp localization of the solution 

near the classical trajectories [Sigl]. The previous approach to this prob

lem required intricate stationary phase analysis and resolvent estimates due 

to Agmon; see [Ho IV, last chapter], see also [Kit-Ku], [Comb] for another 

approach. 

The above method of proving theorems 2, 3 suggests a way of getting 

finite propagation speed behavior to Schródinger type equations and may be 

useful in the study of propagation of singularities. For some progress in this 

direction see [Ger-Sig]. 

Section 8. The iV-body Long Range Scattering 

The results of this section are based on [Sig-Sof4,5]. 

Using the minimal velocity bounds we infer that, for large times, \x\ > c¿, 

when the total energy of the state -0+ is localized away from the thresholds 

of H. 

In the Long Range case, the two body potentials (at least some of them) 

vanish like \x\"^1 with /i < 1. Therefore | x z j | ~ / ¿ ~ t~~fl for large |i| which is 

not integrable. In particular the proof of AC fails, since now 

IaJa=0{\x\-»)£Ll{dt) . 

(by this we mean (ip(t), | z | - ^ ( * ) ) ^ Ll(dt)). 

It can be shown that the asymptotic motions of subsystems cannot be free. 

The modification needed makes the asymptotic hamiltonians time dependent. 
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For each cluster decomposition a we define the hamiltonian 

Ha(t) = Ha + Ia(x\xü) \ X a = V a t . 

Using Ha(t) instead of Ha in the proof of existence of the Deift-Simon Wave 

Operators, the JaIa term is replaced by 

Ja{Ia{x\xa) - Ia{xa,Vat)) = 0 { \ x \ ^ ) \ x a - V a t \ J a 

We therefore need to prove a sharp propagation estimate 

\\Ja\xa - vat\%l>(t)\\ = 0(Vl~e) for some e > 0 

to conclude the proof in the Long Range Case. 

In practice we modify the time dependent part of Ha(t) further, to include 

the known minimal and maximal velocity bounds: 

Ha(t) = Ha + Wa{x,t) 

where 

Wa{x,t)=Fa,E(x,t)Ia{xa,vat) . 

Here F a ? £(x , t ) localizes m < \x\/t < M with m, M depending on a and E. 

We therefore have 

№ d ? w \ < c Q , / 3 ( i + | x | + < t ( o ) ) + < 

Let 
4>a = F{m < 

\x\ 
t 

< M)ja(x,pa) 

where j a is a phase-space partition of unity of T*X. Then it is easy to verify 

that 

Theorem 8.1 
a)J2<f>a + F(lfl < m) + F(Jfl > M) = 1 + 0(t~l) \t\ > 1 

a 

b)(f>a are supported in {\x\fl > 6\x\}n{mt < \x\ < Mt}x{\ka\ < R} = Qa 

c) (t)W+ßd2d?(f)a are supported in fiAa\PSk. 
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Here PSl

E = PSE H {rn < ifl < M} 

We then have (Sig-Sof4) 

Theorem 8.2 (Sharp Propagation Estimate) Assume /i > 0. Let E be away 

from the thresholds and eigenvalues of H. Then, there exists an interval A 

around E s.t. 
(TO [ 
[ 

1 

|| Xa 

t 
-Va\ r'<t>a^t 

|| 
|| 

2 dt 
t 

<u.,tt(o)) 

The proof follows by studying the following propagation observables. Let 

<u.,tt(o)) 
E a 

t 
-vrf + t-^-2 t>l 

and define the propagation observables 

Fa = 0 f l A a </)a . 

The Heisenberg derivative of Fa consists of two (kinds of) terms: 

<a{DAa)(ß(l < 0 

and 

{D(¡)a)Ka(¡)u + (¡)aKaD(t)a . 

This second term lives away from the PSl

E by the properties of 4>a. Hence 

the original propagation theorem for PSi; and the minimal/maximal velocity 

bounds show that this term is L[ (dt) which completes the proof. Alternatively, 

one can use Graf's argument and consider 

E <¡>tiKi<l>a 

and try to arrange that, by choosing different <f>a 

E 
a 

(D<j>a)Aa<t>a + E 
a 

4>aKD4>a<0 + O{Ll(dt)) . 
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This indeed can be done using the monotonic partitions of unity [Gr, Der3]. So 

far we studied the asymptotic behavior of e~tI]tip for t large and E away from 

the thresholds and eigenvalues of H. This establishes Asymptotic Clustering 

Theorem 8.3 (Asymptotic Clustering) Let \i = 1 and E be away from the 

thresholds and eigenvalues of H. Then Asymptotic Clustering holds for any 

number of particles: 

lim 
t-+±oc 

| | e - ¿ / / V - E 
n 

\\F£i[Ha9tA-+0 

The proof follows from the Sharp propagation estimate and construction 

of the Deift-Simon wave operators as in the short range case [Sig-Sof4]. Re

cently, by using an intermediate asymptotic dynamics [Ge-Der] improved the 

above theorem to include all cases of ̂  < fi. 

We now turn to the problem of Asymptotic Completeness in the Long 

Range Case. The new feature is the need to analyze the asymptotic behavior 

of an iV-body system with time dependent perturbation W(x,t) added. In 

this case we have to redevelop all the local decay, velocity bounds, etc. for such 

hamiltonians. The first problem we are faced with is that the energy is not 

conserved by time dependent hamiltonians: EA(Ha)Ua{t) ^ Ua{t)EA(Ha). 

Asymptotic Energy Operators 

To treat the lack of energy conservation, we need the method of asymp

totic microlocalization. We show that asymptotically the energy distribution 

is constant and we will microlocalize using the asymptotic observables build 

from the energy projections [Sig-Sof2-5] see also [Sol]. Let Q be any bounded 

interval. Then 

exists, for any fi > 0. 

Here U(t) is generated by H+W(x, t) and W(x, t) satisfies the conditions 

of this section. Moreover 

\ \ U ( t ) E ^ - E 9 U ( t ) \ \ < C \ Q \ - l ( t ) ^ - u . 
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The proof is simple; it uses Cook's argument to U(t)*EAU(t) and the decay 

properties of W(x, t). Prom now on, we refer to Ua(t) as U(t) (with Ha —• H). 

By considering E £T (the threshold set of H) and letting 

tf,* = E^(H)ip A D E, |A| small enough 

we can prove now asymptotic clustering for U(t)E^. This is because the 

local decay and minimal and maximal velocity bounds can be proved for H(t) 

by the methods of [Sig-Sof2] as for the independent case. The same is true 

for the sharp propagation estimates. The main difference now is that we 

have to estimate Djj^(t)F instead of Djj F for the propagation observables F. 

Furthermore, we need to localize using Ea= instead of EA. Both of these can 

be achieved using the decay properties of W. It is left to consider states in 

the range of the singular asymptotic projections: E^\ 

Let E G T and Q D E. Then, as before E^ exists. Since T is discrete, 

by density argument we can reduce the problem to an arbitrary small interval 

around E. We then are left to consider 

' n h r e s , () = U 
EeT 

{ 
{ 

lm lim 
Mio 
DE 

Et;(HU I v e ü 
} 

1 

The scattering theory for initial states in W îres (H) is fundamentally different 

than that of states in the orthogonal complement. Such states, if they exist, 

can only diffuse in certain channels (open) rather than scatter, because they 

are localized on threshold energies. Consequently the propagation theory is 

very different. To begin with, the Mourre estimate does not hold and therefore 

local decay, velocity bounds fail. 

Asymptotic Microlocalization and Propagation 

We defined the space of (asymptotic) thresholds Wthres.(-H') i n terms of 

the singular projections lim| A | j 0 E^(H) A D J5, E G T. Since we cannot 

expect |x| ~ ct for such states we need another way of getting some local 

decay. The first step is then the following time dependent decomposition of 

the space: 
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(A) | s | < cta 

B \x\ > cta 

for some a < 1. 
In region (A) scattering is not possible. However we treat states in this region 
using the following wave-operator argument: 

W(x,t) = W(x,t)-W(0,t) + W(0,t) = O 8 N 
*2 ) + W{0,t) = 0 ( r 2 + a ) + W{0,t) 

in the region (A). Hence we expect the following wave operator to exist: 

uD(ty [ 
[ 

1 * 1 
ta < 1 ) 1 7 ( 0 fiDa +D • 

By Cook's argument and the observation above, it is reduced to proving 
that DF(Q < 1) e Ll(dt). Since £>F lives in the region ^ ~ 1, the problem 
is reduced to the region |x|ta > 1, where scattering is expected. 

In region (B) \x\ > t a , but the momentum can be arbitrarily close to 
zero. This suggests another sharp decomposition: 

(I) \p\ > et'? 

(II) \p\ < et'0. 
Our aim is now to get positive commutators in the region (I), (II) by using 

that for free flow xa ~ vat. Let us consider a simple example to illustrate this 
approach. Assume that U(t) is generated by a three particle Hamiltonian plus 
W(x,t). (This is the hard case for TV = 4). Let E E T be negative. In this 
case, there is no propagation on the three cluster decomposition, by energy 
conservation. 

Consider the following propagation observable, for any two cluster de
composition a: 

Fa = Fl ( 1*1 
|*| 

> E 
) F2 ( \X(L I 

t" 
> 1 ) F3{\pa\ < act"-1) • 

We estimate D0Fa = D-\Fa. Clearly 

A ) F 3 < 0 since [p„,A] = 0 . 
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D0F2 = F^t-a(la -
a p t t | 

t ) 
+ 0 ( t - 2 a ) . 

for a > l 

2 
0 ( * - 2 a ) G Ll(dt). F^ localizes Ea 

ZA ~ 1 , hence 

= 
« F o l 

t 
- - a t 0 " 1 . 

Finally, 

\ja\F3(\pa\<ar-1)<at^l+0(t-1) 

by the Localization Lemma. Combining all the above we conclude that 

D0F2 < S t ' 1 + 0(t~la) for some positive 6 , 

on support of F 3 . 

Finally, observe that DF\ lives where \xa\ ~ ea\x\ and therefore on the 

free channel (recall # (a ) = 2 and the total number of particles is 3). There 

is no propagation on support DF\, since E < 0. We therefore conclude that 

D0Fa < 
-6 

t 
FxF^+0(Ll(dt)) . 

To show that the potential parts do not change the monotonicity esti

mate, observe that Fa lives in the region {\x\a > f Q , -y^ < £a} which is a 

two cluster decomposition a with \x\ > cta. Furthermore F a , as a phase 

space operator is independent of p°. Hence the commutator with V decays 

like | t | ~ ( 1 + ^ ) a e Ll(dt). The commutator with W(x,t) is estimated by the 

formulas for the commutator of functions of operators to give a contribution 

of order 

O f r 1 - " * 1 - * ) = O ( r " - û ) e Ll{dt). 

We therefore conclude that — Fa is a propagation observable for H(t), when 

H(t) = H + W(x,t) and i f is a three particle hamiltonian. 

The resulting propagation estimate and similar analysis for |p a | > cda~~l 

and a time dependent two cluster partition of unity, shows that there is no 

propagation in the region |x|ta = 1. Other types of estimates are needed to 

complete the proof for N = 4. 
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Let us consider another case. Let E = 0. Then E 6 T and the system 

can propagate on 3 cluster decompositions, so the previous observable does 

not work, since now we do not know if DF\ 6 Ll(dt). However, in this case, 

we compute 

DF± = 1 
(x) FUr -

\xa\ 
\x\ 

7) + 0 ( | x | - 2 ) . 

We use Fy to conclude that 

0(\x\-2)F2 = 0{r'2a) e L\dt) . 

Furthermore, F[ localizes on three cluster decompositions and 1e 
|x| 

~ ea. On 

three cluster decompositions E 
i<j 

V = 0(\x\-»). 

Hence, if we pull a sharp energy localization projection of the type 

F(\H\ < t~P) from t\) e Wthres., (Recall that now E = 0) we get 

F[F(\H\ < t^)F2 = F[F(\p2 \ < t~3)F2 + Oit-^13) . 

Using now that \p2\ < t & we use the localization Lemma to conclude that 

( s ) - V and ( a ) " 1 7 are both of order t ' Q t ^ 1 2 G Ll{dt) 

if we choose a + /3/2 > 1. A complete solution of the 4 body problem along 

these lines is given in [Sig-Sof5]. 
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